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About This Book 

Purpose 
This book provides a comprehensive introduction to many of the statistical procedures most common in social 
science research today. We describe these statistical procedures in detail and list the mathematical assumptions 
underpinning these statistical procedures. Moreover, we progress step-to-step through detailed examples, 
provide the code and output, and interpret the results. We also provide examples that show how to summarize 
and describe study findings for written research reports. 

Is This Book for You? 
This book is intended for senior undergraduate and graduate statistics courses—for those users with and without 
prior SAS exposure—and for those users with and without prior statistics knowledge. The core content is 
described in detail in the book’s chapters; yet for those users with no prior SAS knowledge, we provide several 
appendices that describe the basics of working with SAS (e.g., working with data files, raw data, correlation, 
and covariance matrices).  

Prerequisites 
There are few prerequisites for this book. Appendices at the end of this book provide the novice SAS user with 
foundational information that is required to begin working with SAS. Even without extensive prior experience, 
users of this book can learn the basics of factor analyses, path analyses, and structural equation modeling 
(SEM). 

What’s New in This Edition 
In this second edition, we include an extended discussion of statistical power analyses and sample size 
requirements for path analyses, confirmatory factor analyses (CFA), and SEM. More precisely, we provide an 
easy-to-use table to help users determine sample size requirements for path analyses. With latent variable 
models (e.g., CFA and SEM), we provide SAS code to estimate statistical power. We also provide SAS code to 
calculate sample size requirements when planning your research to ensure that you will have sufficient 
statistical power when later conducting these analyses. 

Additionally, we describe contemporary goodness-of-fit statistics (and threshold values) to examine when 
reporting CFA and SEM results, describe how and when to revise hypothesized models, and identify procedures 
to follow when selecting which goodness-of-fit indices to report. 

About the Examples 

Software Used to Develop the Book's Content 
The examples in this book were computed using SAS 9.3. We walk the user through examples using PROC 
FACTOR, PROC CORR, and PROC CALIS. 

The data and programs used in this book are available from the authors’ pages at http://support.sas.com/orourke 
and http://support.sas.com/hatcher. 
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xiv 
 

Example Code and Data 
You can access the example code and data for this book by linking to its authors’ pages at 
http://support.sas.com/orourke and http://support.sas.com/hatcher. Look for the cover thumbnail of this book, 
and select Example Code and Data to display the SAS programs that are included for this book. 

For an alphabetical listing of all books for which example code and data are available, see 
http://support.sas.com/bookcode. Select a title to display the book’s example code. 

If you are unable to access the code through the Web site, send an e-mail to saspress@sas.com.  

Additional Resources 
SAS offers you a rich variety of resources to help build your SAS skills and explore and apply the full power of 
SAS software. Whether you are in a professional or academic setting, we have learning products that can help 
you maximize your investment in SAS. 

Bookstore http://support.sas.com/bookstore/ 
Training http://support.sas.com/training/ 
Certification http://support.sas.com/certify/ 
SAS Global Academic Program http://support.sas.com/learn/ap/ 
SAS OnDemand  http://support.sas.com/learn/ondemand/  

Or 

Knowledge Base http://support.sas.com/resources/ 
Support http://support.sas.com/techsup/ 
Training and Bookstore http://support.sas.com/learn/ 
Community http://support.sas.com/community/ 

 

Keep in Touch 
We look forward to hearing from you. We invite questions, comments, and concerns. If you want to contact us 
about a specific book, please include the book title in your correspondence.  
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Introduction: The Basics of Principal Component Analysis 
Principal component analysis is used when you have obtained measures for a number of observed variables and 
wish to arrive at a smaller number of variables (called “principal components”) that will account for, or capture, 
most of the variance in the observed variables. The principal components may then be used as predictors or 
criterion variables in subsequent analyses. 
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A Variable Reduction Procedure 
Principal component analysis is a variable reduction procedure. It is useful when you have obtained data for a 
number of variables (possibly a large number of variables) and believe that there is redundancy among those 
variables. In this case, redundancy means that some of the variables are correlated with each other, often 
because they are measuring the same construct. Because of this redundancy, you believe that it should be 
possible to reduce the observed variables into a smaller number of principal components that will account for 
most of the variance in the observed variables. 

Because it is a variable reduction procedure, principal component analysis is similar in many respects to 
exploratory factor analysis. In fact, the steps followed when conducting a principal component analysis are 
virtually identical to those followed when conducting an exploratory factor analysis. There are significant 
conceptual differences between the two, however, so it is important that you do not mistakenly claim that you 
are performing factor analysis when you are actually performing principal component analysis. The differences 
between these two procedures are described in greater detail in a later subsection titled “Principal Component 
Analysis Is Not Factor Analysis.” 

An Illustration of Variable Redundancy 
We now present a fictitious example to illustrate the concept of variable redundancy. Imagine that you have 
developed a seven-item measure to gauge job satisfaction. The fictitious instrument is reproduced here: 

Please respond to the following statements by placing your response to the left of each statement. In making 
your ratings, use a number from 1 to 7 in which 1 = “Strongly Disagree” and 7 = “Strongly Agree.” 
 
_____ 1.  My supervisor(s) treats me with consideration. 
_____ 2.  My supervisor(s) consults me concerning important decisions that affect my work. 
_____ 3.  My supervisor(s) gives me recognition when I do a good job. 
_____ 4.  My supervisor(s) gives me the support I need to do my job well. 
_____ 5.  My pay is fair. 
_____ 6.  My pay is appropriate, given the amount of responsibility that comes with my job. 
_____ 7.  My pay is comparable to that of other employees whose jobs are similar to mine. 

Perhaps you began your investigation with the intention of administering this questionnaire to 200 employees 
using their responses to the seven items as seven separate variables in subsequent analyses. 

There are a number of problems with conducting the study in this manner, however. One of the more important 
problems involves the concept of redundancy as previously mentioned. Examine the content of the seven items 
in the questionnaire. Notice that items 1 to 4 each deal with employees’ satisfaction with their supervisors. In 
this way, items 1 to 4 are somewhat redundant or overlapping in terms of what they are measuring. Similarly, 
notice also that items 5 to 7 each seem to deal with the same topic: employees’ satisfaction with their pay. 

Empirical findings may further support the likelihood of item redundancy. Assume that you administer the 
questionnaire to 200 employees and compute all possible correlations between responses to the seven items. 
Fictitious correlation coefficients are presented in Table 1.1: 

O’Rourke, Norm, and Larry Hatcher. A Step-by-Step Approach to Using SAS® for Factor Analysis and Structural Equation Modeling, Second Edition.  
Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



Chapter 1: Principal Component Analysis   3 
 

Table 1.1: Correlations among Seven Job Satisfaction Items 

                                                                                     Correlations 

Variable 1 2 3 4 5 6 7 

1 1.00       
2   .75 1.00      
3   .83   .82 1.00     
4   .68   .92   .88 1.00    
5   .03   .01   .04   .01 1.00   
6   .05   .02   .05   .07   .89 1.00  
7   .02   .06   .00   .03   .92   .76 1.00 
NOTE: N = 200. 

When correlations among several variables are computed, they are typically summarized in the form of a 
correlation matrix such as the one presented in Table 1.1; this provides an opportunity to review how a 
correlation matrix is interpreted. (See Appendix A.5 for more information about correlation coefficients.)  

The rows and columns of Table 1.1 correspond to the seven variables included in the analysis. Row 1 (and 
column 1) represents variable 1, row 2 (and column 2) represents variable 2, and so forth. Where a given row 
and column intersect, you will find the correlation coefficient between the two corresponding variables. For 
example, where the row for variable 2 intersects with the column for variable 1, you find a coefficient of .75; 
this means that the correlation between variables 1 and 2 is .75.  

The correlation coefficients presented in Table 1.1 show that the seven items seem to hang together in two 
distinct groups. First, notice that items 1 to 4 show relatively strong correlations with each another. This could 
be because items 1 to 4 are measuring the same construct. In the same way, items 5 to 7 correlate strongly with 
one another, a possible indication that they also measure a single construct. Even more interesting, notice that 
items 1 to 4 are very weakly correlated with items 5 to 7. This is what you would expect to see if items 1 to 4 
and items 5 to 7 were measuring two different constructs. 

Given this apparent redundancy, it is likely that the seven questionnaire items are not really measuring seven 
different constructs. More likely, items 1 to 4 are measuring a single construct that could reasonably be labeled 
“satisfaction with supervision,” whereas items 5 to 7 are measuring a different construct that could be labeled 
“satisfaction with pay.”  

If responses to the seven items actually display the redundancy suggested by the pattern of correlations in Table 
1.1, it would be advantageous to reduce the number of variables in this dataset, so that (in a sense) items 1 to 4 
are collapsed into a single new variable that reflects employees’ satisfaction with supervision and items 5 to 7 
are collapsed into a single new variable that reflects satisfaction with pay. You could then use these two new 
variables (rather than the seven original variables) as predictor variables in multiple regression, for instance, or 
another type of analysis. 

In essence, this is what is accomplished by principal component analysis: it allows you to reduce a set of 
observed variables into a smaller set of variables called principal components. The resulting principal 
components may then be used in subsequent analyses. 
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What Is a Principal Component? 

How Principal Components Are Computed  
A principal component can be defined as a linear combination of optimally weighted observed variables. In 
order to understand the meaning of this definition, it is necessary to first describe how participants’ scores on a 
principal component are computed.  

In the course of performing a principal component analysis, it is possible to calculate a score for each 
participant for a given principal component. In the preceding study, for example, each participant would have 
scores on two components: one score on the “satisfaction with supervision” component; and one score on the 
“satisfaction with pay” component. Participants’ actual scores on the seven questionnaire items would be 
optimally weighted and then summed to compute their scores for a given component.  

Below is the general form of the formula to compute scores on the first component extracted (created) in a 
principal component analysis: 

C1 = b11(X1) + b12(X2) + ... b1p(Xp) 

where 

C1 = the participant’s score on principal component 1 (the first component extracted) 

b1p = the coefficient (or weight) for observed variable p, as used in creating principal component 1 

Xp = the participant’s score on observed variable p 

For example, assume that component 1 in the present study was “satisfaction with supervision.” You could 
determine each participant’s score on principal component 1 by using the following fictitious formula: 

C1 =.44 (X1) + .40 (X2) + .47 (X3) + .32 (X4) 

+ .02 (X5) + .01 (X6) + .03 (X7)  

In this case, the observed variables (the “X” variables) are participant responses to the seven job satisfaction 
questions: X1 represents question 1; X2 represents question 2; and so forth. Notice that different coefficients or 
weights were assigned to each of the questions when computing scores on component 1: questions 1 to 4 were 
assigned relatively large weights that range from .32 to .47, whereas questions 5 to 7 were assigned very small 
weights ranging from .01 to .03. This makes sense, because component 1 is the satisfaction with supervision 
component and satisfaction with supervision was measured by questions 1 to 4. It is therefore appropriate that 
items 1 to 4 would be given a good deal of weight in computing participant scores on this component, while 
items 5 to 7 would be given comparatively little weight. 

Because component 2 measures a different construct, a different equation with different weights would be used 
to compute scores for this component (i.e., “satisfaction with pay”). Below is a fictitious illustration of this 
formula: 

C2 =.01 (X1) + .04 (X2) + .02 (X3) + .02 (X4) 

+ .48 (X5) + .31 (X6) + .39 (X7)  

The preceding example shows that, when computing scores for the second component, considerable weight 
would be given to items 5 to 7, whereas comparatively little would be given to items 1 to 4. As a result, 
component 2 should account for much of the variability in the three satisfaction with pay items (i.e., it should be 
strongly correlated with those three items).  
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But how are these weights for the preceding equations determined? PROC FACTOR in SAS generates these 
weights by using a special type of equation called an eigenequation. The weights produced by these 
eigenequations are optimal weights in the sense that, for a given set of data, no other set of weights could 
produce a set of components that are more effective in accounting for variance among observed variables. 
These weights are created to satisfy what is known as the principle of least squares. Later in this chapter we 
will show how PROC FACTOR can be used to extract (create) principal components. 

It is now possible to understand the definition provided at the beginning of this section more fully. A principal 
component was defined as a linear combination of optimally weighted observed variables. The words “linear 
combination” refer to the fact that scores on a component are created by adding together scores for the observed 
variables being analyzed. “Optimally weighted” refers to the fact that the observed variables are weighted in 
such a way that the resulting components account for a maximal amount of observed variance in the dataset.  

Number of Components Extracted  
The preceding section may have created the impression that, if a principal component analysis were performed 
on data from our fictitious seven-item job satisfaction questionnaire, only two components would be created. 
Such an impression would not be entirely correct. 

In reality, the number of components extracted in a principal component analysis is equal to the number of 
observed variables being analyzed. This means that an analysis of responses to the seven-item questionnaire 
would actually result in seven components, not two. 

In most instances, however, only the first few components account for meaningful amounts of variance; only 
these first few components are retained, interpreted, and used in subsequent analyses. For example, in your 
analysis of the seven-item job satisfaction questionnaire, it is likely that only the first two components would 
account for, or capture, meaningful amounts of variance. Therefore, only these would be retained for 
interpretation. You could assume that the remaining five components capture only trivial amounts of variance. 
These latter components would therefore not be retained, interpreted, or further analyzed. 

Characteristics of Principal Components  
The first component extracted in a principal component analysis accounts for a maximal amount of total 
variance among the observed variables. Under typical conditions, this means that the first component will be 
correlated with at least some (often many) of the observed variables.  

The second component extracted will have two important characteristics. First, this component will account for 
a maximal amount of variance in the dataset that was not accounted for or captured by the first component. 
Under typical conditions, this again means that the second component will be correlated with some of the 
observed variables that did not display strong correlations with component 1.  

The second characteristic of the second component is that it will be uncorrelated with the first component. 
Literally, if you were to compute the correlation between components 1 and 2, that coefficient would be zero. 
(For the exception, see the following section regarding oblique solutions.) 

The remaining components that are extracted exhibit the same two characteristics: each accounts for a maximal 
amount of variance in the observed variables that was not accounted for by the preceding components; and each 
is uncorrelated with all of the preceding components. Principal component analysis proceeds in this manner 
with each new component accounting for progressively smaller amounts of variance. This is why only the first 
few components are retained and interpreted. When the analysis is complete, the resulting components will 
exhibit varying degrees of correlation with the observed variables, but will be completely uncorrelated with 
each another. 
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What is meant by “total variance” in the dataset? To understand the meaning of “total variance” as it is 
used in a principal component analysis, remember that the observed variables are standardized in the course of 
the analysis. This means that each variable is transformed so that it has a mean of zero and a standard 
deviation of one (and hence a variance of one). The “total variance” in the dataset is simply the sum of 
variances for these observed variables. Because they have been standardized to have a standard deviation of 
one, each observed variable contributes one unit of variance to the total variance in the dataset. Because of 
this, total variance in principal component analysis will always be equal to the number of observed variables 
analyzed. For example, if seven variables are being analyzed, the total variance will equal seven. The 
components that are extracted in the analysis will partition this variance. Perhaps the first component will 
account for 3.2 units of total variance; perhaps the second component will account for 2.1 units. The analysis 
continues in this way until all variance in the dataset has been accounted for. 

Orthogonal versus Oblique Solutions 
This chapter will discuss only principal component analyses that result in orthogonal solutions. An orthogonal 
solution is one in which the components are uncorrelated (“orthogonal” means uncorrelated).  

It is possible to perform a principal component analysis that results in correlated components. Such a solution is 
referred to as an oblique solution. In some situations, oblique solutions are preferred to orthogonal solutions 
because they produce cleaner, more easily interpreted results.  

However, oblique solutions are often complicated to interpret. For this reason, this chapter will focus only on 
the interpretation of orthogonal solutions. The concepts discussed will provide a good foundation for the 
somewhat more complex concepts discussed later in this text. 

Principal Component Analysis Is Not Factor Analysis 
Principal component analysis is commonly confused with factor analysis. This is understandable because there 
are many important similarities between the two. Both are methods that can be used to identify groups of 
observed variables that tend to hang together empirically. Both procedures can also be performed with PROC 
FACTOR, and they generally provide similar results. 

Nonetheless, there are some important conceptual differences between principal component analysis and factor 
analysis that should be understood at the outset. Perhaps the most important difference deals with the 
assumption of an underlying causal structure. Factor analysis assumes that covariation among the observed 
variables is due to the presence of one or more latent variables that exert directional influence on these observed 
variables. An example of such a structure is presented in Figure 1.1. 
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Figure 1.1: Example of the Underlying Causal Structure That Is Assumed in Factor Analysis 

 

The ovals in Figure 1.1 represent the latent (unmeasured) factors of “satisfaction with supervision” and 
“satisfaction with pay.” These factors are latent in the sense that it is assumed employees hold these beliefs but 
that these beliefs cannot be measured directly; however, they do influence employees’ responses to the items 
that constitute the job satisfaction questionnaire described earlier. (These seven items are represented as the 
squares labeled V1 to V7 in the figure.) It can be seen that the “supervision” factor exerts influence on items V1 
to V4 (the supervision questions), whereas the “pay” factor exerts influence on items V5 to V7 (the pay items).  

Researchers use factor analysis when they believe that one or more unobserved or latent factors exert directional 
influence on participants’ responses to observed variables. Exploratory factor analysis helps the researcher 
identify the number and nature of such latent factors. These procedures are described in the next chapter. 

In contrast, principal component analysis makes no assumption about underlying causal structures; it is simply a 
variable reduction procedure that (typically) results in a relatively small number of components accounting for, 
or capturing, most variance in a set of observed variables (i.e., groupings of observed variables versus latent 
constructs). 

Another important distinction between the two is that principal component analysis assumes no measurement 
error whereas factor analysis captures both true variance and measurement error. Acknowledgement and 
measurement of error is particularly germane to social science research because instruments are invariably 
incomplete measures of underlying constructs. Principal component analysis is sometimes used in instrument 
construction studies to overestimate precision of measurement (i.e., overestimate the effectiveness of the scale).  

In summary, both factor analysis and principal component analysis are important in social science research, but 
their conceptual foundations are quite distinct.  

Example: Analysis of the Prosocial Orientation Inventory 
Assume that you have developed an instrument called the Prosocial Orientation Inventory (POI) that assesses 
the extent to which a person has engaged in helping behaviors over the preceding six months. This fictitious 
instrument contains six items and is presented here: 
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Instructions: Below are a number of activities in which people sometimes engage. For each item, please 
indicate how frequently you have engaged in this activity over the past six months. Provide your response by 
circling the appropriate number to the left of each item using the response key below: 
 
7 = Very Frequently 
6 = Frequently 
5 = Somewhat Frequently 
4 = Occasionally 
3 = Seldom 
2 = Almost Never 
1 = Never 
 
1 2 3 4 5 6 7      1.  I went out of my way to do a favor for a coworker. 
1 2 3 4 5 6 7      2.  I went out of my way to do a favor for a relative. 
1 2 3 4 5 6 7      3.  I went out of my way to do a favor for a friend. 
1 2 3 4 5 6 7      4.  I gave money to a religious charity. 
1 2 3 4 5 6 7      5.  I gave money to a charity not affiliated with a religion. 
1 2 3 4 5 6 7      6.  I gave money to a panhandler. 

When this instrument was developed, the intent was to administer it to a sample of participants and use their 
responses to the six items as separate predictor variables. As previously stated, however, you learned that this is 
a problematic practice and have decided, instead, to perform a principal component analysis on responses to see 
if a smaller number of components can successfully account for most variance in the dataset. If this is the case, 
you will use the resulting components as predictor variables in subsequent analyses. 

At this point, it may be instructive to examine the content of the six items that constitute the POI to make an 
informed guess as to what is likely to result from the principal component analysis. Imagine that when you first 
constructed the instrument, you assumed that the six items were assessing six different types of prosocial 
behavior. Inspection of items 1 to 3, however, shows that these three items share something in common: they all 
deal with “going out of one’s way to do a favor for someone else.” It would not be surprising then to learn that 
these three items will hang together empirically in the principal component analysis to be performed. In the 
same way, a review of items 4 to 6 shows that each of these items involves the activity of “giving money to 
those in need.” Again, it is possible that these three items will also group together in the course of the analysis.  

In summary, the nature of the items suggests that it may be possible to account for variance in the POI with just 
two components: a “helping others” component and a “financial giving” component. At this point, this is only 
speculation, of course; only a formal analysis can determine the number and nature of components measured by 
the inventory of items. (Remember that the preceding instrument is fictitious and used for purposes of 
illustration only and should not be regarded as an example of a good measure of prosocial orientation. Among 
other problems, this questionnaire obviously deals with very few forms of helping behavior.) 

Preparing a Multiple-Item Instrument  
The preceding section illustrates an important point about how not to prepare a multiple-item scale to measure a 
construct. Generally speaking, it is poor practice to throw together a questionnaire, administer it to a sample, 
and then perform a principal component analysis (or factor analysis) to determine what the questionnaire is 
measuring.  

Better results are much more likely when you make a priori decisions about what you want the questionnaire to 
measure, and then take steps to ensure that it does. For example, you would have been more likely to obtain 
optimal results if you: 

• began with a thorough review of theory and research on prosocial behavior 

• used that review to determine how many types of prosocial behavior may exist 

• wrote multiple questionnaire items to assess each type of prosocial behavior 
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Using this approach, you could have made statements such as “There are three types of prosocial behavior: 
acquaintance helping; stranger helping; and financial giving.” You could have then prepared a number of items 
to assess each of these three types, administered the questionnaire to a large sample, and performed a principal 
component analysis to see if three components did, in fact, emerge.  

Number of Items per Component 
When a variable (such as a questionnaire item) is given a weight in computing a principal component, we say 
that the variable loads on that component. For example, if the item “Went out of my way to do a favor for a 
coworker” is given a lot of weight on the “helping others” component, we say that this item “loads” on that 
component. 

It is highly desirable to have a minimum of three (and preferably more) variables loading on each retained 
component when the principal component analysis is complete (see Clark and Watson 1995). Because some 
items may be dropped during the course of the analysis (for reasons to be discussed later), it is generally good 
practice to write at least five items for each construct that you wish to measure. This increases your chances that 
at least three items per component will survive the analysis. Note that we have violated this recommendation by 
writing only three items for each of the two a priori components constituting the POI.  

Keep in mind that the recommendation of three items per scale should be viewed as an absolute minimum and 
certainly not as an optimal number. In practice, test and attitude scale developers normally desire that their 
scales contain many more than just three items to measure a given construct. It is not unusual to see individual 
scales that include 10, 20, or even more items to assess a single construct (e.g., Chou and O’Rourke 2012; 
O’Rourke and Cappeliez 2002). Up to a point, the greater the number of scale items, the more reliable it will be. 
The recommendation of three items per scale should therefore be viewed as a rock-bottom lower bound, 
appropriate only if practical concerns prevent you from including more items (e.g., total questionnaire length). 
For more information on scale construction, see DeVellis (2012) and, Saris and Gallhofer (2007). 

Minimal Sample Size Requirements 
Principal component analysis is a large-sample procedure. To obtain reliable results, the minimal number of 
participants providing usable data for the analysis should be the larger of 100 participants or 5 times the number 
of variables being analyzed (Streiner 1994). 

To illustrate, assume that you wish to perform an analysis on responses to a 50-item questionnaire. (Remember 
that when responses to a questionnaire are analyzed, the number of variables is equal to the number of items on 
that questionnaire.) Five times the number of items on the questionnaire equals 250. Therefore, your final 
sample should provide usable (complete) data from at least 250 participants. Note, however, that any participant 
who fails to answer just one item will not provide usable data for the principal component analysis and will 
therefore be excluded from the final sample. A certain number of participants can always be expected to leave 
at least one question blank. To ensure that the final sample includes at least 250 usable responses, you would be 
wise to administer the questionnaire to perhaps 300 to 350 participants (see Little and Rubin 1987). A 
preferable alternative is to use an imputation procedure that assigns values for skipped items (van Buuren 
2012). A number of such procedures are available in SAS but are not covered in this text. 

These rules regarding the number of participants per variable again constitute a lower bound, and some have 
argued that they should be applied only under two optimal conditions for principal component analysis: when 
many variables are expected to load on each component, and when variable communalities are high. Under less 
optimal conditions, even larger samples may be required.  
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What is a communality? A communality refers to the percent of variance in an observed variable that is 
accounted for by the retained components (or factors). A given variable will display a large communality if it 
loads heavily on at least one of the study’s retained components. Although communalities are computed in 
both procedures, the concept of variable communality is more relevant to factor analysis than principal 
component analysis. 

SAS Program and Output 
You may perform principal component analysis using the PRINCOMP, CALIS, or FACTOR procedures. This 
chapter will show how to perform the analysis using PROC FACTOR since this is a somewhat more flexible 
SAS procedure. (It is also possible to perform an exploratory factor analysis with PROC FACTOR or PROC 
CALIS.) Because the analysis is to be performed using PROC FACTOR, the output will at times make 
reference to factors rather than to principal components (e.g., component 1 will be referred to as FACTOR1 in 
the output). It is important to remember, however, that you are performing principal component analysis, not 
factor analysis. 

This section will provide instructions on writing the SAS program and an overview of the SAS output. A 
subsequent section will provide a more detailed treatment of the steps followed in the analysis as well as the 
decisions to be made at each step. 

Writing the SAS Program 

The DATA Step 
To perform a principal component analysis, data may be entered as raw data, a correlation matrix, a covariance 
matrix, or some other format. (See Appendix A.2 for further description of these data input options.) In this 
chapter’s first example, raw data will be analyzed.  

Assume that you administered the POI to 50 participants, and entered their responses according to the following 
guide: 

Line Column Variable Name Explanation 

1 1–6 V1–V6 Participants’ responses to survey 
questions 1 through 6. Responses were 
provided along a 7-point scale. 

Here are the statements to enter these responses as raw data. The first three observations and the last three 
observations are reproduced here; for the entire dataset, see Appendix B. 

data D1; 
input V1-V6 ; 

datalines; 
556754 
567343 
777222 
. 
. 
. 
767151 
455323 
455544 
; 
run; 
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The dataset in Appendix B includes only 50 cases so that it will be relatively easy to enter the data and replicate 
the analyses presented here. It should be restated, however, that 50 observations is an unacceptably small 
sample for principal component analysis. Earlier it was noted that a sample should provide usable data from the 
larger of either 100 cases or 5 times the number of observed variables. A small sample is being analyzed here 
for illustrative purposes only. 

The PROC FACTOR Statement  
The general form for the SAS program to perform a principal component analysis is presented here: 

proc factor   data=dataset-name 
              simple  
              method=prin 
              priors=one 
              mineigen=p 
              rotate=varimax 
              round 
              flag=desired-size-of-"significant"-factor-loadings ; 
   var  variables-to-be-analyzed ; 
run; 

Options Used with PROC FACTOR 
The PROC FACTOR statement begins the FACTOR procedure and a number of options may be requested in 
this statement before it ends with a semicolon. Some options that are especially useful in social science research 
are: 

FLAG 
causes the output to flag (with an asterisk) factor loadings with absolute values greater than some specified 
size. For example, if you specify 

flag=.35  

an asterisk will appear next to any loading whose absolute value exceeds .35. This option can make it much 
easier to interpret a factor pattern. Negative values are not allowed in the FLAG option, and the FLAG 
option can be used in conjunction with the ROUND option. 

METHOD=factor-extraction-method 
specifies the method to be used in extracting the factors or components. The current program specifies  

method=prin  

to request that the principal axis (principal factors) method be used for the initial extraction. This is the 
appropriate method for a principal component analysis. 

MINEIGEN=p 
specifies the critical eigenvalue a component must display if that component is to be retained (here, p = the 
critical eigenvalue). For example, the current program specifies  

mineigen=1 

This statement will cause PROC FACTOR to retain and rotate any component whose eigenvalue is 1.00 or 
larger. Negative values are not allowed. 

NFACT=n 
allows you to specify the number of components to be retained and rotated where n = the number of 
components. 

O’Rourke, Norm, and Larry Hatcher. A Step-by-Step Approach to Using SAS® for Factor Analysis and Structural Equation Modeling, Second Edition.  
Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



12   A Step-by-Step Approach to Using SAS for Factor Analysis and Structural Equation Modeling, Second Edition 
 

OUT=name-of-new-dataset 
creates a new dataset that includes all of the variables in the existing dataset, along with factor scores for 
the components retained in the present analysis. Component 1 is given the variable name FACTOR1, 
component 2 is given the name FACTOR2, and so forth. It must be used in conjunction with the NFACT 
option, and the analysis must be based on raw data.  

PRIORS=prior-communality-estimates 
specifies prior communality estimates. Users should always specify PRIORS=one to perform a principal 
component analysis. 

ROTATE=rotation-method 
specifies the rotation method to be used. The preceding program requests a varimax rotation that provides 
orthogonal (uncorrelated) components. Oblique rotations may also be requested (correlated components). 

ROUND 
factor loadings and correlation coefficients in the matrices printed by PROC FACTOR are normally carried 
out to several decimal places. Requesting the ROUND option, however, causes all coefficients to be limited 
to two decimal places, rounded to the nearest integer, and multiplied by 100 (thus eliminating the decimal 
point). This generally makes it easier to read the coefficients. 

PLOTS=scree 
creates a plot that graphically displays the size of the eigenvalues associated with each component. This can 
be used to perform a scree test to visually determine how many components should be retained. 

SIMPLE 
requests simple descriptive statistics: the number of usable cases on which the analysis was performed and 
the means and standard deviations of the observed variables. 

The VAR Statement  
The variables to be analyzed are listed on the VAR statement with each variable separated by at least one space. 
Remember that the VAR statement is a separate statement and not an option within the FACTOR statement, so 
don’t forget to end the FACTOR statement with a semicolon before beginning the VAR statement.  

Example of an Actual Program  
The following is an actual program, including the DATA step, that could be used to analyze some fictitious 
data. Only a few sample lines of data appear here; the entire dataset may be found in Appendix B. 

data D1; 
input  #1    @1   (V1-V6)    (1.)   

datalines; 
556754 
567343 
777222 
. 
. 
. 
767151 
455323 
455544 
; 
run; 

proc factor   data=D1 
              simple 
              method=prin 
              priors=one 
              mineigen=1 
              plots=scree 
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              rotate=varimax 
              round 
              flag=.40   ; 

var V1 V2 V3 V4 V5 V6; 
run; 

Results from the Output   
The preceding program would produce three pages of output. Here is a list of some of the most important 
information provided by the output and the page on which it appears: 

• page 1 includes simple statistics (mean values and standard deviations) 

• page 2 includes scree plot of eigenvalues and cumulative variance explained 

• page 3 includes the final communality estimates 

The output created by the preceding program is presented here as Output 1.1. 

Output 1.1: Results of the Initial Principal Component Analysis of the Prosocial Orientation Inventory  
                    (POI) Data (Page 1) 

 
The FACTOR Procedure 

 

Input Data Type Raw Data 

Number of Records Read 50 

Number of Records Used 50 

N for Significance Tests 50 

 

Means and Standard Deviations 
from 50 Observations 

Variable Mean Std Dev 

V1 5.1800000 1.3951812 

V2 5.4000000 1.1065667 

V3 5.5200000 1.2162170 

V4 3.6400000 1.7929567 

V5 4.2200000 1.6695349 

V6 3.1000000 1.5551101 
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Output 1.1 (Page 2) 

 
The FACTOR Procedure 

Initial Factor Method: Principal Components 

 

Prior Communality Estimates: ONE  

Eigenvalues of the Correlation Matrix: Total 
= 6 Average = 1 

 Eigenvalue Difference Proportion Cumulative 

1 2.26643553 0.29182092 0.3777 0.3777 

2 1.97461461 1.17731470 0.3291 0.7068 

3 0.79729990 0.35811605 0.1329 0.8397 

4 0.43918386 0.14791916 0.0732 0.9129 

5 0.29126470 0.06006329 0.0485 0.9615 

6 0.23120141  0.0385 1.0000 

 

2 factors will be retained by the MINEIGEN criterion. 
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Factor Pattern 

 Factor1   Factor2   

V1 58 * 70 * 

V2 48 * 53 * 

V3 60 * 62 * 

V4 64 * -64 * 

V5 68 * -45 * 

V6 68 * -46 * 

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an '*'. 

 

Variance Explained by Each 
Factor 

Factor1 Factor2 

2.2664355 1.9746146 

 

Final Communality Estimates: Total = 4.241050 

V1 V2 V3 V4 V5 V6 

0.82341782 0.50852894 0.74399020 0.82257428 0.66596347 0.67657543 

Output 1.1 (Page 3) 

 
The FACTOR Procedure 

Rotation Method: Varimax 
 

Orthogonal Transformation Matrix 

 1 2 

1 0.76914 0.63908 

2 -0.63908 0.76914 

 

Rotated Factor Pattern 

 Factor1   Factor2   

V1 0  91 * 

V2 3  71 * 

V3 7  86 * 

V4 90 * -9  

V5 81 * 9  

V6 82 * 8  

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an '*'. 
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Variance Explained by Each 
Factor 

Factor1 Factor2 

2.1472475 2.0938026 

 

Final Communality Estimates: Total = 4.241050 

V1 V2 V3 V4 V5 V6 

0.82341782 0.50852894 0.74399020 0.82257428 0.66596347 0.67657543 

Page 1 from Output 1.1 provides simple statistics for the observed variables included in the analysis. Once the 
SAS log has been checked to verify that no errors were made in the analysis, these simple statistics should be 
reviewed to determine how many usable observations were included in the analysis, and to verify that the means 
and standard deviations are in the expected range. On page 1, it says “Means and Standard Deviations from 50 
Observations,” meaning that data from 50 participants were included in the analysis.  

Steps in Conducting Principal Component Analysis 
Principal component analysis is normally conducted in a sequence of steps, with somewhat subjective decisions 
being made at various points. Because this chapter is intended as an introduction to the topic, this text will not 
provide a comprehensive discussion of all of the options available at each step; instead, specific 
recommendations will be made, consistent with common practice in applied research. For a more detailed 
treatment of principal component analysis and factor analysis, see Stevens (2002). 

Step 1: Initial Extraction of the Components   
In principal component analysis, the number of components extracted is equal to the number of variables being 
analyzed. Because six variables are analyzed in the present study, six components are extracted. The first can be 
expected to account for a fairly large amount of the total variance. Each succeeding component will account for 
progressively smaller amounts of variance. Although a large number of components may be extracted in this 
way, only the first few components will be sufficiently important to be retained for interpretation. 

Page 2 from Output 1.1 provides the eigenvalue table from the analysis. (This table appears just below the 
heading “Eigenvalues of the Correlation Matrix: Total = 6 Average = 1”.) An eigenvalue represents the amount 
of variance captured by a given component. In the column heading “Eigenvalue,” the eigenvalue for each 
component is presented. Each row in the matrix presents information for each of the six components. Row 1 
provides information about the first component extracted, row 2 provides information about the second 
component extracted, and so forth. 

Where the column heading “Eigenvalue” intersects with rows 1 and 2, it can be seen that the eigenvalue for 
component 1 is approximately 2.27, while the eigenvalue for component 2 is 1.97. This pattern is consistent 
with our earlier statement that the first components tend to account for relatively large amounts of variance, 
whereas the later components account for comparatively smaller amounts. 

Step 2: Determining the Number of “Meaningful” Components to Retain  
Earlier it was stated that the number of components extracted is equal to the number of variables analyzed. This 
requires that you decide just how many of these components are truly meaningful and worthy of being retained 
for rotation and interpretation. In general, you expect that only the first few components will account for 
meaningful amounts of variance, and that the later components will tend to account for only trivial variance. 
The next step, therefore, is to determine how many meaningful components should be retained to interpret. This 
section will describe four criteria that may be used in making this decision: the eigenvalue-one criterion, the 
scree test, the proportion of variance accounted for, and the interpretability criterion. 
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The Eigenvalue-One Criterion  
In principal component analysis, one of the most commonly used criterion for solving the number-of-
components problem is the eigenvalue-one criterion, also known as the Kaiser-Guttman criterion (Kaiser 1960). 
With this method, you retain and interpret all components with eigenvalues greater than 1.00. 

The rationale for this criterion is straightforward: each observed variable contributes one unit of variance to the 
total variance in the dataset. Any component with an eigenvalue greater than 1.00 accounts for a greater amount 
of variance than had been contributed by one variable. Such a component therefore accounts for a meaningful 
amount of variance and (in theory) is worthy of retention. 

On the other hand, a component with an eigenvalue less than 1.00 accounts for less variance than contributed by 
one variable. The purpose of principal component analysis is to reduce a number of observed variables into a 
relatively smaller number of components. This cannot be effectively achieved if you retain components that 
account for less variance than had been contributed by individual variables. For this reason, components with 
eigenvalues less than 1.00 are viewed as trivial and are not retained.  

The eigenvalue-one criterion has a number of positive features that contribute to its utility. Perhaps the most 
important reason for its use is its simplicity. It does not require subjective decisions; you merely retain 
components with eigenvalues greater than 1.00.  

Yet this criterion often results in retaining the correct number of components, particularly when a small to 
moderate number of variables are analyzed and the variable communalities are high. Stevens (2002) reviews 
studies that have investigated the accuracy of the eigenvalue-one criterion and recommends its use when fewer 
than 30 variables are being analyzed and communalities are greater than .70, or when the analysis is based on 
more than 250 observations and the mean communality is greater than .59.  

There are, however, various problems associated with the eigenvalue-one criterion. As suggested in the 
preceding paragraph, it can lead to retaining the wrong number of components under circumstances that are 
often encountered in research (e.g., when many variables are analyzed, when communalities are small). Also, 
the reflexive application of this criterion can lead to retaining a certain number of components when the actual 
difference in the eigenvalues of successive components is trivial. For example, if component 2 has an 
eigenvalue of 1.01 and component 3 has an eigenvalue of 0.99, then component 2 will be retained but 
component 3 will not. This may mistakenly lead you to believe that the third component was meaningless when, 
in fact, it accounted for almost the same amount of variance as the second component. In short, the 
eigenvalue-one criterion can be helpful when used judiciously, yet the reflexive application of this approach can 
lead to serious errors of interpretation. Almost always, the eigenvalue-one criterion should be considered in 
conjunction with other criteria (e.g., scree test, the proportion of variance accounted for, and the interpretability 
criterion) when deciding how many components to retain and interpret. 

With SAS, the eigenvalue-one criterion can be applied by including the MINEIGEN=1 option in the PROC 
FACTOR statement and not including the NFACT option. The use of the MINEIGEN=1 will cause PROC 
FACTOR to retain any component with an eigenvalue greater than 1.00. 

The eigenvalue table from the current analysis appears on page 2 of Output 1.1. The eigenvalues for 
components 1, 2, and 3 are 2.27, 1.97, and 0.80, respectively. Only components 1 and 2 have eigenvalues 
greater than 1.00, so the eigenvalue-one criterion would lead you to retain and interpret only these two 
components.  

Fortunately, the application of the criterion is fairly unambiguous in this case. The last component retained (2) 
has an eigenvalue of 1.97, which is substantially greater than 1.00, and the next component (3) has an 
eigenvalue of 0.80, which is clearly lower than 1.00. In this instance, you are not faced with the difficult 
decision of whether to retain a component with an eigenvalue approaching 1.00 (e.g., an eigenvalue of .99). In 
situations such as this, the eigenvalue-one criterion may be used with greater confidence.  
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The Scree Test  
With the scree test (Cattell 1966), you plot the eigenvalues associated with each component and look for a 
definitive “break” between the components with relatively large eigenvalues and those with relatively small 
eigenvalues. The components that appear before the break are assumed to be meaningful and are retained for 
rotation, whereas those appearing after the break are assumed to be unimportant and are not retained. 
Sometimes a scree plot will display several large breaks. When this is the case, you should look for the last big 
break before the eigenvalues begin to level off. Only the components that appear before this last large break 
should be retained. 

Specifying the PLOTS=SCREE option in the PROC FACTOR statement tells SAS to print an eigenvalue plot 
as part of the output. This appears as page 2 of Output 1.1. 

You can see that the component numbers are listed on the horizontal axis, while eigenvalues are listed on the 
vertical axis. With this plot, notice there is a relatively small break between components 1 and 2, and a 
relatively large break following component 2. The breaks between components 3, 4, 5, and 6 are all relatively 
small. It is often helpful to draw long lines with extended tails connecting successive pairs of eigenvalues so 
that these breaks are more apparent (e.g., measure degrees separating lines with a protractor). 

Because the large break in this plot appears between components 2 and 3, the scree test would lead you to retain 
only components 1 and 2. The components appearing after the break (3 to 6) would be regarded as trivial. 

The scree test can be expected to provide reasonably accurate results, provided that the sample is large (over 
200) and most of the variable communalities are large (Stevens 2002). This criterion too has its weaknesses, 
most notably the ambiguity of scree plots under common research conditions. Very often, it is difficult to 
determine precisely where in the scree plot a break exists, or even if a break exists at all. In contrast to the 
eigenvalue-one criterion, the scree test is often more subjective. 

The break in the scree plot on page 3 of Output 1.1 is unusually obvious. In contrast, consider the plot that 
appears in Figure 1.2. 

Figure 1.2: A Scree Plot with No Obvious Break 

 

Figure 1.2 presents a fictitious scree plot from a principal component analysis of 17 variables. Notice that there 
is no obvious break in the plot that separates the meaningful components from the trivial components. Most 
researchers would agree that components 1 and 2 are probably meaningful whereas components 13 to 17 are 
probably trivial; but it is difficult to decide exactly where you should draw the line. This example underscores 
the qualitative nature of judgments based solely on the scree test. 
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Scree plots such as the one presented in Figure 1.2 are common in social science research. When encountered, 
the use of the scree test must be supplemented with additional criteria such as the “variance accounted for” 
criterion and the interpretability criterion, to be described later. 

Why do they call it a “scree” test? The word “scree” refers to the loose rubble that lies at the base of a cliff 
or glacier. When performing a scree test, you normally hope that the scree plot will take the form of a cliff. At 
the top will be the eigenvalues for the few meaningful components, followed by a definitive break (the edge 
of the cliff). At the bottom of the cliff will lay the scree (i.e., eigenvalues for the trivial components). 

Proportion of Variance Accounted For  
A third criterion to address the number of factors problem involves retaining a component if it accounts for 
more than a specified proportion (or percentage) of variance in the dataset. For example, you may decide to 
retain any component that accounts for at least 5% or 10% of the total variance. This proportion can be 
calculated with a simple formula: 

Eigenvalue for the component of interestProportion  = 
Total eigenvalues of the correlation matrix  

In principal component analysis, the “total eigenvalues of the correlation matrix” is equal to the total number of 
variables being analyzed (because each variable contributes one unit of variance to the analysis). 

Fortunately, it is not necessary to actually compute these percentages by hand since they are provided in the 
results of PROC FACTOR. The proportion of variance captured by each component is printed in the eigenvalue 
table (page 2) and appears below the “Proportion” heading. 

The eigenvalue table for the current analysis appears on page 2 of Output 1.1. From the “Proportion” column, 
you can see that the first component alone accounts for 38% of the total variance, the second component alone 
accounts for 33%, the third component accounts for 13%, and the fourth component accounts for 7%. Assume 
that you have decided to retain any component that accounts for at least 10% of the total variance in the dataset. 
With the present results, this criterion leads you to retain components 1, 2, and 3. (Notice that use of this 
criterion would result in retaining more components than would be retained using the two preceding criteria.) 

An alternative criterion is to retain enough components so that the cumulative percent of variance is equal to 
some minimal value. For example, recall that components 1, 2, 3, and 4 accounted for approximately 38%, 
33%, 13%, and 7% of the total variance, respectively. Adding these percentages together results in a sum of 
91%. This means that the cumulative percent of variance accounted for by components 1, 2, 3, and 4 is 91%. 
When researchers use the “cumulative percent of variance accounted for” criterion for solving the number-of-
components problem, they usually retain enough components so that the cumulative percent of variance is at 
least 70% (and sometimes 80%).  

With respect to the results of PROC FACTOR, the cumulative percent of variance accounted for is presented in 
the eigenvalue table (from page 2), below the “Cumulative” heading. For the present analysis, this information 
appears in the eigenvalue table on page 2 of Output 1.1. Notice the values that appear below the heading 
“Cumulative.” Each value indicates the percent of variance accounted for by the present component as well as 
all preceding components. For example, the value for component 2 is approximately .71 (intersection of the 
column labeled “Cumulative” and the second row). This value of .71 indicates that approximately 71% of the 
total variance is accounted for by components 1 and 2. The corresponding entry for component 3 is 
approximately .84, indicating that 84% of the variance is accounted for by components 1, 2, and 3. If you were 
to use 70% as the “critical value” for determining the number of components to retain, you would retain only 
components 1 and 2 in the present analysis. 

The primary advantage of the proportion of variance criterion is that it leads you to retain a group of 
components that combined account for a relatively large proportion of variance in the dataset. Nonetheless, the 
critical values discussed earlier (10% for individual components and 70% to 80% for the combined 
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components) are quite arbitrary. Because of this and related problems, this approach has been criticized for its 
subjectivity. 

The Interpretability Criterion  
Perhaps the most important criterion for solving the number-of-components problem is the interpretability 
criterion: interpreting the substantive meaning of the retained components and verifying that this interpretation 
makes sense in terms of what is known about the constructs under investigation. The following list provides 
four rules to follow when applying this criterion. A later section (titled “Step 4: Interpreting the Rotated 
Solution”) shows how to actually interpret the results of a principal component analysis. The following rules 
will be more meaningful after you have completed that section. 

1. Are there at least three variables (items) with significant loadings on each retained component? A 
solution is less satisfactory if a given component is measured by fewer than three variables. 

2. Do the variables that load on a given component share the same conceptual meaning? For 
example, if three questions on a survey all load on component 1, do all three of these questions appear 
to be measuring the same construct?  

3. Do the variables that load on different components seem to be measuring different constructs? 
For example, if three questions load on component 1 and three other questions load on component 2, do 
the first three questions seem to be measuring a construct that is conceptually distinct from the construct 
measured by the other three questions? 

4. Does the rotated factor pattern demonstrate “simple structure”? Simple structure means that the 
pattern possesses two characteristics: (a) most of the variables have relatively high factor loadings on 
only one component and near zero loadings on the other components; and (b) most components have 
relatively high loadings for some variables and near-zero loadings for the remaining variables. This 
concept of simple structure will be explained in more detail in “Step 4: Interpreting the Rotated 
Solution.” 

Recommendations  
Given the preceding options, what procedures should you actually follow in solving the number-of-components 
problem? We recommend combining all four in a structured sequence. First, use the MINEIGEN=1 option to 
implement the eigenvalue-one criterion. Review this solution for interpretability but use caution if the break 
between the components with eigenvalues above 1.00 and those below 1.00 is not clear-cut (e.g., if component 
1 has an eigenvalue of 1.01 and component 2 has an eigenvalue of 0.99).  

Next, perform a scree test and look for obvious breaks in the eigenvalues. Because there will often be more than 
one break in the scree plot, it may be necessary to examine two or more possible solutions.  

Next, review the amount of common variance accounted for by each individual component. You probably 
should not rigidly use some specific but arbitrary cutoff point such as 5% or 10%. Still, if you are retaining 
components that account for as little as 2% or 4% of the variance, it may be wise to take a second look at the 
solution and verify that these latter components are truly of substantive importance. In the same way, it is best if 
the combined components account for at least 70% of the cumulative variance. If less than 70% is captured, it 
may be prudent to consider alternate solutions that include a larger number of components. 

Finally, apply the interpretability criteria to each solution. If more than one solution can be justified on the basis 
of the preceding criteria, which of these solutions is the most interpretable? By seeking a solution that is both 
interpretable and satisfies one or more of the other three criteria, you maximize chances of retaining the optimal 
number of components. 
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Step 3: Rotation to a Final Solution  

Factor Patterns and Factor Loadings  
After extracting the initial components, PROC FACTOR will create an unrotated factor pattern matrix. The 
rows of this matrix represent the variables being analyzed, and the columns represent the retained components. 
(Note that even though we are performing principal component analysis, components are labeled as FACTOR1, 
FACTOR2, and so forth in the output.)  

The entries in the matrix are factor loadings. A factor loading (or, more correctly, a component loading) is a 
general term for a coefficient that appears in a factor pattern matrix or a factor structure matrix. In an analysis 
that results in oblique (correlated) components, the definition of a factor loading is different depending on 
whether it is in a factor pattern matrix or in a factor structure matrix. The situation is simpler, however, in an 
analysis that results in orthogonal components (as in the present chapter). In an orthogonal analysis, factor 
loadings are equivalent to bivariate correlations between the observed variables and the components. 

For example, the factor pattern matrix from the current analysis appears on page 2 of Output 1.1. Where the 
rows for observed variables intersect with the column for FACTOR1, you can see that the correlation between 
V1 and the first component is .58, the correlation between V2 and the first component is .48, and so forth. 

Rotations  
Ideally, you would like to review the correlations between the variables and the components, and use this 
information to interpret the components. In other words, you want to determine what construct seems to be 
measured by component 1, what construct seems to be measured by component 2, and so forth. Unfortunately, 
when more than one component has been retained in an analysis, the interpretation of an unrotated factor pattern 
is generally quite difficult. To facilitate interpretation, you will normally perform an operation called a 
“rotation.” A rotation is a linear transformation that is performed on the factor solution for the purpose of 
making the solution easier to interpret.  

PROC FACTOR allows you to request several different types of rotations. The preceding program that analyzed 
data from the POI study included the statement 

rotate=varimax  

A varimax rotation is an orthogonal rotation, meaning that it results in uncorrelated components. Compared to 
some other types of rotations, a varimax rotation tends to maximize the variance of a column of the factor 
pattern matrix (as opposed to a row of the matrix). This rotation is probably the most commonly used 
orthogonal rotation in the social sciences (e.g., Chou and O’Rourke 2012). The results of the varimax rotation 
for the current analysis appear on page 5 of Output 1.1. 

Step 4: Interpreting the Rotated Solution 
Interpreting a rotated solution means determining just what is measured by each of the retained components. 
Briefly, this involves identifying the variables with high loadings on a given component and determining what 
these variables share in common. Usually, a brief name is assigned to each retained component to describe its 
content. 

The first decision to be made at this stage is how large a factor loading must be to be considered “large.” 
Stevens (2002) discusses some of the issues relevant to this decision and even provides guidelines for testing 
the statistical significance of factor loadings. Given that this is an introductory treatment of principal component 
analysis, simply consider a loading to be “large” if its absolute value exceeds .40.  

The rotated factor pattern for the POI study appears on page 3 of Output 1.1. The following text provides a 
structured approach for interpreting this factor pattern. 
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5. Read across the row for the first variable. All “meaningful loadings” (i.e., loadings greater than .40) 
have been flagged with an asterisk (“*”). This was accomplished by including the FLAG=.40 option in 
the preceding program. If a given variable has a meaningful loading on more than one component, cross 
out that variable and ignore it in your interpretation. In many situations, researchers drop variables that 
load on more than one component because the variables are not pure measures of any one construct. 
(These are sometimes referred to as complex items.) In the present case, this means looking at the row 
heading “V1” and reading to the right to see if it loads on more than one component. In this case it does 
not, so you may retain this variable. 

6. Repeat this process for the remaining variables, crossing out any variable that loads on more than 
one component. In this analysis, none of the variables have high loadings on more than one component, 
so none will have to be deleted. In other words, there are no complex items. 

7. Review all of the surviving variables with high loadings on component 1 to determine the nature 
of this component. From the rotated factor pattern, you can see that only items 4, 5, and 6 load on 
component 1 (note the asterisks). It is now necessary to turn to the questionnaire itself and review the 
content in order to decide what a given component should be named. What do questions 4, 5, and 6 have 
in common? What common construct do they appear to be measuring? For illustration, the questions 
being analyzed in the present case are reproduced here. Remember that question 4 was represented as 
V4 in the SAS program, question 5 was V5, and so forth. Read questions 4, 5, and 6 to see what they 
have in common.  

1 2 3 4 5 6 7      1.  Went out of my way to do a favor for a coworker. 
1 2 3 4 5 6 7      2.  Went out of my way to do a favor for a relative. 
1 2 3 4 5 6 7      3.  Went out of my way to do a favor for a friend. 
1 2 3 4 5 6 7      4.  Gave money to a religious charity. 
1 2 3 4 5 6 7      5.  Gave money to a charity not affiliated with a religion. 
1 2 3 4 5 6 7      6.  Gave money to a panhandler. 

Questions 4, 5, and 6 all seem to deal with giving money to persons in need. It is therefore reasonable to label 
component 1 the “financial giving” component. 

8. Repeat this process to name the remaining retained components. In the present case, there is only 
one remaining component to name: component 2. This component has high loadings for questions 1, 2, 
and 3. In reviewing these items, it is apparent that each seems to deal with helping friends, relatives, or 
other acquaintances. It is therefore appropriate to name this the “helping others” component. 

9. Determine whether this final solution satisfies the interpretability criteria. An earlier section 
indicated that the overall results of a principal component analysis are satisfactory only if they meet a 
number of interpretability criteria. The adequacy of the rotated factor pattern presented on page 3 of 
Output 1.1 is assessed in terms of the following criteria: 
a. Are there at least three variables (items) with significant loadings on each retained 

component? In the present example, three variables loaded on component 1 and three also loaded 
on component 2, so this criterion was met. 

b. Do the variables that load on a given component share similar conceptual meaning? All three 
variables loading on component 1 measure giving to those in need, while all three loading on 
component 2 measure prosocial acts performed for others. Therefore, this criterion is met. 

c. Do the variables that load on different components seem to be measuring different 
constructs? The items loading on component 1 measure respondents’ financial contributions, 
while the items loading on component 2 measure helpfulness toward others. Because these seem 
to be conceptually distinct constructs, this criterion appears to be met as well. 

d. Does the rotated factor pattern demonstrate “simple structure”? Earlier, it was noted that a 
rotated factor pattern demonstrates simple structure when it has two characteristics. First, most of 
the variables should have high loadings on one component and near-zero loadings on other 
components. It can be seen that the pattern obtained here meets that requirement: items 1 to 3 have 
high loadings on component 2 and near-zero loadings on component 1. Similarly, items 4 to 6 
have high loadings on component 1 and near-zero loadings on component 2. The second 
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characteristic of simple structure is that each component should have high loadings for some 
variables and near-zero loadings for the others. The pattern obtained here also meets this 
requirement: component 1 has high loadings for items 4 to 6 and near-zero loadings for the other 
items whereas component 2 has high loadings for items 1 to 3 and near-zero loadings on the 
remaining items. In short, the rotated component pattern obtained in this analysis does appear to 
demonstrate simple structure. 

Step 5: Creating Factor Scores or Factor-Based Scores 
Once the analysis is complete, it is often desirable to assign scores to participants to indicate where they stand 
on the retained components. For example, the two components retained in the present study were interpreted as 
“financial giving” and “helping others.” You may now want to assign one score to each participant to indicate 
that participant’s standing on the “financial giving” component and a second score to indicate that participant’s 
standing on the “helping others” component. Once assigned, these component scores could be used either as 
predictor variables or as criterion variables in subsequent analyses. 

Before discussing the options for assigning these scores, it is important to first draw a distinction between factor 
scores and factor-based scores. In principal component analysis, a factor score (or component score) is a linear 
composite of the optimally weighted observed variables. If requested, PROC FACTOR will compute each 
participant’s factor scores for the two components by:  

• determining the optimal weights 

• multiplying participant responses to questionnaire items by these weights 

• summing the products 

The resulting sum will be a given participant’s score on the component of interest. Remember that a separate 
equation with different weights is computed for each retained component. 

A factor-based score, on the other hand, is merely a linear composite of the variables that demonstrate 
meaningful loadings for the component in question. In the preceding analysis, for example, items 4, 5, and 6 
demonstrated meaningful loadings for the “financial giving” component. Therefore, you could calculate the 
factor-based score on this component for a given participant by simply adding together her responses to items 4, 
5, and 6. Notice that, with a factor-based score, the observed variables are not multiplied by optimal weights 
before they are summed. 

Computing Factor Scores  
Factor scores are requested by including the NFACT and OUT options in the PROC FACTOR statement. Here 
is the general form for a SAS program that uses the NFACT and OUT option to compute factor scores: 

proc factor   data=dataset-name 
              simple  
              method=prin 
              priors=one 
              nfact=number-of-components-to-retain 
              rotate=varimax 
              round 
              flag=desired-size-of-"significant"-factor-loadings 
              out=name-of-new-SAS-dataset   ; 
   var  variables-to-be-analyzed ; 
run; 
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Here are the actual program statements (minus the DATA step) that could be used to perform a principal 
component analysis and compute factor scores for the POI study: 

proc factor   data=D1 
        simple  
        method=prin 
        priors=one 
        nfact=2  
        rotate=varimax 
        round 
        flag=.40    
❶      out=D2   ; 
    var V1 V2 V3 V4 V5 V6; 
run; 

Notice how this program differs from the original program presented earlier in the chapter (in the section titled 
“SAS Program and Output”). The MINEIGEN=1 option has been removed and replaced with the NFACT=2 
option. The OUT=D2 option has also been added. 

Line ❶ of the preceding program asks that an output dataset be created and given the name D2. This name is 
arbitrary; any name consistent with SAS requirements would be acceptable. The new dataset named D2 will 
contain all variables contained in the previous dataset (D1), as well as new variables named FACTOR1 and 
FACTOR2. FACTOR1 will contain factor scores for the first retained component, and FACTOR2 will contain 
scores for the second. The number of new “FACTOR” variables created will be equal to the number of 
components retained by the NFACT statement.  

The OUT option may be used to create component scores only if the analysis has been performed on a raw data 
as opposed to a correlation or covariance matrix. The use of the NFACT statement is also required. 

Having created the new variables named FACTOR1 and FACTOR2, you may be interested to see how they 
relate to the study’s original observed variables. This can be done by appending PROC CORR statements to the 
SAS program, following the last of the PROC FACTOR statements. The full program minus the DATA step is 
now presented: 

     proc factor  data=D1 
       simple  
       method=prin 
       priors=one 
       nfact=2  
       rotate=varimax 
       round 
       flag=.40    

    ❶  out=D2   ; 
   var V1 V2 V3 V4 V5 V6; 

      run; 

   ❷ proc corr   data=D2; 
   var FACTOR1 FACTOR2; 
   with V1 V2 V3 V4 V5 V6 FACTOR1 FACTOR2; 

     run; 

Notice that the PROC CORR statement on line ❷ specifies DATA=D2. This dataset (D2) is the name of the 
output dataset created on line ❶ the PROC FACTOR statement. The PROC CORR statement requests that the 
factor score variables (FACTOR1 and FACTOR2) be correlated with participants’ responses to questionnaire 
items 1 to 6 (V1 to V6). 

The preceding program produces five pages of output. Pages 1 to 2 provide simple statistics, the eigenvalue 
table, and the unrotated factor pattern. Page 3 provides the rotated factor pattern and final communality 
estimates (same as before). Page 4 provides the standardized scoring coefficients used in creating factor scores. 
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Finally, page 5 provides the correlations requested by the corr procedure. Pages 3, 4, and 5 of the output created 
by the preceding program are presented here as Output 1.2. 

Output 1.2: Output Pages 3, 4, and 5 from the Analysis of POI Data from Which Factor Scores Were  
                    Created (Page 3) 

 
The FACTOR Procedure 

Rotation Method: Varimax 
 

Orthogonal Transformation Matrix 

 1 2 

1 -0.87835 0.47802 

2 0.47802 0.87835 

 

Rotated Factor Pattern 

 Factor1   Factor2   

V1 -86 * 7  

V2 -12  93 * 

V3 85 * -2  

V4 -40  -47 * 

V5 79 * -38  

V6 -37  67 * 

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an '*'. 

 

Variance Explained by Each 
Factor 

Factor1 Factor2 

2.4042522 1.6940222 

 

Final Communality Estimates: Total = 4.098274 

V1 V2 V3 V4 V5 V6 

0.75027648 0.88099977 0.73071122 0.38098475 0.76187043 0.59343168 
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Output 1.2 (Page 4) 

 
The FACTOR Procedure 
Rotation Method: Varimax 

 
Scoring Coefficients Estimated by Regression 

 

Squared Multiple Correlations 
of the Variables with Each 

Factor 

Factor1 Factor2 

1.0000000 1.0000000 

 

Standardized Scoring Coefficients 

 Factor1 Factor2 

V1 -0.37829 -0.08350 

V2 0.08170 0.57602 

V3 0.38060 0.11024 

V4 -0.24662 -0.35975 

V5 0.29827 -0.12660 

V6 -0.06907 0.37569 

Output 1.2 (Page 5) 

 
The CORR Procedure 

 

8 With Variables: V1 V2 V3 V4 V5 V6 Factor1 Factor2 

2 Variables: Factor1 Factor2 

 
 
 
 
 
 

Simple Statistics 

Variable N Mean Std Dev Sum Minimum Maximum 

V1 8 560956 134602 4487647 353434 767153 

V2 8 544528 182498 4356220 142441 676222 

V3 8 574671 190693 4597367 265454 777222 

V4 8 662603 80496 5300822 544444 777443 

V5 8 621159 78894 4969272 445332 666665 

V6 8 534284 175061 4274270 244342 767151 

Factor1 8 0 1.00000 0 -1.38533 1.30018 

Factor2 8 0 1.00000 0 -1.85806 1.32865 
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Pearson Correlation Coefficients, N = 8  
Prob > |r| under H0: Rho=0 

 Factor1 Factor2 

V1 -0.86364 

0.0057 
 

0.06629 

0.8761 
 

V2 -0.11991 

0.7773 
 

0.93093 

0.0008 
 

V3 0.85453 

0.0069 
 

-0.02227 

0.9583 
 

V4 -0.39537 

0.3323 
 

-0.47399 

0.2354 
 

V5 0.78663 

0.0206 
 

-0.37826 

0.3555 
 

V6 -0.37238 

0.3636 
 

0.67436 

0.0666 
 

Factor1 1.00000 

  

0.00000 

1.0000 
 

Factor2 0.00000 

1.0000 
 

1.00000 

  

The simple statistics for PROC CORR appear on page 5 in Output 1.2. Notice that the simple statistics for the 
observed variables (V1 to V6) are identical to those that appeared at the beginning of the factor output discussed 
earlier (at the top of Output 1.1, page 1). In contrast, note the simple statistics for FACTOR1 and FACTOR2 
(the factor score variables for components 1 and 2, respectively). Both have means of 0 and standard deviations 
of 1; these variables were constructed to be standardized variables.  

The correlations between FACTOR1 and FACTOR2 and the original observed variables appear at the bottom 
half of page 5. You can see that the correlations between FACTOR1 and V1 to V6 on page 4 of Output 1.2 are 
identical to the factor loadings of V1 to V6 on FACTOR1 on page 3 of Output 1.1, under “Rotated Factor 
Pattern.” This makes sense, as the elements of a factor pattern (in an orthogonal solution) are simply 
correlations between the observed variables and the components themselves. Similarly, you can see that the 
correlations between FACTOR2 and V1 to V6 from page 5 of Output 1.2 are also identical to the corresponding 
factor loadings from page 5 of Output 1.1. 

Of particular interest is the correlation between FACTOR1 and FACTOR2, as computed by PROC CORR. This 
appears on page 5 of Output 1.2, where the row for FACTOR2 intersects with the column for FACTOR1. 
Notice that the observed correlation between these two components is zero. This is as expected; the rotation 
method used in the principal component analysis was the varimax method which produces orthogonal, or 
uncorrelated, components.  
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Computing Factor-Based Scores  
A second (and less sophisticated) approach to scoring involves the creation of new variables that contain factor-
based scores rather than true factor scores. A variable that contains factor-based scores is sometimes referred to 
as a factor-based scale.  

Although factor-based scores can be created in a number of ways, the following method has the advantage of 
being relatively straightforward: 

1. To calculate factor-based scores for component 1, first determine which questionnaire items had high 
loadings on that component. 

2. For a given participant, add together that participant’s responses to these items. The result is that 
participant’s score on the factor-based scale for component 1. 

3. Repeat these steps to calculate each participant’s score on the remaining retained components. 

Although this may sound like a cumbersome task, it is actually quite simple with the use of data manipulation 
statements contained in a SAS program. For example, assume that you have performed the principal component 
analysis on your questionnaire responses and have obtained the findings reported in this chapter. Specifically, 
you found that survey items 4, 5, and 6 loaded on component 1 (the “financial giving” component), while items 
1, 2, and 3 loaded on component 2 (the “helping others” component). 

You would now like to create two new SAS variables. The first variable, called GIVING, will include each 
participant’s factor-based score for financial giving. The second variable, called HELPING, will include each 
participant’s factor-based score for helping others. Once these variables are created, they can be used as 
criterion or predictor variables in subsequent analyses. To keep things simple, assume that you are simply 
interested in determining whether there is a significant correlation between GIVING and HELPING. 

At this time, it may be useful to review Appendix A.3, “Working with Variables and Observations in SAS 
Datasets,” particularly the section on creating new variables from existing variables. This review should make it 
easier to understand the data manipulation statements used here.  

Assume that earlier statements in the SAS program have already entered responses to the six questionnaire 
items. These variables are included in a dataset called D1. The following are the subsequent lines that will then 
create a new dataset called D2. This dataset will include all of the variables in D1 as well as the newly created 
factor-based scales called GIVING and HELPING. 

❶  data D2; 
❷     set D1; 

❸  GIVING   = (V4 + V5 + V6); 
   HELPING  = (V1 + V2 + V3); 

❹  proc corr   data=D2; 
❺     var GIVING  HELPING; 
❻  run; 

Lines ❶ and ❷ request that a new dataset be created called D2, and that it be set up as a duplicate of existing 
dataset D1. On line ❸, the new variable called GIVING is created. For each participant, the responses to items 
4, 5, and 6 are added together. The result is each participant’s score on the factor-based scale for the first 
component. These scores are stored as a variable called GIVING. The component-based scale for the “helping 
others” component is created on line ❹, and these scores are stored as the variable called HELPING. Lines ❺ to 
❻ request the correlations between GIVING and HELPING be computed. GIVING and HELPING can now be 
used as predictor or criterion variables in subsequent analyses. To save space, the results of this program will 
not be presented here. However, note that this output would probably display a nonzero correlation between 
GIVING and HELPING. This may come as a surprise because earlier it was shown that the factor scores 
contained in FACTOR1 and FACTOR2 (counterparts to GIVING and HELPING) were completely 
uncorrelated.  
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The reason for this apparent contradiction is simple: FACTOR1 and FACTOR2 are true principal components, 
and true principal components (created in an orthogonal solution) are always created with optimally weighted 
equations so that they will be mutually uncorrelated. 

In contrast, GIVING and HELPING are not true principal components that consist of true factor scores; they are 
merely variables based on the results of a principal component analysis. Optimal weights (that would ensure 
orthogonality) were not used in the creation of GIVING and HELPING. This is why factor-based scales 
generally demonstrate nonzero correlations while true principal components (from an orthogonal solution) will 
not. 

Recoding Reversed Items Prior to Analysis  
It is almost always best to recode any reversed or negatively keyed items before conducting any of the analyses 
described here. In particular, it is essential that reversed items be recoded prior to the program statements that 
produce factor-based scales. For example, the three questionnaire items that assess financial giving appear again 
here: 

1 2 3 4 5 6 7      4.  Gave money to a religious charity. 
1 2 3 4 5 6 7      5.  Gave money to a charity not affiliated with a religion. 
1 2 3 4 5 6 7      6.  Gave money to a panhandler. 

None of these items are reversed. With each item, a response of “7” indicates a high level of financial giving. In 
the following, however, item 4 is a reversed item; a response of “7” indicating a low level of giving: 

1 2 3 4 5 6 7      4.  Refused to give money to a religious charity. 
1 2 3 4 5 6 7      5.  Gave money to a charity not affiliated with a religion. 
1 2 3 4 5 6 7      6.  Gave money to a panhandler. 

If you were to perform a principal component analysis on responses to these items, the factor loading for item 4 
would most likely have a sign that is the opposite of the sign of the loadings for items 5 and 6 (e.g., if items 5 
and 6 had positive loadings, then item 4 would have a negative loading). This would complicate the creation of 
a component-based scale: with items 5 and 6, higher scores indicate greater giving whereas with item 4, lower 
scores indicate greater giving. You would not want to sum these three items as they are presently coded. First, it 
will be necessary to reverse item 4. Notice how this is done in the following program (assume that the data have 
already been input in a SAS dataset named D1): 

    data D2; 
       set D1; 

❶   V4 = 8 - V4; 

      GIVING   = (V4 + V5 + V6); 
      HELPING  = (V1 + V2 + V3); 

    proc corr   DATA=D2; 
       var GIVING    HELPING; 
    run; 

Line ❶ of the preceding program created a new, recoded version of variable V4. Values on this new version of 
V4 are equal to the quantity 8 minus the value of the old version of V4. For participants whose score on the old 
version of V4 was 1, their value on the new version of V4 is 7 (because 8 – 1 = 7) whereas for those whose 
score is 7, their value on the new version of V4 is 1 (because 8 – 7 = 1). Again, see Appendix A.3 for further 
description of this procedure. 
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The general form of the formula used to recode reversed items is 

variable-name = constant - variable-name ; 

In this formula, the “constant” is the following quantity:  

the number of points on the response scale used with the questionnaire item plus 1 

Therefore, if you are using the 4-point response format, the constant is 5. If using a 9-point scale, the constant is 
10. 

If you have prior knowledge about which items are going to appear as reversed (with reversed component 
loadings) in your results, it is best to place these recoding statements early in your SAS program, before the 
PROC FACTOR statements. This will make interpretation of the components more straightforward because it 
will eliminate significant loadings with opposite signs from appearing on the same component. In any case, it is 
essential that the statements used to recode reversed items appear before the statements that create any factor-
based scales. 

Step 6: Summarizing the Results in a Table  
For reports that summarize the results of your analysis, it is generally desirable to prepare a table that presents 
the rotated factor pattern. When analyzed variables contain responses to questionnaire items, it can be helpful to 
reproduce the questionnaire items within this table. This is presented in Table 1.2: 

Table 1.2: Rotated Factor Pattern and Final Communality Estimates from Principal Component Analysis  
                 of Prosocial Orientation Inventory 

Component 

1 2 h2 Items 

.00 .91 .82 Went out of my way to do a favor for a coworker. 

.03 .71 .51 Went out of my way to do a favor for a relative. 

.07 .86 .74 Went out of my way to do a favor for a friend. 

.90 -.09 .82 Gave money to a religious charity. 

.81 .09 .67 Gave money to a charity not associated with a religion. 

.82 .08 .68 Gave money to a panhandler. 
Note: N = 50. Communality estimates appear in column headed h2. 

The final communality estimates from the analysis are presented under the heading “h2” in the table. These 
estimates appear in the SAS output following “Variance Explained by Each Factor” (page 3 of Output 1.2). 

Very often, the items that constitute the questionnaire are lengthy, or the number of retained components is 
large, so that it is not possible to present the factor pattern, the communalities, and the items themselves in the 
same table. In such situations, it may be preferable to present the factor pattern and communalities in one table 
and the items in a second. Shared item numbers (or single words or defining phrases) may then be used to 
associate each item with its corresponding factor loadings and communality. 
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Step 7: Preparing a Formal Description of the Results for a Paper  
The preceding analysis could be summarized in the following way: 

Principal component analysis was performed on responses to the 6-item questionnaire using ones as prior 
communality estimates. The principal axis method was used to extract the components, and this was followed 
by a varimax (orthogonal) rotation.  

Only the first two components had eigenvalues greater than 1.00; results of a scree test also suggested that only 
the first two were meaningful. Therefore, only the first two components were retained for rotation. Combined, 
components 1 and 2 accounted for 71% of the total variance (38% plus 33%, respectively).  

Questionnaire items and corresponding factor loadings are presented in Table 1.2. When interpreting the rotated 
factor pattern, an item was said to load on a given component if the factor loading was .40 or greater for that 
component and less than .40 for the other. Using these criteria, three items were found to load on the first 
component, which was subsequently labeled “financial giving.” Three items also loaded on the second 
component labeled “helping others.”  

An Example with Three Retained Components 

The Questionnaire 
The next example involves fictitious research that examines Rusbult’s (1980) investment model (Le and Agnew 
2003). This model identifies variables believed to affect a person’s commitment to a romantic relationship. In 
this context, commitment refers to the person’s intention to maintain the relationship and stay with a current 
romantic partner.  

One version of the investment model predicts that commitment will be affected by three antecedent variables: 
satisfaction, investment size, and alternative value. Satisfaction refers to a person’s affective (emotional) 
response to the relationship. Among other things, people report high levels of satisfaction when their current 
relationship comes close to their perceived ideal relationship. Investment size refers to the amount of time, 
energy, and personal resources that an individual has put into the relationship. For example, people report high 
investments when they have spent a lot of time with their current partner and have developed mutual friends 
that may be lost if the relationship were to end. Finally, alternative value refers to the attractiveness of 
alternatives to one’s current partner. A person would score high on alternative value if, for example, it would be 
appealing to date someone else or perhaps just be alone for a while. 

Assume that you wish to conduct research on the investment model and are in the process of preparing a 12-
item questionnaire to assess levels of satisfaction, investment size, and alternative value in a group of 
participants involved in romantic relationships. Part of the instrument used to assess these constructs is 
presented here: 

Indicate the extent to which you agree or disagree with each of the following statements by specifying the 
appropriate response in the space to the left of the statement. Please use the following response format to 
make these ratings: 
 
     7 = Strongly Agree 
     6 = Agree 
     5 = Slightly Agree 
     4 = Neither Agree Nor Disagree 
     3 = Slightly Disagree 
     2 = Disagree 
     1 = Strongly Disagree 
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_____  1.  I am satisfied with my current relationship. 
_____  2.  My current relationship comes close to my ideal relationship. 
_____  3.  I am more satisfied with my relationship than the average person. 
_____  4.  I feel good about my current relationship. 
_____  5.  I have invested a great deal of time in my current relationship. 
_____  6.  I have invested a great deal of energy in my current relationship. 
_____  7.  I have invested a lot of my personal resources (e.g., money) in developing my current relationship. 
_____  8.  My partner and I have established mutual friends that I might lose if we were to break up. 
_____  9.  There are plenty of other attractive people for me to date if I were to break up with my current  
                  partner. 
_____ 10.  It would be appealing to break up with my current partner and date someone else. 
_____ 11.  It would be appealing to break up with my partner to be alone for a while. 
_____ 12.  It would be appealing to break up with my partner and “play the field.” 

In the preceding questionnaire, items 1 to 4 were written to assess satisfaction, items 5 to 8 were written to 
assess investment size, and items 9 to 12 were written to assess alternative value. Assume that you administer 
this questionnaire to 300 participants and now want to perform a principal component analysis on their 
responses. 

Writing the Program 
Earlier, it was noted that it is possible to perform a principal component analysis on a correlation matrix (or 
covariance matrix) as well as on raw data. This section shows how the former is done. The following program 
includes the correlation matrix that provides all possible correlation coefficients between responses to the 12 
questionnaire items and performs a principal component analysis on these fictitious data: 

data D1(type=corr)  ; 
     input   _type_   $ 
             _name_   $ 
             V1-V12   ; 
  datalines; 
  n     .    300  300  300  300  300  300  300  300  300  300  300  300 
  std   .   2.48 2.39 2.58 3.12 2.80 3.14 2.92 2.50 2.10 2.14 1.83 2.26 
  corr V1   1.00  .    .    .    .    .    .    .    .    .    .    . 
  corr V2    .69 1.00  .    .    .    .    .    .    .    .    .    . 
  corr V3    .60  .79 1.00  .    .    .    .    .    .    .    .    . 
  corr V4    .62  .47  .48 1.00  .    .    .    .    .    .    .    . 
  corr V5    .03  .04  .16  .09 1.00  .    .    .    .    .    .    . 
  corr V6    .05 -.04  .08  .05  .91 1.00  .    .    .    .    .    . 
  corr V7    .14  .05  .06  .12  .82  .89 1.00  .    .    .    .    .    
  corr V8    .23  .13  .16  .21  .70  .72  .82 1.00  .    .    .    . 
  corr V9   -.17 -.07 -.04 -.05 -.33 -.26 -.38 -.45 1.00  .    .    . 
  corr V10  -.10 -.08  .07  .15 -.16 -.20 -.27 -.34  .45 1.00  .    . 
  corr V11  -.24 -.19 -.26 -.28 -.43 -.37 -.53 -.57  .60  .22 1.00  . 
  corr V12  -.11 -.07  .07  .08 -.10 -.13 -.23 -.31  .44  .60  .26 1.00 
  ; 
run ; 
    proc factor   data=D1 
                  method=prin 
                  priors=one 
                  mineigen=1 
                  plots=scree 
                  rotate=varimax 
                  round 
                  flag=.40   ; 
      var  V1-V12; 
run; 
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The PROC FACTOR statement in the preceding program follows the general form recommended for the 
previous data analyses. Notice that the MINEIGEN=1 statement requests that all components with eigenvalues 
greater than 1.00 be retained and the PLOTS=SCREE option requests a scree plot of eigenvalues. These options 
are particularly helpful for the initial analysis of data as they can help determine the correct number of 
components to retain. If the scree test (or the other criteria) suggests retaining some number of components 
other than what would be retained using the MINEIGEN=1 option, that option may be dropped and replaced 
with the NFACT option.  

Results of the Initial Analysis 
The preceding program produced three pages of output, with the following information appearing on each page: 

• page 1 reports the data input procedure and sample size 

• page 2 includes the eigenvalue table and scree plot of eigenvalues 

• page 3 includes the rotated factor pattern and final communality estimates 

The eigenvalue table from this analysis appears on page 1 of Output 1.3. The eigenvalues themselves appear in 
the left-hand column under the heading “Eigenvalue.” From these values, you can see that components 1, 2, and 
3 have eigenvalues of 4.47, 2.73, and 1.70, respectively. Furthermore, you can see that only these first three 
components have eigenvalues greater than 1.00. This means that three components will be retained by the 
MINEIGEN criterion. Notice that the first nonretained component (component 4) has an eigenvalue of 
approximately 0.85 which, of course, is well below 1.00. This is encouraging, as you have more confidence in 
the eigenvalue-one criterion when the solution does not contain “near-miss” eigenvalues (e.g., .98 or .99). 

Output 1.3: Results of the Initial Principal Component Analysis of the Investment Model Data (page 1) 

 
The FACTOR Procedure 

 

Input Data Type Correlations 

N Set/Assumed in Data Set 300 

N for Significance Tests 300 
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Output 1.3 (page 2) 

 
The FACTOR Procedure 

Initial Factor Method: Principal Components 
 

Prior Communality Estimates: ONE  

Eigenvalues of the Correlation Matrix: Total 
= 12 Average = 1 

 Eigenvalue Difference Proportion Cumulative 

1 4.47058134 1.73995858 0.3725 0.3725 

2 2.73062277 1.02888853 0.2276 0.6001 

3 1.70173424 0.85548155 0.1418 0.7419 

4 0.84625269 0.22563029 0.0705 0.8124 

5 0.62062240 0.20959929 0.0517 0.8642 

6 0.41102311 0.06600575 0.0343 0.8984 

7 0.34501736 0.04211948 0.0288 0.9272 

8 0.30289788 0.07008042 0.0252 0.9524 

9 0.23281745 0.04595812 0.0194 0.9718 

10 0.18685934 0.08061799 0.0156 0.9874 

11 0.10624135 0.06091129 0.0089 0.9962 

12 0.04533006  0.0038 1.0000 

 

3 factors will be retained by the MINEIGEN criterion. 
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Factor Pattern 

 Factor1   Factor2   Factor3   

V1 39  76 * -14  

V2 31  82 * -12  

V3 34  79 * 9  

V4 31  69 * 15  

V5 80 * -26  41 * 

V6 79 * -32  41 * 

V7 87 * -27  26  

V8 88 * -14  9  

V9 -61 * 14  47 * 

V10 -43 * 23  68 * 

V11 -72 * -6  12  

V12 -40  19  72 * 

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an '*'. 

 
 
 

Variance Explained by Each Factor 

Factor1 Factor2 Factor3 

4.4705813 2.7306228 1.7017342 

Output 1.3 (page 3) 

 
The FACTOR Procedure 

Rotation Method: Varimax 
 

Orthogonal Transformation Matrix 

 1 2 3 

1 0.83136 0.34431 -0.43623 

2 -0.29481 0.93864 0.17902 

3 0.47110 -0.02022 0.88185 

 

Rotated Factor Pattern 

 Factor1   Factor2   Factor3   

V1 3  85 * -16  

V2 -4  88 * -10  

V3 9  86 * 8  

V4 13  75 * 12  

V5 93 * 2  -3  

V6 95 * -4  -4  
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Rotated Factor Pattern 

 Factor1   Factor2   Factor3   

V7 93 * 4  -19  

V8 81 * 17  -33  

V9 -32  -9  71 * 

V10 -11  6  82 * 

V11 -52 * -30  41 * 

V12 -5  3  84 * 

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an '*'. 

 

Variance Explained by Each Factor 

Factor1 Factor2 Factor3 

3.7048597 2.9364774 2.2616012 

 
The eigenvalue table in Output 1.3 also shows that the first three components combined account for slightly 
more than 74% of the total variance. (This variance value can be observed at the intersection of the column 
labeled “Cumulative” and row “3”.) The “percentage of variance accounted for” criterion suggests that it may 
be appropriate to retain three components. 

The scree plot from this solution appears on page 2 of Output 1.3. This scree plot shows that there are several 
large breaks in the data following components 1, 2, and 3, and then the line begins to flatten beginning with 
component 4. The last large break appears after component 3, suggesting that only components 1 to 3 account 
for meaningful variance. This suggests that only these first three components should be retained and interpreted. 
Notice how it is almost possible to draw a straight line through components 4 to 12. The components that lie 
along a semi-straight line such as this are typically assumed to be measuring only trivial variance                  
(i.e., components 4 to 12 constitute the “scree” of your scree plot). 

So far, the results from the eigenvalue-one criterion, the variance accounted for criterion, and the scree plot are 
in agreement, suggesting that a three-component solution may be most appropriate. It is now time to review the 
rotated factor pattern to see if such a solution is interpretable. This matrix is presented on page 3 of Output 1.3. 

Following the guidelines provided earlier, you begin by looking for factorially complex items (i.e., items with 
meaningful loadings on more than one component). A review shows that item 11 (variable V11) is a complex 
item, loading on both components 1 and 3. Item 11 should therefore be discarded. Except for this item, the 
solution is otherwise fairly straightforward.  

To interpret component 1, you read down the column for FACTOR1 and see that items 5 to 8 load significantly 
on this component. These items are: 

_____  5.  I have invested a great deal of time in my current relationship. 
_____  6.  I have invested a great deal of energy in my current relationship. 
_____  7.  I have invested a lot of my personal resources (e.g., money) in developing my current relationship. 
_____  8.  My partner and I have established mutual friends that I might lose if we were to break up. 

All of these items deal with the investments that participants have made in their relationships, so it makes sense 
to label this the “investment size” component. 

The rotated factor pattern shows that items 1 to 4 have meaningful loadings on component 2. These items are: 
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_____  1.  I am satisfied with my current relationship. 
_____  2.  My current relationship comes close to my ideal relationship. 
_____  3.  I am more satisfied with my relationship than the average person. 
_____  4.  I feel good about my current relationship. 

Given the content of the preceding items, it seems reasonable to label component 2 the “satisfaction” 
component. 

Finally, items 9, 10, and 12 have meaningful loadings on component 3. (Again, remember that item 11 has been 
discarded.) These items are: 

_____  9.  There are plenty of other attractive people around for me to date if I were to break up with my  
                 current partner. 
_____ 10.  It would be appealing to break up with my current partner and date someone else. 
_____ 12.  It would be appealing to break up with my partner and “play the field.” 

These items all seem to deal with the attractiveness of alternatives to one’s current relationship, so it makes 
sense to label this the “alternative value” component. 

You may now step back and determine whether this solution satisfies the interpretability criteria presented 
earlier. 

1. Are there at least three variables with meaningful loadings on each retained component? 
2. Do the variables that load on a given component share the same conceptual meaning? 
3. Do the variables that load on different components seem to be measuring different constructs? 
4. Does the rotated factor pattern demonstrate “simple structure”? 

In general, the answer to each of these questions is “yes,” indicating that the current solution is, in most 
respects, satisfactory. There is, however, a problem with item 11, which loads on both components 1 and 3. This 
problem prevents the current solution from demonstrating a perfectly “simple structure” (criterion 4 from 
above). To eliminate this problem, it may be desirable to repeat the analysis, this time analyzing all of the items 
except for item 11. This will be done in the second analysis of the investment model data described below.  

Results of the Second Analysis 
To repeat the current analysis with item 11 deleted, it is necessary only to modify the VAR statement of the 
preceding program. This may be done by changing the VAR statement so that it appears as follows: 

     var V1-V10 V12; 

All other aspects of the program will remain as they were previously. The eigenvalue table, scree plot, the 
unrotated factor pattern, the rotated factor pattern, and final communality estimates obtained from this revised 
program appear in Output 1.4: 
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Output 1.4: Results of the Second Analysis of the Investment Model Data (Page 1) 

 
The FACTOR Procedure 

 

Input Data Type Correlations 

N Set/Assumed in Data Set 300 

N for Significance Tests 300 

Output 1.4 (page 2) 

 
The FACTOR Procedure 

Initial Factor Method: Principal Components 
 

Prior Communality Estimates: ONE  

Eigenvalues of the Correlation Matrix: Total 
= 11 Average = 1 

 Eigenvalue Difference Proportion Cumulative 

1 4.02408599 1.29704748 0.3658 0.3658 

2 2.72703851 1.03724743 0.2479 0.6137 

3 1.68979108 1.00603918 0.1536 0.7674 

4 0.68375190 0.12740106 0.0622 0.8295 

5 0.55635084 0.16009525 0.0506 0.8801 

6 0.39625559 0.08887964 0.0360 0.9161 

7 0.30737595 0.04059618 0.0279 0.9441 

8 0.26677977 0.07984443 0.0243 0.9683 

9 0.18693534 0.07388104 0.0170 0.9853 

10 0.11305430 0.06447359 0.0103 0.9956 

11 0.04858072  0.0044 1.0000 
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3 factors will be retained by the MINEIGEN criterion. 

 
 

Factor Pattern 

 Factor1   Factor2   Factor3   

V1 38  77 * -17  

V2 30  83 * -15  

V3 32  80 * 8  

V4 29  70 * 15  

V5 83 * -23  38  

V6 83 * -30  38  

V7 89 * -24  24  

V8 88 * -12  7  

V9 -56 * 13  47 * 

V10 -44 * 22  70 * 

V12 -40  18  74 * 

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an '*'. 

 

Variance Explained by Each Factor 

Factor1 Factor2 Factor3 

4.0240860 2.7270385 1.6897911 
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Output 1.4 (Page 3) 

 
The FACTOR Procedure 

Rotation Method: Varimax 

Orthogonal Transformation Matrix 

 1 2 3 

1 0.84713 0.32918 -0.41716 

2 -0.27774 0.94354 0.18052 

3 0.45303 -0.03706 0.89073 

 
 

Rotated Factor Pattern 

 Factor1   Factor2   Factor3   

V1 3  86 * -17  

V2 -4  89 * -11  

V3 8  86 * 8  

V4 12  75 * 14  

V5 94 * 4  -4  

V6 96 * -2  -6  

V7 93 * 5  -20  

V8 81 * 18  -33  

V9 -30  -8  68 * 

V10 -12  4  85 * 

V12 -5  1  86 * 

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an '*'. 

 

Variance Explained by Each Factor 

Factor1 Factor2 Factor3 

3.4449528 2.8661574 2.1298054 

The results obtained when item 11 is deleted from the analysis are very similar to those obtained when it was 
included. The eigenvalue table of Output 1.4 shows that the eigenvalue-one criterion would again result in 
retaining three components. The first three components account for close to 77% of the total variance, which 
means that three components would also be retained if you used the variance-accounted-for criterion. Also, the 
scree plot from page 2 of Output 1.4 is cleaner than observed with the initial analysis; the break between 
components 3 and 4 is now more distinct and the eigenvalues again level off after this break. This means that 
three components would also likely be retained if the scree test were used to solve the number-of-components 
problem. 

The biggest change can be seen in the rotated factor pattern that appears on page 4 of Output 1.4. The solution 
is now cleaner in the sense that no item loads on more than one component (i.e., no complex items). The current 
results now demonstrate a somewhat simpler structure than the initial analysis of the investment model data. 
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Conclusion 
Principal component analysis is an effective procedure for reducing a number of observed variables into a 
smaller number that account for most of the variance in a dataset. This technique is particularly useful when you 
need a data reduction procedure that makes no assumptions concerning an underlying causal structure 
responsible for covariation in the data.  

Appendix: Assumptions Underlying Principal Component Analysis 
Because a principal component analysis is performed on a matrix of Pearson correlation coefficients, the data 
should satisfy the assumptions for this statistic. These assumptions are described in Appendix A.5, “Preparing 
Scattergrams and Computing Correlations,” and are briefly reviewed here:  

• Interval-level measurement. All variables should be assessed on an interval or ratio level of 
measurement. 

• Random sampling. Each participant will contribute one score on each observed variable. These sets of 
scores should represent a random sample drawn from the population of interest. 

• Linearity. The relationship between all observed variables should be linear.  

• Bivariate normal distribution. Each pair of observed variables should display a bivariate normal 
distribution (e.g., they should form an elliptical scattergram when plotted).  
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Introduction: When Is Exploratory Factor Analysis Appropriate? 
Exploratory factor analysis can be used when you have obtained responses to several of measures and wish to 
identify the number and nature of the underlying factors that are responsible for covariation in the data. In other 
words, exploratory factor analysis is appropriate when you wish to identify the factor structure underlying a 
set of data.  
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For example, imagine that you are a political scientist who has developed a 50-item questionnaire to assess 
political attitudes. You administer the questionnaire to 500 people, and perform a factor analysis on their 
responses. The results of the analysis suggest that although the questionnaire contained 50 items, it really just 
measures two underlying factors, or constructs. You decided to label the first construct the social conservatism 
factor. Individuals who scored high on this construct tended to agree with statements such as “People should be 
married before living together,” and “Children should respect their elders.” You chose to label the second 
construct economic conservatism. Individuals who scored high on this factor tended to agree with statements 
such as “The size of the federal government should be reduced,” and “Our taxes should be lowered.” 

In short, by performing a factor analysis on responses to this questionnaire, you were able to determine the 
number of constructs measured by this questionnaire (two) as well as the nature of those constructs. The results 
of the analysis showed which questionnaire items were measuring the social conservatism factor, and which 
were measuring economic conservatism. 

The use of factor analysis assumes that each of the observed variables being analyzed is measured on an interval 
or ratio scale. Some additional assumptions underlying the use of factor analysis are listed in an appendix at the 
end of this chapter. 

NOTE: You will see a good deal of similarity between the issues discussed in this chapter and those discussed 
in the preceding chapter on principal component analysis. This is because there are many similarities in terms of 
how principal component analysis and exploratory factor analysis are conducted even though there are 
conceptual differences between the two. Some of these differences and similarities are discussed in a later 
section titled “Exploratory Factor Analysis versus Principal Component Analysis.” 

It is likely that some users will read this chapter without first reviewing the previous chapter on principal 
component analysis; this makes it necessary to present much of the material that was already covered in the 
principal component chapter. Readers who have already covered the principal component chapter should be 
able to skim this material more quickly. 

Introduction to the Common Factor Model  

Example: Investment Model Questionnaire 
Exploratory factor analysis will be demonstrated by performing a factor analysis on fictitious data from a 
questionnaire designed to measure construct from Rusbult’s investment model (1980). The investment model 
was introduced in the preceding chapter (Le and Agnew 2003); you will remember that this model describes 
certain constructs that affect an individual’s commitment to a romantic relationship (i.e., one’s intention to 
maintain the relationship). Two of the constructs that are believed to influence commitment are alternative value 
and investment size. Alternative value refers to the attractiveness of alternatives to one’s current romantic 
partner. For example, a woman would score high on alternative value if it would be appealing for her to leave 
her current partner for a different partner, or simply to leave her current partner and be unattached. Investment 
size refers to the time or personal resources that a person has put into a relationship with a current partner. For 
example, a woman would score high on investment size if she has invested a lot of time and effort in developing 
her current relationship, or if she and her partner have many mutual friendships that would be lost if the 
relationship were to end. 

Imagine that you have developed a short questionnaire to assess alternative value and investment size. The 
questionnaire is to be completed by persons who are currently involved in romantic associations. With this 
questionnaire, items 1 to 3 were designed to assess investment size, and items 4 to 6 were designed to assess 
alternative value. Part of the questionnaire is reproduced below: 
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Please rate each of the following items to indicate the extent to which you agree or disagree with each 
statement. Use a response scale in which 1 = “Strongly Disagree” and 7 = “Strongly Agree.” 
 
 _____ 1.  I have invested a lot of time and effort in developing my relationship with my current partner. 
 _____ 2.  My current partner and I have developed interests in a lot of activities that I would lose if our  
                 relationship were to end. 
 _____ 3.  My current partner and I have developed a lot of mutual friendships that I would lose if our  
                 relationship were to end. 
 _____ 4.  It would be more attractive for me to be involved in a relationship with someone else rather than  
                 continue a relationship with my current partner. 
 _____ 5.  It would be more attractive for me to be by myself than to continue my relationship with my  
                 current partner. 
 _____ 6.  In general, the alternatives to remaining in this relationship are quite attractive. 

Assume that this questionnaire was administered to 200 participants, and their responses were entered so that 
responses to question 1 were coded as variable V1, responses to question 2 were coded as variable V2, and so 
forth. The correlations between the six variables are presented in Table 2.1. 

Table 2.1: Correlations Coefficients between Questions Assessing Investment Size and Alternative Value 

                                                             Intercorrelations 
Question V1 V2 V3 V4 V5 V6 
V1 1.00      
V2   .81 1.00     
V3   .79   .92 1.00    
V4  -.03  -.07  -.01 1.00   
V5  -.06  -.01  -.11   .78 1.00  
V6  -.10  -.08  -.04   .79   .85 1.00 
NOTE: N=200. 

The preceding matrix of correlations consists of six rows (running horizontally) and six columns (running 
vertically). Where the row for one variable intersects with the column for a second variable, you will find the 
correlation coefficient for that pair of variables. For example, where the row for V2 intersects with the column 
for V1, you can see that the correlation between these items is .81. 

Notice the pattern of intercorrelations. Questions 1, 2, and 3 are strongly correlated with one another, but these 
variables are essentially uncorrelated with questions 4, 5, and 6. Similarly, question 4, 5, and 6 are strongly 
correlated with one another, but are essentially uncorrelated with questions 1, 2, and 3. Reviewing the complete 
matrix reveals that there are two sets of variables that seem to “hang together:” Variables 1, 2, and 3 form one 
group, and variables 4, 5, and 6 form the second group. But why do responses group together in this manner? 

The Common Factor Model: Basic Concepts 
One possible explanation for this pattern of intercorrelations may be found in Figure 2.1. In this figure, 
responses to questions 1 through 6 are represented as the six squares labeled V1 through V6. This model 
suggests that variables V1, V2, and V3 are correlated with one another because they are all influenced by the 
same underlying factor. A factor is an unobserved variable (or latent variable). Being “latent” means that you 
cannot measure a factor directly like you would measure an observed variable such as height or weight. A factor 
is a hypothetical construct: You believe it exists and that it influences certain manifest (or observed) variables 
that can be measured directly. In the present study, the manifest or observed variables are participant responses 
to items 1 through 6. 
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Figure 2.1: Six Variable, 2-Factor Model, Orthogonal Factors, Factorial Complexity=1 

 

When representing models as figures, it is conventional to represent observed variables as squares or rectangles, 
and to represent latent factors as circles or ovals. You can therefore see that two factors appear in Figure 2.1. 
The first is labeled “F1: Investment Size,” and the second is labeled “F2: Alternative Value.” 

We now return to the original question: Why do variables V1, V2, and V3 correlate so strongly with one 
another?  According to the model presented in Figure 2.1, these variables are intercorrelated because they are all 
measuring aspects of the same latent factor: Participants’ standing on the underlying “investment size” 
construct. This model proposes that, within participants’ belief systems, there is a construct that you might call 
“investment size.” Furthermore, this construct influences the way that participants respond to questions 1, 2, 
and 3 (notice the arrows going from the oval factor to the squares). Even though you cannot directly measure 
someone’s standing on the factor (i.e., it is a hypothetical construct), you can infer that it exists by:  

• noting that questions 1, 2, and 3 correlate highly with one another 

• reviewing the content of questionnaire items 1, 2, and 3 (i.e., noting what these questions actually say) 

• noting that all three questions seem to be measuring the same basic construct, a construct that could 
reasonably be named “investment size” 

(Please don’t misunderstand, the preceding is not a description of how to perform factor analysis; it is just an 
example to help convey the conceptual meaning of the model presented in the figure.) 

Common Factors 
The investment size factor (F1) presented in Figure 2.1 is known as a common factor. A common factor is a 
one that influences more than one observed variable. In this case, you can see that variables V1, V2, and V3 are 
all influenced by the investment size factor. It is called a common factor because more than one variable shares 
it in common. Because of this terminology, the type of analyses discussed in this chapter is sometimes referred 
to as common factor analysis. 

In the lower half of Figure 2.1, you can see that there is a second common factor (F2) representing the 
“alternative value” hypothetical construct. This factor affects responses to items 4, 5, and 6 (notice the 
directional arrows). In short, variables V4, V5, and V6 are intercorrelated because they have this alternative 
value factor in common. In contrast, variables V4, V5, and V6 are not influenced by the investment size factor 
(notice that there are no arrows going from F1 to these variables), and similarly, V1, V2, and V3 are not 
influenced by the alternative value factor, F2. This should help clarify why variables V1, V2, and V3 tend to be 
uncorrelated with variables V4, V5, and V6. 
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Orthogonal versus Oblique Models 
A few more points must be made in order to understand the factor model presented in Figure 2.1 more fully. 
Notice that there is no arrow connecting F1 and F2. If it were hypothesized that the factors were correlated with 
one another, there would be a curved double-headed or bidirectional arrow connecting the two ovals. A double-
headed arrow indicates that two constructs are correlated with no cause-and-effect relationship specified. The 
absence of a double-headed arrow in Figure 2.1 means that the researcher expects these factors are uncorrelated, 
or orthogonal. If a double-headed arrow did connect them, we would say that the factors are correlated, or 
oblique. Oblique factor models will be discussed later in this chapter. 

In some factor models, a single-headed arrow connects two latent factors, indicating that one factor is expected 
to have a directional effect on the other. Such models are normally not examined with exploratory factor 
analysis, however, and will not be discussed in this chapter. For information on models that predict 
relationships between latent factors, see Chapter 5 “Developing Measurement Models with Confirmatory Factor 
Analysis” and Chapter 6: “Structural Equation Modeling.” 

Unique Factors 
Notice that the two common factors are not the only ones that influence the observed variables. For example, 
you can see that there are actually two factors that influence variable V1: (a) the common factor, F1; and (b) a 
second factor, “U1.” Here, U1 is a unique factor: One that influences only one observed variable. A unique 
factor represents all of the independent factors that are unique to that single variable including the error 
component that is unique to that variable. In the figure, the unique factor U1 affects only V1, U2 affects only 
V2, and so forth. 

Factor Loadings 
In Figure 2.1, each of the arrows going from a common factor to an observed variable is identified with a 
specific coefficient such as b11, b21, or b42. The convention used in labeling these coefficients is quite simple: 
The first number in the subscript represents the number of the variable that the arrow points toward, and the 
second number in the subscript represents the number of the factor where the arrow originates. In this way, the 
coefficient “b21” represents the arrow that goes to variable 2 from Factor 1; the coefficient “b52” represents the 
arrow that goes to variable 5 from Factor 2; and so forth. 

These coefficients represent factor loadings. But what exactly is a factor loading? Technically, it is a 
coefficient that appears in either a factor pattern matrix or a factor structure matrix. (These matrices are 
included in the output of an oblique factor analysis.) When one conducts an oblique factor analysis, the loadings 
in the pattern matrix will have a definition that is different from the definition given to loadings in the structure 
matrix. We will discuss these definitions later in the chapter. To keep things simple, however, we will skip the 
oblique analysis for the moment, and instead describe what the loadings represent when one performs an 
analysis in which the factors are orthogonal (uncorrelated). Factor loadings have a more simple interpretation in 
an orthogonal solution. 

