
MIXED-MODE SIMULATION
AND

ANALOG MULTILEVEL SIMULATION

THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE

VLSI, COMPUTER ARCHITECTURE AND
DIGITAL SIGNAL PROCESSING

Consulting Editor
Jonathan Allen

Other books in the series:

PIPELINED ADAPTIVE DIGITAL FILTERS, Naresh R. Shanbhag, Keshab K. Parhi
ISBN: 0-7923-9463-1

TIMED BOOLEAN FUNCTIONS: A Unified Formalism for Exact Timing Analysis, William
K.C. Lam, Robert K. Brayton
ISBN: 0-7923-9454-2

AN ANALOG VLSI SYSTEM FOR STEREOSCIPIC VISION, Misha Mahowald
ISBN: 0-7923-944-5

ANALOG DEVICE-LEVEL LAYOUT AUTOMATION, John M. Cohn, David J. Garrod,
Rob A. Rutenbar, L. Richard Carley

ISBN: 0-7923-9431-3
VLSI DESIGN METHODOLOGIES FOR DIGITAL SIGNAL PROCESSING
ARCHITECTURES, Magdy A. Bayoumi

ISBN: 0-7923-9428-3
CIRCUIT SYNTHESIS WITH VHDL, Roland Airiau, Jean-Michel Berge, Vincent Olive

ISBN: 0-7923-9429-1
ASYMPTOTIC WAVEFORM EVALUATION, Eli Chiprout, Michel S. Nakhla

ISBN: 0-7923-9413-5
WAVE PIPELINING: THEORY AND CMOS IMPLEMENTATION,
C. Thomas Gray, Wentai Liu, Ralph K. Cavin, III

ISBN: 0-7923-9398-8
CONNECTIONIST SPEECH RECOGNITION: A Hybrid Appoach, H. Bourlard, N. Morgan

ISBN: 0-7923-9396-1
BiCMOS TECHNOLOGY AND APPLICATIONS, SECOND EDITION, A.R. Alvarez

ISBN: 0-7923-9384-8
TECHNOLOGY CAD-COMPUTER SIMULATION OF IC PROCESSES AND DEVICES,
R. Dutton, Z. Yu

ISBN: 0-7923-9379
VHDL '92, THE NEW FEATURES OF THE VHDL HARDWARE DESCRIPTION
LANGUAGE, J. Berge, A. Fonkoua, S. Maginot, J. Rouillard

ISBN: 0-7923-9356-2
APPLICATION DRIVEN SYNTHESIS, F. Catthoor, L. Svenson

ISBN :0-7923-9355-4
ALGORITHMS FOR SYNTHESIS AND TESTING OF ASYNCHRONOUS CIRCUITS,
L. Lavagno, A. Sangiovanni-Vincentelli

ISBN: 0-7923-9364-3
HOT-CARRIER RELIABILITY OF MOS VLSI CIRCUITS, Y. Leblebici, S. Kang

ISBN: 0-7923-9352-X
MOTION ANALYSIS AND IMAGE SEQUENCE PROCESSING, M. I. Sezan, R. Lagendijk

ISBN: 0-7923-9329-5
HIGH-LEVEL SYNTHESIS FOR REAL-TIME DIGITAL SIGNAL PROCESSING: The
Cathedral-II Silicon Compiler, J. Vanhoof, K. van Rompaey, I. Boisens, G. Gossens,.H. DeMan

ISBN: 0-7923-9313-9 \

MIXED-MODE SIMULATION
AND

ANALOG MULTILEVEL SIMULATION

Resve Saleh

Shyh-Jye Jon

University of Illinois

A. Richard Newton

University of California

~ . • ,
SPRINGER SCIENCE+BUSINESS MEDIA, LLC

Library of Congress Cataloging-in-Publication Data

Saleh, Resve A., 1957-
Mixed-mode simulation and analog multilevel simulation / Resve

Saleh, Shyh-Jye Jou, A. Richard Newton.
p. cm. -- (Kluwer international series in engineering and

computer science)
Includes bibliographical references and index.
ISBN 978-1-4419-5144-1 ISBN 978-1-4757-5854-2 (eBook)
DOI 10.1007/978-1-4757-5854-2
1. Computer simulation. 1. Jou, Shyh-Jye. II. Newton, A.

Richard (Arthur Richard), 1951- . III. Title. IV. Series.
QA76.9.C65S26 1944
621.3815'01'13--dc20 94-20345

CIP

Copyright © 1994 by Springer Science+Business Media New York
Originally published by Kluwer Academic Publishers in 1994

AU rights reserved. No part of this publication may be reproduced, stored in
a retrieval system or transmitted in any form or by any means, mechanical,
photo-copying, recording, or otherwise, without the prior written permission of
the publisher, Springer Science+Business Media, LLC.

Printed on acidlree pa per.

TABLE OF CONTENTS

PREFACE .. IX

ACKNOWLEDGEMENTS Xl

1. INTRODUCTION.......................... 1

1.1 THE SIMULATION PROBLEM 1

1.2 LEVELS OF SIMULATION FOR DIGITAL CIRCUITS 4

1.2.1 Electrical Simulation ... 6

1.2.2 Gate-Level Simulation .. 7

1.2.3 Switch-Level Simulation ... 8

1.2.4 Register-Transfer Level Simulation 9

1.2.5 Behavioral Level Simulation 10

1.3 LEVELS OF SIMULATION FOR ANALOG CIRCUITS 10

1.3.1 Behavioral Simulation ... 12

1.3.2 Ideal Functional Simulation 12

1.3.3 Non-Ideal Functional Simulation 12

1.3.4 Electrical Simulation ... 13

1.4 MIXED-MODE AND ANALOG MULTILEVEL
SIMULATION .. 14

1.5 BASIC ISSUES IN MIXED-MODE SIMULATION 19

1.6 A SURVEY OF EXISTING SIMULATORS 23

1.7 OUTLINE OF THE BOOK ... 25

2. ELECTRICAL SIMULATION TECHNIQUES 31

2.l EQUATION FORMULATION ... 31

2.2 STANDARD TECHNIQUES FOR TRANSIENT
ANALYSIS ... 36

2.3 TIME-STEP CONTROL: THEORETICAL ISSUES 41

2.3.1 Constraints on Step Size ... 42

2.3.2 Solution of Nonlinear Equations 50

2.4 TIME-STEP CONTROL: IMPLEMENTATION ISSUES 52

VI CONTENTS

2.4.1 LTE Time-Step Control

2.4.2 Iteration Count Time-Step Control

3. RELAXATION-BASED SIMULATION TECHNIQUES

3.1 LATENCY AND MULTIRATE BEHAVIOR

3.2 OVERVIEW OF RELAXATION METHODS

3.2.1 Linear Relaxation

3.2.2 Nonlinear Relaxation

3.2.3 Waveform Relaxation

3.2.4 Partitioning for Relaxation Methods

4. ITERATED TIMING ANALYSIS

4.1 EQUATION FLOW FOR NONLINEAR RELAXATION

4.2 TIMING ANALYSIS ALGORITHMS

4.3 SPLICE!.7 - FIXED TIME-STEP ITA

4.4 CIRCUIT PARTITIONING

4.4.1 MNA Elements

4.4.2 New Sufficient Condition of Convergence

4.4.3 A Partitioning Algorithm

4.5 GLOBAL-VARIABLE TIME-STEP CONTROL

4.6 ELECTRICAL EVENTS AND EVENT SCHEDULING

4.6.1 Latency Detection ;
4.6.2 Events and Event Scheduling
4.6.3 Latency in the Iteration Domain

5. GATE-LEVEL SIMULATION .. .

5.1 INTRODUCTION

5.2 EVOLUTION OF LOGIC STATES

5.2.1 Two-State Logic Model

5.2.2 Ternary Logic Model

5.2.3 A Four-State Logic Model

5.2.4 A Nine-State Logic Model

5.3 CHARACTERIZATION OF SWITCHING PROPERTIES

53

55

57
58
64

64

68

72

74

77

77
79

85
88

89
91

93

103
107
107
113

118

123

123

125

125

128

133

135

136

CONTENTS

5.4 LOGIC SWITCHING DELAY MODELS

5.5 LOGIC SIMULATION ALGORITHM

6. SWITCH-LEVEL TIMING SIMULATION

6.1 INTRODUCTION

6.2 SWITCH-LEVEL SIMULATION .. .

6.3 A GENERALIZATION OF THE NINE-STATE LOGIC
MODEL

6.4 SIMULATION USING THE GENERALIZED MODEL

6.4.1 Electrical-Logic Simulation

6.4.2 The Elogic Algorithm .. .

6.4.3 Problems with the Elogic Approach

6.5 A SURVEY OF SWITCH-LEVEL TIMING SIMULATORS

7. THE MIXED-MODE INTERFACE

7.1 ANALOG TO DIGITAL INTERFACE

7.2 DIGITAL TO ANALOG INTERFACE

7.3 MIXED-MODE INTERFACE TEST CIRCUITS

8. MIXED-MODE SIMULATION AND IMPLEMENTATION

8.1 SIMULATOR ARCHITECTURE .. .

8.2 EVENT SCHEDULER DESIGN .. .

8.3 TRANSIENT ANALYSIS AND EVENT SCHEDULING

8.4 DC ANALYSIS TECHNIQUES

8.5 AUTOMATIC MIXED-MODE PARTITIONING

8.5.1 Program Overview

8.5.2 Channel-Connected Transistor Groups

8.5.3 Recognition of User-Defined Components

8.6 MIXED-MODE SIMULATION EXAMPLE

9. ANALOG MULTILEVEL SIMULATION

9.1 INTRODUCTION

vii

144

150

153

153

154

157

162

162

168

170

173

179

179

184

195

203

203

206

210

213

217

218

218

227

229

235

235

viii CONTENTS

9.2 SIMULATION ISSUES ... 239

9.3 CONTINUOUS-TIME BEHAVIORAL MODELS 241

9.3.1 Behavioral Models Using a Hardware Description
Language ... 241

9.3.2 s-Domain Models .. 242

9.3.3 Differential Equations ... 250

9.4 DISCRETE-TIME MODELS .. 250

9.4.1 Behavioral AHDL Models .. 251

9.4.2 Difference Equations and z-domain Models 251

9.4.3 Functional Simulation ... 253

9.5 MIXED CONTINUOUS/DISCRETE SIMULATION 256

9.6 iMACSIM: A CASE STUDy.. 260

9.7 SIMULATION EXAMPLES ... 262

9.8 A MACROMODELING AND SIMULATION
ENVIRONMENT ... 266

9.9 SUMMARY ... 275

10. CONCLUSIONS AND FUTURE WORK 277

10.1 SUMMARy... 277

10.2 AREAS OF FUTURE WORK 279

10.2.1 Coupling Effects in Mixed-Signal ICs 279

10.2.2 Analog Hardware Description Languages 280

10.3 CONCLUSIONS .. 281

REFERENCES ... 283

INDEX ... 297

ABOUT THE AUTHORS ... 301

IX

PREFACE

Our purpose in writing this book was two-fold. First, we wanted to

compile a chronology of the research in the field of mixed-mode simula­

tion and analog multilevel simulation over the last ten to fifteen years. A

substantial amount of work was performed during this period of time but

most of it was published in archival form in Masters theses and Ph.D.

dissertations. Since the interest in mixed-mode simulation and analog

multilevel simulation is growing, and a thorough review of the state-of­

the-art in the area was not readily available, we decided to publish the

information in the form of a book.

Secondly, we wanted to provide enough information to the reader so

that a prototype mixed-mode simulator could be developed using the algo­

rithms in this book. The SPLICE family of mixed-mode, programs is

based on the algorithms and techniques described in this book and so it

can also serve as documentation for these programs.

In this new edition of the book, we have added a substantial amount

of information on the mixed-mode interface in Chapter 7 and automatic

mixed-mode partitioning in Chapter 8. We have also improved the review

of existing mixed-mode simulators so that the reader is better able to select

the most appropriate one for their application. Chapter 9 is a new chapter

on analog multilevel simulation. The iMACSIM program, developed at

the University of Illinois, is based on the contents of this chapter, so it

serves as documentation for this program.

Although, there are some omissions of other relevant research work

III this book, space limitations did not allow us to include everything.

However, some of the other research has already been published by

Kluwer Academic Publishers and others, and we wanted to avoid any

duplication.

xi

ACKNOWLEDGEMENTS

The authors dedicate this book to Prof. D. O. Pederson for inspiring

this research work and for providing many years of support and encourage­

ment. The authors enjoyed many fruitful discussions and collaborations

with Jim Kleckner, Young Kim, Alberto Sangiovanni-Vincentelli, Jacob

White and Jaidip Singh, and we thank them for their contributions. Jaidip

Singh, Tom Thatcher, Victor Ma, Dave Overhauser and Narendra Jain also

provided useful contributions to the new version. We also thank the

countless others who participated in the research work and read early ver­

sions of this book. Lillian Beck proofread the text and provided many

suggestions to improve the manuscript. Yun-Cheng Ju did the artwork for

the most of the illustrations. Mei-Hsin Wu assisted with the text and new

illustrations for this edition of the book. The second version was also

reviewed by Uma Ekambaram, Luis Amaya and Brian Antao. Jaidip

Singh and Xiaocun Xu prepared most of the new simulation results pro­

vided in the book.

The Semiconductor Research Corporation provided a substantial

amount of funding for the body of work presented in this book. We grate­

fully acknowledge their continuing support for research and education in

this area. Other funding and computer equipment was provided by the

Natural Sciences and Engineering Research Council (NSERC) of Canada,

the Hewlett-Packard Company, Toshiba Corporation, Digital Equipment

Corporation, Analog Devices and Motorola Inc., and we appreciate their

contributions.

1. INTRODUCTION 1

CHAPTER 1

INTRODUCTION

1.1. THE SIMULATION PROBLEM

Computer simulation is used in a variety of different fields to predict

the behavior of physical systems whenever it is inappropriate, or too

expensive, to build the actual system to observe its behavior. In electrical

engineering, circuit simulation is used routinely in the design of integrated

circuits (lC) to verify circuit correctness and to obtain detailed timing

information before an expensive and time-consuming fabrication process

is performed. In fact, it is one of the most heavily used computer-aided

design (CAD) tools in terms of CPU-time in the IC design cycle. The

popularity of this form of simulation is primarily due to its reliability and

its ability to provide precise electrical waveform information for circuits

containing complex devices and all associated parasitics.

Detailed circuit simulation has been used extensively for IC design

since the early 1970s. However, the ever-increasing number of devices on

a single silicon chip has led to development of a number of higher-level

simulation tools to cope with the complexity of the problem. In digital IC

design, these tools include behavioral simulators, register-transfer level

(RTL) simulators, gate-level logic simulators, and switch-level simulators.

These programs have been used to verify circuit functionality and to

obtain first-order timing characteristics. Typically, the higher-level tools

provide enough information to design working circuits. However, there is

still a significant time lag between a functioning circuit and a circuit which

meets the design specifications - particularly in the case of high­

performance custom integrated circuits. In fact, circuit simulation is the

2 MIXED-MODE SIMULATION

only tool which provides enough detail to ensure that circuits of this type

will meet specifications over a wide range of circuit parameters and

operating conditions.

At the present time, the most popular circuit simulation tool is the

SPICE2 program [NAG75]. There are many thousands of copies of this

program in use, as well as a number of versions of "alphabet-SPICE" (e.g.,

HSPICE, PSPICE, IGSPICE) being marketed commercially. All of these

programs offer a wide variety of analyses including dc analysis, time­

domain transient analysis, ac analysis, noise analysis and distortion

analysis. Of these, the time-domain transient analysis is the most compu­

tationally expensive in terms of CPU-time. The SPICE program was ori­

ginally designed to simulate circuits containing up to 100 transistors.

However, at certain companies, this program is often used to simulate cir­

cuits containing over 10,000 transistors at great expense! The program is

accessed over 50,000 times per month at some of companies with a "job

mix" that conforms to the 80-20 rule. That is, 80% of the SPICE runs are

on small circuits which consume only 20% of the total CPU-time used

each month, while 20% of the jobs are very large and consume 80% of the

CPU-time used each month. Today, designers require simulators that can

accommodate digital circuits with 500,000 to 1,000,000 transistors in a

single run. Therefore, the development of fast but accurate simulation

methods for very large-scale integrated (VLSI) circuits continues to be an

important area of research and development.

With the advent of submicron technologies and faster clock speeds,

complex VLSI systems including both analog and digital circuits have

been integrated onto a single chip. It is estimated that roughly 60% of all

semi-custom ICs includes some analog circuitry, and 30% of all standard

cell designs include analog functions that account for 10% of the chip

area. The percentage is even higher for custom ICs such as voltage

1. INTRODUCTION 3

regulators, phase-locked loops, filter codecs, line equalizers, ISDN line

interface circuits, line cards, DSP with on board AID and D/ A, speech

recognition circuits, FDM transducers, power up/down sense circuits, and

dial tone/pulse generators. This proliferation of mixed-signallCs has lead

to problems in almost every area of Ie development including design, lay­

out, fabrication, testing, and manufacturing.

The trend of integrating complete analog/digital systems on a single

chip has also resulted in new challenges in modeling and simulation. First

of all, problems in analyzing these circuits arise due to the different

modeling and simulation approaches used for analog and digital circuits,

and differences in their accuracy requirements. The different approaches

must be combined in a consistent manner so that entire systems can be

simulated with the appropriate speed/accuracy tradeoff. Secondly,

system-level design is being emphasized to cope with the complexities of

large designs. In this context, behavioral modeling and simulation are

essential to the validation of a proposed architecture before a detailed

design begins. This has been used in digital system design for many years

with great success. Designs are described and simulated at the behavioral

level using standard hardware description languages. Unfortunately, in the

analog domain, circuits are still designed and verified at the electrical

level, despite the fact that circuit simulation is very time-consuming. For

mixed-signal simulation, it is essential to provide an analog modeling and

simulation environment similar to the digital domain, that would allow the

designer to model components at the behavioral level and then perform

system-level analog simulation. With this capability, the overall architec­

ture of a proposed mixed-signal design could be verified at a high-level in

a reasonable amount of time. After the verification process, the detailed

design could be performed based on specifications derived from the high­

level simulation.

4 MIXED-MODE SIMULATION

This book addresses the problems of simulating entire mixed

analog/digital systems in the time-domain. A complete hierarchy of

modeling and simulation methods for analog and digital circuits is

described. Fig. 1.1 lists all the levels in the hierarchy for the two domains.

These levels are briefly described in the sections to follow as a motivation

for techniques developed in the rest of the book.

1.2. LEVELS OF SIMULATION FOR DIGITAL CIRCUITS

This section provides an overview of the different levels of simula­

tion that have been used in digital circuit design. It begins by describing

the most detailed level and then moves to progressively higher and higher

levels of abstraction. Each level is illustrated in Fig. 1.2 for a CPU design.

Digital Analog

Behavioral Behavioral

RTL / Gate Ideal Functional

Switch Level Non-Ideal Functional

Electrical Electrical
Figure 1.1: Levels of Simulation

1. INTRODUCTION

--

a = b+c;
IF (a !=O)

x = y;
ELSE

x = z; - - -

RAM ALU ROM

II II 11

CONTROL

.. - - -

Behavioral Level

.......

RTL Level

.......
r-----------------~~~/

/

- -
Gate Level Switch and Circuit Level

Figure 1.2: Levels of Abstraction in Digital Simulation

5

6 MIXED-MODE SIMULATION

1.2.1. Electrical Simulation

Electrical or circuit level simulation provides the greatest amount of

detail. The electrical transient analysis problem in SPICE involves the

solution of a system of nonlinear, first-order, ordinary differential equa­

tions. These equations model the dynamic characteristics of the circuit for

a set of applied input voltages and initial conditions. The solutions are

voltage waveforms across pairs of circuit nodes and current waveforms

through circuit elements. Usually the designer is interested in only a sub­

set of the entire set of solutions.

Standard circuit simulators use direct methods to solve the circuit

equations. Briefly, direct methods employ some form of numerical

integration to convert nonlinear differential equations into a set of non­

linear difference equations. These equations are solved simultaneously

using the iterative Newton-Raphson method. This involves a conversion

of the nonlinear equations into linear equations, and their subsequent solu­

tion using a sparse LU decomposition technique [NAG75]. There are two

limitations in this approach that make it inappropriate for large circuits.

One fundamental problem is that the sparse linear solution dominates the

run time for large circuits [NEWS3]. The second limitation is that, at each

time point, all the variables in the system are solved using a common

time-step based on the fastest changing component in the system. This

can be inefficient for both small and large circuits, but it is more

significant for very large problems where most of the components are

either changing very slowly or not changing at all.

A variety of techniques have been investigated to improve the per­

formance of circuit simulators. Early work in this area includes timing

simulation [CHA75, NEW7S, DEMSO], which is a simplified form of

relaxation-based circuit simulation, and tearing methods, which have been

applied at both the linear [SAN77, YANSO, SAKSl] and nonlinear

1. INTRODUCTION 7

[RAB79] equation levels. More recently, the relaxation-based approaches

have been the focus of intensive research. In particular, the Waveform

Relaxation method [LEL82, WHI83] has been implemented in a number

of programs including RELAX [LEL82, WHI83], SWAN [DUM86],

TOGGLE [HSI85], RealAx [MAR85], MOSART [CAR84] and iDSIM

[OVE89]; and Iterated Timing Analysis [KLE83, SAL84], based on non­

linear relaxation, has been implemented in SPLICE rSAL83, KLE84,

ACU89], ELDO [HEN85] and SISYPHUS [GR087].

1.2.2. Gate-Level Simulation

When the complexity of an integrated circuit design reaches the

point at which electrical analysis is no longer cost effective, logic or gate­

level simulation can be used [BRE76j. In logic simulation, transistors are

usually grouped into logic gates and modeled at the gate level. This form

of simplification, sometimes referred to as macromodeling, can result in

greatly enhanced execution speed by reducing the number of models to be

processed and simplifying the arithmetic operations required to process

each transistor group. Rather than dealing with voltages and currents at

signal nodes, discrete logic states are defined, and simple Boolean opera­

tions are used to determine the new logic value at each node. Boolean

operations are generally the most efficient operations available on a digital

computer.

A logic simulator that uses event-driven, selective-trace techniques is

typically 100 to 1000 times faster than the most efficient forms of electrical

analysis. It can also provide first-order timing information, including the

detection of hazards, glitches, and race conditions. In addition, it can pro­

vide output information regarding any illegal states or conflict conditions

that may arise at any node in the circuit. The number of logic states used

in a simulation, their meaning, the logic delay models and the scheduling

8 MIXED-MODE SIMULA nON

algorithm all have a profound impact on both the speed and accuracy of

the results. It is this wide variety of factors that has resulted in the

development of such a large number of logic simulators - almost everyone

addressing a different set of tradeoffs.

1.2.3. Switch-Level Simulation

Recently, switch-level simulation [BRY80, RA089] has become the

preferred form of logic simulation for MOS digital circuits. In this

approach, the circuit is entirely simulated at the transistor level, rather than

at the gate level. The transistors are modeled as gate-controlled switches

and operate as follows: if the transistor is "ON," it is viewed as a closed

switch and it may transfer a signal value from one node to another; if the

transistor is "OFF," it is viewed as an open switch and is incapable of

transmitting any signals through it. The network is composed of a set of

nodes connected by these switches, and the logic value at each node is

determined using this idealized transistor model. Usually a strength is

associated with each transistor switch when in the closed position to model

the conductance of the device. This strength is used to determine the

effective conductance of signal paths from any node to the supply and

ground nodes. The capacitance at each node can also be modeled using a

node strength that is proportional to the size of the capacitance. Many of

the important features of MOS circuits, such as charge-sharing and

bidirectionality, can be modeled using this switch-level model, although

detailed timing and voltage level information are not usually provided.

A number of researchers have attempted to incorporate timing infor­

mation at the switch level at the cost of additional CPU-time. Simulators

that fall into this category are MOTIS [CHE84], RSIM [TER83], ELOGIC

[KIM84], SPECS [DEG84], MOSTIM [RA085], CINNAMON [VID86],

SPECS2 [VIS86] and iDS 1M [OVE88]. Programs such as RSIM treat

1. INTRODUCTION 9

MOS transistors as linear resistors and compute signal transition times

using the Penfield-Rubenstein technique [PEN81], which is an RC-delay

modeling technique. Although the method is extremely efficient, the

overall accuracy of this approach is limited due to the simplified nature of

the delay modeling. MOSTIM and iDSIM determine the delay directly

using lookup tables that are generated during a pre-characterization phase

for recognizable transistor configurations. These tables account for factors

such as device sizes, loading and input slew-rate. The ELOGIC and

SPECS programs compute the delays by using electrically-based table

lookup device models. The waveforms are generated as piecewise linear

segments using the computed delays. Both approaches provide for vari­

able precision by allowing the user to specify the number of voltage or

current levels to be used in the simulation.

1.2.4. Register-Transfer Level Simulation

Register-Transfer Level (RTL) [BRE75] simulation is concerned

with logic circuits described at a higher level of abstraction. Combina­

tional components, (such as gates, multiplexers, decoders, encoders,

adders, and arithmetic units) and sequential components (such as registers

and counters) may be used in RTL simulators. RTL simulation has been

used extensively for data path design. It is used for both the description

and simulation of the designs when evaluating alternative architectures.

The set of statements describing the circuit operation involves a sequence

of register transfers and arithmetic operations that are similar to data-flow

descriptions. In the description, related bits of information are usually

grouped into ordered sets of words or buses for convenience and to estab­

lish logical relationships. Although RTL simulators are widely used to

design computers, they do not usually provide information regarding

races, hazards, illegal states or critical timing constraints.

10 MIXED-MODE SIMULATION

1.2.5. Behavioral Level Simulation

Behavioral level simulators [HIL80, INF84, INS84] allow the

designer to define arbitrary functional blocks, both combinational and

sequential, that can be used in system-level simulation. Two types of

blocks may be defined: structural and behavioral. Structural blocks

describe how a number of functional blocks are interconnected. A

behavioral block contains a detailed description of the operations to be

performed on the inputs to produce the outputs of the block. The state­

ments describing the operations are usually written in a high-level

language, typically a hardware description language (HDL), and then

translated to a standard programming language format and compiled into

the simulator. Within the digital arena, VHDL (VHSIC HDL) [IEE88] and

Verilog [TH091] are fairly mature, well-accepted industrial standards.

When a behavioral simulator is executed, the operations of the system are

emulated. Examples of applications that are appropriate for simulation at

the behavioral level are: verifying the system timing of a CPU; checking a

proposed network protocol for a local-area network; and validating the

operations in DMA controller sequence.

1.3. LEVELS OF SIMULATION FOR ANALOG CIRCUITS

The various levels of simulation discussed thus far are shown on the

left side of Fig. 1.1. In defining this hierarchy of methods, there was a

clear bias towards digital circuits, since they usually dominate most of the

mixed-signal chip area, and tend to profit greatly from hierarchical

representation and the use of the higher levels of simulation. However, as

shown on the right side of the figure, there is also a corresponding set of

levels in the analog domain that has been overlooked until recently. The

various levels in the analog hierarchy are described in the following sec­

tions using the sampled-data filter of Fig. 1.3.

1. INTRODUCTION 1 1

Behavioral Level

C2

OUT
Ideal Functional

'---_____ +-_________ --'l _----'Non-Ideal Functional

Vin! + + Ro
+

Electrical
linear

Ri net- V Vo
work

von

IN-
OUT

lAi
CL

VSS

Figure 1.3: Levels of Abstraction in Analog Simulation

12 MIXED-MODE SIMULATION

1.3.1. Behavioral Simulation

At the highest level IS behavioral simulation [CHA92, GIE92,

SIN91, RUM89, VLA90] which is used when the function of a block is

known but its detailed structure is undefined. At this level, individual

blocks are described in terms of s-domain transfer functions, z-domain

transfer functions, differential equations, difference equations, or some

other form of high-level description. For example, a behavioral level z­

domain transfer function is shown at the top of Fig. 1.3 for a discrete-time

filter. The interaction between behavioral blocks can be described in terms

of signal-flow diagrams that include summers, multiplers, differentiators

and integrators. Ideally, an HDL should be used to define the behavior of

an analog circuit block at this level. Two efforts are currently underway to

develop standard analog hardware description languages [SAL94A]. One

of these is a new language called MHDL [MHD91] for analog/microwave

circuits while the second is aimed at providing analog extensions to the

existing VHDL standard (VHDL-A [VHD91]).

1.3.2. Ideal Functional Simulation

At this level, circuit components, such as ideal opamps, switches,

integrators, and comparators are used. For example, the H(z) function in

Fig. 1.3 can be realized using ideal switches for the MOS transistors,

voltage-controlled voltage sources (VCVS) for the opamps and capacitors

as shown at the ideal functional level. This corresponds to the RTL level

in digital circuits. Although the models are idealized, this level allows the

designer to quickly validate a proposed architecture using standard com­

ponents before the details of the design are considered.

1.3.3. Non-Ideal Functional Simulation

This level is similar to the ideal functional level except that the first­

order and second-order details are included in the models. Non-ideal

1. INTRODUCTION 13

function blocks are commonly referred to in the literature as macromodels.

They are usually constructed by connecting a number of primitive ele­

ments together, each representing some inherent feature of the block being

macromodeled. Relationships between the components within the macro­

model may be defined using linear and nonlinear dependent sources such

as voltage-controlled voltage sources (VCVS), current-controlled voltage

sources (CCVS), current -controlled current sources (CCCS), and voltage­

controlled current sources (VCCS). Complex models that include non­

linear properties, dynamic behavior, limiting effects and detailed

input/output characteristics may be provided at this level. For example, in

Fig. 1.3, piecewise-linear gain, finite bandwidth and input/output resis­

tance have been included in the macro model of the operational amplifiers.

The capacitances and resistances could also be included in the MOS

switches when simulating the switched-capacitor filter circuit. This level

roughly corresponds to the gate and switch levels in the digital domain

that includes timing information and other electrical effects.

1.3.4. Electrical Simulation

Finally, at the most detailed level, electrical simulation is available,

which corresponds directly to the same level on the digital side of the Fig.

1.1. Here, the operational amplifiers would be represented in terms of

their MOS transistors with detailed models as shown in Fig. 1.3. In addi­

tion to time-domain simulation, some frequency-domain analysis capabili­

ties such as ac analysis, sensitivity, noise and distortion must be available

to the analog designers. However, these topics will not be addressed in

this book. The interested reader is encouraged to consult [KUN90] for

more information on this subject.

14 MIXED-MODE SIMULA nON

1.4. MIXED-MODE AND ANALOG MULTILEVEL SIMULATION

The levels of simulation described in the previous two sections are

listed in Tables 1.1 and 1.2 from the highest level of abstraction to the

lowest level. The relative runtime cost and accuracy of each digital simu­

lation level is provided in Table 1.1 for the hypothetical simulation of a

32-bit microprocessor. The corresponding example for the analog levels is

a fifth-order switched-capacitor filter. Although this is a small example, it

is useful for our purpose as it produces extremely long runtimes, and can

easily be represented at each level in the hierarchy. The reader should

notice that the progression from the behavioral level to the electrical level

provides an increase in the accuracy of the simulation at the cost of more

CPU-time. A progression in the opposite direction allows larger and

larger circuits to be simulated for a given amount of CPU-time, or requires

less and less CPU-time to simulate a given circuit. However, each level

uses less precision in its signal representation. This often translates to less

Level Relative Capability and Accuracy
Cost

Behavioral (B) 1 Algorithmic verification,
some timing information

RTL (R) 10 Functional verification,
some timing information

Gate (G) 100 Functional verification,
first-order timing information

Switch (S) 1000 Functional verification,
first-order timing information

Timing (T) 10000 Detailed waveform information
with variable accuracy

Electrical (E) 1000000 Most accurate form of simulation

Table 1.1: Relative Cost and Accuracy of Digital Simulation

1. INTRODUCTION 15

Level Relative Capability and Accuracy
Cost

Behavioral (B) 1 System level verification

Ideal Functional (I) 10 Functional verification,
1st-order electrical
information

Non-Ideal Functional (N) 100 Functional verification,
1 st-order and 2nd-order
electrical information

Electrical (E) 1000 Most accurate form of
simulation

Table 1.2: Relative Cost and Accuracy of Analog Simulation

accuracy in the results due to modeling limitations.

There are many situations for which one level of simulation is not

sufficient for the simulation of an entire design. One common situation

arises in the design of a mixed analog and digital circuit. Logic simulators

do not generally have the capability to model analog circuitry, and it is

usually too expensive to simulate the entire mixed-signal design in a cir­

cuit simulator. In this case, it would be convenient if a simulator that

included both electrical and logic simulation capabilities were available.

Multiple levels of abstraction are commonly used in "top-down" or

"bottom-up" design styles. In both cases, the entire design at any given

point in time may be represented at a number of different levels of abstrac­

tion. One designer may have written the behavioral specification of

his/her portion of the design, while a second is completing the detailed

gate-level design, and a third is performing transistor-level cell library

development. Furthermore, a designer often uses multiple levels of

16 MIXED-MODE SIMULATION

abstraction in a schematic diagram to convey the important aspects of the

design as shown in Fig. 1.4 for a portion of a digital control circuit. To

ensure that a design represented schematically at many levels in the hierar­

chy is functionally correct at any stage of the design process, a simulator

that handles all possible levels of abstraction would be extremely useful.

VDD

Figure 1.4: A Portion of a Digital Control Circuit

1. INTRODUCTION 17

Multilevel simulation can also be used for the purpose of accurate

circuit modeling. For example, standard gate-level simulators are not

capable of simulating the behavior of certain properties of MOS digital

circuits such as bidirectionality and charge-sharing. Therefore, the mixing

of switch-level simulation and gate-level simulation would provide an

effective balance between simulation speed and functional accuracy. On

the other hand, the idealized transistor model in switch-level simulation is

not appropriate for the simulation of certain pass transistor configurations,

and other circuits where the device W IL ratios are important. For these

cases, mixing electrical-level, switch-level and gate-level simulations

would be useful.

All of the situations cited above require a simulator that allows dif­

ferent portions of the circuit to be described and simulated at different lev­

els of abstraction. That is, where accuracy is not a critical issue, higher

levels of simulation can be used, but where proper modeling of the circuit

is a problem or detailed timing information is desired, the lower levels of

simulation can be used. CAD tools that address this need are referred to as

multilevel simulators or mixed-level simulators. Clearly, the most impor­

tant issues in multilevel simulators arise when combining the gate-level

simulation with electrical-level simulation. This is referred to as mixed­

mode simulation and this is the main topic of this book. When the term

mixed-mode simulator is used in general, it usually refers to a simulator

that can simulate the digital part of a mixed-signal design using any of the

levels in the digital hierarchy shown in the left side of Fig. 1.1 while ana­

log part of the design uses the electrical level.

A recent effort in analog simulation is to develop a multilevel simu­

lation environment that incorporates the different levels of simulation

listed in the right side of Fig. 1.1. It allows the designer to represent dif­

ferent portions of the design at any desired level in either the time-domain

18 MIXED-MODE SIMULATION

or the frequency-domain and then choose the desired form of analysis. For

example, the designer could model a discrete-time linear filter using a

behavioral z-domain transfer function representation, and simulate a mul­

tilevel description of the circuit, with some components represented at the

transistor level and others at the behavioral level. The z-domain model

can be processed much more cheaply than the equivalent amount of

electrical-level circuitry. Once the performance of the overall system has

been verified, the detailed design of the filter can be performed at the

transistor level.

Great progress has been made in the development of analog mul­

tilevel simulators but much work still remains, especially in the area of

behavioral simulation and the development of nonideal functional models

to include nonlinearities and noise effects. In addition, the issues of main­

taining consistency when models from different domains are connected to

the same node and performing the necessary transformations are still under

investigation. As a final step in the evolution, the analog simulation levels

should be combined with the digital simulation levels so that both of the

hierarchies in Fig. 1.1 can be mixed and matched easily within a single

simulation environment. The combination of these techniques would pro­

duce a powerful tool that could address most of the problems of mixed­

signal simulation.

This book presents a unified approach to simulation that allows both

mixed-mode simulation and analog multilevel simulation to be combined

in the same environment. The primary focus is mixed-mode simulation in

which circuit simulation is combined with logic simulation. This book

also addresses analog multilevel simulation which is based on a similar

hierarchy of modeling and simulation methods for analog circuits. The

research work in mixed-mode simulation and analog multilevel simulation

over the last 10-15 years is described in detail. This book identifies the

1. INTRODUCTION 19

key advances that have been made in these two areas including: event­

driven electrical simulation, signal mapping across the mixed-mode inter­

face, automatic mixed-mode partitioning, analog behavioral modeling and

simulation and mixed-domain simulation. The algorithms provided in this

book allow the reader to implement prototype analog and mixed-signal

simulators.

1.5. BASIC ISSUES IN MIXED-MODE SIMULATION

This section describes the issues involved in designing a mixed­

mode simulator. The specific issues of analog multilevel simulation are

postponed until Chapter 9, although many of the points raised in this sec­

tion also apply to analog multilevel simulation. The mixed-mode issues

are as follows:

Choice of Simulation Levels: First, and foremost, is the issue of what

types of simulation to include in the simulator. This depends on the

intended application of the simulator. If the design is primarily digital in

nature, the combination of gate, RTL and behavioral simulations would be

appropriate. For MOS designs, it may be better to incorporate gate and

switch-level simulations. For mixed-signal circuit designs containing both

MOS and bipolar transistors, it may be necessary to mix gate, switch and

electrical level simulations. Ideally, one would prefer to combine all the

levels of simulation into one program, but the development time would be

significant.

Simulator Architecture: A mixed-mode simulator must be flexible and

extensible so that algorithms and device models can be added or removed

easily as the technology and the simulator requirements evolve. An

appropriate choice of simulator architecture is necessary to achieve this

goal. The architecture described in this book is based on the use of the

20 MIXED-MODE SIMULATION

event-driven, selective-trace paradigm at all levels of abstraction. This

permits the exclusive simulation of activity, and it is a necessary feature

when simulating large digital systems. It is also consistent with the algo­

rithms commonly used in most simulators, except for standard electrical

simulators, which must be modified to fit within the event-driven frame­

work.

Event Definition and Event Scheduling: To establish event-driven,

selective-trace simulation, the notion of an event must be defined at each

level in the simulator. An event is a change in state of some node in the

circuit that may affect other components in the circuit. The effect of an

event is to cause all fanout components to be processed, and possibly new

events to be scheduled, if changes in their output nodes occur. A key issue

in mixed-mode simulation is to define an event scheduling policy between

different modes of simulation.

Mixed-Mode Interface: A consistent representation for signals over all

simulation levels is critical for accurate mixed-mode simulation. In the

higher levels of simulation, the signal value is usually represented using

hexadecimal values for collections of bits or logic values. At the other

extreme, electrical simulation uses 64-bit double precision words to

represent real values of voltage. A mixed-mode simulator must be able to

manage these different signal types at the interface and map them from

one representation to another without a significant loss in accuracy.

Representation of Time: Time is usually represented as a real number

in electrical simulation and as an integer in logic and higher level simula­

tions. Typically the time steps chosen in electrical simulation are very

small (order of nanoseconds to picoseconds depending on the time

1. INTRODUCTION 21

constants associated with the devices and parasitic elements), whereas in

the logic level and higher levels of simulation, it is usually an integer mul­

tiple of some basic unit of time that depends on the clock period or the

delays of the logic gates, This disparity between the various representa­

tions of time must also be resolved in the mixed-mode environment.

Partitioning: Circuit partitioning is a key factor in obtaining efficiency

and accuracy from mixed-mode simulation. The main question is to deter­

mine which portions of the circuit must be simulated at the most detailed

level and which portions will profit from simulation at higher levels of

abstraction with an acceptable loss in accuracy. The prospects of perform­

ing this task automatically seem formidable, especially in the case of large

circuits. To date, most of the simulators available require that circuit

designers be responsible for the partitioning process, since they are fami­

liar with the nature of the design.

User Interface: Another important consideration when designing a

mixed-mode simulator is the user interface to the simulator. The interface

must be graphics-oriented, highly interactive, and provide the features of

schematic capture, SImulation control and output post-processing. While a

variety of schematic packages with these features do exist commercially,

there are a number of additional requirements in mixed-mode simulation.

First, the front -end must allow a hierarchical representation of the circuit

in which each successive level of the hierarchy implies a different level of

abstraction. That is, each level in the hierarchy represents a different form

of simulation in the associated mixed-mode simulator. This implies that

all of the components representing the circuit at two or more different lev­

els must have the same functional behavior to guarantee correct results.

Therefore. some convenient way of verifying the consistency of different

22 MIXED-MODE SIMULATION

representations of the same circuitry must be provided. The capability of

adding new components, specifically macromodels or high-level RTL and

behavioral models, should be made simple.

Mixed-mode Timing Control: Time-step synchronization between the

analog and digital simulators due to local and global feedback loops is an

important factor in determining the accuracy and speed of mixed-mode

simulation. Some methods to synchronize the time of simulation at the

analog/digital interface are lock-step, digital-controlled, analog-controlled

and roll-back schemes.

In the lock-step scheme, the step sizes are determined by simulator

requiring the smaller time-step. Typically, the analog simulator sets the

step size and the digital simulator is forced to use these values. The

advantage of this method is that synchronization will always be main­

tained since digital and analog portions are simulated at the same time, but

the disadvantage is that latency in digital simulation can not be exploited

fully and this degrades the overall simulation speed.

In the digital-controlled scheme, the digital signals are used as inputs

to the analog simulators. Therefore, the analog simulator is forced to

"catch-up" to the next digital event. Accuracy of the overall simulation is

usually compromised using this approach. On the other hand, some simu­

lators perform all levels of simulation in the continuous-time domain. In

this case, all signals are represented as analog voltages and, therefore, the

analog simulator in charge of the time-step control. This is called analog­

controlled time synchronization.

In the roll-back scheme, analog and digital simulators simulate their

respective portions with their own time steps and maintain roughly the

same position in time. When synchronization is needed due to errors in

the analog solution, the digital simulation is rolled back to the time of the

1. INTRODUCTION 23

analog error and re-evaluated. The advantage is that latency can be

exploited since analog and digital simulators use their own time steps.

However, it may degrade the overall simulation speed, depending on the

degree of roll back and frequency with which it is used.

1.6. A SURVEY OF EXISTING SIMULATORS

Mixed-mode simulation has been gaining in popularity over the last

few years; as a result, a large number of simulators have been developed.

According to the development strategy used, these simulators can be

broadly classified into three groups:

1) Core Modification Approach (C): The core extension or environ­

ment extension approach involves extending an existing analog or digital

simulator to cover the levels that are missing. This is accomplished by

using existing models or enhancing the models that the simulator can han­

dle, and is typically done in electrical simulators. For example, a simple

logic inverter can be implemented in an electrical simulator using con­

trolled sources and other existing primitives to allow "mixed AID simula­

tion" (SPA88]. Similarly, a logic simulator may be extended to include

switches to represent transistors for mixed gate and switch-level simula­

tion. Of course, it would be difficult to extend a logic simulator to incor­

porate true electrical elements without major modifications to the program.

2) "Glued" Approach (G): In this case, two or more existing simula­

tors are combined using either a procedural interface, if the programs are

executed in the same address space, or an interprocess communication pro­

tocol, if the programs are running in different address spaces. This is an

effective solution for companies that have already invested large amounts

of time and money maintaining separate simulators and are not willing to

abandon them in favor of the development and support of a completely

24 MIXED-MODE SIMULATION

new simulator. In addition, the input languages for the simulators do not

have to be modified and, therefore, have minimal impact on the designer.

However, this simple solution also has a number of inherent limitations in

terms of efficiency. The processing of bidirectional elements connected

across the mixed-mode interface presents a problem, and the time

advancement, backup and synchronization of the various simulators that

are running concurrently must be addressed. The process of combining a

number of different simulators together in this way presents some very

difficult implementation and signal mapping problems. Recently, the

advent of simulation backplane (BP) technology has reduced the barrier of

this approach significantly. In this methodology, the various types of simu­

lators are connected through well-defined data-transfer/synchronization

mechanisms, collectively referred to as a backplane. While the interfacing

issues of this approach are much reduced, the development of the back­

plane presents an enormous software engineering challenge.

3) Fully Integrated Approach (I): This is the most flexible and most

efficient approach of the three mentioned here. In this case, the various

simulation algorithms are connected via an internal algorithmic backplane

and conform to a set of policies defined within the simulator for time­

advancement and backup, signal mapping, etc. The algorithms are usually

tailored for the mixed-mode environment and are plug-in compatible with

the simulator. Therefore, new algorithms may be easily added to this

framework. In addition, new models may be added to each of the algo­

rithms defined in the simulator. As a result, there may be several different

representations of the same model, commonly referred to as different

views of the model. The main drawback of this approach is the long

development time for this new programming environment, and eventually

the support and maintenance associated with it.

1. INTRODUCTION 25

Table 1.3 contains a partial list of commercial mixed-mode simula­

tors. iSPLICE3 [SAL89A] is included as a reference for some of the

implementation mechanisms described in this book. The summary of the

algorithms and techniques used in each level are provided in this table.

Note that they vary widely in the simulation modes that are supported and

the mixed-mode simulation techniques used. For the mixed-mode timing

control, all the time-step synchronization mentioned in Section 1.5 have

been used by some commercial program. Some companies use the back­

plane technology to incorporate tools from other companies into the

mixed-mode simulation environment. Therefore, users have the flexibility

to choose the best tools for their applications.

The type of mixed-mode interface has not been listed in this table

since it is not possible to describe the interface methodology used in each

tool in a tabular form. Automatic interface insertion or explicit interface

definition are the general approaches but the models may be quite different

from simulator to simulator. This issue will be described in depth in

Chapter 7. In addition, mixed-mode simulators that combine process, dev­

ice, and circuit level simulations have been excluded from the table as they

are beyond the scope of this book.

1.7. OUTLINE OF THE BOOK

This book focuses on the implementation of fully-integrated mixed­

mode simulation and describes event-driven, relaxation-based techniques

used in the SPLICE family of programs. While the issues of combining

gate, RTL and behavioral levels of simulation are important, they often

reduce to simple implementation issues. This book addresses the problem

of mixing electrical simulation with gate-level simulation. Since electrical

simulation is continuous in nature whereas gate-level simulation is discrete

in nature, this particular problem presents a much more interesting chal-

26 MIXED-MODE SIMULA nON

Program/Company Type Behavioral/RTL Gate

Analog Artist GIBP VHDL, Verilog DO, DI, Dn, DA, M
Cadence Inc.

Attsim I VHDL,C DO, DI, Dn, DA, M
AT&T-Design Automation

ContecSPICE C - Dn,M
Contec Inc.

LsimlQuick II-AccuSim II GIBP VHDL, M Language DO, D1, Dn, DA, M
Mentor Graphic Corp.

PSPICE C PSPICEHDL DO, D1, Dn, DA, M
Microsim Corp.

Saber I MAST DA,M
Analog Inc.

VHDeLDO I VHDL Delta Delay
Anacad Inc.

