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IX 

PREFACE 

Our purpose in writing this book was two-fold. First, we wanted to 

compile a chronology of the research in the field of mixed-mode simula­

tion and analog multilevel simulation over the last ten to fifteen years. A 

substantial amount of work was performed during this period of time but 

most of it was published in archival form in Masters theses and Ph.D. 

dissertations. Since the interest in mixed-mode simulation and analog 

multilevel simulation is growing, and a thorough review of the state-of­

the-art in the area was not readily available, we decided to publish the 

information in the form of a book. 

Secondly, we wanted to provide enough information to the reader so 

that a prototype mixed-mode simulator could be developed using the algo­

rithms in this book. The SPLICE family of mixed-mode, programs is 

based on the algorithms and techniques described in this book and so it 

can also serve as documentation for these programs. 

In this new edition of the book, we have added a substantial amount 

of information on the mixed-mode interface in Chapter 7 and automatic 

mixed-mode partitioning in Chapter 8. We have also improved the review 

of existing mixed-mode simulators so that the reader is better able to select 

the most appropriate one for their application. Chapter 9 is a new chapter 

on analog multilevel simulation. The iMACSIM program, developed at 

the University of Illinois, is based on the contents of this chapter, so it 

serves as documentation for this program. 

Although, there are some omissions of other relevant research work 

III this book, space limitations did not allow us to include everything. 

However, some of the other research has already been published by 

Kluwer Academic Publishers and others, and we wanted to avoid any 

duplication. 
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CHAPTER 1 

INTRODUCTION 

1.1. THE SIMULATION PROBLEM 

Computer simulation is used in a variety of different fields to predict 

the behavior of physical systems whenever it is inappropriate, or too 

expensive, to build the actual system to observe its behavior. In electrical 

engineering, circuit simulation is used routinely in the design of integrated 

circuits (lC) to verify circuit correctness and to obtain detailed timing 

information before an expensive and time-consuming fabrication process 

is performed. In fact, it is one of the most heavily used computer-aided 

design (CAD) tools in terms of CPU-time in the IC design cycle. The 

popularity of this form of simulation is primarily due to its reliability and 

its ability to provide precise electrical waveform information for circuits 

containing complex devices and all associated parasitics. 

Detailed circuit simulation has been used extensively for IC design 

since the early 1970s. However, the ever-increasing number of devices on 

a single silicon chip has led to development of a number of higher-level 

simulation tools to cope with the complexity of the problem. In digital IC 

design, these tools include behavioral simulators, register-transfer level 

(RTL) simulators, gate-level logic simulators, and switch-level simulators. 

These programs have been used to verify circuit functionality and to 

obtain first-order timing characteristics. Typically, the higher-level tools 

provide enough information to design working circuits. However, there is 

still a significant time lag between a functioning circuit and a circuit which 

meets the design specifications - particularly in the case of high­

performance custom integrated circuits. In fact, circuit simulation is the 
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only tool which provides enough detail to ensure that circuits of this type 

will meet specifications over a wide range of circuit parameters and 

operating conditions. 

At the present time, the most popular circuit simulation tool is the 

SPICE2 program [NAG75]. There are many thousands of copies of this 

program in use, as well as a number of versions of "alphabet-SPICE" (e.g., 

HSPICE, PSPICE, IGSPICE) being marketed commercially. All of these 

programs offer a wide variety of analyses including dc analysis, time­

domain transient analysis, ac analysis, noise analysis and distortion 

analysis. Of these, the time-domain transient analysis is the most compu­

tationally expensive in terms of CPU-time. The SPICE program was ori­

ginally designed to simulate circuits containing up to 100 transistors. 

However, at certain companies, this program is often used to simulate cir­

cuits containing over 10,000 transistors at great expense! The program is 

accessed over 50,000 times per month at some of companies with a "job 

mix" that conforms to the 80-20 rule. That is, 80% of the SPICE runs are 

on small circuits which consume only 20% of the total CPU-time used 

each month, while 20% of the jobs are very large and consume 80% of the 

CPU-time used each month. Today, designers require simulators that can 

accommodate digital circuits with 500,000 to 1,000,000 transistors in a 

single run. Therefore, the development of fast but accurate simulation 

methods for very large-scale integrated (VLSI) circuits continues to be an 

important area of research and development. 

With the advent of submicron technologies and faster clock speeds, 

complex VLSI systems including both analog and digital circuits have 

been integrated onto a single chip. It is estimated that roughly 60% of all 

semi-custom ICs includes some analog circuitry, and 30% of all standard 

cell designs include analog functions that account for 10% of the chip 

area. The percentage is even higher for custom ICs such as voltage 
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regulators, phase-locked loops, filter codecs, line equalizers, ISDN line 

interface circuits, line cards, DSP with on board AID and D/ A, speech 

recognition circuits, FDM transducers, power up/down sense circuits, and 

dial tone/pulse generators. This proliferation of mixed-signallCs has lead 

to problems in almost every area of Ie development including design, lay­

out, fabrication, testing, and manufacturing. 

The trend of integrating complete analog/digital systems on a single 

chip has also resulted in new challenges in modeling and simulation. First 

of all, problems in analyzing these circuits arise due to the different 

modeling and simulation approaches used for analog and digital circuits, 

and differences in their accuracy requirements. The different approaches 

must be combined in a consistent manner so that entire systems can be 

simulated with the appropriate speed/accuracy tradeoff. Secondly, 

system-level design is being emphasized to cope with the complexities of 

large designs. In this context, behavioral modeling and simulation are 

essential to the validation of a proposed architecture before a detailed 

design begins. This has been used in digital system design for many years 

with great success. Designs are described and simulated at the behavioral 

level using standard hardware description languages. Unfortunately, in the 

analog domain, circuits are still designed and verified at the electrical 

level, despite the fact that circuit simulation is very time-consuming. For 

mixed-signal simulation, it is essential to provide an analog modeling and 

simulation environment similar to the digital domain, that would allow the 

designer to model components at the behavioral level and then perform 

system-level analog simulation. With this capability, the overall architec­

ture of a proposed mixed-signal design could be verified at a high-level in 

a reasonable amount of time. After the verification process, the detailed 

design could be performed based on specifications derived from the high­

level simulation. 
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This book addresses the problems of simulating entire mixed 

analog/digital systems in the time-domain. A complete hierarchy of 

modeling and simulation methods for analog and digital circuits is 

described. Fig. 1.1 lists all the levels in the hierarchy for the two domains. 

These levels are briefly described in the sections to follow as a motivation 

for techniques developed in the rest of the book. 

1.2. LEVELS OF SIMULATION FOR DIGITAL CIRCUITS 

This section provides an overview of the different levels of simula­

tion that have been used in digital circuit design. It begins by describing 

the most detailed level and then moves to progressively higher and higher 

levels of abstraction. Each level is illustrated in Fig. 1.2 for a CPU design. 

Digital Analog 

Behavioral Behavioral 

RTL / Gate Ideal Functional 

Switch Level Non-Ideal Functional 

Electrical Electrical 
Figure 1.1: Levels of Simulation 
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a = b+c; 
IF (a !=O) 

x = y; 
ELSE 

x = z; - ....... - ....... - ....... 

RAM ALU ROM 

II II 11 

CONTROL 

.. ....... - ....... - ....... -

Behavioral Level 

....... 

RTL Level 

....... 
r-----------------~~~/ 

/ 

- -
Gate Level Switch and Circuit Level 

Figure 1.2: Levels of Abstraction in Digital Simulation 

5 



6 MIXED-MODE SIMULATION 

1.2.1. Electrical Simulation 

Electrical or circuit level simulation provides the greatest amount of 

detail. The electrical transient analysis problem in SPICE involves the 

solution of a system of nonlinear, first-order, ordinary differential equa­

tions. These equations model the dynamic characteristics of the circuit for 

a set of applied input voltages and initial conditions. The solutions are 

voltage waveforms across pairs of circuit nodes and current waveforms 

through circuit elements. Usually the designer is interested in only a sub­

set of the entire set of solutions. 

Standard circuit simulators use direct methods to solve the circuit 

equations. Briefly, direct methods employ some form of numerical 

integration to convert nonlinear differential equations into a set of non­

linear difference equations. These equations are solved simultaneously 

using the iterative Newton-Raphson method. This involves a conversion 

of the nonlinear equations into linear equations, and their subsequent solu­

tion using a sparse LU decomposition technique [NAG75]. There are two 

limitations in this approach that make it inappropriate for large circuits. 

One fundamental problem is that the sparse linear solution dominates the 

run time for large circuits [NEWS3]. The second limitation is that, at each 

time point, all the variables in the system are solved using a common 

time-step based on the fastest changing component in the system. This 

can be inefficient for both small and large circuits, but it is more 

significant for very large problems where most of the components are 

either changing very slowly or not changing at all. 

A variety of techniques have been investigated to improve the per­

formance of circuit simulators. Early work in this area includes timing 

simulation [CHA75, NEW7S, DEMSO], which is a simplified form of 

relaxation-based circuit simulation, and tearing methods, which have been 

applied at both the linear [SAN77, YANSO, SAKSl] and nonlinear 
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[RAB79] equation levels. More recently, the relaxation-based approaches 

have been the focus of intensive research. In particular, the Waveform 

Relaxation method [LEL82, WHI83] has been implemented in a number 

of programs including RELAX [LEL82, WHI83], SWAN [DUM86], 

TOGGLE [HSI85], RealAx [MAR85], MOSART [CAR84] and iDSIM 

[OVE89]; and Iterated Timing Analysis [KLE83, SAL84], based on non­

linear relaxation, has been implemented in SPLICE rSAL83, KLE84, 

ACU89], ELDO [HEN85] and SISYPHUS [GR087]. 

1.2.2. Gate-Level Simulation 

When the complexity of an integrated circuit design reaches the 

point at which electrical analysis is no longer cost effective, logic or gate­

level simulation can be used [BRE76j. In logic simulation, transistors are 

usually grouped into logic gates and modeled at the gate level. This form 

of simplification, sometimes referred to as macromodeling, can result in 

greatly enhanced execution speed by reducing the number of models to be 

processed and simplifying the arithmetic operations required to process 

each transistor group. Rather than dealing with voltages and currents at 

signal nodes, discrete logic states are defined, and simple Boolean opera­

tions are used to determine the new logic value at each node. Boolean 

operations are generally the most efficient operations available on a digital 

computer. 

A logic simulator that uses event-driven, selective-trace techniques is 

typically 100 to 1000 times faster than the most efficient forms of electrical 

analysis. It can also provide first-order timing information, including the 

detection of hazards, glitches, and race conditions. In addition, it can pro­

vide output information regarding any illegal states or conflict conditions 

that may arise at any node in the circuit. The number of logic states used 

in a simulation, their meaning, the logic delay models and the scheduling 
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algorithm all have a profound impact on both the speed and accuracy of 

the results. It is this wide variety of factors that has resulted in the 

development of such a large number of logic simulators - almost everyone 

addressing a different set of tradeoffs. 

1.2.3. Switch-Level Simulation 

Recently, switch-level simulation [BRY80, RA089] has become the 

preferred form of logic simulation for MOS digital circuits. In this 

approach, the circuit is entirely simulated at the transistor level, rather than 

at the gate level. The transistors are modeled as gate-controlled switches 

and operate as follows: if the transistor is "ON," it is viewed as a closed 

switch and it may transfer a signal value from one node to another; if the 

transistor is "OFF," it is viewed as an open switch and is incapable of 

transmitting any signals through it. The network is composed of a set of 

nodes connected by these switches, and the logic value at each node is 

determined using this idealized transistor model. Usually a strength is 

associated with each transistor switch when in the closed position to model 

the conductance of the device. This strength is used to determine the 

effective conductance of signal paths from any node to the supply and 

ground nodes. The capacitance at each node can also be modeled using a 

node strength that is proportional to the size of the capacitance. Many of 

the important features of MOS circuits, such as charge-sharing and 

bidirectionality, can be modeled using this switch-level model, although 

detailed timing and voltage level information are not usually provided. 

A number of researchers have attempted to incorporate timing infor­

mation at the switch level at the cost of additional CPU-time. Simulators 

that fall into this category are MOTIS [CHE84], RSIM [TER83], ELOGIC 

[KIM84], SPECS [DEG84], MOSTIM [RA085], CINNAMON [VID86], 

SPECS2 [VIS86] and iDS 1M [OVE88]. Programs such as RSIM treat 
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MOS transistors as linear resistors and compute signal transition times 

using the Penfield-Rubenstein technique [PEN81], which is an RC-delay 

modeling technique. Although the method is extremely efficient, the 

overall accuracy of this approach is limited due to the simplified nature of 

the delay modeling. MOSTIM and iDSIM determine the delay directly 

using lookup tables that are generated during a pre-characterization phase 

for recognizable transistor configurations. These tables account for factors 

such as device sizes, loading and input slew-rate. The ELOGIC and 

SPECS programs compute the delays by using electrically-based table 

lookup device models. The waveforms are generated as piecewise linear 

segments using the computed delays. Both approaches provide for vari­

able precision by allowing the user to specify the number of voltage or 

current levels to be used in the simulation. 

1.2.4. Register-Transfer Level Simulation 

Register-Transfer Level (RTL) [BRE75] simulation is concerned 

with logic circuits described at a higher level of abstraction. Combina­

tional components, (such as gates, multiplexers, decoders, encoders, 

adders, and arithmetic units) and sequential components (such as registers 

and counters) may be used in RTL simulators. RTL simulation has been 

used extensively for data path design. It is used for both the description 

and simulation of the designs when evaluating alternative architectures. 

The set of statements describing the circuit operation involves a sequence 

of register transfers and arithmetic operations that are similar to data-flow 

descriptions. In the description, related bits of information are usually 

grouped into ordered sets of words or buses for convenience and to estab­

lish logical relationships. Although RTL simulators are widely used to 

design computers, they do not usually provide information regarding 

races, hazards, illegal states or critical timing constraints. 
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1.2.5. Behavioral Level Simulation 

Behavioral level simulators [HIL80, INF84, INS84] allow the 

designer to define arbitrary functional blocks, both combinational and 

sequential, that can be used in system-level simulation. Two types of 

blocks may be defined: structural and behavioral. Structural blocks 

describe how a number of functional blocks are interconnected. A 

behavioral block contains a detailed description of the operations to be 

performed on the inputs to produce the outputs of the block. The state­

ments describing the operations are usually written in a high-level 

language, typically a hardware description language (HDL), and then 

translated to a standard programming language format and compiled into 

the simulator. Within the digital arena, VHDL (VHSIC HDL) [IEE88] and 

Verilog [TH091] are fairly mature, well-accepted industrial standards. 

When a behavioral simulator is executed, the operations of the system are 

emulated. Examples of applications that are appropriate for simulation at 

the behavioral level are: verifying the system timing of a CPU; checking a 

proposed network protocol for a local-area network; and validating the 

operations in DMA controller sequence. 

1.3. LEVELS OF SIMULATION FOR ANALOG CIRCUITS 

The various levels of simulation discussed thus far are shown on the 

left side of Fig. 1.1. In defining this hierarchy of methods, there was a 

clear bias towards digital circuits, since they usually dominate most of the 

mixed-signal chip area, and tend to profit greatly from hierarchical 

representation and the use of the higher levels of simulation. However, as 

shown on the right side of the figure, there is also a corresponding set of 

levels in the analog domain that has been overlooked until recently. The 

various levels in the analog hierarchy are described in the following sec­

tions using the sampled-data filter of Fig. 1.3. 



1. INTRODUCTION 1 1 

Behavioral Level 

C2 

OUT 
Ideal Functional 

'---_____ +-_________ --'l ....... _----'Non-Ideal Functional 

Vin! + + Ro 
+ 

Electrical 
linear 

Ri net- V Vo 
work 

von 

IN-
OUT 

lAi 
CL 

VSS 

Figure 1.3: Levels of Abstraction in Analog Simulation 
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1.3.1. Behavioral Simulation 

At the highest level IS behavioral simulation [CHA92, GIE92, 

SIN91, RUM89, VLA90] which is used when the function of a block is 

known but its detailed structure is undefined. At this level, individual 

blocks are described in terms of s-domain transfer functions, z-domain 

transfer functions, differential equations, difference equations, or some 

other form of high-level description. For example, a behavioral level z­

domain transfer function is shown at the top of Fig. 1.3 for a discrete-time 

filter. The interaction between behavioral blocks can be described in terms 

of signal-flow diagrams that include summers, multiplers, differentiators 

and integrators. Ideally, an HDL should be used to define the behavior of 

an analog circuit block at this level. Two efforts are currently underway to 

develop standard analog hardware description languages [SAL94A]. One 

of these is a new language called MHDL [MHD91] for analog/microwave 

circuits while the second is aimed at providing analog extensions to the 

existing VHDL standard (VHDL-A [VHD91]). 

1.3.2. Ideal Functional Simulation 

At this level, circuit components, such as ideal opamps, switches, 

integrators, and comparators are used. For example, the H(z) function in 

Fig. 1.3 can be realized using ideal switches for the MOS transistors, 

voltage-controlled voltage sources (VCVS) for the opamps and capacitors 

as shown at the ideal functional level. This corresponds to the RTL level 

in digital circuits. Although the models are idealized, this level allows the 

designer to quickly validate a proposed architecture using standard com­

ponents before the details of the design are considered. 

1.3.3. Non-Ideal Functional Simulation 

This level is similar to the ideal functional level except that the first­

order and second-order details are included in the models. Non-ideal 
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function blocks are commonly referred to in the literature as macromodels. 

They are usually constructed by connecting a number of primitive ele­

ments together, each representing some inherent feature of the block being 

macromodeled. Relationships between the components within the macro­

model may be defined using linear and nonlinear dependent sources such 

as voltage-controlled voltage sources (VCVS), current-controlled voltage 

sources (CCVS), current -controlled current sources (CCCS), and voltage­

controlled current sources (VCCS). Complex models that include non­

linear properties, dynamic behavior, limiting effects and detailed 

input/output characteristics may be provided at this level. For example, in 

Fig. 1.3, piecewise-linear gain, finite bandwidth and input/output resis­

tance have been included in the macro model of the operational amplifiers. 

The capacitances and resistances could also be included in the MOS 

switches when simulating the switched-capacitor filter circuit. This level 

roughly corresponds to the gate and switch levels in the digital domain 

that includes timing information and other electrical effects. 

1.3.4. Electrical Simulation 

Finally, at the most detailed level, electrical simulation is available, 

which corresponds directly to the same level on the digital side of the Fig. 

1.1. Here, the operational amplifiers would be represented in terms of 

their MOS transistors with detailed models as shown in Fig. 1.3. In addi­

tion to time-domain simulation, some frequency-domain analysis capabili­

ties such as ac analysis, sensitivity, noise and distortion must be available 

to the analog designers. However, these topics will not be addressed in 

this book. The interested reader is encouraged to consult [KUN90] for 

more information on this subject. 
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1.4. MIXED-MODE AND ANALOG MULTILEVEL SIMULATION 

The levels of simulation described in the previous two sections are 

listed in Tables 1.1 and 1.2 from the highest level of abstraction to the 

lowest level. The relative runtime cost and accuracy of each digital simu­

lation level is provided in Table 1.1 for the hypothetical simulation of a 

32-bit microprocessor. The corresponding example for the analog levels is 

a fifth-order switched-capacitor filter. Although this is a small example, it 

is useful for our purpose as it produces extremely long runtimes, and can 

easily be represented at each level in the hierarchy. The reader should 

notice that the progression from the behavioral level to the electrical level 

provides an increase in the accuracy of the simulation at the cost of more 

CPU-time. A progression in the opposite direction allows larger and 

larger circuits to be simulated for a given amount of CPU-time, or requires 

less and less CPU-time to simulate a given circuit. However, each level 

uses less precision in its signal representation. This often translates to less 

Level Relative Capability and Accuracy 
Cost 

Behavioral (B) 1 Algorithmic verification, 
some timing information 

RTL (R) 10 Functional verification, 
some timing information 

Gate (G) 100 Functional verification, 
first-order timing information 

Switch (S) 1000 Functional verification, 
first-order timing information 

Timing (T) 10000 Detailed waveform information 
with variable accuracy 

Electrical (E) 1000000 Most accurate form of simulation 

Table 1.1: Relative Cost and Accuracy of Digital Simulation 
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Level Relative Capability and Accuracy 
Cost 

Behavioral (B) 1 System level verification 

Ideal Functional (I) 10 Functional verification, 
1st-order electrical 
information 

Non-Ideal Functional (N) 100 Functional verification, 
1 st-order and 2nd-order 
electrical information 

Electrical (E) 1000 Most accurate form of 
simulation 

Table 1.2: Relative Cost and Accuracy of Analog Simulation 

accuracy in the results due to modeling limitations. 

There are many situations for which one level of simulation is not 

sufficient for the simulation of an entire design. One common situation 

arises in the design of a mixed analog and digital circuit. Logic simulators 

do not generally have the capability to model analog circuitry, and it is 

usually too expensive to simulate the entire mixed-signal design in a cir­

cuit simulator. In this case, it would be convenient if a simulator that 

included both electrical and logic simulation capabilities were available. 

Multiple levels of abstraction are commonly used in "top-down" or 

"bottom-up" design styles. In both cases, the entire design at any given 

point in time may be represented at a number of different levels of abstrac­

tion. One designer may have written the behavioral specification of 

his/her portion of the design, while a second is completing the detailed 

gate-level design, and a third is performing transistor-level cell library 

development. Furthermore, a designer often uses multiple levels of 
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abstraction in a schematic diagram to convey the important aspects of the 

design as shown in Fig. 1.4 for a portion of a digital control circuit. To 

ensure that a design represented schematically at many levels in the hierar­

chy is functionally correct at any stage of the design process, a simulator 

that handles all possible levels of abstraction would be extremely useful. 

VDD 

Figure 1.4: A Portion of a Digital Control Circuit 
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Multilevel simulation can also be used for the purpose of accurate 

circuit modeling. For example, standard gate-level simulators are not 

capable of simulating the behavior of certain properties of MOS digital 

circuits such as bidirectionality and charge-sharing. Therefore, the mixing 

of switch-level simulation and gate-level simulation would provide an 

effective balance between simulation speed and functional accuracy. On 

the other hand, the idealized transistor model in switch-level simulation is 

not appropriate for the simulation of certain pass transistor configurations, 

and other circuits where the device W IL ratios are important. For these 

cases, mixing electrical-level, switch-level and gate-level simulations 

would be useful. 

All of the situations cited above require a simulator that allows dif­

ferent portions of the circuit to be described and simulated at different lev­

els of abstraction. That is, where accuracy is not a critical issue, higher 

levels of simulation can be used, but where proper modeling of the circuit 

is a problem or detailed timing information is desired, the lower levels of 

simulation can be used. CAD tools that address this need are referred to as 

multilevel simulators or mixed-level simulators. Clearly, the most impor­

tant issues in multilevel simulators arise when combining the gate-level 

simulation with electrical-level simulation. This is referred to as mixed­

mode simulation and this is the main topic of this book. When the term 

mixed-mode simulator is used in general, it usually refers to a simulator 

that can simulate the digital part of a mixed-signal design using any of the 

levels in the digital hierarchy shown in the left side of Fig. 1.1 while ana­

log part of the design uses the electrical level. 

A recent effort in analog simulation is to develop a multilevel simu­

lation environment that incorporates the different levels of simulation 

listed in the right side of Fig. 1.1. It allows the designer to represent dif­

ferent portions of the design at any desired level in either the time-domain 



18 MIXED-MODE SIMULATION 

or the frequency-domain and then choose the desired form of analysis. For 

example, the designer could model a discrete-time linear filter using a 

behavioral z-domain transfer function representation, and simulate a mul­

tilevel description of the circuit, with some components represented at the 

transistor level and others at the behavioral level. The z-domain model 

can be processed much more cheaply than the equivalent amount of 

electrical-level circuitry. Once the performance of the overall system has 

been verified, the detailed design of the filter can be performed at the 

transistor level. 

Great progress has been made in the development of analog mul­

tilevel simulators but much work still remains, especially in the area of 

behavioral simulation and the development of nonideal functional models 

to include nonlinearities and noise effects. In addition, the issues of main­

taining consistency when models from different domains are connected to 

the same node and performing the necessary transformations are still under 

investigation. As a final step in the evolution, the analog simulation levels 

should be combined with the digital simulation levels so that both of the 

hierarchies in Fig. 1.1 can be mixed and matched easily within a single 

simulation environment. The combination of these techniques would pro­

duce a powerful tool that could address most of the problems of mixed­

signal simulation. 

This book presents a unified approach to simulation that allows both 

mixed-mode simulation and analog multilevel simulation to be combined 

in the same environment. The primary focus is mixed-mode simulation in 

which circuit simulation is combined with logic simulation. This book 

also addresses analog multilevel simulation which is based on a similar 

hierarchy of modeling and simulation methods for analog circuits. The 

research work in mixed-mode simulation and analog multilevel simulation 

over the last 10-15 years is described in detail. This book identifies the 
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key advances that have been made in these two areas including: event­

driven electrical simulation, signal mapping across the mixed-mode inter­

face, automatic mixed-mode partitioning, analog behavioral modeling and 

simulation and mixed-domain simulation. The algorithms provided in this 

book allow the reader to implement prototype analog and mixed-signal 

simulators. 

1.5. BASIC ISSUES IN MIXED-MODE SIMULATION 

This section describes the issues involved in designing a mixed­

mode simulator. The specific issues of analog multilevel simulation are 

postponed until Chapter 9, although many of the points raised in this sec­

tion also apply to analog multilevel simulation. The mixed-mode issues 

are as follows: 

Choice of Simulation Levels: First, and foremost, is the issue of what 

types of simulation to include in the simulator. This depends on the 

intended application of the simulator. If the design is primarily digital in 

nature, the combination of gate, RTL and behavioral simulations would be 

appropriate. For MOS designs, it may be better to incorporate gate and 

switch-level simulations. For mixed-signal circuit designs containing both 

MOS and bipolar transistors, it may be necessary to mix gate, switch and 

electrical level simulations. Ideally, one would prefer to combine all the 

levels of simulation into one program, but the development time would be 

significant. 

Simulator Architecture: A mixed-mode simulator must be flexible and 

extensible so that algorithms and device models can be added or removed 

easily as the technology and the simulator requirements evolve. An 

appropriate choice of simulator architecture is necessary to achieve this 

goal. The architecture described in this book is based on the use of the 
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event-driven, selective-trace paradigm at all levels of abstraction. This 

permits the exclusive simulation of activity, and it is a necessary feature 

when simulating large digital systems. It is also consistent with the algo­

rithms commonly used in most simulators, except for standard electrical 

simulators, which must be modified to fit within the event-driven frame­

work. 

Event Definition and Event Scheduling: To establish event-driven, 

selective-trace simulation, the notion of an event must be defined at each 

level in the simulator. An event is a change in state of some node in the 

circuit that may affect other components in the circuit. The effect of an 

event is to cause all fanout components to be processed, and possibly new 

events to be scheduled, if changes in their output nodes occur. A key issue 

in mixed-mode simulation is to define an event scheduling policy between 

different modes of simulation. 

Mixed-Mode Interface: A consistent representation for signals over all 

simulation levels is critical for accurate mixed-mode simulation. In the 

higher levels of simulation, the signal value is usually represented using 

hexadecimal values for collections of bits or logic values. At the other 

extreme, electrical simulation uses 64-bit double precision words to 

represent real values of voltage. A mixed-mode simulator must be able to 

manage these different signal types at the interface and map them from 

one representation to another without a significant loss in accuracy. 

Representation of Time: Time is usually represented as a real number 

in electrical simulation and as an integer in logic and higher level simula­

tions. Typically the time steps chosen in electrical simulation are very 

small (order of nanoseconds to picoseconds depending on the time 
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constants associated with the devices and parasitic elements), whereas in 

the logic level and higher levels of simulation, it is usually an integer mul­

tiple of some basic unit of time that depends on the clock period or the 

delays of the logic gates, This disparity between the various representa­

tions of time must also be resolved in the mixed-mode environment. 

Partitioning: Circuit partitioning is a key factor in obtaining efficiency 

and accuracy from mixed-mode simulation. The main question is to deter­

mine which portions of the circuit must be simulated at the most detailed 

level and which portions will profit from simulation at higher levels of 

abstraction with an acceptable loss in accuracy. The prospects of perform­

ing this task automatically seem formidable, especially in the case of large 

circuits. To date, most of the simulators available require that circuit 

designers be responsible for the partitioning process, since they are fami­

liar with the nature of the design. 

User Interface: Another important consideration when designing a 

mixed-mode simulator is the user interface to the simulator. The interface 

must be graphics-oriented, highly interactive, and provide the features of 

schematic capture, SImulation control and output post-processing. While a 

variety of schematic packages with these features do exist commercially, 

there are a number of additional requirements in mixed-mode simulation. 

First, the front -end must allow a hierarchical representation of the circuit 

in which each successive level of the hierarchy implies a different level of 

abstraction. That is, each level in the hierarchy represents a different form 

of simulation in the associated mixed-mode simulator. This implies that 

all of the components representing the circuit at two or more different lev­

els must have the same functional behavior to guarantee correct results. 

Therefore. some convenient way of verifying the consistency of different 
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representations of the same circuitry must be provided. The capability of 

adding new components, specifically macromodels or high-level RTL and 

behavioral models, should be made simple. 

Mixed-mode Timing Control: Time-step synchronization between the 

analog and digital simulators due to local and global feedback loops is an 

important factor in determining the accuracy and speed of mixed-mode 

simulation. Some methods to synchronize the time of simulation at the 

analog/digital interface are lock-step, digital-controlled, analog-controlled 

and roll-back schemes. 

In the lock-step scheme, the step sizes are determined by simulator 

requiring the smaller time-step. Typically, the analog simulator sets the 

step size and the digital simulator is forced to use these values. The 

advantage of this method is that synchronization will always be main­

tained since digital and analog portions are simulated at the same time, but 

the disadvantage is that latency in digital simulation can not be exploited 

fully and this degrades the overall simulation speed. 

In the digital-controlled scheme, the digital signals are used as inputs 

to the analog simulators. Therefore, the analog simulator is forced to 

"catch-up" to the next digital event. Accuracy of the overall simulation is 

usually compromised using this approach. On the other hand, some simu­

lators perform all levels of simulation in the continuous-time domain. In 

this case, all signals are represented as analog voltages and, therefore, the 

analog simulator in charge of the time-step control. This is called analog­

controlled time synchronization. 

In the roll-back scheme, analog and digital simulators simulate their 

respective portions with their own time steps and maintain roughly the 

same position in time. When synchronization is needed due to errors in 

the analog solution, the digital simulation is rolled back to the time of the 
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analog error and re-evaluated. The advantage is that latency can be 

exploited since analog and digital simulators use their own time steps. 

However, it may degrade the overall simulation speed, depending on the 

degree of roll back and frequency with which it is used. 

1.6. A SURVEY OF EXISTING SIMULATORS 

Mixed-mode simulation has been gaining in popularity over the last 

few years; as a result, a large number of simulators have been developed. 

According to the development strategy used, these simulators can be 

broadly classified into three groups: 

1) Core Modification Approach (C): The core extension or environ­

ment extension approach involves extending an existing analog or digital 

simulator to cover the levels that are missing. This is accomplished by 

using existing models or enhancing the models that the simulator can han­

dle, and is typically done in electrical simulators. For example, a simple 

logic inverter can be implemented in an electrical simulator using con­

trolled sources and other existing primitives to allow "mixed AID simula­

tion" (SPA88]. Similarly, a logic simulator may be extended to include 

switches to represent transistors for mixed gate and switch-level simula­

tion. Of course, it would be difficult to extend a logic simulator to incor­

porate true electrical elements without major modifications to the program. 

2) "Glued" Approach (G): In this case, two or more existing simula­

tors are combined using either a procedural interface, if the programs are 

executed in the same address space, or an interprocess communication pro­

tocol, if the programs are running in different address spaces. This is an 

effective solution for companies that have already invested large amounts 

of time and money maintaining separate simulators and are not willing to 

abandon them in favor of the development and support of a completely 
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new simulator. In addition, the input languages for the simulators do not 

have to be modified and, therefore, have minimal impact on the designer. 

However, this simple solution also has a number of inherent limitations in 

terms of efficiency. The processing of bidirectional elements connected 

across the mixed-mode interface presents a problem, and the time 

advancement, backup and synchronization of the various simulators that 

are running concurrently must be addressed. The process of combining a 

number of different simulators together in this way presents some very 

difficult implementation and signal mapping problems. Recently, the 

advent of simulation backplane (BP) technology has reduced the barrier of 

this approach significantly. In this methodology, the various types of simu­

lators are connected through well-defined data-transfer/synchronization 

mechanisms, collectively referred to as a backplane. While the interfacing 

issues of this approach are much reduced, the development of the back­

plane presents an enormous software engineering challenge. 

3) Fully Integrated Approach (I): This is the most flexible and most 

efficient approach of the three mentioned here. In this case, the various 

simulation algorithms are connected via an internal algorithmic backplane 

and conform to a set of policies defined within the simulator for time­

advancement and backup, signal mapping, etc. The algorithms are usually 

tailored for the mixed-mode environment and are plug-in compatible with 

the simulator. Therefore, new algorithms may be easily added to this 

framework. In addition, new models may be added to each of the algo­

rithms defined in the simulator. As a result, there may be several different 

representations of the same model, commonly referred to as different 

views of the model. The main drawback of this approach is the long 

development time for this new programming environment, and eventually 

the support and maintenance associated with it. 
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Table 1.3 contains a partial list of commercial mixed-mode simula­

tors. iSPLICE3 [SAL89A] is included as a reference for some of the 

implementation mechanisms described in this book. The summary of the 

algorithms and techniques used in each level are provided in this table. 

Note that they vary widely in the simulation modes that are supported and 

the mixed-mode simulation techniques used. For the mixed-mode timing 

control, all the time-step synchronization mentioned in Section 1.5 have 

been used by some commercial program. Some companies use the back­

plane technology to incorporate tools from other companies into the 

mixed-mode simulation environment. Therefore, users have the flexibility 

to choose the best tools for their applications. 

The type of mixed-mode interface has not been listed in this table 

since it is not possible to describe the interface methodology used in each 

tool in a tabular form. Automatic interface insertion or explicit interface 

definition are the general approaches but the models may be quite different 

from simulator to simulator. This issue will be described in depth in 

Chapter 7. In addition, mixed-mode simulators that combine process, dev­

ice, and circuit level simulations have been excluded from the table as they 

are beyond the scope of this book. 

1.7. OUTLINE OF THE BOOK 

This book focuses on the implementation of fully-integrated mixed­

mode simulation and describes event-driven, relaxation-based techniques 

used in the SPLICE family of programs. While the issues of combining 

gate, RTL and behavioral levels of simulation are important, they often 

reduce to simple implementation issues. This book addresses the problem 

of mixing electrical simulation with gate-level simulation. Since electrical 

simulation is continuous in nature whereas gate-level simulation is discrete 

in nature, this particular problem presents a much more interesting chal-
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Program/Company Type Behavioral/RTL Gate 

Analog Artist GIBP VHDL, Verilog DO, DI, Dn, DA, M 
Cadence Inc. 

Attsim I VHDL,C DO, DI, Dn, DA, M 
AT&T-Design Automation 

ContecSPICE C - Dn,M 
Contec Inc. 

LsimlQuick II-AccuSim II GIBP VHDL, M Language DO, D1, Dn, DA, M 
Mentor Graphic Corp. 

PSPICE C PSPICEHDL DO, D1, Dn, DA, M 
Microsim Corp. 

Saber I MAST DA,M 
Analog Inc. 

VHDeLDO I VHDL Delta Delay 
Anacad Inc. 

ViewsimiAD G VHDL, Veri log DO, D1, Dn, DA, M 
View logic System Inc. 

iSPLICE3 I C DA,M 
University of Illinois 

Legend DO: zero delay, Dl: unit delay, Dn: multiple delay, DA: assigned delay, M: 
macromodeling, RC: first order RC delay, RCn: piecewise linear RC delay 

Table 1.3: Survey of Mixed-Mode Simulators and Their Capabilities 
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Switch Electrical Mixed-Mode Control 

DO, RC, RCn Direct Matrix Roll-Back 

Direct Matrix Roll-Back -

- Direct Matrix Analog Control 

DO,RC Direct Matrix Lock-Step 

RC Direct Matrix Analog Control 

DO, RC, RCn Direct Matrix Rotl-Back+ 

- Mix of Direct Lock-Step 
and ITA 

- Direct Matrix Digital Control 

RC,RCn Mix of Direct Roll-Back 
and ITA 

+ Calaveras®Scheme Used 

Table 1.3 (Continued) 
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lenge. The book then focuses on the problem of multilevel analog simula­

tion. Initially, the general techniques and algorithms used at each level 

will be discussed. This is followed by the specific implementation issues 

associated with an analog multilevel simulation tool called iMACSIM 

[SIN9 ~]. 

In Chapter 2, the electrical simulation problem is formulated, and the 

standard numerical techniques used to solve the problem are presented. 

Next, the issues associated with the implementation of an efficient time­

step control scheme are described. This includes a description of the con­

straints imposed on the step size by the numerical methods; this is fol­

lowed by two common time-step control schemes used in circuit simula­

tion programs. In Chapter 3, two properties of waveforms, called latency 

and multi rate behavior, are defined and used to motivate the need for new 

simulation methods. Then, the relaxation methods are introduced and 

their convergence properties are described. First, the linear Gauss-Jacobi 

(GJ) and Gauss-Seidel (GS) methods are reviewed. Next, the nonlinear 

relaxation and waveform relaxation methods are described. The require­

ment for partitioning to improve the convergence speed of relaxation 

methods is presented at the end of the chapter. 

In Chapter 4, a number of algorithms based on nonlinear relaxation 

methods are described. A technique which combines nonlinear relaxation 

[ORT70] with event-driven, selective-trace [SZY75] to exploit waveform 

latency is presented. This approach is referred to as Iterated Timing 

Analysis or ITA [SAL83]. Its name is derived from the original work on 

"timing" simulation pioneered in the MOTIS program [CHA 75]. The 

details of the implementation of ITA are provided. In addition, a partition­

ing approach that allows MNA elements to be incorporated into a block 

time point relaxation framework with guaranteed convergence will be 

described. 
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Gate level simulation is addressed in Chapter 5 and switch-level 

simulation is described in Chapter 6. Chapter 5 begins with a description 

of the evolution of logic state models and delay modeling. The Elogic 

technique for switch-level timing simulation and modeling is presented in 

Chapter 6. In Chapter 7, the modeling problems of mixed-mode interfaces 

and possible solutions are described. The implementation issues associ­

ated with a mixed-mode simulator and an automatic mixed-mode parti­

tioner are described in Chapter 8. Simulation results from a large bench­

mark circuit is also included to demonstrate the typical performance of 

mixed-mode simulator. 

Analog multilevel simulation is discussed in Chapter 9. First, the 

key issues of analog multilevel simulation are described. Then the tech­

niques to deal with s-domain, z-domain and mixed continuous­

time/discrete-time simulation are presented. A macromodeling and simu­

lation environment is presented at the end of the chapter. 

Chapter 10 provides a summary of the book and directions for future 

work. 
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CHAPTER 2 

ELECTRICAL SIMULATION TECHNIQUES 

The features of circuit or electrical simulation are extremely impor­

tant in mixed-mode simulation as they determine the overall speedup and 

efficiency of the simulator. This chapter describes the basic theory and 

foundations for the electrical simulation techniques. First the circuit equa­

tions are formulated in Section 2.1 and the standard techniques are 

described in Section 2.2. The issues pertaining to time step selection and 

simulation accuracy are also addressed. The limitations of these tech­

niques for large problems are identified and alternative approaches are 

described in the next chapter. 