When examining orthogonal factors, the b coefficients may be understood in a number of different ways. For 
example, they may be viewed as: 

• Standardized regression coefficients. The factor loadings obtained in an analysis with orthogonal 
factors may be thought of as standardized regression weights. If all variables (including the factors) are 
standardized to have unit variance (i.e., variance = 1.00), the b coefficients are analogous to the 
standardized regression coefficients (or regression weights) obtained in regression analysis. In other 
words, the b weights may be thought of as optimal linear weights by which the F factors are multiplied 
in calculating participant scores on the V variables (i.e., the weights used in predicting the variables 
from the factors). 

• Correlation coefficients. Factor loadings also represent the product-moment correlation coefficients 
between an observed variable and its underlying factor. For example, if b52 = .85, this would indicate 
that the correlation between V5 and F2 is .85. This may surprise you if you are familiar with multiple 
regression, because most textbooks on multiple regression point out that standardized multiple 
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regression coefficients and correlation coefficients are different things. However, standardized 
regression coefficients are equivalent to correlation coefficients when predictor variables are 
completely uncorrelated with each other. And that is the case in factor analysis with orthogonal factors: 
The factors serve as predictor variables in predicting the observed variables. Because the factors are 
uncorrelated, the factor loadings may be interpreted as both standardized regression weights and as 
correlation coefficients. 

• Path coefficients. Finally, b coefficients are also analogous to the path coefficients obtained in path 
analysis. That is, they may be seen as standardized linear weights that represent the size of the effect 
that an underlying factor has in predicting variability in the observed variable. (Path analysis is covered 
in Chapter 4 of this text.) 

Factor loadings are important because they help you interpret the factors that are responsible for covariation in 
the data. This means that, after the factors are rotated, you can review the nature of the variables that have 
significant loadings for a given factor (i.e., the variables that are most strongly related to the factor). The nature 
of these variables will help you understand the nature of that factor. 

Factorial Complexity 
Factorial complexity is a characteristic of an observed variable. The factorial complexity of a variable refers to 
the number of common factors that have a significant loading for that variable. For example, in Figure 2.1 you 
can see that the factorial complexity of V1 is one: V1 displays a significant loading for F1, but not for F2. The 
factorial complexity of V4 is also one: It displays a significant loading for F2 but not for F1.  

Although the Figure 2.1 factor model is fairly simple, Figure 2.2 depicts a more complex example. As with the 
previous model, two common factors are again responsible for covariation in the dataset. However, you can see 
that both common factors in Figure 2.2 have significant loadings on all six observed variables. In the same way, 
you can see that each variable is influenced by both common factors. Because each variable in the figure has 
significant loadings for two common factors, it may be said that each variable has a factorial complexity of two. 

Figure 2.2: Six Variable, 2-Factor Model, Orthogonal Factors, Factorial Complexity=2 

 

Observed Variables as Linear Combinations of Underlying Factors 
It is possible to think of a given observed variable, such as V1, as being a weighted sum of the underlying 
factors included in the factor model. For example, notice that in Figure 2.2, there are three factors that affect 
V1: Two common factors (F1 and F2), and one unique factor (U1). By multiplying these factors by the 
appropriate weights, it is possible to calculate any participant’s score on V1. In algebraic form, this would be 
done with the following equation: 

V1 = b11(F1) + b12(F2) + d1(U1) 
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In this equation, b11 is the regression weight for F1 (the amount of weight given to F1 in the prediction of V1), 
b12 is the regression weight for F2, and d1 is the regression weight for the unique factor associated with V1. 
You can see that a given person’s score on V1 is determined by multiplying the underlying factors by the 
appropriate regression weights, and summing the resulting products. This is why, in factor analysis, the 
observed variables are viewed as linear combinations of underlying factors.  

The preceding equation is therefore similar to the multiple regression equation as described in most statistics 
texts. In factor analysis, the observed variable (i.e., V1) serves as counterpart to the criterion variable (Y) in 
multiple regression, and the latent factors (i.e., F1, F2 and U1) serve as counterparts to the predictor variables 
(i.e., the X variables) in multiple regression. We generally expect to obtain a different set of factor weights, and 
thus a different predictive equation, for each observed variable in a factor analysis. 

Where does one find the regression weights for the common factors in factor analysis? These are found in the 
factor pattern matrix. An example of a pattern matrix is presented below: 

Table 2.2 

         Factor Pattern 
Variable Factor 1 Factor 2 
V1 .87 .26 
V2 .80 .48 
V3 .77 .34 
V4 -.56 .49 
V5 -.58 .52 
V6 -.50 .59 

You can see that the rows (running left to right) in the factor pattern represent the different observed variables 
such as V1 and V2. The columns in the factor pattern represent the different factors, such as F1 and F2. Where a 
row and column intersect, you will find a factor loading (or standardized regression coefficient). For example, 
in determining values of variable V1, F1 is given a weight of .87 and F2 is given a weight of .26; in determining 
values of V2, F1 is given a weight of .80 and F2 is given a weight of .48. 

Communality versus the Unique Component 
A communality is a characteristic of an observed variable. It refers to the variance in an observed variable that 
is accounted for common factors. If a variable exhibits a large communality, it means that this variable is 
strongly influenced by at least one common factor. The symbol for communality is h2. The communality for a 
given variable is computed by squaring that variable’s factor loadings for all retained common factors, and 
summing these squares. For example, using the factor loadings from the previous factor pattern, you may 
compute the communality for V1 in the following way: 

h1
2 =   b11

2  +   b12
2 

      = (.87)2 + (.26)2 

      =  .755   + .068 

=  .82 
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So the communality for V1 is approximately 82. This means that 82% of the variance in V1 is accounted for by 
the two common factors. You can now compute the communality for each variable, and add these values to the 
table that contains the pattern matrix: 

Table 2.3 

           Factor Pattern  
Variable Factor 1 Factor 2 h2 
V1 .87 .26 .82 
V2 .80 .48 .87 
V3 .77 .34 .71 
V4 -.56 .49 .55 
V5 -.58 .52 .61 
V6 -.50 .59 .60 

In contrast to the communality, the unique component refers to the proportion of variance in a given observed 
variable that is not accounted for by the common factors. Once communalities are computed, it is a simple 
matter to calculate the unique component: Simply subtract the communality from one. The unique component 
for V1 can be calculated in this fashion: 

d1
2 = 1 − h1

2 

= 1 − .82 

= .18 

And so, 18% of the variance in V1 is not accounted for by the common factors; alternatively, you could say that 
18% of the variance in V1 is accounted for by the unique factor, U1. 

If you then proceed to take the square root of the unique component, you can compute the coefficient “d.” This 
should look familiar, because we earlier defined d as the weight given to a unique factor in determining values 
on the observed variable. For variable V1, the unique component was calculated as .18. The square root of .18 is 
approximately .42. Therefore, the unique factor U1 would be given a weight of .42 in determining values of V1 
(i.e., d1 = .42). 

Exploratory Factor Analysis versus Principal Component Analysis 
Some readers may be struck by the many similarities between exploratory factor analysis and principal 
component analysis. In fact, these similarities have even led some researchers to incorrectly report that they 
have conducted “factor analysis” when, in fact, they have conducted principal component analysis. Because of 
this common misunderstanding, this section will review some of the similarities and differences between the 
two procedures. 

How Factor Analysis Differs from Principal Component Analysis 

Purpose 
Only factor analysis may be used to identify the factor structure underlying a set of variables. In other words, if 
you wish to identify the number and nature of latent factors that are responsible for covariation in a dataset, then 
factor analysis, and not principal components analysis, should be used. 
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Principal Components versus Common Factors 
A principal component is an artificial variable; it is a linear combination of the (optimally weighted) observed 
variables. It is possible to calculate where a given participant stands on a principal component by simply 
summing that participant’s (optimally weighted) scores on the observed variable being analyzed. For example, 
one could determine each participant’s score on principal component 1 using the following formula: 

C1 = b11(X1) + b12(X2) + ... b1p(Xp) 

where 

   C1 = the participant’s score on principal component 1 (the first component extracted) 

   b1p = the regression coefficient (or weight) for observed variable p, as used in creating principal component 1 

   Xp = the participant’s score on observed variable p 

In contrast, a common factor is a hypothetical latent variable that is assumed to be responsible for the 
covariation between two or more observed variables. Because factors are unmeasured latent variables, you may 
never know exactly where a given participant stands on an underlying factor (though it is possible to arrive at 
estimates, as you will see later). 

In common factor analysis, the factors are not assumed to be linear combinations of the observed variables (as 
is the case with principal component analysis). Factor analysis assumes just the opposite: That the observed 
variables are linear combinations of the underlying factors. This is illustrated in the following equation: 

X1 = b1(F1) + b2(F2) + ... bq(Fq) + d1(U1) 

where 

     X1 = the participant’s score on observed variable 1 

     bq = the regression coefficient (or weight) for underlying common factor q, as used in determining the 
            participant’s score on X1 

     Fq = the participant’s score on underlying factor q 

     d1 = the regression weight for the unique factor associated with X1 

     U1 = the unique factor associated with X1 

Because similar steps are followed in extracting principal components and common factors, it is easy to 
incorrectly assume that they are conceptually identical. Yet the preceding equations show that they differ in an 
important way. With principal components analysis, principal components are linear combinations of the 
observed variables; however, the factors of factor analysis are not viewed in this way. In factor analysis the 
observed variables are viewed as linear combinations of the underlying factors. 

Some readers may be confused by this point because they know that it is possible to compute factor scores in 
exploratory factor analysis. Furthermore, they know that these factor scores are essentially linear composites of 
observed variables. In reality, however, these factor scores are merely estimates of where participants stand on 
the underlying factors. These so-called factor scores generally do not correlate perfectly with scores on the 
actual underlying factor. (For this reason, they are referred to as estimated factor scores in this text.) 

On the other hand, the principal component scores obtained in principal component analysis are not estimates; 
they are exact representations of the extracted components. Remember that a principal component is simply a 
mathematical transformation (a linear combination) of the observed variables. So a given participant’s 
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component score accurately represents where that participant stands on the principal component. It is therefore 
correct to discuss actual component scores rather than estimated component scores. 

Variance Accounted For 
Factor analysis and principal component analysis also differ with respect to the type of variance accounted for. 
The factors of factor analysis account for common variance in a dataset, while the components of principal 
component analysis account for total variance in the dataset. This difference may be understood with reference 
to Figure 2.3. 

Figure 2.3: Total Variation in Variable X1 as Divided Into Common and Unique Components 

 

Assume that the length of the line in Figure 2.3 represents the total variance for observed variable X1, and that 
variables X1 through X6 undergo factor analysis. The figure shows that the total variance in X1 may be divided 
into two parts: Common variance and unique variance. Common variance corresponds to the communality of 
X1: The proportion of total variance for the variable accounted for by the common factors. The remaining 
variance is the unique component: That variance (whether systematic or random) specific to variable X1. 

With factor analysis, factors are extracted to account only for the common variance; the remaining unique 
variance remains unanalyzed. This is accomplished by analyzing an adjusted correlation matrix: A correlation 
matrix with communality estimates on the diagonal. You cannot know a variable’s actual communality prior to 
the factor analysis, and so it must be estimated using one of a number of alternative procedures. We recommend 
that squared multiple correlations be used as prior communality estimates. A variable’s squared multiple 
correlation is obtained by using multiple regression to regress it on the remaining observed variables. (Below, 
you will find that these values can be obtained easily by using the PRIORS option with PROC FACTOR.) The 
adjusted correlation matrix that is analyzed in factor analysis has correlations between the observed variables 
off the diagonal and communality estimates on the diagonal. 

With principal component analysis, however, components are extracted to account for total variance in the 
dataset, not just the common variance. This is accomplished by analyzing an unadjusted correlation matrix: 
A correlation matrix with ones (1.00) on the diagonal. Why ones? Since all variables are standardized in the 
analysis, each has a variance of one. Because the correlation matrix contains ones (rather than communalities) 
on the diagonal, 100% of each variable’s variance will be accounted for by the combined components, not just 
the variance that the variable shares in common with other variables. 

It is this difference that explains why only factor analysis—and not principal component analysis—can be used 
to identify the number and nature of the factors responsible for covariation in a dataset. Because principal 
component analysis makes no attempt to separate the common component from the unique component of each 
variable’s variance, this procedure can provide a misleading picture of the factor structure underlying the data. 
Either procedure may be used to reduce a number of variables to a more manageable number; however, if one 
wishes to identify the factor structure of a dataset (such as that portrayed in Figure 2.1), only factor analysis is 
appropriate. 

How Factor Analysis Is Similar to Principal Component Analysis 

Purpose (in Some Cases) 
Both factor analysis and principal component analysis may be used as variable reduction procedures; that is, 
both may be used to reduce a number of variables to a smaller, more manageable number. This is why both 
procedures are so widely used in analyzing data from multiple-item questionnaires in the social sciences; both 
procedures can be used to reduce a large number of survey questions into a smaller number of “scales.” 
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Extraction Methods (in Some Cases) 
This chapter shows how to use the principal axis method to extract factors. This is the same procedure used to 
extract principal components in the chapter on principal component analysis. (We will later show how to use the 
maximum likelihood method: An extraction method that is typically used only with factor analysis.) 

Results (in Some Cases) 
Principal component analysis and factor analysis often lead to similar conclusions regarding the appropriate 
number of factors (or components) to retain, as well as similar conclusions regarding how the factors (or 
components) should be interpreted. This is especially the case when the variable communalities are high (near 
1.00). The reason for this should be obvious: When the principal axis extraction method is used, the only real 
difference between the two procedures involves the values that appear on the diagonal of the correlation matrix. 
If the communalities are very high (near 1.00), there is little difference between the matrix that is analyzed in 
principal component analysis and the matrix that is analyzed in factor analysis; hence the similar solutions. 

Preparing and Administering the Investment Model Questionnaire 
Assume that you are interested in measuring two constructs that constitute important components of Rusbult’s 
investment model (1980). One construct is investment size: The amount of time or personal resources that the 
person has put into his or her relationship with a current partner; and the other construct is alternative value: 
The attractiveness of alternatives one’s current romantic partner (Le and Agnew 2003).  

Writing the Questionnaire Items   
The questionnaire used discussed in the preceding chapter is again reproduced below. Note that items 1 to 3 
were designed to assess investment size whereas items 4 to 6 were designed to assess alternative value. 

Please rate each of the following items to indicate the extent to which you agree or disagree with each 
statement. Use a response scale in which 1 = “Strongly Disagree” and 7 = “Strongly Agree.” 
 
 _____  1.  I have invested a lot of time and effort in developing my relationship with my current partner. 
 _____  2.  My current partner and I have developed interests in a lot of activities that I would lose if our  
                  relationship were to end. 
 _____  3.  My current partner and I have developed lot of mutual friendships that I would lose if our  
                  relationship were to end. 
 _____  4.  It would be more attractive for me to be involved in a relationship with someone else rather than  
                  continue a relationship with my current partner. 
 _____  5.  It would be more attractive for me to be by myself than to continue my relationship with my  
                  current partner. 
 _____  6. In general, the alternatives to this relationship are quite attractive. 

 

Number of Items per Factor   
As mentioned in the previous chapter on principal component analysis, it is highly desirable to have at least 
three (and preferably more) variables loading on each factor when the analysis is complete. Because some of the 
items may be dropped during the course of the analysis, it is generally good practice to write at least five items 
for each construct that one wishes to measure; in this way, you increase the likelihood that at least three items 
per factor will survive the analysis. (You can see that preceding questionnaire violates this recommendation by 
including only three items for each factor at the outset.)  

NOTE: Remember that the recommendation of three items per scale actually constitutes a lower bound. In 
practice, test and attitude scale developers normally desire that their scales contain many more than just three 
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items to measure a given construct. It is not unusual to see individual scales that include 10, 20, or even more 
items to assess a single construct (e.g., O’Rourke and Cappeliez 2002). Other things being equal, the more items 
in a scale, the more reliable responses to that scale will be. The recommendation of three items per scale should 
therefore be viewed as a rock-bottom lower bound, appropriate only if practical concerns prevent you from 
including more items concerns (e.g., overall length of the questionnaire battery). For more information on scale 
construction, see Clark and Watson (1995), DeVellis (2012) and, Saris and Gallhofer (2007). 

Minimal Sample Size Requirements 
Exploratory factor analysis is a large-sample procedure, so it is important to use the following guidelines to 
choose the sample size which will be minimally adequate for an analysis as a general rule of thumb. 

The minimal number of participants in the sample should be the larger of: 

• 100 participants or 

• 10 times the number of variables being analyzed (Floyd and Widaman 1995) 

If questionnaire responses are being analyzed, then the number of variables is equal to the number of 
questionnaire items. To illustrate, assume that you wish to perform an exploratory factor analysis on responses 
to a 50-item questionnaire. Ten times the number of items on the questionnaire equals 500. Therefore, it would 
be best if your final sample provides usable (complete) data from at least 500 participants. It should be 
remembered, however, that any participant who fails to answer just one item will not provide usable data for the 
factor analysis, and will therefore be dropped from the final sample (unless you impute for missing responses; 
van Buuren, 2012). A certain number of participants can always be expected to leave at least one question 
blank; therefore, to insure that the final sample includes at least 500 usable responses, you would be wise to 
administer the questionnaire to perhaps 550 participants. 

These rules regarding the number of participants per variable again constitute a lower bound, and some have 
argued that they should apply only under two optimal conditions for exploratory factor analysis: When many 
variables are expected to load on each factor; and when variable communalities are high. Under less optimal 
conditions, larger samples may be required. 

SAS Program and Exploratory Factor Analysis Results 
This section provides instructions on writing the SAS program, along with an overview of the SAS output. A 
subsequent section will provide a more detailed treatment of the steps followed in the analysis, and the 
decisions to be made at each step. 

Writing the SAS Program   

The DATA Step 
To perform an exploratory factor analysis, data may be input in the form of raw data, a correlation matrix, a 
covariance matrix, as well as other types of datasets (see Appendix A.2). In this example, raw data will be 
analyzed.  
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Assume that you administered your questionnaire to sample of 50 participants, and then entered their responses 
to each question. The SAS names given to these variables, and the format used in entering the data, are 
presented below: 

Line Column Variable Name Explanation 
1 1–6 V1–V6 Participants’ responses to 

survey questions 1 
through 6. Responses 
were made using a 7-
point scale, where higher 
scores indicate stronger 
agreement with the 
statement. 
 

 8–9 COMMIT Participants’ scores on the 
commitment variable. 
Scores may range from 4 
to 28, and higher scores 
indicate higher levels of 
commitment to maintain 
the relationship. 

At this point, you are interested only in variables V1 to V6 (i.e., participant responses to the six questionnaire 
items). Scores on the commitment variable (COMMIT) are also included in the dataset because you will later 
compute correlations coefficients between estimated factor scores and COMMIT.  

Below are the statements that will input these responses as raw data. The first three observations and the last 
three observations are reproduced here. For the entire (fictitious) dataset, see Appendix B, “Datasets.”   

data D1; 
   input    #1    @1   (V1-V6)    (1.)   
                  @8   (COMMIT)   (2.) ; 

datalines; 
776122 24 
776111 28 
111425  4 
. 
. 
. 
433344 15 
557332 20 
655222 13 
; 

run; 

The dataset in Appendix B includes only 50 cases so that it will be relatively easy for interested readers to 
replicate these analyses. It should be restated, however, that 50 observations constitute an unacceptably small 
sample for an exploratory factor analysis (Floyd and Widaman 1995). Earlier it was said that a sample should 
provide usable data from the larger of either 100 cases or 10 times the number of observed variables. A small 
sample is being analyzed here for illustrative purposes only.  
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The PROC FACTOR Statement 
The general form for the SAS program to perform an exploratory factor analysis with oblique rotation is 
presented below: 

proc factor   data=dataset-name 
              simple  
              method=factor-extraction-method 
              priors=prior-communality-estimates 
              nfact=n 
              plots=scree 
              rotate=promax 
              round 
              flag=desired-size-of-"significant"-factor-loadings ; 
   var variables-to-be-analyzed ; 
run ; 

Below is an actual program, including the DATA step that could be used to analyze some fictitious data from 
the investment model study. 

data D1; 
   input    #1    @1   (V1-V6)    (1.)   
                  @8   (COMMIT)   (2.) ; 
datalines; 
776122 24 
776111 28 
111425  4 
. 
. 
. 
433344 15 
557332 20 
655222 13 
; 
run ; 

proc factor   data=D1 
              simple  
              method=prin 
              priors=smc 
              nfact=2       
              plots=scree 
              rotate=promax   
              round 
              flag=.40   ; 
   var V1 V2 V3 V4 V5 V6; 
run; 

Options Used with PROC FACTOR 
The PROC FACTOR statement begins the factor procedure, and a number of options may be requested in this 
statement before it ends with a semicolon. Some options that are especially useful in social science research are 
presented below: 

FLAG 
causes the printer to flag (with an asterisk) factor loadings with absolute values greater than some specified 
size. For example, if you specify 

flag=.35  
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an asterisk will appear next to any loading whose absolute value exceeds .35. This option can make it much 
easier to interpret a factor pattern. Negative values are not allowed in the flag option, and the flag option 
should be used in conjunction with the round option. 

METHOD=factor-extraction-method 
specifies the method to be used in extracting the factors. The current program specifies  

method=prin  

to request that the principal axis (principal factors) method be used for the initial extraction. Although the 
principal axis is a common extraction method, most researchers prefer the maximum likelihood method 
because it provides a significance test for solving the “number of factors” problem, and generally provides 
better parameter estimates. The maximum likelihood method may be requested with the option 

method=ml  

MINEIGEN=p 
specifies the critical eigenvalue a factor must display if that factor is to be retained (here, p = the critical 
eigenvalue). Negative values are not allowed. 

NFACT=n 
allows you to specify the number of factors to be retained and rotated, where n = the number of factors. 

OUT=name-of-new-dataset 
creates a new dataset that includes all of the variables of the existing dataset, along with estimated factor 
scores for the retained factors. Factor 1 is given the variable name FACTOR1, factor 2 is given the name 
FACTOR2, and so forth. OUT= must be used in conjunction with the NFACT option, and the analysis 
must be based on raw data.  

PRIORS=prior communality estimates 
specifies prior communality estimates. The preceding specifies SMC to request that the squared multiple 
correlations between a given variable and the other observed variables be used as that variable’s prior 
communality estimate. 

ROTATE=rotation method 
specifies the rotation method to be used. The preceding program requests a promax rotation that results in 
oblique (correlated) factors. This option is requested by specifying 

rotate=promax   

Orthogonal rotations may also be requested; Chapter 1 showed how to request an (orthogonal) rotation by 
specifying 

rotate=varimax 

ROUND 
factor loadings and correlation coefficients in the matrices printed by PROC FACTOR are normally carried 
out to several decimal places. Requesting the ROUND option, however, causes all coefficients to be limited 
to two decimal places, rounded to the nearest integer, and multiplied by 100 (thus eliminating the decimal 
point). This generally makes it easier to read the coefficients. 

PLOTS=SCREE 
creates a plot that graphically displays the size of the eigenvalue associated with each factor. This can be 
used to perform a scree test to visually determine how many factors should be retained. 

SIMPLE 
requests simple descriptive statistics: The number of usable cases on which the analysis was performed and 
the means and standard deviations of the observed variables.  

O’Rourke, Norm, and Larry Hatcher. A Step-by-Step Approach to Using SAS® for Factor Analysis and Structural Equation Modeling, Second Edition.  
Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



58   A Step-by-Step Approach to Using SAS for Factor Analysis and Structural Equation Modeling, Second Edition  
 

The VAR Statement 
The variables to be analyzed are listed on the VAR statement, with each variable separated by at least one 
space. Remember that the VAR statement is a separate statement not an option within the factor statement, so 
do not forget to end the FACTOR statement with a semicolon before beginning the VAR statement.  

Results from the Output   
The preceding program would produce four pages of output. The following lists some of the information 
included in this output, and the page on which it appears: 

• Page 1 presents simple statistics. 

• Page 2 includes prior communality estimates, initial eigenvalues, scree plot of eigenvalues and 
cumulative variance, and final communality estimates. 

• Page 3 includes the results of the orthogonal transformation matrix (varimax rotation), the rotated 
factor pattern matrix for the varimax solution, and final communality estimates. 

• Page 4 includes results from the oblique rotation method (promax rotation) such as the inter-factor 
correlations, the rotated factor pattern matrix (standardized regression coefficients), the reference 
structure (semipartial correlations), the factor structure correlations and estimates of variance explained 
by each factor (ignoring other factors). 

The following section reviews the steps by which exploratory factor analysis is conducted. Integrated into this 
discussion will be excerpts from the preceding output, along with guidelines for interpreting this output.  

Steps in Conducting Exploratory Factor Analysis 
Factor analysis is normally conducted in a sequence of steps, with somewhat subjective decisions being made at 
various steps. Because this is an introductory treatment of the topic, it will not provide a comprehensive 
discussion of all the options available to you at each step; instead, specific recommendations will be made, 
consistent with practices often followed in applied research. For a more detailed discussion of exploratory factor 
analysis, see Kim and Mueller (1978a; 1978b), Loehlin (1987), and Rummel (1970). 

Step 1: Initial Extraction of the Factors   
The first step of the analysis involves the initial extraction of the factors. The preceding program specified the 
option  

method=prin 

which calls for the principal factors, or principal axis method. This is the same method used to extract the 
components of principal component analysis. 

As with component analysis, the number of factors extracted will be equal to the number of variables being 
analyzed. Because six variables are being analyzed in the present study, six factors will be extracted. The first 
factor can be expected to account for a fairly large amount of the common variance. Each succeeding factor will 
account for progressively smaller amounts of variance. Although a large number of factors may be extracted in 
this way, only the first few factors will be sufficiently important to be retained for interpretation. 

As with principal components, the extracted factors will have two important properties: (a) each factor will 
account for a maximum amount of the variance that has not already been accounted for by other previously 
extracted factors; and (b) each factor will be uncorrelated with all of the previously extracted factors. This 
second characteristic may come as a surprise, because earlier it was said that you were going to obtain an 
oblique solution (by specifying ROTATE=PROMAX) in which the factors would be correlated. In this analysis, 
however, the factors are in fact orthogonal (uncorrelated) at the time they are extracted. It is only later in the 
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analysis that their orthogonality is relaxed, and they are allowed to become oblique. This will be discussed in 
more detail in a subsequent section on factor rotation. 

These concepts will now be related to some of the results that appeared in the output created by the preceding 
program. Pages 1and 2 of the output provided simple statistics, the eigenvalue table, and some additional 
information regarding the initial extraction of the factors. Those pages are reproduced here as Output 2.1. 

Output 2.1: Simple Statistics, Prior Communalities, and Eigenvalue Table from Analysis of Investment  
                    Model Questionnaire (page 1) 

 
The FACTOR Procedure 

 

Input Data Type Raw Data 

Number of Records Read 50 

Number of Records Used 50 

N for Significance Tests 50 

 
 

Means and Standard Deviations 
from 50 Observations 

Variable Mean Std Dev 

V1 4.6200000 1.5371588 

V2 4.3800000 1.5103723 

V3 4.3600000 1.6383167 

V4 2.7600000 1.2545428 

V5 2.3600000 1.1021315 

V6 2.5600000 1.3726185 

Output 2.1 (page 2) 

 
The FACTOR Procedure 

Initial Factor Method: Principal Factors 
 

Prior Communality Estimates: SMC  

V1 V2 V3 V4 V5 V6 

0.78239483 0.81705605 0.67662145 0.47918877 0.52380277 0.49871459 

 

Eigenvalues of the Reduced Correlation Matrix: Total = 3.77777847 Average = 0.62962975 

 Eigenvalue Difference Proportion Cumulative 

1 2.87532884 1.59874396 0.7611 0.7611 

2 1.27658489 1.28903380 0.3379 1.0990 

3 -.01244892 0.07484205 -0.0033 1.0957 

4 -.08729097 0.03685491 -0.0231 1.0726 

5 -.12414588 0.02610362 -0.0329 1.0398 

6 -.15024950  -0.0398 1.0000 
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2 factors will be retained by the NFACTOR criterion. 

 

 

Factor Pattern 

 Factor1   Factor2   

V1 87 * 26  

V2 80 * 48 * 

V3 77 * 34  

V4 -56 * 49 * 

V5 -58 * 52 * 

V6 -50 * 59 * 

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an '*'. 

 

Variance Explained by Each 
Factor 

Factor1 Factor2 

2.8753288 1.2765849 

 

Final Communality Estimates: Total = 4.151914 

V1 V2 V3 V4 V5 V6 

0.81677554 0.87417817 0.70443448 0.55882781 0.60705615 0.59064158 

On page 1 of Output 2.1, the simple statistics section shows that the analysis was based on 50 observations. 
Means and standard deviations are also provided. 

The first line of page 2 says “Initial Factor Method: Principal Factors.” This indicates that the principal factors 
method was used for the initial extraction of the factors.  

Next, the prior communality estimates are printed. Because the program included the PRIORS=SMC option, the 
prior communality estimates are squared multiple correlations. 
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Below that, the eigenvalue table is printed. An eigenvalue represents the amount of variance that is accounted 
for by a given factor. In the column labeled “Eigenvalue,” the eigenvalue for each factor is presented. Each row 
in the matrix presents information about one of the six factors: The row labeled “1” provides information about 
the first factor extracted. The row labeled “2” provides information about the second factor extracted, and so 
forth. 

Where the column headed “Eigenvalue” intersects with the rows labeled “1” and “2,” you can see that the 
eigenvalue for factor 1 is approximately 2.88, while the eigenvalue for factor 2 is 1.28. This pattern is consistent 
with our earlier statement that the first factors extracted tend to account for relatively large amounts of variance, 
while the later factors account for relatively smaller amounts. 

Step 2: Determining the Number of “Meaningful” Factors to Retain   
As with principal component analysis, the number of factors extracted is equal to the number of variables 
analyzed, necessitating that you decide just how many of these factors are truly meaningful and worthy of being 
retained for rotation and interpretation. In general, we expect that only the first few factors will account for 
meaningful amounts of variance, and that the later factors will tend to account for relatively small amounts of 
variance (i.e., largely error variance). The next step of the analysis, therefore, is to determine how many 
meaningful factors should be retained for interpretation.  

The preceding program specified NFACT=2 so that two factors would be retained; because this was the initial 
analysis, you had no empirical reason to expect two meaningful factors, and specified NFACT=2 on a hunch. If 
the empirical results suggest a different number of meaningful factors, the NFACT option may be changed for 
subsequent analyses. 

The chapter on principal component analysis discussed four options that can be used to help make the “number 
of factors” decision; the first of these was the eigenvalue-one criterion or Kaiser-Guttman criterion (Kaiser 
1960). When using this criterion, you retain any principal component with an eigenvalue greater than 1.00. 

The eigenvalue-one criterion made sense in principal component analysis, because each variable contributed 
one unit of variance to the analysis. This criterion insured that you would not retain any component that 
accounted for less variance than had been contributed by one variable. 

For the same reason, however, you can see that the eigenvalue-one criterion is less appropriate in common 
factor analysis. Remember that each variable does not contribute one unit of variance to this analysis but, 
instead, contributes its prior communality estimate. This estimate will be less than 1.00, and so it makes little 
sense to use the value of 1.00 as a cutting point for retaining factors. Without the eigenvalue-one criterion, you 
are left with the following three options. 

The Scree Test 
With the scree test (Cattell 1966), you plot the eigenvalues associated with each factor and look for a “break” 
between factors with relatively large eigenvalues and those with smaller eigenvalues. The factors that appear 
before the break are assumed to be meaningful and are retained for rotation; those appearing after the break are 
assumed to be unimportant and are not retained. 

Specifying the PLOTS=SCREE option in the PROC FACTOR statement causes SAS to print an eigenvalue plot 
as part of the output. This scree plot is presented here as Output 2.2. 
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Output 2.2: Scree Plot of Eigenvalues from Analysis, and Proportion of Variance Explained, of Investment  
                    Model Questionnaire 

 

The scree plot graph appears on the left. You can see that the factor numbers are listed on the horizontal axis, 
while eigenvalues are listed on the vertical axis. With this plot, notice that there is a relatively large break 
between factors 1 and 2, another large break between factors 2 and 3, but that there is no break between factors 
3 and 4, 4 and 5, or 5 and 6. Because factors 3 through 6 have relatively small eigenvalues, and the data points 
for factors 3 through 6 could almost be fitted with a straight line, they can be assumed to be relatively 
unimportant factors. Because there is a relatively large break between factors 2 and 3, factor 2 can be viewed as 
a relatively important factor. Given this plot, a scree test would suggest that only factors 1 and 2 be retained 
because only these factors appear before the last big break. Factors 3 through 6 appear after the break, and thus 
will not be retained. 

Proportion of Variance Accounted For 
A second criterion in making the number of factors decision involves retaining a factor if it accounts for a 
certain proportion (or percentage) the variance in the dataset. For example, you may decide to retain any 
factor that accounts for at least 5% or 10% of the common variance. (See right-hand side graph, Output 2.2.) 
This proportion can be calculated with a simple formula: 

                     Eigenvalue for the factor of interest 
   Proportion = ---------------------------------------------- 
                   Total eigenvalues of the correlation matrix 

In principal component analysis, the “total eigenvalues of the correlation matrix” was equal to the total number 
of variables being analyzed (because each variable contributed one unit of variance to the dataset). In common 
factor analysis, however, the total eigenvalues will be equal to the sum of the communalities that appear on the 
main diagonal of the matrix being analyzed.  

The proportion of common variance accounted for by each factor is printed in the eigenvalue table from output 
page 2 below the heading “Proportion.” The eigenvalue table for the preceding analysis is presented again as 
Output 2.3. 
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Output 2.3: Eigenvalue Table from Analysis of Investment Model Questionnaire 
 

Eigenvalues of the Reduced Correlation Matrix: Total = 3.77777847 Average = 0.62962975 

 Eigenvalue Difference Proportion Cumulative 

1 2.87532884 1.59874396 0.7611 0.7611 

2 1.27658489 1.28903380 0.3379 1.0990 

3 -.01244892 0.07484205 -0.0033 1.0957 

4 -.08729097 0.03685491 -0.0231 1.0726 

5 -.12414588 0.02610362 -0.0329 1.0398 

6 -.15024950  -0.0398 1.0000 

 

2 factors will be retained by the NFACTOR criterion. 

From the “Proportion” column of the preceding eigenvalue table, you can see that the first factor alone accounts 
for 76% of the common variance, the second factor alone accounts for almost 34%, and the third factor accounts 
for less than 1%. (In fact, Factor 3 actually has a negative percentage; see the following box for an explanation.) 
If one were using, say, 10% as the criterion for deciding whether a factor should be retained, only Factors 1 and 
2 would be retained in the present analysis. Despite the apparent ease of use of this criterion, however, 
remember that this approach has been criticized (Kim and Mueller 1978b). 

How can you account for over 100% of the common variance?  The final column of the eigenvalue table 
(labeled “Cumulative”) provides the cumulative percent of common variance accounted for by the factors. 
Output 2.3 shows that factor 1 accounts for 76% of the common variance (the value in the table is 0.76), and 
factors 1 and 2 combined account for 110%. But how can two factors account for over 100% of the common 
variance? 
 
In brief, this is because the prior communality estimates were not perfectly accurate. Consider this: If your 
prior communality estimates were perfectly accurate estimates of the variables’ actual communalities, and if 
the common factor model was correctly estimated, then the factors that you retained would have to account 
for exactly 100% of the common variance, and the remaining factors would have to account for 0%. The fact 
that this did not happen in the present analysis is probably because your prior communality estimates (squared 
multiple correlations) were not perfectly accurate. 
 
You may also be wondering why some of the factors seem to be accounting for a negative percent of the 
common variance (i.e., why they have negative eigenvalues). This is because the analysis is constrained so 
that the “Cumulative” proportion must equal 1.00 after the last factor is extracted. Since this cumulative value 
exceeds 1.00 at some points in the analysis, is was mathematically necessary that some factors have negative 
eigenvalues. 

Interpretability Criteria 
Perhaps the most important criteria to use when solving the “number of factors” problem is the interpretability 
criteria: Interpreting the substantive meaning of the retained factors and verifying that this interpretation 
“makes sense” in terms of what is known about the constructs under investigation. Below are four rules to 
follow when doing this. (A later section of this chapter will provide a step-by-step illustration of how to 
interpret a factor solution; the following rules will be more meaningful at that point.) 
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1. Are there at least three variables (items) with significant loadings on each retained factor?  A 
solution is less satisfactory if a given factor is measured by less than three variables. 

2. Do the variables that load on a given factor share some conceptual meaning?  For example, if 
three questions on a survey all load on Factor 1, do all three of these questions seem to be measuring 
the same underlying construct?   

3. Do the variables that load on different factors seem to be measuring different constructs?  For 
example, if three questions load on Factor 1, and three other questions load on Factor 2, do the first 
three questions seem to be measuring a construct that is conceptually different from the construct 
measured by the last three questions? 

4. Does the rotated factor pattern demonstrate “simple structure?”  Simple structure means that the 
pattern possesses two characteristics: (a) most of the variables have relatively high factor loadings on 
only one factor, and near-zero loadings for the other factors; and (b) most factors have relatively high 
factor loadings for some variables, and near-zero loadings for the remaining variables. This concept of 
simple structure will be explained in more detail in a later section. 

Recommendations 
Given the preceding options, what procedure should you actually follow in solving the number of factors 
problem? This text recommends combining all three in a structured sequence. First, perform a scree test and 
look for obvious breaks in the data. Because there will often be more than one break in the eigenvalue plot, it 
may be necessary to examine two or more possible solutions. Next, review the amount of common variance 
accounted for by each factor. We hesitate to recommend the rigid use of some specific but arbitrary cut off 
point, such as 5% or 10%. Still, if you are retaining factors that account for as little as 2% or 3% of the variance, 
it may be wise to take a second look at the solution and verify that these latter factors are of truly substantive 
importance. Finally, apply the interpretability criterion. If more than one solution can be justified on the basis of 
a scree test or the “variance accounted for” criteria, which of these solutions are the most interpretable? By 
seeking a solution that satisfies all three of these criteria, you maximize chances of correctly identifying the 
factor structure of the dataset. 

Step 3: Rotation to a Final Solution   
After extracting the initial factors, the computer will print an unrotated factor pattern matrix. The rows of this 
matrix represent the variables being analyzed, and the columns represent the retained factors. The entries in the 
matrix are factor loadings. In a factor pattern matrix, the observed variables are assumed to be linear 
combinations of the common factors, and the factor loadings are standardized regression coefficients for 
predicting the variables from the factors. (Later, you will see that the loadings have a different interpretation in 
a factor structure matrix.) With PROC FACTOR, the unrotated factor pattern is printed under the heading 
“Factor Pattern,” and appears on output page 2. The factor pattern for the present analysis is presented as Output 
2.4. 
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Output 2.4: Unrotated Factor Pattern from Analysis of Investment Model Questionnaire 
 

Factor Pattern 

 Factor1   Factor2   

V1 87 * 26  

V2 80 * 48 * 

V3 77 * 34  

V4 -56 * 49 * 

V5 -58 * 52 * 

V6 -50 * 59 * 

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an '*'. 

 

Variance Explained by Each 
Factor 

Factor1 Factor2 

2.8753288 1.2765849 

 

Final Communality Estimates: Total = 4.151914 

V1 V2 V3 V4 V5 V6 

0.81677554 0.87417817 0.70443448 0.55882781 0.60705615 0.59064158 

When more than one factor has been retained, an unrotated factor pattern is usually difficult to interpret. Factor 
patterns are easiest to interpret when some of the variables in the analysis have very high loadings on a given 
factor, and the remaining variables have near-zero loadings on that factor. Unrotated factor patterns often fail to 
display this type of pattern. For example, consider the loadings under the column heading “FACTOR1” in 
Output 2.4. Notice that variables V1, V2, and V3 do display fairly high loadings for this factor, which is good. 
Unfortunately, however, variables V4, V5, and V6 do not display near-zero loadings for this factor; the loadings 
for these three variables range from -.50 to -.58, which is to say that they are of moderate size. For reasons that 
will be made clear shortly, this state of affairs would make it difficult to interpret Factor 1. 

To make interpretation easier, you will normally perform a linear transformation on the factor solution called a 
rotation. The previous chapter on principal component analysis demonstrated the use of an orthogonal rotation. 
It was explained that orthogonal rotations result in components (or factors) that are uncorrelated with one 
another. 

In contrast, this chapter will illustrate the use of the promax rotation, which is a specific type of oblique 
rotation. Oblique rotations generally result in correlated factors (or components). 

A promax rotation is actually conducted in two steps. The first step involves an orthogonal varimax prerotation. 
At this point in the analysis, the extracted factors are still uncorrelated. During the second step (the promax 
rotation), the orthogonality of the factors is relaxed, and they are allowed to become correlated. Below, it will 
be seen that the interpretation of an oblique solution is more complicated than the interpretation of an 
orthogonal solution, though oblique rotations often provide better results (at least in those situations in which 
the actual, underlying factors truly are correlated). 
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Step 4: Interpreting the Rotated Solution 

Orthogonal Solutions 
During the prerotation step, SAS produces a rotated factor pattern similar to that which would be produced if 
you had specified ROTATE=VARIMAX. This matrix appears on output page 3 of the current output, and is 
presented as Output 2.5. 

Output 2.5: Varimax (Orthogonal) Rotated Factor Pattern from Analysis of Investment Model  
                    Questionnaire 

 
The FACTOR Procedure 

Prerotation Method: Varimax 
 

Orthogonal Transformation Matrix 

 1 2 

1 0.82009 -0.57223 

2 0.57223 0.82009 

 

Rotated Factor Pattern 

 Factor1   Factor2   

V1 86 * -28  

V2 93 * -7  

V3 82 * -16  

V4 -18  73 * 

V5 -17  76 * 

V6 -7  77 * 

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an '*'. 

 

Variance Explained by Each 
Factor 

Factor1 Factor2 

2.3518179 1.8000959 

 

Final Communality Estimates: Total = 4.151914 

V1 V2 V3 V4 V5 V6 

0.81677554 0.87417817 0.70443448 0.55882781 0.60705615 0.59064158 

 

 
If you were interested in an orthogonal solution, it would be perfectly acceptable to interpret this rotated factor 
pattern in the manner described in the previous chapter on principal component analysis. Interested readers may 
turn to that chapter for a detailed discussion of how this is done. Because this chapter deals with oblique 
rotations, it will instead focus on how one interprets the results of the promax procedure. 
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Oblique Solutions 
Before interpreting the meaning of the retained factors, you should first check the inter-factor correlations that 
appear on output toward the bottom of page 5. The results for the current analysis are presented here as Output 
2.6. 

Output 2.6: Inter-Factor Correlations from Analysis of Investment Model Questionnaire 
 

Inter-Factor Correlations 

 Factor1   Factor2   

Factor1 100 * -34  

Factor2 -34  100 * 

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an '*'. 

 

In Output 2.6, look in the section heading “Inter-Factor Correlations.” Where the row heading “FACTOR1” 
intersects with the column heading “FACTOR2,” you will find a correlation coefficient of -.34. This means that 
there is a correlation of -.34 between the two factors. At this point in the analysis, you do not know exactly what 
this correlations means, because you have not yet interpreted the meaning of the factors themselves. You will 
therefore return to this correlation after the interpretation of the factors has been completed. 

In a sense, interpreting the nature of a given factor is relatively straightforward: You begin by looking for 
variables (survey items) that have high loadings on that factor. A high loading means that the variable is, in a 
sense, “measuring” that factor. You must review all of the variables with high loadings on that factor, and 
attempt to determine what the variables have in common. What underlying construct do all of the items seem to 
be measuring? In naming this construct, you name the factor. 

As always, however, somewhat qualitative decisions must often be made. For example, how large must a factor 
loading be before you will conclude it is a “high” loading? As with the preceding chapter, we suggest that 
loadings equal to or greater than .40 be treated as meaningful loadings, and that loadings under .40 generally be 
ignored. As you gain expertise in performing factor analyses, you should explore the more sophisticated 
procedures for identifying “significant” loadings, such as those discussed by Stevens (2002). 

With an orthogonal rotation, factor interpretation was fairly straightforward: You simply reviewed the factor 
pattern matrix to identify the variables with significant loadings on a given factor. With oblique rotations, 
however, the situation is somewhat more complex, because you must interpret two, and in some cases three 
different matrices, in order to fully understand the results. In all cases, the rotated factor pattern and factor 
structure matrices should be reviewed; in some cases, it may also be necessary to review the reference structure 
matrix. 

First, you should review the rotated factor pattern matrix. This matrix appears on page 5 of the output for the 
current analysis. It is presented here as Output 2.7. 
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Output 2.7: Promax (Oblique) Rotated Factor Pattern from Analysis of Investment Model Questionnaire 
 

Rotated Factor Pattern 
(Standardized Regression 

Coefficients) 

 Factor1   Factor2   

V1 85 * -14  

V2 97 * 10  

V3 84 * -1  

V4 -5  73 * 

V5 -4  76 * 

V6 7  79 * 

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an '*'. 

Notice that “Standardized Regression Coefficients” appears in parentheses in the heading of this matrix. This 
should help remind you that the loadings appearing in this factor pattern are regression coefficients of the 
variables on the factors. In common factor analysis, the observed variables are viewed as linear combinations of 
the factors, and the elements of the factor pattern are regression weights associated with each factor in the 
prediction of these variables. The loadings in this matrix are also called pattern loadings, and may be said to 
represent the unique contribution that each factor makes to the variance of the observed variables (Rummel 
1970). 

You should rely most heavily on this rotated factor pattern matrix to interpret the meaning of each factor. The 
rotated factor pattern is more likely to display simple structure than the structure matrix (to be discussed below), 
and will be more useful in determining what names should be assigned to the factors. 

The chapter on principal component analysis provided a structured procedure to follow in interpreting a rotated 
factor pattern. These guidelines are reproduced again below: 

1. Read across the row for the first variable. All “meaningful loadings” (i.e., loadings greater than .40) 
have been flagged with an asterisk (“*”). This occurred because the FLAG=.40 option was specified in 
the preceding program. If a given variable has a meaningful loading on more than one factor (i.e., 
complex items), scratch that variable out and ignore it in your interpretation. In many situations, 
researchers wish to drop variables that load on more than one factor, because the variables are not 
“pure” measures of any one construct. In the present case, this means reviewing the row labeled V1, 
and reading to the right to see if it loads on more than one factor. In this case it does not, so you may 
retain this variable. 

2. Repeat this process for the remaining variables, scratching out any variable that loads on more 
than one factor. In this analysis, none of the variables have high loadings for more than one factor, so 
none will have to be dropped. 

3. Review all of the surviving variables with high loadings on Factor 1 to determine the nature of 
this factor. From the rotated factor pattern, you can see that only items 1, 2, and 3 load on Factor 1 
(note the asterisks). It is now necessary to turn to the questionnaire itself and review the content of the 
questions in order to decide what a given factor should be named. What do questions 1, 2, and 3 have 
in common? What common construct do they seem to be measuring? For illustration, the questions 
being analyzed in the present case are again reproduced below. Remember that question 1 was 
represented as V1 in the SAS program, question 2 was V2, and so forth. To interpret Factor 1, you 
must read questions 1, 2, and 3 to see what they have in common.  
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Please rate each of the following statements to indicate the extent to which you agree or disagree with each 
using a response scale in which 1 = “Strongly Disagree” and 7 = “Strongly Agree.” 
 
 _____  1.  I have invested a lot of time and effort in developing my relationship with my current partner. 
 _____  2.  My current partner and I have developed interests in a lot of fun activities that I would lose if our 
                   relationship were to end. 
 _____  3.  My current partner and I have developed lot of mutual friendships that I would lose if our  
                   relationship were to end. 
 _____  4.  It would be more attractive for me to be involved in a relationship with someone else rather than  
                   continue in a relationship with my current partner. 
 _____  5.  It would be more attractive for me to be by myself rather than to continue the relationship with my 
                   current partner. 
 _____  6.  In general, the alternatives to remaining in this relationship are quite attractive. 

 
Questions 1, 2, and 3 all seem to be dealing with the size of the investment that the respondent has put into the 
relationship. It is therefore reasonable to label Factor 1 the “investment size” factor. 

4. Repeat this process to name the remaining retained factors. In the present case, there is only one 
remaining factor to name: Factor 2. This factor has high loadings for questions 4, 5, and 6. In 
reviewing these items, it becomes clear that each seems to deal with the attractiveness of alternatives to 
one’s current relationship. It is therefore reasonable to label this the “alternative value” factor. 

5. Determine whether this solution satisfies the "interpretability criteria.”  An earlier section 
indicated that the overall results of a principal factor analysis are satisfactory only if they meet the 
following interpretability criteria: 
a. Are there at least three variables (items) with significant loadings on each retained factor?  

In the present example, three variables loaded on Factor 1, and three also loaded on factor 2, so 
this criterion was met. 

b. Do the variables that load on a given factor share some conceptual meaning?  All three 
variables loading on Factor 1 are clearly measuring investment size, while all three loading on 
Factor 2 are clearly measuring alternative value. Therefore, this criterion is met. 

c. Do the variables that load on different factors seem to be measuring different constructs? 
Because the items loading on the “investment size” factor seem to be conceptually very different 
from the items loading on the “alternative value” factor, this criterion seems to be met as well. 

d. Does the rotated factor pattern demonstrate “simple structure?”  Earlier, it was said that a 
rotated factor pattern demonstrates simple structure when it has two characteristics. First, most of 
the variables should have high loadings on one factor, and near-zero loadings on other factors. 
You can see that the pattern obtained here meets that requirement: Items 1 to 3 have high loadings 
on Factor 1, and near-zero loadings on Factor 2. Similarly, items 4 to 6 have high loadings on 
Factor 2, and near-zero loadings on Factor 1. The second characteristic of simple structure is that 
each factor should have high loadings for some variables, and near-zero loadings for the others. 
Again, the pattern obtained here also meets this requirement: Factor 1 has high loadings for items 
1 to 3 and near-zero loadings for other items, while Factor 2 has high loadings for items 4 to 6, 
and near-zero loadings on the remaining items. In short, the rotated factor pattern obtained in this 
analysis does seem to demonstrate simple structure. 

As stated earlier, the rotated factor pattern should be the first matrix reviewed in naming the factors. However, 
it does have one limitation: The pattern loadings of this matrix are not constrained to range between +1.00 and       
-1.00. In rare cases in which the factors are strongly correlated, some loadings may be as large as 10.00 or even 
larger. In such cases the interpretation of the pattern matrix may be difficult.  

When faced with such a situation, it is generally easier to instead review the reference structure matrix. This 
appears under the heading “Reference Structure (Semipartial Correlations)” on output page 5. The reference 
structure for the current analysis of the investment model questionnaire is presented here as Output 2.8. 
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Output 2.8: Reference Structure (Semipartial Correlations) from Analysis of Investment Model  
                    Questionnaire 

Reference Structure (Semipartial Correlations) 

 Factor1   Factor2   

V1 80 * -13  

V2 91 * 10  

V3 78 * -1  

V4 -5  68 * 

V5 -4  72 * 

V6 6  74 * 

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an '*'. 

The heading for the reference structure parenthetically includes the words “Semipartial Correlations.” This is 
because the coefficients in this matrix represent the semipartial correlations between variables and common 
factors, removing from each common factor the effects of other common factors. 

The steps followed in interpreting the reference structure are identical to those followed in reviewing the factor 
pattern. Notice that the size of the loadings in the above reference structure is very similar to those in the rotated 
factor pattern. It is clear that interpreting the reference structure in this study would have led to exactly the same 
interpretation of factors as was obtained using the rotated factor pattern. 

In addition to interpreting the rotated factor pattern (and reference structure, if necessary), you should also 
review the factor structure matrix. The structure matrix for the present study also appears on page 5, and is 
presented here as Output 2.9. 

Output 2.9: Factor Structure (Correlations) from Analysis of Investment Model Questionnaire 

Factor Structure (Correlations) 

 Factor1   Factor2   

V1 89 * -43 * 

V2 93 * -23  

V3 84 * -30  

V4 -30  75 * 

V5 -30  78 * 

V6 -20  77 * 

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an '*'. 

The word “Correlations” appears in parentheses in the heading for this matrix, because the structure loadings 
that it contains represent the product-moment correlations between the variables and common factors. For 
example, where the row for V1 intersects with the column for FACTOR1, a structure loading of 89 appears. 
This indicates that the correlation between item 1 and Factor 1 is +.89. 
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The structure matrix is generally less useful for interpreting the meaning of the factors (compared to the rotated 
pattern matrix) because it often fails to demonstrate simple structure. For example, notice that the “low” 
loadings in this structure matrix are not really that low: The loading of V1 on Factor 2 is -.43; the corresponding 
loading from the rotated pattern matrix was considerably lower at -.14. Comparing the rotated pattern matrix to 
the structure matrix reveals the superiority of the former in achieving simple structure. 

If this is the case, then why review the structure matrix at all? We do this because the pattern matrix and the 
structure matrix provide different information about the relationships between the observed variables and the 
underlying factors: The factor pattern reveals the unique contribution of each factor to the variance of the 
variable. The pattern loadings in this matrix are essentially standardized regression coefficients, comparable to 
those obtained in multiple regression.  

The factor structure, on the other hand, reveals the correlation between a given factor and variable. It helps you 
understand the “big picture” of how the variables are really related to the factors. For example, consider the 
rotated factor pattern matrix which appeared on page 4 of the current output. It is presented again here as Output 
2.10. 

Output 2.10: Promax (Oblique) Rotated Factor Pattern from Analysis of Investment Model Questionnaire 

Rotated Factor Pattern (Standardized Regression Coefficients) 

 Factor1   Factor2   

V1 85 * -14  

V2 97 * 10  

V3 84 * -1  

V4 -5  73 * 

V5 -4  76 * 

V6 7  79 * 

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an '*'. 

Notice that the pattern loading for V1 on Factor 2 is only .14. Do not allow this very weak pattern loading to 
mislead you into believing that V1 and Factor 2 are completely unrelated. Because this is a pattern loading, its 
small value merely means that Factor 2 makes a very small unique contribution to the variance in V1.  

For contrast, now consider the structure loading for V1 on Factor 2 (from Output 2.9). The structure loading 
reveals that V1 actually demonstrates a correlation with Factor 2 of -.43. Why would V1 be negatively 
correlated with Factor 2? Because V1 is directly related to Factor 1, and Factor 1, in turn, is negatively 
correlated with Factor 2. This negative correlation is illustrated graphically in Figure 2.4. Notice that there is a 
curved double-headed arrow that connects Factors 1 and 2. The arrow is identified with a negative sign. This 
curved arrow shows that these factors are negatively correlated with no assumed causation between them. 
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Figure 2.4: Path Model for a 6-Variable, 2-Factor Model, Oblique Factors, Factorial Complexity = 1 

 

The model presented as Figure 2.4 is identical to Figure 2.1 with one exception. A curved double-headed arrow 
now connects Factors 1 and 2. This means that the factors are now oblique or correlated. This figure helps 
demonstrate how a variable could have a moderately large structure loading for a factor, but a small pattern 
loading. The structure loading for V1 and Factor 2 is -.43 because V1 is caused by Factor 1, and Factor 1 is 
negatively correlated with Factor 2. However, the pattern loading for V1 and Factor 2 is much smaller at -.14, 
because Factor 2 has essentially no direct effect on V1. 

In summary, one should always review the pattern matrix to determine which groups of variables are measuring 
a given factor, for purposes of interpreting the meaning of that factor. One should then review the structure 
matrix to get the “big picture” concerning the simple bivariate relations between variables and factors. 

If the structure matrix is so important, then why was it not discussed in the chapter on principal component 
analysis? This is because the pattern matrix and the structure matrix are one and the same in a principal 
component analysis with an orthogonal rotation. Technically, the loadings of the pattern matrix in principal 
component analysis can be viewed as regression coefficients, as in common factor analysis. Remember, 
however, that the principal components of this analysis are orthogonal, or uncorrelated. Because of this 
orthogonality, the regression coefficients for the components are equivalent to the correlation between the 
components and the variables. This is to say that the loadings of the pattern matrix can also be interpreted as 
correlations between the components and the variables. Hence, there is no difference between a factor pattern 
matrix and a factor structure matrix in principal component analysis with an orthogonal rotation. This is why 
only the pattern matrix is printed and interpreted. 

Step 5: Creating Factor Scores or Factor-Based Scores 
Once the analysis is complete, it is often desirable to assign scores to each participant to indicate where that 
participant stands on the retained factors. For example, the two factors retained in the present study were 
interpreted as an investment size factor and alternative value factor. You may wish to now assign one score to 
each participant to indicate where that participant stands on the investment size factor, and a different score to 
indicate where that participant stands on the alternative value factor. With this done, these factor scores could 
then be used either as predictor variables or as criterion variables in subsequent analyses. 

Before discussing the options for assigning these scores, it is necessary to first draw a distinction between factor 
scores versus estimated factor scores. A factor score represents a participant’s actual standing on an underlying 
factor. An estimated factor score, on the other hand, is merely an estimate of a participant’s standing on that 
underlying factor. In practice, researchers are never able to compute true “factor scores.” This is because of a 
fundamental indeterminancy in factor analysis. In the end, factor scores are estimated by creating linear 
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composites of the observed variables. That is, one computes factor scores by adding together optimally 
weighted scores on the observed variables. But remember that the common part of a given variable (that part 
influenced by the common factor) is inseparable from that variable's unique component. This means that there 
will always be some error associated with the computation of factor scores, and so it is therefore better to refer 
to them as estimated factor scores. 

Estimated Factor Scores 
Broadly speaking, two scoring approaches are available. The more sophisticated approach is to allow PROC 
FACTOR to compute estimated factor scores. An estimated factor score is a linear composite of the optimally 
weighted variables under analysis. For example, to calculate the participant’s estimated factor score on factor 1, 
you would use the following equation: 

F'1 =  b11V1 + b12V2 + b13V3 + ... b1pVp 

where 

     F'1 = the estimated factor score for factor 1 

     b11 = the scoring coefficient for survey question 1 used in creating estimated factor score 1 

     V1  = the participant’s score on survey question 1 

     b12 = the scoring coefficient for survey question 2 used in creating estimated factor score 1 

     V2  = the participant’s score on survey question 2 

     b1p = the scoring coefficient for survey question p (the last question), used in creating estimated factor  
              score 1 

      Vp = the participant’s score on survey question p 

A different equation, with different scoring coefficients, would be used to calculate participants’ scores on the 
remaining retained factors. In practice, you do not actually have to create equations such as those appearing 
here; instead, these estimated factor scores may be created automatically by requesting the creation of a new 
dataset within the SAS program. This is done by including the OUT and NFACT options in the FACTOR 
statement.  

The general form for the NFACT option is 

nfact=number-of-factors-to-be-retained 

The general form for the OUT option is 

out=name-of-new-SAS-dataset 
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The following SAS program incorporates these options: 

proc factor   data=D1 

                    simple 
                    method=prin 
                    priors=smc 
                    nfact=2 
                    rotate=promax 
                    round 
                    flag=.40 
    ❶              out=D2 ; 
         var V1-V6 ; 
      run; 

    ❷  proc corr   data=D2; 
    ❸   var COMMIT FACTOR1 FACTOR2; 
    ❹ run; 

Line ❶ of the preceding programs asks that an output dataset be created and given the name “D2.” This name 
was arbitrary; any name consistent with SAS requirements would have been acceptable. The new dataset named 
D2 will contain (a) all of the variables contained in the previous dataset, as well as (b) new variables named 
FACTOR1 and FACTOR2. FACTOR1 will contain estimated factor scores for the first retained factor, and 
FACTOR2 will contain estimates for the second factor. The number of new “FACTOR” variables created will 
be equal to the number of factors retained by the NFACT statement. 

The OUT option may be used only if the factor analysis has been performed on raw data (as opposed to a 
correlation or covariance matrix). The use of the NFACT statement is also required.  

Having created the new estimated factor score variables named FACTOR1 and FACTOR2, you may be 
interested in seeing how they relate to some of the study’s other variables (i.e., variables not analyzed in the 
factor analysis itself). You may therefore append a PROC CORR statement to your program following the last 
of the PROC FACTOR statements. In the preceding program, these statements appear on lines ❷ to ❹.  

These PROC CORR statements request that COMMIT be correlated with FACTOR1 and FACTOR2. 
COMMIT represents participants’ “commitment to the relationship.” High scores on this variable indicate that 
participants intend to remain in the relationship with their current partners. (Assume that the variable COMMIT 
was also measured with the questionnaire, and that scores on COMMIT were entered as part of dataset D1.) 
These PROC CORR statements result in the SAS output that is presented here as Output 2.11. 

Output 2.11: Correlations between COMMIT and Estimated Factor Score Variables FACTOR1 and  
                      FACTOR2 

 
The CORR Procedure 

 

3 Variables: COMMIT Factor1 Factor2 

 

Simple Statistics 

Variable N Mean Std Dev Sum Minimum Maximum 

COMMIT 50 15.52000 6.67692 776.00000 4.00000 28.00000 

Factor1 50 0 0.95720 0 -2.25877 1.68987 

Factor2 50 0 0.88955 0 -1.29220 2.75565 
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Pearson Correlation Coefficients, N = 50  
Prob > |r| under H0: Rho=0 

 COMMIT Factor1 Factor2 

COMMIT 1.00000 

  

0.31881 

0.0240 
 

-0.29307 

0.0389 
 

Factor1 0.31881 

0.0240 
 

1.00000 

  

-0.39458 

0.0046 
 

Factor2 -0.29307 

0.0389 
 

-0.39458 

0.0046 
 

1.00000 

  

The correlations of interest appear in Output 2.11 below the heading “Pearson Correlations Coefficients, N = 
50.” Look at the first column of coefficients, under the heading “COMMIT.” Where this column intersects with 
the row headed FACTOR1, you can see that FACTOR1 displays a correlation of approximately +.32 with 
commitment. This makes sense, because the first retained factor was interpreted as the “investment size” factor. 
It is logical that investment size would be positively correlated with commitment to maintain the relationship. 
The second estimated factor score variable, FACTOR2, has a correlation of -.29 with commitment; this too is 
logical. The second retained factor was interpreted as “alternative value.” It makes sense that commitment 
would decrease as the attractiveness of one's alternatives increases. FACTOR1 and FACTOR2 may now be 
used as predictor or criterion variables in any other appropriate SAS procedure. 

Factor-Based Scales 
A second (and less sophisticated) approach to scoring involves the creation of factor-based scales. A factor 
based scale is a variable that estimates participant scores on the underlying factors, but does not use an 
optimally weighted formula to do this (as was the case with the estimated factor scores created by PROC 
FACTOR).  

Although a factor-based scale can be created in a number of ways, the following method has the advantage of 
being relatively straightforward: 

• To calculate scores on factor-based scale 1, first determine which questionnaire items had high 
loadings on Factor 1. 

• For a given participant, add together that participant’s responses to these items. The result is that 
participant’s score on the factor-based scale for Factor 1. 

• Repeat these steps to calculate each participant’s score for remaining retained factors. 

Although this may sound like a cumbersome task, it is actually quite simple using SAS data manipulation 
statements. For example, assume that you have performed the factor analysis on your survey responses and have 
obtained the findings reported in this chapter. Specifically, it was found that survey items 1, 2, and 3 loaded on 
Factor 1 (the investment size factor), while items 4, 5, and 6 loaded on Factor 2 (the alternative value factor). 

You would now like to create two new SAS variables. The first variable, called INVESTMENT, will include 
each participant’s score on the factor-based scale for investment size. The second variable, called 
ALTERNATIVES, will include each participant’s score on the factor-based scale for alternative value. Once 
these variables are created, you can use them as criterion variables or predictor variables in subsequent multiple 
regressions, ANOVAs, or other analyses. To keep things simple for the present example, assume that you are 
simply interested in determining whether there is a substantive correlation between COMMIT and 
INVESTMENT and between COMMIT and ALTERNATIVES. 

At this point, it may be useful to review Chapter 4, “Working with Variables and Observations in SAS 
Datasets,” from A Step-By-Step Approach to Using SAS for Univariate and Multivariate Statistics (O’Rourke, 
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Hatcher, and Stepanski 2005), particularly the section on “Creating New Variables from Existing Variables.” 
Such a review should make it easier to understand the data manipulation statements below.  

Assume that earlier statements in the SAS program have already input participant responses to questionnaire 
items, including participants’ scores on the variable COMMIT. These variables are included in a dataset called 
D2. Below are the subsequent lines that would create a new dataset called D3 which would include all of the 
variables in D2, as well as the newly created factor-based scales called INVESTMENT and ALTERNATIVES. 

❶   data D3; 
❷     set D2; 

❸   INVESTMENT   = (V1 + V2 + V3); 
❹    ALTERNATIVES = (V4 + V5 + V6); 

❺       proc corr   data=D3; 
❻    var COMMIT INVESTMENT  ALTERNATIVES; 
❼      run; 

Lines ❶ and ❷ request that a new dataset called D3 be created, and that this dataset be set up as a duplicate of 
existing dataset D2. On line ❸ the new variable called INVESTMENT is created. For each participant, his or 
her responses to items 1, 2, and 3 are added together. The result is the participant’s score on the factor-based 
scale for the first factor. These scores are stored in a variable called INVESTMENT. The factor-based scale for 
the alternative value factor is created on line ❹, and these scores are stored in the variable called 
ALTERNATIVES. Lines ❺ to ❼ request correlation coefficients between COMMIT, INVESTMENT, and 
ALTERNATIVES be computed.  

Fictitious results from the preceding program are presented as Output 2.12. 

Output 2.12: Correlations between COMMIT and Factor-Based Scales INVESTMENT and ALTERNATIVES 

 
The CORR Procedure 

 

3 Variables: COMMIT INVESTMENT ALTERNATIVES 

 

Simple Statistics 

Variable N Mean Std Dev Sum Minimum Maximum 

COMMIT 50 15.52000 6.67692 776.00000 4.00000 28.00000 

INVESTMENT 50 13.36000 4.36479 668.00000 3.00000 21.00000 

ALTERNATIVES 50 7.68000 3.22895 384.00000 3.00000 18.00000 

 

Pearson Correlation Coefficients, N = 50  
Prob > |r| under H0: Rho=0 

 COMMIT INVESTMENT ALTERNATIVES 

COMMIT 1.00000 

  

0.33798 

0.0164 
 

-0.26380 

0.0642 
 

INVESTMENT 0.33798 

0.0164 
 

1.00000 

  

-0.30588 

0.0308 
 

ALTERNATIVES -0.26380 

0.0642 
 

-0.30588 

0.0308 
 

1.00000 
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You can see that the correlations between COMMIT and the estimated factor scores (FACTOR1 and 
FACTOR2) discussed earlier are slightly different from the correlations between COMMIT and the factor-
based scales (INVESTMENT and ALTERNATIVES) presented above. For example, the correlation between 
COMMIT and FACTOR1 (the estimated factor-score variable for investment size) was approximately .32, 
while the correlation coefficient between COMMIT and INVESTMENT (the factor-based scale for investment 
size) was slightly higher at approximately .34. These differences are to be expected as the estimated factor 
scores (FACTOR1 and FACTOR2) are optimally weighted linear composites, while the factor-based scales 
(INVESTMENT and ALTERNATIVES) are not optimally weighted. In fact, it would be instructive to create a 
single correlation matrix that includes both the estimated factor scores as well as the factor-based scales. This 
could be done with the following statements: 

proc factor   data=D1 
              simple 
              method=prin 
              priors=smc 
              nfact=2 
              rotate=promax 
              round 
              flag=.40 
              out=D2 ; 
   var V1-V6 ; 
run; 

data D3; 
   set D2; 

   INVESTMENT   = (V1 + V2 + V3); 
   ALTERNATIVES = (V4 + V5 + V6); 

proc corr   data=D3; 
   var COMMIT FACTOR1 FACTOR2 INVESTMENT ALTERNATIVES; 
run; 

This program resulted in the correlation matrix presented here as Output 2.13. 

Output 2.13: Correlations between COMMIT, Estimated Factor Score Variables FACTOR1 and FACTOR2,  
                      and Factor-Based Scales INVESTMENT and ALTERNATIVES 

 
The CORR Procedure 

 

5 Variables: COMMIT Factor1 Factor2 INVESTMENT ALTERNATIVES 

 

Simple Statistics 

Variable N Mean Std Dev Sum Minimum Maximum 

COMMIT 50 15.52000 6.67692 776.00000 4.00000 28.00000 

Factor1 50 0 0.95720 0 -2.25877 1.68987 

Factor2 50 0 0.88955 0 -1.29220 2.75565 

INVESTMENT 50 13.36000 4.36479 668.00000 3.00000 21.00000 

ALTERNATIVES 50 7.68000 3.22895 384.00000 3.00000 18.00000 
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Pearson Correlation Coefficients, N = 50  
Prob > |r| under H0: Rho=0 

 COMMIT Factor1 Factor2 INVESTMENT ALTERNATIVES 

COMMIT 1.00000 

  

0.31881 

0.0240 
 

-0.29307 

0.0389 
 

0.33798 

0.0164 
 

-0.26380 

0.0642 
 

Factor1 0.31881 

0.0240 
 

1.00000 

  

-0.39458 

0.0046 
 

0.99431 

<.0001 
 

-0.32121 

0.0229 
 

Factor2 -0.29307 

0.0389 
 

-0.39458 

0.0046 
 

1.00000 

  

-0.38401 

0.0059 
 

0.99043 

<.0001 
 

INVESTMENT 0.33798 

0.0164 
 

0.99431 

<.0001 
 

-0.38401 

0.0059 
 

1.00000 

  

-0.30588 

0.0308 
 

ALTERNATIVES -0.26380 

0.0642 
 

-0.32121 

0.0229 
 

0.99043 

<.0001 
 

-0.30588 

0.0308 
 

1.00000 

  

The correlations of interested appear under the heading “Pearson Correlation Coefficients, N = 50.” Remember 
that FACTOR1 contains the estimated factor scores for investment size, while INVESTMENT is the factor-
based scale for investment size. Where the row for FACTOR1 intersects the row for INVESTMENT, you will 
find a correlation coefficient of .99, meaning that the estimated factor score variable and the factor-based scale 
for this construct are almost perfectly correlated. Similarly, the correlation of .99 between FACTOR2 and 
ALTERNATIVES shows that the estimated factor score variable and the factor-based scale for alternative value 
is also very strongly correlated. 

Recoding Reversed Items Prior to Analysis 
It is generally best to recode any reversed or negatively keyed items before conducting any of the analyses 
described here. In particular, it is essential that reversed items be recoded prior to the program statements that 
produce factor-based scales. The three questionnaire items designed to assess investment size are once again 
presented below: 

Please rate each of the following statements to indicate the extent to which you agree or disagree with each 
using a response scale in which 1 = “Strongly Disagree” and 7 = “Strongly Agree.” 
 
 _____  1.  I have invested a lot of time and effort in developing my relationship with my current partner. 
 _____  2.  My current partner and I have developed interests in a lot of fun activities that I would lose if our  
                   relationship were to end. 
 _____  3.   My current partner and I have developed a lot of mutual friendships that I would lose if our  
                   relationship were to end. 

None of the above items are reversed; with each item, a response of “7” indicates a high level of investment. 
Below, however, item 1 is a reversed item. In contrast to the previous item, a response of “7” now indicates a 
low level of investment: 

 _____  1.  I have invested very little time and effort in developing my relationship with my current partner. 
 _____  2.  My current partner and I have developed interests in a lot of fun activities that I would lose if our  
                   relationship were to end. 
 _____  3.  My current partner and I have developed a lot of mutual friendships that I would lose if our  
                   relationship were to end. 
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If you were to perform a factor analysis on responses to these items, the factor loading for item 1 would have a 
sign that is the opposite of the sign of the loadings for items 2 and 3 (e.g., if items 2 and 3 had positive loadings, 
item 1 would have a negative loading). This would complicate the creation of a factor-based scale: With items 2 
and 3, higher scores indicate greater investment whereas with item 1, lower scores indicate greater investment. 
Clearly, you would not wish to sum these three items together given the way they are presently coded. First, you 
will reverse item 1. Notice how this is done in the following program. (Assume that the data have already been 
input in a SAS dataset named D1.) 

    data D2 ; 
       set D1 ; 

❶    V1 = 8 - V1; 

      INVESTMENT   = (V1 + V2 + V3) ; 
      ALTERNATIVES = (V4 + V5 + V6) ; 

    proc corr   data=D2 ; 
       var COMMIT INVESTMENT ALTERNATIVES ; 
    run ; 

With line ❶, you are creating a new version of variable V1. Values on this new version of V1 will be equal to 
the quantity “8 minus the value of the old version of V1.” Therefore, for participants whose score on the old 
version of V1 was 1, their value on the new version of V1 will be 7 (because 8 − 1 = 7). For participants whose 
score on the old version of V1 was 7, their value on the new version of V1 will be 1 (because 8 − 7 = 1), and so 
forth. 

The general form of the formula used when recoding reversed items is: 

Variable name = constant − variable name ; 

In this formula, the “constant” is the following quantity:  

(the number of points on the response scale used with the questionnaire item + 1) 

Therefore, if you are using the 4-point response scale, the constant is 5; if you are using a 9-point scale, the 
constant is 10. 

If you have prior knowledge about which items are going to appear as reversed items (with reversed factor 
loadings) in your results, it is best to place these recoding statements early in your SAS program, before the 
PROC FACTOR statements. This will make interpretation of the factors more straightforward, because it will 
eliminate significant loadings with opposite signs from appearing on the same factor. In any case, it is essential 
that the statements that recode reversed items appear before the statements that create any factor-based scales. 

Step 6: Summarizing the Results in a Table   
In some cases, you may wish to prepare a table presenting the rotated factor pattern and factor structure for the 
variables analyzed. One possible format is presented in Table 2.4, below. 
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Table 2.4: Questionnaire Items and Corresponding Factor Loadings from the Rotated Factor Pattern  
                  Matrix and Factor Structure Matrix, Decimals Omitted 

Factor Pattern Factor Structure  
1 2 1 2 Questionnaire Item 
85 -14 89 -43 1. I have invested a lot of time and effort in developing my  

    relationship with my current partner. 
97 10 93 -23 2. My current partner and I have developed interest in a lot of fun  

    activities that I would lose if our relationship were to end. 
84 -1 84 -30 3. My current partner and I have developed lot of mutual friendships 

    that I would lose if our relationship were to end. 
-5 73 -30 75 4. It would be more attractive for me to be involved in a relationship  

    with someone else rather than continue the relationship with my  
    current partner. 

-4 76 -30 78 5. It would be more attractive for me to be by myself than to  
    continue my relationship with my current partner. 

7 79 -20 77 6. In general, my alternatives to remaining in this relationship are  
    quite attractive. 

NOTE: N=50.  

If feasible, it is ideal to include an additional column presenting the final communality estimates; the column 
heading would be “h2,” which is the symbol for communality. These final communality estimates appear in the 
output following the factor structure matrix. Table 1.2 from the previous chapter on principal component 
analysis shows how communalities may be presented in a table. 

When many factors are retained or when the questionnaire items are long or numerous, it may not be possible to 
present the factor loadings, communalities, and questionnaire items all in a single table. In these instances, the 
loadings and communalities are presented in one table, and the items are presented in a second table (or within 
the text of the paper). 

Step 7: Preparing a Formal Description of the Results for a Paper   
The level of detail reported in research papers tends to be comparatively brief as factor analysis is often the first 
step in a series of analyses. The preceding analysis could be briefly summarized as follows: 

     Responses to the 6-item questionnaire underwent exploratory factor analysis using squared multiple 
correlations as prior communality estimates. The principal factor method was used to extract factors, 
followed by a promax (oblique) rotation. A scree test suggested two meaningful factors so only these 
factors were retained for rotation.  

     In interpreting the rotated factor pattern, an item was said to load on a given factor if the factor 
loading was .40 or greater for that factor, and was less than .40 for the other. Applying these criteria, 
three items were found to load on the first factor, which was subsequently labeled the investment size 
factor. Three items also loaded on the second factor, which was labeled the alternative value factor. 
Questionnaire items and corresponding factor loadings are presented in Table 2.4. 

A More Complex Example: The Job Search Skills Questionnaire 
The results presented in the preceding section were designed to be relatively simple to introduce the basic 
concepts of factor analysis. In conducting actual research, however, the results are seldom as clear cut. Very 
often you are forced to make somewhat qualitative decisions and are forced to choose between more than one 
interpretable solution. This section illustrates these problems by presenting a somewhat more complex analysis. 

Assume that you are now conducting research in the area of college student career development. You have 
developed an instrument to assess student knowledge and ability in a wide variety of areas related to 
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occupational choice and the job-search process. The instrument consists of 100 items, and the items are divided 
into 25 scales; each scale contains four items.   

Below are the SAS variable names for each scale. Following the SAS variable name is the full name for the 
scale (in italics) and a sample item from the scale (in parentheses). Reviewing the scale names and sample items 
should make clear what type of knowledge or ability is assessed by each scale.  

For example, the first scale is identified with the SAS variable name, “VALUES.” The full name for this scale 
is “Clarifying values and interests,” and the sample item is “My ability to describe just what are my work-
related interests.”  Participants responded to each item on the questionnaire using a 7-point scale in which 1 = 
“Very Bad” and 7 = “Very Good.” 

1. VALUES: Clarifying values and interests (e.g., “My ability to describe just what are my work-related 
interests”). 

2. ABILITY: Identifying work-related abilities and skills (e.g., “My ability to describe just what are my 
strongest work-related skills and abilities”). 

3. ASSESS: Using assessment instruments (e.g., “My knowledge of what specific assessment instruments 
are available to help assess my interests”). 

4. STRATEGY: Identifying effective job search strategies (e.g., “My knowledge of effective job search 
strategies”). 

5. EXPERIENCE: Getting job-related experience (e.g., “My knowledge of how I could get relevant job 
experience in my field before I graduate”). 

6. ORGCHAR: Identifying preferred organizational characteristics (e.g., "My ability to clearly describe 
the exact characteristics an organization should have in order to satisfy my personal preferences"). 

7. RESOCCUP: Researching potential occupations (e.g., "My knowledge of what specific books, 
Internet sources, and other resources that provide useful information about specific occupations"). 

8. RESEMPLOY: Researching specific employers (e.g., "My ability to collect detailed information on a 
specific organization just before an employment interview"). 

9. GOALS: Setting goals (e.g., "My ability to clearly describe my career goals for the next five years"). 
10. BARRIER: Dealing with occupational barriers (e.g., "My knowledge of what types of occupational 

barriers that are likely to stand in my way of getting the job I really want"). 
11. MOTIVATED: Staying motivated (e.g., "My ability to maintain a high level of motivation throughout 

my job search"). 
12. RESUMES: Using résumés (e.g., "My ability to write a highly effective résumé"). 
13. RECOMMEND: Using letters of recommendation (e.g., "My knowledge of what I should do to insure 

that my referee writes a very effective letter of recommendation for me"). 
14. DIRECT: Using the cover letter/direct mail approach (e.g., "My knowledge of just what should be 

included in a cover letter used in the direct mail approach"). 
15. APPLICAT: Completing application forms (e.g., "My ability to complete an application form in such a 

way as to make the best possible impression on a prospective employer"). 
16. IDEMPLOY: Identifying potential employers (e.g., "My knowledge of exactly what books/references 

are available to help me identify organizations that might hire me"). 
17. CARDEVEL: Using campus career development services (e.g., "My ability to clearly describe exactly 

what services are offered by the career development office on this campus”). 
18. AGENCY: Using employment agencies (e.g., “My knowledge of how to make effective use of an 

employment agency”). 
19. FAIRS: Using job fairs (e.g., “My ability to make effective use of a job fair”). 
20. ADVERT: Responding to advertised job openings (e.g., “My knowledge of how to effectively respond 

to a job advertisement”). 
21. COUNSEL: Using career counselors/consultants (e.g., “My knowledge of how to use career 

counselors/consultants to make the most of the services they offer”). 
22. UNADVERT: Applying directly for unadvertised jobs (e.g., “My knowledge of the correct way to 

directly apply for an unadvertised position”). 
23. NETWORK: Using the networking approach to job search (e.g., “My knowledge of the most effective 

ways of producing job leads by asking for help from friends, relatives, past employers and other 
contacts). 
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24. INTERVIEW: Managing the employment interview process (e.g., “My knowledge of how to respond 
to tough interview questions”). 

25.  SALARY: Negotiating salary (e.g., “My ability to successfully negotiate a fair and motivating salary”). 

Assume that you administered your scale to 258 college students and obtained usable responses from 220 of 
these. You determined each student's score on each of the 25 scales, meaning that there are 25 data points for 
each student. You now wish to perform an exploratory factor analysis to identify the latent structure underlying 
the data (from Ruddle, Thompson and Hatcher 1993).  

Notice that the analysis will be performed on the 25 scale scores, not on the responses to each of the 100 
individual questionnaire items. This approach is justifiable only if you have reason to believe that each of the 25 
scales assesses just one construct. It would not be appropriate if, for example, items 1 and 2 within scale 1 
assess one construct, and items 3 and 4 assess a different construct. In this latter case, it would be more 
appropriate to perform a factor analysis using all 100 of the individual items. (Of course, that analysis would 
require a large sample size in order to attain a good ratio of participants to variables.) 

However, assume you have evidence that each scale does, in fact, assess just one construct. Assume that 
coefficient alpha exceeds .80 for each scale, and that the item-total correlations are quite high; these findings 
would suggest that the individual scales are unifactorial. Therefore, you will use scores on the 25 scales as 
observed variables in the factor analysis. 

The SAS Program 
The data analyzed here appear in Appendix B. Below is the SAS program (minus the DATA step) to perform an 
exploratory factor analysis on the data from your study.  

       proc factor data=D1 
                   simple  
    ❶              method=ml 
    ❷              priors=smc 
    ❸              nfact=1       
                    plots=scree 
                    rotate=promax   
                    round 
    ❹              flag=.40 ; 

         var V1–V25 ; 
           /*  VALUES ABILITY ASSESS STRATEGY EXPERIENCE ORGCHAR  
               RESOCCUP RESEMPLOY GOALS BARRIER MOTIVATED  
               RESUMES RECOMMEND DIRECT APPLICAT IDEMPLOY  
               CARDEVEL AGENCY FAIRS ADVERT COUNSEL UNADVERT  
               NETWORK INTERVIEW SALARY ;  */ 
         run; 

In most respects, the preceding program is similar to the other exploratory factor analysis presented previously 
in this chapter. The PRIORS option ❷ requests that squared multiple correlations again be used as prior 
communality estimates, and the FLAG option ❹ requests that factor loadings whose absolute values exceed .40 
be flagged with asterisks. The NFACT option ❸ requests that one factor be retained. (Once again, you have no 
empirical evidence to expect any specific number of factors at this stage of the analysis; one factor was 
specified simply as a starting point.) 

This program differs from the other analyses, however, in that the METHOD=ML option ❶ requests that the 
maximum likelihood method be used to extract factors. As previously indicated, most researchers prefer this 
method because it generally provides more accurate parameter estimates, and also provides a significance test to 
help solve the number of factors problem. Because of these advantages, the use of the maximum likelihood 
method will be described in this section. 
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The preceding program would produce three pages of output. Some of the information appearing on each page 
is summarized below: 

• Page 1 presents the sample size and simple statistics. 

• Page 2 includes the eigenvalue table, scree plot of eigenvalues, iteration history, the significance tests 
for the number of factors extracted, unrotated factor pattern matrix, and the final communality 
estimates. 

• Page 3 simply includes a note reminding you that factor rotation is not viable with just one factor. 

Portions of this output will be reproduced on the following pages as Output 2.14, Output 2.15, and Output 2.16. 

Determining the Number of Factors to Retain 

The Scree Plot 
Because 25 scales were analyzed, you know that 25 factors will be extracted. The eigenvalue table for these 
factors, along with the scree plot, is reproduced here as Output 2.14. 

Output 2.14: Preliminary Eigenvalues from Analysis of Job Search Skills Questionnaire 

 
The FACTOR Procedure 

Initial Factor Method: Maximum Likelihood 
 

Preliminary Eigenvalues: Total = 40.1355388  
Average = 1.60542155 

 Eigenvalue Difference Proportion Cumulative 

1 33.4862182 30.2592664 0.8343 0.8343 

2 3.2269518 1.6761612 0.0804 0.9147 

3 1.5507906 0.1822790 0.0386 0.9534 

4 1.3685116 0.3091964 0.0341 0.9875 

5 1.0593152 0.2961206 0.0264 1.0139 

6 0.7631945 0.1079114 0.0190 1.0329 

7 0.6552831 0.2233701 0.0163 1.0492 

8 0.4319130 0.1148151 0.0108 1.0600 

9 0.3170979 0.0201290 0.0079 1.0679 

10 0.2969689 0.1244940 0.0074 1.0753 

11 0.1724749 0.0544826 0.0043 1.0796 

12 0.1179923 0.0738060 0.0029 1.0825 

13 0.0441863 0.0961917 0.0011 1.0836 

14 -0.0520054 0.0594319 -0.0013 1.0823 

15 -0.1114373 0.0174893 -0.0028 1.0795 

16 -0.1289267 0.0361906 -0.0032 1.0763 

17 -0.1651172 0.0548644 -0.0041 1.0722 

18 -0.2199817 0.0027468 -0.0055 1.0667 

19 -0.2227285 0.1178582 -0.0055 1.0612 
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Preliminary Eigenvalues: Total = 40.1355388  
Average = 1.60542155 

 Eigenvalue Difference Proportion Cumulative 

20 -0.3405867 0.0203781 -0.0085 1.0527 

21 -0.3609648 0.0438742 -0.0090 1.0437 

22 -0.4048391 0.0013121 -0.0101 1.0336 

23 -0.4061512 0.0431700 -0.0101 1.0235 

24 -0.4493211 0.0439786 -0.0112 1.0123 

25 -0.4932997  -0.0123 1.0000 

 

1 factor will be retained by the NFACTOR criterion. 

Output 2.15: Scree Plot from Analysis of Job Search Skills Questionnaire 

 

How many factors should you retain and rotate? Earlier, the scree test was used to help you make this decision. 
Remember that, with the scree test, you look for a major break in the eigenvalues. You hope that, following this 
break, the line will begin to “flatten out.” Factors that appear before the break are retained whereas those 
appearing along the flat line after the break are assumed to account for only trivial variance and will not be 
retained. 

In the scree plot of Output 2.15, there is clearly a major break following Factor 1. This may mean that this 
questionnaire is unifactorial (i.e., most of the scales may measure just one general “job search skills” factor). To 
assess the interpretability of this “one-factor” model, you will consult the factor pattern to determine which 
variables display the largest loadings for this factor. Identifying the variables with the highest loadings will help 
label the factor. 

The interpretation of a one-factor solution is slightly different from the interpretation of multiple-factor models 
(as earlier presented). When only one factor is retained, rotation is not possible (whether orthogonal or oblique). 
This actually makes your task easier: When only one factor is retained, it is possible to review the unrotated 
factor pattern to interpret the factor. The unrotated factor pattern from your one-factor solution is presented here 
as Output 2.16.  
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Output 2.16: Factor Pattern from the One-Factor Solution, Analysis of Job Search Skills Questionnaire 

Factor Pattern 

 Factor1   

V1 VALUES 48 * 

V2 ABILITY 51 * 

V3 ASSESS 63 * 

V4 STRATEGY 73 * 

V5 EXPERIENCE 69 * 

V6 ORGCHAR 56 * 

V7 RESOCCUP 76 * 

V8 RESEMPLOY 81 * 

V9 GOALS 53 * 

V10 BARRIER 67 * 

V11 MOTIVATED 57 * 

V12 RESUMES 71 * 

V13 RECOMMEND 76 * 

V14 DIRECT 75 * 

V15 APPLICAT 64 * 

V16 IDEMPLOY 83 * 

V17 CARDEVEL 69 * 

V18 AGENCY 70 * 

V19 FAIRS 68 * 

V20 ADVERT 83 * 

V21 COUNSEL 77 * 

V22 UNADVERT 75 * 

V23 NETWORK 73 * 

V24 INTERVIEW 72 * 

V25 SALARY 76 * 

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an '*'. 

Notice that every variable in Output 2.16 demonstrates a “meaningful” loading on Factor 1 (i.e., loading over 
.40). This is indicated by the fact that the loading for each variable is flagged with an asterisk. For example, the 
variable “VALUES” displays a loading of .48, the variable “ABILITY” displays a loading of .51, and so forth. 

To interpret Factor 1 more effectively, it would be helpful to isolate those variables that demonstrate the largest 
loadings for it. Therefore, we will somewhat arbitrarily choose the value of .70 as a cut-off, and will construct a 
table that lists the scales that demonstrate a loading of .70 or greater for factor 1. These scales are listed in Table 
2.5. 
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Table 2.5: Scales with Larger Factor Loadings from Output 2.16, Sorted by Size of Loadings 

Factor Loading Variable Description 
.83 IDEMPLOY Identifying potential employers 
.83 ADVERT Responding to advertised job 

openings 
.81 RESEMPLOY Researching specific employers 
.77 COUNSEL Using career counselors/consultants 
.76 RESOCCUP Researching potential occupations 
.76 RECOMMEND Using letters of recommendation 
.76 SALARY Negotiating salary 
.75 DIRECT Using the cover letter/direct mail 

approach 
.75 UNADVERT Applying directly for unadvertised 

jobs 
.73 STRATEGY Identifying effective job search 

strategies 
.73 NETWORK Using the networking approach to 

job search 
.72 INTERVIEW Managing the employment 

interview process 
.71 RESUMES Using résumés 
.70 AGENCY Using employment agencies 

Table 2.5 lists the scales that demonstrated a loading on Factor 1 of .70 or greater, and these scales are 
reordered according to the size of their loadings. Notice that most of the scales that loaded heavily on Factor 1 
pertain to the “nuts-and-bolts” tasks associated with the job hunt itself (e.g., responding to job openings, 
learning about potential employers, negotiating salary). Because of this, if you ultimately decide that a one-
factor solution is best, you will probably define this dimension as a general job-search skills factor. 

Variance Accounted For 
Before accepting the one-factor solution as your “final” solution, you will first review other criteria and 
consider some alternative solutions. The “Proportion” row of the eigenvalue table from Output 2.14 shows that 
the first factor accounts for approximately 83% of the common variance. Factor 2 accounts for an additional 8% 
of the variance: An amount that many researchers would consider meaningful. This information alone would 
probably warrant exploring a two-factor solution. 

The Chi Square Test 
As was mentioned earlier, one advantage of the maximum likelihood method of factor extraction is the fact that 
it provides a chi square test to help make the number of factors decision. The chi square test for the current 
analysis is presented as Output 2.17. 
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Output 2.17: Significance Tests For One-Factor Model, Job Search Skills Questionnaire 

Significance Tests Based on 220 Observations 

Test DF Chi-Square 
Pr >  

ChiSq 

H0: No common factors 300 3737.4335 <.0001 

HA: At least one common factor    

H0: 1 Factor is sufficient 275 775.0342 <.0001 

HA: More factors are needed    

 

Chi-Square without Bartlett's Correction 811.47003 

Akaike's Information Criterion 261.47003 

Schwarz's Bayesian Criterion -671.77754 

Tucker and Lewis's Reliability Coefficient 0.84131 

 

Squared Canonical 
Correlations 

Factor1 

0.96399635 

The test you are most interested in appears to the right of the test “HO: 1 Factor is sufficient, HA: More factors 
are needed.” This heading is self-explanatory; it tells you that the chi square statistic tests the null hypothesis 
that retaining one factor is sufficient. If you obtain a small p value for this test (i.e., p < .05), you are to reject 
this null hypothesis and consider the alternative hypothesis that more factors should be retained. 

Output 2.17 shows that the obtained value of chi square for the test was large at approximately 775.03  
(DF = 275). To the left of the chi square statistic and the degrees of freedom, the output provides the entry,  
“Pr > ChiSq < .0001.” This is the p value for the obtained chi square statistic. Because this obtained p value is 
less than .05, you may reject the null hypothesis that one factor is adequate. This finding can be used as 
evidence that more factors should be retained. Under these circumstances, some researchers would sequentially 
add additional factors to the model until a nonsignificant chi square value is obtained. 

However, we caution against the temptation to rely too heavily on the chi square test. Under circumstances that 
are often encountered in applied research, reliance on the chi-square test alone can lead you to retain too many 
factors. This is especially likely when the sample is large or there is even a minor misfit between the model and 
the data (Kim and Mueller 1978b). For this reason, use the chi square test as only one piece of information in 
making the number of factors decision; if the test suggests that additional factors are needed, consult other 
criteria before making a final decision (e.g., the scree test, proportion of variance accounted for, and 
interpretability criteria). 

A Two-Factor Solution 
So far you have obtained mixed support for a one-factor model. The scree test could be interpreted as 
supporting the retention of only one factor. One the other hand, the eigenvalue table showed that Factor 2 
accounts for over 7% of the common variance, and the chi square test rejected the one-factor model. Combined, 
these findings justify exploring the possibility of a two-factor model. 

The analysis was therefore repeated, this time specifying NFACT=2. This revised program again produced four 
pages of output, some of which is reproduced here as Output 2.17, Output 2.18, and Output 2.19. Some of the 
information appearing on these 12 pages of output is summarized below: 
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• Page 1 provides simple statistics. 

• Page 2 includes the eigenvalue table, the factor pattern matrix, and significance tests for the number of 
factors extracted. 

• Page 3 includes the orthogonal transformation matrix. 

• Page 4 includes the rotated factor pattern matrix, variance explained by each factor (weighted and 
unweighted), the factor structure matrix, and final communality estimates. 

The rotated factor pattern from the promax rotation is presented as Output 2.18. 

Output 2.18: Rotated Factor Pattern from Promax Rotation, Two-Factor Solution, Job Search Skills  
                      Questionnaire 

Rotated Factor Pattern (Standardized 
Regression Coefficients) 

 Factor1   Factor2   

V1 VALUES -9  78 * 

V2 ABILITY 7  61 * 

V3 ASSESS 51 * 17  

V4 STRATEGY 65 * 13  

V5 EXPERIENCE 46 * 32  

V6 ORGCHAR 0  77 * 

V7 RESOCCUP 60 * 22  

V8 RESEMPLOY 69 * 18  

V9 GOALS -1  74 * 

V10 BARRIER 35  44 * 

V11 MOTIVATED 8  67 * 

V12 RESUMES 58 * 20  

V13 RECOMMEND 59 * 25  

V14 DIRECT 76 * 1  

V15 APPLICAT 47 * 23  

V16 IDEMPLOY 79 * 7  

V17 CARDEVEL 76 * -7  

V18 AGENCY 76 * -6  

V19 FAIRS 80 * -14  

V20 ADVERT 78 * 9  

V21 COUNSEL 90 * -14  

V22 UNADVERT 75 * 2  

V23 NETWORK 60 * 19  

V24 INTERVIEW 60 * 17  

V25 SALARY 74 * 4  

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an '*'. 
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Remember that the pattern matrix reflects the unique contribution that each factor makes to the variance in a 
variable, so it is this matrix that you will first use to determine which variables load on which factor. For this 
analysis, you have flagged any loading over .40 with an asterisk, and will assume the flagged loadings are 
meaningful.  

First, you should read across each row from left to right to see if any variable has a significant loading for more 
than one factor; these are known as complex items. These complex items need to be identified so that they will 
not be included in any factor-based scale that you will later create. It turns out that no variables load on both 
factors.  

Next you should read down the first factor to see which variables demonstrated significant loadings for this 
factor. What do these variables have in common? What general construct do they all seem to be measuring?  
This process is then repeated in order to interpret Factor 2. While doing this, try to determine the way in which 
Factor 1 differs from Factor 2. In what way do the variables loading on Factor 1 (as a group) tend to differ from 
those loading on Factor 2?  

To make this process easier, Table 2.6 sorts the scales according to the factors on which they load, and provides 
brief descriptions for the scales. (In this table, the variables have not been sorted according to the size of their 
loadings.) 

Table 2.6: Variables Loading on Factors 1 and 2 According to Rotated Factor Pattern, Two-Factor  
                 Solution, Job Search Skills Questionnaire 

Variables loading on Factor 1 
3. ASSESS Using assessment instruments 
4. STRATEGY Identifying effective job search strategies 
5. EXPERIENCE Getting job-related experience 
7. RESOCCUP Researching potential occupations 
8. RESEMPLOY Researching specific employers 
12. RESUMES Using résumés 
13. RECOMMEND Using letters of recommendation 
14. DIRECT Using the cover letter/direct mail approach 
15. APPLICAT Completing application forms 
16. IDEMPLOY Identifying potential employers 
17. CARDEVEL Using campus career development services 
18. AGENCY Using employment agencies 
19. FAIRS Using job fairs 
20. ADVERT Responding to advertised job openings 
21. COUNSEL Using career counselors/consultants 
22. UNADVERT Applying directly for unadvertised jobs 
23. NETWORK Using the networking approach to job search 
24. INTERVIEW Managing the employment interview process 
25. SALARY Negotiating salary 
Variables loading on Factor 2 
1. VALUES Clarifying values and interests 
2. ABILITY Identifying work-related abilities and skills 
6. ORGCHAR Identifying preferred organizational characteristics 
9. GOALS Setting goals 
10. BARRIER Dealing with occupational barriers 
11. MOTIVATED Staying motivated 

With Factor 1, you can see significant loadings for such variables as STRATEGY, RESEMPLOY, DIRECT, 
ADVERT, COUNSEL, UNADVERT, SALARY. In general, variables loading on Factor 1 seem to deal with 
the ability to perform tasks related to the job search process. People who score high on Factor 1 tend to be 
knowledgeable about which job search strategies are effective, how to conduct research on specific employers, 
how to make use of the services offered by career counselors, how to negotiate salary, and so forth. It therefore 
seems appropriate to label this the job search skills factor.  
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With Factor 2, on the other hand, you can see significant loadings for such scales as VALUES, ABILITY, 
ORGCHAR, GOALS, and MOTIVATED. People who score high on Factor 2 are able to clearly describe their 
work-related values and abilities. They know what their goals are, and feel that they will be able to stay 
motivated during their job search. Therefore, you might label Factor 2 the goal clarity and motivation factor. 
From the perspective of interpretability (at least) this two-factor solution appears to be acceptable. 

Now that you have interpreted the meaning of the factors, it would be useful to know the nature of the 
relationship between Factor 1 and Factor 2. For this information, you may turn to the inter-factor correlations 
provided in the output. These are presented as Output 2.19. 

Output 2.19: Inter-Factor Correlations from Two-Factor Solution, Job Search Skills Questionnaire 

Inter-Factor Correlations 

 Factor1   Factor2   

Factor1 100 * 60 * 

Factor2 60 * 100 * 

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an '*'. 

The inter-factor correlation of +.60 from Output 2.19 reveals a moderately strong positive correlation between 
the job search skills factor and the goal clarity and motivation factor; and this seems logical. It only makes sense 
that people who have a good deal of self-insight and motivation related to their careers would also have higher 
levels of the skills necessary to actually find a job. (In fact, this correlation is so high that some might wonder 
whether you are really justified in interpreting them as two separate factors.) 

To understand the “big picture” concerning the relationship between factors, you will now review the factor 
structure matrix for your two-factor solution. This is presented as Output 2.20. 

Output 2.20: Factor Structure from Promax Rotation, Job Search Skills Questionnaire 

Factor Structure (Correlations) 

 Factor1   Factor2   

V1 VALUES 37  72 * 

V2 ABILITY 43 * 65 * 

V3 ASSESS 61 * 48 * 

V4 STRATEGY 73 * 52 * 

V5 EXPERIENCE 66 * 60 * 

V6 ORGCHAR 46 * 77 * 

V7 RESOCCUP 74 * 58 * 

V8 RESEMPLOY 79 * 59 * 

V9 GOALS 44 * 73 * 

V10 BARRIER 61 * 65 * 

V11 MOTIVATED 48 * 72 * 

V12 RESUMES 70 * 55 * 

V13 RECOMMEND 73 * 60 * 

V14 DIRECT 77 * 47 * 

V15 APPLICAT 61 * 52 * 

V16 IDEMPLOY 84 * 55 * 
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Factor Structure (Correlations) 

 Factor1   Factor2   

V17 CARDEVEL 72 * 39  

V18 AGENCY 73 * 40  

V19 FAIRS 72 * 35  

V20 ADVERT 83 * 56 * 

V21 COUNSEL 81 * 40 * 

V22 UNADVERT 76 * 47 * 

V23 NETWORK 71 * 55 * 

V24 INTERVIEW 70 * 53 * 

V25 SALARY 77 * 49 * 

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an '*'. 

