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Preface

In the summer of 2014, and at the WCCM in Barcelona, we tried to capture the
current state of the art in the “Design and Analysis of Reinforced Fiber Composites”.
We were hoping to draw together a set of authors who would guide practitioners
as well as researchers toward an integrated view of the subject. The international
response to our call for papers exceeded our wildest expectations by addressing the
important questions that we wanted to learn about and that was not widely discussed
in the literature. Thus, we had papers concerned with the causes of delamination
during buckling, manufacturing with natural fibers, the design of composite Pressure
Vessels, analysis of large strain fiber and matrix behavior in tires, Macro Models for
efficient analysis of Fracture, and application of SPH methods combined with MRI
in model preparation, respectively.

The discussions to the presentations showed a large degree of interest. We wish
that we could have collected the discussions and included it as an appendix to this
volume. Alas my secretarial skills were not up to the task. We are indebted to our
colleagues who kindly agreed to contribute to this Collection and who have modified
their papers to reflect the points raised in the discussions.

We are indebted to Ms Silvia Schilgerius and Ms Kay Stoll, both of Springer,
for originally suggesting this Collection and invaluable assistance throughout the
publication process.

Los Angeles, CA Pedro V. Marcal
Yokohama, Japan Nobuki Yamagata
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Buckling Analysis of Grid-Stiffened Composite
Shells

Dan Wang and Mostafa Abdalla

Abstract There is a renewed interest in grid-stiffened composite structures; they
are not only competitive with conventional stiffened constructions and sandwich
shells in terms of weight but also enjoy superior damage tolerance properties.
In this chapter, both global and local structural instabilities are investigated for
grid-stiffened composite panels using homogenization theory. Characteristic cell
configurations with periodic boundary constraints are employed for orthogrid- and
isogrid-stiffened shells in order to smear the stiffened panel into an equivalent
unstiffened shell. Homogenized properties corresponding to classical lamination
theory are obtained by matching the strain energy of the stiffened and equivalent
cells. Global buckling analysis is carried out based on the homogenized shell
properties. Bloch wave theory is adopted to calculate the local buckling load of grid-
stiffened shells, where the interaction of adjacent cells is fully taken into account.
Moreover, instead of considering skin buckling and stiffener crippling separately, as
is commonly done, the skin and stiffeners are assembled together at the level of the
characteristic cell. The critical instabilities can be captured whether they are related
to the skin or stiffener or their interaction. The proposed combination of global/local
models can also be used to predict the material failure of a structure. Numerical
examples of orthogrid- and isogrid-stiffened isotropic panels show that the local
buckling loads predicted by the proposed method match finite element calculations
better than semi-analytical methods based on assumptions and idealizations. The
proposed method is further validated using typical configurations of flat composite
panels and circular composite cylinders.

1 Introduction

Due to the advantages of lightweight, small manufacturing cost, high strength,
high stability, great energy absorption, and superior damage tolerance [1–4], grid-
stiffened composite panels have been applied in aerospace engineering for payload
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(a) (b) (c)

Fig. 1 Basic types of grid-stiffened panels. (a) Orthogrid. (b) Isogrid. (c) Anglegrid

fairings of launch vehicles and for load-bearing structures of satellites. Usually,
three basic types of grids, i.e., isogrid, orthogrid, and angle grid, as shown in Fig. 1,
are used in practical applications.

Many researchers have devoted themselves to studying grid-stiffened compos-
ite panels [5–9]. The discrete stiffener and the smeared stiffener methods are
two main methods used to study behavior of such structures. With the detailed
geometry retained, the discrete stiffener method, where the skin and stiffeners
are modeled separately with the compatibility maintained at the interface [7], has
the ability to capture both global and local behavior and guarantee high accuracy
[8]. However, using the detailed geometry is not only computationally expensive
for large structures but also precludes the application of the discrete method in
downstream design optimization due to the difficulty of automatic remeshing for
changeable geometry. Instead, the smeared stiffener method, where a grid-stiffened
structure is represented by an equivalent homogeneous panel, only involves simple
geometry without any detailed geometric information and therefore leads to better
computational efficiency and provides a flexible and suitable interface with design
optimization. However, as proved by researchers [8], the smeared stiffener method
is only accurate for calculating global buckling and deficient for local buckling.

Homogenization theory has been widely used in calculating effective properties
of a heterogeneous medium. By using asymptotic expansions and the assumption
of periodicity, physical quantities can be evaluated on two different levels: the
macroscopic and microscopic, where the former implies slow variation and the
latter implies rapid oscillations [10]. Two different families of numerical meth-
ods based on Finite Element Method and Fast Fourier Transforms, respectively,
were compared to obtain the effective properties of composites with periodic
microstructure [11]. In this work, two specific features of periodic homogenization
including periodicity conditions and strain or stress control were presented in detail.
As an extension of a homogeneous Love–Kirchhoff model [12], a homogenized
Reissner–Mindlin model with the shear effects of thick plates taken into account was
proposed, where the shear constants were determined by an auxiliary 3D boundary
value problem [13]. Using the full gradient of the bending moment instead of only
the mixed shear forces, the Bending-Gradient theory [14, 15] took advantage of
the higher accuracy of both deflection and local stresses than the Reissner–Mindlin
theory for heterogeneous plates and was further applied to a folded core sandwich
panel [16] and a periodic beam lattice [17].
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RIB CRIPPLING SKIN BUCKLING GENERAL INSTABILITY

A A B B
C C

A – A B – B C – C

Fig. 2 Buckling modes of grid-stiffened panels [6]

Grid-stiffened panels may fail in three different modes of rib/stiffener crippling,
skin buckling, and global buckling, as shown in Fig. 2, where the former two are
known as local buckling. To increase its service life, a grid-stiffened structure
is usually designed to localize buckling to ensure that global buckling happens
after local buckling. Practically, global buckling loads of grid-stiffened panels
are usually assessed using the smeared method, while local buckling loads are
predicted approximately with boundary conditions properly assumed at the interface
of skin and stiffeners. The global buckling load for a axial compressed cylinder
was obtained in a closed form for classical simply supported ends, while for the
case of a combined axial compression and torsion, the global buckling problem was
formulated using the Galerkin approach [6]. Moreover, with the assumption of a
simple support at the stiffener/skin attachment, the skin buckling was calculated
with the skin cell simply supported along its edges, and the stiffener crippling
was calculated with a clamped fixity condition imposed at the nodes. Weber and
Middendorf [18] integrated the interaction between adjacent skin fields into the
calculation of the local skin buckling load by applying periodic boundary conditions
at opposite panel edges. Both global and local buckling behaviors were considered
in a weight-minimum design for grid-stiffened panels and cylinders using a genetic
algorithm [19, 20]. In the work, an improved smeared theory with the offset
effect of stiffeners included [21] was employed for the global analysis, while the
local skin buckling was assessed by the Rayleigh–Ritz method which accounts for
material anisotropy, and stiffener crippling was assessed using the method provided
in Reddy’s work [6]. Then, this method was applied to optimization design of
grid-stiffened panels with variable curvature, which were modeled as assemblies
of panels with constant curvature [22]. To carry out an optimization design for
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aircraft wing rib panels, global bucking, stiffener crippling, and material failure were
evaluated using the Lagrange multiplier method, the assumption that the stiffener
blade was an axially loaded rectangular plate and a maximum strain failure criterion,
respectively [23]. A hybrid model was proposed [24] with elements around the
loading node of a smeared panel replaced by the detailed rib and skin elements
to obtain a refined stress analysis, which could also take hygrothermal behavior and
local buckling into account.

A different approach to calculate local instability in periodic media is furnished
by Bloch’s wave theory. In the Bloch wave theory, the displacement of a particle in a
periodic medium could be represented as a product of a periodic component with the
same periodicity as the medium and periodic function with an arbitrary wavelength.
According to this special representation, wave propagation in periodic beams and
stiffened plates was evaluated [25, 26]. Then, it was proved that the Bloch wave
theory had the ability to determine the onset of instability in periodic solids [27].
A great body of related work was done by Triantafyllidis and coworkers [4, 28–31]
to investigate critical material instability in periodic solids. In their work, concepts
of a micro-failure surface and a macro-failure surface were introduced to describe
the locus of first microscopic bifurcation points and points with a macroscopic
loss of ellipticity, respectively. The distinction between onsets of microscopic and
macroscopic material instability is whether the wavelength is commensurate with
the unit cell dimension or not. Research has showed that the micro-failure surface
of an infinite perfectly periodic structure is a lower bound of that of a finite structure
and an upper bound of that of a finite structure with imperfections [30]. Applications
of the Bloch wave theory in two-dimensional periodic composites showed that the
interstitial stiffness had an important influence on the nature of the critical failure
mode [28]. Similar work has been done by Ohno and coworkers [32, 33] to establish
the critical states for square honeycombs and Kelvin cell foams under compression
loadings.

As clearly illustrated in references [34, 35], existing methods based on the Bloch
wave theory focus on material failure where the material deforms inside the plane as
a failure mode. In this chapter, the out-of-plane instability of grid-stiffened panels is
characterized by the Bloch wave theory. In contrast to the existing methods used to
detect material failure, only local instability can be investigated in this case, while
global instability is evaluated using the equivalent unstiffened panel with average
material properties.

The rest of this chapter is devoted to a description of the homogenization
approach and the use of Bloch’s wave theory in detecting local instability of grid-
stiffened structure. Section 3 presents an overview of the homogenization approach
and the smearing process of a grid-stiffened panel. Section 4 develops the Bloch
wave theory and reduces the computation to a symmetric generalized eigenvalue
problem. Section 5 presents a number of numerical examples of flat and curved grid-
stiffened structures and comparison to published results and detailed finite element
calculations. Finally, Sect. 5 provides conclusions.
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2 Homogenization of a Grid-Stiffened Composite Panel

2.1 Homogenization Theory

According to the homogenization theory for media with periodic structures [10],
the grid-stiffened panel can be investigated using a double-scale scheme. From the
macroscopic perspective, the whole structure can be treated as a homogenous panel
without any stiffener. Displacements are assumed to be smooth and change slowly
over one cell from the macroscopic perspective. From the microscopic perspective,
the displacement will have a significant, but smaller amplitude, variation over one
cell. Therefore, the displacement can be represented in the following expression as
a function of two scales. For the out-of-plane deflection, we have:

w.x/ D w0.x/C �w1.x; y/C �2w2.x; y/C : : : (1)

where y D x=�, and � is a small parameter representing the ratio of cell dimension
to the dimension of the solid.

Correspondingly, the curvature vector can be expressed as:

w;xx.x/ D 1

�
w1;yy.x; y/C.w0;xx.x/Cw2;yy.x; y//C�.w1;xx.x; y/Cw3;yy.x; y//C : : :

(2)

For the above equation, if w1;yy ¤ 0, the first item in the right part of that equation
will become unbounded as � ! 0. Therefore, we require w1 D 0 and Eq. (2) can be
rewritten as:

���.x/ D ���0.x/C ���1.x; y/C ����2.x; y/C : : : (3)

where ���0 is the curvature due to the macroscopic variation and ���1 due to the
microscopic variation. Higher order terms will not be considered in this work.

Similarly, the in-plane displacement is represented as:

u.x/ D u0.x/C �u1.x; y/C �2u2.x; y/C : : : (4)

and the corresponding strains:

""".x/ D """0.x/C """1.x; y/C �"""2.x; y/C : : : (5)

The displacement fields w2.x; y/ and u1.x; y/ are assumed to be periodic in y.
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2.2 Smearing Based on the Conservation of the Strain Energy

In the smeared stiffener method, a grid-stiffened panel is replaced with an equiv-
alent homogeneous panel with uniform properties. The homogenization process is
performed by equating the strain energy of the equivalent model to be the same as
that of the detailed cell configuration.

For simplicity, consider a cell configuration periodic along the y1 and y2
directions. The cell average in-plane strains are given by:

8
<

:

"01 D u01;y1
"02 D u02;y2
�01y2 D u01;y2 C u02;y1

(6)

Therefore, these displacements can be represented analytically.

8
ˆ̂
<

ˆ̂
:

u01 D "01y1 C 1

2
�012y2 C c1

u02 D "02y2 C 1

2
�012y1 C c2

(7)

Similarly, following compatible relations hold between average curvatures and
the corresponding deflection u03:

8
<

:

�01 D u03;y1y1

�02 D u03;y2y2

�012 D 2u03;y1y2

(8)

The slowly varying out-of-plane deflection may be represented as follows:

u03 D 1

2

˚
y1 y2

�
�
�01 �012=2

�012=2 �02

� �
y1
y2

�

C c3y1 C c4y2 C c5

D 1

2
.�01y

2
1 C �02y

2
2 C �012y1y2/C c3y1 C c4y2 C c5 (9)

In the above expressions of Eqs. (7) and (9), items including constants c1, c2, and
c5 denote rigid body translations and items including constants c3 and c4 denote
rigid body rotations, which have no contribution to the strain energy. Therefore, all
these constants could be set to zero to simplify the expressions.

The rotations �01 D u03;y2 , �02 D �u03;y1 are given by:

8

<̂

:̂

�01 D �02y2 C 1

2
�012y1

�02 D ��01y1 � 1

2
�012y2

(10)
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The periodic part of the displacement vector does not contribute to the difference
in total displacement between corresponding nodes on opposite sides of a charac-
teristic cell. Thus, the following boundary conditions apply:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

�u1 D "01�y1 C 1

2
�012�y2

�u2 D "02�y2 C 1

2
�012�y1

�u3 D 1

2
�012�.y1y2/

��1 D �02�y2 C 1

2
�012�y1

��2 D ��01�y1 � 1

2
�012�y2

(11)

Herein, the center of the cell is set to the origin of the coordinate system to simplify
the equations.

The total strain energy is given by:

U D 1

2

Z

�c

�T
0 C�0d�c (12)

Here, �0 D f"0"0"0 �0�0�0gT and symbol C denotes the equivalent material stiffness matrix
of the smeared panel.

The discrete version takes the form:

U D 1

2
uTKu (13)

By rewriting the displacement constraints of Eq. (11) in a matrix form Lu D
D�0, we can develop an augmented form of the potential energy for a system
without any external force.

… D 1

2
uT Ku � 			T.Lu � D�0/ (14)

Using the minimum potential energy principle, we have:

8
ˆ̂
<

ˆ̂
:

@…

@u
D Ku � LT			 D 0

@…

@			
D Lu � D�0 D 0

(15)

which leads to

�
K LT

L 0

� �
u
			

�

D
�

0
D

�

�0 (16)
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Solving the above system with imposing strains and curvatures evaluated in the
macroscopic level as “generalized loading” [11], displacements in the local region
are obtained. Then, local stresses, which determines the material failure, can be
acquired.

The solution of Eq. (16) takes the form of u D U�0. With a combination
of Eqs. (12) and (13) and a substitution of elementary strain and curvature states
expressed by an unitary matrix into Eq. (12), the equivalent stiffness matrix of the
smeared panel can be obtained via the following expression.

Ceff D 1

Ac
UTKU (17)

3 Local Buckling Prediction

For a characteristic cell of a grid-stiffened panel, the equilibrium of its finite element
model could be expressed as follows:

2

6
4

Kt
1;1 Kt

1;2W.n�1/ Kt
1;n

Kt
2W.n�1/;1 Kt

2W.n�1/;2W.n�1/ Kt
2W.n�1/;n

Kt
n;1 Kt

2W.n�1/;n Kt
n;n

3

7
5

8
<

:

u1
u2W.n�1/

un

9
=

;
D

8
<

:

f1
0
fn

9
=

;
(18)

where Kt is the tangent stiffness matrix. u and f are the displacement and force
vectors, respectively. Subscripts 1 and n denote the starting part and the ending part
of the periodic cell along the direction of the wave propagation, respectively.

According to the Bloch wave theory, displacement vectors of a point in a 2D
periodic structure coulcand be expressed in the following form [30]:

u.y1; y2/ D Qu.y1; y2/ exp

�

i

�
m1y1

s1
C m2y2

s2

��

(19)

where m1 and m2 are dimensionless wave numbers and s1 and s2 are the cell lengths
along two different periodic axes. Qu.y1; y2/ is a periodic function following the same
cycle of a representative cell, which satisfies:

Qu.y1 C n1s1; y2 C n2s2/ D Qu.y1; y2/ (20)

In the above equation, n1 and n2 are arbitrary integers.
The representation of u in Eq. (19) implies the following relationship at the

periodic boundaries:

un D 


.eim1 ; eim2 /u1 (21)



Buckling Analysis of Grid-Stiffened Composite Shells 9

Construct a matrix as follows:

L D ˚ � N
N
N
 0 I
�T

(22)

where N
N
N
 denotes the conjugate matrix of 


. Note that the matrix L is identical to
that used in the smearing process when the wave numbers are equal to zero. Then,
the conjugate transpose matrix of L could be expressed as:

L� D ˚ �


 0 I
�

(23)

It is easy to conclude that:

L�u D 0 (24)

The forces between boundary nodes on the opposite edges obey the same
relationship as the displacements expressed by Eq. (21) but with opposite directions.
Therefore, the following equation is satisfied.

f D Lfn (25)

With the substitution of Eqs. (24), (25), and (18) could be rewritten as [31]:

�
Kt L
L� 0

� �
u

�fn

�

D 0 (26)

The generalized eigenvalues of the above equation are the buckling loads of the
periodic panel. The minimum eigenvalueƒm.m1;m2/ for prescribed dimensionless
wave numbers from 2n� to .2n C 2/� defines the critical buckling load parameter
surface, where n denotes an nonnegative integer. Due to the periodicity and
symmetry, the range of m1 and m2 can be limited to Œ0; ��. Therefore, the critical
buckling load defined as the minimum value of all the ƒm.m1;m2/ satisfies the
following equation [30].