2.1. EQUATION FORMULATION 

General-purpose circuit simulation programs such as ASTAP 

[WEE73], SPICE2 [NAG75] and SLATE [YAN80] provide a variety of 

analysis types including dc analysis, time-domain transient analysis, ac 

analysis, noise analysis and distortion analysis. By far the most CPU­

intensive of these analyses is the time-domain transient analysis. The tran­

sient analysis problem involves computing the solution of a system of cou­

pled nonlinear differential-algebraic equations over some interval of time, 

[O,T]. The most general form for the equations describing the circuit 

behavior is 

F(x(t), x(t), u(t) ) = ° x(O)=X (2.1) 

where, x(t) E IRn is the vector of unknowns, and may be a mixture of 

node voltages, branch currents, capacitive charges or inductive fluxes, 

u(t) E IRr is a vector of independent sources, F: IRnxIRnxIRr ---7 IRn, and 

the initial conditions, x(O), are specified by the vector X. 
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Equations of this form arise as a result of the properties of general 

electronic circuits. For example, the current through a capacitor is a func­

tion of the time derivative of the voltage across the capacitor; therefore, 

Eq. (2.1) is dependent on x(t). Since many devices have nonlinear rela­

tionships between their currents and voltages, F is also usually nonlinear. 

And finally, as a circuit is constructed from a collection of sparsely con­

nected elements, F is a sparse function of the components of x. These cir­

cuit properties all have some impact on the numerical techniques used to 

solve the transient simulation problem and the resulting efficiency with 

which the solution is obtained. 

There are a number of different ways to formulate the circuit equa­

tions described by Eq. (2.1). The most popular of these are Nodal 

Analysis (NA) [DES69], Modified Nodal Analysis (MNA) [H075] and 

Sparse Tableau Analysis (STA) [HAC71]. These formulations are all 

based on the application of Kirchoff's Current Law (KCL), Kirchoff's 

Voltage Law (KVL) and the branch constitutive equations [DES69]. 

Nodal Analysis is the simplest of the three approaches. It uses KCL, 

which requires that the sum of the currents entering each node equals the 

sum of the currents leaving each node. In a circuit containing n+ 1 nodes, 

if KCL is written for every node in the circuit, a system of n equations is 

obtained assuming that one node is defined as a reference node. The 

currents in each equation can be replaced with the branch constitutive rela­

tions which are functions of the branch voltages (by assumption in NA), 

and KVL can be used to replace the branch voltages by node voltages. 

KVL requires that the sum of the voltages around any loop in a circuit be 

identically zero. The n node voltages are the unknown variables in this 

formulation. Note that it must be possible to represent the element and 

input source currents in terms of their terminal voltages in order apply 

Nodal Analysis. This requirement excludes current-controlled devices, 
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floating voltage sources! and inductors and, therefore, limits the scope of 

the NA technique. However, inductors and floating voltage sources can be 

included in NA by simply reorganizing their branch equations as described 

in [MCC88, WHI85C]. Since the other current-controlled devices are not 

frequently used in the simulation of integrated circuits, NA is an adequate 

formulation technique for most practical circuits. 

The formulation used throughout the rest of this book is Nodal 

Analysis. The NA equations are formulated as follows: First, KCL is 

applied at each node in a circuit with n nodes and b branches to produce a 

matrix equation of the form: 

Ai=O (2.2) 

where A E IRnxb is the reduced incidence matrix with entries of either + 1, 

-1 or 0 and i E IR b is the vector of branch currents in the circuit. Element 

aik of A is + 1 if a particular branch current, ik , leaves node i, -1 if it enters 

node i and 0 if it is not incident at node i. If the set of branch currents is 

divided into the capacitor currents, ie, and the currents through the resis­

tive elements, i r , then Eq. (2.2) can be rewritten as 

(2.3) 

Each of the currents due to the nonlinear resistive elements can be 

replaced by their branch constitutive relations which are all functions of 

the branch voltages by assumption. The branch voltages, Vb, can be 

replaced by the node-to-datum voltages, V, using the relation: 

(2.4) 

which follows from KVL [CHU75]. Then, the right-hand side of (2.3) can 

1 These are voltage sources with neither terminal connected to the ground node. 
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be written as 

(2.5) 

where fk(V) is the sum of all the currents through the resistive elements 

connected to node k as a function of the node voltages, v. 

The left-hand side of Eq. (2.3) represents the capacitor currents. The 

nonlinear capacitors are often specified in terms of their stored charge, q, a 

function of the voltage across the capacitor, Ve, as follows: 

The current flowing through the capacitor can be obtained by taking the 

time derivative of charge, which can then be related to the capacitance by 

applying the chain rule: 

. '() dq(ve) dVe C()' 
leap = q Ve = dVe (It = Ve Ve (2.6) 

Hence, each of the components of ie in Eq. (2.3) can be replaced by 

C(ve)ve. If Eq. (2.4) is used to replace the branch voltages by node vol­

tages, then Aeie can be transformed into the following: 

Cll(V) . 
VI 

(2.7) 

An important assumption which is sufficient to guarantee convergence of 

relaxation-based simulation techniques (to be described shortly) is that a 

two-terminal capacitor exists between each node and the reference node. 

These are referred to as grounded capacitors. This requirement is easily 

satisfied in real circuits where lumped capacitances are always present 
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between circuit nodes and ground in the form of interconnect capacitance, 

and also between the terminals of active circuit elements and ground in the 

form of parasitic capacitances. Each grounded capacitor contributes a 

term to the diagonal of the capacitance matrix. Therefore, the Cjj elements 

are non-zero for all i. Note that Cij is zero only if a capacitor does not 

exist between nodes i and j in the circuit. 

By combining Eqs. (2.5) and (2.7), one obtains: 

. 
VI 

(2.8) 

Col(V) t(v) 

This equation can be written in the compact form: 

C(v(t),u(t» vet) = - f(v(t),u(t», t E [O,T] (2.9) 

yeO) = V 

where vet) E IRO is the vector of node voltages at time t, vet) E IRO is the 

vector of time derivatives of vet), net) E IRr is the input vector at time t, 

C(x(t),u(t» represents the nodal capacitance matrix, and 

f(v(t),u(t» = [fl(v(t),u(t», ... ,fo(v(t),u(t»]T 

where fk(v(t),u(t» is the sum of the currents charging the capacitors con­

nected to node k. 

Equation (2.9) is a set of coupled first-order nonlinear differential 

equations that uses voltage as a state variable. This is commonly referred 

to as the capacitance formulation of the transient analysis problem. Alter­

natively, charge may be used as a state variable rather than voltage. The 

proper choice of voltage or charge as the state variable depends on the 

nature of the capacitors in the circuit. If all capacitances are linear, then 

either voltage or charge may be used as the state variable. However, in 
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circuits with nonlinear capacitors, such as MOS circuits, charge must be 

used as the state variable due to considerations of charge conservation. 

That is, in order to keep the total charge in the system constant during the 

simulation process, charge must be used as the state variable. Examples of 

charge conservation problems arising from the use of Eq. (2.9) are given 

in [W AR78, YAN83, WHI85C]. 

The charge formulation of the circuit equations in normal form is 

given by 

<i.(t) = i(q(t» 

where qk(V) is the sum of the charges due to the capacitors connected to 

node k and ike q) is the sum of the currents charging the capacitors at node 

k. This equation can be solved to obtain the node charges as a function of 

time. However, information about charge is of little interest to the circuit 

designer, who would prefer to have information about the node voltages 

from the simulator. Therefore, it is preferable to write the charge formula­

tion as 

<i.(t) = i(q(t» = - f(v(t» 

which is obtained by combining Eq. (2.6) and Eq. (2.9). This assumes that 

q is an invertible function of v. The charge formulation, including the 

input sources, u(t), is given by 

q(v(t),u(t» = - f(v(t),u(t» (2.10) 

Both the formulations given by Eqs. (2.9) and (2.10) will be used 

throughout this book. 

2.2. STANDARD TECHNIQUES FOR TRANSIENT ANALYSIS 

Equations (2.9) and (2.10) formulated above for the transient 

analysis of circuits must be solved using numerical techniques since, in 
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general, it is difficult to obtain closed-form solutions. The first step is to 

apply a numerical integration method to discretize the time derivative, 

x(t). An integration method divides the continuous interval of time, [O,T], 

into a set of M discrete time points defined by 

(2.11) 

An algebraic problem is solved at each time point, tn+b to obtain a 

sequence approximation to the exact solution. The quantity hn is referred 

to as a time step. The selection of proper time-steps for a given problem is 

an important issue which is described in detail in Section 2.3. An example 

of a first-order implicit integration method is the backward-Euler (BE) 

method. To solve x(t)=f(x(t)) using BE, the following expression is used: 

(2.12) 

This equation is implicit in that x(tn+1) appears on both sides of the equa­

tion. 

A numerical integration method converts a set of nonlinear differen­

tial equations into a set of nonlinear algebraic equations. These algebraic 

equations must be solved using some numerical method at each time point. 

The most commonly used method to solve nonlinear equations is the 

Newton-Raphson method [ORT70]. To solve a system of nonlinear equa­

tions, given by F(x)=O, using the Newton-Raphson method, the following 

iterative equation is used: 

(2.13) 

where JF(X) is the Jacobian matrix and k is the iteration counter for the 

method. Each term in the Jacobian matrix, gij, is given by 

(2.14 ) 

where F j is the ith component of F and Xj is the jth component of x. 
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Equation (2.13) is iterated untilllxk+! - xk II<El and IIF(xk+l~I<E2' Note tha 

if the problem is linear, then the Newton method produces the correct 

solution in one iteration. 

The Newton method described above converts the set of coupled 

nonlinear algebraic equations into a set of coupled linear equations given 

by Ax = b, where x E IRD, b E IRD, A E IRDXD and A is assumed to be non­

singular. The matrix A is relatively sparse, typically having three ele­

ments per row [NEW83]. There are essentially two approaches to solving 

a sparse linear system. One approach is to use direct methods (such as LU 

decomposition) which attempt to exploit the sparse nature of the matrix 

during the computation. The implementation of these methods involves 

carefully chosing a data structure and the use of special pivoting strategies 

to minimize fillins [KUN86]. A second approach to the sparse linear prob­

lem is to use relaxation methods. The relaxation process involves decou­

pIing the system of equations and solving each equation separately. An 

iterative method is applied between the equations until convergence is 

obtained. In effect, the problem of solving one large system containing n 

variables is converted to the problem of solving n subsystems each con­

taining one variable. 

The standard approach to circuit simulation IS based on direct 

methods and uses the following steps: 

1) MNA is used to formulate a system of coupled nonlinear 
differential-algebraic equations for the circuit. 

2) Implicit numerical integration methods are applied to 
convert the differential equations into a sequence of 
algebraic equations, which are nonlinear in general. 

3) A damped Newton-Raphson method is used to convert the 
nonlinear equations into linear equations. 
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4) Direct sparse-matrix techniques are used to solve the 
linear equations generated by the Newton-Raphson method. 

A simple flow chart of the steps in the standard approach is shown in Fig. 

2.1. The details of the implementation of this approach in SPICE2 may be 

found in [NAG75]. 

This approach has proven to be very reliable and can be used across 

a variety of different technologies and element types. The most computa­

tionally intensive part of this approach is the Newton-Raphson iteration. It 

is composed of two phases: the formulation phase and the solution. These 

two phases, represented by steps 3 and 4 above, are repeated at each time 

point until convergence is obtained. In the formulation phase, the ele­

ments in the circuit are processed by calculating their contribution to the 

Jacobian matrix and the right-hand side vector in Eq. (2.13) to form the 

system of linear equations. This is also referred to as the function evalua­

tion (or model evaluation) and load phase, and can be very time­

consuming because of the complexity of the equations describing the ele­

ments in the circuit. For small to medium sized circuits containing MOS 

devices, the model evaluation and load times dominate the total CPU-time 

for the simulation [NEW77]. 

In the second phase of the Newton iteration, the linear equations gen­

erated in the first phase are solved using direct methods such as LU 

decomposition. While this portion has a negligible contribution to the 

total run time for small circuits, it can in fact dominate the run time for 

very large circuits (i.e., greater than 1000 nodes in the circuit for SPICE2) 

[NEW83], as shown in Fig. 2.2. Therefore, any technique which attempts 

to reduce overall circuit simulation run times must reduce both the model 

evaluation time and the linear equation solution time to be effective. 
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2.3. TIME-STEP CONTROL: THEORETICAL ISSUES 

Time-step control is an important issue in electrical simulation. In 

this section, the constraints imposed by the numerical techniques on the 

step sizes used in the integration process are described. Based on these 

constraints, an efficient time-step control scheme is presented. Ways to 

further improve the efficiency by using different step sizes to solve dif­

ferent components in the system are presented in the next chapter. 

CPU 
Time 

(S) 

I04r-------,-------~------~~----~ 

Total Time /~sOlve 
aN~ .:: 

.:::>' 

10 

I 

1 10 
Number of Circuit Equations 

Figure 2.2: CPU-Time vs. Circuit Size in SPICE2 
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The circuit simulation problem, in its most general form, involves 

the solution of a system of nonlinear algebraic-differential equations. To 

simplify the description to follow, the circuit equations are assumed to be 

a system of differential equations in normal form: 

x(t) = f(x(t),u(t)), xeD) = X, t E [O,T] (2.15) 

where u is the set of primary inputs, x is a vector of unknown circuit vari­

ables and f is some nonlinear function. The vector of values specified as X 

are the initial conditions, and the simulation interval is [O,T]. 

2.3.1. Constraints on Step Size 

The general form of a kth-order linear multistep integration method 

[GEA71] is given by 

(2.16) 

where Xn is the computed solution at time tn, and hn is the time-step at 

time tn. The 2p+3 coefficients, ai and bi, are chosen such that Eq. (2.16) 

will give the exact solution if the true solution is a polynomial in t of 

degree less than or equal to k [CHU75]. 

There are two broad classes of integration methods: explicit and 

implicit2 [CHU75]. Explicit methods use only the solutions at previous 

time points to generate the solution at the next time point, and are charac­

terized by b_1=O. A number of explicit integration methods can be 

derived directly from a Taylor series expansion of x(t) at the point tn: 

(2.17) 

For example, the forward-Euler (FE) method is obtained by taking the first 

2 Recently, a number of combined integration-relaxation methods used in Timing Simulation 
[CHA75] have been classified as semi-implicit integration methods [DEMSO, NEWS3, WHlS5C]. 
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two terms of Eq. (2.17): 

(2.18) 

This diffe renee equation can be formulated in terms of Eq. (2.16) by set­

ting p=O, ao= 1, bo= 1 and all other coefficients to zero. Equation (2.18) 

implies that each equation can be updated independently, and in parallel, 

at each time point. For differential equations in the normal form, the solu­

tion at each time point can be obtained in one step and does not involve a 

matrix solution; therefore, the explicit methods are extremely efficient. 

Unfortunately, these methods are not as useful as implicit methods for cir­

cuit simulation because of their stability properties. Implicit methods are 

characterized by b_ 1'#:0 in Eq. (2.16). The backward-Euler (BE) implicit 

integration method can be derived using a Taylor expansion of x(t) about 

the point tn: 

(2.19) 

Using Eq. (2.19) to replace xn in Eq. (2.17), and ignoring the higher-order 

terms, the BE scheme is obtained: 

(2.20) 

In this case, p=O, ao=l, b_ 1=1 with all other coefficients equal to zero. 

For nonlinear problems, this implicit equation is usually solved using an 

iterative method, often requiring a matrix solution. Therefore, the implicit 

methods are computationally more expensive than explicit methods. The 

forward-Euler and backward-Euler methods are representative of their 

respective class of integration algorithms and will be used to illustrate a 

number of other properties below. 
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a. Accuracy Constraint 

Integration methods provide a numerical approximation to the true 

solution since, in general, the exact solution of Eq. (2.15) cannot be 

obtained. The error in the numerical solution is due to a combination of 

the machine error and the truncation error. The machine error is usually in 

the form of a round-off error, since finite precision arithmetic is used, and 

it depends on the floating-point arithmetic unit of the computer being used. 

The truncation error results from the fact that the Taylor series is truncated 

after a number of terms and this error depends on the specific integration 

method. The local truncation error (LTE) for general multistep methods is 

defined as 

(2.21) 

where X(tn+1) is the exact solution to Eq. (2.15) at tn+1, and Xn+1 is the 

computed solution obtained from Eg. (2.16). In this definition, it is 

assumed that x(tn)=xn and, therefore, only provides information about the 

error which occurs over a single time-step, hence, its name "local" trunca­

tion error. The L TE for the forward-Euler method can be derived using 

Eq. (2.18): 

(2.22) 

Using a Taylor expansion for the first term about tn, the LTE is given by 

the first remainder term of the resulting expression: 

(2.23) 

If EA is some user allowable error tolerance for the problem, the accuracy 

constraint is 
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h2J ·X·CJ=.) ::;; EA <J=.<t ~ tn-~- n+1 

This presents a bound on the step size which is given by 

hn ::;; ~2EA/xC~) 

45 

(2.24) 

C2.25) 

If this constraint is not satisfied, the solution must be rejected and a new 

solution is computed using a smaller step size. Since the exact value of ~ 

is not known, the L TE is usually estimated using techniques to be 

described in Section 2.4.1. 

The backward-Euler method has an LTE given by 

(2.26) 

By expanding xCtn) in a Taylor series about tn+1 and applying the results to 

Eq. C2.26), the LTE is obtained by retaining the first remainder term: 

hJ •. J=. 
LTEn+1 =- 2x(~) (2.27) 

Note that the error made in one step is O(h2) in both the FE and BE 

methods; hence, the accuracy bound on the step size is similar in both 

cases. However, the behavior of the global error, due to the accumulation 

of the local errors, may be quite different for the two methods and this 

difference strongly recommends the use of one method over the other. 

This characteristic is associated with the stability of the integration 

method. 

b. Stability Constraint 

The general stability characteristics of numerical integration methods 

applied to nonlinear differential equations are difficult to obtain. Usually 

the results are inferred from the analysis of a simple linear test problem 

[GEA71]: 
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x(t) = - AX(t) , x(O) = Xo (2.28) 

for which the solution is known to be 

x(t) = xoe- A.t (2.29) 

and, in general, A is complex. This linear problem is useful because it is 

easy to analyze and provides information about the local behavior of non­

linear problems (i.e., when the step size is small). The problem is usually 

analyzed with Re(A»O so that the solution to Eq. (2.28) is stable. To 

further simplify the analysis, a fixed time-step is assumed. For example, if 

the FE method is used to solve Eq. (2.28), the following difference equa­

tion is obtained: 

xn+l = Xn - A.hxn = Xn - cr Xn 

where cr = A.h. Therefore, 

Xn+l = (1- cr)xn = (1- cr)n+1xo 

The region of absolute stability is defined as the set of all complex values 

of cr such that Xn+l remains bounded as n~oo. For FE, it consists of all cr 

such that 

11-crl$;1 (2.30) 

which produces the following constraint for real values of A.: 

Therefore the time-step must lie in the range: 

(2.31) 

If step sizes outside this range are used, the computed solution will 

become unstable even though the true solution is stable. For BE, the 

difference equation is 
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Xn+l = Xn - a Xn+l 

Hence, 

_ 1 
Xn+l - (l +a)n+l Xo 

which results in the following requirement for stability: 

1 < 1 
11+al -
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(2.32) 

Considering only real values of A., the method produces a stable solution 

for all h~O. Ideally, an integration method should produce a stable solu­

tion if the true solution is stable for any step size; this is the case for the 

BE method but not for FE. This property highly recommends the use of 

the BE method over the FE method since the step size can be selected 

based on accuracy considerations alone. For the general case when A. is 

complex, the region of Absolute stability for the BE integration method 

includes the entire right-half a-plane. An integration method with this 

property is said to be A-stable [CHU75]. 

The forward-Euler and backward-Euler methods are examples of 

first-order integration methods. Higher-order methods with smaller local 

truncation errors can be constructed by taking more terms in the Taylor 

expansions of Eqs. (2.l7) and (2.19). Integration methods with small 

L TEs are preferred as they allow larger time-steps to be used. For exam­

ple, the trapezoidal method is a second-order integration method given by 

hn • • 
Xn+! = Xn + T(xn+! + xn) (2.33) 

and is quite popular as it is the most accurate A-stable method [CHU75]. 

The LTE for the trapezoidal method can be shown to be [CHU75]: 



48 MIXED-MODE SIMULATION 

(2.34) 

Since the error is O(h3), it is often the case that a much larger step size can 

be used, compared to the BE method, for a given value of EA. 

c. Stiff-Stability Constraint 

Another consideration in the choice of integration methods is the 

issue of stiffness. A stiff problem is one that exhibits time-scale variations 

of several orders of magnitude in the solution. A simple example of stiff­

ness is the case of a fast initial "transient" in the solution, which dies 

quickly, followed by a slower "steady-state" solution. To handle this type 

of behavior, it is natural to use small time steps in the transient portion to 

accurately follow the solution and then to increase the step size for the 

remainder of the solution. However, this strategy may lead to instability 

of the integration method, especially for explicit integration methods. For 

example, if the test problem in Eq. (2.28) is solved using FE in the interval 

[O,l06't], where 't =lrA., and A E IR, the time-step constraint given in Eq. 

(2.31) would be imposed in the entire interval even though the solution 

decays to zero in approximately 5't. If the step size is increased beyond 

this stability bound, the solution will become unstable. On the other hand, 

if the size is kept within the constraint imposed by stability, the number of 

time points would be very large. 

There are other situations which feature this kind of time-scale varia­

tion. A stiff problem is generated if the interval of time over which the 

system is integrated is large compared to the smallest time constant in the 

circuit, or if the circuit time constants themselves are widely separated. In 

addition, if the rise or fall time of an input waveform is widely separated 

from the circuit time constants, the problem also is considered to be stiff. 
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Integration methods which are appropriate for solving stiff problems 

should have regions of Absolute Stability which cover most of the right­

half complex a-plane so that the time-step can be selected based on the 

accuracy considerations alone. Explicit methods are not well-suited to 

stiff problems since their regions of Absolute Stability are usually very 

small. The A-stable integration methods are well-suited to stiff problems, 

but other implicit methods (for example, see [CHU75]) may be prone to 

instability when solving stiff problems. Gear proposed a family of integra­

tion methods called stiffly-stable methods [GEA 71] which have the form: 

. 1 k 
Xn+l = 11 YUjXn+l- j 

n~ 
(2.35) 

The values for Uj are chosen such that a kth-order method is exact if the 

true solution is a kth-order polynomial. The methods of order k=l and 

k=2 are both A-stable algorithms. The methods of order k=3 up to k=6 are 

not A-stable, but they do have stability regions which are quite suitable for 

the integration of stiff problems [GEA 71]. These methods are also 

referred to as Backward-Differentiation Formulas (BDF) [BRA72]. A 

variable-order method, also proposed by Gear [GEA 71], uses the integra­

tion order which allows the largest step size at each time point. This tech­

nique was implemented in the SPICE2 program [NAG751 and it was found 

that, even though the order could be varied from k= 1 up to k=6, a second­

order method was used most often in the computation. The reason for this 

was attributed to the nature of the nonlinearities in the circuit simulation 

problem (described in the next section) and nature of the solution 

waveforms. Therefore, most circuit simulators use a low-order implicit 

integration method with guaranteed stability properties so that the step 

sizes can be selected based on accuracy considerations alone. 
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2.3.2. Solution of Nonlinear Equations 

When solving linear dynamic circuits, the accuracy and stability 

requirements of the numerical integration method are the only constraints 

on the step size used. Furthermore, linear problems can be solved in one 

"iteration" (i.e., one matrix solution) at each time point. Therefore, the 

amount of computation is directly proportional to the number of time 

points used. This is not true for nonlinear dynamic circuits, assuming that 

an implicit integration method is used. In fact, the cost of computing a 

solution at each time point is a function of the number of iterations used to 

solve the nonlinear algebraic problem. Consider the differential equation 

x(t) = f(x(t)) (2.36) 

where f(x) is some nonlinear function. If the BE method is used to solve 

Eq. (2.36), the following equation is obtained: 

(2.37) 

This nonlinear algebraic equation can be solved using a variety of tech­

niques including fixed-point iteration and Newton's method. The 

approach usually taken in circuit simulators is to use Newton's method or 

one of its variants. Rewriting Eq. (2.37) as 

(2.38) 

the Newton-Raphson method to solve this equation is given by the expres­

sion [ORT70]: 

(2.39) 

where k is the Newton iteration counter. In circuit terms, the Newton 

method replaces each nonlinear device in the circuit by a linearized model 

based on operating point information. This process converts the nonlinear 

circuit into a linear equivalent network. The linearized network is solved 

using standard linear circuit analysis techniques [CHU75]. The Newton 
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method involves repeating the above steps until convergence is obtained. 

To guarantee convergence of the Newton method, the functions F(x) 

and F'(x) must be continuous in an open neighborhood about x*, F'(x*)t:O, 

and the initial guess, xo, must be close to the final solution. The Newton 

method is preferred over the simpler fixed-point method for several rea­

sons. The main reason is that the fixed-point algorithm is not well-suited 

to stiff problems. It also imposes a bound on the time-step to guarantee 

convergence. Another reason is due to the quadratic convergence property 

of the Newton method. That is, if, in addition to the above conditions, 

F"(x*) exists, then for some k>K the difference between successive itera­

tions and the true solution satisfies the relation [ORT70]: 

In practice, this quadratic convergence behavior occurs close to the final 

solution. Hence, it is important to provide an initial guess which is close 

to the final solution. In general, it is difficult to provide a reasonable start­

ing guess for the Newton method. However, for the transient analysis 

problem it is possible to generate a good initial guess, especially if a capa-

citor exists between each node and the ground node3. For example, the 

solution at the previous time point is a good starting guess for the Newton 

method at tn+ I. A better approach is to use an explicit integration method 

[BRA72]: 

° _ k+1 
Xn+1 - ~ YiXn+l- i (2.40) 

where the Yi values are obtained by requiring that the predictor, XR+I' be 

correct if the solution is a kth-order polynomial. Usually a kth-order pred­

ictor is used with a kth-order integration method. 

3 A capacitor to ground at each node implies some smoothness in the solution since it prevents 
instantaneous changes in the voltage at the node. Therefore, as h~O, Xn+l~Xn' 
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The time-step also has some influence on the convergence speed of 

the Newton method. An intuitive reason for this can be given in circuit 

terms: the Newton method converts a nonlinear circuit into an associated 

linear circuit, as mentioned previously. As the step size is made smaller, 

the values of linearized circuit elements begin to approach their values at 

the previous time point. Therefore, the circuit will behave almost linearly 

in this interval and convergence can be obtained in very few iterations, 

possibly even a single iteration. On the other hand, if the step size is too 

large, a good starting guess may be difficult to generate, and could lead to 

either slow convergence or nonconvergence. If nonconvergence should 

occur, the time-step must be rejected and a smaller step used in its place. 

Hence, in some cases, it may actually be more efficient to use two small 

steps rather than one large step. 

2.4. TIME-STEP CONTROL: IMPLEMENTATION ISSUES 

The simplest time-step selection scheme is to use the same time-step 

throughout the interval of interest, [O,T]. That is, use a fixed time-step. 

Unfortunately, there are a number of constraints on the step size which 

may require that h be extremely small, resulting in a large number of time 

points. These constraints arise from the accuracy, stability and stiff­

stability properties of a numerical integration method. For a fixed-step 

approach, the step size would have be chosen such that it satisfies these 

constraints under worst-case conditions. A better approach is to vary the 

step size during the simulation in accordance with the variation in the con­

straints. For a given problem, the allowable step sizes depend primarily on 

the properties of the specific integration method being used. In this sec­

tion, the main considerations in the implementation of an efficient time­

step control for circuit simulation are described. It includes a discussion 

of L TE time-step control, iteration count time-step control and the effect 

of input sources on time-step selection. 
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2.4.1. LTE Time-Step Control 

In L TE time-step control, the user provides two accuracy control 

parameters, Ca and Cr, which are the absolute and relative errors permissi­

ble in each integration step. They are combined to form a user error toler­

ance: 

EUserLTE = ca + crxmax I Xn+1,Xn I 

The general form of the local truncation error for most multistep integra­

tion methods of order k is given by [GEA71,CHU75] 

(2.41) 

where Ck is a constant which depends on the coefficients of Eq. (2.16) and 

the order of the method. Since the value of x(k+l)(~) is not known, in gen­

eral, it must be estimated in some way using the numerical solutions. Typ­

ically a divided-difference approximation is used. The first divided­

difference is defined as 

DD (t ) - Xn+1- Xn 
1 n+1 - hn 

and the k+ 1 st divided-difference is defined as 

Then the estimate for the derivative term in Eq. (2.41) is (see [NAG75] for 

derivation) 

The L TE estimate is then 

For the BDF integration methods [BRA 72], the LTE can be estimated in a 
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more convenient way. The estimate is the calculated using difference 

between the computed solution Xn+1 and the predicted value xP(tn+I). For 

a kth-order BDF method, the following expression is used: 

Ek = [t ~nt ] (xn+l- XP(tn+l)) 
n+1 n- k 

The expression for XP(tn+l) is given in Eq. (2.40). The computed solution 

Xn+ 1 is accepted if 

I Ek I < EUserLTE (2.42) 

One way of implementing this check is to take the ratio of the allowable 

L TE and the actual L TE: 

r - I EUserLTE I 
- IEkl 

Noting that both errors are O(hk+1), it follows that 

[ h ]kt-I 
r= h:x 

and 

The comparison test given in Eq. (2.42) becomes 

to accept the computed solution. The advantage of this ratio is that it can 

also be used to select the step size for the next integration step. Therefore, 

the next recommended step size is given by 

(2.43) 
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In practice, Eq. (2.43) may occasionally recommend rather abrupt 

changes in the step size. A number of experiments have shown that rapid 

changes in step size may introduce stability problems [BRA 72]. Intui­

tively, the step sizes should follow the smoothness of the solution. To 

ensure that the changes in the step size are indeed gradual, it is convenient 

to set upper and lower bounds on the changes in step size. In fact, three 

regions can be defined as follows: 

• if fLTE < 1.0, reduce the step size by MAX( SI , fLTE ) 

• if l.0 ~ fLTE < a, maintain the same step size 
• if fLTE ;::: a, increase the step size MIN( SU , ~ fLTE ) 

The time step may be reduced at most by the factor SI and increased at 

most by the factor Suo The a factor permits the same step size to be used a 

number of times. Typically, a=1.2, 51=0.25 and 5u=2.0. Note that a multi­

plying factor ~ has also been introduced as part of the growth factor. The 

~ factor is a way of making the time step selection somewhat conservative. 

Since the L TE can only be estimated, it may occasionally be optimistic 

[Y AN80]. If so, the time step would be rejected and a smaller step used 

unnecessarily. The /3 factor reduces the likelihood of this happening and a 

typical value is 0.9. 

2.4.2. Iteration Count Time-Step Control 

As mentioned before, the use of large steps is not necessarily the 

most efficient approach for nonlinear circuits, especially if relaxation is 

used. In fact, if the time step is too large, the iterative method may not 

converge, which would force the time step to be rejected, resulting in 

wasted effort. This suggests that the time step control should also be con­

trolled by the nonlinearity of the problem. 

A number of programs use a time step control based on nonlinearity 

considerations alone (e.g., SPICE2, ADVICE [NAG80], MOTIS3) called 

iteration count time step control. This strategy minimizes the total 
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number of Newton iterations used during the simulation. The step sizes 

are selected as follows. If the number of iterations is larger than Nhigh, the 

step size is reduced by some factor. If the number of iterations is less than 

N1ow, the step size is increased by some factor. Otherwise, the step size 

remains the same. The idea is to use approximately the same number of 

iterations at each time point. 

While this strategy is certainly effective at reducing the overall com­

putation time, it is prone to accuracy problems [NAG75]. For example, 

for linear circuits the step size would always be increased since the solu­

tion is always obtained in one "iteration" at each time point. For weakly 

nonlinear circuits, the same sort of effect would be observed. Therefore, 

this approach, when used by itself, is not recommended since it does not 

control the numerical integration errors directly. However, the iteration 

count time-step control can be used in conjunction with the L TE-based 

time step control. In this case, if too many iterations were required to con­

verge, a somewhat smaller step size could be used in the next integration 

step. If too few iterations are used, a slightly larger step size can be used. 

The method could be implemented by making the growth factor dependent 

on the number of iterations used to compute the solution. Of course, if 

convergence is not obtained in a specified number of iterations, the time 

step should be rejected and a smaller step used in its place. 
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CHAPTER 3 

RELAXATION-BASED SIMULATION TECHNIQUES 

The overall goal in circuit simulation is to generate the solution as 

efficiently as possible while providing the desired level of accuracy. As 

described in the last chapter, the standard approach to solving Eq. (2.1) is 

to use a numerical integration method. One way to make the integration 

process efficient is to simply minimize the total number of time points 

used. That is, at any stage during the simulation, take the largest step pos­

sible that provides the required accuracy. This strategy is effective for 

linear problems, assuming that the numerical integration method has 

guaranteed stability properties but does not guarantee a smaller runtime. 

In fact, for nonlinear problems, it may be more efficient to take smaller 

steps so that the iterative method used to solve the nonlinear algebraic 

equations converges in fewer iterations. Using small time-steps also 

improves the accuracy of the solution. Therefore, minimizing the total 

number of iterations is a more useful goal in reducing the amount of com­

putation. 

The cost of each iteration is proportional to the number of model 

evaluations I performed, assuming that the linear equation solution time is 

small. Therefore, the number of model evaluations used in the solution 

process is a good measure of the amount of computation. Based on this 

argument, the objective for the efficient solution of the differential equa­

tions in Eq. (2.1) should be to minimize the total number of model evalua­

tions. 

I A model evaluatIOn usually refers to the calculation of the currents and conductances for a 
MOS or bipolar transistor, or some equivalent amount of computation. 
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A number of researchers have attempted to reduce the computation 

time for expensive model evaluations by using lookup tables for active 

devices [CHA75, SHI82, SHI83, BUR83, GYU85, SAK85B]. In this 

approach, a number of tables of device characteristics are generated prior 

to the analysis, and simple table lookup operations are performed during 

the analysis in place of the expensive analytic evaluations. Points which 

are not available in the tables are interpolated using polynomial interpola­

tion or splines. One drawback of this approach is that there may be a sub­

stantial memory requirement for these tables, depending on the level of 

accuracy desired, but it is usually justified by the improvement in compu­

tation speed. Current research in this area involves reducing the memory 

requirements without sacrificing either the computational advantage or the 

accuracy of the device models. Further details on this topic may be found 

in the references listed above. 

In this chapter, the focus is on reducing the total number of expen­

sive model evaluations by minimizing the number of time points com­

puted for each waveform. This is accomplished by using relaxation-based 

techniques to exploit the waveform properties such as latency and mul­

tirate behavior. Section 3.1 begins by introducing the general concepts of 

waveform latency and multirate behavior. In Section 3.2, the various 

relaxation-based techniques that are used to exploit latency and multirate 

behavior are examined. In Section 3.2.4, the circuit partitioning issues for 

relaxation methods are addressed. 

3.1. LATENCY AND MULTIRATE BEHAVIOR 

Most circuit simulators employing direct methods use a single com­

mon time step for the whole system and, hence, compute the solution of 

every variable at every time point. The time-step at each point is based on 

the fastest changing variable in the system, i.e., the n+ 1 st time point is 
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given by 

where hn is the integration step size determined by 

and hj,n is the recommended step size for with the ith variable at tn. As a 

result, many variables are solved using time steps which are much smaller 

than necessary to compute their solutions accurately. For example, the 

computed points of a waveform from a large digital circuit, simulated 

using direct methods, are shown in Fig. 3.1(a). Note that there are many 

more points than necessary to represent the waveform accurately, espe­

cially in the regions when the waveform is not changing at all. The extra 

points are due to some other variable changing rapidly in the same region 

of time. The same waveform is shown Fig. 3 .1 (b) with only the minimum 

number of points necessary to represent it accurately. 

Since the objective in circuit simulation is to provide an accurate 

solution while minimizing the number of expensive model evaluations, 

one way to achieve this goal is to reduce the number of time points com­

puted for each waveform. A number of circuit simulators have attempted 

to improve the efficiency in this manner by exploiting a property of 

waveforms called latency [NAG75, NEW78, RAB79, YAN80, SAK81]. 

While the general concept of latency includes any situation where the 

value of a variable at a particular time point can be computed accurately 

using some explicit formula, it usually refers to the situation where a vari­

able is not changing in time and its solution can be obtained from the 

explicit equation: 

Xn+l = Xn (3.1) 

That IS, the value Xn+l IS not computed usmg a numerical integration 
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Figure 3.1: Effect of Solution by Direct Methods 

formula but instead is simply updated using the value at the previous time 

point. For example, the waveform shown in Fig. 3.2(a) has three latent 

periods, and ideally the value of x does not need to be computed in any of 

these regions. 

In the SPICE program [NAG75], latency exploitation is performed 

using a bypass scheme. In this technique, each device is checked to see if 
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any of its associated currents and node voltages have changed significantly 

since the last iteration. If not, the same device conductances and current 

are also used in the next iteration. However, the checking operation is 

somewhat expensive, especially if the circuit is large and most of the dev­

ices are latent. In general, latency exploitation involves the use of a model 

describing the behavior of a particular variable as a function of time over a 

given interval. The simple model described in Eq. (3.1) can be considered 

as a "zeroth-order" latency model. Higher-order latency models can be 

constructed if the solution is known to have a specific form (i.e., polyno­

mial, exponential) or if the solution for the variable can be obtained in 

closed form. For example, a first-order latency model given by 

can be used in the case of an ideal current source, with current I, charging 

a linear capacitor, C. Usually a latency model can only be used over a 

portion of the simulation interval. Therefore, the validity of the model 

must be monitored and its use must be discontinued when the model is 

thought to be invalid. The latency model used in this context has also 

been called a dormant model [SAK81]. 

In practice, only the zeroth-order form of latency can be exploited 

easily since the higher-order forms are difficult to construct for general 

nonlinear circuits. To exploit this simple form of latency, some mechan­

ism is necessary to detect that the signal value is not changing appreciably. 

The waveform is considered to be latent at that point, and its associated 

variable is updated using Eq. (3.1) at subsequent time points. A second 

mechanism is used to determine when the latency model is invalid, and 

from that point onward the variable is computed in the usual way. Hence, 

the waveform is only computed at time points when the signal is changing. 

Event-driven, selective trace can be used to exploit latency, as described in 
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the next chapter, without incurring the overhead of the bypass scheme. 

It is only useful to exploit this simple form of latency when some 

variables in the circuit are changing while other variables are stationary, 

since direct methods can adequately handle the case when all variables are 

active or latent. In fact, the "useful" form of zeroth-order latency can be 

viewed as a subset of a more general property of waveforms called mul­

tirate behavior which is illustrated in Fig. 3.2(b). Multirate behavior 

refers to signals changing at different rates, relative to one another, over a 

given interval of time. MOS circuits inherently exhibit this kind of 

behavior because of different transistor sizes and different capacitance 

values at each node. Exploiting this general property can reduce 

significantly the number of time points computed for each waveform since 

large steps can be used for variables changing very slowly while smaller 

steps can be used for rapidly changing variables. 

The basic strategy to speed up circuit simulators suggested above is 

to take advantage of the relative inactivity of large circuits by reducing the 

number of time points computed. However, the actual speed improvement 

obtained by solving the equations in this manner depends on the two main 

factors: 

I) The "amount" of latency and multirate behavior exhibited 
by the circuit during the simulation, and 

2) The efficiency of techniques used to exploit the two properties. 