ViewsimiAD G VHDL, Veri log DO, D1, Dn, DA, M
View logic System Inc.

iSPLICE3 I C DA,M
University of Illinois

Legend DO: zero delay, Dl: unit delay, Dn: multiple delay, DA: assigned delay, M:
macromodeling, RC: first order RC delay, RCn: piecewise linear RC delay

Table 1.3: Survey of Mixed-Mode Simulators and Their Capabilities

1. INTRODUCTION 27

Switch Electrical Mixed-Mode Control

DO, RC, RCn Direct Matrix Roll-Back

Direct Matrix Roll-Back -

- Direct Matrix Analog Control

DO,RC Direct Matrix Lock-Step

RC Direct Matrix Analog Control

DO, RC, RCn Direct Matrix Rotl-Back+

- Mix of Direct Lock-Step
and ITA

- Direct Matrix Digital Control

RC,RCn Mix of Direct Roll-Back
and ITA

+ Calaveras®Scheme Used

Table 1.3 (Continued)

28 MIXED-MODE SIMULATION

lenge. The book then focuses on the problem of multilevel analog simula­

tion. Initially, the general techniques and algorithms used at each level

will be discussed. This is followed by the specific implementation issues

associated with an analog multilevel simulation tool called iMACSIM

[SIN9 ~].

In Chapter 2, the electrical simulation problem is formulated, and the

standard numerical techniques used to solve the problem are presented.

Next, the issues associated with the implementation of an efficient time­

step control scheme are described. This includes a description of the con­

straints imposed on the step size by the numerical methods; this is fol­

lowed by two common time-step control schemes used in circuit simula­

tion programs. In Chapter 3, two properties of waveforms, called latency

and multi rate behavior, are defined and used to motivate the need for new

simulation methods. Then, the relaxation methods are introduced and

their convergence properties are described. First, the linear Gauss-Jacobi

(GJ) and Gauss-Seidel (GS) methods are reviewed. Next, the nonlinear

relaxation and waveform relaxation methods are described. The require­

ment for partitioning to improve the convergence speed of relaxation

methods is presented at the end of the chapter.

In Chapter 4, a number of algorithms based on nonlinear relaxation

methods are described. A technique which combines nonlinear relaxation

[ORT70] with event-driven, selective-trace [SZY75] to exploit waveform

latency is presented. This approach is referred to as Iterated Timing

Analysis or ITA [SAL83]. Its name is derived from the original work on

"timing" simulation pioneered in the MOTIS program [CHA 75]. The

details of the implementation of ITA are provided. In addition, a partition­

ing approach that allows MNA elements to be incorporated into a block

time point relaxation framework with guaranteed convergence will be

described.

1. INTRODUCTION 29

Gate level simulation is addressed in Chapter 5 and switch-level

simulation is described in Chapter 6. Chapter 5 begins with a description

of the evolution of logic state models and delay modeling. The Elogic

technique for switch-level timing simulation and modeling is presented in

Chapter 6. In Chapter 7, the modeling problems of mixed-mode interfaces

and possible solutions are described. The implementation issues associ­

ated with a mixed-mode simulator and an automatic mixed-mode parti­

tioner are described in Chapter 8. Simulation results from a large bench­

mark circuit is also included to demonstrate the typical performance of

mixed-mode simulator.

Analog multilevel simulation is discussed in Chapter 9. First, the

key issues of analog multilevel simulation are described. Then the tech­

niques to deal with s-domain, z-domain and mixed continuous­

time/discrete-time simulation are presented. A macromodeling and simu­

lation environment is presented at the end of the chapter.

Chapter 10 provides a summary of the book and directions for future

work.

2. ELECTRICAL SIMULA nON 31

CHAPTER 2

ELECTRICAL SIMULATION TECHNIQUES

The features of circuit or electrical simulation are extremely impor­

tant in mixed-mode simulation as they determine the overall speedup and

efficiency of the simulator. This chapter describes the basic theory and

foundations for the electrical simulation techniques. First the circuit equa­

tions are formulated in Section 2.1 and the standard techniques are

described in Section 2.2. The issues pertaining to time step selection and

simulation accuracy are also addressed. The limitations of these tech­

niques for large problems are identified and alternative approaches are

described in the next chapter.

2.1. EQUATION FORMULATION

General-purpose circuit simulation programs such as ASTAP

[WEE73], SPICE2 [NAG75] and SLATE [YAN80] provide a variety of

analysis types including dc analysis, time-domain transient analysis, ac

analysis, noise analysis and distortion analysis. By far the most CPU­

intensive of these analyses is the time-domain transient analysis. The tran­

sient analysis problem involves computing the solution of a system of cou­

pled nonlinear differential-algebraic equations over some interval of time,

[O,T]. The most general form for the equations describing the circuit

behavior is

F(x(t), x(t), u(t)) = ° x(O)=X (2.1)

where, x(t) E IRn is the vector of unknowns, and may be a mixture of

node voltages, branch currents, capacitive charges or inductive fluxes,

u(t) E IRr is a vector of independent sources, F: IRnxIRnxIRr ---7 IRn, and

the initial conditions, x(O), are specified by the vector X.

32 MIXED-MODE SIMULATION

Equations of this form arise as a result of the properties of general

electronic circuits. For example, the current through a capacitor is a func­

tion of the time derivative of the voltage across the capacitor; therefore,

Eq. (2.1) is dependent on x(t). Since many devices have nonlinear rela­

tionships between their currents and voltages, F is also usually nonlinear.

And finally, as a circuit is constructed from a collection of sparsely con­

nected elements, F is a sparse function of the components of x. These cir­

cuit properties all have some impact on the numerical techniques used to

solve the transient simulation problem and the resulting efficiency with

which the solution is obtained.

There are a number of different ways to formulate the circuit equa­

tions described by Eq. (2.1). The most popular of these are Nodal

Analysis (NA) [DES69], Modified Nodal Analysis (MNA) [H075] and

Sparse Tableau Analysis (STA) [HAC71]. These formulations are all

based on the application of Kirchoff's Current Law (KCL), Kirchoff's

Voltage Law (KVL) and the branch constitutive equations [DES69].

Nodal Analysis is the simplest of the three approaches. It uses KCL,

which requires that the sum of the currents entering each node equals the

sum of the currents leaving each node. In a circuit containing n+ 1 nodes,

if KCL is written for every node in the circuit, a system of n equations is

obtained assuming that one node is defined as a reference node. The

currents in each equation can be replaced with the branch constitutive rela­

tions which are functions of the branch voltages (by assumption in NA),

and KVL can be used to replace the branch voltages by node voltages.

KVL requires that the sum of the voltages around any loop in a circuit be

identically zero. The n node voltages are the unknown variables in this

formulation. Note that it must be possible to represent the element and

input source currents in terms of their terminal voltages in order apply

Nodal Analysis. This requirement excludes current-controlled devices,

2. ELECTRICAL SIMULA nON 33

floating voltage sources! and inductors and, therefore, limits the scope of

the NA technique. However, inductors and floating voltage sources can be

included in NA by simply reorganizing their branch equations as described

in [MCC88, WHI85C]. Since the other current-controlled devices are not

frequently used in the simulation of integrated circuits, NA is an adequate

formulation technique for most practical circuits.

The formulation used throughout the rest of this book is Nodal

Analysis. The NA equations are formulated as follows: First, KCL is

applied at each node in a circuit with n nodes and b branches to produce a

matrix equation of the form:

Ai=O (2.2)

where A E IRnxb is the reduced incidence matrix with entries of either + 1,

-1 or 0 and i E IR b is the vector of branch currents in the circuit. Element

aik of A is + 1 if a particular branch current, ik , leaves node i, -1 if it enters

node i and 0 if it is not incident at node i. If the set of branch currents is

divided into the capacitor currents, ie, and the currents through the resis­

tive elements, i r , then Eq. (2.2) can be rewritten as

(2.3)

Each of the currents due to the nonlinear resistive elements can be

replaced by their branch constitutive relations which are all functions of

the branch voltages by assumption. The branch voltages, Vb, can be

replaced by the node-to-datum voltages, V, using the relation:

(2.4)

which follows from KVL [CHU75]. Then, the right-hand side of (2.3) can

1 These are voltage sources with neither terminal connected to the ground node.

34 MIXED-MODE SIMULATION

be written as

(2.5)

where fk(V) is the sum of all the currents through the resistive elements

connected to node k as a function of the node voltages, v.

The left-hand side of Eq. (2.3) represents the capacitor currents. The

nonlinear capacitors are often specified in terms of their stored charge, q, a

function of the voltage across the capacitor, Ve, as follows:

The current flowing through the capacitor can be obtained by taking the

time derivative of charge, which can then be related to the capacitance by

applying the chain rule:

. '() dq(ve) dVe C()'
leap = q Ve = dVe (It = Ve Ve (2.6)

Hence, each of the components of ie in Eq. (2.3) can be replaced by

C(ve)ve. If Eq. (2.4) is used to replace the branch voltages by node vol­

tages, then Aeie can be transformed into the following:

Cll(V) .
VI

(2.7)

An important assumption which is sufficient to guarantee convergence of

relaxation-based simulation techniques (to be described shortly) is that a

two-terminal capacitor exists between each node and the reference node.

These are referred to as grounded capacitors. This requirement is easily

satisfied in real circuits where lumped capacitances are always present

2. ELECTRICAL SIMULATION 35

between circuit nodes and ground in the form of interconnect capacitance,

and also between the terminals of active circuit elements and ground in the

form of parasitic capacitances. Each grounded capacitor contributes a

term to the diagonal of the capacitance matrix. Therefore, the Cjj elements

are non-zero for all i. Note that Cij is zero only if a capacitor does not

exist between nodes i and j in the circuit.

By combining Eqs. (2.5) and (2.7), one obtains:

.
VI

(2.8)

Col(V) t(v)

This equation can be written in the compact form:

C(v(t),u(t» vet) = - f(v(t),u(t», t E [O,T] (2.9)

yeO) = V

where vet) E IRO is the vector of node voltages at time t, vet) E IRO is the

vector of time derivatives of vet), net) E IRr is the input vector at time t,

C(x(t),u(t» represents the nodal capacitance matrix, and

f(v(t),u(t» = [fl(v(t),u(t», ... ,fo(v(t),u(t»]T

where fk(v(t),u(t» is the sum of the currents charging the capacitors con­

nected to node k.

Equation (2.9) is a set of coupled first-order nonlinear differential

equations that uses voltage as a state variable. This is commonly referred

to as the capacitance formulation of the transient analysis problem. Alter­

natively, charge may be used as a state variable rather than voltage. The

proper choice of voltage or charge as the state variable depends on the

nature of the capacitors in the circuit. If all capacitances are linear, then

either voltage or charge may be used as the state variable. However, in

36 MIXED-MODE SIMULATION

circuits with nonlinear capacitors, such as MOS circuits, charge must be

used as the state variable due to considerations of charge conservation.

That is, in order to keep the total charge in the system constant during the

simulation process, charge must be used as the state variable. Examples of

charge conservation problems arising from the use of Eq. (2.9) are given

in [W AR78, YAN83, WHI85C].

The charge formulation of the circuit equations in normal form is

given by

<i.(t) = i(q(t»

where qk(V) is the sum of the charges due to the capacitors connected to

node k and ike q) is the sum of the currents charging the capacitors at node

k. This equation can be solved to obtain the node charges as a function of

time. However, information about charge is of little interest to the circuit

designer, who would prefer to have information about the node voltages

from the simulator. Therefore, it is preferable to write the charge formula­

tion as

<i.(t) = i(q(t» = - f(v(t»

which is obtained by combining Eq. (2.6) and Eq. (2.9). This assumes that

q is an invertible function of v. The charge formulation, including the

input sources, u(t), is given by

q(v(t),u(t» = - f(v(t),u(t» (2.10)

Both the formulations given by Eqs. (2.9) and (2.10) will be used

throughout this book.

2.2. STANDARD TECHNIQUES FOR TRANSIENT ANALYSIS

Equations (2.9) and (2.10) formulated above for the transient

analysis of circuits must be solved using numerical techniques since, in

2. ELECTRICAL SIMULATION 37

general, it is difficult to obtain closed-form solutions. The first step is to

apply a numerical integration method to discretize the time derivative,

x(t). An integration method divides the continuous interval of time, [O,T],

into a set of M discrete time points defined by

(2.11)

An algebraic problem is solved at each time point, tn+b to obtain a

sequence approximation to the exact solution. The quantity hn is referred

to as a time step. The selection of proper time-steps for a given problem is

an important issue which is described in detail in Section 2.3. An example

of a first-order implicit integration method is the backward-Euler (BE)

method. To solve x(t)=f(x(t)) using BE, the following expression is used:

(2.12)

This equation is implicit in that x(tn+1) appears on both sides of the equa­

tion.

A numerical integration method converts a set of nonlinear differen­

tial equations into a set of nonlinear algebraic equations. These algebraic

equations must be solved using some numerical method at each time point.

The most commonly used method to solve nonlinear equations is the

Newton-Raphson method [ORT70]. To solve a system of nonlinear equa­

tions, given by F(x)=O, using the Newton-Raphson method, the following

iterative equation is used:

(2.13)

where JF(X) is the Jacobian matrix and k is the iteration counter for the

method. Each term in the Jacobian matrix, gij, is given by

(2.14)

where F j is the ith component of F and Xj is the jth component of x.

38 MIXED-MODE SIMULATION

Equation (2.13) is iterated untilllxk+! - xk II<El and IIF(xk+l~I<E2' Note tha

if the problem is linear, then the Newton method produces the correct

solution in one iteration.

The Newton method described above converts the set of coupled

nonlinear algebraic equations into a set of coupled linear equations given

by Ax = b, where x E IRD, b E IRD, A E IRDXD and A is assumed to be non­

singular. The matrix A is relatively sparse, typically having three ele­

ments per row [NEW83]. There are essentially two approaches to solving

a sparse linear system. One approach is to use direct methods (such as LU

decomposition) which attempt to exploit the sparse nature of the matrix

during the computation. The implementation of these methods involves

carefully chosing a data structure and the use of special pivoting strategies

to minimize fillins [KUN86]. A second approach to the sparse linear prob­

lem is to use relaxation methods. The relaxation process involves decou­

pIing the system of equations and solving each equation separately. An

iterative method is applied between the equations until convergence is

obtained. In effect, the problem of solving one large system containing n

variables is converted to the problem of solving n subsystems each con­

taining one variable.

The standard approach to circuit simulation IS based on direct

methods and uses the following steps:

1) MNA is used to formulate a system of coupled nonlinear
differential-algebraic equations for the circuit.

2) Implicit numerical integration methods are applied to
convert the differential equations into a sequence of
algebraic equations, which are nonlinear in general.

3) A damped Newton-Raphson method is used to convert the
nonlinear equations into linear equations.

2. ELECTRICAL SIMULATION 39

4) Direct sparse-matrix techniques are used to solve the
linear equations generated by the Newton-Raphson method.

A simple flow chart of the steps in the standard approach is shown in Fig.

2.1. The details of the implementation of this approach in SPICE2 may be

found in [NAG75].

This approach has proven to be very reliable and can be used across

a variety of different technologies and element types. The most computa­

tionally intensive part of this approach is the Newton-Raphson iteration. It

is composed of two phases: the formulation phase and the solution. These

two phases, represented by steps 3 and 4 above, are repeated at each time

point until convergence is obtained. In the formulation phase, the ele­

ments in the circuit are processed by calculating their contribution to the

Jacobian matrix and the right-hand side vector in Eq. (2.13) to form the

system of linear equations. This is also referred to as the function evalua­

tion (or model evaluation) and load phase, and can be very time­

consuming because of the complexity of the equations describing the ele­

ments in the circuit. For small to medium sized circuits containing MOS

devices, the model evaluation and load times dominate the total CPU-time

for the simulation [NEW77].

In the second phase of the Newton iteration, the linear equations gen­

erated in the first phase are solved using direct methods such as LU

decomposition. While this portion has a negligible contribution to the

total run time for small circuits, it can in fact dominate the run time for

very large circuits (i.e., greater than 1000 nodes in the circuit for SPICE2)

[NEW83], as shown in Fig. 2.2. Therefore, any technique which attempts

to reduce overall circuit simulation run times must reduce both the model

evaluation time and the linear equation solution time to be effective.

40

STEP

1

2

3

4

5

6

7

8

9

10

MIXED-MODE SIMULATION

Modified Nodal Analysis
(MNA)

Linear capacitor [backward Euler
trapezoidal

Nonlinear capacitor Gear method

L-...;;..=r-~-l
LV decomposition

[
Has iteration converged?
Does iteration no. exceed
default value?

[Local truncation error check

select hn

Figure 2.1: SPICE Flow Chart

2. ELECTRICAL SIMULATION 41

2.3. TIME-STEP CONTROL: THEORETICAL ISSUES

Time-step control is an important issue in electrical simulation. In

this section, the constraints imposed by the numerical techniques on the

step sizes used in the integration process are described. Based on these

constraints, an efficient time-step control scheme is presented. Ways to

further improve the efficiency by using different step sizes to solve dif­

ferent components in the system are presented in the next chapter.

CPU
Time

(S)

I04r-------,-------~------~~----~

Total Time /~sOlve
aN~ .::

.:::>'

10

I

1 10
Number of Circuit Equations

Figure 2.2: CPU-Time vs. Circuit Size in SPICE2

42 MIXED-MODE SIMULATION

The circuit simulation problem, in its most general form, involves

the solution of a system of nonlinear algebraic-differential equations. To

simplify the description to follow, the circuit equations are assumed to be

a system of differential equations in normal form:

x(t) = f(x(t),u(t)), xeD) = X, t E [O,T] (2.15)

where u is the set of primary inputs, x is a vector of unknown circuit vari­

ables and f is some nonlinear function. The vector of values specified as X

are the initial conditions, and the simulation interval is [O,T].

2.3.1. Constraints on Step Size

The general form of a kth-order linear multistep integration method

[GEA71] is given by

(2.16)

where Xn is the computed solution at time tn, and hn is the time-step at

time tn. The 2p+3 coefficients, ai and bi, are chosen such that Eq. (2.16)

will give the exact solution if the true solution is a polynomial in t of

degree less than or equal to k [CHU75].

There are two broad classes of integration methods: explicit and

implicit2 [CHU75]. Explicit methods use only the solutions at previous

time points to generate the solution at the next time point, and are charac­

terized by b_1=O. A number of explicit integration methods can be

derived directly from a Taylor series expansion of x(t) at the point tn:

(2.17)

For example, the forward-Euler (FE) method is obtained by taking the first

2 Recently, a number of combined integration-relaxation methods used in Timing Simulation
[CHA75] have been classified as semi-implicit integration methods [DEMSO, NEWS3, WHlS5C].

2. ELECTRICAL SIMULATION 43

two terms of Eq. (2.17):

(2.18)

This diffe renee equation can be formulated in terms of Eq. (2.16) by set­

ting p=O, ao= 1, bo= 1 and all other coefficients to zero. Equation (2.18)

implies that each equation can be updated independently, and in parallel,

at each time point. For differential equations in the normal form, the solu­

tion at each time point can be obtained in one step and does not involve a

matrix solution; therefore, the explicit methods are extremely efficient.

Unfortunately, these methods are not as useful as implicit methods for cir­

cuit simulation because of their stability properties. Implicit methods are

characterized by b_ 1'#:0 in Eq. (2.16). The backward-Euler (BE) implicit

integration method can be derived using a Taylor expansion of x(t) about

the point tn:

(2.19)

Using Eq. (2.19) to replace xn in Eq. (2.17), and ignoring the higher-order

terms, the BE scheme is obtained:

(2.20)

In this case, p=O, ao=l, b_ 1=1 with all other coefficients equal to zero.

For nonlinear problems, this implicit equation is usually solved using an

iterative method, often requiring a matrix solution. Therefore, the implicit

methods are computationally more expensive than explicit methods. The

forward-Euler and backward-Euler methods are representative of their

respective class of integration algorithms and will be used to illustrate a

number of other properties below.

44 MIXED-MODE SIMULATION

a. Accuracy Constraint

Integration methods provide a numerical approximation to the true

solution since, in general, the exact solution of Eq. (2.15) cannot be

obtained. The error in the numerical solution is due to a combination of

the machine error and the truncation error. The machine error is usually in

the form of a round-off error, since finite precision arithmetic is used, and

it depends on the floating-point arithmetic unit of the computer being used.

The truncation error results from the fact that the Taylor series is truncated

after a number of terms and this error depends on the specific integration

method. The local truncation error (LTE) for general multistep methods is

defined as

(2.21)

where X(tn+1) is the exact solution to Eq. (2.15) at tn+1, and Xn+1 is the

computed solution obtained from Eg. (2.16). In this definition, it is

assumed that x(tn)=xn and, therefore, only provides information about the

error which occurs over a single time-step, hence, its name "local" trunca­

tion error. The L TE for the forward-Euler method can be derived using

Eq. (2.18):

(2.22)

Using a Taylor expansion for the first term about tn, the LTE is given by

the first remainder term of the resulting expression:

(2.23)

If EA is some user allowable error tolerance for the problem, the accuracy

constraint is

2. ELECTRICAL SIMULATION

h2J ·X·CJ=.) ::;; EA <J=.<t ~ tn-~- n+1

This presents a bound on the step size which is given by

hn ::;; ~2EA/xC~)

45

(2.24)

C2.25)

If this constraint is not satisfied, the solution must be rejected and a new

solution is computed using a smaller step size. Since the exact value of ~

is not known, the L TE is usually estimated using techniques to be

described in Section 2.4.1.

The backward-Euler method has an LTE given by

(2.26)

By expanding xCtn) in a Taylor series about tn+1 and applying the results to

Eq. C2.26), the LTE is obtained by retaining the first remainder term:

hJ •. J=.
LTEn+1 =- 2x(~) (2.27)

Note that the error made in one step is O(h2) in both the FE and BE

methods; hence, the accuracy bound on the step size is similar in both

cases. However, the behavior of the global error, due to the accumulation

of the local errors, may be quite different for the two methods and this

difference strongly recommends the use of one method over the other.

This characteristic is associated with the stability of the integration

method.

b. Stability Constraint

The general stability characteristics of numerical integration methods

applied to nonlinear differential equations are difficult to obtain. Usually

the results are inferred from the analysis of a simple linear test problem

[GEA71]:

46 MIXED-MODE SIMULATION

x(t) = - AX(t) , x(O) = Xo (2.28)

for which the solution is known to be

x(t) = xoe- A.t (2.29)

and, in general, A is complex. This linear problem is useful because it is

easy to analyze and provides information about the local behavior of non­

linear problems (i.e., when the step size is small). The problem is usually

analyzed with Re(A»O so that the solution to Eq. (2.28) is stable. To

further simplify the analysis, a fixed time-step is assumed. For example, if

the FE method is used to solve Eq. (2.28), the following difference equa­

tion is obtained:

xn+l = Xn - A.hxn = Xn - cr Xn

where cr = A.h. Therefore,

Xn+l = (1- cr)xn = (1- cr)n+1xo

The region of absolute stability is defined as the set of all complex values

of cr such that Xn+l remains bounded as n~oo. For FE, it consists of all cr

such that

11-crl$;1 (2.30)

which produces the following constraint for real values of A.:

Therefore the time-step must lie in the range:

(2.31)

If step sizes outside this range are used, the computed solution will

become unstable even though the true solution is stable. For BE, the

difference equation is

2. ELECTRICAL SIMULATION

Xn+l = Xn - a Xn+l

Hence,

_ 1
Xn+l - (l +a)n+l Xo

which results in the following requirement for stability:

1 < 1
11+al -

47

(2.32)

Considering only real values of A., the method produces a stable solution

for all h~O. Ideally, an integration method should produce a stable solu­

tion if the true solution is stable for any step size; this is the case for the

BE method but not for FE. This property highly recommends the use of

the BE method over the FE method since the step size can be selected

based on accuracy considerations alone. For the general case when A. is

complex, the region of Absolute stability for the BE integration method

includes the entire right-half a-plane. An integration method with this

property is said to be A-stable [CHU75].

The forward-Euler and backward-Euler methods are examples of

first-order integration methods. Higher-order methods with smaller local

truncation errors can be constructed by taking more terms in the Taylor

expansions of Eqs. (2.l7) and (2.19). Integration methods with small

L TEs are preferred as they allow larger time-steps to be used. For exam­

ple, the trapezoidal method is a second-order integration method given by

hn • •
Xn+! = Xn + T(xn+! + xn) (2.33)

and is quite popular as it is the most accurate A-stable method [CHU75].

The LTE for the trapezoidal method can be shown to be [CHU75]:

48 MIXED-MODE SIMULATION

(2.34)

Since the error is O(h3), it is often the case that a much larger step size can

be used, compared to the BE method, for a given value of EA.

c. Stiff-Stability Constraint

Another consideration in the choice of integration methods is the

issue of stiffness. A stiff problem is one that exhibits time-scale variations

of several orders of magnitude in the solution. A simple example of stiff­

ness is the case of a fast initial "transient" in the solution, which dies

quickly, followed by a slower "steady-state" solution. To handle this type

of behavior, it is natural to use small time steps in the transient portion to

accurately follow the solution and then to increase the step size for the

remainder of the solution. However, this strategy may lead to instability

of the integration method, especially for explicit integration methods. For

example, if the test problem in Eq. (2.28) is solved using FE in the interval

[O,l06't], where 't =lrA., and A E IR, the time-step constraint given in Eq.

(2.31) would be imposed in the entire interval even though the solution

decays to zero in approximately 5't. If the step size is increased beyond

this stability bound, the solution will become unstable. On the other hand,

if the size is kept within the constraint imposed by stability, the number of

time points would be very large.

There are other situations which feature this kind of time-scale varia­

tion. A stiff problem is generated if the interval of time over which the

system is integrated is large compared to the smallest time constant in the

circuit, or if the circuit time constants themselves are widely separated. In

addition, if the rise or fall time of an input waveform is widely separated

from the circuit time constants, the problem also is considered to be stiff.

2. ELECTRICAL SIMULATION 49

Integration methods which are appropriate for solving stiff problems

should have regions of Absolute Stability which cover most of the right­

half complex a-plane so that the time-step can be selected based on the

accuracy considerations alone. Explicit methods are not well-suited to

stiff problems since their regions of Absolute Stability are usually very

small. The A-stable integration methods are well-suited to stiff problems,

but other implicit methods (for example, see [CHU75]) may be prone to

instability when solving stiff problems. Gear proposed a family of integra­

tion methods called stiffly-stable methods [GEA 71] which have the form:

. 1 k
Xn+l = 11 YUjXn+l- j

n~
(2.35)

The values for Uj are chosen such that a kth-order method is exact if the

true solution is a kth-order polynomial. The methods of order k=l and

k=2 are both A-stable algorithms. The methods of order k=3 up to k=6 are

not A-stable, but they do have stability regions which are quite suitable for

the integration of stiff problems [GEA 71]. These methods are also

referred to as Backward-Differentiation Formulas (BDF) [BRA72]. A

variable-order method, also proposed by Gear [GEA 71], uses the integra­

tion order which allows the largest step size at each time point. This tech­

nique was implemented in the SPICE2 program [NAG751 and it was found

that, even though the order could be varied from k= 1 up to k=6, a second­

order method was used most often in the computation. The reason for this

was attributed to the nature of the nonlinearities in the circuit simulation

problem (described in the next section) and nature of the solution

waveforms. Therefore, most circuit simulators use a low-order implicit

integration method with guaranteed stability properties so that the step

sizes can be selected based on accuracy considerations alone.

50 MIXED-MODE SIMULATION

2.3.2. Solution of Nonlinear Equations

When solving linear dynamic circuits, the accuracy and stability

requirements of the numerical integration method are the only constraints

on the step size used. Furthermore, linear problems can be solved in one

"iteration" (i.e., one matrix solution) at each time point. Therefore, the

amount of computation is directly proportional to the number of time

points used. This is not true for nonlinear dynamic circuits, assuming that

an implicit integration method is used. In fact, the cost of computing a

solution at each time point is a function of the number of iterations used to

solve the nonlinear algebraic problem. Consider the differential equation

x(t) = f(x(t)) (2.36)

where f(x) is some nonlinear function. If the BE method is used to solve

Eq. (2.36), the following equation is obtained:

(2.37)

This nonlinear algebraic equation can be solved using a variety of tech­

niques including fixed-point iteration and Newton's method. The

approach usually taken in circuit simulators is to use Newton's method or

one of its variants. Rewriting Eq. (2.37) as

(2.38)

the Newton-Raphson method to solve this equation is given by the expres­

sion [ORT70]:

(2.39)

where k is the Newton iteration counter. In circuit terms, the Newton

method replaces each nonlinear device in the circuit by a linearized model

based on operating point information. This process converts the nonlinear

circuit into a linear equivalent network. The linearized network is solved

using standard linear circuit analysis techniques [CHU75]. The Newton

2. ELECTRICAL SIMULATION 51

method involves repeating the above steps until convergence is obtained.

To guarantee convergence of the Newton method, the functions F(x)

and F'(x) must be continuous in an open neighborhood about x*, F'(x*)t:O,

and the initial guess, xo, must be close to the final solution. The Newton

method is preferred over the simpler fixed-point method for several rea­

sons. The main reason is that the fixed-point algorithm is not well-suited

to stiff problems. It also imposes a bound on the time-step to guarantee

convergence. Another reason is due to the quadratic convergence property

of the Newton method. That is, if, in addition to the above conditions,

F"(x*) exists, then for some k>K the difference between successive itera­

tions and the true solution satisfies the relation [ORT70]:

In practice, this quadratic convergence behavior occurs close to the final

solution. Hence, it is important to provide an initial guess which is close

to the final solution. In general, it is difficult to provide a reasonable start­

ing guess for the Newton method. However, for the transient analysis

problem it is possible to generate a good initial guess, especially if a capa-

citor exists between each node and the ground node3. For example, the

solution at the previous time point is a good starting guess for the Newton

method at tn+ I. A better approach is to use an explicit integration method

[BRA72]:

° _ k+1
Xn+1 - ~ YiXn+l- i (2.40)

where the Yi values are obtained by requiring that the predictor, XR+I' be

correct if the solution is a kth-order polynomial. Usually a kth-order pred­

ictor is used with a kth-order integration method.

3 A capacitor to ground at each node implies some smoothness in the solution since it prevents
instantaneous changes in the voltage at the node. Therefore, as h~O, Xn+l~Xn'

52 MIXED-MODE SIMULATION

The time-step also has some influence on the convergence speed of

the Newton method. An intuitive reason for this can be given in circuit

terms: the Newton method converts a nonlinear circuit into an associated

linear circuit, as mentioned previously. As the step size is made smaller,

the values of linearized circuit elements begin to approach their values at

the previous time point. Therefore, the circuit will behave almost linearly

in this interval and convergence can be obtained in very few iterations,

possibly even a single iteration. On the other hand, if the step size is too

large, a good starting guess may be difficult to generate, and could lead to

either slow convergence or nonconvergence. If nonconvergence should

occur, the time-step must be rejected and a smaller step used in its place.

Hence, in some cases, it may actually be more efficient to use two small

steps rather than one large step.

2.4. TIME-STEP CONTROL: IMPLEMENTATION ISSUES

The simplest time-step selection scheme is to use the same time-step

throughout the interval of interest, [O,T]. That is, use a fixed time-step.

Unfortunately, there are a number of constraints on the step size which

may require that h be extremely small, resulting in a large number of time

points. These constraints arise from the accuracy, stability and stiff­

stability properties of a numerical integration method. For a fixed-step

approach, the step size would have be chosen such that it satisfies these

constraints under worst-case conditions. A better approach is to vary the

step size during the simulation in accordance with the variation in the con­

straints. For a given problem, the allowable step sizes depend primarily on

the properties of the specific integration method being used. In this sec­

tion, the main considerations in the implementation of an efficient time­

step control for circuit simulation are described. It includes a discussion

of L TE time-step control, iteration count time-step control and the effect

of input sources on time-step selection.

2. ELECTRICAL SIMULA nON 53

2.4.1. LTE Time-Step Control

In L TE time-step control, the user provides two accuracy control

parameters, Ca and Cr, which are the absolute and relative errors permissi­

ble in each integration step. They are combined to form a user error toler­

ance:

EUserLTE = ca + crxmax I Xn+1,Xn I

The general form of the local truncation error for most multistep integra­

tion methods of order k is given by [GEA71,CHU75]

(2.41)

where Ck is a constant which depends on the coefficients of Eq. (2.16) and

the order of the method. Since the value of x(k+l)(~) is not known, in gen­

eral, it must be estimated in some way using the numerical solutions. Typ­

ically a divided-difference approximation is used. The first divided­

difference is defined as

DD (t) - Xn+1- Xn
1 n+1 - hn

and the k+ 1 st divided-difference is defined as

Then the estimate for the derivative term in Eq. (2.41) is (see [NAG75] for

derivation)

The L TE estimate is then

For the BDF integration methods [BRA 72], the LTE can be estimated in a

54 MIXED-MODE SIMULATION

more convenient way. The estimate is the calculated using difference

between the computed solution Xn+1 and the predicted value xP(tn+I). For

a kth-order BDF method, the following expression is used:

Ek = [t ~nt] (xn+l- XP(tn+l))
n+1 n- k

The expression for XP(tn+l) is given in Eq. (2.40). The computed solution

Xn+ 1 is accepted if

I Ek I < EUserLTE (2.42)

One way of implementing this check is to take the ratio of the allowable

L TE and the actual L TE:

r - I EUserLTE I
- IEkl

Noting that both errors are O(hk+1), it follows that

[h]kt-I
r= h:x

and

The comparison test given in Eq. (2.42) becomes

to accept the computed solution. The advantage of this ratio is that it can

also be used to select the step size for the next integration step. Therefore,

the next recommended step size is given by

(2.43)

2. ELECTRICAL SIMULA nON 55

In practice, Eq. (2.43) may occasionally recommend rather abrupt

changes in the step size. A number of experiments have shown that rapid

changes in step size may introduce stability problems [BRA 72]. Intui­

tively, the step sizes should follow the smoothness of the solution. To

ensure that the changes in the step size are indeed gradual, it is convenient

to set upper and lower bounds on the changes in step size. In fact, three

regions can be defined as follows:

• if fLTE < 1.0, reduce the step size by MAX(SI , fLTE)

• if l.0 ~ fLTE < a, maintain the same step size
• if fLTE ;::: a, increase the step size MIN(SU , ~ fLTE)

The time step may be reduced at most by the factor SI and increased at

most by the factor Suo The a factor permits the same step size to be used a

number of times. Typically, a=1.2, 51=0.25 and 5u=2.0. Note that a multi­

plying factor ~ has also been introduced as part of the growth factor. The

~ factor is a way of making the time step selection somewhat conservative.

Since the L TE can only be estimated, it may occasionally be optimistic

[Y AN80]. If so, the time step would be rejected and a smaller step used

unnecessarily. The /3 factor reduces the likelihood of this happening and a

typical value is 0.9.

2.4.2. Iteration Count Time-Step Control

As mentioned before, the use of large steps is not necessarily the

most efficient approach for nonlinear circuits, especially if relaxation is

used. In fact, if the time step is too large, the iterative method may not

converge, which would force the time step to be rejected, resulting in

wasted effort. This suggests that the time step control should also be con­

trolled by the nonlinearity of the problem.

A number of programs use a time step control based on nonlinearity

considerations alone (e.g., SPICE2, ADVICE [NAG80], MOTIS3) called

iteration count time step control. This strategy minimizes the total

56 MIXED-MODE SIMULATION

number of Newton iterations used during the simulation. The step sizes

are selected as follows. If the number of iterations is larger than Nhigh, the

step size is reduced by some factor. If the number of iterations is less than

N1ow, the step size is increased by some factor. Otherwise, the step size

remains the same. The idea is to use approximately the same number of

iterations at each time point.

While this strategy is certainly effective at reducing the overall com­

putation time, it is prone to accuracy problems [NAG75]. For example,

for linear circuits the step size would always be increased since the solu­

tion is always obtained in one "iteration" at each time point. For weakly

nonlinear circuits, the same sort of effect would be observed. Therefore,

this approach, when used by itself, is not recommended since it does not

control the numerical integration errors directly. However, the iteration

count time-step control can be used in conjunction with the L TE-based

time step control. In this case, if too many iterations were required to con­

verge, a somewhat smaller step size could be used in the next integration

step. If too few iterations are used, a slightly larger step size can be used.

The method could be implemented by making the growth factor dependent

on the number of iterations used to compute the solution. Of course, if

convergence is not obtained in a specified number of iterations, the time

step should be rejected and a smaller step used in its place.

3. RELAXATION-BASED SIMULATION 57

CHAPTER 3

RELAXATION-BASED SIMULATION TECHNIQUES

The overall goal in circuit simulation is to generate the solution as

efficiently as possible while providing the desired level of accuracy. As

described in the last chapter, the standard approach to solving Eq. (2.1) is

to use a numerical integration method. One way to make the integration

process efficient is to simply minimize the total number of time points

used. That is, at any stage during the simulation, take the largest step pos­

sible that provides the required accuracy. This strategy is effective for

linear problems, assuming that the numerical integration method has

guaranteed stability properties but does not guarantee a smaller runtime.

In fact, for nonlinear problems, it may be more efficient to take smaller

steps so that the iterative method used to solve the nonlinear algebraic

equations converges in fewer iterations. Using small time-steps also

improves the accuracy of the solution. Therefore, minimizing the total

number of iterations is a more useful goal in reducing the amount of com­

putation.

The cost of each iteration is proportional to the number of model

evaluations I performed, assuming that the linear equation solution time is

small. Therefore, the number of model evaluations used in the solution

process is a good measure of the amount of computation. Based on this

argument, the objective for the efficient solution of the differential equa­

tions in Eq. (2.1) should be to minimize the total number of model evalua­

tions.

I A model evaluatIOn usually refers to the calculation of the currents and conductances for a
MOS or bipolar transistor, or some equivalent amount of computation.

58 MIXED-MODE SIMULA nON

A number of researchers have attempted to reduce the computation

time for expensive model evaluations by using lookup tables for active

devices [CHA75, SHI82, SHI83, BUR83, GYU85, SAK85B]. In this

approach, a number of tables of device characteristics are generated prior

to the analysis, and simple table lookup operations are performed during

the analysis in place of the expensive analytic evaluations. Points which

are not available in the tables are interpolated using polynomial interpola­

tion or splines. One drawback of this approach is that there may be a sub­

stantial memory requirement for these tables, depending on the level of

accuracy desired, but it is usually justified by the improvement in compu­

tation speed. Current research in this area involves reducing the memory

requirements without sacrificing either the computational advantage or the

accuracy of the device models. Further details on this topic may be found

in the references listed above.

In this chapter, the focus is on reducing the total number of expen­

sive model evaluations by minimizing the number of time points com­

puted for each waveform. This is accomplished by using relaxation-based

techniques to exploit the waveform properties such as latency and mul­

tirate behavior. Section 3.1 begins by introducing the general concepts of

waveform latency and multirate behavior. In Section 3.2, the various

relaxation-based techniques that are used to exploit latency and multirate

behavior are examined. In Section 3.2.4, the circuit partitioning issues for

relaxation methods are addressed.

3.1. LATENCY AND MULTIRATE BEHAVIOR

Most circuit simulators employing direct methods use a single com­

mon time step for the whole system and, hence, compute the solution of

every variable at every time point. The time-step at each point is based on

the fastest changing variable in the system, i.e., the n+ 1 st time point is

3. RELAXATION-BASED SIMULATION 59

given by

where hn is the integration step size determined by

and hj,n is the recommended step size for with the ith variable at tn. As a

result, many variables are solved using time steps which are much smaller

than necessary to compute their solutions accurately. For example, the

computed points of a waveform from a large digital circuit, simulated

using direct methods, are shown in Fig. 3.1(a). Note that there are many

more points than necessary to represent the waveform accurately, espe­

cially in the regions when the waveform is not changing at all. The extra

points are due to some other variable changing rapidly in the same region

of time. The same waveform is shown Fig. 3 .1 (b) with only the minimum

number of points necessary to represent it accurately.

Since the objective in circuit simulation is to provide an accurate

solution while minimizing the number of expensive model evaluations,

one way to achieve this goal is to reduce the number of time points com­

puted for each waveform. A number of circuit simulators have attempted

to improve the efficiency in this manner by exploiting a property of

waveforms called latency [NAG75, NEW78, RAB79, YAN80, SAK81].

While the general concept of latency includes any situation where the

value of a variable at a particular time point can be computed accurately

using some explicit formula, it usually refers to the situation where a vari­

able is not changing in time and its solution can be obtained from the

explicit equation:

Xn+l = Xn (3.1)

That IS, the value Xn+l IS not computed usmg a numerical integration

60 MIXED-MODE SIMULATION

v

(a) Time

v

(b)
Time

Figure 3.1: Effect of Solution by Direct Methods

formula but instead is simply updated using the value at the previous time

point. For example, the waveform shown in Fig. 3.2(a) has three latent

periods, and ideally the value of x does not need to be computed in any of

these regions.

In the SPICE program [NAG75], latency exploitation is performed

using a bypass scheme. In this technique, each device is checked to see if

3. RELAXATION-BASED SIMULATION 61

any of its associated currents and node voltages have changed significantly

since the last iteration. If not, the same device conductances and current

are also used in the next iteration. However, the checking operation is

somewhat expensive, especially if the circuit is large and most of the dev­

ices are latent. In general, latency exploitation involves the use of a model

describing the behavior of a particular variable as a function of time over a

given interval. The simple model described in Eq. (3.1) can be considered

as a "zeroth-order" latency model. Higher-order latency models can be

constructed if the solution is known to have a specific form (i.e., polyno­

mial, exponential) or if the solution for the variable can be obtained in

closed form. For example, a first-order latency model given by

can be used in the case of an ideal current source, with current I, charging

a linear capacitor, C. Usually a latency model can only be used over a

portion of the simulation interval. Therefore, the validity of the model

must be monitored and its use must be discontinued when the model is

thought to be invalid. The latency model used in this context has also

been called a dormant model [SAK81].

In practice, only the zeroth-order form of latency can be exploited

easily since the higher-order forms are difficult to construct for general

nonlinear circuits. To exploit this simple form of latency, some mechan­

ism is necessary to detect that the signal value is not changing appreciably.

The waveform is considered to be latent at that point, and its associated

variable is updated using Eq. (3.1) at subsequent time points. A second

mechanism is used to determine when the latency model is invalid, and

from that point onward the variable is computed in the usual way. Hence,

the waveform is only computed at time points when the signal is changing.

Event-driven, selective trace can be used to exploit latency, as described in

62 MIXED-MODE SIMULATION

the next chapter, without incurring the overhead of the bypass scheme.

It is only useful to exploit this simple form of latency when some

variables in the circuit are changing while other variables are stationary,

since direct methods can adequately handle the case when all variables are

active or latent. In fact, the "useful" form of zeroth-order latency can be

viewed as a subset of a more general property of waveforms called mul­

tirate behavior which is illustrated in Fig. 3.2(b). Multirate behavior

refers to signals changing at different rates, relative to one another, over a

given interval of time. MOS circuits inherently exhibit this kind of

behavior because of different transistor sizes and different capacitance

values at each node. Exploiting this general property can reduce

significantly the number of time points computed for each waveform since

large steps can be used for variables changing very slowly while smaller

steps can be used for rapidly changing variables.

The basic strategy to speed up circuit simulators suggested above is

to take advantage of the relative inactivity of large circuits by reducing the

number of time points computed. However, the actual speed improvement

obtained by solving the equations in this manner depends on the two main

factors:

I) The "amount" of latency and multirate behavior exhibited
by the circuit during the simulation, and

2) The efficiency of techniques used to exploit the two properties.

The first point refers to the maximum speed improvement that can be

obtained if the two waveform properties are exploited fully, and this factor

depends on the circuit size and the activity in the circuit generated by the

external inputs. The second factor depends on the actual number of points

computed and the work required to compute each point.

3. RELAXATION-BASED SIMULATION 63

v

(a) Time

v

Time
v

(b) Time

Figure 3.2: Waveform Properties (a) Latency (b) Multirate Behavior

64 MIXED-MODE SIMULATION

3.2. OVERVIEW OF RELAXATION METHODS

Relaxation-based circuit simulators, such as SPLICE [SAL83,

KLE84] and RELAX [LEL82, WHI83], use iterative methods at some

stage of the solution process to solve the circuit equations. The success of

these programs is due to the fact that they offer the same level of accuracy

as direct methods, assuming identical device models, while significantly

reducing the overall simulation run time. The reduction in run time is

accomplished by computing fewer solution points for each waveform,

thereby reducing the total number of model evaluations, and by avoiding

the direct sparse-matrix solution. However, a tradeoff exists in the relaxa­

tion methods since they can only be applied to a specific class of circuits.

Furthermore, there is the additional requirement that a grounded capacitor

be present at each node in the circuit to guarantee convergence. While

these factors limit the scope of the application of relaxation methods, the

programs which use relaxation have proven to be extremely useful for

simulation of many industrial MOS and bipolar integrated circuits. In the

remainder of this chapter, the relaxation methods are described and their

mathematical properties are presented.

3.2.1. Linear Relaxation

Two common linear iterative methods are the Gauss-Jacobi (GJ) and

Gauss-Seidel (GS). The methods differ only in the information they use

when solving a particular equation as shown in the two algorithms given

below. The superscript k is the iteration count, and E is some small error

tolerance.

Notice that in the GJ method each xf is computed using the iteration

values xJk-l), j=1, ... ,0, which are the values from the previous iteration.

In the GS method, the latest iteration values are used as soon as they

become available. The forall construct in Algorithm 3.1 suggests that all

3. RELAXATION-BASED SIMULATION 65

n variables can be computed in parallel during each iteration. The foreach

construct in Algorithm 3.2 requires that the variables be processed in a
particular sequence.

Algorithm 3.1 (Gauss-Jacobi Method to solve Ax = b)

k<- 0;
guess xO ;

repeat {

k<- k+l;
forall (i E { 1,···,n })

1 [i-l n 1 xt = -.. bi - ~ aijxf-l - . .I: aijxf- 1 ;
a.. J~ J=:Hl

} until(J x.k_ X .k-lJ<E i=l ... n)· 1 1 -, , , ,

D

Algorithm 3.2 (Gauss-Seidel Method to solve Ax = b)

k<-O;
guess xO ;

repeat {

k<- k+I;
foreach (i E {I, .. ,n})

1 [. i-I n _] x.k = - bI - ~a .. x.k - '" a .. x.k 1 1 .. IJ J . 4J IJ J a.. J= J=I+l

} until(Jx.k-x.k-lJ<E i=l ... n)· I I -, , , ,

D

Linear relaxation schemes are usually described usmg a splitting

notation that separates A into two components:

A=B-C

66 MIXED-MODE SIMULATION

where B is a nonsingular matrix such that linear systems of the form

Bx = d are "easy" to solve. Various relaxation schemes can be constructed

by choosing different B and C matrices in the iterative equation:

In particular, if A is decomposed into its diagonal, strictly lower-triangular

and strictly upper-triangular parts, D, Land U, respectively such that

A = L + D + U, then the GS method is obtained by setting

B = (L+D) C = - U (3.2)

and the GJ method is obtained using

B=D C=-(L+U). (3.3)

Since relaxation methods are iterative, the question naturally arises

as to whether or not these methods converge to the correct solution and, if

so, under what conditions? The requirements for convergence are stated in

the following standard theorem [V AR62]:

Theorem 3.1: Suppose bE IRn and A = B - C E IRnxn is nonsingular. If

B is nonsingular and the spectral radius of B-IC, given by p(B-IC),

satisfies the condition p(B-IC)<l, then the iterates x(k) defined by

Bx(k+l) = Cx(k) + b converge to x* = A-Ib for any starting vector xeD). D

In other words, the magnitude of the largest eigenvalue of the iteration

matrix B-IC must be strictly less than 1 to guarantee convergence of a

linear relaxation method. A condition which guarantees that p(B-IC) < 1

is if A is strictly diagonally dominant. A matrix has this property if the

diagonal term in each row i is greater than the sum of the off-diagonal

terms in the same row, i.e.,

3. RELAXATION-BASED SIMULATION 67

o
ttl aij I < I ajj I for lin
J;tl

and the "more dominant" the diagonal, the more rapid will be the conver­

gence. This condition can be satisfied if each node in the circuit has a

ground capacitor(C j). Then, when numerical integration method is applied

to discretize the time derivative, as describe in Section 2.3, a ;~ is added

to each diagonal term. Here, bo is the time-step and a is some constant

that depends on the numerical integration method used. Thus, by choosing

a small enough bo, Theorem 3.1 can be satisfied.