ƒc D min
0�m1;m2��

ƒm.m1;m2/ (27)

Actually, in contrast to periodic solid, a grid-stiffened thin-walled panel with
infinite dimensions always buckles at zero, which belongs to global instability with
a long wavelength. In this case, the local minimum value of Eq. (27) with the wave
numbers far away from zero belongs to the range of a short wavelength, which is
the local critical buckling load for a finite panel. The local buckling load of a finite
grid-stiffened composite panel is obtained within this framework.
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4 Numerical Examples

In this section, numerical examples are used to demonstrate the effectiveness of the
proposed approach. First, the local buckling loads of an isotropic simply supported
panel predicted by the proposed method are compared with those by a semi-analytic
method [18]. Then, numerical predictions of the proposed method are presented for
typical orthogrid- and isogrid-stiffened composite flat panels and circular cylinders.
For the examples, detailed finite element models provide the basis for validating the
accuracy of the proposed method.

4.1 A Flat Isotropic Panel

A comparison between local buckling loads of the proposed method and a semi-
analytical skin buckling calculation method [18] is carried out in the example for
orthogrid- and isogrid-stiffened isotropic panels under axial compression. In Weber
and Middendorf’s work, buckling load coefficients of both single panels with simply
supported boundary conditions and skin fields with periodic boundary conditions
imposed at opposite panel edges are provided. Except for the case of the rectangular
panel under compression, there are evident differences between the results predicted
by these two different assumptions. The results of both cases are considered in
the comparison. The semi-analytical buckling results of the rectangular panel with
clamped boundary conditions [36] are also included.

The different cell configurations involved for orthogrid and isogrid are illustrated
in Fig. 3a and b, respectively. To eliminate the effect of dimensions and material
properties, a dimensionless buckling load coefficient k is used with an expression as
follows:

k D Ncrb2

�2D
(28)

where

D D t3E

12 .1 � 
2/
(29)

Fig. 3 Sketch of characteristic cell configurations of an isotropic panel [18]
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In practice, there is no evident local buckling for a grid-stiffened panel with a
small height of stiffeners. Numerically, there is no local minimum in the critical
buckling load parameter surface detected for ratios of the stiffener height and the
length of the panel less than a specific value. Investigations of the local buckling
in this example are done for cell configurations with the height of the stiffeners
changing from 0:12b to 0:52b and the width of the stiffener fixed to be 0:02b. All
the stiffeners are eccentrically located. Three typical aspect ratios a=b of 1.866,
1, and 0.289 are considered for the cell configuration in accordance with the
reference [18]. As illustrated in Fig. 4, the semi-analytical methods with periodic
boundary conditions and with clamped boundary conditions for orthogrid-stiffened
panels under axial compression always provide the lower bound and the upper

Fig. 4 A comparison between the skin local buckling predicted by the proposed method and
the semi-analytical method of a flat orthogrid-stiffened isotropic panel under axial compression.
(a) a=b D 1:866. (b) a=b D 1. (c) a=b D 0:289. (d) Validate the proposed method by the detailed
finite element model
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Fig. 5 A comparison between the skin local buckling predicted by the proposed method and
the semi-analytical method of a flat isogrid-stiffened isotropic panel under axial compression.
(a) a=b D 1:866. (b) a=b D 1. (c) a=b D 0:289. (d) Validate the proposed method by the detailed
finite element model

bound of the skin buckling load coefficients predicted by the proposed method,
respectively. In other words, the rectangular skin field under axial compression with
the onset of local buckling predicted by the proposed method is always constrained
with a boundary condition between simply supported and clamped, which can be
concluded from both the values of the buckling load coefficients and the shape of
the buckling modes.

A similar conclusion is drawn for the isogrid-stiffened panel, as illustrated in
Fig. 5. It can be seen that results with the consideration of the interaction between
adjacent skin fields provide a closer lower bound of the results predicted by the
proposed method than those of simply supported boundary conditions. The torsional
rigidity of the stiffeners ignored in the semi-analytical method takes a responsibility
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of the difference between results of the proposed method and the semi-analytical
method, which is proved by the results with GJ D 0.

As illustrated in Figs. 4d and 5d, local buckling loads of the orthogrid- and
isogrid-stiffened panels under axial compression predicted by the proposed method
are validated by the results of corresponding finite element models with detailed
stiffeners for cell configurations with two extreme aspect ratios. The largest errors
for the sampled orthogrid-stiffened panels with aspect ratios of 1:866 and 0:289 are
�3% and �10%, respectively, while they are 20% and 8% for the sampled isogrid-
stiffened panels. These errors are acceptable in practice. Moreover, the buckling
modes obtained using the proposed method agree with those in a cell configuration
of the detailed finite element models. All the detailed finite element models in
this example employ a lattice with 16 cells in the width direction and 16 cells in
the height direction, and the particular geometric and material parameters are as
follows: the width of the cell configuration b D 100mm, the skin thickness t D
1mm, the width of the stiffeners w D 2mm, the Young’s modulus E D 206:84GPa,
and the Poisson’s ratio 
 D 1=3.

From the comparisons, it can be concluded that the proposed method has
the ability to predict the local buckling load of orthogrid- and isogrid-stiffened
structures with stiffeners of different rigiditiesm and the prediction results are more
accurate than those calculated by the semi-analytical method with periodic boundary
conditions, which have already been improved compared with those with simply
supported boundary conditions.

4.2 A Flat Composite Panel

The example is a simply supported flat grid-stiffened composite panel, which
represents a generic structural component of a transport helicopter fuselage, as
studied in reference [20]. The flat panel with the length of 4376:4mm and the
width of 1587:7mm is stiffened on one side by orthogrid or isogrid stiffeners.
The skin laminate has an eight-plus symmetric layup of .˙45=90=0/s with each
ply thickness being 0:1524mm. The nominal ply mechanical properties are E11 D
139:31GPa, E22 D 13:103GPa, G12 D G13 D G23 D 5:0345GPa, 
12 D 0:3, and
� D 1590 kg/mm3. All the stiffeners are made of 0-deg material with a height of
h D 12:9mm and a width of w D 1:524mm.

The parameters of the grid-stiffened flat panel are given in Table 1. In the
example, the angles between different stiffeners are set to be 60o for the isogrid

Table 1 Parameters of a grid-stiffened flat panel

Dimensions of a No. of stiffeners Weight of

Grid type cell: s1=s2 (mm) Vertical Horizontal stiffeners (kg)

Orthogrid 109:41=63:508 41 26 5.5917

Isogrid 136:58 38 – 5.5586
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Table 2 Critical buckling loads of a grid-stiffened flat composite panel under compression

Buckling Proposed method Detailed model Error (%)

Orthogrid Global �0:2

16.85 16.89

Local �16:8

126.61 152.15

Isogrid Global 4:5

24.67 23.60

Local 12:3

69.15 61.56

cell configurations. The weights of the involved orthogrid- and isogrid-stiffened flat
panels are very close.

To investigate the critical buckling loads, a unit uniaxial compression of 1N/mm
is considered. Both global and local buckling loads are given in Table 2. Local
buckling behaviors predicted by the proposed method in Table 2 represent the
distribution of local buckling loads. Compared with results of the detailed finite
element model, global and local buckling loads predicted by the proposed method
are within errors of 5 and 20%, respectively, for the involved grid-stiffened panels.

4.3 A Composite Circular Cylinder

An orthogrid-stiffened composite circular cylinder with the diameter of 990mm
and the height of 1168mm [6] is employed to investigate the critical buckling
states of a cylinder under axial compression loading. The skin is made of AS4/3502
graphite/epoxy, while stiffeners are combinations of both AS4/3502 graphite/epoxy
and filler. The mechanical properties of the skin and stiffeners are given in Table 3.

The cylinder with a skin thickness of 1:22mm suffers from an axial compression
of 175N/mm. To ensure the uniform distribution of structural forces, clamped
boundary conditions are used with radial displacements not fixed but coupled to
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Table 3 Mechanical
properties of grid-stiffened
circular cylinders

Skin Stiffener

E11 W GPa 127:5 64:86

E22 W GPa 11:3 3:74

G12 W GPa 6 0:93


12 0:3 0:3

Table 4 Dimensions of
grid-stiffened circular
cylinders

No. of axial Stiffeners: mm

Skin layup stiffeners/rings Height Width

Orthogrid .0; 90/s 90=20 6.35 1.7

.˙45/s 80=26 3.175 1.81

Table 5 Critical buckling loads of the orthogrid-stiffened circular cylinder

Skin Proposed method Detailed model

layup Buckling Global Local Global Local

.0; 90/s Mode

	c 1.1829 1.4356 1.1284 1.6426

Error 4:8% �12:6%

.˙45/s Mode –

	c 0.9624 – 0.9283 –

Error 3:7% –

deform together for the top and bottom nodes, respectively. Two sets of dimensions
of orthogrid-stiffened configurations are used corresponding to two different sym-
metric skin layups of .0; 90/s and .˙45/s, as shown in Table 4.

Stability analysis of the involved composite circular cylinders is carried out
using the proposed method. Both global and critical local buckling loads of these
cylinders are calculated, and the results are provided in Table 5. The critical buckling
load parameter surfaces with respect to dimensionless wave numbers are illustrated
in items of the tables corresponding to local buckling behaviors obtained by the
proposed method, where the local minimum represents the local buckling load.
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As illustrated in Table 5, the errors of the global and local buckling loads using
the proposed method are within 5% and 15%, respectively, compared with results of
the detailed finite element model. Noticeably, in this case, the global buckling modes
obtained by the proposed method are not exactly the same as those by the detailed
finite element model. For cylinder buckling, the first few global buckling modes
are different but their buckling loads are very close. These modes may happen at a
different sequence for the proposed method and the detailed finite element method,
which results in the difference between the critical global buckling modes. For the
orthogrid-stiffened cylinder with a skin layup of .˙45/s, local buckling does not
exist since there is no local minimum in the critical buckling load parameter surface
with respect to dimensionless wave numbers, as illustrated in Table 5. Actually, the
local buckling is trivial in this case since the global bucking dominates the failure
mode completely.

5 Conclusions

In this chapter, buckling analysis of periodically grid-stiffened composite plates
and shells is studied. Both global and local buckling phenomena are taken into
consideration. A smearing method based on homogenization theory is employed to
calculate the equivalent material properties. Global buckling loads are obtained by
buckling analysis of the smeared model. Local buckling loads are predicted by the
Bloch wave theory. In contrast to applications of the Bloch wave theory in periodic
solid to investigate in-plane material failure, the this chapter concentrates on local
buckling of grid-stiffened structures where the critical load always goes to zero
as the wave length is increased. Thus, the local minimum in dimensionless wave
number space is considered to be the critical local buckling load. Because of the
used detailed finite element model of the cell, with the skin and stiffeners assembled
together, both the skin buckling and stiffener crippling are possible critical modes.
There is no need for separate stability analysis of the stiffener and the skin. It is
concluded from the comparisons between local buckling load coefficients of the
proposed method and the semi-analytical method that the proposed method could
predict the local buckling load more accurately than the semi-analytical method
using periodic boundary conditions, while the latter always provide a lower bound
of the former. Representative numerical examples of grid-stiffened flat composite
panels and circular composite cylinders are employed to prove the effectiveness of
the proposed method. Comparison with the results of the detailed finite element
model indicates that local buckling loads predicted by the proposed method have an
error within 20% for compression loading.
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Three-Dimensional Image Processing Applied
to the Characterization of Lightweight Mortar
Reinforced with Piassaba Fibers

Susana M. Iglesias, Helder C. Almeida, Dany S. Dominguez,
and Jorge F.L. Santos

Abstract Among the solutions to solve the environmental problems caused by
the industrial development and the urbanization growing is to reuse industrial
waste in civil construction. In this work are characterized mixtures of lightweight
mortar using ethylene-vinyl acetate (EVA) grains and piassaba fibers as aggregates.
The EVA is a residue from footwear industry, and the piassaba fibers act as
reinforcement material in the mixture. We propose a methodology that uses micro-
tomographic and three-dimensional image processing to identify and quantify the
aggregates, pores, and micro-cracks produced by mechanical stress in the samples.
Results for four types of mixtures were analyzed. The present technique offers
appropriated results for these mixtures.

1 Introduction

The environmental protection today is a goal and a concern for all areas of
knowledge. Solutions for the reuse of industrial waste are now mandatory and
recycling this waste in civil construction is one of the possibilities. Among the
alternatives has the use of Ethylene-vinyl acetate (also known as EVA) from
the footwear industry in lightweight mortar, in nonstructural parts [1]. EVA is a
residue that has low density, large capacity to deform, good thermal, and acoustic
characteristics. It can be used to develop a class of material that allows associating
the functions of sealing and thermal comfort with lightness. However, studies have
shown a reduction of mechanical strength when the EVA is added to the mortar
mixture if compared to conventional mixtures. To solve this problem, an alternative
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is using natural fibers in the mixture. In previous studies, it was shown that the
addition of natural fibers improves the mechanical properties of the material. The
fiber presence attenuates the stress propagation [2–4]. Among the natural fibers is
the piassaba fiber from palm Attalea funifera Martius, broadly available in Southern
Bahia, Brazil. In this work, lightweight concrete mixtures with EVA and piassaba
fibers are analyzed.

To incorporate these new mixtures in civil construction, they should be featured
in terms of their mechanical properties and internal structure. Generally the mechan-
ical properties can be studied using mechanical tests as tensile and compressive
tests. The internal structure can be characterized by nondestructive testing, such
as ultrasound, microscopy, X-ray diffraction, and computed tomography. In this
paper, we used micro-tomographic image processing techniques to study the internal
structure of the material.

In previous works were made mechanical tests to characterize tensile stress and
compression strength of this mixture (mortar C EVA C piassaba) [5]. Using two-
dimensional image processing techniques, it was possible to identify the aggregates
(there are EVA and piassaba fibers), pores, and micro-cracks in the study samples
[6]. Still, the identification using two-dimensional images presents problems such
as not considering the influence of fiber orientation. This work proposes the
use of three-dimensional image processing to deepen the structural analysis of
the lightweight mortar mixture reinforced with piassaba fibers improving the
identification mechanism.

In the next section, the methodology used to study the lightweight mortar mixture
is presented. In Sect. 3, are offered and discussed the results. The conclusions are
shown in Sect. 4.

2 Methodology

In this work, four types of mixture were studied. The water/cement relation for all
mixtures was 0.4, and the mass percentage of EVA and fibers for each type is shown
in Table 1. These mixtures were used to prepare the samples. In these samples, the
particle size distribution of EVA grains used varied from 850 to 1180 �m (16–20
mesh). The piassaba fibers were separated, cleaned, and cut with 10 mm length size.
The sample preparation followed the Brazilian standard for fabrication and curing
of cylindrical or prismatic concrete specimens (NBR 5738) [7].

Table 1 Characteristics of
mixtures types

Mixture type EVA (%) Fiber (%)

(A) Pure mortar 0 0
(B) Mortar with EVA 1 0
(C) Mortar with EVA and fibers 1 1
(D) Mortar with fibers 0 1
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Fig. 1 Prismatic sample and scheme of cross-section slices of 10 mm for micro-tomographic
image acquisition

Due to the limitations of the available micro-tomography equipment was neces-
sary the extraction of smaller samples from the original specimen. The specimens
were cut transversely into 16 slices with a length of 10 mm, as is shown in Fig. 1.

In previous works [6, 8], the mechanical properties of the mixtures were
characterized using mechanical tests. After mechanical tests, the internal structure is
composed of mortar, pores, EVA, piassaba fibers, and micro-cracks. These elements
were characterized using two-dimensional image processing [5, 6].

In this work, the three-dimensional processing of the obtained micro-
tomographic images was divided into two stages. The first, the preprocessing
stage, includes the binarization of two-dimensional images, its rotation, the three-
dimensional reconstruction, and the three-dimensional image cropping. The second
is the three-dimensional image segmentation that includes the construction of
a region’s growth algorithm to make an accurate identification of the interest
elements.

The binarization process transformed a grayscale image into a black and white
image. As a result, the pixels in the image that represent mortar with cement paste
and sand appear in black and those which represent the fibers, EVA grains, pores,
and micro-cracks appear in white. These images are rotated to make easier the future
crop. These two-dimensional images are stacked to frame the three-dimensional
image.

As a result of the mechanical cut of the studied samples to fit in the tomography
scanner, some edge problems in the image appeared. To solve these problems, edge
techniques are applied in the three-dimensional object. This process was made
using three criteria: external cropping, internal cropping, and external cropping
with triangular edge. In the external cropping, the most external border point was
detected, and this vertical/horizontal plane was selected for the cut. The same
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procedure, but with the more internal point in the border, was used in the internal
cropping. In the external cropping with triangular edge, first we made an external
cropping and, to avoid spurious pixels, the edges were cut using a triangular base
prism. Of these criteria, the external cropping with triangular edge shows the best
results.