The first point refers to the maximum speed improvement that can be 

obtained if the two waveform properties are exploited fully, and this factor 

depends on the circuit size and the activity in the circuit generated by the 

external inputs. The second factor depends on the actual number of points 

computed and the work required to compute each point. 
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Figure 3.2: Waveform Properties (a) Latency (b) Multirate Behavior 
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3.2. OVERVIEW OF RELAXATION METHODS 

Relaxation-based circuit simulators, such as SPLICE [SAL83, 

KLE84] and RELAX [LEL82, WHI83], use iterative methods at some 

stage of the solution process to solve the circuit equations. The success of 

these programs is due to the fact that they offer the same level of accuracy 

as direct methods, assuming identical device models, while significantly 

reducing the overall simulation run time. The reduction in run time is 

accomplished by computing fewer solution points for each waveform, 

thereby reducing the total number of model evaluations, and by avoiding 

the direct sparse-matrix solution. However, a tradeoff exists in the relaxa­

tion methods since they can only be applied to a specific class of circuits. 

Furthermore, there is the additional requirement that a grounded capacitor 

be present at each node in the circuit to guarantee convergence. While 

these factors limit the scope of the application of relaxation methods, the 

programs which use relaxation have proven to be extremely useful for 

simulation of many industrial MOS and bipolar integrated circuits. In the 

remainder of this chapter, the relaxation methods are described and their 

mathematical properties are presented. 

3.2.1. Linear Relaxation 

Two common linear iterative methods are the Gauss-Jacobi (GJ) and 

Gauss-Seidel (GS). The methods differ only in the information they use 

when solving a particular equation as shown in the two algorithms given 

below. The superscript k is the iteration count, and E is some small error 

tolerance. 

Notice that in the GJ method each xf is computed using the iteration 

values xJk-l), j=1, ... ,0, which are the values from the previous iteration. 

In the GS method, the latest iteration values are used as soon as they 

become available. The forall construct in Algorithm 3.1 suggests that all 
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n variables can be computed in parallel during each iteration. The foreach 

construct in Algorithm 3.2 requires that the variables be processed in a 
particular sequence. 

Algorithm 3.1 (Gauss-Jacobi Method to solve Ax = b) 

k<- 0; 
guess xO ; 

repeat { 

k<- k+l; 
forall ( i E { 1,···,n } ) 

1 [i-l n 1 xt = -.. bi - ~ aijxf-l - . .I: aijxf- 1 ; 
a.. J~ J=:Hl 

} until(J x.k_ X .k-lJ<E i=l ... n)· 1 1 -, , , , 

D 

Algorithm 3.2 (Gauss-Seidel Method to solve Ax = b) 

k<-O; 
guess xO ; 

repeat { 

k<- k+I; 
foreach (i E {I, .. ,n}) 

1 [. i-I n _] x.k = - bI - ~a .. x.k - '" a .. x.k 1 1 .. IJ J . 4J IJ J a.. J= J=I+l 

} until(Jx.k-x.k-lJ<E i=l ... n)· I I -, , , , 

D 

Linear relaxation schemes are usually described usmg a splitting 

notation that separates A into two components: 

A=B-C 
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where B is a nonsingular matrix such that linear systems of the form 

Bx = d are "easy" to solve. Various relaxation schemes can be constructed 

by choosing different B and C matrices in the iterative equation: 

In particular, if A is decomposed into its diagonal, strictly lower-triangular 

and strictly upper-triangular parts, D, Land U, respectively such that 

A = L + D + U, then the GS method is obtained by setting 

B = (L+D) C = - U (3.2) 

and the GJ method is obtained using 

B=D C=-(L+U). (3.3) 

Since relaxation methods are iterative, the question naturally arises 

as to whether or not these methods converge to the correct solution and, if 

so, under what conditions? The requirements for convergence are stated in 

the following standard theorem [V AR62]: 

Theorem 3.1: Suppose bE IRn and A = B - C E IRnxn is nonsingular. If 

B is nonsingular and the spectral radius of B-IC, given by p(B-IC), 

satisfies the condition p(B-IC)<l, then the iterates x(k) defined by 

Bx(k+l) = Cx(k) + b converge to x* = A-Ib for any starting vector xeD). D 

In other words, the magnitude of the largest eigenvalue of the iteration 

matrix B-IC must be strictly less than 1 to guarantee convergence of a 

linear relaxation method. A condition which guarantees that p(B-IC) < 1 

is if A is strictly diagonally dominant. A matrix has this property if the 

diagonal term in each row i is greater than the sum of the off-diagonal 

terms in the same row, i.e., 
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o 
ttl aij I < I ajj I for l$i$n 
J;tl 

and the "more dominant" the diagonal, the more rapid will be the conver­

gence. This condition can be satisfied if each node in the circuit has a 

ground capacitor(C j). Then, when numerical integration method is applied 

to discretize the time derivative, as describe in Section 2.3, a ;~ is added 

to each diagonal term. Here, bo is the time-step and a is some constant 

that depends on the numerical integration method used. Thus, by choosing 

a small enough bo, Theorem 3.1 can be satisfied. 

While the rate of convergence of these linear relaxation methods is 

linear, a number of techniques are available to improve the convergence 

speed. For example, in the GS method, the order in which the equations 

are solved usually has a strong effect on the number of iterations required 

to converge. Consider the case when matrix A is lower triangular. If pro­

cessed in the sequence, XI,x2,'" ,Xo, then one relaxation iteration is 

sufficient to obtain the correct solution. However, if processed in the 

reverse order, then n iterations are required to obtain the correct solution. 

Therefore, equation ordering is usually performed on the variables when­

ever GS is used. 

Another technique to improve convergence, also used in conjunction 

with the Gauss-Seidel method, is the method of Successive Overrelaxation 

(SOR). In this approach, the Gauss-Seidel method is used initially to gen­

erate an intermediate value, xlk+l), using the equation 

where Band C are defined by Eq. (3.2). The actual value of xlk+ l ) is 

obtained by taking a weighted combination of the previous iteration and 

the intermediate value which depends on a relaxation parameter, roo 
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The SOR method can also be defined in terms of the splitting notation with 

B = co-1(D+coL), and C = CO-I [(1- co)D- coU]. While the proper choice of 

co can greatly reduce the number of iterations, an optimal value of co can 

only be computed a priori for a limited number of cases. In general, it 

may be necessary to perform a somewhat complicated eigenvalue analysis 

to determine the best value of co. In practice, adaptive algorithms are used 

to select an appropriate value for co during the solution process. 

Linear relaxation methods can be used in conjunction with the solu­

tion of nonlinear equations to solve the linear systems generated by 

Newton's method. For example, the Newton-SOR method is a combina­

tion of the Newton-Raphson method and the SOR method. In this compo­

site algorithm, the Newton iteration can be considered as the "outer loop" 

and the SOR iteration as the "inner loop." While it is possible to carry the 

inner loop to convergence, there is no requirement to do so, as long as the 

outer loop is iterated to convergence. In general, an m-step Newton-SOR 

method can be defined where m is the number of iterations used in the 

inner loop. For the case m=1, a one-step Newton-SOR method is 

obtained. The Newton-SOR method is only one example of the possible 

combinations of nonlinear iterative methods and linear iterative methods. 

For example, Newton's method may be replaced by the secant method and 

the SOR iteration may be replaced by one of the standard Gauss-Seidel or 

Gauss-Jacobi methods. 

3.2.2. Nonlinear Relaxation 

The basic idea of relaxation can also be extended to solve systems of 

nonlinear equations of the form F(x) = 0, where F:IRn--7IRn, with com­

ponents fl' f2' ... ,fn and fi:IRn--7IR. That is, rather than solving the system 

using direct matrix techniques, the nonlinear equations can be solved in a 
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decoupled fashion. Two such algorithms are given below. The index k is 
the iteration count, while EI and E2 are error tolerances. 

Algorithm 3.3 (Nonlinear Gauss-Jacobi Method to solve F(x) = 0) 
kf- 0 ; guess xO ; 

repeat { 
kf- k+l ; 
forall ( i E {I,'" ,n } ) 

solve fj(xf- I, ••. , Xr-l l , x~, X~ll, ... , xk- 1)=0 for 

x~ ; 
} until ( I x~ - x~- II ~ EI , I fj(xk,i) I ~ E2 , i=l, ... ,n); 

o 

Algorithm 3.4 (Nonlinear SOR Method to solve F(x) = 0) 
kf- 0 ; guess xO ; 

o 

repeat { 
kf- k+l ; 
foreach ( i E {I,'" ,n } ) 

solve fi(xf,"', Xr-I, x~, X~ll, ... , x~-I) = 0 for x~; 

X~f- (1- ro)x~-l+ro(x~) ; 
} until ( I xf - xf-11 ~ EI , I fi(xk,i) I ~ £2, i=l, ... ,n); 

In the above algorithms, xk,i = (xf, ... , Xr-I, xf, X~I' ... , x~). 

These algorithms are referred to as nonlinear relaxation methods. 

The steps are very similar to linear relaxation as given in Algorithms 3.1 

and 3.2 except that, in this case, each equation in the inner loop is non­

linear. To solve each one-dimensional nonlinear problem, fi(x) = 0, an 

iterative technique such as the Newton method or secant method must be 

used since, in general, a closed-form solution cannot be obtained. Com­

bining the SOR method with the Newton method results in the SOR­

Newton algorithm. The general case is the m-step SOR-Newton method, 

where m is the number of Newton iterations taken in the inner loop. The 
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question again arises as to the number of inner loop iterations to use. 

It can be shown that the rate of convergence of the one-step SOR­

Newton method is the same as for the one-step Newton-SOR method 

[ORT70]. The m-step SOR-Newton method also has the same rate as the 

one-step method implying that it is not worthwhile to take more than one 

Newton step since the convergence rate is not affected. However, the con­

vergence rate of the m-step Newton-SOR method is m times the rate of 

convergence of the one-step method. Therefore, based on the rates of con­

vergence, one might be inclined to choose the m-step Newton-SOR to 

solve a system of nonlinear equations. There is, however, a hidden cost if 

the partial derivatives are expensive to calculate. Each step of SOR-

Newton requires the evaluation of each fj and n partial derivatives, ~. 
OXj 

whereas the m-step Newton-SOR method requires the evaluation of f and 

all partial derivatives. Based on both operation counts and the rates of 

convergence given above, the one-step SOR-Newton method appears to be 

the most efficient and for this reason it is used in Iterated Timing Analysis 

(ITA) [SAL83]. Note that this implies one iteration in the inner loop. The 

outer loop is iterated until convergence is obtained. SOR-Newton also 

offers one additional advantage over Newton-SOR in that waveform 

latency can be exploited easily. This feature is described in more detail in 

the chapter to follow. 

In a general-purpose implementation of these methods, the iterative 

process must be terminated when the solution is close enough to x*. 

Often, this condition is checked using the test I xr- xr-1 1:5; £1. However, 

this check of convergence is not sufficient in the nonlinear case. A second 

test is necessary to ensure that each function, fj, is close enough to zero, 

and this is specified using the test I fj(xk,j) 1:5; £2 for all i. 
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The algorithms presented above are meaningful only if the nonlinear 

equations, which are solved at each step in the inner loop, have unique 

solutions in some specific domain under consideration. Recall that for 

linear relaxation, the condition that ajj:;t:(), for all i= 1, ... ,n ensures that a 

solution exists, assuming that the diagonal dominance property holds. A 

similar condition is required in the nonlinear case. To illustrate this point, 

let the Jacobian be decomposed into its diagonal, strictly lower-triangular 

and strictly upper-triangular parts as follows: 

F/(X) = D(x)+L(x)+U(x) 

The iterations in the nonlinear scheme are well-defined if F is continu­

ously differentiable in an open neighborhood S of the point x*, for which 

F(x*)=O, and D(x*) is nonsingular. The requirements for convergence are 

also analogous to those for the linear case. By splitting the Jacobian 

matrix using the previous notation 

F'(x) = B(x) - C(x), 

the local convergence of the nonlinear relaxation methods described in 

Algorithms 3.3 and 3.4 can be stated as follows [ORT70]: 

Theorem 3.2: Given F:IRn--7IRn, assume that F is continuously differenti­

able in an open neighborhood S of x* and x* satisfies F(x*)=O. If B(x*) is 

nonsingular and p(B(x*)-lC(x*))<l, then there exists an open ball S* c S 

such that the nonlinear relaxation methods given in Algorithms 3.3 and 3.4 

converge to x* for any initial guess xO E S*. D 

Recall that under the conditions stated in Theorem 3.1, linear relaxa·· 

tion methods converge for any initial guess. However, for the nonlinear 

case the convergence result is local since the initial guess must be close 

enough to the final solution to guarantee convergence. The proof of this 

theorem may be found in the reference [ORT70]. 
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3.2.3. Waveform Relaxation 

The relaxation schemes presented above can be also extended to 

functions spaces to solve systems of differential equations. This class of 

algorithms is called Waveform Relaxation (WR) [LEL82]. The relaxation 

variables in WR are elments of function spaces, i.e., they are waveforms in 

the closed interval [O,T], whereas for linear and nonlinear relaxation the 

variables are simply vectors in Euclidean n-space. To illustrate the WR 

algorithm, consider the circuit simulation problem in the form specified in 

Eq. (2.9). The WR method for solving this system of equations is given in 
Algorithm 3.5 below. 

Algorithm 3.5 (WR Gauss-Seidel Algorithm for Solving Eg. (2.9)) 

k~O; 

guess waveform xk(t) ; t E [O,T] such that xk(O) = Xo ; 

repeat { 
k~ k+1; 
foreach (i E {1, .. ,n) { 

solve 

~j C"(Xk ... x.k x.k-11 ••• xk-l u)x.k+ IJ r, ,I , 1+, ,n, J 
J= 

~ C .. (x k ... x.k x.k-1l ... Xk-l u)x.k-1+ .4.J IJ 1, ,1,1+, ,n, J 
J=1+1 

f·(x k ... x.k x.k-11 ••• xk-l u) =0 11, ,1'1+, ,n, 

for ( xNt); t E [O,T] ), with the initial condition 

xNO) = Xio; 

} until ( maxl~ j~ nmax. E [O.T] I xf(t) - xr-1(t) I::; E ) 

o 
Algorithm 3.5 converts the problem of solving a coupled system of n 

first-order ODEs to the problem of solving n separate differential 
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equations, each containing a single variable. The outer loop in the algo­

rithm is the Gauss-Seidel iteration which requires that the latest values of 

the relaxation variables be used to solve each equation in the inner loop. 

Each equation in the inner loop is a single nonlinear differential equation, 

and this equation can be solved using any standard numerical integration 

method. 

The convergence of the Waveform Relaxation method is guaranteed 

under conditions which are similar to the linear and nonlinear cases, as 

stated in the following theorem [WHI85C]: 

Theorem 3.3: If C(x(t),n(t)) E IRnxn of Eq. (2.9) is strictly diagonally 

dominant uniformly over all x(t) E IRn and net) E IRf and Lipschitz con­

tinuous with respect to x(t) for all net), then the sequence of waveforms 

{xk} generated by the Gauss-Seidel or Gauss-Jacobi WR algorithm will 

converge uniformly to the solution of Eq. (2.9) in any bounded interval 

[O,T], for any initial guess xO(t). 0 

While this theorem guarantees convergence of the WR algorithm, it 

does not imply anything about the speed of convergence. Although the 

method usually converges in a few iterations, it has been observed that in 

test cases with tight feedback loops, the number of iterations required to 

converge is proportional to the simulation interval [WHI83]. To improve 

convergence, the simulation interval [O,T] is usually divided into smaller 

intervals, [O,Td, [T j ,T2], ... , [Tn-I,Tn], called windows. Initially, the WR 

algorithm is applied only in the first window, [0, T d, until the waveforms 

converge. Then a second window, [T I,T2], is selected and WR is applied 

within this interval until the waveforms converge. This continues until the 

entire simulation interval is covered. Note that the WR method converges 

more rapidly as the window size is made smaller. One advantage of WR is 

that the time-steps for each of the variables can be chosen independently 
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of one another, but this advantage is compromised if the windows are too 

small. Therefore, the window size is an important factor which determines 

the performance of programs which use the WR method. 

3.2.4. Partitioning for Relaxation Methods 

Relaxation methods are most effective when applied to a system of 

equations which are "loosely-coupled," that is, where the variables do not 

depend too strongly on one another. For this type of system, relaxation 

methods usually converge quite rapidly. The speed of convergence in the 

linear case is controlled by the spectral radius of the iteration matrix given 

by p(B-le) (using the notation of Theorem 3.1); this is usually close to 

zero for loosely-coupled systems. However, for an arbitrary problem, 

there is no guarantee that the spectral radius will be small. In fact, in 

"tightly-coupled" systems, the spectral radius may be very close to 1 

which implies slow convergence. This degrades the performance of the 

relaxation-based methods compared to those for the direct methods. 

The precise meaning of loosely-coupled and tightly-coupled can be 

described using a simple 2x2 matrix problem: 

Assume that the equations have been ordered such that Xl is solved before 

X2. Then, a21 can be considered as a feed-forward term and a12 can be 

considered as a feedback term. The spectral radius of the iteration matrix 

for the GS method (see Theorem 3.1) is given by 
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and to guarantee convergence, this value must be strictly less than 1. If 

both a12 and a21 are non-zero, the variables Xl and X2 are considered to be 

coupled. If both al2 and a2l are large, relative to all and a22, then Xl and 

X2 are called tightly-coupled variables. If both al2 and a21 are small, then 

XI and X2 are called loosely-coupled variables. Note that if either a21 or 

al2 is zero, then equation ordering has a significant impact on the number 

of iterations. In fact, if a21=0, then X2 should be solved before Xl so that 

the solution can be obtained in one iteration. A similar argument applies if 

a21 is very small compared to a12. Therefore, the main objective in reord­

ering is to make the A matrix as lower triangular as possible. 

When solving large systems, the definitions given above can be used 

to partition the system into groups of tightly-coupled variables. Rather 

than using relaxation methods to solve the tightly-coupled variables within 

each "block," it is better to solve them using direct methods. The relaxa­

tion method can be applied between the blocks, which are loosely-coupled 

relative to the variables within a block. This gives rise to block relaxation 

methods [VAR62], which can be viewed as a combination of the direct 

methods and relaxation methods. As an example, consider the 3x3 matrix 

problem: 

If X2 and X3 are tightly-coupled, then many relaxation iterations may be 

required to solve this problem. However, by grouping X2 and X3 into the 

same block and reordering the variables for the Gauss-Seidel method, the 

following equation is obtained: 
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If X2 and X3 are solved using direct methods, then this problem can be 

solved using a single relaxation iteration. 

The examples above are only meant to show that proper ordering and 

partitioning are extremely important in the relaxation-based methods. In 

Chapter 4, the details of the ordering and partitioning algorithms will be 

described, including a discussion of the convergence requirements, the 

handling of MNA elements and other methods to improve simulation 

speed in the presence of tight coupling. 
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CHAPTER 4 

ITERA TED TIMING ANALYSIS 

In the previous two chapters, the circuit simulation problem was 

identified and efficient techniques to solve the problem were described. In 

this chapter, a detailed description of event-driven electrical simulation 

based on nonlinear relaxation methods is provided. The chapter begins 

with the equation flow for nonlinear relaxation when applied to the circuit 

simulation problem. Then the timing analysis and iterated timing analysis 

(ITA) algorithms are described. Algorithms for event-driven electrical 

simulation with block partitioning and global variable time-step control 

are presented in the next two sections. Finally, the issues relating to 

latency detection and event scheduling in ITA are discussed. 

4.1. EQUATION FLOW FOR NONLINEAR RELAXATION 

The starting point for the description is the system of nonlinear dif­

ferential equations describing the circuit behavior using the charge-based 

formulation: 

ci(v(t) = f(v(t),u(t», v(O)=V, t E [O,T] (4.1) 

where q is the charge associated with the capacitors connected to each 

node, f is the sum of the currents charging the capacitances at each node, u 

is the set of input voltages and v is the set of unknown node voltages. 

Using trapezoidal integration [CHU75] to discretize the system in Eq. 

(4.1), the following system of nonlinear difference equations is obtained: 

qn+l = qn + ~n (fn+l + fn) (4.2) 

where the subscripts nand n+ 1 refer to time points tn and tn+ 1 = tn+hn, 

respectively, and hn is the integration step size. This equation can be 
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formulated as a nonlinear problem, as follows: 

(4.3) 

Instead of solving this system of equations using standard techniques 

[NAG75], the strategy in this section is to use nonlinear relaxation. That 

is, use the Newton method to solve each equation in the system separately 

and a relaxation method to guarantee that the solutions are mutually con­

sistent. The expression for the ith equation in Eq. (4.3) solved using the 

Newton method is 

(4.4) 

where the index k is the iteration counter for the Newton method and 

JF;(V) is the ith diagonal term of the Jacobian matrix of F(v) given by 

(4.5) 

Usually a number of iterations are required to obtain the correct solution. 

However, in this case, since a converged relaxation method is used to 

guarantee a consistent solution to the system of equations, the Newton 

iteration for each equation need not be carried to convergence. In fact, 

from an efficiency standpoint, only one iteration should be used to approx­

imate the solution of each equation before moving to the next equation, as 

described earlier in Chapter 3. The resulting one-step Gauss-Seidel­

Newton relaxation algorithm is specified precisely in the following, using 

the definition: 

vk,i = [v k+1 vk+l ••• v.k-tl v.k v.k 1 ••• vk]T 1 , T, , I-I , I , 1+ , ,n 

where the superscript T denotes the transpose of a vector. This definition 

is based on the Gauss-Seidel method which uses the k+ 1 st values of all 

other components, whenever possible, in computing the k+ 1 st value of Vi. 
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Here n is the number of equations in the system. The algorithm for a one­

step Gauss-Seidel-Newton Relaxation method is given below: 

Algorithm 4.1 (Gauss-Seidel-Newton Relaxation Method) 

repeat { 

o 

foreach ( i E {I,'" ,n} ) { 

solve JFlvk,i)(v~+I- v~) = - Fi(vk,i) for V~+I 

where Fj(v) is specified in Eq. (4.3) and 

JF/V) is specified in Eq. (4.5) ; 

4.2. TIMING ANALYSIS ALGORITHMS 

The first published program to use techniques based on nonlinear 

relaxation for circuit simulation was the MOTIS program [CHA 75]. It 

used backward-Euler integration, a Gauss-lacobi-Newton relaxation algo­

rithm, and node-by-node decomposition (that is, it solved for one node 

voltage at a time). In MOTIS, a simple modification was made to the 

relaxation scheme based on the conjecture that there exists a small enough 

time-step, hmin, such that the method obtains the correct solution in exactly 

one iteration. At each time point, tn+I' the program computed new values 

of all node voltages using only one iteration of the Gauss-lacobi-Newton 

method and accepted the results as the correct solutions at tn+ I. It was 

believed that iterating the outer relaxation loop to convergence would be 

both expensive and unnecessary for most MOS logic circuits. However, 

the resulting accuracy of this approach relied heavily on three things: 

1) The user's ability to select an appropriate time-step based 
on knowledge of the circuit characteristics. 
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2) The fact that the global error reduces to zero when a node 
voltage reaches the supply voltage or ground. 

3) Only a limited number of well-characterized circuit topologies 
(CMOS polycells) were used to build a design. 

The initial speed improvements obtained using this approach were 

extremely encouraging, partially due to the simplified numerical tech­

niques and partially due to the use of table lookup models for the MOS 

devices. The combined techniques were shown to be over two orders of 

magnitude faster than standard techniques when applied to large digital 

MOS circuits [CHA75]. Since the method was intended to provide first­

order timing information of MOS logic circuits, it was called "Timing 

Analysis" or "Timing Simulation." 

Although timing analysis provided an electrical simulation capability 

with execution speeds comparable to logic simulation, it had a number of 

problems. For example, the choice of a proper time-step to guarantee 

accurate solutions was very difficult to determine in general. In addition, 

the method had severe accuracy problems for circuits containing elements 

such as large floating capacitors 1, small floating resistors and transfer 

gates. The MOTIS program avoided this problem for floating capacitors 

by not allowing them in the circuit description and solved collections of 

transfer gates using direct methods. 

A number of improvements to the basic technique was suggested to 

overcome the inherent accuracy limitations of the method. In particular, 

the MOTIS-C program [FAN77] employed trapezoidal integration and one 

iteration of the Gauss-Seidel-Newton relaxation algorithm. Since timing 

analysis algorithms based on the Gauss-Seidel principle use updated infor­

mation at tn+l whenever possible, the accuracy is generally better than one 

I A "floating" element is a two-terminal device whose terminals are not connected to either 
ground or to a power supply. 
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based on the Gauss-Jacobi method. The simulation time-step was selected 

automatically in the program by doing a simple analysis of the time con­

stants associated with each node and by using some fraction of the smal­

lest time constant as the step size. However, MOTIS-C still suffered from 

problems similar to those for MOTIS. 

A modified timing analysis algorithm was implemented in 

SPLICEl.3 [NEW78] as part of a mixed-mode simulation capability. 

Although backward-Euler integration was used in this program, a number 

of other noteworthy enhancements were made to the underlying timing 

analysis algorithm. The first enhancement was based on two observations: 

1) Most of the node voltages in a large digital circuit remain 
stationary at a given time point (the latency property). 
Computing the solution for these nodes is unnecessary. 

2) The order in which the nodes are solved has a strong influ­
ence on the accuracy of the solution for timing analysis 
algorithms based on the Gauss-Seidel principle. 

These observations suggested that a good strategy would be to identify the 

"active" nodes at each time point and process these nodes in an order 

based on the direction of signal flow. In SPLICE1.3, a single mechanism 

was used to perform both tasks: an event-driven, selective-trace algorithm 

normally associated with logic simulation [SZY75]. This mechanism is 

described in the following paragraphs. 

The SPLICE! program treats a circuit as a signal-flow graph and 

constructs a corresponding directed graph for the circuit given by 

G=G(X,E), where X is the set of vertices and E is the set of directed edges 

of the graph. Two tables, the fanin and fanout tables, are constructed at 

each vertex based on the following definitions: 
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Definition 4.1 (Fan in and Fanout nodes) 

A node Xk is called a fanin node of Xj, and is specified as Xk E Fanin(xi), if 

Xk directly affects Xi. A node Xj is called a fanout node of Xi, and is 

specified as Xj E Fanont(xj), if Xj is directly affected by Xi. 0 

Whenever the value of an input node or any internal node changes, it 

is possible to schedule all of its fanouts to be processed. In this way the 

effect of a change at the input to a circuit may be traced as it propagates to 

other circuit nodes via the fanout tables. Since the only nodes that are pro­

cessed are those which are affected directly by the change, this technique 

is selective and hence its name: selective trace. If such a selective trace 

algorithm is used with the fanout tables, the order in which the nodes are 

updated becomes a function of the signals flowing in the network and is 

therefore a dynamic ordering. 

To make the processing efficient, and for consistency with the logic 

simulator in the SPLICE! program, the total simulation period, Tstop, is 

divided into uniform steps, referred to as the Minimum Resolvable Time 

(mrt). A time queue is constructed and the time slots in this queue define 

distinct points in time separated by one mrt. Hence, events are scheduled 

at integer multiples of mrt in the queue. The simple event scheduling 

approach used in SPLICE! for timing analysis is given in Algorithm 4.2. 

The routine NextEventTime(t) examines successive time slots in the time 

queue starting at time t and returns the next time point where one or more 

events have been scheduled. The external input nodes to a circuit are 

denoted as ek. 

As seen III the algorithm below, three separate event scheduling 

mechanisms exist: 

1) External inputs generate events whenever they make transitions 
from one value to another, 



4. ITERATED TIMING ANALYSIS 83 

2) Internal nodes can schedule themselves to be processed, and 

3) Internal nodes can schedule their fanout nodes to be processed. 

Note that if Xi is not active, then neither Xi nor its fanouts are scheduled. 

However, since nodes may schedule themselves, the fanouts of Xi may still 

be active even though Xi is not. The importance of this fact and other 

issues associated with electrical event scheduling will be presented in Sec­

tion 4.5. Also, the precise meaning of "active" is elaborated further in 

Section 4.5. 

Algorithm 4.2 (Event Scheduling Algorithm in SPLICE!) 

tnf- 0; 

while ( tn~T stop) { 

} 
o 

tnf- NextEventTime( tn ); 
foreach ( input k at tn ) { 

if ( ek is "active" ) 

foraH ( Xj E Fanout(ek)) schedule( Xj' tn ); 

foreach ( event i at tn ) { 
process node Xi by computing Xi(tn); 
if (Xi is "active" ) { 

schedule( Xi, tn+h ); 
foraH ( Xj E Fanout(Xi) ) schedule( Xj' tn ); 

The use of event-driven, selective-trace techniques give greatly 

improved accuracy of SPLICE1.3 compared to those for the MaTIS and 

MOTIS-C programs. In addition, a further improvement was realized 

using a variable time-step control, as follows. Initially, every node is 

solved using a common step size given by the mrt. If the change in either 
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the voltage at a node or the current through any device connected to the 

node is large, its solution is recomputed in the mrt interval using smaller 

steps and a single iteration at each time point. Each of the smaller steps 

may be further refined to insure that the changes in voltage and current are 

within acceptable limits. Therefore, the local time-steps for each node are 

based on limiting change of the node voltage and its associated currents 

over each step2. While the run time was noticeably higher, this variable 

time-step control was extremely effective in improving the accuracy of the 

results. 

Other enhancements were developed in SPLICE1.3 to handle 

tightly-coupled circuits. SPLICE1.3 used the Implicit-Implicit-Explicit 

(lIE) method [NEW80] to handle floating capacitors. To accommodate 

large blocks of tightly-coupled circuit elements, the program allowed the 

user to define "circuit" blocks. These blocks would be solved using stan­

dard direct matrix techniques. However, instead of using a single itera­

tion, the Newton iteration in the inner loop was carried to convergence 

since the elements inside the circuit block were considered to be "highly" 

nonlinear. However, the outer relaxation iteration was only performed 

once. 

While the results from programs using timing' analysis were within 

acceptable accuracy limits for a certain class of problems, a rigorous 

mathematical analysis indicated that these methods have inherent stability 

and accuracy problems [DEM81]. This severely limited the application of 

the technique. Another problem, cited earlier, was that timing analysis 

programs relied on the user's knowledge of the underlying algorithms and 

improper usage could produce the wrong answer. Circuit designers have 

2 Note that a variable time-step control based on local truncation error is not easy to define here 
since the relaxation loop is not carried to convergence. The local error (i.e., the error over one step) is 
due to the integration method and the fact that the iteration is not carried to convergence. 
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been known to lose confidence in a simulator if it occasionally produces 

the wrong answer, whatever the reason. Therefore, this approach has not 

been widely accepted, although it is heavily used where the approach has 

been thoroughly developed, is well-understood, and is applied to a res­

tricted class of circuit topologies. 

4.3. SPLICE1.7· FIXED TIME· STEP ITA 

The reluctance to close the outer relaxation loop in timing analysis 

was primarily due to its perceived high cost. However, the event-driven 

techniques significantly reduced the cost of timing analysis for large prob­

lems since only a small fraction of the nodes is processed at each time 

point. A number of other improved timing analysis algorithms were pro­

posed [DEM83] but they used at least two iterations or required the use of 

expensive function evaluations, which increased greatly the cost of the 

simulation. As described earlier, the variable step approach in SPLICE1.3 

improved the accuracy somewhat at the expense of additional iterations. 

The additional cost was thought to be worthwhile due to the improved reli­

ability. 

The next step, naturally, is to close the relaxation loop and examine 

the true cost of iterating to convergence, given that event-driven selective 

trace is employed to improve efficiency. This was done in the SPLICE1.6 

program, which later evolved to be SPLICEl.7, and the technique was 

named Iterated Timing Analysis or ITA [SAL83]. The prototype version 

of ITA used backward-Euler integration, node-by-node decomposition and 

a fixed time-step based on the mrt. The fixed time-step algorithm was 

kept for consistency with the existing scheduler and logic simulation por­

tions of SPLICEl. The ITA algorithm in SPLICE1.7 is a simple extension 

of Algorithm 4.2 as shown below. 
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Algorithm 4.3 (Fixed Time-Step ITA) 

D 

tnf- 0; 

while (tn$Tstop) { 

} 

tnf- NextEventTime( tn ); 
foreach ( input k at tn ) 

if ( ek is active) 

forall ( Vj E Fanout(ei) ) schedule( Vj, tn ); 
repeat { 

foreach ( event i at tn ) { 

} 

solve JF/vk,i)(v/<+l- v/<) = - Fi(vk,i) for v/<+l 

where Fi(V) is specified in Eq. (4.3) and 

JF/V) is specified in Eq. (4.5) ; 

if ( I v/<+L v/< I <£1, I Fil <£2) { /* converged? */ 

if ( Vi did not converge on last iteration) { 

} 

if ( Vi is active) { 
/* this is the selective-trace portion */ 
schedule( Vj, tn+l ); 
forall ( Vj E Fanout(vi) ) 

schedule( Vj, tn ); 

else {/* do nothing (latency) */} 

else {/* do nothing (breakfeedback loops) */} 

else { /* node has not converged */ 
schedule( Vi, tn ); 

forall ( Vj E Fanout(Vi» schedule( Vj, tn ); 

} until ( Q is empty at tn ) 
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The following definition is used in the algorithm: 

vk,i = [Vf+l ,v:!,+l, ... ,vr-t1,vr,vf-i.l, ... ,v~]T 

The algorithm above has two features not present in the SPLICEl.3 algo­

rithm: 

l) If a node voltage does not converge, the node is rescheduled 
at the current time point tn along with its fanout nodes. 

2) All nodes are processed until their voltages converge. When 
a node converges at tn, it schedules itself at tn+1 and schedules 
its fanouts at tn, if active. However, if it is scheduled again 
at tn by one of its fanins, and converges again, it does not 
schedule any additional events. This approach breaks feedback 
loops, since two nodes which are fanouts of each other would 
schedule each other indefinitely at tn if this approach was not 
used. 

The speed improvement obtained by the SPLICEl.7 program com­

pared to that for the SPICE2 program was in the range of 5 to 50 times fas­

ter for a number of MOS digital circuits containing up to 1200 transistors 

[SAL83]. However, the ITA approach required approximately twice as 

much CPU-time to simulate a circuit compared to SPLICE1.3 which used 

timing simulation [SAL84]. Again, the improvements in reliability and 

numerical robustness far outweighed the cost of the increase in run-time. 

While the converged relaxation scheme is provably better than the 

non-iterated approach, it is not without problems. One problem is the 

speed of convergence. For example, SPLICEl.7 was able to simulate 

accurately an NMOS operational amplifier but it required more than two 

times the CPU-time used by SPICE2 [NEW83]. The circuit is a tightly­

coupled analog circuit with large forward gain and capacitive feedback 

and, in this application, the node-by-node decomposition strategy used in 

SPLICEl.7 is inappropriate. For this same reason, convergence is also 

very slow in the presence of large floating capacitors and small drain and 



88 MIXED-MODE SIMULATION 

source resistors, usually found in detailed MOS transistor models. 

Another problem is due to nonconvergence. Since a fixed time-step is 

used, the program simply stopped when it was unable to converge to a 

solution within a specified number of relaxation-Newton iterations. Obvi­

ously, a variable step algorithm would resolve this problem and would also 

allow the solutions to be computed accurately based on a local truncation 

error criterion. These and other problems were solved in the SPLICE2 and 

iSPLICE3 programs. 

The version of ITA implemented in the iSPLICE3 [SAL89A, 

ACU90] program differs from SPLICE!.7 in two respects: 

1) it uses partitioning to improve the speed of convergence for 
tightly-coupled circuits. 

2) it achieves better accuracy by using an LTE-based time-step 
control. 

The iSPLICE3 program also provides detailed MOS levelland MOS 

level 3 transistor models including a charge-conserving capacitance 

model. 

4.4. CIRCUIT PARTITIONING 

The node-based ITA approach used in SPLICEl.7 is not appropriate 

for circuits with tight coupling between two or more nodes, since the con­

vergence can be very slow in this situation. One reason for this problem is 

that in computing the new value for a particular node, the relaxation pro­

cess effectively replaces the fanin nodes with ideal voltage sources of con­

stant value. Therefore, the true Norton equivalent contributions from the 

fanin nodes are not used in the computation of a new value for the node. 

SPLICE2 used an improved representation of the neighboring nodes based 

on a current and conductance model, rather than constant voltage sources, 

and this approach was called the coupling method [KLE84]. This fanin 
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model is approximate since the exact Norton equivalent is expensive to 

calculate during the simulation as it involves path tracing from each fanin 

node to all other reachable nodes. While this approach improved the con­

vergence speed on some examples, the technique was heuristic in nature 

and did not solve the general problem of coupling between more than two 

nodes in feedback loops. 

As was realized in early relaxation-based simulators such as 

SPLICE 1, tightly-coupled subcircuits are better solved using direct 

methods [NEW78]. However, it is difficult for users to identify tightly­

coupled blocks manually, especially when the degree of coupling is a 

function of time and usually changes frequently over the simulation inter­

val. A more effective approach to the coupling problem is to identify 

strongly-coupled components in the circuit automatically and to group 

them together to form subcircuits - a process referred to as circuit parti­

tioning. Since the variables associated with the subcircuits are assumed to 

be tightly-coupled, the subcircuits can each be solved using direct matrix 

techniques, and the relaxation method can be applied between subcircuits. 

This technique has been used in conjunction with the Waveform Relaxa­

tion algorithm [LEL82, CAR84, WHI85A, MAR85, DUM86, SA V93] 

with great success. The same approach can be used with nonlinear relaxa­

tion to improve convergence as mentioned in Chapter 3. However, there is 

still a requirement of a capacitor to ground from each node to guarantee 

convergence, and this limits the type of circuits that can be simulated 

using relaxation method. In the following sections, an approach is 

described to extend the application of relaxation methods to virtually any 

type of circuits. 

4.4.1. MNA Elements 

Historically, elements such as controlled sources, inductors and 
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floating voltage sources have been difficult to incorporate into nodal 

analysis based circuit simulators. Modified Nodal Analysis [H075] 

evolved as a method of equation formulation that allows these elements to 

be easily included in direct method simulators such as SPICE. This is 

accomplished by appending the branch constitutive relations of these so 

called MNA elements to the nodal equations, and by adding extra columns 

to the circuit matrix so that the needed variables, such as current and 

charge, are also included. This is the formulation used by almost all 

general-purpose circuit simulators. However, MNA elements have posed 

problems for relaxation-based simulators as they typically do not have 

grounded capacitors on their terminals. Therefore, circuits containing 

MNA elements do not usually satisfy the sufficiency conditions for con­

vergence described earlier. In fact, they produce + 1 and -1 terms in off­

diagonal locations in the circuit matrix, which are usually large relative to 

other terms in the matrix. 

For example, a voltage-controlled voltage source (VCVS), with 

V3 - V4 = a(V2 - VI), has the following matrix template: 

BE [a -a 1 -1 0 1 
D3 - - - - -1 
D4 - - - - +1 

The presence of the large off-diagonal terms, a, +1 and -I, may 

degrade convergence, if convergence occurs at all! However, the theorem 

to be presented in the next section suggests a way of incorporating MN A 

elements into relaxation-based simulation programs. This involves devis­

ing a partitioning algorithm that will embed an MNA element into a sub­

circuit, such that all boundary nodes of the subcircuit will have capaci­

tances to ground. 
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4.4.2. New Sufficient Condition for Convergence 

Recently, an improved condition for the convergence of block time­

point relaxation methods has been proved stating, in effect, that grounded 

capacitors are only required at certain nodes in the circuit [DES89]. This 

theorem establishes new sufficient conditions for the convergence of the 

Gauss-Seidel-Newton (GSN) relaxation method and is given below: 

Theorem 4.1 : Consider a system of partitioned nonlinear equations F of 

the form: 

F(x) = 0 and A(x*) = (aF/ax)(x*) 

Let x* be the solution of F, and let F be continuously differentiable at x*. 