While the rate of convergence of these linear relaxation methods is

linear, a number of techniques are available to improve the convergence

speed. For example, in the GS method, the order in which the equations

are solved usually has a strong effect on the number of iterations required

to converge. Consider the case when matrix A is lower triangular. If pro­

cessed in the sequence, XI,x2,'" ,Xo, then one relaxation iteration is

sufficient to obtain the correct solution. However, if processed in the

reverse order, then n iterations are required to obtain the correct solution.

Therefore, equation ordering is usually performed on the variables when­

ever GS is used.

Another technique to improve convergence, also used in conjunction

with the Gauss-Seidel method, is the method of Successive Overrelaxation

(SOR). In this approach, the Gauss-Seidel method is used initially to gen­

erate an intermediate value, xlk+l), using the equation

where Band C are defined by Eq. (3.2). The actual value of xlk+ l) is

obtained by taking a weighted combination of the previous iteration and

the intermediate value which depends on a relaxation parameter, roo

68 MIXED-MODE SIMULA nON

The SOR method can also be defined in terms of the splitting notation with

B = co-1(D+coL), and C = CO-I [(1- co)D- coU]. While the proper choice of

co can greatly reduce the number of iterations, an optimal value of co can

only be computed a priori for a limited number of cases. In general, it

may be necessary to perform a somewhat complicated eigenvalue analysis

to determine the best value of co. In practice, adaptive algorithms are used

to select an appropriate value for co during the solution process.

Linear relaxation methods can be used in conjunction with the solu­

tion of nonlinear equations to solve the linear systems generated by

Newton's method. For example, the Newton-SOR method is a combina­

tion of the Newton-Raphson method and the SOR method. In this compo­

site algorithm, the Newton iteration can be considered as the "outer loop"

and the SOR iteration as the "inner loop." While it is possible to carry the

inner loop to convergence, there is no requirement to do so, as long as the

outer loop is iterated to convergence. In general, an m-step Newton-SOR

method can be defined where m is the number of iterations used in the

inner loop. For the case m=1, a one-step Newton-SOR method is

obtained. The Newton-SOR method is only one example of the possible

combinations of nonlinear iterative methods and linear iterative methods.

For example, Newton's method may be replaced by the secant method and

the SOR iteration may be replaced by one of the standard Gauss-Seidel or

Gauss-Jacobi methods.

3.2.2. Nonlinear Relaxation

The basic idea of relaxation can also be extended to solve systems of

nonlinear equations of the form F(x) = 0, where F:IRn--7IRn, with com­

ponents fl' f2' ... ,fn and fi:IRn--7IR. That is, rather than solving the system

using direct matrix techniques, the nonlinear equations can be solved in a

3. RELAXATION-BASED SIMULATION 69

decoupled fashion. Two such algorithms are given below. The index k is
the iteration count, while EI and E2 are error tolerances.

Algorithm 3.3 (Nonlinear Gauss-Jacobi Method to solve F(x) = 0)
kf- 0 ; guess xO ;

repeat {
kf- k+l ;
forall (i E {I,'" ,n })

solve fj(xf- I, ••. , Xr-l l , x~, X~ll, ... , xk- 1)=0 for

x~ ;
} until (I x~ - x~- II ~ EI , I fj(xk,i) I ~ E2 , i=l, ... ,n);

o

Algorithm 3.4 (Nonlinear SOR Method to solve F(x) = 0)
kf- 0 ; guess xO ;

o

repeat {
kf- k+l ;
foreach (i E {I,'" ,n })

solve fi(xf,"', Xr-I, x~, X~ll, ... , x~-I) = 0 for x~;

X~f- (1- ro)x~-l+ro(x~) ;
} until (I xf - xf-11 ~ EI , I fi(xk,i) I ~ £2, i=l, ... ,n);

In the above algorithms, xk,i = (xf, ... , Xr-I, xf, X~I' ... , x~).

These algorithms are referred to as nonlinear relaxation methods.

The steps are very similar to linear relaxation as given in Algorithms 3.1

and 3.2 except that, in this case, each equation in the inner loop is non­

linear. To solve each one-dimensional nonlinear problem, fi(x) = 0, an

iterative technique such as the Newton method or secant method must be

used since, in general, a closed-form solution cannot be obtained. Com­

bining the SOR method with the Newton method results in the SOR­

Newton algorithm. The general case is the m-step SOR-Newton method,

where m is the number of Newton iterations taken in the inner loop. The

70 MIXED-MODE SIMULA nON

question again arises as to the number of inner loop iterations to use.

It can be shown that the rate of convergence of the one-step SOR­

Newton method is the same as for the one-step Newton-SOR method

[ORT70]. The m-step SOR-Newton method also has the same rate as the

one-step method implying that it is not worthwhile to take more than one

Newton step since the convergence rate is not affected. However, the con­

vergence rate of the m-step Newton-SOR method is m times the rate of

convergence of the one-step method. Therefore, based on the rates of con­

vergence, one might be inclined to choose the m-step Newton-SOR to

solve a system of nonlinear equations. There is, however, a hidden cost if

the partial derivatives are expensive to calculate. Each step of SOR-

Newton requires the evaluation of each fj and n partial derivatives, ~.
OXj

whereas the m-step Newton-SOR method requires the evaluation of f and

all partial derivatives. Based on both operation counts and the rates of

convergence given above, the one-step SOR-Newton method appears to be

the most efficient and for this reason it is used in Iterated Timing Analysis

(ITA) [SAL83]. Note that this implies one iteration in the inner loop. The

outer loop is iterated until convergence is obtained. SOR-Newton also

offers one additional advantage over Newton-SOR in that waveform

latency can be exploited easily. This feature is described in more detail in

the chapter to follow.

In a general-purpose implementation of these methods, the iterative

process must be terminated when the solution is close enough to x*.

Often, this condition is checked using the test I xr- xr-1 1:5; £1. However,

this check of convergence is not sufficient in the nonlinear case. A second

test is necessary to ensure that each function, fj, is close enough to zero,

and this is specified using the test I fj(xk,j) 1:5; £2 for all i.

3. RELAXATION-BASED SIMULATION 71

The algorithms presented above are meaningful only if the nonlinear

equations, which are solved at each step in the inner loop, have unique

solutions in some specific domain under consideration. Recall that for

linear relaxation, the condition that ajj:;t:(), for all i= 1, ... ,n ensures that a

solution exists, assuming that the diagonal dominance property holds. A

similar condition is required in the nonlinear case. To illustrate this point,

let the Jacobian be decomposed into its diagonal, strictly lower-triangular

and strictly upper-triangular parts as follows:

F/(X) = D(x)+L(x)+U(x)

The iterations in the nonlinear scheme are well-defined if F is continu­

ously differentiable in an open neighborhood S of the point x*, for which

F(x*)=O, and D(x*) is nonsingular. The requirements for convergence are

also analogous to those for the linear case. By splitting the Jacobian

matrix using the previous notation

F'(x) = B(x) - C(x),

the local convergence of the nonlinear relaxation methods described in

Algorithms 3.3 and 3.4 can be stated as follows [ORT70]:

Theorem 3.2: Given F:IRn--7IRn, assume that F is continuously differenti­

able in an open neighborhood S of x* and x* satisfies F(x*)=O. If B(x*) is

nonsingular and p(B(x*)-lC(x*))<l, then there exists an open ball S* c S

such that the nonlinear relaxation methods given in Algorithms 3.3 and 3.4

converge to x* for any initial guess xO E S*. D

Recall that under the conditions stated in Theorem 3.1, linear relaxa··

tion methods converge for any initial guess. However, for the nonlinear

case the convergence result is local since the initial guess must be close

enough to the final solution to guarantee convergence. The proof of this

theorem may be found in the reference [ORT70].

72 MIXED-MODE SIMULATION

3.2.3. Waveform Relaxation

The relaxation schemes presented above can be also extended to

functions spaces to solve systems of differential equations. This class of

algorithms is called Waveform Relaxation (WR) [LEL82]. The relaxation

variables in WR are elments of function spaces, i.e., they are waveforms in

the closed interval [O,T], whereas for linear and nonlinear relaxation the

variables are simply vectors in Euclidean n-space. To illustrate the WR

algorithm, consider the circuit simulation problem in the form specified in

Eq. (2.9). The WR method for solving this system of equations is given in
Algorithm 3.5 below.

Algorithm 3.5 (WR Gauss-Seidel Algorithm for Solving Eg. (2.9))

k~O;

guess waveform xk(t) ; t E [O,T] such that xk(O) = Xo ;

repeat {
k~ k+1;
foreach (i E {1, .. ,n) {

solve

~j C"(Xk ... x.k x.k-11 ••• xk-l u)x.k+ IJ r, ,I , 1+, ,n, J
J=

~ C .. (x k ... x.k x.k-1l ... Xk-l u)x.k-1+ .4.J IJ 1, ,1,1+, ,n, J
J=1+1

f·(x k ... x.k x.k-11 ••• xk-l u) =0 11, ,1'1+, ,n,

for (xNt); t E [O,T]), with the initial condition

xNO) = Xio;

} until (maxl~ j~ nmax. E [O.T] I xf(t) - xr-1(t) I::; E)

o
Algorithm 3.5 converts the problem of solving a coupled system of n

first-order ODEs to the problem of solving n separate differential

3. RELAXATION-BASED SIMULATION 73

equations, each containing a single variable. The outer loop in the algo­

rithm is the Gauss-Seidel iteration which requires that the latest values of

the relaxation variables be used to solve each equation in the inner loop.

Each equation in the inner loop is a single nonlinear differential equation,

and this equation can be solved using any standard numerical integration

method.

The convergence of the Waveform Relaxation method is guaranteed

under conditions which are similar to the linear and nonlinear cases, as

stated in the following theorem [WHI85C]:

Theorem 3.3: If C(x(t),n(t)) E IRnxn of Eq. (2.9) is strictly diagonally

dominant uniformly over all x(t) E IRn and net) E IRf and Lipschitz con­

tinuous with respect to x(t) for all net), then the sequence of waveforms

{xk} generated by the Gauss-Seidel or Gauss-Jacobi WR algorithm will

converge uniformly to the solution of Eq. (2.9) in any bounded interval

[O,T], for any initial guess xO(t). 0

While this theorem guarantees convergence of the WR algorithm, it

does not imply anything about the speed of convergence. Although the

method usually converges in a few iterations, it has been observed that in

test cases with tight feedback loops, the number of iterations required to

converge is proportional to the simulation interval [WHI83]. To improve

convergence, the simulation interval [O,T] is usually divided into smaller

intervals, [O,Td, [T j ,T2], ... , [Tn-I,Tn], called windows. Initially, the WR

algorithm is applied only in the first window, [0, T d, until the waveforms

converge. Then a second window, [T I,T2], is selected and WR is applied

within this interval until the waveforms converge. This continues until the

entire simulation interval is covered. Note that the WR method converges

more rapidly as the window size is made smaller. One advantage of WR is

that the time-steps for each of the variables can be chosen independently

74 MIXED-MODE SIMULATION

of one another, but this advantage is compromised if the windows are too

small. Therefore, the window size is an important factor which determines

the performance of programs which use the WR method.

3.2.4. Partitioning for Relaxation Methods

Relaxation methods are most effective when applied to a system of

equations which are "loosely-coupled," that is, where the variables do not

depend too strongly on one another. For this type of system, relaxation

methods usually converge quite rapidly. The speed of convergence in the

linear case is controlled by the spectral radius of the iteration matrix given

by p(B-le) (using the notation of Theorem 3.1); this is usually close to

zero for loosely-coupled systems. However, for an arbitrary problem,

there is no guarantee that the spectral radius will be small. In fact, in

"tightly-coupled" systems, the spectral radius may be very close to 1

which implies slow convergence. This degrades the performance of the

relaxation-based methods compared to those for the direct methods.

The precise meaning of loosely-coupled and tightly-coupled can be

described using a simple 2x2 matrix problem:

Assume that the equations have been ordered such that Xl is solved before

X2. Then, a21 can be considered as a feed-forward term and a12 can be

considered as a feedback term. The spectral radius of the iteration matrix

for the GS method (see Theorem 3.1) is given by

3. RELAXATION-BASED SIMULATION 75

and to guarantee convergence, this value must be strictly less than 1. If

both a12 and a21 are non-zero, the variables Xl and X2 are considered to be

coupled. If both al2 and a2l are large, relative to all and a22, then Xl and

X2 are called tightly-coupled variables. If both al2 and a21 are small, then

XI and X2 are called loosely-coupled variables. Note that if either a21 or

al2 is zero, then equation ordering has a significant impact on the number

of iterations. In fact, if a21=0, then X2 should be solved before Xl so that

the solution can be obtained in one iteration. A similar argument applies if

a21 is very small compared to a12. Therefore, the main objective in reord­

ering is to make the A matrix as lower triangular as possible.

When solving large systems, the definitions given above can be used

to partition the system into groups of tightly-coupled variables. Rather

than using relaxation methods to solve the tightly-coupled variables within

each "block," it is better to solve them using direct methods. The relaxa­

tion method can be applied between the blocks, which are loosely-coupled

relative to the variables within a block. This gives rise to block relaxation

methods [VAR62], which can be viewed as a combination of the direct

methods and relaxation methods. As an example, consider the 3x3 matrix

problem:

If X2 and X3 are tightly-coupled, then many relaxation iterations may be

required to solve this problem. However, by grouping X2 and X3 into the

same block and reordering the variables for the Gauss-Seidel method, the

following equation is obtained:

76 MIXED-MODE SIMULATION

If X2 and X3 are solved using direct methods, then this problem can be

solved using a single relaxation iteration.

The examples above are only meant to show that proper ordering and

partitioning are extremely important in the relaxation-based methods. In

Chapter 4, the details of the ordering and partitioning algorithms will be

described, including a discussion of the convergence requirements, the

handling of MNA elements and other methods to improve simulation

speed in the presence of tight coupling.

4. ITERATED TIMING ANALYSIS 77

CHAPTER 4

ITERA TED TIMING ANALYSIS

In the previous two chapters, the circuit simulation problem was

identified and efficient techniques to solve the problem were described. In

this chapter, a detailed description of event-driven electrical simulation

based on nonlinear relaxation methods is provided. The chapter begins

with the equation flow for nonlinear relaxation when applied to the circuit

simulation problem. Then the timing analysis and iterated timing analysis

(ITA) algorithms are described. Algorithms for event-driven electrical

simulation with block partitioning and global variable time-step control

are presented in the next two sections. Finally, the issues relating to

latency detection and event scheduling in ITA are discussed.

4.1. EQUATION FLOW FOR NONLINEAR RELAXATION

The starting point for the description is the system of nonlinear dif­

ferential equations describing the circuit behavior using the charge-based

formulation:

ci(v(t) = f(v(t),u(t», v(O)=V, t E [O,T] (4.1)

where q is the charge associated with the capacitors connected to each

node, f is the sum of the currents charging the capacitances at each node, u

is the set of input voltages and v is the set of unknown node voltages.

Using trapezoidal integration [CHU75] to discretize the system in Eq.

(4.1), the following system of nonlinear difference equations is obtained:

qn+l = qn + ~n (fn+l + fn) (4.2)

where the subscripts nand n+ 1 refer to time points tn and tn+ 1 = tn+hn,

respectively, and hn is the integration step size. This equation can be

78 MIXED-MODE SIMULA nON

formulated as a nonlinear problem, as follows:

(4.3)

Instead of solving this system of equations using standard techniques

[NAG75], the strategy in this section is to use nonlinear relaxation. That

is, use the Newton method to solve each equation in the system separately

and a relaxation method to guarantee that the solutions are mutually con­

sistent. The expression for the ith equation in Eq. (4.3) solved using the

Newton method is

(4.4)

where the index k is the iteration counter for the Newton method and

JF;(V) is the ith diagonal term of the Jacobian matrix of F(v) given by

(4.5)

Usually a number of iterations are required to obtain the correct solution.

However, in this case, since a converged relaxation method is used to

guarantee a consistent solution to the system of equations, the Newton

iteration for each equation need not be carried to convergence. In fact,

from an efficiency standpoint, only one iteration should be used to approx­

imate the solution of each equation before moving to the next equation, as

described earlier in Chapter 3. The resulting one-step Gauss-Seidel­

Newton relaxation algorithm is specified precisely in the following, using

the definition:

vk,i = [v k+1 vk+l ••• v.k-tl v.k v.k 1 ••• vk]T 1 , T, , I-I , I , 1+ , ,n

where the superscript T denotes the transpose of a vector. This definition

is based on the Gauss-Seidel method which uses the k+ 1 st values of all

other components, whenever possible, in computing the k+ 1 st value of Vi.

4. ITERATED TIMING ANALYSIS 79

Here n is the number of equations in the system. The algorithm for a one­

step Gauss-Seidel-Newton Relaxation method is given below:

Algorithm 4.1 (Gauss-Seidel-Newton Relaxation Method)

repeat {

o

foreach (i E {I,'" ,n}) {

solve JFlvk,i)(v~+I- v~) = - Fi(vk,i) for V~+I

where Fj(v) is specified in Eq. (4.3) and

JF/V) is specified in Eq. (4.5) ;

4.2. TIMING ANALYSIS ALGORITHMS

The first published program to use techniques based on nonlinear

relaxation for circuit simulation was the MOTIS program [CHA 75]. It

used backward-Euler integration, a Gauss-lacobi-Newton relaxation algo­

rithm, and node-by-node decomposition (that is, it solved for one node

voltage at a time). In MOTIS, a simple modification was made to the

relaxation scheme based on the conjecture that there exists a small enough

time-step, hmin, such that the method obtains the correct solution in exactly

one iteration. At each time point, tn+I' the program computed new values

of all node voltages using only one iteration of the Gauss-lacobi-Newton

method and accepted the results as the correct solutions at tn+ I. It was

believed that iterating the outer relaxation loop to convergence would be

both expensive and unnecessary for most MOS logic circuits. However,

the resulting accuracy of this approach relied heavily on three things:

1) The user's ability to select an appropriate time-step based
on knowledge of the circuit characteristics.

80 MIXED-MODE SIMULATION

2) The fact that the global error reduces to zero when a node
voltage reaches the supply voltage or ground.

3) Only a limited number of well-characterized circuit topologies
(CMOS polycells) were used to build a design.

The initial speed improvements obtained using this approach were

extremely encouraging, partially due to the simplified numerical tech­

niques and partially due to the use of table lookup models for the MOS

devices. The combined techniques were shown to be over two orders of

magnitude faster than standard techniques when applied to large digital

MOS circuits [CHA75]. Since the method was intended to provide first­

order timing information of MOS logic circuits, it was called "Timing

Analysis" or "Timing Simulation."

Although timing analysis provided an electrical simulation capability

with execution speeds comparable to logic simulation, it had a number of

problems. For example, the choice of a proper time-step to guarantee

accurate solutions was very difficult to determine in general. In addition,

the method had severe accuracy problems for circuits containing elements

such as large floating capacitors 1, small floating resistors and transfer

gates. The MOTIS program avoided this problem for floating capacitors

by not allowing them in the circuit description and solved collections of

transfer gates using direct methods.

A number of improvements to the basic technique was suggested to

overcome the inherent accuracy limitations of the method. In particular,

the MOTIS-C program [FAN77] employed trapezoidal integration and one

iteration of the Gauss-Seidel-Newton relaxation algorithm. Since timing

analysis algorithms based on the Gauss-Seidel principle use updated infor­

mation at tn+l whenever possible, the accuracy is generally better than one

I A "floating" element is a two-terminal device whose terminals are not connected to either
ground or to a power supply.

4. ITERATED TIMING ANALYSIS 81

based on the Gauss-Jacobi method. The simulation time-step was selected

automatically in the program by doing a simple analysis of the time con­

stants associated with each node and by using some fraction of the smal­

lest time constant as the step size. However, MOTIS-C still suffered from

problems similar to those for MOTIS.

A modified timing analysis algorithm was implemented in

SPLICEl.3 [NEW78] as part of a mixed-mode simulation capability.

Although backward-Euler integration was used in this program, a number

of other noteworthy enhancements were made to the underlying timing

analysis algorithm. The first enhancement was based on two observations:

1) Most of the node voltages in a large digital circuit remain
stationary at a given time point (the latency property).
Computing the solution for these nodes is unnecessary.

2) The order in which the nodes are solved has a strong influ­
ence on the accuracy of the solution for timing analysis
algorithms based on the Gauss-Seidel principle.

These observations suggested that a good strategy would be to identify the

"active" nodes at each time point and process these nodes in an order

based on the direction of signal flow. In SPLICE1.3, a single mechanism

was used to perform both tasks: an event-driven, selective-trace algorithm

normally associated with logic simulation [SZY75]. This mechanism is

described in the following paragraphs.

The SPLICE! program treats a circuit as a signal-flow graph and

constructs a corresponding directed graph for the circuit given by

G=G(X,E), where X is the set of vertices and E is the set of directed edges

of the graph. Two tables, the fanin and fanout tables, are constructed at

each vertex based on the following definitions:

82 MIXED-MODE SIMULATION

Definition 4.1 (Fan in and Fanout nodes)

A node Xk is called a fanin node of Xj, and is specified as Xk E Fanin(xi), if

Xk directly affects Xi. A node Xj is called a fanout node of Xi, and is

specified as Xj E Fanont(xj), if Xj is directly affected by Xi. 0

Whenever the value of an input node or any internal node changes, it

is possible to schedule all of its fanouts to be processed. In this way the

effect of a change at the input to a circuit may be traced as it propagates to

other circuit nodes via the fanout tables. Since the only nodes that are pro­

cessed are those which are affected directly by the change, this technique

is selective and hence its name: selective trace. If such a selective trace

algorithm is used with the fanout tables, the order in which the nodes are

updated becomes a function of the signals flowing in the network and is

therefore a dynamic ordering.

To make the processing efficient, and for consistency with the logic

simulator in the SPLICE! program, the total simulation period, Tstop, is

divided into uniform steps, referred to as the Minimum Resolvable Time

(mrt). A time queue is constructed and the time slots in this queue define

distinct points in time separated by one mrt. Hence, events are scheduled

at integer multiples of mrt in the queue. The simple event scheduling

approach used in SPLICE! for timing analysis is given in Algorithm 4.2.

The routine NextEventTime(t) examines successive time slots in the time

queue starting at time t and returns the next time point where one or more

events have been scheduled. The external input nodes to a circuit are

denoted as ek.

As seen III the algorithm below, three separate event scheduling

mechanisms exist:

1) External inputs generate events whenever they make transitions
from one value to another,

4. ITERATED TIMING ANALYSIS 83

2) Internal nodes can schedule themselves to be processed, and

3) Internal nodes can schedule their fanout nodes to be processed.

Note that if Xi is not active, then neither Xi nor its fanouts are scheduled.

However, since nodes may schedule themselves, the fanouts of Xi may still

be active even though Xi is not. The importance of this fact and other

issues associated with electrical event scheduling will be presented in Sec­

tion 4.5. Also, the precise meaning of "active" is elaborated further in

Section 4.5.

Algorithm 4.2 (Event Scheduling Algorithm in SPLICE!)

tnf- 0;

while (tn~T stop) {

}
o

tnf- NextEventTime(tn);
foreach (input k at tn) {

if (ek is "active")

foraH (Xj E Fanout(ek)) schedule(Xj' tn);

foreach (event i at tn) {
process node Xi by computing Xi(tn);
if (Xi is "active") {

schedule(Xi, tn+h);
foraH (Xj E Fanout(Xi)) schedule(Xj' tn);

The use of event-driven, selective-trace techniques give greatly

improved accuracy of SPLICE1.3 compared to those for the MaTIS and

MOTIS-C programs. In addition, a further improvement was realized

using a variable time-step control, as follows. Initially, every node is

solved using a common step size given by the mrt. If the change in either

84 MIXED-MODE SIMULATION

the voltage at a node or the current through any device connected to the

node is large, its solution is recomputed in the mrt interval using smaller

steps and a single iteration at each time point. Each of the smaller steps

may be further refined to insure that the changes in voltage and current are

within acceptable limits. Therefore, the local time-steps for each node are

based on limiting change of the node voltage and its associated currents

over each step2. While the run time was noticeably higher, this variable

time-step control was extremely effective in improving the accuracy of the

results.

Other enhancements were developed in SPLICE1.3 to handle

tightly-coupled circuits. SPLICE1.3 used the Implicit-Implicit-Explicit

(lIE) method [NEW80] to handle floating capacitors. To accommodate

large blocks of tightly-coupled circuit elements, the program allowed the

user to define "circuit" blocks. These blocks would be solved using stan­

dard direct matrix techniques. However, instead of using a single itera­

tion, the Newton iteration in the inner loop was carried to convergence

since the elements inside the circuit block were considered to be "highly"

nonlinear. However, the outer relaxation iteration was only performed

once.

While the results from programs using timing' analysis were within

acceptable accuracy limits for a certain class of problems, a rigorous

mathematical analysis indicated that these methods have inherent stability

and accuracy problems [DEM81]. This severely limited the application of

the technique. Another problem, cited earlier, was that timing analysis

programs relied on the user's knowledge of the underlying algorithms and

improper usage could produce the wrong answer. Circuit designers have

2 Note that a variable time-step control based on local truncation error is not easy to define here
since the relaxation loop is not carried to convergence. The local error (i.e., the error over one step) is
due to the integration method and the fact that the iteration is not carried to convergence.

4. ITERATED TIMING ANALYSIS 85

been known to lose confidence in a simulator if it occasionally produces

the wrong answer, whatever the reason. Therefore, this approach has not

been widely accepted, although it is heavily used where the approach has

been thoroughly developed, is well-understood, and is applied to a res­

tricted class of circuit topologies.

4.3. SPLICE1.7· FIXED TIME· STEP ITA

The reluctance to close the outer relaxation loop in timing analysis

was primarily due to its perceived high cost. However, the event-driven

techniques significantly reduced the cost of timing analysis for large prob­

lems since only a small fraction of the nodes is processed at each time

point. A number of other improved timing analysis algorithms were pro­

posed [DEM83] but they used at least two iterations or required the use of

expensive function evaluations, which increased greatly the cost of the

simulation. As described earlier, the variable step approach in SPLICE1.3

improved the accuracy somewhat at the expense of additional iterations.

The additional cost was thought to be worthwhile due to the improved reli­

ability.

The next step, naturally, is to close the relaxation loop and examine

the true cost of iterating to convergence, given that event-driven selective

trace is employed to improve efficiency. This was done in the SPLICE1.6

program, which later evolved to be SPLICEl.7, and the technique was

named Iterated Timing Analysis or ITA [SAL83]. The prototype version

of ITA used backward-Euler integration, node-by-node decomposition and

a fixed time-step based on the mrt. The fixed time-step algorithm was

kept for consistency with the existing scheduler and logic simulation por­

tions of SPLICEl. The ITA algorithm in SPLICE1.7 is a simple extension

of Algorithm 4.2 as shown below.

86 MIXED-MODE SIMULATION

Algorithm 4.3 (Fixed Time-Step ITA)

D

tnf- 0;

while (tn$Tstop) {

}

tnf- NextEventTime(tn);
foreach (input k at tn)

if (ek is active)

forall (Vj E Fanout(ei)) schedule(Vj, tn);
repeat {

foreach (event i at tn) {

}

solve JF/vk,i)(v/<+l- v/<) = - Fi(vk,i) for v/<+l

where Fi(V) is specified in Eq. (4.3) and

JF/V) is specified in Eq. (4.5) ;

if (I v/<+L v/< I <£1, I Fil <£2) { /* converged? */

if (Vi did not converge on last iteration) {

}

if (Vi is active) {
/* this is the selective-trace portion */
schedule(Vj, tn+l);
forall (Vj E Fanout(vi))

schedule(Vj, tn);

else {/* do nothing (latency) */}

else {/* do nothing (breakfeedback loops) */}

else { /* node has not converged */
schedule(Vi, tn);

forall (Vj E Fanout(Vi» schedule(Vj, tn);

} until (Q is empty at tn)

4. ITERATED TIMING ANALYSIS 87

The following definition is used in the algorithm:

vk,i = [Vf+l ,v:!,+l, ... ,vr-t1,vr,vf-i.l, ... ,v~]T

The algorithm above has two features not present in the SPLICEl.3 algo­

rithm:

l) If a node voltage does not converge, the node is rescheduled
at the current time point tn along with its fanout nodes.

2) All nodes are processed until their voltages converge. When
a node converges at tn, it schedules itself at tn+1 and schedules
its fanouts at tn, if active. However, if it is scheduled again
at tn by one of its fanins, and converges again, it does not
schedule any additional events. This approach breaks feedback
loops, since two nodes which are fanouts of each other would
schedule each other indefinitely at tn if this approach was not
used.

The speed improvement obtained by the SPLICEl.7 program com­

pared to that for the SPICE2 program was in the range of 5 to 50 times fas­

ter for a number of MOS digital circuits containing up to 1200 transistors

[SAL83]. However, the ITA approach required approximately twice as

much CPU-time to simulate a circuit compared to SPLICE1.3 which used

timing simulation [SAL84]. Again, the improvements in reliability and

numerical robustness far outweighed the cost of the increase in run-time.

While the converged relaxation scheme is provably better than the

non-iterated approach, it is not without problems. One problem is the

speed of convergence. For example, SPLICEl.7 was able to simulate

accurately an NMOS operational amplifier but it required more than two

times the CPU-time used by SPICE2 [NEW83]. The circuit is a tightly­

coupled analog circuit with large forward gain and capacitive feedback

and, in this application, the node-by-node decomposition strategy used in

SPLICEl.7 is inappropriate. For this same reason, convergence is also

very slow in the presence of large floating capacitors and small drain and

88 MIXED-MODE SIMULATION

source resistors, usually found in detailed MOS transistor models.

Another problem is due to nonconvergence. Since a fixed time-step is

used, the program simply stopped when it was unable to converge to a

solution within a specified number of relaxation-Newton iterations. Obvi­

ously, a variable step algorithm would resolve this problem and would also

allow the solutions to be computed accurately based on a local truncation

error criterion. These and other problems were solved in the SPLICE2 and

iSPLICE3 programs.

The version of ITA implemented in the iSPLICE3 [SAL89A,

ACU90] program differs from SPLICE!.7 in two respects:

1) it uses partitioning to improve the speed of convergence for
tightly-coupled circuits.

2) it achieves better accuracy by using an LTE-based time-step
control.

The iSPLICE3 program also provides detailed MOS levelland MOS

level 3 transistor models including a charge-conserving capacitance

model.

4.4. CIRCUIT PARTITIONING

The node-based ITA approach used in SPLICEl.7 is not appropriate

for circuits with tight coupling between two or more nodes, since the con­

vergence can be very slow in this situation. One reason for this problem is

that in computing the new value for a particular node, the relaxation pro­

cess effectively replaces the fanin nodes with ideal voltage sources of con­

stant value. Therefore, the true Norton equivalent contributions from the

fanin nodes are not used in the computation of a new value for the node.

SPLICE2 used an improved representation of the neighboring nodes based

on a current and conductance model, rather than constant voltage sources,

and this approach was called the coupling method [KLE84]. This fanin

4. ITERATED TIMING ANALYSIS 89

model is approximate since the exact Norton equivalent is expensive to

calculate during the simulation as it involves path tracing from each fanin

node to all other reachable nodes. While this approach improved the con­

vergence speed on some examples, the technique was heuristic in nature

and did not solve the general problem of coupling between more than two

nodes in feedback loops.

As was realized in early relaxation-based simulators such as

SPLICE 1, tightly-coupled subcircuits are better solved using direct

methods [NEW78]. However, it is difficult for users to identify tightly­

coupled blocks manually, especially when the degree of coupling is a

function of time and usually changes frequently over the simulation inter­

val. A more effective approach to the coupling problem is to identify

strongly-coupled components in the circuit automatically and to group

them together to form subcircuits - a process referred to as circuit parti­

tioning. Since the variables associated with the subcircuits are assumed to

be tightly-coupled, the subcircuits can each be solved using direct matrix

techniques, and the relaxation method can be applied between subcircuits.

This technique has been used in conjunction with the Waveform Relaxa­

tion algorithm [LEL82, CAR84, WHI85A, MAR85, DUM86, SA V93]

with great success. The same approach can be used with nonlinear relaxa­

tion to improve convergence as mentioned in Chapter 3. However, there is

still a requirement of a capacitor to ground from each node to guarantee

convergence, and this limits the type of circuits that can be simulated

using relaxation method. In the following sections, an approach is

described to extend the application of relaxation methods to virtually any

type of circuits.

4.4.1. MNA Elements

Historically, elements such as controlled sources, inductors and

90 MIXED-MODE SIMULATION

floating voltage sources have been difficult to incorporate into nodal

analysis based circuit simulators. Modified Nodal Analysis [H075]

evolved as a method of equation formulation that allows these elements to

be easily included in direct method simulators such as SPICE. This is

accomplished by appending the branch constitutive relations of these so

called MNA elements to the nodal equations, and by adding extra columns

to the circuit matrix so that the needed variables, such as current and

charge, are also included. This is the formulation used by almost all

general-purpose circuit simulators. However, MNA elements have posed

problems for relaxation-based simulators as they typically do not have

grounded capacitors on their terminals. Therefore, circuits containing

MNA elements do not usually satisfy the sufficiency conditions for con­

vergence described earlier. In fact, they produce + 1 and -1 terms in off­

diagonal locations in the circuit matrix, which are usually large relative to

other terms in the matrix.

For example, a voltage-controlled voltage source (VCVS), with

V3 - V4 = a(V2 - VI), has the following matrix template:

BE [a -a 1 -1 0 1
D3 - - - - -1
D4 - - - - +1

The presence of the large off-diagonal terms, a, +1 and -I, may

degrade convergence, if convergence occurs at all! However, the theorem

to be presented in the next section suggests a way of incorporating MN A

elements into relaxation-based simulation programs. This involves devis­

ing a partitioning algorithm that will embed an MNA element into a sub­

circuit, such that all boundary nodes of the subcircuit will have capaci­

tances to ground.

4. ITERATED TIMING ANALYSIS 91

4.4.2. New Sufficient Condition for Convergence

Recently, an improved condition for the convergence of block time­

point relaxation methods has been proved stating, in effect, that grounded

capacitors are only required at certain nodes in the circuit [DES89]. This

theorem establishes new sufficient conditions for the convergence of the

Gauss-Seidel-Newton (GSN) relaxation method and is given below:

Theorem 4.1 : Consider a system of partitioned nonlinear equations F of

the form:

F(x) = 0 and A(x*) = (aF/ax)(x*)

Let x* be the solution of F, and let F be continuously differentiable at x*.

Assume that the circuit is partitioned into blocks and a partial ordering has

been determined so that these blocks are numbered in ascending order. In

the Gauss-Seidel approach, a lower-numbered block will be evaluated

before a higher-numbered block. Then, a node inside a block is afeedback

node if its circuit equation is a function of some nodes in a higher num­

bered block. The corresponding node to which the feedback node is con­

nected in the higher numbered block is afeedforward node. Now, assume

the following:

1) All principal square submatrices of Aex*) are invertible
and their inverses have bounded norms.

2) aJ/ax is independent of the time-step and has bounded
entries.

3) There is a capacitor from each feedback node to ground.

Then, the iterates in the Gauss-Seidel-Newton relaxation method converge

to x* if the time-step h is small enough and if the initial guess IS

sufficiently close to the solution x*.

Proof: The proof is presented in [DES89]. D

92 MIXED-MODE SIMULATION

The basic idea of the theorem is depicted in Fig. 4.1. There are 14

nodes and a number of edges representing connections between the nodes.

Assume that the nodes are partitioned into 4 subcircuits, Sub 1, Sub2, Sub3

and Sub4, respectively. Then, all resulting feedback nodes (as defined

above) must have a capacitance to ground to guarantee convergence. In

Fig. 4.1, the feedback nodes are 2, 3, 7 and 10 and they all have a capaci­

tive connection to ground. Now, if the conditions 1) and 2) are satisfied,

then the Gauss-Seidel-Newton relaxation method is guaranteed to

Levell Level 2 Level 3

Sub 3

Figure 4.1: Partitioning Approach Suggested by Theorem 4.1

4. ITERATED TIMING ANALYSIS 93

converge if the time-step is small enough. Note that no other capacitors

are required in the circuit for convergence. If the Gauss-Jacobi method is

used, then the feedforward nodes must also have capacitances to ground.

The feedforward nodes in this case are 5, 9 and 12. The event-driven algo­

rithm also requires capacitances to ground at all feedback and feedforward

nodes in the circuit, which we refer to as the peripheral nodes. The use of

this key theorem to expand the scope of relaxation-based simulation IS

described in the following sections.

4.4.3. A Partitioning Algorithm

A partitioning algorithm is now proposed which improves the con­

vergence of relaxation-based methods and can handle MNA elements.

Basically, the partitioner groups tightly-coupled nodes together and

ensures that every subcircuit in the network has grounded capacitors at its

peripheral nodes. In the case of MNA elements, the partitioning algorithm

ensures that all nodes of the device and any internal variables are assigned

to the same subcircuit. The pseudo-code for the partitioner is given in

Algorithm 4.4.

Algorithm 4.4 (Partitioning MNA Circuits)

partitionO
{

node list f- {all nodes};

foreach (MNA element i) {

place all its nodes in subcircuit i;
nodelist f- {nodelist} - {MN A nodes};

G_partitioner(nodelist); 1* conductance based *1
C_partitioner(nodelist); 1* capacitance based *1
Build_SubcircuiCData(sublist); 1* tentative subcircuits *1
Levelize(sublist); 1* rank *1

94 MIXED-MODE SIMULATION

foreach (Level i, i=n, ... , 1) { /* process in reverse-order */
foreach (subcircuit j in Level i) {

levelize(sub_nodelist(j»; /* order nodes in subcircuit */

/*Check feedforward and feedback nodes for capacitances*/
foreach (Level i, i=n, ... , 1) { /*rank*/

foreach (subcircuit j in Level i) {
foreach (node k in subcircuit j) {

if(k = unvisited) {

/*subcircuit*/
/*node*/

}

o

}
}

foreach ((x member of fanouClist(k» and (x = unmarked»
{

}

Mark(x);
if(check_feedback(x,k) = NO or

check_feedforward(x,k) = NO) {
/*no feedback or feedforward capacitance*/
Coalesce(j, find_subcircuit(x»;

/*combine subcircuits*/
Update(j, find_subcircuit(x»; Continue;

k = visited;

Build_subcircuitsO;
foreach (Level i, i=n, ... , 1) {

Partial_orderO; /* establish final ordering */
}

The first step in the partitioner is to construct a directed graph

G=(V,E) where V is the set of nodes in the circuit and E is the set of edges,

defined by E= {(a, b)}. An edge arises whenever the node voltage or node

4. ITERATED TIMING ANALYSIS 95

current at node b is dependent on the node voltage or node current at node

a. For each such ordered pair, a directed arc from a to b is constructed.

An attribute is associated with each node in the graph that indicates

whether or not the node has a purely capacitive path to ground. A second

attribute is used to indicate whether or not a node has MNA elements

attached to it. If so, a unique tag is associated with each such element.

This information enables the partitioner to identify all nodes attached to a

distinct MNA element. Fig. 4.2 shows an example of a circuit graph to be

processed by the partitioner. The graph contains four nodes with the label

.I.

Figure 4.2: Circuit Graph Incorporating Partitioning Information

96 MIXED-MODE SIMULA nON

"1", indicating that they are attached to a common MN A element.

In Algorithm 4.4, all the nodes in the circuit are initially placed in a

data structure called a nodelist. When the nodes belonging to an MNA

element are assigned to a subcircuit, they are removed from the node list,

although they may be revisited by neighboring nodes during the partition­

ing process. Fig. 4.3 shows the circuit graph of Fig. 4.2 after the MNA

element nodes have been assigned to a subcircuit. Next, a static partition­

ing approach, similar to the one used in the RELAX2 program [WHI85C],

Figure 4.3: Circuit Graph After MNA Elements are Processed

4. ITERATED TIMING ANALYSIS 97

is applied to the rest of the nodes in the node list. The main goal of static

partitioning is to speedup the convergence process of relaxation methods

by grouping tightly-coupled nodes together. Recall from Chapter 3 that

the speed of convergence is controlled by the contraction factor, 'Yoo, in the

following way:

For a linear problem, this iteration factor can be computed quite easily.

For example, if the linear problem Ax=b is solved using the Gauss-Seidel

algorithm, 'Yoo is equal to the largest eigenvalue of the iteration matrix

[(L+Dt I(_V)], where A=L+D+U. Therefore, a two-node linear circuit,

such as the one in Fig. 4.4, has an iteration factor (for the conductance por­

tion only) given by:

A similar expression exists for the capacitance portion of the circuit.

Note that if the two nodes are part of a larger circuit, the values of gl and

g2 are the Norton equivalent conductances seen from each node looking

back into the rest of the circuit.

The static partitioning algorithm makes use of the iteration factor to

decide whether or not two nodes should be placed in the same subcircuit.

If the factor is close to one and the nodes are solved independently, the

convergence would be very slow. Therefore, the two nodes should be

placed in the same subcircuit. However, if the factor is close to zero, they

may be placed in different subcircuits without adversely affecting the con­

vergence speed. A threshold parameter, a, is used to decide whether or

not the nodes should be solved together or separately.

A number of approximations are made in computing the iteration

factors when partitioning MOS circuits. As MOS circuits are nonlinear,

98 MIXED-MODE SIMULATION

1 2

I
Figure 4.4: Linear Circuit Considered for Partitioning Purposes

each nonlinear device must be replaced by a linear equivalent device.

Since a static partitioning strategy is used, worst-case conductance and

capacitance values are used when replacing each nonlinear device with a

linear one. However, the exact Norton equivalent model seen by each

node cannot be computed efficiently because it involves tracing paths from

each node to all other nodes in the circuit. For efficiency, the depth of the

conductance and capacitance search process is truncated whenever the gate

of an MOS transistor is encountered since the conductance of an MOS

transistor is zero in the worst case. Path tracing is also terminated when

the controlling node of an MNA element (such as a VCVS) having no

further connections to other nodes, aside from the controlled nodes, is

encountered. Linear inductors and floating-voltage sources are treated as

4. ITERATED TIMING ANALYSIS 99

infinite conductance elements during the conductance computing process.

With these heuristics applied, the conductance partitioning approach

given in Algorithm 4.5 is obtained. A similar algorithm is used for parti­

tioning based on capacitances.

Algorithm 4.5 (Conductance Partitioning)

G _partitioner(nodelist)
{

}

o

foreach (node in nodelist) {
node 1 t- next node in nodelist;
foreach (element connected to node 1) {

node 2 t- node on other side of element;
if (node 1 and node 2 not checked previously) {

gl2 t-O; glt-O; g2t-O;

foreach (conductive element between nodes 1 and 2) {
gl2 t-g12 + maximum element conductance over all v;
Remove the element from the circuit;

gl t- sum of the minimum Norton equivalent
conductance of each element at node 1

g2 t- sum of the minimum Norton equivalent
conductance of each element at node 2

if (g12 gl2 > a) {
(g2+g12) (gl+g12)

Place the two terminal nodes in same subcircuit;

The functions, called G--fJartitioner() and C--fJartitioner() in Algorithm

4.4, carry out the conductance and capacitance partitioning on the nodes in

100 MIXED-MODE SIMULATION

node list and their immediate neighbors. During this stage, these nodes

may be included in subcircuits that contain MNA elements. That is, these

nodes may be coupled to nodes that are attached to MNA elements.

After the conductance and capacitance partitioning has been per­

formed, the algorithm builds a preliminary set of subcircuits using the

function Build_Subcircuit_Data(). Since some of these subcircuits may be

coalesced together at later stage, the data-structures for the subcircuits are

not finalized at this time. The subcircuits are placed in a sub list and are

then ranked by the Levelize() function.

Fig. 4.5 shows the same circuit graph after the levelizing has been

completed. Next, the nodes belonging to a subcircuit are placed in a

sub _node list and ranked. The algorithm then starts with a subcircuit at the

highest level and checks each of its peripheral nodes and their associated

fanouts, using the functions checkJeedforward() and checkJeedback(). If

a feedback or feedforward node exists which has no capacitance to ground,

the function Coalesce() combines the two subcircuits together and assigns

the composite subcircuit to the lower level of the two. This procedure

ensures that once a node's fanout list has been completely examined, it

need never be revisited. In Fig. 4.5, the subcircuit S4 has a feedforward

node in subcircuit S5 without a capacitor, so S4 and S5 will be coalesced.

The function Update() then assigns a common subcircuit number to

all nodes in the composite subcircuit. After the algorithm has stepped

through all the peripheral nodes in the circuit, the function

Build_subcircuits() sets up all the data-structures needed for processing the

subcircuits. Lastly, the function PartiaCorder() establishes the order in

which subcircuits at a given level must be processed. The ordering

ensures that if a feedback connection exists between the subcircuits for a

given ordering, the capacitive constraint is satisfied. Fig. 4.6 shows the

final subcircuit graph after the partitioning process is complete. Note that

4. ITERATED TIMING ANALYSIS 101

Figure 4.5: Circuit Graph with Levelized Tentative Subcircuits

both S3 and S4 have internal nodes without capacitances to ground, but

this circuit will still converge due to the above-mentioned theorem.

U sing this partitioning approach, the run times can be reduced

significantly compared to the node-based approach. However, the static

partitioning strategy described here has a number of problems. The main

problem with this approach is that it may produce unnecessarily large sub­

circuits since worst-case values are used in the partitioning process. The

102 MIXED-MODE SIMULATION

Figure 4.6: Subcircuit Graph After Partitioning is Complete

advantages of the relaxation method are lost if the subcircuits are too

large. Latency exploitation is no longer performed at the node level but

rather at the subcircuit level. Hence, all nodes in a suhcircuit must be

latent before the subcircuit is declared latent. While this provides a some­

what stronger condition for latency, it reduces the efficiency of the latency

exploitation. Ideally, one would prefer to use small-signal conductance

and capacitance values to perform the initial partitioning, and then adjust

4. ITERATED TIMING ANALYSIS 103

the subcircuits as these values change during the simulation. This is

referred to as dynamic partitioning and has already been successfully

applied to the simulation of bipolar circuits using Waveform Relaxation

[MAR85]. However, this is too expensive to be used in iterated timing

analysis.

Another problem is that the partitioning approach given in Algorithm

4.5 is based on a local a criterion that may occasionally make errors. For

example, if two nodes are extremely tightly-coupled, relative to their cou­

pling to neighboring nodes, they will be placed in the same subcircuit

while the neighboring nodes may be incorrectly placed in different subcir­

cuits. If the neighboring nodes are actually coupled to either of the two

external nodes, the convergence will still be slow [WHI85C]. One other

problem in partitioning is that it is a time-consuming task. Care must be

taken in the definition of the data structures and partitioning algorithms so

that the partitioning phase does not dominate the total run time for large

circuits. This is more of a concern in dynamic partitioning [MAR85]

where the partitioning operation may be performed frequently during the

simulation.