Notice that almost all of the scales are flagged as having significant loadings for both factors. This finding only 
makes sense in light of the strong inter-factor correlation reported earlier. Remember that in a structure matrix, 
the loadings represent the correlation between a variable and a factor. Given the strong correlation between 
Factor 1 and Factor 2, it only makes sense that any variable that loads on Factor 1 will also be correlated with 
Factor 2, and that any variable that loads on Factor 2 will also be correlated with Factor 1. This is why it is 
necessary to review the structure matrix to fully understand an oblique solution: Reviewing only the pattern 
matrix would not reveal how strongly most variables are related to both factors. 

A Four-Factor Solution   
To illustrate that it is often possible to obtain more than one interpretable solution from a factor analysis, a four-
factor solution will now be reviewed. Consider the eigenvalue table, reproduced once again here as Output 2.21. 

Output 2.21: Eigenvalue Table from Analysis of Job Search Skills Questionnaire 

Preliminary Eigenvalues: Total = 40.1355388  
Average = 1.60542155 

 Eigenvalue Difference Proportion Cumulative 

1 33.4862182 30.2592664 0.8343 0.8343 

2 3.2269518 1.6761612 0.0804 0.9147 

3 1.5507906 0.1822790 0.0386 0.9534 

4 1.3685116 0.3091964 0.0341 0.9875 

5 1.0593152 0.2961206 0.0264 1.0139 

6 0.7631945 0.1079114 0.0190 1.0329 

7 0.6552831 0.2233701 0.0163 1.0492 

8 0.4319130 0.1148151 0.0108 1.0600 

9 0.3170979 0.0201290 0.0079 1.0679 

10 0.2969689 0.1244940 0.0074 1.0753 

11 0.1724749 0.0544826 0.0043 1.0796 

12 0.1179923 0.0738060 0.0029 1.0825 

13 0.0441863 0.0961917 0.0011 1.0836 

14 -0.0520054 0.0594319 -0.0013 1.0823 
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Preliminary Eigenvalues: Total = 40.1355388  
Average = 1.60542155 

 Eigenvalue Difference Proportion Cumulative 

15 -0.1114373 0.0174893 -0.0028 1.0795 

16 -0.1289267 0.0361906 -0.0032 1.0763 

17 -0.1651172 0.0548644 -0.0041 1.0722 

18 -0.2199817 0.0027468 -0.0055 1.0667 

19 -0.2227285 0.1178582 -0.0055 1.0612 

20 -0.3405867 0.0203781 -0.0085 1.0527 

21 -0.3609648 0.0438742 -0.0090 1.0437 

22 -0.4048391 0.0013121 -0.0101 1.0336 

23 -0.4061512 0.0431700 -0.0101 1.0235 

24 -0.4493211 0.0439786 -0.0112 1.0123 

25 -0.4932997  -0.0123 1.0000 

 

4 factors will be retained by the NFACTOR criterion. 

 

There is a clear break following Factor 1, another (much smaller) break following Factor 2, and from that point 
on the eigenvalues seem to “flatten out.” On the basis of these “breaks” in the eigenvalues alone, it would be 
difficult to justify rotating four factors.  

Still, some have argued that retaining and rotating too few factors has a more serious negative effect on the 
factor structure than rotating too many, and that it is probably best to err in the direction of over-factoring 
(Cattell 1952, 1958; Rummel 1970). In fact, one of Cattell’s (1958) proposed solutions to the number of factors 
problem is to retain enough factors to account for 99% of the variance. With the preceding eigenvalue table, you 
can see that this would involve retaining the first four factors. This can be seen by reviewing the figures in the 
“Cumulative” column of Output 2.20. Notice that Factors 1 to 4 (combined) account for approximately 96% of 
the common variance in the dataset, while Factors 1 to 5 (combined) account for approximately 102% of the 
common variance. If you were to heed Cattell’s recommendation, you would therefore retain and interpret 
Factors 1 to 4. 

As an illustration, the results of this four-factor solution will be presented here. Output 2.22 provides the factor 
pattern matrix resulting from a promax rotation of four factors. 
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Output 2.22: Rotated Factor Pattern from Promax Rotation, Four-Factor Solution, Job Search  
                      Skills Questionnaire 

Rotated Factor Pattern (Standardized Regression Coefficients) 

 Factor1   Factor2   Factor3   Factor4   

V1 VALUES -6  76 * 1  -1  

V2 ABILITY 12  58 * -6  3  

V3 ASSESS 9  18  33  20  

V4 STRATEGY 40  10  19  17  

V5 EXPERIENCE -2  31  36  27  

V6 ORGCHAR 1  72 * -3  8  

V7 RESOCCUP 4  6  5  83 * 

V8 RESEMPLOY 52 * 7  -4  37  

V9 GOALS 3  72 * 2  -2  

V10 BARRIER 28  41 * 10  4  

V11 MOTIVATED 12  65 * 1  -1  

V12 RESUMES 51 * 21  15  -5  

V13 RECOMMEND 60 * 25  10  -8  

V14 DIRECT 64 * 3  22  -5  

V15 APPLICAT 55 * 22  2  -7  

V16 IDEMPLOY 41 * -2  14  46 * 

V17 CARDEVEL 7  2  86 * -4  

V18 AGENCY 60 * -5  25  -3  

V19 FAIRS 37  -10  48 * 5  

V20 ADVERT 76 * 4  5  5  

V21 COUNSEL 47 * -11  48 * 4  

V22 UNADVERT 73 * -2  6  3  

V23 NETWORK 45 * 17  16  7  

V24 INTERVIEW 81 * 10  -14  -1  

V25 SALARY 63 * -7  -4  32  

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an '*'. 

 
As before, you should begin by reviewing the rows of the factor pattern matrix to identify any variables with 
significant loadings for more than one factor. This process identifies that the variable IDEMPLOY loads on 
both Factors 1 and 4; also, the variable COUNSEL loads on Factors 1 and 3. These variables will therefore not 
be used in interpreting the factors.  

To make it easier to interpret the meaning of these four factors, Table 2.7 groups together the scales according 
to the factors on which they load. 
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Table 2.7: Variables Loading on Factors 1, 2, 3, and 4 According to Rotated Factor Pattern, Four-Factor  
                 Solution, Job Search Skills Questionnaire 

Variables loading on Factor 1 
4. STRATEGY Identifying effective job search strategies 
8. RESEMPLOY Researching specific employers 
12. RESUMES Using résumés 
13. RECOMMEND Using letters of recommendation 
14. DIRECT Using the cover letter/direct mail approach 
15. APPLICAT Completing application forms 
18. AGENCY Using employment agencies 
20. ADVERT Responding to advertised job openings 
22. UNADVERT Applying directly for unadvertised jobs 
23. NETWORK Using the networking approach to job search 
24. INTERVIEW Managing the employment interview process 
25. SALARY Negotiating salary 
Variables loading on Factor 2 
1. VALUES Clarifying values and interests 
2. ABILITY Identifying work-related abilities and skills 
6. ORGCHAR Identifying preferred organizational characteristics 
9. GOALS Setting goals 
10. BARRIER Dealing with occupational barriers 
11. MOTIVATED Staying motivated 
Variables loading on Factor 3 
17. CARDEVEL Using campus career development services 
19. FAIRS Using job fairs 
Variables loading on Factor 4  
7. RESOCCUP Researching potential occupations 

According to Table 2.7, the scales that loaded on Factor 1 all seem to deal with the finding and following-up on 
job leads. People who score high on this factor feel that they understand the best job-search strategies, are able 
to research employers and identify organizations that might hire them, are able to respond effectively to 
advertised and unadvertised job openings, are able to manage the interview process, and are able to successfully 
negotiate a good salary. This might therefore be labeled the finding and pursuing job leads factor. 

Factor 2, on the other hand, should look familiar at this point: People who score high on this factor know what 
are their work-related values and abilities, and feel that they are able to set goals and stay motivated throughout 
their job search. This factor is similar to the goal clarity and motivation factor observed with the two-factor 
solution. 

Only two variables loaded exclusively on Factor 3. Participants who scored high on this factor know how to use 
the campus career services office and also how to make effective use of job fairs (events that are typically 
coordinated by campus career development offices). This factor could be labeled the using campus career 
services. 

Only 1 variable loads on Factor 4; a second variable was excluded as it loaded on both Factors 1 and 4         
(i.e., complex item). The remaining variable pertains to researching potential occupations. 
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This factor solution proved to be fairly interpretable. For each factor, all variables that load on that factor seem 
to be measuring a similar underlying construct (i.e., all scales loading on Factor 1 seem to measure a “finding 
and pursuing job leads” construct). In addition, each factor seems to measure a conceptually different construct 
(i.e., the “finding and pursuing job leads” factor is conceptually different from the “goal clarity and motivation” 
factor). 

Unfortunately, the solution is unsatisfactory because two of the factors are composed of less than three 
variables. Either new items need to be written focusing on the constructs that appear to be measured by Factors 
3 and 4 (and another exploratory factor analysis later computed with a new dataset), a three-factor solution 
computed on the current data, or another scale selected. 

Conclusion 
Exploratory factor analysis is often an iterative process in which you begin with some a priori ideas regarding 
the nature of the factors to be investigated (hopefully based on theory and prior research), and then identify a 
number of variables that can be expected to be measure these factors. Performing an exploratory factor analysis 
on the obtained data will often teach you something that was not previously known: Perhaps a five-factor model 
emerges when a three-factor model was expected; or perhaps variables expected to load on Factor 1 instead load 
on Factor 4. These results should encourage you to return to the relevant literature, revise the initial model, and 
perhaps even find new ways of measuring your constructs of interest. A program of research that includes a 
number of exploratory factor analyses on different datasets, perhaps using improved measures at each step, 
stands the best chance of discovering the true nature of the factor structure which underlies your construct of 
interest. 

Appendix: Assumptions Underlying Exploratory Factor Analysis 
As with principal component analysis, a factor analysis is performed on a matrix of correlations, and this means 
that the data should satisfy the assumptions for the Pearson correlation coefficient. These assumptions are 
briefly reviewed below:  

• Interval-level measurement. All analyzed variables should be assessed on an interval or ratio level of 
measurement. 

• Random sampling. Each participant will contribute one score for each observed variable. These sets 
of scores should represent a random sample drawn from the population of interest. 

• Linearity. The relationship between all observed variables should be linear.  

• Bivariate normal distribution. Each pair of observed variables should display a bivariate normal 
distribution (e.g., they should form an elliptical scattergram when plotted). When the maximum 
likelihood method is used to extract factors, the output provides a significance test for the null 
hypothesis that the number of factors retained in the current analysis is sufficient to explain the 
observed correlations. The following assumption should be met for the probability value associated 
with this test to be valid: 

• Multivariate normality. Responses obtained from participants should demonstrate an approximate 
multivariate normal distribution.  
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Introduction: The Basics of Response Reliability 
You compute coefficient alpha when you have administered a multiple-item rating scale and want to determine 
the internal consistency of responses to the scale. Scale items may be scored dichotomously (scored as “right” 
or “wrong”) or a multiple-point rating format (e.g., participants may respond to scale item using a 7-point 
scale).  

This chapter shows how to use the CORR procedure to compute the coefficient alpha for the types of scales that 
are often used in social science research. However, this chapter will not show how to actually develop a 
multiple-item scale for use in research. To learn more about scale development, see DeVellis (2012), and Saris 
and Gallhofer (2007). 
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Example of a Summated Rating Scale 
A summated rating scale usually consists of a short list of statements, questions, or other items to which 
participants respond. Very often, items that constitute the scale are statements, and participants indicate the 
extent to which they agree or disagree with each statement by selecting some response on a rating scale (e.g., a 
7-point rating scale in which 1 = “Strongly Disagree” and 7 = “Strongly Agree”).The scale is called a summated 
scale because the researcher typically sums responses to all selected responses to create an overall score on the 
scale. These scales are commonly referred to as Likert-type scales. 

Imagine that you are interested in measuring job satisfaction in a sample of employees. To do this, you might 
develop a 10-item scale that includes items such as “in general, I am satisfied with my job.” Employees respond 
to these items using a 7-point response format in which 1 = “Strongly Disagree,” 4 = Neither Agree nor 
Disagree, and 7 = “Strongly Agree.” 

You administer this scale to 200 employees and compute a job satisfaction score for each by summing his or her 
responses to the 10 items. Scores may range from a low of 10 (if the employee circled “Strongly Disagree” for 
each item) to a high of 70 (if the employee circled “Strongly Agree” for each item). Given the way these items 
were written, higher scores indicate higher levels of job satisfaction. With the job satisfaction scale now 
developed and administered to a sample, you hope to use it as a predictor or criterion variable in research. 
However, the people who later read about your research are going to have questions about the psychometric 
properties of responses to your scale. At the very least, they will want to see empirical evidence that responses 
to the scale are reliable. This chapter discusses the meaning of scale reliability and shows how SAS can be used 
to obtain an index of internal consistency for summated rating scales. 

True Scores and Measurement Error 
Most observed variables measured in the social sciences (e.g., scores on your job satisfaction scale) actually 
consist of two components: a true score that indicates where the participant actually stands on the variable of 
interest, and a measurement error. Almost all observed variables in the social sciences contain at least some 
measurement error, even variables that seem to be objectively measured.  

Imagine that you assess the observed variable “age” in a group of participants by asking them to indicate their 
age in years. To a large extent, this observed variable (what the participants wrote down) is influenced by the 
true score component. To a large extent, what they write will be influenced by how old they actually are. 
Unfortunately, however, this observed variable will also be influenced by measurement error. Some will write 
down the wrong age because they do not want to disclose how old they are, and other participants will write the 
wrong age because they did not understand the question. In short, it is likely that there will not be a perfect 
correlation between the observed variable (what the participants write down) and their true scores on the 
underlying construct (i.e., their actual age). 

This can occur even though the “age” variable is relatively objective and straightforward. If a question such as 
this is going to be influenced by measurement error, imagine how much more error might result when more 
subjective constructs are measured (e.g., items that constitute your job satisfaction scale). 

Underlying Constructs versus Observed Variables 
In applied research, it is useful to draw a distinction between underlying constructs versus observed variables. 
An underlying construct is the variable that you wish to measure. In the job satisfaction study, for example, 
you wanted to measure the underlying construct of job satisfaction within a group of employees. The observed 
variable, on the other hand, consists of the responses that you actually obtained. In that example, the observed 
variable consisted of scores on the 10-item measure of job satisfaction. These scores may or may not be a good 
measure of the underlying construct.  

Reliability Defined 
With this understanding, it is now possible to provide some definitions. A reliability coefficient may be defined 
as the percent of variance in an observed variable that is accounted for by true scores on the underlying 
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construct. For example, imagine that in the study just described, you were able to obtain two scores for the 200 
employees in the sample: their observed scores on the job satisfaction questionnaire; and their true scores on the 
underlying construct of job satisfaction. Assume that you compute the correlation between these two variables. 
This correlation coefficient squared represents the reliability of responses to your job satisfaction scale; it is the 
percent of variance in observed job satisfaction scores that is accounted for by true scores on the underlying 
construct of job satisfaction (i.e., shared variance).  

The preceding was a technical definition for reliability, but this definition is of little use in practice because it is 
generally not possible to obtain true scores for a variable. For this reason, reliability is estimated in terms of the 
consistency of scores that are obtained on the observed variable. Responses to an instrument are said to be 
reliable if consistent scores are obtained upon repeated administration, upon administration by alternate forms, 
and so forth. A variety of methods of estimating scale reliability are used in practice. 

Test-Retest Reliability 
Assume that you administer your measure of job satisfaction to a group of 200 employees at two points in time: 
once in January and again in March. If responses to the instrument are indeed reliable, you would expect that 
participants who provided high scores in January will tend to provide high scores again in March; conversely, 
those who provided low scores in January will likely provide low scores in March. These results would support 
the test-retest reliability of responses to the scale. Test-retest reliability is assessed by administering the same 
instrument to the same sample of participants at two points in time and then computing the correlation between 
sets of scores.  

But what is an appropriate interval over which questionnaires should be administered? Unfortunately, there is 
no hard-and-fast rule of thumb here; this interval will depend on what is being measured. For enduring 
constructs such as personality variables, test-retest reliability has been assessed over several decades. For other 
constructs such as depressive symptomatology, the interval tends to be much shorter (e.g., weeks) due to the 
fluctuating course of depression and its symptoms. Generally speaking, the test-retest interval should not be too 
short so that respondents recall their responses to specific items (e.g., less than a week) but not as long as to 
measure natural variability in the construct (e.g., bona fide change in depressive symptoms). The former will 
lead to an overstatement of test-retest reliability, whereas the latter will lead to understatement of test-retest 
reliability. 

Internal Consistency 
A further problem with the test-retest reliability procedure is the time that it requires. What if you do not have 
time to administer the scale two times? In such situations, you are likely to turn to reliability indices that may be 
obtained with only one administration. In research that involves the use of questionnaire data, the most popular 
of these are the internal consistency indices of reliability. Briefly, internal consistency is the extent to which 
the individual items that constitute a test correlate with one another or with the test total. In the social sciences, 
the most widely used index of internal consistency is the coefficient alpha, also known as Cronbach’s alpha, 
symbolized by the Greek letter α (Cronbach 1951).1 

Reliability as a Property of Responses to Scales 
You may have already noticed that in this chapter we describe reliability as a property of responses to scales, 
not of scales themselves. In other words, scales are not reliable, only responses to scales. This is because 
reliability estimates such as internal consistency often vary from population to population, and in some 
instances, even within subpopulations (Wilkinson and The American Psychological Association Task Force on 
Statistical Inference 1999). In other words, estimates such as internal consistency may be very different for one 
group (e.g., young adults) as compared to another (e.g., older adults) even for responses to the same scale. By 
keeping this difference in mind, you will avoid making this error and recognize that it is important to calculate 
reliability estimates for each study and not rely upon coefficients previously reported by other researchers. 
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Coefficient Alpha 

Formula 
Coefficient alpha is a general formula for scale reliability based on internal consistency. It provides the lowest 
estimate of reliability that can be expected for an instrument.  

The formula for coefficient alpha is as follows: 

2 2
i

xx 2

S SNr
N 1 S

 − ∑ =     −    

where 

rxx = coefficient alpha  

N = number of items constituting the instrument 

S2 = variance of the summated scale scores (e.g., assume that you compute a total score for each participant by  
        summing responses to the items that constitute the scale; the variance of this total score variable would be  
        S2) 

∑S2
i = the sum of the variances of the individual items that constitute this scale 

When Will Coefficient Alpha Be High? 
Other factors held constant, coefficient alpha will be high to the extent that many items are included in the 
scale, and the items that constitute the scale are highly correlated with one another.  

To understand why a coefficient alpha is high when the items are highly correlated with one another, consider 
the second term in the preceding formula: 

2 2
i

2

S S
S

 − ∑
 
   

This term shows that the variance of the summated scales scores is (essentially) divided by itself to compute 
coefficient alpha. However, the combined variance of the individual items is first subtracted from this variance 
before the division is performed. This part of the equation shows that if combined variance of the individual 
items is a small value, then coefficient alpha will be a relatively larger value. 

This is important because (with other factors held constant) the stronger the correlations between items, the 
smaller the ∑S2

i term. This is why coefficient alpha for responses to a given scale is likely to be large to the 
extent that the variables constituting that scale are strongly correlated. 

Assessing Coefficient Alpha with PROC CORR 
Imagine that you have conducted research in the area of prosocial behavior and have developed an instrument 
designed to measure two separate underlying constructs: helping others and financial giving. Helping others 
refers to prosocial activities performed to help coworkers, relatives, and friends; whereas financial giving refers 
to giving money to charities or the homeless. (See Chapter 1, “Principal Component Analysis” for a more 
detailed description of these constructs.) In the following questionnaire, items 1 to 3 were designed to assess 
helping others, and items 4 to 6 were designed to assess financial giving. 
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Instructions: Below are a number of activities in which people sometimes engage. For each item, please 
indicate how frequently you have engaged in this activity over the past six months. Provide your response by 
circling the appropriate number to the left of the item, and use the following response key: 
 
7 = Very Frequently 
6 = Frequently 
5 = Somewhat Frequently 
4 = Occasionally 
3 = Seldom 
2 = Almost Never 
1 = Never 
 
1 2 3 4 5 6 7    1. Went out of my way to do a favor for a coworker. 
1 2 3 4 5 6 7    2. Went out of my way to do a favor for a relative. 
1 2 3 4 5 6 7    3. Went out of my way to do a favor for a friend. 
1 2 3 4 5 6 7    4. Gave money to a religious charity. 
1 2 3 4 5 6 7    5. Gave money to a charity not associated with a religion. 
1 2 3 4 5 6 7    6. Gave money to a panhandler. 

Assume that you have administered this 6-item questionnaire to 50 participants. For the moment, we are 
concerned only with the reliability of responses to items 1 to 3 (the items that assess helping others).  

Let us further assume that you have made a mistake in assessing the reliability of this scale. Assume that you 
erroneously believed that the helping others construct was assessed by items 1 to 4 (whereas, in reality, the 
construct was assessed by items 1 to 3). It will be instructive to see what you learn when you mistakenly include 
item 4 in the analysis. 

General Form 
Here is the general form for the SAS statements to estimate this coefficient or Cronbach’s alpha (internal 
consistency) for a summated rating scale: 

proc corr    data=dataset-name    alpha   nomiss; 
   var  list-of-variables; 
run ; 

In the preceding program, the ALPHA option requests that Cronbach’s or coefficient alpha be computed for the 
variables included in the VAR statement. The NOMISS option is required. The VAR statement should list only 
those items that constitute the scale (or subscale) in question. You must perform a separate PROC CORR for 
each scale whose reliability you want to estimate. 

A 4-Item Scale 
Here is an actual program, including the DATA step, to analyze fictitious data from your study. Only a few 
sample lines of data appear here. The complete dataset appears in Appendix B. Ordinarily, one would not 
compute Cronbach’s alpha in this case as internal consistency is often underestimated with so few items. 
Cronbach’s alpha also tends to overestimate the internal consistency of responses to scales with 40 or more 
items (Cortina, 1993). The following examples are provided simply to illustrate the computation and meaning 
of Cronbach’s alpha. 
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data D1; 
   input   #1   @1   (V1-V6)   (1.)  ; 

datalines ; 
556754 
567343 
777222 
. 
. 
. 
767151 
455323 
455544 
; 
run ; 

proc corr   data=D1   alpha   nomiss ;        
   var V1 V2 V3 V4 ;               
run ;         

The results of this analysis appear as Output 3.1. These results provide the means, standard deviations, and 
other descriptive statistics that you should review to verify that the analysis proceeded as expected. The results 
below these descriptive statistics pertain to the reliability of scale responses.  

Output 3.1: Simple Statistics and Coefficient Alpha Results for Analysis of Scale That Includes Items 1 to  
                    4, Prosocial Behavior Study 

The CORR Procedure 
 

4 Variables: V1 V2 V3 V4 

 

Simple Statistics 

Variable N Mean Std Dev Sum Minimum Maximum 

V1 50 5.18000 1.39518 259.00000 1.00000 7.00000 

V2 50 5.40000 1.10657 270.00000 3.00000 7.00000 

V3 50 5.52000 1.21622 276.00000 2.00000 7.00000 

V4 50 3.64000 1.79296 182.00000 1.00000 7.00000 

 

Cronbach Coefficient Alpha 

Variables Alpha 

Raw 0.490448 

Standardized 0.575912 

 

Cronbach Coefficient Alpha with Deleted Variable 

Deleted 
Variable 

Raw Variables Standardized Variables 

Correlation 
with Total Alpha 

Correlation 
with Total Alpha 

V1 0.461961 0.243936 0.563691 0.326279 

V2 0.433130 0.318862 0.458438 0.420678 

V3 0.500697 0.240271 0.546203 0.342459 

V4 -.037388 0.776635 -.030269 0.773264 
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Pearson Correlation Coefficients, N = 50  
Prob > |r| under H0: Rho=0 

 V1 V2 V3 V4 

V1 1.00000 

  

0.49439 

0.0003 
 

0.71345 

<.0001 
 

-0.10410 

0.4719 
 

V2 0.49439 

0.0003 
 

1.00000 

  

0.38820 

0.0053 
 

0.05349 

0.7122 
 

V3 0.71345 

<.0001 
 

0.38820 

0.0053 
 

1.00000 

  

-0.02471 

0.8648 
 

V4 -0.10410 

0.4719 
 

0.05349 

0.7122 
 

-0.02471 

0.8648 
 

1.00000 

  

To the right of the heading “Cronbach Coefficient Alpha (Raw)” you see that the reliability coefficient for 
responses to items 1 to 4 is only .49 (rounded to two decimal places). Reliability estimates for raw variables are 
normally reported in published reports as opposed to the standardized alphas.  

How Large Must a Reliability Coefficient Be to Be Considered Acceptable? 
As a rule of thumb, Nunnally (1978) suggested that coefficient alpha values .70+ are acceptable. You should 
remember, however, that this is only a rule of thumb; some social scientists report coefficient alphas under .70; 
in most social science disciplines, alpha values .80+ are seen as ideal. 

Is a larger alpha coefficient always better than a smaller one? Not necessarily. An ideal estimate of internal 
consistency is between .80 and .90 (i.e., .80 ≤ α ≤ .90; Clark and Watson 1995; DeVellis 2012). This is because 
coefficients in excess of .90 are suggestive of item redundancy or excessive scale length. The number of items 
within scales is also a consideration when interpreting coefficient alpha values, however. This is because 
Cronbach’s alpha underestimates internal consistency with fewer than eight items, and overestimates internal 
consistency with more than 30 items (Henson 2001). 

Back to our example, the coefficient alpha of .49 reported in Output 3.1 is not acceptable; but how is it possible 
to significantly improve this coefficient? 

In some situations, the reliability of responses to a multiple-item scale is improved by deleting those items with 
poor item-total correlations. An item-total correlation is the correlation between an individual item and the 
sum of the remaining items that constitute the scale. If an item-total correlation is small, this may be seen as 
evidence that the item is not measuring the same construct as other scale items. You may therefore choose to 
discard items with small item-total correlation values (assuming that data have been entered correctly).  

Consider Output 3.1. Under the “Correlation with Total” (Raw Variables) heading, you can see that items 1 to 3 
are each moderately correlated with the sum of the remaining items on the scale. Item V4, however, has an 
item-total correlation less than -.04. This suggests that item V4 is not measuring the same underlying construct 
as items V1 to V3. 

In Output 3.1 under the “Alpha” heading, you find an estimate of what alpha would be if a given variable (item) 
were deleted from the scale. To the right of “V4,” PROC CORR estimates that alpha would be approximately 
.78 if V4 were deleted. (This value appears where the row headed “V4” intersects with the column heading 
“Alpha” in the “Raw Variables” section.) This makes sense because variable V4 exhibits a correlation with the 
remaining scale items of only -.04. You could substantially improve internal consistency by removing the item 
that appears to be measuring a different construct than the other items. 
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A 3-Item Scale 
Output 3.2 presents the results of PROC CORR when coefficient alpha is calculated for variables V1 to V3. 
This is done by specifying only V1 to V3 in the VAR statement. 

Output 3.2: Simple Statistics and Coefficient Alpha Results for Analysis of Scale That Includes Items 1 to  
                    3, Prosocial Behavior Study  

The CORR Procedure 
 

3 Variables: V1 V2 V3 

 

Simple Statistics 

Variable N Mean Std Dev Sum Minimum Maximum 

V1 50 5.18000 1.39518 259.00000 1.00000 7.00000 

V2 50 5.40000 1.10657 270.00000 3.00000 7.00000 

V3 50 5.52000 1.21622 276.00000 2.00000 7.00000 

 

Cronbach Coefficient Alpha 

Variables Alpha 

Raw 0.776635 

Standardized 0.773264 

 

Cronbach Coefficient Alpha with Deleted Variable 

Deleted 
Variable 

Raw Variables Standardized Variables 

Correlation 
with Total Alpha 

Correlation 
with Total Alpha 

V1 0.730730 0.557491 0.724882 0.559285 

V2 0.480510 0.828202 0.476768 0.832764 

V3 0.657457 0.649926 0.637231 0.661659 

 

Pearson Correlation Coefficients, N = 50  
Prob > |r| under H0: Rho=0 

 V1 V2 V3 

V1 1.00000 

  

0.49439 

0.0003 
 

0.71345 

<.0001 
 

V2 0.49439 

0.0003 
 

1.00000 

  

0.38820 

0.0053 
 

V3 0.71345 

<.0001 
 

0.38820 

0.0053 
 

1.00000 

  

Output 3.2 provides a raw-variable coefficient alpha of .78 for the three variables included in this analysis. This 
value appears under the heading “Cronbach Coefficient Alpha” to the right of the heading “Raw.” This 
coefficient exceeds the recommended minimum value of .70 (Nunnally 1978) and approaches the ideal range of 
.80 ≤ α ≤ .90. Responses to the helping others subscale demonstrate a much higher level of reliability without 
item V4.  
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Summarizing the Results 

Summarizing the Results in a Table 
Researchers typically report the reliability of responses to a scale in a table with simple descriptive statistics for 
the study’s variables such as means, standard deviations, and intercorrelations. In these tables, coefficient alpha 
estimates are often reported on the diagonal of the correlation matrix within parentheses. Such an approach 
appears in Table 3.1. 

Table 3.1: Means, Standard Deviations, Intercorrelations, and Coefficient Alpha Estimates for the  
                  Study’s Variables 

Variable M  SD 1 2 3 
1. Authoritarianism 13.56 2.54 (.90)   
2. Helping others 15.60 3.22 .37 (.78)  
3. Financial giving 12.55 1.32 .25 .53 (.77) 
NOTE: N = 200. Reliability estimates appear on the diagonal. 

In the preceding table, information for the authoritarianism variable is presented in both the row and the column 
heading “1.” Where the row heading “1” intersects with the column heading “1,” you will find Cronbach’s 
alpha for responses to the authoritarianism scale; you can see that this coefficient is .90. In the same way, you 
can find coefficient alpha for acquaintance helping where row 2 intersects with column 2 (α = .78), and you can 
find coefficient alpha for financial giving where row 3 intersects with column 3 (α = .77). 

Preparing a Formal Description of the Results for a Paper 
When reliability estimates are computed for a relatively large number of scales, it is common to report them in a 
table (such as Table 3.1), and make only passing reference to them within the text of the paper when within 
acceptable parameters. For example, within the section on instrumentation, you might indicate: 

Estimates of internal consistency as measured by Cronbach’s alpha are within acceptable limits for all study 
variables (i.e., α ≥ .70). These coefficients range from .77 ≤ α ≤ .90 as reported along the diagonal of Table 
3.1. 

When reliability estimates are computed for only a few scales, it is possible to instead report these estimates 
within the body of the text itself. Here is an example of how this might be done: 

Internal consistency of scale responses was assessed by Cronbach’s alpha. Reliability estimates were α =.90, 
α = .78, and α = .77 for responses to the authoritarianism, helping others, and financial giving subscales, 
respectively. 

Conclusion 
Assessing scale reliability with Cronbach’s or coefficient alpha (or some other reliability index) should be one 
of the first tasks you undertake when conducting questionnaire research. If responses to selected scales are not 
reliable, there is no point performing additional analyses. You can often improve suboptimal reliability 
estimates by deleting items with poor item-total correlations in keeping with the procedures described in this 
chapter. When several subscales on a questionnaire display poor reliability, it may be advisable to perform a 
principal component analysis or an exploratory factor analysis on responses to all questionnaire items to 
determine which tend to group together. If many items load on each retained factor and if the factor pattern 
obtained from such an analysis displays a simple structure, chances are good that responses will demonstrate 
adequate internal consistency.  
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Note 
1. The Greek letter alpha (α) used to represent internal consistency (Cronbach’s alpha) should not be 

confused with alpha (α) used to specify statistical significance threshold levels (e,g., α < .05). 
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Introduction: The Basics of Path Analysis 
Path analysis can be used to test theoretical models that specify directional relationships among a number of 
observed variables. Path analysis determines whether your model successfully accounts for the actual 
relationships observed in the sample data. The output of the CALIS procedure provides indices that specify 
whether the model, as a whole, fits the data as well as significance tests for specified directional paths. When a 
model provides a relatively poor fit to the data, additional results from CALIS can be used to modify the model 
and improve model fit.  

This chapter deals only with models in which all variables are manifest (i.e., observed variables). It does not 
deal with models that specify directional relationships between latent or unobserved variables. For guidelines 
on how to test these latent variable models, see Chapter 5, “Developing Measurement Models with 
Confirmatory Factor Analysis” and Chapter 6, “Structural Equation Modeling with Latent Variables” of this 
text. 

Some Simple Path Diagrams 
When studying complex phenomena, a given outcome variable of interest may be influenced by a variety of 
other variables; in other words, few outcome variables are determined by just one variable. For example, 
imagine that you are an industrial/organizational psychologist who believes that employees’ work performance 
(the outcome variable of interest) is influenced by the following four variables:  

• employees’ level of intelligence 

• employees’ level of work motivation 

• workplace norms 

• supervisory support 

A very simple path diagram for this hypothetical directional model is presented in Figure 4.1.  
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Figure 4.1: Path Diagram: A Simple Model of the Determinants of Work Performance 

 

Intelligence, motivation, workplace norms, and supervisory support are antecedent or independent variables 
within this framework as each is assumed to predict to work performance. Similarly, work performance is the 
consequent or dependent variable in the model as it is predicted by independent variables. These terms are 
consistent with multiple regression; this is because path analysis is an extension or more complex form of 
multiple regression. 

The boxes shown in Figure 4.1 are connected to one another by straight single-headed arrows and curved 
double-headed arrows. In path analysis and structural equation modeling, a straight single-headed arrow is 
used to represent a unidirectional path. The arrow originates at the variable exerting the influence (the 
independent variable), and points toward the variable being predicted (the dependent variable). For example, the 
straight single-headed arrow from intelligence to work performance represents the hypothesis that intelligence 
predicts work performance. 

In contrast, a curved double-headed arrow connecting two variables represents covariance, or correlation, 
between variables. A curved arrow connecting two variables means that the two variables are expected to 
covary, but no hypothesis is made regarding any causal influence between them. For example, the two-headed 
curved arrow connecting intelligence to motivation means that no hypothesis is made as to which variable 
determines or predicts the other. Perhaps intelligence causes motivation, perhaps motivation causes intelligence, 
perhaps each has some causal influence on the other, or perhaps their correlation is due to the influence of some 
shared but unmeasured variable. 

The model presented in Figure 4.1 suggests that each of the four antecedent variables is expected to have a 
direct effect on work performance; notice that each arrow goes directly from the independent variable to work 
performance. This is the simplest type of path model. However, most models in social science research also 
predict that some variables have indirect effects on other variables. Figure 4.2 provides a model that includes 
indirect effects. 

Figure 4.2: Path Diagram: A More Complex, Recursive Model of the Determinants of Work Performance 
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Figure 4.2 includes the same four variables previously discussed, but they are arranged in a somewhat different 
sequence. Most notably, motivation is now depicted as a mediator variable: A variable that mediates the effect 
of an independent variable onto a dependent variable. Notice a single-headed arrow goes from workplace norms 
to motivation, and that a separate single-headed arrow goes from motivation to work performance. This 
indicates that workplace norms have only an indirect effect on work performance (i.e., workplace norms 
influence work performance by first influencing motivation). This same idea can be expressed by saying that 
motivation completely mediates the effect of workplace norms on work performance. Workplace norms are not 
expected to have a direct effect on work performance as there is no direct path connecting workplace norms to 
work performance. 

A variable may have both direct and indirect effects on a dependent variable. Figure 4.2 depicts such a 
relationship between supervisory support and work performance. A single-headed arrow goes directly from 
supervisory support to work performance, indicating the predicted direct effect. A path also goes from 
supervisory support to motivation, however, and a second path goes from motivation to work performance. This 
indicates that support is also assumed to indirectly affect work performance by first affecting motivation. (Note: 
These models are presented solely to describe the basic features of path analytic models and do not represent 
actual models of work performance.)  

Important Terms Used in Path Analysis 

Endogenous versus Exogenous Variables 
In path analysis, a distinction is made between endogenous variables and exogenous variables. An endogenous 
variable is one whose variability is hypothesized to be determined by other variables in the model. Any 
variable that has a straight single-headed arrow pointing at it is an endogenous variable. In Figure 4.2, work 
performance is an endogenous variable as it is directly influenced by intelligence, motivation, and supervisory 
support. Motivation is also an endogenous variable; it is predicted by workplace norms and supervisory support.  

Exogenous variables, on the other hand, are constructs that are influenced by variables outside of the 
directional model. Exogenous variables do not have any straight single-headed arrows pointing to them. In 
Figure 4.2, intelligence, norms, and support are all exogenous variables. These three variables are connected by 
curved arrows (indicating that they are expected to covary), but no single-headed arrows point toward them. 
This means that the researcher makes no predictions about what influences intelligence, norms, or supervisory 
support. In most models, exogenous variables will affect other variables; but, by definition, exogenous variables 
are never affected by other variables in the model.  

Notice the straight arrow that runs from motivation to work performance. Does this mean that motivation is an 
exogenous variable? No, because there are also two arrows that point toward motivation. Any time a single-
headed arrow points at a variable, that variable is an endogenous variable even if that variable is assumed to 
predict other constructs in that model. 

Most of the figures in this chapter will follow the convention of having directional paths run from left to right. 
In general, exogenous variables will be presented toward the left side of the figure, and endogenous variables 
will be presented toward the middle and right. 

Manifest versus Latent Variables 
A manifest variable is one that is directly measured or observed, whereas a latent variable is a hypothetical 
construct that is not directly measured or observed. For example, a combined scale score on the “Weschler 
Adult Intelligence Scale (WAIS-IV)” is a manifest variable; it is possible to directly determine exactly where 
each participant stands on this variable. On the other hand, intelligence is generally thought of as a latent 
variable: It is a construct that is presumed to exist though it cannot be directly observed. You may administer an 
intelligence test to participants, but you know that the resulting IQ (Intelligence Quotient) scores are only 
estimates of the underlying construct of intelligence. You hope that the underlying latent variable of intelligence 
will influence participants’ resulting WAIS-IV scores. 
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What do rectangles and ovals represent in diagrams?  In path analysis, manifest variables are represented 
as squares or rectangles (see Figures 4.1 and 4.2).  By definition, path analysis depicts assumed relationships 
among manifest variables only. In contrast, “confirmatory factor analysis” and “structural equation modeling” 
include both manifest and latent variables. In those models, latent variables are represented by circles or ovals. 
Chapters 5 and 6 will discuss models with latent or unobserved variables. 

Recursive versus Nonrecursive Models 
A recursive path model is one in which prediction is assumed to occur in one direction only. In a recursive 
model, a dependent variable never exerts influence (either directly or indirectly) on an independent variable that 
first exerts influence on it. In other words, recursive models are unidirectional. The model presented in Figure 
4.2 is recursive; notice that prediction flows only in a left-to-right direction. 

In contrast, in nonrecursive path models causation may flow in more than one direction, and a variable may 
have a direct or indirect effect on another variable that preceded it in the model. For example, a model may be 
nonrecursive because it predicts reciprocal causation between two variables (e.g., O’Rourke 2000). This is 
illustrated in Figure 4.3, which predicts reciprocal causation between the work performance and motivation 
variables. Here, motivation is assumed to predict work performance which, in turn, predicts motivation. 

Figure 4.3: Path Diagram: Reciprocal Nonrecursive Model 

 

Models may also be nonrecursive because they contain feedback loop. For example, imagine a model in which 
variable A affects variable B, variable B affect variable C, and variable C, in turn, affects variable A. Variables 
A, B, and C can be said to constitute a feedback loop; the model that contains this loop is therefore 
nonrecursive.  

Until recently, it was important to make a distinction between recursive and nonrecursive models because the 
other procedures for performing path analysis (multiple regression) did not easily lend themselves to the testing 
of nonrecursive models. Both types of model can be analyzed with PROC CALIS however. 

NOTE: This chapter deals only with recursive models. This chapter will cover only the analysis of recursive 
(unidirectional) directional models. This will prepare you to deal with a wide variety of research problems that 
are commonly encountered in social science research. It will also serve as a good foundation for readers who 
want to move on to the somewhat more complex nonrecursive models. References for the analysis of 
nonrecursive models are provided later in the chapter. 

Why Perform Path Analysis with PROC CALIS versus PROC REG? 
As implied above, path analysis used to be performed with procedures such as PROC REG before the advent of 
PROC CALIS and other such programs. Each endogenous variable required the computation of a separate 
regression equation. With complex models, this required several regression equations be computed increasing 
the risk of capitalization on chance (i.e., incorrect rejection of the null hypothesis). In contrast, PROC CALIS 
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requires only one model be computed no matter the number of endogenous variables within the model. Almost 
always it is preferable to compute a single multivariate equation versus multiple univariate equations. 

As you will learn later in this chapter, PROC CALIS also enables you to estimate overall model goodness-of-fit 
indices not possible with PROC REG. Finally, PROC CALIS enables the researcher to compute modification 
indices. These will be discussed more fully later in this chapter; suffice to say at this point that PROC CALIS 
allows you to arrive at the best fitting model representing the relationships that exist among variables in a 
specific dataset. As a result of these features, we recommend that PROC CALIS be used instead of PROC REG 
when undertaking path analysis. 

Necessary Conditions for Path Analysis 
The use of path analysis assumes that a number of requirements have been met concerning the nature of the data 
as well as the theoretical model itself. Some important assumptions associated with the analysis of the simple 
recursive models to be covered in this chapter are listed below. 

1. Interval- or ratio-level measurement. Endogenous variables should be assessed on an interval or ratio 
level of measurement. Alternative procedures for situations in which these assumptions are violated 
have been discussed elsewhere (e.g., Jöreskog and Sörbom 2001) but will not be covered in this chapter.  

2. Minimal number of values. Endogenous variables should be continuous and should assume a 
minimum of five values (Byrne 1998). 

3. Normally distributed data. Although parameter estimates may be correct with nonnormal data, the 
statistical tests used with PROC CALIS (e.g., chi-square test and significance tests for path coefficients) 
assume a multivariate normal distribution. It has been argued, however, that the maximum likelihood 
and generalized-least squares estimation procedures appear to be fairly robust against moderate 
violations of this assumption (Jöreskog and Sörbom 2001; Kline 2005). When data are markedly 
nonnormal, you should consider data transformations and/or the deletion of outliers. 

4. Linear and additive relationships. Relationships among variables should be linear and additive (i.e., 
relationships between independent and dependent variables should not be curvilinear). 

5. Absence of multicollinearity. Variables should be free of multicollinearity. Multicollinearity is a 
condition in which one or more variables are very strongly correlated with each other (e.g., r ≥ .80). 

6. Absence of measurement error. All independent (antecedent) variables should be measured without 
error; this means that any analyzed independent manifest variable that is a perfectly reliable indicator of 
its underlying construct. Given the relatively high levels of measurement error associated with variables 
in the social science research, however, this is the most frequently violated assumption in path analysis. 
The following two chapters will show how this problem can be minimized through the analysis of 
structural equation models with multiple indicators and latent variables. 

7. Inclusion of all nontrivial causes. All known nontrivial predictors of endogenous variables should be 
included in the model as independent variables. For example, if you perform a path analysis in which 
work performance is to be a dependent variable, the model should specify as independent variables all 
constructs that are known to have nontrivial effects on work performance (and, needless to say, these 
variables must be assessed in the study itself). If important antecedent variables are omitted, the path 
coefficients for the remaining antecedents are likely to be biased. If this requirement is met, the model is 
said to be self-contained, and all residual terms in the model should be uncorrelated. (The meaning of 
“residual terms” will be discussed below.) 

8. Overidentified model. To be tested for goodness of fit, the model must be overidentified. The meaning 
of “just-identified” versus “overidentified” versus “underidentified” models will be discussed below. 

Overview of the Analysis 
Although it is relatively easy to perform path analysis using PROC CALIS, the process must be divided into a 
number of steps with important decisions to be made at each juncture. Here is an overview of the process. 

Preparing the Program Figure 
It is recommended that you always prepare a detailed figure that describes the predicted relationships among 
variables and identifies all parameters to be estimated. This program figure guides you when writing the SAS 
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program. If carefully prepared, the program figure will make writing the program a much simpler task and 
reduce the possibility of specification errors. 

Preparing the SAS Program 
The analyses will be conducted using PROC CALIS. PROC CALIS will include statements to represent the 
model displayed in your program figure.  

Interpreting the Results 
The output of PROC CALIS provides significance tests for the null hypothesis that your theoretical model fits 
the data; these are known as “goodness-of-fit” statistics. It also provides estimates and significance tests for 
parameters such as path coefficients, variances, and covariances. If there is less than ideal fit between a model 
and data, modification indices may be used to determine how the model could be improved. Revised models 
can then be estimated to determine if they provide improved fit. 

Sample Size Requirements for Path Analysis 
There is no definitive consensus regarding sample size requirements for path analysis with PROC CALIS and 
other structural equation modeling (SEM) programs versus PROC REG. This is because analyses of covariance 
structures (e.g., SEM, confirmatory factor analysis) are based on large sample theory (Lehmann 1999). 
Although there are no latent variables in path analysis (by definition), one of the primary reasons to use path 
analyses versus SEM is the lower sample size requirement. We recommend that sample requirements be 
calculated similar to multiple regression and greater than 99; in other words, we recommend 100 as the minimal 
sample size required for path analyses (MacCallum 1986). 

Irrespective of the number of dependent variables in one’s path model, the number of independent variables is 
N–1 for the purposes of sample size estimation. Figure 4.3 is presented once again to help illustrate this point. 
Both work performance and motivation are predicted in this model (i.e., both are dependent variables), 
predicted by intelligence, workplace norms, supervisory support, and each other. As previously noted, this is a 
reciprocal, nonrecursive model because both dependent variables are hypothesized to be both dependent and 
independent variables. In this example, there are a total of five observed variables. Applying are N–1 rule, there 
are four independent variables for the purposes of estimating sample size requirements. 

Figure 4.3: Path Diagram: Reciprocal Nonrecursive Model 

 

Statistical Power and Sample Size 
The objective is to determine the sample size needed to be confident that your findings point to what really 
exists in the population, not just what you may find with a specific sample. This is a simplified description of 
what Cohen (1988) defined as statistical power. Stated another way, you need to have enough observations or 
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data points in order to get an accurate snapshot of the population being studied. If a sample is too small, 
statistically significant findings may be found but these may be erroneous findings. 

A sample has statistical power when it is large enough to reflect what actually exists in the population. More 
simply stated, a sample can be sufficiently large to find statistically significant associations between variables 
(Type I error avoided), but not large enough to find what really exists in the population (Type II error 
committed). Type II or beta (β) errors occur when sample sizes are too small to enable you to identify what 
exists in the population. You decrease the risk of committing Type II errors by increasing your sample size. 

Effect Sizes 
It is also important to keep in mind that significant associations among phenomena range from strong to weak. 
Weak associations, for instance, are indirect and more distal (far apart). As an example, a strong association 
exists between having a parent with schizophrenia and the likelihood of developing schizophrenia oneself 
(Pulver, Liang, Brown, Wolyniec, McGrath, Adler et al. 1992). In contrast, a significant but small association 
exists between one’s astrological sign and the likelihood of developing schizophrenia (i.e., greatest for those 
born under the signs of Pisces, Aries, and Taurus). More technically, a large effect size exists between genetics 
and schizophrenia; a smaller effect size exists between astrology and schizophrenia.1  

A generally accepted rule of thumb is that the researcher should strive to be able to identify medium to large 
effect sizes. This requires a sufficiently large sample size in order to detect medium effect sizes (Cohen 1992). 
A sample of this size or larger is said to possess statistical power. 

It is important to repeat that this does not necessarily mean finding statistically significant associations with a 
sample, but the associations that really exist in the population. Students and many social scientists commonly 
confuse the two. It is worth taking a moment to make sure that you understand the difference between the two 
and because these are not necessarily synonymous. Statistical significance pertains to associations within a 
dataset whereas statistical power pertains to the ability to identify what exists in the population sampled. The 
latter is the more important of the two though social scientists all too often focus only on the former (Cohen 
1988). 

Estimating Sample Size Requirements 
To simplify what can easily become a complicated topic, Cohen (1992) provided a straightforward guide to 
assist social scientists when determining sample size requirements to test research hypotheses with a various 
statistical procedures. We have adapted this table to assist when determining sample size requirements for path 
analyses. These estimates are based on sample size requirements for regression analyses (Cohen 1992). 

The left-hand column of Table 4.1 lists the number of independent variables that might be included in a path 
analysis (ranging from 2 to 15 independent variables). Remember, path analysis is an extension of multiple 
regression allowing 2+ dependent or predicted variables. This is performed as a single equation with PROC 
CALIS; whereas with PROC REG, separate calculations are computed for each dependent variable. A primary 
reason to perform path analyses with PROC CALIS is the reduced likelihood of detecting chance or random 
associations among variables. For this among other reasons, we recommend that path analysis be performed 
with PROC CALIS versus PROC REG in most instances. 

Returning to our example, there are five variables in Figure 4.3; applying the N−1 guideline means that there 
are four independent variables for the purposes of sample size estimation (though really five IVs). Applying the 
recommendation that researchers aim to detect medium effect sizes, we focus on the middle column within the 
grouping shown in Table 4.1 (vs. small or large columns within each grouping). In keeping with the norm in 
social science research, we select the standard alpha (α) = .05 criterion. Where this column and row intersect 
(IV = 4), see in Table 4.1 that a sample of 100 is a recommended minimum. Analyses using smaller samples are 
at greater Type II error risk (i.e., fail to detect what exists in the population).  

In order to further reduce the possibility of chance findings, the researcher may want to set a more stringent 
alpha level (i.e., to reduce of the likelihood of Type I errors). Where α ≤ .01, the researcher has greater 
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confidence that findings are not random but genuinely reflect what exists in these data. Again, N = 5−1 so we 
now need 118 participants. In contrast to our initial estimate (α ≤ .05), the sample size required for α ≤ .01 
exceeds the required minimum of 100 observations. 

There are comparatively few instances when the researcher would want to set a more liberal alpha level (e.g., 
α ≤ .10); this is not customary in social science research. However, assume the researcher sets out to try to 
replicate previous published  findings, which suggests that large effect sizes exist between all variables; here, 
the researcher might argue that an a priori threshold value where α ≤ .10  is sufficient (and defensible). But note 
that this does not reduce your required sample size until you have 7+ independent variables as 100 is the 
minimum recommended sample size for path analysis. 

Table 4.1: Sample Size Requirements for Path Analyses with PROC CALIS 
 

 

Example 1: A Path-Analytic Investigation of the Investment Model 
Rusbult’s (1980) investment model will again be used for this example, this time to illustrate how path analysis 
is performed with PROC CALIS. Once again, the investment model identifies variables that are believed to 
affect satisfaction and commitment in romantic relationships (Le and Agnew 2003). One version of the model 
holds that commitment to a romantic relationship is determined by the following three constructs:  

• satisfaction with the relationship 

• one’s investments in the relationship (e.g., the amount of personal time and resources put into the 
relationship) 

• alternative value, or the attractiveness of alternatives to the relationship 

Satisfaction, in turn, is said to be predicted by rewards, or the positive features that one associates with the 
relationship, and costs, or the negative features associated with the relationship. 

It is possible to use some of the fundamental concepts of the investment model to develop the path model 
presented in Figure 4.4. The arrows presented in this figure represent the prediction that commitment is 
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determined by satisfaction, investment size and alternative value, and that satisfaction is determined by rewards 
and costs. 

Figure 4.4: The Basic Directional Model 

 

NOTE: The model presented in Figure 4.4 is based on Rusbult’s investment model (1980) and should not 
necessarily be interpreted as an accurate representation of the theory as originally developed (Le and 
Agnew 2003). Note that the data analyses reported here are fictitious and are used only to illustrate statistical 
procedures. These results should not be viewed as valid tests of the investment model, or of any other 
theoretical framework. 

Overview of the Rules for Performing Path Analysis 
The following sections will show you how to prepare a program figure and how to write the SAS program to 
test the path model presented in Figure 4.4. These sections will present 14 rules or guidelines to use when 
preparing figures and writing SAS programs to perform path analysis. The 14 rules are summarized below: 

RULE 1: Only exogenous variables are allowed to covary. 

RULE 2: A residual term is identified for each endogenous variable in the model. 

RULE 3:  Exogenous variables do not require residual terms. 

RULE 4:  Variance should be estimated for every exogenous variable in the model, including 
residual terms. 

RULE 5:  In most cases, covariance should be estimated for every possible pair of manifest 
exogenous variables; covariance is not estimated for endogenous variables. 

RULE 6:  For simple recursive models, covariance is generally not estimated for residual terms.  

RULE 7:  One equation should be created for each endogenous variable, with that variable’s name 
to the left of the equals sign.  

RULE 8:  Variables that have a direct effect on that endogenous variable are listed to the right of 
the equals sign. 

RULE 9:  Exogenous variables, including residual terms, are never listed to the left of the equals 
sign. 

RULE 10:  To estimate a path coefficient for a given independent variable, a unique path coefficient 
name should be created for the path coefficient associated with that independent variable. 
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RULE 11:  The last term in each equation should be the residual (disturbance) term for that 
endogenous variable; this term will have no name for its path coefficient. 

RULE 12:  To estimate a parameter, create a name for that parameter. 

RULE 13: To fix a parameter at a given numerical value, insert that value in place of the parameter’s 
name. 

RULE 14: To constrain two or more parameters to be equal, use the same name for those 
parameters. 

The fact that these guidelines are assigned numbers (e.g., Rule 1, Rule 2) is not meant to indicate any hierarchy 
of importance. The numbers were merely assigned consecutively for ease of reference in this text. 

It is not expected that the preceding rules will make sense to you at this point if you are just learning path 
analysis. As you read the following sections and gain experience conducting path analyses, however, these 
guidelines will become second nature.  

Preparing the Program Figure 
Path analysis with PROC CALIS is somewhat more involved than path analysis with PROC REG. This is 
because the PROC CALIS program must include a relatively large number of statements that represent your 
directional model as a series of structural equations: An error in any statement and your results may well be 
incorrect.  

The likelihood of making mistakes is greatly reduced by first preparing a program figure. This program figure 
will display all of the important features of your model. Among other things, it will identify the endogenous and 
exogenous variables, identify the parameters to be estimated (e.g., path coefficients), and indicate which 
variables are free to covary. If you do a careful job preparing the program figure, writing the PROC CALIS 
program will be relatively easy. 

This section discusses the steps to follow when preparing a program figure. A later section will show how the 
figure is then translated into a SAS program. 

Step 1: Drawing the Basic Model    
When preparing a program figure, try to adhere to the convention of placing the antecedent or independent 
variables toward the left side of the figure and the consequent of dependent variables to the right side of the 
figure. Draw straight single-headed arrows to indicate the predicted relationships. The basic model to be tested 
here was presented previously as Figure 4.4. Notice that the four exogenous variables appear on the left side of 
that figure; the reasons for this will later become clear. 

Step 2: Assigning Short Variable Names to Manifest Variables    
In Figure 4.5, short variable names have been assigned to the variables of the path diagram. With this system, 
manifest variables are represented by the letter “V” followed by a number. This text uses the convention of 
starting with the last dependent variable in the directional chain and naming it V1. We then trace backward 
(right to left), assigning the names V2, V3, and so forth, to variables that appear earlier in the chain. These short 
variable names are then written just above the variable’s actual name in the path diagram. Following these 
conventions, Figure 4.5 shows that commitment has been named V1, satisfaction has been named V2, and so 
forth. 
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Figure 4.5: Assigning Short Variables Names to the Manifest Variables 

 

 

Step 3: Identifying Covariances among Exogenous Variables    
Remember that exogenous variables are those that do not have any single-headed arrows pointing at them. In 
the present model, the exogenous variables are rewards, costs, investments, and alternatives. 

In Figure 4.6, curved double-headed arrows are used to connect all four of these exogenous variables to indicate 
that the four exogenous variables are expected to covary (i.e., correlated). This also means that you will 
ultimately prepare a program that calculates values for these covariance estimates.  

Figure 4.6: Identifying Covariances among Exogenous Variables and Residual Terms for Endogenous  
                   Variables 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

In preparing the program figure for your model, identify any variables that are expected to covary in the same 
manner by connecting them with curved double-headed arrows. You should heed the following rule, however: 

V3 
Rewards 

V4 
Costs 

V5 
Investments 

V6 
Alternatives 

V2 
Satisfaction 

V1 
Commitment 

E 

E 
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RULE 1:  Only exogenous variables are allowed to covary. 

With the relatively simple models discussed in this chapter, endogenous variables do not covary with any other 
variable. This means that if a straight single-headed arrow points at a variable, there should not be a curved 
double-headed arrow pointing at that same variable. 

With simple models, every exogenous variable is usually allowed to covary with every other exogenous 
variable. That is, you should estimate covariance for every possible pair of exogenous variables. This is not a 
strict rule, however. If you have good reason to believe that two exogenous variables are not correlated (e.g., 
contrary to theory), it is acceptable to not estimate covariance for this pair of constructs. For example, you may 
have reason to believe that two exogenous variables are uncorrelated and you test a model that reflects this 
prediction. In most cases, however, it will be appropriate to estimate covariances for every pair of exogenous 
variables. 

Step 4: Identifying Residual Terms for Endogenous Variables 
After identifying the covariances for the exogenous variables, you should identify the residual terms for the 
endogenous variables in accord with Rule 2: 

RULE 2:  A residual term is identified for each endogenous variable in the model. 

The residual term is sometimes referred to as either the error term or disturbance term. The residual term 
for a variable represents all the factors that influence variability in that variable but not included as antecedent 
variables in the model.  

For example, the path diagram in Figure 4.6 hypothesizes that commitment is predicted by satisfaction, 
investments, and alternatives. It is highly unlikely, however, that these three antecedent variables will account 
for all variability in commitment. Therefore, commitment is expected to also be affected by a residual term. 
This residual term represents the effects on the dependent variable due to omitted independent variables, 
random shocks, measurement, or specification errors.  

As per convention, residual terms are represented by the capital letter E (for Error term). In Figure 4.6, the 
residual term for commitment is given the short name E1 because the corresponding name for the commitment 
variable is V1: The numerical suffix for the V and E terms (“1” in this case) should match. The figure shows 
that commitment (V1) is expected to be affected by the residual term, E1, while satisfaction (V2) is expected to 
be affected by its residual term, E2.  

The remaining variables are exogenous variables, and therefore are not given residual terms, in accord with 
Rule 3: 

RULE 3:  Exogenous variables do not require residual terms. 

Step 5: Identifying Variances to Be Estimated  
Rule 4 indicates which variance terms should be estimated: 

RULE 4:  Variance should be estimated for every exogenous variable in the model, including 
residual terms. 

We recommend that you identify every parameter to be estimated by placing a question mark (?) in the 
appropriate location in your program figure. More specifically, you can use the symbol “VAR?” to identify each 
variance to be estimated. Place this symbol directly under the name of that manifest variable or residual term. 
For example, Figure 4.7 shows that the VAR? symbol is placed directly under the word “Rewards” in the 
rectangle representing that variable. Similar symbols appear in the rectangles for the costs, investments, and 
alternatives variables. Because these are all exogenous variables, variance must be estimated. 
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Figure 4.7: Identifying the Variances and Covariances to Be Estimated 

 

When identifying variances to be estimated, do not forget the residual terms! The residual terms of Figure 4.7 
do not have single-headed arrows pointing toward them; this means that they are also exogenous variables. 
They therefore must have their variances estimated. Figure 4.7 shows that VAR? has been placed under the 
abridged names for residual terms E1 and E2. 

Step 6: Identifying Covariances to Be Estimated    
Figure 4.7 uses the symbol C? to identify the covariances to be estimated. In accord with Rule 5, these 
covariances will usually involve all manifest exogenous variables: 

RULE 5:  In most cases, covariance should be estimated for every possible pair of manifest 
exogenous variables; covariance is not estimated for endogenous variables. 

Notice that a curved double-headed arrow connects the rewards variable (at the top of Figure 4.7) with the 
alternatives variable (at the bottom of the figure). This curved arrow is identified with the C? symbol indicating 
that the SAS program should estimate covariance between these variables. The remaining curved arrows 
connect the remaining pairs of manifest exogenous variables in this figure. Each is identified with the C? 
symbol; a total of six covariances are to be estimated for this model. 

Notice, however, that no curved arrow connects either E1 or E2 with any other variable. This is in accord with 
Rule 6. 

RULE 6:  For simple recursive models, covariance is generally not estimated for residual terms. 

Rule 6 does not necessarily apply to other types of models. For example, residual terms are allowed to covary in 
a time-series design in which the same variable is measured at more than one point in time. Also, in models 
with reciprocal causation, the residual terms for the two variables involved in the reciprocal relationship are 
often allowed to covary. But for the relatively simple models to be discussed in this chapter, Rule 6 will hold. 

Step 7: Identifying the Path Coefficients to Be Estimated    
Each straight, single-headed arrow in your figure represents a directional path. For each of these, the SAS 
program will estimate a path coefficient: A number that represents the amount of change in a dependent 
variable associated with a one-unit change in a given independent variable while holding constant the other 
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independent variables. Path coefficients represent the size of the effect that a given independent variable has on 
a dependent variable.  

This text uses the symbol P? to identify path coefficients to be estimated. In Figure 4.8, each path has been 
identified with this symbol. After the standardized path coefficients have been estimated by the SAS program, 
you will review their relative size to determine which independent variables had stronger effects on the 
dependent variables. The program results will also provide statistics testing the null hypothesis that a given path 
coefficient is zero in the population. 

Figure 4.8: Identifying the Path Coefficients to Be Estimated 

 

 

Step 8: Verifying that the Model Is Overidentified    
The identification problem is one of the most important concepts to understand in path analysis and structural 
equation modeling. Because identification is less of a problem when testing simple recursive models such as 
those presented in this chapter, this section will merely introduce some basic concepts. Identification becomes a 
more serious problem when estimating nonrecursive models; for users interested in testing these more 
complicated models, this section also lists references that provide a more in-depth treatment of the topic. 

To understand identification, it is necessary to first understand that path model may be represented as a system 
of functional equations. For example, the path diagram presented in Figure 4.8 predicts that the endogenous 
variable, satisfaction (V2), will be determined by rewards (V3), costs (V4), and its residual term (E2). A 
functional equation representing this part of the model could take the following form: 

V2 = P23 V3 + P24 V4 + E2 

Where P23 represents the path coefficient for the effect on V2 of V3, and P24 represents the effect on V2 of 
V4. This equation includes two unknowns: The two path coefficients. In performing the analysis, PROC CALIS 
will estimate values for these two path coefficients. A typical path model (such as that represented in 
Figure 4.8) will be represented by a number of equations and will usually include a variety of unknown 
parameters to be estimated, including variances, covariances and path coefficients. 
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It is highly desirable that a model not be underidentified prior to estimation. A model is said to be 
underidentified when it includes fewer linearly independent equations than unknown elements (Kline 2005). 
These unknowns are possible associations within path models where no hypotheses are specified. In Figure 4.8, 
for example, there are no arrows connecting investments (V5) or alternatives (V6) to satisfaction (V2); nor do 
direct paths appear from rewards (V3) or costs (V4) and commitment (V1). These unknowns (or unspecified 
associations) provide models with “degrees of freedom,” which allow model fit statistics to be calculated. 

When a model is underidentified, an infinite number of solutions can be generated for its parameters. For 
example, if PROC CALIS is used to estimate an underidentified model, performing the analysis with one set of 
starting values might generate one set of parameter estimates, while running the analysis a second time with a 
different set of starting values might generate a completely different set of parameter estimates (e.g., different 
values for the same path coefficients). Obviously, results obtained from the analysis of an underidentified model 
are completely unreliable.  

Parameter estimates such as path coefficients are meaningful only if they are obtained from an identified 
model. A model may be identified either by being just-identified or overidentified. A just-identified model is 
one in which there are exactly as many linearly independent equations as unknowns (some texts refer to just-
identified models as saturated models). Although a just-identified model has the advantage of allowing 
estimation of just one unique set of parameters for a given sample, it has the disadvantage of not allowing any 
tests for goodness of fit. This is because just-identified models have no degrees of freedom. It is for this reason 
that researchers typically ensure that models are overidentified (Byrne 1998). 

A model is said to be overidentified when it includes more equations than unknown elements. As with a just-
identified model, estimation of an overidentified model will result in only one set of parameter estimates from a 
given dataset. Overidentified models, however, have an additional desirable property: They can be tested for 
overall goodness of fit. 

Fortunately, simple recursive models such as those covered in this chapter are just-identified or overidentified. 
When dealing with recursive models with uncorrelated residuals, the model may be said to be just identified if 
every variable in the model is related to every other variable by either a one- or two-headed arrow. Figure 4.9 
presents an example of a just-identified model. Notice that every variable is interrelated with every other 
variable, either through a path or a covariance.  

Figure 4.9: A Just-Identified, Fully Recursive Model 
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To create this just-identified model, four new paths were added to the investment model presented earlier. Paths 
A and B predict that rewards and costs will directly affect commitment, and paths C and D predict that 
investments and alternatives will affect satisfaction. 

In performing path analysis, it is customary to test the “fit” between the model and data; the better the fit, the 
stronger the support for the model as hypothesized. It is important to remember, however, that a just identified 
model cannot be tested for goodness of fit. This is because a just-identified model just fits the data (i.e., is 
saturated). The reason for this should become clear when one considers that the data analyzed consist simply of 
a correlation (or variance-covariance) matrix; this matrix provides correlations between every manifest variable. 
Now consider the just-identified model presented in Figure 4.9. Note that every variable is assumed to be 
related to every other variable. It comes as no surprise that such a saturated model is able to account for the 
correlations in the original correlation matrix. A simpler or more parsimonious model has fewer 
interconnections; that model would be overidentified (Kline 2005). 

A just-identified model becomes overidentified when you place restrictions on model parameters. Various 
restrictions may be imposed; for example, it is possible to constrain two path coefficients to the same value. But 
by far, the most common approach is to fix certain path coefficients to take on a value of zero. Fixing a path to 
zero has the same effect as eliminating that path from the model. 

Figure 4.10 shows the model that resulted from fixing paths A, B, C, and D (from Figure 4.9) at zero. These 
paths have been eliminated, with the result that the path model in Figure 4.10 is now overidentified. This model 
can be tested for goodness of fit.  

In summary, remember that a recursive model may only be tested for goodness of fit only when certain 
restrictions are placed on the just-identified model. This is usually achieved by eliminating possible paths (i.e., 
providing degrees of freedom). 

Figure 4.10: An Overidentified Model 

 

For more complex models, such as nonrecursive path models or structural equation models, the identification 
problem can be more troublesome; these models can be underidentified. The researcher who estimates an 
underidentified model may unknowingly obtain meaningless and misleading parameter estimates. 

How can you be sure that these more complex path models are overidentified?  When the variables are 
standardized, solving the equations for parameters is equivalent to solving the path equations. Kline (2005) 
describes techniques for ensuring a model meets these conditions. 
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In addition to checking log and output files, you should also routinely verify that the number of data points in 
the analysis is larger than the number of parameters to be estimated; when this is not the case, the model is not 
identified. The number of data points may be calculated with the following equation: 

Number of data points = (p [ p + 1 ]) / 2 

where p = the number of manifest variables being analyzed. For example, in the current path analytic 
investment model, six variables are analyzed. Inserting this in the formula results in the following: 

Number of data points = (6 [6 + 1]) / 2 

                                     = (6 [7]) / 2 

                                     = (42) / 2 

                                     = 21 

Once it has been established that the current analysis involves 21 data points, it is necessary to determine the 
number of parameters to be estimated. This will be equal to the sum of the number of 

• path coefficients 

• variances 

• covariances to be estimated 

This will be easy to determine, as you have already identified these parameters in your program figure. This 
program figure is again reproduced as Figure 4.11. Remember that the symbol VAR? was used to represent 
each variance to be estimated, C? was used to represent each covariance, and P? was used to represent each path 
coefficient. By referring to Figure 4.11, you can see that the analysis will estimate six variances (for E1, E2, V3, 
V4, V5, and V6), six covariances (between variables V3, V4, V5, and V6), and five paths. The total number of 
parameters to be estimated is therefore equal to 17. 

Figure 4.11: The Completed Program Figure 
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It has already been noted that one requirement for overidentification is that the number of data points should 
exceed the number of parameters to be estimated. Because the present analysis involves 21 data points but only 
17 parameters, you may conclude that the model presented in Figure 4.11 meets this criterion. 

Is it necessary to ascertain the number of data points and parameter estimates in this way prior to each analysis? 
Technically, the answer is no; this is because this information is reported in the PROC CALIS output. On page 
4 of the output (presented below), PROC CALIS indicates the number of data points to the left of the words 
“Functions (Observations)” and the number of parameter estimates to the right of the word “Parameter 
Estimates.” Despite this, it is good practice to determine these values prior to computing the model to verify the 
model is, in fact, testable. 

As a final test for identification, you may wish to repeat your analyses several times, each time using very 
different starting values for parameter estimates. If PROC CALIS arrives at the same final parameter estimates 
each time, it is likely (but not certain) that your model is identified. 

IMPORTANT: Remember that the last two procedures—counting parameters and functions (observations) and 
conducting analyses with differing starting values—are necessary but not sufficient conditions for 
identification. In other words, if your model fails to pass these tests, they are clearly underidentified; but if they 
do pass these tests, it does not definitively prove that they are identified. The only way to be sure is to use one 
of the more time-consuming approaches, such as those described by Kline (2005). Remember that these more 
complicated approaches are necessary only with more complex models such as nonrecursive models, models 
with correlated residuals, and structural equation models. Simple recursive models without correlated residuals 
will always be overidentified so long as some of the paths are fixed to zero.  

Preparing the SAS Program 

Overview 
The PROC CALIS program used to analyze a simple recursive path model (such as the one described here) is 
longer than most SAS programs, but is not especially complicated or difficult to understand. Preparing the 
program figure in advance will greatly facilitate the writing of this program; the instructions provided here 
should be helpful in leading you through the various PROC CALIS statements. Below is the entire PROC 
CALIS program, including the DATA step used to analyze the model presented in Figure 4.11: 

     data D1(type=corr) ; 
        input _type_ $ _name_ $ V1-V6 ; 
           label 
              V1 = COMMITMENT  
              V2 = SATISFACTION  
              V3 = REWARDS  
              V4 = COSTS  
              V5 = INVESTMENTS  
              V6 = ALTERNATIVES  ; 
     datalines; 
     n      .    240     240     240     240     240     240 
     std    .  2.3192  1.7744  1.2525  1.4086  1.5575  1.8701 
     corr  V1  1.0000   .       .       .       .       . 
     corr  V2   .6742  1.0000   .       .       .       . 
     corr  V3   .5501   .6721  1.0000   .       .       . 
     corr  V4  -.3499  -.5717  -.4405  1.0000   .       . 
     corr  V5   .6444   .5234   .5346  -.1854  1.0000   . 
     corr  V6  -.6929  -.4952  -.4061   .3525  -.3934  1.0000 
     ; 
     run; 
❶   proc calis  covariance modification ; 
❷       lineqs 
           V1 = PV1V2 V2 + PV1V5 V5 + PV1V6 V6 + E1, 
           V2 = PV2V3 V3 + PV2V4 V4            + E2; 
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❸       variance 
           E1 = VARE1, 
           E2 = VARE2, 
           V3 = VARV3, 
           V4 = VARV4, 
           V5 = VARV5, 
           V6 = VARV6; 
❹       cov 
           V3 V4 = CV3V4, 
           V3 V5 = CV3V5, 
           V3 V6 = CV3V6, 
           V4 V5 = CV4V5, 
           V4 V6 = CV4V6, 
           V5 V6 = CV5V6; 
❺    var  V1 V2 V3 V4 V5 V6 ; 
      run; 

All lines appearing before ❶ of the preceding program constitute the DATA step, here entered as a correlation 
matrix.  Line ❶ includes the PROC CALIS statement that initiates this procedure will be performed. Equations 
included in the LINEQS statement (beginning line ❷) identify the predicted relationships between the model’s 
variables (i.e., which variables are assumed to predict the model’s endogenous variables). The VARIANCE 
statement, beginning at line ❸, identifies the variances to be estimated, while the subsequent COV statement 
(beginning line ❹) indicates which covariances are to be estimated. Finally, the VAR statement on line ❺ 
indicates which variables are to be analyzed. Each of these sections is discussed in detail below. 

This section of the chapter is divided into five subsections. First, the options for data input are described. Next, 
the conventions and options used with the PROC CALIS, LINEQS, VARIANCE, and COV statements are 
reviewed. Once these statements are completed, your path model will have been converted into a series of 
structural equations and will be ready for analysis.  

The DATA Input Step 
With PROC CALIS, data may be input as raw data, or as either correlation or covariance matrices. Appendix 
A2, “Data Input,” provides instruction on how to input these different types of data. 

Inputting Raw Data 
The advantage of inputting raw data is that this format allows use of the KURTOSIS option with PROC CALIS 
to compute a number of univariate and multivariate measures of kurtosis, and enables you to identify the 
observations that contribute most to kurtosis. This can be used to identify multivariate outliers to remove from 
the dataset. 

Inputting a Correlation or Covariance Matrix 
Inputting a correlation or covariance matrix has the advantage of usually requiring less computer time, but the 
disadvantage of not allowing for the computation of measures of kurtosis or the identification of outliers. In 
many cases, a good compromise is to use both methods: The first runs should involve the analysis of raw data 
(if available) to assess kurtosis and to identify outliers. Once outliers have been eliminated, the correlation or 
covariance matrix based on the resulting sample can be analyzed in subsequent runs. PROC CORR can be used 
to create the correlation matrix, if this is desired. It is usually desirable to specify the NOMISS option when 
computing these correlations, as this assures that every correlation will be based on the same set of 
observations. For example, the correlation matrix needed for the current model could have been produced with 
the following statements (the NOPROB option suppresses printing of p values for the correlations): 

proc corr   data=D1 nomiss noprob ; 
   var V1 V2 V3 V4 V5 V6; 
run; 
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Problems with Large Differences in Standard Deviations 
With PROC CALIS, problems can result if the standard deviations for some of the variables are considerably 
larger than the standard deviations for other variables. For example, if the largest standard deviation in an 
analysis is 150 for variable V1, and the smallest is 1.3 for variable V2, the CALIS procedure may encounter 
difficulty when estimating the model. This may be noted on the SAS output itself, with a message stating that 
not all parameters were identified. Near-zero standard errors for parameter estimate t tests are another warning 
sign.  

When inputting raw data, these problems can be avoided by rescaling variables so that they are all on 
approximately the same scale. For example, if all scores on V1 were divided by 100, the standard deviation for 
that variable would decrease from 150 to 1.5, which is comparable to the standard deviation of 1.3 for V2. 
Despite the new standard deviation, all correlations between the variables remain unchanged.  

When data are input in the form of a correlation matrix with standard deviations, it is not necessary to actually 
divide all scores by some constant. When you encounter a problem with standard deviations of this nature, 
simply move the decimal point for the troublesome standard deviation to achieve a standard deviation of the 
desired magnitude.  

The PROC CALIS Statement 
The CALIS procedure can perform a variety of analyses, including confirmatory factor analysis and structural 
equation modeling. This chapter, however, focuses only on how the CALIS procedure may be used to perform 
path analysis. Confirmatory factor analysis and structural equation modeling are covered in Chapters 5 and 6 of 
this text, respectively. 

The general form for the PROC CALIS statement is as follows: 

proc calis   options ; 

The words PROC CALIS invoke the procedure, and these should be followed by at least one blank space and a 
list of options (if desired) with the name of each option separated by at least one blank space. The statement 
ends with a semicolon.  

The preceding program uses the following PROC CALIS statement. This statement requests the covariance and 
modification options.  

proc calis  covariance modification ; 

The Covariance option requests that the analysis be performed on the covariance matrix rather than the 
correlation matrix. If your input step includes a correlation matrix and standard deviations, SAS will use these 
to create a covariance matrix. Without this option, the analysis is performed on the correlation matrix by 
default, which is generally less desirable. This is because analyses performed on the correlation matrix are more 
likely to produce invalid standard errors for parameter estimates meaning that the significance tests for path 
coefficients (and other parameters) may be inaccurate. If data are provided in the form of a correlation matrix, 
associated standard deviations for variables must also be provided (see Appendix A.2). This is not necessary if 
data are input in the form of a covariance matrix. 

The modification option requests a number of modification indices that can be useful in identifying changes that 
would improve model fit. Often, your original model will not provide a satisfactory fit to the data, and it will be 
necessary to change it to better reflect the actual relationships among model variables. The modification option 
prints the Lagrange Multiplier or LM test, which identifies paths or covariances that might be added to the 
model. It also prints results of the Wald test, which identifies paths and covariances that may be deleted from 
the model (i.e., not statistically significant). Although these indices can be quite valuable in developing an 
improved model, it is emphasized that any changes made to the model should be driven by your understanding 
of theory and existing research on the topic, not simply by the results of these statistical tests (Byrne 1998). This 
point will be further discussed in the “Modifying the Model” section of this chapter. 
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The PROC CALIS statement can have additional options that may be used with the procedure. A few that may 
be particularly useful in social science research are presented below: 

ALL   
prints all optional output. 

COVARIANCE or COV 
causes PROC CALIS to analyze the covariance matrix rather than the correlation matrix. (Analyzing the 
correlation matrix is the default.)  In order to analyze the covariance matrix, it is necessary to input either a 
correlation matrix that includes standard deviations (as in the preceding program), a covariance matrix, a 
TYPE=sscp dataset, or raw data.  

DATA= dataset-name 
specifies the input dataset to be analyzed. If the DATA=option is omitted, the most recently created SAS 
dataset will be analyzed. 

FCONV= p 
For most problems, the optimization technique used by PROC CALIS requires the repeated computation of 
two values: the function value (optimization criterion) and, the gradient vector (first-order partial 
derivatives). 

GCONV= p 
specifies the absolute gradient convergence criterion. By default, this value (p) is equal to 1 E–3. Smaller 
values may be specified to obtain more precise parameter estimates, but this will significantly increase the 
time required for computation. If not specified, the default value is 1 E–8. 

KURTOSIS or KU 
prints coefficients of univariate kurtosis and skewness along with various coefficients of multivariate 
kurtosis. This option also prints the numbers of the observations that make the greatest contribution to 
normalized multivariate kurtosis. The KURTOSIS option can help identify outliers and should be requested 
during the first run. The dataset must be a raw dataset, however; it cannot be requested if the input dataset 
is a correlation or covariance matrix. 

MAXITER=n 
specifies the maximum number of iterations in the optimization process, where n = the number of 
iterations. For the default optimization process, the default number of iterations is 50.  

METHOD=name 
specifies the method of parameter estimation. Maximum likelihood estimation is the default. Below are the 
most common optimization techniques that may be requested: 

GLS 
    requests generalized least-squares parameter estimation and requires a nonsingular correlation matrix. 
    This method performs a statistical test of the goodness of fit of the model to the data, but assumes  
    multivariate normality of all variables and independence of observations.  

LSGLS 
    requests unweighted least-squares estimation followed by generalized least-squares estimation. 

LSML 
    requests unweighted least-squares parameter estimation followed by normal-theory maximum-likelihood  
    estimation. 

ML 
    requests normal-theory maximum-likelihood parameter estimation. Requires a nonsingular correlation  
    matrix. This method performs a statistical test of the goodness of fit of the model to the data but assumes  
    multivariate normality of all variables and independence of observations. This is the default method. 
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NONE 
    request that no estimation method be used. 

ULS 
    requests unweighted least-squares parameter estimation. 

MODIFICATION or MOD 
requests Lagrange Multiplier (LM indices) along with univariate and multivariate Wald test indices. 

RESIDUAL or RES 
requests the absolute and normalized correlation (or covariance) matrix be printed, along with the rank 
order of the largest residuals and a bar chart of the residuals. 

SIMPLE or S 
requests means, standard deviations, skewness, and univariate kurtosis of manifest variables. 

SUMMARY or PSUM or PSUMMARY 
requests that only the fit assessment table be printed. 

TOTEFF or TE 
requests that total effects, indirect effects, and latent variable regression score coefficients be printed. 

The LINEQS Statement 
PROC CALIS provides a number of ways for describing the model to be analyzed. This chapter describes the 
LINEQS approach to model specification. The LINEQS statement is used to identify the variables that have 
direct effects on the endogenous variables in the path model. This is done with a series of equations with a 
separate equation for each endogenous variable. This chapter will present a system of notation to use with the 
LINEQS statement. Although it might seem most logical to use path-style input for path analyses, our intent is 
to provide a foundation or building blocks for the subsequent forms of analysis presented in this text such a 
confirmatory factor analysis and structural equation modeling, which also use LINEQS-style input. 

Below is the general form for the LINEQS statement: 

lineqs 
   v = p v + p v + p v ..... + e, 
   v = p v + p v + p v ..... + e, 
   v = p v + p v + p v ..... + e ; 

where 

v = manifest variables 
p = path coefficients 
e = residual term for corresponding endogenous variables 

Although the preceding displays the general form for three equations, any number of equations is actually 
possible. Also, any number of independent variables (to the right of the equals sign) is possible. 

To make this a bit more concrete, below is the LINEQS statement for the present path model:  

lineqs 
   V1 = PV1V2 V2 + PV1V5 V5 + PV1V6 V6 + E1, 
   V2 = PV2V3 V3 + PV2V4 V4            + E2; 

The LINEQS statement begins with the word LINEQS and ends with a semicolon. Each equation in the 
statement must be separated by a comma. The preceding statement includes two equations. The first equation 
identifies the variables that predict endogenous variable V1. This is evident as “V1” appears to the left of the 
equals sign in the first equation. The second equation identifies the variables that predict V2. 
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The names of the independent variables that predict an endogenous variable appear to the right of the equals 
sign in the equation for that variable. With the above equations, you can see that V1 is predicted by V2, V5, V6 
with a residual term, E1. At the same time, V2 is predicted by V3 and V4, along with its residual term, E2.  

To the immediate left of each independent variable is the name assigned to that variable’s path coefficient. In 
the present case, the path coefficient for V2 is given the name “PV1V2,” the coefficient for V5 is given the 
name “PV1V5,” and the coefficient for V6 is given the name “PV1V6.”  The conventions used in naming these 
coefficients are discussed below. 

SAS requires certain conventions when creating names for variables included in the LINEQS statement. For 
example, it requires that names for the residual terms of manifest variables begin with the letter E (for Error 
term), names for latent factors begin with the letter F, and names for the disturbance terms of these factors begin 
with the letter D. (Latent factors and their disturbance terms are not relevant to path analysis; F and D terms will 
not be discussed in this chapter.) We recommend some additional conventions to simplify your task. 

Naming Manifest Variables 
In the previous section on preparing the program figure, we advised that the manifest variables be named using 
“string variables.” Each variable name consists of the prefix V and a numerical suffix. Thus you have variable 
names such as V1 and V2. Technically, manifest variables can actually be given any name so long as their 
names adhere to the usual SAS conventions (e.g., begins with a letter). The conventions we recommend will 
help create more meaningful names for path coefficients. 

Naming Residual Terms 
Similarly, the earlier section advised that residual terms be given names such as E1 and E2. The numerical 
suffix should always match the suffix of the corresponding manifest variable so that E1 is the residual term for 
V1, E2 is the residual name for V2, and so forth. 

Naming Path Coefficients 
Technically, path coefficients can be given any name that meets the usual SAS conventions. We, however, 
recommend a system with path coefficient names such as PV1V2, PV1V5, and PV2V4. With this convention, 
the name for a path coefficient:  

• begins with the prefix P (to identify this as the name of a Path coefficient) 

• continues with the name of the dependent variable being predicted (e.g., V1 or V2) 

• concludes with the name of the independent variable where the path originates (e.g., V4, V5, or V6) 

Thus, the name PV1V5 tells you that this is the name of the path coefficient for the path to V1 from V5. The 
name PV2V4 indicates that this is the name of the coefficient for the path to V2 from V4. This approach has the 
advantage of making each coefficient’s name both unique and meaningful. For example, path coefficients 
sometimes appear in sections of output such as Wald test results (to be described later) that provide no 
independent information to indicate which variables are associated with that coefficient. By using this system, 
you can identify the relevant variables simply by looking at the path coefficient’s name. 

Identifying the Variables to Be Included in Each Equation 
It is now possible to show how the program figure (previously presented) can be used to construct the equations 
to be included in the LINEQS statement. That program figure for the investment model is presented here as 
Figure 4.12. 
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Figure 4.12: The Completed Program Figure 

 

The process begins by determining how many equations should be included in the LINEQS statement. (There is 
one equation for each endogenous variable.) Remember that a variable is an endogenous variable if any straight 
single-headed arrow points at it. Figure 4.12 shows two endogenous variables: V1 and V2. One equation will be 
created for both variables. 

Next, review the figure to determine which variables should be listed as independent variables for a given 
endogenous variable. In this context, independent variables are those variables that have arrows pointing 
directly at the endogenous variable of interest. For V1, the independent variables are V2, V5, and V6. Once 
these independent variables have been identified, you are now ready to write the equation for V1, while 
adhering to Rules 7, 8, and 9. (These rules pick up where Rule 6 left off in the previous section on “Preparing 
the Program Figure.”) 

RULE 7:  One equation should be created for each endogenous variable with that variable’s name 
to the left of the equals sign. 

RULE 8:  Variables that have a direct effect on that endogenous variable are listed to the right of 
the equals sign. 

RULE 9:  Exogenous variables, including residual terms, are never listed to the left of the equals 
sign. 

In compliance with Rule 7, your equation for V1 would therefore begin with: 

V1 = 

In accordance with Rule 8, the following independent variable names would then be added: 

V1 =       V2  +     V5  +       V6 

Next, Rule 10 makes provision for path coefficient names: 

RULE 10:  To estimate a path coefficient for a given independent variable, a unique path coefficient 
name should be created for the path coefficient associated with that independent variable. 

O’Rourke, Norm, and Larry Hatcher. A Step-by-Step Approach to Using SAS® for Factor Analysis and Structural Equation Modeling, Second Edition.  
Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



132   A Step-by-Step Approach to Using SAS for Factor Analysis and Structural Equation Modeling, Second Edition    

And so the following path coefficient names would be added to the equation: 

V1 = PV1V2 V2 + PV1V5 V5 + PV1V6 V6 

Finally, Rule 11 indicates how each equation should end: 

RULE 11:  The last term in each equation should be the residual term for that endogenous variable; 
this E term will have no name for its path coefficient. 

The completed equation for V1 takes the following form: 

V1 = PV1V2 V2 + PV1V5 V5 + PV1V6 V6 + E1, 

Notice that, given the conventions for creating path coefficient names, just looking at PV1V2 tells you that this 
coefficient represents the strength of the effect of V2 on V1. Notice also that the equation ends with a comma, 
since it will be followed by another equation. 

Following the same rules, it is now possible to create the equation for V2. Because the program figure shows 
that it is affected by V3 and V4, the equation will take on the following form: 

V2 = PV2V3 V3 + PV2V4 V4 + E2; 

The preceding equation ends with a semicolon as it is the last equation. 

The program figure tells you which variables should be included in each LINEQS equation. You need only find 
the endogenous variable of interest and determine which variables have direct effects on it as indicated by 
straight, single-headed arrow. Figure 4.12 shows that V1 (commitment) is predicted by V2, V5, and V6 along 
with its residual term, E1. Similarly, you can see that V2 (satisfaction) is predicted by V3 and V4 along with its 
residual term, E2. It is in this way that the figure tells you which terms should be included in the equations for 
V1 and V2. 

Once again, the full LINEQS statement appears as follows: 

lineqs 
   V1 = PV1V2 V2 + PV1V5 V5 + PV1V6 V6 + E1, 
   V2 = PV2V3 V3 + PV2V4 V4            + E2; 

Is it really necessary to line up the residual terms? The above statement was prepared so that the residual 
variables (E1 and E2) are vertically aligned. This is not required by the CALIS procedure but is recommended 
to reduce the chance of errors. Experience has taught us that it is easy to forget a residual term for a given 
equation if they are not lined up in this manner! 

Estimating, Fixing, and Constraining Paths 
The CALIS procedure estimates three different types of parameters:  

• path coefficients, which represent the amount of change in a dependent variable associated with a one-
unit change in the relevant independent variable while holding constant the effects of the remaining 
independent variables 

• variances, which represent the variability in exogenous variables 

• covariances, which represent the covariation between pairs of exogenous variables 

All three types of parameters can be either estimated, fixed, or constrained. The following rules explain how 
this is done in the LINEQS statement; this section provides specific examples of how path coefficients may be 
estimated, fixed, or constrained.  

RULE 12:  To estimate a parameter, create a name for that parameter. 
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When PROC CALIS estimates a path coefficient, it simply determines the “optimal” value for that coefficient 
in much the same way that PROC REG determines the “optimal” value for regression coefficients in a multiple 
regression equation. Whenever your LINEQS statement includes a name for a coefficient, the procedure’s 
output will provide a numerical estimate for that coefficient. For example, consider the following equation: 

V2 = PV2V4 V4 + E2; 

The preceding equation asks PROC CALIS to estimate just one coefficient, the one representing the effect of 
V4 on V2. The output of this fictitious program may indicate that this path coefficient is equal to 0.23. 

RULE 13:  To fix a parameter at a given numerical value, insert that value in the place of the 
parameter’s name. 

For example, the following equation fixes the path for the effect of V4 on V2 at .50 while estimating the 
coefficient for the effect of V5 on V2: 

V2 = .50 V4 + PV2V5 V5 + E2; 

While it is unlikely that researchers new to path analysis will want to fix path coefficients at specific numbers, it 
is nonetheless easy to do as the preceding rule suggests.  

It is sometimes desirable to fix the value of a path coefficient at 1.00; this is easy to do with PROC CALIS. You 
may have noticed that there are no path coefficient names to represent the effects of the E terms on the 
endogenous variables. This is because these coefficients are usually “fixed” to be equal to 1.00. With PROC 
CALIS, leaving off the name of a path coefficient just before the independent variable’s name has the effect of 
fixing that coefficient at 1.00. In the following equation, both the path for the E term as well as the path for the 
V4 term are fixed at 1.00. The path coefficient for V5 is again estimated: 

V2 = V4 + PV2V5 V5 + E2; 

Be warned that this convention applies only to fixing path coefficients at 1.00. It will not apply to variances or 
covariances as described below. 

When you fix a path coefficient at zero, this has the effect of eliminating the corresponding path from the 
model. In practice, it is not necessary to include a zero (0) in the equation. To fix that path at zero, merely omit 
the name of the relevant independent variable from the equation. For example, consider the following equation: 

V2 = PV2V4 V4 + E2; 

This equation indicates that V2 is affected only by V4; the paths from all other variables to V2 are 
automatically fixed at zero.  

Finally, Rule 14 indicates how two or more paths may be constrained to be equal to each other: 

RULE 14:  To constrain two or more parameters to be equal, use the same name for those 
parameters. 

Again, it is unlikely that learning path analysis at an introductory level will require this, but it is a useful to 
know for future reference. The two (or more) path coefficients may be given any name that complies with the 
usual SAS conventions. However, we recommend that coefficients be given a “PEQ” prefix (for “Paths 
constrained to be Equal”) followed by a numerical suffix such as PEQ1 or PEQ2. For example, assume that you 
want the path from V4 to V2 be constrained to be equal to the path from V5 to V1. This means that, in the 
printed output, these two paths will take on exactly the same value (whatever that will be). Therefore, both 
paths will be given exactly the same name: PEQ1. The following LINEQS statements show how this constraint 
may be requested: 

lineqs 
   V1 = PV1V2 V2 + PEQ1 V5 + E1, 
   V2 = PV2V3 V3 + PEQ1 V4 + E2; 
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Starting Values for Path Coefficients 
Usually it is unnecessary to provide PROC CALIS with starting values for path coefficients or any other 
parameters to be estimated. However, if you provide starting figures that are close to the parameter estimates at 
which the procedure will ultimately arrive, this may allow the program to converge more quickly (i.e., with 
fewer iterations). Also, as previously mentioned, one test to determine whether a model is identified involves 
running the program several different times with different starting values. 

When used, the starting value for a given path coefficient should appear in parentheses immediately to the right 
of that coefficient. Below, for example, .55 is used as the starting value for the coefficient named PV1V2, and 
.3 is used as the starting value for the coefficient named PV2V3: 

lineqs 
   V1 = PV1V2 (.55) V2 + PV1V5 V5 + PV1V6 V6 + E1, 
   V2 = PV2V3 (.3)  V3 + PV2V4 V4            + E2; 

The VARIANCE Statement 
The primary purpose of the VARIANCE statement is to identify the variables whose variances are to be 
estimated in the analysis. Below you will see that the statement can also be used to fix or constrain variances, 
though this is rarely necessary in path analysis. (It is important not to confuse the VARIANCE statement with 
the VAR statement; these are distinct SAS syntax. In other words, VAR is not an abridged version of 
VARIANCE!) 

The VARIANCE statement follows a format very similar to the LINEQS statement. It begins with the letters 
VARIANCE, and ends with a semicolon. Each equation in the statement is separated by a comma. Below is the 
VARIANCE statement used in the present program: 

variance  
   E1 = VARE1, 
   E2 = VARE2, 
   V3 = VARV3, 
   V4 = VARV4, 
   V5 = VARV5, 
   V6 = VARV6; 

The above lines request that variance be estimated for the residual terms E1 and E2, as well as the exogenous 
manifest variables V3, V4, V5, and V6. This is consistent with Rule 4 (described earlier), which states that 
variance should be estimated for every exogenous variable in the model including both exogenous manifest 
variables and residual terms. 

Fortunately, by completing the program figure in advance, the variance to be estimated have already been 
identified. This was done in Figure 4.12 by inserting the symbol VAR? below the name of every exogenous 
variable (again, including the residual variables). The program figure shows that variances should be estimated 
for V3, V4, V5, V6, E1, and E2.  

Naming Variance Estimates 
A variance is a parameter just like a path coefficient. Like path coefficients, actual numerical estimates for these 
variances will be calculated by PROC CALIS. Also like path coefficients, a variance must be given a name to 
be estimated. Technically, any name that conforms to SAS conventions for variable names can be used. We, 
however, recommend an approach that provides meaningful names to facilitate understanding of the output. 
With this system, you will begin the name with a VAR prefix (to identify this as the name of a VARiance 
estimate), and complete the name with the name of the variable whose variance is being estimated (such as V3 
or E2).  
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This results in variance estimate names such as VARV3 and VARE2. With this system, you need only observe 
the name VARV3 to realize that this is the variance estimate for V3, and VARE2 is the variance estimate for 
E2. 

Estimating, Fixing, and Constraining Variances 
An earlier in this chapter, we provided rules for estimating, fixing and constraining parameters. This section 
will demonstrate how these rules apply to variance estimates. 

To estimate variance estimate for an exogenous variable, you need only create an equation within the 
VARIANCE statement that contains the variable’s name to the left of the equals sign, and the variance 
estimate’s name to the right of the equals sign. The following statement requests variance estimates for 
exogenous variables V3 and E2: 

variance  
   V3 = VARV3, 
   E2 = VARE2; 

To fix a variance estimate at a specific numerical value, provide that numerical value in place of the variance 
estimate name. Here, the variance of V3 is fixed at .93, while the variance of E2 is estimated: 

variance 
   V3 = .93, 
   E2 = VARE2; 

To constrain two or more variance estimates to be equal, use the same variance estimate name for those 
variables. We recommend that the name for this estimate begin with the VAR prefix (for “Variances 
constrained to be Equal”), and conclude with a numerical suffix so that the resulting name takes on the form of 
VAREQ1, VAREQ2, etc. Below, the variances for V3 and V4 are constrained to be equal; the name for the 
resulting variance estimate is VAREQ1: 

variance 
   V3 = VAREQ1, 
   V4 = VAREQ1, 
   V5 = VARV5, 
   E2 = VARE2; 

Starting Values for Variance Estimates 
Starting values are usually not required. If used, however, starting values should appear in parentheses to the 
immediate right of the variance estimate name but before the comma or semicolon. Below, VARV3 is given a 
starting value of 1.3, and VARE2 is given a starting value of .65: 

variance 
   V3 = VARV3 (1.3), 
   E2 = VARE2 (.65); 

The COV Statement 
The COV statement is used to identify pairs of variables that are expected to covary (i.e., correlated). The 
statement begins with the letters COV, and ends with a semicolon; commas are used to separate the equations 
included in the statement. Within each equation, the pairs of covarying variables are presented to the left of the 
equals sign, and the name for the corresponding covariance estimate appears to the right of the equal sign. The 
COV statement used in the present program is presented below: 
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cov 
   V3 V4 = CV3V4, 
   V3 V5 = CV3V5, 
   V3 V6 = CV3V6, 
   V4 V5 = CV4V5, 
   V4 V6 = CV4V6, 
   V5 V6 = CV5V6; 

The preceding statement requests that covariances be estimated for all possible combinations for the four 
manifest exogenous variables displayed in Figure 4.12. Note that no endogenous variables appear in these 
statements consistent with Rule 5 (presented earlier), which states that covariances are normally estimated for 
pairs of exogenous variables but not for endogenous variables. 

Naming Covariance Estimates 
As with variances, covariances must be given a name in order to be estimated. To create meaningful names, we 
recommend that the name begin with the C prefix (to identify this as the name of a Covariance estimate), and 
conclude with the names of the two variables that are covarying. For example, the name CV3V4 is assigned to 
the covariance estimate between V3 and V4. This approach creates meaningful names. You need only see the 
name CV5V6 to know that it represents the covariance between V5 and V6. 

NOTE: Be consistent when referring to these covariance estimates. The name given to a covariance estimate 
must always be typed the same way each time it appears in the program. For example, if it appears once as 
CV3V4 and later as CV4V3, errors will result. To avoid confusion, we recommend that variable name with the 
lower numerical value always appear first followed by the higher value. That is, the covariance name should be 
created as CV3V4 and not as CV4V3. 

Estimating, Fixing, and Constraining Covariances 
The general rules previously specified for estimating, fixing, and constraining parameters apply to covariances 
as well. To estimate a covariance, the two variables expected to covary are listed on the left side of the equals 
sign (separated by at least one blank space), and the name for that covariance are  listed to the right of the 
equals sign. To illustrate, the following COV statement requests that covariance between V4 and V5 be 
estimated: 

cov 
   V4 V5 = CV4V5; 

Which covariances should be estimated?  You have already identified these by preparing your program figure in 
advance. In Figure 4.12, manifest variables V3, V4, V5, and V6 have all been interconnected by curved double-
headed arrows indicating that they are all expected to covary. Each of these arrows has been identified with the 
C? symbol. There will be one equation in the COV statement for every C? symbol in the figure. 

All manifest exogenous variables are usually allowed to covary in a path analysis. Although they are manifest 
variables, the residual terms (E variables) are usually not allowed to covary. This can be seen in the COV 
statement used for this program: 

cov 
   V3 V4 = CV3V4, 
   V3 V5 = CV3V5, 
   V3 V6 = CV3V6, 
   V4 V5 = CV4V5, 
   V4 V6 = CV4V6, 
   V5 V6 = CV5V6; 

To fix a covariance at a specific numerical value, provide that numerical value in place of the covariance 
estimate name. Below, the covariance between V4 and V5 is fixed at .45, and the variance between V4 and V6 
and between V5 and V6 is estimated: 

O’Rourke, Norm, and Larry Hatcher. A Step-by-Step Approach to Using SAS® for Factor Analysis and Structural Equation Modeling, Second Edition.  
Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



Chapter 4: Path Analysis    137 
 

cov 
   V4 V5 = .45, 
   V4 V6 = CV4V6 
   V5 V6 = CV5V6; 

Fixing a covariance estimate at zero has the effect of eliminating any curved double-headed arrow between the 
relevant variables. It is not necessary to actually list the relevant variables to the left of the equals sign and a 
zero to the right of the sign; simply leaving a pair of variables off the COV statement has the effect of fixing 
that covariance at zero. For example, the variables V1 and V2 are not listed in the preceding COV statement. 
This means that the covariance between V1 and V2 will be fixed at zero.  

To constrain two or more covariance estimates to be equal, use the same covariance estimate name for those 
pairs of variables. This approach involves beginning the common name with the CEQ prefix (for “Covariances 
constrained to be Equal”) and concluding with a numerical suffix so that the resulting name takes the form of 
CEQ1, CEQ2, and so forth. Below, the covariance between for V4 and V5 is constrained to be equal to the 
covariance between V4 and V6: 

cov 
   V4 V5 = CEQ1, 
   V4 V6 = CEQ1, 
   V5 V6 = CV5V6; 

Starting Values for Covariance Estimates 
Starting values for covariance estimates are optional. If used, starting values should appear in parentheses 
immediately to the right of the name of the covariance estimate, before the comma or semicolon. Starting values 
are provided below for all covariance estimates in the current example: 

cov 
   V3 V4 = CV3V4 (.50), 
   V3 V5 = CV3V5 (.40), 
   V3 V6 = CV3V6 (.40), 
   V4 V5 = CV4V5 (.50), 
   V4 V6 = CV4V6 (.75), 
   V5 V6 = CV5V6 (.20); 

The VAR Statement 
The VAR statement identifies the manifest variables to be analyzed in the path analysis. Technically, the VAR 
statement was not necessary in the present program because all variables in the dataset were analyzed. It was 
included as a matter of good practice, however.  