Assume that the circuit is partitioned into blocks and a partial ordering has 

been determined so that these blocks are numbered in ascending order. In 

the Gauss-Seidel approach, a lower-numbered block will be evaluated 

before a higher-numbered block. Then, a node inside a block is afeedback 

node if its circuit equation is a function of some nodes in a higher num­

bered block. The corresponding node to which the feedback node is con­

nected in the higher numbered block is afeedforward node. Now, assume 

the following: 

1) All principal square submatrices of Aex*) are invertible 
and their inverses have bounded norms. 

2) aJ/ax is independent of the time-step and has bounded 
entries. 

3) There is a capacitor from each feedback node to ground. 

Then, the iterates in the Gauss-Seidel-Newton relaxation method converge 

to x* if the time-step h is small enough and if the initial guess IS 

sufficiently close to the solution x*. 

Proof: The proof is presented in [DES89]. D 
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The basic idea of the theorem is depicted in Fig. 4.1. There are 14 

nodes and a number of edges representing connections between the nodes. 

Assume that the nodes are partitioned into 4 subcircuits, Sub 1, Sub2, Sub3 

and Sub4, respectively. Then, all resulting feedback nodes (as defined 

above) must have a capacitance to ground to guarantee convergence. In 

Fig. 4.1, the feedback nodes are 2, 3, 7 and 10 and they all have a capaci­

tive connection to ground. Now, if the conditions 1) and 2) are satisfied, 

then the Gauss-Seidel-Newton relaxation method is guaranteed to 

Levell Level 2 Level 3 

Sub 3 

Figure 4.1: Partitioning Approach Suggested by Theorem 4.1 
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converge if the time-step is small enough. Note that no other capacitors 

are required in the circuit for convergence. If the Gauss-Jacobi method is 

used, then the feedforward nodes must also have capacitances to ground. 

The feedforward nodes in this case are 5, 9 and 12. The event-driven algo­

rithm also requires capacitances to ground at all feedback and feedforward 

nodes in the circuit, which we refer to as the peripheral nodes. The use of 

this key theorem to expand the scope of relaxation-based simulation IS 

described in the following sections. 

4.4.3. A Partitioning Algorithm 

A partitioning algorithm is now proposed which improves the con­

vergence of relaxation-based methods and can handle MNA elements. 

Basically, the partitioner groups tightly-coupled nodes together and 

ensures that every subcircuit in the network has grounded capacitors at its 

peripheral nodes. In the case of MNA elements, the partitioning algorithm 

ensures that all nodes of the device and any internal variables are assigned 

to the same subcircuit. The pseudo-code for the partitioner is given in 

Algorithm 4.4. 

Algorithm 4.4 (Partitioning MNA Circuits) 

partitionO 
{ 

node list f- {all nodes}; 

foreach (MNA element i) { 

place all its nodes in subcircuit i; 
nodelist f- {nodelist} - {MN A nodes}; 

G_partitioner(nodelist); 1* conductance based *1 
C_partitioner(nodelist); 1* capacitance based *1 
Build_SubcircuiCData(sublist); 1* tentative subcircuits *1 
Levelize(sublist); 1* rank *1 
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foreach (Level i, i=n, ... , 1) { /* process in reverse-order */ 
foreach (subcircuit j in Level i) { 

levelize(sub_nodelist(j»; /* order nodes in subcircuit */ 

/*Check feedforward and feedback nodes for capacitances*/ 
foreach (Level i, i=n, ... , 1) { /*rank*/ 

foreach (subcircuit j in Level i) { 
foreach (node k in subcircuit j) { 

if(k = unvisited) { 

/*subcircuit*/ 
/*node*/ 

} 

o 

} 
} 

foreach ((x member of fanouClist(k» and (x = unmarked» 
{ 

} 

Mark(x); 
if(check_feedback(x,k) = NO or 

check_feedforward(x,k) = NO) { 
/*no feedback or feedforward capacitance*/ 
Coalesce(j, find_subcircuit( x»; 

/*combine subcircuits*/ 
Update(j, find_subcircuit(x»; Continue; 

k = visited; 

Build_subcircuitsO; 
foreach (Level i, i=n, ... , 1) { 

Partial_orderO; /* establish final ordering */ 
} 

The first step in the partitioner is to construct a directed graph 

G=(V,E) where V is the set of nodes in the circuit and E is the set of edges, 

defined by E= {(a, b)}. An edge arises whenever the node voltage or node 
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current at node b is dependent on the node voltage or node current at node 

a. For each such ordered pair, a directed arc from a to b is constructed. 

An attribute is associated with each node in the graph that indicates 

whether or not the node has a purely capacitive path to ground. A second 

attribute is used to indicate whether or not a node has MNA elements 

attached to it. If so, a unique tag is associated with each such element. 

This information enables the partitioner to identify all nodes attached to a 

distinct MNA element. Fig. 4.2 shows an example of a circuit graph to be 

processed by the partitioner. The graph contains four nodes with the label 

.I. 

Figure 4.2: Circuit Graph Incorporating Partitioning Information 
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"1", indicating that they are attached to a common MN A element. 

In Algorithm 4.4, all the nodes in the circuit are initially placed in a 

data structure called a nodelist. When the nodes belonging to an MNA 

element are assigned to a subcircuit, they are removed from the node list, 

although they may be revisited by neighboring nodes during the partition­

ing process. Fig. 4.3 shows the circuit graph of Fig. 4.2 after the MNA 

element nodes have been assigned to a subcircuit. Next, a static partition­

ing approach, similar to the one used in the RELAX2 program [WHI85C], 

Figure 4.3: Circuit Graph After MNA Elements are Processed 
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is applied to the rest of the nodes in the node list. The main goal of static 

partitioning is to speedup the convergence process of relaxation methods 

by grouping tightly-coupled nodes together. Recall from Chapter 3 that 

the speed of convergence is controlled by the contraction factor, 'Yoo, in the 

following way: 

For a linear problem, this iteration factor can be computed quite easily. 

For example, if the linear problem Ax=b is solved using the Gauss-Seidel 

algorithm, 'Yoo is equal to the largest eigenvalue of the iteration matrix 

[(L+Dt I(_V)], where A=L+D+U. Therefore, a two-node linear circuit, 

such as the one in Fig. 4.4, has an iteration factor (for the conductance por­

tion only) given by: 

A similar expression exists for the capacitance portion of the circuit. 

Note that if the two nodes are part of a larger circuit, the values of gl and 

g2 are the Norton equivalent conductances seen from each node looking 

back into the rest of the circuit. 

The static partitioning algorithm makes use of the iteration factor to 

decide whether or not two nodes should be placed in the same subcircuit. 

If the factor is close to one and the nodes are solved independently, the 

convergence would be very slow. Therefore, the two nodes should be 

placed in the same subcircuit. However, if the factor is close to zero, they 

may be placed in different subcircuits without adversely affecting the con­

vergence speed. A threshold parameter, a, is used to decide whether or 

not the nodes should be solved together or separately. 

A number of approximations are made in computing the iteration 

factors when partitioning MOS circuits. As MOS circuits are nonlinear, 
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1 2 

I 
Figure 4.4: Linear Circuit Considered for Partitioning Purposes 

each nonlinear device must be replaced by a linear equivalent device. 

Since a static partitioning strategy is used, worst-case conductance and 

capacitance values are used when replacing each nonlinear device with a 

linear one. However, the exact Norton equivalent model seen by each 

node cannot be computed efficiently because it involves tracing paths from 

each node to all other nodes in the circuit. For efficiency, the depth of the 

conductance and capacitance search process is truncated whenever the gate 

of an MOS transistor is encountered since the conductance of an MOS 

transistor is zero in the worst case. Path tracing is also terminated when 

the controlling node of an MNA element (such as a VCVS) having no 

further connections to other nodes, aside from the controlled nodes, is 

encountered. Linear inductors and floating-voltage sources are treated as 
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infinite conductance elements during the conductance computing process. 

With these heuristics applied, the conductance partitioning approach 

given in Algorithm 4.5 is obtained. A similar algorithm is used for parti­

tioning based on capacitances. 

Algorithm 4.5 (Conductance Partitioning) 

G _partitioner( nodelist) 
{ 

} 

o 

foreach ( node in nodelist ) { 
node 1 t- next node in nodelist; 
foreach ( element connected to node 1) { 

node 2 t- node on other side of element; 
if ( node 1 and node 2 not checked previously) { 

gl2 t-O; glt-O; g2t-O; 

foreach ( conductive element between nodes 1 and 2 ) { 
gl2 t-g12 + maximum element conductance over all v; 
Remove the element from the circuit; 

gl t- sum of the minimum Norton equivalent 
conductance of each element at node 1 

g2 t- sum of the minimum Norton equivalent 
conductance of each element at node 2 

if (g12 gl2 > a ) { 
(g2+g12) (gl+g12) 

Place the two terminal nodes in same subcircuit; 

The functions, called G--fJartitioner() and C--fJartitioner() in Algorithm 

4.4, carry out the conductance and capacitance partitioning on the nodes in 
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node list and their immediate neighbors. During this stage, these nodes 

may be included in subcircuits that contain MNA elements. That is, these 

nodes may be coupled to nodes that are attached to MNA elements. 

After the conductance and capacitance partitioning has been per­

formed, the algorithm builds a preliminary set of subcircuits using the 

function Build_Subcircuit_Data(). Since some of these subcircuits may be 

coalesced together at later stage, the data-structures for the subcircuits are 

not finalized at this time. The subcircuits are placed in a sub list and are 

then ranked by the Levelize() function. 

Fig. 4.5 shows the same circuit graph after the levelizing has been 

completed. Next, the nodes belonging to a subcircuit are placed in a 

sub _node list and ranked. The algorithm then starts with a subcircuit at the 

highest level and checks each of its peripheral nodes and their associated 

fanouts, using the functions checkJeedforward() and checkJeedback(). If 

a feedback or feedforward node exists which has no capacitance to ground, 

the function Coalesce() combines the two subcircuits together and assigns 

the composite subcircuit to the lower level of the two. This procedure 

ensures that once a node's fanout list has been completely examined, it 

need never be revisited. In Fig. 4.5, the subcircuit S4 has a feedforward 

node in subcircuit S5 without a capacitor, so S4 and S5 will be coalesced. 

The function Update() then assigns a common subcircuit number to 

all nodes in the composite subcircuit. After the algorithm has stepped 

through all the peripheral nodes in the circuit, the function 

Build_subcircuits() sets up all the data-structures needed for processing the 

subcircuits. Lastly, the function PartiaCorder() establishes the order in 

which subcircuits at a given level must be processed. The ordering 

ensures that if a feedback connection exists between the subcircuits for a 

given ordering, the capacitive constraint is satisfied. Fig. 4.6 shows the 

final subcircuit graph after the partitioning process is complete. Note that 
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Figure 4.5: Circuit Graph with Levelized Tentative Subcircuits 

both S3 and S4 have internal nodes without capacitances to ground, but 

this circuit will still converge due to the above-mentioned theorem. 

U sing this partitioning approach, the run times can be reduced 

significantly compared to the node-based approach. However, the static 

partitioning strategy described here has a number of problems. The main 

problem with this approach is that it may produce unnecessarily large sub­

circuits since worst-case values are used in the partitioning process. The 
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Figure 4.6: Subcircuit Graph After Partitioning is Complete 

advantages of the relaxation method are lost if the subcircuits are too 

large. Latency exploitation is no longer performed at the node level but 

rather at the subcircuit level. Hence, all nodes in a suhcircuit must be 

latent before the subcircuit is declared latent. While this provides a some­

what stronger condition for latency, it reduces the efficiency of the latency 

exploitation. Ideally, one would prefer to use small-signal conductance 

and capacitance values to perform the initial partitioning, and then adjust 
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the subcircuits as these values change during the simulation. This is 

referred to as dynamic partitioning and has already been successfully 

applied to the simulation of bipolar circuits using Waveform Relaxation 

[MAR85]. However, this is too expensive to be used in iterated timing 

analysis. 

Another problem is that the partitioning approach given in Algorithm 

4.5 is based on a local a criterion that may occasionally make errors. For 

example, if two nodes are extremely tightly-coupled, relative to their cou­

pling to neighboring nodes, they will be placed in the same subcircuit 

while the neighboring nodes may be incorrectly placed in different subcir­

cuits. If the neighboring nodes are actually coupled to either of the two 

external nodes, the convergence will still be slow [WHI85C]. One other 

problem in partitioning is that it is a time-consuming task. Care must be 

taken in the definition of the data structures and partitioning algorithms so 

that the partitioning phase does not dominate the total run time for large 

circuits. This is more of a concern in dynamic partitioning [MAR85] 

where the partitioning operation may be performed frequently during the 

simulation. 

4.5. GLOBAL VARIABLE TIME-STEP CONTROL 

iSPLICE3 uses a global-variable time-step algorithm in which the 

components in the system are integrated using a single common time-step. 

This integration time-step is selected based on the fastest changing vari­

able in the system, the same strategy used in direct methods. However, 

only the active subcircuits are processed at each time point, and these sub­

circuits are identified using the selective-trace algorithm. The main steps 

in the global time-step IT A algorithm are given below following a brief 

description of the notation to be used. 
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Figure 4.7: Notation Associated with Subcircuits 

Notation for Algorithm 4.6 (see Fig. 4.7) 

Assume that a given circuit is partitioned into n subcircuits 

S1.S2, ... ,Sj, ... ,Sn' The ith subcircuit, Sj, has nj internal variables and 

ne external inputs. The internal variables given by int( Sj) = { Xl , X2, ... , 

xnj } are those variables computed whenever subcircuit Sj is processed. 

They are defined in vector form as Vj=[XI,X2,'" ,xnJT. The external 

inputs of a subcircuit are other nodes which affect the internal nodes of the 

subcircuit. They are specified as Fanin(8j) = { el,e2,'" ,en). The 

fanouts of a subcircuit are associated with the internal nodes of the subcir­

cuits. Hence, the set of subcircuits affected by an internal node, Xj, are 

specified as Fanout(xj) = { 8 1,82,'" ,8k }. The following definition is 
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also used: 

Vk,i = [v k+1 v k+1 ••• V.k+II v.k V.k 1 ••• Vk]T 1- ,2-, '1-, I , 1+ , ,n· 

Algorithm 4.6 (Global-Variable-Time-Step ITA) 

partitionO; 

tnf- 0; hminf- hstart; 

while ( t ::; T stop) { 

stepRejection = FALSE; 

hnextf- hmin; tnf- tn + h next; hminf- h max ; 
foreach ( input ik at tn ) 

if ( ek is active) 

forall ( Sj E Fanout(ek)) schedule( Sj, tn ); 

repeat { 

foreach ( event i at tn ) { 

solve JFj(vk.i)(vr+L vI') = - Fi(vk,i) for vr+1 

corresponding to subcircuit Si; 

if (IIvr+l- vI' 11<£1, IIFi 11«2) { /*converged? */ 

if ( Vi did not converge on last iteration) { 
foreach ( Xi E int(SD) { 

if ( Xi is active) { 
if ( CheckAccuracy( Xi ) = TRUE) { 

hif- pickStep( Xi ); 

hminf- mine hmin, hi ); 

schedule( xi, tn+1 ); 

forall (Sj E Fanout(Xi)) 

schedule( Sj, tn ); 

else { /* reject solution */ 

tnf- tn- hmin; 

hminf- h minl2; 

stepRejected = TRUE; 

105 
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else { 1* subcircuit has not converged yet *1 
if ( itercnt > maxitercnt ) { 

} 

tnf- tn- hmin; hminf- h minl2; 

stepRejected = TRUE; 
} 
else { 

} 

schedule( Sj, tn ); 

foreach ( Xi E int(Si) ) { 
if ( Xi is active) 

} 

foraH (Sj E Fanout(xi)) 

schedule( Sj' tn ); 

} until (( Q is empty at tn ) OR (stepRejection) ) 

In the algorithm above, the CheckAccuracy(x) routine uses a local trunca­
tion error criterion to determine if the computed solution for X is accurate 
and, if so, returns "TRUE." The PickStep(x) routine uses an LTE estimate 
to pick the next recommended step size for x. 

The main differences between this algorithm and the one used in 

SPLICE!.7 are due to the actions taken when the subcircuit variables con­

verge at a time point and when they do not converge in a specified number 

of relaxation-Newton iterations. When the active subcircuits converge at a 

time point, tn, the local truncation errors for their internal variables are 

estimated [BRA 72] and the new global time-step, hnext, is set to the smal­

lest recommended step in the system, h min. If the accuracy in the solution 

computed at tn is unacceptable, the solution is rejected and the integration 
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is retried with the smaller time-step. Similarly, if the iterations do not 

converge within a specified number of iterations, the time-step is rejected 

and a smaller step is used. 

4.6. ELECTRICAL EVENTS AND EVENT SCHEDULING 

4.6.1. Latency Detection 

The most critical aspect in ITA, in terms of accuracy, is the detection 

of the latency condition. For example, if component x is identified as 

being latent prematurely, any small errors in its value will be propagated 

to the other components producing errors in their solutions. If the com­

ponent is thought to be latent but, in reality, it is changing very slowly, the 

results may be completely wrong. Then the overriding question is: how 

can one be sure that a variable has reached a steady-state value? The sim­

plest approach is to test if the following condition is satisfied: 

Latency Condition 1: 

I Xn+ 1 - Xn I <Ex (4.6) 

where Xn+! = x(tn+!), Xn = x(tn) and Ex is some small number. As illus­

trated in Fig. 4.8, the component is considered latent if the difference in 

the computed solution at two successive time points is less than some pre­

specified amount, Ex. For a fixed time-step ITA algorithm [SAL83], this is 

a reasonable check as long as Ex is specified properly and one additional 

check is done, as described shortly. There are situations where Condition 

1 may fail, as shown in Fig. 4.9, where the true solution rises and then falls 

before reaching a steady-state value. If the time points are chosen such 

that Condition 1 is satisfied, latency will be detected incorrectly. A more 

conservative version of Condition 1 requires that the inequality be satisfied 

for two time points that are not adjacent. 
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v 

Xn+ 1 .L 
.................. , .............. y .. . 
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·······························l··· 

Time 

Figure 4.8: Simple Latency Detection 

v 

Time 

Figure 4.9: Potential Problem in Latency Detection 
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Latency Condition 1.1: 

(4.7) 

While this conservative approach works well in practice, it is still not 

strong enough to handle the general case. For example, if a global vari­

able time-step control is used, the step sizes may be very small due to 

some fast component resulting in small changes in x over a large number 

of time points (if x is a slower component). In this case, it would make 

more sense to use a rate-of-change criterion to detect latency rather than 

the absolute change in x. That is, use the check 

Latency Condition 2: 

I Xn+l - Xn I 
h < Ex 

n 
(4.8) 

As shown in Fig. 4.10, this requires that x::: 0 to satisfy the latency condi­

tion. This method also encounters problems with the example in Fig. 4.9 

since x:::O as the signal switches direction. A more conservative way to do 

this type of latency check would be to use the strategy of Condition 1.1 

and include a number of points from the past. 

Latency Condition 2.1: 

1 ~k I Xn+2-j - Xn+l-j I . k~l K h <Ex, 
J= n+l-j 

(4.9) 

This condition uses an average rate of change based on the previous k 

solutions to detect latency and this overcomes the problem given in Fig. 

4.9. However, another problem arises if the true value of x is some small 

non-zero value that eventually changes the value of x significantly at some 

point in the future. To resolve this problem, a "wake-up" mechanism 
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x 

dx 
dt 

Figure 4.10: Variable Step Latency Criterion Based on 
Rate-of-Change 

Time 

Time 

should be used with either Condition 1.1 or 2.1 when it is anticipated that 

component x has undergone a significant change in value. That is, the 

actual rate-of-change of x should be used to predict the wake-up time 

point, as follows: 

Wake-up Condition 1: 

h I Xn+l - xnl 
next hn > Ex (4.10) 

and twake-up = tn+l + hnext. This wake-up condition can be used to com­

pute hnext and the component should be re-activated and solved at twake-up' 
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This process is illustrated in Fig. 4.11. 

The latency and wake-up conditions specified above work well in 

practice and their use can be justified by considering latency exploitation 

as the use of a zeroth-order explicit integration method as described in 

reference [RAB79]. Explicit integration algorithms are obtained directly 

from a Taylor series expansion of the solution at the point tn: 

(4.11) 

A zeroth-order method uses only the first term and produces the following 

trivial integration method for which X(tn+l) is simply updated with the 

value x(tn) at the previous time point: 

v 

ho hoext 

twake-up Time 

Figure 4.11: Wake-up Mechanism 
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Xn+1 = Xn (4.12) 

This integration method has a local truncation error (LTE) given by 

An estimate of the LTE can be obtained using a finite difference approxi­

mation for X: 

Therefore the LTE estimate is given by 

A check for latency can now be constructed from this analysis. The 

integration method specified in Eq. (4.12) can be used whenever the fol­

lowing condition is satisfied: 

Latency Condition 3: 

h IXn+1-Xnl E 
n+1 h n < userLTE (4.13) 

where EuserLTE is the allowable local truncation error specified by the user. 

For a fixed time-step algorithm, this latency check is equivalent to 

Condition 1 since h n = hn+1 for all n. Of course, the value for Ex in Condi­

tion 1 must be derived the same way as EuserLTE to be identical to Condi­

tion 3. For a variable step algorithm, one could rewrite Condition 3 as 

I Xn+l - Xn I < EuserLTE 
h n hnew 

By replacing hn+l with a constant value of step SIze h max such that 
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hmax»hn+1, one can provide a somewhat tighter constraint: 

I xn+1 - xn I < EuserLTE 

hn+1 h max 

Then latency condition 2 and 3 can be made identical by setting 

Ex = EuserLTElhmax· Note that Condition 3 is an a posteriori criterion (i.e., 

it is used after selecting hn+1) to detect latency. A similar criterion can be 

used in an a priori manner to decide when to activate the component. The 

idea is to use the L TE requirement to predict the time point when the 

zeroth-order integration method is no longer valid by checking when 

Latency Condition 3 is violated: 

h I Xn+1- Xn I E 
new h n > userL TE (4.14) 

where h new = twake-up - tn+1 and twake-up is the time when the component 

should be activated. This wake-up time can be computed as follows: 

t - t + EuserLTEhn+l 
wake-up - n+1 X - X 

n+1 n 
(4.15) 

and this is identical to Wake-up Condition 1. Therefore, the intuitive 

arguments which lead to Latency Conditions 1 and 2 and Wake-up Condi­

tion 1 are well-supported by the above analysis. 

4.6.2. Events and Event Scheduling 

The next issue is to define precisely the notion of electrical events for 

use in conjunction with the scheduling algorithm. The proper definition of 

this concept is important from the standpoint of efficiency and accuracy, as 

will be seen. In logic analysis, an event occurs when a node makes a tran­

sition from one state to another (different) state. The event causes the 

fanouts of the node to be scheduled in the time queue. As long as the node 

remains in the same state, no additional events are generated. Since logic 
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states are discrete, logic events are easy to identify. In electrical analysis, 

there is a continuum of "allowed states" making it more difficult to distin­

guish a significant event from an insignificant one. However, the 

definition of logic events can be extended in a straightforward manner to 

electrical analysis. The resulting definition of an electrical event is con­

nected with the notion of "active" and "latent" components. 

Definition 4.2 (Electrical Events) 

In electrical analysis, a component is "latent" if it satisfies one of the 

latency conditions given by Eqs. (4.6-4.9). Otherwise, it is an "active" 

component making a transition from one electrical value (or state) to 

another. Active components generate electrical events each time they 

make a transition to a new value. 0 

The usefulness of this definition is seen in the following. Consider 

the two-stage inverter of Fig. 4.12. For this circuit, A E Fanout(I) and 

BE Fanout(A). As depicted by the arcs in the corresponding graph, there 

are four ways to schedule nodes: 

1) node I can schedule node A (fanout scheduling) 
2) node A can schedule node A (self-scheduling) 
3) node A can schedule node B (fanout scheduling) 
4) node B can schedule node B (self-scheduling). 

Whether a given node (say, node A) should actually schedule any events 

depends on its own state and the state of its fan outs (node B in this case). 

Since each node can be either "active" or "latent," a total of four cases 

exist. These cases are listed in Table 4.1 along with the recommended 

action to be taken by node A for each case. 

As the table indicates, case (2) is the only case where the scheduling 

mechanism is conservative. The other cases do not introduce any addi­

tional work or create accuracy problems and therefore are listed as reason­

able. However, case (2) can be a source of either accuracy problems or 
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I B 

Figure 4.12: Scheduling Possibilities for a Simple Example 

excessive computation. To see this, consider the circuit in Fig. 4.13. If 

node A is "active," it will force nodes B, C and D to be processed if the 

action recommended in Table 4.1 is taken. In reality, only node B should 

be processed. The other two nodes do not change due to the bias condi­

tions, but this is not known a priori. Therefore, case (2) is considered to 

be a conservative scheduling strategy. The alternative would be to ask the 

question: is fanout Xj sensitive to changes in Xi? Here, Xi = A and 

Xj e Fanout(xi) = { B , C , D }. Only an affirmative response to this ques­

tion causes a particular Xj to be scheduled by Xi. Otherwise Xj should not 

be scheduled. 

The conditions associated with case (2) can also be viewed as a 

wake-up condition due to inputs. That is, "Does the change at node A 
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case status of status of action by node A comment 
node A nodeB 

(1) active active schedule self at Hh reasonable 
schedule fan outs at t 

(2) active latent schedule self at Hh conservative 
schedule fan outs at t 

(3) latent active no scheduling reg'd reasonable 

(4) latent latent no scheduling reg'd reasonable 

Table 4.1: Four Cases in Electrical Event Scheduling 

5v 

I A B 

c 
0----.... 

Figure 4.13: Conservative Scheduling Case 
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wakeup node B?". The previous wake-up conditions were all handled via 

the self-scheduling mechanism. In this case, the question is whether or not 

a change at Xi translates to a change at a fanout Xj such that Xj violates its 

latency condition. Since Xj may have a number of fanin nodes which are 

active, superposition must be used to determine the combined effect of all 

active fanin nodes on Xj. This involves determining the transconductance, 

afj d rf . h . ~,an pe ormmg t e computatIOn: 
OXj 

_ hn k afj 
~x - -C. Y --c:-~Xi 

J t=1 OXi 
(4.16) 

where k is the number of fanin nodes of Xj which are active, hn is the 

current step size, and Cj is the total capacitance at node Xj. This computa­

tion assumes that all the additional currents, due to changes in the fanin 

nodes, charges the capacitances at node Xj. This produces a new wake-up 

condition due to the inputs, as follows: 

Wake-up Condition 2: 

h I Xn+ 1 - Xn I + ~X > COx 
new hn C 

where hnew = t new - tlatent, and tnew is the current time point. In the worst­

case, the computation in Eq. (4.16) can be as expensive as performing an 

evaluation of Xj, but it certainly is not as accurate. Since there is no way to 

guarantee that Wake-up Condition 2 is a sufficient check for latency viola­

tion, since it is only a local criterion, it is better to perform the evaluation 

of Xj rather than the sensitivity check to guarantee that an error is not made 

inadvertently. This results in a stronger condition for latency, which 

involves the fanin nodes also being latent. 
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The ideas presented above are formalized in the following: 

1) A component Xj is defined as being latent if 

a) it satisfies the latency conditions specified in Eqs. (4.6-4.9) 
and 

b) all ek E Fanin(xj) satisfy their latency criteria. 

2) A latent component does not generate any events. 

3) If a component is not latent, then it is active and hence will generate 

events for itself and for all Xj E Fanout(xj) after every transition. 

4) A latent component Xj is scheduled for re-evaluation if 

a) the wake-up condition specified in (4.10) is satisfied, or 

b) any component ek E Fanin(xj) becomes active. 

4.6.3. Latency in the Iteration Domain 

Another form of latency can be exploited at each time point due to 

the decoupled nature of the relaxation process. Since the components in 

the system are changing at different rates, it is quite possible that slowly 

varying components will converge quickly at each time point since their 

behavior can be predicted accurately. Once these components have con­

verged, there is no need to reprocess them at the same time point unless 

required to do so by some other component. This form of latency is called 

iteration domain latency and can also be exploited efficiently using the 

same event-driven techniques used for time domain latency. 

The iteration domain is a discrete space in which a sequence of itera­

tion values of a component can be represented as a function of the iteration 

number [KLE84]. This iteration domain can be viewed in the same way as 

the time domain. For example, if a converging sequence of iterations for a 

component, Xi, is ploUed against the iteration number, a waveform is 
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Figure 4.14: Iteration Domain Waveform 

produced as shown in Fig. 4.14. The detection of latency in the time 

domain is seen to be analogous to the detection of convergence in the 

iteration domain. In fact, since the "step size" is fixed in the iteration 

domain, the check for convergence should be similar to that for the 

Latency Condition 1 given earlier. This corresponds to checking if the 

iteration waveform is "flat enough" [KLE84] and is given as 

Convergence Criteria 1: 

which IS consistent with the usual check for convergence. False 
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convergence occurs when the condition is satisfied but the necessary accu­

racy has not been obtained. Therefore, a check similar to Latency Condi­

tion 1.1 would be better to avoid this problem [KLE84]. 

Convergence Criteria 1.1: 

Ixr+m- xI'I < E, m>1 

To exploit latency in the iteration domain using event-driven tech­

niques, a table similar to the one for latency in time is necessary. In the 

iteration domain, if a component is "iterating," it is equivalent to being 

"active" in the time domain, and if it has "converged" in the iteration 

domain, it is equivalent to the "latent" condition in the time domain. Note 

that latency in time implies latency in the iteration domain, but latency in 

the iteration domain (i.e., convergence) does not imply latency in time. In 

fact, when a component converges in the iteration domain, a separate test 

is necessary to determine if it is active or latent in the time domain. The 

four cases in the iteration domain are listed in Table 4.2 below along with 

the recommended action for node A, assuming that node A is in the "con­

verged" state initially and enters the state listed in column 2 after comput­

ing its new value. 

Table 4.2 shows that case (2) is again the only conservative schedul­

ing situation. To understand this case, consider Fig. 4.13 again. Each 

time node A performs an iteration, it will schedule nodes B, C and D. 

However, as before, only node B should be processed as nodes C and D 

are latent in time and hence are in the converged state at the time point. If 

node A requires many iterations to converge, it will schedule nodes C and 

D many times resulting in a lot of unnecessary work. However, there is no 

need to repeatedly schedule all its fanouts on every iteration, especially 

since the nodes have a self-scheduling ability. Therefore, one strategy 
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might be for node A to schedule its fanouts on every other iteration rather 

than on every iteration. This could be used for both case (1) and case (2) 

since the self-scheduling mechanism would take care of any additional 

scheduling of node B. 

case new status status of action by node A comment 

of node A node B 

(1) iterating iterating schedule self at t reasonable 

schedule fanouts at t 

(2) iterating converged schedule self at t conservative 

schedule fan outs at t 
I 

I 
(3) 

I 
converged iterating no scheduling req'd reasonable 

(4) converged converged no scheduling req'd reasonable 

Table 4.2: Four Cases in Iteration Domain Latency 



5. GATE-LEVEL SIMULATION 123 

CHAPTERS 

GATE-LEVEL SIMULATION 

5.1. INTRODUCTION 

When the complexity of an integrated circuit design reaches the 

point where electrical analysis is no longer cost-effective, logic simulation 

or gate-level simulation may be used. Rather than dealing with voltages 

and currents at signal nodes, discrete logic states are used. In essence, 

logic analysis may be viewed as a simplification of timing analysis, 

described in the previous chapter, where the difference equations are 

replaced by a set of discrete state equations and only simple Boolean 

operations are required to obtain new logic values at each node. These 

Boolean operations are generally the most efficient ones available on a 

digital computer. In a classical logic simulator, transistors are usually 

grouped into logic gates wherever possible and modeled at the gate-level 

rather than at the individual transistor level. This form of simplification, 

sometimes referred to as macromodeiing, can result in greatly enhanced 

execution speed by reducing both the number of models to be processed 

and simplifying the arithmetic operations required to process each transis­

tor group. With event-driven, selective trace analysis and the above 

simplifications, asynchronous logic simulators are typically 100 to 1000 

times faster than the most efficient forms of electrical analysis. 

The major objective of all simulators is to accurately predict the 

behavior, both normal and abnormal, of the physical circuits they model. 

This is even more critical in the context of mixed-mode simulation where 

the overall accuracy may be limited by the accuracy in the higher levels of 

simulation. Therefore, gate level analysis in a mixed-mode simulator must 
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provide the correct results and at least first-order timing information. The 

main factors controlling the accuracy of gate level simulation are the state 

model and the delay model. The delay model must be computationally 

simple and at the same time include the most important factors contribut­

ing to it. Modeling parameters are usually provided with the delay model. 

If these parameter values are derived from careful characterization of 

transistor circuits that form the logic gates, then a simplified gate model 

can be used with a high degree of confidence. 

The tradeoff between the accuracy of logic simulation and the com­

puter time required to perform a simulation is very important. For exam­

ple, the accuracy of logic simulation can be improved by increasing the 

number of logic states used in the simulation. However, as the number of 

states increases, the overall runtime may also increase. In fact, the number 

of logic states, their meaning, the delay models used and the event 

scheduling algorithm all have a profound impact on the speed and accu­

racy of logic simulation. The proper choice of each of these factors 

depends on the circuit technology and its associated characteristics, as well 

as the particular design methodology used. It is this wide variety of fac­

tors that has resulted in the development of a large number of logic simu­

lators, almost everyone addressing a different set of tradeoffs. 

While it is clear that the transition from the continuous electrical 

domain to the discrete logic domain may result in the loss of some circuit 

information, it is important that the circuit design methodology accommo­

date this type of simplification. Otherwise, the logic simulation mode can­

not be used effectively. Unfortunately, in MOS logic circuits, there are 

many transistor configurations that are not directly amenable to this type 

of transformation. To overcome this problem, switch-level simulation was 

developed and has become the preferred form of simulation for MOS logic 

circuits. This approach is detailed in the next chapter. 
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In this chapter, some of the factors influencing the choice of logic 

states and delay models are described. Since logic simulators have been in 

use for the design of digital hardware since the early 1950s, it is impossi­

ble to address all aspects of simulator development here. Therefore, only 

those aspects which are related to mixed-mode simulation are emphasized. 

In addition, the modifications necessary to make gate level simulation suit­

able for the mixed-mode environment are described. 

5.2. EVOLUTION OF LOGIC STATES 

5.2.1. Two-State Logic Model 

The earliest use of logic simulation was for the verification of combi­

national logic. Since the logic was assumed to have zero delay and logic 

gates were assumed to implement ideal Boolean operations such as AND, 

OR and INVERT, only two states were required: a state representing true 

(logic 1) and a state representing false (logic 0). With a two-state simula­

tor, it is not only possible to verify the logic function of a digital system 

(i.e., generate a truth table) but it is also possible to detect certain other 

types of potential design errors such as hazards and races [EIC65]. A 

hazard is a momentary incorrect output state, after an input transition, 

resulting from paths in the circuit with different delay times to the output. 

There are a number of different types of hazards that can arise in in a logic 

circuit: static 0 hazard, static 1 hazard, dynamic 1 hazard and dynamic 0 

hazard. These hazards are illustrated in Fig. 5.1. A race condition exists 

in an asynchronous sequential circuit if more than one of the state vari­

ables undergoes a transition during a state transient. If the final stable state 

of the circuit depends on the order in which the state variables change, the 

race is termed critical; otherwise, it is termed noncritical. 

Although hazards may occur in combinational as well as sequential 

circuits, they are generally most important when they affect the behavior 
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static-O Jri~e 

static-l Jri~e 

I 

1--_ ...... 1 ~ ... 
dynamic-l Jri~e 

\ , 
... 

dynamic-O Jri~e 

Figure 5.1: Four Types of Hazards in Logic Circuits 
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of sequential circuits. Since hazards result from paths with different delay 

times, any hazard actually causing a circuit to malfunction will be 

detected as a critical race or oscillation in the circuit. However, a two­

state simulator (even with random delay models) has only a limited capa­

bility for detecting races and hazards, if delay variations are not modeled. 

If several inputs to a logic gate change within a relatively short period of 

time, it is possible that the order of occurrence of these events may change 

if gate delays were distributed at slightly different points within their toler­

ance limits. If the output state of the gate depends on the order in which 

the inputs change, a potential hazard exists. 

It is not sufficient to simply monitor the output of a gate and look for 

multiple transitions during an input pattern if all potential hazards are to 

be detected. Depending on the order in which the input transitions are pro­

cessed, the potential hazard mayor may not be detected in the zero-delay 

simulator. This is illustrated in Fig. 5.2 for a simple NAND gate. If input 

A changes first, then output D will switch to the 0 state before returning to 

the 1 state. However, if input B changes first, the output will remain at 1 

during the input transitions. The potential for both static and dynamic 

hazards can be detected. However, the errors caused by actual circuit 

hazards cannot be detected in a two-state simulator without the use of 

more accurate delay models. 

It should be noted that, in a two-state logic system, only one logic 

gate may drive (or fanin to) any node (often called a net in the context of 

logic design). If more than one gate did fanin to a node, a potential 

conflict would arise if one gate had a logic 1 at its output and another a 

logic 0 since it would be unclear what the resulting signal at the node 

should be. An exceptional case is that of the wired-function (wired-AND, 

wired-OR), where the node is treated as a logic gate itself and performs a 

logic function. This is illustrated in Fig. 5.3(a) for an open-collector TTL 
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A: 0-1---1 

B: 1-0---1 

C: 1 

MIXED-MODE SIMULATION 

)000-- D: 1-0-1 
or 

1-1-1 

Figure 5.2: Potential Hazard in NAND Gate 

example. If it is possible for more than one output to drive a node in a par­

ticular technology, such as the so-called tristate logic where gates may 

logically disconnect themselves from the node (as illustrated for MOS in 

Fig. 5.3(b)), then two-state logic analysis cannot be used to verify the 

design. 

5.2.2. Ternary Logic Model 

Two-state simulation has a number of limitations. For example, if 

two gates drive the same node in the circuit and the output of each gate is 

different, a conflict situation arises. To model this conflict condition, a 

third state may be added--the unknown state, X. The output node is set to 

this X state whenever any such conflicts arise. The X state can then pro­

pagate through the fanout gates to other nodes in the circuit and possibly 

set them to the X state. The logic operations for the AND, OR and 
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(a) 

(b) 

Figure 5.3: Multiple Devices Driving a Single Node 
(a) Open Collector TTL Structure and Its Equivalent Logic Model 

(b) MOS Transfer Gates Connected to a Common Bus 
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INVERT gates with X states are shown in Fig. 5.4 

The simple step of adding this new state has caused much confusion 

and increased the complexity of logic simulation. In [BRE72], the basic 

problems associated with unknowns in gate-level simulation are described. 

One such problem arises due to the pessimistic propagation of unknowns 

when the value of a node is actually known. For example, in Fig. 5.5, one 

of the inputs is unknown, and this produces an X at each intermediate node 

a NOTa 

o 1 

1 0 

x X 

AND o X 1 OR o X 1 

o o 0 0 o o X 1 

X o X X X X X 1 

1 o X 1 1 111 

Figure 5.4: Logic Truth Tables Including X State 
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and results in an X at the output node C. However, since a value of 1 or 0 

at that input produces the same results at node C, the value at node C is 

actually known to be 1. Therefore, the propagation of X blindly can lead 

to pessimistic results and excessive computation. This problem can be 

resolved by keeping track of X and X values 1 during the simulation and 

combining them using the identities x.x=o and X+X=l whenever they 

appear at common AND or OR gate inputs. A second problem with the 

use of the X state is due to the additional complexity it introduces into 

gate-level logic simulation. In fact, computing the output states of a 

sequential circuit with n inputs and m internal states having k out of the 

n+m nodes unknown has been shown to be NP-complete with respect to k 

[CHA87]. 