After the obtaining the three-dimensional images, the region’s growth algorithm
is applied to identify the different elements. This algorithm uses an auxiliary matrix
with the same size of original image to store the identified regions. During the
process, the three-dimensional image is swept, using the neighborhood concepts.
The regions that represent EVA, fibers, pores, and micro-cracks are identified in the
auxiliary matrix. In addition, in the algorithm, for each region volumes, the number
of voxels is computed. This value represents the volumes of each region.

3 Results and Discussion

The methodology described in the previous section was applied in samples of each
mixture type. In samples of pure mortar, only pores are detected. In samples of
mortar with EVA, there are pores and EVA grains. In mortar with EVA and piassaba
fibers, we also find pores and EVA, but the fibers are identified in the mixture too. In
mortar with piassaba fibers, we detect the pores and the fibers. In those samples
submitted to mechanical tests, micro-cracks are also detected. This detection is
possible by using volumetric parameters of identifying regions. It is possible to
accurately recognize the presence of EVA, fibers, pores, and micro-cracks.

The steps of the methodology for a sample that contains mortar, fibers, and EVA
are shown in Fig. 2. This figure is for a sample without mechanical test. Figure 2a
represents the original two-dimensional micro-tomographic image. Figure 2b shows
the same image after the binarization process. In Fig. 2b, the mortar is in black, and
pores and the aggregates are in white. Figure 2c illustrates the result of the rotation
process. Figure 2d presents the three-dimensional image, resultant of the stacking
process from the two-dimensional slices. Note, in the image, the spurious pixels at
the edges. Figure 2e shows the three-dimensional image after the cropping. Finally,
Fig. 2f presents the image resulting from the identification process using region’s
growth algorithm. The identified regions are in different gray tones.

The problems presented in the two-dimensional analysis are solved. The EVA
and fibers identified as pores in the two-dimensional analysis are correctly identified
by this volumetrical analysis.

Using this methodology and the volumetric analysis, it was possible to identify
correctly the EVA, fibers, and pores. Nevertheless, it is not possible to totally
separate the micro-cracks from the pores when they have the same volume range. In
this case another geometrical region parameter must be used.
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Fig. 2 Steps of the lightweight mortar mixture analysis methodology. In the figure, the sample
contains mortar, fibers, and EVA

4 Conclusions

In this work, we obtained a methodology for microstructural analysis of samples of
lightweight mortar with aggregates of EVA and piassaba fibers. This methodology
is based on the three-dimensional image analysis. The images were obtained
using micro-tomography and processed in two stages, the preprocessing stage that
includes binarization, rotation, and the cropping process and the segmentation stage
that uses a region growth algorithm.



24 S.M. Iglesias et al.

As the methodology result, the aggregates, pores, and micro-cracks in the
material were identified. Also it is possible to quantify the EVA, pores, and fibers.
In samples submitted to mechanical tests, when the micro-cracks have volumes in
the same range of the pores, the quantification failed. To solve this problem, other
geometrical region parameters as the eccentricity must be considered.

The region’s growth algorithm has a high computational cost hindering the pro-
cessing of high volumes of three-dimensional objects. Computational alternatives,
as parallel processing, must be developed in the future to solve this problem. In
other research line, we propose the use of Fourier analysis to identify the different
aggregates and micro-cracks and solve the edge problems.
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Computational Modeling of Fiber Composites
with Thick Fibers as Homogeneous Structures
with Use of Couple Stress Theory

Svitlana Fedorova, Tomáš Lasota, and Jiří Burša

Abstract Unidirectional fiber-reinforced elastomers are investigated. A respective
finite strain model is formulated within the couple stress theory, and a specific
new form of strain energy density is implemented for the three-dimensional finite
element analysis. The homogeneous anisotropic model is based on kinematics and
constitutive equations proposed by Spencer and Soldatos (International Journal
of Non-Linear Mechanics 42:355–368, 2007) and includes additional material
parameter regulating bending stiffness of the material regardless of its tensile
stiffness. The procedure of determination of the additional material parameter is
offered for the case of simple beam under small strains. Numerical simulations of
four-point bending test are presented to demonstrate advantage of the new model.

1 Introduction

In the recent years, nonclassical continuum mechanics has become widely employed
for dealing with various problems. There are two classes of generalized continuum
theories: higher-grade and higher-order theories [1]. In brief, higher-grade theories
employ higher-order gradients of the displacements, while higher-order continuum
theories include additional kinematic variables attached to the material point. In
particular, Cosserat theory [2, 3] (also known as micropolar) introduces independent
rotational degrees of freedom to the classical continuum. Its review and bibliography
can be found, e.g., in [4]. Couple stress theory [5] can be regarded as a special case
of Cosserat theory (constrained Cosserat theory), where connection between the
rotation field and the displacement gradients is present.

Conventional theory of fiber-reinforced solids employs an anisotropic homoge-
neous model with a unit vector field characterizing the direction of reinforcement
[6]. Such homogenization is based on the assumption of infinitesimally thin densely
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and uniformly distributed fibers. The closer the composite structure is to this
assumption, the better agreement is provided by the model.

Size effects arise when the characteristic length scale of inhomogeneity is com-
parable with dimensions of the specimen [7]. It is often the case when microscale
problems [8–14] or composite materials [7, 15, 16] are considered. The classical
Cauchy continuum theory is not able to account for the influence of characteristic
size of substructure on material behavior.

In the recent work by Spencer and Soldatos [17], a theoretical framework
is introduced which employs the continuum capable of bearing couple stresses.
They present a constitutive formulation in which deformed fiber curvature and
deformation gradient are present.

In the present work, we regard fibers in the composite as slender beams
embedded in the nonlinear elastic matrix. Employing the kinematics and general
constitutive formulation presented in [17], we develop a homogeneous model
the bending stiffness of which is governed by an additional material parameter
independent of the tensile stiffness. The effective bending stiffness is “smeared out”
so that the homogeneous model is capable to simulate bending behavior of the real
heterogeneous structure.

The layout of the paper presents governing equations and general constitutive
formulation of the adopted framework in Sects. 2 and 3. A simple computationally
applicable form of strain energy is presented in Sect. 4. In Sect. 5 the principle of
the virtual work is formulated for the given framework, and the scheme of the FE
implementation is outlined. In Sect. 6 we determine material parameters for the new
model. Comparison of numerical results is given in Sect. 7.

2 Adopted Kinematics and Balance Laws

We adopt Cartesian coordinate system Ox1x2x3. In a conventional manner, a material
point with position vector X in the reference configuration moves to the position x
of the deformed configuration. In the notation applied below, boldface denotes a
tensor or vector; uppercase letter and lowercase letter indices are associated with
the reference and deformed configurations, respectively. Subscripts vary from one
to three, and Einstein’s summation convention applies for repeated indices unless
stated otherwise.

Within the framework of constrained Cosserat theory, the quasi-static problem
is considered. The spin vector ! is not independent but related to the displacement
rate vector v in the following way:

!i D 1

2
2ijk

@vk

@xj
; (1)
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where 2ijk represents the Levi-Civita operator. Deformation gradient tensor F and
right Cauchy–Green deformation tensor C are given by

FiR D @xi

@XR
; (2)

CKL D FiKFiL: (3)

For a unidirectional fiber-reinforced composite, unit vector fields A(X) and a(X)
define fiber directions in reference and deformed configurations, respectively.
Conventional kinematics has to be enhanced in order to account for the bending
stiffness of the continuum. Adopting theoretical framework proposed in [17],
additional second-grade kinematical quantities are to be introduced. On the basis
of vector bi D FiRAR, deformed fiber gradient tensor G and tensor ƒ are defined as
follows:

GiJ D @bi

@XJ
; (4)

�RS D FiRGiS: (5)

As we endow the material point with bending stiffness, additional stress measures
are to be employed in the form of moments per unit area. These measures are
generally referred to as “couple stresses.” Cauchy stress tensor is no longer
symmetric due to the presence of couple stresses. This interconnection is obvious
from the equations of equilibrium (body forces and body couples are absent):

@¢ji

@xj
D 0 ; (6a)

@mji

@xj
C 2ijk�jk D 0 (6b)

where � and m are Cauchy stress tensor and couple stress tensor, respectively.

3 Constitutive Formulation Within Couple Stress Theory

3.1 Form of Strain Energy Density

Conventional form of the strain energy density for hyperelastic materials with one
family of fibers is a function of the right Cauchy–Green deformation tensor C and
fiber direction vector A.
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In order to include the effect of gradients of the deformed fiber direction into
the mathematical framework, Spencer and Soldatos [17] proposed the strain energy
density, in addition, as a function of tensor ƒ [introduced by Eq. (5)]. This function
is introduced by means of 33 specific invariants of the above tensors C, ƒ, and
vector A on the basis of canonical forms presented by Zheng [18]. However, these
33 independent invariants lead to excessively complicated constitutive equations.
To simplify this theory, Spencer and Soldatos propose to assume that the strain
energy depends on one-directional derivative of the fiber vector only, namely, that
in the fiber direction representing the curvature of fibers. This assumption implies
that dependence on the tensor ƒ is replaced by dependence on the vector K with
components KR D�RSAS. With this restriction the amount of invariants decreases
from 33 to 11 having the following forms and physical dimensions:

I1 D trC; Œ��
I2 D 1

2

n
.trC/2 � trC2

o
; Œ��

I3 D det C; Œ��
I4 D ACA; Œ��
I5 D AC2A; Œ��
I6 D A�T�A;

	
m�2


I7 D A�TC�A;
	
m�2


I8 D A�TC2�A;
	
m�2


I9 D A�A;
	
m�1


I10 D AC�A;
	
m�1


I11 D AC2�A:
	
m�1


: (7)

However, the strain energy density, as function of all the 11 above invariants, still
yields excessively complicated constitutive equations.

3.2 Constitutive Equations for Stresses and Couple Stresses

It should be noted that only the symmetric part of Cauchy stress tensor generates
work upon deformation. Analogously, if we decompose couple stress tensor into
spherical and deviatoric parts, only its deviatoric components contribute to the
energy balance equation. Antisymmetric components of Cauchy stresses can be
derived from (6b), while spherical components of couple stresses remain indeter-
minate within the framework of couple stress theory [19].

Constitutive equations are formulated by Spencer and Soldatos [17] for the
symmetric part of Cauchy stress and for the deviatoric part of couple stress as
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follows:

�.ij/ D �

�0

�

FiRFjS

�
@W

@CRS
C @W

@CSR

�

C �
GiRFjS C GjRFiS

� @W

@�SR

�

; (8a)

mji D 2

3
eikm

�

�0

@W

@�PR
FmP

�
FjRbk C FkRbj

�
: (8b)

where �0/�D J is volume ratio.
The detailed derivation of the equations based on the energy balance equation

can be found in [17].
In accordance with equilibrium equations, the antisymmetric part of the stress is

defined by the following equation [20]:

�Œij� D 1

2
2kji

@mlk

@xl
: (9)

4 A Simple Specific form of the Model with Modified
Invariants

To construct computationally applicable strain energy form suited for the rubberlike
composites reinforced with stiff fibers, we employ simplifying assumptions. We
restrict W to be quadratic at most in the components of �. Such assumption, as
pointed out in [17], implies that the fiber radius of curvature is large compared to the
substructure dimensions (fiber diameters or fiber spacing). To reduce the amount of
invariants, the coupling between � and C is ignored. For simplicity, we chose strain
energy density function that contains only one additional invariant accounting for
the bending stiffness of fibers.

To reduce numerical difficulties in finite element simulation, it is advantageous
to perform multiplicative decomposition of deformation gradient:

F D J1=3F; ) C D J2=3C: (10)

where F and C D F
T
F are associated with volume-preserving (distortional)

deformation of the material. Tensors F and C will be referred to as the modified
deformation gradient tensor and modified right Cauchy–Green tensor, respectively
[21].
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We extend the multiplicative decomposition to second-gradient kinematics by
introducing the modified tensor G:

GiJ D @bi

@XJ
D @

�
FiRAR

�

@XJ
: (11)

After expressing the deformation gradient in terms of displacement vector u, we
obtain

GiJ D GiJJ�1=3 � 1

3
ARJ�1=3FiR

@2uk

@XJ@XL

@XL

@xk
: (12)

It should be noted that it holds in case of incompressibility (J D 1) [6]:

@2uk

@XJ@XL

@XL

@xk
D 0; (13)

which reduces Eq. (12) into equality GiJ D GiJ :

Modified tensor� is introduced by the formula

�RS D FiRGiS: (14)

Similarly it can be shown for tensor � that in case of incompressibility, the modified
tensor equals the original one, i.e., �RS D �RS.

Based on the modified tensors above, modified invariants can be introduced [22]:

I1 D CAA D J�2=3CAA; (15)

I4 D ABCCBAC D J�2=3ABCCBAC; (16)

I6 D ABƒOBƒOCAC D J�4=3 .ABƒOBƒOCAC�
� 1

3
F�1

OKGKOALCLR
�
ASƒRS C ANƒRN � 1

3
GBCF�1

CBAOCOR
��
:

(17)

The strain energy density consists then of isochoric (deviatoric) and volumetric
parts; the deviatoric part is composed of isotropic and anisotropic contributions:

W D W C Wvol; (18)

Wvol D 1

d
.J � 1/2; (19)
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W D Wiso C Waniso; (20)

W iso D k1
�
I1 � 3

�
; (21)

Waniso D k2
�
I4 � 1�2 C k3I6: (22)

Then the strain energy density has the final form

W D k1
�
I1 � 3� C k2

�
I4 � 1

�2 C k3I6 C 1

d
.J � 1/2: (23)

To allow for a stress-free reference configuration, the anisotropic term (I4–1) can
occur in W only through its squares [23]. The strain energy density must be at
least quadratic in the components of either F or G [24]. The coefficients present
material parameters: k1 is related to properties of the matrix (neo-Hooke model); k2

and k3 relate to the tensile and bending stiffness of the medium in the direction of
reinforcement, respectively; and d relates to the material compressibility.

According to (8a, 8b) and (23), constitutive equations acquire the form

�.ij/ D 2FiRFjSJ�2=3 	
k1

�
•SR � 1

3
C�1

RS CAA
� C 2k2

�
I4 � 1� .ARAS�

1
3
C�1

RS ABCCBAC
� C 1

d .J � 1/C�1
RS J�3=2
 C k3

h
FiRFjS



@I6
@CRS

C @I6
@CSR

�

C �
GiSFjR C GjSFiR

�
@I6
@ƒRS

i
:

(24a)

mji D 2

3
eikmk3

@I6
@�PR

FmP
�
FjRbk C FkRbj

�
: (24b)

5 Finite Element Implementation

In this section, displacement-based finite element approach is presented. It should
be noted that an alternative approach employing Lagrange C0-shape functions is
possible, in which first derivatives of displacements are introduced as additional
independent unknowns. In that case, the relation (1) must be taken into account via
Lagrange multipliers [25].

5.1 Weak Form of the Stationary Boundary Value Problem

In order to develop finite element formulation we start with constructing the weak
form of the balance Eq. (6a, 6b). Let us introduce virtual displacement rate field
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ıv and virtual spin field ı! as the weighting functions. Multiplication of (6a)
with ıv and (6b) with ı! and subsequent integration of their sum over the current
configuration (volume v) yield

Z

v

@¢ji

@xj
•vidv C

Z

v

�
@mji

@xj
•!i C 2ijk�jk•!i

�

dv D 0: (25)

With the use of divergence theorem, it can be rewritten as

Z

v

�

�ij
@ıvi

@xj
C mji

@ı!i

@xj
� 2ijk�jk•!i

�

dv �
Z

s

.tiıvi C liı!i/ds D 0 (26)

where t is traction vector and l couple traction vector (moment per unit area) acting
on surface s of the deformed body.

Partial derivatives @vi
@xj

can be divided into symmetric dij and antisymmetric !ij

parts

@vi

@xj
D dij C !ij (27)

where dij are components of the rate of deformation tensor and !ij are components
of the spin tensor.

Similarly the force stress can be divided into its symmetric � (ij) and antisymmet-
ric � [ij] parts and the couple stress into its volumetric and deviatoric parts.

Note that the following relations [17] are valid:

�Œij�dij D 0I (28)

�.ij/!ij D 0I (29)

@!i

@xi
D 0; (30)

and spin tensor and spin vector are related as

2ijk!i D �!jk: (31)

With the use of the above equations, the principle of virtual work is then
formulated as follows:

Z

v

�

�.ij/
@ıvi

@xj
C mji

@ı!i

@xj

�

dv �
Z

s

.tiıvi C liı!i/ds D 0: (32)
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With the kinematic constraint (1), it becomes

Z

v

�

¢.ji/
@•vi

@xj
C 1

2
2ilkmji

@2•vk

@xj@xl

�

dv �
Z

s

�

ti•vi C 1

2
2ijkli

@•vk

@xj

�

ds D 0: (33)

In accordance with the constrained Cosserat theory, displacement vector field is
taken to be the only fundamental unknown.