4.5. GLOBAL VARIABLE TIME-STEP CONTROL

iSPLICE3 uses a global-variable time-step algorithm in which the

components in the system are integrated using a single common time-step.

This integration time-step is selected based on the fastest changing vari­

able in the system, the same strategy used in direct methods. However,

only the active subcircuits are processed at each time point, and these sub­

circuits are identified using the selective-trace algorithm. The main steps

in the global time-step IT A algorithm are given below following a brief

description of the notation to be used.

104

External
Inputs

MIXED-MODE SIMULATION

Figure 4.7: Notation Associated with Subcircuits

Notation for Algorithm 4.6 (see Fig. 4.7)

Assume that a given circuit is partitioned into n subcircuits

S1.S2, ... ,Sj, ... ,Sn' The ith subcircuit, Sj, has nj internal variables and

ne external inputs. The internal variables given by int(Sj) = { Xl , X2, ... ,

xnj } are those variables computed whenever subcircuit Sj is processed.

They are defined in vector form as Vj=[XI,X2,'" ,xnJT. The external

inputs of a subcircuit are other nodes which affect the internal nodes of the

subcircuit. They are specified as Fanin(8j) = { el,e2,'" ,en). The

fanouts of a subcircuit are associated with the internal nodes of the subcir­

cuits. Hence, the set of subcircuits affected by an internal node, Xj, are

specified as Fanout(xj) = { 8 1,82,'" ,8k }. The following definition is

4. ITERATED TIMING ANALYSIS

also used:

Vk,i = [v k+1 v k+1 ••• V.k+II v.k V.k 1 ••• Vk]T 1- ,2-, '1-, I , 1+ , ,n·

Algorithm 4.6 (Global-Variable-Time-Step ITA)

partitionO;

tnf- 0; hminf- hstart;

while (t ::; T stop) {

stepRejection = FALSE;

hnextf- hmin; tnf- tn + h next; hminf- h max ;
foreach (input ik at tn)

if (ek is active)

forall (Sj E Fanout(ek)) schedule(Sj, tn);

repeat {

foreach (event i at tn) {

solve JFj(vk.i)(vr+L vI') = - Fi(vk,i) for vr+1

corresponding to subcircuit Si;

if (IIvr+l- vI' 11<£1, IIFi 11«2) { /*converged? */

if (Vi did not converge on last iteration) {
foreach (Xi E int(SD) {

if (Xi is active) {
if (CheckAccuracy(Xi) = TRUE) {

hif- pickStep(Xi);

hminf- mine hmin, hi);

schedule(xi, tn+1);

forall (Sj E Fanout(Xi))

schedule(Sj, tn);

else { /* reject solution */

tnf- tn- hmin;

hminf- h minl2;

stepRejected = TRUE;

105

106

}

D

MIXED-MODE SIMULATION

else { 1* subcircuit has not converged yet *1
if (itercnt > maxitercnt) {

}

tnf- tn- hmin; hminf- h minl2;

stepRejected = TRUE;
}
else {

}

schedule(Sj, tn);

foreach (Xi E int(Si)) {
if (Xi is active)

}

foraH (Sj E Fanout(xi))

schedule(Sj' tn);

} until ((Q is empty at tn) OR (stepRejection))

In the algorithm above, the CheckAccuracy(x) routine uses a local trunca­
tion error criterion to determine if the computed solution for X is accurate
and, if so, returns "TRUE." The PickStep(x) routine uses an LTE estimate
to pick the next recommended step size for x.

The main differences between this algorithm and the one used in

SPLICE!.7 are due to the actions taken when the subcircuit variables con­

verge at a time point and when they do not converge in a specified number

of relaxation-Newton iterations. When the active subcircuits converge at a

time point, tn, the local truncation errors for their internal variables are

estimated [BRA 72] and the new global time-step, hnext, is set to the smal­

lest recommended step in the system, h min. If the accuracy in the solution

computed at tn is unacceptable, the solution is rejected and the integration

4. ITERATED TIMING ANALYSIS 107

is retried with the smaller time-step. Similarly, if the iterations do not

converge within a specified number of iterations, the time-step is rejected

and a smaller step is used.

4.6. ELECTRICAL EVENTS AND EVENT SCHEDULING

4.6.1. Latency Detection

The most critical aspect in ITA, in terms of accuracy, is the detection

of the latency condition. For example, if component x is identified as

being latent prematurely, any small errors in its value will be propagated

to the other components producing errors in their solutions. If the com­

ponent is thought to be latent but, in reality, it is changing very slowly, the

results may be completely wrong. Then the overriding question is: how

can one be sure that a variable has reached a steady-state value? The sim­

plest approach is to test if the following condition is satisfied:

Latency Condition 1:

I Xn+ 1 - Xn I <Ex (4.6)

where Xn+! = x(tn+!), Xn = x(tn) and Ex is some small number. As illus­

trated in Fig. 4.8, the component is considered latent if the difference in

the computed solution at two successive time points is less than some pre­

specified amount, Ex. For a fixed time-step ITA algorithm [SAL83], this is

a reasonable check as long as Ex is specified properly and one additional

check is done, as described shortly. There are situations where Condition

1 may fail, as shown in Fig. 4.9, where the true solution rises and then falls

before reaching a steady-state value. If the time points are chosen such

that Condition 1 is satisfied, latency will be detected incorrectly. A more

conservative version of Condition 1 requires that the inequality be satisfied

for two time points that are not adjacent.

108 MIXED-MODE SIMULATION

v

Xn+ 1 .L
.................. , y .. .

}Ex
·······························l···

Time

Figure 4.8: Simple Latency Detection

v

Time

Figure 4.9: Potential Problem in Latency Detection

4. ITERATED TIMING ANALYSIS 109

Latency Condition 1.1:

(4.7)

While this conservative approach works well in practice, it is still not

strong enough to handle the general case. For example, if a global vari­

able time-step control is used, the step sizes may be very small due to

some fast component resulting in small changes in x over a large number

of time points (if x is a slower component). In this case, it would make

more sense to use a rate-of-change criterion to detect latency rather than

the absolute change in x. That is, use the check

Latency Condition 2:

I Xn+l - Xn I
h < Ex

n
(4.8)

As shown in Fig. 4.10, this requires that x::: 0 to satisfy the latency condi­

tion. This method also encounters problems with the example in Fig. 4.9

since x:::O as the signal switches direction. A more conservative way to do

this type of latency check would be to use the strategy of Condition 1.1

and include a number of points from the past.

Latency Condition 2.1:

1 ~k I Xn+2-j - Xn+l-j I . k~l K h <Ex,
J= n+l-j

(4.9)

This condition uses an average rate of change based on the previous k

solutions to detect latency and this overcomes the problem given in Fig.

4.9. However, another problem arises if the true value of x is some small

non-zero value that eventually changes the value of x significantly at some

point in the future. To resolve this problem, a "wake-up" mechanism

110 MIXED-MODE SIMULATION

x

dx
dt

Figure 4.10: Variable Step Latency Criterion Based on
Rate-of-Change

Time

Time

should be used with either Condition 1.1 or 2.1 when it is anticipated that

component x has undergone a significant change in value. That is, the

actual rate-of-change of x should be used to predict the wake-up time

point, as follows:

Wake-up Condition 1:

h I Xn+l - xnl
next hn > Ex (4.10)

and twake-up = tn+l + hnext. This wake-up condition can be used to com­

pute hnext and the component should be re-activated and solved at twake-up'

4. ITERATED TIMING ANALYSIS 111

This process is illustrated in Fig. 4.11.

The latency and wake-up conditions specified above work well in

practice and their use can be justified by considering latency exploitation

as the use of a zeroth-order explicit integration method as described in

reference [RAB79]. Explicit integration algorithms are obtained directly

from a Taylor series expansion of the solution at the point tn:

(4.11)

A zeroth-order method uses only the first term and produces the following

trivial integration method for which X(tn+l) is simply updated with the

value x(tn) at the previous time point:

v

ho hoext

twake-up Time

Figure 4.11: Wake-up Mechanism

112 MIXED-MODE SIMULATION

Xn+1 = Xn (4.12)

This integration method has a local truncation error (LTE) given by

An estimate of the LTE can be obtained using a finite difference approxi­

mation for X:

Therefore the LTE estimate is given by

A check for latency can now be constructed from this analysis. The

integration method specified in Eq. (4.12) can be used whenever the fol­

lowing condition is satisfied:

Latency Condition 3:

h IXn+1-Xnl E
n+1 h n < userLTE (4.13)

where EuserLTE is the allowable local truncation error specified by the user.

For a fixed time-step algorithm, this latency check is equivalent to

Condition 1 since h n = hn+1 for all n. Of course, the value for Ex in Condi­

tion 1 must be derived the same way as EuserLTE to be identical to Condi­

tion 3. For a variable step algorithm, one could rewrite Condition 3 as

I Xn+l - Xn I < EuserLTE
h n hnew

By replacing hn+l with a constant value of step SIze h max such that

4. ITERATED TIMING ANALYSIS 113

hmax»hn+1, one can provide a somewhat tighter constraint:

I xn+1 - xn I < EuserLTE

hn+1 h max

Then latency condition 2 and 3 can be made identical by setting

Ex = EuserLTElhmax· Note that Condition 3 is an a posteriori criterion (i.e.,

it is used after selecting hn+1) to detect latency. A similar criterion can be

used in an a priori manner to decide when to activate the component. The

idea is to use the L TE requirement to predict the time point when the

zeroth-order integration method is no longer valid by checking when

Latency Condition 3 is violated:

h I Xn+1- Xn I E
new h n > userL TE (4.14)

where h new = twake-up - tn+1 and twake-up is the time when the component

should be activated. This wake-up time can be computed as follows:

t - t + EuserLTEhn+l
wake-up - n+1 X - X

n+1 n
(4.15)

and this is identical to Wake-up Condition 1. Therefore, the intuitive

arguments which lead to Latency Conditions 1 and 2 and Wake-up Condi­

tion 1 are well-supported by the above analysis.

4.6.2. Events and Event Scheduling

The next issue is to define precisely the notion of electrical events for

use in conjunction with the scheduling algorithm. The proper definition of

this concept is important from the standpoint of efficiency and accuracy, as

will be seen. In logic analysis, an event occurs when a node makes a tran­

sition from one state to another (different) state. The event causes the

fanouts of the node to be scheduled in the time queue. As long as the node

remains in the same state, no additional events are generated. Since logic

114 MIXED-MODE SIMULATION

states are discrete, logic events are easy to identify. In electrical analysis,

there is a continuum of "allowed states" making it more difficult to distin­

guish a significant event from an insignificant one. However, the

definition of logic events can be extended in a straightforward manner to

electrical analysis. The resulting definition of an electrical event is con­

nected with the notion of "active" and "latent" components.

Definition 4.2 (Electrical Events)

In electrical analysis, a component is "latent" if it satisfies one of the

latency conditions given by Eqs. (4.6-4.9). Otherwise, it is an "active"

component making a transition from one electrical value (or state) to

another. Active components generate electrical events each time they

make a transition to a new value. 0

The usefulness of this definition is seen in the following. Consider

the two-stage inverter of Fig. 4.12. For this circuit, A E Fanout(I) and

BE Fanout(A). As depicted by the arcs in the corresponding graph, there

are four ways to schedule nodes:

1) node I can schedule node A (fanout scheduling)
2) node A can schedule node A (self-scheduling)
3) node A can schedule node B (fanout scheduling)
4) node B can schedule node B (self-scheduling).

Whether a given node (say, node A) should actually schedule any events

depends on its own state and the state of its fan outs (node B in this case).

Since each node can be either "active" or "latent," a total of four cases

exist. These cases are listed in Table 4.1 along with the recommended

action to be taken by node A for each case.

As the table indicates, case (2) is the only case where the scheduling

mechanism is conservative. The other cases do not introduce any addi­

tional work or create accuracy problems and therefore are listed as reason­

able. However, case (2) can be a source of either accuracy problems or

4. ITERATED TIMING ANALYSIS 115

I B

Figure 4.12: Scheduling Possibilities for a Simple Example

excessive computation. To see this, consider the circuit in Fig. 4.13. If

node A is "active," it will force nodes B, C and D to be processed if the

action recommended in Table 4.1 is taken. In reality, only node B should

be processed. The other two nodes do not change due to the bias condi­

tions, but this is not known a priori. Therefore, case (2) is considered to

be a conservative scheduling strategy. The alternative would be to ask the

question: is fanout Xj sensitive to changes in Xi? Here, Xi = A and

Xj e Fanout(xi) = { B , C , D }. Only an affirmative response to this ques­

tion causes a particular Xj to be scheduled by Xi. Otherwise Xj should not

be scheduled.

The conditions associated with case (2) can also be viewed as a

wake-up condition due to inputs. That is, "Does the change at node A

116 MIXED-MODE SIMULATION

case status of status of action by node A comment
node A nodeB

(1) active active schedule self at Hh reasonable
schedule fan outs at t

(2) active latent schedule self at Hh conservative
schedule fan outs at t

(3) latent active no scheduling reg'd reasonable

(4) latent latent no scheduling reg'd reasonable

Table 4.1: Four Cases in Electrical Event Scheduling

5v

I A B

c
0----....

Figure 4.13: Conservative Scheduling Case

4. ITERATED TIMING ANALYSIS 117

wakeup node B?". The previous wake-up conditions were all handled via

the self-scheduling mechanism. In this case, the question is whether or not

a change at Xi translates to a change at a fanout Xj such that Xj violates its

latency condition. Since Xj may have a number of fanin nodes which are

active, superposition must be used to determine the combined effect of all

active fanin nodes on Xj. This involves determining the transconductance,

afj d rf . h . ~,an pe ormmg t e computatIOn:
OXj

_ hn k afj
~x - -C. Y --c:-~Xi

J t=1 OXi
(4.16)

where k is the number of fanin nodes of Xj which are active, hn is the

current step size, and Cj is the total capacitance at node Xj. This computa­

tion assumes that all the additional currents, due to changes in the fanin

nodes, charges the capacitances at node Xj. This produces a new wake-up

condition due to the inputs, as follows:

Wake-up Condition 2:

h I Xn+ 1 - Xn I + ~X > COx
new hn C

where hnew = t new - tlatent, and tnew is the current time point. In the worst­

case, the computation in Eq. (4.16) can be as expensive as performing an

evaluation of Xj, but it certainly is not as accurate. Since there is no way to

guarantee that Wake-up Condition 2 is a sufficient check for latency viola­

tion, since it is only a local criterion, it is better to perform the evaluation

of Xj rather than the sensitivity check to guarantee that an error is not made

inadvertently. This results in a stronger condition for latency, which

involves the fanin nodes also being latent.

118 MIXED-MODE SIMULATION

The ideas presented above are formalized in the following:

1) A component Xj is defined as being latent if

a) it satisfies the latency conditions specified in Eqs. (4.6-4.9)
and

b) all ek E Fanin(xj) satisfy their latency criteria.

2) A latent component does not generate any events.

3) If a component is not latent, then it is active and hence will generate

events for itself and for all Xj E Fanout(xj) after every transition.

4) A latent component Xj is scheduled for re-evaluation if

a) the wake-up condition specified in (4.10) is satisfied, or

b) any component ek E Fanin(xj) becomes active.

4.6.3. Latency in the Iteration Domain

Another form of latency can be exploited at each time point due to

the decoupled nature of the relaxation process. Since the components in

the system are changing at different rates, it is quite possible that slowly

varying components will converge quickly at each time point since their

behavior can be predicted accurately. Once these components have con­

verged, there is no need to reprocess them at the same time point unless

required to do so by some other component. This form of latency is called

iteration domain latency and can also be exploited efficiently using the

same event-driven techniques used for time domain latency.

The iteration domain is a discrete space in which a sequence of itera­

tion values of a component can be represented as a function of the iteration

number [KLE84]. This iteration domain can be viewed in the same way as

the time domain. For example, if a converging sequence of iterations for a

component, Xi, is ploUed against the iteration number, a waveform is

4. ITERATED TIMING ANALYSIS 119

v

.......•.................•..................•

o 1 2 3 4 5 6 7 8 Time

Figure 4.14: Iteration Domain Waveform

produced as shown in Fig. 4.14. The detection of latency in the time

domain is seen to be analogous to the detection of convergence in the

iteration domain. In fact, since the "step size" is fixed in the iteration

domain, the check for convergence should be similar to that for the

Latency Condition 1 given earlier. This corresponds to checking if the

iteration waveform is "flat enough" [KLE84] and is given as

Convergence Criteria 1:

which IS consistent with the usual check for convergence. False

120 MIXED-MODE SIMULATION

convergence occurs when the condition is satisfied but the necessary accu­

racy has not been obtained. Therefore, a check similar to Latency Condi­

tion 1.1 would be better to avoid this problem [KLE84].

Convergence Criteria 1.1:

Ixr+m- xI'I < E, m>1

To exploit latency in the iteration domain using event-driven tech­

niques, a table similar to the one for latency in time is necessary. In the

iteration domain, if a component is "iterating," it is equivalent to being

"active" in the time domain, and if it has "converged" in the iteration

domain, it is equivalent to the "latent" condition in the time domain. Note

that latency in time implies latency in the iteration domain, but latency in

the iteration domain (i.e., convergence) does not imply latency in time. In

fact, when a component converges in the iteration domain, a separate test

is necessary to determine if it is active or latent in the time domain. The

four cases in the iteration domain are listed in Table 4.2 below along with

the recommended action for node A, assuming that node A is in the "con­

verged" state initially and enters the state listed in column 2 after comput­

ing its new value.

Table 4.2 shows that case (2) is again the only conservative schedul­

ing situation. To understand this case, consider Fig. 4.13 again. Each

time node A performs an iteration, it will schedule nodes B, C and D.

However, as before, only node B should be processed as nodes C and D

are latent in time and hence are in the converged state at the time point. If

node A requires many iterations to converge, it will schedule nodes C and

D many times resulting in a lot of unnecessary work. However, there is no

need to repeatedly schedule all its fanouts on every iteration, especially

since the nodes have a self-scheduling ability. Therefore, one strategy

4. ITERATED TIMING ANALYSIS 121

might be for node A to schedule its fanouts on every other iteration rather

than on every iteration. This could be used for both case (1) and case (2)

since the self-scheduling mechanism would take care of any additional

scheduling of node B.

case new status status of action by node A comment

of node A node B

(1) iterating iterating schedule self at t reasonable

schedule fanouts at t

(2) iterating converged schedule self at t conservative

schedule fan outs at t
I

I
(3)

I
converged iterating no scheduling req'd reasonable

(4) converged converged no scheduling req'd reasonable

Table 4.2: Four Cases in Iteration Domain Latency

5. GATE-LEVEL SIMULATION 123

CHAPTERS

GATE-LEVEL SIMULATION

5.1. INTRODUCTION

When the complexity of an integrated circuit design reaches the

point where electrical analysis is no longer cost-effective, logic simulation

or gate-level simulation may be used. Rather than dealing with voltages

and currents at signal nodes, discrete logic states are used. In essence,

logic analysis may be viewed as a simplification of timing analysis,

described in the previous chapter, where the difference equations are

replaced by a set of discrete state equations and only simple Boolean

operations are required to obtain new logic values at each node. These

Boolean operations are generally the most efficient ones available on a

digital computer. In a classical logic simulator, transistors are usually

grouped into logic gates wherever possible and modeled at the gate-level

rather than at the individual transistor level. This form of simplification,

sometimes referred to as macromodeiing, can result in greatly enhanced

execution speed by reducing both the number of models to be processed

and simplifying the arithmetic operations required to process each transis­

tor group. With event-driven, selective trace analysis and the above

simplifications, asynchronous logic simulators are typically 100 to 1000

times faster than the most efficient forms of electrical analysis.

The major objective of all simulators is to accurately predict the

behavior, both normal and abnormal, of the physical circuits they model.

This is even more critical in the context of mixed-mode simulation where

the overall accuracy may be limited by the accuracy in the higher levels of

simulation. Therefore, gate level analysis in a mixed-mode simulator must

124 MIXED-MODE SIMULATION

provide the correct results and at least first-order timing information. The

main factors controlling the accuracy of gate level simulation are the state

model and the delay model. The delay model must be computationally

simple and at the same time include the most important factors contribut­

ing to it. Modeling parameters are usually provided with the delay model.

If these parameter values are derived from careful characterization of

transistor circuits that form the logic gates, then a simplified gate model

can be used with a high degree of confidence.

The tradeoff between the accuracy of logic simulation and the com­

puter time required to perform a simulation is very important. For exam­

ple, the accuracy of logic simulation can be improved by increasing the

number of logic states used in the simulation. However, as the number of

states increases, the overall runtime may also increase. In fact, the number

of logic states, their meaning, the delay models used and the event

scheduling algorithm all have a profound impact on the speed and accu­

racy of logic simulation. The proper choice of each of these factors

depends on the circuit technology and its associated characteristics, as well

as the particular design methodology used. It is this wide variety of fac­

tors that has resulted in the development of a large number of logic simu­

lators, almost everyone addressing a different set of tradeoffs.

While it is clear that the transition from the continuous electrical

domain to the discrete logic domain may result in the loss of some circuit

information, it is important that the circuit design methodology accommo­

date this type of simplification. Otherwise, the logic simulation mode can­

not be used effectively. Unfortunately, in MOS logic circuits, there are

many transistor configurations that are not directly amenable to this type

of transformation. To overcome this problem, switch-level simulation was

developed and has become the preferred form of simulation for MOS logic

circuits. This approach is detailed in the next chapter.

5. GATE-LEVEL SIMULATION 125

In this chapter, some of the factors influencing the choice of logic

states and delay models are described. Since logic simulators have been in

use for the design of digital hardware since the early 1950s, it is impossi­

ble to address all aspects of simulator development here. Therefore, only

those aspects which are related to mixed-mode simulation are emphasized.

In addition, the modifications necessary to make gate level simulation suit­

able for the mixed-mode environment are described.

5.2. EVOLUTION OF LOGIC STATES

5.2.1. Two-State Logic Model

The earliest use of logic simulation was for the verification of combi­

national logic. Since the logic was assumed to have zero delay and logic

gates were assumed to implement ideal Boolean operations such as AND,

OR and INVERT, only two states were required: a state representing true

(logic 1) and a state representing false (logic 0). With a two-state simula­

tor, it is not only possible to verify the logic function of a digital system

(i.e., generate a truth table) but it is also possible to detect certain other

types of potential design errors such as hazards and races [EIC65]. A

hazard is a momentary incorrect output state, after an input transition,

resulting from paths in the circuit with different delay times to the output.

There are a number of different types of hazards that can arise in in a logic

circuit: static 0 hazard, static 1 hazard, dynamic 1 hazard and dynamic 0

hazard. These hazards are illustrated in Fig. 5.1. A race condition exists

in an asynchronous sequential circuit if more than one of the state vari­

ables undergoes a transition during a state transient. If the final stable state

of the circuit depends on the order in which the state variables change, the

race is termed critical; otherwise, it is termed noncritical.

Although hazards may occur in combinational as well as sequential

circuits, they are generally most important when they affect the behavior

126 MIXED-MODE SIMULATION

static-O Jri~e

static-l Jri~e

I

1--_ 1 ~ ...
dynamic-l Jri~e

\ ,
...

dynamic-O Jri~e

Figure 5.1: Four Types of Hazards in Logic Circuits

5. GATE-LEVEL SIMULATION 127

of sequential circuits. Since hazards result from paths with different delay

times, any hazard actually causing a circuit to malfunction will be

detected as a critical race or oscillation in the circuit. However, a two­

state simulator (even with random delay models) has only a limited capa­

bility for detecting races and hazards, if delay variations are not modeled.

If several inputs to a logic gate change within a relatively short period of

time, it is possible that the order of occurrence of these events may change

if gate delays were distributed at slightly different points within their toler­

ance limits. If the output state of the gate depends on the order in which

the inputs change, a potential hazard exists.

It is not sufficient to simply monitor the output of a gate and look for

multiple transitions during an input pattern if all potential hazards are to

be detected. Depending on the order in which the input transitions are pro­

cessed, the potential hazard mayor may not be detected in the zero-delay

simulator. This is illustrated in Fig. 5.2 for a simple NAND gate. If input

A changes first, then output D will switch to the 0 state before returning to

the 1 state. However, if input B changes first, the output will remain at 1

during the input transitions. The potential for both static and dynamic

hazards can be detected. However, the errors caused by actual circuit

hazards cannot be detected in a two-state simulator without the use of

more accurate delay models.

It should be noted that, in a two-state logic system, only one logic

gate may drive (or fanin to) any node (often called a net in the context of

logic design). If more than one gate did fanin to a node, a potential

conflict would arise if one gate had a logic 1 at its output and another a

logic 0 since it would be unclear what the resulting signal at the node

should be. An exceptional case is that of the wired-function (wired-AND,

wired-OR), where the node is treated as a logic gate itself and performs a

logic function. This is illustrated in Fig. 5.3(a) for an open-collector TTL

128

A: 0-1---1

B: 1-0---1

C: 1

MIXED-MODE SIMULATION

)000-- D: 1-0-1
or

1-1-1

Figure 5.2: Potential Hazard in NAND Gate

example. If it is possible for more than one output to drive a node in a par­

ticular technology, such as the so-called tristate logic where gates may

logically disconnect themselves from the node (as illustrated for MOS in

Fig. 5.3(b)), then two-state logic analysis cannot be used to verify the

design.

5.2.2. Ternary Logic Model

Two-state simulation has a number of limitations. For example, if

two gates drive the same node in the circuit and the output of each gate is

different, a conflict situation arises. To model this conflict condition, a

third state may be added--the unknown state, X. The output node is set to

this X state whenever any such conflicts arise. The X state can then pro­

pagate through the fanout gates to other nodes in the circuit and possibly

set them to the X state. The logic operations for the AND, OR and

5. GATE-LEVEL SIMULATION

(a)

(b)

Figure 5.3: Multiple Devices Driving a Single Node
(a) Open Collector TTL Structure and Its Equivalent Logic Model

(b) MOS Transfer Gates Connected to a Common Bus

129

130 MIXED-MODE SIMULATION

INVERT gates with X states are shown in Fig. 5.4

The simple step of adding this new state has caused much confusion

and increased the complexity of logic simulation. In [BRE72], the basic

problems associated with unknowns in gate-level simulation are described.

One such problem arises due to the pessimistic propagation of unknowns

when the value of a node is actually known. For example, in Fig. 5.5, one

of the inputs is unknown, and this produces an X at each intermediate node

a NOTa

o 1

1 0

x X

AND o X 1 OR o X 1

o o 0 0 o o X 1

X o X X X X X 1

1 o X 1 1 111

Figure 5.4: Logic Truth Tables Including X State

5. GATE-LEVEL SIMULATION 131

and results in an X at the output node C. However, since a value of 1 or 0

at that input produces the same results at node C, the value at node C is

actually known to be 1. Therefore, the propagation of X blindly can lead

to pessimistic results and excessive computation. This problem can be

resolved by keeping track of X and X values 1 during the simulation and

combining them using the identities x.x=o and X+X=l whenever they

appear at common AND or OR gate inputs. A second problem with the

use of the X state is due to the additional complexity it introduces into

gate-level logic simulation. In fact, computing the output states of a

sequential circuit with n inputs and m internal states having k out of the

n+m nodes unknown has been shown to be NP-complete with respect to k

[CHA87].

A number of other problems with the X state also exist, mainly due

to the misuse of the definition of the state. For example, gate outputs must

be correctly initialized prior to the analysis to either the 0 or the 1 state. If

a sequential circuit is under analysis, storage nodes such as the output of

flip-flops may not be known at initialization time. If the node is set to X,

there is clearly an inconsistency since the states of Q and Q can simply be
- -

set to Q=l and Q=O (or equivalently Q=O and Q=l) without violating the

sanctity of the simulation. Consider the SR flip-flop circuit of Fig. 5.6. If

the outputs are assumed to be unknown at initialization, they can not be set

to known values due to the input data and the feedback of the X states.

However, a "conflict" situation does not exist at these output nodes; there­

fore, the use of X in this case is clearly incorrect. Another state is required

to account for uninitialized nodes in sequential circuits. A distinction

should be made between initial unknowns Xi and generated unknowns Xg.

When an initial unknown is encountered during the simulation, it can be

I Multiple X and X states must be maintained, one for each different source of the X state.

132

x

MIXED-MODE SIMULATION

1---4
1---4

1---4

A

x

B

x

Figure 5.5: Problem Using X-State in Gate-Level Simulation

1----.....
~-.... --x

1-----1

Figure 5.6: Initial Unknowns in a SR Flip-Flop

c
x

5. GATE-LEVEL SIMULATION 133

set to a known value in the processing of the gate it is driving. If a gen­

erated unknown is encountered, it must not be set but rather propagated

through the gates. The difference between initial and generated unknown

states can also prove useful in determining those parts of a circuit not exer­

cised during the simulation (still at Xi after the simulation).

The X state has also been used occasionally for the transition period

between ° and 1, which is another improper use of X. For this situation, a

T state (i.e., transition state) should be employed, or possibly the R (ris­

ing) and F (falling) states to provide information about the direction of the

signal transition. In mixed-mode simulation, the use of X is generally not

recommended. However, the Rand F states are extremely useful and an

important part of electrically-oriented gate-level simulation, as described

later in this chapter.

5.2.3. A Four-State Logic Model

The ternary logic model described above is still not sufficient for the

analysis of general MOS digital circuits which contain transfer gates and

tri-state logic circuits. For these circuits, many gate outputs may be con­

nected to a single node, as shown in Fig. 5.7, and it is necessary to deter­

mine which output is controlling the state of the node, or bus. If more than

one gate is forcing the node, a bus contention warning must be generated

by the simulator. It is possible to represent the condition where the output

of M 1 is not controlling the bus (G 1 is logic 0) by setting the output of M 1

to X in that case. If this technique is used, there is no longer any distinc­

tion between the true unknown state and the off condition of the gate.

With the addition of a fourth static state, high impedance (Z) or non­

forcing, the distinction is maintained. The four static states are illustrated

in Table 5.1. A high voltage is represented by logic 1, low voltage logic 0,

and unknown is X. The fourth state, Z, is shown separately since it does

134 MIXED-MODE SIMULATION

G2
Gl

~
~

Of
If

(2)

Figure 5.7: Multiple Transfer Gates at a Common Bus

Table 5.1: Four-State Logic Simulation

,
I

not represent a voltage state but rather an impedance condition. With the

addition of thd Z state, bus contention can be predicted without confusion.

But what if all the gates driving a node are off? What is the input to a

fanout gate in this case? In MOS circuits, the previous output is generally

"stored" on the parasitic capacitance at the node and held for some time.

5. GATE-LEVEL SIMULATION 135

This may be modeled by saving two states at each node, the present state

and the previous state2. If the present state is Z, then the previous state

can be used to determine the input to fanout gates.

5.2.4. A Nine-State Logic Model

Another approach that can be used to keep track of the previous state

of high-impedance nodes is to add three new static states, as shown in

Table 5.2. The low impedance states are called forcing states (Or, Xr, Ir),

and there are now three high impedance states (Oz, Xz, and Iz), which also

carry the information about the previous signal level.

Oz Xz Iz

Or Xr Ir

Table 5.2: Six-State Logic Simulation

Consider once again the circuit of Fig. 5.7. If Ml and M2 are both

conducting, it is clear that the state at node (2) can be determined from our

simple model. But what about nodes (1) and (3)? Since the transfer gates

are bidirectional, the signal at node (2) may force nodes (1) and (3) to the

X state. In reality, the output impedance of the inverter is probably con­

siderably lower than the output impedance of the transfer gate and, hence,

the inverter output would determine the node state. To model this effect,

another three states may be added, called soft states, (Os, Xs, and Is), which

correspond to the output of the transfer gate when its gate node is on and

its input is a forcing or soft state. These states are shown in Table 5.3.

2 The previous state is required to accurately model storage elements in any case.

136 MIXED-MODE SIMULATION

Conceptually, the y-axis of this state table may be considered an

impedance axis and the x-axis as a voltage axis. In fact, the output of any

logic gate may be mapped into this state table by measuring its output vol­

tage (or current) and output impedance. As will be seen later, this tech­

nique may also be used to translate gate outputs from logic analysis into

electrical inputs for mixed-mode analysis.

Oz Xz lz

Os Xs Is

Or Xr lr

Table 5.3: Nine-State Logic Simulation

5.3. CHARACTERIZATION OF SWITCHING PROPERTIES

One aspect of logic simulation that takes on greater significance in

the context of mixed-mode simulation is the representation of logic

waveforms. In standard logic simulation, the waveforms are represented

using the symbols "1" and "0" for the high and low values, respectively,

and logic transitions are represented as ideal steps. The rise and fall transi­

tion times of the waveforms in standard logic simulation are not as impor­

tant as the propagation delays from the input to the output of a gate. How­

ever, this is not the case in mixed-mode simulation. The transient charac­

teristics during switching are much more important than the propagation

delay. If needed, the propagation delay can always be derived from meas­

urements on the waveforms for the input and output nodes.

It is important to have finite nonzero rise and fall delays In the

mixed-mode environment for two reasons. First, from a practical

5. GATE-LEVEL SIMULATION 137

1 2 3

2

(b)

Figure 5.8: (a) Two Inverters (b) Actual Waveforms for inverter chain
(c) logic Waveforms for inverter chain

viewpoint, this is not a realistic situation. The capacitance associated with

each node produces some finite delay for both rising and falling signals.

Second, it will undoubtedly cause convergence problems in the electrical

138 MIXED-MODE SIMULATION

simulation algorithms, specifically in the Newton method, due to abrupt

changes in the logic waveforms that feed the electrical portions of the cir­

cuit. Therefore, the goal of logic analysis in the context of mixed-mode

simulation should be to produce waveforms that are similar to the

waveforms that would be generated by pure electrical simulation of the

same circuit, albeit with less precision.

A modeling technique that satisfies this requirement can be

developed by examining the electrical properties of gates. In Fig. 5.8(a),

the output waveforms for a chain of two inverters are shown. The

waveforms are characterized by three regions: a region where the output is

low, a region where the output is high and a region where the output is in

transition. A first-order model of the charging and discharging behaviors

at each node is shown in Figs. 5.9(a) and 5.9(b), respectively. In both

cases, the model is given by an ideal current source connected to a linear

capacitor. The response at the output node is a ramp function that is either

rising or falling at a rate that depends on the value of the capacitance and

current. In reality, the charging or discharging current is not constant so,

for a first-order model, an average current must be used to obtain the

approximate timing information. In addition, the capacitance is not con­

stant but an average can also be used for it. The logic waveforms

corresponding to the circuits in Fig. 5.9 are shown in Fig. 5.8(b). This

approach can be used to generate ramp waveforms for logic gate outputs

by simply computing the rise and fall transition times. The details of the

transition time computation are left to the next section.

The three regions described above can be represented by four param­

eters: a low level, a high level, a low threshold and a high threshold.

These regions and parameters are shown in Fig. 5.10(a). The four parame­

ters have a direct correlation with the parameters that represent the dc vol­

tage transfer characteristic (VTC) for a logic gate as shown in Fig. 5.1O(b).

5. GATE-LEVEL SIMULATION

VDD

I

V out I

Ie -

-

(a) (b)

Figure 5.9: (a) First-Order Charging Model
(b) First-Order Discharging Model

139

Vout

T c

--

This is a graph of the output voltage, Vout. versus the input voltage, Yin,

for a simple inverter. The four parameters in the figure are as follows:

VOL = low output of inverter

V OH = high output of inverter

V IL = maximum value of input before output begins

to drop appreciably

140

VOH

Vrn

VIL

VOL

Vout

VOH

VOL

MIXED-MODE SIMULATION

~ high value

----1-- transition
regIOn

~ low value

(a)

Voltage Threshold Parameters

VOH = output high
VOL = output low
VIH = input high
VIL = input low

VIL VIH
Yin

(b)

Figure 5.10: (a) Switching Regions
(b) Inverter Voltage Transfer Characteristic

V IH = minimum value of input before output begins

to rise appreciably

These parameters are used to define the logic nOIse margms for the

inverter:

5. GATE-LEVEL SIMULATION 141

NMH= VOH - VIH

The values of V IH and V IL based on the definitions above are some­

what arbitrary. Physically, V1L is the largest value of input voltage that

still maintains a valid high voltage at the output, and VIH is the smallest

value of input voltage that maintains a valid low output voltage. A more

precise definition can be obtained by examining the input and output rela­

tionships. Clearly, the output voltage is some function of the input vol­

tage:

If some voltage noise, V noise, is superimposed on the input, then

V:1t1r = f(V in+ V noise)

If the right-hand side is expanded in a Taylor series, then the following is

obtained:

V new - "(V) af(Vin) V h" h d t out - 1 in + av in noise + 19 er-or er erms

Therefore,

V new - void "V h" h d t out - out + gamx noise + 19 er-or er erms

From this equation, assuming that the higher-order terms are negligible, it

is seen that if the gain is small, the noise is attenuated. However, if the

gain is large, the noise is amplified and added to the output. A reasonable

breakpoint between the two cases occurs when the gain is 1. Therefore,

useful definitions for both V1L and VIH are the points along the VTC

where

142 MIXED-MODE SIMULATION

Although, in reality, the output begins to change before these two critical

points are reached at the input, an ideal logic model assumes that no

change will occur at the output until the thresholds are exceeded.

In terms of a logic state model, a new four-state logic model

[SAK81] is needed, where the state, set), at any node at time t is an ele­

ment of the set { 0, R, F, I}, where R=rising waveform and F=falling

waveform. Clearly, each of the states, set), may be defined in terms of the

corresponding node voltages, vet), and the following noise margin parame­

ters:

set) = 0 iff v(t)e [VOL,V1L)

set) = 1 iff v(t)e (Vm,VOH]

set) = R iffv(t)e [V1L,VIH] and v(t»O

set) = F iff v(t)e [V1L,VIH] and v(t)<O

The four-state logic model can be represented in truth table form for

the AND, OR and INVERT gates as shown in Fig. 5.11. However, the

actual transitions from one state to another are governed by practical con­

siderations. Specifically, the transitions O~R, R~I, I~F, F~O, R~F

and F ~R are permitted. These legal state transitions can be defined in

terms of a state diagram as shown in Fig. 5.12. The transitions O~ 1,

1 ~O, 1 ~R and O~F are considered to be illegal since it is physically

impossible to make these transitions without either visiting the intermedi­

ate states or violating the voltage limits of the circuits.

Encountering an illegal state transition during the simulation is an

indication that a timing error may be present in the circuit. As an

5. GATE-LEVEL SIMULATION 143

a NOTa

L H

F R

R F

H L

AND LFRH OR L F R H

L L L L L L L F R H

F L F F F F F F R H

R L F R R R R R R H

H L F R H H H H H H

Figure 5.11: Truth Tables for Four-State Logic Model

example, consider the AND gate in Fig. 5.l3(a). The transitions at the

inputs and outputs is specified using a string of values that indicate the

state of the node in each time slot. If the two input transitions are

separated in time, as in Fig. 5 .13(b), there is no transition at the output.

However, if the input transitions overlap, then the output may attempt an

illegal state transition, which indicates that a race condition exists at the

input. If input B makes the first transition but the two input transitions

144 MIXED-MODE SIMULATION

still overlap, the output will be a glitch but will not encounter any illegal

states as shown in Fig. 5.13(c). Therefore, the output state transitions will

either imply an error explicitly or implicitly, but in both cases a timing

error can be uncovered.

5.4. LOGIC SWITCHING DELAY MODELS

Now that an appropriate logic transition model has been defined, the

next step is to specify the details of the delay calculations. A variety of

different delay models have been used in logic simulators and they have

evolved over time due to changes in technology in much the same way as

the logic model. The simplest delay model is the zero-delay model men­

tioned earlier. This type of model only allows for functional verification

Figure 5.12: Four-State Logic Transition Model

5. GATE-LEVEL SIMULATION

(a)

(b)A:lllllFFFFFFOOOOOOOOO
B:OOOOOOOOOOORRRRRllll
C: 00000000000000000000 (no change)

~)A:lllllFFFFFFOOOOOOOOO
B:OOOOOOOORRRRRlllllll
C:OOOOOOOOFFFOOOOOOOOO (illegal transition: race)

(d)A:llllllllFFFFFOOOOOOO
B:OOOORRRRRRllllllllll
C: OOOORRRRFFFFFOOOOOOO (legal transition: glitch)

Figure 5.13: Potential Timing Errors Due to Input Variations

145

of logic circuits but does not allow the detection of races or hazards and, of

course, it does not provide any timing information. It is also prone to

problems such as "infinite looping" if there is an odd number of signal

inversions in any logic feedback path. Early logic simulators used unit

delay models to represent timing. In a unit delay simulator, all gates have

the same (unit) delay between signal transitions. For logic circuits con­

structed from a single gate type having similar rise and fall delays, the unit

delay simulator provides useful information and lends itself to efficient

implementation. If more than one gate type is used, assignable delays can

provide improved accuracy in the results. In the assignable delay

146 MIXED-MODE SIMULATION

simulator, the delay of the logic gates may be assigned an integer value,

T D. This delay is a multiple of some fundamental analysis time-step, or

minimum resolvable time (mrt). Here, the mrt is the minimum non-zero

delay of a logic gate and its value depends on the technology being simu­

lated. For example, the mrt may be 1 ns for NMOS, while a value of 100

ps may be appropriate for EeL circuits.

There are two ways in which gate delays may be interpreted as illus­

trated in Fig. 5.14. A transmission line or group delay model propagates

V V· ideal delay -

+ TD

- ..
Time Time

(a)

V V

--B>-- spike

Time Time
(b)

Figure 5.14: Interpretation of Gate Delay
(a) Transmission line model (b) Inertial delay model

5. GATE-LEVEL SIMULATION 147

the input patterns directly to the output, delayed by some amount To.

Even very short pulses are propagated unaltered, as shown in Fig. 5.l4(a).

A second approach is to use an inertial delay model, in which the "inertia"

or response time of the gate is modeled. If an input event occurs in less

time than the time required for the gate to respond, it will be lost as shown

in Fig. 5.14(b). Note that in this case spikes or glitches may be generated

at the output. A spike is defined as a signal of shorter duration than neces­

sary to change the state of an element. Spikes may be generated by input

hazards or by very narrow input pulses to a gate. A spike may be pro­

pagated into the fanout gates as either a new state (E for "error condition")

or it may be deleted from the output and a warning message printed. The

latter technique generally provides more information from the analysis

since the spike is generally an error and will be removed by the designer.

By not propagating the spike, more information may be obtained about the

correct operation of the circuitry.

For mixed-mode simulation, the delay model used for the switching

behavior must be derived from the electrical characteristics. The delay

calculation should be based on a transition delay because of the nature of

the logic model described in the previous section. For logic circuits in

which rise and fall delays vary widely (such as single channel MOS), it is

necessary to provide both rise (tLH) and fall (tHd transition delays for

each gate. These delays are a function of a number of different parame­

ters. In MOS circuits, the switching time may depend on

1) the device sizes

2) the supply voltage

3) the output capacitance

4) the number of inputs to the gate, and which one switches in value

148 MIXED-MODE SIMULATION

5) and the shape (rise or fall times) of input waveforms.

Very few logic simulators have actually incorporated all of the above

factors into the delay calculation. However, it is essential that an

electrically-oriented logic simulator include the important first-order

effects in the delay equation. To derive such an equation, consider the rise

and fall delays of the CMOS inverter shown in Fig. 5.15. The fall time,

tHL, is given by [UYE88]:

tHL = Cout {2VTN + In[2(V1-VTN) - I]}
~N(VI - VTN) VI - VTN) Va

and the rise time, tLH, is given by [UYE88]:

t - Cout {21 V TP I 1 [2(V 1-1 V TP I) I]} lli- +n-
~P(VI - IVTPI) (VI - IVTPI) Va

where Cout is the loading capacitance, VTN is the n-channel threshold vol­

tage, V TP IS the p-channel threshold voltage, and V I =

Vin --.

Figure 5.15: CMOS Inverter

5. GATE-LEVEL SIMULATION 149

VOH - O.l(VOH - VOL) and Vo = VOL+O.l(VOH - Vod are the 90% and

lO% switching points, respectively. All of these parameters are constant

except for the output loading capacitance which depends on the number of

fan outs connected to the output node.

The delay can be separated into two components by dividing Cout

into Cintrinsic + CCanout, where Cintrinsic is the unloaded output capacitance

and CCanout is due only to external gates connected to the node. Then, the

total gate delay can be represented by four parameters : the intrinsic gate

delays (tr, tt) and the gate drive-capabilities (tre, tfe), where

tr = rise time for unloaded gate (y-intercept)

tf = fall time for unloaded gate (y-intercept)

tre = gate drive-capability for rising signals (slope)

tfe = gate drive-capability for falling signals (slope).

Using these values, the total delays are calculated with the equations:

tLH = tr + tre*Ccanout

tHL = tf + tfe*Ccanout

(S.la)

(5.lb)

The logic gates can be characterized to determine the four parame­

ters (tr, tf, tre, tfe). The value of CCanout requires that the input and output

capacitances be specified for each gate. For example, in MOS circuits, ci

can be defined as the MOS capacitance associated with the gate input and

eo can be defined as the drain/source and wiring capacitance. Then the

total capacitance at each node becomes

n
CCanout = eo + ~ ej,k

This process is shown in Fig. 5.16. Often the delay is a function of the

150 MIXED-MODE SIMULA nON

input slope, Si. This aspect can be incorporated into the premultipliers tre

and tfe:

tLH = tr + tre(Si)*Cfanout (5.2a)

tHL = tf + tfe(si)*Cfanout (5.2b)

It is now possible to model the delay by generating a set of curves

similar to Fig. 5.17 for every primitive element (NANDs, NORs, inverters,

etc.) using accurate electrical simulation. In this figure, the rise and fall

times are plotted as a function of the output capacitance. A step voltage is

assumed at the input of each gate. Although not strictly true, the relation­

ship between the capacitance and delay is usually taken to be linear. That

is, the delay is calculated based on the model of a constant current source

charging a linear capacitor. The y-intercept of each curve represents the

intrinsic unloaded rise/fall delay while the slope of each curve represents

the gate "pull-up" or "pull-down" resistance. Separate characteristics are

required for rising and falling outputs if the delay times are not symmetric.

5.5. LOGIC SIMULATION ALGORITHM

The pseudo-code in Algorithm 5.1 provides a simplified description

of the logic simulation algorithm based on the previous sections. First, the

event time tn is established by NextEventTime(). All input sources, ek, that

are changing at that time schedule their immediate fanouts. Then all the

nodes scheduled at tn are processed in sequence until the events at that

time are exhausted.

In the algorithm, a node is processed by computing the output value

of its associated gate using the states of the inputs at tn. The input state

consists of a voltage value and information indicating whether the signal is

rising, falling or stationary. If the new output state is different from the

old one, a delay calculation is performed. If the event occurs before a

5. GATE-LEVEL SIMULATION 151

Cfanout = Co + 3Cj

Figure 5.16: Computing the Total Node Capacitance

Delay
slope = trc

slope = tfc

Cap

Figure 5.17: Delay vs. Capacitance for an Inverter

152 MIXED-MODE SIMULATION

transition in the opposite direction is completed, a glitch warning is pro­

duced and the original transition event is cancelled. If the event does not

cause a glitch, the schedule time for each fanout of the output node, Atj' is

computed and then the fanout is scheduled at tn + At. .