A number of other problems with the X state also exist, mainly due 

to the misuse of the definition of the state. For example, gate outputs must 

be correctly initialized prior to the analysis to either the 0 or the 1 state. If 

a sequential circuit is under analysis, storage nodes such as the output of 

flip-flops may not be known at initialization time. If the node is set to X, 

there is clearly an inconsistency since the states of Q and Q can simply be 
- -

set to Q=l and Q=O (or equivalently Q=O and Q=l) without violating the 

sanctity of the simulation. Consider the SR flip-flop circuit of Fig. 5.6. If 

the outputs are assumed to be unknown at initialization, they can not be set 

to known values due to the input data and the feedback of the X states. 

However, a "conflict" situation does not exist at these output nodes; there­

fore, the use of X in this case is clearly incorrect. Another state is required 

to account for uninitialized nodes in sequential circuits. A distinction 

should be made between initial unknowns Xi and generated unknowns Xg. 

When an initial unknown is encountered during the simulation, it can be 

I Multiple X and X states must be maintained, one for each different source of the X state. 
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Figure 5.5: Problem Using X-State in Gate-Level Simulation 
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Figure 5.6: Initial Unknowns in a SR Flip-Flop 
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set to a known value in the processing of the gate it is driving. If a gen­

erated unknown is encountered, it must not be set but rather propagated 

through the gates. The difference between initial and generated unknown 

states can also prove useful in determining those parts of a circuit not exer­

cised during the simulation (still at Xi after the simulation). 

The X state has also been used occasionally for the transition period 

between ° and 1, which is another improper use of X. For this situation, a 

T state (i.e., transition state) should be employed, or possibly the R (ris­

ing) and F (falling) states to provide information about the direction of the 

signal transition. In mixed-mode simulation, the use of X is generally not 

recommended. However, the Rand F states are extremely useful and an 

important part of electrically-oriented gate-level simulation, as described 

later in this chapter. 

5.2.3. A Four-State Logic Model 

The ternary logic model described above is still not sufficient for the 

analysis of general MOS digital circuits which contain transfer gates and 

tri-state logic circuits. For these circuits, many gate outputs may be con­

nected to a single node, as shown in Fig. 5.7, and it is necessary to deter­

mine which output is controlling the state of the node, or bus. If more than 

one gate is forcing the node, a bus contention warning must be generated 

by the simulator. It is possible to represent the condition where the output 

of M 1 is not controlling the bus (G 1 is logic 0) by setting the output of M 1 

to X in that case. If this technique is used, there is no longer any distinc­

tion between the true unknown state and the off condition of the gate. 

With the addition of a fourth static state, high impedance (Z) or non­

forcing, the distinction is maintained. The four static states are illustrated 

in Table 5.1. A high voltage is represented by logic 1, low voltage logic 0, 

and unknown is X. The fourth state, Z, is shown separately since it does 
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Figure 5.7: Multiple Transfer Gates at a Common Bus 

Table 5.1: Four-State Logic Simulation 

, 
I 

not represent a voltage state but rather an impedance condition. With the 

addition of thd Z state, bus contention can be predicted without confusion. 

But what if all the gates driving a node are off? What is the input to a 

fanout gate in this case? In MOS circuits, the previous output is generally 

"stored" on the parasitic capacitance at the node and held for some time. 
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This may be modeled by saving two states at each node, the present state 

and the previous state2. If the present state is Z, then the previous state 

can be used to determine the input to fanout gates. 

5.2.4. A Nine-State Logic Model 

Another approach that can be used to keep track of the previous state 

of high-impedance nodes is to add three new static states, as shown in 

Table 5.2. The low impedance states are called forcing states (Or, Xr, Ir), 

and there are now three high impedance states (Oz, Xz, and Iz), which also 

carry the information about the previous signal level. 

Oz Xz Iz 

Or Xr Ir 

Table 5.2: Six-State Logic Simulation 

Consider once again the circuit of Fig. 5.7. If Ml and M2 are both 

conducting, it is clear that the state at node (2) can be determined from our 

simple model. But what about nodes (1) and (3)? Since the transfer gates 

are bidirectional, the signal at node (2) may force nodes (1) and (3) to the 

X state. In reality, the output impedance of the inverter is probably con­

siderably lower than the output impedance of the transfer gate and, hence, 

the inverter output would determine the node state. To model this effect, 

another three states may be added, called soft states, (Os, Xs, and Is), which 

correspond to the output of the transfer gate when its gate node is on and 

its input is a forcing or soft state. These states are shown in Table 5.3. 

2 The previous state is required to accurately model storage elements in any case. 
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Conceptually, the y-axis of this state table may be considered an 

impedance axis and the x-axis as a voltage axis. In fact, the output of any 

logic gate may be mapped into this state table by measuring its output vol­

tage (or current) and output impedance. As will be seen later, this tech­

nique may also be used to translate gate outputs from logic analysis into 

electrical inputs for mixed-mode analysis. 

Oz Xz lz 

Os Xs Is 

Or Xr lr 

Table 5.3: Nine-State Logic Simulation 

5.3. CHARACTERIZATION OF SWITCHING PROPERTIES 

One aspect of logic simulation that takes on greater significance in 

the context of mixed-mode simulation is the representation of logic 

waveforms. In standard logic simulation, the waveforms are represented 

using the symbols "1" and "0" for the high and low values, respectively, 

and logic transitions are represented as ideal steps. The rise and fall transi­

tion times of the waveforms in standard logic simulation are not as impor­

tant as the propagation delays from the input to the output of a gate. How­

ever, this is not the case in mixed-mode simulation. The transient charac­

teristics during switching are much more important than the propagation 

delay. If needed, the propagation delay can always be derived from meas­

urements on the waveforms for the input and output nodes. 

It is important to have finite nonzero rise and fall delays In the 

mixed-mode environment for two reasons. First, from a practical 
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1 2 3 

2 

(b) 

Figure 5.8: (a) Two Inverters (b) Actual Waveforms for inverter chain 
(c) logic Waveforms for inverter chain 

viewpoint, this is not a realistic situation. The capacitance associated with 

each node produces some finite delay for both rising and falling signals. 

Second, it will undoubtedly cause convergence problems in the electrical 
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simulation algorithms, specifically in the Newton method, due to abrupt 

changes in the logic waveforms that feed the electrical portions of the cir­

cuit. Therefore, the goal of logic analysis in the context of mixed-mode 

simulation should be to produce waveforms that are similar to the 

waveforms that would be generated by pure electrical simulation of the 

same circuit, albeit with less precision. 

A modeling technique that satisfies this requirement can be 

developed by examining the electrical properties of gates. In Fig. 5.8(a), 

the output waveforms for a chain of two inverters are shown. The 

waveforms are characterized by three regions: a region where the output is 

low, a region where the output is high and a region where the output is in 

transition. A first-order model of the charging and discharging behaviors 

at each node is shown in Figs. 5.9(a) and 5.9(b), respectively. In both 

cases, the model is given by an ideal current source connected to a linear 

capacitor. The response at the output node is a ramp function that is either 

rising or falling at a rate that depends on the value of the capacitance and 

current. In reality, the charging or discharging current is not constant so, 

for a first-order model, an average current must be used to obtain the 

approximate timing information. In addition, the capacitance is not con­

stant but an average can also be used for it. The logic waveforms 

corresponding to the circuits in Fig. 5.9 are shown in Fig. 5.8(b). This 

approach can be used to generate ramp waveforms for logic gate outputs 

by simply computing the rise and fall transition times. The details of the 

transition time computation are left to the next section. 

The three regions described above can be represented by four param­

eters: a low level, a high level, a low threshold and a high threshold. 

These regions and parameters are shown in Fig. 5.10(a). The four parame­

ters have a direct correlation with the parameters that represent the dc vol­

tage transfer characteristic (VTC) for a logic gate as shown in Fig. 5.1O(b). 
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Figure 5.9: (a) First-Order Charging Model 
(b) First-Order Discharging Model 
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Vout 

T c 

--

This is a graph of the output voltage, Vout. versus the input voltage, Yin, 

for a simple inverter. The four parameters in the figure are as follows: 

VOL = low output of inverter 

V OH = high output of inverter 

V IL = maximum value of input before output begins 

to drop appreciably 
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----1-- transition 
regIOn 
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(a) 

Voltage Threshold Parameters 

VOH = output high 
VOL = output low 
VIH = input high 
VIL = input low 

VIL VIH 
Yin 

(b) 

Figure 5.10: (a) Switching Regions 
(b) Inverter Voltage Transfer Characteristic 

V IH = minimum value of input before output begins 

to rise appreciably 

These parameters are used to define the logic nOIse margms for the 

inverter: 
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NMH= VOH - VIH 

The values of V IH and V IL based on the definitions above are some­

what arbitrary. Physically, V1L is the largest value of input voltage that 

still maintains a valid high voltage at the output, and VIH is the smallest 

value of input voltage that maintains a valid low output voltage. A more 

precise definition can be obtained by examining the input and output rela­

tionships. Clearly, the output voltage is some function of the input vol­

tage: 

If some voltage noise, V noise, is superimposed on the input, then 

V:1t1r = f(V in+ V noise) 

If the right-hand side is expanded in a Taylor series, then the following is 

obtained: 

V new - "(V) af(Vin) V h" h d t out - 1 in + av in noise + 19 er-or er erms 

Therefore, 

V new - void "V h" h d t out - out + gamx noise + 19 er-or er erms 

From this equation, assuming that the higher-order terms are negligible, it 

is seen that if the gain is small, the noise is attenuated. However, if the 

gain is large, the noise is amplified and added to the output. A reasonable 

breakpoint between the two cases occurs when the gain is 1. Therefore, 

useful definitions for both V1L and VIH are the points along the VTC 

where 
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Although, in reality, the output begins to change before these two critical 

points are reached at the input, an ideal logic model assumes that no 

change will occur at the output until the thresholds are exceeded. 

In terms of a logic state model, a new four-state logic model 

[SAK81] is needed, where the state, set), at any node at time t is an ele­

ment of the set { 0, R, F, I}, where R=rising waveform and F=falling 

waveform. Clearly, each of the states, set), may be defined in terms of the 

corresponding node voltages, vet), and the following noise margin parame­

ters: 

set) = 0 iff v(t)e [VOL,V1L) 

set) = 1 iff v(t)e (Vm,VOH] 

set) = R iffv(t)e [V1L,VIH] and v(t»O 

set) = F iff v(t)e [V1L,VIH] and v(t)<O 

The four-state logic model can be represented in truth table form for 

the AND, OR and INVERT gates as shown in Fig. 5.11. However, the 

actual transitions from one state to another are governed by practical con­

siderations. Specifically, the transitions O~R, R~I, I~F, F~O, R~F 

and F ~R are permitted. These legal state transitions can be defined in 

terms of a state diagram as shown in Fig. 5.12. The transitions O~ 1, 

1 ~O, 1 ~R and O~F are considered to be illegal since it is physically 

impossible to make these transitions without either visiting the intermedi­

ate states or violating the voltage limits of the circuits. 

Encountering an illegal state transition during the simulation is an 

indication that a timing error may be present in the circuit. As an 
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a NOTa 

L H 

F R 

R F 

H L 

AND LFRH OR L F R H 

L L L L L L L F R H 

F L F F F F F F R H 

R L F R R R R R R H 

H L F R H H H H H H 

Figure 5.11: Truth Tables for Four-State Logic Model 

example, consider the AND gate in Fig. 5.l3(a). The transitions at the 

inputs and outputs is specified using a string of values that indicate the 

state of the node in each time slot. If the two input transitions are 

separated in time, as in Fig. 5 .13(b), there is no transition at the output. 

However, if the input transitions overlap, then the output may attempt an 

illegal state transition, which indicates that a race condition exists at the 

input. If input B makes the first transition but the two input transitions 



144 MIXED-MODE SIMULATION 

still overlap, the output will be a glitch but will not encounter any illegal 

states as shown in Fig. 5.13(c). Therefore, the output state transitions will 

either imply an error explicitly or implicitly, but in both cases a timing 

error can be uncovered. 

5.4. LOGIC SWITCHING DELAY MODELS 

Now that an appropriate logic transition model has been defined, the 

next step is to specify the details of the delay calculations. A variety of 

different delay models have been used in logic simulators and they have 

evolved over time due to changes in technology in much the same way as 

the logic model. The simplest delay model is the zero-delay model men­

tioned earlier. This type of model only allows for functional verification 

Figure 5.12: Four-State Logic Transition Model 
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(a) 

(b)A:lllllFFFFFFOOOOOOOOO 
B:OOOOOOOOOOORRRRRllll 
C: 00000000000000000000 (no change) 

~)A:lllllFFFFFFOOOOOOOOO 
B:OOOOOOOORRRRRlllllll 
C:OOOOOOOOFFFOOOOOOOOO (illegal transition: race) 

(d)A:llllllllFFFFFOOOOOOO 
B:OOOORRRRRRllllllllll 
C: OOOORRRRFFFFFOOOOOOO (legal transition: glitch) 

Figure 5.13: Potential Timing Errors Due to Input Variations 
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of logic circuits but does not allow the detection of races or hazards and, of 

course, it does not provide any timing information. It is also prone to 

problems such as "infinite looping" if there is an odd number of signal 

inversions in any logic feedback path. Early logic simulators used unit 

delay models to represent timing. In a unit delay simulator, all gates have 

the same (unit) delay between signal transitions. For logic circuits con­

structed from a single gate type having similar rise and fall delays, the unit 

delay simulator provides useful information and lends itself to efficient 

implementation. If more than one gate type is used, assignable delays can 

provide improved accuracy in the results. In the assignable delay 
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simulator, the delay of the logic gates may be assigned an integer value, 

T D. This delay is a multiple of some fundamental analysis time-step, or 

minimum resolvable time (mrt). Here, the mrt is the minimum non-zero 

delay of a logic gate and its value depends on the technology being simu­

lated. For example, the mrt may be 1 ns for NMOS, while a value of 100 

ps may be appropriate for EeL circuits. 

There are two ways in which gate delays may be interpreted as illus­

trated in Fig. 5.14. A transmission line or group delay model propagates 

V V· ideal delay -

+ TD 

- .. 
Time Time 

(a) 

V V 

--B>-- spike 

Time Time 
(b) 

Figure 5.14: Interpretation of Gate Delay 
(a) Transmission line model (b) Inertial delay model 
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the input patterns directly to the output, delayed by some amount To. 

Even very short pulses are propagated unaltered, as shown in Fig. 5.l4(a). 

A second approach is to use an inertial delay model, in which the "inertia" 

or response time of the gate is modeled. If an input event occurs in less 

time than the time required for the gate to respond, it will be lost as shown 

in Fig. 5.14(b). Note that in this case spikes or glitches may be generated 

at the output. A spike is defined as a signal of shorter duration than neces­

sary to change the state of an element. Spikes may be generated by input 

hazards or by very narrow input pulses to a gate. A spike may be pro­

pagated into the fanout gates as either a new state (E for "error condition") 

or it may be deleted from the output and a warning message printed. The 

latter technique generally provides more information from the analysis 

since the spike is generally an error and will be removed by the designer. 

By not propagating the spike, more information may be obtained about the 

correct operation of the circuitry. 

For mixed-mode simulation, the delay model used for the switching 

behavior must be derived from the electrical characteristics. The delay 

calculation should be based on a transition delay because of the nature of 

the logic model described in the previous section. For logic circuits in 

which rise and fall delays vary widely (such as single channel MOS), it is 

necessary to provide both rise (tLH) and fall (tHd transition delays for 

each gate. These delays are a function of a number of different parame­

ters. In MOS circuits, the switching time may depend on 

1) the device sizes 

2) the supply voltage 

3) the output capacitance 

4) the number of inputs to the gate, and which one switches in value 



148 MIXED-MODE SIMULATION 

5) and the shape (rise or fall times) of input waveforms. 

Very few logic simulators have actually incorporated all of the above 

factors into the delay calculation. However, it is essential that an 

electrically-oriented logic simulator include the important first-order 

effects in the delay equation. To derive such an equation, consider the rise 

and fall delays of the CMOS inverter shown in Fig. 5.15. The fall time, 

tHL, is given by [UYE88]: 

tHL = Cout {2VTN + In[ 2(V1-VTN) - I]} 
~N(VI - VTN) VI - VTN) Va 

and the rise time, tLH, is given by [UYE88]: 

t - Cout {21 V TP I 1 [2(V 1-1 V TP I ) I]} lli- +n-
~P(VI - IVTPI) (VI - IVTPI) Va 

where Cout is the loading capacitance, VTN is the n-channel threshold vol­

tage, V TP IS the p-channel threshold voltage, and V I = 

Vin --. 

Figure 5.15: CMOS Inverter 
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VOH - O.l(VOH - VOL) and Vo = VOL+O.l(VOH - Vod are the 90% and 

lO% switching points, respectively. All of these parameters are constant 

except for the output loading capacitance which depends on the number of 

fan outs connected to the output node. 

The delay can be separated into two components by dividing Cout 

into Cintrinsic + CCanout, where Cintrinsic is the unloaded output capacitance 

and CCanout is due only to external gates connected to the node. Then, the 

total gate delay can be represented by four parameters : the intrinsic gate 

delays (tr, tt) and the gate drive-capabilities (tre, tfe), where 

tr = rise time for unloaded gate (y-intercept) 

tf = fall time for unloaded gate (y-intercept) 

tre = gate drive-capability for rising signals (slope) 

tfe = gate drive-capability for falling signals (slope). 

Using these values, the total delays are calculated with the equations: 

tLH = tr + tre*Ccanout 

tHL = tf + tfe*Ccanout 

(S.la) 

(5.lb) 

The logic gates can be characterized to determine the four parame­

ters (tr, tf, tre, tfe). The value of CCanout requires that the input and output 

capacitances be specified for each gate. For example, in MOS circuits, ci 

can be defined as the MOS capacitance associated with the gate input and 

eo can be defined as the drain/source and wiring capacitance. Then the 

total capacitance at each node becomes 

n 
CCanout = eo + ~ ej,k 

This process is shown in Fig. 5.16. Often the delay is a function of the 
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input slope, Si. This aspect can be incorporated into the premultipliers tre 

and tfe: 

tLH = tr + tre(Si)*Cfanout (5.2a) 

tHL = tf + tfe(si)*Cfanout (5.2b) 

It is now possible to model the delay by generating a set of curves 

similar to Fig. 5.17 for every primitive element (NANDs, NORs, inverters, 

etc.) using accurate electrical simulation. In this figure, the rise and fall 

times are plotted as a function of the output capacitance. A step voltage is 

assumed at the input of each gate. Although not strictly true, the relation­

ship between the capacitance and delay is usually taken to be linear. That 

is, the delay is calculated based on the model of a constant current source 

charging a linear capacitor. The y-intercept of each curve represents the 

intrinsic unloaded rise/fall delay while the slope of each curve represents 

the gate "pull-up" or "pull-down" resistance. Separate characteristics are 

required for rising and falling outputs if the delay times are not symmetric. 

5.5. LOGIC SIMULATION ALGORITHM 

The pseudo-code in Algorithm 5.1 provides a simplified description 

of the logic simulation algorithm based on the previous sections. First, the 

event time tn is established by NextEventTime(). All input sources, ek, that 

are changing at that time schedule their immediate fanouts. Then all the 

nodes scheduled at tn are processed in sequence until the events at that 

time are exhausted. 

In the algorithm, a node is processed by computing the output value 

of its associated gate using the states of the inputs at tn. The input state 

consists of a voltage value and information indicating whether the signal is 

rising, falling or stationary. If the new output state is different from the 

old one, a delay calculation is performed. If the event occurs before a 
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Cfanout = Co + 3Cj 

Figure 5.16: Computing the Total Node Capacitance 

Delay 
slope = trc 

slope = tfc 

Cap 

Figure 5.17: Delay vs. Capacitance for an Inverter 
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transition in the opposite direction is completed, a glitch warning is pro­

duced and the original transition event is cancelled. If the event does not 

cause a glitch, the schedule time for each fanout of the output node, Atj' is 

computed and then the fanout is scheduled at tn + At. . 

Algorithm 5.1 (Logic Simulation Algorithm) 

tnf-- 0; 
while (tn~Tstop) { 

} 
o 

tnf-- NextEventTime( tn ); 

foreach ( input k at to ) 

if ( ek is active) 
forall (j E Fanout( ej) ) schedule( node j, to ); 

foreach ( node i at tn ) { 1* processing logic block i *1 

get inpucstates; compute new_output; 
if (node i has changed) { 

compute delay, .6.t; 
if ( currenCtime < lascevenCtime(i)) { 

issue glitch message; 
cancel pending events; 

} 
else { 1* normal event, so schedule Janouts *1 

} 

forall ( node k E Fanout(i) ) { 
determine schedule threshold; 
compute schedule time Atk; 

schedule ( node k , tn+ Atk ); 

} 

} else { 1* do nothing (latency exploitation) *1 } 
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CHAPTER 6 

SWITCH-LEVEL TIMING SIMULATION 

6.1. INTRODUCTION 

Most modem logic simulators handle the problems specific to MOS 

integrated circuits by including the notion of signal strength in the logic 

model. However, the use of strength does not, by itself, solve all the 

modeling problems inherent to MOS circuits. For example, circuit 

designers use many combinations of transistors which do not have a direct 

mapping to a logic gate and therefore cannot be represented conveniently 

at the gate level. It is also difficult to model the logic operation of 

dynamic circuits in a convenient form in a standard logic simulator. 

Transfer gates further complicate the situation because they introduce 

dynamic loading effects, bidirectional signal flow, and capacitive charge­

sharing effects. Many of these problems were resolved with the advent of 

the switch-level modeling and simulation technique [BRY80]. 

This chapter begins with a description of standard switch-level simu­

lation and identifies a number of limitations in the approach, primarily the 

lack of accurate timing information, and also the fact that intermediate 

voltage states are not represented which may occasionally lead to incorrect 

results. Then, an electrically-oriented switch-level modeling technique 

that resolves these and other problems is described. This technique allows 

variable precision simulation, thereby allowing the user to choose any­

where from logic simulation accuracy to electrical simulation accuracy. 

Hence, the approach effectively spans the "gap" between logic and electri­

cal simulations. A number of other simulation approaches with similar 

properties are also described. In the last section, the use of this variable 
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precision modeling approach to map signals across the interface between 

logic gates and electrical circuitry is described. 

6.2. SWITCH-LEVEL SIMULATION 

A switch-level simulator transforms an MOS transistor network into 

a corresponding network of switches and performs logic simulation on the 

resulting network. For example, in MOSSIM [BRY80], the logic circuit is 

described entirely at the transistor level, and the transistors are modeled as 

simple gate-controlled switches. The switch-level logic state model 

includes three logic levels (0, X, 1) and a number of strengths, s, which lie 

in the range {I,"', w } . Two subranges of strengths are defined, one 

representing all signal strengths originating at some external source, in the 

range k < S < w, and the other corresponding to nodal capacitance values, 

in the range 1 ::; S ::; k. The maximum possible strength, w, is reserved for 

inputs only. The switch-level model attempts to incorporate the key 

aspects of MOS logic circuits that determine its behavior and abstract 

away the details of the electrical behavior. This approach greatly 

simplifies the algorithms needed to correctly simulate a large variety of 

MOS logic circuits. 

The simulation process in switch-level simulation proceeds as fol­

lows. First, as a preprocessing operation, the switch-level network is parti­

tioned into a number of subnetworks which are collections of strongly­

connected components (SCC) or channel-connected components. These 

are sets of transistors that are connected to one another at the source or 

drain terminals. The identification of SCCs can also be done dynamically 

during the simulation process. Processing a given SCC may require a 

complicated series of steps, possibly involving iterations, to account for 

the interactions of different strengths of two or more "ON" transistors, as 

described below. However, the interaction between two SCCs is easier to 
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analyze since they are connected at the gate inputs of transistors and, 

hence, the logic operations do not depend on the signal strengths. The 

SCCs are simply scheduled and processed in the manner described earlier 

for logic gates using event-driven, selective trace techniques. Therefore, 

this mode of simulation well-suited to implementation in mixed-mode 

simulators. 

The complicating factor in the processing of SCCs is due to the 

bidirectionality of transfer gates, or pass transistors. Although the transfer 

gate is inherently a bidirectional element, it is usually found in applica­

tions in which the signal flow is intended to be unidirectional. That is, the 

circuit designer expects signals to flow in only one direction through the 

device. However, there are occasions when transfer gates are used in 

bidirectional applications, or other situations in which a design error leads 

to signal flow in different directions at different times. A simulator must 

be able to analyze these cases accurately if it is to be useful. There have 

been a variety of modeling approaches for bidirectional transfer gates, 

including the unconventional approach of two unidirectional elements 

connected back-to-back. This approach can lead to inconsistencies when 

different logic values are on opposite sides of the element. Each value can 

flow through one of the transfer gates and reach the opposite side and then 

propagate through the circuit producing incorrect results. 

During the evaluation of an internal node of an SCC, the elements 

connected to that node try to impose their values on the node and the final 

state is determined by the element with the highest strength. A path 

analysis is actually performed to identify all possible paths from the node 

to a supply or ground node [BRY84]. Each path is assigned a strength that 

depends on the transistor with the lowest strength. Weak paths are 

blocked at intermediate nodes if a stronger path is encountered at the 

nodes. The strongest path to a given node determines the final state of the 
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node. If two paths of equal strength but opposite values are encountered at 

a given node, the node is assigned to the X state. 

The path analysis approach is effective for handling bidirectional 

signal flow. A simpler approach is to use the so-called "supernode" tech­

nique [BRY80]. In this approach, all nodes that are connected through 

transistors that are "ON" are considered to be the same node for processing 

purposes. All devices connected to this composite node are processed 

together to determine the new state. The new state is then assigned to all 

nodes which comprise the supernode. The main problem with this 

approach is that it cannot adequately handle the case where the final values 

at the nodes are different and determined by the strengths of the transistors 

in the subnetwork. Therefore, it does not permit different nodes of a 

supernode to reach different values. 

An alternative to the supernode and path analysis approaches is to 

use an iterative or relaxation-based method to determine the new states of 

these strongly-connected nodes (SeN) [DUM86]. The first step in this 

approach is to assign all nodes to the lowest strength permissible. or to a 

strength associated with the capacitance at each node. The signals are then 

propagated from the source nodes through the switch network starting 

from the signal possessing the largest strength. This processing order 

prevents the accidental propagation of weaker signals onto storage nodes 

that may inadvertently generate the unknown logic level. The internal 

nodes of the see are evaluated using local event-driven techniques and 

the fanout nodes within the set of SeN s are scheduled whenever they 

change state. The process is repeated until convergence is obtained, at 

which point scheduling occurs at the see level, i.e., the fanout sees are 

scheduled. Note that by using iterative methods, the nodes within a 

strongly connected component may converge to different logic levels, 

which is the main advantage of the approach. The combination of local 
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relaxation methods at the SCN level and standard event-driven methods at 

the SCC level allows efficient switch-level analysis to be performed. 

One problem not addressed above is that of processing transfer gates 

with unknowns at gate inputs (i.e., X-transistors). The strategy in analyz­

ing circuits with X-transistors is to minimize the number of X states gen­

erated at the internal nodes of an SCc. A pessimistic approach would be 

to generate the X state at each of the drain and source output nodes of each 

X-transistor. This method is the easiest to implement but it may actually 

force the simulator to process many more events than necessary since the 

X state tends to be "sticky" and propagates throughout the circuit very 

quickly [CHA87], A brute-force approach would be to enumerate all pos­

sible combinations of gate input values by replacing the X-transistors by 

either I-transistors or O-transistors. If there are k X-transistors, the SCC 

would have to be evaluated a total of 2k times! Any node which produces 

the same logic level, regardless of the input combination, is set to that 

logic level; otherwise, it is set to X. 

A better approach [BRY87], which offers linear computational com­

plexity in k, is to first choose the gate settings of the X-transistors to max­

imize the number of l' s or X's in the sec under consideration. Then, the 

process is repeated to select the gate settings to maximize the number of 

0' s or X's in the SCc. Again, any node which reaches the same logic 

level in both cases is set to that level; otherwise, it is set to X. This 

approach has been shown to produce the same results as the computation­

ally expensive method described above but requires much less work. 

6.3. A GENERALIZATION OF THE NINE-STATE LOGIC MODEL 

Switch-level simulation has been adopted as an efficient technique 

for functional verification of large MOS digital circuits. However, there 

are many circuit configurations that may lead to incorrect solutions when 
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the simple switch-level model is used. In fact, simple examples can be 

constructed that require more than the three strengths and three states of 

the nine-state logic model (described in Chapter 5) to produce the correct 

solutions. To illustrate this point further, consider the two circuit frag­

ments shown in Fig. 6.1. The circuit in Fig. 6.1(a) is a 2-cp regenerative 

latch driving a bus. The two inverter stages provide forward gain while 

(a) 

~~3 
C ~ D 

(b) 

D 

Figure 6.1: Examples Requiring Additional States and Strengths 
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the depletion load device provides a resistive feedback path from C to A. 

In this case, at least four strengths are necessary to obtain the correct 

results at node C: inverter inv2 has a weak pull-up strength W 1, a forcing 

pull-down strength F and a high-impedance pull-down strength H 

(depending on whether it is on or off). The depletion device has a resistive 

strength W 3, such that W 3 is less than WI. In addition, the pass transistor 

connected to the bus also has a strength, W 2, which is less than WI but 

greater than W3. As described earlier, switch-level simulators provide a 

range of strengths to address this problem. 

A more serious problem is that the switch-level model may not pro­

duce the correct results for an arbitrary connection of pass transistors when 

threshold voltage drops are important. For example, the situation shown 

in Fig. 6.1 (b) is a case where additional voltage states are necessary. Here, 

the designer has inadvertently connected the gate of transistor M3 to a 

node which is already two threshold voltage drops below the input signal. 

Therefore, the value at node D can only rise to three threshold voltage 

drops below the input value and this may not be high enough to be con­

sidered as a valid high. While this circuit is clearly a poor design, it is 

important for a simulator to detect this type of error. A standard switch­

level simulator would not be capable of identifying this error since it uses 

only three logic values. For this case, at least three additional logic values 

are required. Hence, an appropriate state model to adequately simulate 

both circuits in Fig. 6.1 is shown in Fig. 6.2. 

Another situation which requires multiple strengths and voltage lev­

els is the simulation of dynamic circuits. In these circuits, capacitive 

charge-sharing and feedthrough effects often degrade the voltage levels. 

Feedthrough usually occurs when a clock signal feeds through a floating 

capacitor to an isolated node with a grounded capacitance. The isolated 

node also sustains a sharp voltage transition which depends on the value of 



160 MIXED-MODE SIMULATION 

the grounded and floating capacitance values. Usually, feedthrough is not 

a significant factor. However, charge-sharing can often lead to circuits 

that do not function properly. Charge-sharing occurs when a transistor 

connecting two isolated grounded capacitors is turned on. The total charge 

is redistributed between the two capacitors until their node voltages are 

equal. It is possible to handle charge-sharing without introducing addi­

tional logic levels by assigning to each node a str~ngth that corresponds to 

its capacitance value. If charge-sharing occurs, the node with the larger 

capacitance imposes its value on the node with the smaller capacitance 

(for worst-case analysis) and a potential problem is at least observed 

[BRY80]. 

One basic limitation of standard switch-level simulation still 

Strength 
~~ 

H 

WI 

F 

o VDD-2VT 
VDD-3VT VDD-VT 

... -VDD 
States 

Figure 6.2: Better Logic Model for Simulation of Circuits in Fig. 6.1 
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remams: accurate timing information is not provided. Electrical simula­

tion provides detailed timing information but is very expensive due to the 

use of complex analytical models that characterize the transistor current­

voltage relationships. Logic simulation is extremely fast but is often 

unable to provide more than first-order timing information using simple 

expressions to compute the rise and fall delays. Clearly there exists a large 

"gap" between electrical simulation and logic simulation. The arguments 

made above promoting multiple logic values and strengths and the require­

ment for switch-level timing simulation can be resolved by treating 

strengths as electrical resistances and logic states as electrical voltage lev­

els. This connection allows a generalization of the model of strength vs. 

state in logic simulation to resistance, R, vs. voltage, V, in electrical 

simulation. 

The R-V characteristics for an inverter driving a pass transistor are 

shown in Fig. 6.3 based on SPICE2 simulations. These are dc transfer 

curves of the output resistance of the inverter and the output resistance of 

the transfer gate as a function of their respective output voltages. The two 

curves are highly nonlinear and do not exhibit monotonic behavior. Con­

ceptually, electrical simulation has an infinite number of allowed "states" 

in this plane while the higher levels of simulation discretize the horizontal 

and vertical axes into a finite number of states. As a result, the difference 

between electrical and logic simulations becomes one of the degree of 

discretization of the R-V plane. This relationship also provides a con­

venient way of mapping from one form of simulation to the other in 

mixed-mode simulation. The use of this model as a vehicle for simulation 

is described in the next section. Its application in signal mapping across 

the mixed-mode interface is addressed in Chapter 7. 
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Figure 6.3: Resistance vs. Voltage Plane 

6.4. SIMULATION USING THE GENERALIZED MODEL 

6.4.1. Electrical-Logic Simulation 

A variable precision simulation approach, called electrical-logic 

simulation or simply Elogic [KIM84], has been developed based on the 

generalized model described in the previous section. This form of simula­

tion can be viewed as a relaxation-based, switch-level simulation tech­

nique. Elogic uses electrical device models in the context of switch-level 

simulation which allows electrical timing information to be obtained. As 

part of the Elogic modeling process, a number of discrete voltage levels 
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are selected. These levels need not be equally spaced but the number of 

levels and their values have an impact on performance and accuracy. In 

standard electrical simulators, the time-step is selected first and then the 

node voltage change is computed. By contrast, in Elogic the voltage step 

is known in advance and the time required to make a transition from one 

voltage state to another adjacent voltage state is computed. Similar 

approaches are used in SPECS [DEG84], MOTIS3 [TSA85], SPECS2 

[VIS86] and ADEPT [ODR86], as described in the next section. 

The processing sequence in Elogic is illustrated in Fig. 6.4 for a sim­

ple inverter example. The set of Elogic states is defined to be Va, V I, V 2, 

V 3, and V 4. As shown in Fig. 6.4(b), the input makes a sequence of transi­

tions from Va to V 4 and visits each intermediate state between the two end 

points. Each transition at the input node causes an event to be scheduled 

at the output node. The corresponding output computed by Elogic is illus­

trated in Fig. 6.4(c). Note that the first transition at the input does not 

cause a transition at the output node since the transistor does not turn on. 

However, the second transition and all subsequent input transitions result 

in transitions at the output. Note also that the output continues to make 

transitions even after the input reaches its final value due to a self­

scheduling mechanism. 

Briefly, the steps required to calculate the transition time, .oM, are as 

follows: each nonlinear device is first replaced by a linearized equivalent 

model. This model is used to compute the steady-state or final voltage, 

V ss' An exponential characteristic is used to predict the transient behavior 

of the voltage at the output node from the present state, V n, to the final 

value, V ss. The transition time, ~t, is then computed as the time required 

to go from V n to V n+l along this exponential characteristic. After the 

input has completed its sequence of transition events, the output still con­

tinues to be scheduled due to its own self-scheduling mechanism, similar 
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Figure 6.4: Elogic Processing Sequence for a Simple Inverter 
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to the one described for ITA in Chapter 4. The output will continue to 

schedule itself until it reaches the steady-state level. 

The algorithm is modified slightly if the input makes a new transi­

tion before the output has completed its current transition. This situation 

is usually categorized as a glitch in logic simulation but it calls for the 

rescheduling of a pending event in Elogic. If the output is very close to 

the next state, V n+ 1, it is set to the next state and a new event is scheduled 

only if a transition to V n+2 is warranted. If the output is still very close to 

the previous state, V n, it is reset to the previous state and a new event time 

is calculated for the transition to V n+ 1. If the output is somewhere in 

between the two states, a new transition time is calculated using V nand 

the new value of the input node. The event is then rescheduled at the aver­

age of the original event time and the new event time. 

The number of Elogic voltage levels selected and their position have 

an important impact on the accuracy and speed of simulation. 

Specifically, the precision with which a given voltage can be represented is 

limited by the set of voltage levels chosen in an Elogic model. If the 

actual value of a node voltage is between two Elogic states, the node vol­

tage must be set to the closest defined level. This operation is analogous to 

a roundoff process and it produces a roundoff error. The number of states 

can always be increased to improve the precision in representing a particu­

lar voltage. However, since it is necessary to visit each intermediate state 

whenever a transition is made from some initial state to the final state, the 

simulation time increases as the number of states increases. It is this con­

tinuous tradeoff between speed and precision that makes Elogic particu­

larly attractive as it effectively spans the large speed/precision "gap" 

between classical electrical and logic simulations. The user can use very 

few states in the preliminary design phase to verify the functionality of the 

circuit and obtain crude first-order timing estimates. As the design 
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matures, more and more states can be added as necessary to improve the 

accuracy of the analysis. In addition, different parts of the same circuit 

can be simulated using a different number of states; this constitutes 

mixed-precision simulation, which is a special form of mixed-mode simu­

lation. 

The detailed calculations for the transition time are now described 

using the two nonlinear devices connected to a linear grounded capacitor 

given in Fig. 6.5(a). Assume that the initial state of the node is V n. When 

the output node is processed, the nonlinear devices are first converted to 

linear devices. This can be done using either a small-signal model, which 

uses the incremental conductance and current of the device relative to a 

given operating point, or a line-through-origin model which uses the 

large-signal conductance of the device. In either case, the model is 

obtained by a table lookup scheme. The linear equivalent network follow­

ing this step is shown in Fig. 6.5(b). From this circuit, it is clear that the 

steady-state value of the output node is 

(6.1) 

n n 
where IN = ~ Ij and GN = ~ G j . The next step is to determine if the node 

will undergo a transition from the present state to another adjacent state. 

This is done by checking if either: 

(6.2a) 

or 

(6.2b) 

If either condition is true, a transition time calculation is warranted. 

The dynamic behavior of the linear equivalent circuit is given by 
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. 
CgV = IN - GNV, V(O)=V 0 (6.3) 

for which the closed form solution is 

V(tl = V" + (VO - V"lexp[ - ~= t] . (6.4) 

Using this equation, the transition time, At, can be calculated as follows: 

At= ~ln[ Vo - Vss ] 
GN Vo+l - Vss 

(6.5) 

A problem with this approach is that an expensive log function is 

required to calculate At every time a node is evaluated. One way to avoid 

this function evaluation is to use a table lookup log function. Another 

approach is to use a linear charging model in place of the closed-form 

solution. This approximation assumes that the excess current available 

from the current source is constant during the transition from one state to 

the next. In reality, the charging or discharging current for the capacitor 

tends to decrease as a function of time; therefore, the model is always 

optimistic. This model can be derived by applying the forward-Euler 

integration method to Eq. (6.3) 

(6.6) 

Then, 

(6.7) 

6.4.2. The Elogic Algorithm 

The details of the EIogic simulation algorithm are presented below. 

In the algorithm, Elogic is implemented using event-driven techniques 

since a node schedules its fanouts for processing only when it achieves a 
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new state. If a fanout node has already been scheduled at a some time tE, 

in the future, it will be rescheduled at the present time, tj. 