Let us now introduce (Kirchhoff) symmetric force stress � (ij) and deviatoric
couple stress: 
ij

�.ij/ D J�.ij/I (34a)


ij D Jmij: (34b)

Then we can rewrite (31) as

Z

V

�

�.ji/
@•vi

@xj
C 1

2
2ilk�ji

@2•vk

@xj@xl

�

dV �
Z

s

�

ti•vi C 1

2
2ijkli

@ıvk

@xj

�

ds D 0: (35)

The volume integral has now taken over the undeformed solid, which is convenient
for further computations. The area integral is evaluated over the deformed surface.
However, as long as traction and traction couples are not prescribed on the boundary,
the second term in (34a) is ignored. Here and further we consider the case when
only displacements and their first derivatives are prescribed as boundary conditions.
Consequently, the principle of virtual work (34a) can be rewritten into the final form

Z

V

�

£.ji/
@•vi

@xj
C 1

2
2ilk�ji

@2•vk

@xj@xl

�

dV D 0: (36)

5.2 Approximation and Discretization

Due to presence of the gradients of strain in the variational formulation, a need arises
for higher orders of continuity in the interpolation functions. Namely, so-called
complete C1 element shape functions are to be employed. Displacement field and
virtual displacement rate field within the element are approximated in the following
manner:

ui .Ÿ/ D Na .Ÿ/ ua
i C Oa .Ÿ/ ˛a

i C Pa .Ÿ/ ˇa
i C Qa .Ÿ/ �a

i ; (37)

ıvi .Ÿ/ D Na .Ÿ/ •�a
i C Oa .Ÿ/ •aa

i C Pa .Ÿ/ •ba
i C Qa .Ÿ/ •ga

i (38)
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where Ÿi are normalized local coordinates, �1 < Ÿi < 1 (natural coordinates), ua
i

can be regarded as nodal displacements, and ˛a
i ,ˇa

i , �a
i as nodal slopes in directions

Ÿ1, Ÿ2, and Ÿ3 respectively; superscript indices identify the node number. Virtual
rates of nodal displacements and slopes are denoted as •¤a

i , •aa
i , •ba

i , •ga
i in (36). N,

O, P, and Q are Hermite polynomials [26] satisfying the following conditions: Na(Ÿ)
takes the value of 1 at node a and zero at all the other nodes within the element; its
derivatives @Na.Ÿ/

@�i
are zero at all nodes; Oa(Ÿ), Pa(Ÿ), and Qa(Ÿ) take zero value at all

nodes, while their derivatives @Oa.Ÿ/

@�1
, @Pa.Ÿ/

@�2
, and @Oa.Ÿ/

@�3
take value of 1 at node a and

zero at all the others; the derivatives with respect to the other � i are zero at all nodes.
In order to proceed with discretization, let us convert derivatives in the weak form

(34b) to the reference coordinates Xi, thus obtaining

Z

V

�

�.ij/
@•vi

@XM
F�1

Mj C 1

2
2ikl�jiF

�1
Mj

�

F�1
Nk

@2•vi

@XM@XN
� F�1

No F�1
Pk

@•vi

@XN

@FoP

@XM

��

dV D 0:

(39)

Using Eq. (39) and element connectivity and utilizing the fact that ı¤a
i , •aa

i , •ba
i , •ga

i
are arbitrary everywhere, except for the boundary surface, we obtain four systems
of nonlinear equations. Integration is performed using a standard Gauss quadrature
scheme.

These nonlinear systems are to be solved using Newton–Raphson iterative
procedure. After the linearization, the following four linear systems with
respect to unknown increments of displacements �ua

i and increments of slopes
�˛a

i ,�ˇa
i ,��a

i are considered:

Kuu
aibk�ub

k C Ku˛
aibk�˛

b
k C Kuˇ

aibk�ˇ
b
k C Ku�

aibk��
b
k D Ra

i

K˛u
aibk�ub

k C K˛˛
aibk�˛

b
k C K˛ˇ

aibk�ˇ
b
k C K˛�

aibk��
b
k D Sa

i

Kˇu
aibk�ub

k C Kˇ˛
aibk�˛

b
k C Kˇˇ

aibk�ˇ
b
k C Kˇ�

aibk��
b
k D Ta

i

K�u
aibk�ub

k C K�˛
aibk�˛

b
k C K�ˇ

aibk�ˇ
b
k C K��

aibk��
b
k D Ua

i :

(40)

5.3 Implementation

A new finite element solver was written in Matlab software. Hexahedral finite
elements with 8 nodes and 27 integration points were used for iterative solution of
Eq. (40). Iterative process is terminated when residual (disequilibrium) is less than
a tolerance times a reference value

�
�R

�
� < 0:00001Rref and when the increment

of displacements and slopes is less than the tolerance times a reference value
k�uk < 0:0001uref.
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Here R is vector of residuals

R D

0

B
B
@

R
S
T
V

1

C
C
A ; (41)

�ū is vector of increments of displacements and slopes

�u D

0

B
B
@

�u
�˛

�ˇ

��

1

C
C
A ; (42)

and k k is a vector norm (
�
�R

�
� D

qX
R
2

i ). Rref and ūref are reference values, Rref

is vector of restoring loads corresponding to element internal loads at nodes with
imposed displacement constraints and uref D kuk where

u D

0

B
B
@

u
˛

ˇ

�

1

C
C
A : (43)

6 Identification of Material Parameters for Small Strains

6.1 Couple Stress Theory for the Planar Problem

For the illustration, let us consider an elementary volume in equilibrium for a planar
problem (Fig. 1). In accordance with balance Eq. (6a, 6b), the following is true for
the given coordinates:

�¢13 C ¢31 C @m12

@X1
C @m22

@X2
C @m32

@X3
D 0: (44)

Let us consider a beam undergoing pure bending around X2 axis. Figure 2 presents
schematically inner resultants acting on the section of the beam. Normal stress
distribution contributing to a positive value of the classic moment M2 for the given
coordinates and positive direction of the couple stresses for the given coordinates
are depicted below.

For the case of small linear strains, we operate with displacements ui and
rotations �i D 1

2
2ijk

@uk
@xj

instead of displacement rates and spins.
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Fig. 1 Positive directions of
the shear stresses and couple
stresses in a planar problem

Fig. 2 Stress and couple
stress distribution in pure
bending

The overall bending moment in the beam cross section can be calculated as

M2
full D

“

S

.¢1x3 C m12/dx2dx3; (45)

M2
full D M2 C

“

S

m12dx2dx3: (46)

6.2 Discrepancy Between Heterogeneous and Homogeneous
Models Within the Conventional Elasticity

Let us consider linear elastic behavior of a composite beam with one family of
fibers aligned along the beam axis. Such a specimen can be modeled as a hetero-
geneous structure characterized by elastic constants of constituents and a specific
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arrangement and size of fibers. Also, it can be modeled using a homogenized
anisotropic (transversely isotropic) hyperelastic model. In this case the tensile
stiffness of the specimen in the preferred direction is uniformly “smeared out”
throughout the section of the model. The corresponding elastic modulus in the
direction of fibers can be obtained by the rule of mixtures:

Ehom D �
1 �  f

�
Em C  f Ef ; (47)

where  f is the volume fraction of fibers. As it can be seen from (45), the
homogeneous model is characterized by elastic constants of constituents and their
volume fractions only, with no regard to disposition and distribution of fibers in the
given composite.

Let us compare the pure bending behavior of these two beam models. If the
heterogeneous model is subjected to bending along the fibers, we can express the
overall bending moment in the section as M2 D Dhetk, where k D � @2u3

@x21
is the

curvature of the beam and Dhet is the bending stiffness of the model along the
preferred direction:

Dhet D EmJm C EfJf; (48)

where Jm and Jf are overall moments of inertia of the sections of matrix and fibers,
respectively.

If the homogeneous model is subjected to bending along the direction of the
reinforcement, we can express the overall bending moment in the section as
M2 D Dhomk, where k is the curvature and Dhom is the bending stiffness of the
homogeneous model:

Dhom D EhomJ; (49)

where J is the moment of inertia of the whole cross section of the beam.
If we substitute Ehom from (47), we obtain

Dhom D ��
1 �  f

�
Em C  f Ef

�
J: (50)

If we compare (50) and (48), it is obvious that the homogenized model cannot
successfully simulate bending behavior of the heterogeneous model. The bending
stiffness Dhom takes into account volume fraction of fibers and properties of the
constituents only but does not include moments of inertia of constituents. By
replacing the heterogeneous model with a transversely isotropic one, we preserve
the same tensile stiffness but not the same bending response, as illustrated below
(Fig. 3).

Bending stiffness Dhom can be larger or smaller than the actual stiffness Dhet of
the corresponding heterogeneous model, depending on the distribution of the fibers
with respect to the neutral plane (middle plane in case of symmetrical cross section).
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Fig. 3 Sections of the
models with the same value
of Dhom but different Dhet

The homogeneous model which describes bending behavior in accordance with the
heterogeneous one more accurately can be formulated using couple stress theory.

6.3 Parameter k3 for the Equivalent Model
of the Fiber-Reinforced Beam

We continue to consider a beam reinforced by parallel fibers subjected to pure
bending with respect to X2 axis (Fig. 4). For simplicity, material incompressibility
is assumed. The goal is to construct an equivalent homogeneous anisotropic model
within the constrained Cosserat continuum. Such equivalent model must correctly
simulate the response of the original structure under both bending and tension. We
begin with simplifying the governing equations for the couple stress continuum
under small-strain assumptions.

In the case when fibers are initially aligned along the X1 direction, it holds in
general:

A D
0

@
1

0

0

1

A ; (51)

F D

0

B
@

1C @u1
@X1

@u1
@X2

@u1
@X3

@u2
@X1

1C @u2
@X2

@u2
@X3

@u3
@X1

@u3
@X2

1C @u3
@X3

1

C
A ; (52)

b D

0

B
@

1C @u1
@X1

@u2
@X1
@u3
@X1

1

C
A : (53)

Overall bending moment Mfull acting in the cross section of the model is given by
(45). The constitutive relations for an incompressible material given in the general
form are

�.ij/ D
�

FiRFjS

�
@W

@CRS
C @W

@CSR

�

C �
GiRFjS C GjRFiS

� @W

@�SR

�

C pıij; (54a)
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Fig. 4 The beam in the
reference configuration

mji D 2

3
eikm

@W

@�PR
FmP

�
FjRbk C FkRbj

�
(54b)

where p is hydrostatic pressure. In this case,

W D 


2
.I1 � 3/C k2.I4 � 1/2 C k3I6; (55)

where unmodified invariants I1, I4, I6 can be used.
Let us linearize constitutive relations (54a, 54b) for the case of small strains. The

basic assumption is that all partial derivatives of displacements are much smaller
than one. If we follow the notation of [17], we can state that all @ui

@xj
are of the order

of magnitude O(e). Consequently the strain energy density W has to be of the order
O(e2), and terms of higher order can be discarded.

Symmetric stresses have to be of order O(e). If we leave out higher-order terms
in (54a), the following expression is left:

�.ij/ D @W

@Cij
C @W

@Cji
C ıijp: (56)

It should be noted that if no volumetric deformation occurs and we use strain energy
density function such as (55), in which no coupling between C and � is present,
the symmetric stresses (56) do not depend on the fiber curvature. Therefore the
expressions for normal stresses are identical with those in the classical (Cauchy)
theory of transversely isotropic materials. If we compute � (11) for the case of
bending of the beam along the fiber direction using (55) and (56) and then neglect
all the quantities of the order of magnitude higher than 0(e), we obtain

�.11/ D .3
C 8k2/ "11 C p; (57)

where "11 is tensile strain and .3
C 8k2/ is equivalent of Young’s modulus of the
material in the preferred direction. We can rewrite it as

�.11/ D Ehom"11 C p: (58)

If shear is absent and plane X1 X2 coincides with the neutral plane of the beam, the
longitudinal strain "11 is expressed via curvature k as "11 D k � X3, where k D � @2u3

@x21
.
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Then we can rewrite (54b) as

�.11/ D EhomkX3 C p: (59)

Now let us consider deviatoric couple stresses. For the given problem, we have

I6 D �11
2 C�21

2 C�31
2 (60)

@I6
@ƒi1

D 2ƒi1: (61)

Relation (5) gives

�31 D F13
@2u1
@X21

C F23
@2u2
@X21

C F33
@2u3
@X21

: (62)

If we assume small strains and consider only bending with respect to axis X2, it
holds

�31 D F33
@2u3
@X21

� @2u3
@X21

: (63)

Employing relation (8b) and (63) and leaving out the higher-order terms, we obtain

mlin
12 D �8

3
k3�31 D �8

3
k3
@2u3
@X21

(64)

Using the notion of curvature introduced above, we can reformulate (64) as

mlin
12 D 8

3
k3k: (65)

Employing (45), (59), and (65), we obtain

Mfull
2 D

“

S

�

Ehomk � X3
2 C 8

3
k3k

�

dX2dX3: (66)

As the beam curvature and the material parameters are constant throughout the
section, the following is valid:

Mfull
2 D Ehomk �

“

S

X3
2dX2dX3 C 8

3
k3k �

“

S

dX2dX3: (67)
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The bending moment then equals

Mfull
2 D Dfull

hom � k; (68)

where the Dfull
hom can be identified as the bending stiffness of the model:

Dfull
hom D EhomJ C 8

3
� k3 � S; (69)

where S is the beam cross section area.
The constant k3 is then determined from the condition Dfull

hom D Dhet as

k3 D 3

8

EmJm C EfJf � EhomJ

S
D 3

8

Dhet � Dhom

S
: (70)

This formula is analogous to the rule of mixture in application to the bending
stiffness. The effective bending stiffness of the initial heterogeneous model is
“smeared out” uniformly throughout the section of the homogeneous model by
means of the couple stress theory.

The condition Dfull
hom D Dhet is equivalent to the condition of equality of the bend-

ing moments acting on the cross sections of the composite beam and correspondent
homogeneous beam. The similar logics is used in [27] where the authors employ
the condition of equal strain energies stored in the heterogeneous and correspondent
homogeneous representative volumes (for the case of homogenization of cellular
materials). From formula (67), it can be seen that the additional material parameter
k3 serves to augment the bending stiffness of the couple stress continuum beam
without interfering with its tensile stiffness. In this sense, the term with k3 can be
understood as the difference between the bending stiffness supplied by the averaged
Young’s modulus and the actual bending stiffness of the heterogeneous structure. If
the fibers are thin and densely and uniformly distributed, the constant k3 tends to
zero.

7 Numerical Example of Bended Beam

On the basis of the formulation given in Sect. 5, the finite element code has been
written in Matlab software. As an illustrative example, let us consider a fiber-
reinforced composite beam with two rows of unidirectional fibers (cross section is
schematically presented in Fig. 3 to the left) undergoing four-point bending (Fig. 5).
As the fiber diameter is comparable to the dimensions of the specimen, size effect
is to be expected. The given specimen is modeled in three different ways:

– Via heterogeneous FE model with explicitly modeled fibers embedded in matrix
– Via equivalent homogeneous transversally isotropic FE model in accordance with

the classic elasticity (later referred to as classic model)
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Fig. 5 Four-point bending

– Via equivalent homogeneous transversally isotropic FE model in accordance with
the couple stress theory and formulations given in Sects. 4 and 5 (later referred
to as CST model)

7.1 A Thin Composite Beam with the 0ı Fiber Declination:
Four-Point Bending

Let us consider a fiber-reinforced composite with two rows of unidirectional fibers
with the dimensions 40 � 2 � 1 mm. Fiber diameter is d D 0.1 mm, distance from
the middle plane to fiber center is c D 0.35 mm, and the fiber spacing in each
row is s D 0.1 mm. Material constants of the constituents include elastic modulus
Ef D 2100 MPa and Poisson ratio 
 f D 0.3 of fibers and matrix parameters for neo-
Hooke material law 
D 2 MPa, d D 0.0001 MPa�1. The strain energy potential for
the rubber matrix is given as follows:

W D 


2
.I1 � 3/C 1

d
.J � 1/2: (71)

The conventional model with fiber direction defined by vector A is based on the
strain energy density

W D 


2
.I1 � 3/C k2 .I4 � 1/C 1

d
.J � 1/2: (72)

Then it holds for stress

�ij D 2FikFjl
@W

@Cikl
: (73)

The shear modulus 
 is the same as used for matrix in the heterogeneous model.
For the given problem with linear elastic fibers under small strains, the constant k2

can be calculated from the condition of the same average tensile stiffness of the
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Fig. 6 Comparison of FE simulations of four-point bending using different constitutive models
(0ı fiber declination)

heterogeneous and homogeneous models in the preferred direction (see Appendix)
as k2 D 1

8
..1 �  f/ � Em C  f � Ef � 3
/ D 18:244MPa.

In the CST model, a new term I6 is added related to the curvature of the deformed
fibers. The corresponding hyperelastic anisotropic potential is as follows according
to (23):

W D 


2

�
I1 � 3

� C k2
�
I4 � 1

�2 C k3I6 C 1

d
.J � 1/2:

The objective is to set all the constants so that this model correctly simulates both
tensile and bending behavior of the given heterogeneous model.

According to (70) and the given data, we set the constant k3 D 2.1718 Pa � m2.
Constants 
 and k2 are the same as in the classical model used above. Results of all
the three simulations are compared in Fig. 6.

7.2 A Thin Composite Beam with 30ı Fiber Declination:
Four-Point Bending

The example above is a standard linear problem which can be solved analytically
with respect to the deflection which can be assumed constant throughout the beam
thickness. This simplicity occurs due to the fibers being aligned along the X1 axis.
In the present example, we consider the case when the fibers have 30ı declination
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Fig. 7 Comparison of FE simulations of four-point bending using different constitutive models
(30ı fiber declination)

angle which renders the problem unsolvable analytically. Dimensions of the com-
posite structure are given as follows: 240 � 25.4 � 5 and 8 mm. Fiber diameter is
d D 0.45 mm, distance from the middle plane to fiber center is c D 1.45 mm, and the
fiber spacing in each row is s D 0.65 mm.