The general form for the VAR statement is 

var  list-of-manifest-variables-to-be-analyzed ; 

For the current program, the following VAR statement was used: 

var  V1 V2 V3 V4 V5 V6 ; 

Interpreting the Results of the Analysis 
When the analysis has been completed, SAS creates two new files. The log file contains lines from the original 
SAS program along with notes and error messages, and the output file contains the actual results of the analysis. 
As always, the log file should be reviewed first to check for any errors or warnings. Next, the output file should 
be reviewed for signs of other problems; the following section describes how to do this. 
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Making Sure That the SAS Output File “Looks Right” 
The SAS output file contains the results of the analyses. Below is a brief description of the information 
contained on each page. (In the interest of brevity, some of the information appearing in the output file has not 
been listed here.) 

• Page 1 includes a list of the endogenous variables and exogenous variables specified in the LINEQS 
statement. 

• Page 2 provides simple statistics. 

• Page 3 lists initial estimation methods. 

• Page 4 reports the number of parameters estimated and the model’s iteration history. 

• Page 5 lists a variety of goodness-of-fit indices (to be discussed below). 

• Page 6 reports unstandardized equation parameter estimates and their standard errors corresponding to 
those specified in the LINEQS statement. This page also reports unstandardized covariance estimates, 
squared multiple correlation values and R2 values for exogenous variables. 

• Page 7 includes standardized equation parameter estimates and their associated t values (significance 
estimates). This page also reports standardized covariance estimates and their associated t values. 

• Page 8 includes modification indices: Lagrange Multiplier (LM) and Wald test results (to be 
discussed). 

The output itself is reproduced here as Output 4.1 through 4.8. Several pages of the output must be reviewed to 
verify that the program ran as expected. First, the structural equations printed on page 1 should be reviewed to 
verify that the LINEQS statements were written correctly. The information in page 1 indicates that your 
program has specified two endogenous variables (V1 and V2) and six exogenous variables (V3, V4, V5, V6, 
E1, and E2). This is consistent with your model. 

Output 4.1: CALIS Output (Pages 1 and 2), Analysis of Initial Model for Investment Model Study 

Covariance Structure Analysis: Model and Initial Values 
 
 

Modeling Information 

Data Set WORK.D1 

N Obs 240 

Model Type LINEQS 

Analysis Covariances 

 

Variables in the Model 

Endogenous Manifest V1 V2 

 Latent  

Exogenous Manifest V3 V4 V5 V6 

 Latent  

 Error E1 E2 

Number of Endogenous Variables = 2 
Number of Exogenous Variables = 6 
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Initial Estimates for Linear Equations 

V1 =  . * V2 + . * V5 + . * V6 + 1.0000  E1 

     PV1V2    PV1V5    PV1V6     

V2 =  . * V3 + . * V4 + 1.0000  E2     

     PV2V3    PV2V4         

 

Initial Estimates for Variances of Exogenous Variables 

Variable 
Type Variable Parameter Estimate 

Error E1 VARE1 . 

 E2 VARE2 . 

Observed V3 VARV3 . 

 V4 VARV4 . 

 V5 VARV5 . 

 V6 VARV6 . 

 

Initial Estimates for Covariances Among Exogenous Variables 

Var1 Var2 Parameter Estimate 

V3 V4 CV3V4 . 

V3 V5 CV3V5 . 

V3 V6 CV3V6 . 

V4 V5 CV4V5 . 

V4 V6 CV4V6 . 

V5 V6 CV5V6 . 

 
Simple Statistics 

Variable Mean Std Dev 

V1 COMMITMENT 0 2.31920 

V2 SATISFACTION 0 1.77440 

V3 REWARDS 0 1.25250 

V4 COSTS 0 1.40860 

V5 INVESTMENTS 0 1.55750 

V6 ALTERNATIVES 0 1.87010 

The equations in the middle of output page 1 (under the heading “Initial Estimates for Linear Equations”) 
correspond to the equations in the LINEQS statements. Each parameter to be estimated is identified by an 
asterisk (“*”); the information on this page shows that five path coefficients are to be estimated (e.g., PV1V2, 
PV1V5). The number 1.00 appears before E1 and E2 indicating that these paths are fixed at 1. Finally, the 
tables on the lower half of the page can be reviewed to verify that you have correctly specified which variances 
and covariances are to be estimated. Page 2 reports mean and standard deviation values (Std Dev) for all 
observed variables. These should be checked to verify that no errors have been made when inputting the data. 

Page 3 reports initial estimates for all parameters, variances, and covariances. Page 4 of Output 4.2 provides the 
iteration history; this page should be reviewed to verify that the program converged. In this case, you can see 
that convergence was achieved after eight iterations. If the model is overidentified and the program has been 
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written correctly but still has not converged within 50 iterations, it may be necessary to provide starting values 
and/or increase the allowed number of iterations with the MAXITER option in the PROC CALIS statement.  

The final note on page 4 tells you that the convergence criterion has been satisfied. For most models, the 
optimization technique used by CALIS requires the repeated computation of two values: The function value 
(optimization criterion), and the gradient element (first-order partial derivatives).  

Also appearing at the top of page are the number of data points associated with the analysis or the amount of 
independent information in the data matrix. This appears in Output 4.2 to the right of the Functions 
(Observations) heading. Previously, it was shown that this value may be calculated with the following equation: 

Number of data points = (p [ p +1 ]) / 2 

where p = number of manifest variables being analyzed. Because p = 6 in this analysis (i.e., the number of 
observed variables in the path model), the resulting number of data points is 21. Earlier, it was noted that a 
necessary (but not sufficient) condition for model identification is that the number of functions (observations) 
must exceed the number of parameters to be estimated. This page reports that 17 parameters are to be estimated 
so this condition has been met. 

Output 4.2: CALIS Output (Pages 3 and 4), Analysis of Initial Model for Investment Model Study 

Initial Estimation Methods 
1 Observed Moments of Variables 

2 McDonald Method 

3 Two-Stage Least Squares 

 

Optimization Start 
Parameter Estimates 

N Parameter Estimate Gradient 

1 PV1V2 0.35345 -0.08618 

2 PV1V5 0.49848 -2.34E-16 

3 PV1V6 -0.52990 4.445E-17 

4 PV2V3 0.73873 -2.847E-16 

5 PV2V4 -0.43082 -7.35E-17 

6 VARE1 1.62060 -4.569E-16 

7 VARE2 1.42946 -6.583E-17 

8 VARV3 1.56876 2.2473E-17 

9 VARV4 1.98415 -4.18E-18 

10 VARV5 2.42581 4.1891E-17 

11 VARV6 3.49727 6.9647E-18 

12 CV3V4 -0.77716 1.0372E-16 

13 CV3V5 1.04288 -1.589E-16 

14 CV3V6 -0.95121 7.3048E-17 

15 CV4V5 -0.40675 -9.988E-18 

16 CV4V6 0.92856 -2.09E-17 

17 CV5V6 -1.14585 -2.727E-17 

Value of Objective Function = 0.1579645379 
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Covariance Structure Analysis: Optimization 
 

Levenberg-Marquardt Optimization 
 

Scaling Update of More (1978) 

Parameter Estimates 17 

Functions (Observations) 21 

 

Optimization Start 

Active Constraints 0 Objective Function 0.1579645379 

Max Abs Gradient Element 0.0861824737 Radius 1 

 

Iteration 

 

Restarts 
Function 

Calls 
Active 

Constraints 

 

Objective 
Function 

Objective 
Function 
Change 

Max Abs 
Gradient 
Element Lambda 

Ratio 
Between 

Actual 
and 

Predicted 
Change 

1  0 4 0  0.15659 0.00137 0.0177 0 1.199 

2  0 6 0  0.15646 0.000137 0.00613 0 1.311 

3  0 8 0  0.15644 0.000016 0.00166 0 1.340 

4  0 10 0  0.15644 1.885E-6 0.000645 0 1.346 

5  0 12 0  0.15644 2.265E-7 0.000214 0 1.347 

6  0 14 0  0.15644 2.723E-8 0.000076 0 1.347 

7  0 16 0  0.15644 3.276E-9 0.000026 0 1.347 

8  0 18 0  0.15644 3.94E-10 9.045E-6 0 1.347 

 

Optimization Results 

Iterations 8 Function Calls 21 

Jacobian Calls 10 Active Constraints 0 

Objective Function 0.156439117 Max Abs Gradient Element 9.0449671E-6 

Lambda 0 Actual Over Pred Change 1.3468218857 

Radius 0.0000581107   

 

Convergence criterion (GCONV=1E-8) satisfied. 

 

Assessing the Fit between Model and Data 
When conducting path analysis, you will usually begin with some theoretical model that hypothesizes a set of 
associations among observed variables. You then obtain raw data from a sample, which may be recomputed as a 
correlation matrix or, as in this case, a covariance matrix. A theoretical model provides a good fit to data when 
it successfully accounts for observed covariances in this matrix.  

A number of procedures and statistics have been developed to assess the extent to which a model fits the data, 
and you will usually refer to several of these in the course of the analysis. This is because there is no single 
index of goodness of fit that is universally accepted (Byrne 1998); each index provides somewhat different 
information. This section describes a few indices that should be particularly useful to you if you are learning 
about path analysis for the first time. Consistent with the format used throughout this text, these indices are 
introduced by leading you through a number of structured steps.  
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Step 1: Reviewing the Chi-Square Test 
The original goodness-of-fit index used in path analysis is the chi-square (χ2) statistic or likelihood ratio. This 
statistic tests for significance between the actual covariance matrix among variables, and the estimated 
covariance matrix based upon the model. The chi-square statistic tests the hypothesis that a specified model 
holds exactly in the population from which data are derived (MacCallum, Browne, and Sugarawa 1996). If the 
null hypothesis is correct, then the obtained chi-square value should be small and the associated p value should 
be relatively large. The p value (or probability value) associated with the test indicates the likelihood of 
obtaining a chi-square value this large or larger if the null hypothesis were true (i.e., if the model fits the data). 

Remember that the null hypothesis in path analysis is a hypothesis of good fit; think about what this means in 
practical terms. For instance, if you have developed a theoretical model and hope to obtain support for it (as 
most often will be the case), then you hope not to reject this null hypothesis. In other words, you hope that the 
chi-square value will be small (near zero) and, as a result, the associated p (or probability) value will be large 
(e.g., p > .05). 

The chi-square test for the present analysis is presented here as Output 4.3. This section of the CALIS output 
provides a large number of goodness-of-fit indices, some of which will be discussed below.  

Output 4.3: CALIS Output (Page 5), Analysis of Initial Model for Investment Model Study 
 

Fit Summary 

Modeling Info N Observations 240 

 N Variables 6 

 N Moments 21 

 N Parameters 17 

 N Active Constraints 0 

 Baseline Model Function Value 2.9937 

 Baseline Model Chi-Square 715.4838 

 Baseline Model Chi-Square DF 15 

 Pr > Baseline Model Chi-Square <.0001 

Absolute Index Fit Function 0.1564 

 Chi-Square 37.3889 

 Chi-Square DF 4 

 Pr > Chi-Square <.0001 

 Z-Test of Wilson & Hilferty 4.9302 

 Hoelter Critical N 61 

 Root Mean Square Residual (RMSR) 0.2258 

 Standardized RMSR (SRMSR) 0.0645 

 Goodness of Fit Index (GFI) 0.9538 
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Parsimony Index Adjusted GFI (AGFI) 0.7574 

 Parsimonious GFI 0.2543 

 RMSEA Estimate 0.1869 

 RMSEA Lower 90% Confidence Limit 0.1350 

 RMSEA Upper 90% Confidence Limit 0.2438 

 Probability of Close Fit <.0001 

 ECVI Estimate 0.3030 

 ECVI Lower 90% Confidence Limit 0.2354 

 ECVI Upper 90% Confidence Limit 0.4027 

 Akaike Information Criterion 71.3889 

 Bozdogan CAIC 147.5598 

 Schwarz Bayesian Criterion 130.5598 

 McDonald Centrality 0.9328 

Incremental Index Bentler Comparative Fit Index 0.9523 

 Bentler-Bonett NFI 0.9477 

 Bentler-Bonett Non-normed Index 0.8213 

 Bollen Normed Index Rho1 0.8040 

 Bollen Non-normed Index Delta2 0.9531 

 James et al. Parsimonious NFI 0.2527 

The chi-square test appears in the middle of the page and is repeated again below: 

Chi-Square 37.3889 

Chi-Square DF 4 

Pr > Chi-Square <.0001 

Remember that, if the model provides a good fit, you expect to see a small value of chi-square and a large p 
value. In the present analysis, chi-square value is 37.39 with 4 degrees of freedom, which was highly significant 
(i.e., p < .01). Because it was significant, technically you reject your null hypothesis of good model fit. In other 
words, this test did not support your model.  

How are the degrees of freedom determined? For a simple recursive path analytic model without correlated 
residuals (such as the one considered here), the degrees of freedom are equal to the number of data points used 
in the analysis, minus the number of parameters to be estimated. Page 4 of Output 4.2 indicates that the 
current analysis has 21 functions (or observations) and 17 parameters; hence 21 minus 17 equals the 4 degrees 
of freedom associated with this test. 
 
It is also useful to think of the degrees of freedom as being equal to the number of restrictions that are placed 
on the data. Remember that, if your model were a fully recursive (or saturated) model, then no restrictions 
would have been placed on any of the relationships; every variable would be connected to every other variable 
by either a directional path or a double-headed arrow. You did, however, impose some restrictions in order to 
create the model tested here. Specifically, you fixed the following four paths to be zero: the path from V3 to 
V1; the path from V4 to V1; the path from V5 to V2 and; the path from V6 to V2. Fixing these paths to be 
equal to zero had the effect as eliminating them from your path model. Imposing these four restrictions 
resulted in four degrees of freedom and made it possible to assess your model with the chi-square test. 
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As previously noted, chi-square values should be nonsignificant suggesting that derived data do not differ from 
the population from which they were drawn. This criterion, however, is rarely met. In part, this is due to sample 
size sensitivity (i.e., small differences emerge as significant with large samples). Nonetheless, the chi-square 
statistic is traditionally reported as a matter of convention. Today, the chi-square statistic is no longer seen as a 
viable goodness-of-fit statistic. 

The chi-square test also requires that data demonstrate multivariate normality. If the data are leptokurtic 
(peaked), a well-fitting model is more likely to be rejected. In contrast, if data are platykurtic (flat), the analysis 
is likely to fail to reject a poorly fitting model (Anderson and Gerbing 1988). When data demonstrate high or 
low kurtosis, they should be transformed and/or a search for outliers should be conducted (Tabachnick and 
Fidell 2012).  

Step 2: Reviewing Contemporary Goodness-of-Fit Indices   
Today there are numerous alternatives to the chi-square test and it is convention in path analytic research with 
programs such as PROC CALIS to report at least three. However, no consensus yet exists as to which three 
should be reported (McDonald and Ho 2002; Sun 2005). We, however, recommend that one absolute index 
(e.g., Standardized Root Mean Square Residual), a parsimony index (e.g., Root Mean Square Error of 
Approximation + 90% confidence limit), and an incremental index (e.g., Comparative Fit Index) should be 
reported. In addition to our suggestions, there are a multitude of other equally acceptable goodness-of-fit 
statistics reported in the SAS output such as the Adjusted Goodness of Fit Index. These are generated by PROC 
CALIS and presented again as Output 4.4.  

Output 4.4: Output (Page 5), Analysis of Initial Model for Investment Model Study 

Fit Summary 

Modeling Info N Observations 240 

 N Variables 6 

 N Moments 21 

 N Parameters 17 

 N Active Constraints 0 

 Baseline Model Function Value 2.9937 

 Baseline Model Chi-Square 715.4838 

 Baseline Model Chi-Square DF 15 

 Pr > Baseline Model Chi-Square <.0001 

Absolute Index Fit Function 0.1564 

 Chi-Square 37.3889 

 Chi-Square DF 4 

 Pr > Chi-Square <.0001 

 Z-Test of Wilson & Hilferty 4.9302 

 Hoelter Critical N 61 

 Root Mean Square Residual (RMSR) 0.2258 

 Standardized RMSR (SRMSR) 0.0645 

 Goodness of Fit Index (GFI) 0.9538 
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Parsimony Index Adjusted GFI (AGFI) 0.7574 

 Parsimonious GFI 0.2543 

 RMSEA Estimate 0.1869 

 RMSEA Lower 90% Confidence Limit 0.1350 

 RMSEA Upper 90% Confidence Limit 0.2438 

 Probability of Close Fit <.0001 

 ECVI Estimate 0.3030 

 ECVI Lower 90% Confidence Limit 0.2354 

 ECVI Upper 90% Confidence Limit 0.4027 

 Akaike Information Criterion 71.3889 

 Bozdogan CAIC 147.5598 

 Schwarz Bayesian Criterion 130.5598 

 McDonald Centrality 0.9328 

Incremental Index Bentler Comparative Fit Index 0.9523 

 Bentler-Bonett NFI 0.9477 

 Bentler-Bonett Non-normed Index 0.8213 

 Bollen Normed Index Rho1 0.8040 

 Bollen Non-normed Index Delta2 0.9531 

 James et al. Parsimonious NFI 0.2527 

The Comparative Fit Index (CFI) is likely the most commonly reported incremental index, which Bentler 
(1990) has described as the statistic of choice for analysis of covariance structures. The CFI adjusts for degrees 
of freedom providing a complete measure of sample covariation (i.e., measures the relative fit between a 
specified model and a baseline null model; Kline 2005). According to Hu and Bentler (1999), CFI values 
greater than .94 are suggestive of good fit between data and hypothesized models.  

A commonly reported parsimony index is the Root Mean Square Error of Approximation (RMSEA), which 
has also been described as a population-based absolute fit index. As noted by Sun (2005), the RMSEA is one of 
the most informative goodness-of-fit indices because it considers overall error in the population. In other words, 
the RMSEA estimates error of approximation in the population (Byrne 2009; Kline 2005). We will discuss the 
RMSEA again in the next chapter because this statistic can also be used to estimate the statistical power of 
models with latent variables (Chapters 5 and 6). This ability to estimate fit relative to a reference population 
allows the RMSEA to be used to estimate sample size requirements when planning to undertake a new study. 
The latter allows the researcher to determine how many participants need be recruited to attain sufficient 
statistical power (MacCallum, Browne, and Cai 2006). 

Similar to other parsimony indices, the RMSEA adjusts for degrees of freedom, and thus penalizes for model 
complexity. RMSEA values less than .09 are suggestive of fair or adequate error of approximation, whereas 
values less than .055 suggest small error (Browne and Cudeck as cited in Byrne, 2009; Hu and Bentler 1999). 
RMSEA = 0 suggests exact model fit of approximation (MacCallum et al. 1996). The confidence limits are 
commonly reported for RMSEA values representing the likely range for this statistic within 90% certainty 
(CL90). In other words, there is a 90% likelihood that the true value within the population for this statistic falls 
within this range (MacCallum, Browne, and Sugawara 1996).  

This feature is another positive aspect of the RMSEA relative to other goodness-of-fit statistics. When the range 
of confidence limits are within good (i.e., .09 ≥  RMSEA CL90  ≥ .00) to ideal parameters (i.e.,  .054 ≥  RMSEA 
CL90  ≥ .000), the researcher has greater confidence that data fit the model effectively as there is only a 1 in 10 
chance that the true RMSEA value within the population falls outside of this range. Strong path models (e.g., 
large sample size, large numbers of degrees of freedom) will exhibit narrow confidence intervals (MacCallum et 
al. 1996). 
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Instead of the chi-square statistic, the Standardized Root Mean Square Residual (SRMR) is an absolute index 
reported more frequently by contemporary social science researchers. The SRMR is calculated as the 
standardized difference between an observed and predicted correlation. This statistic does not penalize for 
model complexity in contrast to parsimony indices. A SRMR value of zero indicates perfect fit. Similar to the 
RMSEA, values less than .09 are suggestive of fair or adequate fit, whereas SRMR values less than .055 suggest 
good fit (Hu and Bentler 1999). Unlike most other statistics described in this text, both the SRMR and the 
RMSEA are traditionally reported to three decimal places. This is because small differences often distinguish 
SRMR and RMSEA values between models. 

A final index that can be of use in specific instances is the Expected Cross-Validation Index (ECVI), which is 
used to compare competing models. Unlike chi-square difference tests, which require that models be nested 
(i.e., a subset of the other), the ECVI does not have this requirement. (More information on this point regarding 
nesting of models can be found at the end of this chapter.)  No specific parameters for model acceptance or 
rejection exist for ECVI values; instead, this statistic assesses the likelihood that a model cross-validates across 
similar sized samples from the same population. In other words, the ECVI is used to compare competing 
models with smaller values suggestive of greater generalizability (Byrne 1998).  

PROC CALIS reports 90% confidence limits for ECVI values similar to the RMSEA. When a model has a 
lower ECVI value, and when the ECVI value for a competing model is above the upper 90% confidence limit of 
the first model, you can conclude with greater confidence that the first is the better of the two competing 
models. For example, assume that for path model A, ECVI = 1.52, and upper and lower 90% confidence limits 
for this statistic were 1.73 and 1.35, respectively. If the ECVI value for a competing non-nested path model B 
had an ECVI value greater than 1.73 (e.g., ECVI = 1.84), you would be more confident in your ability to 
contend that path model A is more likely to be replicated with other samples drawn from this population. The 
most ideal scenario is when there is no overlap between confidence limits for the ECVI values of the two 
competing models, but this is not a mandatory criterion to select one non-nested model over another. 

Each of these goodness-of-fit statistics is reported by PROC CALIS in Output 4.3. Although the Comparative 
Fit Index is within optimal parameters (i.e., CFI = .95), neither the Root Mean Square Error of Approximation 
(RMSEA = .187; .244 ≥ RMSEA CL90 ≥ .135) nor the Standardized Root Mean Residual (SRMR = .065) 
indicate good model fit to data. 

Preliminary results provide mixed support for the model as initially estimated. These indices suggest that there 
may be merit to this model, but that revisions are likely required to identify relationships among variables more 
accurately. These results also provide a good example of why it is important to examine and report more than 
one goodness-of-fit index when computing path analytic models. Had only the CFI been examined, you might 
have concluded that the model was satisfactory as initially specified. 

Step 3: Reviewing R2 Values for the Endogenous Variables 
Remember that path analysis is often conducted because you want to identify the variables that determine 
variability in the endogenous, or dependent, variables. Although the preceding indices may reflect the goodness 
of fit between a model and a specific dataset, they do not necessarily reflect the extent to which the independent 
variables in the model account for variability in the dependent variables.  

Fortunately, however, PROC CALIS also reports R2 values for all endogenous variables included in the model. 
These R2 values indicate the percent of variance in the endogenous variables accounted for by their antecedents. 
As with multiple regression, R2 values may range from 0 to 1 with larger values indicating a greater percent of 
explained variance. 

In the present analysis, R2 values appear at the bottom of page 6 of the output, in the table titled “Squared 
Multiple Correlations.”  This table is presented as part of Output 4.5. 
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Output 4.5: Output (Page 6), Analysis of Initial Model for Investment Model Study 

Covariance Structure Analysis: Maximum Likelihood Estimation 
 

Linear Equations 

V1 =  0.3888 * V2 + 0.4828 * V5 + -0.5184 * V6 + 1.0000  E1 

Std Err   0.0507  PV1V2  0.0593  PV1V5  0.0492  PV1V6     

t Value   7.6694    8.1486    -10.5450       

V2 =  0.7387 * V3 + -0.4308 * V4 + 1.0000  E2     

Std Err   0.0688  PV2V3  0.0612  PV2V4         

t Value   10.7407    -7.0445           

 

Estimates for Variances of Exogenous Variables 

Variable 
Type Variable Parameter Estimate 

Standard 
Error t Value 

Error E1 VARE1 1.61813 0.14802 10.93161 

 E2 VARE2 1.42946 0.13076 10.93161 

Observed V3 VARV3 1.56876 0.14351 10.93161 

 V4 VARV4 1.98415 0.18151 10.93161 

 V5 VARV5 2.42581 0.22191 10.93161 

 V6 VARV6 3.49727 0.31992 10.93161 

 

Covariances Among Exogenous Variables 

Var1 Var2 Parameter Estimate 
Standard 

Error t Value 

V3 V4 CV3V4 -0.77716 0.12470 -6.23211 

V3 V5 CV3V5 1.04288 0.14308 7.28856 

V3 V6 CV3V6 -0.95121 0.16353 -5.81680 

V4 V5 CV4V5 -0.40675 0.14433 -2.81819 

V4 V6 CV4V6 0.92856 0.18067 5.13955 

V5 V6 CV5V6 -1.14585 0.20246 -5.65961 

 

Squared Multiple Correlations 

Variable Error Variance Total Variance R-Square 

V1 1.61813 4.97275 0.6746 

V2 1.42946 3.14850 0.5460 

 
In the present theoretical model, V1 (commitment) was said to be directly determined by V2 (satisfaction), V5 
(investments), and V6 (alternatives). The preceding output shows that these three variables account for 67% of 
the variance in commitment. Most researchers would consider this to be a large percent of the variance (though 
the figure is probably somewhat inflated since the same method was used to assess both independent and 
dependent variables). In your model, V2 (satisfaction) was predicted to be directly affected by V3 (rewards) and 
V4 (costs). These variables account for 55% of the variance in satisfaction, again a substantial proportion of the 
variance. 
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Step 4: Reviewing Significance Tests for Path Coefficients and Covariances 
As discussed, the CFI, SRMR, and RMSEA are examined to assess overall fit of data to the model. Even if each 
indicated good fit, it is still necessary to inspect specific features of the model to see if any of the individual 
features fail to receive support. In other words, goodness-of-fit statistics are examined to assess overall model 
features; individual elements of the model must also be examined. 

For example, the present model predicts that satisfaction will have a significant effect on commitment. To test 
this prediction, it is necessary to ascertain the significance of the path coefficient that represents the effect of 
satisfaction on commitment. If this coefficient is significantly different from zero, then prediction receives 
support. 

Significance tests for path coefficients appeared on page 7 of the present SAS output, under the heading 
“Standardize Results for Linear Equations.”  The equation for V2 (satisfaction) in this table is presented again 
as Output 4.6: 

Output 4.6: Standardized Results for Variable V2 (Satisfaction), Analysis of Initial Model for Investment  
                    Model Study 

Standardized Results for Linear Equations 

V2 =  0.5214 * V3 + -0.3420 * V4 + 1.0000  E2     

Std Err   0.0441  PV2V3  0.0474  PV2V4         

t Value   11.8154    -7.2228           

The first line of this output provides the manifest variable equation itself. V2 (satisfaction) is on the left of the 
equals sign because it is the endogenous variable being predicted; V3 (rewards) and V4 (costs) are on the right 
of the equals sign because they are the independent variables.  

A given path coefficient appears just before the short name for the predictor variable. The preceding output 
therefore shows that the path coefficient for V3 is .52, and the coefficient for V4 is -.34. (Notice the minus sign 
in the equation.) The signs of these coefficients are as you would expect; it makes sense that rewards would be 
positively associated with satisfaction and that costs would be negatively associated. 

Notice that the path coefficient for E2 (the residual term) is 1.00. This is because this coefficient was fixed at 
1.00 in the SAS program. 

Given the definition of path coefficients, the preceding values indicate that for a one-unit increase in V3, there 
is an increase of .52 units in V2 while holding constant the effects of the other independent variables. 
Furthermore, for a one-unit increase in V4, there is a decrease of .34 units in V2, holding constant the effects of 
the other independent variables.  

Just below each path coefficient, the CALIS procedure prints that coefficient’s standard error. The standard 
error for V3 is .04. These standard errors will be valid only if the data are multivariate normal and the sample is 
adequately large (as discussed earlier in reference to the chi-square test). In addition, the standard error 
estimates may be incorrect if the analysis is based on a correlation matrix rather than a covariance matrix, even 
if the sample is relatively large. 

The t test for each path coefficient appears below the standard error for that coefficient. These t values are 
determined by dividing each appropriate path coefficient by its standard error. If the appropriate assumptions 
are met, these values are used to test the null hypothesis that the corresponding path coefficient is equal to zero 
in the population. Because these t tests are equivalent to large-sample z tests, they are statistically significant at 
the p < .05 level whenever their absolute value exceeds 1.96 (two-tailed test). In other words, any path 
coefficient may be viewed as statistically different from zero if the value of its t statistic is greater than1.96. 
The path coefficient is significant at the .01 level if t exceeds 2.58.  
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Because the t values for V3 and V4 are 11.82 and -7.22, respectively, it is clear that both of these paths are 
significant. Nonetheless, even significant path coefficients must be viewed with caution within models where 
overall fit is questionable as is the case here. 

Notice at the top of page 8 (Output 4.5), another set of parameter estimates first appear in the output; these are 
unstandardized estimates. There are two conventions when reporting the results of path analyses: Authors either 
report unstandardized parameter estimates and their associated standard errors; or they report standardize 
estimates and associated t values. We recommend the latter. This is because Standardized path coefficients 
are easier to interpret since these coefficients are all on the same scale of measurement (i.e., all variables have a 
standard deviation of 1.00). As a result, it is possible to compare the size of standardized path coefficients of 
independent variable to determine their relative effect on dependent variables.  

The standardized coefficients from the current analysis are again presented here as Output 4.7. You can see that 
the standardized path coefficient for the effect of V2 on V1 is .31 (t = 7.66, p < .01). This means that there is an 
increase of .31 standard deviations in V1 for an increase of 1 standard deviation in V2, while holding constant 
the effect of the other independent variables.  

Output 4.7: Equations with Standardized Path Coefficients, Analysis of Initial Model for Investment  
                    Model Study 

Standardized Results for Linear Equations 

V1 =  0.3094 * V2 + 0.3372 * V5 + -0.4348 * V6 + 1.0000  E1 

Std Err   0.0404  PV1V2  0.0412  PV1V5  0.0401  PV1V6     

t Value   7.6574    8.1948    -10.8322       

V2 =  0.5214 * V3 + -0.3420 * V4 + 1.0000  E2     

Std Err   0.0441  PV2V3  0.0474  PV2V4         

t Value   11.8154    -7.2228           

 

How do I test the significance of the correlations between exogenous variables?  Earlier, Output 4.7 
reported t values for each covariance specified in the model. These statistics test the null hypothesis that the 
covariance (or correlation) between a given set of variables is zero in the population. Although the statistical 
significance of covariances is usually of less interest to researchers than the significance of path coefficients, 
these tests are still useful for obtaining a more complete understanding of how model variables are related to 
one another. 

 

Characteristics of Ideal Fit 
As the preceding sections suggest, assessing the adequacy of a path model is no simple matter; there are a 
number of statistical tests and goodness-of-fit indices that must be consulted. It is possible to simplify things, 
however, by summarizing the characteristics that would be displayed by a model demonstrating “ideal” fit to 
data: 

• The Comparative Fit Index (CFI) should exceed .94, the Standardized Root Mean Square Residual 
should be less than .055, and the Root Mean Square Error of Approximation should also be less than 
.060 and with 90% confidence limits, .09 ≥ RMSEA CL90 ≥ .00 (or ideally .054 ≥ RMSEA CL90 ≥ 
.000). 

• The R2 value for each endogenous variable should be relatively large, compared to what has previously 
been reported in research examining these variables. 

• The absolute value of the t statistics for each path coefficient should exceed 1.96 and the standardized 
path coefficients should be nontrivial in magnitude (i.e., alpha values should exceed .05). 
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Remember that a model does not necessarily have to display all of these characteristics to be considered 
acceptable; the literature contains many examples in which models that fail to demonstrate one or more of the 
preceding traits. For instance, it is not uncommon to obtain an ideal RMSEA value with its confidence limit 
exceeding the .09 upper threshhold; this is more likely with smaller samples. Nonetheless, the preceding 
provides useful standards against which models can be compared. You can have confidence in a path model that 
does demonstrate these characteristics. 

Modifying the Model 
When researchers perform path analysis, they usually hope that the results will reveal a good fit between the 
model and data. If such a fit is obtained, then the model has survived an attempt at disconfirmation (i.e., reject 
the null hypothesis). The analysis terminates at that point. 

But what if the theoretical model does not demonstrate a good fit? In virtually all cases, the researcher needs to 
modify this initial model to better account for the relationships among observed variables. For example, if the 
theoretical model predicts no path from variable X to variable Y, but there actually appears to be a rather strong 
relationship between these variables, the researcher may add the path, revise the PROC CALIS program to 
reflect this change, recompute the program, and ascertain whether the revised model now demonstrates good fit.  

In practice, you typically should rely on a number of modification indices to determine how the model should 
be changed. For example, the CALIS procedure provides a modification index called the Lagrange Multiplier 
(LM), which estimates the extent to which the model chi-square statistic would decrease (improve) if a given 
parameter were freed or allowed to be estimated (i.e., added to the model). In most cases, you will modify 
models by:  

• making the single modification that results in the greatest improvement in overall model fit 

• analyzing the fit of the revised model 

• reviewing the modification indices that are produced by that analysis to identify the next change that 
would most improve the fit of the revised model 

In this fashion, the model is modified, one parameter at a time, until an acceptable fit is obtained. 

Problems Associated with Model Modification 
Unfortunately, many researchers who modify initial models in the manner described above run the risk of 
arriving at a final invalid model even though it may effectively fit the data. Such models described as overfitted 
because they will not generalize to other samples from the population of interest (Byrne 1998).  

This is because these model modifications very often capitalize on chance characteristics of the sample data. 
When researchers perform path analysis, they normally hope that their final model will represent the true nature 
of the relationships among variables in the population, not just in the derived sample. Unfortunately, observed 
relationships will commonly differ from those existing in the population. Because no sample is perfectly 
representative of the population from which it is drawn, some differences will exist simply due to sampling 
error. Therefore, when researchers make many modifications in order to achieve better fit, chances are good that 
the resulting model will fit data only from that specific sample; it will not generalize to other samples or the 
overall population. 

The modifications described above are known as data-driven modifications because they are based on 
characteristics of sample data, not the overarching theory being tested. MacCallum, Roznowski, and Necowitz 
(1992) have identified a “worst-case scenario” in which data-driven modifications are particularly likely to lead 
to models that will not generalize. MacCallum and colleagues (1992) concluded that data-driven model 
modifications are especially likely to lead to non-generalizable models under the following circumstances: 
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• When the sample is small: MacCallum (1986) has shown that data-driven model modifications based 
on samples of fewer than 100 observations often lead to poor results.  

• When many modifications are made: When models are modified, the first few changes typically 
result in relatively large improvements in fit; successive changes generally result in increasingly 
smaller improvements. In addition, when the analysis is performed on data from a large sample, the 
largest discrepancies between the model and data are more likely to be stable (i.e., common to most 
samples drawn from the population); smaller discrepancies are more likely to be unique to that 
particular sample and thus unstable. For this reason, only the first few modifications made to the model 
have a reasonable chance of leading to a model that will generalize. If many modifications are made, 
the latter changes are more likely to capitalize on chance properties of the sample data. 

• When the modification is not interpretable or justified according to theory or prior research: 
Modifications should be made only when they can be justified in light of existing theory or prior 
research (e.g., Jöreskog and Sörbom 2001). It is bad form to make modifications only because they 
improve model fit: Revisions should be interpretable and justifiable. In other words, you should be 
able to explain why adding a given path makes sense in light of what is already known about this 
phenomenon. Despite frequent warnings, MacCallum and colleagues (1992) contend that very few 
researchers bother to justify model modifications on substantive grounds in their review of the 
literature or theory. 

Recommendations for Modifying Models 
Virtually all path analytic research needs to come to terms with problems associated with model modification. 
As previously noted, is rare that an initial theoretical model demonstrates good fit. When making model 
modifications, it is possible to minimize the pitfalls associated with this process by adhering to the following 
recommendations as suggested by MacCallum and colleagues (1992): 

• Use large samples: Some have suggested that path analysis may be performed with fewer than 100 
participants. Small samples, however, can lead to unstable solutions particularly if initial analyses are 
followed by data-driven model modifications. MacCallum and colleagues (1992) found that model 
stability was most likely with large samples or 800 or more. Ideally you should attempt to obtain 
samples of this size especially if many model modifications are anticipated. With smaller samples, 
possible unreliability should be acknowledged when discussing study limitations. 

• Make few modifications: As previously mentioned, only the first few modifications are likely to 
reflect population relationships; subsequent changes are more likely to be sample specific. 

• Make only changes that can be meaningfully interpreted: Before making changes, consider 
whether these modifications can be supported in terms of theory or prior research. These changes 
should be justified when discussing study findings. 

• Follow a parallel specification search procedure: A specification search is simply the search for 
changes that will improve model fit. MacCallum and colleagues (1992) recommend that researchers 
randomly divide large samples in two and undertake separate specification searches. If both lead to the 
same set of modifications, more confidence can be placed in the stability of the final model. This 
procedure can also be described as a replication procedure. 

• Compare alternative a priori models: Rather than beginning with a single model and then 
performing modifications until a final model fits the data, it is often preferable to begin with several 
competing models, and perform single analyses on each to determine which provides the best fit to 
data. For example, assume that Theory A states that both attitudes and intentions directly affect 
behavior, but Theory B states that attitudes affect behavior only indirectly by first influencing 
intentions (which then directly affect behavior). These alternative models may be tested. This would 
involve assessing all variables in a single large sample, then conducting one analysis of the data to test 
Theory A, and a separate analysis to test Theory B (and Theories C and D, if they exist). The results of 
these analyses could then be evaluated in terms of overall fit, interpretability, and other criteria to 
determine which theory obtained the most support. Such an approach is possible both in confirmatory 
studies based on specific, well-developed theories, as well as in exploratory studies when theory 
development is still in its earliest stages. 
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• Carefully describe the limitations of your study: Most path analytic studies in the literature are 
single-sample studies in which a series of data-driven modifications are made to arrive at a well-fitting 
model. When this approach is followed, it is important that the research report acknowledge that this 
approach can result in models that may well not generalize to the population or to other samples. The 
report should state that the model should be considered tentative until replicated with data from new 
samples. 

Modifying the Present Model 
Having reviewed the problems associated with model modifications, let’s now return to the investment model. 
Because your sample is not sufficiently large to divide into two samples for the parallel specification procedure, 
and because we are familiar with no alternative theory specifying the predicted relationships between 
commitment, satisfaction, rewards, costs, investments, and alternatives, neither of these preferred approaches is 
possible. Instead, you will review the modification indices and other results from the first analysis to see if 
changes can be made to improve the fit of the first model. To minimize the negative consequences of 
undertaking this admittedly less desirable approach, you will: 1) make as few revisions as necessary; 2) make 
only changes that can be justified (theory or existing literature) and; 3) acknowledge and discuss the limitations 
of this approach in your final report. 

In general, there are two types of changes most frequently made when modifying a path analytic model:  

• freeing parameters to be estimated (e.g., adding a new directional path or covariance) 

• constraining additional parameters to be zero (e.g., deleting an existing path or covariance) 

Bentler and Chou (1987) argue that, of these two options, the first option (adding new paths or covariance’s) 
may be somewhat more likely to capitalize on chance characteristics of the sample data and lead to an 
inaccurate final model. It is more ideal, therefore, to delete nonsignificant associations than to add new 
associations (especially if these cannot be justified on the basis of theory or existing research). 

The Significance of the Directional Paths 
Because it is generally more desirable to drop nonsignificant paths than to add new paths, you next review the 
output to determine if any path coefficients fail to attain statistical significance.  If any are nonsignificant, first 
re-estimate the model without these paths before considering the inclusion of additional parameters. 

The significance tests for these equations appear on page 7 of the SAS output and are presented again here as 
Output 4.8.  

Output 4.8: Manifest Variable Equations (Standardized Results), Analysis of Initial Model for Investment  
                    Model Study 

Standardized Results for Linear Equations 

V1 =  0.3094 * V2 + 0.3372 * V5 + -0.4348 * V6 + 1.0000  E1 

Std Err   0.0404  PV1V2  0.0412  PV1V5  0.0401  PV1V6     

t Value   7.6574    8.1948    -10.8322       

V2 =  0.5214 * V3 + -0.3420 * V4 + 1.0000  E2     

Std Err   0.0441  PV2V3  0.0474  PV2V4         

t Value   11.8154    -7.2228           

Earlier, it was stated that path coefficients are statistically significant at the .05 level if the absolute value of 
their t statistics exceed 1.96 (or less than -1.96). These results show that all five paths included in the present 
model are statistically significant and therefore should not be deleted from the model.  
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For example, consider the first equation, for the endogenous variable V1 (commitment). The path coefficient for 
independent variable V2 (satisfaction) is .31, and the t statistic for this path coefficient is 7.66. Because this t is 
larger than the standard cut-off of 1.96, it is significant at p < .05. A review of terms in this equation shows 
that the path coefficients for all independent variables (V2, V5, and V6) hypothesized to predict V1 are 
statistically significant. In the same way, both independent variables (V3 and V4) assumed to predict V2 
(satisfaction) have significant path coefficients. In other words, these results provide no empirical reason to 
drop any of the paths from this theoretical model. 

The Modification Indices 
The MODIFICATION option included in the PROC CALIS statement causes two types of modification indices 
to be produced: The Lagrange Multiplier (LM) test and the Wald test. 

First, the Lagrange Multiplier (LM) test estimates the decrease in the value of the chi-square statistic that 
would result from freeing a parameter. In practical terms, this means that the test estimates the improvement (or 
decrease) in chi-square that would result from adding a new path (or a new covariance) to your model. 
Normally, this test is used to identify new paths (or covariances) that should be added to the model to result in a 
significant decrease in chi-square. A p value accompanies this statistic; if less than .05, you may assume that 
adding this path to the model will result in a statistically significant improvement in the model chi-square. 

How do I perform a chi-square difference test? The Lagrange Multiplier (LM) provides an approximate 
test estimating the change in model fit that would result from adding a new path or covariance. A more 
accurate test can be obtained by performing a chi-square difference test. This involves:  
 
•  estimating the original model 
•  estimating the revised model in which the new path has been added 
•  calculating the difference between the two chi-square values 
 
The resulting chi-square difference also has a chi-square distribution and can be tested for statistical 
significance. This is done by referring to a table of critical chi-square values. You merely look up the critical 
value of chi-square for the change in degrees of freedom associated with this test. The number of degrees of 
freedom for the chi-square difference test is equal to the difference in degrees of freedom between models. 
These degrees of freedom are listed to the “Chi-square DF” line of the Fit Summary table (page 5). A table of 
critical chi-square values appears as Appendix C of this text. 
 
In the present case, your initial model had 4 degrees of freedom, while the revised model with the new path 
had 3 degrees of freedom. Therefore, the degrees of freedom associated with the chi-square difference test 
would be 4 – 3; ∆df = 1. A table reporting critical chi-square values shows that the critical value at 1 degree of 
freedom is 3.84 (p < .05). This means that, if the chi-square difference statistic is greater than 3.84, then 
adding the new path to the original model results in a significant improvement in model fit. 

The MODIFICATION option also requests that the Wald test be conducted. This test estimates the extent to 
which chi-square would change if a currently free parameter were fixed at zero. In practical terms, this means 
that the test estimates the change in chi-square that would result from deleting a path (or covariance) that exists 
in the current model. Normally, this test is intended to identify unimportant paths or covariances that may be 
deleted with only a small and nonsignificant increase in chi-square. A p value is also printed for this test.  

What if my output doesn’t contain the Wald test results? Wald test results are printed only when it is 
possible to drop paths or covariance estimates from a model without a significant decrease in chi-square. For 
example, the output for the current analysis does not include Wald test results; this means it is probably not 
possible to drop any of these parameters without negatively affecting model fit. As a result, the following note 
appears: “All parameters in the model are significant. No parameter can be dropped in the Wald tests.” 
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The Lagrange Multiplier tests requested by the MODIFICATION option are printed on page 8 of the SAS 
output. These indices are grouped separately for:  

• new paths between existing endogenous variables in the current model 

• new paths between existing endogenous exogenous variables in the current model predicted by 
existing exogenous variables 

• paths predicting new endogenous variables 

• paths predicting covariance between exogenous variables 

• paths between error variances and covariances in the current model 

PROC CALIS ranks Lagrange Multipliers (LM) by size in descending order. The LM statistics for the current 
analysis are presented here as Output 4.9.  

Output 4.9: Output (Page 8), Analysis of Initial Model for Investment Model Study 

 
The Largest LM Stat for Paths from Endogenous Variables 

To From LM Stat Pr > ChiSq 
Parm 

Change 

V2 V1 23.00692 <.0001 0.25212 

 

Rank Order of the 4 Largest LM Stat for Paths from Exogenous Variables 

To From LM Stat Pr > ChiSq 
Parm 

Change 

V2 V5 24.31366 <.0001 0.29035 

V2 V6 17.50883 <.0001 -0.19375 

V1 V4 0.95016 0.3297 0.07125 

V1 V3 0.09125 0.7626 0.03013 

 

The Largest LM Stat for Error Variances and Covariances 

Var1 Var2 LM Stat Pr > ChiSq 
Parm 

Change 

E2 E1 0.12752 0.7210 0.05195 

 

Rank Order of the 10 Largest LM Stat for Paths with New Endogenous Variables 

To From LM Stat Pr > ChiSq 
Parm 

Change 

V3 V2 31.10287 <.0001 -0.54559 

V5 V2 16.13929 <.0001 0.27651 

V6 V2 9.33446 0.0022 -0.26743 

V6 V1 8.32714 0.0039 -0.53205 

V5 V1 5.23777 0.0221 0.27293 

V4 V2 2.68233 0.1015 0.44922 

V4 V1 1.42528 0.2325 0.07844 

V3 V1 0.28472 0.5936 -0.02813 

V6 V5 0.12752 0.7210 -0.18283 

V4 V5 0.12752 0.7210 0.15688 
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Note: There is no parameter to free in the default LM tests for the covariances of exogenous variables. Ranking 
is not displayed. 

The Largest LM Stat for Error Variances and Covariances 

Var1 Var2 LM Stat Pr > ChiSq 
Parm 

Change 

E2 E1 0.12752 0.7210 0.05195 

The interpretation of the modification indices is easiest if you have at hand a figure displaying the model being 
estimated. Therefore, the initial model being tested in the current analysis is again reproduced here as Figure 
4.13. 

Figure 4.13: The Initial Model, Investment Model Study 

 

Remember that the LM statistics estimate reduction or improvement in chi-square values that would result from 
adding paths or additional covariance estimates to the model.  

In Output 4.9 (middle of page 10), you can see that PROC CALIS has ranked the largest LM statistics for new 
endogenous variables in the third grouping of statistics under the heading “Rank Order of the 10 Largest LM 
Stat for Paths with New Exogenous Variables.” Here, the largest LM value is 31.10, which means that the 
model chi-square value would decrease by roughly 31.10 if a path was added from V2 to V3. This would allow 
rewards (V3) to be predicted by satisfaction (V2). To the right, we see that this LM statistic would result in a 
statistically significant reduction in the chi-square statistic (p < .01). As previously noted, any change greater 
than 3.84 in chi-square (∆df=1) is statistically significant. 

Such a modification would be questionable, however, because our theory suggests that rewards predict 
satisfaction —not the other way around. Therefore this revision is not theoretically tenable. In accord with our 
third recommendation for model revision in the previous section, this change should not be made. (Note, also, 
that this change would make the model nonrecursive.) 

In Output 4.8, the next largest LM statistic appears in the second grouping under the heading “Rank Order of 
the 4 Largest LM Stat for Paths from Exogenous Variables.”  The LM statistic here suggests that a reduction in 
chi-square of roughly 24.31 would occur if a path was added in which investments (V5) was allowed to predict 
satisfaction (V2). The LM statistic suggests that your model may be significantly improved by adding this path, 
which again would result in a statistically significant change in the chi-square statistic (p < .01). In contrast to 
the previous change, this would be more consistent with theory (i.e., investment in a relationship predicting 
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satisfaction with that relationship). For the sake of demonstration, let us assume that adding this directional path 
can be justified on substantive grounds and proceed with the analysis. 

In this section of the table, notice also that the LM statistic in which alternatives (V6) is allowed to predict 
satisfaction (V2) would also be statistically significant (p < .01). The change in chi-square in this instance 
would be associated with an inverse relationship between variables. In other words, this suggests that the fewer 
one’s alternatives, the higher one’s satisfaction with a current relationship (negative parameter change 
estimate). 

However, the modification index for this change (LM = 17.51) is smaller than for the previous change (LM = 
24.31). Given that these would appear to be equally tenable changes from a theoretical standpoint, ordinarily 
you would first make the change with the larger LM statistic.  

Note also that Output 4.8 also suggests that a statistically significant change would result from including a path 
from satisfaction (V2) to investments (V5): the opposite of the change we have decided to make. Again, this 
would suggest a relationship between variables contrary to the way in which our theory was first presented. The 
LM statistic is also smaller for the V2 to V5 path versus the V5 to V2 path, suggesting that the latter is the more 
appropriate of the two. 

At this point, you might ask: Why not make both revisions at the same time? The reason to make only one 
revision at a time is that PROC CALIS is a univariate procedure. In other words, the LM statistic for V6 to V2 
may no longer be statistically significant after the initial change is made for larger V5 to V2 path estimate. This 
is because these variables are moderately correlated (r = -.39) as we can see from the correlation matrix in the 
Datalines statement of the SAS program. The risk here is overfitting the model when a single change may be 
sufficient to obtain optimal goodness of fit (i.e., make unnecessary changes which may not generalize to the 
population). Because you hope to make as few changes as necessary, you will revise your SAS program so that 
it includes only the new path from V5 to V2, and add the additional paths only if the results of the new model 
indicate that they are needed. The new model is presented as revised model 1 in Figure 4.14. 

Figure 4.14: Revised Model 1, Developed by Adding a Path from V5 (Investments) to V2 (Satisfaction) 

 

It might also be noted that it is not necessarily best to always choose the path the with the largest Lagrange 
Multiplier as the path that must be added to the model. If a path with a smaller value (also statistically 
significant) makes better sense in terms of theory or prior research, it may be added instead. 
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Creating Revised Model 1 
To change the initial model, it is only necessary to revise one line ❶ in the LINEQS statement of the PROC 
CALIS program. Specifically, the equation for the endogenous variable V2 is modified so that V5 now appears 
as a predictor of V2. Since the variables that were originally exogenous variables are still exogenous variables, 
and since all of the previous endogenous variables are still endogenous variables, it was unnecessary to change 
the VARIANCE or COV statements. Part of the revised program appears below. 

     proc calis   covariance modification ; 
        lineqs 
           V1 = PV1V2 V2 + PV1V5 V5 + PV1V6 V6 + E1, 
❶         V2 = PV2V3 V3 + PV2V4 V4 + PV2V5 V5 + E2; 
        variance 
           E1 = VARE1, 
           E2 = VARE2, 
           V3 = VARV3, 
           V4 = VARV4, 
           V5 = VARV5, 
           V6 = VARV6; 
        cov 
           V3 V4 = CV3V4, 
           V3 V5 = CV3V5, 
           V3 V6 = CV3V6, 
           V4 V5 = CV4V5, 
           V4 V6 = CV4V6, 
           V5 V6 = CV5V6; 
        var  V1 V2 V3 V4 V5 V6 ; 
        run; 

Output 4.10: Output (Pages 6 and 7), Analysis of Revised Model 1, Investment Model Study 
 

The CALIS Procedure 
Covariance Structure Analysis: Maximum Likelihood Estimation 

Linear Equations 

V1 =  0.3888 * V2 + 0.4828 * V5 + -0.5184 * V6 + 1.0000  E1 

Std Err   0.0558  PV1V2  0.0640  PV1V5  0.0491  PV1V6     

t Value   6.9659    7.5465    -10.5616       

V2 =  0.5358 * V3 + -0.4508 * V4 + 0.2903 * V5 + 1.0000  E2 

Std Err   0.0760  PV2V3  0.0581  PV2V4  0.0558  PV2V5     

t Value   7.0538    -7.7600    5.2026       

 

Estimates for Variances of Exogenous Variables 

Variable 
Type Variable Parameter Estimate 

Standard 
Error t Value 

Error E1 VARE1 1.61813 0.14802 10.93161 

 E2 VARE2 1.28404 0.11746 10.93161 

Observed V3 VARV3 1.56876 0.14351 10.93161 

 V4 VARV4 1.98415 0.18151 10.93161 

 V5 VARV5 2.42581 0.22191 10.93161 

 V6 VARV6 3.49727 0.31992 10.93161 
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Covariances Among Exogenous Variables 

Var1 Var2 Parameter Estimate 
Standard 

Error t Value 

V3 V4 CV3V4 -0.77716 0.12470 -6.23211 

V3 V5 CV3V5 1.04288 0.14308 7.28856 

V3 V6 CV3V6 -0.95121 0.16353 -5.81680 

V4 V5 CV4V5 -0.40675 0.14433 -2.81819 

V4 V6 CV4V6 0.92856 0.18067 5.13955 

V5 V6 CV5V6 -1.14585 0.20246 -5.65961 

 
 

Squared Multiple Correlations 

Variable Error Variance Total Variance R-Square 

V1 1.61813 5.22458 0.6903 

V2 1.28404 3.14850 0.5922 

 
 

The SAS System 

The CALIS Procedure 
Covariance Structure Analysis: Maximum Likelihood Estimation 

Standardized Results for Linear Equations 

V1 =  0.3018 * V2 + 0.3290 * V5 + -0.4242 * V6 + 1.0000  E1 

Std Err   0.0432  PV1V2  0.0433  PV1V5  0.0395  PV1V6     

t Value   6.9857    7.5936    -10.7411       

V2 =  0.3782 * V3 + -0.3578 * V4 + 0.2549 * V5 + 1.0000  E2 

Std Err   0.0521  PV2V3  0.0453  PV2V4  0.0487  PV2V5     

t Value   7.2587    -7.9032    5.2292       

 

Standardized Results for Variances of Exogenous Variables 

Variable 
Type Variable Parameter Estimate 

Standard 
Error t Value 

Error E1 VARE1 0.30972 0.03317 9.33758 

 E2 VARE2 0.40783 0.04060 10.04486 

Observed V3 VARV3 1.00000   

 V4 VARV4 1.00000   

 V5 VARV5 1.00000   

 V6 VARV6 1.00000   
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Standardized Results for Covariances Among Exogenous Variables 

Var1 Var2 Parameter Estimate 
Standard 

Error t Value 

V3 V4 CV3V4 -0.44050 0.05213 -8.44951 

V3 V5 CV3V5 0.53460 0.04620 11.57194 

V3 V6 CV3V6 -0.40610 0.05402 -7.51800 

V4 V5 CV4V5 -0.18540 0.06246 -2.96824 

V4 V6 CV4V6 0.35250 0.05665 6.22273 

V5 V6 CV5V6 -0.39340 0.05467 -7.19540 

In your analysis of the original model, the Lagrange Multiplier test suggested that adding the path from 
investments to satisfaction would result in a significant improvement in model chi-square statistic. But 
remember that the Lagrange Multiplier test merely provides an estimate of the improvement in model chi-
square. Since the revised model has now been calculated, it is possible to directly determine whether the model 
improvement was significant by performing the chi-square difference test discussed earlier. This process 
involves determining the difference between the chi-square values for the two models, and testing this 
difference for significance. 

The chi-square for the initial model was 37.39, while the chi-square for the revised model was 11.75. The 
difference chi-square is therefore equal to  

37.39 − 11.75 = 25.64 

The degrees of freedom for the test are obtained by subtracting the degrees of freedom for the revised model 
(df = 3) from the degrees of freedom for the original model (df = 4), resulting in 1 degree of freedom for the 
difference test (∆df=1). The table of chi-square values (Appendix C) indicates that the critical value for 1 degree 
of freedom is 3.84 (p < .05); since 25.64 is much larger than 3.84, this difference is clearly significant. In fact, 
this improvement in chi-square is significant at the p < .01, since the critical value of chi-square is 6.63 at that 
level of significance (df = 1).  

Notice that the difference in chi-square values is not exactly the same as the LM statistic obtained in Output 4.8. 
The SAS output for the first model suggested that this chi-square difference would be 24.31; instead, the value 
above is 25.64. Here, the LM statistic under-estimated the actual change in chi-square values. In other instances, 
the LM statistic will over-estimate chi-square change. This finding underscores that the LM statistic is an 
estimate; to be certain that revisions lead to statistically significant improvement, it is prudent to always 
calculate the resulting difference in chi-square values.  

Unfortunately, the goodness-of-fit statistics for this revised model (page 5) still indicate less than ideal fit. 
These are presented as Output 4.11. The Comparative Fit Index remains in optimal parameters (CFI = .99), and 
the value of the Standardized Root Mean Square Residual is now optimal as well (SRMR = .030). However, the 
Root Mean Square Error of Approximation is still large (RMSEA = .111), and almost all of the 90% confidence 
interval falls outside of ideal parameters (.180 ≥ RMSEA CL90 ≥ .049). This result suggests that the path model 
may benefit from further revision. 
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Output 4.11: Output (Page 5), Analysis of Revised Model 1 for Investment Model Study 
 

Covariance Structure Analysis: Maximum Likelihood Estimation 

Fit Summary 

Modeling Info N Observations 240 

 N Variables 6 

 N Moments 21 

 N Parameters 18 

 N Active Constraints 0 

 Baseline Model Function Value 2.9937 

 Baseline Model Chi-Square 715.4838 

 Baseline Model Chi-Square DF 15 

 Pr > Baseline Model Chi-Square <.0001 

Absolute Index Fit Function 0.0492 

 Chi-Square 11.7477 

 Chi-Square DF 3 

 Pr > Chi-Square 0.0083 

 Z-Test of Wilson & Hilferty 2.3893 

 Hoelter Critical N 159 

 Root Mean Square Residual (RMSR) 0.1069 

 Standardized RMSR (SRMSR) 0.0296 

 Goodness of Fit Index (GFI) 0.9842 

Parsimony Index Adjusted GFI (AGFI) 0.8892 

 Parsimonious GFI 0.1968 

 RMSEA Estimate 0.1105 

 RMSEA Lower 90% Confidence Limit 0.0492 

 RMSEA Upper 90% Confidence Limit 0.1802 

 Probability of Close Fit 0.0520 

 ECVI Estimate 0.2043 

 ECVI Lower 90% Confidence Limit 0.1748 

 ECVI Upper 90% Confidence Limit 0.2662 

 Akaike Information Criterion 47.7477 

 Bozdogan CAIC 128.3992 

 Schwarz Bayesian Criterion 110.3992 

 McDonald Centrality 0.9819 

Incremental Index Bentler Comparative Fit Index 0.9875 

 Bentler-Bonett NFI 0.9836 

 Bentler-Bonett Non-normed Index 0.9376 

 Bollen Normed Index Rho1 0.9179 

 Bollen Non-normed Index Delta2 0.9877 

 James et al. Parsimonious NFI 0.1967 

Lagrange Multiplier test results for the current analysis are provided in Output 4.12. As before, the LM statistic 
suggests that adding the path between alternatives (V6) and satisfaction (V2) would significantly improve the 
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model’s ability to explain variance within the dataset. You can see that the Lagrange Multiplier for V6 to V2 
(LM = 10.39) is statistically significant, p < .01, suggesting that adding this path would likely result in 
significant improved fit. For the sake of demonstration, assume that the addition of such a path is theoretically 
interpretable, and revise the SAS program to reflect this change.  

Output 4.12: Output (Page 10), Analysis of Revised Model 1, Investment Model Study 

The CALIS Procedure 
 

Covariance Structure Analysis: Maximum Likelihood Estimation 
  

Linear Equations 

V1 =  0.3888 * V2 + 0.4828 * V5 + -0.5184 * V6 + 1.0000  E1 

Std Err   0.0558  PV1V2  0.0640  PV1V5  0.0491  PV1V6     

t Value   6.9659    7.5465    -10.5616       

V2 =  0.5358 * V3 + -0.4508 * V4 + 0.2903 * V5 + 1.0000  E2 

Std Err   0.0760  PV2V3  0.0581  PV2V4  0.0558  PV2V5     

t Value   7.0538    -7.7600    5.2026       

 

Estimates for Variances of Exogenous Variables 

Variable 
Type Variable Parameter Estimate 

Standard 
Error t Value 

Error E1 VARE1 1.61813 0.14802 10.93161 

 E2 VARE2 1.28404 0.11746 10.93161 

Observed V3 VARV3 1.56876 0.14351 10.93161 

 V4 VARV4 1.98415 0.18151 10.93161 

 V5 VARV5 2.42581 0.22191 10.93161 

 V6 VARV6 3.49727 0.31992 10.93161 

 
 

Covariances Among Exogenous Variables 

Var1 Var2 Parameter Estimate 
Standard 

Error t Value 

V3 V4 CV3V4 -0.77716 0.12470 -6.23211 

V3 V5 CV3V5 1.04288 0.14308 7.28856 

V3 V6 CV3V6 -0.95121 0.16353 -5.81680 

V4 V5 CV4V5 -0.40675 0.14433 -2.81819 

V4 V6 CV4V6 0.92856 0.18067 5.13955 

V5 V6 CV5V6 -1.14585 0.20246 -5.65961 

 
 
 

Squared Multiple Correlations 

Variable Error Variance Total Variance R-Square 

V1 1.61813 5.22458 0.6903 

V2 1.28404 3.14850 0.5922 

 
The resulting model with the new path from V6 to V2 appears as revised model 2 in Figure 4.15. 
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Figure 4.15: Revised Model 2, Developed by Adding a Path from V6 (Alternatives) to V2 (Satisfaction) 

 

Creating Revised Model 2 
Below is the revised SAS program which includes the new path from V6 to V2. It was necessary to change only 
the LINEQS statement for the endogenous variable V2 on line ❶ to make this modification; all other aspects of 
the program remain the same. 

     proc calis   covariance modification ; 
        lineqs 
         V1 = PV1V2 V2 + PV1V5 V5 + PV1V6 V6            + E1, 
❶       V2 = PV2V3 V3 + PV2V4 V4 + PV2V5 V5 + PV2V6 V6 + E2; 
        variance 
          E1 = VARE1, 
          E2 = VARE2, 
          V3 = VARV3, 
          V4 = VARV4, 
          V5 = VARV5, 
          V6 = VARV6; 
        COV 
          V3 V4 = CV3V4, 
          V3 V5 = CV3V5, 
          V3 V6 = CV3V6, 
          V4 V5 = CV4V5, 
          V4 V6 = CV4V6, 
          V5 V6 = CV5V6; 
        VAR  V1 V2 V3 V4 V5 V6 ; 
        RUN; 

The SAS output created by this program was 8 pages long, parts of which are presented here as Output 4.12 and 
4.17.  

Once again, note that t values for all standardized path coefficients are statistically significant. As presented in 
Output 4.13 (page 10), we can see that this includes the new path in which satisfaction (V2) is now significantly 
predicted by alternatives (V6), t = -3.30, p < .05. This suggests that inclusion of this path has enhanced the 
model. We now look to see if there has been significant change in the chi-square statistic followed by the 
goodness-of-fit indices. 
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Output 4.13: Output (Page 10), Analysis of Revised Model 2, Investment Model Study 

 
Covariance Structure Analysis: Maximum Likelihood Estimation 

 
Standardized Results for Linear Equations 

V1 =  0.3018 * V2 + 0.3290 * V5 + -0.4242 * V6 + 1.0000  E1 

Std Err   0.0432  PV1V2  0.0433  PV1V5  0.0395  PV1V6     

t Value   6.9857    7.5936    -10.7411       

V2 =  0.3782 * V3 + -0.3578 * V4 + 0.2549 * V5 + 1.0000  E2 

Std Err   0.0521  PV2V3  0.0453  PV2V4  0.0487  PV2V5     

t Value   7.2587    -7.9032    5.2292       
 

Standardized Results for Variances of Exogenous Variables 

Variable 
Type Variable Parameter Estimate 

Standard 
Error t Value 

Error E1 VARE1 0.30972 0.03317 9.33758 

 E2 VARE2 0.40783 0.04060 10.04486 

Observed V3 VARV3 1.00000   

 V4 VARV4 1.00000   

 V5 VARV5 1.00000   

 V6 VARV6 1.00000   

The LM statistic test from the analysis of revised model 1 suggested that adding the V2 to V6 path would result 
in a significant improvement in chi-square. Once again, this should be assessed by performing a chi-square 
difference test. Revised model 1 resulted in a model chi-square value of 11.75 with 3 degrees of freedom. In the 
present analysis, the model chi-square for revised model 2 is 1.12 with 2 degrees of freedom. The chi-square 
difference value is therefore  

11.75 – 1.12 = 10.63 

with difference test degrees of freedom equal to  

3 − 2 = 1   

The critical value of chi-square with 1 degree of freedom is 3.84 for p < .05 (6.63 for p < .01), so it is clear that 
adding the V2 to V6 path did result in a significant improvement in model fit. Once again, this change in chi-
square value is slightly more than estimated by the LM statistic of 10.39 predicted for inclusion of the V6 to V2 
path (Output 4.14).  
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Output 4.14: Output (Page 6), Analysis of Revised Model 2, Investment Model Study  
 

Covariance Structure Analysis: Maximum Likelihood Estimation 

Fit Summary 

Modeling Info N Observations 240 

 N Variables 6 

 N Moments 21 

 N Parameters 18 

 N Active Constraints 0 

 Baseline Model Function Value 2.9937 

 Baseline Model Chi-Square 715.4838 

 Baseline Model Chi-Square DF 15 

 Pr > Baseline Model Chi-Square <.0001 

Absolute Index Fit Function 0.0492 

 Chi-Square 11.7477 

 Chi-Square DF 3 

 Pr > Chi-Square 0.0083 

 Z-Test of Wilson & Hilferty 2.3893 

 Hoelter Critical N 159 

 Root Mean Square Residual (RMSR) 0.1069 

 Standardized RMSR (SRMSR) 0.0296 

 Goodness of Fit Index (GFI) 0.9842 

Parsimony Index Adjusted GFI (AGFI) 0.8892 

 Parsimonious GFI 0.1968 

 RMSEA Estimate 0.1105 

 RMSEA Lower 90% Confidence Limit 0.0492 

 RMSEA Upper 90% Confidence Limit 0.1802 

 Probability of Close Fit 0.0520 

 ECVI Estimate 0.2043 

 ECVI Lower 90% Confidence Limit 0.1748 

 ECVI Upper 90% Confidence Limit 0.2662 

 Akaike Information Criterion 47.7477 

 Bozdogan CAIC 128.3992 

 Schwarz Bayesian Criterion 110.3992 

 McDonald Centrality 0.9819 

Incremental Index Bentler Comparative Fit Index 0.9875 

 Bentler-Bonett NFI 0.9836 

 Bentler-Bonett Non-normed Index 0.9376 

 Bollen Normed Index Rho1 0.9179 

 Bollen Non-normed Index Delta2 0.9877 

 James et al. Parsimonious NFI 0.1967 

We now turn attention to the goodness-of-fit statistics also on this page (Output 4.14) for this model. Each of 
the three indices previously examined is now within optimal parameters as: CFI = 1.00; SRMR = .006; and 
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RMSEA = .000. Also of note, the range of RMSEA confidence limit is only marginally higher than the 
threshold value of .09 (.000 ≥ RMSEA CL90 ≥ .108), providing greater confidence in this RMSEA statistic. 

Ordinarily this would end the process but, for the sake of consistency, let’s examine the modification indices to 
see if any additional revisions might further improve goodness of fit. As presented in Output 4.17 (page 8), the 
inclusion of no other paths that would further enhance model fit. This is noteworthy when we compare this 
output with that of the previous model (Output 4.14) in which it appeared as many as seven adjustments might 
be made to the model to significantly reduce the chi-square statistic. The finding that a single change can result 
in no further modification indices appear significant underscores the previous point that model revisions should 
always be made one change at a time. 

Output 4.15: Output (Page 11), Analysis of Revised Model 2, Investment Model Study 

 

The Largest LM Stat for Paths from Endogenous Variables 

To From LM Stat Pr > ChiSq 
Parm 

Change 

V2 V1 7.07961 0.0078 0.16690 

 

Rank Order of the 3 Largest LM Stat for Paths from Exogenous Variables 

To From LM Stat Pr > ChiSq 
Parm 

Change 

V2 V6 10.39161 0.0013 -0.14604 

V1 V4 0.97719 0.3229 0.07327 

V1 V3 0.08090 0.7761 0.02671 

 

Rank Order of the 10 Largest LM Stat for Paths with New Endogenous Variables 

To From LM Stat Pr > ChiSq 
Parm 

Change 

V5 V2 10.39161 0.0013 -0.94242 

V6 V2 10.39161 0.0013 -0.29772 

V4 V2 10.39161 0.0013 0.96757 

V3 V2 10.39161 0.0013 -1.22064 

V6 V1 8.79803 0.0030 -0.56212 

V4 V1 1.80305 0.1793 0.09004 

V5 V1 1.37989 0.2401 -0.17714 

V6 V5 0.24830 0.6183 -2.96748 

V3 V5 0.24830 0.6183 -0.17637 

V3 V4 0.24830 0.6183 0.08096 

 

Note: There is no parameter to free in the default LM tests for the covariances of exogenous variables. Ranking 
is not displayed. 

The Largest LM Stat for Error Variances and Covariances 

Var1 Var2 LM Stat Pr > ChiSq 
Parm 

Change 

E2 E1 0.24830 0.6183 0.07264 
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Choosing a Final Model 
At this point, three models have been computed for this study:  

• the initial investment model (as illustrated in Figure 4.13) 

• revised model 1, in which a path from investments to satisfaction had been added to the initial model 
(as illustrated in Figure 4.14) 

• revised model 2, in which a path from alternatives to satisfaction had been added to revised model 1 
(as illustrated in Figure 4.15) 

In an actual analysis, you would decide at this point which to present as the “final model” in the research report. 

The decision is not always straightforward. On empirical grounds, it is difficult to justify accepting the initial 
modal as a final model given the less than ideal goodness-of-fit statistics (e.g., SRMR = .065, RMSEA = .187; 
.135 ≤ RMSEA CL90 ≤ .244). Of note, only negligible improvement was observed with the first revision in 
which the path between investments and satisfaction was added even though the t value for this path estimate 
was statistically significant; the resulting change in the chi-square statistic was also statistically significant 
(p < .01). The third model, however, exhibited ideal goodness-of-fit including the chi-square statistic; also, there 
were no significant modification indices subsequent to this revision. 

To summarize, the positive features of this second revised model are: 

• all path coefficients were statistically significant and nontrivial in size 

• R2 values for both predicted variables were large 

• CFI > .94, SRMR < .05, and RMSEA < .05 with a 90% confidence interval for the RMSEA largely 
within acceptable parameters 

Furthermore, significant change from the previous chi-square statistic (first revised model) was observed and no 
remaining modification indices suggested room for additional model enhancements. 

On the negative side, however, this second revised model cannot be characterized as parsimonious. A 
parsimonious model is one that accounts for covariation in the data with a minimal number of parameters. In 
revised model 2, nearly every variable is interconnected by paths or curved double-headed arrows. This lack of 
parsimony is reflected in the fact that the final model has only two degrees of freedom. This is an instance 
where it would be ideal to replicate findings with a separate dataset in order to have greater confidence in the 
generalizability of the model. 

The final decision should be based on the preceding considerations along with knowledge of theory and existing 
research in the topic area. Assuming that prior findings support acceptance of the final model, the following 
summary provides an example of how to synthesize and describe path analytic research findings. 

Preparing a Formal Description of the Analysis and Results for a Paper 
The results section of a path analytic study can be much longer than the result sections of studies that use 
simpler statistical procedures. This is because, in most path analytic studies, the initial model fails to provide an 
adequate fit to the data and is subsequently modified. The research report must describe the rationale for these 
modifications and how they were made; this is usually done in the results section. 

Preparing Figures and Tables 

The Figures 
It will be much easier for the reader to understand your report if you organize the text around a few figures and 
tables. In student term papers, it is common to illustrate your initial theoretical model. This figure will appear 
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along with the hypotheses to be tested. It is less common for this initial or hypothesized figure to be depicted 
these days in scientific journals due to space constraints. 

However, it is common for journal articles to depict the “final” version of the path model after all modifications 
have been made. It is convention to report t values along with standardized estimates (vs. unstandardized 
estimates and standard errors). Figure 4.16 depicts the final revised model. 

Figure 4.16: Revised Model 2  

 

The Tables 
In most research papers published in the social sciences (including most path-analytic studies), one of the first 
tables presented should provide simple descriptive statistics for the study’s variables, including the means, 
standard deviations, and intercorrelations. This enables subsequent researchers to repeat your analyses in accord 
with the publication guidelines of the American Psychological Association (2009). An example of such a table 
is presented as Table 4.2. 

Table 4.2: Means, Standard Deviations, Internal Consistency Estimates (in Parentheses), and  
                 Intercorrelations for the Investment Study Variables 

Measure M SD 1 2 3 4 5 6 
1. Commitment 7.42 2.32 (.81)      
2. Satisfaction 7.88 1.77  .67 (.92)     
3. Rewards 7.92 1.25  .55  .67 (.77)    
4. Costs 3.74 1.41 -.35 -.57 -.44 (.71)   
5. Investment size 6.55 1.50  .64  .52  .53 -.19 (.86)  
6. Alternative value 3.18 1.87 -.69 -.50 -.41  .35 -.39 (.85) 

 
Note: N = 240. Cronbach’s alpha (internal consistency) estimates are reported in parentheses.  

An additional table that will prove useful to your readers summarizes the goodness-of-fit indices obtained for 
the different path models. Such a table is presented as Table 4.3. 
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Also reported as either part of the final figure itself (cf. Bachner, O’Rourke, and Carmel 2011) or as a separate 
table, standardized path coefficients and associated t values are reported for the final model. This table is 
presented here as Table 4.3. 

Table 4.3: Standardized Path Coefficients and Associated Significance Values (t values)  

Paths Standardized Path Coefficients t Values 
Satisfaction to commitment  .30     6.67 
Investment size to commitment  .32     7.67 
Alternative value to commitment -.42   -10.25 
Rewards to satisfaction  .35     6.81 
Costs to satisfaction -.32    -7.02 
Investment size to satisfaction  .21     4.34 
Alternative value to satisfaction -.15     3.30 
Note: N = 240. Statistically significant t values > |1.96| 

* p < .05    ** p < .01 

The columns of Table 4.4 present the goodness-of-fit statistics (and degrees of freedom) for the models 
computed in this chapter:  

• the chi-square statistic, along with degrees of freedom and p values associated with change in the chi-
square statistic 

• the Comparative Fit Index (CFI) 

• the Standardized Root Mean Square Residual (SRMR) 

• the Root Mean Square Error of Approximation (RMSEA) and 90% confidence limits 

Table 4.4 presents goodness-of-fit indices for four models, though only the last is of primary interest. The first 
or the “null model” represents a hypothetical path model in which none of the variables are related to any of the 
other variables. This chi-square value is used as a baseline statistic to compare subsequent models. Here, Table 
4.4 reports a null model chi-square value of 715.48 with 15 degrees of freedom. Both subsequent models 
demonstrate significant reductions in chi-square taking into account change in degrees of freedom. This 
provides support for model revisions. 

Table 4.4: Goodness-of-Fit Indices for Various Models, Investment Model Study (N = 240) 

Model χ2 df ∆χ2 ∆df CFI SRMR RMSEA (RMSEA CL90) 
Baseline model 715.48 15       
Initial model 37.39 4 678.09** 11 .95 .065 .187 (.244-.135) 
Revised model 1 11.75 3 26.64** 1 .99 .030 .111 (.180-.049) 
Revised model 2 1.12 2 10.63** 1 .98 .006 .000 (.108-.000) 
Note: χ2 = chi-square; df = degrees of freedom; CFI = Comparative Fit Index; SRMR = Standardized Root 
Mean Square Residual; RMSEA = Root Mean Square Error of Approximation; RMSEA CL90 = RMSEA 90% 
Confidence Limits. 

Preparing Text 
There is a great deal of variability in the way that the results of path analyses are described. To a large extent, 
the way the results section is written will depend on factors such as the hypotheses being tested and the number 
and nature of the models being compared. If you are just learning path analysis, you should review several 
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published studies to see the range of styles (and extent of reported detail) from discipline to discipline. The 
following represents just one approach that could be used to discuss the results of the present study.  

Path analysis was performed to assess the viability of a theoretical model testing elements of Rusbult’s (1980) 
Investment Model. These analyses were conducted using PROC CALIS (maximum likelihood method of 
parameter estimation) based on the variance-covariance matrix. Our sample size of 240 participants provides 
sufficient power to detect medium to large effect sizes. 
 
Goodness-of-fit indices for the various models are presented in Table 4.4. The chi-square statistic is reported 
to enable comparisons between the baseline or null model and subsequent revised models. This table also 
reports the Standardized Root Mean Square Residual (SRMR), the Comparative Fit Index (CFI), the Root 
Mean Square Error of Approximation (RMSEA), and 90% confidence limits for the RMSEA statistic 
(RMSEA CL90). Values for the CFI greater than .94 suggest good fit between data and path models (Hu and 
Bentler 1999), whereas SRMR and RMSEA values less than .090 suggest acceptable fit, and values less than 
.055 suggest good model fit (McDonald and Ho 2002). Ideally, the full 90% range for the RMSEA is 
inacceptable to ideal limits (Byrne 2009; McDonald and Ho 2002). 
 
In accord with theory, the initial theoretical Investment Study model hypothesized that Rewards, Costs, 
Investment Size, and Alternative Value would each significantly predict Satisfaction with one’s current 
relationship; Satisfaction would, in term, predict Commitment to the relationship (along with Investment Size 
and Alternative Value). The four exogenous variables (Rewards, Costs, Investment Size, and Alternative 
Value) were all assumed to be correlated. 
 
Estimated path coefficients for this initial or hypothesized model each differed significantly from zero, χ2 (4, 
N=240) = 37.39, p < .01. Squared multiple correlation values for both Commitment (R2 = .67) and 
Satisfaction (R2 = .55) indicate that predictor variables capture large percentages of observed variance for both 
dependent variables. 
 
Although the CFI for this model suggested good fit to derived (CFI = .95), other indices indicated poor model 
fit (i.e., SRMR = .065; RMSEA = .187). Of note, the full range of 90% confidence limits for this RMSEA 
value fell outside of acceptable parameters (.244 ≥ RMSEA CL90 ≥ .135). Modification indices were next 
examined to ascertain if suggested revisions were theoretically tenable.  
 
First, the path coefficients were reviewed to see if any of the paths in the initial model should be deleted. As 
previously noted, t values for all path coefficients were statistically significant (p < .05). Therefore none of the 
existing paths were eliminated from the initial model as confirmed by examination of the results of Wald tests. 
 
Examination of Lagrange Multipliers (LM) suggested that the model could be significantly improved by 
adding a path from investment size to satisfaction. Adding this path would be consistent with cognitive 
dissonance theory (Festinger 1957), which contends that individuals adjust their attitudes in order for these 
attitudes to be consistent with their decisions and behaviors (i.e., investment of time and effort in a 
relationship). Because a theoretical basis exists for making this revision, a path from Investment Size to 
Satisfaction was added to the initial model. The resulting model, called “revised model 1,” was then re-
estimated. 
 
As expected, the standardized path coefficient for this path proved to be statistically significant, t = 5.23, 
p < .05). A chi-square difference test also confirmed that the addition of this path resulted in a significant 
improvement in model fit. Comparison of the chi-square statistic for the initial model to the chi-square 
statistic for revised model 1 indicated that the new path resulted in a significant improvement in model fit, 
∆χ2(∆df=1) = 26.64, p < .01. Of further note, the squared multiple correlation value for Satisfaction (R2 = .59) 
increased with the inclusion of the additional predictor variable; R2 = .69 for Commitment. 
 
However, goodness-of-fit statistics for this revised model remained less than ideal. Both the CFI (.99) and 
SRMR (.030) are now in ideal parameters, yet the RMSEA (.111) and the full 90% confidence interval for this 
statistic remain less than ideal  (.180 ≥ RMSEA CL90 ≥ .049).  
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Modification indices were again examined to ascertain if another theoretically tenable revision might be 
made. A statistically significant Lagrange Multiplier indicated that a path from Alternative Value to 
Satisfaction might be added (LM = 10.39, p < .01). Once again, this revision is theoretically tenable as 
cognitive dissonance theory would support the assertion that relationship satisfaction would be greater when 
fewer alternatives to that relationship seem to exist (Festinger 1957). We therefore modified revised model 1 
by adding a path from Alternatives to Satisfaction. The resulting model was called revised model 2.  
 
The standardized path coefficients for revised model 2 are reported in Table 4.3. Path coefficients, including 
the new path between Alternatives and Satisfaction, significantly differ from zero (i.e., t values > |1.96|, 
p < .05). As reported in Table  4.4, the chi-square difference test resulted in significant improvement in model 
fit, ∆χ2(∆df=1) = 10.63, p < .01. Also, squared multiple correlation values have further increased for both 
Commitment (R2 = .70) and Satisfaction (R2 = .61). 
 
Table 4.4 also indicates that all goodness-of-fit indices are now within ideal parameters as CFI = 1.00, SRMR 
= .006, and RMSEA = .000 (.108 ≥ RMSEA CL90 ≥ .000). 
 
On the basis of these overall findings, revised model 2 appears to best reflect the patterns of association within 
the derived dataset. Revisions to the initial hypothesized model are theoretically tenable (Festinger 1957) and, 
in both instances, led to improved model estimation. 
 
We therefore propose the model appearing as Figure 4.16 as the final or accepted model. However, it must be 
acknowledged that this is not a parsimonious model; with only two remaining degrees of freedom, there is the 
risk that this model is overfitted. Even though revisions to the initial hypothesized model are theoretically 
tenable, both were data driven. We recommend that future path analytic studies test the validity of this model 
with larger samples (ideally, randomly recruited), from this and other populations. 

Example 2: Path Analysis of a Model Predicting Victim Reactions to Sexual  
                    Harassment  

The next example comes from the field of gender studies. In recent decades, there has been increased interest in 
research dealing with sexual harassment in the work place; some researchers have sought to identify the 
variables that determine whether women will report instances of sexual harassment (e.g., Kane-Urrabazo 2007).  

One approach to studying this phenomenon might involve an analogue study methodology in which women are 
asked to read a brief scenario in which a fictional woman was being sexually harassed by her supervisor. 
Participants are then be asked to imagine how they would feel if this were them in this position. They then 
complete questionnaires to assess a various attitudes, beliefs, and intentions related to the harassment. The 
purpose of the study would be to identify the attitudes, beliefs, and other variables that influence participants’ 
intention to report the harassment in the workplace. 

Figure 4.17 depicts a path model identifying determinants of a participant’s intention to report sexual 
harassment. Although some of these variables were inspired by Brooks and Perot (1991), this model was 
constructed for purposes of illustration only and should not be regarded as a serious test of theory. The model 
includes the following variables: 

• participants’ intention to report harassment to management with higher scores indicate greater 
intention to report 

• expected outcomes of reporting the harassment, where higher scores indicate stronger belief that 
reporting the harassment will result in positive results for the victim 

• feminist ideology, where higher scores indicate egalitarian attitudes about sex roles 

• perceived seriousness of the offense, where higher scores reveal a stronger belief that the woman in 
the scenario experienced a serious form of harassment 
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• victim marketability, where higher scores indicate stronger belief that the woman in the scenario 
could easily find another good job if she were to leave her current position 

• victim’s age, in this case, the age of the participant reading the scenario 

• normative expectations, where higher scores reflect stronger belief that the victim’s family, friends, 
and coworkers would support her if she reported the harassment 

Figure 4.17: Model 1: Determinants of Intent to Report Sexual Harassment Predicting both Direct and  
                     Indirect Effects of Feminist Ideology on Participants’ Intention to Report 

 

The directional paths hypothesized in this figure are identified by either “+” or “-” signs to indicate whether 
positive or negative relationships are predicted. The model includes two endogenous variables: Intention to 
report (V1) and expected outcomes (V2). The model makes the following predictions:  

• there will be direct positive paths from expected outcomes, feminist ideology, and normative 
expectations to intention to report 

• there will be direct positive paths from feminist ideology, seriousness of the offense, victim 
marketability, and normative expectations to expected outcomes 

• there will be a direct negative path from victim’s age to expected outcomes 

Comparing Alternative Models   
To make things more interesting, imagine that a controversy currently exists among scholars studying sexual 
harassment focused on the relationship between feminist ideology and intention to report; scholars are divided 
into three schools of thought. The first group believes that feminist ideology is a very important determinant of 
intent to report. The group believes that feminist ideology has both direct and indirect effects. The direct effect 
of feminist ideology is represented by the single path that runs from V3 to V1 in Figure 4.17. This first group of 
scholars believes that women who score high on feminist ideology will be more likely to report harassment 
because they will view it as a personal obligation as a feminist to take this action. Hence, there is a direct path 
between these two variables in the figure. 
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The first group of scholars also believes that feminist ideology has an indirect effect on intentions through its 
effect on expected outcomes. They argue that, if a woman is a feminist, she will be more likely to believe that 
reporting harassment will lead to positive outcomes (e.g., punishment for the perpetrator, increased 
consciousness about harassment in the work place). From this perspective, feminist ideology has a positive 
effect on expected outcomes (represented by the path from V3 to V2), and expected outcomes, in turn, has a 
positive effect on intention to report (represented by the path from V2 to V1). In this way feminist ideology has 
an indirect effect on intention to report. (Of course, any discussion of feminist ideology having an indirect effect 
on intention to report assumes that the relationship between expected outcomes and intention to report is 
significant and of meaningful size; if this latter relationship was zero or near-zero, then feminist ideology could 
not have an indirect effect on intention to report through expected outcomes, no matter how strong the 
relationship between ideology and expected outcomes.)    

The second group of scholars does not believe that feminist ideology is as important as the first group; instead, 
this second group believes that feminist ideology has only an indirect effect on intention to report. The path 
model that represents the predictions of this group is presented as Figure 4.18. 

Figure 4.18: Model 2, Predicting Only Indirect Effects of Feminist Ideology on Intention to Report 

 

The path model assumed by the second group is identical to that proposed by the first, except that the direct 
path between feminist ideology and intent to report has been deleted. Feminist ideology is now believed to have 
only an indirect influence on intention to report via its effect on expected outcomes. 

A third and final group of scholars contends that feminist ideology has no effect on the intention to report 
harassment. They believe that the intention to report is directly or indirectly determined by the other variables 
presented in the preceding model; they assume that feminist ideology does not influence these intentions in any 
way. The model that represents this last school of thought is presented as Figure 4.19.  

O’Rourke, Norm, and Larry Hatcher. A Step-by-Step Approach to Using SAS® for Factor Analysis and Structural Equation Modeling, Second Edition.  
Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



Chapter 4: Path Analysis    173 
 

Figure 4.19: Model 3, Predicting No Effects of Feminist Ideology on Intention to Report 

 

Notice that Figure 4.19 is identical to the Figure 4.18, except that the directional path from feminist ideology to 
expected outcomes has been deleted. 

To our knowledge, there is no such controversy of this nature in the field of gender studies; if there were, this 
would be an ideal opportunity to test alternative hypotheses (here, presented as a priori path models). Earlier, it 
was noted that it is generally safer to test alternative theory-based models and identify the one with the best fit 
to the data than it is to begin with a single model and make extensive data-driven modifications to achieve a 
better fit, as the latter approach is less likely to result in a model that will generalize (MacCallum et al. 1992). 

Evaluating these three models will involve conducting three analyses. In the first, a CALIS program will be 
written to test the first model, referred to here as the direct and indirect effects model. The program will then 
be modified to eliminate the direct path from feminist ideology to intention to report. The resulting model, to be 
called the indirect effects model, will then be re-estimated. If eliminating this path does not result in a 
significant decrease in fit between the model and data, this will provide support for the “indirect effects” 
hypothesis. Finally, the program will be modified once more to eliminate the path from feminist ideology to 
expected outcomes, producing a no effects model. If dropping this path does not result in a significant decrease 
in model fit, this will provide support for the final model. 
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The SAS Program   
The PROC CALIS program that would analyze the direct and indirect effects model is presented below. The 
data analyzed here are from Murphy, Walters, and Hatcher (1993). 

data D1(type=corr) ; 
  input _type_ $ _name_ $ V1-V7; 
  label 
     V1 = REPORT  
     V2 = EXPECTED_OUTCOMES  
     V3 = FEMINIST  
     V4 = SERIOUSNESS  
     V5 = MARKETABILITY  
     V6 = AGE   
     V7 = NORMS  ; 
datalines; 
n      .    202     202     202     202     202     202     202 
std    .  2.0355  1.4500  0.4393  2.1873  2.7433  4.0513  1.0552 
corr  V1  1.0000   .       .       .       .       .       .  
corr  V2   .4815  1.0000   .       .       .       .       . 
corr  V3  -.0306   .0014  1.0000   .       .       .       . 
corr  V4   .1458   .1683   .1148  1.0000   .       .       . 
corr  V5   .0479   .1939   .0128   .0599  1.0000   .       . 
corr  V6  -.0302  -.1165   .1479   .1061  -.0998  1.0000   . 
corr  V7   .3952   .3700   .0512   .2486   .1275   .0606  1.0000 
; 
run; 
proc calis   covariance  modification ; 
   lineqs 
      V1 = PV1V2 V2 + PV1V3 V3 + PV1V7 V7                       + E1, 
      V2 = PV2V3 V3 + PV2V4 V4 + PV2V5 V5 + PV2V6 V6 + PV2V7 V7 + E2; 
   variance 
      E1 = VARE1, 
      E2 = VARE2, 
      V3 = VARV3, 
      V4 = VARV4, 
      V5 = VARV5, 
      V6 = VARV6, 
      V7 = VARV7; 
   cov 
      V3 V4 = CV3V4, 
      V3 V5 = CV3V5, 
      V3 V6 = CV3V6, 
      V3 V7 = CV2V7, 
      V4 V5 = CV4V5, 
      V4 V6 = CV4V6, 
      V4 V7 = CV4V7, 
      V5 V6 = CV5V6, 
      V5 V7 = CV5V7, 
      V6 V7 = CV6V7; 
   var  V1 V2 V3 V4 V5 V6 V7 ; 
   run; 

The indirect effects model (in which the direct path from feminist ideology to intention to report has been 
deleted) would be identical to the preceding program, except that V3 (feminist ideology) would be removed as 
an independent variable in the LINEQS statement for V1 (intention to report). The resulting LINEQS 
statements would be as follows: 

lineqs 
   V1 = PV1V2 V2            + PV1V7 V7                       + E1, 
   V2 = PV2V3 V3 + PV2V4 V4 + PV2V5 V5 + PV2V6 V6 + PV2V7 V7 + E2; 
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Similarly, the no effects model (in which the path from feminist ideology to expected outcomes has been 
deleted) would be identical to the preceding (modified) program except that V3 (feminist ideology) would be 
dropped as an independent variable in the LINEQS statement for V2 (expected outcomes).  This is how the 
resulting LINEQS statements would appear: 

lineqs 
   V1 = PV1V2 V2            + PV1V7 V7                       + E1, 
   V2 =            PV2V4 V4 + PV2V5 V5 + PV2V6 V6 + PV2V7 V7 + E2;  

All other aspects of the CALIS program remain the same for the three analyses. In all three, V3 (feminist 
ideology) remains an exogenous variable that is allowed to covary with other exogenous variables. The only 
aspect of the model that was modified involves its relationship with intention to report and expected outcomes. 

Results of the Analysis   
Some of the results of the three analyses are presented in Table 4.5. Notice that, in contrast to Table 4.4, Table 
4.5 presents the models in ascending order of complexity, with the null (uncorrelated variables) model at the 
bottom, and the model predicting both direct and indirect effects at the top. Either way of organizing this table 
is acceptable. 

Table 4.5: Goodness-of-Fit Indices for Various Models, Sexual Harassment Study (N = 202) 

Model χ2 df ∆χ2 ∆df SRMR CFI RMSEA (RMSEA CL90) 
Direct/indirect 
effect 

    1.20   3  -- -- .012 1.00 .000 .(.082-.000) 

Indirect effects     1.75   4       .55   1 .014 1.00 .000  (.070-.000) 
No effects     1.77   5       .02   7 .015 1.00 .000  (.048-.000) 
Null model 137.89 21 136.12** 16 -- -- --  
Note: χ2 = chi-square; df = degrees of freedom; SRMR = Standardized Root Mean Square Residual; CFI = 
Comparative Fit Index; RMSEA = Root Mean Square Error of Approximation; RMSEA CL90 = RMSEA 90% 
Confidence Limits. 

** p < .01 

The goodness-of-fit indices for the direct and indirect effects model seem to suggest a very good fit to the data. 
The SRMR, CFI, and RMSEA statistics all each within optimal parameters and the confidence limits for the 
RMSEA are fully within acceptable limits. So is the model acceptable? 

Not quite. The t tests for path coefficients (under the heading “Standardized Results for Linear Equations” from 
Output 4.16) reveal three nonsignificant parameters:  

• the path coefficient from the effect of feminist ideology (V3) to intention to report (V1) 

• the coefficient for the effect of feminist ideology (V3) on expected outcomes (V2) 

• the coefficient for the effect of seriousness of the offense (V4) on expected outcomes (V2) 

As you can see, it is quite possible for goodness-of-fit indices to be high even when the model contains 
nonsignificant paths. 
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Output 4.16: Output Page 7, Analysis of Direct and Indirect Effects Model, Sexual Harassment Study 

Covariance Structure Analysis: Maximum Likelihood Estimation 
 

Linear Equations 

V1 =  0.5441 * V2 + -0.2046 * V3 + 0.4901 * V7 + 1.0000  E1         

Std Err   0.0899  PV1V2  0.2761  PV1V3  0.1237  PV1V7             

t Value   6.0501    -0.7409    3.9609               

V2 =  -0.0282 * V3 + 0.0604 * V4 + 0.0698 * V5 + -0.0473 * V6 + 0.4658 * V7 + 1.0000  E2 

Std Err   0.2141  PV2V3  0.0441  PV2V4  0.0342  PV2V5  0.0233  PV2V6  0.0913  PV2V7     

t Value   -0.1318    1.3704    2.0399    -2.0274    5.1039       

 

Estimates for Variances of Exogenous Variables 

Variable 
Type Variable Parameter Estimate 

Standard 
Error t Value 

Error E1 VARE1 2.94848 0.29411 10.02497 

 E2 VARE2 1.72034 0.17161 10.02497 

Observed V3 VARV3 0.19298 0.01925 10.02497 

 V4 VARV4 4.78428 0.47724 10.02497 

 V5 VARV5 7.52569 0.75070 10.02497 

 V6 VARV6 16.41303 1.63722 10.02497 

 V7 VARV7 1.11345 0.11107 10.02497 

 

Covariances Among Exogenous Variables 

Var1 Var2 Parameter Estimate 
Standard 

Error t Value 

V3 V4 CV3V4 0.11031 0.06822 1.61695 

V3 V5 CV3V5 0.01543 0.08501 0.18146 

V3 V6 CV3V6 0.26322 0.12690 2.07428 

V3 V7 CV2V7 0.02373 0.03274 0.72494 

V4 V5 CV4V5 0.35943 0.42400 0.84771 

V4 V6 CV4V6 0.94020 0.62854 1.49583 

V4 V7 CV4V7 0.57378 0.16775 3.42040 

V5 V6 CV5V6 -1.10917 0.78781 -1.40792 

V5 V7 CV5V7 0.36908 0.20583 1.79311 

V6 V7 CV6V7 0.25906 0.30208 0.85758 

Problems with these three paths were also revealed in the Wald tests included in the SAS output. When a path 
model contains paths or covariances that may be dropped without a significant decrease in fit, these are often 
identified by the Wald test. The Wald tests for the current analysis appear in Output 4.17. 
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Output 4.17: Output (Page 8), Wald Test Results, Sexual Harassment Study 

Covariance Structure Analysis: Maximum Likelihood Estimation 
 

Stepwise Multivariate Wald Test 

Parm 

Cumulative Statistics Univariate Increment 

Chi-Square DF Pr > ChiSq Chi-Square Pr > ChiSq 

PV2V3 0.01736 1 0.8952 0.01736 0.8952 

CV3V5 0.05029 2 0.9752 0.03293 0.8560 

CV2V7 0.55089 3 0.9076 0.50060 0.4792 

PV1V3 1.09982 4 0.8943 0.54893 0.4588 

CV6V7 1.67378 5 0.8922 0.57396 0.4487 

CV4V5 2.38023 6 0.8816 0.70645 0.4006 

PV2V4 4.24094 7 0.7516 1.86071 0.1725 

CV4V6 6.21014 8 0.6237 1.96921 0.1605 

CV3V4 7.79845 9 0.5546 1.58831 0.2076 

CV5V6 10.57632 10 0.3915 2.77787 0.0956 

CV5V7 13.55784 11 0.2584 2.98152 0.0842 

CV3V6 16.63348 12 0.1639 3.07564 0.0795 

PV2V6 20.40107 13 0.0857 3.76759 0.0523 

Under the heading “Univariate Increment,” the Wald test estimates the change in chi-square that would result 
from deleting a given parameter from the model. For example, the first line of the output reports the Wald test 
estimate for deleting the parameter “PV2V3.” This is the path from V3 (feminist ideology) to V2 (expected 
outcomes). The Wald tests estimates that the model chi-square would change by less than .02 if PV2V3 were 
deleted. This is a very small change suggesting that you may safely delete this path without negatively affecting 
model fit. In general, the first parameter listed in the Wald test table is the parameter that could be deleted with 
the least effect upon model fit. The “Cumulative Statistics” on the left side of the table estimates how much chi-
square would change if entire groups of variables were deleted from the model. 

Remember that your study began by comparing the predictions of three groups of scholars who disagreed 
regarding the importance of feminist ideology in your model. The school proposing a direct and indirect effects 
model basically predicted that the model must include the path from feminist ideology to intention to report; 
that dropping this path would seriously harm the model’s ability to account for relationships in the data. You 
can test this prediction directly by performing a chi-square difference test on chi-square values from Table 4.3. 
The model chi-square for the direct and indirect effects model was 1.20, while the chi-square for the indirect 
effects model was 1.75. The chi-square difference was therefore  

1.20 − 1.75 = 0.55   

The degrees of freedom for this test are equal to the difference between the degrees of freedom for the two 
models, or  

4 − 3 = 1   

The critical value of chi-square (p < .05) is 3.84; your obtained difference chi-square is well below that at 0.55. 
Therefore, you may conclude that there is not a significant difference in fit between the two models. In other 
words, deleting the path from feminist ideology to intentions did not significantly hurt the model’s fit to data. 
Because the model without the path is the more parsimonious (and therefore the more desirable), you tentatively 
accept it and reject the “direct and indirect effects” model. 
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But your analysis is not complete. Is it possible to also drop the path from ideology to expected outcomes 
without significantly hurting the model’s fit?  To determine this, you compute a second chi-square difference 
test, this one comparing the indirect effects model to the no effects model. 

Using the appropriate chi-square values from Table 4.3, this chi-square difference is calculated as  

1.77 − 1.75 = 0.02   

This obtained value is again well below the critical chi-square value of 3.84 so you know that you may drop this 
path without causing a significant decrease in model fit. Because the no effects model is the more parsimonious 
of the two, you tentatively accept it over the indirect effects model. 

In short, if you are to believe these results, feminist ideology appears to have no influence on the intention to 
report harassment: It neither affects these intentions directly nor does it affect them indirectly by first affecting 
expected outcomes. An interesting feature of these results is the fact that the model still provides a good fit to 
the data even after deleting these two paths: Table 4.3 shows that the model chi-square for the no effects model 
is still quite small and nonsignificant; SRMR and CFI statistics are both very high, and the RMSEA is very low 
(with confidence limits fully within acceptable range). 

Unfortunately, however, the model is still not quite perfect as the output from the analysis of the no effects 
model (not reproduced here) shows that the path from seriousness of the offense to expected outcomes remains 
nonsignificant. If this were an actual investigation, your specification search would continue. (Note, however, 
that the statistically significant difference in chi-square values between this and the null model in Table 4.3 
suggests validity within the general framework of the model.) 