Algorithm 6.1 (Electrical-Logic Simulation Algorithm) 

/* processing node i *1 

if ( tj=tn+l OR Vj=V n+l ) { /* reached new state */ 
recompute f- FALSE; 

} 

update voltage, Vjf-V n+ 1; 

/* fanout scheduling */ 
forall ( fanout nodes k of node i ) 

schedule ( node k at time tj ); 

else { /* did not reach new state */ 
reset voltage, Vjf-V n; 

} 

reset time, tjf-tn; 

if ( Vj=V n) recompute f- FALSE; 
else recompute f- TRUE; 

GNf-O and INf-O; 
forall (fan in nodes k of node i) { 

replace node k by a constant voltage source; 
compute Gk and Ik ; 

update GN and IN; 

compute Vss, the steady-state voltage; 

/* Check for transition using Eq. (6.2) */ 
if ( node i can make a transition) { 

transition f- TRUE; 
compute transition time, At, using Eq. (6.2) or (6.7); 

if (recompute = TRUE) At=(Atn+Atn+l)l2; 

else transition f- FALSE; 
if ( transition = TRUE) { 
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if ( (ti + At) < TSTOP ) 1* self-scheduling *1 

schedule ( node i at ti + At); 

else {do nothing}; 1* latency exploitation *1 

6.4.3. Problems with the Elogic Approach 

The Elogic algorithm, if implemented exactly as described above, 

may encounter certain problems that lead to excessive computer run times 

or reduced accuracy. The first problem is that of algorithmic oscillation of 

a node voltage where one does not exist in the true solution. The simple 

form of this problem arises if the steady-state solution, Vss, lies between 

two discrete Elogic states. For example, if V ss lies in the range 

V 1 <V ss<V 2, then the node will be assigned to the value VI or V 2, which­

ever is closer to Vss. However, if the node is re-evaluated using the new 

Elogic state voltage, it may force the node to move in the opposite direc­

tion, in which case it will be set to the other neighboring state. Again, 

since the true solution is in between the two defined states, the node will 

attempt to make another transition in the opposite direction creating an 

oscillation situation. 

One approach to resolve this problem is to detect oscillations and 

then suppress them. This may lead to the inadvertent suppression of actual 

oscillations in the circuit; therefore, it is not an attractive solution. 

Another approach is to introduce hysteresis into the state transition cri­

terion whenever the node voltage changes direction. Simple oscillation 

usually occurs as the steady-state voltage is reached. Therefore, if the sign 

changes on the time derivative of voltage, it is appropriate to require a 

significant change in the value before a transition in the opposite direction 

is undertaken. For example, the transition could be scheduled if the new 
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steady-state voltage is beyond the midpoint of voltage region just visited 

during the last transition. Using this strategy, a transition occurs only if 

Vss > (Vn+Vn+ I )12 or Vss < (Vn+Vn- I)I2. Another way to resolve the 

problem is to simply set the node to an intermediate "illegal" voltage level 

when the steady-state interval is reached. The node is permitted to leave 

this illegal state only if it is scheduled by another node. 

There is a second source of oscillation, termed interactive oscilla­

tion, which is more insidious and involves two or more nodes. As shown 

for the circuit in Fig. 6.6(a), the problem occurs when two neighboring 

nodes use each other's values to determine their next states and the true 

solution lies between two Elogic states. In this case, node A is scheduled 

to make a transition from 1 V to OV, while node B is scheduled to make a 

transition from OV to I V. However, after the transitions occur, both nodes 

make a transition in the opposite direction, and this process continues 

indefinitel y. This type of oscillation is more difficult to detect than the 

simple oscillations described earlier, but the problem can be solved by 

introducing more states into the Elogic model. 

A third problem arises due to strong coupling between two or more 

nodes in the circuit. This problem can be illustrated using a simple circuit 

as shown in Fig. 6.6(c), where G1=lmho and G2=9mhos, and initially VA 

= VB = 0 V. Note that in evaluating node A, a zero volt source is applied 

at node B thereby grounding it. The Norton equivalent model seen by 

node A is computed as follows: 

(6.8a) 

GN = G 1 + G2 = 1 + 9 = 10 (mhos) (6.8b) 

Therefore, the Thevenin equivalent voltage is 
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(6.8c) 

Clearly, if the voltage change necessary to warrant a transition is larger 

than O.5V, the basic Elogic method would not attempt to transfer node A 

to the next adjacent state. As a result, both V A and VB would remain at 

zero volts. As described earlier, strong coupling affects the convergence 

speed of ITA and WR, whereas in the case of Elogic, it results in a transi­

tion error. For this circuit, the maximum voltage step which can be used 

depends on the ratio of G1 and G2 and, in general, the Elogic states for a 

given problem should be selected with this rule in mind. Another solution 

to this problem is to determine the steady-state voltages of all nodes in a 

set of SCNs using switch-level techniques, and then schedule transitions 

based on this analysis [TSA85]. 

6.5. A SURVEY OF SWITCH-LEVEL TIMING SIMULATORS 

A number of other switch-level timing simulation techniques have 

been developed over the past decade that are also appropriate for use in a 

mixed-mode simulator. The original work in this area was, of course, the 

timing simulation algorithms of MOTIS [CHA 75] as described in Chapter 

4. More recently, there have been a number of notable contributions that 

are embodied in the programs RSIM [TER83], SPECS [DEG84], MOTIS3 

[TSA85], ADEPT[ODR86], SPECS2 [VIS86], and iDSIM [RA089]. The 

techniques used in these programs are reviewed briefly below. 

The RSIM program attempted to produce timing waveforms for the 

switch-level technique by adding a linear resistor in series with each 

transistor switch and providing a capacitor to ground at each node. The 

value of the resistor was set to infinity when the gate voltage was low and 

to some finite resistance when the gate was high. Resistance values were 

calculated using the length and width of the transistors. The logic state 
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model included only 0, X and 1. During the simulation, the transistors 

were replaced by their equivalent resistances and then combined to form a 

Thevenin equivalent circuit, with resistance Rdrive and voltage source 

Vthev, driving a loading capacitance, C 1oad. When a transition was 

expected at a node, the time required to make the transition was computed 

as RdriveXCload' Since the values of Rdrive for low-to-high transitions and 

high-to-low transitions were computed using different values of resis­

tances for the transistor, the accuracy was often within 30% of SPICE2 for 

many circuits while providing over two orders of magnitude of speed 

improvement. The Elogic method can be viewed as an extension of this 

approach with the flexibility of allowing more states and having table 

lookup equivalent models for the transistors in each state. 

The "fast timing" simulation approach of MOTIS3 is based on the 

Elogic algorithm. However, a backward correction scheme is used with 

the variable voltage step scheme to improve accuracy and avoid oscillatory 

behavior. First, the net current, Inet. available to charge the load capaci­

tance, Ctoad, is calculated. Then the time required to make the transition is 

calculated using either an exponential model or the forward-Euler model 

(shown here): 

hn = (V n+ 1 - V n)lInet (6.9) 

Next, the value hn is used to perform a regular integration step to compute 

a new target voltage, V' n+ 1. Finally, hn is scaled to produce the actual 

event time: 

h' n = hn(V' n+l - V n)/(V n+l - V n) (6.10) 

One additional contribution in MOTIS3 is the use of a so-called "super­

block" approach to handle tightly-coupled nodes. First, the steady-state 

voltage, Vss, of every node in the superblock is computed. Then, the delay 

is calculated for each node and the minimum delay is assigned to the 
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superblock. The node voltages in the superblock are scaled with respect to 

this delay. 

The ADEPT approach is also similar in many ways to the basic Elo­

giC approach described in the previous section. Like the MOTIS3 

approach, it allows variable voltage steps to be used to improve accuracy 

at the expense of additional CPU-time. However, its most distinguishing 

feature is the implicit dynamic partitioning approach used to process 

tightly-coupled nodes. In ADEPT, when a node i is computed, the nodes, 

{j}, that are neighbors of i are checked for tight coupling to i using the cri­

terion: 

(6.11) 

All neighboring nodes that satisfy this criterion are solved using local 

relaxation methods to produce the correct results. Since this is applied to 

every node separately, it can be viewed as overlapped, dynamic partition­

mg. 

Another promlSlng variable preCISIOn approach has been imple­

mented in the SPECS2 program, which is based in part on the techniques 

used in SPECS [DEG84]. A treellink based equation formulation 

[CHU75] is used in the program, instead of the standard nodal formulation 

described in Chapter 2. This approach is well-suited to the simulation of 

circuits containing ideal switches that have infinite resistance when OFF 

and infinite conductance when ON. Devices with these properties are very 

troublesome in the context of nodal analysis. In treellink based analysis, a 

circuit graph is constructed from the circuit description and a tree is 

identified in the graph. A tree is defined as a connected, acyclic sub graph 

that contains all the nodes of the original graph. The branches that belong 

to the graph are called tree branches while the remaining branches are the 
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links. The links combine to form a cotree. Once the tree has been defined, 

a cutset is identified in the tree. A cutset is some subset of the branches of 

a tree such that their removal results in a graph that is no longer connected, 

but the insertion of anyone of the branches from the removed set results in 

a connected graph. Cutsets are the subgraphs to which KCL is applied, 

and loops are the subgraphs to which KVL is applied. The fundamental 

cutsets and loops are used to formulate the circuit equations. 

SPECS2 uses table models to define the device I-V characteristics as 

shown in Fig. 6.7(a). Note that the segments are piecewise constant, form­

ing a set of step functions, as opposed to being piecewise linear. These 

steps are important in the event-driven approach of SPECS2 since an event 

occurs whenever a device reaches a "corner" of its step model, as shown in 

Figs. 6.7(b) and 6.7(c). Here, events occur at t}, t2 and t3 since V}, V2 and 

V 3 are all boundaries of the device step model. For example, at t2 there is 

a change in the current through the device from it to i2' As a result, the 

corresponding device is processed with the new current value and the next 

event is scheduled at the next corner in the table. The effect of this change 

on the rest of the circuit is taken into account via subsequent event 

scheduling and processing. 

The SPECS approach is also prone to spurious oscillations, as are 

many other variable precision algorithms. The strategy used in SPECS2 to 

overcome this problem is to place the element in\o a pseudo-steady- state 

condition. This is done by picking a current for the device which is in 

between the currents in the table model whenever the direction of the 

current derivative (with respect to time) changes sign. The value is 

selected to place the device in steady state. If the device is truly in steady 

state, it will remain in this condition. On the other hand, if it is not, it will 

be forced out of it by the other elements in the circuit. Therefore, true cir­

cuit oscillation will not be suppressed but algorithmic oscillation will be 
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prevented. 

The iDSIM program uses macromodeling combined with waveform 

relaxation to perform switch-level timing simulation. The switch-level 

network is preprocessed to identify series-parallel connections of transis­

tors to form composite transistors. A set of macro model parameter tables 

is generated for each composite transistor based on the device gate vol­

tage, device size, threshold voltage, and other factors that affect delay. 

The actual simulation is performed in two steps. First the circuit is 

analyzed using switch-level techniques to identify the transitions that will 

occur during the simulation. These transitions produce break points in the 

waveforms that, in tum, define the time intervals for detailed simulation. 

The second step is to perform the delay analysis to compute the transition 

times using the tables generated for the devices. If there are no feedback 

loops in the circuit, one pass of this algorithm is sufficient to produce the 

desired results. When feedback loops are present, a waveform relaxation 

approach is used with partial waveform convergence to compute the final 

results. 
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CHAPTER 7 

THE MIXED-MODE INTERFACE 

A major issue in all mixed-mode simulators is the problem of inter­

facing of two or more simulation modes. This chapter describes the 

modeling problems of these interfaces and possible solutions. Of course, 

this problem arises only when elements from different modes of simula­

tion are connected at a common node. There are two possible directions of 

signal conversion: one from the lower level of simulation (more detailed) 

to the higher level of simulation (less detailed), and a second going in the 

opposite direction. For example, logic simulation and electrical simula­

tion require signal conversions from logic to electrical simulation and 

from electrical to logic simulation. Typically, it is easier to translate a sig­

nal from a lower level of simulation to a higher level since the conversion 

involves removing unnecessary details from the signal. Signal conver­

sions from a higher to a lower level are more difficult since the informa­

tion required at the lower level is often unavailable at the higher level. In 

particular, it is the conversion of signals from the logic domain to the 

electrical domain that is most troublesome. Both types of signal conver­

sions are described in this chapter. A number of examples are used to 

illustrate potential problems of the various interface models in use today. 

7.1. ANALOG TO DIGITAL INTERFACE 

In a typical analog to digital conversion process, the analog voltage 

waveforms are transformed into equivalent digital waveforms using thres­

holding functions. This operation discretizes a continuous function based 

on a set of predefined voltage thresholds. Specifically, two threshold vol­

tages, VIR and V1L, are chosen according to the dc voltage transfer 
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characteristics (VTC) of the logic gate, as described in Chapter 5. Then, if 

the input to a logic gate is a rising (falling) waveform that reaches V1L 

(V IH), the output waveform of the logic gate begins to fall (rise) to a logic 

0(1) at that point in time. This type of signal conversion works reasonably 

well so long as the analog input waveform is well-behaved in terms of 

driving a logic gate. 

There are, however, two cases that cause problems at this interface 

due to the behavior of the analog waveform. First, if the analog input 

waveform settles at a voltage between V1L and VIH, the correct logic out­

put becomes an issue. According to the algorithms used in traditional 

logic simulators, an unknown logic value, or X state, should be reported to 

the user. If the VTC-based switching described above is used, the output 

undergoes a full logic transition even though the input settles at some 

midrange value. In either case, the result may be misleading to the 

designer. Another problem arises if the input waveform does not have 

monotonic behavior in time, in which case the output of the logic gate 

could be completely incorrect. 

The above situations are depicted in Figs. 7.1 and 7.2 for the circuit 

in Fig. 7.1 (a), a simple electrical inverter and pass transistor driving a 

logic inverter. The correct waveforms are shown in Fig. 7.l(b). The input 

begins at VOL, rises to a value between V1L and VIH and then falls back to 

V OL. Correspondingly, the output falls to some low voltage and then rises 

back to a valid high voltage. The results from the use of different stra­

tegies to handle this case are shown in Fig. 7.2. In Fig. 7.2(a), the output 

of the logic gate is set to X since the input has stabilized at a midrange 

value. In Fig. 7.2(b), VIL=2.3V and so the logic output switches to VOL, 

but remains there since the input never crosses V IH during its downward 

transition. In Fig. 7.2(c), Vlv=3.0V which does not trigger the inverter at 

all; hence, the logic output remains at VOH in this interval. None of these 
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results are particularly appealing. 

There are two possible solutions to this problem. One method is to 

use a dynamic mixed-mode approach [OVE89A, THA92]. The basic idea 

is to replace any logic gates driven by an analog waveform by a more 

detailed model and to simulate it at a lower level using either timing simu­

lation or electrical simulation. This replacement process is performed dur­

ing the simulation when the possibility of generating an X state arises. In 

the case of Fig. 7.1(a), a transistor level description of the second inverter 

V(4) 

o 1 2 3 4 5 6(1e-8 s) 
(a) 

V(4) 

V(4) 

V(4) 

- Electrical level 
-- Mixed-mode 

3 4 5 6(1e-8 s) 
(b) 

o 1 2 3 4 5 6(1e-8 s) 0 1 2 3 4 5 6(1e-8 s) 

(c) (d) 

Figure 7.2: Output Waveforms for Different Approaches 
to handle AID interface 
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would be invoked and a dc solution carried out. The simulation would 

continue at the electrical or switch level until a valid logic level is reached. 

At that point, the transistors would revert to their corresponding logic gate 

allowing for more efficient simulation in the rest of the interval. The main 

problem with this approach is its expense, and the memory requirements 

for storage of the circuit at different levels of abstraction. In addition, the 

program complexity increases greatly and this has a significant impact on 

maintenance and code manageability. 

A more practical solution to this problem is to make use of "smart" 

logic gates at the analog to digital interface. Smart gates have two features 

that differentiate them from standard logic gates that are embedded inside 

a logic circuit. First, they constantly monitor the analog input for any 

changes in value that may affect their outputs. They ensure that the trajec­

tory of the input is consistent with the output. If so, no change is made at 

the output. However, if the input switches direction, the gate recomputes 

its output and forces it in the opposite direction. Second, they have a more 

accurate voltage transfer characteristic than the standard gates. If the out­

put stabilizes at an intermediate voltage, the output is estimated using the 

voltage transfer characteristic. 

Fig. 7.3 illustrates two possible VTC curves that may be used in this 

context. The linear approximation of Fig. 7.3(a) is faster but less accurate 

while the cubic spline approximation of Fig. 7 .3(b) better represents the 

true characteristic at a higher computational cost. As the approximate 

VTC approaches the accuracy of the actual VTC, the logic gate becomes 

more and more like a nonlinear macromodel, as used in [OVE88]. The 

simulation result from the use of a spline-fitted VTC is depicted in Fig. 

7.2(d). Clearly, this solution is preferable to the other ones shown in Fig. 

7.2, and the cost of this approach is only slightly higher than the basic 

logic gate approach [OVE89A, THA92]. 
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Figure 7.3: Voltage Transfer Characteristics Used in Smart Logic Gates 
(a) Linear Approximation (b) Cubic Spline Approximation 

7.2. DIGITAL TO ANALOG INTERFACE 

The translation of digital signal values to analog ones is more com­

plicated due to the fact that information must be added at the interface in 

order to ensure accuracy. Early mixed-mode simulators used elements 

called logic-to-voltage (LTV) converters and logic-to-current (L TI) con­

verters [NEW78] to perform signal mapping across this interface. LTV 

converters were used to translate logic signals that were either 0 or 1 to an 

equivalent electrical voltage. A finite transition time was added for rising 

or falling logic waveforms to avoid convergence problems in the electrical 

algorithms. Because the input resistance of an ideal LTV converter is 
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zero, this model was only adequate for driving high impedance loads, such 

as the gate node of an MOS transistor. The L TI converter was used at the 

interface whenever it was necessary to model the current-sourcing or 

current-sinking properties of a logic gate, such as the base of a bipolar 

transistor. An ideal L TI converter has an infinite input impedance and is, 

therefore, suited to driving low impedance loads. These two converters 

are illustrated in Fig. 7.4. 

The DIANA program [ARN78] introduced the concept of the 

Boolean-controlled switch (BCS) model where the state of a logic element 

was used to select one of two linear equivalent models. This was an 

00110111. .. 

LTV :Logic-to-Voltage Converter: 

00110111. .. 1 
I 

CD 
L TI:Logic-to-Current Converter: 

Figure 7 .4: LTV and L TI Converters 
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Figure 7.5: Boolean-Controlled Switch Model 

important evolutionary step in the modeling of the logic to electrical inter­

face. The BCS model depicted in Fig. 7.5 selects the RO-EO model if the 

output is falling and the RI-E 1 model if the output is rising. The chosen 

model is presented to the electrical portion of the circuit and the node is 

then processed as part of electrical simulation. The values of the elements 

in the two Thevenin equivalent models can be adjusted to improve the 

accuracy, but the overall accuracy of this approach is limited. To under­

stand the reason for this, the LTV, LTI and BCS converters are all shown 

in the same R-V plane in Fig. 7.6. Here, the inverter is assumed to be 

represented at the logic level and the pass transistor at the electrical level. 

The LTV model appears as a line at the zero resistance level while 

the LTI model appears as a line at the infinite resistance level. Clearly, 

these two models do not adequately represent the dc output characteristics 
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of the inverter and the accuracy during transient analysis is expected to be 

poor. On the other hand, the BeS model appears as two points and allows 

more precision in following the transfer curve. Here, the Bes mode has 

been chosen for the inverter output only. Unfortunately, this model only 
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provides limited accuracy during transient analysis since the features of 

the curve cannot be captured by two points alone. 

One way to improve the accuracy of this approach is to allow more 

points along the trajectory of the dc transfer characteristic. This is the 

basic idea behind a generalization of the BCS model, called the voltage­

controlled switch (VCS), as shown in Fig. 7.7. The use of this approach 

was first suggested in [KLE84] and is based on the Elogic modeling 

approach. Rather than choosing 1-out-of-2 models to represent the output, 

a choice of l-out-of-n models is now available. The value of n depends on 

the number of voltage levels selected by the user. The greater the value of 

n, the better the accuracy. However, as shown in Chapter 6 for the Elogic 

method, the CPU-time is proportional to the number of voltage states 

selected. Hence, a speed/accuracy tradeoff exists. 

Figure 7.7: Voltage-Controlled Switch Model 
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The generalized model is plotted on the R-V plane in Fig. 7.8. A 

ves model constructed from a five-state Elogic model is able to follow 

the trajectory of the curve quite closely; this greatly improves the accuracy 

during transient analysis. To better illustrate the accuracy, the two models 

are compared using a 1-bit memory circuit shown in Fig. 7.9. The circuit 

features a pair of cross-coupled inverters at the digital level interacting 

with a pair of bidirectional pass transistors at the electrical level. When 

writing data into the cell, the outputs of the inverters are modified by the 

incoming data and this will only occur if the output resistances of the 

inverters are properly taken into account. Otherwise, the stored value in 

the cell can not be changed. The waveform at the output of one of the 

inverters is plotted in Fig. 7.10 which compares the electrical solution with 

the Bes and ves solutions. In Fig. 7.1O(a), a Bes model is used at the 
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Figure 7.9: 1-bit Memory Cell 

output of the logic gates and in Fig. 7.1O(b), a five-point VCS model is 

used. Although both models produce waveforms that are essentially 

correct, there is a larger timing error when BCS model is used. It is clear 

that the VCS model is superior to the BCS model in this example. 

To summarize, a general rule to resolve the signal mapping problem 

is based on the device connected to a given node. That is, if the output of 

the logic gate is connected to a node with a loading resistance approaching 

infinity (e.g., the gate of MOS device), then a simple model such as the 

LTV or BCS can be used. Otherwise, if the loading resistance is small 

(e.g., the drain/source of MOS device, or the base of a bipolar device), 

then the logic gate must use more a accurate model such as the ves. 

One other issue arises in a number of commercial mixed-mode simu­

lators with logic simulators that represent their states as 0, 1, X and Z. As 

explained in Chapter 5, under certain conditions an X state may be 
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generated by the logic simulation. If this is the case at the digital to analog 

interface, the digital simulator must propagate the X state across this inter­

face. The question becomes one of how to accurately model this state on 

the analog side. A simple-minded approach used in many commercial 

programs is to replace the X state by (V OH + V OL)/2 volts [LEE88]. The 

Z state (high impedance) presents a similar kind of problem. In this case, 

the value propagated to the analog part is the last known value, either 0 or 

1, from the digital part. If the last known value is X, then we revert back 

to the previous problem. Of course, one could take the last logic 1 or 0 

before the onset of the X condition [HEN91] to resolve the problem. 

However, none of these approaches can be properly justified. 

A better approach to this problem is to again make use of "smart" 

logic gates. Whenever the output state of a logic node is about to become 

X, the logic gates connected to it must provide enough electrical informa­

tion to produce an estimate of the output voltage. An X state typically 

arises when there are two or more drivers at a node trying to force it in 

opposite directions, as shown in Fig. 7.11 for a set of inverters driving the 

same node. This type of connection is commonly referred to as a wired 

node or wired connection. While the precise output voltage requires the 

solution of a nonlinear equation, an estimate may be derived from a 

Thevenin equivalent model of the output of each device connected to the 

node. The Thevenin equivalent circuit would be based on the HCS model 

of the logic gate outputs, as shown in Fig. 7.11, and the output voltage, Yo, 

would be calculated using the following equation: 

The value computed by this equation would be propagated to the analog 
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circuit across the interface. If the wired connection is not at the digital­

analog boundary, then all fanout logic gates would need to make use of 

linear or spline-based VTC to accurately compute their outputs. This 

would continue until a valid high or low voltage is reached. 

Since commercial logic simulators do not usually include the BCS 

modeling of the logic outputs, all wired connections would have to exist 

on the analog side of the circuit to ensure accuracy in the results. How­

ever, if the wired connection is deep within the logic circuit, this presents a 

problem in defining the digital-analog boundary. This is why the simple­

minded approach of converting X to (V OH + V od/2 volts is used. 
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Figure 7.12: CMOS Mux-Integrator 

The schematic diagram of a somewhat contrived circuit to examine 

X state mapping is shown in Fig. 7.12. Here, a MOS multiplexer is used 

to drive an analog integrator. The opamp is modeled using a simple 

voltage-controlled voltage source. The wired connection in logic domain 

creates a logic X state when both pass transistors are on. This signal is 

then transferred to the analog domain and into the integrator which pro­

duces a ramp function. The slope of the ramp depends on the input vol­

tage so any error in the mapping function will be magnified by this circuit. 

The results of three different simulations are shown in Fig. 7.13. The 

electrical simulation result produces the ramp with the least steep slope. A 

mixed-mode simulation using a BCS model at the interface produces a 

ramp that is close to the electrical solution. Also, shown are the simula­

tion results when the X state is converted to 2.SV. For this case, a large 

error is observed in the results. Therefore, this type of X state mapping 

should be used with extreme caution, especially in critical portions of the 

analog blocks. 



7. THE MIXED-MODE INTERFACE 

V(5):V 
2.00 -

0.00 -

-2.00 -

-4.00 

-6.00 

-8.00 

-\0.00 

-12.00 

-14.00 -

-16.00 

-18.00 --

-20.00 -

-22.00 

-24.00 

-26.00 

-28.00 

-30.00 -

-32.00 

-34.00 -

-36.00 -

-38.00 -

-40.00 

-42.00 -

-44.00 

0.00 10.00 20.00 

Time 

30.00 

195 

- 'EIeCtiTcal 

- Mixed-mode 
with X state 

- Mi~e-d--mode 
- with Bes 

40.00 (ns) 

Figure 7.13: Simulation Results for Mux-Integrator 

7.3. MIXED-MODE INTERFACE TEST CIRCUITS 

Two additional circuits that probe the mixed-mode interface are 

described in this section. One of these circuits is CMOS and the other one 

is BiCMOS. 
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1) Clock Generator 

Tight coupling between analog and digital components has always 

been a major issue for accurate mixed-mode simulation since it gives rise 

to possible convergence and time step control problems. The clock gen­

erator circuit in Fig. 7.14 is a common test problem due to the tightly­

coupled feedback loop between the two logic gates through Rand C. The 

frequency of the clock generator circuit depends on the choice of R and C, 

and the switching points of the inverters. If these trigger points and the 

logic output are not modeled precisely in the logic gates, the circuit will 

oscillate at an incorrect frequency or may not even oscillate at all. There­

fore, the following tests should be performed in conjunction with this 

C=lnF 

R=5k 
V(l) 

Figure 7.14: Clock Generator 
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circuit: 

a) Adjust the trigger points of the digital inverters in the mixed­
mode circuit so that the frequency generated by mixed-mode si­
mulation and electrical simulation match each other. 

b) Change Rand C in both the mixed-mode and electrical circuits 
to obtain a different frequency. Check if the frequency generated 
by mixed-mode and the electrical mode still match each other. 

The waveforms shown in Fig. 7.15 indicate some problems that might 

occur in the mixed-mode simulation. If the trigger point of logic inverter 

and the output equivalent model is not correct, the oscillation frequency 

will be different as shown in Fig. 7.15(a). After fine tuning the trigger 

points of the digital inverter, the two waveforms match each other as 

shown in Fig. 7.15(b). But if the Rand C values of the circuit are 

changed, the results may still have some difference as shown in Fig. 

7 .l5( c). Here, the value of R used is 10k instead of 5k. Ideally, the two 

sets of waveforms should be almost identical regardless of the values of R 

and C used. 

2) BieMOS D-Flip-Flop 

The interaction of logic gates with bipolar transistors is investigated 

using the circuit shown in Fig. 7.16. In this case, all inverters and 

transmission gates are modeled in the digital domain. Only the bipolar 

transistors are modeled in the analog domain. Note that logic gates drive 

the bases of bipolar transistors, and that the emitters of the transistors are 

connected to the outputs of other logic gates. The modeling of the invert­

ers driving the base of the bipolar transistors must incorporate BJT loading 

effects. The coupling of the feedback inverters to the BJT emitters exam­

ines the interaction of digital and analog output nodes. In effect, this 
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circuit addresses the implementation of the digital/analog interface in both 

directions thereby providing a meaningful test case for bipolar mixed­

signal circuits. 

During the simulation of this circuit, VIH=3.2V and V1L=1.8V are 

used initially in the mixed-mode simulation. The waveforms shown in 

Fig. 7.17(a) are produced indicating that the function is incorrect. On the 

other hand, if VIH=2.8V and VIL=2.5V are used, and the resistance in the 

BCS model is fine-tuned, the function is correct but there is a noticeable 

timing error as shown in Fig. 7.17(b). In this case, due to the small 

equivalent resistance looking into the emitter of the BJTs that are con­

nected to the local feedback inverter pairs, the voltage waveforms at these 
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Figure 7.16: BiCMOS D-Flip-Flop 
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nodes are very sensitive to the VTC of the digital inverters. This example 

is a particularly difficult to simulate accurately and is therefore an excel­

lent test circuit for the analog/digital interface. 
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CHAPTERS 

MIXED-MODE SIMULATION AND IMPLEMENTATION 

This chapter describes the methods involved in implementing a 

mixed-mode simulator and a tool that is to be used in conjunction with it. 

The iSPLICE3 program [SAL89A] is used as an implementation case 

study since it uses many of the algorithms described in the previous four 

chapters. The chapter begins with an overview of the architecture of 

iSPLICE3. Then, the mechanisms associated with the implementation of 

an event scheduler are presented. Following this, event scheduling poli­

cies during the transient analysis are described. Next, the techniques used 

to obtain the dc solution are provided. This is followed by a description of 

an automatic mixed-mode partitioning tool called iSPLIT [THA92]. This 

program converts a transistor level description into a mixed-mode descrip­

tion that can be used to drive the iSPLICE3 program. Finally, a large 

benchmark circuit is used to demonstrate the typical performance of 

mixed-mode simulators at the end of the chapter. 

8.1. SIMULATOR ARCHITECTURE 

To remain useful over its lifetime, a simulator must have the ability 

to adapt and grow as the technology and simulation requirements evolve. 

To accomplish this, a simulator should be organized so that new algo­

rithms and models can be easily added to the existing environment. 

Ideally, the addition of new algorithms or models should only involve a 

recompilation of the program to include the newly developed routines. 

However, in practice, usually a few tables in a number of files must be 

modified to provide key pieces of information regarding the new models 

and algorithms. 
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We now describe a simulator organization that makes it relatively 

simple to add new simulation algorithms. In mixed-mode simulation, the 

use of event-driven, selective-trace in all modes of simulation is a unifying 

mechanism. To establish event-driven, selective-trace simulation, a time­

queue and an event scheduler are required, and the notion of an event must 

be defined at each level of simulation. In iSPLICE3, each event data 

structure has fields for the junction, time and data associated with the 

event. When an event is processed, the function is performed on the data 

at the prescribed time. New events may be scheduled in the queue as part 

of the call to the function. Special simulation related tasks may also be 

scheduled in the time queue along with regular simulation events. 

The basic simulation flow of iSPLICE3 is as follows: 

maine ) 

} 

o 

readin( ); build_subcircuitsO; 

schedule ( setup_dc_analysis event at t=O- ); 

forall ( subcircuits Sj in the circuit) 

schedule ( Sj , t=O ); 1* for dc solution *1 

schedule ( start_transient event, t=O+ ); 

1* MAIN SCHEDULER LOOP: *1 

while (time queue is not empty) { 

} 

event t- GetNextEventO; 

function t- event.simulation_Mode; 

time t- eventtime; 

data t- event.simulation_Data; 

1* Perform task associated with event *1 

function ( data, time ); 
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The circuit is first read in and divided into subcircuits during the 

readin() and build_subcircuits() phases. The subcircuit types may be 

either LOGIC, ELOGIC, or ELECTRICAL depending on the node type. 

iSPLICE3 determines the node type based on the devices connected to 

nodes in the circuit. For example, if a node has only ELOGIC devices 

connected to it, it will be labeled as an ELOGIC node. If it has only 

LOGIC devices connected to it, then it will be labeled as a LOGIC node. 

However, if there is at least one ELOGIC device controlling the node (i.e., 

the drain or source of a ELOGIC transistor), it will be labeled as an ELO­

GIC node. Similarly, if there is at least one ELECTRICAL device with a 

controlling node connected to it, it is labeled as an ELECTRICAL node. 

After the node assignments are completed, the ELECTRICAL nodes are 

further partitioned into subcircuits of tightly-coupled nodes as part of the 

standard IT A relaxation algorithm. Finally, the subcircuits and fanin and 

fanout tables are constructed using the node assignment information. 

The next step is to schedule the setup_dc_analysis() event, and then 

schedule all the newly created subcircuits for evaluation at time t=O as part 

of the dc solution. The last event to be scheduled before entering the pro­

cessing loop is the starctransient() event, which is executed immediately 

after the dc solution is obtained. The program then enters the main loop 

where the scheduler sequences through the list of scheduled events. It 

remains in this loop until there are no events in the queue, at which time 

the program stops. The inner part of the loop involves obtaining the next 

event from the queue and then executing the function associated with the 

event. Examples of simulation functions that may be scheduled in the 

time queue are ELECTRICAL_event() , LOGIC_event() and 

ELOGI C _event( ). 

The basic flow for a simulation event is shown below: 
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simulation_event( Si. tN ) 

{ 

} 

D 

gecinpuc voltages(Sj ); 
process_subcircuit(SD; 
if (Sj is active) 

schedule ( Sj , tN+ 1 ); 

foreach ( node j in Sj) 
foreach ( fanout subcircuit Sj of node j ) 

if (node j has crossed a critical threshold of Sj) 
schedule ( Sj , tN ); 

First the external voltages for the subcircuit are obtained. Then the 

subcircuit is processed using the appropriate analysis mode. If the vol­

tages in the subcircuit have changed, the subcircuit is rescheduled for 

evaluation at a later time. Then the fanouts are scheduled at the current 

time if any important thresholds have been encountered. 

8.2. EVENT SCHEDULER DESIGN 

In this section, a number of alternative strategies for the implementa­

tion of event schedulers are described. In designing a scheduler, a number 

of important issues relating to scheduler function and efficiency must be 

addressed. First, the event scheduler must have some notion of a time 

sequence and must be able to associate an event with a particular point in 

time. It may also be necessary to arrange events at a particular time point 

in some sorted order. Occasionally, the simulator will schedule an event 

and later decide that the event is no longer necessary. Hence, the 

scheduler must have the capability of canceling a pending event. Finally, 

the scheduling operations must be efficient, since they add to the simula­

tion overhead. The event insertion/deletion operations must be relatively 
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fast and the time sequencing through events should be efficient. Both of 

these requirements can be achieved by maintaining some uniformity in the 

event distributions in the scheduler, as will be seen. The scheduler over­

head is usually insignificant for electrical analysis (since the events them­

selves are usually computationally intensive), but it may be a dominant 

factor in switch-level or higher levels of simulation where event process­

ing operations are relatively simple. In general, the scheduling overhead 

should not consume more than 5-10% of the total simulation time. With 

these considerations in mind, the event schedulers commonly found in 

mixed-mode simulators are presented. 

The classical approach to the scheduler design uses a time-wheel 

[BRE76] mechanism as illustrated in Fig. 8.1. This structure allows the 

indexed list to "wrap-around" so that the array of headers can be reused 

once the events associated with that entry have all been processed and the 

PT pointer shown in the figure has been incremented. For example, when 

the events at time PT have all been processed, the header at PT can be 

reused to represent the time PT +ML\t, assuming that the array has M ele­

ments. Using the MOD function, the PT pointer is updated as follows: 

PT = (PT + 1) MOD M 

The obvious advantage of this approach is that a predetermined amount of 

memory can be allocated for the time queue a priori. However, dynamic 

memory allocation will still be required for events which occur at time 

points greater than t+ML\t units in the future. They may be organized in 

an overflow or remote list. At some point, these remote events must be 

brought into the time queue. Since the events in the remote list are usually 

somewhat more expensive to insert or remove than events in the time 

queue, it is not efficient to update the time queue with events from the 
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Figure 8.1: Classical Time-Wheel Mechanism 

remote list every time a time-point event list has been processed. How­

ever, as more and more time points are processed, the probability that new 

events will end up in the remote list increases, and this is undesirable. 

Therefore, it is better to move events from the remote list to the time 

queue periodically, i.e., after processing k time points in the time wheel. 

Another source of inefficiency is due to the fact that many headers 

may not point to any events. These headers must be scanned anyway and 

this consumes additional CPU-time. The distribution of the events in the 

time queue, hence the sparsity, depends on the value of At. For example, 
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if At is very small, only a few events will be scheduled at each time point. 

On the other hand, if At is large, the events will densely populate the 

region of time near the current time pointer, PT. Both situations will 

reduce the scheduler performance. Hence, the number of time points pro­

cessed before bringing in remote events (k), the size of the time wheel (M) 

and step size between adjacent entries in the time wheel (At), and indeed 

how efficiently the remote list is managed, all have an impact on the 

efficiency of this type of scheduler. Typical event distributions should be 

examined to select the appropriate values for these parameters for a given 

application. 

The remote list usually contains a small number of events if the 

proper parameter values are selected for the time queue. It usually con­

tains events associated with external sources and these events are often 

sparse in time. The objective is to ensure that the ratio between events in 

the time queue and remote list does not exceed a certain threshold. If it is 

not anticipated that many events will be scheduled in the remote list, it 

may be organized as a simple linear linked list. 

There are other situations where a more elaborate organization of the 

remote queue is required. In the case of electrical simulation, some com­

ponents may take small time steps during a transition while others use 

very large time steps due to the latency. Here, a secondary time wheel 

would be useful. It can be managed in exactly the same way as the pri­

mary time wheel except that each interval is defined to be kAt units of 

time. After kAt units of time have been processed in the primary time 

queue, all the events in the next interval of the secondary queue can be 

moved to the primary queue. In general, it is possible to have a set of 

remote time wheels, each having an interval, Atj, which is equal to kAti -1, 

where Atj -1 is the interval used by the previous time-wheel. If a variable 

number of time wheels are used, another level of indexing would be useful 
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in selecting the proper time-wheel. 

The scheduler used in iSPLICE3 as shown in Fig. 8.2 is similar to 

the classical time-wheel mechanism. However, rather than a single time­

wheel, a pair of time queues with Ml2 entries and a remote list are used. 

While events are being processed from the first queue, new events may be 

scheduled either in the remaining portion of the first queue, in the second 

queue or in the remote list. The remote list is maintained as a simple 

linear linked-list. When the end of the first queue is reached, the second 

queue becomes active and the first queue is adjusted to represent the next 

(MI2)At units of time. Any appropriate remote events are moved from the 

remote list to the first queue. When the end of the second queue is 

reached, the first queue becomes the active queue again while the second 

queue is modified to represent the next (MI2)At units of time. This 

scheme represents a compromise between bringing in new events after 

each time point list is processed and bringing in remote events only after 

all events in the queue have been processed. 

8.3. TRANSIENT ANALYSIS AND EVENT SCHEDULING 

iSPLICE3 performs both dc analysis and time-domain, transient 

analysis of MOS and bipolar integrated circuits. Transient analysis is gen­

erally the most time-consuming and memory-intensive task in simulation 

but the mixed-mode techniques used in the iSPLICE3 program can reduce 

the simulation time significantly compared to that for SPICE2. iSPLICE3 

has three simulation modes: circuit level simulation (ELECTRICAL) 

which uses iterated timing analysis, switch-level timing simulation (ELO­

GIC) and gate-level logic simulation (LOGIC). Each mode can be used 

independently or combined in a mixed-mode simulation. The details of 

each algorithm have been described in the previous chapters. 