Material constants of the constituents include elastic modulus Ef D 2100 MPa
and Poisson ratio 
 f D 0.3 of fibers and matrix parameters for Neo-Hooke material
law 
D 2 MPa, d D 0.0001 MPa�1. The plate is loaded as shown in Fig. 5.

The material constants for the “classic” and “CST” models are analytically
derived in the similar way as outlined in 7.1 and Appendix. The constant k3 is
determined using (70).

The values of the material parameters obtained for the expression (72) are
as follows: k2 D 12.75 MPa and k3 D �25.27 Pa � m2. Negative value of the
constant k3 indicates that the bending stiffness of the classical homogeneous model,
generated by the averaged tensile stiffness of the heterogeneous beam, is higher
than the real bending stiffness of the beam. So the CST model is constructed
by augmenting the classic model with the additional term that, roughly speaking,
subtracts the excessive bending stiffness without in any way affecting tensile
properties of the model (which are in complete agreement with the heterogeneous
structure already). Importantly, the fiber direction unit vector is now defined as
(0.866, 0, 0.5)T. The results of the simulations are presented (Fig. 7).
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8 Conclusion

The constitutive equations published in Spencer and Soldatos [17] are used to
formulate a specific form of strain energy density function on the basis of constraint
Cosserat theory (in which couple stresses are introduced and displacements or
displacement rates are the only independent unknowns). This approach leads to
second derivatives of displacement rates occurring in the finite element formula-
tions. A specific form of strain energy density was proposed with an additional
term correcting the effective bending stiffness of the continuum. The higher-order
continuity required on element boundaries is solved by means of C1 elements, and
parameters of the model are determined on the basis of fictitious experiments.
With the example of the beam under bending, it is shown that the discrepancy
between the classical homogeneous model and a heterogeneous model including
dimensions and topology of the fibers can be largely overcome by the presented
approach. The mentioned example is considered for the case of the small strains.
The further verifications of the model and the finite element code are matters of
ongoing research.
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Appendix

The material parameter k2 can be determined under condition that the tensile force in
the direction of fiber remains the same in both the homogenous and heterogeneous
models under uniaxial tension Phet D Phom.

Consider A D
0

@
1
0
0

1

A and uniaxial tension in the direction X1. We consider

small tensile strains in the fiber direction; therefore linearized constitutive equations
might be used. �ij D 2FikFjl

@W
@Cikl

is general constitutive relation for incompressible
hyperelastic material (hydrostatic pressure is absent). The strain energy density is
given by W D 


2
.I1 � 3/Ck2.I4 � 1/2. The right Cauchy–Green deformation tensor

is C D
0

@
	21 0 0

0 	22 0

0 0 	23

1

A ; and incompressibility condition holds 	1	2	3 D 1, where

	1,	2,	3 are principal stretch ratios.
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Consequently, we can write that

�hom
11 D 


�

2	2 C 1

	

�

C 4k2
�
	4 � 	2

�
(74)

where œ D œ1 is the stretch ratio in the direction of fiber.
For the small strains, it takes form

�hom
11 D .3
C 8k2/ � "11 D E1

hom � "11: (75)

The tensile force acting on the section will be

Phom D
Z

S
�hom
11 dS D S � �hom

11 D S � .3�C 8k2/ � "11: (76)

As to the heterogeneous model, the tensile force in linearized case is as follows:

Phet D
Z

S
�het
11 dS D S � ..1 �  f/ � Em C  f � Ef/ � "11; (77)

where  f is the fiber volume fraction and Em and Ef are matrix and fiber moduli.
Consequently, we have condition

.3
C 8k2/ � "11 D ..1 �  f/ � Em C  f � Ef/ � "11; (78)

and so it follows that

k2 D 1

8

��
1 �  f

� � Em C  f � Ef � 3

�
: (79)
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Towards Fiber Bundle Models for Composite
Pressure Vessels

Jörg B. Multhoff

Abstract Finite element models for composite pressure vessels (CPV) are usually
based on the assumptions of the classical laminate theory (CLT). In the CLT, the
composite laminate is represented by a stack of homogeneous plies. Each ply
is described by thickness, material orientation angle, and anisotropic mechanical
properties. For filament wound CPV, each layer is frequently modeled by two
unidirectional plies with opposite fiber angles. Ply thickness and fiber angle in each
layer vary throughout the laminate depending on vessel geometry and fiber path.
The thickness buildup due to the band overlap is usually described by analytical
or semi-empirical formulas. Close observation of the actual fiber architecture of
filament wound CPV reveals that this model is only a convenient simplification. The
reality can be modeled more closely by an enhanced filament winding simulation
which tracks the deposition of a finite-width band on the winding surface. However,
it is not clear how to transform this detailed laminate information into a suitable
finite element model based on CLT. The classical modeling approach uses layered
shell or layered solid elements to model the laminate. This requires the use of a
certain number of plies, each with unique angle and thickness within every layered
finite element. However, a mesh layout representing the detailed description of
the real laminate within the framework of CLT is hard to envision. In the present
contribution, it is proposed to model the filament wound band as a group of fiber
bundles following the real fiber path on the winding surface. The fiber bundles are
embedded in a structured mesh representing the matrix material. This fiber bundle
approach may be the appropriate bridge between micro- and macro-descriptions
of the composite materials resulting from filament winding. In this contribution,
the main idea of the fiber bundle approach is motivated, explored, and compared
with modeling strategies based on layered solid elements. The fiber bundle approach
may be extended to filament wound, fiber-placed, or braided structures with partial
surface coverage which are even more difficult to describe by CLT.
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1 Introduction

The importance of gas storage for mobile applications is steadily growing. This
leads to a rising demand for light-weight composite pressure vessels (CPVs).
However, the behavior of composite structures is unintuitive and not easy to predict.
The safe and efficient design of CPVs therefore requires thorough analysis. This is
in particular true for high performance applications like hydrogen tanks for mass
market automotive applications [1].

Important features of composite materials and filament winding are described
briefly to give the necessary background for the discussion of finite element analysis
methods for CPV and to motivate the present work.

1.1 Fibrous Composite Materials

Structural composites are generally defined as materials consisting of two or more
phases on a macroscopic scale, whose mechanical performance are designed to be
superior to those of the constituent materials acting independently [2]. In particular,
fiber-reinforced plastic materials consist of stiff and strong fibers embedded in a soft
matrix material. Material in fiber form exhibits the highest tensile strength of all
known material forms. However, the strength of the fiber is reduced with increased
length due to the higher probability of a local weakness. Embedding a multitude
of parallel fibers at high volume fraction in a soft matrix material with sufficient
adhesion enables them to share loads and to mitigate the consequences of local
failure, among other benefits.

It is important to note that this unidirectional fiber-reinforced composite material
has excellent stiffness and strength properties only in fiber direction, Tables 1 and
2. In general, it is necessary to combine multiple stacked layers of unidirectional
material with different fiber directions in a laminate to accommodate all loads acting
on a structure. The resulting laminate properties usually still show a high directional
dependency. Recognizing that the matrix dominated strength properties are much
less certain and reproducible than the strength in fiber direction, it is clear that
the design should generally not depend on them strongly. Realizing the benefits of
fiber-reinforced composite materials for demanding structural application requires
a considerably higher analysis effort than the use of traditional structural materials.

Table 1 Illustrative
unidirectional CFRP elastic
properties (in-plane) [3]

Description Symbol Value

Parallel modulus E1 171:4GPa

Transverse modulus E2 9:08GPa

Shear modulus G12 5:29GPa

Major Poisson’s ratio 
12 0:32

Excellent stiffness properties exist only in fiber
direction
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Table 2 Illustrative
unidirectional CFRP strength
properties (in-plane) [3]

Description Symbol Value

Parallel tensile strength RC

1 2326:2MPa

Parallel compressive strength R�

1 1200:1MPa

Transverse tensile strength RC

2 62:3MPa

Transverse compressive strength R�

2 199:8MPa

Shear strength R6 92:3MPa

Excellent strength properties exist only in fiber direction

1.2 Filament Winding

Filament winding is one of the oldest manufacturing methods for structural compos-
ites [4]. Wet winding has the advantage of using the raw materials, fiber and resin,
in its direct form without intermediate processing steps. The manufacturing speed
measured in mass per time is among the highest in comparison to other methods. In
sum, this contributes to relatively low manufacturing costs for filament wound com-
posite parts compared to other methods [5] and explains its continued importance.

In the filament winding process, multiple rovings or tows, each composed of
thousands of individual filaments, are formed to a flat band and are impregnated with
a matrix material, usually a resin. A typical fiber volume fraction Vf is 60 %. The
band is continuously deposited on a rotating mandrel, eventually covering the entire
surface, Fig. 1. The resulting winding pattern consists of multiple cycles; in each
cycle, the band follows a specific path along the winding surface, Fig. 2. This path
is characterized by a certain angle ˛ of the band and thus the fibers relative to the
meridian of the winding surface. Usually the cylindrical part of the vessel is covered
in such a way that the resulting layer is composed of two bands with opposite fiber
angles (C˛= � ˛) at each location. However, considerable band overlap occurs in
the domes leading to a characteristic thickness build-up at the polar openings.

Notable characteristics of the filament wound structure are the distribution of
the winding angle and the layer thickness along the winding surface as well as the
crossing points that lead to a certain interweaving of the layers, Fig. 1. The details
depend on the winding pattern. Usually, winding angle and thickness are constant
in the cylindrical part of the vessel and assume minimum values (˛0, t0).

1.3 Analysis of Composite Pressure Vessels

Different analysis methods are available and in use for CPVs [6]. All have to
take into account the special features arising in the filament wound composite
structure as described before. Netting analysis deserves special mention as the
first analysis method for composite pressure vessels, introducing the important
concept and design principle that the fiber network takes all the loads [5]. However,
only finite element analysis has the potential to model all relevant effects with
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Fig. 1 Filament winding: Multiple parallel rovings of unidirectional material are placed on a
rotating mandrel in a prescribed pattern (partial winding shown for clarity). The resulting laminate
possesses characteristic fiber angle and layer thickness distributions as well as a certain interweave
of plies and associated fiber crossing points

Fig. 2 Fiber path (left) and unidirectional band (right) on the winding surface. Only three cycles
are shown for clarity. Full surface coverage results in a characteristic winding pattern

sufficient accuracy. Finite element methods for composite materials and structures
are discussed in [7]. A review of finite element analysis methods specifically for
filament wound CPVs was given in [8].

2 Filament Winding Simulation

The effects of the filament winding process on the resulting fiber architecture is
not self-evident and requires analysis by filament winding simulation. The filament
winding simulation was originally developed to generate suitable winding patterns
and to program the automatic filament winding machine [5].
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2.1 Fiber Path

The wet fiber can be deposited on the surface only on—or close to—a geodesic path
without slipping. On a surface of revolution with local radius r, the geodesic path is
given by Clairaut’s theorem [4, 5]:

r sin.˛/ D const: (1)

The fiber is tangent at the polar opening with radius rp, i.e., ˛.rp/ D 90ı. These
layers are called helical layers. For geodetic winding, the fiber angle at each radius
can be evaluated by Eq. (2).

˛.r/ D arcsin

 rp

r

�
(2)

Figure 3 shows an example for this fiber angle distribution. Some deviation from
this path is possible if the surface friction or material adhesion is exploited.

Layers with a constant winding angle close to 90ı are called hoop layers and can
only be applied in the cylindrical part of the vessel. The polar opening radius of these
layers is equal to or close to the radius in the cylindrical part of the vessel. Practical
designs require multiple helical and hoop layers each with different winding angle
˛0 and corresponding polar opening diameters.
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Fig. 3 Example of the fiber angle distribution along the meridian path according to Eq. (2). The
fiber angle relative to the meridian is minimal in the cylindrical part (˛0) and assumes a value of
90ı at the polar opening
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Fig. 4 Example of the layer thickness distribution along the meridian path. The layer thickness
is minimal in the cylindrical part (t0) and increases in the dome towards the polar opening due to
band overlap. This effect depends on the fiber bandwidth w and the winding pattern

2.2 Layer Thickness

One feature of the continuous filament winding process is that each parallel of the
winding surface is crossed by the same number of fibers. This results in a constant
layer thickness in the cylindrical part of the vessel. However, the layer thickness
increases with decreasing vessel radius. This is a consequence of the progressive
band overlap that can be easily recognized in Figs. 1 and 6. This behavior can be
approximately described by Eq. (3) up to a certain distance from the polar opening.
The resulting layer thickness distribution is shown in Fig. 4.

t.r/ D t0
r0 cos.˛0/

r cos.˛/
(3)

Improved prediction of the layer thickness is possible by empirical or analytical
methods [6] and application of the enhanced filament winding simulation.

2.3 Enhanced Filament Winding Simulation

The main differences between the real fiber architecture of filament wound vessels
and the idealized theory as described above can be recognized by explicit consider-
ation of the finite fiber bandwidth w in an enhanced version of the filament winding
simulation.
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Fig. 5 Representation of the filament wound band by triangular patches. (Only three cycles are
shown for clarity). Tho local thickness is computed by accumulation of these triangular patches at
sampling points on the winding surface [9]

Fig. 6 Overlap of the unidirectional band in the dome (left) and near the polar opening (right). The
fiber angle relative to the meridian is not unique at a given parallel due to the finite fiber bandwidth
w

After computing the fiber path, the geometry of the fiber band, usually consisting
of multiple parallel fiber strands, is modeled, Fig 2. The fiber band is represented
by patches of triangles connecting consecutive bounding points, Fig. 5. The local
thickness is computed by accumulation of band patches at sampling points on the
winding surface. Likewise the local laminate stacking sequence at any sampling
point can be computed. Details are presented in [9].
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2.4 Local Laminate Properties

The main results of the simulated band deposition on the winding surface are
consistent with observations that can also be made with actual vessels manufactured
by filament winding. The differences between the real laminate structure and the
idealized theory are mainly due to the finite width w of the filament band. They are
reduced with decreasing width of the band. Additional differences may exist due to
fiber bridging effects, band taper, band splitting, etc. (Fig. 6).

The main observations are:

1. The effective thickness distribution along the meridian direction is not continu-
ous as shown in Fig. 4 but stepped due to the band overlap, Fig. 7.

2. The thickness at a given meridian position in circumferential direction is not
constant but variable and depends on the winding pattern.

3. The local fiber angle within a layer at a given meridian and circumferential
position is not constant in the circumferential direction (Fig. 6) and is in general
not given by Clairaut’s theorem as shown in Fig. 3

Fig. 7 Example of the stepped thickness distribution along a meridian path. The thickness build-
up in the dome towards the polar opening is due to the increasing band overlap. The thickness
distribution is not axisymmetric but depends on the winding pattern
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In sum, the important local properties fiber angle and layer thickness possess a
discontinuous distribution in the laminate. For optimized composite pressure vessel
designs, it is of high interest to examine the effects of these observations on the
structural behavior.

2.5 Representation of Local Properties in the Analysis Model

The transfer of the laminate data generated by the enhanced filament winding
simulation into the finite element model may proceed as follows: In the simplest
case, the grid points representing the winding surface are used as nodal points of
the finite element discretization. The finite elements may be shell or solid elements.
However, only solid elements allow for the required detailed analysis. In the case
of solid elements, the grid points represent the nodes on the inner surface, and the
nodes on the outside surface are generated using the normal vectors of the winding
surface and the thickness data. The required thickness information for each node is
taken from the accumulated band thickness at the nodal points. Depending on the
element type, the internal laminate description may allow for multiple layers with
constant thickness and constant angle of principle material direction or for variable
thickness layers with variable angle of principle material direction. In the latter case,
the thickness and angle data usually have to be input at the nodal points. However,
most finite element formulations require that the layers are continuous within the
element and thus that the number of layers is the same at all nodes.

It turns out that this may not be the case for general filament wound structures.
The easiest solution to this problem is to use a sampling point in the center of
the element to record the local laminate stacking sequence and to use this data to
define the laminate corresponding to the entire element. This may represent the real
stiffness and strength distribution poorly. A more accurate approach may be to use
the location of the in-plane integration points of the element as the sampling points,
e.g., for 4�4 in-plane Gauss integration. Different laminate stacking sequences with
individual number of layers would result at the in-plane integration points, making
special element formulations necessary.

In general, the finite element discretization is not predetermined by this scheme
but can be adjusted to fit the accuracy to practical needs. It is only necessary to define
the location of the desired sampling points on the winding surface and to map these
sampling points to the appropriate finite elements. However, a mesh layout which
respects the detailed description of the real laminate as shown, e.g., in Fig. 6 within
the framework of a laminate theory is hard to envision.

To avoid the mentioned problems, in the present contribution it is proposed to
model the filament wound band as a group of fiber bundles following the real fiber
path on the winding surface. The fiber bundles are embedded in a structured mesh
representing the matrix material as described below.
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3 Finite Elements for Filament Wound Structures

The finite element analysis of composite laminates based on the assumptions of
the classical laminate theory (CLT) is described, e.g., in [7]. The most appropriate
representation, especially for thick-walled vessels, can be achieved using layered
solid elements, Fig. 8. In general, multiple elements in thickness direction are
necessary [8]. Shell elements are beyond the scope of this discussion.