IMPORTANT: Compare only nested models. It is hoped that this example has shown how the chi-square 
difference test can be used to make comparisons between competing a priori models. Remember, however, that 
these difference tests can only be used to compare nested models. As previously discussed, a model is said to 
be nested within another if it is identical to that model with the exception that one or more paths have been 
deleted. In this sense, you can see that the indirect effects model was nested within the direct and indirect 
effects model, and that the no effects model was nested within both of the other models. As previously 
mentioned, the Expected Cross Validation Index (ECVI, which is reported along with other Modification/ 
parsimony indices in SAS output) can be used to compare the likelihood of generalizability between competing 
non-nested models of similar size from the same population (Byrne 1998). Like the RMSEA, PROC CALIS 
reports 90% confidence limits for ECVI values. When comparing non-nested competing models, when one 
model has a lower ECVI value than the other, and the upper 90% confidence limit does not contain the ECVI 
value for the competing model, you can conclude with greater certainty that the this first model has much 
greater likelihood of replication with other samples from this population. 

Conclusion: How to Learn More about Path Analysis 
The best way to learn path analysis is to do it. Find a good text on path analysis, or perhaps some published 
research articles reporting path analytic studies, and replicate the analyses that they contain (e.g., Bachner et al. 
2011). But be forewarned: Authors do not always indicate whether they analyzed the correlation matrix or the 
covariance matrix (or raw data), so it may be necessary to perform the analysis both ways in order to obtain 
results that match the published findings.  

Now that you have had a concise introduction to the analysis of simple recursive models, you should be ready 
for a more in-depth treatment of path analytic procedures. This is particularly important if you want to test more 
complex models, such as nonrecursive models with reciprocal causation or feedback loops, or time-series 
designs with repeated measures.  

The following two chapters build on the current chapter by introducing models with latent variables. Analyzing 
models with latent variables has many important advantages over path analysis; the increasing availability of 
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software such as PROC CALIS capable of analyzing these models represents an important advance in applied 
social science research.  

Note 
1. The increased risk of developing schizophrenia with these zodiac signs is seen only in Northern Hemisphere. 
The association is due to the effects of less sunlight in winter months and reduced exposure to vitamin D in 
utero (Pulver et al. 1992). A different set of astrological signs are linked to the risk of developing schizophrenia 
in the Southern Hemisphere. This is an example of a spurious association (i.e., a statistically significant link 
between phenomena with no causal association). These spurious associations occur due to third variables, here, 
maternal exposure to less sunlight in winter.  
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Introduction: A Two-Step Approach to Analyses with Latent Variables    
An important advance in social science research has been the development of statistical software for analyses of 
covariance structures (e.g., structural equation modeling). These models are referred to as covariance structure 
models or latent variable models. For consistency, this text uses the term structural equation modeling to 
describe models in which prediction of latent or unobserved variables is hypothesized. In contrast, path analytic 
models (Chapter 4) are composed of only observed variables (i.e., no latent variables). As described in the next 
two chapters, there are significant advantages to the use of structural equation models (where appropriate). This 
chapter presents confirmatory factor analysis, which is similar to structural equation modeling except that 
covariance (or correlation), not prediction, between latent variables is assumed. 

This chapter and Chapter 6, “Structural Equation Modeling,” show how PROC CALIS can be used to test these 
latent variable models. These chapters follow a two-step approach recommended by Anderson and Gerbing 
(1988). With this approach, the first step involves using confirmatory factor analysis to develop an acceptable 
measurement model. When testing a measurement model, you look for evidence that indicator variables 
effectively measure the underlying constructs of interest and that the measurement model demonstrates an 
acceptable fit to data. As noted above, measurement models do not specify directional relationships between the 
latent constructs; at this stage of the analysis, latent variables are allowed to correlate freely. The current chapter 
focuses on how to estimate measurement models, how to assess their psychometric properties, and how to 
modify them (when necessary) to achieve a better fit.  

Chapter 6, “Structural Equation Modeling,” builds on this foundation by showing how measurement models can 
be modified to predict specific relationships between latent variables. Among other things, performing this type 
of analysis allows you to test hypotheses that certain latent constructs predict other latent constructs.  

You should therefore view Chapters 5 and 6 as a two-part introduction to analysis of covariance structures: 
Chapter 5 shows how to develop measurement models; and Chapter 6 shows how to test the (theoretical) models 
of interest. Even if you are interested only in the topic of “Structural Equation Modeling” (Chapter 6), you will 
probably still need to read Chapter 5 to obtain the necessary foundational information (unless, of course, you are 
already familiar with PROC CALIS and latent variable models). 

All models discussed in this and the next chapter are recursive models: In other words, none of the variables 
that constitute the structural portion of models are in feedback loops (i.e., reciprocal causation); the structural 
models discussed will demonstrate only unidirectional hypotheses. A list of references is provided at the end of 
Chapter 6. 

IMPORTANT: This chapter builds on material presented in Chapter 4, “Path Analysis with Manifest 
Variables.” That chapter introduced basic terminology and concepts, and showed how to write programs for the 
CALIS procedure. With only a few exceptions, most of that introductory material will not be repeated here. It is 
assumed that you have completed the preceding chapter before beginning this one. If not, we recommend that 
you do so. 

A Model of the Determinants of Work Performance 
This chapter begins with an illustration of a theoretical model that includes only manifest variables (similar to 
the path analytic models discussed in the preceding chapter). It will then show how models with latent variables 
differ from the manifest-variable or path models. 

Figure 5.1 provides a model predicting the directional relationships among a number of variables related to work 
performance. The model includes two endogenous variables: (a) work performance, which is predicted to be 
directly determined by intelligence, motivation, and supervisory support; and (b) motivation, which is said to be 
directly determined by workplace norms and supervisory support. The model includes three exogenous variables 
(intelligence, workplace norms, and supervisory support), which are expected to covary. 
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Figure 5.1: Path Model with Manifest Variables 

 

The Manifest Variable Model   
This figure displays the manifest variable model presented in the preceding chapter. Recall that that manifest 
variables are variables that are directly observed, such as scores on an intelligence test or on a motivation scale. 
Manifest variables are sometimes referred to as observed variables, measured variables, or indicator 
variables. In path analysis presented in the preceding chapter, all variables in the model were manifest 
variables. 

The Latent Variable Model   
Figure 5.2, on the other hand, presents a model with latent variables. In this figure, latent variables are 
represented by ovals and the manifest variables by rectangles. Latent variables are sometimes referred to as 
unobserved variables, unmeasured variables, or latent factors. Notice that latent variables in the figure are 
identified by short names such as F1 and F2 (F stands for latent Factor). A latent variable is a hypothetical 
construct: A variable that cannot be directly observed. The existence of a latent variable can only be inferred by 
the way that it influences manifest variables that can be directly observed (more on this shortly).  

O’Rourke, Norm, and Larry Hatcher. A Step-by-Step Approach to Using SAS® for Factor Analysis and Structural Equation Modeling, Second Edition.  
Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



184   A Step-by-Step Approach to Using SAS for Factor Analysis and Structural Equation Modeling, Second Edition    

Figure 5.2: A Structural Equation Model with Latent Variables 

 

The paths connecting latent variables (ovals) in Figure 5.2 predict the same relationships among latent variables 
similar to the observed variables in the previous path model. Work performance is predicted by intelligence, 
motivation, and supervisory support; whereas motivation is predicted by workplace norms and supervisory 
support. 

In this model, work performance is also influenced by a disturbance term, D1 (the “D” stands for Disturbance 
and the “1” corresponds to the “1” in F1). A disturbance term for a latent variable is interpreted the same as a 
residual term, or error term, for a manifest variable (from the preceding chapter). A disturbance term represents 
the effects on endogenous variables due to such things as omitted variables, measurement error, and 
misspecification of equations. For example, you would expect a large disturbance term for work performance if 
other constructs that have important effects on work performance have been omitted from the model. If you 
leave out variables that have only a minimal effect on work performance, the disturbance term for work 
performance should be relatively small.  
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Basic Concepts in Latent Variable Analyses 

Latent Variables versus Manifest Variables   
The model depicted in Figure 5.2 is referred to as a latent variable model. As previously described, a latent 
variable is a hypothetical construct that is not directly observed; instead, its existence is inferred from its 
influence on manifest variables (or other latent variables).  

For example, consider the latent variable “intelligence” (F3) in Figure 5.2. The arrows in the figure suggest that 
this latent factor is affected by three manifest variables labeled V7, V8, and V9. Assume that these three 
manifest variables are three different facets of intelligence. For example, V7 may be participants’ scores on a 
measure of analytical problem solving ability, V8 may be scores on measure of creative problem solving, and 
V9 may be scores on a measure of practical problem solving (Sternberg 1994). If there really is some underlying 
construct that could reasonably be labeled “intelligence” (and if these three measures are valid), you would 
expect to see certain results when PROC CALIS is used to analyze your data. For example, the coefficients for 
the paths going from F3 (intelligence) to V7, V8, and V9 should be relatively large and statistically significant. 
These findings would provide support for the assumption that there is an underlying intelligence construct which 
is measured by your manifest variables.  

Notice that the model in Figure 5.2 identifies five different latent F variables and indicates which indicator 
(manifest) variables are expected to contribute to measurement of each. Variables V1 through V3 measure work 
performance, V4 through V6 measure motivation, and so forth. It is important to remember that the indicator or 
manifest variables—the variables represented by rectangles—are the variables that you actually gather during 
the study (e.g., questionnaires completed by participants). Although the hypothetical constructs (represented by 
ovals) generally represent the variables of greatest interest, they are not directly measured.  

Choosing Indicator Variables   
A variety of variables may be used as indicators so long as they meet certain conditions discussed below (in the 
“Necessary Conditions for Confirmatory Factor Analysis and Structural Equation Modeling” section). In the 
present study, for example, objective measures would be used as indicators of latent variables. In measuring the 
latent variable “work performance,” the indicator V1 could be units produced by participants per hour, V2 could 
be the quality of units produced, and V3 could be the number of times per month each participant exceeds his or 
her production quota.  

Subjective measures may also be used as indicator variables. In measuring motivation, V4 could be responses to 
a self-report questionnaire assessing participants’ work motivation, V5 could be ratings of the participants’ 
motivation reported by their direct supervisors, and V6 could be ratings of the participants’ motivation reported 
by co-workers.  

In designing a study, care should be taken when selecting indicator variables to measure each latent variable. 
Indicator or manifest variables should be appropriate for use with your population of interest (e.g., supported by 
theory). Using previously developed instruments is almost always preferred. New measures should only be used 
if no existing scales to measure that construct currently exist (unless, of course, the primary intent of the study is 
the development of a new measure; e.g., O’Rourke and Chou 2012).  

Regardless of what type of indicator variables you use, remember that you will be able to perform meaningful 
tests of your directional model only if responses to these indicators show certain psychometric properties. 
Specifically, it is essential that responses to indicator or manifest variables chosen to measure the same latent 
construct show convergent validity: They must all measure the same underlying construct. In practical terms, 
this means that the indicators should be moderately or strongly correlated with one another. What is more, 
groups of variables that are intended to measure different latent constructs should display discriminant validity. 
Indicators intended to assess one latent variable (say, F1) should not at the same time measure a different latent 
variable (say, F2). In practical terms, this means that if V1 through V3 are measuring F1, and V4 through V6 are 
measuring F2, responses to V1 through V3 should not be strongly correlated with V4 through V6.  
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Later, you will learn how to assess the convergent and discriminant validity of measurement models in a 
systematic way. However, these procedures will bring only frustration if you have been careless in the initial 
selection of your indicator variables. Wherever possible, these decisions should be informed by existing theory 
and/or psychometric research. 

The Confirmatory Factor Analytic Approach   
The procedures to be discussed in this chapter pertain to confirmatory factor analysis (CFA). These procedures 
differ in important ways from those discussed in Chapter 2 on exploratory factor analysis. With exploratory 
factor analysis, you are often unsure of the number of factors being measured; the results of the analysis help to 
resolve the number-of-factors question. With the procedures described here, however, you not only have a good 
idea regarding the number of factors being assessed (latent variables), but also which manifest variables load on 
which factors. 

The Measurement Model versus the Structural Model 
You should think of the model presented in Figure 5.2 as consisting of two components. The measurement 
portion of the model, generally referred to as the measurement model, describes the relationships among latent 
factors and their indicator variables. The measurement model is said to provide a good fit to data if V1 through 
V3 effectively measure work performance (F1), if V4 through V6 effectively measure motivation (F2), and so 
forth. In this chapter, when manifest variables are used as measures of latent factors, they will be referred to as 
indicator variables or measurement variables.  

On the other hand, the structural portion of the model (referred to as the structural model) describes the 
predicted relationships among constructs of central interest. In Figure 5.2, the structural model consists of F1, 
F2, F3, F4, and F5 as well as the paths that connect them. In this chapter, the variables that constitute this 
structural model will be called structural variables. (This term is necessary as it will later be shown that 
structural variables are not always latent factors; sometimes they are also manifest variables.  

Advantages of Covariance Structure Analyses 
Covariance structure analyses (e.g., confirmatory factor analyses) have at least two important advantages over 
path analysis with only manifest variables. First, as was mentioned earlier, the latent variable approach allows 
researchers to assess the convergent and discriminant validity of their measures. If the proposed measurement 
model fares well with regard to the tests to be later discussed, support is found for the construct validity of 
responses to manifest variables. This provides evidence that you really are studying the hypothetical constructs 
of interest. This is important, because most social science research offer no evidence concerning the construct 
validity of their variables.  

Second, structural equation modeling enables the researcher to estimate measurement error of latent variables. In 
Chapter 4, it was mentioned that path analysis assumes that all variables are measured without error. This is to 
say the manifest variables are assumed to be perfectly reliable indices of the constructs they are intended to 
measure. Needless to say, this assumption is rarely if ever justified with the types of measures used in the social 
sciences. 

For example, assume that you were to perform the work performance study previously described using path 
analysis. In addition, assume that you use just a measure of analytical problem solving as the sole measure of 
intelligence. Although responses to your measure of analytical problem solving may be reliable with your 
population of interest, its reliability is not perfect. Responses will be determined, in large part, by the underlying 
construct of intelligence. Unfortunately, you also assume that responses to your measure will not be a perfect 
representation of their underlying level of intelligence; some variability in scores will be due to errors of 
measurement (either random or systematic). This creates a problem because you do not really want to study the 
relationship between analytical problem solving and work performance; you want to study the relationship 
between the underlying construct of intelligence and work performance. And because analytical problem solving 
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provides an imperfect measure of intelligence, the path coefficients that you obtain from a single-indicator path 
analysis will likely be biased (Netemeyer, Johnston, and Burton 1990). 

Structural equation modeling redresses this limitation by separating error variance from the core measurement of 
latent variables by estimating error separately. This is illustrated in Figure 5.3 in which residual terms (indicated 
by the symbol E for Error term) have been added to the model. For illustrative purposes, consider the manifest 
variables V7 through V9, and assume that these variables are three different aspects of intelligence. The paths 
leading from the latent construct F3 (intelligence) to V7, V8 and V9 represent the assumptions that variability in 
responses to these three measures will be determined, in part, by the hypothetical construct of intelligence. 
Notice also that an arrow points from the residual term E7 to V7. This represents the assumption that variability 
in V7 is influenced by factors in addition to intelligence such as sources of random and systematic error. This is 
the component of V7 that is not shared in common with V8 and V9, and so it is modeled separately. In the same 
way, E8 represents measurement error for V8, and E9 represents measurement error for V9. 

As a result, the latent variable F3 consists only of common or shared variance among V7, V8, and V9. Because 
the error components have been estimated separately, latent variable F3 is more reliable (though not perfectly 
reliable) as compared to responses to a single manifest variable.  

Figure 5.3: Structural Equation Model with Residual Terms for Manifest Variables 
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Necessary Conditions for Confirmatory Factor Analysis  
The preceding chapter presented a number of requirements that must be met in order to perform path analysis; 
many of those conditions apply to latent variable analyses as well. These are briefly summarized below. Most of 
the details explained in the preceding chapter will not be repeated here: 

1. Normally distributed data. 
2. Linear and additive relationships. This applies only to the types of analyses discussed in this text. 

More advanced texts show how to test models with nonlinear relationships; PROC CALIS is capable of 
testing these models as well. 

3. Absence of multicollinearity (e.g., rs < .80 between observed variables). 
4. Inclusion, within the model, of all nontrivial variables. 
5. Overidentified model.  

In addition to the preceding, the analysis of latent variable models also requires that the following conditions be 
met:  

6. At least three indicator variables per latent factor. Technically, a latent factor may be assessed with 
just two indicators under certain conditions. However, models with only two indicator variables per 
factor often exhibit problems with identification and convergence, and so it is recommended that each 
latent variable be assessed with at least three indicators (Anderson and Gerbing 1988; Byrne 1998). In 
practice, researchers are well-advised to have at least four or five indicators for each latent factor as it is 
often necessary to drop some of the indicators in order to arrive at a well-fitting measurement model.  

7. A maximum of 20–30 indicator variables. One of the limitations of this model involves the maximum 
number of indicator variables that can be effectively studied. Bentler and Chou (1987) caution that it is 
easy to become too ambitious when developing structural models, and advise that researchers who lack a 
great deal of knowledge about the variables of interest should work only with 30 indicator variables or 
less. Larger numbers of indicator variables often lead to inability to fit your model to the data. Note that 
this limitation also affects the maximum number of latent factors that may be effectively studied. 
Researchers who “play it safe” by measuring each latent variable with four indicators each will be 
limited to investigating a total of just five latent factors (assuming that the study includes just 20 
manifest variables).   

Having listed the necessary conditions for the analysis, it is important to again emphasize that the procedures 
discussed in is this chapter are confirmatory procedures. They are most appropriate for situations in which you 
have a fairly good understanding of the phenomena under investigation.  

For example, assume that you want to test the model of work performance presented in Figure 5.2. Ideally, your 
research began with a thorough review of the literature pertaining to all constructs in the model. For instance, 
you obtained previously developed instruments to measure these constructs appropriate for use with your 
population of interest. You administered all instruments to participants in a pilot study; and you performed 
exploratory factor analyses to determine the number of factors assessed, how the factors are associated with one 
another, and how variables load on their respective factors. In the course of doing this, you may have discovered 
that responses to some of your instruments were not sufficiently reliable and had to be replaced.  

Through this series of exploratory studies, you eventually arrive at a set of acceptable measures and a 
measurement model that provides a good fit to data. You are now ready to administer the instruments to a new 
sample and perform the confirmatory analyses. 
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The preceding emphasizes the importance of developing a reasonably good measurement model before 
obtaining data from additional participants for confirmatory analyses. Many researchers omit this crucial step 
and learn too late that they cannot test the structural model of interest because their measurement model 
provides a poor fit to data. In this situation, some researchers may be tempted to perform exploratory factor 
analyses on their data to discover the factor structure, revise their model to reflect this structure, and then 
perform confirmatory analyses on the same dataset to test the revised theoretical model. However, performing 
both exploratory and confirmatory analyses on the same dataset is likely to capitalize on chance characteristics 
of the sample, and may lead to a “final” model that will not generalize to other samples or to the population. 
(For more details on this issue, review the “Modifying the Model” section in the preceding chapter.) 

Sample Size Requirements for Confirmatory Factor Analysis and Structural 
Equation Modeling 

One subject of considerable confusion pertains to necessary sample sizes required for procedures such as 
confirmatory factor analysis and structural equation modeling. Because these procedures are based on large 
sample theory (Lehmann 1999), various authors have asserted that minimum sample sizes are required to 
reliably conduct and report study findings. For instance, a minimum of 200 observations for confirmatory factor 
analysis has been commonly recommended; however, others have suggested that a threshold of 300 observations 
is more appropriate (see Floyd and Widaman 1995, for further discussion of this topic). Although this may be a 
necessary condition for confirmatory factor analysis, it would be incorrect to state that this was also a sufficient 
condition. In other words, a minimum number of observations may be required to meet the assumptions of large 
sample theory; however, factors specific to individual models may necessitate more than 200 observations are 
required (MacCallum, Widaman, Zhang, and Hong 1999). 

What authors commonly neglect to recognize is that the number of model degrees of freedom are also integral 
when determining sample size requirements. This is because a sufficient number of degrees of freedom is also 
required to draw correct conclusions about model fit. Failure to reject poor fitting models (Type II errors) occurs 
when the number of available degrees of freedom (relative to sample size) leads to imprecise goodness-of-fit 
indices. These measures provide imprecise indicators of fit within the population from which the sample is 
drawn (MacCallum et al. 1999). 

To address this sample size issue, MacCallum, Browne, and Sugawara (1996) recommend that confidence 
intervals surrounding the Root Mean Square Error of Approximation (RMSEA) be considered when testing the 
null hypothesis of model none-fit. As you will recall from the previous chapter, PROC CALIS reports both the 
RMSEA and the upper and lower bounds of the 90% confidence interval for the RMSEA. The RMSEA provides 
an estimate that a model fits in the population and the interval over which this estimated value is likely to fit the 
population nine times out of time. Previously, we noted that RMSEA values less than, or equal to, .055 are 
suggestive of close model fit, whereas values between .056 and .08 suggest adequate model fit. Based on these 
parameter values, MacCallum and colleagues (1996) provided the following SAS program to estimate the 
statistical power of a model (i.e., the ability reject poor fitting models). A full discussion of the topic of 
statistical power is beyond the scope of this text (Cohen 1988). Suffice to say that a certain number of 
observations relative to a model’s degrees of freedom are required in order to correctly reject poorly fitting 
latent variable models. It is generally held that statistical power should be equal to, or greater than, .80 (Cohen 
1988). As with other statistical procedures, an alpha value of .05 is used as a generally accepted threshold of 
statistical significance (i.e., α ≤ .05). 
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Calculation of Statistical Power 
The general form of the SAS program to perform power analysis for analyses of covariance structures is 
presented below.  

     data D1 ; 
        alpha=.05 ; 
        rmsea_null=.05 ; 
        rmsea_alternate=.08 ; 
        df = degrees of freedom ; 
        n = sample size ; 
     ncp_null=(n-1)*df*rmsea_null**2 ; 
     ncp_alternate=(n-1)*df*rmsea_alternate**2 ; 
     if rmsea_null < rmsea_alternate then do ; 
        cval=cinv(1 - alpha, df, ncp_null) ; 
        power = 1-probchi(cval, df, ncp_alternate) ; 
     end ; 
     if rmsea_null > rmsea_alternate then do ; 
        cval=cinv(alpha, df, ncp_null) ; 
        power=probchi(cval, df, ncp_alternate) ; 
     end ; 
     output; 
     proc print data=D1 ; 
        var rmsea_null rmsea_alternate alpha df n power; 

     run ; 

You only need to insert the sample size (n) and available degrees of freedom (df) in the above program in order 
for this SAS program to estimate statistical power for a given model. We appreciate that some of this code has 
not been previously used in this text and is unfamiliar to most users. Our intent is not to demonstrate the 
specifics of this programming language but to assist you in determining whether a model has sufficient power to 
reject poorly fitting models. A specific example will help clarify this procedure. 

After working your way through the remainder of this chapter, imagine that you obtained responses from 360 
participants and computed a confirmatory factor analytic model with 26 degrees of freedom. This means that 
there are 26 associations within your covariance matrix for which estimates of association are not calculated 
(i.e., no associations assumed). After placing these values into the previous SAS program (i.e., n = 360, df = 26), 
power is estimated at .81. 

Output 5.1: Estimate of Statistical Power for Hypothetical Confirmatory Factor Analytic Study, n = 360,  
                    df = 26 

Obs rmsea_null rmsea_alternate alpha df n power 

1 0.05 0.08 0.05 26 360 0.81070 

 
Of course the best time to estimate whether or not a model will have sufficient statistical power is prior to 
undertaking the study. In other words, the researcher should estimate the number of participants who need to be 
recruited in order to reject poorly fitting confirmatory factor analytic models. Even when undertaking analyses 
of existing data (i.e., secondary data analysis), it is a good idea to first determine if the numbers are sufficient for 
analyses based on large sample theory. If the sample size is inadequate, it may be necessary to collect new data 
if confirmatory factor analysis is required to properly answer your research question. 

Calculation of Sample Size Requirements 
The general form of the SAS program to compute sample size estimates for analyses of covariance structures is 
presented below (e.g., confirmatory factor analysis); this code is again adapted from MacCallum and colleagues 
(1996). Upper and lower bounds for RMSEA values provide a range in which a minimal sample size is 
estimated; this is halved until a close approximation to the desired sample size is determined (MacCallum et al. 
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1996). Once again, we do not anticipate that this SAS code will necessarily be recognizable to the novice user. It 
is provided here to provide you with a tool to proactively estimate sample size requirements. 

data one ; 
rmsea0=.05 ; *null hypothesis value ; 
rmseaa=.08 ; *alternate hypothesis value ; 
df= *degrees of freedom ; 
alpha=.05 ; *alpha level ; 
powd=.80 ; *desired power ; 
 
*initialize values ; 
powa=0.0 ; 
n=0 ; 

*begin loop for finding initial level of n ; 
do until (powa>powd) ; 
n + 100 ; 
ncp0=(n-1)*df*rmsea0**2 ; 
ncpa=(n-1)*df*rmseaa**2 ; 
*compute power ; 
   if rmsea0>rmseaa then do ; 
   cval=cinv(alpha,df,ncp0) ; 
   powa=probchi(cval,df,ncpa) ; 
   end ; 

   if rmsea0<rmseaa then do ; 
   cval=cinv(1-alpha,df,ncp0) ; 
   powa=1-probchi(cval,df,ncpa) ; 
   end ; 
   end ; 

* begin loop for interval halving ; 
dir=-1 ; 
newn=n ; 
intv=200 ; 
powdiff=powa-powd ; 
do until (powdiff<.001) ; 
intv=intv*.5 ; 
newn + dir*intv*.5 ; 

*compute new power ; 
ncp0=(newn-1)*df*rmsea0**2 ; 
ncpa=(newn-1)*df*rmseaa**2 ; 
*compute power ; 
   if rmsea0>rmseaa then do ; 
   cval=cinv(alpha,df,ncp0) ; 
   powa=probchi(cval,df,ncpa) ; 
   end ; 

   if rmsea0<rmseaa then do ; 
   cval=cinv(1-alpha,df,ncp0) ; 
   powa=1-probchi(cval,df,ncpa) ; 
   end ; 

powdiff=abs(powa-powd) ; 
if powa<powd then dir=1; else dir=-1 ; 
end; 

sample=newn ; 
sample=int(sample) ; 
if sample lt 200 then do sample = 200 ; 
end ; 

proc print data=one ;   
var rmsea0 rmseaa powd alpha df sample powa ;  
run ; 
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Using the previous example in which the model had 26 degrees of freedom, by inserting this value in the above 
program, we see that a sample size of 351 is required in order to have the desired power of .80 (Cohen 1988). 
See Output 5.2. This should make sense as the previous program with 360 participants was estimated to have a 
power of .81 (i.e., slightly larger sample size). We should stress that this is the final sample size used to analyze 
this hypothetical confirmatory factor analytic model. It is good practice to recruit a sample that is roughly 10% 
greater than your final sample size requirement to allow for missing data, outlying cases, etc., which should be 
removed from datasets before undertaking statistical analyses. In this example, therefore, it would be good 
research practice to recruit at least 386 participants so that you would be left with a final sample of more than 
351 participants. 

Output 5.2: Estimate of Sample Size Requirements to Achieve Adequate Power for Hypothetical  
                    Confirmatory Factor Analytic Study, df = 26 

Obs rmsea0 rmseaa powd alpha df sample powa 

1 0.05 0.08 0.80 0.05 26 351 0. 80066 

Although the number of degrees of freedom is the only value that needs to be inserted in this SAS program, it is 
feasible to also adjust both the alpha and power levels; we recommend doing neither. Thorough discussion of 
statistical power is beyond the scope of this text. The interested reader is encouraged to see Cohen (1988). 

Example: The Investment Model 
In previous chapters, we made reference to Rusbult’s (1980) theory of relationship commitment called the 
investment model (Le and Agnew 2003). It was noted that one possible interpretation of the investment model 
predicts that commitment to a relationship (e.g., the intention to remain in the relationship) is determined by:  

• satisfaction with the relationship 

• size of personal investments (e.g., time, energy) put into the relationship 

• attractiveness of alternatives to the relationship (e.g., the attractiveness of other potential partners) 

Satisfaction, in turn, is expected to be determined by the rewards experienced in the relationship (e.g., the good 
things associated with it) as well as costs (e.g., hardships, unpleasant things).  

The Theoretical Model   
Figure 5.4 presents a latent variable model that illustrates these hypothesized relationships. The structural 
portion of the model consists of the ovals (latent variables) and the paths that connect them. You can see that 
commitment (F1) is believed to be directly determined by satisfaction (F2), investments (F5), and alternatives 
(F6); while satisfaction (F2) is expected to be determined by rewards (F3) and costs (F4).  

The measurement portion of the model consists of single-headed arrows from latent variables to the manifest 
variables that measure them (manifest variables are represented by rectangles). For example, manifest indicators 
V1, V2, V3, and V4 are predicted to measure F1 (commitment); indicators V5, V6, and V7 are predicted to 
measure F2 (satisfaction), and so forth.    

Research Method and Overview of the Analysis 
For purposes of illustration, assume that you have developed a 19-item instrument to assess the six constructs 
constituting the investment model. All questionnaire items used a 5-point Likert-type response format; items 1  
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through 4 assessed commitment to their current relationship, items 5 through 7 assessed satisfaction, and so 
forth. The questionnaire was administered to 247 participants currently involved in romantic relationships; 
usable responses were obtained from 240 of these. (It is again emphasized that the results presented here are 
fictitious, and should not be viewed as legitimate tests of the investment model.)     

In large part, the analyses reported in this chapter and the next will follow a two-phase procedure recommended 
by Anderson and Gerbing (1988). With this approach, you begin by developing a measurement model that 
provides an acceptable fit to the data. In this phase, each latent F variable is allowed to covary with every other 
latent F variable; the analysis is essentially confirmatory factor analysis. If the initial measurement model is 
inadequate, variables are reassigned or deleted in order to attain a better fit.  

Figure 5.4: The Theoretical Model to Be Tested 
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Once an acceptable measurement model has been developed, the analysis moves to a second phase in which the 
theoretical model itself is tested. This is done by fixing at zero the covariances between some of the F variables 
in the measurement model, and replacing some other covariances with unidirectional paths so that the 
relationships between latent variables come to reflect the directional relations to be tested. Testing the resulting 
theoretical model for goodness of fit allows a simultaneous test of the measurement model developed in phase 
one, along with the structural model that is of primary substantive interest (e.g., your hypotheses usually pertain 
to these associations). If the theoretical model survives this test, support for the theory is obtained. If the 
theoretical model does not survive, it may be modified to attain a better fit.  

Testing the Fit of the Measurement Model from the Investment Model Study 
Confirmatory factor analysis (CFA) is used to test the fit of the measurement model; PROC CALIS can perform 
these analyses. In many ways, the program is similar to the one used to perform path analysis as presented in the 
preceding chapter. Among other things, the program will include one functional equation for each manifest 
variable. These equations will define each V variable in terms of the latent factor (F variable) that it is believed 
to measure, as well as its residual term (E term).  

Preparing the Program Figure 
The typical CALIS program to perform this confirmatory factor analysis is longer than that which performs a 
path analysis; this is because the CFA usually involves more variables and thus more equations. Writing this 
program will usually be much easier if you first prepare a program figure that identifies latent variables and 
their indicators, residual terms, and all estimated parameters. This section shows how to prepare a program 
figure following the same procedure used in the last chapter. Because the general steps followed in preparing a 
program figure were described in detail in Chapter 4 (in the “Preparing the Program Figure” section), they will 
be covered more briefly here.  

The previous chapter presented a list of rules to guide you in preparing program figures; most of these rules also 
apply to latent variable models. (There will be a few exceptions to these rules, and they will be discussed where 
appropriate.) The rules are presented again below for purposes of reference: 

RULE 1: Only exogenous variables are allowed to covary. 

RULE 2: A residual term is identified for each endogenous variable in the model. 

RULE 3: Exogenous variables do not have residual terms. 

RULE 4: Variances should be estimated for every exogenous variable in the model, including residual terms. 

RULE 5: In most cases, there should be covariance estimates for every pair of manifest exogenous variables; 
covariance estimates are not required for endogenous variables. 

RULE 6: For simple recursive models, covariance is not estimated for residual terms.  
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RULE 7: One equation should be created for each endogenous variable with that variable’s name to the left of 

the equals sign.  

RULE 8: Variables that have a direct effect on that endogenous variable are listed to the right of the equals 
sign. 

RULE 9: Exogenous variables, including residual terms, are never listed to the left of the equals sign. 

RULE 10: To estimate a path coefficient for a given independent variable, we recommend that a unique path 
coefficient name be created for the path coefficient associated with that independent variable. 

RULE 11: The last term in each equation should be the residual (disturbance) term for that endogenous 
variable; this E (or D) term will have no name for its path coefficient. 

RULE 12: To estimate a parameter, create a name for that parameter. 

RULE 13: To fix a parameter at a given numerical value, insert that value in the place of the parameter’s name. 

RULE 14: To constrain two or more parameters to be equal, use the same name for those parameters. 

Step 1: Drawing the Basic Confirmatory Factor Model 
Figure 5.5 presents the basic measurement model to be tested in this phase of the study. As with the theoretical 
model presented earlier, the model consists of five latent variables or factors: Commitment (F1), satisfaction 
(F2), rewards (F3), costs (F4), investments (F5), and alternatives (F6). F1 has four manifest indicator variables, 
which are represented by rectangles. Remember that these indicator variables are responses to questionnaire 
items. The remaining factors each have three indicators. Each factor is connected to every other factor by a 
curved two-headed arrow, meaning that every factor is allowed to covary with every other factor.  
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Figure 5.5: The Initial Measurement Model 

 

Notice that each indicator variable is assumed to load on only one factor; in other words, there are no complex 
variables (indicators measuring more than one latent variable). Notice also that there are no covariance 
estimates assumed between any of the indicators. This is because only exogenous variables are allowed to 
covariance. (You know that indicator variables are endogenous variables, because a straight, one-headed arrow 
points to each of them.) 

Step 2: Identifying Residual Terms for Endogenous Variables 
Rule 2 states that a residual term must be identified for each endogenous variable in the model. You know that 
all of the indicator variables are endogenous variables because each is affected by F variables. Therefore, a 
residual term must be created for each indicator. This is illustrated in Figure 5.6. 
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Figure 5.6: The Initial Measurement Model, Including Residual Terms for Endogenous Variables 

 

This figure follows the same conventions used in the last chapter; the names for residual terms begin with the 
letter “E” and end with the same numerical suffix used as the short name for the corresponding indicator. For 
example, the residual for V1 is E1, the residual for V2 is E2, and so forth. 

Figure 5.6 illustrates assumed associations in the confirmatory factor model; you can see that all are relatively 
simple. Each indicator is affected only by the underlying common factor (F) on which it loads as well as its 
residual term. That is to say, V1 is affected only by F1 and E1, V5 is affected only by F2 and E5, and so forth. 
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Step 3: Identifying All Parameters to Be Estimated 
Figure 5.7 illustrates all of the parameters to be estimated in the CFA model. Do not be intimidated by the 
complexity of the figure; the rules presented in the last chapter provided virtually everything you need to know 
to determine which parameters should be estimated. Only a few new concepts are presented here. Only three 
types of parameters are estimated in the analysis: Variances for exogenous variables, covariances between latent 
factors (F variables), and factor loadings. 

Figure 5.7: The Initial Measurement Model, After Identifying All Parameters to Be Estimated (Completed  
                   Program Figure for Confirmatory Factor Analysis) 

 

Rule 4 states that variances should be estimated for every exogenous variable in the model, including residual 
terms. Consistent with this, notice that the symbol “VAR?” appears below all of the E residual terms in the 
model. (Here, any symbol ending with a “?” indicates a parameter to be estimated; in this case “VAR?” 
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represents a variance parameter to be estimated.) This means that variance will be estimated for each E term in 
the model. Notice that there are no VAR? symbols under the V terms, because all manifest variables in this CFA 
model are endogenous variables; variances are not estimated for endogenous variables. 

This figure introduces a new concept, and an exception to one of last chapter’s rules. Notice that all of the latent 
factors (the F variables) are exogenous variables. You can tell this because an exogenous variable is a variable 
that is not affected by a straight single-headed arrow. Rule 4 states that variances should be estimated for every 
exogenous variable in the model, but this will not apply to the F variables in confirmatory factor analysis. This is 
because there exists a basic indeterminacy involving the variance of the F variables and the factor loadings for 
the manifest indicators that measure those F variables. Because it is a hypothetical construct (rather than a 
manifest variable), an F variable has no established metric or scale. This is known as the scale indeterminacy 
problem. If not redressed, this problem makes it impossible to distinguish between situations in which the factor 
variance is large and the factor loadings are small, and situations in which the factor variance is small and the 
factor loadings are large.  

To solve this problem, you can give all factors unit variances by fixing their variances at 1. This establishes a 
scale for the F variables and helps ensure that the model is identified. This is illustrated in the program figure 
(Figure 5.7) by indicating “VAR=1” below the long name of each F variable. For example, “VAR=1” is listed 
below “Commitment” in the oval  for F1, below “Satisfaction” in the oval for F2, and so forth. Later, this 
chapter will show how these factor variances are actually set at 1 in the PROC CALIS program itself. This 
convention for dealing with the scale indeterminacy problem is summarized in Rule 15: 

RULE 15: In confirmatory factor analysis, variances of the latent F variables are usually fixed at 1. 

Having identified the variances to be estimated or fixed, you now turn to the covariance estimates. Rule 5 states 
that covariance estimates are usually estimated for all possible pairs of manifest exogenous variables. The 
counterpart to this rule in CFA is that covariances should be estimated for every possible pair of latent factors. 
In Figure 5.7, this is illustrated by the curved or two-headed arrows that connect all sets of F variables. The “C?” 
symbol on each curved arrow represents the covariance estimate.  

Notice that covariance estimates are specified only for the latent F variables; V variables do not covary because 
these are endogenous variables. Nor is covariation estimated between residual terms in most hypothesized 
models. (Certain instances when these terms are allowed to covary include time-series or nonrecursive models.) 

Finally, it is necessary to estimate factor loadings for the model; these are represented by the symbol “L?” in 
Figure 5.7. In this model, factor loadings are just path coefficients for the paths leading from a factor to an 
indicator variable. For example, the L? symbol appears on the arrow from F1 (commitment) to V1, one of its 
indicator variables. If the path coefficient (or factor loading) for this path is relatively large and significantly 
different from zero, it means that V1 effectively measures F1. You can see that factor loadings are estimated for 
every path (single-headed arrow) leading from a factor to an indicator variable. 

Step 4: Verifying That the Model Is Overidentified 
The preceding chapter discussed a number of necessary but not sufficient procedures that can be used to 
determine whether a model is identified. These include:  

• verifying that the number of data points in the analysis is larger than the number of parameters to be 
estimated 

• checking the SAS log and output carefully to see if PROC CALIS specified an identification problem 

• repeating the analysis several times using different starting values and verifying that the same 
parameter estimates are obtained with each run 
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Along with these reminders, it is again noted that researchers are more likely to run into identification problems 
if they: 

• measure a latent variable with less than three indicators 

• fail to establish the metric of a factor (for example, by failing to fix its variance at 1) 

• analyze nonrecursive structural models 

The last chapter stated that recursive path models with manifest variables will always be either just-identified or 
overidentified. In contrast, models with latent variables may be just-identified, overidentified, or underidentified. 
Remember that the procedures listed above cannot conclusively prove that a model is identified; worse, if PROC 
CALIS fails to detect an underidentified model, it will still produce seemingly interpretable, though 
meaningless, results. 

It is possible to demonstrate that your model is overidentified by showing mathematically that the parameters of 
the model’s covariance equations can be solved in terms of population variances and covariances. Kline (2005) 
provides a useful discussion of the identification problem and approaches for identification.  

Preparing the SAS Program 

The DATA Step 
Since the DATA step was given extensive coverage in the preceding chapter, only a few key points will be 
repeated here. First, whenever possible, perform initial analyses on raw data as this allows for use of the 
KURTOSIS option. This option prints various descriptive statistics to help identify observations with kurtotic 
and skewed distributions. In this way, you may identify outliers that could bias parameter estimates if not 
deleted. 

It is also possible to input the data as a correlation or covariance matrix. When creating such a matrix from raw 
data, you should generally use a LISTWISE procedure for deleting observations with missing data (e.g., use the 
NOMISS option with PROC CORR when creating the matrix). If inputting a correlation matrix, standard 
deviations must be included so that PROC CALIS can transform the correlation matrix into a covariance matrix. 
The procedures discussed in this chapter should generally be performed on the covariance matrix. 

Table 5.1 presents (fictitious) standard deviation values and correlation coefficients between manifest variables 
analyzed in the present study. Readers who want to replicate the analyses reported here may analyze this dataset 
by inputting it as a type=CORR dataset. Because the last chapter showed how to input a type=CORR dataset, 
instructions for managing the DATA step of the SAS program will not be repeated.  
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Table 5.1: Standard Deviations and Correlation Coefficients between Manifest Variables, Investment  
                 Model Study 

 

Overview of the PROC CALIS Program 
The PROC CALIS program that performs confirmatory factor analysis is very similar to the program that 
performs path analysis. It is somewhat longer (especially the LINEQS statement) because there are more 
parameters to estimate; the basic principles for writing the statements remain the same, however. Below is the 
complete program (minus the DATA step) for performing CFA on the model presented in Figure 5.7: 

❶   proc calis  covariance  modification ; 
❷      lineqs 
           V1  = LV1F1  F1 + E1, 
           V2  = LV2F1  F1 + E2, 
           V3  = LV3F1  F1 + E3, 
           V4  = LV4F1  F1 + E4, 
           V5  = LV5F2  F2 + E5, 
           V6  = LV6F2  F2 + E6, 
❸           V7   = LV7F2   F2 + E7, 
           V8  = LV8F3  F3 + E8, 
           V9  = LV9F3  F3 + E9, 
           V10 = LV10F3 F3 + E10, 
           V11 = LV11F4 F4 + E11, 
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           V12 = LV12F4 F4 + E12, 
           V13 = LV13F4 F4 + E13, 
           V14 = LV14F5 F5 + E14, 
           V15 = LV15F5 F5 + E15, 
           V16 = LV16F5 F5 + E16, 
           V17 = LV17F6 F6 + E17, 
           V18 = LV18F6 F6 + E18, 
           V19 = LV19F6 F6 + E19; 
        variance 
 ❹          F1 = 1, 
           F2 = 1, 
           F3 = 1, 
           F4 = 1, 
           F5 = 1, 
 ❺          F6 = 1, 
 ❻          E1-E19 = VARE1-VARE19; 
        cov 
 ❼          F1 F2 = CF1F2, 
           F1 F3 = CF1F3, 
           F1 F4 = CF1F4, 
           F1 F5 = CF1F5, 
 ❽          F1 F6 = CF1F6, 
 ❾          F2 F3 = CF2F3, 
           F2 F4 = CF2F4, 
           F2 F5 = CF2F5, 
 ❿          F2 F6 = CF2F6, 
 11          F3 F4 = CF3F4, 
           F3 F5 = CF3F5, 
 12          F3 F6 = CF3F6, 
           F4 F5 = CF4F5, 
           F4 F6 = CF4F6, 
           F5 F6 = CF5F6; 
 13     var  V1-V19 ; 
     run; 

The PROC CALIS Statement 
The PROC CALIS statement, which requests the CALIS procedure, appears on line ❶ of the preceding 
program. Any options desired for the analysis are listed in this statement, separated by at least one space. The 
PROC CALIS statement in the preceding program includes the covariance option which specifies that analyses 
be performed on a covariance matrix (not a correlation matrix), and the modification option which requests 
Lagrange Multiplier and Wald test modification indices. The MODIFICATION option is useful when 
determining how the model might be modified if it does not demonstrate an adequate fit. 

The LINEQS Statement 
The LINEQS statement is used to indicate which manifest variables load on which latent factors. This is done 
with a series of equations; there is a separate equation for each manifest variable. Below is the general form for 
the LINEQS statements that appear in a confirmatory factor analysis: 

lineqs 
   V = L  F + E, 
   V = L  F + E, 
   V = L  F + E; 

where 

V = manifest variable (indicator variable) 

L = coefficient name for the factor loading 

F = factor that the manifest variable loads on  

E = residual term for corresponding manifest variable 
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Although the preceding provides the general form for three equations, any number of equations is actually 
possible. The program provided earlier includes 19 equations: One for each indicator variable. 

For a concrete illustration, consider the first seven equations and the last three equations from your program: 

❷      lineqs 
           V1  = LV1F1  F1 + E1, 
           V2  = LV2F1  F1 + E2, 
           V3  = LV3F1  F1 + E3, 
           V4  = LV4F1  F1 + E4, 
           V5  = LV5F2  F2 + E5, 
           V6  = LV6F2  F2 + E6, 
❸           V7  = LV7F2  F2 + E7, 
           . 
           . 
           . 
           V17 = LV17F6 F6 + E17, 
           V18 = LV18F6 F6 + E18, 
           V19 = LV19F6 F6 + E19; 

The LINEQS statement begins with the word LINEQS and ends with a semicolon. Each equation in the 
statement is separated by a comma. These equations are prepared following the same conventions discussed in 
the previous chapter.  

The preceding LINEQS equations reflect the hypothesized relationships depicted in Figure 5.7. Figure 5.7 
shows that only indicator variables are endogenous in the confirmatory factor analysis model; only these 
indicators appear to the left of the equals sign in the LINEQS equations (e.g., V1, V2, and V3). Figure 5.7 also 
shows that each V variable is affected by a single latent factor (an F variable) and a single residual term (an E 
variable). This is reflected in the LINEQS equations as well: V1 is affected by F1 and E1, V2 is affected by F1 
and E2, and so forth.  

Figure 5.7 shows which variables load on which factors. If an arrow goes from a factor to an indicator variable, 
then that indicator loads on that factor. The loadings illustrated in Figure 5.7 are also reflected in the LINEQS 
equations. If an equation for a V variable includes a certain F variable, it means that the V variable loads on that 
factor. It is in this way that the following statements show that V1 through V4 load on F1, while V5 through V7 
load on F2: 

           V1  = LV1F1  F1 + E1, 
           V2  = LV2F1  F1 + E2, 
           V3  = LV3F1  F1 + E3, 
           V4  = LV4F1  F1 + E4, 
           V5  = LV5F2  F2 + E5, 
           V6  = LV6F2  F2 + E6, 
❸           V7  = LV7F2  F2 + E7, 
 

Although a group of variables may share a common factor, each still has its own unique residual term. In other 
words, V1 has the residual term E1, V2 has the residual term E2, and so forth. 

The only parameters estimated by these LINEQS equations are factor loadings; these are estimated as 
coefficients for paths leading from F variables to V variables. For example, PROC CALIS may estimate that the 
factor loading for the path from F1 to V1 is .89, or that the coefficient for the path from F1 to V2 is .65.  

Rule 12 from the preceding chapter said that, in order to estimate a parameter, you must provide a name for that 
parameter. This means that you must create names for the parameter estimates you want to estimate in this 
analysis. Technically, you may select any name for these coefficients so as long as they comply with the usual 
SAS rules for variable names. To create more meaningful names, however, we recommend the system 
introduced in Chapter 4. 
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Specifically, we recommend that each factor loading be given a name that begins with the letter “L” (for 
Loading), next the short name for the indicator variable being affected, and last the short name for the 
underlying factor involved. For example, LV1F1 is the name for the factor loading of V1 on F1, LV17F6 is the 
name for the factor loading of V17 on F6, and so forth. Review the names of the factor loadings included in the 
preceding program to verify that these names accurately reflect the relationships between factors and variables 
portrayed in Figure 5.7. First creating a diagram such as Figure 5.7 reduces the possibility of incorrectly 
specifying these labels and path estimates. 

One advantage of this system is that it provides each parameter estimate with a name that is both unique and 
meaningful. For example, if you saw the parameter name LV14F5 among the parameter names listed in the 
Wald test, you would immediately know that this is the factor loading for manifest variable V14 on latent factor 
F5. 

Again consider the LINEQS statements for indicators V1 through V7: 

           V1  = LV1F1  F1 + E1, 
           V2  = LV2F1  F1 + E2, 
           V3  = LV3F1  F1 + E3, 
           V4  = LV4F1  F1 + E4, 
           V5  = LV5F2  F2 + E5, 
           V6  = LV6F2  F2 + E6, 
❸          V7  = LV7F2   F2 + E7, 
 

Note, dependent variables are always listed to the left of the equals sign, and independent variables with direct 
effects on these variables are listed to the right of the sign. Also note that the parameter name appears to the 
immediate left of an independent variable in order to estimate the parameter for that independent variable. The 
preceding equations reflect these conventions; placing the name for a parameter estimate to the left of an F 
variable means that it will be estimated to describe the relationship between the V variable and that F variable.  

But notice that each of the preceding statements also includes a second independent variable: The indicator 
variable’s E term (residual term). Why not, however, create a name for the path coefficient that represents the 
relationship between each E term and its corresponding V variable? We do not recommend this. As with path 
analysis, the paths for these E terms are fixed at 1. You accomplish this by simply leaving the names for these 
path coefficients out of the equation; this automatically fixes path estimates from the E term to the V variable  
at 1. 

The VARIANCE Statement 
The VARIANCE statement is used to specify which parameters are to be estimated and which are to be fixed. In 
the last chapter, you learned that variances are estimated or fixed for all of the exogenous variables in a model, 
but never estimated for endogenous variables. A glance at Figure 5.7 reveals two types of exogenous variables 
in your confirmatory path model: The F variables and the E variables. This means that F and E variables are 
listed in the VARIANCE statement. Since all manifest variables are endogenous variable, none of the V terms 
appear here. 

Below is the VARIANCE statement for the current program: 

        variance 
 ❹          F1 = 1, 
           F2 = 1, 
           F3 = 1, 
           F4 = 1, 
           F5 = 1, 
 ❺          F6 = 1, 
 ❻          E1-E19 = VARE1-VARE19; 
 

The VARIANCE statement begins with the word VARIANCE and ends with a semicolon. Equations that 
constitute the statement are each separated by commas.  
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In Figure 5.7, you wrote “VAR=1” below the long name of each of the latent factors. This was to indicate that 
the variance of each factor was to be fixed at 1 to solve the scale indeterminacy problem. In the PROC CALIS 
program, these variances are actually fixed at 1 by listing the short name of the F variable to the left of the 
equals sign and the number “1” to the right of the sign. This is presented between lines ❹ and ❺ of the program.  

Figure 5.7 shows that the symbol “VAR?” appears below the short name of each of the E terms indicating that 
the variance for each of these terms is to be estimated. Remember that in order to estimate any parameter it is 
necessary to include a name for that parameter in the PROC CALIS program. This is done in line ❻ of the 
program. The short names for the E terms (E1–E19) appear to the left of the equals sign and the names for the 
corresponding variance parameter estimates (VARE1–VARE19) appear to the right of the equals sign. This 
single equation will estimate variance for all 19 of the specified residual terms. 

The COV Statement 
The COV statement is used to identify pairs of variables that are expected to covary. The statement begins with 
the letters COV and ends with a semicolon; each equation is separated by a comma. 

If two variables are expected to covary, the short names for these variables are listed to the left of the equals 
sign; the name for the covariance estimate appears to the right of the equals sign. Below is the COV statement 
for the present program: 

        cov 
 ❼          F1 F2 = CF1F2, 
           F1 F3 = CF1F3, 
           F1 F4 = CF1F4, 
           F1 F5 = CF1F5, 
 ❽          F1 F6 = CF1F6, 
 ❾          F2 F3 = CF2F3, 
           F2 F4 = CF2F4, 
           F2 F5 = CF2F5, 
 ❿          F2 F6 = CF2F6, 
 11          F3 F4 = CF3F4, 
           F3 F5 = CF3F5, 
 12          F3 F6 = CF3F6, 
           F4 F5 = CF4F5, 
           F4 F6 = CF4F6, 
           F5 F6 = CF5F6; 

In confirmatory factor analysis, all latent factors generally are allowed to covary (at least initially). This means 
that covariance estimates will be calculated for every pairing of F variables; the preceding equations achieve 
this. 

To ensure that you do not miss any covariances, we advise that you follow the general format presented above: 
Lines ❼ to ❽ specify pairings between variable F1 and variables F2 to F6; lines ❾ to ❿ specify pairings 
between F2 and variables F3 to F6; lines 11 to 12  specify pairings between F3 and variables F4 to F6, and so 
forth. Following this systematic approach assures that all possible pairings of the F variables are listed. 

The names for covariance estimates appear to the right of the equals sign. We recommend the convention 
presented in the last chapter in which each estimate begins the letter “C” (for Covariance) followed by the short 
names for the two F variables for which covariation is estimated. Covariance estimates are not (initially) 
calculated between residual error terms. 
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The VAR Statement 
The VAR statement appears as line 13  of the program. It is reproduced below:   

13     var  V1-V19 ; 

The VAR statement begins the letters VAR and ends with a semicolon; it specifies the variables to be analyzed 
by PROC CALIS.  

Making Sure That the SAS Log and Output Files Look Right   
When the analysis is completed, SAS creates two new files. The log file contains the lines of the original SAS 
program along with notes, warnings, and error messages; the output file (or lis file) contains the results of the 
analysis. Both files should be reviewed to verify that the analysis was performed in the desired manner. 

Specifically, the log file should be inspected for any notes, warnings, or error messages that indicate a problem 
in the analysis. Toward the end of the log, look for the statement “Convergence criterion satisfied.”   

Below is a brief description of some of the information contained in this output: 

• Page 1 lists the endogenous variables and exogenous variables specified in the LINEQS statement, 
which is the general form of the structural equations specified in the LINEQS statement. 

• Page 2 reports the simple statistics for observed variables.  

• Page 3 reports initial parameter estimates and their respective gradients. 

• Page 4 provides optimization results including the iteration history. 

• Page 5 reports goodness-of-fit statistics, which will be discussed later. 

• Page 6 reports unstandardized results and square multiple correlations. 

• Page 7 reports standardized variance and covariance estimates for exogenous variables. 

• Page 8 reports the modification indices: Lagrange Multipliers (LM). 

• Page 9 reports the modification indices: Wald test results. 

Before reviewing the substantive results of the analysis (e.g., the goodness-of-fit indices, the factor loadings), 
you should routinely review the first pages of the output to verify that the program was executed as expected. 
The first seven pages of the current output are reproduced here as Output 5.3. 
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Output 5.3: PROC CALIS Output Pages 1 to 4, Analysis of Initial Measurement Model, Investment  
                    Model Study 

The CALIS Procedure 
Covariance Structure Analysis: Model and Initial Values 

 

Modeling Information 

Data Set WORK.D1 

N Obs 240 

Model Type LINEQS 

Analysis Covariances 

 

Variables in the Model 

Endogenous Manifest V1 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V2 V3 V4 V5 V6 V7 V8 V9 

 Latent  

Exogenous Manifest  

 Latent F1 F2 F3 F4 F5 F6 

 Error E1 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E2 E3 E4 E5 E6 E7 E8 E9 

Number of Endogenous Variables = 19 
Number of Exogenous Variables = 25 

 
 

Initial Estimates for Linear Equations 

V1 =  . * F1 + 1.0000  E1 

     LV1F1     

V2 =  . * F1 + 1.0000  E2 

     LV2F1     

V3 =  . * F1 + 1.0000  E3 

     LV3F1     

V4 =  . * F1 + 1.0000  E4 

     LV4F1     

V5 =  . * F2 + 1.0000  E5 

     LV5F2     

V6 =  . * F2 + 1.0000  E6 

     LV6F2     

V7 =  . * F2 + 1.0000  E7 

     LV7F2     

V8 =  . * F3 + 1.0000  E8 

     LV8F3     

V9 =  . * F3 + 1.0000  E9 

     LV9F3     

V10 =  . * F3 + 1.0000  E10 

     LV10F3     

V11 =  . * F4 + 1.0000  E11 

     LV11F4     
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Initial Estimates for Linear Equations 

V12 =  . * F4 + 1.0000  E12 

     LV12F4     

V13 =  . * F4 + 1.0000  E13 

     LV13F4     

V14 =  . * F5 + 1.0000  E14 

     LV14F5     

V15 =  . * F5 + 1.0000  E15 

     LV15F5     

V16 =  . * F5 + 1.0000  E16 

     LV16F5     

V17 =  . * F6 + 1.0000  E17 

     LV17F6     

V18 =  . * F6 + 1.0000  E18 

     LV18F6     

V19 =  . * F6 + 1.0000  E19 

     LV19F6     

 

Initial Estimates for Variances of Exogenous Variables 

Variable 
Type Variable Parameter Estimate 

Latent F1  1.00000 

 F2  1.00000 

 F3  1.00000 

 F4  1.00000 

 F5  1.00000 

 F6  1.00000 
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Error E1 VARE1 . 

 E2 VARE2 . 

 E3 VARE3 . 

 E4 VARE4 . 

 E5 VARE5 . 

 E6 VARE6 . 

 E7 VARE7 . 

 E8 VARE8 . 

 E9 VARE9 . 

 E10 VARE10 . 

 E11 VARE11 . 

 E12 VARE12 . 

 E13 VARE13 . 

 E14 VARE14 . 

 E15 VARE15 . 

 E16 VARE16 . 

 E17 VARE17 . 

 E18 VARE18 . 

 E19 VARE19 . 

 
 

Initial Estimates for Covariances Among Exogenous Variables 

Var1 Var2 Parameter Estimate 

F1 F2 CF1F2 . 

F1 F3 CF1F3 . 

F1 F4 CF1F4 . 

F1 F5 CF1F5 . 

F1 F6 CF1F6 . 

F2 F3 CF2F3 . 

F2 F4 CF2F4 . 

F2 F5 CF2F5 . 

F2 F6 CF2F6 . 

F3 F4 CF3F4 . 

F3 F5 CF3F5 . 

F3 F6 CF3F6 . 

F4 F5 CF4F5 . 

F4 F6 CF4F6 . 

F5 F6 CF5F6 . 
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Output 5.3 (Page 2) 

 
The CALIS Procedure 

Covariance Structure Analysis: Descriptive Statistics 

Simple Statistics 

Variable Mean Std Dev 

V1 0 2.48600 

V2 0 2.90900 

V3 0 2.72400 

V4 0 2.92600 

V5 0 1.92900 

V6 0 2.11300 

V7 0 2.05600 

V8 0 1.41700 

V9 0 1.40800 

V10 0 1.72400 

V11 0 2.59500 

V12 0 2.69100 

V13 0 2.36000 

V14 0 2.10200 

V15 0 2.21900 

V16 0 1.87400 

V17 0 2.00100 

V18 0 1.96600 

V19 0 2.18500 

 

Output 5.3 (Page 3) 

 
The CALIS Procedure 

Covariance Structure Analysis: Optimization 

Initial Estimation Methods 

1 Instrumental Variables Method 

2 McDonald Method 

 

Optimization Start 
Parameter Estimates 

N Parameter Estimate Gradient 

1 LV1F1 2.25837 0.05797 

2 LV2F1 2.27508 -0.08232 

3 LV3F1 2.51331 -0.02411 

4 LV4F1 2.49990 0.07426 

5 LV5F2 1.64639 0.04049 
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Optimization Start 
Parameter Estimates 

N Parameter Estimate Gradient 

6 LV6F2 1.76717 -0.04187 

7 LV7F2 1.81048 0.00902 

8 LV8F3 1.03948 0.05279 

9 LV9F3 0.83597 -0.03769 

10 LV10F3 1.24764 -0.00981 

11 LV11F4 2.23401 0.00286 

12 LV12F4 2.18994 -0.01539 

13 LV13F4 1.14346 0.02096 

14 LV14F5 1.79425 0.00750 

15 LV15F5 1.54589 -0.01170 

16 LV16F5 1.04648 0.01381 

17 LV17F6 1.58106 0.06120 

18 LV18F6 1.20957 -0.10600 

19 LV19F6 1.60319 0.03672 

20 VARE1 1.07995 -0.16346 

21 VARE2 3.28627 0.05236 

22 VARE3 1.10347 0.00482 

23 VARE4 2.31196 -0.09158 

24 VARE5 1.01045 -0.06994 

25 VARE6 1.34188 0.05255 

26 VARE7 0.94928 -0.02264 

27 VARE8 0.92737 -0.06540 

28 VARE9 1.28363 0.02245 

29 VARE10 1.41557 0.00480 

30 VARE11 1.74322 0.0001174 

31 VARE12 2.44563 0.01563 

32 VARE13 4.26210 -0.00546 

33 VARE14 1.19908 -0.00924 

34 VARE15 2.53417 0.00747 

35 VARE16 2.41677 -0.00581 

36 VARE17 1.50427 -0.07676 

37 VARE18 2.40209 0.05052 

38 VARE19 2.20401 -0.03267 

39 CF1F2 0.62146 -0.12105 

40 CF1F3 0.44124 -0.04690 

41 CF1F4 -0.02340 -0.01554 

42 CF1F5 0.69530 -0.11532 
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Optimization Start 
Parameter Estimates 

N Parameter Estimate Gradient 

43 CF1F6 -0.29380 -0.10907 

44 CF2F3 0.53391 0.05401 

45 CF2F4 -0.22638 -0.03640 

46 CF2F5 0.63886 0.09986 

47 CF2F6 -0.39374 0.08333 

48 CF3F4 -0.08957 0.04064 

49 CF3F5 0.49481 -0.03725 

50 CF3F6 -0.43534 -0.01748 

51 CF4F5 0.01104 0.01748 

52 CF4F6 0.26790 -0.00860 

53 CF5F6 -0.32012 0.02420 

Value of Objective Function = 1.2296108485 

Output 5.3 (Page 4) 

 
The CALIS Procedure 

Covariance Structure Analysis: Optimization 
Levenberg-Marquardt Optimization 

Scaling Update of More (1978) 

Parameter Estimates 53 

Functions (Observations) 190 

 

Optimization Start 

Active Constraints 0 Objective Function 1.2296108485 

Max Abs Gradient Element 0.1634612729 Radius 1 

 

Iteration 

 

Restarts 
Function 

Calls 
Active 

Constraints 

 

Objective 
Function 

Objective 
Function 
Change 

Max Abs 
Gradient 
Element Lambda 

Ratio 
Between 

Actual 
and 

Predicted 
Change 

1  0 4 0  1.04697 0.1826 0.1561 0 0.846 

2  0 6 0  1.03685 0.0101 0.0151 0 0.891 

3  0 8 0  1.03633 0.000515 0.00626 0 0.841 

4  0 10 0  1.03629 0.000040 0.000850 0 0.796 

5  0 12 0  1.03629 3.776E-6 0.000567 0 0.757 

6  0 14 0  1.03629 3.863E-7 0.000100 0 0.725 

7  0 16 0  1.03629 4.186E-8 0.000061 0 0.703 

8  0 18 0  1.03629 4.682E-9 0.000013 0 0.687 

9  0 20 0  1.03629 5.35E-10 6.798E-6 0 0.677 
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Optimization Results 

Iterations 9 Function Calls 23 

Jacobian Calls 11 Active Constraints 0 

Objective Function 1.0362903002 Max Abs Gradient Element 6.7983308E-6 

Lambda 0 Actual Over Pred Change 0.6766587644 

Radius 0.0001183677   

 

Convergence criterion (GCONV=1E-8) satisfied. 

Page 1 of Output 5.3 identifies the endogenous and exogenous variables of the analysis and the general form of 
structural equations; these should be reviewed to verify that PROC CALIS analyzed the model as intended by 
you. Page 4 provides information about the number of parameter estimates, functions (or observations), and 
iteration history. This page also indicates whether the convergence criterion was satisfied. If the information 
presented on these pages appears to be in order, you may proceed to assess the fit between model and data, 
along with other results of the analysis.  

Assessing the Fit between Model and Data  
When conducting confirmatory factor analysis, you begin with a model that predicts the existence of a specific 
number of latent factors and predicts which indicator variables load on each factor. You then test the model by 
measuring these variables in a sample of participants drawn from the population of interest. If the model 
provides a reasonably good approximation, it should do a good job of accounting for the observed relationships 
in the dataset. In other words, the model should provide a good fit to data. 

The procedures for determining whether path models fit the data were presented in the last chapter; each of these 
procedures can also be used to assess the fit of confirmatory factor analytic models. A few modifications will be 
necessary (since CFA models tend to be somewhat more complex than path analytic models), but the basic 
strategy for assessing fit remains the same. The process begins by reviewing significance tests for factor 
loadings, overall goodness-of-fit indices (e.g., SRMR, CFI, and RMSEA), and then proceeds to other indices 
such as R2 values and modification indices. 

Step 1: Assessing the Statistical Power of the Model 
As previously discussed, confirmatory factor analytic models need to have a sufficient number of observations 
relative to degrees of freedom to minimize the likelihood of Type II errors. In other words, models need to 
possess sufficient statistical power to reject poorly fitting models (i.e., to have confidence in reported goodness-
of-fit indices). With 240 observations, we know that our sample size exceeds the minimum threshold of 200 
(though below the ideal level of 300). The number of observations appears as the first line on page 5. This table 
is presented here as Output 5.4. 
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Output 5.4: Number of Observations and Goodness-of Fit-Statistics, Analysis of Initial Measurement  
                    Model, Investment Model Study 

 

Fit Summary 

Modeling Info N Observations 240 

 N Variables 19 

 N Moments 190 

 N Parameters 53 

 N Active Constraints 0 

 Baseline Model Function Value 10.2915 

 Baseline Model Chi-Square 2459.6733 

 Baseline Model Chi-Square DF 171 

 Pr > Baseline Model Chi-Square <.0001 

Absolute Index Fit Function 1.0363 

 Chi-Square 247.6734 

 Chi-Square DF 137 

 Pr > Chi-Square <.0001 

 Z-Test of Wilson & Hilferty 5.4581 

 Hoelter Critical N 160 

 Root Mean Square Residual (RMSR) 0.2373 

 Standardized RMSR (SRMSR) 0.0465 

 Goodness of Fit Index (GFI) 0.9064 

Parsimony Index Adjusted GFI (AGFI) 0.8702 

 Parsimonious GFI 0.7262 

 RMSEA Estimate 0.0581 

 RMSEA Lower 90% Confidence Limit 0.0464 

 RMSEA Upper 90% Confidence Limit 0.0696 

 Probability of Close Fit 0.1221 

 ECVI Estimate 1.5203 

 ECVI Lower 90% Confidence Limit 1.3490 

 ECVI Upper 90% Confidence Limit 1.7277 

 Akaike Information Criterion 353.6734 

 Bozdogan CAIC 591.1472 

 Schwarz Bayesian Criterion 538.1472 

 McDonald Centrality 0.7941 

Incremental Index Bentler Comparative Fit Index 0.9516 

 Bentler-Bonett NFI 0.8993 

 Bentler-Bonett Non-normed Index 0.9396 

 Bollen Normed Index Rho1 0.8743 

 Bollen Non-normed Index Delta2 0.9524 

 James et al. Parsimonious NFI 0.7205 
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Within the “Absolute Index” section of the table, we can see that our initial model has 137 degrees of freedom. 
This appears to the right of the line “Chi-Square DF.” We can now proceed to estimate statistical power using 
the formula from MacCallum and colleagues (1996), which was previously presented. With n = 240 and df = 
137, this model is estimated to have power greater than .99 (i.e., power ≥ .80; Cohen 1988). On this basis, we 
can proceed to interpret goodness-of-fit indices with greater confidence. 

Step 2: Reviewing Goodness-of-Fit Indices 
As noted in Chapter 4, it remains customary to first examine the chi-square statistic to test of the null hypothesis 
that models fit exactly in the population (i.e., p > .05). As previously discussed, however, this statistic is 
generally significant when models provide good fit to data (Byrne 1998; MacCallum, Browne, and Cai 2006). 
This is particularly true with CFA (and structural equation models) which tend to be more complex than path 
models. Therefore the chi-square statistic should not be seen as a bona fide goodness-of-fit index; instead, chi-
square values are useful primarily when modifying models to ensure that changes are statistically significant 
(i.e., viable model revisions).  

Instead, indices such as the Standardized Root Mean Square Residual (SRMR), the Comparative Fit Index 
(CFI), and the Root Mean Square Error of Approximation (RMSEA & RMSEA CL90) provide more accurate 
information regarding goodness of model fit. There statistics are reported on page 5 among a multitude of 
statistics. As mentioned in the last chapter, no universal consensus yet exists as to which provide the best 
reflection of model fit; instead, it is common practice to report at least three goodness-of-fit indices, at least one 
absolute index (e.g., SRMR), one parsimony index (e.g., RMSEA), and one incremental index (e.g., CFI). 
Goodness-of-fit indices are also presented as Output 5.4. 

In the previous chapter, we recommended that the SRMR, CFI, and RMSEA values be examined and reported 
as well as 90% confidence limits for the RMSEA. SRMR values less than .055 are ideal. In contrast, CFI values 
between .90 and .94 suggest adequate fit, but values greater than .94 are more ideal. Similar to the SRMR, 
smaller RMSEA values reflect good model fit. A RMSEA value above .10 is deemed to be poor; values between 
.08 and .10 are deemed to be mediocre, and values between .055 and .08 suggest fair model fit; whereas values 
less than .055 are viewed as most ideal (Hu and Bentler 1999; MacCallum et al. 1996). In addition, the range of 
RMSEA confidence limits should be relatively narrow; 90% confidence limits between .090 ≥  RMSEA CL90 ≥ 
.000 are adequate whereas limits between .054 ≥ RMSEA CL90 ≥ .000 are ideal. In these instances, the 
researcher has greater confidence that data fit the model effectively as there is only a 1 in 10 chance that the true 
RMSEA value within the population falls outside of these ranges. (As mentioned in the previous chapter, it is 
customary to report SRMR and RMSEA values to three decimal places unlike the CFI and most other statistics.)  

For our current model, our goodness-of-fit indices can be found within the table of values. These are presented 
below.  

Standardized RMSR (SRMSR) 0.0465 

RMSEA Estimate 0.0581 

RMSEA Lower 90% Confidence Limit 0.0464 

RMSEA Upper 90% Confidence Limit 0.0696 

Bentler Comparative Fit Index 0.9516 

At first glance, goodness-of-fit statistics appear to be within good parameters (CFI = .95, SRMR = .047, 
RMSEA = .058). The comparatively narrow range of the RMSEA confidence limits provides further confidence 
in this model. Overall, these values provide a good first indication that the overall structure of the model fits the 
data. Before accepting this model, however, we need to examine parameter estimates to see if associations 
between variables are statistically significant as we initially hypothesized. We turn now to looking within the 
model itself. 
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Step 3: Reviewing Significance Tests for Factor Loadings 
Remember that a factor loading is equivalent to a path coefficient from a latent factor to an indicator variable. A 
nonsignificant parameter estimate therefore indicates that the observed variable does not significantly contribute 
to measurement of the underlying factor and should be deleted from the model. As discussed in Chapter 4, it is 
generally more appropriate to interpret and report standardized path coefficients and covariance estimates along 
with their respective t values instead of unstandardized estimates and standard errors. The former are presented 
here as Output 5.5. 

Output 5.5  

Procedure 
Covariance Structure Analysis: Maximum Likelihood Estimation 

 
Standardized Results for Linear Equations 

V1 =  0.8743 * F1 + 1.0000  E1 

Std Err   0.0183  LV1F1     

t Value   47.6959       

V2 =  0.8389 * F1 + 1.0000  E2 

Std Err   0.0219  LV2F1     

t Value   38.3140       

V3 =  0.9343 * F1 + 1.0000  E3 

Std Err   0.0129  LV3F1     

t Value   72.5754       

V4 =  0.8114 * F1 + 1.0000  E4 

Std Err   0.0247  LV4F1     

t Value   32.8794       

V5 =  0.8270 * F2 + 1.0000  E5 

Std Err   0.0254  LV5F2     

t Value   32.5806       

V6 =  0.8649 * F2 + 1.0000  E6 

Std Err   0.0222  LV6F2     

t Value   38.9535       

V7 =  0.8769 * F2 + 1.0000  E7 

Std Err   0.0213  LV7F2     

t Value   41.2164       

V8 =  0.6646 * F3 + 1.0000  E8 

Std Err   0.0500  LV8F3     

t Value   13.3023       

V9 =  0.6369 * F3 + 1.0000  E9 

Std Err   0.0514  LV9F3     

t Value   12.3931       

V10 =  0.7496 * F3 + 1.0000  E10 

Std Err   0.0464  LV10F3     

t Value   16.1718       
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Standardized Results for Linear Equations 

V11 =  0.8254 * F4 + 1.0000  E11 

Std Err   0.0450  LV11F4     

t Value   18.3574       

V12 =  0.8649 * F4 + 1.0000  E12 

Std Err   0.0449  LV12F4     

t Value   19.2725       

V13 =  0.4634 * F4 + 1.0000  E13 

Std Err   0.0570  LV13F4     

t Value   8.1234       

V14 =  0.8428 * F5 + 1.0000  E14 

Std Err   0.0335  LV14F5     

t Value   25.1792       

V15 =  0.7085 * F5 + 1.0000  E15 

Std Err   0.0409  LV15F5     

t Value   17.3359       

V16 =  0.5496 * F5 + 1.0000  E16 

Std Err   0.0520  LV16F5     

t Value   10.5672       

V17 =  0.6809 * F6 + 1.0000  E17 

Std Err   0.0473  LV17F6     

t Value   14.3948       

V18 =  0.7622 * F6 + 1.0000  E18 

Std Err   0.0439  LV18F6     

t Value   17.3575       

V19 =  0.7284 * F6 + 1.0000  E19 

Std Err   0.0452  LV19F6     

t Value   16.1192       

 
 

Standardized Results for Variances of Exogenous Variables 

Variable 
Type Variable Parameter Estimate 

Standard 
Error t Value 

Latent F1  1.00000   

 F2  1.00000   

 F3  1.00000   

 F4  1.00000   

 F5  1.00000   

 F6  1.00000   
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Error E1 VARE1 0.23552 0.03206 7.34710 

 E2 VARE2 0.29627 0.03673 8.06512 

 E3 VARE3 0.12703 0.02406 5.28026 

 E4 VARE4 0.34170 0.04004 8.53312 

 E5 VARE5 0.31606 0.04198 7.52815 

 E6 VARE6 0.25187 0.03841 6.55721 

 E7 VARE7 0.23108 0.03731 6.19319 

 E8 VARE8 0.55828 0.06641 8.40619 

 E9 VARE9 0.59433 0.06547 9.07838 

 E10 VARE10 0.43804 0.06950 6.30283 

 E11 VARE11 0.31869 0.07423 4.29352 

 E12 VARE12 0.25194 0.07763 3.24534 

 E13 VARE13 0.78527 0.05287 14.85376 

 E14 VARE14 0.28966 0.05642 5.13376 

 E15 VARE15 0.49798 0.05792 8.59836 

 E16 VARE16 0.69798 0.05716 12.21082 

 E17 VARE17 0.53640 0.06441 8.32768 

 E18 VARE18 0.41909 0.06694 6.26112 

 E19 VARE19 0.46948 0.06582 7.13241 

 
 

Standardized Results for Covariances Among Exogenous Variables 

Var1 Var2 Parameter Estimate 
Standard 

Error t Value 

F1 F2 CF1F2 0.61919 0.04618 13.40693 

F1 F3 CF1F3 0.43845 0.06624 6.61906 

F1 F4 CF1F4 -0.02585 0.07280 -0.35504 

F1 F5 CF1F5 0.71293 0.04412 16.15965 

F1 F6 CF1F6 -0.25908 0.07192 -3.60222 

F2 F3 CF2F3 0.53381 0.06246 8.54576 

F2 F4 CF2F4 -0.22446 0.07131 -3.14773 

F2 F5 CF2F5 0.63499 0.05210 12.18736 

F2 F6 CF2F6 -0.37430 0.06911 -5.41600 

F3 F4 CF3F4 -0.09210 0.08171 -1.12707 

F3 F5 CF3F5 0.51620 0.06899 7.48177 

F3 F6 CF3F6 -0.42374 0.07524 -5.63209 

F4 F5 CF4F5 0.00795 0.07897 0.10065 

F4 F6 CF4F6 0.25393 0.07621 3.33202 

F5 F6 CF5F6 -0.30005 0.07710 -3.89156 
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These t values represent large-sample t tests of the null hypothesis that factor loading are equal to zero in the 
population. Remember that t values greater than 1.96 (or less than -1.96) are significant at p < .05 and those 
greater than 2.58 are significant at p < .01 (or less than -2.58). The obtained t values in the output show that all 
factor loadings are significant at p < .01. 

Standardized path coefficients appear in the “Standardized Results for Linear Equations” section. A given factor 
loading appears next to its name (e.g., the standardized factor loading for V1 on F1 is .87). This output shows 
that the standardized loadings range in size from .46 to .93, and that only two are below .60. These large 
parameter estimates are not unexpected given their respective t values (i.e., p < .01 for each). Also note that 
t values for all error estimates also differ significantly from zero. These are reported under the heading 
“Standardized Results for Variances of Exogenous Variables.” 

Modifying the Measurement Model 
As discussed in Chapter 4, the most justifiable model revisions are deletion of nonsignificant paths. These 
revisions make models more parsimonious and unlike the decision to add paths not initially hypothesized, 
deleting paths does not risk overfitting models (i.e., arriving at improved goodness-of-fit indices with models 
unlikely to be generalizable to the population). In contrast, deleting paths originally estimated increases the 
number of available degrees of freedom. 

As we can see from page 7, t values for three covariance estimates are not statistically significant. These appear 
in Output 5.5 under the heading “Standardized Results for Covariances Among Exogenous Variables.” We see 
that covariance estimates between F1 and F4 (commitment and costs), between F3 and F4 (rewards and costs), 
and between F5 and F4 (investments and costs) do not differ significantly from zero.  

The Wald Test 
If we examine the results of the Wald Tests, we also see that these three covariance estimates are each listed. As 
presented in Output 5.6, Wald tests report that these three estimated parameters can be deleted from the model 
without negatively affecting goodness-of-fit indices. 

Despite this, these parameters will not be dropped from the model. With confirmatory factor analysis, all factors 
are normally allowed to covary during this stage of the analyses; at this juncture, you will not remove 
nonsignificant covariance estimates. (For illustrative purposes we will retain these estimates.) 

When computing measurement models, you primarily look to the results of Wald tests to indicate where factor 
loadings could be dropped from the model without significantly affecting the chi-square statistic. Such findings 
indicate that indicator variables do not effectively contribute to measurement of their respective latent factors to 
which they are initially assigned. In this example, it should come as no surprise that no factor loadings were 
reported in the Wald test (under the heading “Stepwise Multivariate Wald Test”). As previously observed, t tests 
for all factor loadings were significant at p < .01; deletion of any of these paths would cause a significant 
increase in the model’s chi-square statistic. 
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Output 5.6: Wald Test Results for Initial Measurement Model, Investment Model Study 

The CALIS Procedure 
Covariance Structure Analysis: Maximum Likelihood Estimation 

 

Stepwise Multivariate Wald Test 

Parm 

Cumulative Statistics Univariate Increment 

Chi-Square DF Pr > ChiSq Chi-Square Pr > ChiSq 

CF4F5 0.01013 1 0.9198 0.01013 0.9198 

CF1F4 0.28973 2 0.8651 0.27960 0.5970 

CF3F4 1.72700 3 0.6309 1.43727 0.2306 

Strictly speaking, models should not be revised solely on the basis of modification indices to achieve acceptable 
goodness of fit. These decisions should, instead, be based on theory or existing research as opposed to these 
statistical criteria alone. In general, goodness of fit should first be consulted; if they provide evidence of a poor 
or questionable fit, you may then turn to the modification indices to determine if specific modifications might 
improve model fit.  

The modification option included in the PROC CALIS statement requests that two modification indices be 
computed. (See the “Overview of the PROC CALIS program”section.) As discussed above, the Wald test 
identifies parameters that can be dropped from the model. Conversely, the Lagrange Multiplier or LM 
statistic identifies parameters that, if added to the model, would improve indices of fit. 

The Lagrange Multiplier Test 
The LM statistic estimates reduction in the model chi-square statistic that would result from freeing a fixed 
parameter and allowing it to be estimated. In other words, the LM statistic approximates the degree to which chi-
square would improve if a new factor loading or covariance estimate were added to your model. The LM 
statistic appears in Output 5.7 on page 9. 

Output 5.7: LM Statistics, Initial Model, Investment Model Study 

The CALIS Procedure 
Covariance Structure Analysis: Maximum Likelihood Estimation 

 

Rank Order of the 10 Largest LM Stat for Paths from Endogenous Variables 

To From LM Stat Pr > ChiSq 
Parm 

Change 

V4 V19 23.08136 <.0001 -0.26583 

V2 V7 19.19557 <.0001 -0.29071 

V4 V17 14.31861 0.0002 -0.22785 

V1 V6 13.99959 0.0002 0.19068 

V4 V7 11.98741 0.0005 0.24315 

V4 V18 10.65562 0.0011 -0.20125 

V2 V6 10.11926 0.0015 -0.20396 

V2 V14 9.88472 0.0017 -0.21644 

V2 V4 9.76054 0.0018 0.23420 

V4 V2 9.76051 0.0018 0.27328 
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Rank Order of the 10 Largest LM Stat for Paths from Exogenous Variables 

To From LM Stat Pr > ChiSq 
Parm 

Change 

V4 F6 22.57525 <.0001 -0.66957 

V2 F2 18.91095 <.0001 -0.69783 

V2 F5 14.90731 0.0001 -0.78694 

V1 F2 8.92517 0.0028 0.38258 

V4 F2 6.40940 0.0114 0.42934 

V1 F3 5.35242 0.0207 0.27589 

V17 F2 5.05799 0.0245 -0.29736 

V8 F1 4.55541 0.0328 0.21967 

V18 F2 4.20707 0.0403 0.27137 

V2 F4 4.15274 0.0416 0.24841 

 

Rank Order of the 10 Largest LM Stat for Paths with New Endogenous Variables 

To From LM Stat Pr > ChiSq 
Parm 

Change 

F1 V2 21.88319 <.0001 0.22464 

F6 V4 20.39608 <.0001 -0.19091 

F1 V9 9.41017 0.0022 -0.16027 

F2 V2 9.18722 0.0024 -0.10672 

F1 V1 8.10737 0.0044 -0.18929 

F2 V1 7.36459 0.0067 0.13064 

F5 V2 7.10657 0.0077 -0.09998 

F6 V18 7.08181 0.0078 0.38733 

F1 V8 5.74101 0.0166 0.13190 

F5 V3 5.12155 0.0236 0.17840 

Note: No LM statistic in the default test set for the covariances of exogenous variables is nonsingular. Ranking 
is not displayed. 
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Rank Order of the 10 Largest LM Stat for Error Variances and Covariances 

Var1 Var2 LM Stat Pr > ChiSq 
Parm 

Change 

E7 E4 10.46578 0.0012 0.45668 

E4 E2 9.76053 0.0018 0.68514 

E4 E19 9.01301 0.0027 -0.60904 

E6 E1 8.98764 0.0027 0.32831 

E9 E7 8.68713 0.0032 0.27228 

E4 E1 7.64382 0.0057 -0.50050 

E2 E18 7.42459 0.0064 -0.45929 

E19 E17 7.08019 0.0078 -0.90779 

E5 E15 7.06181 0.0079 0.36042 

E8 E7 6.95186 0.0084 -0.24164 

LM statistics are presented in five sections; in each, a maximum of 10 values per category are listed in 
descending order of size. Within each grouping, the fourth column indicates how much the chi-square statistic is 
likely to be reduced with the inclusion of this additional path or covariance estimate (along with the estimated 
statistical significance of this reduction). In theory, any change resulting in a chi-square reduction in which p < 
.05 can be considered (shown as “Pr > ChiSq”). 

These five groupings of LM statistics are:  

• paths from endogenous variables 

• paths from exogenous variables 

• paths with new endogenous variables 

• paths with new exogenous variables 

• paths between error variances and covariances estimates 

It makes little sense to add path estimates between observed variables (first grouping, from endogenous 
variables). Our model assumes that these observed variables each contribute to measurement of their respective 
latent variables; observed variables are not assumed to predict one another. These modification indices will not 
be considered. Nor are we interested in LM statistics appearing in the third grouping (Paths with New 
Endogenous Variables). Our model assumes that each of the latent constructs or factors predicts responses to 
their respective observed variables; these LM statistics reflect the opposite associations. The modification 
indices in this third grouping are not theoretically tenable. 

The fourth grouping lists additional covariance estimates between exogenous variables which would result in 
reduction of the chi-square statistic. In the current example, none are listed. This is because each of our six latent 
variables was already assumed to covary with all others. In other words, there are no additional covariance 
estimates between factors to include in the model. 

The final grouping (error variances and covariances) will not be considered here. (As previously noted, 
however, there are circumstances when it is viable to allow for correlation between error estimates particularly 
with time series models.) 
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Instead, we are most interested in LM statistics in the second grouping that indicate if new paths might be added 
from latent factors (F variables) to observed variables (V variable). Here we see that inclusion of an additional 
path from F6 (alternatives) to V4 would mathematically improve model fit. The value of this LM statistic is 
22.57 (p < .01), meaning that the chi-square statistic would be reduced by approximately 22.57 if this path were 
included added to the model. 

Modifying the Model 
In a situation such as this, you have a number of options. One alternative is to simply add the path from F6 to V4 
and leave the remainder of the model untouched. This means that V4 would become a complex variable, 
contributing to measurement of more than one factor. 

This alternative, however, is generally undesirable when developing a measurement model. This is because the 
theoretical model (to be assessed later) is more easily interpreted if all of the indicators are unifactorial (i.e., 
each indicator loads on only one factor). In most cases, it is preferable to reassign or completely drop an 
indicator from a model rather than assign it to two factors simultaneously. 

Should you reassign V4 so that it loads on F6 but not on F1 (the factor to which it was originally assigned)?  
This option is also unsatisfactory as the output has already shown that V4 loads significantly on factor F1 as 
initially hypothesized (t = .81, p < .01). In other words, this is not an instance in which a unifactorial variable 
was initially assigned to the wrong factor. 

In this case, the best alternative is to drop V4 from the analysis entirely. This should not create any identification 
problems for F1, because this factor will still be measured by three indicators even after V4 is deleted. (This is 
why it is important to have at least four or five indicators for each factor in the initial measurement model.) 

The revised measurement model appears as Figure 5.8. This model is identical to that presented in Figure 5.7 
except that the path from F1 (commitment) to V4 has been deleted. As a result, the variable V4 itself has been 
deleted from the model.  
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Figure 5.8: The Revised Measurement Model 
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Estimating the Revised Measurement Model 
The revised model must now be re-estimated to see if it provides an acceptable fit to the data. Below is a portion 
of the revised PROC CALIS program that will compute the new model: 

     proc calis  covariance  modification ; 
        lineqs 
           V1  = LV1F1  F1 + E1, 
           V2  = LV2F1  F1 + E2, 
           V3  = LV3F1  F1 + E3, 
 ❶            
           V5  = LV5F2  F2 + E5, 
           V6  = LV6F2  F2 + E6, 
           V7  = LV7F2  F2 + E7, 
           V8  = LV8F3  F3 + E8, 
           V9  = LV9F3  F3 + E9, 
           V10 = LV10F3 F3 + E10, 
           V11 = LV11F4 F4 + E11, 
           V12 = LV12F4 F4 + E12, 
           V13 = LV13F4 F4 + E13, 
           V14 = LV14F5 F5 + E14, 
           V15 = LV15F5 F5 + E15, 
           V16 = LV16F5 F5 + E16, 
           V17 = LV17F6 F6 + E17, 
           V18 = LV18F6 F6 + E18, 
           V19 = LV19F6 F6 + E19; 
        variance 
           F1 = 1, 
           F2 = 1, 
           F3 = 1, 
           F4 = 1, 
           F5 = 1, 
           F6 = 1, 
❷         E1-E3  = VARE1-VARE3 , 
❸         E5-E19 = VARE5-VARE19; 
        cov 
           F1 F2 = CF1F2, 
           F1 F3 = CF1F3, 
           F1 F4 = CF1F4, 
           F1 F5 = CF1F5, 
           F1 F6 = CF1F6, 
           F2 F3 = CF2F3, 
           F2 F4 = CF2F4, 
           F2 F5 = CF2F5, 
           F2 F6 = CF2F6, 
           F3 F4 = CF3F4, 
           F3 F5 = CF3F5, 
           F3 F6 = CF3F6, 
           F4 F5 = CF4F5, 
           F4 F6 = CF4F6, 
           F5 F6 = CF5F6; 
❹    var  V1-V3 V5-V19 ; 
    run; 

Three changes have been made to the initial program for it to estimate the revised model. Because the path from 
F1 to V4 had been dropped from the initial model, the equation for V4 was deleted from the program. Initially, 
this equation appeared on line ❶; you can see that this line is now blank in the revised program. A second 
change was made to the VARIANCE statement. In the initial program, an error term was attached to V4 because 
it was a predicted or endogenous variable. The error term E4 no longer needs to be estimated because the 
observed variable V4 has been dropped from the model. The revised program now needs only to estimate error 
terms for the remaining endogenous variables. This can be seen in the final two lines of the VARIANCE 
statement, which now estimates error terms E1 through E3 ❷ and E5 through E19 ❸. 
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The final change appears on line ❹, where V4 is no longer specified as a variable within the model. As the 
correlation matrix for this program continues to specify associations between V4 and all other observed 
variables, LM statistics will consider V4 for re-inclusion in the model if it is not removed from the list of 
variables. If this final revision is not made, LM statistics will consider V4 a prospective new endogenous 
variable to add to the model. (Note: Removing V4 from the VAR statement is considerably easier than 
recalculating the correlation matrix!)   

It was not necessary to revise the COV statement in the program, because only the covariances between latent 
factors were specified in this statement. In the revised program, all factors are allowed to covary as before. 

After reviewing the SAS log and output files to verify that the revised program ran properly, the same fit indices 
discussed earlier should be consulted to see if the revised model provides a better fit to the data.  

Page 5 of the output for this program provides goodness-of-fit indices for the revised measurement model (these 
indices appear in Output 5.8).You can see that the model chi-square value for the revised model is 180.87, with 
120 degrees of freedom. Of note, this chi-square value for the revised model has declined substantively from the 
initial measurement model, where chi-square was 247.67, with 137 degrees of freedom. By eliminating V4 from 
the analysis, model chi-square decreased by 66.80, with a reduction of 17 degrees of freedom. If we consult 
Appendix C, “Critical Values of the Chi-Square Distribution,” and find the intersection point between column 
.05 and row 17 (degrees of freedom), we find a critical value of 27.59, which is considerable smaller than the 
observed change of 66.80 in the chi-square statistic between models. This change is also significant at .01 where 
the critical value is 33.41. So far, it appears that deleting V4 improved model fit. 

Output 5.8: Goodness-of-Fit Indices for Revised Measurement Model, Investment Model Study 

Fit Summary 

Modeling Info N Observations 240 

 N Variables 18 

 N Moments 171 

 N Parameters 51 

 N Active Constraints 0 

 Baseline Model Function Value 9.0702 

 Baseline Model Chi-Square 2167.7711 

 Baseline Model Chi-Square DF 153 

 Pr > Baseline Model Chi-Square <.0001 

Absolute Index Fit Function 0.7568 

 Chi-Square 180.8717 

 Chi-Square DF 120 

 Pr > Chi-Square 0.0003 

 Z-Test of Wilson & Hilferty 3.4488 

 Hoelter Critical N 194 

 Root Mean Square Residual (RMSR) 0.1970 

 Standardized RMSR (SRMSR) 0.0422 

 Goodness of Fit Index (GFI) 0.9251 
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Parsimony Index Adjusted GFI (AGFI) 0.8933 

 Parsimonious GFI 0.7256 

 RMSEA Estimate 0.0461 

 RMSEA Lower 90% Confidence Limit 0.0316 

 RMSEA Upper 90% Confidence Limit 0.0594 

 Probability of Close Fit 0.6711 

 ECVI Estimate 1.2204 

 ECVI Lower 90% Confidence Limit 1.0841 

 ECVI Upper 90% Confidence Limit 1.3933 

 Akaike Information Criterion 282.8717 

 Bozdogan CAIC 511.3843 

 Schwarz Bayesian Criterion 460.3843 

 McDonald Centrality 0.8809 

Incremental Index Bentler Comparative Fit Index 0.9698 

 Bentler-Bonett NFI 0.9166 

 Bentler-Bonett Non-normed Index 0.9615 

 Bollen Normed Index Rho1 0.8936 

 Bollen Non-normed Index Delta2 0.9703 

 James et al. Parsimonious NFI 0.7189 

 
Because change in chi-square values also follow a chi-square distribution, we can look at this difference between 
values (relative to the associated change in degrees of freedom) to assess change between nested models. 

Also in Output 5.8, we see that the CFI value has increased (CFI = .97), the SRMR is .042, and the 90% 
confidence limits for the RMSEA has narrowed and is within acceptable parameters (i.e., .059 ≥ RMSEA CL90 ≥ 
.032). This range of values suggests that the RMSEA would be less than .06 for this model 9 times out of 10 
with other samples derived from this population. These goodness-of-fit indices provide general support for this 
revised model. 

Statistical power for this revised model remains above .99 using the SAS code by MacCallum and colleagues 
(1996) presented earlier in this chapter (n = 240, df = 120). This finding increases confidence in the accuracy of 
our goodness-of-fit statistics. Despite the reduction in degrees of freedom, the remaining number (relative to 
sample size) is sufficient to accurately detect a poor fitting model.  

t tests and their associated p values for parameter and error estimates appear on page 7 of Output 5.9. Remember 
that the t test for parameter estimates appear below that loading, and to the right of the heading “t Value” for 
indicator variables. For example, you can see that the t value for the first loading (LV1F1) is 48.11 (p < .01). 
Remember that these tests are significant if the observed t value is greater than 1.96 (or less than ‒1.96). With 
this in mind, you can see that the t tests on page 16 of Output 5.9 show that the factor loadings for all 18 
indicator variables remain significantly different from zero. 

The standardized factor loadings also appear in this section (Output 5.9). For example, see that the first 
standardized coefficient for LV1F1 is 0.89. These results indicate that all standardized loadings except two are 
greater than .60. 
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Output 5.9: PROC CALIS Output page 7 for Revised Measurement Model, Investment Model Study 

Standardized Results for Linear Equations 

V1 =  0.8851 * F1 + 1.0000  E1 

Std Err   0.0184  LV1F1     

t Value   48.1094       

V2 =  0.8246 * F1 + 1.0000  E2 

Std Err   0.0239  LV2F1     

t Value   34.5236       

V3 =  0.9366 * F1 + 1.0000  E3 

Std Err   0.0146  LV3F1     

t Value   64.1463       

V5 =  0.8275 * F2 + 1.0000  E5 

Std Err   0.0254  LV5F2     

t Value   32.6325       

V6 =  0.8659 * F2 + 1.0000  E6 

Std Err   0.0222  LV6F2     

t Value   39.0827       

V7 =  0.8755 * F2 + 1.0000  E7 

Std Err   0.0214  LV7F2     

t Value   40.8893       

V8 =  0.6660 * F3 + 1.0000  E8 

Std Err   0.0498  LV8F3     

t Value   13.3610       

V9 =  0.6346 * F3 + 1.0000  E9 

Std Err   0.0515  LV9F3     

t Value   12.3261       

V10 =  0.7505 * F3 + 1.0000  E10 

Std Err   0.0463  LV10F3     

t Value   16.2198       

V11 =  0.8258 * F4 + 1.0000  E11 

Std Err   0.0450  LV11F4     

t Value   18.3700       

V12 =  0.8646 * F4 + 1.0000  E12 

Std Err   0.0449  LV12F4     

t Value   19.2692       

V13 =  0.4633 * F4 + 1.0000  E13 

Std Err   0.0571  LV13F4     

t Value   8.1201       

V14 =  0.8434 * F5 + 1.0000  E14 

Std Err   0.0334  LV14F5     

t Value   25.2655       
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V15 =  0.7071 * F5 + 1.0000  E15 

Std Err   0.0409  LV15F5     

t Value   17.2800       

V16 =  0.5507 * F5 + 1.0000  E16 

Std Err   0.0519  LV16F5     

t Value   10.6113       

V17 =  0.6833 * F6 + 1.0000  E17 

Std Err   0.0472  LV17F6     

t Value   14.4816       

V18 =  0.7599 * F6 + 1.0000  E18 

Std Err   0.0440  LV18F6     

t Value   17.2750       

V19 =  0.7282 * F6 + 1.0000  E19 

Std Err   0.0452  LV19F6     

t Value   16.1122       

 
 

Standardized Results for Variances of Exogenous Variables 

Variable 
Type Variable Parameter Estimate 

Standard 
Error t Value 

Latent F1  1.00000   

 F2  1.00000   

 F3  1.00000   

 F4  1.00000   

 F5  1.00000   

 F6  1.00000   
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Error E1 VARE1 0.21654 0.03257 6.64841 

 E2 VARE2 0.32011 0.03939 8.12735 

 E3 VARE3 0.12273 0.02735 4.48717 

 E5 VARE5 0.31522 0.04197 7.51059 

 E6 VARE6 0.25019 0.03837 6.52055 

 E7 VARE7 0.23351 0.03749 6.22827 

 E8 VARE8 0.55640 0.06640 8.37921 

 E9 VARE9 0.59734 0.06534 9.14265 

 E10 VARE10 0.43681 0.06944 6.29001 

 E11 VARE11 0.31808 0.07424 4.28428 

 E12 VARE12 0.25251 0.07758 3.25475 

 E13 VARE13 0.78539 0.05286 14.85848 

 E14 VARE14 0.28870 0.05631 5.12736 

 E15 VARE15 0.49996 0.05787 8.63876 

 E16 VARE16 0.69670 0.05717 12.18729 

 E17 VARE17 0.53306 0.06449 8.26611 

 E18 VARE18 0.42262 0.06685 6.32239 

 E19 VARE19 0.46979 0.06581 7.13811 

 
 

Standardized Results for Covariances Among Exogenous Variables 

Var1 Var2 Parameter Estimate 
Standard 

Error t Value 

F1 F2 CF1F2 0.60873 0.04733 12.86262 

F1 F3 CF1F3 0.43995 0.06647 6.61925 

F1 F4 CF1F4 -0.01632 0.07311 -0.22319 

F1 F5 CF1F5 0.71440 0.04435 16.10878 

F1 F6 CF1F6 -0.22331 0.07333 -3.04531 

F2 F3 CF2F3 0.53383 0.06245 8.54758 

F2 F4 CF2F4 -0.22450 0.07131 -3.14807 

F2 F5 CF2F5 0.63479 0.05211 12.18058 

F2 F6 CF2F6 -0.37506 0.06911 -5.42735 

F3 F4 CF3F4 -0.09224 0.08170 -1.12901 

F3 F5 CF3F5 0.51592 0.06898 7.47897 

F3 F6 CF3F6 -0.42402 0.07524 -5.63599 

F4 F5 CF4F5 0.00805 0.07896 0.10192 

F4 F6 CF4F6 0.25464 0.07622 3.34103 

F5 F6 CF5F6 -0.30048 0.07710 -3.89728 
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For this revised model, we again requested modification indices. In Output 5.10, we see that LM statistics 
indicate that additional revisions might further improve fit of the model to derived data. More specifically, in the 
second grouping of statistics we see that additional observed variables appear to load across factors (i.e., 
complex variables). Under the heading, “LM Stats for Paths from Exogenous Variables,” it is apparent that V1 
would also contribute significantly to measurement of F2 (satisfaction) as well as the commitment factor to 
which it was initially assigned. 

Recall from Chapter 4 that the Lagrange Multiplier (LM) is a univariate statistic and only one revision should be 
considered at a time. Usually this will be the largest theoretically viable LM statistic. In other words, it is not 
appropriate to identify all statistically significant LM statistics and add several new path estimates in one step. 
As we saw in the last chapter, one change can make any subsequent revisions unnecessary. Adding more than 
one new parameter estimate at a time risks overfitting models. 