One issue that has been overlooked is that of event scheduling 
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between different levels of simulation. A set of rules govemmg the 

scheduling policy from each simulation mode to other simulation modes 

must be defined. For example, one filtering operation that must be per­

formed when processing ELECTRICAL subcircuits is to schedule their 

non-ELECTRICAL fanouts only when convergence occurs. This prevents 

non-ELECTRICAL fanouts from being processed unnecessarily with par­

tial solutions during the iterations of ITA. However, other ELECTRICAL 

fanouts must be scheduled during the iterative process of ITA. ELECTRI­

CAL subcircuits schedule their LOGIC fanouts whenever a VIL or VIH 

threshold is encountered during an upward or downward transition, respec­

tively. Similarly, ELECTRICAL subcircuits schedule their ELOGIC 

fanouts if they have encountered an ELOGIC state during the last transi­

tion. This is consistent with the scheduling used among ELOGIC subcir­

cuits. 

An ELOGIC subcircuit schedules its ELECTRICAL fanout subcir­

cuits whenever it reaches a new ELOGIC voltage state. However, instead 

of actually scheduling an ELECTRICAL subcircuit at the current time, it 

simply ensures that the subcircuit is active by issuing a wakeup_call() 

event to any fanout ELECTRICAL subcircuits. If the fanout is not active, 

the wakeup_call() simply schedules it where the other ELECTRICAL sub­

circuits are scheduled. An ELOGIC subcircuit schedules its LOGIC 

fan outs if a VIL or VIH threshold has been encountered in its last voltage 

transition. LOGIC subcircuits schedule ELOGIC fanouts at each ELOGIC 

state along a transition of the logic waveform using wakeup_call()'s that 

are scheduled along transitions of logic waveforms. The same mechanism 

is used when LOGIC schedules ELECTRICAL subcircuits. Input source 

events follow similar rules as described above and are also dependent on 

the types of devices connected to them. 
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One additional complicating factor in intersimulation scheduling is 

due to roll-back or step rejections. It may be necessary to occasionally 

cancel a pending event or reject a time-step and begin reprocessing at an 

earlier time. When this occurs, the scheduler must be backed up and the 

subcircuits rescheduled and reprocessed accordingly. The subcircuit 

which encountered the rejection is processed initially. If its new solution 

differs significantly from the previous one, its fanout subcircuits are 

scheduled. Otherwise, no scheduling operations are performed. Similarly, 

the fanouts are processed and they compare their newly computed solu­

tions with previous solutions and schedule their fanouts only if the new 

solutions are different from their old solutions. Both ELOGIC and LOGIC 

schedule events on fixed grid boundaries so that slight variations in the 

computed schedule times are not inferred as different solutions. The roll­

back strategy ensures that accurate solutions will be obtained in an 

efficient manner. 

8.4. DC ANALYSIS TECHNIQUES 

iSPLICE3 provides a number of different techniques to obtain a dc 

solution for a given circuit. For ELECTRICAL circuits, either the stan­

dard Newton method, source-stepping or gmin_stepping methods may be 

invoked [QUA89]. For circuits that are represented using the ELECTRI­

CAL, LOGIC and ELOGIC levels, iSPLICE3 uses an iterative mixed­

mode dc solution scheme to initialize the node voltages, as follows: 

dc_analysisO 
{ 

repeat { 
process_LOGIC_nodesO; 1* using logic simulation *1 
process_ELECTRICAL_and_ELOGIC_nodesO; 
1* using Newton's method *1 

} until (convergence) 
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} 
o 
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seCELOGIC_nodesO; 1* force to discrete values *1 
repeat { 1* correct any nodes affected by last operation *1 

process_LOGIC_nodesO; 
process_ELECTRICAL_nodesO; 
1* leave out ELOGIC nodes *1 

} until (convergence) 

The algorithm given above is performed at time 0 using event-driven 

techniques. First, the LOGIC nodes are processed using zero-delay logic 

simulation. Then the ELECTRICAL and ELOGIC nodes are processed 

using direct methods (i.e., the standard Newton method). Any nodes that 

are different from their previous solution act to schedule their fanout nodes 

at time O. This process is repeated until convergence occurs. When the dc 

solution is obtained, the ELOGIC nodes are set to their nearest discrete 

values and the iterative loop is repeated once again to correct any values 

that may be affected by this operation. Unfortunately, the convergence of 

the dc solution is not guaranteed in all cases. In fact, if the LOGIC nodes 

do not have a dc solution, or if a proper initial guess is not specified for the 

ELECTRICAL and ELOGIC nodes, the iterative process may not con­

verge at all! 

While it is generally difficult to find a dc solution for LOGIC nodes 

that may oscillate when analyzed using zero-delay logic simulation, 

iSPLICE3 uses a new technique to improve the likelihood of convergence 

for ELECTRICAL and ELOGIC nodes in MOS digital circuits. This tech­

nique provides an initial guess that is usually close to the final solution, it 

ensures proper and reliable convergence and reduces the total number of 

Newton-Raphson iterations required. on MOS digital circuits described at 

the transistor level. First, the ELECTRICAL and ELOGIC portions of the 

circuit are solved using zero-delay, switch-level logic simulation [BRY80] 
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to derive the initial conditions at each node. Then these logic values are 

converted to their corresponding voltage values. Next, the standard New­

ton method is applied to the same portion of the circuit, using the derived 

values as initial guesses. Since this technique provides an initial guess that 

is usually close to the final solution, it ensures proper and reliable conver­

gence and reduces the number of overall iterations. This approach has 

been found to be 4-5 times faster than the standard approach on MOS digi­

tal circuits and successfully converges on circuits that fail to converge in 

SPICE2. 

In the simple algorithm above, the processmg of feedback paths 

s 
Q 

R 
Q 

':' ':' 

Figure 8.3: CMOS SR Flip-Flop Example 
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deserves some special attention since all nodes are set to the uninitialized 

state as the first step of the switch-level analysis at time O. iSPLICE3 

processes the nodes from the inputs to the outputs, but if there are feed­

back paths in the network, some of the node values needed for the evalua­

tion may be uninitialized, which presents a problem in determining the 

state of the output node. For these situations, iSPLICE3 guesses the 

values of initial unknowns whenever required as either logic 0 or logic 1, 

depending on the situation. If an incorrect guess is made, the feedback 

path will act to correct the situation in a subsequent processing step. This 

technique removes most of the uninitialized states at the output nodes, par­

ticularly in troublesome circuits such as flip-flops. However, some nodes 

may be assigned to the X state if the correct state can not be determined 

during switch-level simulation. These nodes are reset to 0 V before apply­

ing the Newton method since it places NMOS transistors in the cutoff 

region of operation rather than in some high-gain region. 

As a simple example, consider the CMOS SR flip-flop circuit in Fig. 

8.3. Assume that S=O and R=l, and Q and Q are uninitialized. Then, if 

the upper NOR gate is processed by assuming that Q=l, a value of Q=O is 

produced. This value would be used to process the lower NOR gate and 

Q=O is produced. Since this value is different from the original assump­

tion, the first NOR gate is reprocessed to produce Q=l, and the second 

reprocessed to produce Q=O. These are the correct solutions and so the 

processing would stop. Next, the values would be converted to their 

equivalent voltages and the Newton method would be invoked. A more 

interesting example is generated if S=O and R=O since the previous outputs 

are held in the flip-flop for this case. Normally, a program like SPICE2 

would produce values of Q=2.5V and Q=2.5V (assuming a 5V supply vol­

tage) as the dc solution, which is clearly incorrect. iSPLICE3 will produce 
- -

either Q=O.O and Q=5.0 or Q=5.0 and Q=O.O and either case is an 
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acceptable solution. Of course, the user can always override these values 

by initializing the flip-flops to any desired setting. 

8.5. AUTOMATIC MIXED-MODE PARTITIONING 

One problem that has not been directly addressed until now is that of 

defining the portions of a circuit to be represented at the various levels of 

abstraction. Normally, this task is the responsibility of the user since the 

circuit designer has the knowledge to perform the operation manually. 

However, one tool that would prove to be extremely useful is an automatic 

mixed-mode partitioner. Such a tool would be necessary when a transistor 

level description is extracted from a layout, or obtained from any other 

source, and a functional verification is desired in as short a time as possi­

ble. The partitioner would scan the circuit description and define the dif­

ferent levels of abstraction that would be used to simulate different por­

tions of the circuit and then provide this information to the mixed-mode 

simulator. 

Conceptually, this process takes a collection of components from a 

given level in the circuit description and replaces them with higher level 

primitives! to improve speed [RA089, ACU89], or with lower level primi­

tives to improve accuracy [OVE89A]. The complete partitioning opera­

tion involves two phases: recognition and characterization. Groups of 

components that combine to form higher level primitives in the circuit 

must first be recognized using either a rule-based approach or a table 

lookup scheme. Then the parameters for the higher level model must be 

generated from the lower level description in the characterization phase to 

maintain simulation accuracy. 

1 A primitive refers to a basic element that is known to the simulator, i.e., any element that is 
hard-coded into the program. 
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8.5.1. Program Overview 

In the following sections, a program called iSPLIT [THA92] that 

performs automatic partitioning for mixed-mode simulators is described. 

The iSPLIT program has three phases, as shown in Fig. 8.4. In the first 

phase, the program searches through a transistor netlist and substitutes 

logic models for various gates found in the netlist. This process is facili­

tated by defining transistors groups, based on channel-connected com­

ponents, and performing a gate-recognition algorithm on each group. It 

can recognize any inverters, NANDs, NORs, or complex gates in CMOS, 

NMOS, or pseudo-NMOS technologies. In the second phase, the program 

reclassifies all of the groups that were not recognized above, by assigning 

each one a new type number. Third, any user-defined cells that are 

specified in a library file are replaced with their corresponding higher-level 

block. Any transistor groups that are not recognized after these three steps 

are left at the transistor level. The program then writes out a new netlist 

that can be used for mixed-mode simulation. 

8.5.2. Channel-Connected Transistor Groups 

In the first phase, all of the MOS transistors are partitioned into 

groups. Each group consists of transistors which are connected at their 

source and drain terminals. For convenience, the PMOS and NMOS 

transistors are kept in separate lists in the group. The list of PMOS 

transistors is called the p-tree, and the list of NMOS transistors is called 

the n-tree. The p-tree may also contain depletion NMOS transistors if the 

gate is an NMOS gate. During the grouping process, any node which has 

both PMOS and NMOS transistors connected to it (or both enhancement 

and depletion NMOS transistors) is considered as a possible output node. 

Because all logic gates and complex gates have only one output, only one 

output node is allowed in each group. If a second possible output node is 

found, the program will backtrack, and not include that node in the group. 
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Transistor-Level Network 

Phase 1: Identify Complex Gates 

No 

Yes 

Phase 2: Classify Remaining Groups 

Phase 3: Search for User-Defined Cells 

Mixed-Mode Network 

Figure 8.4: Overview of the iSPLIT Program 



220 MIXED-MODE SIMULATION 

The procedure for grouping the transistors is provided in Algorithm 

8.1. 

Algorithm 8.1 (The iSPLIT Grouping Algorithm) 

searchDC(group, thisdev, node) { 
if (possihleOutputNode(node)) { 

} 

o 

} 

if (group.out == NULL) group.out = node; 
else return FALSE; 

foreach (device connected to node) { 

} 

if (device =t:. thisdev and device type is FETI 
and device is not in a group) { 

if (device. source == node) nextnode = device.drain; 
else if (device.drain == node) nextnode = device. source; 
else continue; 
if(nextnode == V dd or nextnode == Vss or nextnode is in group){ 

add device to group; 
foundDC = TRUE; 
continue; 

add nextnode to group; 
add device to group; 
if (searchDC(group, device, nextnode)) { 

foundDC == TRUE; 
} 
else { 

remove nextnode from group; 
remove device from group; 

return foundDC; 
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It is a recursive, depth-first search, which examines all paths from a given 

node to other nodes through a transistor. The program begins by finding 

all PMOS or depletion NMOS transistors that are connected to V dd. 

Each of these transistors is considered as a starting point for a new group. 

When processing each device, the program checks that the device does not 

already belong to a group. If either the source or drain node of the transis­

tor is connected to a node that is not V dd or V ss, then it creates a new 

group and calls the searchDC function to find all the transistors that 

belong to that group. 

The searchDC function takes a group, a transistor and a node as 

arguments. The function examines every transistor connected to the given 

node by its source or drain, except for the transistor passed into the func­

tion. For each transistor, it finds the other node to which the channel of 

the transistor is connected. If the present node is connected to the source, 

the next node is the node connected to the drain of the transistor. If the 

next node is either V dd, V ss, or already in the group, then the search ends 

successfully. Otherwise, the function calls itself, passing the new node 

and the current transistor as parameters. 

When the transistors are added to the group, they are removed from 

the global device list and added either to a list of PMOS transistors or to a 

list of NMOS transistors, depending on the type of the device. When the 

grouping is complete, the result is a list of transistor group. Each group 

contains a separate list of PMOS devices and NMOS devices. The groups 

will not contain any pass transistors. Pass transistors remain un grouped 

and can be found in the main device list. 

Once the circuit has been partitioned into groups, the recognition 

process begins. The algorithm used to recognize and replace complex 

gates is shown in Algorithm 8.2. 
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Algorithm 8.2 (The iSPLIT Complex Gate Recognition Algorithm) 

complexgate(group) { 

} 

o 

type = determineGroupType(group); 
while (group.numN Dev > I) { 

} 

if (type == CMOS) { 
if (buildSeriesChain(group.nTree) == SUCCESS) { 

} 

if (fndCorrespParallel(group.pTree) == SUCCESS) 
makeEquivGate(group, CMOS); 

else { 
noStructureFound = TRUE; break; 

else if (buildSeriesChain(group.pTree) == SUCCESS) { 
if (fndCorrespParallel(group.nTree) == SUCCESS) 

makeEquivGate(group, CMOS); 
else { 

noStructureFound = TRUE; break; 

else { noStructureFound = TRUE; break; } 

else if (type == NMOS or type == pseudoNMOS) { 
if (buildSeriesChain(Group.nTree) == SUCCESS) 

makeEquivGate(group, NMOS); 

} 

else if (getParalleITrans(group.nTree) == SUCCESS) 
makeEquivGate(group, NMOS); 

else { 
noStructureFound = TRUE; break; 

} 

if (noStructureFound == TRUE) restoreCircuit(group); 
else finishCircuit(group, type); 
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It combines parallel and series transistors into equivalent transistors until 

the group has been reduced to an equivalent inverter. This is a standard 

simplification procedure used in many programs. 

First, each group is classified as an NMOS circuit, a CMOS circuit, 

or a pseudo-NMOS circuit. An NMOS circuit will have one depletion 

NMOS transistor which has its source and gate connected together. A 

CMOS circuit has equal numbers of NMOS and PMOS transistors. A 

pseudo-NMOS circuit has a single PMOS transistor which has its gate 

connected to Vss. NMOS and pseudo-NMOS circuits can be treated the 

same way because their n-trees are identical. Any group that does not fit 

into one of these patterns is not processed any further. 

The procedure for a CMOS circuit is depicted in Fig. 8.5. The pro­

gram searches for a chain of series transistors in the n-tree or the p-tree. If 

a chain is found, then it searches for a corresponding set of parallel transis­

tors in the opposite tree. The input nodes of all the transistors in the oppo­

site set must correspond to the input nodes of the transistors in the series 

chain. If a series chain and a corresponding set of parallel transistors are 

both found, they are each replaced with an equivalent transistor. At the 

same time a gate is introduced into the circuit representing the logic per­

formed by the transistors that have been replaced as shown in Fig. 8.5. 

The input capacitance (ci) of this gate is calculated at this time from the 

sum of the gate capacitances of all the transistors that were connected to 

one of the input nodes. This process is repeated until the group has been 

reduced to a number of gates and an equivalent inverter. At this time, the 

program calculates the model parameters for the group from the equivalent 

inverter. It then removes the equivalent inverter and inverts the output of 

the last gate as depicted in Fig. 8.5. 

For an NMOS or pseudo-NMOS circuit, the algorithm is similar. The 

program searches for a series chain of transistors. If a chain is found, the 
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Figure 8.5: Circuit Netlist of a Group During Complex Gate Recognition 
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program immediately substitutes it with a gate model. Otherwise, the pro­

gram will look for a set of transistors in parallel. The algorithm continues 

until the n-tree consists of only one equivalent transistor. For a set of 

parallel transistors, the parameters of the equivalent transistor are calcu­

lated as follows: each device capacitance of the equivalent transistors 

(Cgd, C gs, C bd, and Cbs) is calculated by adding the corresponding capaci­

tance value of all the parallel transistors. The beta of the equivalent 

transistor is taken to be the minimum of the betas of all the transistors in 

parallel as shown in Fig. 8.6. 

For a series chain of transistors, the capacitance values are summed 

in the same way. However, if one end of the chain is connected to V dd or 

V ss, one of the capacitances from the transistor that is connected to the 

supply is not included. Consider the circuit in Fig. 8.7. If the gate of 

transistor M 1 is on, and transistor M2 is initially off and then turns on, it 

will have to discharge both node X and node Y to ground. The total capa­

citance used in this case is Cgdl+Cgsl+Cbdl+Cbsl+Cbd2+Cgd2. Therefore 

Cbs2 is removed from further consideration. The beta of the equivalent 

transistor is given by ~ = 1I(1/~1+ 1I~2). 

The model parameters for the group are calculated after the group 

has been reduced to an equivalent inverter and placed on the output gate of 

the group. As described in Section 5.3 and 5.4, there are nine additional 

parameters that need to be calculated: co, tr, tf, tre, tfe, VOH, VOL, Vm, 

and V1L (the ci parameter has already been calculated for all the gates in 

the group at this point). The gate output capacitance, co, is calculated by 

summing all the capacitances connected to the output node. In addition, 

any capacitances connected to the internal nodes in a group are added to 

the total output capacitance, since, in the worst case, they must be charged 

when the gate switches. Next, the four noise margin parameters VoH , 

V OL, V IH and V IL are computed. For CMOS circuits, all these parameters 
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Figure 8.6: Equivalent Transistor for Two Parallel Transistors 
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are calculated usmg analytic formulas. The parameter V OH is simply 

equal to V dd, and VOL is equal to V ss. The input parameters, V IH and V IL 

are calculated by formulas provided in [WES85]. For NMOS circuits, 

V OH is simply equal to V dd. The other parameters are calculated by itera­

tive equations in [UYE88]. Finally, the parameters related to the rise and 

fall times of the equivalent inverter are calculated using the equations pro­

vided in Section 5.4. 

8.5.3. Recognition of User-Defined Components 

The techniques described above are useful for MOS logic circuits but 

are not suitable for bipolar transistors, analog circuits or high-level block 

recognition. For example, an analog comparator or an operational 

amplifier may contain 30-50 transistors and the connections and device 

sizes may be different for each design. Clearly, this problem is much 

more difficult than recognizing complex digital gates since the channel­

connected groups could be examined individually and were known to have 

a particular structure. With user-defined components, however, the struc­

ture to be identified may contain two or more groups. This is also the case 

when recognizing higher-level blocks such as flip-flops from lower level 

primitives such as NAND gates. 

To facilitate the recognition and replacement of these types of 

blocks, the user defines components in a library file that iSPLIT reads dur­

ing startup. After the startup file has been read, the iSPLIT program forms 

two netlists for every user-defined component: a netlist for the cell, and a 

netlist for the higher-level model. The transistor netlist is broken up into 

channel-connected groups in the same manner as the main circuit. 

Once all groups in the user cells have been processed, iSPLIT 

regroups all groups that have not been replaced with logic models (both in 

the main circuit and in all the user-defined components). The regrouping 
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proceeds in the same manner as the initial grouping, except that there is no 

restriction on the number of possible output nodes. The next step in the 

process is to examine all groups in all user-defined components that are 

still at the electrical level, and assign each one a unique type number, or 

signature, that depends on the circuit topology of the group. The iSPLIT 

program builds a table which contains entries for every unique group. 

Each entry has its own signature number. Every new group is compared 

against all the existing group using their signatures. If it matches one of 

them, it is assigned the signature number corresponding to that group. 

Otherwise, the group is assigned a new signature which is added to the 

table. 

The signature calculation is based on an algorithm published by 

Beatty and Bryant [BEA88]. This algorithm was originally used to speed 

up the preprocessing of a switch-level simulator. The algorithm works by 

assigning each group a unique signature that depends on the circuit topol­

ogy. This number is then stored in a hash table. Any new group can be 

instantly compared against all existing group types by looking for its hash 

number in the table. If the number exists, the group can be assigned the 

type number that corresponds to that hash number. 

Once all groups in the user-defined cells have been processed, all 

electrical-level groups in the main circuit are processed. Each group is 

compared against all group types in the table. If it matches one of the 

entries, it is given the corresponding type number. In addition, it is added 

to a list of instances of that type of group. Otherwise, it is ignored. 

Recognizing user-defined cells belongs to the generalized problem of 

sub graph isomorphism. Many heuristics have been published to solve this 

problem, but not all of them are applicable to the problem being 

addressed here. In iSPLIT, a very simple tree-based algorithm is used. 

The program starts with one element from a user-defined cell, and an 
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element of the same type from the main circuit. Then, all the correspond­

ing pins on each of the two elements are checked to see if they have they 

same number and type of elements connected to them. Next, all elements 

connected to those pins are recursively checked in the same manner. The 

search proceeds until the program reaches an 110 pin on the user cell or 

there is a mismatch. 

The iSPLIT program begins looking for a specific user cell by 

finding the primitive in the cell with the highest type number. Since the 

lower type numbers are standard elements such as logic gates, and the 

higher type numbers are groups with computed type numbers, there should 

be fewer instances of these elements. For example, the type number 52 

may represent a group that appears eight times in the circuit, while the 

type number 12 may represent an inverter that appears in the circuit a few 

hundred times. Choosing the largest type number in this case narrows the 

search space considerably. However, in some circuits, such as D-flip­

flops, the highest component may be a four-input NAND gate. In this 

case, the algorithm will not be very efficient, because the program must 

investigate every four-input NAND gate and there may be thousands of 

these in the circuit. 

Run times for iSPLIT are very fast. For circuits of a few hundred 

transistors, the runtime is a few seconds or less. For larger circuits, the 

runtime may be on the order of minutes, and will be longer if the user has 

defined cells for analog macromodels. However, compared to the time 

required for simulating the circuit at the electrical level, the runtimes are 

quite acceptable. 

8.6. MIXED-MODE SIMULATION EXAMPLE 

In this section, a 1 K-bit CMOS static RAM, which was implemented 

based on an existing industrial design as shown in Fig. 8.8, is used as an 
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example for mixed-mode simulation [SAL94B]. The focus here is mainly 

on the overall speed of simulation while producing the correct results. The 

speed comparisons are representative of typical mixed-mode simulators 

available today. 
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Memory circuits are excellent applications for mixed-mode simula­

tors since they combine digital blocks such as decoders, buffers, and flip­

flops with analog blocks such as lumped-RC networks, pass transistors and 

sense amplifiers. Furthermore, the size of these circuits can often exceed 

the limitations of SPICE. In the architecture of this particular memory cir­

cuit, the memory cells are organized in a 32x32 configuration. Each cell 

consists of 6 transistors. Hence, 10 address lines are used in the row and 

column decoders to select one of the 1024 cells available. A sense 

amplifier is used to amplify the voltage difference between the bit and bit 

bar lines and the output is sent to a tri-state data output driver. This 1 K-bit 

RAM contains 7698 transistors, 128 resistors, 208 external capacitances 

and has a total of 2908 nodes. 

For mixed-mode simulation, all the peripheral circuits can be simu­

lated in the digital domain while the memory cell array, column switches 

and sense amplifiers should be simulated in the analog domain. To reduce 

the simulation time, the local feedback cross-coupled inverters in each 

memory cell should be modeled in digital domain, as depicted earlier in 

Fig. 7.9. Manually converting the circuit into a mixed-mode description is 

very time-consuming and sometimes leads to inaccuracies, as explained 

above. This is because the logic gates must first be recognized and then 

the parameters of the gates must be extracted precisely so that correct 

results can be obtained when the digital-to-analog interface is encountered. 

Therefore, an automatic mixed-mode partitioner, such as iSPLIT, should 

be used to speed up the conversion process. After iSPLIT is employed, the 

circuit contains 2293 gates at logic level and 2472 transistors at the electri­

cal level (mixed-mode II). iSPLIT required only 10 seconds to perform 

the conversion. If the pair of cross-coupled inverters in each memory cell 

are kept at the electrical level, then the circuit contains 6568 transistors at 

the electrical level (mixed-mode I). Table 8.1 lists the simulation results 
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of lK-bit static RAM. 

As the results indicate, mixed-mode simulation in iSPLICE3 is over 

40 times faster than a traditional circuit simulator such as PSPICE. Part of 

the speed improvement is provided by the block ITA method which is 5 to 

10 times faster than traditional circuit simulation. The remainder of the 

speedup, of roughly 5, is provided by mixed-mode simulation. In general, 

the speedup for a given circuit will depend on the number of transistors 

that are simulated at the electrical level since this is the most expensive 

mode of simulation. This is obvious when the runtimes of mixed-mode I 

and mixed-mode II are compared. In the final mixed-mode circuit, 

approximately one-third of the circuit is still at the transistor level, so the 

speedup is not expected to be very large. Note also that, since most of the 

cells are not selected during the operation of the memory circuit, they 

Program 
Transistor CPU-time 

Speedup 
Electrical Logic % of Analog (sec.) 

PSPICE 
7698 0 100 35125 version 6.0 1 

iSPLICE3 
electrical 7698 0 100 4099 8.6 

iSPLICE3 
6568 1130 

mixed-mode I 
85.3 1935 18.2 

iSPLICE3 
2472 5226 

mixed-mode II 32.1 822 42.7 

Table 8.1: Performance Comparisons on SUN SPARCstation 10. 
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remain inactive over long periods of time. In fact, the activity of very 

large memory circuits is extremely low since only one cell is selected in 

any given cycle (although all the cells in a row may be turned on during 

the operation). This limits the speed improvement when the cross-coupled 

electrical inverters are replaced by logic inverters. However, the speedup 

over direct methods will continue to grow with the memory circuit size 

due to the cost of the matrix solution. 

To illustrate the accuracy aspects of mixed-mode simulation, Fig.8.9 

shows the waveforms obtained by using pure electrical level simulation 

and the mixed-mode II partitioning described above. In Fig. 8.9, two criti­

cal nodes are compared. One is the output of the pre-sense amplifier and 

the other is the data output bit (DOUT). As the figure indicates, the results 

of the two simulations are very similar except at the beginning of the tran­

sient solution of the pre-sense amplifier output. This is because there is a 

small timing difference in the bit and bit bar lines in the two simulations. 

After the pre-sense amplifier, the difference is amplified and results in a 

different transient starting point in the output of pre-sense amplifier. Thus, 

this node is very sensitive in the two types of simulations. However, the 

output node (DOUT) is almost indistinguishable in the two simulations. 

Therefore, with proper attention to logic modeling, parameter extraction 

and the mixed-mode interface, mixed-mode simulation can provide accu­

rate simulation results with substantially shorter runtimes compared to 

traditional circuit simulation. 
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CHAPTER 9 

ANALOG MULTILEVEL SIMULATION 

9.1. INTRODUCTION 

SPICE and its derivative programs remain the primary simulation 

tools in use today by analog designers. However, over the past decade 

analog circuit designs have increased in complexity to the point where the 

basic techniques used in SPICE are not fast enough to produce a solution 

in a reasonable amount of time. Currently, system-level design, modeling 

and simulation are being emphasized to cope with the complexities of 

these large designs. As in the digital case, an analog designer would like 

to specify portions of the analog circuit at a higher level of abstraction in 

order to carry out functional verification. For example, the designer may 

wish to represent a filter block in terms of an s-domain transfer function, 

rather than specifying all the transistors and their interconnections, to 

evaluate a proposed architecture of an analog system before a detailed 

design begins. And ideally, the entire system could be specified in some 

form of standard analog hardware description language (AHDL) similar to 

the languages that have emerged for digital hardware description. 

An example of a typical analog system is shown in Fig. 9.1 which 

depicts an oversampled ND converter. This circuit consists of a filter 

block followed by a sample-and-hold stage, a LL\ modulator and a decima­

tion filter. The circuit is driven by clocks which have high frequencies 

relative to the input signals of interest. In this type of circuit, the designer 

would like to explore the design space and evaluate certain design trade­

offs at the system level. In order to accomplish this, the high-level models 

and parameters for each block could be specified in some form of AHDL, 
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and the analysis could be performed using a high-level simulator to deter­

mine if the overall architecture is suitable. If so, each block could be indi­

vidually designed to meet the desired specifications. 

On the other hand, if the entire circuit were simulated at the electri­

cal level, the time-steps used in the simulation would be governed by the 

highest frequency clock signal driving the circuit and the smallest time 

constants in the circuit. Therefore, a sizable number of time points would 

be computed for each clock period. Since the simulation interval of 

interest to the designer in these circuits usually involves a large number of 

clock cycles, the overall simulation would be prohibitively expensive. So, 

to simulate systems of this type, new tools are needed that are well beyond 

the capabilities of SPICE. 

To address this complexity issue, an important goal in analog simu­

lation has been to develop a multilevel simulation environment that incor­

porates all of the different levels of simulations shown in Fig. 1.1, and 

described in Sections 1.3 and 1.4. Great progress has been made in this 

area recently and a number of simulators have been developed to fill the 

need. These includes AMP [RUM89], ATTSIM [ATT91], DESIGN 

CENTER [MIC94], ELDO [ANA93], iMACSIM [SIN91], ARCHSIM 

[ANT93], CONTEC SPICE [CON93], MIDAS [WIL92], M3 [CHA92] 

and SABER [VLA90], to name a few. Table 9.1 contains a partial list of 

commercial analog multilevel simulator. iMACSIM [SIN91] is included 

as a reference for some of the implementation mechanisms described in 

this book. Note that because there is not yet a mature and standard analog 

HDL, the language used for behavioral description is quite different 

among the simulators. Nevertheless, s-domainlz-domain transfer function, 

differential equation and difference equation are commonly provided to 

describe the behavior of analog system. 
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Program/Company Type Behavioral Ideal/Non-Ideal !Electrical 

iAccuSim II I HDL-A, S, Z, AID, D/A, Switch, Direct Matrix 
Mentor Graphics DT SamplelHold, Peak 
Corp. Detector etc. 

ATTSIM I CLanguage, S, Same as Behavioral Direct Matrix 
AT&T-Design Z, DT, DS 
Automation 

ContecSPICE I C primitives, S, Switch, Integrator, Direct Matrix 
Contee Inc. Z,DT Arbitrary Func. etc. 

Eldo I HDL-A, S, Z, Integrator, Opamp, S/H, ITA and 
Anacad Inc. DT,DS PWM, VCO, etc. Direct Matrix 

PSPICE I ABM,S, Math. Func., Filter, Limiter, Direct Matrix 
Microsim COrp. Expression Func. Table Look-Ups etc. 

Saber I MAST, S,Z, VCO, PLL, AID, D/A, Direct Matrix 
Analog Inc. DT,DS opamps, etc. 

Spectre I Spectre-HDL, S, Z, VCO, PLL, AID, D/A, Direct Matrix 
Cadence Inc. Profile, DT, DS Mux, opamps, etc. 

iMACSIM I Analog HDL, S, Switch, Control sources ITA and 
University of Illinois Z, DT, DS Direct Matrix 

Legend S: S-domain transfer function, Z: Z-domain transfer function, DT: Differential 
equation, DS: Difference equation 

Table 9.1: Survey of Analog Multilevel Simulators and 
Their Capabilities 
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In this chapter, techniques for the simulation of analog systems in 

time-domain are described. Issues in analog multilevel simulation are 

addressed in Section 9.2. Behavioral level simulation methodologies of 

continuous-time and discrete-time systems are discussed in Sections 9.3 

and 9.4. Mixed continuous/discrete simulation is described in Section 9.S. 

The architecture of the iMACSIM multilevel analog circuit simulator is 

outlined in Section 9.6. Then, two analog multilevel simulation examples 

are illustrated in Section 9.7. Finally, in Section 9.8, a macromodeling 

and simulation environment are described. Although frequency-domain 

simulation is also very important for analog circuits, it is beyond the scope 

of this book. The interested reader may refer to [KUN90] for details on 

this subject. 

9.2. SIMULATION ISSUES 

Many systems today are designed using a combination of discrete­

time components and continuous-time components. For example, a com­

mercial stereo codec chip uses a continuous-time anti-aliasing filter at the 

input, a discrete-time :2:L1. AID converter implemented in switched­

capacitor technology, and a number of digital signal processing CDSP) 

blocks. The DSP blocks are followed by a D/ A converter and another ana­

log filter block which selects the signal for eventual output. A complete 

simulation of this chip in a program such as SPICE would not be feasible. 

In fact, SPICE does not have a true discrete-time simulation capability for 

switched-capacitor simulation. However, a system of this type could be 

efficiently simulated using a mixture of continuous-time methods of 

SPICE and the discrete-time methods of a program such as SWITCAP 

[FAN83]. This issue of mixed continuous/discrete simulation is discussed 

in Section 9.S. 

The simulation problems posed by analog designs are not solely a 
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function of their larger sizes. Many small circuits, such as phase-locked 

loops (PLL) and switched-capacitor filters, can be very time-consuming to 

simulate if a SPICE-like program is used. This is due primarily to the 

disparity between the relatively large simulation intervals of interest to the 

analog designer and the small time-steps that SPICE takes during the solu­

tion process [MA92]. For example, when simulating a PLL, one is 

interested in the amount of time it takes for the circuit to lock on to the 

input frequency. The locking process may take hundreds or even 

thousands of clock cycles to occur. This often translates into days of 

actual simulation time. To be able to simulate these circuits in a reason­

able amount of time without sacrificing needed accuracy, the designer 

needs an event-driven multilevel simulation environment which supports 

macromodeling and the optimization of models. 

Analog behavioral modeling and simulation are still open areas of 

research [RUT93, SAL94A, SIN94A]. A standard high-level description 

language is still needed for analog applications ranging from low frequen­

cies up to microwave frequencies. The behavior of a system should be 

expressible in the time-domain or frequency-domain. In the time-domain, 

continuous systems can be mathematically characterized by linear or non­

linear differential equations, and discrete systems by difference equations. 

In the frequency-domain, the corresponding representations are algebraic 

expressions in terms of the Laplace transform variable, s, and the z­

transform variable, z. Since the behavior can be specified in either the 

time-domain or the frequency-domain, it is very important that efficient 

algorithms be used to perform transformations between these different 

model representations. The techniques to simulate analog circuits 

behaviorally are outlined in Sections 9.3 and 9.4. 
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9.3. CONTINUOUS· TIME BEHAVIORAL MODELS 

At the behavioral level it should be possible to describe individual 

blocks in terms of s-domain transfer functions or using differential equa­

tions, and models written in AHDL. Each of these options is described 

below. 

9.3.1. Behavioral Models using a Hardware Description Language 

It is widely-accepted that a standard analog hardware description 

language (AHDL) is needed for the description, documentation and 

exchange of analog design data. An AHDL would allow the designer to 

quickly define the structure and behavior of new blocks needed for a simu­

lation. Some simulators have user-defined controlled sources that allow a 

variety of different models to be incorporated into the simulator. How­

ever, there are limitations on the type of elements that this approach can 

handle. Other simulators currently allow this to be performed using an 

existing programming language. A C or C++ file is created containing the 

functions needed by the rest of the simulator. The designer specifies the 

input and output nodes, partitioning information, setup and preprocessing 

information, and scheduling information. These functions, along with the 

necessary data structures, are then compiled and linked to the program to 

create an executable routine that includes the new behavioral block. Of 

course, analog designers are not eager to use embrace this approach 

because it is not a natural way to specify an analog design. 

In other cases, proprietary languages have been developed for this 

purpose. Each language is different from the other and this does not allow 

models to be exchanged between programs easily. A standard AHDL 

would greatly enhance the ability to perform behavioral simulation 

because a large database of analog components could be developed and 

reused by different customers and vendors. Currently, MHDL [MHL91] 

and VHDL-A [VHD91] are the two languages under development with the 
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intention of eventually being standardized. While space does not permit 

us to provide the details of these efforts, the reader is encouraged to survey 

the literature on this important activity. 

9.3.2. s-domain models 

The general behavior of a system can be viewed as a transformation 

of a set of input signals into a set of output signals. Thus, a suitable 

representation for the analog behavior of a system is the input/output 

transfer function. For a linear, time-invariant, continuous-time system, the 

s-domain representation of the transfer function is usually specified as 

H(s). This is a frequency-domain characterization of the impulse response 

of a linear system, h(t). It provides valuable information to the analog 

designer about the magnitude and phase response of the system and is, 

therefore, preferable to the time-domain representation. On the other 

hand, a time-domain representation can capture all the nonlinearities of the 

system and should be used if these nonlinearities are important to the 

overall performance. 

The transfer function, H(s), provides information about the system 

poles and zeros that indicate the stability of the system. It is normally 

expressed as a ratio of polynomials, as follows: 

H( ) ao + a I s + ... + apsP N ( s \ 
S = +r=~+r 

bo + bls + ... + bq_lsq- 1 + sq D(s) (9.1) 

where p < q and r is a remainder term. For simulation, H(s) must be first 

transformed into the time-domain. Several methods have been proposed 

to perform this transformation as described below. The techniques are 

categorized according to their modeling and the mathematical methods 

used. 
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1) State-space representation and numerical integration method 

This approach is perhaps the most popular of all the methods to be 

described [CHA92, VIS88, SIN91, TRI90]. For an input excitation U(s), 

the output yes) is given by: 

yes) = H(s)U(s) = ~~:~ U(s) + rUes) 

Define an auxiliary system M(s), given by 

M(s) =..lli& 
D(s) 

and Eq. (9.3) can be rewritten as 

(9.2) 

(9.3) 

(sq + bq_1sq- 1 + ... + bIs + bo)M(s) = U(s) (9.4) 

The corresponding q-th order differential equation is: 

We now define q state variables as follows: 

Xl(t) = met) 

X2(t) = Xl(t) 

Then, it follows that: 

X2(t) = m(l)(t) 
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Substituting the above equations into Eq. (9.5) we obtain: 

and the output can be expressed as: 

Yes) = (ao + als + ... + apsP)M(s) + rUes) (9.7) 

In the time-domain, with state variables substituted for the derivatives of 

m we obtain: 

yet) = 3QXI(t) + alx2(t) + ... + apxp+l(t) + ru(t) (9.8) 

Therefore, the controllable canonical-form realization of this transfer 

function is: 

x=Ax+Bu (9.9a) 

y=Cx+Du 

where 

0 1 0 .. 0 Xl 
0 0 1 0 0 
0 0 0 0 

X2 0 .. X3 0 A= X= B= 

0 0 0 1 Xq-l 6 .. 1 
-bo -bl -b2 .. -bq- l Xq 

0] D=r 

and X is the vector of state variables. The system can also be represented 

in the observable form which is essentially the transpose of the controlla­

bility form [CHE84]. That is, if Ao, Bo, Co and Do are the system matrices 

of a corresponding observability form, then the two forms are related as 
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follows: 

(9.9b) 

where A T refers to the matrix transpose of A. 