Algorithm 5.1 (Logic Simulation Algorithm)

tnf-- 0;
while (tn~Tstop) {

}
o

tnf-- NextEventTime(tn);

foreach (input k at to)

if (ek is active)
forall (j E Fanout(ej)) schedule(node j, to);

foreach (node i at tn) { 1* processing logic block i *1

get inpucstates; compute new_output;
if (node i has changed) {

compute delay, .6.t;
if (currenCtime < lascevenCtime(i)) {

issue glitch message;
cancel pending events;

}
else { 1* normal event, so schedule Janouts *1

}

forall (node k E Fanout(i)) {
determine schedule threshold;
compute schedule time Atk;

schedule (node k , tn+ Atk);

}

} else { 1* do nothing (latency exploitation) *1 }

6. SWITCH-LEVEL TIMING SIMULA nON 153

CHAPTER 6

SWITCH-LEVEL TIMING SIMULATION

6.1. INTRODUCTION

Most modem logic simulators handle the problems specific to MOS

integrated circuits by including the notion of signal strength in the logic

model. However, the use of strength does not, by itself, solve all the

modeling problems inherent to MOS circuits. For example, circuit

designers use many combinations of transistors which do not have a direct

mapping to a logic gate and therefore cannot be represented conveniently

at the gate level. It is also difficult to model the logic operation of

dynamic circuits in a convenient form in a standard logic simulator.

Transfer gates further complicate the situation because they introduce

dynamic loading effects, bidirectional signal flow, and capacitive charge­

sharing effects. Many of these problems were resolved with the advent of

the switch-level modeling and simulation technique [BRY80].

This chapter begins with a description of standard switch-level simu­

lation and identifies a number of limitations in the approach, primarily the

lack of accurate timing information, and also the fact that intermediate

voltage states are not represented which may occasionally lead to incorrect

results. Then, an electrically-oriented switch-level modeling technique

that resolves these and other problems is described. This technique allows

variable precision simulation, thereby allowing the user to choose any­

where from logic simulation accuracy to electrical simulation accuracy.

Hence, the approach effectively spans the "gap" between logic and electri­

cal simulations. A number of other simulation approaches with similar

properties are also described. In the last section, the use of this variable

154 MIXED-MODE SIMULATION

precision modeling approach to map signals across the interface between

logic gates and electrical circuitry is described.

6.2. SWITCH-LEVEL SIMULATION

A switch-level simulator transforms an MOS transistor network into

a corresponding network of switches and performs logic simulation on the

resulting network. For example, in MOSSIM [BRY80], the logic circuit is

described entirely at the transistor level, and the transistors are modeled as

simple gate-controlled switches. The switch-level logic state model

includes three logic levels (0, X, 1) and a number of strengths, s, which lie

in the range {I,"', w } . Two subranges of strengths are defined, one

representing all signal strengths originating at some external source, in the

range k < S < w, and the other corresponding to nodal capacitance values,

in the range 1 ::; S ::; k. The maximum possible strength, w, is reserved for

inputs only. The switch-level model attempts to incorporate the key

aspects of MOS logic circuits that determine its behavior and abstract

away the details of the electrical behavior. This approach greatly

simplifies the algorithms needed to correctly simulate a large variety of

MOS logic circuits.

The simulation process in switch-level simulation proceeds as fol­

lows. First, as a preprocessing operation, the switch-level network is parti­

tioned into a number of subnetworks which are collections of strongly­

connected components (SCC) or channel-connected components. These

are sets of transistors that are connected to one another at the source or

drain terminals. The identification of SCCs can also be done dynamically

during the simulation process. Processing a given SCC may require a

complicated series of steps, possibly involving iterations, to account for

the interactions of different strengths of two or more "ON" transistors, as

described below. However, the interaction between two SCCs is easier to

6. SWITCH-LEVEL TIMING SIMULATION 155

analyze since they are connected at the gate inputs of transistors and,

hence, the logic operations do not depend on the signal strengths. The

SCCs are simply scheduled and processed in the manner described earlier

for logic gates using event-driven, selective trace techniques. Therefore,

this mode of simulation well-suited to implementation in mixed-mode

simulators.

The complicating factor in the processing of SCCs is due to the

bidirectionality of transfer gates, or pass transistors. Although the transfer

gate is inherently a bidirectional element, it is usually found in applica­

tions in which the signal flow is intended to be unidirectional. That is, the

circuit designer expects signals to flow in only one direction through the

device. However, there are occasions when transfer gates are used in

bidirectional applications, or other situations in which a design error leads

to signal flow in different directions at different times. A simulator must

be able to analyze these cases accurately if it is to be useful. There have

been a variety of modeling approaches for bidirectional transfer gates,

including the unconventional approach of two unidirectional elements

connected back-to-back. This approach can lead to inconsistencies when

different logic values are on opposite sides of the element. Each value can

flow through one of the transfer gates and reach the opposite side and then

propagate through the circuit producing incorrect results.

During the evaluation of an internal node of an SCC, the elements

connected to that node try to impose their values on the node and the final

state is determined by the element with the highest strength. A path

analysis is actually performed to identify all possible paths from the node

to a supply or ground node [BRY84]. Each path is assigned a strength that

depends on the transistor with the lowest strength. Weak paths are

blocked at intermediate nodes if a stronger path is encountered at the

nodes. The strongest path to a given node determines the final state of the

156 MIXED-MODE SIMULATION

node. If two paths of equal strength but opposite values are encountered at

a given node, the node is assigned to the X state.

The path analysis approach is effective for handling bidirectional

signal flow. A simpler approach is to use the so-called "supernode" tech­

nique [BRY80]. In this approach, all nodes that are connected through

transistors that are "ON" are considered to be the same node for processing

purposes. All devices connected to this composite node are processed

together to determine the new state. The new state is then assigned to all

nodes which comprise the supernode. The main problem with this

approach is that it cannot adequately handle the case where the final values

at the nodes are different and determined by the strengths of the transistors

in the subnetwork. Therefore, it does not permit different nodes of a

supernode to reach different values.

An alternative to the supernode and path analysis approaches is to

use an iterative or relaxation-based method to determine the new states of

these strongly-connected nodes (SeN) [DUM86]. The first step in this

approach is to assign all nodes to the lowest strength permissible. or to a

strength associated with the capacitance at each node. The signals are then

propagated from the source nodes through the switch network starting

from the signal possessing the largest strength. This processing order

prevents the accidental propagation of weaker signals onto storage nodes

that may inadvertently generate the unknown logic level. The internal

nodes of the see are evaluated using local event-driven techniques and

the fanout nodes within the set of SeN s are scheduled whenever they

change state. The process is repeated until convergence is obtained, at

which point scheduling occurs at the see level, i.e., the fanout sees are

scheduled. Note that by using iterative methods, the nodes within a

strongly connected component may converge to different logic levels,

which is the main advantage of the approach. The combination of local

6. SWITCH-LEVEL TIMING SIMULATION 157

relaxation methods at the SCN level and standard event-driven methods at

the SCC level allows efficient switch-level analysis to be performed.

One problem not addressed above is that of processing transfer gates

with unknowns at gate inputs (i.e., X-transistors). The strategy in analyz­

ing circuits with X-transistors is to minimize the number of X states gen­

erated at the internal nodes of an SCc. A pessimistic approach would be

to generate the X state at each of the drain and source output nodes of each

X-transistor. This method is the easiest to implement but it may actually

force the simulator to process many more events than necessary since the

X state tends to be "sticky" and propagates throughout the circuit very

quickly [CHA87], A brute-force approach would be to enumerate all pos­

sible combinations of gate input values by replacing the X-transistors by

either I-transistors or O-transistors. If there are k X-transistors, the SCC

would have to be evaluated a total of 2k times! Any node which produces

the same logic level, regardless of the input combination, is set to that

logic level; otherwise, it is set to X.

A better approach [BRY87], which offers linear computational com­

plexity in k, is to first choose the gate settings of the X-transistors to max­

imize the number of l' s or X's in the sec under consideration. Then, the

process is repeated to select the gate settings to maximize the number of

0' s or X's in the SCc. Again, any node which reaches the same logic

level in both cases is set to that level; otherwise, it is set to X. This

approach has been shown to produce the same results as the computation­

ally expensive method described above but requires much less work.

6.3. A GENERALIZATION OF THE NINE-STATE LOGIC MODEL

Switch-level simulation has been adopted as an efficient technique

for functional verification of large MOS digital circuits. However, there

are many circuit configurations that may lead to incorrect solutions when

158 MIXED-MODE SIMULATION

the simple switch-level model is used. In fact, simple examples can be

constructed that require more than the three strengths and three states of

the nine-state logic model (described in Chapter 5) to produce the correct

solutions. To illustrate this point further, consider the two circuit frag­

ments shown in Fig. 6.1. The circuit in Fig. 6.1(a) is a 2-cp regenerative

latch driving a bus. The two inverter stages provide forward gain while

(a)

~~3
C ~ D

(b)

D

Figure 6.1: Examples Requiring Additional States and Strengths

6. SWITCH-LEVEL TIMING SIMULATION 159

the depletion load device provides a resistive feedback path from C to A.

In this case, at least four strengths are necessary to obtain the correct

results at node C: inverter inv2 has a weak pull-up strength W 1, a forcing

pull-down strength F and a high-impedance pull-down strength H

(depending on whether it is on or off). The depletion device has a resistive

strength W 3, such that W 3 is less than WI. In addition, the pass transistor

connected to the bus also has a strength, W 2, which is less than WI but

greater than W3. As described earlier, switch-level simulators provide a

range of strengths to address this problem.

A more serious problem is that the switch-level model may not pro­

duce the correct results for an arbitrary connection of pass transistors when

threshold voltage drops are important. For example, the situation shown

in Fig. 6.1 (b) is a case where additional voltage states are necessary. Here,

the designer has inadvertently connected the gate of transistor M3 to a

node which is already two threshold voltage drops below the input signal.

Therefore, the value at node D can only rise to three threshold voltage

drops below the input value and this may not be high enough to be con­

sidered as a valid high. While this circuit is clearly a poor design, it is

important for a simulator to detect this type of error. A standard switch­

level simulator would not be capable of identifying this error since it uses

only three logic values. For this case, at least three additional logic values

are required. Hence, an appropriate state model to adequately simulate

both circuits in Fig. 6.1 is shown in Fig. 6.2.

Another situation which requires multiple strengths and voltage lev­

els is the simulation of dynamic circuits. In these circuits, capacitive

charge-sharing and feedthrough effects often degrade the voltage levels.

Feedthrough usually occurs when a clock signal feeds through a floating

capacitor to an isolated node with a grounded capacitance. The isolated

node also sustains a sharp voltage transition which depends on the value of

160 MIXED-MODE SIMULATION

the grounded and floating capacitance values. Usually, feedthrough is not

a significant factor. However, charge-sharing can often lead to circuits

that do not function properly. Charge-sharing occurs when a transistor

connecting two isolated grounded capacitors is turned on. The total charge

is redistributed between the two capacitors until their node voltages are

equal. It is possible to handle charge-sharing without introducing addi­

tional logic levels by assigning to each node a str~ngth that corresponds to

its capacitance value. If charge-sharing occurs, the node with the larger

capacitance imposes its value on the node with the smaller capacitance

(for worst-case analysis) and a potential problem is at least observed

[BRY80].

One basic limitation of standard switch-level simulation still

Strength
~~

H

WI

F

o VDD-2VT
VDD-3VT VDD-VT

... -VDD
States

Figure 6.2: Better Logic Model for Simulation of Circuits in Fig. 6.1

6. SWITCH-LEVEL TIMING SIMULATION 161

remams: accurate timing information is not provided. Electrical simula­

tion provides detailed timing information but is very expensive due to the

use of complex analytical models that characterize the transistor current­

voltage relationships. Logic simulation is extremely fast but is often

unable to provide more than first-order timing information using simple

expressions to compute the rise and fall delays. Clearly there exists a large

"gap" between electrical simulation and logic simulation. The arguments

made above promoting multiple logic values and strengths and the require­

ment for switch-level timing simulation can be resolved by treating

strengths as electrical resistances and logic states as electrical voltage lev­

els. This connection allows a generalization of the model of strength vs.

state in logic simulation to resistance, R, vs. voltage, V, in electrical

simulation.

The R-V characteristics for an inverter driving a pass transistor are

shown in Fig. 6.3 based on SPICE2 simulations. These are dc transfer

curves of the output resistance of the inverter and the output resistance of

the transfer gate as a function of their respective output voltages. The two

curves are highly nonlinear and do not exhibit monotonic behavior. Con­

ceptually, electrical simulation has an infinite number of allowed "states"

in this plane while the higher levels of simulation discretize the horizontal

and vertical axes into a finite number of states. As a result, the difference

between electrical and logic simulations becomes one of the degree of

discretization of the R-V plane. This relationship also provides a con­

venient way of mapping from one form of simulation to the other in

mixed-mode simulation. The use of this model as a vehicle for simulation

is described in the next section. Its application in signal mapping across

the mixed-mode interface is addressed in Chapter 7.

162 MIXED-MODE SIMULATION

R Sv Sv
K lB 200

I1f K

150 I - - -- - -

K

100
A

K

50

V

0 1 2 3 4 5

Figure 6.3: Resistance vs. Voltage Plane

6.4. SIMULATION USING THE GENERALIZED MODEL

6.4.1. Electrical-Logic Simulation

A variable precision simulation approach, called electrical-logic

simulation or simply Elogic [KIM84], has been developed based on the

generalized model described in the previous section. This form of simula­

tion can be viewed as a relaxation-based, switch-level simulation tech­

nique. Elogic uses electrical device models in the context of switch-level

simulation which allows electrical timing information to be obtained. As

part of the Elogic modeling process, a number of discrete voltage levels

6. SWITCH-LEVEL TIMING SIMULATION 163

are selected. These levels need not be equally spaced but the number of

levels and their values have an impact on performance and accuracy. In

standard electrical simulators, the time-step is selected first and then the

node voltage change is computed. By contrast, in Elogic the voltage step

is known in advance and the time required to make a transition from one

voltage state to another adjacent voltage state is computed. Similar

approaches are used in SPECS [DEG84], MOTIS3 [TSA85], SPECS2

[VIS86] and ADEPT [ODR86], as described in the next section.

The processing sequence in Elogic is illustrated in Fig. 6.4 for a sim­

ple inverter example. The set of Elogic states is defined to be Va, V I, V 2,

V 3, and V 4. As shown in Fig. 6.4(b), the input makes a sequence of transi­

tions from Va to V 4 and visits each intermediate state between the two end

points. Each transition at the input node causes an event to be scheduled

at the output node. The corresponding output computed by Elogic is illus­

trated in Fig. 6.4(c). Note that the first transition at the input does not

cause a transition at the output node since the transistor does not turn on.

However, the second transition and all subsequent input transitions result

in transitions at the output. Note also that the output continues to make

transitions even after the input reaches its final value due to a self­

scheduling mechanism.

Briefly, the steps required to calculate the transition time, .oM, are as

follows: each nonlinear device is first replaced by a linearized equivalent

model. This model is used to compute the steady-state or final voltage,

V ss' An exponential characteristic is used to predict the transient behavior

of the voltage at the output node from the present state, V n, to the final

value, V ss. The transition time, ~t, is then computed as the time required

to go from V n to V n+l along this exponential characteristic. After the

input has completed its sequence of transition events, the output still con­

tinues to be scheduled due to its own self-scheduling mechanism, similar

164

• Vin

Va
1

Vont
V4
V3

V2

VI

Va
1

(a)

~~\
\
\
\
\

2\3 4
\

\

\ (b)
\

~ .

2 3 4
(c)

MIXED-MODE SIMULATION

Vont

CL

I

t
-

t

Figure 6.4: Elogic Processing Sequence for a Simple Inverter

6. SWITCH-LEVEL TIMING SIMULA nON 165

to the one described for ITA in Chapter 4. The output will continue to

schedule itself until it reaches the steady-state level.

The algorithm is modified slightly if the input makes a new transi­

tion before the output has completed its current transition. This situation

is usually categorized as a glitch in logic simulation but it calls for the

rescheduling of a pending event in Elogic. If the output is very close to

the next state, V n+ 1, it is set to the next state and a new event is scheduled

only if a transition to V n+2 is warranted. If the output is still very close to

the previous state, V n, it is reset to the previous state and a new event time

is calculated for the transition to V n+ 1. If the output is somewhere in

between the two states, a new transition time is calculated using V nand

the new value of the input node. The event is then rescheduled at the aver­

age of the original event time and the new event time.

The number of Elogic voltage levels selected and their position have

an important impact on the accuracy and speed of simulation.

Specifically, the precision with which a given voltage can be represented is

limited by the set of voltage levels chosen in an Elogic model. If the

actual value of a node voltage is between two Elogic states, the node vol­

tage must be set to the closest defined level. This operation is analogous to

a roundoff process and it produces a roundoff error. The number of states

can always be increased to improve the precision in representing a particu­

lar voltage. However, since it is necessary to visit each intermediate state

whenever a transition is made from some initial state to the final state, the

simulation time increases as the number of states increases. It is this con­

tinuous tradeoff between speed and precision that makes Elogic particu­

larly attractive as it effectively spans the large speed/precision "gap"

between classical electrical and logic simulations. The user can use very

few states in the preliminary design phase to verify the functionality of the

circuit and obtain crude first-order timing estimates. As the design

166 MIXED-MODE SIMULATION

matures, more and more states can be added as necessary to improve the

accuracy of the analysis. In addition, different parts of the same circuit

can be simulated using a different number of states; this constitutes

mixed-precision simulation, which is a special form of mixed-mode simu­

lation.

The detailed calculations for the transition time are now described

using the two nonlinear devices connected to a linear grounded capacitor

given in Fig. 6.5(a). Assume that the initial state of the node is V n. When

the output node is processed, the nonlinear devices are first converted to

linear devices. This can be done using either a small-signal model, which

uses the incremental conductance and current of the device relative to a

given operating point, or a line-through-origin model which uses the

large-signal conductance of the device. In either case, the model is

obtained by a table lookup scheme. The linear equivalent network follow­

ing this step is shown in Fig. 6.5(b). From this circuit, it is clear that the

steady-state value of the output node is

(6.1)

n n
where IN = ~ Ij and GN = ~ G j . The next step is to determine if the node

will undergo a transition from the present state to another adjacent state.

This is done by checking if either:

(6.2a)

or

(6.2b)

If either condition is true, a transition time calculation is warranted.

The dynamic behavior of the linear equivalent circuit is given by

6. SWITCH-LEVEL TIMING SIMULATION 167

VDD

---<: Ml

Vo ut = Vo

M2 ---reg

- - -- - -
Figure 6.5: Circuits Used to Calculate Transition Time

168 MIXED-MODE SIMULATION

.
CgV = IN - GNV, V(O)=V 0 (6.3)

for which the closed form solution is

V(tl = V" + (VO - V"lexp[- ~= t] . (6.4)

Using this equation, the transition time, At, can be calculated as follows:

At= ~ln[Vo - Vss]
GN Vo+l - Vss

(6.5)

A problem with this approach is that an expensive log function is

required to calculate At every time a node is evaluated. One way to avoid

this function evaluation is to use a table lookup log function. Another

approach is to use a linear charging model in place of the closed-form

solution. This approximation assumes that the excess current available

from the current source is constant during the transition from one state to

the next. In reality, the charging or discharging current for the capacitor

tends to decrease as a function of time; therefore, the model is always

optimistic. This model can be derived by applying the forward-Euler

integration method to Eq. (6.3)

(6.6)

Then,

(6.7)

6.4.2. The Elogic Algorithm

The details of the EIogic simulation algorithm are presented below.

In the algorithm, Elogic is implemented using event-driven techniques

since a node schedules its fanouts for processing only when it achieves a

6. SWITCH-LEVEL TIMING SIMULATION 169

new state. If a fanout node has already been scheduled at a some time tE,

in the future, it will be rescheduled at the present time, tj.

Algorithm 6.1 (Electrical-Logic Simulation Algorithm)

/* processing node i *1

if (tj=tn+l OR Vj=V n+l) { /* reached new state */
recompute f- FALSE;

}

update voltage, Vjf-V n+ 1;

/* fanout scheduling */
forall (fanout nodes k of node i)

schedule (node k at time tj);

else { /* did not reach new state */
reset voltage, Vjf-V n;

}

reset time, tjf-tn;

if (Vj=V n) recompute f- FALSE;
else recompute f- TRUE;

GNf-O and INf-O;
forall (fan in nodes k of node i) {

replace node k by a constant voltage source;
compute Gk and Ik ;

update GN and IN;

compute Vss, the steady-state voltage;

/* Check for transition using Eq. (6.2) */
if (node i can make a transition) {

transition f- TRUE;
compute transition time, At, using Eq. (6.2) or (6.7);

if (recompute = TRUE) At=(Atn+Atn+l)l2;

else transition f- FALSE;
if (transition = TRUE) {

170

o

}

MIXED-MODE SIMULATION

if ((ti + At) < TSTOP) 1* self-scheduling *1

schedule (node i at ti + At);

else {do nothing}; 1* latency exploitation *1

6.4.3. Problems with the Elogic Approach

The Elogic algorithm, if implemented exactly as described above,

may encounter certain problems that lead to excessive computer run times

or reduced accuracy. The first problem is that of algorithmic oscillation of

a node voltage where one does not exist in the true solution. The simple

form of this problem arises if the steady-state solution, Vss, lies between

two discrete Elogic states. For example, if V ss lies in the range

V 1 <V ss<V 2, then the node will be assigned to the value VI or V 2, which­

ever is closer to Vss. However, if the node is re-evaluated using the new

Elogic state voltage, it may force the node to move in the opposite direc­

tion, in which case it will be set to the other neighboring state. Again,

since the true solution is in between the two defined states, the node will

attempt to make another transition in the opposite direction creating an

oscillation situation.

One approach to resolve this problem is to detect oscillations and

then suppress them. This may lead to the inadvertent suppression of actual

oscillations in the circuit; therefore, it is not an attractive solution.

Another approach is to introduce hysteresis into the state transition cri­

terion whenever the node voltage changes direction. Simple oscillation

usually occurs as the steady-state voltage is reached. Therefore, if the sign

changes on the time derivative of voltage, it is appropriate to require a

significant change in the value before a transition in the opposite direction

is undertaken. For example, the transition could be scheduled if the new

6. SWITCH-LEVEL TIMING SIMULATION 171

steady-state voltage is beyond the midpoint of voltage region just visited

during the last transition. Using this strategy, a transition occurs only if

Vss > (Vn+Vn+ I)12 or Vss < (Vn+Vn- I)I2. Another way to resolve the

problem is to simply set the node to an intermediate "illegal" voltage level

when the steady-state interval is reached. The node is permitted to leave

this illegal state only if it is scheduled by another node.

There is a second source of oscillation, termed interactive oscilla­

tion, which is more insidious and involves two or more nodes. As shown

for the circuit in Fig. 6.6(a), the problem occurs when two neighboring

nodes use each other's values to determine their next states and the true

solution lies between two Elogic states. In this case, node A is scheduled

to make a transition from 1 V to OV, while node B is scheduled to make a

transition from OV to I V. However, after the transitions occur, both nodes

make a transition in the opposite direction, and this process continues

indefinitel y. This type of oscillation is more difficult to detect than the

simple oscillations described earlier, but the problem can be solved by

introducing more states into the Elogic model.

A third problem arises due to strong coupling between two or more

nodes in the circuit. This problem can be illustrated using a simple circuit

as shown in Fig. 6.6(c), where G1=lmho and G2=9mhos, and initially VA

= VB = 0 V. Note that in evaluating node A, a zero volt source is applied

at node B thereby grounding it. The Norton equivalent model seen by

node A is computed as follows:

(6.8a)

GN = G 1 + G2 = 1 + 9 = 10 (mhos) (6.8b)

Therefore, the Thevenin equivalent voltage is

172

V

1.0

A

L TeA

MIXED-MODE SIMULATION

R

N B

(a)

time 0.0 _________________ __ ~

(b)

Gl = 1 G2 = 9
A B

5V
CA T

(c)

Figure 6.6: Simple Elogic Problems
(a) example circuit (b) interactive oscillation (c) strong coupling

6. SWITCH-LEVEL TIMING SIMULATION 173

(6.8c)

Clearly, if the voltage change necessary to warrant a transition is larger

than O.5V, the basic Elogic method would not attempt to transfer node A

to the next adjacent state. As a result, both V A and VB would remain at

zero volts. As described earlier, strong coupling affects the convergence

speed of ITA and WR, whereas in the case of Elogic, it results in a transi­

tion error. For this circuit, the maximum voltage step which can be used

depends on the ratio of G1 and G2 and, in general, the Elogic states for a

given problem should be selected with this rule in mind. Another solution

to this problem is to determine the steady-state voltages of all nodes in a

set of SCNs using switch-level techniques, and then schedule transitions

based on this analysis [TSA85].

6.5. A SURVEY OF SWITCH-LEVEL TIMING SIMULATORS

A number of other switch-level timing simulation techniques have

been developed over the past decade that are also appropriate for use in a

mixed-mode simulator. The original work in this area was, of course, the

timing simulation algorithms of MOTIS [CHA 75] as described in Chapter

4. More recently, there have been a number of notable contributions that

are embodied in the programs RSIM [TER83], SPECS [DEG84], MOTIS3

[TSA85], ADEPT[ODR86], SPECS2 [VIS86], and iDSIM [RA089]. The

techniques used in these programs are reviewed briefly below.

The RSIM program attempted to produce timing waveforms for the

switch-level technique by adding a linear resistor in series with each

transistor switch and providing a capacitor to ground at each node. The

value of the resistor was set to infinity when the gate voltage was low and

to some finite resistance when the gate was high. Resistance values were

calculated using the length and width of the transistors. The logic state

174 MIXED-MODE SIMULATION

model included only 0, X and 1. During the simulation, the transistors

were replaced by their equivalent resistances and then combined to form a

Thevenin equivalent circuit, with resistance Rdrive and voltage source

Vthev, driving a loading capacitance, C 1oad. When a transition was

expected at a node, the time required to make the transition was computed

as RdriveXCload' Since the values of Rdrive for low-to-high transitions and

high-to-low transitions were computed using different values of resis­

tances for the transistor, the accuracy was often within 30% of SPICE2 for

many circuits while providing over two orders of magnitude of speed

improvement. The Elogic method can be viewed as an extension of this

approach with the flexibility of allowing more states and having table

lookup equivalent models for the transistors in each state.

The "fast timing" simulation approach of MOTIS3 is based on the

Elogic algorithm. However, a backward correction scheme is used with

the variable voltage step scheme to improve accuracy and avoid oscillatory

behavior. First, the net current, Inet. available to charge the load capaci­

tance, Ctoad, is calculated. Then the time required to make the transition is

calculated using either an exponential model or the forward-Euler model

(shown here):

hn = (V n+ 1 - V n)lInet (6.9)

Next, the value hn is used to perform a regular integration step to compute

a new target voltage, V' n+ 1. Finally, hn is scaled to produce the actual

event time:

h' n = hn(V' n+l - V n)/(V n+l - V n) (6.10)

One additional contribution in MOTIS3 is the use of a so-called "super­

block" approach to handle tightly-coupled nodes. First, the steady-state

voltage, Vss, of every node in the superblock is computed. Then, the delay

is calculated for each node and the minimum delay is assigned to the

6. SWITCH-LEVEL TIMING SIMULATION 175

superblock. The node voltages in the superblock are scaled with respect to

this delay.

The ADEPT approach is also similar in many ways to the basic Elo­

giC approach described in the previous section. Like the MOTIS3

approach, it allows variable voltage steps to be used to improve accuracy

at the expense of additional CPU-time. However, its most distinguishing

feature is the implicit dynamic partitioning approach used to process

tightly-coupled nodes. In ADEPT, when a node i is computed, the nodes,

{j}, that are neighbors of i are checked for tight coupling to i using the cri­

terion:

(6.11)

All neighboring nodes that satisfy this criterion are solved using local

relaxation methods to produce the correct results. Since this is applied to

every node separately, it can be viewed as overlapped, dynamic partition­

mg.

Another promlSlng variable preCISIOn approach has been imple­

mented in the SPECS2 program, which is based in part on the techniques

used in SPECS [DEG84]. A treellink based equation formulation

[CHU75] is used in the program, instead of the standard nodal formulation

described in Chapter 2. This approach is well-suited to the simulation of

circuits containing ideal switches that have infinite resistance when OFF

and infinite conductance when ON. Devices with these properties are very

troublesome in the context of nodal analysis. In treellink based analysis, a

circuit graph is constructed from the circuit description and a tree is

identified in the graph. A tree is defined as a connected, acyclic sub graph

that contains all the nodes of the original graph. The branches that belong

to the graph are called tree branches while the remaining branches are the

176 MIXED-MODE SIMULA nON

links. The links combine to form a cotree. Once the tree has been defined,

a cutset is identified in the tree. A cutset is some subset of the branches of

a tree such that their removal results in a graph that is no longer connected,

but the insertion of anyone of the branches from the removed set results in

a connected graph. Cutsets are the subgraphs to which KCL is applied,

and loops are the subgraphs to which KVL is applied. The fundamental

cutsets and loops are used to formulate the circuit equations.

SPECS2 uses table models to define the device I-V characteristics as

shown in Fig. 6.7(a). Note that the segments are piecewise constant, form­

ing a set of step functions, as opposed to being piecewise linear. These

steps are important in the event-driven approach of SPECS2 since an event

occurs whenever a device reaches a "corner" of its step model, as shown in

Figs. 6.7(b) and 6.7(c). Here, events occur at t}, t2 and t3 since V}, V2 and

V 3 are all boundaries of the device step model. For example, at t2 there is

a change in the current through the device from it to i2' As a result, the

corresponding device is processed with the new current value and the next

event is scheduled at the next corner in the table. The effect of this change

on the rest of the circuit is taken into account via subsequent event

scheduling and processing.

The SPECS approach is also prone to spurious oscillations, as are

many other variable precision algorithms. The strategy used in SPECS2 to

overcome this problem is to place the element in\o a pseudo-steady- state

condition. This is done by picking a current for the device which is in

between the currents in the table model whenever the direction of the

current derivative (with respect to time) changes sign. The value is

selected to place the device in steady state. If the device is truly in steady

state, it will remain in this condition. On the other hand, if it is not, it will

be forced out of it by the other elements in the circuit. Therefore, true cir­

cuit oscillation will not be suppressed but algorithmic oscillation will be

6. SWITCH-LEVEL TIMING SIMULATION

i4

i3

i2

il

io -

VI

i3

V2 V3

177

(a)

V4 Vs Volts

178 MIXED-MODE SIMULATION

prevented.

The iDSIM program uses macromodeling combined with waveform

relaxation to perform switch-level timing simulation. The switch-level

network is preprocessed to identify series-parallel connections of transis­

tors to form composite transistors. A set of macro model parameter tables

is generated for each composite transistor based on the device gate vol­

tage, device size, threshold voltage, and other factors that affect delay.

The actual simulation is performed in two steps. First the circuit is

analyzed using switch-level techniques to identify the transitions that will

occur during the simulation. These transitions produce break points in the

waveforms that, in tum, define the time intervals for detailed simulation.

The second step is to perform the delay analysis to compute the transition

times using the tables generated for the devices. If there are no feedback

loops in the circuit, one pass of this algorithm is sufficient to produce the

desired results. When feedback loops are present, a waveform relaxation

approach is used with partial waveform convergence to compute the final

results.

7. THE MIXED-MODE INTERFACE 179

CHAPTER 7

THE MIXED-MODE INTERFACE

A major issue in all mixed-mode simulators is the problem of inter­

facing of two or more simulation modes. This chapter describes the

modeling problems of these interfaces and possible solutions. Of course,

this problem arises only when elements from different modes of simula­

tion are connected at a common node. There are two possible directions of

signal conversion: one from the lower level of simulation (more detailed)

to the higher level of simulation (less detailed), and a second going in the

opposite direction. For example, logic simulation and electrical simula­

tion require signal conversions from logic to electrical simulation and

from electrical to logic simulation. Typically, it is easier to translate a sig­

nal from a lower level of simulation to a higher level since the conversion

involves removing unnecessary details from the signal. Signal conver­

sions from a higher to a lower level are more difficult since the informa­

tion required at the lower level is often unavailable at the higher level. In

particular, it is the conversion of signals from the logic domain to the

electrical domain that is most troublesome. Both types of signal conver­

sions are described in this chapter. A number of examples are used to

illustrate potential problems of the various interface models in use today.

7.1. ANALOG TO DIGITAL INTERFACE

In a typical analog to digital conversion process, the analog voltage

waveforms are transformed into equivalent digital waveforms using thres­

holding functions. This operation discretizes a continuous function based

on a set of predefined voltage thresholds. Specifically, two threshold vol­

tages, VIR and V1L, are chosen according to the dc voltage transfer

180 MIXED-MODE SIMULA nON

characteristics (VTC) of the logic gate, as described in Chapter 5. Then, if

the input to a logic gate is a rising (falling) waveform that reaches V1L

(V IH), the output waveform of the logic gate begins to fall (rise) to a logic

0(1) at that point in time. This type of signal conversion works reasonably

well so long as the analog input waveform is well-behaved in terms of

driving a logic gate.

There are, however, two cases that cause problems at this interface

due to the behavior of the analog waveform. First, if the analog input

waveform settles at a voltage between V1L and VIH, the correct logic out­

put becomes an issue. According to the algorithms used in traditional

logic simulators, an unknown logic value, or X state, should be reported to

the user. If the VTC-based switching described above is used, the output

undergoes a full logic transition even though the input settles at some

midrange value. In either case, the result may be misleading to the

designer. Another problem arises if the input waveform does not have

monotonic behavior in time, in which case the output of the logic gate

could be completely incorrect.

The above situations are depicted in Figs. 7.1 and 7.2 for the circuit

in Fig. 7.1 (a), a simple electrical inverter and pass transistor driving a

logic inverter. The correct waveforms are shown in Fig. 7.l(b). The input

begins at VOL, rises to a value between V1L and VIH and then falls back to

V OL. Correspondingly, the output falls to some low voltage and then rises

back to a valid high voltage. The results from the use of different stra­

tegies to handle this case are shown in Fig. 7.2. In Fig. 7.2(a), the output

of the logic gate is set to X since the input has stabilized at a midrange

value. In Fig. 7.2(b), VIL=2.3V and so the logic output switches to VOL,

but remains there since the input never crosses V IH during its downward

transition. In Fig. 7.2(c), Vlv=3.0V which does not trigger the inverter at

all; hence, the logic output remains at VOH in this interval. None of these

7. THE MIXED-MODE INTERFACE 181

A D

182 MIXED-MODE SIMULA nON

results are particularly appealing.

There are two possible solutions to this problem. One method is to

use a dynamic mixed-mode approach [OVE89A, THA92]. The basic idea

is to replace any logic gates driven by an analog waveform by a more

detailed model and to simulate it at a lower level using either timing simu­

lation or electrical simulation. This replacement process is performed dur­

ing the simulation when the possibility of generating an X state arises. In

the case of Fig. 7.1(a), a transistor level description of the second inverter

V(4)

o 1 2 3 4 5 6(1e-8 s)
(a)

V(4)

V(4)

V(4)

- Electrical level
-- Mixed-mode

3 4 5 6(1e-8 s)
(b)

o 1 2 3 4 5 6(1e-8 s) 0 1 2 3 4 5 6(1e-8 s)

(c) (d)

Figure 7.2: Output Waveforms for Different Approaches
to handle AID interface

7. THE MIXED-MODE INTERFACE 183

would be invoked and a dc solution carried out. The simulation would

continue at the electrical or switch level until a valid logic level is reached.

At that point, the transistors would revert to their corresponding logic gate

allowing for more efficient simulation in the rest of the interval. The main

problem with this approach is its expense, and the memory requirements

for storage of the circuit at different levels of abstraction. In addition, the

program complexity increases greatly and this has a significant impact on

maintenance and code manageability.

A more practical solution to this problem is to make use of "smart"

logic gates at the analog to digital interface. Smart gates have two features

that differentiate them from standard logic gates that are embedded inside

a logic circuit. First, they constantly monitor the analog input for any

changes in value that may affect their outputs. They ensure that the trajec­

tory of the input is consistent with the output. If so, no change is made at

the output. However, if the input switches direction, the gate recomputes

its output and forces it in the opposite direction. Second, they have a more

accurate voltage transfer characteristic than the standard gates. If the out­

put stabilizes at an intermediate voltage, the output is estimated using the

voltage transfer characteristic.

Fig. 7.3 illustrates two possible VTC curves that may be used in this

context. The linear approximation of Fig. 7.3(a) is faster but less accurate

while the cubic spline approximation of Fig. 7 .3(b) better represents the

true characteristic at a higher computational cost. As the approximate

VTC approaches the accuracy of the actual VTC, the logic gate becomes

more and more like a nonlinear macromodel, as used in [OVE88]. The

simulation result from the use of a spline-fitted VTC is depicted in Fig.

7.2(d). Clearly, this solution is preferable to the other ones shown in Fig.

7.2, and the cost of this approach is only slightly higher than the basic

logic gate approach [OVE89A, THA92].

184 MIXED-MODE SIMULATION

Vout Vout

Yin Yin
(a) (b)

Figure 7.3: Voltage Transfer Characteristics Used in Smart Logic Gates
(a) Linear Approximation (b) Cubic Spline Approximation

7.2. DIGITAL TO ANALOG INTERFACE

The translation of digital signal values to analog ones is more com­

plicated due to the fact that information must be added at the interface in

order to ensure accuracy. Early mixed-mode simulators used elements

called logic-to-voltage (LTV) converters and logic-to-current (L TI) con­

verters [NEW78] to perform signal mapping across this interface. LTV

converters were used to translate logic signals that were either 0 or 1 to an

equivalent electrical voltage. A finite transition time was added for rising

or falling logic waveforms to avoid convergence problems in the electrical

algorithms. Because the input resistance of an ideal LTV converter is

7. THE MIXED-MODE INTERFACE 185

zero, this model was only adequate for driving high impedance loads, such

as the gate node of an MOS transistor. The L TI converter was used at the

interface whenever it was necessary to model the current-sourcing or

current-sinking properties of a logic gate, such as the base of a bipolar

transistor. An ideal L TI converter has an infinite input impedance and is,

therefore, suited to driving low impedance loads. These two converters

are illustrated in Fig. 7.4.

The DIANA program [ARN78] introduced the concept of the

Boolean-controlled switch (BCS) model where the state of a logic element

was used to select one of two linear equivalent models. This was an

00110111. ..

LTV :Logic-to-Voltage Converter:

00110111. .. 1
I

CD
L TI:Logic-to-Current Converter:

Figure 7 .4: LTV and L TI Converters

186 MIXED-MODE SIMULATION

Figure 7.5: Boolean-Controlled Switch Model

important evolutionary step in the modeling of the logic to electrical inter­

face. The BCS model depicted in Fig. 7.5 selects the RO-EO model if the

output is falling and the RI-E 1 model if the output is rising. The chosen

model is presented to the electrical portion of the circuit and the node is

then processed as part of electrical simulation. The values of the elements

in the two Thevenin equivalent models can be adjusted to improve the

accuracy, but the overall accuracy of this approach is limited. To under­

stand the reason for this, the LTV, LTI and BCS converters are all shown

in the same R-V plane in Fig. 7.6. Here, the inverter is assumed to be

represented at the logic level and the pass transistor at the electrical level.

The LTV model appears as a line at the zero resistance level while

the LTI model appears as a line at the infinite resistance level. Clearly,

these two models do not adequately represent the dc output characteristics

7. THE MIXED-MODE INTERFACE

R

00

lSOK

lOOK

SOK
Rl RO

1
EO

LTV

2 3 4
V

_Sv Sv

lB
ILf

I --

Figure 7.6: LTV, LTI and BeS in the R-V Plane

187

5
El

of the inverter and the accuracy during transient analysis is expected to be

poor. On the other hand, the BeS model appears as two points and allows

more precision in following the transfer curve. Here, the Bes mode has

been chosen for the inverter output only. Unfortunately, this model only

188 MIXED-MODE SIMULATION

provides limited accuracy during transient analysis since the features of

the curve cannot be captured by two points alone.

One way to improve the accuracy of this approach is to allow more

points along the trajectory of the dc transfer characteristic. This is the

basic idea behind a generalization of the BCS model, called the voltage­

controlled switch (VCS), as shown in Fig. 7.7. The use of this approach

was first suggested in [KLE84] and is based on the Elogic modeling

approach. Rather than choosing 1-out-of-2 models to represent the output,

a choice of l-out-of-n models is now available. The value of n depends on

the number of voltage levels selected by the user. The greater the value of

n, the better the accuracy. However, as shown in Chapter 6 for the Elogic

method, the CPU-time is proportional to the number of voltage states

selected. Hence, a speed/accuracy tradeoff exists.

Figure 7.7: Voltage-Controlled Switch Model

7. THE MIXED-MODE INTERFACE 189

The generalized model is plotted on the R-V plane in Fig. 7.8. A

ves model constructed from a five-state Elogic model is able to follow

the trajectory of the curve quite closely; this greatly improves the accuracy

during transient analysis. To better illustrate the accuracy, the two models

are compared using a 1-bit memory circuit shown in Fig. 7.9. The circuit

features a pair of cross-coupled inverters at the digital level interacting

with a pair of bidirectional pass transistors at the electrical level. When

writing data into the cell, the outputs of the inverters are modified by the

incoming data and this will only occur if the output resistances of the

inverters are properly taken into account. Otherwise, the stored value in

the cell can not be changed. The waveform at the output of one of the

inverters is plotted in Fig. 7.10 which compares the electrical solution with

the Bes and ves solutions. In Fig. 7.1O(a), a Bes model is used at the

~l

R
K

200
K

150
K

100

K
50

o
o

-e=-

B)
V

V
) r , ... /;;/ I~ -......

/~

1 2 3 4

A

.
5

V· I

I

Elogic
(ElL)

-BCS

0 VCS

v

Figure 7.8: ves Model on R-V Plane

190

Vel)

Select

Data-in

--l
read

RIW ---.r­
write

MIXED-MODE SIMULATION

Vdd

Figure 7.9: 1-bit Memory Cell

output of the logic gates and in Fig. 7.1O(b), a five-point VCS model is

used. Although both models produce waveforms that are essentially

correct, there is a larger timing error when BCS model is used. It is clear

that the VCS model is superior to the BCS model in this example.

To summarize, a general rule to resolve the signal mapping problem

is based on the device connected to a given node. That is, if the output of

the logic gate is connected to a node with a loading resistance approaching

infinity (e.g., the gate of MOS device), then a simple model such as the

LTV or BCS can be used. Otherwise, if the loading resistance is small

(e.g., the drain/source of MOS device, or the base of a bipolar device),

then the logic gate must use more a accurate model such as the ves.

One other issue arises in a number of commercial mixed-mode simu­

lators with logic simulators that represent their states as 0, 1, X and Z. As

explained in Chapter 5, under certain conditions an X state may be

7. THE MIXED-MODE INTERFACE

V(I):V

4.00

3.50

3.00 ".
2.50

2.00

1.50

1.00

0.50

0.00 -

0.00

V(I):V

4.00

3.50

3.00

2.50

2.00

1.50

1.00

050

0.00 -

0.00

\
10.00 20.00

Time

(a)

1000 20.00

Time

(b)

30.00

30.00

'EIeCU1cal

~rVi,xed-mode
with Bes

40.00 (ns)

_ "EieCtiical

Mixed-mode
with yes

40.00 (ns)

Figure 7.10: (a) Simulation of I-bit Memory Cell using BCS
(b) Simulation of I-bit Memory Cell using five-point VCS

191

192 MIXED-MODE SIMULATION

generated by the logic simulation. If this is the case at the digital to analog

interface, the digital simulator must propagate the X state across this inter­

face. The question becomes one of how to accurately model this state on

the analog side. A simple-minded approach used in many commercial

programs is to replace the X state by (V OH + V OL)/2 volts [LEE88]. The

Z state (high impedance) presents a similar kind of problem. In this case,

the value propagated to the analog part is the last known value, either 0 or

1, from the digital part. If the last known value is X, then we revert back

to the previous problem. Of course, one could take the last logic 1 or 0

before the onset of the X condition [HEN91] to resolve the problem.

However, none of these approaches can be properly justified.

A better approach to this problem is to again make use of "smart"

logic gates. Whenever the output state of a logic node is about to become

X, the logic gates connected to it must provide enough electrical informa­

tion to produce an estimate of the output voltage. An X state typically

arises when there are two or more drivers at a node trying to force it in

opposite directions, as shown in Fig. 7.11 for a set of inverters driving the

same node. This type of connection is commonly referred to as a wired

node or wired connection. While the precise output voltage requires the

solution of a nonlinear equation, an estimate may be derived from a

Thevenin equivalent model of the output of each device connected to the

node. The Thevenin equivalent circuit would be based on the HCS model

of the logic gate outputs, as shown in Fig. 7.11, and the output voltage, Yo,

would be calculated using the following equation:

The value computed by this equation would be propagated to the analog

7. THE MIXED-MODE INTERFACE 193

circuit across the interface. If the wired connection is not at the digital­

analog boundary, then all fanout logic gates would need to make use of

linear or spline-based VTC to accurately compute their outputs. This

would continue until a valid high or low voltage is reached.

Since commercial logic simulators do not usually include the BCS

modeling of the logic outputs, all wired connections would have to exist

on the analog side of the circuit to ensure accuracy in the results. How­

ever, if the wired connection is deep within the logic circuit, this presents a

problem in defining the digital-analog boundary. This is why the simple­

minded approach of converting X to (V OH + V od/2 volts is used.

194 MIXED-MODE SIMULATION

0.0 V
V(5)

s.OV

x ~ ?

Figure 7.12: CMOS Mux-Integrator

The schematic diagram of a somewhat contrived circuit to examine

X state mapping is shown in Fig. 7.12. Here, a MOS multiplexer is used

to drive an analog integrator. The opamp is modeled using a simple

voltage-controlled voltage source. The wired connection in logic domain

creates a logic X state when both pass transistors are on. This signal is

then transferred to the analog domain and into the integrator which pro­

duces a ramp function. The slope of the ramp depends on the input vol­

tage so any error in the mapping function will be magnified by this circuit.

The results of three different simulations are shown in Fig. 7.13. The

electrical simulation result produces the ramp with the least steep slope. A

mixed-mode simulation using a BCS model at the interface produces a

ramp that is close to the electrical solution. Also, shown are the simula­

tion results when the X state is converted to 2.SV. For this case, a large

error is observed in the results. Therefore, this type of X state mapping

should be used with extreme caution, especially in critical portions of the

analog blocks.

7. THE MIXED-MODE INTERFACE

V(5):V
2.00 -

0.00 -

-2.00 -

-4.00

-6.00

-8.00

-\0.00

-12.00

-14.00 -

-16.00

-18.00 --

-20.00 -

-22.00

-24.00

-26.00

-28.00

-30.00 -

-32.00

-34.00 -

-36.00 -

-38.00 -

-40.00

-42.00 -

-44.00

0.00 10.00 20.00

Time

30.00

195

- 'EIeCtiTcal

- Mixed-mode
with X state

- Mi~e-d--mode
- with Bes

40.00 (ns)

Figure 7.13: Simulation Results for Mux-Integrator

7.3. MIXED-MODE INTERFACE TEST CIRCUITS

Two additional circuits that probe the mixed-mode interface are

described in this section. One of these circuits is CMOS and the other one

is BiCMOS.