Output 5.10: LM Statistics for the Revised Measurement Model, Investment Model Study 

Rank Order of the 10 Largest LM Stat for Paths from Exogenous Variables 

To From LM Stat Pr > ChiSq 
Parm 

Change 

V2 F2 12.34147 0.0004 -0.58375 

V1 F2 11.89215 0.0006 0.44947 

V2 F5 11.17253 0.0008 -0.72042 

V1 F3 5.89356 0.0152 0.29318 

V17 F2 4.96039 0.0259 -0.29453 

V8 F1 4.45493 0.0348 0.21839 

V9 F1 4.14497 0.0418 -0.20781 

V18 F2 4.04611 0.0443 0.26581 

V17 F4 3.62608 0.0569 0.24098 

V15 F2 3.19261 0.0740 0.35651 

 
In this instance, should we also delete V2 from the model and re-estimate the measurement model once again?  
In this case, the answer is no. Keeping with Rule #9 (necessary conditions for confirmatory factor analysis) as 
presented earlier in this chapter, there should be at least three observed variables for each latent factor; deleting 
V2 from the model would violate this rule. In some instances, an argument can be made for having only two 
observed variables contributing to measurement of a latent variable when the overall average of observed 
variables to latent factors in a model is three or more (i.e., other latent variables measured by four or more 
observed variables). That exception cannot be applied here either as all factors in our revised measurement 
model as presented in Figure 5.8 each have only three observed variables. This scenario provides a good 
example as to why it is good practice to have more than three observed variables per factor when computing 
measurement models. Had that been the case in this example, we would have had the flexibility to make further 
refinements to the measurement model. 

In summary, the preceding output suggests that the revised measurement model:  

• provides good fit to data as measured by the SRMR, CFI, and RMSEA, and narrow 90% confidence 
limits for the RMSEA 

• retains sufficient power to reduce the likelihood of Type II errors to less than 1 in 100 

• displays no nonsignificant factor loadings 
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Combined, these findings provide general support for the revised measurement model. Before accepting this as 
your final model, however, you should first perform a few additional tests to assess the reliability and validity of 
measurement. 

Assessing Reliability and Validity of Constructs and Indicators 
One of the primary advantages of analyses with latent variables is the opportunity to assess the reliability and 
validity of responses to study variables. Broadly speaking, reliability refers to consistency of measurement 
(Devellis 2012). Responses to a test are reliable if, for example, they provide essentially the same set of scores 
upon repeated testing of the same participants. Reliability of responses can be assessed in a variety of ways (e.g., 
test-retest reliability, alternate-forms reliability, internal consistency).  

Validity, on the other hand, refers to the extent to which an instrument measures what it is intended to measure. 
If, for example, you develop a scale designed to measure locus of control, and scores on the scale do in fact 
reflect participants’ underlying levels of locus of control, then the responses to the scale are valid. As with 
reliability, there are several different ways that validity can be assessed (e.g., construct validity, criterion-related 
validity). 

Reliability is not an all-or-nothing phenomenon; rather, it is assessed along a continuum. Responses to an 
instrument may reflect a relatively high level of reliability, a relatively low level of reliability, or any amount in 
between. Indices of reliability may also differ across populations. As noted in Chapter 3, reliability and validity 
are properties of responses to scales, not scales themselves.  

This section shows how the results of a CFA (confirmatory factor analysis) using PROC CALIS can be used to 
assess item reliability, composite reliability, variance extraction estimates, convergent validity, and discriminant 
validity. Combined, these procedures provide evidence concerning the extent to which responses to indicators 
measure what they are intended to measure. 

Indicator Reliability 
The reliability of an indicator variable is defined as the square of the correlation between a latent factor and that 
indicator. In other words, reliability is estimated by the percent of variation in the indicator that is explained by 
the factor that it is supposed to measure.  

The reliability of an indicator can be computed in a very straightforward manner by squaring the standardized 
factor loadings obtained in the analysis. For example, the loading that represents the path from F1 to V1 was 
given the name LV1F1. The standardized loadings for all indicators are provided on page 7 of Output 5.11; you 
can see that the parameter estimate for LV1F1 is .8851. The square of this loading is .78, meaning that the 
reliability of responses to V1 is .78. 

Fortunately, it is not necessary to actually perform this calculation, as these squared multiple correlation values 
are provided on page 6, presented below as of Output 5.11. The last column of this table (titled “R-square”) 
indicates the percent of variance in each indicator that is accounted for by the common factor to which it was 
assigned. These R2 values are indices of item reliability.  

When assessing the contribution to measurement by scale items upon their respective factors, R2 values greater 
than .39 are considered ideal. Only V13 and V16 fall short of this mark as shown in Output 5.11. These are the 
same two items with standardized path coefficient values below .60; this should not be surprisingly as R2 values 
are derived from standardized path coefficients. 
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Output 5.11: PROC CALIS Output, Squared Multiple Correlation Values for Observed Variables, Revised 
                      Measurement Model, Investment Model Study 

Squared Multiple Correlations 

Variable Error Variance Total Variance R-Square 

V1 1.33825 6.18020 0.7835 

V2 2.70887 8.46228 0.6799 

V3 0.91070 7.42018 0.8773 

V5 1.17293 3.72104 0.6848 

V6 1.11706 4.46477 0.7498 

V7 0.98706 4.22714 0.7665 

V8 1.11719 2.00789 0.4436 

V9 1.18420 1.98246 0.4027 

V10 1.29827 2.97218 0.5632 

V11 2.14194 6.73403 0.6819 

V12 1.82858 7.24148 0.7475 

V13 4.37432 5.56960 0.2146 

V14 1.27560 4.41840 0.7113 

V15 2.46180 4.92396 0.5000 

V16 2.44671 3.51188 0.3033 

V17 2.13437 4.00400 0.4669 

V18 1.63351 3.86516 0.5774 

V19 2.24289 4.77423 0.5302 

 
You can see that reliability estimates for indicators vary from a low of .21 for V13 to a high of .88 for V3. Some 
factors are measured by indicators which all display relatively high reliability estimates. For example, F1 
(commitment) is measured by V1, V2, and V3, and the reliability estimates for these indicators are .78, .68, and 
.88, respectively. Other factors are assessed by indicators with relatively low reliability estimates. For example, 
F3 (rewards) is assessed by V8, V9, and V10, and the reliability estimates for these indicators are only .44, .40, 
and .56, respectively. It will be interesting to see whether the composite reliability for F3 is unacceptably low. 
This topic is covered next. 
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Composite Reliability 
When conducting research with multiple-item scales, it is appropriate to compute coefficient alpha values to 
estimate the reliability of scale responses (Cronbach 1951). This coefficient (represented by the Greek letter α) 
is an index of internal consistency. Alpha values should generally be greater than .69; however, values between 
.80 and .90 viewed as ideal. As discussed in Chapter 3 of this text, alpha values greater than .90 may suggest 
item redundancy. 

Similarly, when performing confirmatory factor analysis, it is possible to compute a composite reliability index 
for each latent factor included in the model. This index is analogous to the coefficient alpha, and reflects the 
internal consistency of indicators measuring a given factor. The formula for this composite reliability index is 
presented below: 

Composite reliability i
2

i i  
 

2(S L )= 
(  L ) Var(E )

 

where           

L i = standardized factor loadings for that factor,  

and 

Var(Ei) = error variance associated with the individual indicator variables. 

Computing composite reliability for each scale will be easier if you first prepare a table that summarizes the 
necessary information. Table 5.2 provides the information needed to compute composite reliability estimates for 
the present measurement model. You can see that Table 5.2 includes the standardized loading for each indicator 
along with reliability estimates for each indicator (defined earlier as the square of the standardized loading). The 
last column in the table provides the error variance associated with each indicator.  
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Table 5.2: Information Needed to Compute Composite Reliability and Variance Extracted Estimates 

Construct and 
Indicators 

 
Standarized Loading 

 
Indicator Reliabilitya 

 
Error Varianceb 

Commitment (F1)    
V1 .89 .78 .22 
V2 .82 .68 .32 
V3 .94 .88 .12 
Satisfaction (F2)    
V5 .83 .68 .32 
V6 .87 .75 .25 
V7 .88 .77 .23 
Rewards (F3)    
V8 .67 .44 .56 
V9 .63 .40 .60 
V10 .75 .56 .44 
Costs (F4)    
V11 .83 .68 .32 
V12 .86 .75 .25 
V13 .46 .21 .79 
Investment size (F5)    
V14 .84 .71 .29 
V15 .71 .50 .50 
V16 .55 .30 .70 
Alternative value (F6)    
V17 .68 .47 .53 
V18 .76 .58 .42 
V19 .73 .53 .47 
a Calculated as the square of the standardized factor loading. 

b Calculated as 1 minus the indicator reliability.  

The error variance is calculated as 1 - Li
2, or 1 minus the square of the standardized factor loading for that 

variable. Because reliability is estimated by the square of the factor loading, you can calculate error variances by 
simply subtracting the reliability estimates from 1. Thus, for indicator V1, 1 - .78 = .22, for indicator V2, 1 - .68 
= .32, and so forth. Readers are encouraged to always prepare a table with the columns similar to those in Table 
5.2 before computing composite reliabilities. 

With error variances computed, you may now insert the values in Table 5.2 into the appropriate parts of the 
formula for composite reliability. The numerator of the formula appears below: 

(∑ Li )2 

Remember that operations that appear within parentheses are performed prior to performing operations outside 
of parentheses. The “∑” symbol indicates that you are to add all factor loadings (which are symbolized by Li). 
After this is done, square the resulting sum (as is indicated by the superscript “2” that appears outside of 
parentheses). 
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Below, these operations are performed on the loadings for V1, V2, and V3 on F1: 

   


iL .885 .824 .937

2.646
 

Now square of this sum is calculated: 

 


2 2
i( L ) (2.646)

7.001
 

This quantity is now inserted in the appropriate sections of the equation: 




 

2
i

2
ii i

( L ) 7.001
7.001 Var(E )( L ) Var(E )

 

To calculate ∑  Var(Ei), you will simply sum the error variances associated with V1, V2, and V3 (from Table 
5.2): 

   


iVar(E ) .217 .321 .122
.660  

This sum is inserted in the appropriate location in the formula, and you may now calculate the composite 
reliability for F1: 




 





2
i

2
i i

( L ) 7.001
7.001 .660( SL ) Var(E )
7.001
7.661
.914

 

So the composite reliability for F1 (the commitment construct) is .91. Similar to Cronbach’s alpha, you should 
generally think of .70 as being the minimally acceptable level of reliability for instruments used in research 
( 80.  is preferable). Clearly, composite reliability for the commitment construct exceeds this requirement. 

For purposes of contrast, the composite reliability for the F3 construct (rewards) is computed below: 

2 2
i

2 2
i i

2

2

L (.67 .63 .75)
L Var(E ) (.67 .63 .75) (.56 .60 .44)

(2.05)
(2.05) (1.60)

4.20
4.20 1.60
4.20
5.80
.72

  


      









  
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And so the composite reliability for the rewards construct is .72; not as high as the reliability for commitment, 
but above the minimally acceptable level. 

Table 5.3 reports reliability estimates for all variables included in the final measurement model. The third 
column of figures provides reliability data. Composite reliability estimates for latent factors are flagged with a 
superscript b symbol; individual indicator estimates are indented two spaces. You may choose to use a format 
similar to this when summarizing properties of a measurement model in research reports. 

Table 5.3: Properties of the Revised Measurement Model 

Construct and 
Indicators 

Standardized 
Loading 

ta Reliability Variance Extracted 
Estimate 

Commitment (F1)   .91b .78 
V1 .89 48.11 .78  
V2 .82 34.52 .68  
V3 .94 64.15 .88  
Satisfaction (F2)   .89b .73 
V5 .83 32.63 .68  
V6 .87 39.08 .75  
V7 .88 40.89 .77  
Rewards (F3)   .72b .47 
V8 .67 13.36 .44  
V9 .63 12.32 .40  
V10 .75 16.22 .56  
Costs (F4)   .77b .55 
V11 .83 18.37 .68  
V12 .86 19.27 .75  
V13 .46 8.12 .21  
Investment size (F5)   .75b .50 
V14 .84 25.27 .71  
V15 .71 17.28 .50  
V16 .55 10.61 .30  
Alternative value 
(F6) 

  .77b .53 

V17 .68 14.48 .47  
V18 .76 17.27 .58  
V19 .73 16.11 .53  
a All t tests were significant at p < .01.  

b Denotes composite reliability. 
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Variance Extracted Estimates 
Variance extracted estimates are next calculated to assess the amount of variance captured by factors in 
relation to variance attributable to measurement error. The formula appears below: 


 

2
i

2
i i

LVariance extracted=
L var(E )

 

Notice that the preceding differs from the formula for composite reliability in that the ∑ Li term is no longer 
within parentheses. This means that each factor loading is squared first, and then these squared factor loadings 
are summed. Because a squared factor loading for an indicator is an estimate of that indicator’s reliability, this is 
equivalent to simply summing the reliability estimates for a given factor’s indicators. To illustrate, the variance 
extracted estimate for F1 is calculated below by summing the reliabilities and error variance terms from Table 
5.2: 

  


     








2
i

2
i i

L (.783 .679 .878)
(.783 .679 .878) (.217 .321 .122)L Var(E )

2.340
2.340 .660
2.340
3.000
.780

 

So the variance extracted estimate for the commitment factor was .78, meaning that 78% of variance is captured 
by your commitment construct; only 22% (or 1 - .78 = .22) is error. Fornell and Larcker (1981) suggest that 
constructs should have variance extracted estimates greater than .49; estimates less than .50 indicate that 
measurement error is larger than variance captured by the factor. This may call into question the validity of the 
latent construct as well as its indicators. This test is quite conservative, however; very often variance extracted 
estimates will be below .50 even when reliability estimates are acceptable.  

The last column of Table 5.3 provides variance extracted estimates for the six study constructs. Note that all 
exceed the .50 criterion except for rewards (F3), for which the variance extracted estimate was .47. On the 
whole, however, the constructs in the model fared fairly well. (The average variance estimate is .59 across the 
six factors.) 

Convergent Validity 
Convergent validity and discriminant validity are commonly associated with use of the multi-trait, multi-method 
(MTMM) approach to validation in which multiple constructs are each assessed using more than one assessment 
method. This MTMM approach is believed to provide a stronger test of convergent (and discriminant) validity 
than the following procedures. Nonetheless, they provide a measure of convergent and discriminant validity of 
constructs within measurement models; these are useful in situations when it is not possible to follow the 
MTMM approach.    

Stated simply, convergent validity is demonstrated when scores from different instruments used to measure the 
same construct are strongly correlated. For example, imagine that tests using different methods (e.g., a written 
test and an oral test) are both used to measure some technical skill in a sample of participants. Further imagine 
that the correlation coefficient between tests is measured as r = .70. This finding would provide initial evidence 
of convergent validity; the strong correlation suggests that both instruments are measuring the same construct 
even though they used different methods.  
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Convergent validity for the current study is, instead, assessed by reviewing the t tests for the factor loadings. If 
all factor loadings for the indicators measuring the same construct are statistically significant (greater than twice 
their standard errors), this suggests convergent validity of those indicators. The finding that t values are 
significant for all path coefficients suggests that indicators effectively measure the same construct.  

For example, the standardized factor loadings from the current analysis and the t tests for these loadings are 
presented in Table 5.3. Consider the convergent validity for V1, V2, and V3 which are each assumed to measure 
the commitment construct. Results show that the t values for these three indicators range from 15.32 to 18.78. 
These t values are all significantly different from zero as p < .01 (i.e., the three t values exceed the critical 
t threshold value of 2.58 for p < .01). These results support the convergent validity of V1, V2, and V3 as 
measures of commitment. A quick review of the remaining constructs shows that p < .01 for all t values. 

Discriminant Validity 
Conversely, discriminant validity is demonstrated when different instruments are used to measure unrelated or 
divergent constructs and the correlation coefficients between the measures are weak or strongly negative. A test 
displays discriminant validity when it is demonstrated that the test does not measure a construct that it was not 
designed to measure.   

As with convergent validity, discriminant validity is often studied using the multi-trait, multi-method procedure 
(MTMM). For example, assume that you are studying psychological needs and have developed an instrument to 
measure the need for power. You not only want to demonstrate that your scale successfully measures the need 
for power but also that it does not measure a similar psychological construct such as the need for achievement. 
You can obtain this evidence using the MTMM approach. Assume that you administer the following four 
instruments to a sample of participants: 

Test A: Your new measure of the need for power (a self-report scale). 

Test B: A previously validated test of the need for power (an observer-rated test). 

Test C: A previously validated test of the need for achievement (a self-report scale). 

Test D: A second previously validated test of the need for achievement (an observer-rated test). 

Note that you are assessing multiple traits (need for power versus need for achievement) and are measuring each 
via multiple methods (a self-report scale versus an observer-rated test). 

When the data are analyzed, you will hope for a number of results. First, you hope that Test A will show a 
relatively strong correlation with Test B. This would mean that your new need for power scale is strongly related 
to another measure of the need for power. This outcome would demonstrate convergent validity of responses to 
the new scale. 

To support the discriminant validity of the scale, you also hope that Test A (a test of the need for power) will be 
weakly correlated with both Tests C and D (two tests of the need for achievement). At the very least, you will 
hope that Test A will show a weaker correlation with Tests C and D than it shows with Test B. This outcome 
will provide evidence supporting the discriminant validity of responses to Test A. It will show that Test A is 
apparently not measuring the need for achievement. 

The MTMM approach provides a relatively strong test of discriminant validity. Unfortunately, these tests cannot 
be utilized for the present investment model study as multiple methods were not used to assess the different 
constructs. Nonetheless, evidence regarding discriminant validity may still be obtained from the present analysis 
through use of three procedures:  

• the chi-square difference test 
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• the confidence interval test 

• the variance extracted test 

Remember that the procedures discussed here do not necessarily have to be performed as a matter of course each 
time a latent variable model is analyzed but are recommended in cases where discriminant validity is in doubt. 

With the chi-square difference test, you assess the discriminant validity of two constructs by:  

• estimating the standard measurement model in which all factors are allowed to covary 

• creating a new measurement model identical to the previous one except that the correlation between the 
two factors of interest is fixed at 1 

• computing the chi-square difference statistic for the two models 

Discriminant validity is demonstrated if chi-square is significantly lower for the first model suggesting that the 
better model was the one in which the two constructs were viewed as distinct (but correlated) factors.    

To illustrate, this procedure will be used to assess the discriminant validity of commitment (F1) and investment 
size (F5). Output 5.12 presents “Covariances Among Exogenous Variables” from your analysis of the revised 
measurement model in which all factors were allowed to covary. Notice that this table shows that the correlation 
between F1 and F5 is .71 (this is the 4th entry from the top under the “Estimate” heading). In one respect this is 
encouraging as the investment model predicts that investments have a positive effect on commitment; this 
correlation is consistent with that prediction. What is disconcerting, however, is the size of the coefficient. These 
two constructs are strongly correlated so it is reasonable to question whether you are, in fact, measuring two 
different constructs. It is possible that items V1 to V3 and items V14 to V16 are measuring the same underlying 
construct. If true, then responses to these items lack discriminant validity. 

Output 5.12: Correlations Coefficients between Exogenous Variables for Revised Measurement Model,  
                      Investment Model Study 

 

Covariances Among Exogenous Variables 

Var1 Var2 Parameter Estimate 
Standard 

Error t Value 

F1 F2 CF1F2 0.60873 0.04733 12.86262 

F1 F3 CF1F3 0.43995 0.06647 6.61925 

F1 F4 CF1F4 -0.01632 0.07311 -0.22319 

F1 F5 CF1F5 0.71440 0.04435 16.10878 

F1 F6 CF1F6 -0.22331 0.07333 -3.04531 

F2 F3 CF2F3 0.53383 0.06245 8.54758 

F2 F4 CF2F4 -0.22450 0.07131 -3.14807 

F2 F5 CF2F5 0.63479 0.05211 12.18058 

F2 F6 CF2F6 -0.37506 0.06911 -5.42735 

F3 F4 CF3F4 -0.09224 0.08170 -1.12901 

F3 F5 CF3F5 0.51592 0.06898 7.47897 

F3 F6 CF3F6 -0.42402 0.07524 -5.63599 

F4 F5 CF4F5 0.00805 0.07896 0.10192 

F4 F6 CF4F6 0.25464 0.07622 3.34103 

F5 F6 CF5F6 -0.30048 0.07710 -3.89728 
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To assess the discriminant validity of F1 and F5, you will modify your CALIS program so that covariance 
between the two factors is fixed at 1. This will require that you change only one equation in the COV statement 
of your program (The COV statement had appeared in the earlier section of this chapter titled “Overview of the 
PROC CALIS program”). Below is the revised cov statement: 

        COV 
           F1 F2 = CF1F2, 
           F1 F3 = CF1F3, 
           F1 F4 = CF1F4, 
❶           F1 F5 = 1, 
           F1 F6 = CF1F6, 
           F2 F3 = CF2F3, 
           F2 F4 = CF2F4, 
           F2 F5 = CF2F5, 
           F2 F6 = CF2F6, 
           F3 F4 = CF3F4, 
           F3 F5 = CF3F5, 
           F3 F6 = CF3F6, 
           F4 F5 = CF4F5, 
           F4 F6 = CF4F6, 
           F5 F6 = CF5F6; 

Notice that this statement is identical to the original COV statement with one exception; line ❶ of the new 
statement fixes covariance between F1 and F5 at 1. The model created as a result of this modification will be 
referred to as the unidimensional model, and the model in which covariance between F1 and F5 is free to be 
estimated will be referred to as the standard measurement model. 

When estimated, the unidimensional model produced a model chi-square value of 251.14 with 121 degrees of 
freedom. (The output from this analysis is not reproduced here.) The summary table for your standard 
measurement model (from Output 5.11) has already shown that the chi-square for that model was 180.87 with 
120 degrees of freedom. You may now calculate the difference in chi-square between the two models: 

251.13
 180.87

________
70.26

−

 

So the difference in chi-square values is 70.26. To determine whether this value is statistically significant, find 
the critical chi-square value for the degrees of freedom associated with the test. The df for the test is found by 
subtracting the df for the two models: 

121
 120

_______
1

−

 

Since there is 1 degree of freedom associated with this chi-square difference test, you turn to a table of chi-
square in Appendix C of this text and find that, with 1 df, the critical values of chi-square are 3.84 at p = .05, 
6.64 at p = .01. With a chi-square difference value of 70.27, the difference between the two models was clearly 
significant at p < .01. In other words, the standard measurement model in which the factors were viewed as 
distinct but correlated constructs provided a fit that was significantly better than the fit provided by the 
unidimensional model. In short, this test supports the discriminant validity of F1 and F5. 
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In some cases, you may want to test the discriminant validity for every possible pair of F factors. This would 
require a series of tests, in which covariance between just two factors is fixed at 1, the model is estimated, and 
you compute the resulting chi-square difference from the chi-square value for the standard measurement model. 
In the present case, this would result in 15 different models (and consequently 15 difference tests) as there are 
15 separate covariances between the six factors in the model. 

Performing such a large number of tests, however, creates problems involving the overall significance level for 
the family of tests. If you perform just one difference test and use the critical value of chi-square associated with 
p = .05, it is clear that the significance level for that test is .05. However, if you perform a series of tests, the 
overall significance level for that series of tests will be larger. The overall significance level for a family of tests 
can be computed with this formula: 

a0 = 1 - (1 - ai)t 

where 

a0  =   the overall significance level for the family of tests 

ai  =   the significance level used for each individual difference test 

t      =   the number of tests performed 

For example, imagine that you perform just two tests, and use the significance level of .05 for both individual 
tests. (This means that you used a critical value of 3.84 for both tests.)  What is the actual overall significance 
level for the family of tests?  That is, what is the probability that you will incorrectly reject a true null hypothesis 
for at least one of the tests?  You may find this by inserting the appropriate figures in the preceding formula: 

a0 = 1 - (1 - ai)t 

= 1 - (1 - .05)2 

= 1 - (.95)2 

= 1 - .9025 

= .0975 

So the actual significance level for the series of tests is almost. 10. This means that there is close to a 10% 
chance that you would incorrectly reject a true null hypothesis for at least one of the two tests. This actual 
significance level is higher than the standard level of .05, making this an unacceptable possibility. 

The formula shows that the overall significance level quickly reaches an unacceptable level when many 
individual tests are performed. For example, if you set p at .01 for individual tests and perform all 15 of the 
comparisons, the overall significance level is actually .14 for the series of tests.  

You can do two things to address this problem. First, you can perform what is known as a Bonferroni 
correction whereby the alpha value is adjusted according to the number of tests performed. In this case for 
example, the standard alpha of .05 would be divided by 15 to arrive at a modified significance threshold of .003 
(i.e., .05/15 = .003). This procedure, however, is generally regarded as overly conservative. 

Second, you should perform as few individual tests as are necessary, conducting only those of substantive 
importance. For example, if factor F1 is being measured by new, unvalidated indicators, and factors F2 to F6 are 
measured by older tests and scales with established validity of responses, then you may want to perform just 
those tests that specifically assess the discriminant validity of F1. 
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The chi-square difference test is not without its limitations (MacCallum et al. 2006). We therefore recommend 
that you may also perform a confidence interval test to assess discriminant validity between factors. This test 
involves calculating a confidence interval of plus or minus 2 standard errors around the correlation between 
factors and determining whether this interval includes 1.0. If it does not include 1.0, support is found for the 
discriminant validity of factors (Anderson and Gerbing 1988).  

For the final measurement model, the information necessary to perform this test is again presented in Output 
5.13. This output presents the covariance estimates (correlations, in this case) between all latent factors, along 
with their associated standard errors.  

Output 5.13: Correlations Coefficients between Exogenous Variables, Investment Model Study 

Standardized Results for Covariances Among Exogenous Variables 

Var1 Var2 Parameter Estimate 
Standard 

Error t Value 

F1 F2 CF1F2 0.60873 0.04733 12.86262 

F1 F3 CF1F3 0.43995 0.06647 6.61925 

F1 F4 CF1F4 -0.01632 0.07311 -0.22319 

F1 F5 CF1F5 0.71440 0.04435 16.10878 

F1 F6 CF1F6 -0.22331 0.07333 -3.04531 

F2 F3 CF2F3 0.53383 0.06245 8.54758 

F2 F4 CF2F4 -0.22450 0.07131 -3.14807 

F2 F5 CF2F5 0.63479 0.05211 12.18058 

F2 F6 CF2F6 -0.37506 0.06911 -5.42735 

F3 F4 CF3F4 -0.09224 0.08170 -1.12901 

F3 F5 CF3F5 0.51592 0.06898 7.47897 

F3 F6 CF3F6 -0.42402 0.07524 -5.63599 

F4 F5 CF4F5 0.00805 0.07896 0.10192 

F4 F6 CF4F6 0.25464 0.07622 3.34103 

F5 F6 CF5F6 -0.30048 0.07710 -3.89728 

Once again, you can see that the correlation between F1 and F5 is .71, and the standard error for this estimate is 
.04. To compute the confidence interval for this correlation, you first multiply this standard error by 2: 

2 × .04 = .08 
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The lower boundary for the confidence interval will be two standard errors below the correlation: 

.71 - .08 = .63 

The upper boundary for the confidence interval will be two standard errors above the correlation: 

.71 + .08 = .79 

So the confidence interval for the relationship between F1 and F5 ranges from .63 to .79. This confidence 
interval does not include the value of 1.0, meaning that it is unlikely that the actual population correlation 
between F1 and F5 is 1.0. This finding supports the discriminant validity of the measures. 

Finally, discriminant validity may also be assessed with the variance extracted test. With this test, you review 
the variance extracted estimates (as described above) between the two factors of interest and compare these 
estimates to the square of the correlation between factors. Discriminant validity is demonstrated if both variance 
extracted estimates are greater than this squared correlation. 

In the present study, the correlation between factors F1 and F5 is .71, and this value squared is .50 (i.e., .712). 
Variance extracted estimates were calculated earlier and appear in Table 5.3. You can see that the variance 
extracted estimate is .78 for F1 and .50 for investment size. Because the variance extracted estimate for 
investment size is not greater than the square of the inter-factor correlation (i.e., .50 = .50), this test does not 
support the discriminant validity of the two factors. 

In summary, your analyses provided mixed support for the discriminant validity of the commitment and 
investment size measures. The chi-square difference test and the confidence interval test suggested that 
indicators V1 to V3 and indicators V14 to V16 are measuring two distinct constructs, while the variance 
extracted test did not. (See Cappeliez and O’Rourke [2006] for an example where each of these steps is 
performed with actual participant data.)   

Characteristics of an Ideal Fit for the Measurement Model  
A measurement model provides ideal fit to the data when it displays the following characteristics: 

• the Comparative Fit Index (CFI) exceeds .94, both the Standardize Root Mean Square Residual and the 
Root Mean Square Error of Approximation (RMSEA) are less than .055 (and the upper bound 90% 
confident limit for the RMSEA is less than .09) 

• the model has sufficient statistical power to have confidence in the goodness-of-fit statistics 

• the absolute value of the t statistics for each parameter estimate and error term exceed 1.96  

• composite reliabilities for the latent factors should exceed .70, ideally greater than .80  

• variance extracted estimates for the latent factors should exceed .50 

• discriminant validity for questionable pairs of factors should be demonstrated using the chi-square 
difference test, the confidence interval test, or the variance extracted test 

Remember that the above represent an ideal that very often is often not attained with real-world data even when 
the measurement model is quite good. Model fit need not meet all of the above criteria in order to be deemed 
“acceptable.” For instance, it is not atypical to accept models which exhibit ideal values for two of three 
goodness-of-fit statistics (particularly if confidence limits for the RMSEA are within acceptable parameters).  

For example, the final measurement model for the investment model study demonstrated all of the preceding 
characteristics, with the exception of one test that failed to support the discriminant validity of factors F1 and 
F5. Overall results, however, support the final measurement model.  
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Having established that you have developed an acceptable measurement model, you may now turn you attention 
to the analyses of central interest: The test of the theoretical model that specifies directional relationships 
between latent factors (as illustrated in Figure 5.4). The following chapter shows how to test this theoretical 
model. 

Conclusion: On to Covariance Analyses with Latent Variables? 
This chapter has shown how to use the CALIS procedure to perform confirmatory factor analysis. In some cases, 
your only purpose in performing a confirmatory factor analysis will be to test the factor structure underlying a 
set of data. This is often the case when a specific theory describes the factor structure that should underlie a 
derived dataset and you want to empirically test the theory. In this instance, your analysis will essentially begin 
and end with the confirmatory factor analysis. 

In other cases, however, confirmatory factor analysis will merely be the first step in a two-step process of theory 
testing. This will be the case when you want to test a model that specifies directional relationships between a 
number of latent variables. To test such models, confirmatory factor analysis is used to develop an acceptable 
measurement model; this measurement model is then modified to become a structural equation model. The 
current chapter has shown how to use PROC CALIS to develop measurement models. This material provides a 
basis for the next chapter describing how PROC CALIS is used to compute structural equation models. 
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 Basic Concepts in Covariance Analyses with Latent Variables 
The concept of covariance analyses with latent variables was introduced in Chapter 5, “Developing 
Measurement Models with Confirmatory Factor Analysis.” Chapter 5 indicated that directional models with 
latent (unobserved) variables are generally referred to as structural equation models. The difference between 
confirmatory factor analyses (CFA) and structural equation modeling (SEM) is that with CFA, all latent 
variables are correlated (i.e., covariance is assumed between parings of latent constructs). With SEM, in 
contrast, directional relationships are assumed between latent variables. SEM models used to be called LISREL-
type models or causal models (Jöreskog and Sörbom 2001). The latter term is no longer used because 
directional associations between latent variables are not sufficient to allow us to conclude that their relationship 
is, in fact, causal. 

Analysis with Manifest Variables versus Latent Variables 
In some ways, performing covariance analysis with latent variables is similar to performing path analysis. For 
example, in Chapter 4 you learned how to use path analysis to test a directional model derived from Rusbult’s 
(1980) investment model (Le and Agnew 2003). That model predicted that (a) relationship commitment was 
determined by satisfaction, investment size, and alternative value, while (b) relationship satisfaction was 
determined by the rewards and costs associated with the relationship. In this chapter, you will learn how to test 
the same directional model with latent variables. 
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One of the differences between the two procedures involves the number of indicator variables that are used to 
represent the underlying constructs in the SEM model. In path analysis, each construct of interest is measured by 
just one indicator variable. For example, in Chapter 4 the variable “commitment” was measured by just one 
observed variable (i.e., participants’ scores on a single “commitment” scale). With CFA and SEM, on the other 
hand, each construct of interest is measured by multiple indicator variables. For example, in this chapter you will 
learn how to compute a model in which the latent construct “commitment” is measured by three observed 
variables, the latent construct “satisfaction” is measured by three different observed variables, and so forth. 

Chapter 5 pointed out that analysis of covariance structures has a number of important advantages over path 
analysis. For example, when you perform CFA, you can estimate measurement error for each of your latent 
constructs as well as have the the opportunity to assess the convergent and discriminant validity of your latent 
constructs.  

A Two-Step Approach to Structural Equation Modeling  
Chapter 5 indicated that this text will follow a two-step approach for performing analysis of covariance 
structures as first described by Anderson and Gerbing (1988). The first step of this process involves using 
confirmatory factor analysis to develop an acceptable measurement model. A measurement model is a CFA 
model in which you identify latent constructs of interest and indicate which observed variables measure each 
latent construct. In a measurement model, you do not specify any directional relationships between latent 
constructs; instead, you allow each latent construct to covary (correlate) with every other latent construct. 
Chapter 5 discussed a number of procedures that you can use to verify that your measurement model displays an 
acceptable fit to data, and also showed how to modify the model to achieve a better fit. 

Once you have developed a measurement model with acceptable fit, you can then to move on to the second step 
of the two-step procedure. In this phase, you modify the measurement model so that it now specifies directional 
relationships between latent variables. You make these modifications so that the model comes to represent the 
theoretical model that you want to test. The resulting theoretical model is a “combined model” that actually 
consists of two components:  

• a measurement model that specifies relationships between latent constructs and their indicator 
variables 

• a structural model that specifies directional relationships between latent constructs 

When you perform SEM, you perform a simultaneous test that determines whether this combined measurement 
and structural model provides an acceptable fit to data. If it does, then your theoretical model has survived an 
attempt at disconfirmation; you obtain support for its predictions.  

This chapter focuses on the second step of Anderson and Gerbing’s two-step procedure (1988). It shows how to 
modify a measurement model so that it specifies directional relationships between latent constructs. It reviews a 
number of procedures and indices that can be used to determine whether the resulting theoretical model provides 
an acceptable and parsimonious fit to data. It also shows how to use modification indices to achieve a better 
model fit when necessary. 

The Importance of Reading Chapters 4 and 5 First 
If you are like most readers, it will be necessary to read Chapters 4 and 5 of this text before reading this chapter. 
Chapter 4 discusses a number of basic issues in path analysis, and provides an introduction to PROC CALIS. 
Unless you are already familiar with path analysis and the CALIS procedure, you should read Chapter 4 before 
proceeding.  
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Chapter 5 discusses not only CFA but also introduces basic issues in SEM. In fact, Chapter 5 and the current 
chapter were designed to be used together as a two-part introduction to analysis of covariance structures. The 
current chapter assumes that you are already familiar with the Anderson-Gerbing (1988) two-step approach 
along with all of the other topics introduced in Chapter 5. Even if you are only interested in SEM, you will still 
need to understand the concepts described in Chapter 5 before beginning this chapter.    

Testing the Fit of the Theoretical Model from the Investment Model Study 
This chapter shows how to perform SEM in order to test a theoretical model based on Rusbult’s (1980) 
investment model (Le and Agnew 2003). The model to be tested here is similar to the one first presented in 
Chapter 4, which specifies the relationship among the following six constructs: 

• Commitment: the intention to maintain a current romantic relationship 

• Satisfaction: the emotional response to the current relationship 

• Investment size: the amount of time and effort that one has put into a current relationship 

• Alternative value: the perceived attractiveness of alternatives to a current relationship 

• Rewards: the perceptions of the number of good things association with a current relationship 

• Costs: the perceptions of the number of bad things associated with the current relationship 

The theoretical model to be tested here predicts that (a) commitment is determined by satisfaction, investment 
size, and alternative value; while (b) satisfaction is determined by rewards and costs. 

This analysis actually began in Chapter 5 with an initial measurement model (illustrated in Figure 5.6) in which 
the latent construct commitment was measured by four indicator variables, while the remaining five latent 
constructs were measured by three indicator variables. Eventually, one of the indicator variables was dropped so 
that the measurement model would achieve a better fit. The resulting revised measurement model displayed a 
generally acceptable fit to data and is reproduced here as Figure 6.1. 
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Figure 6.1: The Revised Measurement Model, Investment Model Study (from Chapter 5) 

 

Notice that Figure 6.1 is a standard confirmatory factor analytic model, in that no directional relationships are 
assumed between any of the latent constructs (i.e., the F variables); instead, each latent construct is allow to 
freely covary (correlate) with every other latent construct. Covariance is represented by curved, double-headed 
arrows that connect the various F variables. 

In this chapter, you will learn how to convert this measurement model into a theoretical model that predicts 
directional relationships between some of the F variables. A measurement model is converted into a directional 
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model by replacing double-headed arrows that predict covariance or correlation with straight, single-headed 
arrows that predict directional effects. 

The theoretical model to be tested is reproduced here as Figure 6.2. Notice how commitment (F1) and 
satisfaction (F2) are no longer connected to the other F variables by curved, double-headed arrows; instead, 
straight, single-headed arrows now point from satisfaction (F2), investments (F5), and alternatives (F6) to 
commitment (F1). This represents the prediction that these three latent constructs will have directional effects on 
commitment. Similarly, straight, single-headed arrows now point from rewards (F3) and costs (F4) to 
satisfaction (F2), which is consistent with the prediction that these two constructs will have direct effects on 
satisfaction.  

Figure 6.2: The Initial Theoretical Model 
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The steps followed in testing the theoretical model of Figure 6.2 are essentially the same as those followed in 
step 1 (from Chapter 5): You will first prepare a program figure, and then use that figure to modify your PROC 
CALIS program. Because the steps in doing this should now be familiar to you, this will be done in an 
abbreviated manner. In reviewing the results of the analysis, you will use the same fit indices discussed earlier to 
assess overall model fit, and you will learn some new indices to assess fit in just the structural portion of the 
model.  

The Rules for Structural Equation Modeling 
Chapters 4 and 5 provided a number of rules to follow when performing either path analysis with manifest 
variables or confirmatory factor analysis. These rules are again listed below: 

RULE 1: Only exogenous variables are allowed to covary. 

RULE 2: A residual term is identified for each endogenous variable in the model. 

RULE 3: Exogenous variables do not have residual terms. 

RULE 4: Variances should be estimated for every exogenous variable in the model, including 
residual terms. 

RULE 5: In most cases, there should be covariance estimates for every pair of manifest exogenous 
variables; covariance estimates are not required for endogenous variables. 

RULE 6: For simple recursive models, covariance is not estimated for residual terms. (With more 
elaborate models; this rule is relaxed; e.g., O’Rourke et al. 2012.) 

RULE 7: One equation should be created for each endogenous variable with that variable’s name 
to the left of the equals sign. 

RULE 8: Variables that have a direct effect on that endogenous variable are listed to the right of 
the equals sign. 

RULE 9: Exogenous variables, including residual terms, are never listed to the left of the equals 
sign. 

RULE 10: To estimate a path coefficient for a given independent variable, a unique path coefficient 
name should be created for the path coefficient associated with that independent variable. 

RULE 11: The last term in each equation should be the residual (disturbance) term for that 
endogenous variable; this E (or D) term will have no name for its path coefficient. 

RULE 12: To estimate a parameter, create a name for that parameter. 

RULE 13: To fix a parameter at a given numerical value, insert that value in the place of the 
parameter’s name. 

RULE 14: To constrain two or more parameters to be equal, use the same name for those 
parameters. 

RULE 15: In confirmatory factor analysis, the variances of the latent F variables are usually fixed at 
1 (or other number to provide a metric for each latent variable). 

Many of these rules will also apply when performing SEM; specific rules will be mentioned when they become 
relevant in the sections to follow. This chapter will also introduce three additional rules that are pertinent to the 
types of analyses to be discussed here. The new rules are presented here for purposes of future reference, so all 
of the rules relevant to structural equation modeling will be grouped together in one location: 

RULE 16: In SEM, the variances of the exogenous F variables are free parameters to be estimated.    

RULE 17: In SEM, one factor loading for each F variable should be fixed at 1 (or other value). 

RULE 18: In a confirmatory factor analysis of a nonstandard model, the variance of a manifest 
structural variable should be a free parameter to be estimated. 
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You can tell by reading the preceding rules that Rules 16 and 17 are relevant to SEM, and Rule 18 is relevant to 
confirmatory factor analysis of nonstandard models. The meaning of these new rules will be explained in greater 
detail in later sections of this chapter. 

Preparing the Program Figure 
Remember that this chapter deals only with directional models in which the structural portion of model is 
recursive versus bidirectional. This means that the model will contain no reciprocal relationships or feedback 
loops.  

When preparing the program figure for a theoretical model, you must first verify that the structural portion of the 
model is not saturated (i.e., is not just-identified). The structural portion of a model is saturated if every 
structural variable is related to every other structural variable by either a curved arrow or directional path.  

For example, consider the model in Figure 6.2. The structural variables in this model are the variables that 
constitute the structural portion of the system, and in this case the structural variables are the latent F variables 
displayed in ovals: Commitment, satisfaction, rewards, costs, investments, and alternatives. The structural 
portion of this model would be saturated if every oval were directly connected to every other oval by either a 
curved or straight arrow.  

Fortunately, you can see that this is not the case. You know that this model is not saturated because:  

• the latent variable rewards is not directly connected to commitment in any way 

• costs is similarly not directly connected to commitment 

• investments is not directly connected to satisfaction 

• alternatives is not connected to satisfaction 

If the structural portion of the model had been saturated, it would have been possible to estimate the model, but 
it would not have been possible to test just the structural portion of the model for goodness of fit. Because the 
four paths described above are not estimated, the structural portion of the model is not saturated and may be 
tested. You may therefore proceed with the development of the program figure. 

Step 1: Identifying Disturbance Terms for Endogenous Variables  
The program figure for a theoretical model is prepared by following the same steps used with the measurement 
model. First, the disturbance terms for all endogenous variables are identified. Earlier, it was noted that a 
disturbance term represents factors as random shocks, misspecifications, measurement error, and omitted 
independent variables.  

There are generally two types of disturbance terms in SEM: E terms and D terms. These are illustrated in 
Figure 6.3.  
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Figure 6.3: The Initial Theoretical Model, Including Disturbance (Residual) Terms for Endogenous  
                   Variables 
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First, E terms are disturbance terms for manifest endogenous variables. These were earlier referred to as residual 
terms or error terms; the three names are in fact interchangeable. In Figure 6.3, the E terms for all manifest 
endogenous variables have been identified. This was done the same way as when the program figure for the 
measurement model was prepared.    

Second, D terms are disturbance terms for latent endogenous variables (the F variables). Figure 6.3 shows that 
two of the latent factors are endogenous variables: Commitment (which is affected by three independent 
variables) and satisfaction (which is affected by two independent variables). Therefore, there is a directional 
arrow drawn from the disturbance term D1 to F1 (commitment) as well as a directional arrow drawn from D2 to 
F2 (satisfaction). Notice that there are no disturbance terms for F3, F4, F5, or F6 consistent with Rule 3, which 
stated that exogenous variables do not have residual (disturbance) terms. 

Step 2: Identifying All Parameters to Be Estimated  
Figure 6.4 identifies all the parameters to be estimated (or fixed) for the current analysis. Most are the same 
parameters estimated for the measurement model. 
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Figure 6.4: The Initial Theoretical Model, after Identifying All Parameters to Be Estimated (Completed  
                   Program Figure for the CFA Model) 

 

First, you must identify covariances to be estimated with the C? symbol. Rule 5 tells you to estimate covariances 
for every possible pair of exogenous variables, but Rule 6 says that you generally will not estimate covariances 
involving residual (disturbance) terms. In practice, this will generally mean estimating covariances for every 
possible pair of variables that (a) are part of the structural model, and (b) are exogenous variables within that 
structural model. Figure 6.4 shows that you will therefore estimate all possible pairings of covariance estimates 
between variables F3, F4, F5, and F6. All of the remaining exogenous variables in this model are disturbance 
terms (E or D terms), so no covariance involving these terms will be estimated.  
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Next, place the symbol VAR? just beneath the name of each variable to be estimated. As usual, variance will be 
estimated for all disturbance terms (notice the VAR? below all E and D terms).  

It is at this point, however, that you will note one of the differences between SEM and CFA. When performing 
CFA, it was noted that the variance of the latent exogenous F factors are generally fixed at 1 in order to solve the 
problem of scale indeterminacy. When performing SEM, however, variances for these F variables should be free 
to be estimated. This is reflected in Figure 6.4: Notice that the VAR? symbol appears below the name of each of 
the exogenous F variables. This point is important enough to be summarized in a rule: 

RULE 16:  In SEM, the variance for the exogenous F variables are free parameters to be estimated.    

But if you estimate the variance for the exogenous F variables, what about the problem of scale indeterminacy? 
In this type of analysis, the indeterminacy problem is typically solved by adhering to Rule 17: 

RULE 17: In SEM, one factor loading for each F variable should be fixed at 1.  

Remember that the scale indeterminacy problem (as explained in Chapter 5) involves the fact that an F variable 
is an unobserved variable that has no established unit of measurement. However, by fixing a path at 1 from the F 
variable to one of its manifest indicators, the unit of measurement for the F variable is set to the metric of 
measurement for that indicator variable (minus its error term).  

But which indicator best represents the F variable?  One way to make this decision is to review the results of the 
confirmatory factor analysis (CFA) of the measurement model, and identify the indicator that had the largest 
standardized loading for that factor. In the subsequent SEM, the factor loading for this indicator is fixed at one 
(e.g., O’Rourke, Cappeliez, and Guindon 2003).  

For example, consider the latent variable F1 in Figure 6.4. According to the program figure, the paths from F1 to 
V1 and V2 are free parameters to be estimated in this analysis (this is signified by the L? next to their directional 
arrows). However, a “1” appears next to the path from F1 to V3. This means that this path will be fixed at 1 in 
order to solve the scale determinacy problem. This particular path has been fixed at 1 because, in the CFA of the 
measurement model (reported in Chapter 5), the indicator V3 displayed the largest standardized coefficient out 
of all of the variables that were predicted to load on F1.  

To verify this, review Output 5.10 from Chapter 5. The loadings of interest are the standardized factor loadings 
that appear under the heading “Equations with Standardized Coefficients.” You can see that three variables (V1, 
V2, and V3) load on Factor 1 (F1). The standardized factor loadings for these three variables were .89 (for V1), 
.82 (for V2), and .94 (for V3). Because V3 displayed the largest factor loading for F1 in the confirmatory factor 
analysis, you fix at 1 the path that goes from F1 to V3 when you compute the SEM. 

This process was then repeated for each of the remaining F variables. That is, the results of the CFA (from 
Output 5.10 in Chapter 5) were reviewed to identify the indicator that displayed the largest standardized loading 
for each latent factor. These are the factor loadings that have been fixed at 1 (or other numeric value) in Figure 
6.4. 

With this done, all that remains is to identify the path coefficients to be estimated. This is done by placing the 
symbol “P?” on each of the paths that constitute the structural model in the figure. In Figure 6.4, this meant 
placing the symbol on the path from F2 to F1, from F3 to F2, and so forth. 

As a final step before preparing the SAS program, you are well-advised to verify that the model is identified. In 
fact, this should be done each time the model is modified, as any modification has the potential of resulting in an 
unidentified model (Kline 2005). The preceding chapters provided a number of references on procedures for 
assessing model identification; in particular, see “Step 8: Verifying That the Model Is Overidentified” from 
Chapter 4, and “Step 4: Verifying That the Model Is Overidentified” from Chapter 5. 
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Preparing the SAS Program 
In presenting programs, this chapter uses a system of notation based in part on the system developed by Bentler 
(1989) for the EQS structural equations program (e.g., latent factors are represented by the letter F, and so 
forth). The modified system used by this text was introduced in Chapter 4 and further developed in Chapter 5. 

Below is the entire SAS program (minus the DATA step) that was used to analyze the model portrayed in 
Figure 6.4: 

     proc calis covariance modification ;  
        lineqs 
 ❶         V1  = LV1F1   F1 + E1, 
           V2  = LV2F1  F1 + E2, 
           V3  =        F1 + E3,           
           V5  = LV5F2  F2 + E5, 
           V6  = LV6F2  F2 + E6, 
           V7  =        F2 + E7, 
           V8  = LV8F3  F3 + E8, 
           V9  = LV9F3  F3 + E9, 
           V10 =        F3 + E10, 
           V11 = LV11F4 F4 + E11, 
           V12 =        F4 + E12, 
           V13 = LV13F4 F4 + E13, 
           V14 =        F5 + E14, 
           V15 = LV15F5 F5 + E15, 
           V16 = LV16F5 F5 + E16, 
           V17 = LV17F6 F6 + E17, 
           V18 =        F6 + E18, 
❷          V19 = LV19F6  F6 + E19, 
❸          F1  = PF1F2   F2 + PF1F5 F5 + PF1F6 F6 + D1, 
❹          F2  = PF2F3   F3 + PF2F4 F4            + D2; 
        variance 
❺         E1-E3  = VARE1-VARE3, 
❻         E5-E19 = VARE5-VARE19, 
❼         F3-F6  = VARF3-VARF6, 
❽         D1-D2  = VARD1-VARD2; 
        cov 
           F3 F4 = CF3F4, 
           F3 F5 = CF3F5, 
           F3 F6 = CF3F6, 
           F4 F5 = CF4F5, 
           F4 F6 = CF4F6, 
           F5 F6 = CF5F6; 
        var  V1 V2 V3 V5-V19 ; 
        run; 

The easiest way to create the SAS program that will perform SEM is to simply modify the program that had 
performed the confirmatory factor analysis of the corresponding measurement model (or, better still, to modify a 
copy of that program). Many aspects of the program that tests the theoretical model are identical to the program 
used with the measurement model (e.g., the PROC CALIS statement). Therefore, to save time, those aspects will 
not be reviewed again here. Instead, this section will discuss how the program for the measurement model must 
be changed to compute the SEM. 

For purposes of reference, “Preparing the SAS Program” in Chapter 5 discussed the DATA step and the various 
statements that constitute a PROC CALIS program. The initial measurement model and the revised 
measurement model for the investment model study appear in Chapter 5 in “Overview of the PROC CALIS 
Program” and “Estimating the Revised Measurement Model,” respectively. It is the revised measurement model 
that will be modified here in order to perform SEM. 
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The LINEQS Statement 
The LINEQS statement serves two functions in SEM: (a) It indicates which factor loadings are to be estimated 
or fixed, and (b) it specifies the directional relations between variables in the structural model. Each will be 
discussed in turn. 

Lines ❶ to ❷ of the preceding program indicate which manifest variables load on which latent factors. Notice 
that this portion of the program is identical to that used to estimate the revised measurement model, with one 
important difference: The coefficient names for some of the factor loadings have been blanked out. It is in this 
way that the factor loadings are fixed at 1. 

For example, consider the following equation from the program:    

❶        V1  = LV1F1  F1 + E1, 

This line estimates the factor loading for the path from F1 to V1. You know that this parameter is estimated 
because the name for the parameter (LV1F1) appears just before the name of the variable where the path 
originates (F1). 

In contrast, notice how the following line is different: 

           V3  = F1 + E3 

In the preceding equation, the name for the factor loading (LV3F1) has been omitted from the equation; it does 
not appear just before the F1. When writing the SAS program for path analysis (Chapter 4), we indicated that 
this has the effect of fixing that parameter at 1. Therefore, you know from reviewing this equation that the factor 
loading LV3F1 is fixed 1. 

The SAS program shows that the factor loadings for all of the following indicators have been fixed at 1: V3, V7, 
V10, V12, V14, and V18. Note that this is consistent with program figure appearing in Figure 6.4. 

The VARIANCE Statement  
Rule 4 (presented earlier) states that variance is to be estimated for every exogenous variable in the model, 
including residual terms; Figure 6.4 adheres to that rule. In that figure, the VAR? symbol is used to identify 
variables whose variance is to be estimated including all of the residual, or disturbance, terms (E and D 
variables). In addition, the figure shows that you are also to estimate variances for the exogenous F variables: 
F3, F4, F5, and F6. The VARIANCE statement that reflects this aspect of the figure is presented below: 

        variance 
❺         E1-E3  = VARE1-VARE3, 
❻         E5-E19 = VARE5-VARE19, 
❼         F3-F6  = VARF3-VARF6, 
❽         D1-D2  = VARD1-VARD2; 

In some ways, the VARIANCE statement is identical to that used with the CFA of the measurement model. 
Specifically, it still contains equations to estimate variances of the E terms (lines ❺ and ❻). 

However, it also differs from the previous VARIANCE statement in three important ways. First, it no longer 
contains equations for F1 or F2. This is because F1 and F2 are now endogenous variables, and you do not 
estimate variance for endogenous variables. 

Second, variance for F3, F4, F5, and F6 is now estimated rather than fixed at one (line ❼). As was discussed 
before, it is now possible to estimate variance for these latent variables because you establish their scale by 
fixing one factor loading at 1 for each F variable. 
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Finally, you now estimate variance for the disturbance terms D1 and D2 (line ❽). With this done, your 
VARIANCE statement will now compute all variance estimates indicated by the program figure. 

The COV Statement 
One of the ways that the theoretical model 4 differs from the measurement model 1 involves the covariances: 
With the theoretical model, there are no longer any covariance between F1 or F2 and any of the other F 
variables. This is consistent with Rule 1, which stated that only exogenous variables are allowed to covary. 
Because F1 and F2 are now endogenous variables, the SAS program must be modified so that it no longer 
estimates covariance between F1 or F2 and any other variable. 

This is done in the following COV statement: 

cov 
   F3 F4 = CF3F4, 
   F3 F5 = CF3F5, 
   F3 F6 = CF3F6, 
   F4 F5 = CF4F5, 
   F4 F6 = CF4F6, 
   F5 F6 = CF5F6; 

Notice that none of the equations above include either F1 or F2. However, the statement does estimate all 
possible covariance estimates between F3, F4, F5, and F6. This is because these latent variables are still 
exogenous variables. 

Interpreting the Results of the Analysis 
The output generated by this SAS program would follow the same general format as the output for analysis of 
the measurement model (see Output 5.3 in Chapter 5). The following indicates the pages on which various 
results appear. 

• Page 1 lists the endogenous and exogenous variables specified in the LINEQS statement, which is the 
general form of the structural equations specified in the LINEQS statement. 

• Page 2 provides some univariate statistics for the manifest variables. 

• Page 3 presents initial parameter estimates. 

• Page 4 includes the iteration history. 

• Page 5 reports a variety of goodness-of-fit indices (to be discussed below). 

• Page 6 includes R2 values for each endogenous variable. 

• Page 7 reports standardized parameter estimates and associated t values. 

• Page 8 reports Wald test results. 

• Page 9 reports Lagrange Multiplier test results. 

Once the SAS program for estimating the theoretical model has been executed, the SAS log and SAS output 
files should be reviewed to verify that the program ran correctly. This should be done in the usual way, as 
described in “Making Sure That the SAS Log and Output Files “Look Right” from Chapter 5. The information 
on the first four pages of output are particularly important for this purpose; these pages are presented here as 
Output 6.1. (Remember that the analyses reported in this chapter are fictitious and should not be viewed as 
legitimate tests of the investment model.) 
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Output 6.1: PROC CALIS Output Pages 1 to 4 for Analysis of the Investment Study Model  

The CALIS Procedure 
Covariance Structure Analysis: Model and Initial Values 

 

Modeling Information 

Data Set WORK.D1 

N Obs 240 

Model Type LINEQS 

Analysis Covariances 

 

Variables in the Model 

Endogenous Manifest V1 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V2 V3 V5 V6 V7 V8 V9 

 Latent F1 F2 

Exogenous Manifest  

 Latent F3 F4 F5 F6 

 Error E1 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E2 E3 E5 E6 E7 E8 E9 D1 D2 

Number of Endogenous Variables = 20 
Number of Exogenous Variables = 24 

 
 

Initial Estimates for Linear Equations 

V1 =  . * F1 + 1.0000  E1         

     LV1F1             

V2 =  . * F1 + 1.0000  E2         

     LV2F1             

V3 =  1.0000  F1 + 1.0000  E3         

V5 =  . * F2 + 1.0000  E5         

     LV5F2             

V6 =  . * F2 + 1.0000  E6         

     LV6F2             

V7 =  1.0000  F2 + 1.0000  E7         

V8 =  . * F3 + 1.0000  E8         

     LV8F3             

V9 =  . * F3 + 1.0000  E9         

     LV9F3             

V10 =  1.0000  F3 + 1.0000  E10         

V11 =  . * F4 + 1.0000  E11         

     LV11F4             

V12 =  1.0000  F4 + 1.0000  E12         

V13 =  . * F4 + 1.0000  E13         

     LV13F4             

V14 =  1.0000  F5 + 1.0000  E14         

V15 =  . * F5 + 1.0000  E15         

     LV15F5             
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Initial Estimates for Linear Equations 

V16 =  . * F5 + 1.0000  E16         

     LV16F5             

V17 =  . * F6 + 1.0000  E17         

     LV17F6             

V18 =  1.0000  F6 + 1.0000  E18         

V19 =  . * F6 + 1.0000  E19         

     LV19F6             

F1 =  . * F2 + . * F5 + . * F6 + 1.0000  D1 

     PF1F2    PF1F5    PF1F6     

F2 =  . * F3 + . * F4 + 1.0000  D2     

     PF2F3    PF2F4         

 
 

Initial Estimates for Variances of Exogenous Variables 

Variable 
Type Variable Parameter Estimate 

Error E1 VARE1 . 

 E2 VARE2 . 

 E3 VARE3 . 

 E5 VARE5 . 

 E6 VARE6 . 

 E7 VARE7 . 

 E8 VARE8 . 

 E9 VARE9 . 

 E10 VARE10 . 

 E11 VARE11 . 

 E12 VARE12 . 

 E13 VARE13 . 

 E14 VARE14 . 

 E15 VARE15 . 

 E16 VARE16 . 

 E17 VARE17 . 

 E18 VARE18 . 

 E19 VARE19 . 

Latent F3 VARF3 . 

 F4 VARF4 . 

 F5 VARF5 . 

 F6 VARF6 . 

Disturbance D1 VARD1 . 

 D2 VARD2 . 
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Initial Estimates for Covariances Among Exogenous Variables 

Var1 Var2 Parameter Estimate 

F3 F4 CF3F4 . 

F3 F5 CF3F5 . 

F3 F6 CF3F6 . 

F4 F5 CF4F5 . 

F4 F6 CF4F6 . 

F5 F6 CF5F6 . 

 
 

Covariance Structure Analysis: Descriptive Statistics 
 

Simple Statistics 

Variable Mean Std Dev 

V1 0 2.48600 

V2 0 2.90900 

V3 0 2.72400 

V5 0 1.92900 

V6 0 2.11300 

V7 0 2.05600 

V8 0 1.41700 

V9 0 1.40800 

V10 0 1.72400 

V11 0 2.59500 

V12 0 2.69100 

V13 0 2.36000 

V14 0 2.10200 

V15 0 2.21900 

V16 0 1.87400 

V17 0 2.00100 

V18 0 1.96600 

V19 0 2.18500 
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Covariance Structure Analysis: Optimization 
 

Initial Estimation Methods 

1 Instrumental Variables Method 

2 McDonald Method 

3 Two-Stage Least Squares 

 

Optimization Start 
Parameter Estimates 

N Parameter Estimate Gradient 

1 LV1F1 0.89069 0.17082 

2 LV2F1 0.89461 -0.12280 

3 LV5F2 0.92545 0.07090 

4 LV6F2 1.04052 0.01153 

5 LV8F3 0.84001 0.12907 

6 LV9F3 0.63254 -0.07209 

7 LV11F4 0.86916 0.00228 

8 LV13F4 0.44411 -0.01323 

9 LV15F5 0.89697 0.04741 

10 LV16F5 0.57209 -0.01743 

11 LV17F6 1.04325 0.03868 

12 LV19F6 1.16728 0.01552 

13 PF1F2 0.52397 -0.02719 

14 PF1F5 0.69577 -0.05914 

15 PF1F6 0.12538 0.01143 

16 PF2F3 0.72184 -0.07532 

17 PF2F4 -0.13164 -0.01968 

18 VARE1 0.93251 -0.22615 

19 VARE2 3.16834 0.02917 

20 VARE3 0.80545 -0.15004 

21 VARE5 1.06336 -0.04423 

22 VARE6 1.10513 0.00960 

23 VARE7 1.12406 0.03839 

24 VARE8 0.88586 -0.10828 

25 VARE9 1.34622 0.03734 

26 VARE10 1.38202 -0.01570 

27 VARE11 2.36858 -0.00212 

28 VARE12 1.46284 -0.00826 

29 VARE13 4.42987 0.00123 

30 VARE14 1.26888 0.01471 
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Optimization Start 
Parameter Estimates 

N Parameter Estimate Gradient 

31 VARE15 2.38998 -0.01027 

32 VARE16 2.48109 0.00686 

33 VARE17 1.93220 -0.01947 

34 VARE18 1.96158 0.02807 

35 VARE19 2.18051 -0.00692 

36 VARF3 1.59016 0.04688 

37 VARF4 5.77864 0.0004595 

38 VARF5 3.14953 0.01461 

39 VARF6 1.90358 -0.0001732 

40 VARD1 3.23324 0.02032 

41 VARD2 2.12335 0.02179 

42 CF3F4 -0.26849 0.00497 

43 CF3F5 1.10070 -0.08688 

44 CF3F6 -0.75485 0.01407 

45 CF4F5 0.04126 0.00154 

46 CF4F6 0.86782 0.0002789 

47 CF5F6 -0.77760 -0.02361 

Value of Objective Function = 1.0477184241 

 
 

Covariance Structure Analysis: Optimization 
Levenberg-Marquardt Optimization 

Scaling Update of More (1978) 
 

Parameter Estimates 47 

Functions (Observations) 171 

 
 

Optimization Start 

Active Constraints 0 Objective Function 1.0477184241 

Max Abs Gradient Element 0.2261527842 Radius 1 

 

Iteration 

 

Restarts 
Function 

Calls 
Active 

Constraints 

 

Objective 
Function 

Objective 
Function 
Change 

Max Abs 
Gradient 
Element Lambda 

Ratio 
Between 

Actual 
and 

Predicted 
Change 

1  0 4 0  0.91784 0.1299 0.0515 0 0.891 

2  0 6 0  0.90868 0.00916 0.0161 0 1.053 

3  0 8 0  0.90728 0.00140 0.00818 0 1.213 

4  0 10 0  0.90700 0.000284 0.00308 0 1.373 

5  0 12 0  0.90693 0.000069 0.00209 0 1.458 
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Iteration 

 

Restarts 
Function 

Calls 
Active 

Constraints 

 

Objective 
Function 

Objective 
Function 
Change 

Max Abs 
Gradient 
Element Lambda 

Ratio 
Between 

Actual 
and 

Predicted 
Change 

6  0 14 0  0.90691 0.000018 0.000938 0 1.500 

7  0 16 0  0.90691 4.914E-6 0.000559 0 1.516 

8  0 18 0  0.90690 1.36E-6 0.000276 0 1.524 

9  0 20 0  0.90690 3.791E-7 0.000154 0 1.527 

10  0 22 0  0.90690 1.061E-7 0.000079 0 1.529 

11  0 24 0  0.90690 2.972E-8 0.000043 0 1.529 

12  0 26 0  0.90690 8.333E-9 0.000022 0 1.529 

13  0 28 0  0.90690 2.338E-9 0.000012 0 1.530 

 

Optimization Results 

Iterations 13 Function Calls 31 

Jacobian Calls 15 Active Constraints 0 

Objective Function 0.9069032227 Max Abs Gradient Element 0.0000119446 

Lambda 0 Actual Over Pred Change 1.5296306541 

Radius 0.0002322371   

 

Convergence criterion (GCONV=1E-8) satisfied. 

You may begin your assessment of the fit of the theoretical model by following the same procedures used with 
the measurement model. Once this is done, however, this chapter will introduce some additional indices that are 
particularly useful for evaluating the fit of theoretical models. 

Step 1: Reviewing Goodness-of-Fit Indices 
Output 6.2 shows that the Comparative Fit Index (CFI) for the theoretical model was .95, which is a bit lower 
than the CFI value of .97 observed for the measurement model but still within ideal range. The Standardized 
Root Mean Square Residual is also somewhat larger (SRMR = .055 > SRMR = .042) as is the Root Mean 
Square Error of Approximation (RMSEA = .055 > RMSEA = .046). Note also that the 90% confidence limits 
for this SEM model are somewhat higher than the measurement model (.043 ≤ RMSEA CL90 ≤ .068 vs. .032 ≤ 
RMSEA CL90 ≤ .059). 
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Output 6.2: Goodness-of-Fit Indices for Initial Theoretical Model, Investment Model Study 
 

Fit Summary 

Modeling Info N Observations 240 

 N Variables 18 

 N Moments 171 

 N Parameters 47 

 N Active Constraints 0 

 Baseline Model Function Value 9.0702 

 Baseline Model Chi-Square 67.7711 

 Baseline Model Chi-Square DF 153 

 Pr > Baseline Model Chi-Square <.0001 

Absolute Index Fit Function 0.9069 

 Chi-Square 16.7499 

 Chi-Square DF 124 

 Pr > Chi-Square <.0001 

 Z-Test of Wilson & Hilferty 4.8756 

 Hoelter Critical N 167 

 Root Mean Square Residual (RMSR) 0.2684 

 Standardized RMSR (SRMSR) 0.0590 

 Goodness of Fit Index (GFI) 0.9094 

Parsimony Index Adjusted GFI (AGFI) 0.8750 

 Parsimonious GFI 0.7370 

 RMSEA Estimate 0.0559 

 RMSEA Lower 90% Confidence Limit 0.0434 

 RMSEA Upper 90% Confidence Limit 0.0682 

 Probability of Close Fit 0.2080 

 ECVI Estimate 1.3342 

 ECVI Lower 90% Confidence Limit 1.1766 

 ECVI Upper 90% Confidence Limit 1.5278 

 Akaike Information Criterion 10.7499 

 Bozdogan CAIC 21.3399 

 Schwarz Bayesian Criterion 74.3399 

 McDonald Centrality 0.8243 

Incremental Index Bentler Comparative Fit Index 0.9540 

 Bentler-Bonett NFI 0.9000 

 Bentler-Bonett Non-normed Index 0.9432 

 Bollen Normed Index Rho1 0.8766 

 Bollen Non-normed Index Delta2 0.9546 

 James et al. Parsimonious NFI 0.7294 
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Step 2: Reviewing the Significance Tests for Factor Loadings and Path Coefficients 
As before, it is good practice to review the standard errors for the factor loadings and path coefficients. None of 
the standard errors appear to be inordinately small. 

The factor loadings of Output 6.3 are represented with coefficient names that begin with the “L” prefix (such as 
“LV1F1”). Results show that all factor loadings have t values greater than 1.96 (or less than ‒1.96) and therefore 
differ significantly from zero.  

Of interest here are the coefficients for the directional paths that constitute the structural portion of the model. 
These path coefficients are represented with coefficient names that begin with the “P” prefix (such as “PF1F2”), 
and appear under the heading “Standardized Results for Linear Equations” in Output 6.3. 

These results show that all path coefficients were significant except for the path from F6 (alternative value) to 
F1 (commitment), which displayed a nonsignificant t value of 0.92. Consistent with this, the standardized path 
coefficients for the latent variable equations shows that the standardized path coefficient for the path from F6 to 
F1 was quite small (.06). This is an important finding because if you later decide to modify the model, deleting 
the path from F6 to F1 may be the place to start.  
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Output 6.3: PROC CALIS Output Pages 6 and 7 from Analysis of Initial Theoretical Model, Investment  
                    Model Study 

The CALIS Procedure 
Covariance Structure Analysis: Maximum Likelihood Estimation 

 

Linear Equations 

V1 =  0.8609 * F1 + 1.0000  E1         

Std Err   0.0425  LV1F1             

t Value   20.2619               

V2 =  0.9388 * F1 + 1.0000  E2         

Std Err   0.0535  LV2F1             

t Value   17.5628               

V3 =  1.0000  F1 + 1.0000  E3         

V5 =  0.8820 * F2 + 1.0000  E5         

Std Err   0.0565  LV5F2             

t Value   15.6052               

V6 =  1.0216 * F2 + 1.0000  E6         

Std Err   0.0608  LV6F2             

t Value   16.8132               

V7 =  1.0000  F2 + 1.0000  E7         

V8 =  0.7659 * F3 + 1.0000  E8         

Std Err   0.0975  LV8F3             

t Value   7.8534               

V9 =  0.7348 * F3 + 1.0000  E9         

Std Err   0.0961  LV9F3             

t Value   7.6497               

V10 =  1.0000  F3 + 1.0000  E10         

V11 =  0.9082 * F4 + 1.0000  E11         

Std Err   0.1015  LV11F4             

t Value   8.9472               

V12 =  1.0000  F4 + 1.0000  E12         

V13 =  0.4668 * F4 + 1.0000  E13         

Std Err   0.0715  LV13F4             

t Value   6.5322               

V14 =  1.0000  F5 + 1.0000  E14         

V15 =  0.8467 * F5 + 1.0000  E15         

Std Err   0.0846  LV15F5             

t Value   10.0113               

V16 =  0.5708 * F5 + 1.0000  E16         

Std Err   0.0712  LV16F5             

t Value   8.0190               

V17 =  0.9149 * F6 + 1.0000  E17         

Std Err   0.1061  LV17F6             

t Value   8.6257               
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Linear Equations 

V18 =  1.0000  F6 + 1.0000  E18         

V19 =  1.0722 * F6 + 1.0000  E19         

Std Err   0.1206  LV19F6             

t Value   8.8935               

F1 =  0.4608 * F2 + 0.7581 * F5 + 0.1000 * F6 + 1.0000  D1 

Std Err   0.0910  PF1F2  0.1037  PF1F5  0.1094  PF1F6     

t Value   5.0618    7.3126    0.9138       

F2 =  0.9736 * F3 + -0.1213 * F4 + 1.0000  D2     

Std Err   0.1321  PF2F3  0.0510  PF2F4         

t Value   7.3690    -2.3777           

 
 

Estimates for Variances of Exogenous Variables 

Variable 
Type Variable Parameter Estimate 

Standard 
Error t Value 

Error E1 VARE1 1.34660 0.17990 7.48522 

 E2 VARE2 2.71411 0.29893 9.07950 

 E3 VARE3 0.89811 0.19047 4.71524 

 E5 VARE5 1.20075 0.14494 8.28467 

 E6 VARE6 1.08304 0.15697 6.89947 

 E7 VARE7 0.98719 0.14721 6.70597 

 E8 VARE8 1.18796 0.13583 8.74565 

 E9 VARE9 1.22790 0.13658 8.99061 

 E10 VARE10 1.57452 0.19418 8.10874 

 E11 VARE11 2.20594 0.49120 4.49092 

 E12 VARE12 1.75119 0.56533 3.09762 

 E13 VARE13 4.37329 0.42193 10.36494 

 E14 VARE14 1.15373 0.24949 4.62428 

 E15 VARE15 2.58330 0.29637 8.71638 

 E16 VARE16 2.44818 0.24600 9.95215 

 E17 VARE17 2.14495 0.26338 8.14404 

 E18 VARE18 1.64409 0.25169 6.53218 

 E19 VARE19 2.22087 0.31028 7.15765 

Latent F3 VARF3 1.39766 0.26483 5.27753 

 F4 VARF4 5.49029 0.84089 6.52914 

 F5 VARF5 3.26467 0.45093 7.23990 

 F6 VARF6 2.22107 0.37832 5.87089 

Disturbance D1 VARD1 2.92500 0.39030 7.49424 

 D2 VARD2 1.77088 0.26889 6.58580 

 
 
 

O’Rourke, Norm, and Larry Hatcher. A Step-by-Step Approach to Using SAS® for Factor Analysis and Structural Equation Modeling, Second Edition.  
Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



Chapter 6:  Structural Equation Modeling   271 
 

Covariances Among Exogenous Variables 

Var1 Var2 Parameter Estimate 
Standard 

Error t Value 

F3 F4 CF3F4 -0.26870 0.23677 -1.13488 

F3 F5 CF3F5 1.37561 0.22524 6.10720 

F3 F6 CF3F6 -0.82443 0.17730 -4.64984 

F4 F5 CF4F5 0.02701 0.32839 0.08225 

F4 F6 CF4F6 0.89476 0.29326 3.05103 

F5 F6 CF5F6 -0.79934 0.23276 -3.43419 

 

Squared Multiple Correlations 

Variable Error Variance Total Variance R-Square 

V1 1.34660 5.97089 0.7745 

V2 2.71411 8.21337 0.6695 

V3 0.89811 7.13775 0.8742 

V5 1.20075 3.72104 0.6773 

V6 1.08304 4.46477 0.7574 

V7 0.98719 4.22714 0.7665 

V8 1.18796 2.00789 0.4084 

V9 1.22790 1.98246 0.3806 

V10 1.57452 2.97218 0.4702 

V11 2.20594 6.73402 0.6724 

V12 1.75119 7.24148 0.7582 

V13 4.37329 5.56960 0.2148 

V14 1.15373 4.41840 0.7389 

V15 2.58330 4.92396 0.4754 

V16 2.44818 3.51188 0.3029 

V17 2.14495 4.00400 0.4643 

V18 1.64409 3.86516 0.5746 

V19 2.22087 4.77422 0.5348 

F1 2.92500 6.23964 0.5312 

F2 1.77088 3.23994 0.4534 
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Covariance Structure Analysis: Maximum Likelihood Estimation 

 
Standardized Results for Linear Equations 

V1 =  0.8800 * F1 + 1.0000  E1         

Std Err   0.0192  LV1F1             

t Value   45.8871               

V2 =  0.8183 * F1 + 1.0000  E2         

Std Err   0.0247  LV2F1             

t Value   33.1551               

V3 =  0.9350  F1 + 1.0000  E3         

Std Err   0.0152               

t Value   61.4144               

V5 =  0.8230 * F2 + 1.0000  E5         

Std Err   0.0260  LV5F2             

t Value   31.6993               

V6 =  0.8703 * F2 + 1.0000  E6         

Std Err   0.0222  LV6F2             

t Value   39.2494               

V7 =  0.8755  F2 + 1.0000  E7         

Std Err   0.0218               

t Value   40.1732               

V8 =  0.6390 * F3 + 1.0000  E8         

Std Err   0.0497  LV8F3             

t Value   12.8498               

V9 =  0.6169 * F3 + 1.0000  E9         

Std Err   0.0511  LV9F3             

t Value   12.0670               

V10 =  0.6857  F3 + 1.0000  E10         

Std Err   0.0468               

t Value   14.6375               

V11 =  0.8200 * F4 + 1.0000  E11         

Std Err   0.0458  LV11F4             

t Value   17.9227               

V12 =  0.8707  F4 + 1.0000  E12         

Std Err   0.0457               

t Value   19.0327               

V13 =  0.4635 * F4 + 1.0000  E13         

Std Err   0.0570  LV13F4             

t Value   8.1242               

V14 =  0.8596  F5 + 1.0000  E14         

Std Err   0.0342               

t Value   25.1186               
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Standardized Results for Linear Equations 

V15 =  0.6895 * F5 + 1.0000  E15         

Std Err   0.0430  LV15F5             

t Value   16.0488               

V16 =  0.5503 * F5 + 1.0000  E16         

Std Err   0.0522  LV16F5             

t Value   10.5398               

V17 =  0.6814 * F6 + 1.0000  E17         

Std Err   0.0473  LV17F6             

t Value   14.4054               

V18 =  0.7580  F6 + 1.0000  E18         

Std Err   0.0441               

t Value   17.1969               

V19 =  0.7313 * F6 + 1.0000  E19         

Std Err   0.0451  LV19F6             

t Value   16.2181               

F1 =  0.3321 * F2 + 0.5483 * F5 + 0.0597 * F6 + 1.0000  D1 

Std Err   0.0625  PF1F2  0.0600  PF1F5  0.0651  PF1F6     

t Value   5.3108    9.1363    0.9166       

F2 =  0.6395 * F3 + -0.1578 * F4 + 1.0000  D2     

Std Err   0.0537  PF2F3  0.0651  PF2F4         

t Value   11.9045    -2.4262           

 
 

Standardized Results for Variances of Exogenous Variables 

Variable 
Type Variable Parameter Estimate 

Standard 
Error t Value 

Error E1 VARE1 0.22553 0.03376 6.68117 

 E2 VARE2 0.33045 0.04039 8.18171 

 E3 VARE3 0.12583 0.02847 4.41987 

 E5 VARE5 0.32269 0.04273 7.55127 

 E6 VARE6 0.24257 0.03860 6.28501 

 E7 VARE7 0.23354 0.03816 6.12029 

 E8 VARE8 0.59164 0.06356 9.30870 

 E9 VARE9 0.61938 0.06308 9.81836 

 E10 VARE10 0.52975 0.06425 8.24484 

 E11 VARE11 0.32758 0.07504 4.36568 

 E12 VARE12 0.24183 0.07967 3.03534 

 E13 VARE13 0.78521 0.05288 14.84970 

 E14 VARE14 0.26112 0.05883 4.43845 

 E15 VARE15 0.52464 0.05924 8.85621 

 E16 VARE16 0.69712 0.05747 12.12912 

 E17 VARE17 0.53570 0.06446 8.31037 
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Standardized Results for Variances of Exogenous Variables 

Variable 
Type Variable Parameter Estimate 

Standard 
Error t Value 

 E18 VARE18 0.42536 0.06683 6.36475 

 E19 VARE19 0.46518 0.06595 7.05313 

Latent F3 VARF3 1.00000   

 F4 VARF4 1.00000   

 F5 VARF5 1.00000   

 F6 VARF6 1.00000   

 
Disturbance D1 VARD1 0.46878 0.05648 8.30022 

 D2 VARD2 0.54658 0.06813 8.02242 

 

Standardized Results for Covariances Among Exogenous Variables 

Var1 Var2 Parameter Estimate 
Standard 

Error t Value 

F3 F4 CF3F4 -0.09700 0.08433 -1.15020 

F3 F5 CF3F5 0.64398 0.05914 10.88875 

F3 F6 CF3F6 -0.46792 0.07276 -6.43082 

F4 F5 CF4F5 0.00638 0.07756 0.08226 

F4 F6 CF4F6 0.25623 0.07605 3.36912 

F5 F6 CF5F6 -0.29685 0.07672 -3.86934 

 

Step 3: Reviewing R2 Values for Latent Endogenous Variables 
The R2 values for the study’s endogenous variables appear on page 6 of the output. Of particular interest are the 
R2 values for the structural model’s latent endogenous variables F1 (commitment) and F2 (satisfaction). The 
results on page 6 show that the independent F variables accounted for 53% of the variance in commitment and 
45% of the variance in satisfaction.      

The theoretical model presented in Figure 6.4 attempts to explain variability in satisfaction and commitment in 
romantic associations. It identifies four exogenous variables (rewards, costs, investments, and alternatives) that 
are assumed to predict levels of satisfaction and commitment. It posits that the relationships between these 
constructs can be accounted for with just five directional paths: the two paths from rewards and costs to 
satisfaction, and the three paths from satisfaction, investments, and alternatives to commitment. And this model 
did a fairly good job of accounting for the observed covariances in the data (as is indicated by the relatively low 
SRMR and RMSEA values). 

Step 4: Performing a Chi-Square Difference Test Comparing the Theoretical Model to 
the Measurement Model  
Before moving to the next stage of the analysis, you should perform a chi-square difference test to determine 
whether there is a significant difference between the fit provided by the theoretical model versus the fit provided 
by the measurement model. A finding of no significant differences provides support for the nomological validity 
of the theoretical model (Anderson and Gerbing 1988). If the theoretical model is successful in accounting for 
the observed associations between the F variables, there will not be a significant difference between the chi-
square for the theoretical model and the chi-square for the measurement model. Reviewing how the 
measurement model differs conceptually from the theoretical model will help make this clear.  
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Earlier, it was noted that the measurement model is basically a confirmatory factor analysis model in which the 
relations between all F variables are saturated, or just-identified. In other words, each F variable is connected to 
every other F variable by a curved arrow. Because each F variable is connected to every other F variable, this 
measurement model does a thorough job of accounting for the covariances between F variables.  

In most cases, you hope to develop a theoretical model that (a) is more parsimonious than the measurement 
model, but at the same time (b) does nearly as good a job of accounting for the covariances between latent F 
variables. A theoretical model is more parsimonious than a measurement model because the theoretical model is 
really a constrained version of the measurement model. This means that a theoretical model is basically a 
measurement model in which some of the covariances between F variables have been either (a) replaced with 
unidirectional paths or (b) fixed at zero. You can see this by comparing Figure 6.1 (the final measurement 
model) with Figure 6.4 (the theoretical model). In the measurement model, covariance is estimated for F1 
(commitment) and F3 (rewards). In the theoretical model, this covariance estimate has been eliminated (fixed at 
zero). In the new model, there is no direct relationship between F1 and F3. The same is true for several other 
covariances in the measurement model. 

If your theoretical model is correct, then fixing the covariance estimate between F1 and F3 at zero should not 
dramatically affect the theoretical models’ fit to data. This is because, if the theoretical model is correct, there 
should essentially be no direct relationship between F1 and F3. In other words, if the theoretical model is correct 
it should provide a fit to data that is nearly as good as the fit provided by the measurement model, even after 
eliminating these nonessential covariance estimates. 

The adequacy of the theoretical model can be determined by performing a chi-square difference test that 
compares the theoretical model (symbolized as Mt) to the measurement model (symbolized Mm). This is done by 
simply subtracting the chi-square values for the two models, as they appear in Table 6.1. This is done below: 

Mt - Mm = 216.75 - 180.87 = 35.88 

The resulting chi-square difference value (35.88 in this case) also follows a chi-square distribution, and the 
degrees of freedom for the test may be determined by subtracting the corresponding degrees of freedom for the 
two models. These degrees of freedom may also be obtained from Table 6.1: 

dft - dfm = 124 - 120 = 4 

With 4 degrees of freedom, the critical value of chi-square is 13.3 at p < .01. Your obtained chi-square 
difference value of 35.88 is clearly greater than this critical value, meaning that there is a significant difference 
between the fit provided by the theoretical model versus the measurement model. In other words, the theoretical 
model provides a fit to data that is significantly worse than the fit provided by the measurement model. This 
finding fails to support the theoretical model’s predictions concerning the relationships between the F variables 
in the structural portion of the model. Apparently, your theoretical model contains misspecifications and will 
have to be modified if it is to fit the data.  

Characteristics of an “Ideal Fit” for the Theoretical Model  
Before moving on to the section on model modification, it will be helpful to first briefly summarize the results 
that you should expect to see if your model provides an ideal fit to data. A theoretical model provides an ideal fit 
when it displays the following characteristics: 

• The sample upon which the model is based should have 200+ data points and statistical power at .80 or 
above; see SAS syntax to estimate statistical power in Chapter 5 (MacCallum, Browne, and Sugawara 
1996). 

• The absolute value of t statistics for each factor loading and path coefficient should exceed 1.96 (or less 
than ‒1.96). 

• Standardized factor loadings should be nontrivial (e.g., values should exceed .05). 
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• R2 values for the latent endogenous variables should be relatively large compared to what typically is 
obtained in research with these variables. 

• Three or more goodness-of-fit indices are generally examined and reported including an absolute index 
(e.g., SRMR < .055), an incremental index (e.g., CFI > .94), and a parsimony index such as the 
RMSEA. Values for the RMSEA less than .09 suggest adequate fit, whereas values less than .06 
suggest good fit. It is ideal if the full 90% range of confidence limits for the RMSEA are within good 
(i.e., .09 ≥ RMSEA CL90 ≥ .00) to ideal parameters (i.e., .05 ≥ RMSEA CL90 ≥ .00). 

• A chi-square difference test should reveal no significant difference between the theoretical model and 
the measurement model. 

Remember that the above characteristics represent an ideal that is often not attained with real-world data even 
with a theoretical model that is quite good. A model’s fit need not meet all of the above criteria in order to be 
deemed “acceptable.” In particular, requiring the full 90% range of confidence limits for the RMSEA to be 
within ideal limits would be deemed quite strict in most applied situations (particularly with smaller sample 
sizes).  

However, it is important that there be no significant difference between the fit of the (final) theoretical model 
and the measurement model. This is because a significant difference between the chi-square for the theoretical 
and measurement models shows that the theoretical model fails to successfully account for the observed 
covariances between the F variables in the structural portion of the model. For this reason, it will be necessary to 
modify the model to attain a better fit. 

Using Modification Indices to Modify the Present Model 
In Chapter 4, “Path Analysis,” much was said concerning the dangers of data-driven model modifications. All of 
those warnings apply to the modification of latent-variable models as well. Whenever you modify models based 
on the results of an analysis, you run the risk of capitalizing on chance characteristics of sample data, and 
creating a new model that will not generalize to the population. 

Chapter 4 made five recommendations concerning things that you can do to minimize the dangers of over-fitting 
models:  

• obtain large samples 

• make few modifications 

• make only changes that can be meaningfully interpreted 

• compare alternative a priori models 

• fully describe the limitations of your study 

The following sections will describe the steps to be followed in modifying the present model for purposes of 
illustration. Here, you will see how information from the Wald test and the Lagrange Multiplier may be used to 
develop a better-fitting model. 

The Wald Test 
Although models may be modified in any of a number of ways (e.g., by placing equality constraints on 
parameters), they are most frequently modified by either (a) fixing directional paths at zero (e.g., eliminating a 
nonsignificant path from the model), or (b) freeing directional paths to be estimated (i.e., adding new paths to 
the model). Of these alternatives, eliminating a nonsignificant path is less likely to capitalize on chance 
characteristics of the data, and is therefore less risky. For this reason, you will first review the results of the 
analysis to identify any nonsignificant paths which can be deleted. 
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This review should normally begin with the Wald test, as it identifies parameters that may be dropped without 
causing a significant decrease in model chi-square. The Wald test for your analysis of the theoretical model 
appears on page 8 of the Output 6.3, and is reproduced here as Output 6.4. 

Output 6.4: Wald Test Results for Initial Theoretical Model, Investment Model Study 

Covariance Structure Analysis: Maximum Likelihood Estimation 
 

Stepwise Multivariate Wald Test 

Parm 

Cumulative Statistics Univariate Increment 

Chi-Square DF Pr > ChiSq Chi-Square Pr > ChiSq 

CF4F5 0.00677 1 0.9344 0.00677 0.9344 

PF1F6 0.84794 2 0.6544 0.84117 0.3591 

CF3F4 2.68895 3 0.4421 1.84102 0.1748 

 
Earlier, you learned that the Wald test estimates the change in model chi-square that would result from fixing a 
given parameter at zero. The first parameter listed in the preceding Wald test results is CF4F5, the covariance 
estimate between F4 (costs) and F5 (investments), and the third entry in the table is CF3F4, the covariance 
estimate between F3 (rewards) and F4 (costs). Covariance is generally estimated for all possible pairs of 
exogenous F variables in an analysis of this sort (unless there is theoretical reason that they be fixed at zero), so 
you will disregard the Wald test results for CF4F5 and CF3F4 for the moment.  

In this case, you are more interested in finding directional paths that may be eliminated without significantly 
affecting the model’s fit, and the Wald test has identified just such a path. The parameter PF1F6 represents the 
path from F1 (commitment) to F6 (alternative value), and the univariate Wald test suggests that model 
chi-square will change only 0.84 (a nonsignificant amount) if this path were deleted. Remember that this finding 
is very consistent with what you learned when you reviewed the latent variable equations on page 7 of Output 
6.3. There, you learned that the path coefficient for the path from F6 to F1 was nonsignificant (i.e., t = .92). 

The safest approach to modifying models is to change just one parameter at a time. You will therefore 
re-estimate your model with PF1F6 fixed at zero, and then review the results to see if any additional 
modifications are necessary.  

Creating Revised Model 1 
Figure 6.5 presents the program figure for revised model 1. You can see that this model is identical to the initial 
theoretical model (Figure 6.4) except that the path from alternatives to commitment has been deleted. 
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Figure 6.5: Revised Model 1, in Which the Path from F6 (alternatives) to F1 (commitment) Has Been  
                   Deleted 

 

To create the PROC CALIS program that will estimate revised model 1, it is necessary to make just one change 
in the program that had estimated the initial theoretical model. Specifically, the latent-variable equation for F1 in 
the LINEQS statement has to be modified so that F6 is no longer specified as an independent variable for F1. 
This can be easily done by making a copy of the original program, and then blanking out the path coefficient 
name (PF1F6) and the short name (F6) for the alternatives construct.  
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The PROC CALIS program that estimated the initial theoretical model appeared earlier in the “Preparing the 
SAS Program” section. In that program, the latent variable equation for F1 appeared on line ❸: 

❸   F1  = PF1F2 F2 + PF1F5 F5 + PF1F6 F6 + D1, 

In the PROC CALIS program that estimates revised model 1, the equation takes on the following form; notice 
that the path coefficient name and the short name for the alternatives construct has been blanked out:        

❸   F1  = PF1F2 F2 + PF1F5 F5 +            D1, 

No other changes to the program were necessary. The complete program (minus the DATA step) for estimating 
revised model 1 appears below: 

     proc calis covariance modification ;  
        lineqs 
 ❶        V1  = LV1F1   F1 + E1, 
          V2  = LV2F1  F1 + E2, 
          V3  =        F1 + E3,           
          V5  = LV5F2  F2 + E5, 
          V6  = LV6F2  F2 + E6, 
          V7  =        F2 + E7, 
          V8  = LV8F3  F3 + E8, 
          V9  = LV9F3  F3 + E9, 
          V10 =        F3 + E10, 
          V11 = LV11F4 F4 + E11, 
          V12 =        F4 + E12, 
          V13 = LV13F4 F4 + E13, 
          V14 =        F5 + E14, 
          V15 = LV15F5 F5 + E15, 
          V16 = LV16F5 F5 + E16, 
          V17 = LV17F6 F6 + E17, 
          V18 =        F6 + E18, 
❷         V19 = LV19F6  F6 + E19, 
❸         F1  = PF1F2 F2 + PF1F5 F5            + D1, 
❹         F2  = PF2F3 F3 + PF2F4 F4            + D2; 
        variance 
❺         E1-E3  = VARE1-VARE3, 
❻         E5-E19 = VARE5-VARE19, 
❼         F3-F6  = VARF3-VARF6, 
❽         D1-D2  = VARD1-VARD2; 
        cov 
           F3 F4 = CF3F4, 
           F3 F5 = CF3F5, 
           F3 F6 = CF3F6, 
           F4 F5 = CF4F5, 
           F4 F6 = CF4F6, 
           F5 F6 = CF5F6; 
        var  V1 V2 V3 V5-V19 ; 
        run; 

Before reviewing goodness-of-fit indices, you first perform a chi-square difference test comparing the 
theoretical model (Mt) to revised model 1 (Mr1). Finding a significant difference between the two models would 
indicate that the path from F6 to F1 had been an important path and should not have been deleted. Model chi-
square values are obtained from Table 6.1 to perform this test: 

Mr1 - Mt  =  217.57 - 216.75  = 0.82 

So the chi-square difference value is 0.82, which is quite close to the value of 0.84 that had been estimated by 
the Wald test. The degrees of freedom for the test (∆df) are equal to the difference between the df for the two 
models: 
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dfr1 - dft  =  125 - 124  =  1 

A table of chi-square (in Appendix C) shows the critical chi-square value with 1 degree of freedom is 3.84. 
Because your observed chi-square difference value of 0.83 is less than this, you conclude that there is not a 
significant difference between the fit provided by the theoretical model and that provided by revised model 1. 
Apparently, deleting the path from F6 to F1 did not hurt the model’s fit. 

However, the critical test of the validity of this revised model is the chi-square difference test comparing the 
revised model to the measurement model. A significant difference between these two models suggests that 
revised model 1 is not successfully accounting for the relationships between the latent F variables that constitute 
the structural portion of the model. 

Values of chi-square may be found in Table 6.1 and substituted in the following equation: 

Mr1 - Mm =  217.57 - 180.87  =  36.70 

The degrees of freedom for the test are calculated in the usual way: 

dfr1 - dfm  =  125 - 120 = 5 

The critical chi-square value with 5 degrees of freedom is 11.1 at p < .05 and 15.1 at p < .01. The obtained value 
of chi-square is greater than these, which indicates a significant difference between chi-squares for the two 
models. In other words, revised model 1 exhibits a fit to data that is significantly worse than the fit displayed by 
the measurement model. Apparently, there is still misspecification involving the relationships among F variables 
in Mr1. 

As before, your first stop is the Wald test, as it is generally safer to drop parameters than to add them. But the 
Wald test reveals no path coefficient that may be dropped without affecting model fit, only covariances. This is 
consistent with the finding that all factor loadings and path coefficients are significant for revised model 1. 
Given that it apparently is not possible to drop nonsignificant paths from the model, you now turn attention to 
identifying new paths that might be added. The Lagrange Multiplier is used for this purpose. 

The Lagrange Multiplier  
The modification option requested in the PROC CALIS statement resulted in four tables of Lagrange Multiplier 
tests:  

• Rank order of the 10 largest LM statistics for paths from endogenous variables  

• Rank order of the 10 largest LM statistics for paths from exogenous variables 

• Rank order of the 10 largest LM statistics for paths with new endogenous variables 

• Rank order of the 10 largest LM statistics for error variances and covariances  

Of the Lagrange Multiplier values, the largest that the model chi-square would decrease by 34.35 (a significant 
amount) if a path were added that went from F5 (investments) to F2 (satisfaction). The chapter on path analysis 
indicated that such a path could be defended on theoretical grounds as it is consistent with aspects of cognitive 
dissonance theory. You will therefore add this path and re-estimate the model to see if it results in improved fit. 

Creating Revised Model 2 
Figure 6.6 displays the resulting model: Revised model 2. This system is identical to revised model 1, except 
that a directional path has been added that leads from investments to satisfaction.  
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Figure 6.6: Revised Model 2, in Which the Path from F5 (Investments) to F2 (Satisfaction) Has Been Added 

 

 
The PROC CALIS program that estimates revised model 2 is identical to the one for revised model 1, except 
that the latent variable equation for F2 had been changed to reflect the new path from F5 to F2. The original 
version of this equation had been as follows: 

❹         F2  = PF2F3 F3 + PF2F4 F4            + D2; 

while the revised equation took this form:    
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❹         F2  = PF2F3 F3 + PF2F4 F4 + PF2F5 F5 + D2; 

Revised model 2 was estimated and the goodness-of-fit indices for this model are presented in Output 6.5. 

Output 6.5: Goodness-of-Fit Indices for Revised Model 2, Investment Model Study 
 

Fit Summary 

Modeling Info N Observations 240 

 N Variables 18 

 N Moments 171 

 N Parameters 47 

 N Active Constraints 0 

 Baseline Model Function Value 9.0702 

 Baseline Model Chi-Square 2167.7711 

 Baseline Model Chi-Square DF 153 

 Pr > Baseline Model Chi-Square <.0001 

Absolute Index Fit Function 0.7665 

 Chi-Square 183.1915 

 Chi-Square DF 124 

 Pr > Chi-Square 0.0004 

 Z-Test of Wilson & Hilferty 3.3240 

 Hoelter Critical N 197 

 Root Mean Square Residual (RMSR) 0.2077 

 Standardized RMSR (SRMSR) 0.0440 

 Goodness of Fit Index (GFI) 0.9243 

Parsimony Index Adjusted GFI (AGFI) 0.8957 

 Parsimonious GFI 0.7491 

 RMSEA Estimate 0.0447 

 RMSEA Lower 90% Confidence Limit 0.0301 

 RMSEA Upper 90% Confidence Limit 0.0579 

 Probability of Close Fit 0.7314 

 ECVI Estimate 1.1938 

 ECVI Lower 90% Confidence Limit 1.0574 

 ECVI Upper 90% Confidence Limit 1.3667 

 Akaike Information Criterion 277.1915 

 Bozdogan CAIC 487.7815 

 Schwarz Bayesian Criterion 440.7815 

 McDonald Centrality 0.8840 
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Incremental Index Bentler Comparative Fit Index 0.9706 

 Bentler-Bonett NFI 0.9155 

 Bentler-Bonett Non-normed Index 0.9638 

 Bollen Normed Index Rho1 0.8957 

 Bollen Non-normed Index Delta2 0.9710 

 James et al. Parsimonious NFI 0.7420 

 

Before proceeding with a detailed assessment of fit, it is first necessary to perform two chi-square difference 
tests. First, you will compare revised model 2 (Mr2) with revised model 1 (Mr1). Here, you hope to observe a 
significant chi-square difference value, as this will indicate that the model with the new path (Mr2) provides a fit 
to data that is significantly better than the fit provided by the more constrained model (Mr1). As before, chi-
square values for the test may be obtained from Table 6.1. 

Mr1 - Mr2  =  217.57 - 183.19  =  34.38 

The chi-square difference value for this comparison is 34.38 which is quite close to the value of 34.35 that was 
predicted by the Lagrange Multiplier. The degrees of freedom for the test are equal to the difference between the 
degrees of freedom for the two models, or 125 - 124 = 1. The critical value for the chi-square statistic with 1 
degree of freedom (p < .01) is 6.63, so this chi-square difference test is significant at p < .01. In other words, the 
test shows that revised model 2 (with the new path) provides a fit that is significantly superior to that of revised 
model 1. 

So far, so good. The second chi-square difference test involves comparing revised model 2 to the measurement 
model (Mm). In this case you hope for a nonsignificant chi-square difference value, as this will suggest that Mr2 
does a good job of accounting for the relationships between the F variables that constitute the structural portion 
of the model. The test is performed as follows: 

Mr2  -  Mm  =  183.19  -  180.87  =  2.32 

The degrees of freedom for the test are 124 - 120 = 4, and the critical value of the chi-square statistic (p < .05) 
with 4 degrees of freedom is 9.49. The observed chi-square difference value of 2.33 is less than this critical 
value, meaning that there is no significant difference in the fit provided by the two models. This finding supports 
the validity of revised model 2. Apparently, revised model 2 provides a fit to data that is essentially as good as 
the fit provided by the measurement model. 

Some findings regarding revised model 2 are summarized below: 

• With a sample of 240 participants and 124 degrees of freedom, statistical power for revised model 2 is 
approximately .99 using the SAS syntax provided by MacCallum and colleagues (1996; see Chapter 5). 

• The absolute value of t statistics for each factor loading and path coefficient exceed 1.96. 

• No standardized factor loadings are trivial; only three are lower than .50. 

• R2 values for the commitment and satisfaction constructs were quite large at .55 and .51, respectively.  

• Goodness-of-fit values for the Comparative Fit Index (CFI = .97), the Standardized Root Mean Square 
Residual (SRMR = .044), and the Root Mean Square Error of Approximation (RMSEA = .045) are 
each within ideal parameters and the full 90% confidence limits for the RMSEA are within good 
parameters (just short of ideal). Goodness-of-fit indices for all three models are summarized in Table 
6.1 

These results indicate that Mr2 provides very acceptable levels of fit. These results, coupled with the finding that 
revised model 2 provided a fit to data that was not significantly worse than that of the measurement model, 
support Mr2 as the study’s “final” model.  
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Table 6.1: Goodness-of-Fit Indices for Various Models, Investment Model Study (N = 240) 

Model χ2 df ∆χ2 ∆df CFI SRMR RMSEA (RMSEA CL90) 
Baseline 2167.77 153 -- --    

Measurement   180.87 120 -- -- .97 .042 .046 (.032-.059) 

Revised 1   217.57 125 34.38** 1 .95 .060 .056 (.043-.068) 

Revised 2   183.19 124   2.32 4 .97 .044 .045 (.030-.058) 

NOTE: χ2 = chi-square; df = degrees of freedom; CFI = Comparative Fit Index; SRMR = Standardized Root 
Mean Square Residual; RMSEA = Root Mean Square Error of Approximation; RMSEA CL90 = RMSEA 90% 
Confidence Limits. 

** p < .01 

Preparing a Formal Description of Results for a Paper 

Figures and Tables 
In most cases, it is best use a figure to illustrate the directional model tested in your study. Often a figure is 
presented to illustrate an initial theoretical model. This figure should follow the standard conventions in which 
latent variables are portrayed as oval or circles and manifest variables are portrayed as squares or rectangles. 
Your predictions will be made even more clear if directional paths are labeled with “+” and “-” signs to indicate 
whether positive or negative relationships are anticipated.  