With the above transformations, the result is a system of first-order 

linear differential equations that can be solved using numerical integration, 

as described in Chapter 2. Each unidirectional s-domain block can be 

solved separately with its own time-step control to keep local truncation 

error bounded within specified limits. The time-step control algorithm dis­

cussed in previous chapters for electrical-level subcircuits can also be 

applied here. At a given time point the algorithm will compute the next 

acceptable time-step for each s-domain block, which will be scheduled 

accordingly. It is important to note that it is not possible to determine the 

initial output values of a transfer function block for a time-domain tran­

sient analysis by setting s=O in the transfer function. This limit specifies an 

initial value for steady-state analysis. Therefore, for a transient analysis 

the state variables must be initially be set to zero, and the initial output 

value must be user-specified to maintain consistency with the rest of the 

circuit. 

In addition to the unidirectional s-domain functions discussed above, 

there are cases in which an s-domain transfer function may have both its 

input variable and its output variable connected to the same circuit node. 

For example, the input variable to the block could be current and the out­

put variable could be voltage, or vice-versa. To process such "bidirec­

tional" connections, the state-variable equations of the block must be 

embedded in an MNA formulation of the circuit connected to it. Then, the 

s-domain state equations can be solved simultaneously with the circuit-
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level equations. 

2) State-space Representation and Power Series Method 

A less popular alternative [T AH89] to the above approach is to con­

vert the solution of Eq. (9.9a) into a set of difference equations, as 

described in [CHU75]. First, the state-space equation is formulated as 

shown above. The solution for x(t) in Eq. (9.9a) is given by [CHU75]: 

t 
x(t) = eAtJtQ e-A~Bu('t)d't + eA(t-tQ)x(to) (9.10) 

where eAt is defined by the following infinite power series: 

eAt = 1 + At + i! (At)2 + ... + ~! (At)" + .... (9.11) 

These equations are substituted into yet) in Eq. (9.8) to obtain the overall 

solution. 

Many different approaches to numerically compute the solution to 

x(t) exist. One possible discretization of Eq. (9.10) is as follows 

[CHU75]: 

x[(k + l)T] = eATx(kT) + eATB ~ u(T) + B ~ u[(k + l)T] 

where T is the time unit. This equation can be used to sequence through 

the solution at different time points during the simulation. The main prob­

lem with this approach is that the matrix exponential, eAT, is known to be 

difficult to compute [MOL78]. 

3) SPICE-based Macromodels 

Another approach to the realization of a behavioral model is to 

implement a desired H(s) using basic primitives available in a circuit level 

simulator such as SPICE. In this method, the first step is to modify H(s) 
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by dividing each term of the numerator and denominator by the highest 

power ofs: 

Then, Mason's gain formula [CHE84] is used to construct a function block 

diagram for this system. In this function block diagram, each term of the 

denominator, except for the constant, represents a feedback path whose 

coefficient is the feedback gain and each term of the numerator is a feed 

forward path and its coefficient is the forward gain. As an example, con­

sider the third-order system given by: 

This transfer function is modified by dividing the numerator and denomi­

nator by s3 to produce: 

The corresponding functional block diagram is shown in Fig. 9.2. Based 

on this block diagram, an equivalent circuit macromodel is constructed 

using SPICE primitives [CH089]. The summing point can be realized 

using a nonlinear polynomial dependent VCVS. For the example above, 

the output of the summer would have the equation: 

For the needed integrator blocks, an approximate circuit model is imple­

mented using a linear VCCS, a resistor and a capacitor as shown in Fig. 

9.3. The transfer function of this circuit is: 
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H (s) = Vout(s) = K(1/C) 
I VineS) s+(1IRC) 

where K is the gain of the VCVS. If the capacitor value is IF and the 

resistor value approaches infinity, the transfer function is: 

which provides the integration function. 

4) Other methods 

If the input signal can be expressed in the s-domain, then yes) may 

be calculated by yes) = H(s)U(s), and the inverse Laplace transform can be 

applied to obtain yet). To use this method in the case where a limited 

number of points of the input signal waveform are available, a Fast Fourier 

Transform (FFT) [RUM89] can be used to transform u(nT) into U(s). To 

calculate the inverse Laplace transform, the partial fraction expansion 

method and numerical Laplace transform inversion (NL TI) are used. In 

the partial fraction expansion methods, the poles and residues of the func­

tion need to be calculated. However, this process is known to be very 

expensive if q is large [HAL88]. Another alternative is to numerically 

compute the inverse Laplace transform directly. However, it is only suit­

able for a nonperiod excitation and the error grows as time increases. A 

modified version of NL TI called the stepping algorithm has been proposed 

to bound the error but the computation complexity is the same as solving 

Eq.(9.9) using numerical integration method [VLA83]. 

Another approach is to take the input waveform and convolve it with 

the impulse response of the s-domain block to obtain the time-domain out­

put. The time-domain impulse response can be obtained from the s­

domain transfer function through an inverse Fourier integral. However, 

the convolution approach has been demonstrated to be inferior to the 
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state-variable approach [TRI90]. Its computation time has been shown to 

increase superlinearly as the simulation interval is increased, assuming 

that the sampling time is kept constant, and the memory requirements of 

this approach are very large. 

To summarize the above mentioned methods, the state variable 

approach is preferable because it can be easily embedded into the existing 

electrical simulation scheme, and uses the same numerical integration 

method and time-step control. As for the inverse Laplace method, one 

disadvantage is that the whole input waveform must be known before the 

s-domain blocks are simulated. Also, computing the Inverse Laplace 

transform is computationally intensive. The SPICE macromodeling 

method to represent H(s) is most suitable for extending the abilities of 

SPICE-like simulators. 

9.3.3. Differential Equations 

The simulator should allow the behavior of a block to be specified in 

terms of linear or nonlinear differential equations. The simulation algo­

rithm must provide time-step control during the equation solution process. 

It may not be possible to directly apply the differential equation techniques 

used in circuit simulation to behavioral blocks, since the circuit-level 

equations are assumed to be first-order equations. If the given behavioral 

differential equations are of greater order, they will have to be reduced to a 

set of first-order equations or solved by different numerical algorithms. 

For linear differential equations, one easy way is to use the state-space 

method mentioned in the previous section. 

9.4. DISCRETE· TIME MODELS 

Discrete-time modeling and simulation are important in analog 

system-level design. This is similar to logic simulation for mixed-signal 

designs, as described in Chapter 5. At the behavioral level, the user 
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describes circuit blocks in terms of z-domain transfer functions, difference 

equations, or by models written in an AHDL. At the functional level, 

idealized elements are used to represent the circuit elements, and at the cir­

cuit level the actual elements are used. Each of these options is explored 

below. 

9.4.1. Behavioral AHDL Models 

Discrete-time behavioral models can also be created from an AHDL 

description using the same procedure used for continuous-time models. 

The most prominent difference between the two types of models arises 

from the existence of a master clock for the discrete-time models. The 

master clock specifies the time-points at which the models will be 

evaluated. It is appropriate to use discrete-time behavioral models when 

the behavior of the block is of interest only at certain well-specified points. 

For example, a discrete-time filter may act on its input data only at certain 

clocking instants. Therefore, it would be inappropriate to use time-step 

selection to schedule and evaluate the block at intermediate time-points. 

Alternatively, the discrete-time model may be evaluated when its own 

local clock input is high. This corresponds to an enable input for the 

model which may be driven by an internal node. In this case, the model is 

very similar to a standard logic block. 

9.4.2. Difference Equations and z-Domain Models 

Discrete-time models can be represented using difference equations 

or z-domain transfer functions. Difference equations take the following 

form: 

y[k+q] + b1y[k+q-l] + b2y[k+q-2]+" . +boy[k] = 

aou[k+q] + alu[k+q-l] + ... +aqu[k] 

where u is the input, y is the output, and y[k] is defined as y(kT) with T as 
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the sampling period. This type of equation can be entered directly into the 

simulator since it is a time-domain representation of a discrete-time func­

tion. A z-domain function takes the form: 

H Y(z) ao + aIz-I + ... + apz-P N(z) (9.12) (z) = = - + r = + r 
U(z) 1 + bIz-I + ... + bqz-q D(z) 

where p < q. This equation is the discrete-time counterpart of the formula­

tion described above for s-domain models. Therefore, to map this function 

to the time-domain, a similar procedure is used. Let m(k)=m(kT) 

represent the time response sampled with a sampling period T and define q 

state variables as follows: 

Xl (k - 1) = m(k - q) 

X2(k - 1) = m(k - q + 1) 

xq-I(k -1) = m(k - 2) 

xq(k-l)=m(k-l) 

and 

Then, the state equations can be expressed in controllable canonical form 

as: 

xI(k) 0 1 0 .. 0 xI(k - 1) 0 
x2(k) 0 0 1 .. 0 x2(k-1) 0 

= + : u(k) 
xq_~(k) 0 0 0 1 xq-ICk - 1) 0 
xq(k) 

.. 
xq(k -1) 1 

-bq -bq- 1 -bq-2 .. b I 

and 
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y(k) = [ap ap_1 

Numerical integration is not required in the case of z-domain transfer func­

tions. At each sampling time-point, the values of the state variables and 

the output value are updated using the canonical form. Note that, as in the 

case of s-domain transfer functions, DC conditions for z-domain block 

must be user-specified to maintain consistency with the other subcircuits. 

It is not possible to derive DC conditions from the transfer function alone. 

9.4.3. Functional Simulation 

At the functional level, a charge-conserving, discrete-time algorithm 

can be used to simulate circuits such as switched-capacitor filters. For 

example, the methods used in SWITCAP [FAN83] are appropriate here. 

At this level, a combination of ideal switches, VCVSs and capacitors is 

sufficient to model linear switched-capacitor circuits. The discrete-time 

algorithm solves a set of charge-based equations once per clock phase. 

The underlying assumption is that complete charge transfer is achieved 

instantaneously after a clock transition. This approach has the virtue of 

being several orders of magnitude faster than a SPICE-like approach. The 

drawback is that second-order effects which introduce signal distortion 

cannot be easily modeled. In addition, resistive effects are not included in 

this approach. 

We now describe the approach using the simple switched-capacitor 

integrator circuit shown in Fig. 9.4. The capacitor, Cs, is called the sam­

pling capacitor, and C1 is the integrating capacitor. A simple two-phase, 

non-overlapped clocking scheme is used to generate the two ideal switch 

controls, <1>1 and <1>2. The opamp is modeled as an ideal voltage­

controlled voltage source with gain a. Charge transfer from the input to 
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Cs takes place during <1>1 and charge redistribution occurs between Cs and 

CI during <1>2. 

An MNA formulation is used to be consistent with the method used 

in the continuous-time domain. In each of the two phases, charge­

conservation equations are written for each node, and branch constitutive 

relations are added to form the MNA matrix. Let qsl denote the charge 

that flows through switch S 1, qs2 the charge through S2, qu the branch 
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charge through the independent voltage source, and qv the branch charge 

through the VCVS. In phase k with Sl closed (CPl high, and S2 open), the 

complete set of equations describing the behavior of the circuit can be 

expressed in terms of an MNA matrix and a vector of unknowns as: 

o 0 0 0 1 0 1 0 
vf o Cs 0 0 o 0 -1 0 0 

o 0 CI -CI 0 0 o 0 v:i< Csv:i<-l 
vf CI(vf-1 - vl'-l) o 0 -CI CI 0 1 o 0 vl' CI(vl'-1 - vf-1) 

1 0 0 0 o 0 0 0 = uk qu 
o 0 a 1 o 0 0 0 qv 0 
1 -1 0 0 o 0 0 0 qsl 0 

0 o 0 0 0 o 0 0 1 (};2 

Correspondingly, in phase k + 1, with S 1 open and S2 closed, the equa­

tions are: 

o 0 0 0 1 0 0 0 
vf+l o Cs 0 0 000 1 0 

o 0 CI -CI 0 0 0 -1 
v:i<+ I Csv:i< 
vf+l C1(vf - vl') 

0 0 -CI CI 0 1 0 0 vl'+l CI(vl' - vf) 
1 0 0 0 000 0 = uk+l qu 
0 0 a 1 000 0 qv 0 
0 0 0 0 001 0 qsl 0 

0 
0 1 -1 0 000 0 qs2 

Of course, in practice there may be more than two phases, depending 

on the specific clocking scheme used. Since the MNA matrices remain 

unchanged in each phase, each such MNA matrix can be computed once 

and then cached for later reuse. The matrices can be stored in an LU­

decomposed form for greater efficiency. To avoid excessive use of 
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memory, a limit should be set on how many such matrices can be cached, 

especially when there are a large number of phases. 

The simulation interval is usually made up of hundreds, or possibly 

thousands, of clock cycles. During a transient simulation, one MNA 

matrix is evaluated in every clock cycle and a new phase is signaled by a 

clock transition. The program checks the switch settings in the new phase 

against stored values to determine whether this setting has been encoun­

tered before. If it has, the appropriate MNA matrix is accessed and used to 

solve the system of linear equations. Otherwise, a new MNA matrix is 

created from element stamps. This process continues until all the phases 

have been processed. 

9.5. MIXED CONTINUOUSIDISCRETE SIMULATION 

It is clear that a complete analog multilevel simulator should provide 

all the levels shown in Fig. 1.1 and perform both discrete-time and 

continuous-time simulation. In fact, for some circuits such as the over­

sampled ND converter shown in Fig. 9.1, a mixed continuous/discrete 

simulation capability is essential for efficient simulation. The filter at the 

front end could be simulated using an s-domain transfer function or at the 

electrical level. The modulator, which is usually implemented as a 

switched-capacitor circuit, could be modeled at the functional level in the 

discrete-time domain. Finally, the decimation filter could be described in 

terms of a z-domain transfer function or as a discrete-time behavioral 

block. This combination of discrete-time and continuous-time models is 

well-suited to the natural structure of the circuit and would provide func­

tional verification and first-order timing information in a short time. 

Table 9.2 shows the combined simulation hierarchy that would be 

needed in a true mixed continuous/discrete simulator. There are two basic 

issues that must be considered when designing this type of simulator. The 
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Behavioral 
Level 

Functional 
Level 

Circuit 
Level 

Continuous Time 

s-domain functions, 
differential equations 
and blocks described in 
AHDL 

Nonlinear and 
linear controlled 
sources, Logic 
gates, ADC, DAC, 
opamps etc. 

Transistors, 
Diodes, 
Capacitors, 
Resistors, 
Inductors 
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Discrete Time 

z-domain functions, 
discrete-time equations and 
blocks described in AHDL 

Voltage-controlled 
switches, voltage source 

Capacitors, 
Transistors 

Table 9.2: Mixed ContinuouslDiscrete simulation 

first is the design of a mechanism to maintain a consistent solution for the 

circuit at any given time point in the simulation interval. In the case of a 

continuous-time subcircuit, the inputs and outputs are of interest at every 

timepoint in the interval considered. It is inherent in the time-point selec­

tion that the output value at any intermediate time can be interpolated from 

the values at the time-points. However, for a discrete-time subcircuit the 

inputs and outputs are of interest only at certain discrete-time instants 

associated with some clocks or sampling processes. The simulator must 

convey the appropriate information from continuous-time to discrete-time 

subcircuits (and vice-versa) as needed during the simulation process, and 
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synchronization must be maintained between the different subcircuits. 

The second issue concerns convergence to a solution in the presence 

of discontinuities. An element such as an ideal switch can have a very 

sharp transition at its output when it turns on. In fact, the voltages at its 

output terminal can change almost instantaneously. In some cases these 

voltages may be the inputs to continuous-time electrical-level or 

functional-level subcircuits. The integration methods used at the electrical 

and functional levels are extremely prone to convergence problems and 

numerical errors in the presence of sharp transitions or discontinuities. 

Furthermore, the local truncation error checking schemes used in conjunc­

tion with the integration methods have to be modified. This is due to the 

fact that voltages at the affected circuit nodes prior to the transition cannot 

reliably be used as predictors of the voltages at the circuit nodes after the 

transition, since the relative voltage change per unit time may be large. 

An event-driven paradigm can be used to maintain consistency of the 

solution in the two domains. It would operate as follows. A given circuit 

is partitioned by the simulator into discrete-time and continuous-time sub­

circuits, based on the models specified by the user. For a continuous-time 

subcircuit, an event is defined to occur when the state of one or more of its 

nodes changes, as described Chapter 4. When an event occurs, a subcir­

cuit will try to schedule all of its fanout subcircuits for processing by the 

simulator. As shown in Fig. 9.5, a continuous-time subcircuit can fanout 

to either discrete or continuous-time subcircuits. With reference to the 

figure, a continuous-time subcircuit can schedule another continuous-time 

subcircuit but a discrete-time subcircuit can only be scheduled by a spe­

cially designated clock input. On the other hand, whenever the output of a 

discrete-time subcircuit changes, it can schedule any continuous-time sub­

circuit on its fanout list. This mechanism ensures that a discrete-time sub­

circuit will not be scheduled at an inappropriate time and also permits 
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------.. ~ Signal flow 
- - - - .... Event-driven flow 

continuous-time 
electrical 

discrete-time 
electrical 

continuous-time 
electrical 
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ICLK2 

continuous-time 
electrical 

Figure 9.5: Combined Simulation of Continuous and 
Discrete Time Structure 

latency in the circuit to be exploited. 

Another important issue that must be considered is that a clocking 

signal for a discrete-time subcircuit may not be known in advance. The 

user should have the option of either completely specifying the clocking 

signal in advance before the simulation, or deriving it from internal nodes 
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in the circuit, whose behavior is not known a priori. In general, this prob­

lem may exist even in purely continuous-time circuits containing elements 

whose behavior changes at some threshold (usually a threshold voltage). 

If suitable constraints are not imposed, the time-step selection algorithm 

may not schedule a threshold element to be processed at the exact time 

that its threshold is reached, and this would give rise to a timing error in 

the simulation. The issue of determining the exact scheduling time for 

cases in which the behavior of the clocking signal is not known a priori 

(nondeterministic clocks) is discussed in more detail in [BED91, SIN94B]. 

9.6. iMACSIM: A CASE STUDY 

The architecture of an analog multilevel simulator must achieve the 

goal of incorporating all of the techniques and algorithms described to this 

point within a single unified framework. In order to provide a specific 

context for the discussion, the architecture of iMACSIM [SIN91] will be 

used as an example. As described below, the notions of flexibility, exten­

sibility, modularity and ease-of-use with AHDLs were key considerations 

in its design. 

The overall architecture of iMACSIM is shown in Fig. 9.6. It con­

sists of a programming interface called he algorithmic backplane, which 

contains sparse matrix routines, a scheduler package, waveform processing 

routines, and input/output routines. Several different algorithms are 

shown that plug directly into the backplane. Each algorithm has a 

corresponding set of models dedicated to it. A given model will be pro­

cessed only by its associated algorithm. This modular architecture enables 

new algorithms or models to be easily added or removed, providing the 

program with a high degree of adaptability. The algorithmic backplane is 

a procedural interface for the simulation algorithms. It consists of a set of 

macros and subroutine calls that allow the algorithm developer to access 
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Models 

Algorithmic 

Backplane FFT Analysis 

Linear Frequency 
Domain 

Analog Behavioral 
1-...-_____ ----11-----1 Al orithm 

Figure 9.6: Simulator Architecture 

data structures and operations without a detailed understanding of the rest 

of the program. 

Fig. 9.6 shows some of the simulation algorithms which are already 

attached to the backplane. The iterated timing analysis (ITA) algorithm, 

described in Chapter 4, performs electrical level simulation. The analog 

behavioral algorithm controls both discrete-time and continuous-time 

models. The associated models include s-domain functions and 

continuous-time blocks, and z-domain functions and discrete-time blocks. 

The logic algorithm processes behavioral descriptions of logic gates, as 

described in Chapter 5. The SC algorithm processes switched-capacitor 

subcircuits in the time-domain, as described earlier in this chapter. Since 
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iMACSIM uses an event-driven paradigm, the inner loop of the program is 

an event processor which is identical to that described in Chapter 8. 

9.7. SIMULATION EXAMPLES 

This section illustrates multilevel simulation and mixed 

continuous/discrete simulation in iMACSIM using two simple examples. 

The first example is a PLL-based clock generator [SHE88] shown in Fig. 

9.7 that contains 205 MOS transistors. To speed up the simulation time, 

I 

---l 

i_pd 
-. 1-------eVCO_in 

I .----41.---, - I 

Ie 
IR 
I 

z s _ (l+RCs) 
( )-Cs[(1+C2/C)+RC2S] 

L _______ _ 

Figure 9.7: Charge Pump, Filter and VCO of Clock-Generator 
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the circuit was represented using an s-domain model and behavioral logic 

models. The low-pass filter in the PLL has the impedance transfer func­

tion: 
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Figure 9.8: Comparison of Voltage at the VCO Input and Output 
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and was represented by an s-domain block which has a single bidirectional 

connection to the rest of the circuit. 

The digital phase detector was modeled using 40 logic gates in its 

behavioral description. To maintain a high level of accuracy, it was 

important to keep the nonlinear VCO at the electrical level, and 9S transis­

tors from the original electrical description were used to model it. Fig. 9.8 

compares waveforms obtained from the electrical and multilevel circuit 

descriptions. One waveform is at the input of the VCO while the other is 

at the output of the VCO. The results are comparable, and the observed 

speedup is 2.SX for multilevel simulation over detailed electrical simula­

tion. This is reasonable considering the number of transistors used in the 

multilevel simulation. 

To demonstrate the effectiveness of the mixed continuous/discrete 

simulation capability, the switched-capacitor voltage-controlled oscillator 

[HOS84] shown in Fig. 9.9 will be used. Two separate simulations were 

conducted in iMACSIM. In the first case, the Schmitt trigger was modeled 

at the behavioral level using the C language (iMACSIM_B), and in the 

second case it was modeled at the electrical level using transistors 

(iMACSIM_E). In the second case, a mixed continuous/discrete simula­

tion was performed: a discrete-time algorithm for the switched-capacitor 

portion of the circuit and a continuous-time algorithm for the Schmitt 

trigger circuit. The same circuit was then simulated in PSPICE [PSP90], 

with switches and logic gates available in the program, using only 

continuous-time simulation. 

The run times for these cases are shown in Table 9.3. Fig. 9.10 com­

pares the waveforms for the two cases when V _control is swept from -S to 

+S V. In accordance with the results presented in [SUY89], the oscillation 

frequency changes from SOO Hz to IS00 Hz. iMACSIM, with a transistor 

level description for the Schmitt trigger (row 2) was 18X faster than 
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Continuous-time 
subcircuits 

Figure 9.9: Switch-Capacitor Voltage-Controlled Oscillator 
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PSPICE (row 1). The result for the behavioral Schmitt trigger was lOX 

faster than the electrical Schmitt trigger. The results from the two simula­

tions are not identical since the accuracy of the behavioral model of the 

Schmitt trigger is limited. However, this example demonstrates that good 

speedups and acceptable accuracy can be obtained using a mixed 

continuous/discrete approach. 
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Program Run-time(sec) 

PSPICE v4.05 
(electrical Schmitt) 

2540 

iMACSIM 136 
(electrical Schmitt) 

iMACSIM 13 
(behavioral Schmitt) 

Table 9.3: Run Time for VCO on Sun SPARC2 

9.8. A MACROMODELING AND SIMULATION ENVIRONMENT 

We now describe various techniques for macromodeling and present 

a complete system for analog macromodeling and simulation. A brief dis­

cussion of the macromodeling process was presented earlier in this chapter 

for linear models, but general macro modeling issues were not described. 

The essence of macromodeling is to capture the important input/output 

characteristics of a complex circuit in a simplified model called a macro­

model. The simulation is then performed using a number of these 
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macro models to reduce the overall simulation time. This has also been 

referred to as model order reduction. 

There are a number of ways to generate macromodels for a given 
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transistor level circuit block. The manual approach has been used for 

many years and relies on the knowledge and intuition of the designer. 

This has proven to be very successful, although there is an enormous 

amount of work involved in developing a complex macromodel that 

includes all of the desired effects and is accurate across different applica­

tions. However, once it has been developed, the runtime advantages of 

using a macromodel are also enormous. Automatic macro model genera­

tion requires very little effort on the part of the designer, but has only been 

successful in a number of limited situations, namely, linear circuits. Of 

course, as the research progresses, it is anticipated that this approach will 

be preferred over the manual approach. 

Two approaches have been explored recently to automatically gen­

erate the macromodels for linear or linearized (small-signal) circuits. One 

uses symbolic analysis [GIE89, SED88, FER91] to generate the circuit 

equations. Several hierarchical analysis methods [HAS89, HAS91, 

JOU94] and simplication methods [FER92, SED92, HSU93] have made 

symbolic analysis more useful for applications such as circuit analysis and 

synthesis. A detailed description of symbolic analysis may be found in 

[GIE91]. Another approach is to perform model order reduction through 

the use of asymptotic waveform evaluation (AWE) [PIL90, RAG93] or 

other moment matching techniques. These methods have proven to be 

useful in the analysis of interconnect structures and various networks con­

taining large linear structures with nonlinear terminations. Conceptually, 

AWE extracts a small set of dominant poles from a large network. The 

interested reader should consult reference [CHI94] for a detailed descrip­

tion of AWE along with its applications. 

The macromodeling process in the nonlinear case is mainly manual 

at present. Little progress has been made in the automatic generation of 

nonlinear macromodels. One disadvantage common to most of the high-
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level simulators available today is the large effort required on the part of 

the designer to create a new macromodel. To circumvent this problem, a 

large library of useful macromodels usually accompanies most commercial 

simulators. However, if a needed macromodel is not available in the 

library, the long and tedious process of creating a new one must be under­

taken. 

For circuit designers who do not have a CAD background, creating 

the necessary macromodels can be a frustrating experience. Usually the 

designer must have programming skills in a language such as C or FOR­

TRAN in addition to possessing a good working knowledge of the simula­

tor. To compound the problem, newly developed primitives often have 

numerical problems that the designer is unaware of such as nonconver­

gence, discontinuities, numerical overflow, and so on. It would be useful 

to identify these problems before the macromodels are used in an actual 

simulation. In order to automate this entire process, the designer should be 

able to specify a macromodel in a hardware description language that is 

specifically tailored for analog designs. The designer's description should 

be checked for potential numerical problems without the designer needing 

to be aware of the internal workings of the simulator [MA92, CHA92, 

VIS88]. Finally, the macromodel should be automatically optimized to 

deliver the intended performance. 

A suite of programs has been developed at the University of Illinois 

to serve as a vehicle for demonstrating these concepts. It includes an 

AHDL language translator called iMacGen [MA92], a numerical con­

sistency checker called iMacChk [MA92] and an optimizer called 

iMAVERICK [JU91]. iMacGen and iMacChk have been tailored to inter­

face with iMACSIM. Ideally, a fully automated macromodeling tool 

would automatically create the desired macromodel, incorporate the neces­

sary primitives into the simulator, and then optimize any macro model 
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parameters to match the behavior of the original circuit. However, a sys­

tem with these features is rather unrealistic at this point in time. Instead, 

these tools address the most tedious and time-consuming portions of 

macromodel, and leave the creative part in the hands of the designer. 

Fig. 9.11 shows the overall structure of the macromodeling process 

using these tools. First, the designer identifies the circuit block to be 

replaced by a macromodel and constructs a macro model using primitives. 

The primitives that do not already exist can be added to the simulator in an 

AHDL format through iMacGen. The integrity and functionality of the 

newly created primitives must be checked before they can be safely used. 

For this purpose, iMacChk is used to detect some of the common problems 

that the primitives might have in the user-specified region of operation. 

After all the primitives have been entered and checked, a macromodel with 

a set of adjustable parameters can be constructed. The optimizer, 

iMA VERICK, is used to fine tune the macro model parameters to the 

designer's specifications. 

Fig. 9.12 provides an overview of iMacGen. This program accepts a 

model description provided by the designer in an AHDL format, checks its 

syntax, and then generates a device model in C for the iMACSIM pro­

gram. The syntax of the language is based on combination of VHDL and 

C. The VHDL constructs provide structure for the definition of the new 

model while the C language is used for equation specification. The equa­

tions are extracted and passed to Mathematica [WOL91], a well-known 

symbolic analysis package, so that the derivatives needed by the simulator 

can be generated. These derivatives, along with the element equations, are 

used to build the matrix stamp of the device. The input/output information 

is used to build scheduling tables for the device. The parameters, their 

default values, and their range of permissible values are converted into ini­

tialization and bounds checking routines. Finally, afew tables are updated 
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to make the new primitive a recognized element for iMACSIM users. 

Fig. 9.13 provides an overview of iMacChk. Mathematica [WOL91] 

is again used to perform many of the symbolic and specialized numerical 

operations needed in iMacChk. Since the user is allowed to specify multi­

ple regions of operation for a new primitive, iMacChk examines the model 

AHDL input deck 

Entity 
I/O Nodes 
Device Parameters 
Model Parameters 

Architecture 
Device Type 
Equations 

Macromodel Simulator 

Multilevel 
Simulator: 
iMACSIM 

iMacGen 

Use Mathematica 
for symbolic 
com utations 

Compile and link 
with the 
macromodel 

Figure 9.12: Overview of iMacGen 
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Macromodel 
Simulator iMacChk AHDL input deck 

Verify model 
Entity 

liD Nodes 
functionality. Device 

Parameters 
Check for Model 

Multilevel function Parameters 
and derivative Architecture 
continuity. Device Type 

Check for 
Equations 

numerical 
overflow. 

Curve fitting 
for 

Mathematica© discontinuous 
functions. 

Figure 9.13: Overview of iMacChk 

function and its derivatives for continuity by numerically integrating the 

function and its derivatives across the user specified regions of operation. 

At all breakpoints, the left and right limits of the function and its deriva­

tives are checked for equality. It also detects potential overflow/underflow 

problems in the model by systematically sampling the function and identi­

fying the regions in which the value is undefined. iMacChk contains 
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signal-handlers to identify and report numerical overflow. At the present 

time, the user is required to correct any problems identified by the pro­

gram. 

The iMAVERICK system, as shown in Fig. 9.14, is a closed-loop 

verification and optimization system, which not only checks the validity of 

macromodels, but also has the capability of optimizing the macro models 

to improve accuracy. The circuit designer initially provides a transistor 

level description of the circuit block under consideration, a corresponding 

time-domain macromodel with a number of adjustable parameters, and a 

set of target specifications. The input excitations used to verify the transis­

tor circuit and a reasonable range for each parameter are also provided by 

the designer. It is assumed that these input excitations, which are used for 

circuit simulation, capture all the important performance characteristics 

needed in the macromodel so that it can be used in place of the real circuit 

in a particular application. 

The optimization can be performed using any mIX of scalar and 

waveform target specifications. Any number of waveforms and target 

specifications can be provided to the system. The method described below 

assuming that, waveform quantities are being compared. Two sets of 

waveforms, generated by a circuit simulator and a macromodel simulator, 

respectively, are used as input to a waveform consistency checker. The 

output waveforms can be time-domain and/or frequency-domain responses 

of the circuit. The consistency checker performs a set of comparisons 

between two sets of waveforms and returns a value indicating the relative 

proximity of the waveforms. If the macromodel does not compare favor­

ably with the transistor level circuit based on these waveforms, the param­

eters are adjusted and the simulation and consistency checking cycle is 

repeated. This optimization process continues until the desired level of 

accuracy is achieved or the maximum allowable CPU-time is exceeded. 
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Reference 
Circuit 

User Effort 

Figure 9.14: Overview of iMAVERICK System 

9.9. SUMMARY 

275 

This chapter has focused on the extension of analog simulation tech­

niques to include multilevel simulation and mixed continuous/discrete 

simulation. With the full analog modeling and simulation hierarchy in 

place, it is now possible to mix and match all the levels shown in Fig. 1.1. 

For mixed-signal simulation, the circuit can now be described at many 
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levels of abstraction both on the digital side and the analog side. Tools for 

macromodeling, verification and optimization have been described to 

assist with this process on the analog side. Together, virtually any form of 

time-domain simulation of entire mixed-signal systems is now possible. 

Although frequency-domain techniques are also important for analog cir­

cuits, they are outside the scope of this book. 
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CHAPTER 10 

CONCLUSIONS AND FUTURE WORK 

10.1. SUMMARY 

A variety of techniques for mixed-mode and analog multilevel simu­

lation have been described in this book. The primary focus in mixed­

mode simulation was the combination of the gate-level, switch-level tim­

ing and electrical forms of simulation. In analog multilevel simulation, 

the mixing of continuous-time simulation with discrete-time simulation 

was the primary focus. 

Chapter I began with an overview of the different levels of simula­

tion and provided the motivation for combining two or more levels into 

one simulator. Then, the basic issues in mixed-mode simulation were out­

lined, and a brief survey of existing mixed-mode simulators was provided. 

In Chapter 2, the electrical simulation problem was formulated and stan­

dard numerical techniques used to solve the problem were presented. The 

issues associated with the implementation of an efficient time-step control 

scheme were also described. In Chapter 3, two properties of waveforms, 

called latency and multirate behavior, were defined and used to motivate 

the need for new circuit simulation methods. The relaxation-based electri­

cal simulation methods were introduced to exploit these waveform proper­

ties, and their theoretical aspects were described. Circuit partitioning 

methods to improve the convergence speed of relaxation methods were 

presented at the end of the chapter. 

The electrical, gate-level and switch-level timing simulation algo­

rithms were presented in Chapters 4, 5 and 6, respectively. These tech­

niques make use of the event-driven, selective-trace paradigm which forms 
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a common thread for all algorithms used in mixed-mode simulation. The 

main contribution of Chapter 4 was an event-driven circuit simulation 

algorithm to exploit latency, and a new partitioning algorithm to ensure 

the convergence of Gauss-Seidel-Newton relaxation in the presence of 

MNA elements. The evolution of logic states and logic delay models was 

presented in Chapter 5. The development of the Elogic simulation and 

modeling approach was described in Chapter 6. 

Chapter 7 addressed the important issue of the mixed-mode inter­

face. Signal conversions from the analog domain to the digital domain 

and vice-versa were described. The problem of X state handling that faces 

most commercial programs was also addressed. Examples were used to 

illustrate potential problems of the various interface models in use today. 

In Chapter 8, the implementation details of a mixed-mode simulator 

were presented. First, the overall architectural issues were described, fol­

lowed by a summary of the transient analysis techniques used and event 

scheduling policies enforced between the different levels of simulation. 

The issues associated with the implementation of event schedulers were 

also described in detail. A technique for the dc solution of mixed-level 

circuits was outlined. Next, the techniques for automatic mixed-mode par­

titioning were detailed. Finally, a mixed-mode simulation example was 

provided to show that large speedups could be obtained without sacrificing 

accuracy. 

Chapter 9 was devoted to the simulation problems of analog mul­

tilevel simulation. After motivating the need for this type of simulation, 

the requirements of analog multilevel simulation based on circuit-related 

issues were developed. Then, a number of commercial simulators were 

surveyed. Next, the simulation techniques for continuous-time behavioral 

models and discrete-time models were described in detail. This was fol­

lowed by the implementation issues associated with the design of the 
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iMACSIM simulator. Finally, the concepts embodied in a complete 

macromodeling and simulation environment were outlined. 

10.2. AREAS OF FUTURE WORK 

Although a substantial amount of work has been done in mixed­

mode simulation and analog multilevel simulation, there are still many 

promising areas of future work. In particular, simulation of coupling 

effects in mixed-signal ICs and the development of an analog hardware 

simulation language are important areas of research in the near future. 

These topics are outlined below. 

10.2.1. Coupling Effects in Mixed-signal ICs 

One problem not addressed in this book is the simulation of the cou­

pling effects in mixed-signal ICs. Parasitic coupling of digital switching 

noise to analog circuits on the same chip through direct capacitive cou­

pling and interaction via the common substrate may corrupt analog signals 

and degrade the performance of mixed-signal ICs [VER93, MAS92]. 

Thus, accurate simulation of the effects of digital switching noise coupling 

into analog nodes, and crosstalk between analog nodes are required to 

determine the true performance of mixed-signal ICs. 

Traditionally, this problem has been minimized by employing con­

servative layout design, and any problems were addressed after fabrication 

of the chip. Now, due to the advance in mixed-mode simulation, along 

with new model generation and reduction techniques, the coupling effects 

of a circuit block or even the entire circuits may be simulated in a reason­

able amount of time. Other sources of problems in mixed-signal designs 

include VDD bounce, ground bounce, and IR drops along the power lines. 

These topics have also been the subject of recent research in this area. 
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10.2.2. Analog Hardware Description Languages 

As mentioned earlier, there are currently two major efforts underway 

towards the standardization of analog hardware description languages 

(AHDLs) [SAL94A]. Generally speaking, MHDL is cast as a solution for 

circuits with high analog content (including purely analog circuits) while 

VHDL-A provides a uniform environment for predominantly digital cir­

cuits with some analog functions. The languages provide constructs to 

represent the structure and behavior of the design. Hierarchy and inheri­

tance are necessary attributes of these languages that allow a system to be 

represented at various levels of abstraction. Behavior is expressed through 

model constructs and structure is represented through connectivity and 

hierarchical decomposition mechanisms. 

The outcome of the standardization efforts will have a significant 

impact on the way analog design is carried out in the future. It is generally 

agreed that a standard AHDL is urgently needed in the analog design com­

munity. What is not so clear is the form of AHDL that would be widely 

accepted by tool vendors and analog designers, who will eventually have 

to represent their designs using the language. Furthermore, the scope of 

the language in not generally agreed upon. In order to capture all of the 

necessary features, an AHDL would have to be comprehensive in its cov­

erage as it may be used in synthesis, testing, documentation, and data 

exchange in addition to simulation. Such a language would be difficult to 

learn quickly and would require an enormous effort to implement for the 

vendors. If the scope of the language were limited, its lifetime would be 

rather limited. It is clear that an intermediate position must be taken to 

establish an AHDL that could serve the present needs of the analog com­

munity, with the potential to grow as the needs change in the future. 

Since analog HDLs allow the interconnection of instances of a model 

ill any fashion, this presents a problem when devices represented in 
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different domains are connected at the same node [SAL94A, SIN94]. A 

worst-case interconnection is shown in Fig. 10.1. Of course, an HDL is 

not responsible for resolving the problems due to this connection, but 

merely to give a precise and unambiguous meaning to the description. So 

this type of interconnection is permissible but the meaning is open to 

interpretation. In fact, there may be several different "resolutions" for the 

same connection depending on the user and the tool reading the descrip­

tion. For example, if a time-domain simulation is being requested, all fre­

quency domain models would be converted to the time domain before the 

analysis begins. This conversion could be performed automatically, or an 

error message generated if the conversion is not possible. The resolution 

of all of the conflicts created by the connection shown in Fig.10.1 should 

provide fertile ground for future work in AHDL. 

10.3. CONCLUSIONS 

Mixed-mode simulation and analog multilevel simulation are now 

well-accepted forms of simulation in industry for mixed-signal ICs, and 

for analog circuits described at multiple levels of abstraction. A wide 

variety of simulators have been developed, both in industry and academia, 

and many are in use today. As described in this book, the key contribution 

of mixed-mode and analog multilevel simulation is that they offer the 

designer the ability to intelligently trade off simulation and modeling pre­

cision for simulator performance within the scope of a single simulator. 

This permits the designer to choose detailed simulation where accuracy is 

essential and higher forms of simulation where less accuracy can be 

tolerated. 

A second important theme of the book is that multilevel simulators 

provide a uniform environment for designers to develop ideas from initial 

concepts to the final circuit schematics and accommodates both top-down 
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and bottom-up design styles, or any form in between. Designers can focus 

on system level or architectural issues in the preliminary phase of the 

design and progressively add more detail as design decisions are made at 

each level of abstraction. In addition, designers can mix and match dif­

ferent levels of abstraction in a single schematic diagram to convey the 

important aspects of a circuit design. These different representations can 

be captured easily in a mixed-mode and analog multilevel simulation 

environment and later used to verify the circuit operation and perfor­

mance. Finally, these types of simulators are flexible and extensible and 

provide high performance in circuit verification. These features combine 

to place them among the most important tools in VLSI design. 
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