196 MIXED-MODE SIMULATION

1) Clock Generator

Tight coupling between analog and digital components has always

been a major issue for accurate mixed-mode simulation since it gives rise

to possible convergence and time step control problems. The clock gen­

erator circuit in Fig. 7.14 is a common test problem due to the tightly­

coupled feedback loop between the two logic gates through Rand C. The

frequency of the clock generator circuit depends on the choice of R and C,

and the switching points of the inverters. If these trigger points and the

logic output are not modeled precisely in the logic gates, the circuit will

oscillate at an incorrect frequency or may not even oscillate at all. There­

fore, the following tests should be performed in conjunction with this

C=lnF

R=5k
V(l)

Figure 7.14: Clock Generator

7. THE MIXED-MODE INTERFACE 197

circuit:

a) Adjust the trigger points of the digital inverters in the mixed­
mode circuit so that the frequency generated by mixed-mode si­
mulation and electrical simulation match each other.

b) Change Rand C in both the mixed-mode and electrical circuits
to obtain a different frequency. Check if the frequency generated
by mixed-mode and the electrical mode still match each other.

The waveforms shown in Fig. 7.15 indicate some problems that might

occur in the mixed-mode simulation. If the trigger point of logic inverter

and the output equivalent model is not correct, the oscillation frequency

will be different as shown in Fig. 7.15(a). After fine tuning the trigger

points of the digital inverter, the two waveforms match each other as

shown in Fig. 7.15(b). But if the Rand C values of the circuit are

changed, the results may still have some difference as shown in Fig.

7 .l5(c). Here, the value of R used is 10k instead of 5k. Ideally, the two

sets of waveforms should be almost identical regardless of the values of R

and C used.

2) BieMOS D-Flip-Flop

The interaction of logic gates with bipolar transistors is investigated

using the circuit shown in Fig. 7.16. In this case, all inverters and

transmission gates are modeled in the digital domain. Only the bipolar

transistors are modeled in the analog domain. Note that logic gates drive

the bases of bipolar transistors, and that the emitters of the transistors are

connected to the outputs of other logic gates. The modeling of the invert­

ers driving the base of the bipolar transistors must incorporate BJT loading

effects. The coupling of the feedback inverters to the BJT emitters exam­

ines the interaction of digital and analog output nodes. In effect, this

198

V(1):V
6.00 --

5.00 -

4.00-

3.00 -

2.00 -

l.OO -

0.00 -

0.00

V(I):V

5.00 _.

4.00 -

3.00

2.00 -

1.00 _ ..

0.00 -

0.00

V(I):V

6.00 -

5.00 -

4.00 -

3.00 -

2.00 -

1.00 -

0.00 -

0.00

10.00

10.00

i

10.00

' ..

20.00

Time

(a)

I

20.00

Time

(b)

•••• b..

-"·-'0 ... :\

!
:
!
!

20.00

Time

,.~ ...•. ,/" ..

...

(c)

MIXED-MODE SIMULATION

30.00

30.00

-"tI,..,

30.00

"'a. ..

I

."

_ EieCtricai
'Mixed:iiiOde

Electrical
'Mixed:mode

Electrical
- 'M,xed:iiiode

40.00 (I0-~

Figure 7.15: Three Test Cases for Clock Generator

7. THE MIXED-MODE INTERFACE 199

circuit addresses the implementation of the digital/analog interface in both

directions thereby providing a meaningful test case for bipolar mixed­

signal circuits.

During the simulation of this circuit, VIH=3.2V and V1L=1.8V are

used initially in the mixed-mode simulation. The waveforms shown in

Fig. 7.17(a) are produced indicating that the function is incorrect. On the

other hand, if VIH=2.8V and VIL=2.5V are used, and the resistance in the

BCS model is fine-tuned, the function is correct but there is a noticeable

timing error as shown in Fig. 7.17(b). In this case, due to the small

equivalent resistance looking into the emitter of the BJTs that are con­

nected to the local feedback inverter pairs, the voltage waveforms at these

Master
r

I
eLK

,...------,

1- __ _

vee 1,...--_---,
Slave

vee

1- __ _

Figure 7.16: BiCMOS D-Flip-Flop

200 MIXED-MODE SIMULATION

V(7):V

'EieCtrical
5.00 - Mixed-mode

4.50

4.00 -

3.50- ~

3.00 --

2.50 -

2.00 --

1.50 -- ,
~

1.00 -
,
\

0.50

0.00 -

0.00 10.00 20.00 30.00 40.00 50.00 60.00 (ns)

Time

(a)
V(7):V

'EieCtri cal
5.00 Mixed-mode

4.50 - I
i

4.00 -
; ,

~ ,
3.50 - i

;
i

3.00 -

2.50

2.00 --

1.50 -

1.00

0.50

0.00 -

0.00 10.00 20.00 30.00 40.00 50.00 60.00 (ns)

Time

(b)

Figure 7.17: Simulation Results of BiCMOS D-Flip-Flop

7. THE MIXED-MODE INTERFACE 201

nodes are very sensitive to the VTC of the digital inverters. This example

is a particularly difficult to simulate accurately and is therefore an excel­

lent test circuit for the analog/digital interface.

8. MIXED-MODE SIMULATOR IMPLEMENTATION 203

CHAPTERS

MIXED-MODE SIMULATION AND IMPLEMENTATION

This chapter describes the methods involved in implementing a

mixed-mode simulator and a tool that is to be used in conjunction with it.

The iSPLICE3 program [SAL89A] is used as an implementation case

study since it uses many of the algorithms described in the previous four

chapters. The chapter begins with an overview of the architecture of

iSPLICE3. Then, the mechanisms associated with the implementation of

an event scheduler are presented. Following this, event scheduling poli­

cies during the transient analysis are described. Next, the techniques used

to obtain the dc solution are provided. This is followed by a description of

an automatic mixed-mode partitioning tool called iSPLIT [THA92]. This

program converts a transistor level description into a mixed-mode descrip­

tion that can be used to drive the iSPLICE3 program. Finally, a large

benchmark circuit is used to demonstrate the typical performance of

mixed-mode simulators at the end of the chapter.

8.1. SIMULATOR ARCHITECTURE

To remain useful over its lifetime, a simulator must have the ability

to adapt and grow as the technology and simulation requirements evolve.

To accomplish this, a simulator should be organized so that new algo­

rithms and models can be easily added to the existing environment.

Ideally, the addition of new algorithms or models should only involve a

recompilation of the program to include the newly developed routines.

However, in practice, usually a few tables in a number of files must be

modified to provide key pieces of information regarding the new models

and algorithms.

204 MIXED-MODE SIMULA nON

We now describe a simulator organization that makes it relatively

simple to add new simulation algorithms. In mixed-mode simulation, the

use of event-driven, selective-trace in all modes of simulation is a unifying

mechanism. To establish event-driven, selective-trace simulation, a time­

queue and an event scheduler are required, and the notion of an event must

be defined at each level of simulation. In iSPLICE3, each event data

structure has fields for the junction, time and data associated with the

event. When an event is processed, the function is performed on the data

at the prescribed time. New events may be scheduled in the queue as part

of the call to the function. Special simulation related tasks may also be

scheduled in the time queue along with regular simulation events.

The basic simulation flow of iSPLICE3 is as follows:

maine)

}

o

readin(); build_subcircuitsO;

schedule (setup_dc_analysis event at t=O-);

forall (subcircuits Sj in the circuit)

schedule (Sj , t=O); 1* for dc solution *1

schedule (start_transient event, t=O+);

1* MAIN SCHEDULER LOOP: *1

while (time queue is not empty) {

}

event t- GetNextEventO;

function t- event.simulation_Mode;

time t- eventtime;

data t- event.simulation_Data;

1* Perform task associated with event *1

function (data, time);

8. MIXED-MODE SIMULATOR IMPLEMENTATION 205

The circuit is first read in and divided into subcircuits during the

readin() and build_subcircuits() phases. The subcircuit types may be

either LOGIC, ELOGIC, or ELECTRICAL depending on the node type.

iSPLICE3 determines the node type based on the devices connected to

nodes in the circuit. For example, if a node has only ELOGIC devices

connected to it, it will be labeled as an ELOGIC node. If it has only

LOGIC devices connected to it, then it will be labeled as a LOGIC node.

However, if there is at least one ELOGIC device controlling the node (i.e.,

the drain or source of a ELOGIC transistor), it will be labeled as an ELO­

GIC node. Similarly, if there is at least one ELECTRICAL device with a

controlling node connected to it, it is labeled as an ELECTRICAL node.

After the node assignments are completed, the ELECTRICAL nodes are

further partitioned into subcircuits of tightly-coupled nodes as part of the

standard IT A relaxation algorithm. Finally, the subcircuits and fanin and

fanout tables are constructed using the node assignment information.

The next step is to schedule the setup_dc_analysis() event, and then

schedule all the newly created subcircuits for evaluation at time t=O as part

of the dc solution. The last event to be scheduled before entering the pro­

cessing loop is the starctransient() event, which is executed immediately

after the dc solution is obtained. The program then enters the main loop

where the scheduler sequences through the list of scheduled events. It

remains in this loop until there are no events in the queue, at which time

the program stops. The inner part of the loop involves obtaining the next

event from the queue and then executing the function associated with the

event. Examples of simulation functions that may be scheduled in the

time queue are ELECTRICAL_event() , LOGIC_event() and

ELOGI C _event().

The basic flow for a simulation event is shown below:

206 MIXED-MODE SIMULA nON

simulation_event(Si. tN)

{

}

D

gecinpuc voltages(Sj);
process_subcircuit(SD;
if (Sj is active)

schedule (Sj , tN+ 1);

foreach (node j in Sj)
foreach (fanout subcircuit Sj of node j)

if (node j has crossed a critical threshold of Sj)
schedule (Sj , tN);

First the external voltages for the subcircuit are obtained. Then the

subcircuit is processed using the appropriate analysis mode. If the vol­

tages in the subcircuit have changed, the subcircuit is rescheduled for

evaluation at a later time. Then the fanouts are scheduled at the current

time if any important thresholds have been encountered.

8.2. EVENT SCHEDULER DESIGN

In this section, a number of alternative strategies for the implementa­

tion of event schedulers are described. In designing a scheduler, a number

of important issues relating to scheduler function and efficiency must be

addressed. First, the event scheduler must have some notion of a time

sequence and must be able to associate an event with a particular point in

time. It may also be necessary to arrange events at a particular time point

in some sorted order. Occasionally, the simulator will schedule an event

and later decide that the event is no longer necessary. Hence, the

scheduler must have the capability of canceling a pending event. Finally,

the scheduling operations must be efficient, since they add to the simula­

tion overhead. The event insertion/deletion operations must be relatively

8. MIXED-MODE SIMULATOR IMPLEMENTATION 207

fast and the time sequencing through events should be efficient. Both of

these requirements can be achieved by maintaining some uniformity in the

event distributions in the scheduler, as will be seen. The scheduler over­

head is usually insignificant for electrical analysis (since the events them­

selves are usually computationally intensive), but it may be a dominant

factor in switch-level or higher levels of simulation where event process­

ing operations are relatively simple. In general, the scheduling overhead

should not consume more than 5-10% of the total simulation time. With

these considerations in mind, the event schedulers commonly found in

mixed-mode simulators are presented.

The classical approach to the scheduler design uses a time-wheel

[BRE76] mechanism as illustrated in Fig. 8.1. This structure allows the

indexed list to "wrap-around" so that the array of headers can be reused

once the events associated with that entry have all been processed and the

PT pointer shown in the figure has been incremented. For example, when

the events at time PT have all been processed, the header at PT can be

reused to represent the time PT +ML\t, assuming that the array has M ele­

ments. Using the MOD function, the PT pointer is updated as follows:

PT = (PT + 1) MOD M

The obvious advantage of this approach is that a predetermined amount of

memory can be allocated for the time queue a priori. However, dynamic

memory allocation will still be required for events which occur at time

points greater than t+ML\t units in the future. They may be organized in

an overflow or remote list. At some point, these remote events must be

brought into the time queue. Since the events in the remote list are usually

somewhat more expensive to insert or remove than events in the time

queue, it is not efficient to update the time queue with events from the

208

Array
with

M entries

Remote
List

Sorted or Unsorted
Future Events

MIXED-MODE SIMULATION

For all t,

PT <t~PT+M~t

For all t,

t~PT + M~t

Figure 8.1: Classical Time-Wheel Mechanism

remote list every time a time-point event list has been processed. How­

ever, as more and more time points are processed, the probability that new

events will end up in the remote list increases, and this is undesirable.

Therefore, it is better to move events from the remote list to the time

queue periodically, i.e., after processing k time points in the time wheel.

Another source of inefficiency is due to the fact that many headers

may not point to any events. These headers must be scanned anyway and

this consumes additional CPU-time. The distribution of the events in the

time queue, hence the sparsity, depends on the value of At. For example,

8. MIXED-MODE SIMULATOR IMPLEMENTATION 209

if At is very small, only a few events will be scheduled at each time point.

On the other hand, if At is large, the events will densely populate the

region of time near the current time pointer, PT. Both situations will

reduce the scheduler performance. Hence, the number of time points pro­

cessed before bringing in remote events (k), the size of the time wheel (M)

and step size between adjacent entries in the time wheel (At), and indeed

how efficiently the remote list is managed, all have an impact on the

efficiency of this type of scheduler. Typical event distributions should be

examined to select the appropriate values for these parameters for a given

application.

The remote list usually contains a small number of events if the

proper parameter values are selected for the time queue. It usually con­

tains events associated with external sources and these events are often

sparse in time. The objective is to ensure that the ratio between events in

the time queue and remote list does not exceed a certain threshold. If it is

not anticipated that many events will be scheduled in the remote list, it

may be organized as a simple linear linked list.

There are other situations where a more elaborate organization of the

remote queue is required. In the case of electrical simulation, some com­

ponents may take small time steps during a transition while others use

very large time steps due to the latency. Here, a secondary time wheel

would be useful. It can be managed in exactly the same way as the pri­

mary time wheel except that each interval is defined to be kAt units of

time. After kAt units of time have been processed in the primary time

queue, all the events in the next interval of the secondary queue can be

moved to the primary queue. In general, it is possible to have a set of

remote time wheels, each having an interval, Atj, which is equal to kAti -1,

where Atj -1 is the interval used by the previous time-wheel. If a variable

number of time wheels are used, another level of indexing would be useful

210 MIXED-MODE SIMULATION

in selecting the proper time-wheel.

The scheduler used in iSPLICE3 as shown in Fig. 8.2 is similar to

the classical time-wheel mechanism. However, rather than a single time­

wheel, a pair of time queues with Ml2 entries and a remote list are used.

While events are being processed from the first queue, new events may be

scheduled either in the remaining portion of the first queue, in the second

queue or in the remote list. The remote list is maintained as a simple

linear linked-list. When the end of the first queue is reached, the second

queue becomes active and the first queue is adjusted to represent the next

(MI2)At units of time. Any appropriate remote events are moved from the

remote list to the first queue. When the end of the second queue is

reached, the first queue becomes the active queue again while the second

queue is modified to represent the next (MI2)At units of time. This

scheme represents a compromise between bringing in new events after

each time point list is processed and bringing in remote events only after

all events in the queue have been processed.

8.3. TRANSIENT ANALYSIS AND EVENT SCHEDULING

iSPLICE3 performs both dc analysis and time-domain, transient

analysis of MOS and bipolar integrated circuits. Transient analysis is gen­

erally the most time-consuming and memory-intensive task in simulation

but the mixed-mode techniques used in the iSPLICE3 program can reduce

the simulation time significantly compared to that for SPICE2. iSPLICE3

has three simulation modes: circuit level simulation (ELECTRICAL)

which uses iterated timing analysis, switch-level timing simulation (ELO­

GIC) and gate-level logic simulation (LOGIC). Each mode can be used

independently or combined in a mixed-mode simulation. The details of

each algorithm have been described in the previous chapters.

One issue that has been overlooked is that of event scheduling

8. MIXED-MODE SIMULATOR IMPLEMENTATION

t

HLlt

• • •

t+(M/2)Llt J--~

• • •

t+(M-l)Llt

(Swap)

(Swap)

Figure 8.2: iSPLICE3 Time Queue Data Structure

211

212 MIXED-MODE SIMULATION

between different levels of simulation. A set of rules govemmg the

scheduling policy from each simulation mode to other simulation modes

must be defined. For example, one filtering operation that must be per­

formed when processing ELECTRICAL subcircuits is to schedule their

non-ELECTRICAL fanouts only when convergence occurs. This prevents

non-ELECTRICAL fanouts from being processed unnecessarily with par­

tial solutions during the iterations of ITA. However, other ELECTRICAL

fanouts must be scheduled during the iterative process of ITA. ELECTRI­

CAL subcircuits schedule their LOGIC fanouts whenever a VIL or VIH

threshold is encountered during an upward or downward transition, respec­

tively. Similarly, ELECTRICAL subcircuits schedule their ELOGIC

fanouts if they have encountered an ELOGIC state during the last transi­

tion. This is consistent with the scheduling used among ELOGIC subcir­

cuits.

An ELOGIC subcircuit schedules its ELECTRICAL fanout subcir­

cuits whenever it reaches a new ELOGIC voltage state. However, instead

of actually scheduling an ELECTRICAL subcircuit at the current time, it

simply ensures that the subcircuit is active by issuing a wakeup_call()

event to any fanout ELECTRICAL subcircuits. If the fanout is not active,

the wakeup_call() simply schedules it where the other ELECTRICAL sub­

circuits are scheduled. An ELOGIC subcircuit schedules its LOGIC

fan outs if a VIL or VIH threshold has been encountered in its last voltage

transition. LOGIC subcircuits schedule ELOGIC fanouts at each ELOGIC

state along a transition of the logic waveform using wakeup_call()'s that

are scheduled along transitions of logic waveforms. The same mechanism

is used when LOGIC schedules ELECTRICAL subcircuits. Input source

events follow similar rules as described above and are also dependent on

the types of devices connected to them.

8. MIXED-MODE SIMULATOR IMPLEMENTATION 213

One additional complicating factor in intersimulation scheduling is

due to roll-back or step rejections. It may be necessary to occasionally

cancel a pending event or reject a time-step and begin reprocessing at an

earlier time. When this occurs, the scheduler must be backed up and the

subcircuits rescheduled and reprocessed accordingly. The subcircuit

which encountered the rejection is processed initially. If its new solution

differs significantly from the previous one, its fanout subcircuits are

scheduled. Otherwise, no scheduling operations are performed. Similarly,

the fanouts are processed and they compare their newly computed solu­

tions with previous solutions and schedule their fanouts only if the new

solutions are different from their old solutions. Both ELOGIC and LOGIC

schedule events on fixed grid boundaries so that slight variations in the

computed schedule times are not inferred as different solutions. The roll­

back strategy ensures that accurate solutions will be obtained in an

efficient manner.

8.4. DC ANALYSIS TECHNIQUES

iSPLICE3 provides a number of different techniques to obtain a dc

solution for a given circuit. For ELECTRICAL circuits, either the stan­

dard Newton method, source-stepping or gmin_stepping methods may be

invoked [QUA89]. For circuits that are represented using the ELECTRI­

CAL, LOGIC and ELOGIC levels, iSPLICE3 uses an iterative mixed­

mode dc solution scheme to initialize the node voltages, as follows:

dc_analysisO
{

repeat {
process_LOGIC_nodesO; 1* using logic simulation *1
process_ELECTRICAL_and_ELOGIC_nodesO;
1* using Newton's method *1

} until (convergence)

214

}
o

MIXED-MODE SIMULATION

seCELOGIC_nodesO; 1* force to discrete values *1
repeat { 1* correct any nodes affected by last operation *1

process_LOGIC_nodesO;
process_ELECTRICAL_nodesO;
1* leave out ELOGIC nodes *1

} until (convergence)

The algorithm given above is performed at time 0 using event-driven

techniques. First, the LOGIC nodes are processed using zero-delay logic

simulation. Then the ELECTRICAL and ELOGIC nodes are processed

using direct methods (i.e., the standard Newton method). Any nodes that

are different from their previous solution act to schedule their fanout nodes

at time O. This process is repeated until convergence occurs. When the dc

solution is obtained, the ELOGIC nodes are set to their nearest discrete

values and the iterative loop is repeated once again to correct any values

that may be affected by this operation. Unfortunately, the convergence of

the dc solution is not guaranteed in all cases. In fact, if the LOGIC nodes

do not have a dc solution, or if a proper initial guess is not specified for the

ELECTRICAL and ELOGIC nodes, the iterative process may not con­

verge at all!

While it is generally difficult to find a dc solution for LOGIC nodes

that may oscillate when analyzed using zero-delay logic simulation,

iSPLICE3 uses a new technique to improve the likelihood of convergence

for ELECTRICAL and ELOGIC nodes in MOS digital circuits. This tech­

nique provides an initial guess that is usually close to the final solution, it

ensures proper and reliable convergence and reduces the total number of

Newton-Raphson iterations required. on MOS digital circuits described at

the transistor level. First, the ELECTRICAL and ELOGIC portions of the

circuit are solved using zero-delay, switch-level logic simulation [BRY80]

8. MIXED-MODE SIMULATOR IMPLEMENTATION 215

to derive the initial conditions at each node. Then these logic values are

converted to their corresponding voltage values. Next, the standard New­

ton method is applied to the same portion of the circuit, using the derived

values as initial guesses. Since this technique provides an initial guess that

is usually close to the final solution, it ensures proper and reliable conver­

gence and reduces the number of overall iterations. This approach has

been found to be 4-5 times faster than the standard approach on MOS digi­

tal circuits and successfully converges on circuits that fail to converge in

SPICE2.

In the simple algorithm above, the processmg of feedback paths

s
Q

R
Q

':' ':'

Figure 8.3: CMOS SR Flip-Flop Example

216 MIXED-MODE SIMULATION

deserves some special attention since all nodes are set to the uninitialized

state as the first step of the switch-level analysis at time O. iSPLICE3

processes the nodes from the inputs to the outputs, but if there are feed­

back paths in the network, some of the node values needed for the evalua­

tion may be uninitialized, which presents a problem in determining the

state of the output node. For these situations, iSPLICE3 guesses the

values of initial unknowns whenever required as either logic 0 or logic 1,

depending on the situation. If an incorrect guess is made, the feedback

path will act to correct the situation in a subsequent processing step. This

technique removes most of the uninitialized states at the output nodes, par­

ticularly in troublesome circuits such as flip-flops. However, some nodes

may be assigned to the X state if the correct state can not be determined

during switch-level simulation. These nodes are reset to 0 V before apply­

ing the Newton method since it places NMOS transistors in the cutoff

region of operation rather than in some high-gain region.

As a simple example, consider the CMOS SR flip-flop circuit in Fig.

8.3. Assume that S=O and R=l, and Q and Q are uninitialized. Then, if

the upper NOR gate is processed by assuming that Q=l, a value of Q=O is

produced. This value would be used to process the lower NOR gate and

Q=O is produced. Since this value is different from the original assump­

tion, the first NOR gate is reprocessed to produce Q=l, and the second

reprocessed to produce Q=O. These are the correct solutions and so the

processing would stop. Next, the values would be converted to their

equivalent voltages and the Newton method would be invoked. A more

interesting example is generated if S=O and R=O since the previous outputs

are held in the flip-flop for this case. Normally, a program like SPICE2

would produce values of Q=2.5V and Q=2.5V (assuming a 5V supply vol­

tage) as the dc solution, which is clearly incorrect. iSPLICE3 will produce
- -

either Q=O.O and Q=5.0 or Q=5.0 and Q=O.O and either case is an

8. MIXED-MODE SIMULATOR IMPLEMENTA nON 217

acceptable solution. Of course, the user can always override these values

by initializing the flip-flops to any desired setting.

8.5. AUTOMATIC MIXED-MODE PARTITIONING

One problem that has not been directly addressed until now is that of

defining the portions of a circuit to be represented at the various levels of

abstraction. Normally, this task is the responsibility of the user since the

circuit designer has the knowledge to perform the operation manually.

However, one tool that would prove to be extremely useful is an automatic

mixed-mode partitioner. Such a tool would be necessary when a transistor

level description is extracted from a layout, or obtained from any other

source, and a functional verification is desired in as short a time as possi­

ble. The partitioner would scan the circuit description and define the dif­

ferent levels of abstraction that would be used to simulate different por­

tions of the circuit and then provide this information to the mixed-mode

simulator.

Conceptually, this process takes a collection of components from a

given level in the circuit description and replaces them with higher level

primitives! to improve speed [RA089, ACU89], or with lower level primi­

tives to improve accuracy [OVE89A]. The complete partitioning opera­

tion involves two phases: recognition and characterization. Groups of

components that combine to form higher level primitives in the circuit

must first be recognized using either a rule-based approach or a table

lookup scheme. Then the parameters for the higher level model must be

generated from the lower level description in the characterization phase to

maintain simulation accuracy.

1 A primitive refers to a basic element that is known to the simulator, i.e., any element that is
hard-coded into the program.

218 MIXED-MODE SIMULATION

8.5.1. Program Overview

In the following sections, a program called iSPLIT [THA92] that

performs automatic partitioning for mixed-mode simulators is described.

The iSPLIT program has three phases, as shown in Fig. 8.4. In the first

phase, the program searches through a transistor netlist and substitutes

logic models for various gates found in the netlist. This process is facili­

tated by defining transistors groups, based on channel-connected com­

ponents, and performing a gate-recognition algorithm on each group. It

can recognize any inverters, NANDs, NORs, or complex gates in CMOS,

NMOS, or pseudo-NMOS technologies. In the second phase, the program

reclassifies all of the groups that were not recognized above, by assigning

each one a new type number. Third, any user-defined cells that are

specified in a library file are replaced with their corresponding higher-level

block. Any transistor groups that are not recognized after these three steps

are left at the transistor level. The program then writes out a new netlist

that can be used for mixed-mode simulation.

8.5.2. Channel-Connected Transistor Groups

In the first phase, all of the MOS transistors are partitioned into

groups. Each group consists of transistors which are connected at their

source and drain terminals. For convenience, the PMOS and NMOS

transistors are kept in separate lists in the group. The list of PMOS

transistors is called the p-tree, and the list of NMOS transistors is called

the n-tree. The p-tree may also contain depletion NMOS transistors if the

gate is an NMOS gate. During the grouping process, any node which has

both PMOS and NMOS transistors connected to it (or both enhancement

and depletion NMOS transistors) is considered as a possible output node.

Because all logic gates and complex gates have only one output, only one

output node is allowed in each group. If a second possible output node is

found, the program will backtrack, and not include that node in the group.

8. MIXED-MODE SIMULATOR IMPLEMENTATION 219

Transistor-Level Network

Phase 1: Identify Complex Gates

No

Yes

Phase 2: Classify Remaining Groups

Phase 3: Search for User-Defined Cells

Mixed-Mode Network

Figure 8.4: Overview of the iSPLIT Program

220 MIXED-MODE SIMULATION

The procedure for grouping the transistors is provided in Algorithm

8.1.

Algorithm 8.1 (The iSPLIT Grouping Algorithm)

searchDC(group, thisdev, node) {
if (possihleOutputNode(node)) {

}

o

}

if (group.out == NULL) group.out = node;
else return FALSE;

foreach (device connected to node) {

}

if (device =t:. thisdev and device type is FETI
and device is not in a group) {

if (device. source == node) nextnode = device.drain;
else if (device.drain == node) nextnode = device. source;
else continue;
if(nextnode == V dd or nextnode == Vss or nextnode is in group){

add device to group;
foundDC = TRUE;
continue;

add nextnode to group;
add device to group;
if (searchDC(group, device, nextnode)) {

foundDC == TRUE;
}
else {

remove nextnode from group;
remove device from group;

return foundDC;

8. MIXED-MODE SIMULATOR IMPLEMENTATION 221

It is a recursive, depth-first search, which examines all paths from a given

node to other nodes through a transistor. The program begins by finding

all PMOS or depletion NMOS transistors that are connected to V dd.

Each of these transistors is considered as a starting point for a new group.

When processing each device, the program checks that the device does not

already belong to a group. If either the source or drain node of the transis­

tor is connected to a node that is not V dd or V ss, then it creates a new

group and calls the searchDC function to find all the transistors that

belong to that group.

The searchDC function takes a group, a transistor and a node as

arguments. The function examines every transistor connected to the given

node by its source or drain, except for the transistor passed into the func­

tion. For each transistor, it finds the other node to which the channel of

the transistor is connected. If the present node is connected to the source,

the next node is the node connected to the drain of the transistor. If the

next node is either V dd, V ss, or already in the group, then the search ends

successfully. Otherwise, the function calls itself, passing the new node

and the current transistor as parameters.

When the transistors are added to the group, they are removed from

the global device list and added either to a list of PMOS transistors or to a

list of NMOS transistors, depending on the type of the device. When the

grouping is complete, the result is a list of transistor group. Each group

contains a separate list of PMOS devices and NMOS devices. The groups

will not contain any pass transistors. Pass transistors remain un grouped

and can be found in the main device list.

Once the circuit has been partitioned into groups, the recognition

process begins. The algorithm used to recognize and replace complex

gates is shown in Algorithm 8.2.

222 MIXED-MODE SIMULATION

Algorithm 8.2 (The iSPLIT Complex Gate Recognition Algorithm)

complexgate(group) {

}

o

type = determineGroupType(group);
while (group.numN Dev > I) {

}

if (type == CMOS) {
if (buildSeriesChain(group.nTree) == SUCCESS) {

}

if (fndCorrespParallel(group.pTree) == SUCCESS)
makeEquivGate(group, CMOS);

else {
noStructureFound = TRUE; break;

else if (buildSeriesChain(group.pTree) == SUCCESS) {
if (fndCorrespParallel(group.nTree) == SUCCESS)

makeEquivGate(group, CMOS);
else {

noStructureFound = TRUE; break;

else { noStructureFound = TRUE; break; }

else if (type == NMOS or type == pseudoNMOS) {
if (buildSeriesChain(Group.nTree) == SUCCESS)

makeEquivGate(group, NMOS);

}

else if (getParalleITrans(group.nTree) == SUCCESS)
makeEquivGate(group, NMOS);

else {
noStructureFound = TRUE; break;

}

if (noStructureFound == TRUE) restoreCircuit(group);
else finishCircuit(group, type);

8. MIXED-MODE SIMULATOR IMPLEMENTATION 223

It combines parallel and series transistors into equivalent transistors until

the group has been reduced to an equivalent inverter. This is a standard

simplification procedure used in many programs.

First, each group is classified as an NMOS circuit, a CMOS circuit,

or a pseudo-NMOS circuit. An NMOS circuit will have one depletion

NMOS transistor which has its source and gate connected together. A

CMOS circuit has equal numbers of NMOS and PMOS transistors. A

pseudo-NMOS circuit has a single PMOS transistor which has its gate

connected to Vss. NMOS and pseudo-NMOS circuits can be treated the

same way because their n-trees are identical. Any group that does not fit

into one of these patterns is not processed any further.

The procedure for a CMOS circuit is depicted in Fig. 8.5. The pro­

gram searches for a chain of series transistors in the n-tree or the p-tree. If

a chain is found, then it searches for a corresponding set of parallel transis­

tors in the opposite tree. The input nodes of all the transistors in the oppo­

site set must correspond to the input nodes of the transistors in the series

chain. If a series chain and a corresponding set of parallel transistors are

both found, they are each replaced with an equivalent transistor. At the

same time a gate is introduced into the circuit representing the logic per­

formed by the transistors that have been replaced as shown in Fig. 8.5.

The input capacitance (ci) of this gate is calculated at this time from the

sum of the gate capacitances of all the transistors that were connected to

one of the input nodes. This process is repeated until the group has been

reduced to a number of gates and an equivalent inverter. At this time, the

program calculates the model parameters for the group from the equivalent

inverter. It then removes the equivalent inverter and inverts the output of

the last gate as depicted in Fig. 8.5.

For an NMOS or pseudo-NMOS circuit, the algorithm is similar. The

program searches for a series chain of transistors. If a chain is found, the

224

A
B

A
B

A
B I

MIXED-MODE SIMULATION

_ -out

~
out

~ -

~~
-

) out

Figure 8.5: Circuit Netlist of a Group During Complex Gate Recognition

8. MIXED-MODE SIMULATOR IMPLEMENTATION 225

program immediately substitutes it with a gate model. Otherwise, the pro­

gram will look for a set of transistors in parallel. The algorithm continues

until the n-tree consists of only one equivalent transistor. For a set of

parallel transistors, the parameters of the equivalent transistor are calcu­

lated as follows: each device capacitance of the equivalent transistors

(Cgd, C gs, C bd, and Cbs) is calculated by adding the corresponding capaci­

tance value of all the parallel transistors. The beta of the equivalent

transistor is taken to be the minimum of the betas of all the transistors in

parallel as shown in Fig. 8.6.

For a series chain of transistors, the capacitance values are summed

in the same way. However, if one end of the chain is connected to V dd or

V ss, one of the capacitances from the transistor that is connected to the

supply is not included. Consider the circuit in Fig. 8.7. If the gate of

transistor M 1 is on, and transistor M2 is initially off and then turns on, it

will have to discharge both node X and node Y to ground. The total capa­

citance used in this case is Cgdl+Cgsl+Cbdl+Cbsl+Cbd2+Cgd2. Therefore

Cbs2 is removed from further consideration. The beta of the equivalent

transistor is given by ~ = 1I(1/~1+ 1I~2).

The model parameters for the group are calculated after the group

has been reduced to an equivalent inverter and placed on the output gate of

the group. As described in Section 5.3 and 5.4, there are nine additional

parameters that need to be calculated: co, tr, tf, tre, tfe, VOH, VOL, Vm,

and V1L (the ci parameter has already been calculated for all the gates in

the group at this point). The gate output capacitance, co, is calculated by

summing all the capacitances connected to the output node. In addition,

any capacitances connected to the internal nodes in a group are added to

the total output capacitance, since, in the worst case, they must be charged

when the gate switches. Next, the four noise margin parameters VoH ,

V OL, V IH and V IL are computed. For CMOS circuits, all these parameters

226 MIXED-MODE SIMULATION

Cgsl Cgs2

Cgsl+Cgs2 Cbsl+Cbs2

Figure 8.6: Equivalent Transistor for Two Parallel Transistors

x

c~~~~ ..

Cgdl+Cgsl+
Cgd2+Cbdl+

X Cbsl+Cbd2

......
Cgsl __ _ Cbsl :::::-::!:'1
c~ ~~~ Cbd2 Cga~

I
~=l/(l/~l + 1/~2)

Figure 8.7: Equivalent Transistor for Two Series Transistors

8. MIXED-MODE SIMULATOR IMPLEMENTATION 227

are calculated usmg analytic formulas. The parameter V OH is simply

equal to V dd, and VOL is equal to V ss. The input parameters, V IH and V IL

are calculated by formulas provided in [WES85]. For NMOS circuits,

V OH is simply equal to V dd. The other parameters are calculated by itera­

tive equations in [UYE88]. Finally, the parameters related to the rise and

fall times of the equivalent inverter are calculated using the equations pro­

vided in Section 5.4.

8.5.3. Recognition of User-Defined Components

The techniques described above are useful for MOS logic circuits but

are not suitable for bipolar transistors, analog circuits or high-level block

recognition. For example, an analog comparator or an operational

amplifier may contain 30-50 transistors and the connections and device

sizes may be different for each design. Clearly, this problem is much

more difficult than recognizing complex digital gates since the channel­

connected groups could be examined individually and were known to have

a particular structure. With user-defined components, however, the struc­

ture to be identified may contain two or more groups. This is also the case

when recognizing higher-level blocks such as flip-flops from lower level

primitives such as NAND gates.

To facilitate the recognition and replacement of these types of

blocks, the user defines components in a library file that iSPLIT reads dur­

ing startup. After the startup file has been read, the iSPLIT program forms

two netlists for every user-defined component: a netlist for the cell, and a

netlist for the higher-level model. The transistor netlist is broken up into

channel-connected groups in the same manner as the main circuit.

Once all groups in the user cells have been processed, iSPLIT

regroups all groups that have not been replaced with logic models (both in

the main circuit and in all the user-defined components). The regrouping

228 MIXED-MODE SIMULATION

proceeds in the same manner as the initial grouping, except that there is no

restriction on the number of possible output nodes. The next step in the

process is to examine all groups in all user-defined components that are

still at the electrical level, and assign each one a unique type number, or

signature, that depends on the circuit topology of the group. The iSPLIT

program builds a table which contains entries for every unique group.

Each entry has its own signature number. Every new group is compared

against all the existing group using their signatures. If it matches one of

them, it is assigned the signature number corresponding to that group.

Otherwise, the group is assigned a new signature which is added to the

table.

The signature calculation is based on an algorithm published by

Beatty and Bryant [BEA88]. This algorithm was originally used to speed

up the preprocessing of a switch-level simulator. The algorithm works by

assigning each group a unique signature that depends on the circuit topol­

ogy. This number is then stored in a hash table. Any new group can be

instantly compared against all existing group types by looking for its hash

number in the table. If the number exists, the group can be assigned the

type number that corresponds to that hash number.

Once all groups in the user-defined cells have been processed, all

electrical-level groups in the main circuit are processed. Each group is

compared against all group types in the table. If it matches one of the

entries, it is given the corresponding type number. In addition, it is added

to a list of instances of that type of group. Otherwise, it is ignored.

Recognizing user-defined cells belongs to the generalized problem of

sub graph isomorphism. Many heuristics have been published to solve this

problem, but not all of them are applicable to the problem being

addressed here. In iSPLIT, a very simple tree-based algorithm is used.

The program starts with one element from a user-defined cell, and an

8. MIXED-MODE SIMULATOR IMPLEMENTATION 229

element of the same type from the main circuit. Then, all the correspond­

ing pins on each of the two elements are checked to see if they have they

same number and type of elements connected to them. Next, all elements

connected to those pins are recursively checked in the same manner. The

search proceeds until the program reaches an 110 pin on the user cell or

there is a mismatch.

The iSPLIT program begins looking for a specific user cell by

finding the primitive in the cell with the highest type number. Since the

lower type numbers are standard elements such as logic gates, and the

higher type numbers are groups with computed type numbers, there should

be fewer instances of these elements. For example, the type number 52

may represent a group that appears eight times in the circuit, while the

type number 12 may represent an inverter that appears in the circuit a few

hundred times. Choosing the largest type number in this case narrows the

search space considerably. However, in some circuits, such as D-flip­

flops, the highest component may be a four-input NAND gate. In this

case, the algorithm will not be very efficient, because the program must

investigate every four-input NAND gate and there may be thousands of

these in the circuit.

Run times for iSPLIT are very fast. For circuits of a few hundred

transistors, the runtime is a few seconds or less. For larger circuits, the

runtime may be on the order of minutes, and will be longer if the user has

defined cells for analog macromodels. However, compared to the time

required for simulating the circuit at the electrical level, the runtimes are

quite acceptable.

8.6. MIXED-MODE SIMULATION EXAMPLE

In this section, a 1 K-bit CMOS static RAM, which was implemented

based on an existing industrial design as shown in Fig. 8.8, is used as an

230 MIXED-MODE SIMULATION

example for mixed-mode simulation [SAL94B]. The focus here is mainly

on the overall speed of simulation while producing the correct results. The

speed comparisons are representative of typical mixed-mode simulators

available today.

- Address 2n 2n

~
, , Row

,
Buffer \ \

(row) \ / Decoder \ / Memory

+ J

Cell
Array

.. Row
p Driver

tJ;,2m m
~ Address ~m, t Column '.1 Column S~itch I Buffer
~ (Column)

\ / Decoder \ /1 b b

~yr t "
Sense

Amplifier -
CS~ t

Control Data Dout
R1W~ Circuit .. Output ~ .

Driver

I~ RIW
ao

---..... al - Operation _.
Din 0 .- Control -

Figure 8.8: lK-bit Static RAM

8. MIXED-MODE SIMULATOR IMPLEMENTATION 231

Memory circuits are excellent applications for mixed-mode simula­

tors since they combine digital blocks such as decoders, buffers, and flip­

flops with analog blocks such as lumped-RC networks, pass transistors and

sense amplifiers. Furthermore, the size of these circuits can often exceed

the limitations of SPICE. In the architecture of this particular memory cir­

cuit, the memory cells are organized in a 32x32 configuration. Each cell

consists of 6 transistors. Hence, 10 address lines are used in the row and

column decoders to select one of the 1024 cells available. A sense

amplifier is used to amplify the voltage difference between the bit and bit

bar lines and the output is sent to a tri-state data output driver. This 1 K-bit

RAM contains 7698 transistors, 128 resistors, 208 external capacitances

and has a total of 2908 nodes.

For mixed-mode simulation, all the peripheral circuits can be simu­

lated in the digital domain while the memory cell array, column switches

and sense amplifiers should be simulated in the analog domain. To reduce

the simulation time, the local feedback cross-coupled inverters in each

memory cell should be modeled in digital domain, as depicted earlier in

Fig. 7.9. Manually converting the circuit into a mixed-mode description is

very time-consuming and sometimes leads to inaccuracies, as explained

above. This is because the logic gates must first be recognized and then

the parameters of the gates must be extracted precisely so that correct

results can be obtained when the digital-to-analog interface is encountered.

Therefore, an automatic mixed-mode partitioner, such as iSPLIT, should

be used to speed up the conversion process. After iSPLIT is employed, the

circuit contains 2293 gates at logic level and 2472 transistors at the electri­

cal level (mixed-mode II). iSPLIT required only 10 seconds to perform

the conversion. If the pair of cross-coupled inverters in each memory cell

are kept at the electrical level, then the circuit contains 6568 transistors at

the electrical level (mixed-mode I). Table 8.1 lists the simulation results

232 MIXED-MODE SIMULATION

of lK-bit static RAM.

As the results indicate, mixed-mode simulation in iSPLICE3 is over

40 times faster than a traditional circuit simulator such as PSPICE. Part of

the speed improvement is provided by the block ITA method which is 5 to

10 times faster than traditional circuit simulation. The remainder of the

speedup, of roughly 5, is provided by mixed-mode simulation. In general,

the speedup for a given circuit will depend on the number of transistors

that are simulated at the electrical level since this is the most expensive

mode of simulation. This is obvious when the runtimes of mixed-mode I

and mixed-mode II are compared. In the final mixed-mode circuit,

approximately one-third of the circuit is still at the transistor level, so the

speedup is not expected to be very large. Note also that, since most of the

cells are not selected during the operation of the memory circuit, they

Program
Transistor CPU-time

Speedup
Electrical Logic % of Analog (sec.)

PSPICE
7698 0 100 35125 version 6.0 1

iSPLICE3
electrical 7698 0 100 4099 8.6

iSPLICE3
6568 1130

mixed-mode I
85.3 1935 18.2

iSPLICE3
2472 5226

mixed-mode II 32.1 822 42.7

Table 8.1: Performance Comparisons on SUN SPARCstation 10.

8. MIXED-MODE SIMULATOR IMPLEMENTATION 233

remain inactive over long periods of time. In fact, the activity of very

large memory circuits is extremely low since only one cell is selected in

any given cycle (although all the cells in a row may be turned on during

the operation). This limits the speed improvement when the cross-coupled

electrical inverters are replaced by logic inverters. However, the speedup

over direct methods will continue to grow with the memory circuit size

due to the cost of the matrix solution.

To illustrate the accuracy aspects of mixed-mode simulation, Fig.8.9

shows the waveforms obtained by using pure electrical level simulation

and the mixed-mode II partitioning described above. In Fig. 8.9, two criti­

cal nodes are compared. One is the output of the pre-sense amplifier and

the other is the data output bit (DOUT). As the figure indicates, the results

of the two simulations are very similar except at the beginning of the tran­

sient solution of the pre-sense amplifier output. This is because there is a

small timing difference in the bit and bit bar lines in the two simulations.

After the pre-sense amplifier, the difference is amplified and results in a

different transient starting point in the output of pre-sense amplifier. Thus,

this node is very sensitive in the two types of simulations. However, the

output node (DOUT) is almost indistinguishable in the two simulations.

Therefore, with proper attention to logic modeling, parameter extraction

and the mixed-mode interface, mixed-mode simulation can provide accu­

rate simulation results with substantially shorter runtimes compared to

traditional circuit simulation.

234

V(sense):V

5.00 -

4.50

4.00 --

3.50

3.00 -

2.50 -

2.00 -

1.50 -

1.00 -

0.50 -

0.00 -

0.00

V(Dout):V

I

5.00

4.50

4.00 --

3.50

3.00 .

20.00

2.50 -- ---""'I
2.00

1.50 --

1.00

0.50 --

0.00 -

0.00 20.00

40.00 60.00

Time

(a)

40.00 60.00 80.00

Time

(b)

MIXED-MODE SIMULA nON

80.00

100.00

100.00

Electrical
"M;~ed-mode

120.00 (ns)

Electrical

MIxed-mode

120.00 (ns)

Figure 8.9: Simulation Results of lK-bit Static RAM

9. ANALOG MULTILEVEL SIMULATION 235

CHAPTER 9

ANALOG MULTILEVEL SIMULATION

9.1. INTRODUCTION

SPICE and its derivative programs remain the primary simulation

tools in use today by analog designers. However, over the past decade

analog circuit designs have increased in complexity to the point where the

basic techniques used in SPICE are not fast enough to produce a solution

in a reasonable amount of time. Currently, system-level design, modeling

and simulation are being emphasized to cope with the complexities of

these large designs. As in the digital case, an analog designer would like

to specify portions of the analog circuit at a higher level of abstraction in

order to carry out functional verification. For example, the designer may

wish to represent a filter block in terms of an s-domain transfer function,

rather than specifying all the transistors and their interconnections, to

evaluate a proposed architecture of an analog system before a detailed

design begins. And ideally, the entire system could be specified in some

form of standard analog hardware description language (AHDL) similar to

the languages that have emerged for digital hardware description.

An example of a typical analog system is shown in Fig. 9.1 which

depicts an oversampled ND converter. This circuit consists of a filter

block followed by a sample-and-hold stage, a LL\ modulator and a decima­

tion filter. The circuit is driven by clocks which have high frequencies

relative to the input signals of interest. In this type of circuit, the designer

would like to explore the design space and evaluate certain design trade­

offs at the system level. In order to accomplish this, the high-level models

and parameters for each block could be specified in some form of AHDL,

236

q(kT)

D/A

MIXED-MODE SIMULATION

x(t)

+

~-

"+ x(kT)
;...6)

Filtering

Sampling

- T x(kT) - q(kT)

Y Integrator

O(kT) + x(kT) - q(kT)
......-1---,

AID Quantizer

y(kT)

Decimation
Filter

,r
y(kTN)

Digital Coding

Modulator
(Quantizer)

Figure 9.1: Block Diagram of Oversampled AID Converter

9. ANALOG MULTILEVEL SIMULATION 237

and the analysis could be performed using a high-level simulator to deter­

mine if the overall architecture is suitable. If so, each block could be indi­

vidually designed to meet the desired specifications.

On the other hand, if the entire circuit were simulated at the electri­

cal level, the time-steps used in the simulation would be governed by the

highest frequency clock signal driving the circuit and the smallest time

constants in the circuit. Therefore, a sizable number of time points would

be computed for each clock period. Since the simulation interval of

interest to the designer in these circuits usually involves a large number of

clock cycles, the overall simulation would be prohibitively expensive. So,

to simulate systems of this type, new tools are needed that are well beyond

the capabilities of SPICE.

To address this complexity issue, an important goal in analog simu­

lation has been to develop a multilevel simulation environment that incor­

porates all of the different levels of simulations shown in Fig. 1.1, and

described in Sections 1.3 and 1.4. Great progress has been made in this

area recently and a number of simulators have been developed to fill the

need. These includes AMP [RUM89], ATTSIM [ATT91], DESIGN

CENTER [MIC94], ELDO [ANA93], iMACSIM [SIN91], ARCHSIM

[ANT93], CONTEC SPICE [CON93], MIDAS [WIL92], M3 [CHA92]

and SABER [VLA90], to name a few. Table 9.1 contains a partial list of

commercial analog multilevel simulator. iMACSIM [SIN91] is included

as a reference for some of the implementation mechanisms described in

this book. Note that because there is not yet a mature and standard analog

HDL, the language used for behavioral description is quite different

among the simulators. Nevertheless, s-domainlz-domain transfer function,

differential equation and difference equation are commonly provided to

describe the behavior of analog system.