Figure 6.7 illustrates one example of how the theoretical model for the present fictitious study could be 
presented. Notice that, in order to simplify the reader’s task, the model in Figure 6.7 is much simpler than the 
program figures referred to throughout this chapter (e.g., it does not contain symbols for parameters to be 
estimated).  
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Figure 6.7: The Initial Theoretical Model, Investment Model Study 
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More importantly, you should present a second figure that illustrates the study’s “final” model after 
modifications have been made. Ideally, it is easiest for the reader if standardized path coefficients (and 
parenthetically associated t values) appear along with directional paths connecting observed to latent variables 
and paths connecting the study’s F variables. This will help readers understand which independent variables 
exerted relatively strong effects, and which exerted relatively weak effects. Coefficients for variance estimates 
are generally not presented in this figure. An example of such a figure is presented as Figure 6.8. If coefficients 
are not shown along with your final model, these should appear in a table to accompany the figure. 

Some authors, instead, present their final model with unstandardized path coefficient along and error terms; we 
do not recommend this. Our rationale is that the reader is unable to directly examine the relative strength of 
association between unstandardized coefficients. Because standardized path coefficients share the same metric 
(i.e., each range from |0 to 1.00|), they can be directly compared. As shown in Figure 6.8, for instance, we see 
that the standardized path coefficient connecting F5 to F1 = .56 whereas the path connecting F2 to F1 = .25. 
This indicates that the strength of association between F5 and F1 is more than twice the strength of association 
between F2 and F1.  

You should also prepare several tables to summarize the results of your study. The first is usually a table of 
descriptive statistics showing the mean, standard deviation, range of values (i.e., highest and lowest), 
Cronbach’s alpha (internal consistency), skewness, and kurtosis values for all interval and ration scales used. 
This allows the reader to see whether or not responses to your scales appear normally distributed.  

Also, a table similar to Table 5.1 should be included to display the correlation coefficients between manifest 
variables. (This table appeared in Chapter 5, in the “Preparing the SAS Program” section.) Many researchers 
who perform structural equation modeling omit this information, but we feel that it is important to include such a 
table because it allows other researchers to replicate your analyses (and even test competing models!). As 
always, if your matrix is a correlation matrix, be sure to include the standard deviations.  

Third, a table similar to Table 6.1 should summarize goodness-of-fit indices for the various models estimated. 
This should include chi-square values, change in chi-square (and degrees of freedom, change in degrees of 
freedom) to support selection of models. 
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Figure 6.8: Revised Model 2, Investment Model Study  

 

NOTE: Parameters expressed as maximum likelihood estimates (standardized solution). Parenthetical numbers 
indicate significance levels for parameter estimates (statistically significant t values > |1.96|). 

Preparing Text for the Results Section of the Paper 
There is a good deal of variability in the way that research reports describe SEM procedures and findings. The 
way that you report results will depend, in part, on the purpose of your research. If your research was designed 
to test hypotheses related to the measurement model, then it is appropriate to discuss in some detail the tests that 
dealt specifically with the measurement model, such as the procedures that assess the convergent and 
discriminant validity of measures and constructs  (e.g., Cappeliez and O’Rourke 2006). If measurement concerns 
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are not a central focus of the research, less time can be spent on these matters (e.g., O’Rourke, Cappeliez, and 
Claxton 2011). 

Below, we present one approach to describing the analyses reported in this chapter. The following touches on 
several different aspects of the analysis; you should feel free to deal with any of these topics in greater or lesser 
detail, depending on the purpose of the research.  

One word of warning: The following results section is very lengthy, and goes into a great deal of detail in 
describing the procedures that were performed and the results that were obtained. This was done for the sake of 
completeness, so that you would have a model to follow when reporting the results of your analyses (regardless 
of which aspects of the results you chose to emphasize). In its entirety, the following section is actually much 
longer and more detailed than would be allowed in many scholarly journals. When you write for an academic 
journal, you should generally be more concise, and explain in great detail only those aspects of the analysis that 
are particularly relevant to your research questions. 

Results 

Overview of the Analysis 
Data were analyzed using the SAS 9.3 CALIS procedure, and the models tested were covariance structure 
models with multiple indicators for all latent constructs. 

The present analysis followed a two-step procedure based on the approach described by Anderson and Gerbing 
(1988). In the first step, confirmatory factor analysis was used to develop a measurement model that 
demonstrated an acceptable fit to data. In the second step, the measurement model was modified to become a 
structural equation model representing the theoretical model of interest. This theoretical model was then tested 
and revised until a theoretically meaningful and statistically acceptable model was achieved. 

The Measurement Model 
A measurement model describes the nature of the relationship between a number of latent variables, or factors 
and the manifest indicator variables that measure those latent variables. The model investigated in this study 
consisted of six latent variables corresponding to the six constructs of the investment model: Commitment, 
satisfaction, rewards, costs, investment size, and alternative value (N = 240). Each of the six latent variables was 
measured by at least three manifest or indictor variables as we recommend for analyses of covariance structures 
(i.e., latent variable models). 

The Initial Measurement Model  
We followed Bentler’s (1989) convention of identifying latent variables with the letter “F” (for factor), and 
labeling manifest variables with the letter “V” (for variable). Figure 6.7 uses these conventions in identifying the 
six latent constructs investigated in this study, as well as the indicators that measure these constructs. The figure 
shows that the commitment construct (F1) is measured by manifest variables V1 through V4, the satisfaction 
construct (F2) is measured by manifest variables V5 through V7, and so forth. 

The measurement model computed in the first stages of this analysis was not identical to the model in 
Figure 6.7, because the model in that figure posits certain directional relationships between the latent constructs. 
The measurement model, on the other hand, posits no directional paths between latent variables. Instead, in a 
measurement model, covariance is estimated to connect each latent variable with every other latent variable. In a 
figure, this would be indicated by a curved, two-headed arrow connecting each F variable to every other F 
variable. In other words, a measurement model is equivalent to a confirmatory factor analysis model in with 
each latent construct is allowed to covary with every other latent construct. 

This measurement model was estimated using the maximum likelihood method, χ2(df=137) = 247.68, p < .01. 
Statistical power was estimated at .99 for this model using the SAS syntax provided by MacCallum and 
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colleagues (1996). The Lagrange Multiplier showed that one manifest indicator, V4, was apparently affected by 
both the alternative value construct (F6) as well as the construct that it was hypothesized to measure 
(commitment, F1). Because V4 appears to be a complex variable, it was eliminated from the measurement 
model, and the measurement model was re-estimated. 

The Revised Measurement Model  
Standardized factor loadings for the indicator variables are presented in Table 5.3. Factor loadings range from 
.46 to .94, only two are less than .60; none of these values are trivial. PROC CALIS provides estimates standard 
errors for these coefficients which allow large-sample t tests of the null hypothesis that the coefficients are equal 
to zero in the population. All factor loadings are statistically significant (p < .01). These findings provide 
support for the convergent validity of responses to indicator variables (Anderson and Gerbing 1988). 

Goodness-of-fit indices for the respecified measurement model (Mm) are presented in Table 6.1. Here, we report 
an absolute index (SRMR; Standardized Root Mean Square Residual), an incremental index (CFI; Confirmatory 
Fit Index), and a parsimony index (RMSEA; Root Mean Square Error of Approximation) as well as the 90% 
confidence limits for this parsimony index (RMSEA CL90). In accord with the threshold values recommended by 
Hu and Bentler (1999), the CFI value for this measurement model is in ideal parameters (.95) whereas the 
SRMR (.059) and the RMSEA (.056); 90% confidence limits for the RMSEA are within acceptable parameters 
(.043 ≤ RMSEA CL90 ≤ .068). Therefore model Mm was tentatively accepted as the study’s “final” measurement 
model. 

Table 5.3 also provides reliability estimates for responses to each observed or indicator variable (the square of 
the factor loadings), along with the composite reliability for latent constructs. (Composite reliability is a measure 
of internal consistency comparable to coefficient alpha.) Responses to all six indicator variables demonstrate 
adequate reliability with coefficients in excess of .70.  

The final column of Table 5.3 provides the variance extracted estimate for each indicator variable. This is a 
measure of the amount of variance captured by a construct, relative to the variance due to random measurement 
error. Five of the six constructs demonstrated variance extracted estimates in excess of .50, the level 
recommended by Fornell and Larcker (1981).  

Combined, these findings provide general support for the reliability and validity of constructs and their 
indicators. The revised measurement model (Mm) was therefore retained as the study’s final measurement model 
against which successive models are compared. 

The Structural Model 

The Initial Theoretical Model  
The theoretical model tested in the present study is identical to the one presented in Figure 6.7, with the 
exception that V4 has been deleted as a measure of commitment (consistent with our findings when analyzing 
the measurement model). As we now specify directional paths between latent factors, this is a structural equation 
model (SEM). 

Although goodness-of-fit indices for this SEM are within good to ideal parameters, one of the paths linking two 
latent constructs are nonsignificant: The standardized path coefficient from alternative value (F6) to 
commitment (F1) is only .06 (t = .92, ns).  

The nomological validity of a theoretical model is tested by performing a chi-square difference test in that the 
theoretical model is compared to the measurement model.   A finding of no significant difference indicates that 
the theoretical model is successful in accounting for the observed relationships among latent constructs. The chi-
square value for the measurement model was subtracted from the chi-square value for the theoretical model with 
the resulting difference of 216.75 - 180.87 = 35.88. The degrees of freedom for the test are equal to the 
difference between models (i.e., ∆df = 124 – 120). The critical chi-square value with 4 df is 13.3 (p < .01), and 
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so this chi-square difference was significant. In other words, the theoretical model was unsuccessful in 
accounting for the relationships among latent constructs. A specification search was conducted to arrive at a 
better-fitting model. 

Revised Model 1  
When conducting a specification search there is a danger that data-driven model modifications will capitalize on 
chance characteristics of the sample data and result in a final model that will not generalize to the population or 
to other samples. We therefore began the search by attempting to identify parameters that could be dropped from 
the model without significantly affecting the model’s fit; as it is generally safer to drop parameters than to add 
new parameters when modifying models (Bentler and Chou 1987).  

The Wald test (Bentler 1989) suggested that it was possible to delete the path from alternative value to 
commitment without a significant increase in model chi-square. This is consistent with the nonsignificant path 
coefficient between these latent constructs. Therefore, this path was deleted, and the resulting model, revised 
model 1 (Mr1) was then computed.  

Dropping the alternatives-commitment path would be acceptable only if it did not result in a significant increase 
in model chi-square. A significant increase would indicate that Mr1 provided a fit that was significantly worse 
than Mt. Therefore, a chi-square difference test was conducted, comparing Mt to Mr1 (see Table 6.1 for model 
chi-square values). The chi-square difference for this comparison was equal to 217.58 - 216.75 = 0.83 which, 
with 1 df, was nonsignificant (p > .05).  

Mr1 was next compared to Mm to determine whether it successfully accounted for the relationships between the 
latent constructs. The chi-square difference was calculated as 217.58 - 180.87 = 36.71, which, with 5 df, was 
statistically significant (p < .01). Once again, the model failed to provide an acceptable fit. 

Revised Model 2  
Wald tests conducted in the course of analyzing Mr1 did not reveal any additional causal paths between latent 
constructs that could be deleted without affecting the model’s fit. We therefore reviewed results of Lagrange 
Multipliers to identify new paths that should be added to the model. 

A Lagrange Multiplier estimated that model chi-square for Mr1 could be reduced by 34.35 if a directional path 
were added between investment size (F5) and satisfaction (F2). Adding such a path would be consistent with the 
prediction from cognitive dissonance theory (Festinger 1957) that individuals often adjust their attitudes (i.e., 
become more satisfied) so that their attitudes will be consistent with their behaviors (i.e., the behavior of 
investing time and effort in a relationship). Because this model revision can be justified on theoretical grounds, a 
path from investment size to satisfaction was added to Mr1. The resulting model, revised model 2 (Mr2), was then 
estimated. 

Statistical power for this revised model 2 remained at .99. All path coefficients, including the new path between 
investment size and satisfaction, are nontrivial and statistically significant (i.e., t > |1.96|). Figure 6.8 depicts 
standardized path coefficients for revised model 2.  

R2 values showed that satisfaction, investment size and alternative value accounted for 55% of variance in 
commitment, while rewards, costs, and investment size accounted for 51% of variance in satisfaction. As shown 
in Table 6.1, all goodness-of-fit indices for revised model 2 are in ideal parameters. 

A chi-square difference test comparing Mr2 to Mr1 revealed a significant difference value of 217.58 - 183.20 = 
34.38 (∆df = 1, p < .01). This finding shows that revised model 2 provides a fit to data that is significantly better 
than the fit provided by revised model 1. 

As a final test, a chi-square difference test compares the fit of Mr2 with that of Mm resulting in a difference of 
183.20 - 180.87 = 2.33, which, with 4 df is nonsignificant (p > .05). This nonsignificant chi-square value 

O’Rourke, Norm, and Larry Hatcher. A Step-by-Step Approach to Using SAS® for Factor Analysis and Structural Equation Modeling, Second Edition.  
Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



Chapter 6:  Structural Equation Modeling   291 
 

indicates that Mr2 provided a fit that was not significantly worse than that provided by the measurement model in 
which all F variables were free to covary. In other words, this finding indicates that the relationships described 
in revised model 2 are successful in accounting for the observed relationships between the latent constructs.   

Combined, these findings provide support for revised model 2 over the other models tested. Mr2 was therefore 
retained as this study’s “final” model as depicted in Figure 6.8.  

It should be noted, however, that revised model 2 was obtained on the basis of modification indices versus 
theory specific to Rusbult’s (1980) original investment model. The results of this study should be replicated with 
other samples derived from this and other populations, ideally randomly derived samples. 

Additional Example: A SEM Predicting Victim Reactions to Sexual 
Harassment 

This final section of the chapter will very briefly present another theoretical model to be analyzed. It will also 
provide the program figures and PROC CALIS programs needed to conduct the analysis. All material needed to 
compute the programs have already been provided. The purpose of this section is to quickly apply these 
concepts to another model. As an informal exercise, you are encouraged to:  

• Study the models as they appear in the text’s figures. 

• Prepare the PROC CALIS program that will analyze the model. 

• Compare your output to that presented in this text. 

Chapter 4 described a fictitious analogue study in which a sample of women read a description of a woman who 
was being sexually harassed on the job. The scenarios that the women read varied with regard to the seriousness 
of the offence that the theoretical woman experienced. After reading the scenario randomly assigned to them, 
participants were asked to imagine how they would feel if they had been the victim of the harassment, and to 
respond to a questionnaire that assessed the following constructs: 

• Their intention to report the harassment to senior manager at the organization. With this variable, 
higher scores indicate greater intention to report. 

• The expected outcomes of reporting the harassment, where higher scores indicate stronger belief that 
reporting the harassment will result in positive results for the victim. 

• Feminist ideology, where higher scores indicate egalitarian attitudes about sex roles. 

• Seriousness of the offense, where higher scores indicate a stronger belief that the woman in the 
scenario experienced a serious form of harassment. 

• Normative expectations, where higher scores reflect a stronger belief that the victim’s family, friends, 
and coworkers would support her if she reported the harassment. 

Figure 6.9 presents a theoretical model that describes predicted relationships among these five constructs. 
According to the model, intention to report is expected to be directly affected by expected outcomes, feminist 
ideology, and normative expectations. Expected outcomes, in turn, are expected to be affected by all three of the 
study’s exogenous variables. (Remember that this model was constructed for purposes of illustration, and should 
not necessarily be regarded as a bona fide model of victim reactions to sexual harassment.)  
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Figure 6.9: Initial Theoretical Model, Sexual Harassment Study 

 

Figure 6.10 is a standard SEM model, in that all five constructs are represented as F variables with multiple 
indicators. Assume that the V variables are responses to individual items on a questionnaire. 

In the first phase of testing this model, confirmatory factor analysis would be performed to develop a 
satisfactory measurement model for the study. The program figure for this CFA is presented in Figure 6.10. 
Notice that all structural variables in the model (F variables, in this case) are allowed to freely covary with each 
other in the usual way. 
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Figure 6.10: Program Figure for CFA Measurement Model, Sexual Harassment Study  
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Below is the PROC CALIS program that would estimate the measurement model of Figure 6.10: 

     proc calis  covariance  modification ; 
        lineqs 
           V1  = LV1F1  F1 + E1, 
           V2  = LV2F1  F1 + E2, 
           V3  = LV3F1  F1 + E3, 
           V4  = LV4F2  F2 + E4, 
           V5  = LV5F2  F2 + E5, 
           V6  = LV6F2  F2 + E6, 
           V7  = LV7F3  F3 + E7, 
           V8  = LV8F3  F3 + E8, 
           V9  = LV9F3  F3 + E9, 
           V10 = LV10F3 F3 + E10, 
           V11 = LV11F4 F4 + E11, 
           V12 = LV12F4 F4 + E12, 
           V13 = LV13F4 F4 + E13, 
           V14 = LV14F5 F5 + E14, 
           V15 = LV15F5 F5 + E15, 
           V16 = LV16F5 F5 + E16, 
           V17 = LV17F5 F5 + E17; 
        variance 
           E1-E17 = VARE1-VARE17, 
           F1 = 1, 
           F2 = 1, 
           F3 = 1, 
           F4 = 1, 
           F5 = 1; 
        cov 
           F1 F2 = CF1F2, 
           F1 F3 = CF1F3, 
           F1 F4 = CF1F4, 
           F1 F5 = CF1F5, 
           F2 F3 = CF2F3, 
           F2 F4 = CF2F4, 
           F2 F5 = CF2F5, 
           F3 F4 = CF3F4, 
           F3 F5 = CF3F5, 
           F4 F5 = CF4F5; 
         var  V1-V17 ; 
       run; 

Assume that the initial measurement model did not provide an acceptable fit, and that the indicator V17 had to 
be dropped from F5 (normative expectations), in order to achieved the desired fit. Having developed an 
adequate measurement model, the study now moves to step 2, and the estimation of the theoretical model. Figure 
6.11 displays the completed program figure.  
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Figure 6.11: SEM Program Figure, Sexual Harassment Study 
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The PROC CALIS program for estimating this model appears below: 

     proc calis  covariance  modification ; 
        lineqs 
           V1  = LV1F1  F1 + E1, 
           V2  =        F1 + E2, 
           V3  = LV3F1  F1 + E3, 
           V4  = LV4F2  F2 + E4, 
           V5  = LV5F2  F2 + E5, 
           V6  =        F2 + E6, 
           V7  = LV7F3  F3 + E7, 
           V8  =        F3 + E8, 
           V9  = LV9F3  F3 + E9, 
           V10 = LV10F3 F3 + E10, 
           V11 =        F4 + E11, 
           V12 = LV12F4 F4 + E12, 
           V13 = LV13F4 F4 + E13, 
           V14 =        F5 + E14, 
           V15 = LV15F5 F5 + E15, 
           V16 = LV16F5 F5 + E16, 
           F1  = PF1F2 F2 + PF1F3 F3 + PF1F5 F5 + D1, 
           F2  = PF2F3 F3 + PF2F4 F4 + PF2F5 F5 + D2; 
        variance 
           E1-E16 = VARE1-VARE16, 
           F3 = VARF3, 
           F4 = VARF4, 
           F5 = VARF5, 
           D1 = VARD1, 
           D2 = VARD2; 
        cov 
           F3 F4 = CF3F4, 
           F3 F5 = CF3F5, 
           F4 F5 = CF4F5; 
        var  V1-V16 ; 
       run; 

Notice that the preceding program adheres to the usual conventions for testing a standard theoretical model (e.g., 
the variances of the exogenous F variables are now free parameters to be estimated, one factor loading for each 
F variable has been fixed at 1). If a dataset were actually analyzed using this program, the results would be 
interpreted according to the same guidelines presented earlier in this chapter.  

Conclusion: To Learn More about Latent Variable Models 
The chapter on path analysis stated that the best way to learn was to practice performing the procedure; the same 
is true for SEM. Your next step should be to locate books or articles reporting the results of CFA and SEM 
analyses that provide both the correlation or covariance matrix analyzed along with the results of the analysis. 
Re-analyze the datasets you find using PROC CALIS. If you obtain the same results reported by the authors, you 
have performed the analysis correctly (assuming the original researchers conducted their analyses correctly!). 

This chapter has introduced some basic concepts in the computation and analysis of structural equation models, 
but has been somewhat narrow in focusing only on recursive models with cross-sectional data. You should now 
be ready to move on to more complex models, such as time-series designs (e.g., O’Rourke et al. 2003). Byrne 
(2009, 1998) and Kline (2005) are examples of useful resources when learning about more complex 
applications. 
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What Is SAS? 
SAS is a modular, integrated, and hardware-independent system of statistical software. It is a particularly 
powerful tool for social scientists because it allows us to easily perform a myriad of statistical analyses that may 
be required in the course of conducting research. SAS is sufficiently comprehensive to perform the most 
sophisticated multivariate analyses (i.e., multiple dependent variables), but is also easy to use so that 
undergraduates can perform basic analyses after only a short period of instruction.   

In a sense, SAS may be viewed as a library of prewritten statistical algorithms. By submitting a short SAS 
program, you can access a prewritten procedure to analyze a set of data. For example, below are the SAS 
statements used to call up the algorithm that calculates the Pearson correlation coefficient: 

proc corr   data=D1; 
   run; 

The preceding statements enable SAS to compute correlation coefficients for all numeric variables in your 
dataset. The ability to call up complex procedures with such a simple statement makes this system both 
powerful and easy to use.  

Three Types of SAS Files 
The purpose of this appendix is to provide a general sense of what it entails to submit a SAS program and 
interpret the results. This appendix presents a short SAS program and discusses the resulting output. You are 
encouraged to copy the program that appears in the following example, submit it for analysis, and verify that the 
resulting output matches the output reproduced here. This exercise will provide you with the SAS big picture 
and this perspective will facilitate learning the programming details presented in this text. 

Briefly, you will work with three types of files when using SAS: One file contains the SAS program; one file 
contains the SAS log; and one file contains the SAS output. The following sections discuss the differences 
among these files. 
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The SAS Program 
A SAS program consists of a set of user-written statements. These statements provide the data to be analyzed 
(or where these data can be found), tell SAS about the nature of these data, and indicate which statistical 
analyses should be performed.   

This section illustrates a simple SAS program by analyzing data from a fictitious study. Assume that six high 
school students have taken the SAT Reasoning Test. This test provides three scores for each student: Critical 
reading, writing, and mathematics. Scores range from 200 to 800 for each test, with higher scores indicating 
higher performance. 

Assume that you now want to obtain some simple descriptive statistics regarding the six students’ scores on 
each test. For example, what is their average score on the critical reading, writing, or SAT math test? What is 
the standard deviation of scores for these three tests? 

To perform these analyses, prepare the following SAS program:  

data D1; 
input PARTICIPANT SATREAD SATWRITE SATMATH ; 
 
datalines; 
1 520 580 490 
2 610 640 590 
3 470 430 450 
4 410 400 390 
5 510 490 460 
6 580 510 350 
; 
run; 

proc means   data=D1; 
  var  SATREAD SATWRITE SATMATH; 
run; 

The first eleven lines of code make up the DATA step, which is used to read data and create a SAS dataset. The 
last three lines are the PROC step, which is used to process or analyze the data. The differences between these 
steps are described in the next two sections.   

The DATA Step 
In the DATA step, programming statements create and/or modify a SAS dataset. Among other features, these 
statements might: 

• provide a name for the dataset 

• provide a name for the variables to be included in the dataset 

• indicate where to find the dataset 

• provide the actual data to be analyzed 

In the preceding program, the DATA step begins with the DATA statement and ends with a semicolon and 
RUN statement; these items precede the PROC MEANS statement. 

The first statement of the preceding program begins with the word DATA and specifies that SAS should create 
a dataset named D1. The next line contains the input statement, which indicates that four variables will be 
contained in this dataset. The first variable is named PARTICIPANT; this variable specifies the participant 
number of each student. The second variable is named SATREAD (for the SAT critical reading test), the third 
variable is named SATWRITE (SAT writing test), and the fourth variable is named SATMATH (SAT math 
test). 
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The DATALINES statement indicates that lines containing your data are to follow. The first line after the 
DATALINES statement contains the data (test scores) for participant 1. This first data line contains the numbers 
520, 580, and 490, which means that participant 1 received a score of 520 on the critical reading test, 580 on the 
writing test, and 490 on the math test. The next data line shows that participant 2 received a score of 610 for 
critical reading, 640 for writing, and 590 for the math test. The semicolon and RUN statement after the last data 
line signal the end of the data. 

The PROC Step 
In contrast to the DATA step, the PROC step includes programming statements that request specific statistical 
analyses. For example, the PROC step might request that correlations be performed between all quantitative 
variables, or the PROC step might request that a t test be performed. In the preceding example, the PROC step 
consists of the last three lines of the program. 

The first line after the DATA step is the PROC MEANS statement.  This requests that SAS use a procedure 
called MEANS to analyze the data. The MEANS procedure computes means, standard deviations, and some 
other descriptive statistics for numeric variables in the dataset. Immediately after the words PROC MEANS are 
the words DATA =D1. This tells the system that the data to be analyzed are in a dataset named D1. (Remember 
that D1 is the name of the dataset just created.) 

Following the PROC MEANS statement is the VAR statement, which includes the names of three variables: 
SATREAD, SATWRITE, and SATMATH.  This requests that descriptive statistics be computed for 
SATREAD, SATWRITE, and SATMATH. 

Finally, the last line of the program is the RUN statement, which signals the end of the PROC step. If a SAS 
program requests multiple PROCS (or procedures), you have two options for using the RUN statement: 

• you may place a separate RUN statement following each PROC statement 

• you may place a single RUN statement following the last PROC statement 

What is the single most common programming error?  For new SAS users, the single most common error 
involves leaving off a required semicolon (;). Remember that every SAS statement must end with a 
semicolon.  In the preceding program, notice that the DATA statement ends with a semicolon as does the 
INPUT statement, the DATALINES statement, the PROC MEANS statement, and the RUN statement. When 
you obtain an error in running a SAS program, one of the first things you should look for is missing 
semicolons in the program. 

Once you submit the preceding program for analysis, SAS creates two types of files reporting the results of the 
analysis. One file is named the SAS log or log file. This file contains notes, warnings, error messages, and other 
information related to the execution of the SAS program.  The other file is referred to as the SAS output file. 
The SAS output file contains the results of the requested statistical analyses. 

The SAS Log 
The SAS log is a listing of notes and messages that should help you verify that your SAS program was executed 
successfully.  Specifically, the log provides: 

• a reprinting of the SAS program that was submitted 

• a listing of notes indicating how many variables and observations are contained in the dataset 

• a listing of any errors made in the execution of the SAS program  
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Log A.1.1:  SAS Log for the Preceding Program 

 

Notice that the statements constituting the SAS program are assigned line numbers and are reproduced in the 
SAS log. The datalines are not normally reproduced as part of the SAS log unless they are specifically 
requested. 

About halfway down the log, a note indicates that the dataset contains six observations and three variables. You 
should check this note to verify that the dataset contains all of the variables that you intended to input (in this 
case four), and that it contains data from all of your participants (in this case six). So far, everything appears to 
be correct. 

If you made errors when writing the SAS program, there would also be ERROR messages in the SAS log. 
Often, these error messages enable you to determine what is wrong with the program. For example, a message 
might indicate that SAS was expecting a program statement that was not included. Whenever you encounter an 
error message, read it carefully and review all of the program statements that precede it. Often, the error appears 
in the program statements that immediately precede the error message, but in other cases the error might be 
hidden much earlier in the program.   

If more than one error message is listed, do not panic; there may still be only one error. Sometimes a single 
error will cause a cascade of subsequent error messages.   

Once the error or errors have been identified, revise the SAS program and resubmit it for analysis. Review the 
new SAS log to see if the errors have been rectified. If the log indicates that the program ran correctly, then 
review the results of the analyses in the SAS output file. 
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The SAS Output File 
The SAS output file contains the results of the statistical analyses requested in the SAS program. Because the 
program in the previous example requested the MEANS procedure, the corresponding output file will contain 
means and other descriptive statistics for the variables analyzed. In this text, the SAS output file is sometimes 
referred to as the lst file. “Lst” is used as an abbreviation for “listing of results.” 

Following is the SAS output file produced by the preceding SAS program:  

Output A.1.1: Results of the MEANS Procedure 
The MEANS Procedure 

 

Variable N Mean Std Dev Minimum Maximum 

SATREAD 

SATWRITE 

SATMATH 
 

6 

6 

6 
 

516.6666667 

508.3333333 

455.0000000 
 

72.5718035 

90.2034737 

83.3666600 
 

410.0000000 

400.0000000 

350.0000000 
 

610.0000000 

640.0000000 

590.0000000 
 

 
Below the heading “Variable,” SAS prints the names of each of the analyzed variables. In this case, the 
variables are called SATREAD, SATWRITE, and SATMATH. To the right of the heading SATREAD, 
descriptive statistics for the critical reading test are found. The corresponding figures for the writing test appear 
to the right of SATWRITE, and descriptive statistics for the math test appear to the right of SATMATH. 

Below the heading “N,” the number of observations or participants is reported. The average score on each 
variable is reproduced under “Mean,” and standard deviations appear in the column headed “Std Dev.” 
Minimum and maximum scores for the three variables appear in the remaining two columns. The mean score 
for the critical reading test is 516.67, and the standard deviation of these scores is 72.57. For the writing test, the 
mean is 508.33 with a standard deviation of 90.20, and for the math test the mean is 455.00 with a standard 
deviation of 83.37. (Note: SAS output will generally report findings to several decimal places. In this text, 
however, numbers will be reported to only two decimal places in most instances, and rounded as necessary in 
accordance with the publication manual of the American Psychological Association [APA, 2009].) 

The statistics included in the preceding output are printed by default (i.e., without asking for them specifically). 
There are many additional statistics that you can request. 

SAS Customer Support 
Although this text provides examples of many of the analyses performed in the social sciences, specific 
questions to certain problems may arise. One alternative for registered SAS users (or their institutions) is use of 
the SAS Customer Support (http://support.sas.com). SAS maintains a comprehensive website with up-to-date 
information. In the left column, one option that is particularly useful for the novice (and not-so-novice) SAS 
user appears under the heading “Knowledge Base.” Click the Documentation link, which will take you to a page 
where you can search an array of topics including examples and SAS syntax. Here, you can obtain information 
regarding specific statistical procedures covered, and not covered, in this text. 

It is also possible to pose specific questions (Support → Submit a Problem) to SAS Customer Support. To use 
this feature, you will need to provide an e-mail address to which replies can be sent, identify your institution, 
and provide a customer site number/license information. This latter information can be found in any SAS log 
file. (See log A.1.1 where the release version and license number are specified in the first section.) 
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Conclusion 
Regardless of the computing environment in which you work, the basics of using SAS remain the same: You 
prepare the SAS program, submit it for analysis, review the resulting log for any errors, and examine the output 
files to view the results of your analyses. For further information about the fundamentals of creating SAS 
datasets, refer to Appendix A.2, “Data Input.” 

Reference 
American Psychological Association (2009). Publication manual of the American Psychological Association 

(6th Ed.).  Washington, DC: Author. 
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Introduction: Inputting Questionnaire Data versus Other Types of Data 
This appendix shows how to create SAS datasets in a number of different ways by illustrating how to input 
various types of data that are commonly obtained in questionnaire research. Questionnaire or survey research 
generally involves administering standardized instruments to a sample of participants and asking them to select 
among fixed responses. For example, participants may be asked to indicate the extent to which they agree or 
disagree with a series of items by selecting a response along a 7-point scale where 1 = “strongly disagree,” 4 = 
“neither agree nor disagree,” and 7 = “strongly agree.” These are known as Likert-type scales (DeVellis 2012). 

Because this appendix (and much of the entire text, for that matter) focuses on questionnaire research, some 
readers may be concerned that it may not be useful for analyzing data that are obtained using other methods. 
This concern is understandable, because the social sciences are so diverse and many different types of variables 
are examined. These variables might be as different as the number of aggressive acts performed by a child, 
preferences for laundry detergents, or levels of serotonin metabolites in the cerebrospinal fluid of chimpanzees.  

Because of the flexibility of the basic principles outlined in this appendix, you can expect to input virtually any 
type of quantitative data obtained in social science research upon completing this appendix. The same may be 
said for the remaining appendices and chapters of this text; although this book emphasizes analyses of 
questionnaire data, the concepts can be readily applied to many types of data. This should become clear as the 
mechanics of using SAS are presented.   

This text emphasizes the analyses of questionnaire data for two reasons. First, for better or for worse, many 
social scientists rely on questionnaire data almost exclusively when conducting their research. This text 
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provides examples that will be applicable to most readers. Secondly, questionnaire responses often create 
special data entry and analysis problems that are not generally encountered with other research methods  
(e.g., large numbers of variables, “check all that apply” variables). This text addresses some of the most 
common of these difficulties. 

Entering Data: An Illustrative Example 
Before data can be entered and analyzed by SAS, they must be compiled in some systematic way. There are a 
number of different approaches to entering data, but to keep things simple, this appendix presents only the fixed 
format approach. With the fixed format method, each variable is assigned to a specific column (or set of 
columns) in the dataset. The fixed format method has the advantage of being very general; you can use it for 
almost any type of research application. An additional advantage is that you are less likely to make errors when 
entering data in this format. 

In the following example, you will actually enter some made-up data from a fictitious study. Assume that you 
have developed a survey to measure attitudes toward volunteerism. A copy of the survey appears here: 

Volunteerism Survey 

Please indicate the extent to which you agree or disagree with each of the following statements by circling the 
appropriate number to the left of each statement using the response key below: 

5 = Agree Strongly 

4 = Agree Somewhat 

3 = Neither Agree nor Disagree 

2 = Disagree Somewhat 

1 = Disagree Strongly 

For example, if you “Disagree Strongly” with the first question, circle the “1” to the left of that statement. If 
you “Agree Somewhat,” circle the “4,” and so on. 

---------------------------- 

Circle Your Response 

---------------------------- 

1  2  3  4  5     1.  I feel a personal responsibility to help needy people in my community. 

1  2  3  4  5     2.  I feel I am personally obligated to help homeless families. 

1  2  3  4  5     3.  I feel no personal responsibility to work with poor people in my community. 

1  2  3  4  5     4.  Most of the people in my community are willing to help the needy. 

1  2  3  4  5     5.  A lot of people around here are willing to help homeless families. 

1  2  3  4  5     6.  The people in my community feel no personal responsibility to work with poor people. 

1  2  3  4  5     7.  Everyone should feel the responsibility to perform volunteer work in his/her community. 

What is your age in years? _______________ 
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Assume that you administer this survey to 10 participants. For each of these individuals, you also obtain their 
Intelligence Quotient or IQ scores. 

All of the survey responses and information about participant 1 appear on the first line of your file. All 
responses and information about participant 2 appear on the second line of this file, and so forth. You keep the 
data aligned so that responses to question 1 appear in column 1 for all participants, responses to question 2 
appear in column 2 for all participants, and so forth. When you enter data in this fashion, your dataset should 
look similar to this: 

2234243 22  98  1 
3424325 20 105  2 
3242424 32  90  3 
3242323  9 119  4 
3232143  8 101  5 
3242242 24 104  6 
4343525 16 110  7 
3232324 12  95  8 
1322424 41  85  9 
5433224 19 107 10 

You can think of the preceding dataset as a matrix consisting of 10 rows and 17 columns. The rows run 
horizontally (from left to right), and each row represents data for a single participant. The columns run 
vertically (up and down). For the most part, a given column represents a different variable that you measured or 
created. (Though, in some cases, a given variable is more than one column wide, but more on this later.) 

For example, look at the last column in the matrix: The vertical column on the right side that goes from 1 (at the 
top) to 10 (at the bottom). This column codes the Participant Number variable. In other words, this variable 
simply tells us which participant’s data are included on that line. For the top line, the assigned value of 
Participant Number is 1, so you know that the top line includes data for participant 1. The second line down has 
the value 2 in the participant number column, so this second line includes data for participant number 2, and so 
forth. 

The first column of data includes participant responses to survey question 1. It can be seen that participant 1 
selected “2” in response to this item, while participant 2 selected “3.” The second column of data includes 
participants’ responses to survey question 2, the third column codes question 3, and so forth. After entering 
responses to question 7, column 8 was left blank. Then, in columns 9 and 10, you enter each participant’s age. 
We can see that participant 1 is 22 years old, while participant 2 is 20 years old. You left column 11 blank, and 
then entered the participants’ IQs in columns 12, 13, and 14. (IQ can be a 3-digit number, so it required three 
columns to enter it.) Column 15 is left blank; participant identification numbers are entered in columns 16 and 
17.   
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Table A.2.1 presents a brief coding guide to summarize how you entered your data.   

Table A.2.1 

Variable  

Column Name  Explanation 

1 Q1 Responses to survey question 1 
2 Q2 Responses to survey question 2 
3 Q3 Responses to survey question 3 
4 Q4 Responses to survey question 4 
5 Q5 Responses to survey question 5 
6 Q6 Responses to survey question 6 
7 Q7 Responses to survey question 7 
8 blank  
9–10 AGE Participant’s age in years 
11 Blank  
12–14 IQ Participant’s IQ score 
15 blank  
16–17 NUMBER Participant’s number 

 
Guides similar to Table A.2.1 will be used throughout this text to explain how datasets are arranged, so a few 
words of explanation are in order. This table simply identifies the specific columns in which variable values are 
assigned. For example, the first line of the preceding table indicates that in column 1 of the dataset, the values 
of a variable called Q1 are stored; this variable includes responses to question 1. The next line shows that in 
column 2, the values of variable Q2 are stored; this variable includes responses to question 2. The remaining 
lines of the guide are interpreted the same way. You can see, therefore, that it is necessary to read down the 
lines of this table to learn what is in each column of the dataset.  

A few important notes about how you should enter data that you will analyze using SAS: 

• Make sure that you enter variables in the correct column. For example, make sure that the data are 
aligned so that responses to question 6 always appear in column 6. If a participant happened to leave 
question 6 blank, then you should leave column 6 blank when entering your data. (Leave this column 
blank by simply pressing the space bar.) Then go on to enter that participant’s response to question 7 in 
column 7. Do not enter a zero if the participant did not answer a question; simply leave the space 
blank.   
It is also acceptable to enter a period (.) instead of a blank space to represent missing data. When using 
this convention, if a participant has a missing value on a variable, enter a single period in place of that 
missing value. If this variable happens to be more than one column wide, you should still enter just one 
period. For example, if the variable occupies columns 12 to 14 (as does IQ in the table), enter just one 
period in column 14; do not enter three periods in columns 12, 13, and 14. 

• Right-justify numeric data. You should align numeric variables to the right side of columns in which 
they appear. For example, IQ is a 3-digit variable (it could assume values such as 112 or 150). 
However, the IQ score for many individuals is a 2-digit number (half, by definition). Therefore, the 2-
digit IQ scores should appear to the right side of this 3-digit column of values. A correct example of 
how to right-justify your data follows: 
 

       99 
      109 
      100 
       87 
      118 
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The following is not right-justified, and so is less preferable: 
 

      99 
      109 
      100 
      87 
      118 

There are a few exceptions to this rule. For example, if numeric data contain decimal points, it is 
generally preferable to align the decimal points when entering the data so that the decimals appear in 
the same column. If there are no values to the right of the decimal point for a given participant, you 
may enter zeros to the right of the decimal point. Here is an example of this approach: 

 
       3.45 
      12.00 
       0.13 
     144.75 
       0.00 

The preceding dataset includes scores for five participants for just one variable. Assume that possible 
scores for this variable range from 0.00 to 200.00. Participant 1 had a score of 3.45, participant 2 had a 
score of 12, and so forth. Notice that the scores have been entered so that the decimal points are 
aligned in the same vertical column.  
Notice also that if a given participant’s score does not include any digits to the right of the decimal 
point, zeros have been added. For example, participant 2 has a score of 12; this participant’s score has 
been entered as 12.00 so that it is aligned with the other scores.   
Technically, it is not always necessary to align participant data in this way to include in a SAS dataset. 
However, arranging data in an orderly fashion generally decreases the likelihood of making errors 
when entering data.  

• Left-justify character data. Character variables may include letters of the alphabet. In contrast to 
numeric variables, you typically should left-justify character variables. This means that you align 
entries to the left, rather than the right.   
For example, imagine that you are going to enter two character variables for each participant. The first 
variable will be called FIRST and will include each participant’s first name. You will enter this 
variable in columns 1 to 15. The second variable will be called LAST and will include each 
participant’s last name (surname, or family name). You will enter this variable in columns 16 to 25. 
Data for five participants are reproduced here: 
 
Francis    Smith  
Ishmael    Khmali 
Michel     Hébert 
Jose       Lopez 

The preceding shows that the first participant is named Francis Smith, the second is named Ishmael 
Khmali, and so forth. Notice that the value “Francis” has been moved to the left side of the columns 
that include the FIRST variable (columns 1 to 15). The same is true for “Ishmael” as well as the 
remaining first names. In the same way, “Smith” has been moved over to the left side of the columns 
that include the LAST variable (columns 16 to 25). The same is true for the remaining surnames.   

• Use of blank columns can be helpful but is not necessary. Recall that when you entered your data, 
you left a blank column between Q7 and the AGE variable, and another blank column between AGE 
and IQ. Leaving blank columns between variables can be helpful because it makes it easier to look at 
your data and see if something has been entered out of place. However, leaving blank columns is not 
necessary for SAS to accurately read your data, so this approach is optional (though recommended). 
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Inputting Data Using the DATALINES Statement 
Now that you know how to enter your data, you are ready to learn about the SAS statements that actually allow 
the computer to read the data and put them into a SAS dataset. There are a variety of ways that you can input 
data, but this text focuses on only two: Use of the DATALINES statement that allows you to include the data 
within the SAS program itself; and the INFILE statement that allows you to include the data lines within an 
external file. 

There are also a number of different ways in which data can be read by SAS with regard to the instructions you 
provide concerning the location and format of your variables. Although SAS allows for list input, column input, 
and formatted input, this text presents only formatted input because of its ability to accommodate many 
different types of data. 

Here is the general form for inputting data using the DATALINES statement and the formatted input style: 

data dataset-name; 
   input  #line-number   @column-number   variable-name  column-width. 
                         @column-number   variable-name  column-width. 
                         @column-number   variable-name  column-width. ; 
datalines; 
data are placed here 
; 
run; 

proc name-of-desired-statistical-procedure     data=dataset-name ; 
run; 

The following example shows a SAS program to analyze the preceding dataset. In this example, the numbers on 
the far left side are not actually part of the program; instead, they are provided to make it easier to refer to 
specific lines of the program when explaining the meaning of the program in subsequent sections. 

❶  data D1; 
❷     input   #1   @1   Q1      1. 
                    @2   Q2      1. 
                    @3   Q3      1. 
                    @4   Q4      1. 
                    @5   Q5      1. 
                    @6   Q6      1. 
                    @7   Q7      1. 
                    @9   AGE     2. 
                    @12  IQ      3. 
❸                  @16  NUMBER  2. ; 
❹  datalines; 
❺  2234243 22  98  1 
    3424325 20 105  2 
    3242424 32  90  3 
    3242323  9 119  4 
    3232143  8 101  5 
    3242242 24 104  6 
    4343525 16 110  7 
    3232324 12  95  8 
    1322424 41  85  9 
    5433224 19 107 10 
❻  ; 
❼                    run; 
 

❽  proc means   data=D1; 
❾  run; 
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A few important notes about these data INPUT statements: 

• The data statement. Line ❶ from the preceding program included the data statement, where the 
general form is: 

        data dataset-name; 

In this case, you gave your dataset the name D1, so the statement reads: 
 

        data D1; 

• Dataset names and variable names. The preceding section indicated that your dataset was assigned 
the name D1 on line ❶ of the program. The dataset’s variables are assigned names such as Q1, Q2, 
AGE, and IQ.  
You are free to assign a dataset or variable any name so long as it conforms to the following rules:   

◦ it must begin with a letter (rather than a number); 

◦ it may contain no special characters such as “*” or “#”; 

◦ it may contain no blank spaces.   

Although the preceding dataset was named D1, it could have been given an almost infinite number of 
other names. Below are examples of other acceptable names for SAS datasets: 

 
     SURVEY 
     PARTICIPANT 
     RESEARCH 
     VOLUNTEER 

• The INPUT statement. The INPUT statement has the following general form: 

      input  #line-number  @column-number  variable-name  column-width. 
                           @column-number  variable-name  column-width. 
                           @column-number  variable-name  column-width. ; 

Compare this general form to the actual INPUT statement of the preceding SAS program and note the 
values that were filled in to read your data. In the actual program, the word “input” appears on line ❷ 
and tells SAS that the INPUT statement has begun. SAS assumes that all of the instructions that follow 
are data input directions until it encounters a semicolon (;). At that semicolon, the INPUT statement 
ends. In this example, the semicolon appears on line ❸. 

• Line number controls. To the right of the word “input” is the following: 

        #line-number 

This tells SAS what line it should read in order to find specific variables. In some cases there may be 
two or more lines of data for each participant; more on this in a later section. For the present example, 
the situation is fairly simple: There is only one line of data for each participant so your program 
includes the following line number control (from line ❷ of the program example): 

 
        input   #1 

Technically, it is not necessary to include line number controls when there is only one line of data for 
each participant (as in the present example). In this text, however, line number controls appear 
throughout for consistency. 
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• Column location, variable name, and column width directions. To the right of the line number 
directions, you place the column location, variable name, and column width directions. The general 
form for this is as follows: 

        @column-number   variable-name   column-width. 

Where “column-number” appears, you enter the number of the column in which a specific variable 
appears. If the variable occupies more than one column, such as IQ in columns 12, 13 and 14, you 
should enter the number of the column in which it begins (e.g., column 12). Where “variable-name” 
appears, you will enter the name that you have given to that variable. And where “column-width” 
appears, you will enter how many columns are occupied by that variable. In the case of the preceding 
data, the first variable is Q1, which appears in column 1 and is only one column wide. This program 
example, therefore, provides the following column location controls (from line ❷): 

 
        @1   Q1   1. 

The preceding line tells SAS to go to column 1. In that column you will find a variable called Q1. It is 
a number and one column wide. 
IMPORTANT: Note that you must follow the column width with a period. So for column 1, the width 
is (1.). It is important that you include this period; later you will learn how the period provides 
information about decimal places. 
Now that variable Q1 has been read, you must give SAS the directions required to read the remaining 
variables in the dataset. The completed INPUT statement appears as follows. Note that the line number 
controls are given only once because all of these variables come from the same line (for a given 
participant). There are different column controls for the different variables, however. Note also how 
column widths are different for AGE, IQ, and NUMBER: 
 

        input   #1   @1   Q1      1. 
                     @2   Q2      1. 
                     @3   Q3      1. 
                     @4   Q4      1. 
                     @5   Q5      1. 
                     @6   Q6      1. 
                     @7   Q7      1. 
                     @9   AGE     2. 
                     @12  IQ      3. 
                     @16  NUMBER  2. ; 

IMPORTANT: Notice the semicolon that appears after the column width entry for the last variable 
(NUMBER). You must always end your INPUT statement with a semicolon. It is easy to omit, so 
always check for this semicolon if you get an error message following the INPUT statement.   

• The DATALINES statement. The DATALINES statement appears after the INPUT statement and 
tells SAS that raw data are to follow. Do not forget the semicolon after the word “datalines.” In the 
preceding program example, the DATALINES statement appears on line ❹.   

• The data lines. The data lines, of course, are the lines that contain participants’ values for the numeric 
and/or character variables.  

The data lines should begin on the very next line after the DATALINES statement; there should be no 
blank lines. These data lines begin on line ❺ in the preceding program example. On the very first line 
after the last of the data lines (line ❻, in this case), you should add another semicolon to let SAS know 
that the data have ended. Do not place this semicolon at the end of the last line of data (i.e., on the 
same line as the data), as this may cause an error. After this semicolon, a RUN statement should appear 
at the end of the data lines. In the preceding program example, this appears on line ❼. 
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The most important thing to remember when it comes to the data lines is that you must enter a given 
variable in the column specified by the INPUT statement. For example, if your INPUT statement 
contains the following line: 

 
        @9   AGE   2. 

then make sure that the variable AGE really is a 2-digit number found in columns 9 and 10. 

• PROC and RUN statements. There is little to say about PROC and RUN statements at this point 
because most of the text will be concerned with using such SAS procedures. Suffice to say that a 
PROC (or procedure) statement asks SAS to perform some statistical analysis. To keep things simple, 
this section uses a procedure called PROC MEANS. PROC MEANS asks SAS to calculate means, 
standard deviations, and other descriptive statistics for numerical variables. The preceding program 
includes the PROC MEANS statement on line ❽. 

In most cases, your program will end with a RUN statement. In the preceding example, a second RUN 
statement appears on line ❾. A RUN statement executes any previously entered SAS statements; RUN 
statements are typically placed after every PROC statement. If your program includes a number of 
PROC statements in sequence, it is acceptable to place just one RUN statement after the final PROC 
statement. 
If you submitted the preceding program for analysis, PROC MEANS would produce the results 
presented here as Output A.2.1: 

Output A.2.1: Results of the MEANS Procedure 
The MEANS Procedure 

 

Variable N Mean Std Dev Minimum Maximum 

Q1 

Q2 

Q3 

Q4 

Q5 

Q6 

Q7 

AGE 

IQ 

NUMBER 
 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 
 

3.0000000 

2.6000000 

3.2000000 

2.6000000 

2.9000000 

2.6000000 

3.7000000 

20.3000000 

101.4000000 

5.5000000 
 

1.0540926 

0.8432740 

0.7888106 

0.8432740 

1.1972190 

0.9660918 

0.9486833 

10.2745641 

9.9241568 

3.0276504 
 

1.0000000 

2.0000000 

2.0000000 

2.0000000 

1.0000000 

2.0000000 

2.0000000 

8.0000000 

85.0000000 

1.0000000 
 

5.0000000 

4.0000000 

4.0000000 

4.0000000 

5.0000000 

4.0000000 

5.0000000 

41.0000000 

119.0000000 

10.0000000 
 

Additional Guidelines 

Inputting String Variables with the Same Prefix and Different Numeric Suffixes 
In this section, prefix refers to the first part of a variable’s name, while a suffix refers to the last part. For 
example, think about our variables Q1, Q2, Q3, Q4, Q5, Q6, and Q7. These are multiple variables with the same 
prefix (Q) and different numeric suffixes (i.e., 1, 2, 3, 4, 5, 6, and 7). Earlier, this appendix provided one way of 
inputting these variables; the original INPUT statement is repeated here:   
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INPUT   #1   @1   Q1      1. 
             @2   Q2      1. 
             @3   Q3      1. 
             @4   Q4      1. 
             @5   Q5      1. 
             @6   Q6      1. 
             @7   Q7      1. 
             @9   AGE     2. 
             @12  IQ      3. 
             @16  NUMBER  2. ; 

However, with string variables named in this way, there is an easier way of writing the INPUT statement. You 
could have written it in this way: 

input   #1   @1   Q1-Q7   1. 
             @9   AGE     2. 
             @12  IQ      3. 
             @16  NUMBER  2.  ; 

The first line of this INPUT statement gives SAS the following directions: “Go to line #1. Once there, go to 
column 1. Beginning in column 1 you will find variables Q1 through Q7. Each of these numeric variables is one 
column wide.” With this second INPUT statement, SAS will read the data in exactly the same way that it would 
have using the original INPUT statement. 

As an additional example, imagine you had a 50-item survey instead of a 7-item survey. You called your 
variables Q1, Q2, Q3, and so forth. You entered your data in the following way: 

Variable 
Column Name  Explanation 
1–50 Q1–Q50 Responses to survey questions 
51 blank  
52–53 AGE Participants’ age in years 
54 blank  
55–57 IQ Participants’ IQ score 
58 blank  
59–60 NUMBER Participants’ identification number 

 
You could use the following INPUT to read these data: 

input   #1   @1   Q1-Q50  1. 
             @52  AGE     2. 
             @55  IQ      3. 
             @59  NUMBER  2.  ; 

Inputting Character Variables 
This text deals with two types of basic variables: Numeric and character variables. A numeric variable consists 
entirely of numbers; it contains no letters. For example, all of your variables from the preceding dataset were 
numeric variables: Q1 could assume only the values of 1, 2, 3, 4, or 5. Similarly, AGE could take on only 
numeric values. On the other hand, a character variable may consist of either numbers or alphabetic characters 
(letters), or both.   

Remember that responses to the seven questions of the Volunteerism Survey are entered in columns 1 to 7 in 
this dataset, AGE is entered in columns 9 to 10, IQ is entered in columns 12 to 14, and participants’ 
identification numbers are in columns 16 to 17.  
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You could include the sex of each participant and create a new variable called SEX that codes the sex of each 
participant. If a participant is male, SEX would assume the value “M.” If a participant is female, SEX would 
assume the value “F.” (If neither apply, SEX could be coded as “O” for other.) In the following, the new SEX 
variable appears in column 19 (the last column): 

2234243 22  98  1 M 
3424325 20 105  2 M 
3242424 32  90  3 F 
3242323  9 119  4 F 
3232143  8 101  5 F 
3242242 24 104  6 M 
4343525 16 110  7 F 
3232324 12  95  8 M 
1322424 41  85  9 M 
5433224 19 107 10 F 

You can see that participants 1 and 2 are males whereas participants 3, 4, and 5 are females, and so forth. 

IMPORTANT: You must use a special command within the INPUT statement to input a character variable. 
Specifically, in the column width region for the character variable, precede the column width with a dollar sign 
(“$”). For the preceding dataset, you would use the following INPUT statement. Note the dollar sign in the 
column width region for the SEX variable: 

INPUT   #1   @1   Q1-Q7    1. 
             @9   AGE      2. 
             @12  IQ       3. 
             @16  NUMBER   2.   
             @19  SEX     $1.  ; 

Using Multiple Lines of Data for Each Participant 
Very often a researcher obtains so much data from each participant that it is impractical to enter all data on just 
one line. For example, imagine that you administer a 100-item questionnaire to a sample, and that you plan to 
enter responses to question 1 in column 1, responses to question 2 in column 2, and so forth. Following this 
process, you are likely to run into difficulty because you will need 100 columns to enter all responses from each 
participant. If you continue this way, your data may wrap around or appear in some way that makes it difficult 
to verify that you are entering a given value in the correct column.   

In situations in which you require a very large number of columns for your data, it is often best to divide each 
participant’s data so that they appear on more than one line. In other words, it is often best to have multiple 
lines of data for each participant. To do this, it is necessary to modify your INPUT statement. 

To illustrate, assume that you obtained three additional variables for each participant in your study: Their SAT 
critical reading, writing, and mathematics test scores. You decide to enter your data so that there are two lines of 
data for each participant. On line 1 for a given participant, you enter Q1 through Q7, AGE, IQ, NUMBER, and 
SEX (as above). On line 2 for that participant, you enter SATREAD (critical reading) in columns 1 through 3, 
SATWRITE (writing) in columns 5 through 7, and SATMATH (mathematics) in columns 9 through 11: 
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2234243 22  98  1 M 
520 490 465 
3424325 20 105  2 M 
440 410 460 
3242424 32  90  3 F 
390 420 410 
3242323  9 119  4 F 

3232143  8 101  5 F 

3242242 24 104  6 M 
330 340 375 
4343525 16 110  7 F 

3232324 12  95  8 M 

1322424 41  85  9 M 
380 410 400 
5433224 19 107 10 F 
640 590 625 

SATREAD score for participant 1 is 520, SATWRITE is 490, and the SATMATH score is 465. 

IMPORTANT: When a given participant has no data for a variable that would normally appear on a given, 
your dataset must still include a line for that participant, even if it is blank. For example, participant 4 is only 9 
years old, so she has not yet taken the SAT Reasoning Test, and obviously has no scores. Nonetheless, you still 
had to include a second line for participant 4 even though it was blank. Notice that blank lines also appear for 
participants 5, 7, and 8, who were also too young to take the SAT Reasoning Test.   

The following coding guide tells us where each variable appears. Notice that this guide indicates the line on 
which a variable is located, as well as the column where it is located. 

 Variable 
Line Column Name  Explanation 
1 1–7 Q1–Q7 Survey questions 1–7 
 8 blank  
 9–10 AGE Participant’s age in years 
 11 blank  
 12–14 IQ Participant’s IQ score 
 15 blank  
 16–17 NUMBER Participant’s number 
 18 Blank  
 19 SEX Participant’s sex 
2 1–3 SATREAD Critical Reading test score 
 5–7 SATWRITE Writing test score 
 9–11 SATMATH Mathematics test score 

 
IMPORTANT:  When there are multiple lines of data for each participant, the INPUT statement must indicate 
on which line a given variable is located. This is done with the line number command (“#”) that was described 
earlier. You could use the following INPUT statement to read the preceding dataset:   
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input   #1   @1   Q1-Q7        1. 
             @9   AGE          2. 
             @12  IQ           3. 
             @16  NUMBER       2.   
             @19  SEX         $1.   
        #2   @1   SATREAD      3. 
             @5   SATWRITE     3.   
             @9   SATMATH      3. ; 

This INPUT statement tells SAS to begin at line #1 for a given participant and to go to column 1 and find 
variables Q1 through Q7. It also tells SAS where it will find each of the other variables located on line #1. After 
reading the SEX variable, SAS is told to move on to line #2. There, it is to go to column 1 and find the variable 
SATREAD that is three columns wide, SATWRITE begins in column 5 and is three columns wide, and 
SATMATH begins in column 9 and is also three columns wide. In theory, it is possible to have any number of 
lines of data for each participant so long as you use the line number command correctly.   

Creating Decimal Places for Numeric Variables 
Assume that you have obtained high school grade point averages (GPAs) for a sample of five participants. You 
could create a SAS dataset containing these GPAs using the following program: 

data D1; 
   input   #1   @1   GPA   4.  ; 
datalines; 
3.56 
2.20 
2.11 
3.25 
4.00 
; 
run; 

proc means   data=D1; 
run; 

The INPUT statement tells SAS to go to line 1, column 1, to find a variable called GPA that is four columns 
wide. Within the dataset itself, values of GPA were entered using a period as a decimal point, with two digits to 
the right of the decimal point. 

This same dataset could have been entered in a slightly different way. For example, what if the data had been 
entered without a decimal point, as follows? 

356 
220 
211 
325 
400 

It is still possible to have SAS insert a decimal point where it belongs, in front of the last two digits in each 
number. You do this in the column width command of the INPUT statement. With this column width command, 
you indicate how many columns the variable occupies, enter a period, and then indicate how many columns of 
data should appear to the right of the decimal place. In the present example, the GPA variable was three 
columns wide, and two columns of data should have appeared to the right of the decimal place. So you would 
modify the SAS program in the following way. Notice the column width command: 
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data D1; 
   input   #1   @1   GPA   3.2  ; 
datalines; 
356 
220 
211 
325 
400 
; 
run; 

proc means   data=D1; 
run; 

Inputting “Check All That Apply” Questions as Multiple Variables 
A “check all that apply” question is a special type of questionnaire item that is often used in social science 
research. These items generate data that must be input in a special way. The following is an example of a 
“check all that apply” item that could have appeared on your volunteerism survey: 

Below is a list of activities. Please place a check mark next to each activity in which you have engaged over 
the past six months. 

Check [√] below 

----- 

_____ 1.  Did volunteer work at a shelter for the homeless. 

_____ 2.  Did volunteer work at a shelter for battered women. 

_____ 3.  Did volunteer work at a hospital or hospice. 

_____ 4.  Did volunteer work for any other community agency or organization. 

_____ 5.  Donated money to the United Way. 

_____ 6.  Donated money to a congregation-affiliated charity. 

_____ 7.  Donated money to any other charitable cause. 

The novice researcher might think of the preceding as a single question with seven possible responses and try to 
enter the data in a single column in the dataset (say, in column 1). But this would lead to big problems. What 
would you enter in column 1 if a participant checked more than one category? 

One way out of this difficulty is to treat the seven possible responses above as seven different questions. Once 
entered, each of these questions will be treated as a separate variable and will appear in a separate column. For 
example, whether or not a participant checked activity 1 may be coded in column 1, whether the participant 
checked activity 2 may be coded in column 2, and so forth.   

Researchers may code these variables by placing any values they like in these columns, but you should enter a 
two (“2”) if the participant did not check that activity and a one (“1”) if the participant did check it. Why code 
the variables using ones and twos? The reason is that this makes it easier to perform some types of analyses that 
you may later wish to perform. A variable that may assume only two values is called a dichotomous variable, 
and the process of coding dichotomous variables with ones and twos is known as dummy coding. With dummy 
coding, we recommend that you not use zeros to avoid the possibility that these might be confused with missing 
values.   
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Once a dichotomous variable has been dummy coded, it can be analyzed using a variety of SAS procedures 
such as PROC REG to perform multiple regression analysis, a procedure that allows one to assess the nature of 
the relationship between a single criterion variable and multiple predictor variables. If a dichotomous variable 
has been dummy-coded properly, it can be used as a predictor variable in a multiple regression analysis. For 
these and other reasons, it is good practice to code dichotomous variables using ones and twos. 

The following coding guide summarizes how you could enter responses to the preceding question: 

Variable 
Line Column Name Explanation 
1 1–7 ACT1–

ACT7 
Responses regarding activities 1 through 7. For each activity, a 2 was 
recorded if the participant did not check the activity, and a 1 was recorded if 
the participant did check the activity. 

 
When participants have responded to a “check all that apply” item, it is often best to analyze the data using the 
FREQ (frequency) procedure. PROC FREQ indicates the actual numbers that appear in each category. In this 
case, PROC FREQ will indicate the number of people who did not check a given activity versus the number 
who did. It also indicates the percentage of people who appear in each category, along with some additional 
information.   

The following program inputs some fictitious data and requests frequency tables for each activity using PROC 
FREQ: 

     data D1; 
          input   #1   @1   ACT1-ACT7   1.  ; 
    
     datalines; 
❶   2212222 
❷   1211111 
     2221221 
     2212222 
     1122222 
     ; 
     run; 
   
     proc freq    data=D1; 
     run;  

Data for the first participant appears on line ❶ of the program. Notice that a 1 is entered in column 3 for this 
participant, indicating that she did perform activity 3 (“did volunteer work at a hospital or hospice”) and that 2s 
are recorded for the remaining 6 activities, meaning that the participant did not perform those activities. The 
data entered for participant 2 on line ❷ shows that this participant performed all of the activities except for 
activity 2. 

Inputting a Correlation or Covariance Matrix 
There are times when, for reasons of either necessity or convenience, you may choose to analyze a correlation 
matrix or covariance matrix rather than raw data (e.g., very large datasets). SAS allows you to enter such a 
matrix as data, and some (but not all) SAS procedures may then be used to analyze the dataset. For example, a 
correlation or covariance matrix can be analyzed using PROC REG, PROC FACTOR, or PROC CALIS, as well 
as some other procedures. 

Inputting a Correlation Matrix 
This type of data input is sometimes necessary when a researcher obtains a correlation matrix from an earlier 
study (e.g., from an article published in a research journal) and wishes to perform further analyses on the data. 
You could input the published correlation matrix as a dataset and analyze it in the same way you would analyze 
raw data.   
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For example, imagine that you have read an article that tested a social psychology theory called the investment 
model (Rusbult, 1980). The investment model identifies a number of variables that are believed to influence a 
person’s satisfaction with, and commitment to, a romantic relationship (Le and Agnew, 2003). The following 
are short definitions for the variables that constitute the investment model: 

Commitment 
the person’s intention to remain in the relationship; 

Satisfaction 
the person’s affective (emotional) response to the relationship; 

Rewards 
the number of good things or benefits associated with the relationship; 

Costs 
the number of bad things or hardships associated with the relationship; 

Investment size 
the amount of time, energy, and personal resources put into the relationship; 

Alternative value 
the attractiveness of alternatives to the relationship (e.g., attractiveness of alternate romantic partners). 

One interpretation of the investment model predicts that commitment to a relationship is determined by 
satisfaction, investment size, and alternative value, while satisfaction with the relationship is determined by 
rewards and costs. The predicted relationships among these variables are presented in Figure A.2.1. 

Figure A.2.1:  Predicted Relationships among Investment Model Variables 

 

Assume that you have read an article that reports an investigation of the investment model and that the article 
included the (fictitious) table represented as Table A.2.1. 
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Table A.2.1 Standard Deviations and Intercorrelations for All Variables 

  Intercorrelations 
Variable SD 1 2 3 4 5 6 
1. Commitment 2.3192 1.0000      
2. Satisfaction 1.7744 .6742 1.0000     
3. Rewards 1.2525 .5501 .6721 1.0000    
4. Costs 1.4086 -.3499 -.5717 -.4405 1.0000   
5. Investments 1.5575 .6444 .5234 .5346 -.1854 1.0000  
6. Alternatives 1.8701 -.6929 -.4952 -.4061 .3525 -.3934 1.0000 

Note:  N = 240. 

Supplied with this information, you may now create a SAS dataset that includes just these correlation 
coefficients and standard deviations. Here are the necessary data input statements:   

data D1(TYPE=CORR) ; 
  input _type_ $ _name_ $ V1-V6 ; 
label 
     V1 ='COMMITMENT' 
     V2 ='SATISFACTION' 
     V3 ='REWARDS' 
     V4 ='COSTS' 
     V5 ='INVESTMENTS' 
     V6 ='ALTERNATIVES' ; 
datalines; 
n      .    240     240     240     240     240     240 
std    .  2.3192  1.7744  1.2525  1.4086  1.5575  1.8701 
corr  V1  1.0000   .       .       .       .       . 
corr  V2   .6742  1.0000   .       .       .       . 
corr  V3   .5501   .6721  1.0000   .       .       . 
corr  V4  -.3499  -.5717  -.4405  1.0000   .       . 
corr  V5   .6444   .5234   .5346  -.1854  1.0000   . 
corr  V6  -.6929  -.4952  -.4061   .3525  -.3934  1.0000 
; 
run; 

The following shows the general form for this DATA step in which six variables are to be analyzed. The 
program would, of course, be modified if the analysis involved a different number of variables. 

data dataset-name(type=corr) ; 
 input _type_ $ _name_ $ variable-list ; 
label 
     V1 ='long-name' 
     V2 ='long-name' 
     V3 ='long-name' 
     V4 ='long-name' 
     V5 ='long-name'   
     V6 ='long-name' ;    
datalines; 
n      .    n       n       n       n       n       n    
std    .    std     std     std     std     std     std   
corr  V1  1.0000   .       .       .       .       . 
corr  V2    r     1.0000   .       .       .       . 
corr  V3    r       r     1.0000   .       .       . 
corr  V4    r       r       r     1.0000   .       . 
corr  V5    r       r       r       r     1.0000   . 
corr  V6    r       r       r       r       r     1.0000 
; 
run; 
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where: 

variable-list =  List of variables (e.g., V1, V2,); 

long-name =  Full name for the given variable. This will be used to label the variable when it appears in 
the SAS output. If this is not desired, you can omit the entire label statement; 

n =  Number of observations contributing to the correlation matrix. Each correlation in this 
matrix should be based on the same observations and hence the same number of 
observations; 

std =  Standard deviation obtained for each variable. These standard deviations are needed if 
you are performing an analysis on the correlation matrix so that SAS can convert the 
correlation matrix into a variance-covariance matrix. Instead, if you wish to perform an 
analysis on a variance-covariance matrix, then standard deviations are not required; 

r =   Correlation coefficients between pairs of variables. 

The observations that appear in the preceding program are easiest to understand if you think of the observations 
as a matrix with eight rows and eight columns. The first column in this matrix (running vertically) contains the 
_type_ variable (notice that the INPUT statement tells SAS that the first variable it will read is a character 
variable named “_type_”). If an “N” appears as a value in this _type_ column, then SAS knows that sample 
sizes will appear on that line.  If “std” appears as a value in the _type_ column, then the system knows that 
standard deviations will appear on that line. Finally, if “CORR” appears as a value in the _type_ column, then 
SAS knows that correlation coefficients will appear on that line. 

The second column in this matrix contains short names for the observed variables. These names should appear 
only on the CORR lines. Periods (for missing data) should appear where the n and std lines intersect with this 
column (i.e., above the diagonal). 

Looking at the matrix from the other direction, you see eight rows running horizontally. The first row is the n 
row (or “line”) that should contain:  

• the n symbol; 

• a period for the missing variable name; 

• the sample sizes for the variables, each separated by at least one blank space. 

The preceding program shows that the sample size was 240 for each variable. 

The std row (or line) should contain: 

• the std symbol;  

• the period for the missing variable name; 

• the standard deviations for the variables, each separated by at least one blank space. If the std line is 
omitted, the analysis can only be performed on covariances, not correlation coefficients. 

Finally, where rows 3 to 8 intersect with columns 3 to 8, the correlation coefficients should appear. These 
coefficients appear below the diagonal, ones should appear on the diagonal (i.e., the correlation coefficient of a 
number with itself is always equal to 1.0), and periods appear above the diagonal (where redundant correlation 
coefficients would again appear if this were a full matrix). Be very careful in entering these correlations; one 
missing period can cause an error in reading the data. 

You can see that the columns of data in this matrix are aligned in an organized fashion. Technically, neatness 
was not really required as this INPUT statement is in free format. You should try to be equally organized when 
preparing your matrix as this will minimize the chance of leaving out an entry and causing an error. 
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Inputting a Covariance Matrix 
The procedure for inputting a covariance matrix is very similar to that used with a correlation matrix. An 
example is presented here: 

data D1(type=cov) ; 
  input _type_ $ _name_ $ V1-V6 ; 
label 
     V1 ='COMMITMENT' 
     V2 ='SATISFACTION' 
     V3 ='REWARDS' 
     V4 ='COSTS' 
     V5 ='INVESTMENTS' 
     V6 ='ALTERNATIVES' ; 
datalines; 
n      .    240     240     240     240     240     240 
cov   V1 11.1284   .       .       .       .       . 
cov   V2  5.6742  9.0054   .       .       .       . 
cov   V3  4.5501  3.6721  6.8773   .       .       . 
cov   V4 -3.3499 -5.5717 -2.4405 10.9936   .       . 
cov   V5  7.6444  2.5234  3.5346 -4.1854  7.1185   . 
cov   V6 -8.6329 -3.4952 -6.4061  4.3525 -5.3934  9.2144 
; 
run; 

Notice that the data statement now specifies type=COV rather than type=CORR. The line providing standard 
deviations is no longer needed and has been removed. The matrix itself now provides variances on the diagonal 
and covariances below the diagonal; the beginning of each line now specifies COV to indicate that this is a 
covariance matrix. The remaining sections are identical to those used to input a correlation matrix.  

Inputting Data Using the INFILE Statement Rather Than the DATALINES 
Statement 

When working with very large datasets, it may be more convenient to input data using the INFILE statement 
rather than the DATALINES statement. This involves:  

• adding an INFILE statement to your program; 

• placing your data lines in a second computer file, rather than in the same file that contains your SAS 
program; 

• deleting the DATALINES statement from your SAS program. 

Your INFILE statement should appear after the data statement but before the INPUT statement. The general 
form for a SAS program using the INFILE statement is as follows: 

data dataset-name; 
   infile  ‘name-of-data-file’ ; 
   input  #line-number   @column-number   variable-name  column-width. 
                         @column-number   variable-name  column-width. 
                         @column-number   variable-name  column-width. ; 

proc name-of-desired-statistical-procedure     data=dataset-name; 
run; 

Notice that the above is identical to the general form for a SAS program presented earlier except that an INFILE 
statement has been added and the DATALINES statement and data lines have been deleted. 
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To illustrate the use of the INFILE statement, consider Dr. Lafleur’s volunteerism study. The dataset itself is 
reproduced here: 

2234243 22  98  1 M 
3424325 20 105  2 M 
3242424 32  90  3 F 
3242323  9 119  4 F 
3232143  8 101  5 F 
3242242 24 104  6 M 
4343525 16 110  7 F 
3232324 12  95  8 M 
1322424 41  85  9 M 
5433224 19 107 10 F 

If you were to input these data using the INFILE statement, you would enter the data in a separate computer 
file, giving it any name you like. Assume, in this case, that the preceding data file is named “volunteer.dat.” 

Note:  You must enter these data lines beginning on line 1 of the computer file; do not leave any blank lines at 
the top of the file. Similarly, there should be no blank lines at the end of the file (unless a blank line is 
appropriate because of missing data for the last participant). 

Once the data are entered and saved in the file called volunteer.dat, you could enter the SAS program itself in a 
separate file. Perhaps you would give this file a name such as survey.sas. A SAS program which would input 
the preceding data and calculate means for the variables appears here: 

data D1; 
  infile ’A:/volunteer.dat’; 
  input   #1   @1   Q1-Q7   1. 
               @9   AGE     2. 
               @12  IQ      3. 
               @16  NUMBER  2. 
               @19  SEX    $1.  ; 

proc means   data=D1; 
run; 

Conclusion 
The material presented in this appendix has prepared you to input most types of data commonly encountered in 
social science research. Even when the data have been entered successfully, however, they are not necessarily 
ready to be analyzed. Perhaps you have entered raw data, and need to transform the data in some way before 
they can be analyzed. This is often the case with questionnaire data, as responses to multiple questions are often 
summed or averaged to create new variables to be analyzed. Or perhaps you have data from a large, 
heterogeneous sample and you wish to perform analyses on only a subgroup of that sample (such as the female, 
but not the male, respondents). In these situations, some form of data manipulation or data subsetting is 
requited and the following appendix shows how to do this. 
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Introduction: Manipulating, Subsetting, Concatenating, and Merging Data 
Often, researchers obtain a dataset in which the data are not yet in a form appropriate for analyses. For example, 
imagine that you are conducting research on job satisfaction. Perhaps you wish to compute the correlation 
between participant age and an index of job satisfaction. You administer a 10-item questionnaire to 200 
employees to assess job satisfaction, and you enter their responses to the 10 individual questionnaire items. You 
now need to add together each participant’s responses to those 10 items to arrive at a single composite score  
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that reflects that participant’s overall level of satisfaction. This computation is easy to perform by including a 
number of data-manipulation statements in the SAS program. Data-manipulation statements are SAS 
statements that transform the data in some way. They may be used to recode negatively keyed variables, create 
new variables from existing variables, and perform a wide range of possible tasks. 

At the same time, your original dataset may contain observations that you do not wish to include in your 
analyses. Perhaps you administered the questionnaire to hourly as well as salaried employees, and you wish to 
only analyze data from the former. In addition, you may wish to analyze data only from participants who have 
usable data on all of the study’s variables. In these situations, you may include data-subsetting statements to set 
aside unwanted responses from the sample. Data-subsetting statements are SAS statements that eliminate 
unwanted observations from a sample so that only a specified subgroup is included in the resulting dataset. 

In other situations, it may be necessary to concatenate or merge datasets before you can perform the analyses 
you desire. When you concatenate datasets, you combine two previously existing datasets that contain data on 
the same variables but from different participants. The resulting concatenated dataset contains aggregate data 
from all participants. In contrast, when you merge datasets, you combine two datasets that involve the same 
participants but contain different variables. For example, assume that dataset D1 contains variables V1 and V2, 
while dataset D2 contains variables V3 and V4. Assume further that both datasets have a variable called ID 
(identification number) that will be used to merge data from the same participants. Once D1 and D2 have been 
merged, the resulting dataset (D3) contains V1, V2, V3, and V4 as well as ID. 

The SAS programming language is so comprehensive and flexible that it can perform virtually any type of 
manipulation, subsetting, concatenating, or merging task. A complete treatment of these capabilities would 
easily fill a book. This appendix reviews some basic statements that can be used to solve a wide variety of 
problems that are commonly encountered in social science research, particularly in research that involves the 
analysis of questionnaire data. 

Placement of Data-Manipulation and Data-Subsetting Statements  
The use of data-manipulation and data-subsetting statements is illustrated here with reference to the fictitious 
study described in the preceding appendix. In that appendix, you were asked to imagine that you had developed 
a 7-item questionnaire dealing with volunteerism, as shown in the following example. 
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Volunteerism Survey 

Please indicate the extent to which you agree or disagree with each of the following statements by circling the 
appropriate number to the left of each. The following format shows what each response alternative represents: 

5 = Agree Strongly 

4 = Agree Somewhat 

3 = Neither Agree nor Disagree 

2 = Disagree Somewhat 

1 = Disagree Strongly 

For example, if you “Disagree Strongly” with the first question, circle the “1” to the left of that statement. If 
you “Agree Somewhat,” circle the “4,” and so on. 

------------- 

Circle Your Response 

------------- 

1  2  3  4  5     1. I feel a personal responsibility to help needy people in my community. 

1  2  3  4  5     2. I feel I am personally obligated to help homeless families. 

1  2  3  4  5     3. I feel no personal responsibility to work with poor people in my community. 

1  2  3  4  5     4. Most of the people in my community are willing to help the needy. 

1  2  3  4  5     5. A lot of people around here are willing to help homeless families. 

1  2  3  4  5     6. The people in my community feel no personal responsibility to work with poor people. 

1  2  3  4  5     7. Everyone should feel the responsibility to perform volunteer work in his/her community. 

What is your age in years? _______________ 

Assume that you administer this survey to a number of participants and you also obtain information concerning 
sex, IQ scores, and SAT critical reading, writing, and mathematics test scores for each participant. Once the 
data are entered, you may wish to write a SAS program that includes some data-manipulation or data-subsetting 
statements to transform the raw data. But where within the SAS program should these statements appear?   

In general, these statements should only appear within the DATA step. Remember that the DATA step begins 
with the data statement and ends as soon as SAS encounters a procedure or PROC statement. This means that if 
you prepare the DATA step, end the DATA step with a procedure, and then place some manipulation or 
subsetting statements immediately after the procedure, you will receive an error message. 
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To avoid this error (and keep things simple), place your data-manipulation and data-subsetting statements in one 
of two locations within a SAS program: 

• immediately following the INPUT statement;  

• immediately following the creation of a new dataset. 

Immediately Following the INPUT Statement 
The first of the two preceding guidelines indicates that the statements may be placed immediately following the 
INPUT statement. This guideline is illustrated again by referring to the volunteerism study. Assume that you 
prepare the following SAS program to analyze data obtained in your study. In the following program, lines ❶ 
and ❷ indicate where you can place data-manipulation or data-subsetting statements. (To conserve space, only 
some of the data lines are presented in this example.) 

data D1; 
   input   #1   @1    Q1-Q7        1. 
                @9    AGE          2. 
                @12   IQ           3. 
                @16   NUMBER       2. 
                @19   SEX         $1. 
           #2   @1    SATREAD      3. 
                @5    SATWRITE     3.   
                @9    SATMATH      3.  ; 

❶ place data-manipulation statements and 
❷ data-subsetting statements here 

datalines; 
2234243 22  98  1 M 
520 490 465 
3424325 20 105  2 M 
440 410 460 
. 
. 
5433224 19 107 10 F 
640 590 625 
; 
run; 

proc means  data=D1; 
run; 

Immediately after Creating a New Dataset 
The second option for placement of data-manipulation or data-subsetting statements is immediately following 
program statements that create a new dataset. A new dataset may be created at virtually any point in a SAS 
program (even after procedures have been requested).   

At times, you may want to create a new dataset so that, initially, it is identical to an existing dataset (perhaps the 
one created with a preceding INPUT statement). If data-manipulation or data-subsetting statements follow the 
creation of this new dataset, the new set displays the modifications requested by those statements. 

To create a new dataset that is identical to an existing dataset, the general form is: 

data  new-dataset-name; 
   set  existing-dataset-name; 
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To create such a dataset, use the following statements: 

data D2; 
   set D1; 

These lines tell SAS to create a new dataset called D2 and to make this new dataset identical to D1. Now that a 
new dataset has been created, you are free to write as many manipulation and subsetting statements as you like. 
Once you write a procedure, however, that effectively ends the DATA step and you cannot write any more 
manipulation or subsetting statements beyond that point unless you create another dataset later in the program. 

The following is an example of how you might write your program so that the manipulation and subsetting 
statements follow the creation of the new dataset: 

data D1; 
   input   #1   @1    Q1-Q7        1. 
                @9    AGE          2. 
                @12   IQ           3. 
                @16   NUMBER       2. 
                @19   SEX         $1. 
           #2   @1    SATREAD      3. 
                @5    SATWRITE     3.   
                @9    SATMATH      3.  ; 
datalines; 
2234243 22  98  1 M 
520 490 465 
3424325 20 105  2 M 
440 410 460 
. 
. 

5433224 19 107 10 F 
640 590 625 
; 
run; 

data D2; 
   set D1; 
 
place data manipulation statements and 
data subsetting statements here 

❸   proc means  DATA=D2; 
run; 

SAS creates two datasets according to the preceding program: D1 contains the original data; and D2 is identical 
to D1 except for modifications requested by the data-manipulation and data-subsetting statements.   

Notice that the MEANS procedure on line ❸ requests the computation of simple descriptive statistics. It is clear 
that these statistics are performed on the data from dataset D2 because data=D2 appears in the PROC MEANS 
statement. If the statement, instead, specified data=D1, the analyses would have been performed on the original 
dataset.  

The INFILE Statement versus the DATALINES Statement 
The preceding program illustrates the use of the DATALINES statement rather than the INFILE statement. The 
guidelines regarding the placement of data-modifying statements are the same regardless of which approach is 
followed. The data-manipulation or data-subsetting statement should either immediately follow the INPUT 
statement or the creation of a new dataset. When a program is written using the INFILE statement rather than 
the DATALINES statement, data-manipulation and data-subsetting statements should appear after the INPUT 
statement but before the first procedure. For example, if your data are entered into an external file called 
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volunteer.dat, you can write the following program. (Notice where the manipulation and subsetting statements 
are placed.) 

data D1; 
   infile ’A:/volunteer.data’; 
   input   #1   @1    Q1-Q7        1. 
                @9    AGE          2. 
                @12   IQ           3. 
                @16   NUMBER       2. 
                @19   SEX         $1. 
           #2   @1    SATREAD      3. 
                @5    SATWRITE     3.   
                @9    SATMATH      3.  ; 

   place data manipulation statements and 
   data subsetting statements here 

   proc means   data=D1; 
   run; 

In the preceding program, the data-modifying statements again come immediately after the INPUT statement 
but before the first procedure, consistent with earlier recommendations. 

Data Manipulation 
Data manipulation involves performing some type of transformation on one or more variables in the DATA 
step. This section discusses several types of transformations that are frequently required in social science 
research. These include creation of duplicate variables with new variable names, creation of new variables from 
existing variables, recoding reversed or negatively-keyed items, and using IF-THEN statements as well as with 
other related procedures.   

Creating Duplicate Variables with New Variable Names 
Suppose that you give a variable a certain name when it is inputted, but then you want the variable to have a 
different, perhaps more meaningful, name, when it appears later in the SAS program or in the SAS output. This 
can easily be accomplished with a statement written according to the following general form: 

new-variable-name  =  existing-variable-name; 

For example, in the preceding dataset, the first 7 questions are given variables names of Q1 through Q7. Item 1 
in the questionnaire reads, “I feel a personal responsibility to help needy people in my community.” In the 
INPUT statement, this item was given a SAS variable name of Q1, which is not very meaningful. RESNEEDY, 
which stands for “responsible for the needy,” is a more meaningful name. Similarly, RESHOME is more 
meaningful than Q2, and NORES is more meaningful than Q3. 

One way to rename an existing variable is to create a new variable that is identical to the existing variable and 
assign a new, more meaningful name to this new variable. The following program renames Q1, Q2, and Q3 in 
this way.  

Note: This and later examples show only a portion of the entire program. However, enough of the program 
appears to illustrate where the remaining statements should be placed. 
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. 

. 

5433224 19 107 10 F 
640 590 625 
; 
run; 

data D2; 
  set D1; 

❶  RESNEEDY = Q1; 
RESHOME  = Q2;                      
NORES    = Q3; 

proc means   data=D2; 
run; 

Line ❶ tells SAS to create a new variable called RESNEEDY and for it to be identical to the existing variable, 
Q1. Variables RESNEEDY and Q1 now have identical data, but RESNEEDY has a more meaningful name to 
facilitate the reading of printouts when statistical analyses are later performed. 

Note: When creating a new variable name, conform to the rules for naming SAS variables discussed in 
Appendix A.2 (e.g., begins with a letter). Also, note that each statement that creates a duplicate of an existing 
variable must end with a semicolon. 

Duplicating Variables versus Renaming Variables 
Technically, the previous program did not really rename variables Q1, Q2, and Q3. Rather, the program created 
duplicates of these variables and assigned new names to these duplicate variables. Therefore, the resulting 
dataset contains both the original variables under their old names (Q1, Q2, and Q3) as well as the duplicate 
variables under their new names (RESNEEDY, RESHOME, and NORES). If, for some reason, you want to 
rename the existing variables so that the old variable names no longer exist in the dataset, you can use the 
rename statement.  

Creating New Variables from Existing Variables 
It is often necessary to perform mathematical operations on existing variables and use the results to create a new 
variable. With SAS, the following symbols are used in arithmetic operations: 

     +   (addition) 

     -    (subtraction) 

     *   (multiplication) 

     /    (division) 

     =   (equals) 

When writing formulae, you should make extensive use of parentheses. Remember that operations enclosed 
within parentheses are performed first; operations outside of the parentheses are performed later. To create a 
new variable by performing a mathematical operation on an existing variable, use the following general form: 

new-variable-name  =  formula-including-existing-variables; 

For example, three existing variables in your dataset are SATREAD (critical reading test scores), SATWRITE 
(writing test scores), and SATMATH (math test scores). Suppose you wanted to create a new variable called 
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SATCOMB; this variable includes each participant’s combined SAT score. For each participant, you need to 
add together SATREAD, SATWRITE, and SATMATH scores. The program repeats this operation for each 
participant in the sample, using just one statement: 

SATCOMB = (SATREAD + SATWRITE + SATMATH); 

The preceding statement tells SAS to create a new variable called SATCOMB and set it equal to the sum of 
SATREAD, SATWRITE, and SATMATH.  

Suppose you wanted to calculate the average of SATREAD, SATWRITE, and SATMATH scores. The new 
variable might be called SATAVG. The program repeats this operation for each participant in the sample using 
the following statement: 

SATAVG = (SATREAD + SATWRITE + SATMATH) / 3; 

The preceding statement tells SAS to create a new variable called SATAVG by adding together the values of 
SATREAD, SATWRITE, and SATMATH, then dividing this sum by 3. The resulting quotient is labeled 
SATAVG. You can also arrive at the same result by using two statements instead of one, as shown here: 

SATCOMB = (SATREAD + SATWRITE + SATMATH); 
SATAVG  = SATCOMB/3; 

Often, researchers need to calculate the average of several items on a questionnaire. For example, look at items 
1 and 2 in the questionnaire shown previously. Both items seem to be measuring participants’ sense of personal 
responsibility to help the needy.   

Rather than analyze responses to the items separately, it may be more useful to calculate the average of 
responses to those items. This average could then serve as participants’ scores on some “personal 
responsibility” variable. For example, consider the following: 

RESPONSE = (Q1 + Q2) / 2; 

The preceding statement tells SAS to create a new variable called RESPONSE by adding together participants’ 
scores for Q1 and Q2, then dividing the resulting sum by 2. The resulting quotient creates the new RESPONSE 
variable. 

Note: When creating new variables in this manner, be sure that all variables on the right side of the equals sign 
are existing variables. This means that they already exist in the dataset, either because they are listed in the 
INPUT statement or because they were created with earlier data-manipulation statements. 

Priority of Operators in Compound Expressions 
A SAS expression (e.g., a formula) that contains just one operator is known as a simple expression. The 
following statement contains a simple expression. Notice that there is only one operator (+ sign) to the right of 
the = sign: 

RESPONSE = Q1 + Q2; 

In contrast, a compound expression contains more than one operator. A compound expression is illustrated in 
the following example. Notice that several different operators appear to the right of the = sign: 

RESPONS = Q1 + Q2 - Q3 / Q4 * Q5;   

When an expression contains more than one operator, SAS follows a set of rules that determine which 
operations are performed first, which are performed second, and so forth. The rules that pertain to mathematical 
operators (+, -, /, and *) are summarized here: 
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• multiplication and division operators (* and /) have equal priority, and they are performed first; 

• addition and subtraction operators (+ and -) have equal priority, and they are performed second. 

One point made in the preceding rules is that multiplication and division are performed prior to addition or 
subtraction. For example, consider the following statement: 

RESPONS = Q1 + Q2 / Q3; 

Since division has priority over addition, the operations in the preceding statement would be executed in this 
sequence:   

• Q2 would first be divided by Q3; 

• the resulting quotient would then be added to Q1.   

Notice that division is performed first, even though the addition appears earlier in the formula (reading from left 
to right). 

But what if multiple operators having equal priority appear in the same statement? In this situation, SAS reads 
the formula from left to right, and performs the operations in that sequence. For example, consider the 
following: 

RESPONS = Q1 + Q2 - Q3; 

The preceding expression contains only addition and subtraction: Operations that have equal priority. SAS 
therefore reads the statement from left to right: First Q1 is added to Q2; then Q3 is subtracted from the resulting 
sum. 

Because different priority is given to different operators, it is all too easy to write a statement that results in 
operations being performed in some sequence other than that intended. For example, imagine that you want to 
create a new variable called RESPONSE. Each participant’s score for RESPONSE is created by adding 
responses to Q1, Q2, and Q3 and by dividing this sum by 3. Imagine further that you attempt to achieve this 
with the following statement: 

RESPONSE = Q1 + Q2 + Q3 / 3; 

The preceding statement will not create the RESPONSE variable as you had intended. Because division has 
priority over addition, SAS performs the operations in the following order:  

1. Q3 is divided by 3; 
2. the resulting quotient is then added to Q1 and Q2.   

Obviously, this is not what you intended. 

To avoid such mistakes, it is important to use parentheses when writing formulae. Because operations that are 
included inside parentheses are performed first, the use of parentheses gives you control over the sequence in 
which operations are executed. For example, the following statement creates the RESPONSE variable in the 
way originally intended because the lower priority operations (adding together Q1 plus Q2 plus Q3) are now 
included within parentheses: 

RESPONSE = (Q1 + Q2 + Q3) / 3; 

This statement tells SAS to add together Q1 plus Q2 plus Q3; the sum of these operations is then divided by 3. 
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Recoding Reversed Variables 
Very often, a questionnaire contains a number of reversed items. A reversed- or negatively-keyed item is a 
question or statement written so that its meaning is the opposite of the meaning of other items in that group. For 
example, consider the meaning of the following items from the volunteerism survey: 

1  2  3  4  5     1. I feel a personal responsibility to help needy people in my community. 

1  2  3  4  5     2. I feel I am personally obligated to help homeless families. 

1  2  3  4  5     3. I feel no personal responsibility to work with poor people in my community. 

In essence, all of these questions are measuring the same thing (i.e., whether the participant feels some sense of 
personal responsibility to help the needy). Items 1 and 2 are stated so that the more strongly you agree with 
these statements, the greater your sense of personal responsibility. This means that scores of 5 indicate a strong 
sense of responsibility and scores of 1 indicate a weak sense of responsibility. Item 3, however, is a reversed or 
negatively keyed item. It is stated so that the more strongly you agree, the weaker your sense of personal 
responsibility. Here, a response of 1 indicates a strong sense of responsibility whereas a response of 5 indicates 
a weak sense of responsibility (which is just the reverse of items 1 and 2).  

For later analyses, all three items must be consistent so that scores of 5 always indicate a strong sense of 
responsibility whereas scores of 1 always indicate a weak sense of responsibility. This requires that you recode 
item 3 so that those who select 5 are instead given a score of 1; those who circle 4 are given a score of 2; those 
who select 2 are given a score of 4; and those who select 1 are given a score of 5. This can be done easily with 
the following statement: 

Q3 = 6 - Q3; 

The preceding statement tells SAS to create a new version of variable Q3, then take the number 6 and subtract 
from it the participants’ existing (old) scores for Q3. The result is a new score for Q3. Notice that with this 
statement, if an initial score for Q3 was 5, the new score becomes 1; and if the initial score was 1, the new score 
is 5. 

The general form for this recoding statement is as follows: 

existing-variable  =  constant  -  existing-variable; 

The constant is always equal to the number of response points on your survey plus 1. For example, the 
volunteerism survey included 5 response points: Participants could circle “1” for “Disagree Strongly” all the 
way through “5” for “Agree Strongly.” It was a 5-point scale, so the constant was 5 + 1 = 6. What would the 
constant be if the following 7-point scale had been used instead? 

7 = Agree Very Strongly 
6 = Agree Strongly 
5 = Agree Somewhat 
4 = Neither Agree nor Disagree 
3 = Disagree Somewhat 
2 = Disagree Strongly 
1 = Disagree Very Strongly 

It would be 8 because 7 + 1 = 8, and the recoding statement would read: 

Q3 = 8 - Q3; 
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Where should the recoding statements go?  In most cases, reversed- or negatively-keyed items should be 
recoded before other data manipulations are performed. For example, assume that you want to create a new 
variable called RESPONSE, which stands for “personal responsibility.” With this scale, higher scores indicate 
higher levels of perceived personal responsibility. Scores on this scale are the average of participant responses 
to items 1, 2, and 3 from the survey. Because item 3 is a reversed- or negatively-keyed item, it is important 
that it be recoded before it is added to items 1 and 2 when calculating the overall scale score. Therefore, the 
correct sequence of statements is as follows: 

Q3 = 6 - Q3; 

RESPONSE = (Q1 + Q2 + Q3) / 3; 

The following sequence is not correct: 

RESPONSE = (Q1 + Q2 + Q3) / 3; 

Q3 = 6 - Q3; 

Using IF-THEN Control Statements 
An IF-THEN control statement allows you to make sure that operations are performed on data only if certain 
conditions are true. The following comparison operators may be used with IF-THEN statements: 

      =   is equal to 
     ne   is not equal to 
gt or >   is greater than 
     ge   is greater than or equal to 
lt or <   is less than 
     le   is less than or equal to 

The general form for an IF-THEN statement is as follows: 

if  expression  then  statement ; 

The expression usually consists of some comparison involving existing variables. The statement usually 
involves some operation performed on existing variables or new variables. For example, assume that you want 
to create a new variable called SATCRGRP for “critical reading group.” This variable will be created so that: 

• if you do not know participants’ critical reading test scores, they will be assigned a score of “.” for 
missing data; 

• if participants’ scores are less than 500 on the critical reading test, they will be assigned a score of 1 
for SATCRGRP; 

• if the participant’s score is 500 or greater on the critical reading test, the participant will have a score 
of 2 for SATCRGRP. 

Assume that the variable SATREAD already exists in your dataset and that it contains each participant’s score 
for the SAT critical reading test. You can use it to create the new variable SATCRGRP by writing the following 
statements: 

SATCRGRP = .; 
if SATREAD lt 500 then SATCRGRP = 1; 
if SATREAD ge 500 then SATCRGRP = 2; 
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The preceding statements tell SAS to create a new variable called SATCRGRP and begin by setting everyone’s 
score equal to “.” (i.e., missing). If participants’ scores for SATREAD are less than 500, then their score for 
SATCRGRP will be equal to 1. If participants’ scores for SATREAD are greater than or equal to 500, then their 
score for SATCRGRP will be equal to 2. 

Using ELSE Statements 
In reality, you can perform the preceding operations more efficiently by using the ELSE statement. The general 
form for using the ELSE statement, in conjunction with the IF-THEN statement, is presented as follows: 

if  expression  then  statement  ; 
   else if expression  then  statement; 

The ELSE statement provides alternate actions that SAS may take when the original IF expression is not true. 
For example, consider the following: 

❶    SATCRGRP = .; 
❷    if SATREAD lt 500 then SATCRGRP = 1; 
❸    else if SATREAD ge 500 then SATCRGRP = 2; 

The preceding tells SAS to create a new variable called SATCRGRP and initially assign all participants a value 
of “missing.” If a given participant has a SATREAD score less than 500, the system assigns that participant a 
score of 1 for SATCRGRP. Otherwise, if the participant has a SATREAD score greater than or equal to 500, 
then the system assigns that participant a score of 2 for SATCRGRP. 

Obviously, the preceding statements are identical to the earlier statements that created SATCRGRP, except that 
the word else has been added to the beginning of line ❸. In fact, these two approaches actually result in 
assigning exactly the same values for SATCRGRP to each participant. So what is the advantage of including the 
ELSE statement? The answer has to do with efficiency. When an ELSE statement is included, the actions 
specified by that statement are executed only if the expression in the preceding IF statement is not true.   

For example, consider the situation in which participant 1 has a SATREAD score less than 500. Line ❷ in the 
preceding statements assigns that participant a score of 1 for SATCRGRP. SAS then ignores line ❸ (because it 
contains the ELSE statement). If line ❸ did not contain the word else, SAS would have executed the command, 
checking to see whether the SATREAD score for participant 1 is greater than or equal to 500 (which is actually 
unnecessary, given what was learned in line ❷). 

A word of caution regarding missing data is relevant at this point. Notice that line ❷ of the preceding program 
assigns participants to group 1 (under SATCRGRP) if their values for SATREAD are less than 0. 
Unfortunately, a value of “missing” (i.e., a value of “.”) for SATREAD is viewed as being less than 500 
(actually, it is viewed as being less than 0) by SAS. This means that participants with missing data for 
SATREAD are assigned to group 1 under SATCRGRP by line ❷ of the preceding program. This is not 
desirable. 

To prevent this from happening, you may rewrite the program in the following way: 

❶    SATCRGRP = .; 
❷    if SATREAD GT 0 and SATREAD lt 500 then SATCRGRP = 1; 
❸    else if SATREAD ge 500 then SATCRGRP = 2; 

Line ❷ of the program now tells SAS to assign participants to group 1 only if their values for SATREAD are 
both greater than 0 and less than 500. This modification involves the use of the conditional AND statement, 
which is discussed in greater detail in the following section. 

Finally, remember that the ELSE statement should only be used in conjunction with a preceding IF statement. 
In addition, always remember to place the ELSE statement immediately following the relevant IF statement. 
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Using the Conditional Statements AND and OR 
As the preceding section indicates, you can also use the conditional statement AND within an IF-THEN 
statement or an ELSE statement. For example, consider the following: 

SATCRGRP = .; 
if SATREAD gt 0 and SATREAD lt 500 then SATCRGRP = 1; 
else if SATREAD ge 500 then SATCRGRP = 2; 

The second statement in the preceding program tells SAS that if SATREAD is greater than 0 and less than 500, 
then a score of 1 is given to participants for the SATCRGRP variable. This means that all are given a value of 1 
only if they are both over 0 and under 500. What happens to those who have a score of 0 or less for SATREAD? 
They are given a value of “.” for SATCRGRP. That is, they are classified as having a missing value for 
SATCRGRP. This is because they (along with everyone else) were initially given a value of “.” in the first 
statement, and neither of the later statements replaces that “.” with 1 or 2. However, those with SATREAD 
scores greater than 0, one of the subsequent statements replaces “.” with either 1 or 2. 

You can also use the conditional statement OR within an IF-THEN statement or an ELSE statement. For 
example, assume that you have a variable in your dataset called ETHNIC. With this variable, participants were 
assigned the value 5 if they are Caucasian, 6 if they are African-American, or 7 if they are Asian-American. 
Assume that you now wish to create a new variable called MAJORITY. Participants will be assigned a value of 
1 for this variable if they are in the majority group (i.e., if they are Caucasians in North America), and they will 
be assigned a value of 2 for this variable if they are in a minority group (i.e., if they are either African-
Americans or Asian-Americans in North America). This variable is created with the following statements: 

MAJORITY=.; 
if ETHNIC = 5 then MAJORITY = 1; 
else if ETHNIC = 6 or ETHNIC = 7 then MAJORITY = 2; 

In the preceding statements, all participants are first assigned a value of “missing” for MAJORITY. If their 
value for ETHNIC is 5, their value for MAJORITY changes to 1 and SAS ignores the following ELSE 
statement. If their value for ETHNIC is not 5, then SAS proceeds to the ELSE statement. There, if participants’ 
value for ETHNIC is either 6 or 7, then they are assigned a value of 2 for MAJORITY. 

Working with Character Variables 
When working with character variables (i.e., variables in which the values consist of letters rather than 
numbers), you must enclose values within single quotation marks (or apostrophes) in the IF-THEN and ELSE 
statements. For example, suppose you want to create a new variable called SEXGRP. With this variable, males 
are given a score of 1 and females are given a score of 2. The variable SEX already exists in your dataset, and it 
is a character variable in which males are coded with the letter M, females are coded with the letter F, and 
others are coded as “O.” You can create the new SEXGRP variable using the following statements: 

SEXGRP = .; 
if SEX = 'M' then SEXGRP = 1; 
else if SEX = 'F' then SEXGRP = 2; 

Using the IN Operator 
The IN operator makes it easy to determine whether a given value is among a specified list of values. Because 
of this, a single IF statement including the IN operator can perform comparisons that could otherwise require a 
large number of IF statements. The general form for using the IN operator is as follows: 

if  variable  in  value-1,value-2, ...value-n  then  statement; 

Notice that each value in the preceding list must be separated by a comma. 
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For example, assume that you have a variable in your dataset called MONTH. The values assumed by this 
variable are the numbers 1 through 12. With these values, 1 represents January, 2 represents February, 3 
represents March, and so forth. Assume that these values for MONTH indicate the month in which a given 
participant was born, and that you have data for 100 participants. 