3.1 Layered Solid Element

The concept of the layered solid element is reviewed in two versions for constant
and for variable layer thickness. Aspects of geometric nonlinearity and element
technology are neglected for simplicity. Only the formulation of the element
stiffness matrix is considered. The notation of the original sources is preserved.

3.1.1 Constant Layer Thickness

One example for the formulation of the layered solid element for constant thickness
layers is proposed in [10]. Using the isoparametric concept, the stiffness matrix
ŒKF� can be evaluated by Eq. (4) in terms of the strain interpolation matrix ŒBF�, the
constitutive matrix ŒEI0�, and the Jacobian matrix ŒJ� in the standard way [11].

ŒKF� D
Z C1

�1

Z C1

�1

Z C1

�1
ŒBF�T ŒEI0�ŒBF� detŒJ� d� d� d� (4)

The integral can be evaluated by numerical integration. However, the constitutive
matrix ŒEI0� is not continuous in the element but is different from layer to layer due to
the necessary transformation from the principle directions of the orthotropic mate-
rial to the global coordinate directions. This is handled by splitting the integration
limits through each layer. For the application of the Gauss quadrature formula, the
integration limits within each layer should be from �1 to C1. This is achieved by a
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Fig. 8 Representation of the filament wound composite pressure vessel wall using CLT [10]. Each
layer is represented by two plies with opposite fiber angle ˛
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change of variable for the thickness coordinate � as formulated in Eq. (5).

� D �1C 1

t

2

4�hk.1 � �k/C 2

kX

jD1
hj

3

5 (5)

Using this equation, the thickness coordinate �k in layer k varies from �1 to C1
and the change of variable involves effectively a scaling factor for the layer thickness
hk relative to the total element thickness t:

d� D
�

hk

t

�

d�k (6)

With this substitution for d� the stiffness matrix in Eq. (4) can be evaluated as
the sum over all n layers contained in the element.

ŒKF� D
nX

kD1

Z C1

�1

Z C1

�1

Z C1

�1
ŒBF�T ŒEI0�ŒBF� detŒJ�

hk

t
d� d� d�k (7)

This formulation illustrates the idea of the layered solid element very well but is
of limited applicability for filament wound structures with variable layer thickness.

3.1.2 Variable Layer Thickness

An element formulation allowing for variable element thickness—among other
features—is proposed in [12]. Here only the integration scheme for the linear
stiffness matrix is considered. The element geometry is interpolated with trilinear
shape functions NNi. After the usual first isoparametric map, a second isoparametric
map for each layer is introduced, Fig. 9. The coordinates � D Œ�1; �2; �3�T of the first
map are interpolated in terms of the coordinates r D Œr1; r2; r3�T of the second map
using Eqs. (8) and (9). �i contains the coordinates of the layer under consideration.

� D
nnodeX

iD1
NNi�i (8)

NNi D 1

8
.1C r1r1i /.1C r2r2i /.1C r3r3i / (9)

The components of the element stiffness matrix KeIJ are evaluated by summation
over all layers nlay and over all integration points ngaus:

KeIJ D
nlayX

LD1

ngausX

gpD1
BT

I .�
L
gp/CLBJ.�

L
gp/ det J.�L

gp/ det JL.rL
gp/w

L
gp (10)
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Fig. 9 First and second isoparametric map for integration of layered elements [12]

Here, J and JL are the Jacobian matrix of the first and second map, and wL
gp are

the weighting factors of the integration point. B is the strain interpolation matrix
and CL is the constitutive matrix in layer L.

For the modeling of a filament wound structure with a stack of layered solid
elements with variable layer thickness, the total laminate must be mapped on the
laminate pertaining to the individual elements, Fig. 12. For practical applications,
this step requires special software [1].

3.2 Reinforcing Element

The application of truss elements embedded in solid elements for the modeling of
dry filament wound pressure vessels was proposed in [13]. This can be realized by
constraining the nodal degrees of freedom of the truss element to the degrees of
freedom of the embedding solid element. Thus, the displacement field of the solid
element imposes the displacements of all embedded truss elements.

The same effect can be achieved by classical reinforcing elements as described
e.g., in [14]. Here, the degrees of freedom of the reinforcing element fuII; vII ;wIIgT

are expressed in terms of the degrees of freedom of the embedding element
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Fig. 10 Reinforcing element: Reinforcement embedded in a solid element. The deformation of the
reinforcement fuII ; vII ;wIIgT is defined by the deformation of the embedding element fui; vi;wigT

fui; vi;wigT by way of the eight trilinear shape functions of the embedding element
Ni by Eq. (11), Fig. 10.
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Using this transformation, the stiffness matrix of the reinforcing element can
be expressed in terms of the degrees of freedom of the embedding element and
superimposed to form the total stiffness. Typically, the reinforcing element allows
the definition of multiple reinforcing members. This formulation is restricted to
unidirectional reinforcement in the direction of the reinforcing members. This may
be appropriate for the modeling of dry filament wound structures without use of
matrix materials or for analysis on the basis of the assumption of netting analysis.

For the modeling of a filament wound structure, the global fiber architecture
must be mapped on the reinforcing members in the individual elements. This can
be accomplished by post-processing the results of the enhanced filament winding
simulation.
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Fig. 11 Fiber bundle element, first variant with prismatic fiber bundle volume (left) and second
variant with one-dimensional representation of the fiber bundle volume (right)

3.3 Fiber Bundle Element

The idea of the fiber bundle element is to form a synthesis of the layered element and
the reinforcing element as a practical meso-level model for the fiber architectures
arising from filament winding or similar manufacturing methods.

In a first variant, the geometry of each fiber bundle is modeled by a prismatic
shape that can be mapped on a cube. This variant is similar to the layered element
with variable layer thickness as described before but has a generalized geometry of
the second isoparametric map, Fig. 11. �i in Eq. (8) now contains the coordinates of
the fiber bundle under consideration. This variant of the fiber bundle element may
use the same Gauss integration formula as the layered element (Fig. 12).

In a second variant, each fiber bundle is modeled by a volume simply computed
from length and cross-section area. This variant is similar to the reinforcing element
described before but allows the alternative use of a one-dimensional or a three-
dimensional constitutive model. In the latter case, the reinforcement is not purely
unidirectional. This variant could use a one-point integration rule.

The components of the element stiffness matrix for both variants are evaluated
as follows:

KeIJ D
nbundleX

BD1

nipX

ipD1
BT

I .�
B
ip/CBBJ.�

B
ip/ det J.�B

ip/ det JB.rB
ip/w

B
ip (12)

The differences between the two variants are the number of integration points,
the effective formulas for the Jacobian matrix of the second isoparametric map JB

and the weighting factor wB
ip of the integration points. CB is the constitutive matrix

for the fiber bundle B. For both variants, an additional contribution may be added to
represent the effect of the embedding matrix material.
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Fig. 12 Cross section of finite element model based on layered solid elements [1] (Two elements
in thickness direction shown for clarity). Each element has individual properties to describe the
laminate stack. Two computational layers with opposite fiber angle are used to represent one
filament wound layer. The ply drop-off can be modeled using variable layer thickness

Fig. 13 Typical layer-wise evaluation of finite element results [1]. An axisymmetric stress
distribution is usually assumed. The fiber bundle model promises more detailed results, especially
in the vicinity of the polar openings of the composite shell

The first variant may be more costly than the second variant due to the higher
number of integration points. However, evaluation of the relative efficiency is
subject to verification of the element behavior and requires more research (Fig.13).
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4 Conclusions

The enhanced filament winding simulation confirms the observation that filament
wound composite pressure vessel structures possess discontinuous fiber angle and
layer thickness distributions. This poses difficulties for the accurate modeling
using layered elements based on the assumptions of the CLT. Consideration of
the implementation of layered solid elements and reinforcing elements motivates
the formulation of a fiber bundle element that may be more effective for the
analysis of filament wound structures. Implementation of this concept is proceeding
and requires further work in the infrastructure of the enhanced filament winding
simulation and in testing of the fiber bundle element. The fiber bundle approach may
be the appropriate bridge between micro- and macro-descriptions of the composite
materials resulting from filament winding and may be extended to structures arising
from fiber placement and braiding processes. The results are relevant for the safe
and economic design of optimized high pressure hydrogen tanks for automotive
applications.
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A Macro Model for 3D Fiber-Reinforced
Polymer Composites

Pedro V. Marcal, Jeffrey T. Fong, and Nobuki Yamagata

Abstract A finite element Macro Model is proposed for the analysis of continuous
and discontinuous 3D fiber-reinforced polymer composites (FRPCs). The Macro
Model is made by modeling the matrix and each fiber layer as a parallel and
geometrically similar elements, respectively. The yield strength of the material is
modeled by an elastic-plastic Mises material with linear work-hardening. The fiber
yielding is modeled by an additional negative work-hardening curve with values
approaching that of its Young’s modulus to simulate failure after the maximum
plastic strain is reached. A series of case studies is used to illustrate the facets of
the model and compare the results with experiment. In most cases, and using carbon
fiber, it was found that premature failure occurred by fracture. A fracture analysis
model was proposed as an extension to the model by introducing a numerical
approximation of the classical fracture mechanics theory.

1 Introduction

A fiber-reinforced polymer composite (FRPC) has a very complex behavior that
spans several scales of physical dimensions due to the interaction between the
resin matrix and the fiber reinforcement. In this paper, we confine our model to
the simplest finite element model possible for the FRPC. We generalize the Macro

Contribution of the National Institute of Standards and Technology. Not subject to copyright.

P.V. Marcal (�)
MPACT Corp., 6643, Buttonwood Ave., Oak Park, CA, 91377 USA
e-mail: pedrovmarcal@gmail.com

J.T. Fong
Applied and Computational Mathematics Division, National Institute of Standards & Technology
(NIST), 100 Bureau Drive, Mail Code 8910 Gaithersburg, MD, 20899-8910 USA
e-mail: fong@nist.gov

N. Yamagata
Advanced Creative Technology Co., Ltd., 1-8-3 Shibuya, Shibuya-ku, Tokyo, 150-0002 Japan
e-mail: yamagata@actact.co.jp

© Springer International Publishing Switzerland 2016
P.V. Marcal, N. Yamagata (eds.), Design and Analysis of Reinforced Fiber
Composites, DOI 10.1007/978-3-319-20007-1_5

67

mailto:pedrovmarcal@gmail.com
mailto:fong@nist.gov
mailto:yamagata@actact.co.jp


68 P.V. Marcal et al.

Model first used by Buyukozturk and Marcal [1] for reinforced concrete. This model
allows us to simplify the problem to just one physical scale, and because of the
simplification in computing, we were also able to explore many complex material
failure modes in which the FRPC could fail.

There are two paths to failure caused by nonlinear material behavior of the fiber
that requires modification of the straightforward nonlinear elastic-plastic behavior
and that is due to the reduced maximum tensile strain compared to metals. In our
model, we account for this by introducing a negative work-hardening of the order
of the elastic modulus once the maximum tensile strain is reached.

In nonlinear analysis with the Macro Model, it was soon discovered that fracture
mechanics formed a lower bound to our models, particularly when carbon fiber
is used. In this study, we present our Macro Model and apply it to problems
with continuous fibers as well as discrete fibers. We compare our results with
experiments. The study is confined to layered planar fiber reinforcement, although
we provide a preliminary result that includes stitching in the third direction to
show that such problems in 3D can be handled by our model. It is noted here that
even though the FRPC layers may be in plane stress, a fracture mechanics analysis
involves fracture through the thickness so that it requires a full 3D analysis.

In the current work, we show the importance of 3D fracture mechanics in
predicting the failure of even simple specimens. We point out the difference between
fracture of continuous fiber composites (CFC) and fracture of homogeneous mate-
rials. Fracture initiation occurs along lines of fiber directions where the structural
weakness was discernible. This is a necessary part of the analysis since it often
differs from the intuitive paths that the loading would have suggested. In fact,
the necessity of assuming a failure path is so critical that we choose to call it the
“Principle of Feasible Failure Paths in FRC” (Feasibility Principle).

Finally, we conclude by studying how our model may be used to account for
discontinuous fibers. The increasing use of Hexcel’s HexMC [2] discontinuous fiber
composites (DFC) in the molding of complex structural parts is prompting interest
among research engineers. Experimental work by Boursier [2] has pointed out the
differences in failure between DFC and CFC. In particular, the theories used for
analysis of CFC do not seem to hold for DFC. If this were true, it would be an
important exclusion since many variants of DFC are being considered for use in
autos and commercial airliners. In this paper, we will show that our model can be
adapted to work for DFC.

2 Finite Element Macro Model

In this model, we represent the resin matrix and each fiber layer aligned in a
particular direction as a series of parallel elements occupying the same element
topology. These components are shown as a schematic in Fig. 1.

Each component is described simply as an isotropic elastic-plastic material. Their
individual nonlinear incremental stiffnesses are easily computed by any nonlinear
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Fig. 1 Schematic showing matrix (red) and three fiber components (C45, �45, and 90ı)

finite element program. The element stiffnesses contribute to the element topology
as a ratio of their volume. In this paper, we use the MPACT program [3] to model
the element topology with a 27-node hexa element. Then the element stiffness
for the resin matrix assumes an isotropic elastic-plastic behavior, while the fibers
are modeled directly as space bars that follow the displacement constraints of
the element assumed displacement function. It is conveniently simulated with an
anisotropic material behavior where the only significant stiffness lies along the fiber
direction. The elastic-plastic material was assumed to behave in an elastic-perfectly
plastic manner for an equivalent plastic strain corresponding to five times the strain
to first yield. Then it is assumed to fail by micro-cracking. The micro-cracking was
assumed to be represented by a negative work-hardening slope equal to 0.2 times
the Young’s modulus of the respective matrices or fibers. This 0.2 value was chosen
because it gave a smooth stable failure mechanism that was thought to represent
the strength support being still offered by the surrounding matrix material. Once the
element stiffnesses are calculated, the direct stiffness of the displacement method
takes over and the FEM follows the usual solution path.

The model has been applied to study fracture of continuous as well as discon-
tinuous fibers. The basic fracture model consists of three layers of planar elements
through the thickness. The first layer models the current depth of the initial crack
which is usually determined by the transverse butt joins of the layers which may
also be staggered (Fig. 2).

In the second layer, the thickness is assumed to be that thickness that the crack
propagates through. It is assumed to be equal to the thickness that includes all
the fiber directions plus the matrix resin thickness (this is also the layer thickness
assumed for the original cracked mesh depth, for convenience). The final layer is the
remaining depth for all the rest of the thickness, respectively. The three layers are
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Fig. 2 Deformed first cracked layer (not to scale)

Fig. 3 Deformed second cracked layer (not to scale)

sufficient to determine the fracture load by FEM and classic fracture mechanics.
The novelty in our approach is that we use our model to carry out the implied
differentiation in the classical theory by a numerical differentiation instead. In the
case of discrete fibers, we treated the fibers as being quasi-isotropic with an assumed
initial crack depth equal to four thicknesses of fibers and matrix. In our analysis,
we assumed a J-integral value of 80 J/mm. This is slightly lower than the value
measured in [4]. For our analysis of the fracture of a simple tension specimen,
we developed a mesh generator that aligned the mesh in the 45ı direction. The
experimental specimen did fracture in that direction (Fig. 3).

3 Case Studies with Macro Model

In the following, we demonstrate the versatility of our model by applying it to three
classes of problems with their own modes of material failure.
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Table 1 Material properties

Material T300/N5028 Tensile stiffness (GPa) Tensile strength (mPa)

Carbon fiber 220 3000
Poisson’s ratio 0.2
Epoxy 3.25 70
Poisson’s ratio 0
Volume ratios Each fiber 0.175 Matrix 0.3

In our first case study, we carry out a full nonlinear plane stress analysis with
the Macro Model. The results are compared with the numerical results of Tsai [5],
where he used a degradation model, which at the time was regarded as a useful
model.

We will illustrate this macro-mechanical approach by considering a plane stress
composite with carbon fibers in the 0ı, C45ı, �45ı, and 90ı angle to the x-direction.

To be specific, we will consider a carbon fiber epoxy composite, viz.,
T300/N5028.

The matrix material is assumed to behave in an isotropic manner. We represent
each layer of fiber in a given direction as an anisotropic material with its Young’s
modulus in the main fiber direction and much reduced values in the other orthogonal
directions. Note that the fiber assumption is made because it is the closest represen-
tation of a fiber in the MPACT finite element program, even though other programs
may have a more convenient model for a given layer of fibers. Similarly the elastic-
plastic behavior of the fiber is assumed to follow an isotropic Mises material. At
first, the elastic-plastic material is assumed to behave in an elastic-perfectly plastic
manner for an equivalent plastic strain corresponding to five times the strain to first
yield. Then it is assumed to fail by micro-cracking. The micro-cracking is assumed
to be represented by a negative work-hardening slope equal to 0.2 times the Young’s
modulus of the respective matrices or fibers. This 0.2 value is chosen because it
gives a smooth stable failure mechanism that represents the strength support being
still offered by the surrounding matrix material. We recall that the Mises plasticity
assumption with associated flow rule implies incompressible plastic straining.

Two load cases were studied. The cases were displacement controlled.
The first case is that of uniaxial loading, while the second applies an equally

tensile compressive displacement in orthogonal directions, respectively.
The material properties used are described in Table 1.