238 MIXED-MODE SIMULATION

Program/Company Type Behavioral Ideal/Non-Ideal !Electrical

iAccuSim II I HDL-A, S, Z, AID, D/A, Switch, Direct Matrix
Mentor Graphics DT SamplelHold, Peak
Corp. Detector etc.

ATTSIM I CLanguage, S, Same as Behavioral Direct Matrix
AT&T-Design Z, DT, DS
Automation

ContecSPICE I C primitives, S, Switch, Integrator, Direct Matrix
Contee Inc. Z,DT Arbitrary Func. etc.

Eldo I HDL-A, S, Z, Integrator, Opamp, S/H, ITA and
Anacad Inc. DT,DS PWM, VCO, etc. Direct Matrix

PSPICE I ABM,S, Math. Func., Filter, Limiter, Direct Matrix
Microsim COrp. Expression Func. Table Look-Ups etc.

Saber I MAST, S,Z, VCO, PLL, AID, D/A, Direct Matrix
Analog Inc. DT,DS opamps, etc.

Spectre I Spectre-HDL, S, Z, VCO, PLL, AID, D/A, Direct Matrix
Cadence Inc. Profile, DT, DS Mux, opamps, etc.

iMACSIM I Analog HDL, S, Switch, Control sources ITA and
University of Illinois Z, DT, DS Direct Matrix

Legend S: S-domain transfer function, Z: Z-domain transfer function, DT: Differential
equation, DS: Difference equation

Table 9.1: Survey of Analog Multilevel Simulators and
Their Capabilities

9. ANALOG MULTILEVEL SIMULATION 239

In this chapter, techniques for the simulation of analog systems in

time-domain are described. Issues in analog multilevel simulation are

addressed in Section 9.2. Behavioral level simulation methodologies of

continuous-time and discrete-time systems are discussed in Sections 9.3

and 9.4. Mixed continuous/discrete simulation is described in Section 9.S.

The architecture of the iMACSIM multilevel analog circuit simulator is

outlined in Section 9.6. Then, two analog multilevel simulation examples

are illustrated in Section 9.7. Finally, in Section 9.8, a macromodeling

and simulation environment are described. Although frequency-domain

simulation is also very important for analog circuits, it is beyond the scope

of this book. The interested reader may refer to [KUN90] for details on

this subject.

9.2. SIMULATION ISSUES

Many systems today are designed using a combination of discrete­

time components and continuous-time components. For example, a com­

mercial stereo codec chip uses a continuous-time anti-aliasing filter at the

input, a discrete-time :2:L1. AID converter implemented in switched­

capacitor technology, and a number of digital signal processing CDSP)

blocks. The DSP blocks are followed by a D/ A converter and another ana­

log filter block which selects the signal for eventual output. A complete

simulation of this chip in a program such as SPICE would not be feasible.

In fact, SPICE does not have a true discrete-time simulation capability for

switched-capacitor simulation. However, a system of this type could be

efficiently simulated using a mixture of continuous-time methods of

SPICE and the discrete-time methods of a program such as SWITCAP

[FAN83]. This issue of mixed continuous/discrete simulation is discussed

in Section 9.S.

The simulation problems posed by analog designs are not solely a

240 MIXED-MODE SIMULATION

function of their larger sizes. Many small circuits, such as phase-locked

loops (PLL) and switched-capacitor filters, can be very time-consuming to

simulate if a SPICE-like program is used. This is due primarily to the

disparity between the relatively large simulation intervals of interest to the

analog designer and the small time-steps that SPICE takes during the solu­

tion process [MA92]. For example, when simulating a PLL, one is

interested in the amount of time it takes for the circuit to lock on to the

input frequency. The locking process may take hundreds or even

thousands of clock cycles to occur. This often translates into days of

actual simulation time. To be able to simulate these circuits in a reason­

able amount of time without sacrificing needed accuracy, the designer

needs an event-driven multilevel simulation environment which supports

macromodeling and the optimization of models.

Analog behavioral modeling and simulation are still open areas of

research [RUT93, SAL94A, SIN94A]. A standard high-level description

language is still needed for analog applications ranging from low frequen­

cies up to microwave frequencies. The behavior of a system should be

expressible in the time-domain or frequency-domain. In the time-domain,

continuous systems can be mathematically characterized by linear or non­

linear differential equations, and discrete systems by difference equations.

In the frequency-domain, the corresponding representations are algebraic

expressions in terms of the Laplace transform variable, s, and the z­

transform variable, z. Since the behavior can be specified in either the

time-domain or the frequency-domain, it is very important that efficient

algorithms be used to perform transformations between these different

model representations. The techniques to simulate analog circuits

behaviorally are outlined in Sections 9.3 and 9.4.

9. ANALOG MULTILEVEL SIMULATION 241

9.3. CONTINUOUS· TIME BEHAVIORAL MODELS

At the behavioral level it should be possible to describe individual

blocks in terms of s-domain transfer functions or using differential equa­

tions, and models written in AHDL. Each of these options is described

below.

9.3.1. Behavioral Models using a Hardware Description Language

It is widely-accepted that a standard analog hardware description

language (AHDL) is needed for the description, documentation and

exchange of analog design data. An AHDL would allow the designer to

quickly define the structure and behavior of new blocks needed for a simu­

lation. Some simulators have user-defined controlled sources that allow a

variety of different models to be incorporated into the simulator. How­

ever, there are limitations on the type of elements that this approach can

handle. Other simulators currently allow this to be performed using an

existing programming language. A C or C++ file is created containing the

functions needed by the rest of the simulator. The designer specifies the

input and output nodes, partitioning information, setup and preprocessing

information, and scheduling information. These functions, along with the

necessary data structures, are then compiled and linked to the program to

create an executable routine that includes the new behavioral block. Of

course, analog designers are not eager to use embrace this approach

because it is not a natural way to specify an analog design.

In other cases, proprietary languages have been developed for this

purpose. Each language is different from the other and this does not allow

models to be exchanged between programs easily. A standard AHDL

would greatly enhance the ability to perform behavioral simulation

because a large database of analog components could be developed and

reused by different customers and vendors. Currently, MHDL [MHL91]

and VHDL-A [VHD91] are the two languages under development with the

242 MIXED-MODE SIMULATION

intention of eventually being standardized. While space does not permit

us to provide the details of these efforts, the reader is encouraged to survey

the literature on this important activity.

9.3.2. s-domain models

The general behavior of a system can be viewed as a transformation

of a set of input signals into a set of output signals. Thus, a suitable

representation for the analog behavior of a system is the input/output

transfer function. For a linear, time-invariant, continuous-time system, the

s-domain representation of the transfer function is usually specified as

H(s). This is a frequency-domain characterization of the impulse response

of a linear system, h(t). It provides valuable information to the analog

designer about the magnitude and phase response of the system and is,

therefore, preferable to the time-domain representation. On the other

hand, a time-domain representation can capture all the nonlinearities of the

system and should be used if these nonlinearities are important to the

overall performance.

The transfer function, H(s), provides information about the system

poles and zeros that indicate the stability of the system. It is normally

expressed as a ratio of polynomials, as follows:

H() ao + a I s + ... + apsP N (s \
S = +r=~+r

bo + bls + ... + bq_lsq- 1 + sq D(s) (9.1)

where p < q and r is a remainder term. For simulation, H(s) must be first

transformed into the time-domain. Several methods have been proposed

to perform this transformation as described below. The techniques are

categorized according to their modeling and the mathematical methods

used.

9. ANALOG MULTILEVEL SIMULATION 243

1) State-space representation and numerical integration method

This approach is perhaps the most popular of all the methods to be

described [CHA92, VIS88, SIN91, TRI90]. For an input excitation U(s),

the output yes) is given by:

yes) = H(s)U(s) = ~~:~ U(s) + rUes)

Define an auxiliary system M(s), given by

M(s) =..lli&
D(s)

and Eq. (9.3) can be rewritten as

(9.2)

(9.3)

(sq + bq_1sq- 1 + ... + bIs + bo)M(s) = U(s) (9.4)

The corresponding q-th order differential equation is:

We now define q state variables as follows:

Xl(t) = met)

X2(t) = Xl(t)

Then, it follows that:

X2(t) = m(l)(t)

244 MIXED-MODE SIMULATION

Substituting the above equations into Eq. (9.5) we obtain:

and the output can be expressed as:

Yes) = (ao + als + ... + apsP)M(s) + rUes) (9.7)

In the time-domain, with state variables substituted for the derivatives of

m we obtain:

yet) = 3QXI(t) + alx2(t) + ... + apxp+l(t) + ru(t) (9.8)

Therefore, the controllable canonical-form realization of this transfer

function is:

x=Ax+Bu (9.9a)

y=Cx+Du

where

0 1 0 .. 0 Xl
0 0 1 0 0
0 0 0 0

X2 0 .. X3 0 A= X= B=

0 0 0 1 Xq-l 6 .. 1
-bo -bl -b2 .. -bq- l Xq

0] D=r

and X is the vector of state variables. The system can also be represented

in the observable form which is essentially the transpose of the controlla­

bility form [CHE84]. That is, if Ao, Bo, Co and Do are the system matrices

of a corresponding observability form, then the two forms are related as

9. ANALOG MULTILEVEL SIMULATION 245

follows:

(9.9b)

where A T refers to the matrix transpose of A.

With the above transformations, the result is a system of first-order

linear differential equations that can be solved using numerical integration,

as described in Chapter 2. Each unidirectional s-domain block can be

solved separately with its own time-step control to keep local truncation

error bounded within specified limits. The time-step control algorithm dis­

cussed in previous chapters for electrical-level subcircuits can also be

applied here. At a given time point the algorithm will compute the next

acceptable time-step for each s-domain block, which will be scheduled

accordingly. It is important to note that it is not possible to determine the

initial output values of a transfer function block for a time-domain tran­

sient analysis by setting s=O in the transfer function. This limit specifies an

initial value for steady-state analysis. Therefore, for a transient analysis

the state variables must be initially be set to zero, and the initial output

value must be user-specified to maintain consistency with the rest of the

circuit.

In addition to the unidirectional s-domain functions discussed above,

there are cases in which an s-domain transfer function may have both its

input variable and its output variable connected to the same circuit node.

For example, the input variable to the block could be current and the out­

put variable could be voltage, or vice-versa. To process such "bidirec­

tional" connections, the state-variable equations of the block must be

embedded in an MNA formulation of the circuit connected to it. Then, the

s-domain state equations can be solved simultaneously with the circuit-

246 MIXED-MODE SIMULATION

level equations.

2) State-space Representation and Power Series Method

A less popular alternative [T AH89] to the above approach is to con­

vert the solution of Eq. (9.9a) into a set of difference equations, as

described in [CHU75]. First, the state-space equation is formulated as

shown above. The solution for x(t) in Eq. (9.9a) is given by [CHU75]:

t
x(t) = eAtJtQ e-A~Bu('t)d't + eA(t-tQ)x(to) (9.10)

where eAt is defined by the following infinite power series:

eAt = 1 + At + i! (At)2 + ... + ~! (At)" + (9.11)

These equations are substituted into yet) in Eq. (9.8) to obtain the overall

solution.

Many different approaches to numerically compute the solution to

x(t) exist. One possible discretization of Eq. (9.10) is as follows

[CHU75]:

x[(k + l)T] = eATx(kT) + eATB ~ u(T) + B ~ u[(k + l)T]

where T is the time unit. This equation can be used to sequence through

the solution at different time points during the simulation. The main prob­

lem with this approach is that the matrix exponential, eAT, is known to be

difficult to compute [MOL78].

3) SPICE-based Macromodels

Another approach to the realization of a behavioral model is to

implement a desired H(s) using basic primitives available in a circuit level

simulator such as SPICE. In this method, the first step is to modify H(s)

9. ANALOG MULTILEVEL SIMULATION 247

by dividing each term of the numerator and denominator by the highest

power ofs:

Then, Mason's gain formula [CHE84] is used to construct a function block

diagram for this system. In this function block diagram, each term of the

denominator, except for the constant, represents a feedback path whose

coefficient is the feedback gain and each term of the numerator is a feed

forward path and its coefficient is the forward gain. As an example, con­

sider the third-order system given by:

This transfer function is modified by dividing the numerator and denomi­

nator by s3 to produce:

The corresponding functional block diagram is shown in Fig. 9.2. Based

on this block diagram, an equivalent circuit macromodel is constructed

using SPICE primitives [CH089]. The summing point can be realized

using a nonlinear polynomial dependent VCVS. For the example above,

the output of the summer would have the equation:

For the needed integrator blocks, an approximate circuit model is imple­

mented using a linear VCCS, a resistor and a capacitor as shown in Fig.

9.3. The transfer function of this circuit is:

248 MIXED-MODE SIMULATION

bo ---

v
,~r

b2 ~

V2 V3 V4 III -1 -1 -1
~ an ... + ..: ,- - ,..-4~ - -- S .. S - S

Vo ut
~~

bI --
Figure 9.2: Functional Block of Hm(s)

+ °Vout

R=1T C=1

Figure 9.3: An Approximate Circuit Model for An Integrator

9. ANALOG MULTILEVEL SIMULATION 249

H (s) = Vout(s) = K(1/C)
I VineS) s+(1IRC)

where K is the gain of the VCVS. If the capacitor value is IF and the

resistor value approaches infinity, the transfer function is:

which provides the integration function.

4) Other methods

If the input signal can be expressed in the s-domain, then yes) may

be calculated by yes) = H(s)U(s), and the inverse Laplace transform can be

applied to obtain yet). To use this method in the case where a limited

number of points of the input signal waveform are available, a Fast Fourier

Transform (FFT) [RUM89] can be used to transform u(nT) into U(s). To

calculate the inverse Laplace transform, the partial fraction expansion

method and numerical Laplace transform inversion (NL TI) are used. In

the partial fraction expansion methods, the poles and residues of the func­

tion need to be calculated. However, this process is known to be very

expensive if q is large [HAL88]. Another alternative is to numerically

compute the inverse Laplace transform directly. However, it is only suit­

able for a nonperiod excitation and the error grows as time increases. A

modified version of NL TI called the stepping algorithm has been proposed

to bound the error but the computation complexity is the same as solving

Eq.(9.9) using numerical integration method [VLA83].

Another approach is to take the input waveform and convolve it with

the impulse response of the s-domain block to obtain the time-domain out­

put. The time-domain impulse response can be obtained from the s­

domain transfer function through an inverse Fourier integral. However,

the convolution approach has been demonstrated to be inferior to the

250 MIXED-MODE SIMULATION

state-variable approach [TRI90]. Its computation time has been shown to

increase superlinearly as the simulation interval is increased, assuming

that the sampling time is kept constant, and the memory requirements of

this approach are very large.

To summarize the above mentioned methods, the state variable

approach is preferable because it can be easily embedded into the existing

electrical simulation scheme, and uses the same numerical integration

method and time-step control. As for the inverse Laplace method, one

disadvantage is that the whole input waveform must be known before the

s-domain blocks are simulated. Also, computing the Inverse Laplace

transform is computationally intensive. The SPICE macromodeling

method to represent H(s) is most suitable for extending the abilities of

SPICE-like simulators.

9.3.3. Differential Equations

The simulator should allow the behavior of a block to be specified in

terms of linear or nonlinear differential equations. The simulation algo­

rithm must provide time-step control during the equation solution process.

It may not be possible to directly apply the differential equation techniques

used in circuit simulation to behavioral blocks, since the circuit-level

equations are assumed to be first-order equations. If the given behavioral

differential equations are of greater order, they will have to be reduced to a

set of first-order equations or solved by different numerical algorithms.

For linear differential equations, one easy way is to use the state-space

method mentioned in the previous section.

9.4. DISCRETE· TIME MODELS

Discrete-time modeling and simulation are important in analog

system-level design. This is similar to logic simulation for mixed-signal

designs, as described in Chapter 5. At the behavioral level, the user

9. ANALOG MULTILEVEL SIMULATION 251

describes circuit blocks in terms of z-domain transfer functions, difference

equations, or by models written in an AHDL. At the functional level,

idealized elements are used to represent the circuit elements, and at the cir­

cuit level the actual elements are used. Each of these options is explored

below.

9.4.1. Behavioral AHDL Models

Discrete-time behavioral models can also be created from an AHDL

description using the same procedure used for continuous-time models.

The most prominent difference between the two types of models arises

from the existence of a master clock for the discrete-time models. The

master clock specifies the time-points at which the models will be

evaluated. It is appropriate to use discrete-time behavioral models when

the behavior of the block is of interest only at certain well-specified points.

For example, a discrete-time filter may act on its input data only at certain

clocking instants. Therefore, it would be inappropriate to use time-step

selection to schedule and evaluate the block at intermediate time-points.

Alternatively, the discrete-time model may be evaluated when its own

local clock input is high. This corresponds to an enable input for the

model which may be driven by an internal node. In this case, the model is

very similar to a standard logic block.

9.4.2. Difference Equations and z-Domain Models

Discrete-time models can be represented using difference equations

or z-domain transfer functions. Difference equations take the following

form:

y[k+q] + b1y[k+q-l] + b2y[k+q-2]+" . +boy[k] =

aou[k+q] + alu[k+q-l] + ... +aqu[k]

where u is the input, y is the output, and y[k] is defined as y(kT) with T as

252 MIXED-MODE SIMULATION

the sampling period. This type of equation can be entered directly into the

simulator since it is a time-domain representation of a discrete-time func­

tion. A z-domain function takes the form:

H Y(z) ao + aIz-I + ... + apz-P N(z) (9.12) (z) = = - + r = + r
U(z) 1 + bIz-I + ... + bqz-q D(z)

where p < q. This equation is the discrete-time counterpart of the formula­

tion described above for s-domain models. Therefore, to map this function

to the time-domain, a similar procedure is used. Let m(k)=m(kT)

represent the time response sampled with a sampling period T and define q

state variables as follows:

Xl (k - 1) = m(k - q)

X2(k - 1) = m(k - q + 1)

xq-I(k -1) = m(k - 2)

xq(k-l)=m(k-l)

and

Then, the state equations can be expressed in controllable canonical form

as:

xI(k) 0 1 0 .. 0 xI(k - 1) 0
x2(k) 0 0 1 .. 0 x2(k-1) 0

= + : u(k)
xq_~(k) 0 0 0 1 xq-ICk - 1) 0
xq(k)

..
xq(k -1) 1

-bq -bq- 1 -bq-2 .. b I

and

9. ANALOG MULTILEVEL SIMULATION 253

y(k) = [ap ap_1

Numerical integration is not required in the case of z-domain transfer func­

tions. At each sampling time-point, the values of the state variables and

the output value are updated using the canonical form. Note that, as in the

case of s-domain transfer functions, DC conditions for z-domain block

must be user-specified to maintain consistency with the other subcircuits.

It is not possible to derive DC conditions from the transfer function alone.

9.4.3. Functional Simulation

At the functional level, a charge-conserving, discrete-time algorithm

can be used to simulate circuits such as switched-capacitor filters. For

example, the methods used in SWITCAP [FAN83] are appropriate here.

At this level, a combination of ideal switches, VCVSs and capacitors is

sufficient to model linear switched-capacitor circuits. The discrete-time

algorithm solves a set of charge-based equations once per clock phase.

The underlying assumption is that complete charge transfer is achieved

instantaneously after a clock transition. This approach has the virtue of

being several orders of magnitude faster than a SPICE-like approach. The

drawback is that second-order effects which introduce signal distortion

cannot be easily modeled. In addition, resistive effects are not included in

this approach.

We now describe the approach using the simple switched-capacitor

integrator circuit shown in Fig. 9.4. The capacitor, Cs, is called the sam­

pling capacitor, and C1 is the integrating capacitor. A simple two-phase,

non-overlapped clocking scheme is used to generate the two ideal switch

controls, <1>1 and <1>2. The opamp is modeled as an ideal voltage­

controlled voltage source with gain a. Charge transfer from the input to

254

CD

u(t)

--

u(t)

MIXED-MODE SIMULATION

if G) if G)

<P:-L <P2 res
- -- -

Figure 9.4: SC Integrator

CI

@
0

-.t --

-av
3

Cs takes place during <1>1 and charge redistribution occurs between Cs and

CI during <1>2.

An MNA formulation is used to be consistent with the method used

in the continuous-time domain. In each of the two phases, charge­

conservation equations are written for each node, and branch constitutive

relations are added to form the MNA matrix. Let qsl denote the charge

that flows through switch S 1, qs2 the charge through S2, qu the branch

9. ANALOG MULTILEVEL SIMULATION 255

charge through the independent voltage source, and qv the branch charge

through the VCVS. In phase k with Sl closed (CPl high, and S2 open), the

complete set of equations describing the behavior of the circuit can be

expressed in terms of an MNA matrix and a vector of unknowns as:

o 0 0 0 1 0 1 0
vf o Cs 0 0 o 0 -1 0 0

o 0 CI -CI 0 0 o 0 v:i< Csv:i<-l
vf CI(vf-1 - vl'-l) o 0 -CI CI 0 1 o 0 vl' CI(vl'-1 - vf-1)

1 0 0 0 o 0 0 0 = uk qu
o 0 a 1 o 0 0 0 qv 0
1 -1 0 0 o 0 0 0 qsl 0

0 o 0 0 0 o 0 0 1 (};2

Correspondingly, in phase k + 1, with S 1 open and S2 closed, the equa­

tions are:

o 0 0 0 1 0 0 0
vf+l o Cs 0 0 000 1 0

o 0 CI -CI 0 0 0 -1
v:i<+ I Csv:i<
vf+l C1(vf - vl')

0 0 -CI CI 0 1 0 0 vl'+l CI(vl' - vf)
1 0 0 0 000 0 = uk+l qu
0 0 a 1 000 0 qv 0
0 0 0 0 001 0 qsl 0

0
0 1 -1 0 000 0 qs2

Of course, in practice there may be more than two phases, depending

on the specific clocking scheme used. Since the MNA matrices remain

unchanged in each phase, each such MNA matrix can be computed once

and then cached for later reuse. The matrices can be stored in an LU­

decomposed form for greater efficiency. To avoid excessive use of

256 MIXED-MODE SIMULATION

memory, a limit should be set on how many such matrices can be cached,

especially when there are a large number of phases.

The simulation interval is usually made up of hundreds, or possibly

thousands, of clock cycles. During a transient simulation, one MNA

matrix is evaluated in every clock cycle and a new phase is signaled by a

clock transition. The program checks the switch settings in the new phase

against stored values to determine whether this setting has been encoun­

tered before. If it has, the appropriate MNA matrix is accessed and used to

solve the system of linear equations. Otherwise, a new MNA matrix is

created from element stamps. This process continues until all the phases

have been processed.

9.5. MIXED CONTINUOUSIDISCRETE SIMULATION

It is clear that a complete analog multilevel simulator should provide

all the levels shown in Fig. 1.1 and perform both discrete-time and

continuous-time simulation. In fact, for some circuits such as the over­

sampled ND converter shown in Fig. 9.1, a mixed continuous/discrete

simulation capability is essential for efficient simulation. The filter at the

front end could be simulated using an s-domain transfer function or at the

electrical level. The modulator, which is usually implemented as a

switched-capacitor circuit, could be modeled at the functional level in the

discrete-time domain. Finally, the decimation filter could be described in

terms of a z-domain transfer function or as a discrete-time behavioral

block. This combination of discrete-time and continuous-time models is

well-suited to the natural structure of the circuit and would provide func­

tional verification and first-order timing information in a short time.

Table 9.2 shows the combined simulation hierarchy that would be

needed in a true mixed continuous/discrete simulator. There are two basic

issues that must be considered when designing this type of simulator. The

9. ANALOG MULTILEVEL SIMULATION

Behavioral
Level

Functional
Level

Circuit
Level

Continuous Time

s-domain functions,
differential equations
and blocks described in
AHDL

Nonlinear and
linear controlled
sources, Logic
gates, ADC, DAC,
opamps etc.

Transistors,
Diodes,
Capacitors,
Resistors,
Inductors

257

Discrete Time

z-domain functions,
discrete-time equations and
blocks described in AHDL

Voltage-controlled
switches, voltage source

Capacitors,
Transistors

Table 9.2: Mixed ContinuouslDiscrete simulation

first is the design of a mechanism to maintain a consistent solution for the

circuit at any given time point in the simulation interval. In the case of a

continuous-time subcircuit, the inputs and outputs are of interest at every

timepoint in the interval considered. It is inherent in the time-point selec­

tion that the output value at any intermediate time can be interpolated from

the values at the time-points. However, for a discrete-time subcircuit the

inputs and outputs are of interest only at certain discrete-time instants

associated with some clocks or sampling processes. The simulator must

convey the appropriate information from continuous-time to discrete-time

subcircuits (and vice-versa) as needed during the simulation process, and

258 MIXED-MODE SIMULATION

synchronization must be maintained between the different subcircuits.

The second issue concerns convergence to a solution in the presence

of discontinuities. An element such as an ideal switch can have a very

sharp transition at its output when it turns on. In fact, the voltages at its

output terminal can change almost instantaneously. In some cases these

voltages may be the inputs to continuous-time electrical-level or

functional-level subcircuits. The integration methods used at the electrical

and functional levels are extremely prone to convergence problems and

numerical errors in the presence of sharp transitions or discontinuities.

Furthermore, the local truncation error checking schemes used in conjunc­

tion with the integration methods have to be modified. This is due to the

fact that voltages at the affected circuit nodes prior to the transition cannot

reliably be used as predictors of the voltages at the circuit nodes after the

transition, since the relative voltage change per unit time may be large.

An event-driven paradigm can be used to maintain consistency of the

solution in the two domains. It would operate as follows. A given circuit

is partitioned by the simulator into discrete-time and continuous-time sub­

circuits, based on the models specified by the user. For a continuous-time

subcircuit, an event is defined to occur when the state of one or more of its

nodes changes, as described Chapter 4. When an event occurs, a subcir­

cuit will try to schedule all of its fanout subcircuits for processing by the

simulator. As shown in Fig. 9.5, a continuous-time subcircuit can fanout

to either discrete or continuous-time subcircuits. With reference to the

figure, a continuous-time subcircuit can schedule another continuous-time

subcircuit but a discrete-time subcircuit can only be scheduled by a spe­

cially designated clock input. On the other hand, whenever the output of a

discrete-time subcircuit changes, it can schedule any continuous-time sub­

circuit on its fanout list. This mechanism ensures that a discrete-time sub­

circuit will not be scheduled at an inappropriate time and also permits

9. ANALOG MULTILEVEL SIMULATION

------.. ~ Signal flow
- - - - Event-driven flow

continuous-time
electrical

discrete-time
electrical

continuous-time
electrical

259

ICLK2

continuous-time
electrical

Figure 9.5: Combined Simulation of Continuous and
Discrete Time Structure

latency in the circuit to be exploited.

Another important issue that must be considered is that a clocking

signal for a discrete-time subcircuit may not be known in advance. The

user should have the option of either completely specifying the clocking

signal in advance before the simulation, or deriving it from internal nodes

260 MIXED-MODE SIMULATION

in the circuit, whose behavior is not known a priori. In general, this prob­

lem may exist even in purely continuous-time circuits containing elements

whose behavior changes at some threshold (usually a threshold voltage).

If suitable constraints are not imposed, the time-step selection algorithm

may not schedule a threshold element to be processed at the exact time

that its threshold is reached, and this would give rise to a timing error in

the simulation. The issue of determining the exact scheduling time for

cases in which the behavior of the clocking signal is not known a priori

(nondeterministic clocks) is discussed in more detail in [BED91, SIN94B].

9.6. iMACSIM: A CASE STUDY

The architecture of an analog multilevel simulator must achieve the

goal of incorporating all of the techniques and algorithms described to this

point within a single unified framework. In order to provide a specific

context for the discussion, the architecture of iMACSIM [SIN91] will be

used as an example. As described below, the notions of flexibility, exten­

sibility, modularity and ease-of-use with AHDLs were key considerations

in its design.

The overall architecture of iMACSIM is shown in Fig. 9.6. It con­

sists of a programming interface called he algorithmic backplane, which

contains sparse matrix routines, a scheduler package, waveform processing

routines, and input/output routines. Several different algorithms are

shown that plug directly into the backplane. Each algorithm has a

corresponding set of models dedicated to it. A given model will be pro­

cessed only by its associated algorithm. This modular architecture enables

new algorithms or models to be easily added or removed, providing the

program with a high degree of adaptability. The algorithmic backplane is

a procedural interface for the simulation algorithms. It consists of a set of

macros and subroutine calls that allow the algorithm developer to access

9. ANALOG MULTILEVEL SIMULATION 261

Models

Algorithmic

Backplane FFT Analysis

Linear Frequency
Domain

Analog Behavioral
1-...-_____ ----11-----1 Al orithm

Figure 9.6: Simulator Architecture

data structures and operations without a detailed understanding of the rest

of the program.

Fig. 9.6 shows some of the simulation algorithms which are already

attached to the backplane. The iterated timing analysis (ITA) algorithm,

described in Chapter 4, performs electrical level simulation. The analog

behavioral algorithm controls both discrete-time and continuous-time

models. The associated models include s-domain functions and

continuous-time blocks, and z-domain functions and discrete-time blocks.

The logic algorithm processes behavioral descriptions of logic gates, as

described in Chapter 5. The SC algorithm processes switched-capacitor

subcircuits in the time-domain, as described earlier in this chapter. Since

262 MIXED-MODE SIMULATION

iMACSIM uses an event-driven paradigm, the inner loop of the program is

an event processor which is identical to that described in Chapter 8.

9.7. SIMULATION EXAMPLES

This section illustrates multilevel simulation and mixed

continuous/discrete simulation in iMACSIM using two simple examples.

The first example is a PLL-based clock generator [SHE88] shown in Fig.

9.7 that contains 205 MOS transistors. To speed up the simulation time,

I

---l

i_pd
-. 1-------eVCO_in

I .----41.---, - I

Ie
IR
I

z s _ (l+RCs)
()-Cs[(1+C2/C)+RC2S]

L _______ _

Figure 9.7: Charge Pump, Filter and VCO of Clock-Generator

9. ANALOG MULTILEVEL SIMULATION 263

the circuit was represented using an s-domain model and behavioral logic

models. The low-pass filter in the PLL has the impedance transfer func­

tion:

I
4.50

4.00

3.50

3.001-

2.50 r- ----- ,
(..

2.00 -

1.50

1.00

050 l_
. I

0.00 ~ :'
I

r'

·0.50 f- I

0.00

Z() 1 +RCs
s = Cs((l + C2/C) + RC2s)

/'
I " ~ ___ J :

---1
!

~

) :.
~.'

I l:::j

100.00 200.00 300.00 400.00

Time

(9.14)

ELEC_VCO_OUT
M'DCvC"o::,out ..
ELEt~ VCb-:.)NPOT
Mlx.Vcci)NPUT

(ns)

Figure 9.8: Comparison of Voltage at the VCO Input and Output

264 MIXED-MODE SIMULA nON

and was represented by an s-domain block which has a single bidirectional

connection to the rest of the circuit.

The digital phase detector was modeled using 40 logic gates in its

behavioral description. To maintain a high level of accuracy, it was

important to keep the nonlinear VCO at the electrical level, and 9S transis­

tors from the original electrical description were used to model it. Fig. 9.8

compares waveforms obtained from the electrical and multilevel circuit

descriptions. One waveform is at the input of the VCO while the other is

at the output of the VCO. The results are comparable, and the observed

speedup is 2.SX for multilevel simulation over detailed electrical simula­

tion. This is reasonable considering the number of transistors used in the

multilevel simulation.

To demonstrate the effectiveness of the mixed continuous/discrete

simulation capability, the switched-capacitor voltage-controlled oscillator

[HOS84] shown in Fig. 9.9 will be used. Two separate simulations were

conducted in iMACSIM. In the first case, the Schmitt trigger was modeled

at the behavioral level using the C language (iMACSIM_B), and in the

second case it was modeled at the electrical level using transistors

(iMACSIM_E). In the second case, a mixed continuous/discrete simula­

tion was performed: a discrete-time algorithm for the switched-capacitor

portion of the circuit and a continuous-time algorithm for the Schmitt

trigger circuit. The same circuit was then simulated in PSPICE [PSP90],

with switches and logic gates available in the program, using only

continuous-time simulation.

The run times for these cases are shown in Table 9.3. Fig. 9.10 com­

pares the waveforms for the two cases when V _control is swept from -S to

+S V. In accordance with the results presented in [SUY89], the oscillation

frequency changes from SOO Hz to IS00 Hz. iMACSIM, with a transistor

level description for the Schmitt trigger (row 2) was 18X faster than

9. ANALOG MULTILEVEL SIMULATION

Continuous-time
subcircuits

Figure 9.9: Switch-Capacitor Voltage-Controlled Oscillator

265

PSPICE (row 1). The result for the behavioral Schmitt trigger was lOX

faster than the electrical Schmitt trigger. The results from the two simula­

tions are not identical since the accuracy of the behavioral model of the

Schmitt trigger is limited. However, this example demonstrates that good

speedups and acceptable accuracy can be obtained using a mixed

continuous/discrete approach.

266 MIXED-MODE SIMULATION

Program Run-time(sec)

PSPICE v4.05
(electrical Schmitt)

2540

iMACSIM 136
(electrical Schmitt)

iMACSIM 13
(behavioral Schmitt)

Table 9.3: Run Time for VCO on Sun SPARC2

9.8. A MACROMODELING AND SIMULATION ENVIRONMENT

We now describe various techniques for macromodeling and present

a complete system for analog macromodeling and simulation. A brief dis­

cussion of the macromodeling process was presented earlier in this chapter

for linear models, but general macro modeling issues were not described.

The essence of macromodeling is to capture the important input/output

characteristics of a complex circuit in a simplified model called a macro­

model. The simulation is then performed using a number of these

9. ANALOG MULTILEVEL SIMULATION 267

macro models to reduce the overall simulation time. This has also been

referred to as model order reduction.

There are a number of ways to generate macromodels for a given

v -T

5.00

4.50

4.00

3.50

3.00

2.50

2.00

1.50

1.00

0.50

0.00

-0.50

-1.00

-1.50 ~
-2.00 I
-2.50 I

r
-3.00

-3.50
I

-4.00 r
-4.50 I-
-5.00 ~.

0.00 2.00 4.00

:~--·-TI
:. :1
~ : ~ :

Ii Ii
:. :-
:. :-
:. :-
:. :'
:. :'
:. :1
:. :1
:,
:, .. :,
:,
:,
:,
:,
:,
:,
:,
:,
:,
:,
:,
:, .,
:,
:,
:,
:,
:,
:,
:,
:,
:,

:,
:,
:,
:,
:,
:,
:,
:,
:.
:,
:,
:,
:,
:,
:,
:,
:,
:,
:,
:,
:,
:,
:,
:,

" ., .,
"
"
"
" .. .,
" :,

!
:,

i!
!!

i
:, .. .,

j1

i:

Time

:. :
:.
:. :,
:,
:,
:,
:,

,
:.
:'
:'
~
)

:' , , , ,
)
)

:'
:' , ,
:'
:' :.
:.
:' :.
:.
:.
:'
:'
:'
:'
;:
:'
:' :.
:.
:.
:.
:.
:'
~:
:' :.
:'

~_.l:

, , , , , , , , , , , , , , , , , , ,
) ,

?_.}

I control

~ i~~g~~i:~'~'~':

j

~

~
I

10.00 12.00 (ms)

Figure 9.10: Oscillator Outputs as A Function of V_control

268 MIXED-MODE SIMULA nON

transistor level circuit block. The manual approach has been used for

many years and relies on the knowledge and intuition of the designer.

This has proven to be very successful, although there is an enormous

amount of work involved in developing a complex macromodel that

includes all of the desired effects and is accurate across different applica­

tions. However, once it has been developed, the runtime advantages of

using a macromodel are also enormous. Automatic macro model genera­

tion requires very little effort on the part of the designer, but has only been

successful in a number of limited situations, namely, linear circuits. Of

course, as the research progresses, it is anticipated that this approach will

be preferred over the manual approach.

Two approaches have been explored recently to automatically gen­

erate the macromodels for linear or linearized (small-signal) circuits. One

uses symbolic analysis [GIE89, SED88, FER91] to generate the circuit

equations. Several hierarchical analysis methods [HAS89, HAS91,

JOU94] and simplication methods [FER92, SED92, HSU93] have made

symbolic analysis more useful for applications such as circuit analysis and

synthesis. A detailed description of symbolic analysis may be found in

[GIE91]. Another approach is to perform model order reduction through

the use of asymptotic waveform evaluation (AWE) [PIL90, RAG93] or

other moment matching techniques. These methods have proven to be

useful in the analysis of interconnect structures and various networks con­

taining large linear structures with nonlinear terminations. Conceptually,

AWE extracts a small set of dominant poles from a large network. The

interested reader should consult reference [CHI94] for a detailed descrip­

tion of AWE along with its applications.

The macromodeling process in the nonlinear case is mainly manual

at present. Little progress has been made in the automatic generation of

nonlinear macromodels. One disadvantage common to most of the high-

9. ANALOG MULTILEVEL SIMULATION 269

level simulators available today is the large effort required on the part of

the designer to create a new macromodel. To circumvent this problem, a

large library of useful macromodels usually accompanies most commercial

simulators. However, if a needed macromodel is not available in the

library, the long and tedious process of creating a new one must be under­

taken.

For circuit designers who do not have a CAD background, creating

the necessary macromodels can be a frustrating experience. Usually the

designer must have programming skills in a language such as C or FOR­

TRAN in addition to possessing a good working knowledge of the simula­

tor. To compound the problem, newly developed primitives often have

numerical problems that the designer is unaware of such as nonconver­

gence, discontinuities, numerical overflow, and so on. It would be useful

to identify these problems before the macromodels are used in an actual

simulation. In order to automate this entire process, the designer should be

able to specify a macromodel in a hardware description language that is

specifically tailored for analog designs. The designer's description should

be checked for potential numerical problems without the designer needing

to be aware of the internal workings of the simulator [MA92, CHA92,

VIS88]. Finally, the macromodel should be automatically optimized to

deliver the intended performance.

A suite of programs has been developed at the University of Illinois

to serve as a vehicle for demonstrating these concepts. It includes an

AHDL language translator called iMacGen [MA92], a numerical con­

sistency checker called iMacChk [MA92] and an optimizer called

iMAVERICK [JU91]. iMacGen and iMacChk have been tailored to inter­

face with iMACSIM. Ideally, a fully automated macromodeling tool

would automatically create the desired macromodel, incorporate the neces­

sary primitives into the simulator, and then optimize any macro model

270 MIXED-MODE SIMULATION

parameters to match the behavior of the original circuit. However, a sys­

tem with these features is rather unrealistic at this point in time. Instead,

these tools address the most tedious and time-consuming portions of

macromodel, and leave the creative part in the hands of the designer.

Fig. 9.11 shows the overall structure of the macromodeling process

using these tools. First, the designer identifies the circuit block to be

replaced by a macromodel and constructs a macro model using primitives.

The primitives that do not already exist can be added to the simulator in an

AHDL format through iMacGen. The integrity and functionality of the

newly created primitives must be checked before they can be safely used.

For this purpose, iMacChk is used to detect some of the common problems

that the primitives might have in the user-specified region of operation.

After all the primitives have been entered and checked, a macromodel with

a set of adjustable parameters can be constructed. The optimizer,

iMA VERICK, is used to fine tune the macro model parameters to the

designer's specifications.

Fig. 9.12 provides an overview of iMacGen. This program accepts a

model description provided by the designer in an AHDL format, checks its

syntax, and then generates a device model in C for the iMACSIM pro­

gram. The syntax of the language is based on combination of VHDL and

C. The VHDL constructs provide structure for the definition of the new

model while the C language is used for equation specification. The equa­

tions are extracted and passed to Mathematica [WOL91], a well-known

symbolic analysis package, so that the derivatives needed by the simulator

can be generated. These derivatives, along with the element equations, are

used to build the matrix stamp of the device. The input/output information

is used to build scheduling tables for the device. The parameters, their

default values, and their range of permissible values are converted into ini­

tialization and bounds checking routines. Finally, afew tables are updated

In
p

u
t

d
e

ck

w
ith

sp

e
ci

fi
ca

ti
o

n
s

In
p

u
t d

e
ck

w

it
h

o

p
ti

m
iz

e
d

m

a
cr

o
m

o
d

e
l

D
es

ig
ne

r

M
ac

ro
m

od
el

A

H
D

L
D

es
cr

ip
tio

n
E

n
tit

y

+
 D

es
ig

ne
r

M
ul

ti
le

ve
l

S
im

ul
at

or

:i
M

A
C

S
IM

11
0,

 P
ar

am
et

er
s

A
rc

h
ite

ct
u

re

D
ev

ic
e

T
yp

e
E

q
u

a
tio

n
s

~ .
..

I
iM

ac
G

en

iM
ac

C
hk

F
ig

ur
e

9.
11

:
O

ve
rv

ie
w

 o
f

th
e

E
nt

ir
e

S
ys

te
m

\0
 ~)­ r o Cl
 s: c:::
: ti
. ~ tT
l r r.

J)
 ~ r)­,

.....
. o z N

-...

.J
.

272 MIXED-MODE SIMULA nON

to make the new primitive a recognized element for iMACSIM users.

Fig. 9.13 provides an overview of iMacChk. Mathematica [WOL91]

is again used to perform many of the symbolic and specialized numerical

operations needed in iMacChk. Since the user is allowed to specify multi­

ple regions of operation for a new primitive, iMacChk examines the model

AHDL input deck

Entity
I/O Nodes
Device Parameters
Model Parameters

Architecture
Device Type
Equations

Macromodel Simulator

Multilevel
Simulator:
iMACSIM

iMacGen

Use Mathematica
for symbolic
com utations

Compile and link
with the
macromodel

Figure 9.12: Overview of iMacGen

9. ANALOG MULTILEVEL SIMULATION 273

Macromodel
Simulator iMacChk AHDL input deck

Verify model
Entity

liD Nodes
functionality. Device

Parameters
Check for Model

Multilevel function Parameters
and derivative Architecture
continuity. Device Type

Check for
Equations

numerical
overflow.

Curve fitting
for

Mathematica© discontinuous
functions.

Figure 9.13: Overview of iMacChk

function and its derivatives for continuity by numerically integrating the

function and its derivatives across the user specified regions of operation.

At all breakpoints, the left and right limits of the function and its deriva­

tives are checked for equality. It also detects potential overflow/underflow

problems in the model by systematically sampling the function and identi­

fying the regions in which the value is undefined. iMacChk contains

274 MIXED-MODE SIMULATION

signal-handlers to identify and report numerical overflow. At the present

time, the user is required to correct any problems identified by the pro­

gram.

The iMAVERICK system, as shown in Fig. 9.14, is a closed-loop

verification and optimization system, which not only checks the validity of

macromodels, but also has the capability of optimizing the macro models

to improve accuracy. The circuit designer initially provides a transistor

level description of the circuit block under consideration, a corresponding

time-domain macromodel with a number of adjustable parameters, and a

set of target specifications. The input excitations used to verify the transis­

tor circuit and a reasonable range for each parameter are also provided by

the designer. It is assumed that these input excitations, which are used for

circuit simulation, capture all the important performance characteristics

needed in the macromodel so that it can be used in place of the real circuit

in a particular application.

The optimization can be performed using any mIX of scalar and

waveform target specifications. Any number of waveforms and target

specifications can be provided to the system. The method described below

assuming that, waveform quantities are being compared. Two sets of

waveforms, generated by a circuit simulator and a macromodel simulator,

respectively, are used as input to a waveform consistency checker. The

output waveforms can be time-domain and/or frequency-domain responses

of the circuit. The consistency checker performs a set of comparisons

between two sets of waveforms and returns a value indicating the relative

proximity of the waveforms. If the macromodel does not compare favor­

ably with the transistor level circuit based on these waveforms, the param­

eters are adjusted and the simulation and consistency checking cycle is

repeated. This optimization process continues until the desired level of

accuracy is achieved or the maximum allowable CPU-time is exceeded.

9. ANALOG MULTILEVEL SIMULATION

Reference
Circuit

User Effort

Figure 9.14: Overview of iMAVERICK System

9.9. SUMMARY

275

This chapter has focused on the extension of analog simulation tech­

niques to include multilevel simulation and mixed continuous/discrete

simulation. With the full analog modeling and simulation hierarchy in

place, it is now possible to mix and match all the levels shown in Fig. 1.1.

For mixed-signal simulation, the circuit can now be described at many

276 MIXED-MODE SIMULATION

levels of abstraction both on the digital side and the analog side. Tools for

macromodeling, verification and optimization have been described to

assist with this process on the analog side. Together, virtually any form of

time-domain simulation of entire mixed-signal systems is now possible.

Although frequency-domain techniques are also important for analog cir­

cuits, they are outside the scope of this book.

10. CONCLUSIONS AND FUTURE WORK 277

CHAPTER 10

CONCLUSIONS AND FUTURE WORK

10.1. SUMMARY

A variety of techniques for mixed-mode and analog multilevel simu­

lation have been described in this book. The primary focus in mixed­

mode simulation was the combination of the gate-level, switch-level tim­

ing and electrical forms of simulation. In analog multilevel simulation,

the mixing of continuous-time simulation with discrete-time simulation

was the primary focus.

Chapter I began with an overview of the different levels of simula­

tion and provided the motivation for combining two or more levels into

one simulator. Then, the basic issues in mixed-mode simulation were out­

lined, and a brief survey of existing mixed-mode simulators was provided.

In Chapter 2, the electrical simulation problem was formulated and stan­

dard numerical techniques used to solve the problem were presented. The

issues associated with the implementation of an efficient time-step control

scheme were also described. In Chapter 3, two properties of waveforms,

called latency and multirate behavior, were defined and used to motivate

the need for new circuit simulation methods. The relaxation-based electri­

cal simulation methods were introduced to exploit these waveform proper­

ties, and their theoretical aspects were described. Circuit partitioning

methods to improve the convergence speed of relaxation methods were

presented at the end of the chapter.

The electrical, gate-level and switch-level timing simulation algo­

rithms were presented in Chapters 4, 5 and 6, respectively. These tech­

niques make use of the event-driven, selective-trace paradigm which forms

278 MIXED-MODE SIMULATION

a common thread for all algorithms used in mixed-mode simulation. The

main contribution of Chapter 4 was an event-driven circuit simulation

algorithm to exploit latency, and a new partitioning algorithm to ensure

the convergence of Gauss-Seidel-Newton relaxation in the presence of

MNA elements. The evolution of logic states and logic delay models was

presented in Chapter 5. The development of the Elogic simulation and

modeling approach was described in Chapter 6.

Chapter 7 addressed the important issue of the mixed-mode inter­

face. Signal conversions from the analog domain to the digital domain

and vice-versa were described. The problem of X state handling that faces

most commercial programs was also addressed. Examples were used to

illustrate potential problems of the various interface models in use today.

In Chapter 8, the implementation details of a mixed-mode simulator

were presented. First, the overall architectural issues were described, fol­

lowed by a summary of the transient analysis techniques used and event

scheduling policies enforced between the different levels of simulation.