4 Details of FEA

Total applied strain in one direction D 25 %.
Incremental analysis with 20 equally spaced time steps.
Automatic controls were set to restrict changes to less than 0.2 % per increment.



72 P.V. Marcal et al.

Fig. 4 Finite element mesh

b.c.  e xx=25%         

b.c. u y=0   right edge b. c. u x=0

Direct sparse matrix solver.
Quadratic 9-node (2D analogue of the 3D quadratic 27-node) plane stress

elements were used.
This resulted in a mesh (Fig. 4) with a total of 45 nodes.
Eight elements were used for the matrix.
Eight elements were used for each fiber direction with the same element

connectivity as each matrix element, respectively.
Thus, giving 40 total elements.
A python program was developed to easily generate the superimposed element

model from a basic one material specimen.
The finite element model is shown below with boundary conditions (b.c.) applied

to the respective edge nodes.
b.c. Case 1 undefined e yy, Case 2 e yy D �e xx

5 Results, Case 1: Uniaxial Loading

The equivalent stress (sig_equiv) vs. uniaxial strain (exx) diagram is shown in Fig. 5.
The sig_equiv is equal to sig xx in the uniaxial loading case. The results from
progressive degradation (Tsai [5]) are also shown.

The sig yy is a small stress induced by the Poisson ratio effect on the 90ı fiber.
This is given by Fig. 6.

The average equivalent plastic strain is shown in Fig. 7. One of the drawbacks
of the superposing model is that it gives average values for all the quantities at the
nodes. The actual values for each fiber must be calculated from the applied strain in
a separate calculation or output for each element at its integration point. However,
the average values do give an indication of the total plastic strains. The inset scaled
plastic strain gives a better estimate of the early plastic straining.
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Fig. 5 Equivalent stress (sig_equiv) vs. uniaxial strain (exx)

Fig. 6 Transverse stress (sig_yy) vs. uniaxial strain (exx)

Fig. 7 Equivalent plastic strain vs. uniaxial strain

6 Discussion, Case 1: Uniaxial Loading

The maximum applied stress is shown in Fig. 5. This maximum load agrees with
that calculated by Tsai in the Progressive Degradation Model [5].

The diagram for the transverse stress sig_yy gives a good idea of the effect of
plastic yielding in the matrix. We note that there is a ratio of about 40 in the yield in
stress of the fiber to the matrix. The early plastic straining is all due to the matrix and
from the decreased value of the sig_yy shows that the negative work-hardening has
already kicked in for the matrix. However, as more strain is applied, the stiffness and
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the strength behavior are completely dominated by the fiber composite layers. Note
that the maximum average stress of 600 MPa is reached at an early applied strain of
about 5.5 % when the negative work-hardening stress for the C45ı and �45ı fiber
layers kicks in and the maximum load starts to decrease. Note that the maximum
load is a combination of the strength of the uniaxial fiber with the 45ı fibers,
and both are in the perfectly plastic regime when the maximum load is reached.
However, the choice of the point at which the fiber negative work-hardening kicks
in can have an effect on how the composite degrades.

In the light of the above discussion, and because of the dominance of the
fiber layers, we conclude that our Macro Model is capable of capturing the
most important behavior of the laminate. We also see the value in our selection
of the matrix material and its volume ratio since the matrix clearly plays the
part of constraining the fiber layers to stay in its original orientation. Recall the
incompressibility of the matrix in plastic straining and that the matrix behaves
largely in the plastic regime during the entire loading. Because low-cycle fatigue
of the matrix is a function of the plastic range, this observation has important
ramifications when we consider design for low-cycle fatigue.

7 Results, Case 2: Biaxial Tension and Compression

The uniaxial stress, sig_xx, vs. applied strain is shown in Fig. 8.
The applied load diagram does not differ much from the diagram for the uniaxial

loading case. The maximum load is also close to that of the uniaxial case. This flows
from our conclusion that the directional behavior of the fiber layers dominates and
the fiber layers are disposed symmetrically in terms of the pair 0ı, 90ı and the pair
C45ı, �45ı, respectively. Each of the fiber pairs bears the exx and the eyy strains,
and in the tension compression case, the result is algebraically additive. It can be
seen that our model is twice as strong as the Tsai Progressive Degradation Model
[5].

The transverse stress, sig_yy, vs. applied strain is shown in Fig. 9.

Fig. 8 Sig_xx vs. applied strain (exx D �eyy)
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Fig. 9 Sig_yy vs. applied strain (exx D �eyy)

Fig. 10 Equivalent plastic strain vs. applied strain. (exx D �eyy)

In this biaxial stress case, the effect of the tension compression strains is
canceling, and we obtain the reduced load in the transverse direction. The maximum
transverse stress in the Tsai Progressive Degradation Model was the negative of the
maximum in the xx direction (applied load). This showed the difference between
the stress and the strain models. However, the differences in the maximum loads
are quite significant. The Tsai Progressive Degradation Model does not reflect the
dominance of the fiber layers.

In order to complete the picture of the results, we show the average equivalent
plastic strains vs. the applied biaxial strains in Fig. 10.

The results for the equivalent plastic strain are the same as those for the uniaxial
loading case. The purpose of introducing the above test cases is to establish some
experience with the use of our Macro Model. A minimal conclusion here is that the
model works and the results are comparable to other results in the literature. In later
studies, we will advance arguments as to why the full nonlinear analysis may be
preempted by fracture in the case of carbon fibers.
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8 Case 3: Biaxial Tests on a C-Ply Laminate

A number of C-Ply (0, C45, �45, 0) tensile specimens were tested by Alan
Nettles [6]. The result showed that the transverse strength of the laminate was
1/7th that of the axial strength. The analysis of the axial and transverse aligned
tension tests with a 2D macro-mechanical model produced essentially the same
maximum loads except that the stiffness of the transverse loading was halved. This
result was not consistent with our numerical studies of Cases 1 and 2. So the only
possible conclusion to the behavior of the transverse material loading is that there
was a fracture. Unfortunately this fracture mode is in the thickness direction, thus
necessitating the use of 3D elements. Since the 3D 27-node hexa elements had not
been used for fiber composites analysis, it was deemed prudent to carry out a series
of unit tests, i.e., tests on a single element.

9 Unit Tests (FEM Analyses on a Single Element)

In order to observe the behavior of our Macro Model, tests were run on a single
element with a single fiber layer direction. These tests showed up the weakness in
the elements because there was no constraint against rotation of the fiber without
strains. In order to impose constraints in our elements, we found that applying plane
strain conditions in the two orthogonal directions to the loading was sufficient. This
of course imposed a certain degree of inconsistency and is thought to produce a
stiffer result. The ideal solution is in fact to develop 3D fiber layers which can then
be constrained to move with the 3D hexa element walls. This is a future goal for the
MPACT program.

10 Fracture Mechanics Model

The following model was used to represent the progression of the crack. The first
layer of the C-Ply (0, C45, �45, 0) is assumed to have cracked at the interface
between the C45 and �45 ends and also through the 0, 0 joins (Fig. 2). The second
layer of equal thickness (Fig. 3) is then the barrier to the progression of the crack
tip. Hence, we develop the load vs. disp at the specimen end for the crack in the first
and second layer, respectively. Then the difference in the same load applied to both
cases constitutes the work of fracture at the crack tip.

Therefore,

J-Int D �G D ��W=� A (1)
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Fig. 11 Transverse specimen
with staggered seams

where W D
X

Pu;
and the crack area D A.
Finally, the third layer of elements represents the rest of the thickness of the

C-Ply.
The same material was assumed for layer 2 and layer 3 of the structure.
An analysis was performed for this fracture model. The three layers are shown in

Figs. 2 and 3 (not to scale) in the model used to simulate the test.
The transverse specimen used by Nettles [6] is shown in Fig. 11. Because of the

fiber in the 0ı, direction and no fiber in the 90ı, the seams in the specimen in the
transverse direction were aligned in a staggered manner.

The tests were performed on an IM7 8552 material. The test results are
summarized in the following.

11 Tensile Test Results

Longitudinal load, no gap (continuous strips in the axial direction).
Strength 182.3 ˙ 7.8 KSI (1258 ˙ 54 MPa), E D 10.2 MSI (70.4 GPa).
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Fig. 12 J-int for a
progressive increase in the
size of the initial crack tip

Longitudinal load, gap.
Strength 180.2 ˙ 11.1 KSI (1243 ˙ 77 MPa).
Transverse load (always failed at a seam).
Strength 27.3 ˙ 0.6 KSI (188 ˙ 4 MPa), E D 2.54 MSI (17.4 GPa).
A substitution of numbers into the approximation of the J-int in (1) yielded a

value of 80 J/mm.
This may be compared with the results of Mohammed et al. [4] for the (0, 90) ply

layers. The result of testing on a compact specimen with a crack is shown in Fig. 12
taken from [4] for an IM7 8552 material.

The starting value of J-int D 90 J/mm was found for a D 1. Because of the lower
stiffness in the axial direction resulting from the two fiber layers (�45, C45), we
expect a lower value of J-int for our model. However, this result shows the value of
the Macro Model. The simplicity of the concept and its implementation in the finite
element program is a positive for the model.

The simplicity of the C-Ply configuration and the ease in which it is modeled may
commend the model as an alternate way of calculating and measuring the fracture
toughness of a material. It is worth noting that the results were obtained with a
model of 315 nodes and 96 27-node hexa elements. Each evaluation of the model
was completed in 30 s on a 4-year-old PC desktop with an I7 Intel chip.

12 Fracture in Sheet-Molded Compound (SMC) Form
of DFC

The increasing use of Hexcel’s HexMC DFC in the molding of complex structural
parts [2] is prompting interest among research engineers. Experimental work by
Boursier [2] has pointed out the differences in failure between DFC and CFC. In
particular, the theories used for analysis of CFC do not seem to hold for DFC. If this
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Fig. 13 HexMC

were true, it would be an important exclusion since many variants of DFC are being
considered for use in autos and commercial airliners.

In the current study, we showed the importance of 3D fracture mechanics in
predicting the failure of even simple specimens. We pointed out the difference in our
model between fracture of CFC and fracture of homogeneous materials. Fracture
initiation occurs along lines of fiber directions where the structural weakness is
discernible. This is a necessary part of the analysis since it often differs from the
intuitive paths that the loading would suggest. In fact, the necessity of assuming a
failure path is so critical that we choose to call it the “Principle of Feasible Failure
Paths in FRC” (Feasibility Principle). This Principle is obvious and implied in our
previous study of continuous fibers. In the following, we show its applicability in
predicting failure in DFC (HexMC).

In Fig. 13, we show the production and composition of HexMC.
Its behavior and uses were described by a presentation by Boursier [2].
The HexMC DFC is made up of plies of fiber chips as shown on the right of

Fig. 13. This is idealized in our discussion as randomly placed rectangular chips
whose average lengths exceed 25 mm. These chips are arranged in random locations
and directions.

13 Theoretical Considerations for Modeling the Failure
of DFC

When the fiber reinforcement is discontinuous, we have gaps randomly placed along
a specimen. The exact way to account for this is through a Monte Carlo simulation
of the additional crack initiators. Such a procedure makes extraordinary demands
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on the amount of computing. In our Macro Model, we assume an averaging of
this crack initiators, and we assume that its effect is averaged out when we sum
it across the cracked and failed section; we refer to this as the Feasibility Principle.
Clearly, because of the existence of these cracks due to the discontinuous fibers, we
can expect much earlier formation of visible cracks. However, the final failure is
determined by cracking through the second layer of material. Here for simplicity,
we assume that fracture takes place through continuous fibers. Finally, with all this
simplification, we cannot expect a predetermined model as for a continuous fiber
model. However, our aim is to assume reasonable initial crack depths and then
heuristically determine the optimum parameters by comparison with experiments
over a broad selection of specimens.

Boursier [2] showed that the average stiffness properties could be represented by
the equivalent quasi-isotropic (QI) laminate with (0, C45, �45, 90) fibers. Here, we
also assume that its other mechanical properties are equivalent to those of QI. We
assume that cracks form at the edges of a chip.

14 Results of Modeling DFC Failure

Returning to the modeling of the DFC and in line with the Feasibility Principle
and consistent with random orientation of the chips, we recognize that we need
to combine three chip directions as we move along the cross section of a tension
specimen, namely, at 0, 22.5, and 45ı, respectively, in any order (this is roughly
in line with the observed jagged fracture lines of the experiments in [2]). Here, we
assume that we can model individual directions of failure and combine their results
without considering the interaction between crack initiations at the join of different
angles of chip edges. The building of models to represent DFC is straightforward
because we do not need to vary the QI material throughout the specimen.

Again, we use the same three layers to model fracture; Fig. 2 shows the initial
layer of a 3D model (not to scale) of an unnotched specimen tested in [2]. The
model shows the deformed specimen due to an applied axial average strain. The
specimen has dimension of 22.4, 3.8, 0.3 cm. Each chip layer is assumed to occupy
1/6 of the laminate thickness or 0.05 cm. The initial crack propagation is modeled
through another 1/6 of the laminate thickness. A second series of analysis were
made wherein the starting crack was at the edge of a double chip with the same
dimensions. This gave it starting crack depths of 2/6 or 0.1 cm. The analysis
assumed that the QI material had a fracture property of J-int D 80 kJ/mm. The Macro
Model was applied for the analysis of these models. The purpose of our analysis is
to show the best combination of initial crack depths in any combination of the crack
directions that will reproduce the experimental results. Clearly this is a heuristic
value, but because of its repeatibility, it is useful in design and analysis. The results
are summarized in Table 2.
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Table 2 FEA and experimental [2] average axial stress (MPa)

Crack\Av
App
stressAlign\MPa
Degrees

Crack depth
unit chip
0.63 cm

Crack depth 2�
unit chip
1.26 cm

Combination of
two units and
one 2� unit 1,
1, 2�

Combination of
one unit and
two 2� units 1,
2�, 2�

0 451 84 331 208
22.5 442 94.6 331 208
45 470 80 331 208
HexMC experiment
[2]

340

QI FEA 680
QI experiment [6] 730

QI quasi isotropic, FEA finite element analysis

15 Discussion of Results of Modeling DFC Failure

The results of the analysis show the importance of selecting a failure path in line
with the Feasibility Principle. As it turns out, the results are pretty insensitive to the
direction of the assumed crack direction once the crack depth has been finalized.
We note that the average stress for crack depth of one unit chip is too high and
that of the two chips is too low when compared against the HexMC experimental
results. Fortunately, we were able to mix and match the crack depths used because
of the insensitivity of the results to the assumed direction of the crack. We note that
this was not the case with the CFC analysis because of the alignment of the crack
directions with the fiber directions. We note that the results for the 1, 1, 2� crack
combinations provided a good match with experiment. The comparison of the QI
results was also reasonable, but it is noted that this is a function of the combination
of fracture criterion values and the yield strength of the fibers.

The results here uphold the conclusions of [2] that the stiffness modulus is
equivalent to the HexMC QI specimens. The results also show the way forward
in assuming equivalent representation of the yield strength of HexMC with the QI
materials. This saves a large amount of inclusion of statistics in modeling of HexMC
and also for any future work with non-chip DFC that is so popular with the auto
industry. We were fortunate in being able to select the depth of the crack to achieve
a reasonable result. Otherwise, the selection of the appropriate combination of chips
would have involved a Monte Carlo simulation of the geometric placement of chips
that is beyond the ability of the writer. The insensitivity of the HexMC material to
material defects was a major conclusion of [2]. This will be the result of a further
study below which would consider the effects of inclusion of defects in DFC and
CFC parts.
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16 Sheet-Molded Compound-Formed DFC

In the previous section, we addressed the fracture of HexMC DFCs that is now
seeing increasing use in the building of secondary structural components in the
new commercial airliners [2]. There is an older form of DFC that is made from
injection molding. Its fibers are still randomly oriented and often come in SMC
form. We shall refer to these as SMC DFC. The SMC DFC is widely favored in the
auto industry because of its ease of production and ease of use, usually resulting
in greater economy. Qian et al. [7] have carried out tests on SMC DFC tension
specimens. Prior to this, the analysis of fracture by FEA for DFC materials involved
considerable computing in order to deal with the statistical nature of the randomly
oriented short fibers. It appears that the fracture predictions developed here and
using the Feasibility Principle can be used directly to predict the results in [7].
The prediction of fracture is dependent on both the strength and the J-integral. This
allows us to reexpress our results in dimensionless form with fracture values of the
equivalent quasi-isotropic (QI) set equal to 100 %.

17 Theoretical Considerations for Modeling the Failure
of SMC DFC

In order to obtain a working model for SMC DFC, we need to assume a depth for
the initial crack. In [2] we assumed unit chip thickness and twice that value was
used for portions of the HexMC material and obtained reasonable results. It would
be reasonable to assume that the same crack depth could be used here. However,
because of the uniform random distribution in SMC that does not have the structure
of a chip imposed on it by its basic components, it would be reasonable to assume a
uniform crack depth throughout the specimen.

As can be seen in Table 3, the experimental results [7] (column 5) are much closer
to the FEA results with a starting crack equal to unit depth (column 6) compared to
that for the HexMC (column 4).

From this, we conclude that a uniform crack depth assumption is justified for
SMC DFC.