The issues associated with the implementation of event schedulers were

also described in detail. A technique for the dc solution of mixed-level

circuits was outlined. Next, the techniques for automatic mixed-mode par­

titioning were detailed. Finally, a mixed-mode simulation example was

provided to show that large speedups could be obtained without sacrificing

accuracy.

Chapter 9 was devoted to the simulation problems of analog mul­

tilevel simulation. After motivating the need for this type of simulation,

the requirements of analog multilevel simulation based on circuit-related

issues were developed. Then, a number of commercial simulators were

surveyed. Next, the simulation techniques for continuous-time behavioral

models and discrete-time models were described in detail. This was fol­

lowed by the implementation issues associated with the design of the

10. CONCLUSIONS AND FUTURE WORK 279

iMACSIM simulator. Finally, the concepts embodied in a complete

macromodeling and simulation environment were outlined.

10.2. AREAS OF FUTURE WORK

Although a substantial amount of work has been done in mixed­

mode simulation and analog multilevel simulation, there are still many

promising areas of future work. In particular, simulation of coupling

effects in mixed-signal ICs and the development of an analog hardware

simulation language are important areas of research in the near future.

These topics are outlined below.

10.2.1. Coupling Effects in Mixed-signal ICs

One problem not addressed in this book is the simulation of the cou­

pling effects in mixed-signal ICs. Parasitic coupling of digital switching

noise to analog circuits on the same chip through direct capacitive cou­

pling and interaction via the common substrate may corrupt analog signals

and degrade the performance of mixed-signal ICs [VER93, MAS92].

Thus, accurate simulation of the effects of digital switching noise coupling

into analog nodes, and crosstalk between analog nodes are required to

determine the true performance of mixed-signal ICs.

Traditionally, this problem has been minimized by employing con­

servative layout design, and any problems were addressed after fabrication

of the chip. Now, due to the advance in mixed-mode simulation, along

with new model generation and reduction techniques, the coupling effects

of a circuit block or even the entire circuits may be simulated in a reason­

able amount of time. Other sources of problems in mixed-signal designs

include VDD bounce, ground bounce, and IR drops along the power lines.

These topics have also been the subject of recent research in this area.

280 MIXED-MODE SIMULA nON

10.2.2. Analog Hardware Description Languages

As mentioned earlier, there are currently two major efforts underway

towards the standardization of analog hardware description languages

(AHDLs) [SAL94A]. Generally speaking, MHDL is cast as a solution for

circuits with high analog content (including purely analog circuits) while

VHDL-A provides a uniform environment for predominantly digital cir­

cuits with some analog functions. The languages provide constructs to

represent the structure and behavior of the design. Hierarchy and inheri­

tance are necessary attributes of these languages that allow a system to be

represented at various levels of abstraction. Behavior is expressed through

model constructs and structure is represented through connectivity and

hierarchical decomposition mechanisms.

The outcome of the standardization efforts will have a significant

impact on the way analog design is carried out in the future. It is generally

agreed that a standard AHDL is urgently needed in the analog design com­

munity. What is not so clear is the form of AHDL that would be widely

accepted by tool vendors and analog designers, who will eventually have

to represent their designs using the language. Furthermore, the scope of

the language in not generally agreed upon. In order to capture all of the

necessary features, an AHDL would have to be comprehensive in its cov­

erage as it may be used in synthesis, testing, documentation, and data

exchange in addition to simulation. Such a language would be difficult to

learn quickly and would require an enormous effort to implement for the

vendors. If the scope of the language were limited, its lifetime would be

rather limited. It is clear that an intermediate position must be taken to

establish an AHDL that could serve the present needs of the analog com­

munity, with the potential to grow as the needs change in the future.

Since analog HDLs allow the interconnection of instances of a model

ill any fashion, this presents a problem when devices represented in

10. CONCLUSIONS AND FUTURE WORK 281

different domains are connected at the same node [SAL94A, SIN94]. A

worst-case interconnection is shown in Fig. 10.1. Of course, an HDL is

not responsible for resolving the problems due to this connection, but

merely to give a precise and unambiguous meaning to the description. So

this type of interconnection is permissible but the meaning is open to

interpretation. In fact, there may be several different "resolutions" for the

same connection depending on the user and the tool reading the descrip­

tion. For example, if a time-domain simulation is being requested, all fre­

quency domain models would be converted to the time domain before the

analysis begins. This conversion could be performed automatically, or an

error message generated if the conversion is not possible. The resolution

of all of the conflicts created by the connection shown in Fig.10.1 should

provide fertile ground for future work in AHDL.

10.3. CONCLUSIONS

Mixed-mode simulation and analog multilevel simulation are now

well-accepted forms of simulation in industry for mixed-signal ICs, and

for analog circuits described at multiple levels of abstraction. A wide

variety of simulators have been developed, both in industry and academia,

and many are in use today. As described in this book, the key contribution

of mixed-mode and analog multilevel simulation is that they offer the

designer the ability to intelligently trade off simulation and modeling pre­

cision for simulator performance within the scope of a single simulator.

This permits the designer to choose detailed simulation where accuracy is

essential and higher forms of simulation where less accuracy can be

tolerated.

A second important theme of the book is that multilevel simulators

provide a uniform environment for designers to develop ideas from initial

concepts to the final circuit schematics and accommodates both top-down

282

"s"

Wave
"x y z" , ,

Network
S, Y, Z

Freq
"f"

MIXED-MODE SIMULATION

Time
"t"

z-domain
"z"

Signal Flow
orVHDL

Figure 10.1: "Worst Case" Interconnection

and bottom-up design styles, or any form in between. Designers can focus

on system level or architectural issues in the preliminary phase of the

design and progressively add more detail as design decisions are made at

each level of abstraction. In addition, designers can mix and match dif­

ferent levels of abstraction in a single schematic diagram to convey the

important aspects of a circuit design. These different representations can

be captured easily in a mixed-mode and analog multilevel simulation

environment and later used to verify the circuit operation and perfor­

mance. Finally, these types of simulators are flexible and extensible and

provide high performance in circuit verification. These features combine

to place them among the most important tools in VLSI design.

REFERENCES 283

REFERENCES

[ACU89] E. Acuna, J. Dervenis, A. Pagones, R. Saleh, "iSPLICE3: A
New Simulator for Mixed Analog/Digital Circuits", Custom Integrated

Circuits Conference Digest of paper, May 1989, pp. 13.1.1-13.1.4.

[ACU90] E. L. Acuna, "Simulation, Partitioning, and Characterization of

Logic Blocks in Mixed-Mode Simulation", M.S. Thesis, University of Illi­

nois at Urbana-Champaign, 1990.

[AGR80] V. D. Agrawal, A. K. Bose, P. Kozak, H. N. Nham, "A Mixed­
Mode Simulator", Proc. of 17th Design Automation Conference, June

1980, pp. 618-625.

[ANA93] ELDO User's Manual, ANACAD, June 1993.

[ANT93] B. A. A. Antao, "Synthesis and Verification of Analog

Integrated Circuits", Ph.D Dissertation, Vanderbilt University, Dec. 1993.

[ARN78] G. Arnout, H. DeMan, "The Use of Thresholding Functions and

Boolean-Controlled Elements for Macromodelling of LSI Circuits", IEEE
J. of Solid-State Circuits, SC-13, June 1978, pp. 326-332.

[AT&91] "The ABCDL: A Robust Environment for Analog Circuit
Behavioral Modeling", AT &T Bell Laboratories Internal Technical
Memorandum, March 1991.

[BEA88] D. L. Beatty and R. E. Bryant, "Incremental Switch-Level
Analysis", IEEE Design and Test of Computers, Vol. 5, December 1988,
pp.33-42.

[BED91] D. G. Bedrosian, "Analysis of Networks with Internally Con­
trolled Switches", Ph.D Thesis, University of Waterloo, 1991.

[BEN91] J. Benkoski, 1. Besnard, S. Gai, M. Magni, E. Profumo,
"Mozart_MM: A Mixed-Mode and Multi-Level Simulation System",

International Symposium on Circuits and Systems, 1991, pp. 2387-2390.

[BRA72] R. K. Brayton, F. G. Gustavson, G. D. Hachtel, "A New

Efficient Algorithm for Solving Differential-Algebraic Systems Using
Implicit Backward-Differentiation Formulas", Proceedings of the IEEE,

Vol. 60, No.1, Jan. 1972, pp. 98-108.

[BRE72] M. A. Breuer, "A Note on Three-Valued Logic Simulation,"
IEEE Trans. on Computers, April 1972, pp. 399-402.

284 REFERENCES

[BRE75] M. A. Breuer, Ed., Digital System Design Automation:
Languages, Simulation and Data Base, Computer Science Press, 1975.

[BRE76] M. A. Breuer and A. D. Friedman, Diagnosis and Reliable
Design of Digital Systems, Computer Science Press, 1976.

[BRY80] R. E. Bryant, "An Algorithm for MOS Logic Simulation",

LAMBDA, 4th Quarter 1980, pp. 46-53.

[BRY84] R. E. Bryant, "A Switch-Level Model and Simulator for MOS
Digital Systems", IEEE Trans. on Computers, Vol. c-33, no. 2, Feb. 1984,

pp. 160-177.

[BRY87] R. E. Bryant, "A Survey of Switch-Level Algorithms", IEEE

Design and Test of Computers, vol. 4, no. 4, Aug. 1987, pp. 26-40.

[BUR83] J. L. Burns, A. R. Newton, D. O. Pederson, "Active Device

Table Lookup Models for Circuit Simulation", International Symposium

on Circuits and Systems, Newport Beach, CA, May 1983, pp. 250-253.

[CAR84] c. H. Carlin, A. Vachoux, "On Partitioning for Waveform
Relaxation Time-Domain Analysis of VLSI Circuits", International Sym­
posium on Circuits and Systems, Montreal, Canada, May 1984, pp. 701-
705.

[CAS88] G. Casinovi, "Macromodeling for the Simulation of Large Scale
Analog Integrated Circuit", Ph.D. Dissertation, University of California,
Berkeley, August 1988.

[CHA 75] B. R. Chawla, H. K. Gummel, and P. Kozak, "MOTIS - An
MOS Timing Simulator," IEEE Trans. Circ. and Sys., Vol. 22, 1975, pp.

901-909.

[CHA87] H. P. Chang, J. A. Abraham, "The Complexity of Accurate
Logic Simulation", Int. Conf. on Computer-Aided Design, Santa Clara,
CA., Nov. 1987, pp. 404-407.

[CHA89] T. Chanak, R. Chadha, , K. Singhal, "Switched-Capacitor Simu­

lation for Full-Chip Verification," Proc. of the Custom Integrated Circuits
Conference, San Diego, CA., May 1989, pp. 21.1.1-21.1.4.

[CHA92] Rakesh Chadha, Chandramouli Visweswariah and Chin-Fu
Chen, "M3-A Multilevel Mixed-Mode Mixed ND Simulator", IEEE Tran­

sactions on Computer-Aided Design, Vol. 11, No.5, May 1992, pp. 575-

585.

REFERENCES 285

[CHE84A] c. T. Chen, Linear System Theory and Design, Holt,
Rinehart and Winston Inc, 1984.

[CHE84B] c. F. Chen, C-Y Lo, H. N. Nham, P. Subramaniam, "The
Second Generation MOTIS Mixed-Mode Simulator", Proc. of 21st Design
Automation Conference, June 1984, pp. lO-17.

[CHI94] E. Chiprout and M. Nakhla, Asymptotic Waveform Evaluation
and Moment Matching for Interconnect Analysis, Kluwer Academic
Publishers, 1994.

[CH089] P. Choi and 1. Alvin Connelly, "Macromodeling Methodology
for Continuous and Discrete Time Transfer Functions", Proceedings of the
32rd Midwest Symposium on Circuits and Systems, August 1989, pp.
997-1000.

[CHU75] L. Chua, P. Lin, Computer-Aided Analysis of Electronic Cir­
cuits: Algorithms and Computational Techniques, Prentice-Hall, 1975.

[CON93] User's Guide and Reference Manual for CONTECT CAE,
CONTEC, April 1993.

[DEG84] A. DeGeus, "SPECS: Simulation Program for Electronic Cir­
cuits and Systems," Proc. IEEE Int. Symp. on Circ. and Sys., May 1984,
pp.534-537.

[DEMSO] G. De Micheli, " New Algorithms for the Timing Analysis of
MOS Circuits" Master Report, University of California, Berkeley, 1980.

[DEM81] G. De Micheli, A. Sangiovanni-Vincentelli, "Numerical Proper­
ties of Algorithms for the Timing Analysis of MOS VLSI Circuits",
University of California, Berkeley, ERL Memo. UCBIERL M81125, May
1981.

[DEM83] G. De Micheli, A. R. Newton, A. Sangiovanni-Vincentelli,
"Symmetric Displacement Algorithms for the Timing Analysis for VLSI
MOS Circuits", IEEE Trans. on Computer-Aided Design, Vol CAD-2, No.
3, July 1983, pp. 167-180.

[DES69] c. A. Desoer, E. S. Kuh, Basic Circuit Theory, McGraw-Hill,
1969.

[DES89] M. P. Desai and I. N. Hajj, "On the Convergence of Block Relax­
ation Methods for Circuit Simulation", IEEE Transactions Circuits and
Systems, Vol. 36, No.7, July 1989, pp. 948-958.

286 REFERENCES

[DUM86] D. Dumlugol, "Segmented Waveform Relaxation Algorithms
for Mixed-Mode Simulation of Digital MOS VLSI Circuits", Ph.D. Disser­
tation, Katholieke Universiteit Leuven, Oct. 1986.

[EIC65] E. B. Eichelberger, "Hazard Detection in Combinational and
Sequential Switching Circuits", IBM 1. Res. and Develop., Vol. 9, March
1965, pp. 90-99.

[FAN77] S. P. Fan, M. Y. Hsueh, A. R. Newton and D. O. Pederson,
"MOTIS-C A new circuit simulator for MOS LSI circuits," International
Symposium on Circuits and Systems, April 1977, pp. 700-707.

[FAN83] S. C. Fang, Y. P. Tsividis, O. Wing, "SWITCAP: A Switched
Capacitor Network Analysis Program," IEEE Circuits Syst. Mag., Vol. 5,
No.3, Sept. 1983, pp. 4-10.

[FER91] F. V. Fernandez, A. Rodriguez-Vazquez and 1. L. Huertas, "An
Advanced Symbolic Analyzer for the Automatic Generation of Analog
Circuit Design Equation", IEEE International Symposium on Circuits and
Systems, 1991, pp. 810-813.

[FER92] F. V. Fernandez, A. Rodriguez-Vazquez, J. D. Martin and J. L.
Huertas, "Accurate Simplification of Large Symbolic Formulae", Interna­
tional Conference on Computer-Aided Design, 1992, pp. 318-321.

[GEA71] c. W. Gear, Numerical Initial Value Problems in Ordinary
Differential Equations, Prentice-Hall, Englewood Cliffs, N.J., 1971.

[GEA80] C. W. Gear, "Automatic Multirate Methods for Ordinary Dif­
ferential Equation", Information Processing 80, International Federation of
Information Processing, 1980.

[GIE89] G. Gielen, Herman C. C. Walscharts and W. Sansen, "ISAAC: A
Symbolic Simulator for Analog Integrated Circuits", IEEE Journal of
Solid-State Circuits, Vol. 24, No.6, Dec. 1989, pp. 1587-1597.

[GIE91] G. Gielen and W. Sansen, Symbolic Analysis for Automated
Design of Analog Integrated Circuits, Kluwer Academic Publishers,
1991.

[GIE92] G. Gielen, E. Liu, A. Sangiovanni-Vincentelli and P. Gray, "Ana­
log Behavioral Models for Simulation and Synthesis of Mixed-Signal Sys­
tems", European Design Automation Conference, 1992, pp. 464-468.

[GOL83] G. H. Golub and C. F. Van Loan, Matrix Computation,

REFERENCES 287

Baltimore, MD: Johns Hopkins University Press, 1983.

[GR087] J. J. Grodstein and T. M. Carter, "SISYPHUS - An Environment
for Simulation", Proc. Int. Conf. on CAD, Santa Clara, CA., Nov. 1987,
pp. 400-403.

[GYU85] R. S. Gyurscik, "A MOS Transistor Model-Evaluation Attached

Processor for Circuit Simulation", Proc. IEEE Int. Conf. on Computer­
Aided Design, Santa Clara, CA., Nov. 1985, pp. 234-236.

[HAC71] G. D. Hachtel, R. K. Brayton and F. G. Gustavson, "The Sparse

Tableau Approach to Network Analysis and Design", IEEE Trans. on Circ.

Theory, Vol. CT-18, Jan. 1971, pp. 101-113.

[HAL88] S. B. Haley, "The Generalized Eigenproblem: Pole-Zero Com­
putation", Proceedings of the IEEE, Vol. 76, No.2, February 1988, pp.
103-120.

[HAS89] M. M. Hassoun and P. M. Lin, "A New Network Approach to
Symbolic Simulation of Large-Scale Networks", IEEE International Sym­

posium on Circuits and Systems, 1989, pp. 806-809.

[HAS91] M. M. Hassoun, "Hierarchical Symbolic Analysis of Large-Scale

Systems Using a Mason's Signal Flow Graph Model", IEEE International

Symposium on Circuits and Systems, 1991, pp. 802-805.

[HEN8S] B. Hennion and P. Senn, "ELDO: A New Third Generation Cir­
cuit Simulator Using the One-step Relaxation Method" International Sym­
posium on Circuits and Systems, Kyoto, Japan, June 1985, pp. 1065-1068.

[HIL80] D. Hill, "Multilevel Simulator for Computer-Aided Design",
Ph.D. dissertation, Dept. of Elec. Eng., Stanford University, 1980.

[HOS84] B. J. Hosticka, W. Brockherde, U. Kleine and R. Schweer,
"Design of Nonlinear Analog Switched-Capacitor Circuits Using Blocks",

IEEE Trans. Circuits and Systems, CAS-31, No.4, 1984, pp. 354-368.

[H075] C. W. Ho, A. E. Ruehli, P. A. Brennan, "The Modified Nodal

Approach to Network Analysis", IEEE Trans. on Circ. and Sys., Vol.

CAS-22, June 1975, pp. 504-509.

[HSI85] H. Y. Hsieh, A. E. Ruehli, P. Ledak, "Progress on Toggle: A

Waveform Relaxation VLSI-MOSFET CAD Program" International Sym­
posium on Circuits and Systems, Kyoto, Japan, June 1985, pp. 213-216.

288 REFERENCES

[HSP92] HSPICE User's Manual, Meta-Software, Inc. 1992.

[HSU93] 1.-1. Hsu and C. Sechen, "Low-Frequency Symbolic Analysis of
Large Analog Integrated Circuits", IEEE Custom Integrated Circuits
Conference, 1993, pp. 14.7.1-14.7.5.

[HUA83] T. Huang, "Analysis of a Method for the Timing Simulation of
Large-Scale MOS Circuits Containing Floating Capacitors" Master
Report, University of California, Berkeley 1983.

[IEE88] IEEE Computer Society, IEEE Standard VHDL Language
Reference Manual, The Institute of Electrical and Electronic Engineering,
New York, PUBL. NO: IEEE Standards Coordinating Committee 20,
1988.

[INF84] B. Infante, A. Sanders, E. Lock, "Hierarchical Modeling in a
Multi-level Simulator", International Conference on Computer-Aided
Design, Santa Clara, CA. 1984, pp. 39-41.

[INS84] A. Insinga, "Behavioral Modeling in a Structural Logic Simula­
tor", International Conference on Computer-Aided Design, Santa Clara,
CA. 1984, pp. 42-44.

[JOU94] S.-J. Jou, M.-F. Perng, C. C. Su and C. K. Wang, "Hierarchical
Techniques for Symbolic Analysis of Large Electronic Circuits", Interna­
tional Symposium on Circuits and Systems, 1994.

[JU91] Y.-c. Ju, V. B. Rao and R. A. Saleh, "Consistency Checking and
Optimization of Macromodels", IEEE Transactions on Computer-Aided
Design, Vol. 10, No.8, August 1991, pp. 957-967.

[KA093] R. Kao and M. Horowitz, "Piecewise Linear Models for Rsim",
International Conference on Computer-Aided Design, 1993, pp. 753-758.

[KIM84] Y. Kim, J. E. Kleckner, R. A. Saleh, A. R. Newton, "Electrical­
Logic Simulator", International Conference on Computer-Aided Design,
Santa Clara, CA., Nov. 1984, pp. 7-10.

[KLE83] 1. E. Kleckner, R. A. Saleh, A. R. Newton, "Electrical Con­
sistency in Schematic Simulation", International Conference on Circuits
and Computers, NY, October 1983.

[KLE84] J. E. Kleckner, "Advanced Mixed-Mode Simulation Tech­
niques", Ph.D. dissertation, University of California, Berkeley, May 1984.

REFERENCES 289

[KUN86] K. S. Kundert, "Sparse Matrix Techniques and their Application
to Circuit Simulation", Circuit Analysis, Simulation and Design, A.E.
Ruehli, ed., North-Holland Pub. Co., 1986.

[KUN89] K. S. Kundert, J. White and A. Sangiovanni-Vincentelli, "A
Mixed Frequency-Time Approach for Distortion Analysis of Switching
Filter Circuits", IEEE Journal of Solid-State Circuits, Vol. 24, No.2, April
1989, pp. 443-451.

[KUN90] K. S. Kundert, J. K. White and A. Sangiovanni-Vincentelli,
Steady-State Methods for Simulating Analog and Microwave Circuits,
Kluwer Academic Publishers, 1990.

[LEE88] E. S. Lee, T-F Fang, "A Mixed-Mode Analog-Digital Simulation
Methodology for Full Custom Design", Custom Integrated Circuits
Conference, May 1988, pp. 3.5.1-3.5.4.

[LEL82] E. Lelarasmee, A. E. Ruehli, A. L. Sangiovanni-Vincentelli,
"The Waveform Relaxation Method for Time-Domain Analysis of Large
Scale Integrated Circuits," IEEE Trans. on CAD of IC and Sys., Vol. 1,
No.3, July 1982, pp. 131-145.

[MA92] V. M. Ma, J. Singh and R. Saleh, "Modeling, Simulation and
Optimization of Analog Macromodels", IEEE Custom Integrated Circuits
Conference, 1992, pp. 12.1.1-12.1.4.

[MAN80] H. De Man, 1. Rabaey, G. Arnout, 1. Vandewalle, "Practical
Implementation of a general computer-aided design technique for
switched-capacitor circuits", IEEE Journal of Solid-State Circuits, Vol.
sc-15, Apr. 1980, pp. 190-200,

[MAR85] G. Marong and A. Sangiovanni-Vincentelli, "Waveform Relax­
ation and Dynamic Partitioning for Transient Simulation of Large Scale
Bipolar Circuits", International Conference on Computer-Aided Design,
Santa Clara, CA, Nov. 1985, pp. 32-35.

[MAS92] S. Masui, "Simulation of Substrate Coupling in Mixed-Signal
MOS Circuits", IEEE Symposium on VLSI Circuits Digest of Technical
Papers, 1992, pp. 42-42.

[MCC88] W. J. McCalla, Fundamentals of Circuit Simulation, Kluwer
Academic Publishers, Boston, MA. 1987.

[MHD91] U.S. Army-LABCOM, SLCET-MP, Fort Monmouth, NJ 07703

290 REFERENCES

MHDL Requirements Document, First Edition, 1991.

[MIC94] The Design Center Circuit Analysis User's Guide, Microsim
Corp., Jan. 1994.

[MOL7S] C. B. Moler, C. F. Van Loan, "Nineteen Dubious Ways to Com­
pute the Exponential of a Matrix", SIAM Review 20, 1978, pp. 801-836.

[NAG7S] L.W. Nagel, "SPICE2: A Computer Program to Simulate Sem­

iconductor Circuits," Electronics Research Laboratory Rep. No. ERL­
M520, University of California, Berkeley, May 1975.

[NAGSO] L. W. Nagel, "ADVICE for Circuit Simulation," International

Symposium on Circuits and Systems, May 1980.

[NEW77] A. R. Newton, D. O. Pederson, "Analysis Time, Accuracy and
Memory Tradeoffs in SPICE2" , 12th Asilomar Conference on Circuits,
Systems and Computers, Asilomar CA, November 1977, pp. 6-9.

[NEW7S] A. R. Newton, "The Simulation of Large-Scale Integrated Cir­

cuits", Ph.D. dissertation, University of California, Berkeley, ERL Memo.
ERL-M78/52, July 1978.

[NEW79] A. R. Newton, "The Analysis of Floating Capacitors for Timing
Simulation," Proc. 13th Asilomar Conf. on Circ., Sys. and Comp., Asi­
lomar CA, November 1979, pp. 433-436.

[NEWS1] A. R. Newton, "Timing, Logic and Mixed-Mode Simulation for
Large MOS Integrated Circuits", in Computer-Aids for VLSI Circuits,
Sijthoff & Noordhoff International Publishers, The Hague, 1981, pp. 175-
239.

[NEWS3] A. R. Newton, A. Sangiovanni-Vincentelli, "Relaxation-based

Circuit Simulation", IEEE Trans. on Elec. Dev., Vol. ED-30, No.9, Sept.

1983,pp.1184-1207.

[ODRS6] P. Odryna, K. Nazareth, C. Christensen, "A Workstation-based
Mixed-Mode Circuit Simulator", Proc. of the 23rd Design Automation

Conference, June 1986, pp. 186-191.

[ORT70] J. M. Ortega and W. C. Rheinbolt, Iterative Solution of Non­
linear Equations in Several Variables, Academic Press, 1970.

[OVESS] D. Overhauser, I. Hajj, "A Tabular Macromodelling Approach to
Fast Timing Simulation Including Parasitics," International Conference on

REFERENCES 291

Computer-Aided Design, Santa Clara, CA., 1988, pp. 70-73.

[OVE89A] D. Overhauser, I. Hajj, "Automatic Mixed-Mode Timing
Simulation", International Conference on Computer-Aided Design, 1989,
pp.84-87.

[OVE89B] D. Overhauser, "Fast Timing Simulation of MOS VLSI Cir­
cuits", Ph.D. Dissertation, University of Illinois, Aug. 1989.

[PEN81] P. Penfield, J. Rubenstein, "Signal Delays in RC Tree Net­
works," Proc. of 18th Design Automation Conference, June 1981, pp.
613-617.

[PIL90] L. T. Pillage and R. A. Rohrer, "Asymptotic Waveform Evalua­
tion for Timing Analysis", IEEE Transactions on Computer-Aided Design,
Vol. 9, No.4, April 1990, pp. 352-366.

[PSP90] PSPICE Users Manual, Microsim Corp., Jan. 1990.

[QUA89] T. Quarles, "Analysis of Performance and Convergence Issues
for Circuit Simulation," Ph.D. Dissertation, UCB/ERL M89/42, University
of California, Berkeley, April 1989. Berkeley, CA. 1989.

[RA085] V. Rao, "Switch-level Timing Simulation of MOS VLSI Cir­
cuits", Ph.D. dissertation, University of Illinois, UILU-ENG-85-2207, R-
1032, Jan. 1985.

[RA089] V. Rao, D. Overhauser, I. Hajj, T. Trick, Switch-level Timing
Simulation of MOS VLSI Circuits, Kluwer Academic Publishers, Bos­
ton, MA., 1989.

[RAB79] N. B. G. Rabbat, A. Sangiovanni-Vincentelli and H. Y. Hsieh,
"A Multilevel Newton Algorithm with Macromodelling and Latency for
the Analysis of Large-Scale Nonlinear Circuits in the Time Domain",
IEEE Trans. on Circ. and Sys., Vol. CAS-26, Sept. 1979, pp. 733-741.

[RAG93] V. Raghavan, R. A. Rohrer, L. T. Pillage, J. Y. Lee, J. E.
Bracken and M. M. Alaybeyi, "AWE-Inspired", IEEE Custom Integrated
Circuits Conference, 1993, pp. 18.1.1-18.1.8.

[RUM89] M. Rumsey and J. Sackett, "An ASIC Methodology for Mixed
Analog-Digital Simulation", 26th ACM/IEEE Design Automation Confer­
ence, 1989, pp. 618-621.

[RUT93] R. Rutenbar, "Analog Design Automation: Where are We?

292 REFERENCES

Where are We Going?", IEEE Custom Integrated Circuits Conference,
1993, pp. 13.1.1-13.1.8.

[SAK80] K. Sakallah and S. W. Director, "An Activity-Directed Circuit
Simulation Algorithm," International Conference on Circuits and Comput­
ers, October 1980.

[SAK8l] K. A. Sakallah, "Mixed Simulation of Electronic Integrated Cir­
cuits", Ph.D. dissertation, Carnegie-Mellon University, DRC-02-07-81,
Nov. 1981.

[SAK85A] K. Sakallah, "Polynomial Terminal Equivalent Circuits as Dor­
mant Models in Event Driven Circuit Simulation", International Confer­
ence on Computer-Aided Design, Santa Clara, CA, 1985, pp. 179-181.

[SAK85B] K. Sakui, T. Shima, T. Hayashi, Fumio Horiguchi and Mitsugi
Ogura, "A Simplified Accurate Three-Dimensional Table Look-Up MOS­
FET Model for VLSI Circuit Simulation", Custom Integrated Circuits
Conference, 1985, pp. 347-35l.

[SAL83] R. A. Saleh, 1. E. Kleckner and A. R. Newton, "Iterated Timing
Analysis and SPLICE 1 ", International Conference on Computer-Aided
Design, Santa Clara, CA., 1983, pp. 139-140.

[SAL84] R. Saleh, "Iterated Timing Analysis and SPLICE 1 ", Master
Report, University of California, Berkeley, 1984.

[SAL89A] R. Saleh, "iSPLICE3 User's Guide", University of Illinois,
1992.

[SAL89B] R. Saleh, A. R. Newton, "The Exploitation of Latency and
Multirate Behavior using Nonlinear Relaxation for Circuit Simulation,"
IEEE Trans. on Computer-Aided Design of Circ. and Sys., Dec. 1989, pp.
1286-1298.

[SAL94A] R. A. Saleh, D. L. Rhodes, E. Christen and B. A. A. Antao,
"Analog Hardware Description Languages", Custom Integrated Circuits
Conference, May 1994.

[SAL94B] R. A. Saleh, S. J. Jou, D. Overhauser, X. Xu and Y. Wang, "
Benchmark Circuits for Mixed-Mode Simulation" Custom Integrated Cir­
cuits Conference, 1994.

[SAN77] A. Sangiovanni-Vincentelli, L. K. Chen and L. O. Chua, "A New
Tearing Approach-Node Tearing Nodal Analysis", International

REFERENCES 293

Symposium on Circuits and Systems, 1977, pp. 143-147.

[SAV93] P. Saviz and O. Wing, "Circuit Simulation by Hierarchical
Waveform Relaxation", IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 12, No.6, June 1993, pp. 845-860.

[SED88] S. Seda, M. Degrauwe and W. Fichtner, "A Symbolic Analysis
Tool for Analog Circuit Design Automation", IEEE International Confer­
ence on Computer-Aided Design, Nov. 1988, pp. 488-491.

[SED92] S. Seda, M. Degrauwe and W. Fichtner, "Lazy-Expansion Sym­
bolic Expression Approximation in SYNAP", International Conference on
Computer-Aided Design, 1992, pp. 310-317.

[SHE88] J. Sherred, "A Phase-Locked Clock Generator for VLSI Applica­
tions", M. S. Thesis, Mass. Inst. of Tech, June 1988.

[SHI82] T. Shima, T. Sugawara, S. Moriyama and H. Yamada, "Three­
Dimensional Table Look-up MOSFET Model for Precise Circuit Simula­
tion", IEEE Journal of Solid-State Circuits, Vol. Sc-17, No.3, June 1982,
pp. 449-454.

[SHI83] T. Shima, H. Yamada and R. L. M. Dang, "Table Look-up MOS­
FET Modeling System Using 2-D Device Simulator and Montonic Piece­
wise Cubic Interpolation", IEEE Trans. CAD, Vol.2, No.2, April 1983, pp.
121-126.

[SIN91] J. Singh and R. Saleh, "iMACSIM: A Program for Multi-Level
Analog Circuit Simulation", International Conference on Computer-Aided
Design, 1991, pp. 16-19.

[SIN94A] J. Singh, X. Xu and R. Saleh, "Simulator Characteristics
Needed to Interface to Analog HDLs", International Conference on Simu­
lation and Hardware Description Languages (ICSHDL), Tempe, AZ., Jan.
1994, pp. 31-36.

[SIN94B] J. Singh, "Techiques for Analog Multilevel Simulation", Ph.D
Thesis, University of Illinois at Urbana-Champaign, 1994.

[SPA88] R. Sparkes, G. Boyle and R. Woolhiser, "Evaluation of Macro
Models for Mixed Analog/Digital Circuits", IEEE Custom Integrated Cir­
cuits Conference, 1988, pp. 3.4.1-3.4.6.

[SUNS1] Y. Sun, "Direct Analysis of Time-Varying Continuous and
Discrete Difference Equations with Application to Nonuniformly

294 REFERENCES

Switched-Capacitor Circuits", IEEE Transation Circuits and Systems, Vol.
CAS-28, No.2, Feb. 1981, pp. 93-100.

[SUY89] K. Suyama, "Analysis, Simulation, and Application of Linear
and Nonlinear Switched-Capacitor and Mixed Switched-CapacitorlDigital
Networks", Ph.D. Thesis, Columbia University, 1989.

[SZY75] S. A. Szygenda and E. W. Thompson, "Digital Logic Simulation
in a Time-Based, Table-Driven Environment. Part 1. Design Verification,"
IEEE Computer Magazine, March 1975, pp. 24-36.

[SWI89] SWITCAP-II Users Guide, Columbia University, 1989.

[TAH89] H. EI Tahawy, A. Chianale and B. Hennion, "Functional
Verification of Analog Blocks in Fideldo: A Unified Mixed-Mode Simula­
tion Environment", International Symposium on Circuits and Systems,
1989,pp.2012-2015.

[TEM78] G. C. Ternes, H. 1. Orchard and M. lahanbegloo, "Switched­
Capacitor Filter Design Using the Bilinear Z-Transform", IEEE Transation
Circuits and Systems, Vol. CAS-25, No. 12, Dec. 1978, pp. 1038-1044.

[TER83] C. Terman, "RSIM - A Logic-Level Timing Simulator", Int.
Conf. on Compo Design, Port Chester, NY, 1983, pp. 437-440.

[THA92] T. J. Thatcher and Resve A. Saleh, "Automatic Partitioning and
Dynamic Mixed -Mode Simulation", IEEE Custom Integrated Circuits
Conference, 1992, pp. 12.7.1-12.7.4.

[TH091] D. E. Thomas and Philip R. Moorby, The Verilog Hardware
Description Language, Kluwer Academic Publishers, Boston, 1991.

[TRI90] R. Trihy and C. Lyden, "An Accurate and Compact Model for the
Transient Simulation of Continuous-Time", IEEE Custom Integrated Cir­
cuits Conference, May 1990, pp. 8.8.1-8.8.4.

[TSA85] D. Tsao, C-F Chen, "A Fast Timing Simulation for Digital MOS
Circuits", International Conference on Computer-Aided Design, Santa
Clara, CA. Nov. 1985, pp. 185-187.

[UYE88] 1. P. Uyemura, Fundamentals of MOS Digital Integrated Cir­
cuits, New York: Addison-Wesley Publishing Company, 1988.

[VAR62] R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, 1962.

[VER93] N. Verghese and D. Allstot, "Rapid Simulation of Substrate

REFERENCES 295

Coupling Effects in Mixed-Mode ICs", IEEE Custom Integrated Circuits
Conference, 1993, pp. 18.3.1-18.3.4.

[VID86] L. Vidigal, S. Nassif, S. Director, "CINNAMON: Coupled
Integration and Nodal Analysis of MOS Networks," 23rd Design Automa­
tion Conference, June 1986, pp. 179-185.

[VIS86] C. Visweswariah, "SPECS2: A Timing Simulator", M.S. Report,
Carnegie-Mellon University, Report No. CMUCAD-86-24, October 1986.

[VIS88] C. Visweswariah, R. Chadha and c.-F. Chen, "Model Develop­
ment and Verification for High Level Analog Blocks", 25th ACMIIEEE
Design Automation Conference 1988, pp. 376-382.

[VHD91] VHDL Analog Sup-PAR Group, Minutes of the October Meet­
ing San Francisco, CA. 1991.

[VLA83] 1. Vlach and K. Singhal, Computer Methods for Circuit
Analysis and Design, Van Nostrand Reinhold Electrical/Computer Sci­
ence and Engineering Series, 1983.

[VLA90] M. Vlach, "Modeling and Simulation with Saber", IEEE ASIC
Design Conference, 1990, pp. T -11.1-T -11.9.

[WAL86] U. V. Wali, R. N. Pal and B. Chatterjee, "Compact Modified
Nodal Approach for Switched-Capacitor Network Analysis", IEEE Tran­
sactions on Computer-Aided Design, Vol. 5, No.3, July 1986, pp. 443-
447.

[WAR78] D. E. Ward and R. W. Dutton, "A Charge-Oriented Model for
MOS Transient Capacitances", IEEE 1. Solid-state Circuits, Vol. SC-13,
Oct. 1978, pp. 703-707.

[WEE73] W. T. Weeks, A. J. Jimenez, G. W. Mahoney, D. Mehta, H.
Qassemzadeh, and T. R. Scott, "Algorithms for AS TAP -- A Network
Analysis Program," IEEE Trans. on Circuit Theory, Vol. CT-20, No.6,
November 1973, pp. 628-634.

[WES85] N. Weste and K. Eshraghian, Principles of CMOS VLSI
Design, N ew York: Addision Wesley Publishing Company, 1985.

[WHI83] J. White and A. Sangiovanni-Vincentelli, "RELAX2: A New
Waveform Relaxation Approach for the Analysis of LSI MOS Circuits",
International Symposium on Circuits and Systems, Newport Beach, May
1983, pp. 756-759.

296 REFERENCES

[WHI84] J. White and A. Sangiovanni-Vincentelli, "RELAX2.1 - A
Waveform Relaxation Based Circuit Simulation Program" Custom
Integrated Circuits Conference, Rochester, New York, June 1984, pp.
232-236.

[WHI85A] J. White, A. L. Sangiovanni-Vincentelli, "Partitioning Algo­
rithms and Parallel Implementation of Waveform Relaxation Algorithms
for Circuit Simulation", International Symposium on Circuits and Sys­
tems, Kyoto, Japan, June 1985, pp. 221-224.

[WHI85B] 1. White, R. Saleh, A. Sangiovanni-Vincentelli, A. R. Newton
"Accelerating Relaxation Algorithms using Waveform-Newton, Step
Refinement and Parallel Techniques," International Conference on
Computer-Aided Design, Santa Clara, CA, Nov. 1985, pp. 5-7.

[WHI85C] J. White, "The Multirate Integration Properties of Waveform
Relaxation, with Application to Circuit Simulation and Parallel Computa­
tion", Ph.D. dissertation, University of California, Berkeley, ERL Memo.
No. UCBIERL 85/90, Nov. 1985.

[WHI86] J. White and A. Sangiovanni-Vincentelli, Relaxation Tech­
niques for the Simulation of MOS VLSI Circuits, Kluwer Academic
Publishers, Boston, MA., 1987.

[WIL92] L. A. Williams III and B. A. Wooley, "MIDAS-A Functional
Simulator for Mixed Digital and Analog Sampled Data Systems", Interna­
tional Symposium on Circuits and Systems, 1992, pp.2148-2151.

[WOL91] S. Wolfram. Mathematica A System for Doing Mathematics by
Computer. Addison-Wesley Inc., New York, 1991.

[YAN80] P. Yang, I. N. Hajj and T. N. Trick, "SLATE: A Circuit Simula­
tion Program with Latency Exploitation and Node Tearing", International
Conference on Circuits and Computers, October 1980.

[YAN83] P. Yang, B. D. Epler, P. K. Chatterjee, "An Investigation of the
Charge Conservation Problem for MOSFET Circuit Simulation", IEEE
Journal of Solid-State Circuits, Vol. SC-18, No.1, Feb. 1983, pp. 128-138.

INDEX

A
ADEPT 163, 173, 175
ADVICE 55
AHDL 241, 280
ASTAP 31
A-stable methods 47
algorithmic backplane 260
analog-controlled 22
analog to digital interface 179
asymptotic waveform

evaluation 268
automatic partitioning 217, 218

B
BDF methods 49, 53
backward-Euler 43,45
behavioral simulation 10
bidirectional gates 135, 153,

155
boolean-controlled switch 185,

186
bus contention 133
bypass scheme 60, 62

C
CCVS13
charge-sharing 153, 159
circuit partitioning 21, 74,

88-89, 154, 205
classical time-wheel 207, 210
continuous/discrete

simulation 239, 256

INDEX

continuous-time 239, 256
convolution approach 249
core modification approach 23
coupling effects 279
coupling method 88

D
dc solution 203, 205, 213
delay models 144
diagonally dominant 66, 71
difference equations 12, 240,

251
differential equations 12, 240,

250
digital-controlled 22
digital to analog

interface 184
directed graph 94
direct methods 6, 38, 39
discrete-time 239, 250, 251,

256
dormant model 61
dynamic mixed-mode

approach 182
dynamic partitioning 103, 175

E
Elogic 162, 174
event definition 20
event-driven 7,81,155,204,

277
event scheduling 20, 82, 113,

297

298

176,203,206
explicit methods 42

F
fanin table 81, 205
fanout table 81, 205
"fast" timing 174
feedback

node 91
loops 178, 216

feedforward node 91
feedthrough 159
floating capacitors 80, 84
floating voltage sources 90
forward-Euler 43, 174
fully integrated 24

G
"glued" approach 23
Gauss-Jacobi method 69
Gauss-Seidel method 69, 81
generated unknowns 133
glitches 147, 165
global-variable time-step 103
gmin-stepping 213
ground capacitor 34, 67

H
hazards 125, 127
high impedance state 133

I
iDSIM 173, 178
implicit methods 42

inertial delays 147
initial unknowns 133

INDEX

inverse Laplace transform 249
iterated timing analysis 7, 70,

77-107,205

J
Jacobian matrix 37, 39, 71, 78

L
large-signal model 166
latency

conditions 59, 107, 113
multirate behavior 58
detection 107
iteration domain 118

linear multistep integration 42
linear relaxation 64
linked-list structure 209
local truncation error 44, 52,

106,112
lock-step scheme 22
logic state models 123

two-state 125
ternary 128
four-state 133
nine-state 135, 157
strengths 154, 159

logic-to-current converter 184
logic-to-voltage converter 184

M
MHDL 12, 241, 280
MOTIS 55, 79, 83, 163, 174,

176

INDEX

macro modeling 7, 123,246,266
minimum resolvable time 82, 83

146
mixed-precision simulation 166
mixed-mode interface 195
mixed-mode timing control 22
mixed-signal ICs 3
modified nodal analysis 32, 90
multilevel simulation 17
multirate behavior 62

N
Newton-Raphson method 37,50,

68,78,213,215
Newton-SOR method 68, 70
nodal analysis 32, 33, 175
nonlinear macromodels 268
nonlinear relaxation 68, 77-107
numerical Laplace transform

inversion 249

o
oscillation 170, 171, 176

p
partial fraction expansion 249
power series method 246

Q
quadratic convergence 51

R
RELAX 64, 96
RSIM 173

R-V plane 161
register-transfer level 9
relaxation methods 38, 64, 156,

175
remote lists 209
roll-back 22, 213

S
SOR-Newton 69
SLATE 31
SPICE 2,6,31,39,87,174,

210,216
SPECS 163, 173, 175
SWITCAP 239,253
s-domain 12
selective-trace 7,81,82, 103,

155,204,277
self-scheduling 114, 117, 121,

163
signal-flow graph 81
signal mapping 20
simulation backplane 24
simulator architecture 19
small-signal model 166
smart logic gate 183, 192
source-stepping 213
sparse tableau analysis 32
spikes 147
stability constraint 45
state-space representation

242,246
step rejections 213
stiffly-stable methods 49
strongly-connected

components 154-156
nodes 156-157

successive overrelaxation 67

299

300

supernode technique 156
switch-capacitor circuits 253
switch-level simulation 8,

154-157
symbolic analysis 268

T
Thevenin equivalent 174
table lookup models 58, 217
tearing methods 6
ternary logic model 128
test circuits 195
thresholding functions 179
time-step control 41-52,

52-56, 103-107,277
timing simulation 6, 79-81
transmission line delay 147
trapezoidal method 47, 77
tree/link analysis 175
tristate logic 128, 133

U
uninitialized state 216
unknown state 128, 156, 157
user interface 21

v
VCVS 13
VHDL 10
VHDL-A 12, 241, 280
Veri10g 10
voltage-controlled switch 188
voltage transfer characteristics

138, 180, 183

INDEX

W
wakeup conditions 110, 113, 117
waveform relaxation 72, 89, 103
windowing technique 73

x
X state 180, 192

z
Z state 192
z-domain 12
z-domain transfer function 18
zero delay 145

301

ABOUT THE AUTHORS

Resve A. Saleh obtained his B. Eng. Degree (Electrical) from Carle­

ton University, Ottawa, Canada, in 1979, and his M.S. and Ph.D. degrees

from u.c. Berkeley in 1983 and 1986, respectively. He has worked in

industry for Mitel Corporation, Tektronix Inc., and Toshiba Corporation.

He joined the University of Illinois in 1986 where he is currently an Asso­

ciate Professor in Electrical and Computer Engineering directing research

in mixed-mode simulation, analog multilevel simulation, and parallel pro­

cessing. He served as the technical program chair of the Custom

Integrated Circuits Conference in 1993, and has served on the technical

committees of the Design Automation Conference, the MidWest Sympo­

sium on Circuits and Systems, the International Conference on Computer

Design. He is currently an Associate Editor with the IEEE Transactions

on Computer-Aided Design, and was was also an editor for the Simulation

column of Circuits and Devices Magazine. He is serving as the chairman

of the IEEE SCC-30 committee involved in standardizing an Analog

Hardware Description Language.

Shyh-Jye Jou obtained his B.S. degree in Electrical Engineering

from National Chen-Kung University in 1982, and M. S. and Ph.D degrees

in Electronics from National Chiao-Tung University, Taiwan, Republic of

China in 1984 and 1988, respectively. Currently, he is an Associate Pro­

fessor of the Electrical Engineering at National Central University,

Taiwan, Republic of China. He was a visiting research Associate Profes­

sor in the Coordinated Science Laboratory at University of Illinois during

the 1993-94 academic year. He served on the technical committee of the

1994 Custom Integrated Circuits Conference. His research interests

include computer aided-design tools of integrated circuits; specifically,

simulation and VLSI digital circuit design.

302

A. Richard Newton received the B. Eng. (elect.) and M. Eng. Sci.

degrees from the University of Melbourne, Melbourne, Australia, in 1973

and 1975, respectively, and the Ph.D. degree from the University of Cali­

fornia, Berkeley, in 1978. He is currently a Professor and Vice Chairman

of the Department of Electrical Engineering and Computer Sciences,

University of California, Berkeley. He was the Technical Program Chair­

man of the 1988 ACMlIEEE Design Automation Conferences, and a con­

sultant to a number of companies for computer-aided design of integrated

circuits. His research interests include all aspects of the computer-aided

design of integrated circuits, with emphasis on simulation, automated lay­

out techniques, and design methods for VLSI integrated circuits. Dr.

Newton was selected in 1987 as the national recipient of the C. Holmes

McDonald Outstanding Young Professor Award of Eta Kappa Nu.