18 Case Study of Specimens with Holes as a Notched
Specimen

In order to make a start in understanding the impact of notches and other defects
that find their way into the final manufactured product, tests were conducted in [2,
7] on holes. Holes can be found everywhere in an assembled complex product. Yet
their failure in the presence of flaws is not well understood. They are also an easy
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Table 3 Average stress (QI [2] D 100 %) for experiments [2, 7] and FEA

Crack\Av
App
StressAlign
Degrees

Crack depth
unit chip
0.63 cm [2]
(%)

Crack depth
2� unit
chip 1.26 cm
[2] (%)

Combination
of two 1 unit
and 1 of 2�
[2] (%)

SMC
[7] (%)

SMC crack
depth unit
thick 0.63 cm
[7] (%)

QI experiment
[2, 7]

100.00 100 100 100 100

QI FEA 93.10 93.1
HexMC
experiment [2]

46.30 45.2

0 61.70 11.5 45.2 58.3 61.7
22.5 60.50 12.9 45.2 58.3 60.5
45 64.30 10.9 45.2 58.3 64.3

Table 4 Comparison of experiment [7] with FEA for QI and SMC specimens with holes

Hole
diameter
(cm) QI experiment [7] (%) QI FEA (%) SMC experiment [7]% SMC FEA (%)

0 100 92.6 63.1 62
3 89.4 85.3 52.6 57.1
5.2 73.6 79.9 44.7 53.5
7 63.1 75.5 44.7 50.2
9.2 58.4 70 44.7 46.9
14 50 58 39.9 39.1

Note The fracture value of the equivalent quasi-isotropic (QI) set equals 100 %

geometry to deal with in a test specimen. The analysis of the presence of a hole in a
QI specimen is more complex because it has to deal with the shift from a peak stress
at the net cross section to a feasible crack path at 45ı to the axial load direction.
It is therefore unreasonable to expect a simple net averaging of the results for an
unnotched specimen. On the other hand, for the SMC material, we need not expect
a shift in peak stress location in order to form a feasible crack path. Therefore,
we can expect much better correlation of the fracture predictions for SMC DFC
specimens. The results are assembled in Table 4 for such an evaluation. Specimen
width D 3.8 cm.

The results in Table 4 have also been plotted in Fig. 14 where the comparisons
between theory and experiments can be visualized. A comparison of the results for
the QI specimens showed a poor comparison between theory and experiment for the
reasons already suggested above (although passable as a first estimate). Therefore,
in such cases, it is advised that an analysis be carried out for a QI specimen.

The results for the SMC specimens do provide a reasonable comparison between
FEA and experiment.

The use of the results obtained for the HexMC DFC study may be applied
here in a simple net-section averaging. It is noted that [7] has indicated that there
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Fig. 14 Average stress at fracture of notched specimens

is considerable scatter in the results for first appearance of surface cracks (non-
propagating) because of difficulties in generating a uniform random fiber placement.

Finally, it is a widely held view [2, 7] that the DFC specimens are less sensitive
to notch and other flaws when compared to the QI specimens. As we can see from
the results in Fig. 14 (and the way it is presented), this is not so. It is just that the
initial presence of the cracks in DFC is basically built in and these have a large role
in lowering the fracture load. Moreover, nowhere do we see a crossing below of the
QI results for CFC with the SMC DFC results.

19 Discussion of All Results and Conclusions

The results of fracture analysis of HexMC already provided insight into the mode
of failure of DFC specimens. The main reason for undertaking this study was to
obtain an understanding of how to modify the assumptions of the initial crack depth
at fracture for the SMC material.

We conclude that the comparisons of Table 4 suggest that it is reasonable to
assume a uniform crack depth across the section. This is in line with the target of
achieving completely random placement of the fibers.

The second conclusion is that a simple net averaging of the stresses in the cross
section provides a good estimate of the fracture of SMC DFC specimens with holes.
This encourages us in the expectation that some simple mixing method may be
found for the analysis of defects of other types.

The third conclusion is a negative one that the net-averaging methods may not
be used for prediction of fracture in QI specimens. However, without the major
distraction of DFC materials, such analysis with the Macro Model is easily carried
out in minutes on a PC. This may be compared with the multiscale models used, for
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example, in Mohamed et al. [4] that required at least two orders of magnitude more
in computed times.

Disclaimer Certain commercial equipment, instruments, materials, or computer software is
identified in this paper in order to specify the experimental or computational procedure adequately.
Such identification is not intended to imply recommendation or endorsement by the National
Institute of Standards and Technology, nor is it intended to imply that the materials, equipment,
and software identified are necessarily the best available for the purpose.
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Modeling and SPH Analysis of Composite
Materials

Nobuki Yamagata, Yuzuru Sakai, and Pedro V. Marcal

Abstract A number of SPH modeling and analysis examples using medical
imaging devices such as computed tomography (CT) scan and MRI have seen
an increase in the industrial field. In this study, we propose an image processing
technique which can quantize the material properties by brightness value and
generate three-dimensional (3D) SPH particle models from the sliced CT/MRI
image data of composite materials. In the past, to reconstruct a 3D model by
CT/MRI medical images, an unstructured grid approach (polygon) was often used
to reproduce the complex geometry. However, this could not represent a solid
model. We use CT/MRI medical image brightness to arrange for the initial particle
coordinates by voxel method instead of polygon approach in this study. The 3D
particle data are generated by using threshold selection by the brightness value.
Using the proposed method here, we introduce the two-dimensional (2D) elastic
analysis and the 3D elastic-plastic analysis for the carbon fiber-reinforced plastic
material using the SPH method. It is concluded that SPH composite material
analysis using image processing such as CT/MRI and microscope photographs is
convenient for evaluating the composite materials.

1 Introduction

Smoothed particle hydrodynamics (SPH) is a meshless Lagrangian method which
is promising as a possible alternative to numerical techniques, which are Finite
Element Method (FEM), Boundary Element Method (BEM), and Finite Difference
Method (FDM), currently used to analyze high-deformation impulsive loading
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events, such as hypervelocity impact or explosive loading of materials, elastic-
plastic analysis, heat transfer analysis, and other various phenomena, Eulerian
techniques are considered appropriate for handling the large motions associated with
the large deformations; however, detailed analysis is difficult because of the lack of
history at the arbitrary positions of the body by using the Eulerian grid. However,
Lagrangian techniques are convenient to keep accurate histories of the physical
values associated with each Lagrangian particle throughout the whole event.

SPH is the typical Lagrangian technique which is the most popular among several
particle methods. SPH is basically an interpolating technique as FDM; however, it
is based on kernel integral and the concept of smoothing length which yields the
meshless feature to the method. The meshless technique is very convenient to deal
with the complicated structures, which is free from the troubles concerning with
mesh or grid generation, remeshing, and remodeling.

The basic SPH technique was first introduced by Lucy [1] and Gingold and
Monaghan [2] in 1977, and two comprehensive reviews are presented by Benz [3]
and Monaghan [4]. More recently, the effect of strength was added by Libersky and
Petschek [5] and axisymmetric algorithms were developed by Johnson et al. [6] and
Petschek and Libersky [7].

In recent years, researchers have also shown the values of particle methods for
elastic analysis [8] and large deformation flow analysis [9]. In the case of drop
impact analysis of a structure with complex geometries, it is very difficult to analyze
by using mesh-type models. Also in fracture analysis, it is rather difficult to analyze
a crack path in the mesh domain because the connectivity of FEM mesh is unable to
decide the crack growth direction freely. The authors have confirmed the utility of a
particle method for many structural problems [10–13].

A number of SPH modeling and analysis examples using medical imaging
devices such as computed tomography (CT) scan and MRI have also seen an
increase in the industrial field [14]. And the particle modeling technique for
microstructure mechanics of a metal using microscopic photographs and its appli-
cation examples to 2D elastic wave propagation analysis and 2D Equal-Channel
Angular Processing (ECAP) elastic-plastic analysis have been reported in Ref. [15].

In this study, we introduce the elastic-plastic analysis and fracture analysis of
carbon fiber-reinforced plastic material using the SPH method. And it is concluded
that SPH composite material analysis using image processing such as CT/MRI and
microscope photographs is convenient for evaluating composite materials.

2 Theory of Analysis

2.1 Theory of SPH

The foundation of SPH is one of the interpolation techniques. The equation of
motion and the conservation laws of continuum mechanics, in the form of partial
differential equations, are introduced into integral equations through the use of an
interpolation function (weight function) that gives the estimate of the field variables
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Fig. 1 The concept of SPH

at a point. In numerical process, information is given at discrete points so that the
integrals are evaluated as summing over neighboring particles. Figure 1 shows the
concept of the SPH method. Consider a function f(x) and a kernel w(x�x

0

,h) which
has a radius (support domain) h; the kernel estimate is
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As a typical weight function, we employed the spline function of 3ı which is
usually used in SPH analysis [16]. The approximation for spatial derivatives is
obtained by substituting

� � f(x) for f(x) in Eq. (1):
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In general, physical parameters f(x) in a continuum are interpolated using a
weight function, and the discrete kernel estimate and its spatial derivative become
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where m is the mass, � is the density of the material, and J is the interpolation
points within a support domain. In this study, the elastic-plastic analysis is applied
to human head impact against a rigid wall. The acceleration of a particle can be
represented as follows using the stress divergence:

a D 1

�
r � � (5)
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where ¢ is Cauchy stress tensor and a is acceleration. The acceleration of particle i
is obtained as
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The variations of Eq. (6) are sometimes used. By using the stress tensor at point
I, Eq. (6) becomes
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As the above equation, the acceleration of any point in a stress field will be
obtained. The interaction between particle I and particle J is equal. That is, the
law of conservation of momentum is guaranteed exactly.

The velocity gradient is given using Eq. (4):

�
@Vi

@xj

�I

D �
NX

JD1

mJ

�I
VJ

i

@W

@xJ
j

(8)

and

�
@Vi

@xj

�I

D 1

�I

NX

JD1
mJ

�
VI

i � VJ
j

� @W

@xJ
j

(9)

The latter relation has the advantage that the contribution to the strain rate tensor
from particles I and J is zero if their relative velocity is zero. As Eq. (9), using the
known particle positions and stress to seek acceleration at time, the velocity and
position are as follows:
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The particle density at time tnC1 is
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The strain rate tensor is obtained by the velocity gradient as the following
equation:

P"ij D 1
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The vorticity tensor is obtained as
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2.2 Elastic-Plastic Analysis

SPH algorithm for elastic-plastic analysis method has been developed by the authors
[12] in the case that strain rate effects are not into account in the elastic-plastic
algorithm of the finite element analysis. In the finite element method, the yield
judgment is performed at the numerical integration points of the element or the
center point of element, while in the SPH method, yield condition is performed for
each particle of the model.

The SPH method uses the yield condition which has been applied in the finite
element method. A typical expression of the von Mises yield condition is the yield
stress of a material.

Elastic-plastic problems always use deformation theory and incremental theory.
The SPH method interpolates explicitly, which makes it easy to handle the incre-
mental changes. So the authors use the incremental theory in elastic-plastic analysis
too. In the elastic region,
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In the plastic region,
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and stress-strain equation

�ij D Dij"ij (17)

Using the above equation, the authors can get the stress field.
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3 Composite Material Analysis

3.1 Modeling of Composite Material

3.1.1 Generation of Particle Data for SPH Composite Material Analysis

The process of generating particle data in SPH analysis for composite materials
using microscope photograph (original image) is described below [15].

As shown in Fig. 2, the original image distributed in each material tissue is
represented by the brightness of the bitmap.

And if one particle is replaced with one unit (pixel), it will correspond to a point
mass of the material tissue. This is similar to the technique of the finite element
voxel method which places the normalized voxel in the space; the particle data just
represents the point masses and do not have a mesh structure. That is, the composite
material can be modeled as an assembly of the point masses.

However, since the entire image is constructed from the gray scale, if we
apply the technique to represent the composite materials by setting the threshold
of brightness directly, the boundaries between the resins and fibers of composite
materials become ambiguous and then it is difficult to get particle data with high
accuracy.

Therefore, in this study, we introduce basic image processing techniques in
Sect. 3.1.2 to be able to generate more accurately the particle data of each material
tissue.

Fig. 2 Micrograph of spherical graphite
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Fig. 3 Cutoff process in the basic image processing techniques

Fig. 4 An example of particle generation

3.1.2 Basic Image Processing Techniques

In order to make the image data resemble the composite material model, the
following basic image processing techniques are applied in this study:

1. Cutoff process
2. Dilation and erosion
3. Edge detection

Cutoff is the process of removing the noise data in the image (see Fig. 3). Dilation
is the process of replacing it with the white pixels if the white pixels surround the
target pixel. On the other hand, erosion is the process of replacing it with a black
pixel if the black pixels surround the target pixel. Edge detection is also the process
of defining the outline of the image clearly.

Figure 4 shows an example of particle generation for spherical graphite cast iron
using this basic image processing technique. It is the particle model which consists
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Fig. 5 CT image of a
composite material

Fig. 6 The analysis model

of spherical graphite, cast iron, and intermediate tissue. The number of particles for
spherical graphite, cast iron, and intermediate tissue is 5,253; 25,820; and 4,252,
respectively, and the total number of particles is 35,325.

Using the basic image processing techniques, we can also generate the particle
data for SPH analysis of composite materials. Figure 5 shows an example of the
particle data which is generated from the CT image of a composite material.

3.2 Two-Dimensional Elastic Analysis of Composite Material

First, we have tried to analyze a 2D plain strain elastic analysis of composite
material which is constituted from resin and fiber. Figure 6 shows the analysis
model in which the composite material is applied by the steel jig with the constant
velocity of 1000 mm/s. Using the image processing for composite material which
is described in Sect. 3.1, we generate particle data for SPH analysis. Here a total
of 50,800 particles with 0.0049 for the distance of two particles are used and the
materials’ properties in this analysis are shown in Table 1. Figure 7 shows the
equivalent von Mises stress distributions of composite material at times of 0.0125
and 0.0625.

The high-stress areas of the composite material increased in accordance with the
increase of the time. The maximum deformation at time 0.0625 was 0.01 mm. In
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Table 1 Material properties Material Matrix Fiber Jig

Elastic modulus (Mpa) 100 100,000 210,000
Poisson ratio 0.33 0.33 0.33
Density (kg/mm3) 1.00E-06 2.68E-06 7.80E-06

Fig. 7 von Mises stress
distributions of composite
material analysis

Fig. 8 von Mises stress
distributions of resin material
analysis

Time = 0.0125ms

Time = 0.0625ms

0

0

4.2167

0.073494

order to evaluate the results in the composite material analysis, we have analyzed
the single-material model of resin under the same condition with the case of the
composite material model. From the results in Fig. 8, the high-stress areas were
given at the fixed points in this analysis; on the other hand, the high-stress area was
in the fiber component in the case of composite material analysis.
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Fig. 9 3D analysis model of composite material

Fig. 10 Fiber model (Left: STL data, Right: Particle data)

Table 2 Material properties of composite material

Material: fiber

Young modulus 125000.00 Mpa Yield stress 500.00 Mpa
Hardening (h) 7.3731 Mpa Poisson R. 0.33
Density 7.0000e-6 kg/mm3

Material: resin

Young modulus 500.00 Mpa Yield stress 500.00 Mpa
Hardening (h) 7.3731 Mpa Poisson R. 0.33
Density 1.0000e-6 kg/mm3

3.3 Three-Dimensional Elastic-Plastic Analysis of Composite
Material

Here we have solved the 3D elastic-plastic analysis of a composite material. Figure 9
shows the 3D composite material model which consists of resin and fiber. The
tensile loads are applied at both sides with the constant velocity of 1000 mm/s. In
order to generate particle data, we used the Standard Triangulated Language (STL)
data for each component of fiber and resin. Figure 10 shows the STL and particle
data generated from the STL data of fiber component.

And the material properties of composite material which is used in this analysis
are shown in Table 2.

Figure 11 shows the variations of von Mises stress distributions in carbon fibers
of a composite material with time. It is shown that the stress increases large along
time gradually and the stress distributions are not uniform in the fibers. Apparently,
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Fig. 11 von Mises stress at the fiber components

Fig. 12 von Mises stress at the resin components

the stresses are high at the both loaded ends and are relatively low at the center of
the structure, where the density of fibers is high. It is clear that the density of fibers
is important to strengthen the composite materials.

Figure 12 shows the variation of von Mises stress distributions in a matrix of a
composite material. It is shown that the stress of a matrix attached to carbon fibers is
high. By comparing Fig. 11 with Fig. 12, we can see that the strength of a composite
is completely due to the strength of the fibers because the stress of the fibers is
predominantly higher than the stress of a matrix.
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Using the SPH method, the details of distributions of carbon fibers in a matrix
are modeled by particles, and the elastic-plastic analysis is carried out with high
accuracy. Moreover, it is expected that the microvoid between the matrix and fibers
and the fracture of fibers and the matrix can be analyzed easily compared to FEM
analysis. SPH analysis is very promising in investigating the strength and fracture
of composite materials.

4 Conclusions and Further Works

1. SPH composite analysis using image processing such as CT/MRI and micro-
scope photographs is convenient for evaluating the strength of composite mate-
rials.

2. Three-dimensional SPH composite analysis shows the details of stress distribu-
tions of carbon fibers as well as the matrix with high accuracy.

3. Delamination behavior between the fibers and matrix as well as fracture of
matrix and fibers can be simulated using the SPH method and image processing
techniques.
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