Imagine that you now wish to create a new variable called SEASON. This variable will indicate the season in 
which each participant was born. Participants are assigned values for SEASON according to the following 
guidelines:  

• participants are assigned a value of 1 for SEASON if they were born in January, February, or March 
(months 1, 2, or 3); 

• participants are assigned a value of 2 for SEASON if they were born in April, May, or June (months 4, 
5, or 6); 

• participants are assigned a value of 3 for SEASON if they were born in July, August, or September 
(months 7, 8, or 9); and 

• participants are assigned a value of 4 for SEASON if they were born in October, November, or 
December (months 10, 11, or 12). 

One way to create the new SEASON variable involves using four IF-THEN statements, as shown here: 

SEASON = .; 
if MONTH = 1  or MONTH = 2  or MONTH = 3  then SEASON = 1;  
if MONTH = 4  or MONTH = 5  or MONTH = 6  then SEASON = 2;  
if MONTH = 7  or MONTH = 8  or MONTH = 9  then SEASON = 3;  
if MONTH = 10 or MONTH = 11 or MONTH = 12 then SEASON = 4;  

However, the same results can be achieved somewhat more easily by using the IN operator within the IF-THEN 
statements, as shown here: 

SEASON = .; 
if MONTH in (1,2,3)    then SEASON = 1; 
if MONTH in (4,5,6)    then SEASON = 2; 
if MONTH in (7,8,9)    then SEASON = 3; 
if MONTH in (10,11,12) then SEASON = 4; 

In the preceding example, all variable values are numbers. However, the IN operator may also be used with 
character variables. As always, it is necessary to enclose all character variable values within apostrophes or 
single quotation marks. For example, assume that MONTH is actually a character variable that assumes values 
such as “Jan,” “Feb,” “Mar,” and so forth. Assume further that SEASON assumes the values “Winter,” Spring,” 
Summer,” and “Fall.” Under these circumstances, the preceding statements would be modified in the following 
way: 

SEASON = ’.’; 
if MONTH in (’Jan’, ’Feb’, ’Mar’) then SEASON = ’Winter’; 
if MONTH in (’Apr’, ’May’, ’Jun’) then SEASON = ’Spring’; 
if MONTH in (’Jul’, ’Aug’, ’Sep’) then SEASON = ’Summer’; 
if MONTH in (’Oct’, ’Nov’, ’Dec’) then SEASON = ’Fall’; 

Data Subsetting 

Using a Simple Subsetting Statement 
Often, it is necessary to perform an analysis on only a subset of the participants who are included in the dataset. 
For example, you may wish to review survey responses provided by just the female participants. A subsetting IF 
statement may be used to accomplish this, and the general form is presented here: 
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data  new-dataset-name; 
   set  existing-dataset-name; 
if  comparison; 

proc  name-of-desired-statistical-procedure   data=new-dataset-name; 
run; 

The comparison described in the preceding statements generally includes some existing variable and at least one 
comparison operator. The following statements allow you to calculate the mean survey responses for only the 
female participants. 

. 

. 

5433224 19 107 10 F 
640 590 625 
; 
run; 

data D2; 
   set D1; 

   if SEX = 'F'; 

proc means   data=D2; 
run; 

The preceding statements tell SAS to create a new dataset called D2 and to make it identical to D1; however, 
the program keeps a participant’s data only if her SEX has a value of F. Then the program executes the MEANS 
procedure for the data that are retained. 

Using Comparison Operators 
All of the comparison operators previously described can be used in a subsetting IF statement. For example, 
consider the following: 

data D2; 
   set D1; 

   if SEX = 'F' and AGE ge 65; 

proc means   data=D2; 
run; 

The preceding statements analyze only data from women who are over 65 years of age. 

Eliminating Observations with Missing Data for Some Variables 
One of the most common difficulties encountered by social scientists is the problem of missing data. Briefly, 
missing data involves not having scores for all variables for all participants in a dataset. This section discusses 
the problem of missing data, and shows how a subsetting IF statement may be used to deal with it. 

Assume that you administer your volunteerism survey to 100 participants, and you use their scores to calculate a 
single volunteerism score for each. You also obtain a number of additional variables for participants. The SAS 
names for the study’s variables and their descriptions are as follows: 

O’Rourke, Norm, and Larry Hatcher. A Step-by-Step Approach to Using SAS® for Factor Analysis and Structural Equation Modeling, Second Edition.  
Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



340   A Step-by-Step Approach to Using SAS for Factor Analysis and Structural Equation Modeling, Second Edition  
 
 

VOLUNTEER 
participant scores on the volunteerism questionnaire, where higher scores reveal greater likelihood of 
engaging in unpaid prosocial activities; 

SATREAD 
participant scores on the SAT critical reading test; 

SATWRITE 
participant scores on the SAT writing test; 

SATMATH 
participant scores on the SAT mathematics test; 

IQ 
participant intelligence quotient. 

Assume further that you obtained scores for VOLUNTEER, SATREAD, SATWRITE, and SATMATH for all 
100 participants. However, you were able to obtain IQ scores for only 75 of the participants. 

You now wish to analyze your data using a procedure called multiple regression. (This procedure is covered in 
O’Rourke, Hatcher, and Stepanski [2005]; you do not need to understand multiple regression to understand the 
points to be made here.) In analysis #1, VOLUNTEER is the criterion or dependent variable, and SATREAD, 
SATWRITE, and SATMATH are the predictor or independent variables. The multiple regression equation for 
analysis #1 is represented in the following PROC REG statement: 

proc reg   data=D1; 
   model VOLUNTEER  =  SATREAD   SATWRITE   SATMATH ; 
run;          

When you review the results of the analysis, note that the analysis is based on 100 participants. This makes 
sense because you had complete data on all of the variables included in this analysis. 

In analysis #2, VOLUNTEER is again the criterion variable, but this time the predictor variables will include 
SATREAD, SATWRITE, and SATMATH as well as IQ. The equation for Analysis #2 is as follows: 

proc reg   data=D1; 
   model VOLUNTEER  =  SATREAD   SATWRITE   SATMATH  IQ; 
run; 

When you review the results of analysis #2, you see that you have encountered a problem. The SAS output 
indicates that the analysis is based on only 75 participants. At first you may not understand this because you 
know that there are 100 participants in the dataset. But then you remember that you did not have complete data 
for one of the variables; you had values for the IQ variable for only 75 participants. The REG procedure (and 
many other SAS procedures) includes in the analysis only those who have complete data for all of the variables 
analyzed with that procedure. For analysis #2, this means that any participant with missing data for IQ will be 
eliminated from the analysis. Twenty-five participants had missing data for IQ and were therefore eliminated. 

Why were these 25 participants not eliminated from analysis #1? These participants were not eliminated 
because that analysis did not involve the IQ variable. It only involved VOLUNTEER, SATREAD, and 
SATMATH, and all 100 participants had complete data for each of those three variables. 

In a situation such as this, you have a number of options with respect to how you might perform these analyses 
and summarize the results. One option is to retain the results described previously. You could report that you 
performed one analysis on all 100 participants and a second analysis on just the 75 who had complete data for 
the IQ variable. 

This approach might leave you open to criticism, however. The beginning of your research paper probably 
reported demographic characteristics for all 100 participants (e.g., how many were female, mean age). 
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However, you may not have a section providing demographics for the subgroup of 75. This might lead readers 
to wonder if the subgroup differed in some important way from the aggregate group. 

There are statistical reasons why this approach might cause problems as well. For example, you might wish to 
test the significance of the difference between the squared multiple correlation (R2) value obtained from 
analysis #1 and the R2 value obtained from analysis #2. (This test is described in Chapter 14 of O’Rourke, 
Hatcher, and Stepanski [2005].) When performing this test, it is important that both R2 values be based on the 
same participants in both analyses. This is obviously not the case in your study as 25 of the participants used in 
analysis #1 were not included in analysis #2. 

In such situations, it is often better to ensure that all analyses are performed on exactly the same sample. This 
means that, in general, any participant who has missing data for variables to be included in any (reported) 
analysis should be deleted before the analyses are performed. In this instance, therefore, it is best to ensure that 
both analysis #1 and analysis #2 are performed on only those 75 participants who had complete data for all four 
variables (i.e., VOLUNTEER, SATREAD, SATWRITE, SATMATH, and IQ). Fortunately, this may easily be 
done using a subsetting IF statement. 

Recall that with SAS, a missing value is represented with a period (“.”). You can take advantage of this to 
eliminate any participant with missing data for any analyzed variable. For example, consider the following 
subsetting IF statement: 

data D2; 
   set D1;    
if VOLUNTEER ne . and SATREAD ne . and 
   SATWRITE ne . and SATMATH ne . and IQ   ne . ;      

The preceding statements tell the system to: 

1. create a new dataset named D2, and make it an exact copy of D1; 
2. retain a participant in this new dataset only if (for that participant): 

◦ VOLUNTEER is not equal to missing; 

◦ SATREAD is not equal to missing; 

◦ SATWRITE is not equal to missing; 

◦ SATMATH is not equal to missing; 

◦ IQ is not equal to missing. 

In other words, the system creates a new dataset named D2; this new dataset contains only the 75 participants 
who have complete data for all four variables of interest. You may now specify data=D2 in all SAS procedures, 
such that all analyses will be performed on exactly the same 75 participants. 

The following SAS program shows where these statements should be placed:   

. 

. 

. 
 
5433224 19 107 10 F 
640 590 625 
; 
run; 

data D2; 
   set D1; 

if VOLUNTEER ne . and SATREAD ne . and 
   SATWRITE  ne . and SATMATH ne . and IQ ne . ;      
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proc reg   data=D2; 
   model VOLUNTEER = SATREAD  SATWRITE  SATMATH ; 
run; 

proc reg   data=D2; 
   model VOLUNTEER = SATREAD  SATWRITE  SATMATH  IQ ;   
run; 

As evident above, the subsetting IF statement must appear in the program before the procedures or PROC 
statements that request the modified dataset (dataset D2, in this case). 

How should I enter missing data? If you are entering data and come to a participant with a missing value for 
some variable, you do not need to record a “.” to represent the missing data. So long as your data are being 
input using the DATALINES statement and the conventions discussed here, it is acceptable to simply leave 
that column (or those columns) blank by hitting the space bar on your keyboard. SAS will assign that 
participant a missing data value (“.”) for that variable. In some cases, however, it may be useful to enter a “.” 
for variables with missing data, as this may make it easier to keep your place when entering information. 

When using a subsetting IF statement to eliminate participants with missing data, exactly which variables 
should be included in that statement? In most cases, it should be those variables, and only those variables, that 
are ultimately discussed. This means that you may not know exactly which variables to include until you 
actually begin analyzing the data. For example, imagine that you conduct your study and obtain data for the 
following number of participants for each of the following variables: 

Variable Number of Participants with Valid Data for This Variable 

VOLUNTEER                                             100 
SATREAD                                             100 
SATWRITE                                             100 
SATMATH                                             100 
IQ                                             75 
AGE                                             10 

 
As before, you obtained complete data for all 100 participants for VOLUNTEER, SATREAD, SATWRITE, 
and SATMATH, and you obtained data for 75 participants on IQ. But notice the last variable. You obtained 
information regarding age for only 10 participants. What would happen if you included the variable AGE in the 
subsetting IF statement, as shown here? 

if VOLUNTEER ne . and SATREAD ne . and SATWRITE ne . 
 and SATMATH ne . and IQ  ne .     and  AGE     ne . ;      

This IF statement causes the system to eliminate from the sample anyone who does not have complete data for 
all five variables. Since only 10 participants have values for the AGE variable, you know that the resulting 
dataset includes just these 10 participants. This sample, however, is too small for virtually all statistical 
procedures. At this point, you have to decide whether to gather more data or forget about doing analyses with 
the AGE variable. 
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In summary, one approach for identifying those variables to be included in the subsetting IF statement is to:  

• perform some initial analyses; 

• decide which variables will be included in the final analyses (for your study);   

• include all of those variables in the subsetting IF statement; 

• perform all analyses on this reduced dataset so that all analyses reported are performed on exactly the 
same sample. 

Of course, there will be some circumstances in which it is neither necessary nor desirable that all analyses be 
performed on exactly the same group of participants. The purpose of the research, along with other 
considerations, should determine when this is appropriate. 

A More Comprehensive Example 
Often, a single SAS program will contain a large number of data-manipulation and subsetting statements. 
Consider the following example which makes use of the INFILE statement rather than the DATALINES 
statement: 

data D1; 
   infile ’A:/volunteer.dat’ ; 
   input   #1   @1    Q1-Q7        1. 
                @9    AGE          2. 
                @12   IQ           3. 
                @16   NUMBER       2. 
                @19   SEX         $1. 
           #2   @1    SATREAD      3. 
                @5    SATWRITE     3.   
                @9    SATMATH      3. ; 
❶   data D2; 
❷       set D1; 

     Q3 = 6 - Q3; 
     Q6 = 6 - Q6; 
     RESPONSE = (Q1 + Q2 + Q3) / 3; 
❸   TRUST    = (Q4 + Q5 + Q6) / 3; 
❹   SHOULD   =  Q7; 

❺   proc means   data=D2; 
     run; 

❻   data D3; 
❼   set D2;  
      if SEX = 'F'; 

    proc means   data=D3; 
    run; 

❽   data D4; 
❾         set D2; 
    if SEX = 'M';  

     proc means   data=D4; 
     run; 

In the preceding program, lines ❶ and ❷ create a new dataset called D2 and set it identical to D1. All data-
manipulation commands that appear between those lines and PROC MEANS on line ❺ are performed on 
dataset D2. Notice that a new variable called TRUST is created on line ❸. TRUST is the average of 
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participants’ responses to items 4, 5, and 6. Look over these items on the volunteerism survey to see why the 
name TRUST makes sense. On line ❹, variable Q7 is duplicated, and the resulting new variable is called 
SHOULD. Why does this make sense? PROC MEANS appears on line ❺, so the means and other descriptive 
statistics are calculated for all of the quantitative variables in the most recently created dataset, which is D2. 
This includes all variables inputted in dataset D1 as well as the new variables that were just created. 

In lines ❻ through ❼, a new dataset called D3 is created; only responses from female participants are retained in 
this dataset. Notice that the SET statement sets D3 equal to D2 rather than D1. This enables the newly created 
variables such as TRUST and SHOULD to appear in this all-female dataset. In lines ❽ through ❾, a new 
dataset called D4 is created which is also set equal to D2 (not D3). This new dataset contains data only from 
males. 

After this program is submitted for analysis, the SAS output contains three tables of means. The first table gives 
the means based on all participants. The second table gives the means based on the responses from females. The 
third table is based on the responses from males. 

Concatenating and Merging Datasets 
The techniques described thus far in this appendix are designed to help you transform data within a single 
dataset (e.g., to recode a variable within a single dataset). However, often you need to perform transformations 
that involve combining more than one dataset to create a new dataset. For example, concatenating involves 
creating a new dataset by combining two or more previously existing datasets. With concatenation, the same 
variables typically appear in both of the previously existing datasets, but the two sets contain data from different 
participants. By concatenating the two previously existing sets, you create a new set that contains data from all 
participants. 

In contrast, merging combines datasets in a different way. With merging, each of the previously existing 
datasets typically contains data from the same participants. However, the different, previously existing sets 
usually contain different variables. By merging these sets, you can create a new dataset that contains all 
variables found in the previously existing datasets. For example, assume that you conduct a study with 100 
participants. Dataset A contains each participant’s age, while dataset B contains questionnaire responses from 
the same 100 participants. By merging datasets A and B, you can create a new dataset called C that, again, 
contains just 100 observations. A given observation in dataset C contains a given participant’s age as well as the 
questionnaire responses made by that participant. Now that the datasets are merged, it is possible to correlate 
participant age with responses to the questionnaire. These coefficients could not be calculated when AGE was 
in one dataset and the questionnaire responses were in another. 

Concatenating Datasets 
Imagine that you are conducting research that involves the Scholastic Assessment Test (SAT). You obtain data 
from four participants: John, Sally, Miguel, and Mats. You enter information about these four participants into a 
SAS dataset called A. This dataset contains three variables:  

• NAME, which contains the participant’s first name; 

• SATREAD, which contains the participant’s critical reading test score; 

• SATWRITE, which contains the participant’s writing test score; 

• SATMATH, which contains the participant’s mathematics test score. 

The contents of dataset A appear below in Table A.3.1. You can see that John has a score of 520 for 
SATREAD, 490 for SATWRITE, and 500 for SATMATH; Sally had a score of 610 for SATREAD, 590 for 
SATWRITE, and 640 for SATMATH, and so forth. 
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Table A.3.1: Contents of Dataset A 

NAME SATREAD SATWRITE SATMATH 
John       520        490        500 
Sally       610        590        640 
Miguel       490        510        470 
Mats       550        575        560 

 
Imagine that later you create a second dataset called B that contains data from four different participants: Susan, 
Jiri, Cheri, and Zdeno. Values for these participants for SATREAD, SATWRITE, and SATMATH appear in 
Table A.3.2. 

Table A.3.2: Contents of Dataset B 

NAME SATREAD SATWRITE SATMATH 
Susan      710        690        650 
Jiri      450        570        400 
Cheri      570        580        600 
Zdeno      680        675        700 

 
Assume that you would like to perform analyses on a single dataset that contains scores from all eight of these 
participants. But you encounter a problem; the values in dataset A were entered differently than the values of 
dataset B, making it impossible to read data from both sets with a single INPUT statement. For example, 
perhaps you entered SATREAD in columns 10 to 12 in dataset A, but entered it in columns 11 to 13 in dataset 
B. Because the variable was entered in different columns in the two datasets, it is not possible to write a single 
INPUT statement that will input this variable (assuming that you use a formatted input approach).   

One way to deal with this problem is to input A and B as separate datasets and then concatenate them to create a 
single dataset that contains all eight observations. You can then perform analyses on the new dataset. The 
following is the general form for concatenating multiple datasets into a single dataset: 

data  new-dataset-name; 
     set  dataset-1  dataset-2 ... dataset-n; 

In the present situation, you wish to concatenate two datasets (A and B) to create a new dataset named C. This 
could be done in the following statements: 

data C; 
   set A B; 
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The entire program follows that places these statements in context. This program: 

• inputs dataset A; 

• inputs dataset B; 

• concatenates A and B to create C; 

• uses PROC PRINT to print the contents of dataset C. (PROC PRINT will be discussed in greater detail 
in Appendix A.4 of this text.) 

data  A; 
     input    #1    @1   NAME      $7. 
                    @10  SATREAD    3. 
                    @14  SATWRITE   3.   
                    @18  SATMATH    3. ; 
     datalines; 
     John     520 490 500 
     Sally    610 590 640 
     Miguel   490 510 470 
     Mats     550 575 560 
     ; 
     run; 

     data  B; 
        input  #1  @1   NAME      $7. 
                   @11  SATREAD    3. 
                   @15  SATWRITE   3.   
                   @19  SATMATH    3. ; 
     datalines; 
     Susan     710 690 650 
     Jiri      450 570 400 
     Cheri     570 580 600 
     Zdeno     680 675 700 
     ; 
     run; 

❶   data  C; 
❷     set  A  B; 

❸   proc print  data=C; 
❹   run; 

In lines ❶ and ❷ in the preceding program, the two datasets are concatenated to create dataset C. In lines ❸ and 
❹, PROC PRINT is used to print the contents of dataset C, and the results of this procedure are reproduced as 
Output A.3.1. The results of Output A.3.1 show that dataset C contains eight observations: The four 
observations from dataset A along with the four observations from dataset B. To perform additional statistical 
analyses on this combined dataset, you would simply specify data=C in the PROC statement of your SAS 
program. 
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Output A.3.1: Results of Performing PROC PRINT on Dataset C 

Obs NAME SATREAD SATWRITE SATMATH 

1 John 520 490 500 

2 Sally 610 590 640 

3 Miguel 490 510 470 

4 Mats 550 575 560 

5 Susan 710 690 650 

6 Jiri 450 570 400 

7 Cheri 570 580 600 

8 Zdeno 680 675 700 

Merging Datasets 
As stated earlier, you would normally merge datasets when: 

• you are working with two (or more) datasets; 

• both datasets contain information for the same participants, but one dataset contains one set of 
variables, while the other dataset contains a different set of variables. 

Once these two datasets have been merged, you will have a single dataset that contains all variables. Having all 
variables in one set allows you to assess the associations among variables, should you wish to do so. 

As an illustration, assume that your sample consists of just four participants: John, Sally, Miguel, and Mats. 
Assume that you have obtained the social security number for each participant, and that these numbers are 
included as a SAS variable named SOCSEC in both previously existing datasets. In dataset D, you have critical 
reading, writing, and mathematics test scores for these participants (represented as variables SATREAD, 
SATWRITE, and SATMATH, respectively). In dataset E, you have college cumulative grade point averages for 
the same four participants (represented as GPA). Table A.3.3 and Table A.3.4 show the content of these two 
datasets. 

Table A.3.3: Contents of Dataset D 

NAME SOCSEC SATREAD SATWRITE SATMATH 
John 232882121      520        490        500 
Sally 222773454      610        590        640 
Miguel 211447653      490        510        470 
Mats 222671234      550        575        560 
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Table A.3.4: Contents of Dataset E 

NAME SOCSEC GPA 
John 232882121 2.70 
Sally 222773454 3.25 
Miguel 211447653 2.20 
Mats 222671234 2.50 

 
Assume that, in conducting your research, you would like to compute the correlation coefficient between 
SATREAD and GPA. (Let’s forget for the moment that you really shouldn’t perform a correlation using such a 
small sample!) Computing this coefficient should be possible because you do have values for these two 
variables for all four of your participants. You will not, however, be able to compute this coefficient until both 
variables appear in the same dataset. Therefore, it will be necessary to merge the variables contained in datasets 
D and E. 

There are actually two ways of merging datasets. Perhaps the simplest way is the one-to-one approach. With 
one-to-one merging, observations are simply merged according to their order of appearance in the datasets. For 
example, imagine that you were to merge datasets D and E using one-to-one merging. In doing this, SAS would 
take the first observation from dataset D and pair it with the first observation from dataset E, and the result 
would become the first observation in the new dataset (dataset F). If the observations in datasets D and E were 
in exactly the same sequence, this method would work fine. Unfortunately, if any of the observations were out 
of sequence, or if one dataset contained more observations than another, then this approach could result in the 
incorrect pairing of observations. For this reason, we recommend a different strategy for merging: The match-
merging approach next described.   

Match-merging seems to be the method that is least likely to produce undesirable results and errors. With 
match-merging, both datasets must contain a common variable, so that values for this common variable can be 
used to combine observations from the two previously existing datasets into observations for the new dataset 
(often the participant identification number). For example, consider datasets D and E from Table A.3.3 and 
Table A.3.4. The variable SOCSEC appears in both of these datasets, thus it is a common variable. When SAS 
uses match-merging to merge these two datasets according to values on SOCSEC, it will: 

• read the social security number for the first participant in dataset D; 

• look for a participant in dataset E who has the same social security number; 

• merge the information from that participant’s observation in dataset D with his or her information from 
dataset E (if it finds a participant in dataset E with the same social security number); 

• combine the information into a single observation in the new dataset, F; 

• repeat this process for all participants.   

As the preceding description suggests, the variable that you use as your common variable must be chosen 
carefully. Ideally, each participant should be assigned a unique value for this common variable. This means that 
no two participants should have the same value for the common variable. This objective would be achieved 
when social security numbers are used as the common variable, because no two people have the same social 
security number (assuming that the data are entered correctly). 

The SAS procedure for match-merging datasets is somewhat more complex than for concatenating datasets. In 
part, this is because both previously existing datasets must be sorted according to values for the common 
variable prior to merging. This means that the observations must be rearranged in a consistent order with respect 
to values for the common variable. Fortunately, this is easy to do with PROC SORT, a SAS procedure that 
allows you to sort variables. This section shows how PROC SORT can be used to achieve this. 
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The general form for match-merging two previously existing datasets is presented as follows: 

proc sort  data=dataset-1; 
   by  common-variable; 
run; 

proc sort  data=dataset-2; 
   by  common-variable; 
run; 

data  new-dataset-name; 
   merge  dataset-1  dataset-2; 
   by  common-variable; 
run;  

To illustrate, assume that you wish to match-merge datasets D and E from Table A.3.3 and Table A.3.4; to do 
this, use SOCSEC as the common variable. In the following program, these two datasets are entered, sorted, and 
then merged using the match-merge approach: 

data  D; 
  input  #1   @1  NAME       $9. 
              @10 SOCSEC      9. 
              @20 SATREAD     4. 
              @23 SATWRITE    4.   
              @27 SATMATH     4. ; 
datalines; 
John     232882121 520 490 500 
Sally    222773454 610 590 640 
Miguel   211447653 490 510 470 
Mats     222671234 550 575 560 
; 
run; 

data  E; 
   input  #1  @1   NAME    $9. 
              @10  SOCSEC   9.  
              @20  GPA      4.  ; 

datalines; 
John     232882121 2.70  
Sally    222773454 3.25 
Miguel   211447653 2.20 
Mats     222671234 2.50 
; 
run; 

proc sort  data=D; 
   BY  SOCSEC; 
run; 

proc sort  data=E; 
   by  SOCSEC; 
run; 

data  F; 
   merge  D  E; 
   by  SOCSEC; 
run; 

❶         proc print  data=F; 
❷   run; 
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In the preceding program, both datasets were sorted according to values for SOSEC, and the two datasets were 
merged according to values of SOSEC. Finally, the PROC PRINT on lines ❶ and ❷ requests a printout of the 
raw data contained in the new dataset.   

Output A.3.2 contains the results of PROC PRINT, which printed the raw data now contained in dataset F. You 
can see that each observation in this new dataset now contains the merged data from the two previous datasets 
D and E. For example, the line for the participant named Miguel now contains his scores on the critical reading, 
writing, and mathematics test scores (which came from dataset D), as well as his grade point average score 
(which came from dataset E). The same is true for the remaining participants. It would now be possible to 
correlate SATREAD with GPA, if that analysis were desired.  

Output A.3.2: Results of Performing PROC PRINT on Dataset F 

Obs NAME SOCSEC SATREAD SATWRITE SATMATH GPA 

1 Miguel 211447653 490 510 470 2.20 

2 Mats 222671234 550 575 560 2.50 

3 Sally 222773454 610 590 640 3.25 

4 John 232882121 520 490 500 2.70 

 
Notice that the observations in Output A.3.2 are not in the same order in which they appeared in Tables A.3.3 
and A.3.4; this is because they have now been sorted according to values for SOCSEC by the PROC SORT 
statements in the preceding SAS program. 

Conclusion 
After completing this appendix, you should be prepared to modify datasets, isolate subgroups of participants for 
analysis, and perform other tasks that are often required when performing quantitative research in the social 
sciences. At this point, you should be prepared to proceed to the stage of analyzing data to determine what they 
mean. Some of the most basic statistics for this purpose (descriptive statistics and related procedures) are 
covered in the following appendix. 

Reference 
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Introduction: Why Perform Simple Descriptive Analyses? 
The procedures discussed in this appendix are useful for (at least) three important purposes. The first is data 
screening. Data screening is the process of carefully reviewing data to ensure that they were entered correctly 
and are being read correctly by the computer. Before conducting the more sophisticated analyses described in 
this text, you should carefully screen your data to avoid common errors (e.g., numbers that were accidentally 
entered, out of range values, numbers which were entered in the wrong column). The process of data screening 
does not guarantee that your data are correct, but it does increase the likelihood by identifying obvious errors.  

Second, these procedures allow you to examine the shape or distribution of your data. Among other things, 
knowing the shape of your data will help you choose an appropriate measure of central tendency (i.e., the mean, 
mode, or median). Also, many statistical procedures require that sample data are normally distributed, or at least 
that data do not display a marked departure from normality. You can use the procedures discussed herein to 
graph or produce plots to test the null hypothesis that the data are drawn from a normal population. 
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Finally, your research question may require use of a procedure such as PROC MEANS or PROC FREQ to 
obtain a desired statistic. For example, if your research question is “what is the average age at which women 
married in 2012?” you could obtain data from a representative sample of women who married in that year, 
analyze their ages with PROC MEANS, and review the results to determine their average age.  

In almost any research study, it is desirable to report descriptive information about your sample. For example, if 
a study is performed that includes participants from a variety of demographic groups, it would be desirable to 
report the percent of men and women (or boys and girls), the percent of participants by race, their mean age, 
and so forth. You can also use PROC MEANS and PROC FREQ to obtain this information. 

Example: An Abridged Volunteerism Survey 
To help illustrate these procedures, assume that you conduct a scaled-down version of the volunteerism study 
described in the last appendix. You construct a new questionnaire which asks just one question related to 
helping behavior; this questionnaire also contains an item that asks participants their sex, and another that asks 
their year in college (e.g., freshman, sophomore, senior). See the questionnaire below: 

Please indicate the extent to which you agree or disagree with the following statement: 

1. I feel a personal responsibility to help needy people in my community (please select only one response): 

(5) _____ Agree Strongly 

(4) _____ Agree Somewhat 

(3) _____ Neither Agree nor Disagree 

(2) _____ Disagree Somewhat 

(1) _____ Disagree Strongly 

2. Your sex (please check one): 

(F) _____ Female 

(M) _____ Male  

(O) _____ Other 

3.  Your year in college: 

(1) _____ Freshman   

(2) _____ Sophomore  

(3) _____ Junior  

(4) _____ Senior  

(5) _____ Other      

Notice that this instrument has been printed so that entering the data will be relatively simple. With each 
variable, the value that will be entered appears to the left of the corresponding response. For example, with 
question 1 the value “5” appears to the left of “Agree Strongly”; this means that the number “5” will be entered 
for any participant selecting that response. For participants checking “Disagree Strongly,” a “1” will be entered. 
Similarly, notice that, for question 2, the letter “F” appears to the left of “Female,” so an “F” will be entered for 
participants selecting this response. 
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The following format is used when entering the data: 

Column Variable Name Explanation 

1 RESNEEDY Responses to question 1: Participant’s perceived responsibility to help the needy 

2 blank  

3 SEX Responses to question 2: Participant’s sex 

4 blank  

5 CLASS Responses to question 3: Participant’s classification as a college student 

 
You administer the questionnaire to 14 students. The following is the entire SAS program used to analyze their 
responses, including the raw data: 

        data D1; 
           input   #1   @1   RESNEEDY   1. 
                        @3   SEX       $1. 
                        @5   CLASS      1.   ; 
        datalines; 
❶  5 F 1 
    4 M 1 
    5 F 1 
❷    F 1 
    4 F 1 
    4 F 2 
    1 F 2 
    4 F 2 
    1 F 3 
❸  5 M 
    4 F 4 
    4 M 4 
❹  3 F 
    4 F 5 
    ; 
    run; 

    proc means   data=D1; 
      var RESNEEDY CLASS; 
    run; 

    proc freq   data=D1; 
       tables SEX CLASS RESNEEDY; 
    run; 

    proc print   data=D1; 
       var RESNEEDY SEX CLASS; 
    run; 

The data obtained from the first participant appears on line ❶ of the preceding program. This participant 
provided a response of “5” to the RESNEEDY statement (indicating that she checked “Agree Strongly”), 
indicated that her SEX was “F” or female, and responded “1” to the CLASS question (indicating that she is a 
freshman). 

Notice that there are some missing responses in this dataset. On line ❷ in the program, you can see that this 
participant indicated that she was a female freshman, but did not answer question 1. That is why the 
corresponding space in column 1 is left blank. There also appears to be missing responses to the CLASS 
question on lines ❸ and ❹. Unfortunately, missing data are common in questionnaire research. 
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Computing Descriptive Statistics with PROC MEANS 
You can use PROC MEANS to analyze quantitative (numeric) variables. For each variable analyzed, it provides 
the following information:  

• the number of observations on which calculations were performed (abbreviated “N” in the output); 

• the mean or average; 

• the standard deviation (Std Dev); 

• the minimum (smallest) value observed; and 

• the maximum (largest) value observed. 

These statistics are produced by default, and some additional statistics (to be described later) may also be 
requested as options. 

Here is the general form for PROC MEANS: 

proc means  data=dataset-name    
            option-list    
            statistic-keyword-list ; 
   var  variable-list  ; 
run; 

The PROC MEANS Statement 
The PROC MEANS statement begins with “proc means” and ends with a semicolon. It is recommended that the 
statement should also specify the name of the dataset to be analyzed with the data = option. 

The “option-list” appearing in the preceding program indicates that you can request a number of options with 
PROC MEANS. Some options especially useful for social science research are: 

maxdec=n   
Specifies the maximum number of decimal places (digits to the right of the decimal point) to be reported 
when printing results; possible range is 0 to 8. 

vardef=divisor 
Specifies the devisor to be used when calculating variances and covariances. Two possible divisors are: 

       vardef=df 
      Divisor is the degrees of freedom for the analysis: (n–1). This is the default. 

       vardef=n 
      Divisor is the number of observations, n. 

The “statistic-keyword-list” appearing in the program indicates that you can request a number of statistics in 
place of the default output. Some statistics that may be of particular value in social science research include the 
following: 

Range 
The range of values in the sample. 

Sum 
The sum. 

Css 
The corrected sum of squares. 

Uss 
The uncorrected sum of squares. 
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Var 
The variance. 

Stderr 
The standard error of the mean. 

Skewness 
The skewness displayed by sample data. Skewness refers to the extent to which the distribution of sample 
data departs from the normal or bell-shaped curve because of a long “tail” on either side of the distribution. 
If the long tail appears on the right side of the sample distribution (where the higher values appear), it is 
described as being positively skewed. If the long tail appears on the left side of the distribution (where the 
lower values appear), it is described as being negatively skewed. 

Kurtosis 
The kurtosis displayed by the sample. Kurtosis refers to the extent to which the sample distribution departs 
from the normal curve because it is either peaked or flat. If the sample distribution is relatively peaked (tall 
and skinny), it is described as being leptokurtic. If the distribution is relatively flat, it is described as being 
platykurtic. 

T 
The obtained value for student’s t test calculated to test the null hypothesis that the population mean is zero.  

Prt 
The p value for the preceding t test; that is, the probability of obtaining a t value this large or larger if the 
population mean were zero.  

To illustrate the use of these options and statistic keywords, assume that you wish to use the maxdec option to 
limit the printing of results to two decimal places, use the VAR keyword to request that the variances of all 
quantitative variables be printed, and use the kurtosis keyword to request that the kurtosis of all quantitative 
variables be printed. You could do this with the following PROC MEANS statement: 

proc means   data=D1   maxdec=2   var   kurtosis ; 

The VAR Statement 
Here again is the general form of the statements requesting the MEANS procedure, including the VAR 
statement: 

proc means  data=dataset-name    
       option-list    
       statistic-keyword-list ; 
   var variable-list  ; 
run; 

In the place of “variable-list” in the preceding VAR statement, you may list the quantitative variables to be 
analyzed. Each variable name should be separated by at least one blank space. If no VAR statement is specified, 
SAS will perform PROC MEANS on all quantitative variables in the dataset. This is true for many SAS 
procedures as explained in the following note: 

What happens if I do not include a VAR statement? For many SAS procedures, failure to include a VAR 
statement causes the system to perform the requested analyses on all variables in the dataset. For datasets with 
a large number of variables, leaving off the VAR statement may unintentionally result in a very long output 
file. 
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The program used to analyze your dataset included the following statements: RESNEEDY and CLASS were 
specified in the VAR statement so that descriptive statistics would be calculated for both variables:  

proc means   data=D1;    
   var RESNEEDY CLASS; 
run; 

Output A.4.1:  Results of the MEANS Procedure 

The MEANS Procedure 
 

Variable N Mean Std Dev Minimum Maximum 

RESNEEDY 

CLASS 
 

13 

12 
 

3.6923077 

2.2500000 
 

1.3155870 

1.4222262 
 

1.0000000 

1.0000000 
 

5.0000000 

5.0000000 
 

 

Reviewing the Output 
Output A.4.1 presents the results generated by the preceding program. Before undertaking more sophisticated 
analyses, you should perform PROC MEANS for each quantitative variable and review the output to ensure that 
the results appear correct. Under the heading “Variable” is the name of each variable analyzed; descriptive 
statistics appear to the right of the variable name. Below the heading “N” is the number of valid cases, or 
observations, on which calculations were performed. Notice that in this instance, calculations were performed 
on only 13 observations for RESNEEDY even though the dataset contains 14 cases. This is because one 
participant did not respond to this statement on the survey. It is for this reason that N is equal to 13 rather than 
14 for RESNEEDY in this output. 

You should next examine the mean for the variable to verify that it appears correct. Remember that for 
statement 1, responses could range from 1 “Disagree Strongly” to 5 “Agree Strongly.” Therefore, the mean for 
this RESNEEDY variable should be somewhere between 1.00 and 5.00. If the average is outside of this range, 
you will know that some type of error has been made. In this instance the mean for RESNEEDY is 3.69, which 
is within acceptable range, so everything appears correct so far. 

Using the same reasoning, it is prudent to next check the column headed “Minimum.” Here you will find the 
lowest value on RESNEEDY that appeared in the dataset. If this is less than 1.00, you will again know than an 
error was made because 1 was the lowest possible value. On the printout, the minimum is 1.00, which indicates 
no problems. The largest value provided for that variable appears under the “Maximum” heading, which for 
RESNEEDY should not exceed 5.00. This is because 5 is the largest possible score for that variable. The 
reported maximum value in this case is 5.00, so again it appears that there were no obvious errors in entering 
the data or the program syntax. 

Once you have examined the results for RESNEEDY, you should also review the results for the CLASS 
variable. If any of the observed values are out of range, you should carefully review the program for data entry 
or programming errors. In some cases, you may use PROC PRINT to reproduce the raw data to make it easier to 
review. PROC PRINT is described later in this appendix. 

Creating Frequency Tables with PROC FREQ 
The FREQ procedure produces frequency distributions for quantitative variables as well as classification 
variables. For example, you may use PROC FREQ to determine the percent of participants who “agreed 
strongly” with a statement on a questionnaire, the percent who “agreed somewhat,” and so forth.  
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The PROC FREQ and TABLES Statements 
The general form for the procedure is as follows: 

proc freq   DATA=dataset-name; 
   tables  variable-list  /   options; 
run; 

In the TABLES statement, you list the names of the variables to be analyzed, with each name separated by at 
least one blank space. Below are the PROC FREQ and TABLES statements from the program presented earlier 
in this appendix (analyzing data from the volunteerism survey): 

proc freq   DATA=D1; 
   tables SEX CLASS RESNEEDY; 
run; 

Reviewing the Output 
These statements will cause SAS to create three frequency distributions: one for the SEX variable; one for 
CLASS; and one for RESNEEDY. This output appears in Output A.4.2.  

Output A.4.2: Results of the Freq Procedure 

The FREQ Procedure 
 

SEX Frequency Percent 
Cumulative 
Frequency 

Cumulative 
Percent 

F 11 78.57 11 78.57 

M 3 21.43 14 100.00 

 

CLASS Frequency Percent 
Cumulative 
Frequency 

Cumulative 
Percent 

1 5 41.67 5 41.67 

2 3 25.00 8 66.67 

3 1 8.33 9 75.00 

4 2 16.67 11 91.67 

5 1 8.33 12 100.00 

 
Frequency Missing = 2 

 

RESNEEDY Frequency Percent 
Cumulative 
Frequency 

Cumulative 
Percent 

1 2 15.38 2 15.38 

3 1 7.69 3 23.08 

4 7 53.85 10 76.92 

5 3 23.08 13 100.00 

 
Frequency Missing = 1 
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Output A.4.2 shows that the name for the variable being analyzed appears on the far left side of the frequency 
distribution. Possible values for this variable appear below its name. The first table provides information for the 
SEX variable, and below the word “SEX” appear the values “F” and “M.” Information about female 
participants appears to the right of “F,” and information about males appears to the right of “M.” (None of these 
participants indicated that their sex was “other.”) When reviewing a frequency distribution, it is useful to think 
of these different values as representing categories to which participants may belong. 

Under the heading “Frequency,” the output indicates the number of individuals in a given category. Here, you 
can see that 11 participants were female while 3 were male. Below “Percent,” the percent of participants in each 
category appears. The table shows that 78.57% of the participants were female while 21.43% were male. 

Under “Cumulative Frequency” is the number of observations that appear in the current category plus all of the 
preceding categories. For example, the first (top) category for SEX was “female.” There were 11 participants so 
the cumulative frequency was 11. The next category was “male,” and there were 3 participants. The cumulative 
frequency for the “male” category was therefore 14 (because 11 + 3 = 14). In the same way, “Cumulative 
Percent” provides the percent of observations in the current category plus all of the preceding categories. 

The next table provides results for the CLASS variable. Unlike the previous table, two participants did not 
respond to this question. Under this table as a result we see “Frequency Missing = 2.” Note that PROC FREQ 
does not include missing cases when calculating “Percent,” “Cumulative Frequency,” or “Cumulative Percent.” 
In other words, these calculations are based only on available participant data. 

Notice that below the RESNEEDY table, we see “Frequency Missing = 1” indicating that the one participant 
skipped this question. Also in this table, note that under the “RESNEEDY” heading, you may find only values 
“1,” “3,” “4,” and “5.” The value “2” does not appear because none of the participants checked “Disagree 
Somewhat” for this statement. If none of the participants select a response alternative, the value representing 
that response alternative will not appear in the frequency table as in this case. 

Printing Raw Data with PROC PRINT 
PROC PRINT can be used to reproduce your raw data. PROC PRINT output shows each participant’s value for 
each requested variable. This procedure can be used with both quantitative and classification variables. The 
general form is: 

proc print   data=dataset-name; 
   var  variable-list  ; 
run; 

In the variable list, you may request any variable that has been specified in the INPUT statement, as well as any 
new variable that has been created from existing variables. If you do not include the VAR statement, then all 
existing variables will be printed. The program presented earlier in this appendix included the following PROC 
PRINT statements: 

proc print   data=D1; 
   var RESNEEDY SEX CLASS; 
run; 
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These statements produce Output A.4.3.  

Output A.4.3: Results of the PRINT Procedure 

Obs RESNEEDY SEX CLASS 

1 5 F 1 

2 4 M 1 

3 5 F 1 

4 . F 1 

5 4 F 1 

6 4 F 2 

7 1 F 2 

8 4 F 2 

9 1 F 3 

10 5 M . 

11 4 F 4 

12 4 M 4 

13 3 F . 

14 4 F 5 

 
The first column of output is headed “Obs” for “observation.” This variable is created by SAS to assign an 
observation number to each participant. The second column provides the raw data for the RESNEEDY variable, 
the third column displays the SEX variable, and the last displays responses for the CLASS variable. The output 
shows that participant 1(observation 1) provided a response of 5 on RESNEEDY, was a female, and a freshman 
(i.e., value of 1 for the CLASS variable). Notice that SAS prints periods in place of missing values. 

PROC PRINT is helpful to verify that your data are entered correctly and that SAS is reading these data 
correctly. It is particularly useful for studies with a large number of variables, for instance, when you use a 
questionnaire with a large number of questions. In these situations, it is often difficult to visually inspect the 
data as they exist in the SAS program file.  

You should compare the results of PROC PRINT with several of the questionnaires as completed by 
participants. Verify that participant responses as they appear in the PROC PRINT output correspond to the 
original questionnaires. If not, it is likely that mistakes were made in either entering the data or in writing the 
SAS program. 

Testing for Normality with PROC UNIVARIATE 
A normal distribution is a symmetrical, bell-shaped distribution of values. The shape of the normal distribution 
is shown in Figure A.4.1.  
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Figure A.4.1:  The Normal Distribution 

 

To understand the distribution in Figure A.4.1, assume that you are interested in conducting research on people 
who live in retirement communities. Imagine it is possible to assess the age of every person in this population. 
To summarize this distribution, you prepare a figure similar to Figure A.4.1 with the variable AGE plotted on 
the horizontal axis, and the frequency of persons at each age plotted on the vertical axis. Figure A.4.1 suggests 
that many of your participants are around 71 years of age since the distribution “peaks” near the age of 71. This 
suggests that the mean of this distribution will likely be somewhere around 71. Notice also that most of your 
participants are between 67 (near the lower end of the distribution) and 75 years of age (near the upper end of 
the distribution).  

Why Test for Normality? 
Normality is an important concept in quantitative analyses because there are at least two problems that may 
result when data are not normally distributed. The first is that markedly non-normal data may lead to incorrect 
conclusions in inferential statistical analyses. Many inferential procedures are based on the assumption that the 
sample of observations is normally distributed. If this assumption is violated, the statistic may give misleading 
results. For example, the independent group’s t test assumes that both samples in the study were drawn from 
normally distributed populations. If this assumption is violated, then performing the analysis may cause you to 
incorrectly reject the null hypothesis (or incorrectly accept the null hypothesis). Under these circumstances, you 
should instead analyze the data using a procedure that does not assume normality (e.g., a nonparametric 
procedure). 

The second problem is that markedly non-normal data may have a biasing effect on correlation coefficients, as 
well as more sophisticated procedures that are based on correlation coefficients. For example, assume that you 
compute the Pearson product moment correlation coefficient between two variables. If the distribution(s) of 
values for one or both of these variables are markedly non-normal, this may cause your coefficient to be much 
larger (or much smaller) than the true correlation between these variables in the population; your obtained 
coefficient is essentially misleading. To make matters worse, many more sophisticated statistical procedures 
such as principal component analysis are performed on an array of correlation coefficients. If some or all of 
these correlations are distorted due to departures from normality, then the results of the analyses may again be 
misleading. For this reason, you should routinely check your data for major departures from normality prior to 
performing more sophisticated analyses (Cozby & Bates, 2011).  

Departures from Normality 
Assume that you draw a random sample of 18 participants from the population of persons living in retirement 
communities. There are a wide variety of ways that your data may depart from normality. 

Figure A.4.2 shows the age distribution for two samples of participants drawn from the population of retirees. 
This figure is somewhat different from Figure A.4.1 because the distributions have been turned on their sides so 
that age is now plotted on the vertical axis rather than on the horizontal axis; this is so that these figures will be 
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more similar to the Stem-Leaf plots produced by PROC UNIVARIATE discussed later in this appendix. Each 
small circle in Figure A.4.2 represents one participant in a given distribution. For example, in the distribution 
for Sample A, you can see that there is one participant at age 75, one at age 74, two at age 73, three at age 72, 
and so forth. The ages of the 18 participants in Sample A range from a low of 67 to a high of 75.  

Figure A.4.2: Sample with an Approximately Normal Distribution and a Sample with an Outlier 

 

The data in Sample A form an approximately normal distribution (called approximately normal because it is 
difficult to form a perfectly normal distribution using a small sample of just 18 cases). An inferential test 
(discussed later) will show that Sample A does not significantly differ from normal. Therefore, it would be 
appropriate to analyze Sample A data. 

In contrast, there is a problem with Sample B. These data are very similar to Sample A except that there is an 
outlier at the lower end of the distribution. An outlier is an extreme value that differs substantially from the 
other values in the distribution. In this case, the outlier is the participant who is only 37 years of age. Later, you 
will see that this outlier causes the dataset to differ significantly from normal, making the data inappropriate for 
many statistical procedures. When you detect an outlier, it is important to determine whether it should be 
corrected or deleted from the dataset. Obviously, if the outlier exists because an error was made in entering the 
data, it should be corrected (e.g., should have been entered as 73, not 37).  

Data may also depart from normality because it is kurtotic. Kurtosis refers to the peakedness of the distribution 
(from the Greek word kurtos meaning bulging). The two samples displayed in Figure A.4.3 depict the two 
different types of kurtosis: 
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Figure A.4.3:  Samples Displaying Positive versus Negative Kurtosis 

 

Sample C in Figure A.4.3 depicts positive kurtosis, which means that the distribution is relatively peaked (tall 
and skinny) rather than flat. Notice that, with Sample C, there are a relatively large number of participants who 
cluster around the center of the distribution (around age 71). This is what makes the distribution peaked 
(relative to Sample A, for example). Distributions with positive kurtosis are also called leptokurtic. A 
mnemonic device to remember the meaning of this word is to think of the distribution leaping upward (i.e., a 
leptokurtic distribution has leapt up). 

In contrast, Sample D in the same figure displays negative kurtosis, which means that the distribution is 
relatively flat. Flat distributions are described as being platykurtic. A mnemonic device to remember this word 
is to think of a platykurtic distribution as flat as a plate. 

In addition to kurtosis, distributions may also demonstrate varying degrees of skewness, or sidedness. A 
distribution is skewed if the tail on one side of the distribution is extended making it longer than the tail on the 
other side. The distributions in Figure A.4.4 show the two different types of skewness: 
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Figure A.4.4:  Samples Displaying Positive versus Negative Skewness 

 

Consider Sample E in Figure A.4.4. Notice that the largest number of participants in this distribution tends to 
cluster around age 66. The tail of the distribution that stretches above 66 (from 67 to 77) is relatively long, 
while the tail of the distribution that stretches below 66 (from 65 to 64) is comparatively short; clearly, this 
distribution is skewed. A distribution is said to be positively skewed if the longer tail of a distribution extends 
in the direction of higher values. You can see that Sample E displays positive skewness, because its longer tail 
points toward larger numbers such as 75, 77, and so forth. 

On the other hand, if the longer tail of a distribution points in the direction of lower values, the distribution is 
said to be negatively skewed. You can see that Sample F of Figure A.4.4 displays negative skewness because 
in that sample the longer tail points downward, in the direction of lower values (such as 66 and 64). 

General Form for PROC UNIVARIATE 
Like the MEANS procedure, PROC UNIVARIATE provides a number of descriptive statistics for quantitative 
variables, including the mean, standard deviation, kurtosis, and skewness. PROC UNIVARIATE, however, has 
the added advantage of printing a significance test for the null hypothesis that data come from a normally 
distributed population. The procedure also provides plots that will help you understand the shape of your 
sample’s distribution, along with additional information that will help understand why your data depart from 
normality (if, indeed, they do). This text describes just a few of the features of PROC UNIVARIATE. 

Here is the general form for the PROC UNIVARIATE statements that produce the output discussed in this 
appendix: 

proc univariate   data=dataset-name   normal   plot; 
   var variable-list; 
   id identification-variable; 
run; 

In the preceding program, the normal option requests a significance test for the null hypothesis that sample data 
are from a normally distributed population. The Shapiro-Wilk statistic is applied for samples of 2,000 or fewer 
whereas the Kolmogorov-Smirnov statistic is applied for larger samples. 
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The plot option of the preceding program produces a Stem-Leaf plot, a Boxplot, and a Normal Probability Plot, 
each of which is useful for understanding the shape of a sample’s distribution. This appendix describes how to 
interpret the Stem-Leaf plot.  

The names of the variables to be analyzed should be listed in the VAR statement. The ID statement is optional 
but is useful (and recommended) for identifying outliers. PROC UNIVARIATE prints an “Extreme 
Observations” table that lists the five largest and five smallest values in the dataset; these values are identified 
by the identification variable listed in the ID statement. For example, assume that AGE (participant age) is 
listed in the VAR statement, and SOCSEC (for social security number) is listed in the ID statement. PROC 
UNIVARIATE will print social security numbers for participants with the five largest and five smallest AGE 
values. This should make it easier to identify which participant is the outlier in your dataset. (This use of the 
extreme observations table is illustrated here.)  

Results for an Approximately Normal Distribution 
For purposes of illustration, assume that you wish to analyze the data that are illustrated as Sample A of Figure 
A.4.2 (the approximately normal distribution). You prepare a SAS program in which participant age is entered 
as a variable called AGE, and participant identification numbers are entered as a variable called 
PARTICIPANT. Here is the entire program that will input these data and analyze them using PROC 
UNIVARIATE: 

data D1; 
   input   #1   @1   PARTICIPANT  2. 
                @4   AGE          2.   ; 
datalines; 
 1 72 
 2 69 
 3 75 
 4 71 
 5 71 
 6 73 
 7 70 
 8 67 
 9 71 
10 72 
11 73 
12 68 
13 69 
14 70 
15 70 
16 71 
17 74 
18 72 
; 
run; 
proc univariate   data=D1   normal   plot; 
   var AGE; 
   id PARTICIPANT; 
run; 

The preceding program requests that PROC UNIVARIATE be performed on the variable AGE. Values of the 
variable PARTICIPANT will be used to identify outlying values of AGE in the extremes table. 

This output would contain: 

• a moments table that includes the mean, standard deviation, variance, skewness, kurtosis, along with 
other statistics; 

• a table of basic statistical measures that provides indices of central tendency and variability 
estimates; 
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• tests for location; 

• tests for normality such as the Shapiro-Wilk statistic; 

• a quartiles table that provides the median, 25th percentile, 75th percentile, and related information; 

• Extreme Observations table that provides the five highest values and five lowest values on the 
variable being analyzed; 

• a Stem-Leaf plot, Boxplot, and Normal Probability Plot. 

Output A.4.4 includes the moments table, basic statistical measures, tests of normality, quartiles table, Extreme 
Observations table, and a Stem-Leaf plot for Sample A. 

Output A.4.4: Tables from PROC UNIVARIATE for Sample A 
The UNIVARIATE Procedure 

Variable: AGE 
 

Moments 

N 18 Sum Weights 18 

Mean 71 Sum Observations 1278 

Std Deviation 2.05798302 Variance 4.23529412 

Skewness 0 Kurtosis -0.1357639 

Uncorrected SS 90810 Corrected SS 72 

Coeff Variation 2.89856764 Std Error Mean 0.48507125 

 

Basic Statistical Measures 

Location Variability 

Mean 71.00000 Std Deviation 2.05798 

Median 71.00000 Variance 4.23529 

Mode 71.00000 Range 8.00000 

  Interquartile Range 2.00000 

 

Tests for Location: Mu0=0 

Test Statistic p Value 

Student's t t 146.3702 Pr > |t| <.0001 

Sign M 9 Pr >= |M| <.0001 

Signed Rank S 85.5 Pr >= |S| <.0001 

 

Tests for Normality 

Test Statistic p Value 

Shapiro-Wilk W 0.983895 Pr < W 0.9812 

Kolmogorov-Smirnov D 0.111111 Pr > D >0.1500 

Cramer-von Mises W-Sq 0.036122 Pr > W-Sq >0.2500 

Anderson-Darling A-Sq 0.196144 Pr > A-Sq >0.2500 
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Quantiles (Definition 5) 

Quantile Estimate 

100% Max 75 

99% 75 

95% 75 

90% 74 

75% Q3 72 

50% Median 71 

25% Q1 70 

10% 68 

5% 67 

1% 67 

0% Min 67 

 

Extreme Observations 

Lowest Highest 

Value PARTICIPANT Obs Value PARTICIPANT Obs 

67 8 8 72 18 18 

68 12 12 73 6 6 

69 13 13 73 11 11 

69 2 2 74 17 17 

70 15 15 75 3 3 

 
 
                        Stem Leaf                     #             Boxplot                      
                          75 0                        1                |                         
                          74 0                        1                |                         
                          73 00                       2                |                         
                          72 000                      3             +-----+                      
                          71 0000                     4             *--+--*                      
                          70 000                      3             +-----+                      
                          69 00                       2                |                         
                          68 0                        1                |                         
                          67 0                        1                |                         
                             ----+----+----+----+                                                
                                                                                                                                                 
                                         Normal Probability Plot                                 
                      75.5+                                           * +++++                    
                          |                                      * +++++                         
                          |                                 * +*+++                              
                          |                             **+*++                                   
                      71.5+                       **+**++                                        
                          |                  * **+++                                             
                          |              * +*+++                                                 
                          |           +*+++                                                      
                      67.5+      +*+++                                                           
                           +----+----+----+----+----+----+----+----+----+----+                   
                               -2        -1         0        +1        +2                                                                         
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At the top of Output A.4.4, the note “Variable: AGE” indicates that AGE is the name of the variable being 
analyzed by PROC UNIVARIATE. The moments table is the first table reproduced in Output A.4.4. On the 
upper-left side of the moments table is the heading “N,” and to the right of this you can see that the analysis was 
based on 18 observations. Below “N” are the headings “Mean” and “Std Deviation.” To the right of these you 
can see that the mean and standard deviation for AGE were 71 and 2.06 (rounded to two decimal places), 
respectively. 

To the right of “Skewness” you can see that the skewness statistic for AGE is zero. In interpreting the skewness 
statistic, keep in mind the following: 

• a skewness value of zero means that the distribution is not skewed. In other words, this means that the 
distribution is symmetrical, that neither tail is longer than the other; 

• a positive skewness value means that the distribution is positively skewed, that the longer tail points 
toward higher values in the distribution (as with Sample E of Figure A.4.4); 

• a negative skewness value means that the distribution is negatively skewed, that the longer tail points 
toward lower values in the distribution (as with Sample F of Figure A.4.4). 

Since the AGE variable of Sample A displays a skewness value of zero, we know that neither tail is longer than 
the other in this sample. 

A closer look at the moments table of Output A.4.4 shows that it actually consists of two columns of statistics. 
The column on the left provides statistics such as the sample size, the mean, the standard deviation, and so 
forth. The column on the right contains headings such as “Sum Weights,” “Sum Observations,” and “Variance.” 
Notice that in this right-hand column, the fourth entry down has the heading “Kurtosis” (just below 
“Variance”). To the right of “Kurtosis,” you can see that the kurtosis statistic for AGE is approximately –.14. 
When interpreting this kurtosis statistic, keep in mind the following: 

• a kurtosis value of zero means that the distribution displays no kurtosis. In other words, the distribution 
is neither relatively peaked nor is it relatively flat compared to the normal distribution; 

• a positive kurtosis value means that the distribution is relatively peaked, or leptokurtic; 

• a negative kurtosis value means that the distribution is relatively flat, or platykurtic. 

The small negative kurtosis value of –.14 in Output A.4.4 indicates that Sample A is slightly flat, or platykurtic.  

In the fourth table (Tests for Normality), the Shapiro-Wilk statistic appears at the top of the left-hand column. 
As stated previously in this appendix, this statistic tests the null hypothesis that sample data are normally 
distributed. To the right of the “W,” you can see that the value for the Shapiro-Wilk statistic is 0.98. To the 
immediate right of this statistic is its corresponding p value; this value appears as the first value in the right-
hand column, to the right of the heading “Pr < W.” In this instance, p = 0.98. Remember that this statistic tests 
the null hypothesis that the data are normally distributed. This value is very large at .98, meaning that there are 
approximately 98 chances in 100 that you would obtain the present results if the data were drawn from a normal 
population. Because this statistic gives no evidence to reject the null hypothesis, you can tentatively accept it. 
This makes sense when you review the shape of the distribution of Sample A in Figure A.4.2 as the sample data 
appear to be normally distributed. In general, you should reject the null hypothesis of normality when p values 
are less than .05. 

Results for a Distribution with an Outlier 
The data of Sample A in Figure A.4.2 displayed an approximately normal distribution. For purposes of contrast, 
assume that you now use PROC UNIVARIATE to analyze the data of Sample B from Figure A.4.2. You will 
remember that Sample B was similar in shape to Sample A except that Sample B contained an outlier. The 
lowest value in Sample B was 37, which was extremely low compared to other values in the sample. (If 
necessary, turn back to Figure A.4.2 at this time to verify this.)  
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The raw data from Sample B follow. Columns 1 to 2 contain values of PARTICIPANT, the participant 
identification number, and columns 4 to 5 contain AGE values. Notice that these data are identical to those of 
Sample A, except for participant 8. In Sample A, this participant’s age was listed as 67; in Sample B, it is listed 
as 37.   

 1 72 
 2 69 
 3 75 
 4 71 
 5 71 
 6 73 
 7 70 
 8 37 
 9 71 
10 72 
11 73 
12 68 
13 69 
14 70 
15 70 
16 71 
17 74 
18 72 

When analyzed with PROC UNIVARIATE, the preceding data would again produce the following output. 
Some of the results of this analysis are presented in Output A.4.5. 

Output A.4.5: Selected Tables from PROC UNIVARIATE for Sample B 
The UNIVARIATE Procedure 

Variable: AGE 
 

Moments 

N 18 Sum Weights 18 

Mean 69.3333333 Sum Observations 1248 

Std Deviation 8.26758376 Variance 68.3529412 

Skewness -3.9049926 Kurtosis 16.0332475 

Uncorrected SS 87690 Corrected SS 1162 

Coeff Variation 11.9243996 Std Error Mean 1.94868818 

 

Basic Statistical Measures 

Location Variability 

Mean 69.33333 Std Deviation 8.26758 

Median 71.00000 Variance 68.35294 

Mode 71.00000 Range 38.00000 

  Interquartile Range 2.00000 

 

Tests for Location: Mu0=0 

Test Statistic p Value 

Student's t t 35.57949 Pr > |t| <.0001 

Sign M 9 Pr >= |M| <.0001 

Signed Rank S 85.5 Pr >= |S| <.0001 
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Tests for Normality 

Test Statistic p Value 

Shapiro-Wilk W 0.458117 Pr < W <0.0001 

Kolmogorov-Smirnov D 0.380384 Pr > D <0.0100 

Cramer-von Mises W-Sq 0.696822 Pr > W-Sq <0.0050 

Anderson-Darling A-Sq 3.681039 Pr > A-Sq <0.0050 

 

Quantiles (Definition 5) 

Quantile Estimate 

100% Max 75 

99% 75 

95% 75 

90% 74 

75% Q3 72 

50% Median 71 

25% Q1 70 

10% 68 

5% 37 

1% 37 

0% Min 37 

 

Extreme Observations 

Lowest Highest 

Value PARTICIPANT Obs Value PARTICIPANT Obs 

37 8 8 72 18 18 

68 12 12 73 6 6 

69 13 13 73 11 11 

69 2 2 74 17 17 

70 15 15 75 3 3 
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                        Stem Leaf                     #             Boxplot                      
                           7 5                        1                |                         
                           7 0001111222334           13             +-----+                      
                           6 899                      3                +                         
                           6                                                                     
                           5                                                                     
                           5                                                                     
                           4                                                                     
                           4                                                                     
                           3 7                        1                *                         
                             ----+----+----+----+                                                
                         Multiply Stem.Leaf by 10**+1                                                                                    
                                                                                                 
                                         Normal Probability Plot                                 
                      77.5+                                ++++++     *                          
                          |                  * ** ** **+**+**  * *                               
                          |            * *  *  ++++++                                            
                          |              ++++++                                                  
                      57.5+        ++++++                                                        
                          |  ++++++                                                              
                          |++                                                                    
                          |                                                                      
                      37.5+       *                                                              
                           +----+----+----+----+----+----+----+----+----+----+                   
                               -2        -1         0        +1        +2                                                   
                                                                                                 

 
By comparing the moments table of Output A.4.5 (for Sample B) to that of Output A.4.4 (for Sample A) you 
can see that inclusion of the outlier has had a considerable effect on some of the descriptive statistics for AGE. 
The mean of Sample B is now 69.33, down from the mean of 71 found for Sample A. More dramatic is the 
effect that the outlier has had on the standard deviation. With the approximately normal distribution, the 
standard deviation was only 2.06. With the outlier included, the standard deviation was much larger at 8.27.  

Output A.4.5 shows that the skewness index for Sample B is –3.90. Negative skewness is just what you would 
expect; the outlier has, in essence, created a long tail that points toward the lower values in the AGE 
distribution. You will remember that this generally results in negative skewness. 

Output A.4.5 shows that the test for normality for Sample B results in a Shapiro-Wilk statistic of .46 (to the 
right of “W”) with a corresponding p value less than .01 (to the right of “Pr < W”). Because this p value is well 
below .05, you reject the null hypothesis and conclude that Sample B data are not normally distributed. In other 
words, you can conclude that Sample B displays a statistically significant departure from normality. 

The Extreme Observations table for Sample B appears just below the quartiles table in Output A.4.5. On the left 
side of the extremes table, below the heading “Lowest,” PROC UNIVARIATE prints the lowest values 
observed for the variable specified in the VAR statement (AGE, in this case). Here, you can see that the lowest 
five values were 37, 68, 69, 69, and 70. To the immediate right of each value is the identification number for the 
participant who contributed that value to the dataset. The participant identification variable is specified in the ID 
statement (PARTICIPANT, in this case). Reviewing these values shows you that participant 8 contributed the 
AGE value of 37, participant 12 contributed the AGE value of 68, and so forth. Compare these results in the 
extremes table with the actual raw data (reproduced earlier) to verify that these are in fact the specific 
participants who provided these values on AGE. 

On the right side of the extremes table, similar information is provided, though in this case, it is provided for the 
five highest values observed in the dataset. Under the heading “Highest” (and reading from the bottom up), you 
can see that the highest value on age was 75, and it was provided by participant 3, the next highest value was 
74, provided by participant 17, and so forth. 

This Extreme Observations table is useful for quickly identifying those participants who may have contributed 
outliers to a dataset. For example, in the present case you were able to determine that it was participant 8 who 
contributed the outlier on AGE. Using the Extreme Observations table may not be necessary when working 
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with a very small dataset as in the present situation, but it can be invaluable when dealing with a large number 
of responses. For example, if you know that you have an outlier in a dataset with 1,000 observations, the 
Extreme Observations table can help quickly identify outliers. This will save you from the tedious chore of 
individually examining each of the 1,000 data lines. 

Understanding the Stem-Leaf Plot 
A Stem-Leaf plot provides a visual depiction of your data with conventions somewhat similar to Figures A.4.2, 
A.4.3, and A.4.4. Output A.4.6 provides the Stem-Leaf plot for Sample A (the approximately-normal 
distribution). 

Output A.4.6: Stem-Leaf Plot from PROC UNIVARIATE for Sample A (Approximately Normal Distribution) 
 

 
                        Stem Leaf                     #             Boxplot                      
                          75 0                        1                |                         
                          74 0                        1                |                         
                          73 00                       2                |                         
                          72 000                      3             +-----+                      
                          71 0000                     4             *--+--*                      
                          70 000                      3             +-----+                      
                          69 00                       2                |                         
                          68 0                        1                |                         
                          67 0                        1                |                         
                             ----+----+----+----+                                                
                                                                                                                                                 
                                         Normal Probability Plot                                 
                      75.5+                                           * +++++                    
                          |                                      * +++++                         
                          |                                 * +*+++                              
                          |                             **+*++                                   
                      71.5+                       **+**++                                        
                          |                  * **+++                                             
                          |              * +*+++                                                 
                          |           +*+++                                                      
                      67.5+      +*+++                                                           
                           +----+----+----+----+----+----+----+----+----+----+                   
                               -2        -1         0        +1        +2                                                                         
                                                                                                 

 
To understand a Stem-Leaf plot, think of each participant’s score on AGE as consisting of a “stem” and a 
“leaf.” The stem is that part of the value that appears to the left of the decimal point, and the leaf consists of 
that part that appears to the right of the decimal point. For example, participant 8 in Sample A had a value on 
AGE of 67. For this participant, the stem is 67 (because it appears to the left of the decimal point) and the leaf is 
0 (because it appears to the right). Participant 12 had a value on age of 68, so the stem for this value is 68, and 
the leaf is again 0. 

In the Stem-Leaf plot of Output A.4.6, the vertical axis (running up and down) plots the various stems that 
could be encountered in the dataset (these appear under the heading “Stem”). Reading from the top down, these 
stems are 75, 74, 73, and so forth. Notice that at the very bottom of the plot is the stem 67. To the right of this 
stem appears a single leaf (a single 0). This means that there was only one participant in Sample A with a stem-
leaf of 67 (i.e., a value on AGE of 67). Move up one line, and you see the stem 68. To the right of this, again 
one leaf appears (i.e., one zero appears), meaning that only one participant had a score on AGE of 68. Move up 
an additional line, and you see the stem 69. To the right of this, two leaves appear (i.e., two zeros appear). This 
means that there were two participants with a stem-leaf of 69 (two participants with values on AGE of 69). 
Continuing up the plot in this manner, you can see that there were three participants at age 70, four participants 
at age 71, three at age 72, two at age 73, one at 74, and one at 75. 
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On the right side of the Stem-Leaf plot appears a column headed “#.” This column prints the number of 
observations that appear at each stem. Reading from the bottom up, this column again confirms that there was 
one participant with a score on age of 67, one with a score of 68, two with a score of 69, and so forth. 

Reviewing Output A.4.6 shows that the shape of this Stem-Leaf plot is very similar to Sample A in Figure 
A.4.2. This is to be expected, since both figures apply similar conventions and both describe the data of Sample 
A. In Output A.4.6, notice that the shape of the distribution is symmetrical (i.e., neither tail is longer than the 
other). This, too, is to be expected since Sample A data has a skewness value of zero  

In most cases, the Stem-Leaf plot produced by UNIVARIATE will be more complex than the one depicted in 
Output A.5.6. For example, Output A.4.7 shows the Stem-Leaf plot for Sample B data from Figure A.4.2 (the 
distribution with an outlier). Consider the Stem-Leaf at the bottom of this plot. The stem for this entry is 3, and 
the leaf is 7, meaning that the stem-leaf is 3.7. Does this mean that some participant had a score on AGE of 3.7?  

Notice the note at the bottom of this plot, which says “Multiply Stem.Leaf by 10**+1.” This means “Multiply 
the stem-leaf by 10 raised to the first power.”  Ten raised to the first power (or 101), of course, is merely 10. 
This means that to find a participant’s actual value on AGE, you must multiply a stem-leaf for that participant 
by 10.  

For example, consider what this means for the stem-leaf at the bottom of this plot. This stem-leaf was 3.7. To 
find the actual score that corresponds to this stem-leaf, you would perform the following multiplication: 

3.7 X 10 = 37 

This means that for the participant who had a stem-leaf of 3.7, the actual value of AGE was 37.   

Output A.4.7:  Stem-Leaf Plot from PROC UNIVARIATE for Sample B (Distribution with Outlier) 

                        Stem Leaf                     #             Boxplot                      
                           7 5                        1                |                         
                           7 0001111222334           13             +-----+                      
                           6 899                      3                +                         
                           6                                                                     
                           5                                                                     
                           5                                                                     
                           4                                                                     
                           4                                                                     
                           3 7                        1                *                         
                             ----+----+----+----+                                                
                         Multiply Stem.Leaf by 10**+1                                            
                                                                                                 
                                                                                                 
                                         Normal Probability Plot                                 
                      77.5+                                ++++++     *                          
                          |                  * ** ** **+**+**  * *                               
                          |            * *  *  ++++++                                            
                          |              ++++++                                                  
                      57.5+        ++++++                                                        
                          |  ++++++                                                              
                          |++                                                                    
                          |                                                                      
                      37.5+       *                                                              
                           +----+----+----+----+----+----+----+----+----+----+                   
                               -2        -1         0        +1        +2                        
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Move up one line in the plot, and you come to the stem “4.” Note, however, that there are no leaves for this 
stem which means that there were no participants with a stem of 4.0 (i.e., no participant age 40). Reading up the 
plot, note that no leaves appear until you reach the stem “6.” The leaves on this line suggest that there was one 
participant with a stem-leaf of 6.8, and two participants with a stem-leaf of 6.9. Multiply these values by 10 to 
determine their actual values on AGE: 

6.8 X 10 = 68 
6.9 X 10 = 69 

Move up an additional line, and note that there are actually two stems for the value 7. The first stem (moving up 
the plot) includes stem-leaf values from 7.0 through 7.4, while the next stem includes stem-leaf values from 7.5 
through 7.9. Reviewing values in these rows, you can see that there are three participants with a stem-leaf of 
7.0, four with a stem-leaf of 7.1, and so forth. 

The note at the bottom of the plot told you to multiply each stem-leaf by 10 raised to the first power. However, 
sometimes this note will tell you to multiply by 10 raised to a different power. For example, consider the 
following note: 

Multiply Stem.Leaf by 10**+2 

This note tells you to multiply by 10 raised to the second power (i.e., 102) or 100. Notice what some of the 
actual values on AGE would have been if this note had appeared (needless to say, such large values would not 
have made sense for the AGE variable): 

6.8 X 100 = 680 
6.9 X 100 = 690 

All of this multiplication probably seems somewhat tedious at this point, but there is a simple rule to interpret 
the note that sometimes appears at the bottom of a Stem-Leaf plot. Remember that the power to which 10 is 
raised indicates the number of decimal places you should move the decimal point in the stem-leaf. Once you 
have moved the decimal point this number of spaces, your stem-leaf will represent the actual value of 
interested. For example, consider the following note: 

Multiply Stem.Leaf by 10**+1 

This note tells you to multiply the stem-leaf by 10 raised to the power of one; in other words, move the decimal 
point one space to the right. Imagine that you start with a stem-leaf of 3.7. Moving the decimal point one space 
to the right results in an AGE value of 37. If you begin with a stem-leaf of 6.8, this becomes 68. 

On the other hand, consider if the plot had included this note: 

Multiply Stem.Leaf by 10**+2 

It would have been necessary to move the decimal point two decimal spaces to the right. In this case, a stem-leaf 
of 3.7 would become 370; 6.8 would become 680. (Again, these values would not make sense for AGE; they 
are used only for purposes of demonstration.) Finally, remember that, if no note appears at the bottom of the 
plot, it is not necessary to move the decimal points for the stem-leaf values at all.  
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Results for Distributions Demonstrating Skewness 
Output A.4.8 provides some results from the PROC UNIVARIATE analysis of Sample E from Figure A.4.4. 
You will recall that this sample demonstrated a positive skew. 

Output A.4.8: Tables and the Stem-Leaf Plot from PROC UNIVARIATE for Sample E (Positive Skewness) 

The UNIVARIATE Procedure 
Variable: AGE 

 

Moments 

N 18 Sum Weights 18 

Mean 68.7777778 Sum Observations 1238 

Std Deviation 3.62273143 Variance 13.124183 

Skewness 0.86982584 Kurtosis 0.11009602 

Uncorrected SS 85370 Corrected SS 223.111111 

Coeff Variation 5.26729933 Std Error Mean 0.85388599 

 

Basic Statistical Measures 

Location Variability 

Mean 68.77778 Std Deviation 3.62273 

Median 68.00000 Variance 13.12418 

Mode 66.00000 Range 13.00000 

  Interquartile Range 5.00000 

 

Tests for Location: Mu0=0 

Test Statistic p Value 

Student's t t 80.54679 Pr > |t| <.0001 

Sign M 9 Pr >= |M| <.0001 

Signed Rank S 85.5 Pr >= |S| <.0001 

 

Tests for Normality 

Test Statistic p Value 

Shapiro-Wilk W 0.929575 Pr < W 0.1909 

Kolmogorov-Smirnov D 0.14221 Pr > D >0.1500 

Cramer-von Mises W-Sq 0.074395 Pr > W-Sq 0.2355 

Anderson-Darling A-Sq 0.465209 Pr > A-Sq 0.2304 
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Quantiles (Definition 5) 

Quantile Estimate 

100% Max 77 

99% 77 

95% 77 

90% 75 

75% Q3 71 

50% Median 68 

25% Q1 66 

10% 65 

5% 64 

1% 64 

0% Min 64 

 
 

Extreme Observations 

Lowest Highest 

Value PARTICIPANT Obs Value PARTICIPANT Obs 

64 18 18 71 5 5 

65 17 17 72 4 4 

65 16 16 73 3 3 

66 15 15 75 2 2 

66 14 14 77 1 1 

 

                        Stem Leaf                     #             Boxplot                      
                          76 0                        1                |                         
                          74 0                        1                |                         
                          72 00                       2                |                         
                          70 00                       2             +-----+                      
                          68 0000                     4             *--+--*                      
                          66 00000                    5             +-----+                      
                          64 000                      3                |                         
                             ----+----+----+----+                                                
                                                                                                 
                                                                                                 
                                         Normal Probability Plot                                 
                        77+                                           * ++++++                   
                          |                                      * +++++                         
                          |                                 *++*+++                              
                        71+                             +*+*+                                    
                          |                       +*+**+*                                        
                          |                 **+**+*                                              
                        65+       *    *+*+++                                                    
                           +----+----+----+----+----+----+----+----+----+----+                   
                               -2        -1         0        +1        +2                        
                                                                                                 
                                                                                                 

 
Remember that when the approximately normal distribution was analyzed, it displayed a skewness index of 
zero. In contrast, note that the skewness index for Sample E in Output A.4.8 is close to .87. This positive 
skewness index is what you would expect, given the positive skew of the data. The skew is also reflected in the 
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Stem-Leaf plot that appears in Output A.4.8. Notice the relatively long tail that points in the direction of higher 
values for age (such as 74 and 76). 

Although this sample displays positive skewness, it does not display a significant departure from normality. In 
the Tests for Normality table of Output A.4.8, you can see that the Shapiro-Wilk statistic (to the right of “W”) is 
.93; its corresponding p value (to the right of “Pr < W”) is .19. Because this p value is greater than .05, you need 
not reject the null hypothesis. With small samples such as the one examined here, this test is not very powerful 
(i.e., is not very sensitive). This is why the sample was not found to display a significant departure from 
normality, even though it was clearly skewed. 

For purposes of contrast, Output A.4.9 presents the results of an analysis of Sample F from Figure A.4.4. 
Sample F displayed negative skewness, and this is reflected in the skewness index of –.87 that appears in 
Output A.4.9. Once again, the Shapiro-Wilk test shows that the sample does not demonstrate a significant 
departure from normality. 

Output A.4.9: Tables and Stem-Leaf Plot from PROC UNIVARIATE for Sample F (Negative Skewness) 
The UNIVARIATE Procedure 

Variable: AGE 
 

Moments 

N 18 Sum Weights 18 

Mean 72.2222222 Sum Observations 1300 

Std Deviation 3.62273143 Variance 13.124183 

Skewness -0.8698258 Kurtosis 0.11009602 

Uncorrected SS 94112 Corrected SS 223.111111 

Coeff Variation 5.01608967 Std Error Mean 0.85388599 

 

Basic Statistical Measures 

Location Variability 

Mean 72.22222 Std Deviation 3.62273 

Median 73.00000 Variance 13.12418 

Mode 75.00000 Range 13.00000 

  Interquartile Range 5.00000 

 

Tests for Location: Mu0=0 

Test Statistic p Value 

Student's t t 84.58064 Pr > |t| <.0001 

Sign M 9 Pr >= |M| <.0001 

Signed Rank S 85.5 Pr >= |S| <.0001 

 

Tests for Normality 

Test Statistic p Value 

Shapiro-Wilk W 0.929575 Pr < W 0.1909 

Kolmogorov-Smirnov D 0.14221 Pr > D >0.1500 

Cramer-von Mises W-Sq 0.074395 Pr > W-Sq 0.2355 

Anderson-Darling A-Sq 0.465209 Pr > A-Sq 0.2304 
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Quantiles (Definition 5) 

Quantile Estimate 

100% Max 77 

99% 77 

95% 77 

90% 76 

75% Q3 75 

50% Median 73 

25% Q1 70 

10% 66 

5% 64 

1% 64 

0% Min 64 

 

Extreme Observations 

Lowest Highest 

Value PARTICIPANT Obs Value PARTICIPANT Obs 

64 18 18 75 5 5 

66 17 17 75 6 6 

68 16 16 76 2 2 

69 15 15 76 3 3 

70 14 14 77 1 1 

 

                        Stem Leaf                     #             Boxplot                      
                          76 000                      3                |                         
                          74 00000                    5             +-----+                      
                          72 0000                     4             *--+--*                      
                          70 00                       2             +-----+                      
                          68 00                       2                |                         
                          66 0                        1                |                         
                          64 0                        1                |                         
                             ----+----+----+----+                                                
                                                                                                 
                                                                                                 
                                         Normal Probability Plot                                 
                        77+                                    *+*++  *                          
                          |                           * **+**++                                  
                          |                     * **+*+++                                        
                        71+                  *+*++++                                             
                          |              *++*+                                                   
                          |        ++++*+                                                        
                        65+   ++++*                                                              
                           +----+----+----+----+----+----+----+----+----+----+                   
                               -2        -1         0        +1        +2                        
                                                                                                 
                                                                                                 

 

 
The Stem-Leaf plot of Output A.4.9 reveals a long tail that points in the direction of lower values for AGE 
(such as 64 and 66). This, of course, is the type of plot that you would expect for a negatively skewed 
distribution. 
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Conclusion 
Regardless of what other statistical procedures you use, always begin the data analysis process by performing 
the simple analyses described herein. This will help to ensure that the data and program do not contain obvious 
errors that, if left unidentified, could lead to incorrect conclusions. Once the data have undergone this initial 
screening, you may move forward to the more sophisticated procedures described in this text.  

Reference 
Cozby, P. C., & Bates, S. C. (2011). Methods in Behavioral Research (11th Ed.). Toronto, ON: McGraw-Hill. 
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Introduction: When Are Pearson Correlations Appropriate? 
The Pearson product-moment correlation coefficient (symbolized with the lower-case letter r) can be used to 
assess the nature of the relationship between variables when both are measured on either an interval- or ratio-
levels of measurement. It is further assumed that both variables should include a relatively large number of 
values. For example, you would not use this statistic if one of the variables could assume only three values. 

It would be appropriate to compute a Pearson correlation coefficient to identify the nature of the relationship 
between SAT critical reading test scores and grade point average (GPA). Critical reading scores are measured 
on an interval-level and may assume a wide variety of values (i.e., possible scores range from 200 through 800). 
Grade point ratio is also assessed on an interval level and may also assume a wide variety of values from 0.00 
through 4.00. 

There are a number of additional assumptions that should be met before computing Pearson correlations 
between sets of variables (e.g., bivariate normal distribution). These assumptions are listed at the end of this 
appendix. 
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Interpreting the Coefficient 
To more fully understand the nature of the relationship between the two variables, it is necessary to interpret 
two characteristics of a Pearson correlation coefficient. First, the sign of the coefficient tells you whether there 
is a positive or negative relationship between variables. A positive correlation indicates that as values for one 
variable increase, values for the second variable also increase. A positive correlation is illustrated in Figure 
A.5.1 which shows the relationship between SAT critical reading test scores and GPA in a fictitious sample.  

Figure A.5.1: A Positive Correlation 

 

You can see that participants who received low scores on the predictor variable (critical reading) also received 
low scores on the criterion variable (GPA). At the same time, participants who received high critical reading 
test scores also received high scores on GPA. The two variables may therefore be positively correlated. 

With a negative correlation, as values for one variable increase, values for the second variable decrease. For 
example, you might expect to see a negative correlation between critical reading test scores and the number of 
errors that participants make on a vocabulary test (i.e., the students with high critical reading scores tend to 
make few mistakes, and the students with low test scores tend to make many mistakes). This relationship is 
illustrated with fictitious data in Figure A.5.2. 
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Figure A.5.2: A Negative Correlation 

 

The second characteristic of a correlation coefficient is its magnitude: The greater the absolute value of a 
correlation coefficient, the stronger the relationship between variables. Pearson correlation coefficients range 
from –1.00 through 0.00 to +1.00. Coefficients of 0.00 indicate no relationship between variables. For example, 
if there were a coefficient of zero between critical reading test scores and GPA, then knowing a person’s critical 
reading test score would tell you nothing about his or her GPA. In contrast, coefficients of –1.00 or +1.00 
indicate perfect correlation. If the coefficient between critical reading test scores and GPA were 1.00, it would 
mean that knowing someone’s critical reading test score would allow you to predict his or her GPA with 
complete accuracy. In the real world, however, critical reading test scores are not that strongly related to GPA, 
so you would expect the correlation between them to be considerably less than 1.00.   

The following is an approximate guide for interpreting the strength of the association between two variables, 
based on the absolute value of the coefficient: 

±1.00 = Perfect correlation 
 ±.80 = Strong correlation 
 ±.50 = Moderate correlation 
 ±.20 = Weak correlation 
 ±.00 = No correlation 

We recommend that you consider the magnitude of correlation coefficients as opposed to whether or not 
coefficients are statistically significant. This is because significance estimates (i.e., p values) are strongly 
influenced by sample sizes. For instance, an r value of .15 (weak correlation) would be statistically significant 
with samples in excess of 700 whereas a coefficient of .50 (moderate correlation) would not be statistically 
significant with a sample of only 15 participants. 

Remember that one considers the absolute value of coefficients when interpreting their size. This is to say that a 
correlation of –.50 is just as strong as a correlation of +.50, a correlation of –.75 is just as strong as a correlation 
of +.75, and so forth. 
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Linear versus Nonlinear Relationships 
The Pearson correlation coefficient is appropriate only if there is a linear relationship between variables. There 
is a linear relationship between two variables when their scattergram follows the form of a straight line. For 
example, it is possible to draw a straight line through the center of the scattergram presented in Figure A.5.3, 
and this straight line fits the pattern of the data fairly well. This means that there is a linear relationship between 
critical reading test scores and GPA. 

Figure A.5.3:  A Linear Relationship 

 

In contrast, there is a nonlinear relationship between two variables if their scattergram does not follow the 
general form of a straight line.  For example, imagine that you have constructed a test of creativity and have 
administered it to a large sample of college students. With this test, higher scores reflect higher levels of 
creativity.  Imagine further that you obtain the critical reading test scores for these students, plot their SAT 
scores against their creativity scores, and obtain the scattergram presented in Figure A.5.4.   
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Figure A.5.4: A Nonlinear Relationship 

 

The scattergram in Figure A.5.4 reveals a nonlinear relationship between critical reading test scores and 
creativity. It shows that:  

• students with low critical reading test scores tend to have low creativity scores;  

• students with moderate critical reading test scores tend to have high creativity scores; 

• students with high critical reading test scores tend to have low creativity scores.   

It is not possible to draw a good-fitting straight line through the data points in Figure A.5.4. This is why we say 
that there is a nonlinear (here, curvilinear) relationship between critical reading test scores and creativity 
scores. 

When one uses the Pearson correlation coefficient to assess the relationship between variables reflecting a 
nonlinear relationship, the resulting coefficient usually underestimates the actual strength of association 
between variables. For example, computing the Pearson correlation between critical reading and creativity 
scores presented in Figure A.5.4 might result in a coefficient of .10 which would indicate a very weak 
relationship between variables. From the diagram, however, there is clearly a fairly strong relationship between 
critical reading test scores and creativity. The figure shows that if you know someone’s SAT score, you can 
accurately predict his or her creativity score. 

The conclusion here is that you should verify that there is a linear relationship between variables before 
computing a Pearson correlation coefficient between those variables.  One of the easiest ways of verifying that 
the relationship is linear is to prepare a scattergram similar to those presented in the preceding figures.  
Fortunately, this is easily done with the SAS PLOT procedure.  
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Producing Scattergrams with PROC PLOT 
Here is the general form for requesting a scattergram with the PLOT procedure: 

proc plot   data=dataset-name; 
   plot    criterion-variable*predictor-variable ; 
run; 

The variable listed as the “criterion-variable” in the preceding program will be plotted on the vertical axis, and 
the “predictor-variable” will be plotted on the horizontal axis. 

To illustrate this procedure, imagine that you have conducted a study dealing with the investment model, a 
theory of commitment in romantic associations (Rusbult, 1980; Le and Agnew, 2003). The investment model 
identifies a number of variables that are believed to influence one’s commitment to a romantic association. 
Commitment refers to the person’s intention to remain in the relationship. These are some of the variables that 
are predicted to influence commitment: 

Satisfaction 
The person’s affective response to the relationship. 

Investment size 
The amount of time and personal resources that the person has put into the relationship. 

Alternative value 
The attractiveness of alternatives to one’s current relationship (e.g., the attractiveness of other prospective 
romantic partners). 

Assume that you have developed a 16-item questionnaire to measure these four variables. The questionnaire is 
administered to 20 participants who are currently involved in a romantic relationship; participants are asked to 
complete the instrument while thinking about their current relationship. When they have completed the 
questionnaire, it is possible to compute four scores for each participant. First, each receives a score on the 
commitment scale based on his or her responses. Higher values on the commitment scale reflect greater 
commitment to the relationship.  Each participant also receives a score on the satisfaction scale, where higher 
scores reflect greater satisfaction with the relationship. Higher scores on the investment scale mean that the 
participant believes that he or she has invested a great deal of time and effort in the relationship. Finally, with 
the alternative value scale, higher scores mean that it would be attractive to the respondent to find a different 
romantic partner.    

Once data have been entered, you can use the PLOT procedure to prepare scattergrams for various 
combinations of variables. The following SAS program inputs some fictitious data and requests that a 
scattergram be prepared in which commitment scores are plotted against satisfaction scores: 
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        data D1; 
          input   #1   @1   COMMITMENT   2. 
                       @4   SATISFACTION 2.   
                       @7   INVESTMENT   2. 
                       @10  ALTERNATIVES 2.   ; 
       datalines; 
       20 20 28 21 
       10 12  5 31 
       30 33 24 11 
        8 10 15 36 
       22 18 33 16 
       31 29 33 12 
        6 10 12 29 
       11 12  6 30 
       25 23 34 12 
       10  7 14 32 
       31 36 25  5 
        5  4 18 30 
       31 28 23  6 
        4  6 14 29 
       36 33 29  6 
       22 21 14 17 
       15 17 10 25 
       19 16 16 22 
       12 14 18 27 
       24 21 33 16 
       ; 
       run; 
   
❶      proc plot   data=D1; 
         plot COMMITMENT*SATISFACTION; 
        run; 

In the preceding program, scores on the commitment scale are entered in columns 1 to 2, and are given the SAS 
variable name COMMITMENT. Similarly, scores on the satisfaction scale are entered in columns 4 to 5, and 
are given the name SATISFACTION; scores on the investment scale appear in columns 7 to 8 and are given the 
name INVESTMENT; and scores on the alternative value scale appear as the last column of data, and are given 
the name ALTERNATIVES.   

The data for the 20 participants appear in this program. There is one line of data for each participant.   

Line ❶ of the program requests the PLOT procedure, specifying that the dataset to be analyzed is dataset D1. 
The PLOT command specifies COMMITMENT as the criterion variable and SATISFACTION as the predictor 
variable for this analysis. The results of this analysis appear in Output A.5.1. 
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Output A.5.1: Scattergram of Commitment Scores Plotted against Satisfaction Scores 

              Plot of COMMITMENT*SATISFACTION.  Legend: A = 1 obs, B = 2 obs, etc.               
                                                                                                 
COMMITMENT ‚                                                                                     
           ‚                                                                                     
        36 ˆ                                                                   A                 
        35 ˆ                                                                                     
        34 ˆ                                                                                     
        33 ˆ                                                                                     
        32 ˆ                                                                                     
        31 ˆ                                                         A A             A           
        30 ˆ                                                                   A                 
        29 ˆ                                                                                     
        28 ˆ                                                                                     
        27 ˆ                                                                                     
        26 ˆ                                                                                     
        25 ˆ                                               A                                     
        24 ˆ                                           A                                         
        23 ˆ                                                                                     
        22 ˆ                                     A     A                                         
        21 ˆ                                                                                     
        20 ˆ                                         A                                           
        19 ˆ                                 A                                                   
        18 ˆ                                                                                     
        17 ˆ                                                                                     
        16 ˆ                                                                                     
        15 ˆ                                   A                                                 
        14 ˆ                                                                                     
        13 ˆ                                                                                     
        12 ˆ                             A                                                       
        11 ˆ                         A                                                           
        10 ˆ               A         A                                                           
         9 ˆ                                                                                     
         8 ˆ                     A                                                               
         7 ˆ                                                                                     
         6 ˆ                     A                                                               
         5 ˆ         A                                                                           
         4 ˆ             A                                                                       
           ‚                                                                                     
           Šƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒ 
             0         5        10        15        20        25        30        35        40   
                                                                                                 
                                                SATISFACTION                                     

 

Notice that in this output, the criterion variable (COMMITMENT) is plotted on the vertical axis and the 
predictor variable (SATISFACTION) is plotted on the horizontal axis. The shape of the scattergram indicates 
that there is a linear relationship between SATISFACTION and COMMITMENT. This is evident from the fact 
that it would be possible to draw a relatively good-fitting straight line through the center of the scattergram. 
Given that the relationship is linear, it seems appropriate to compute the Pearson correlation coefficient for this 
pair of variables.  

The general shape of the scattergram also suggests that there is a fairly strong relationship between variables: 
Knowing where a participant stands on the SATISFACTION variable allows you to predict with some accuracy 
where that participant will stand on the COMMITMENT variable. Later, you will compute the correlation 
coefficient to determine just how strong the relationship is between these two variables. 

Output A.5.1 also indicates that the relationship between SATISFACTION and COMMITMENT is positive 
(i.e., large values on SATISFACTION are associated with large values on COMMITMENT and small values on 
SATISFACTION are associated with small values on COMMITMENT). This makes intuitive sense; you would 
expect that participants who are highly satisfied with their relationships would also be highly committed to  
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those relationships. To illustrate a negative relationship, you can plot COMMITMENT against 
ALTERNATIVES. To do this, include the following statements in the preceding program: 

       proc plot   data=D1; 
          plot COMMITMENT*ALTERNATIVES; 
       run; 

These statements are identical to the earlier statements except that ALTERNATIVES has now been specified as 
the predictor variable. These statements produce the scattergram presented in Output A.5.2. 

Output A.5.2: Scattergram of Commitment Scores Plotted against Alternative Value Scores  

              Plot of COMMITMENT*ALTERNATIVES.  Legend: A = 1 obs, B = 2 obs, etc.               
                                                                                                 
 COMMITMENT ‚                                                                                    
            ‚                                                                                    
         36 ˆ    A                                                                               
         35 ˆ                                                                                    
         34 ˆ                                                                                    
         33 ˆ                                                                                    
         32 ˆ                                                                                    
         31 ˆ  A A            A                                                                  
         30 ˆ               A                                                                    
         29 ˆ                                                                                    
         28 ˆ                                                                                    
         27 ˆ                                                                                    
         26 ˆ                                                                                    
         25 ˆ                 A                                                                  
         24 ˆ                          A                                                         
         23 ˆ                                                                                    
         22 ˆ                          A A                                                       
         21 ˆ                                                                                    
         20 ˆ                                     A                                              
         19 ˆ                                       A                                            
         18 ˆ                                                                                    
         17 ˆ                                                                                    
         16 ˆ                                                                                    
         15 ˆ                                              A                                     
         14 ˆ                                                                                    
         13 ˆ                                                                                    
         12 ˆ                                                  A                                 
         11 ˆ                                                         A                          
         10 ˆ                                                           A A                      
          9 ˆ                                                                                    
          8 ˆ                                                                      A             
          7 ˆ                                                                                    
          6 ˆ                                                       A                            
          5 ˆ                                                         A                          
          4 ˆ                                                       A                            
            ‚                                                                                    
            Šƒƒˆƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒˆƒƒ  
               5         10         15         20         25         30         35         40    
                                                                                                 
                                                ALTERNATIVES                                     

 
Notice that the relationship between these variables is negative.  This is what you would expect as it makes 
intuitive sense that participants who indicate that alternatives to their current romantic partners are attractive 
would not be overly committed to their current partners. The relationship between ALTERNATIVES and 
COMMITMENT also appears to be linear. It is therefore appropriate to assess the strength of the relationship 
between these variables using the Pearson correlation coefficient. 
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Computing Pearson Correlations with PROC CORR 
The CORR procedure offers a number of options regarding what type of coefficient will be computed as well as 
a number of options regarding the way they will appear. Some of these options are discussed here. 

Computing a Single Correlation Coefficient 
In some instances, you may wish to compute the correlation between just two variables. Here is the general 
form for the statements that will accomplish this: 

proc corr   data=dataset-name   options;  
   var   variable1   variable2; 
run;   

The choice of which variable is “variable1” and which is “variable2” is arbitrary. For a specific example, 
assume that you want to compute the correlation between commitment and satisfaction. These are the required 
statements: 

proc corr   data=D1; 
   var COMMITMENT SATISFACTION; 
run; 

This program command results in a single page of output, reproduced here as Output A.5.3: 

Output A.5.3:  Computing the Pearson Correlation between Commitment and Satisfaction  
The CORR Procedure 

 

2 Variables: COMMITMENT SATISFACTION 

 

Simple Statistics 

Variable N Mean Std Dev Sum Minimum Maximum 

COMMITMENT 20 18.60000 10.05459 372.00000 4.00000 36.00000 

SATISFACTION 20 18.50000 9.51177 370.00000 4.00000 36.00000 

 

Pearson Correlation Coefficients, N = 20  
Prob > |r| under H0: Rho=0 

 COMMITMENT SATISFACTION 

COMMITMENT 1.00000 

  

0.96252 

<.0001 
 

SATISFACTION 0.96252 

<.0001 
 

1.00000 

  

 
The first part of Output A.5.3 presents simple descriptive statistics (Simple Statistics) for the variables being 
analyzed. This allows you to verify that everything looks appropriate (e.g., the correct numbers of cases were 
analyzed, no out-of-range variables). The names of the variables appear below the “Variable” heading, and 
statistics for the variables appear to the right of the variable names. These descriptive statistics show that 20 
participants provided usable data for the COMMITMENT variable, that the mean for COMMITMENT is 18.6 
and the standard deviation is 10.05. It is important to review the “Minimum” and “Maximum” columns to 
verify that no impossible scores appear. With COMMITMENT, the lowest possible score was 4 and the highest  
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possible score was 36. The “Minimum” and “Maximum” columns of Output A.5.3 show that no observed 
values were out of range (i.e., no evidence of incorrectly entered data). Again, these procedures do not 
guarantee no data entry errors were made, but they are useful for identifying some types of errors. Since the 
descriptive statistics provide no obvious evidence of entering or programming mistakes, you are now free to 
review the correlations themselves. 

The bottom table of Output A.5.3 reports the correlation coefficients requested in the VAR statement.  There are 
actually four coefficients in the output because your statement requested that SAS compute every possible 
correlation between COMMITMENT and SATISFACTION. This caused SAS to compute the correlation 
between COMMITMENT and SATISFACTION, between SATISFACTION and COMMITMENT, between 
COMMITMENT and COMMITMENT, and between SATISFACTION and SATISFACTION.  

The correlation between COMMITMENT and COMMITMENT appears in the upper-left corner of the matrix 
of coefficients in Output A.5.3. You can see that the correlation between these variables is 1.00; this makes 
sense, because the correlation of any variable with itself is always equal to 1.00. Similarly, in the lower-right 
corner, you see that the correlation between SATISFACTION and SATISFACTION is also 1.00. 

The coefficient you are actually interested in appears where the column headed COMMITMENT intersects with 
the row headed SATISFACTION. The top number in the “cell” where this column and row intersect is .96, 
which is the correlation between COMMITMENT and SATISFACTION (rounded to two decimal places).   

Just below the correlation is the p value associated with this coefficient. This is the significance estimate 
obtained from a test of the null hypothesis that the correlation between COMMITMENT and SATISFACTION 
is zero in the population. More technically, the p value gives us the probability that you would obtain a 
coefficient this large (or larger) if the correlation between COMMITMENT and SATISFACTION was zero in 
the population.  For this coefficient, r = .96 and the corresponding p value is less than .01. This means that, 
given your sample size, there is less than 1 chance in 100 of obtaining a correlation of .96 or larger from this 
population by chance alone. You may therefore reject the null hypothesis and tentatively conclude that 
COMMITMENT is significantly associated with SATISFACTION in the population. The alternative hypothesis 
for this statistical test is that the correlation is not equal to zero in the population. This alternative hypothesis is 
2-sided (or 2-tailed) which means that it does not predict whether the correlation coefficient is positive or 
negative, only that it is not equal to zero. 

Determining Sample Size 
The size of the sample used in computing the correlation coefficient may appear in one of two places in the 
output. If all correlations in the analysis were based on the same number of participants, the sample size appears 
only once in the line above the matrix of correlations.  This line appears just below the descriptive statistics. In 
Output A.5.3 the line says:  

Pearson Correlation Coefficients, N = 20 

The “N =” portion of this output indicates the sample size.  In Output A.5.3, the sample size is 20. 

However, if one is requesting correlations between several different pairs of variables, it is possible that certain 
coefficients will be based on more participants than others due to missing data. In this case, the sample size will 
be printed for each correlation coefficient. Specifically, the sample size will appear immediately just below the 
correlation coefficient and its associated significance level (i.e., p value), following this format: 

Correlation 

P value 

N 
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Computing All Possible Correlations for a Set of Variables 
Here is the general form for computing all possible Pearson correlation coefficients for a set of variables: 

proc corr   data=dataset-name   options;  
   var   variable-list; 
run;   

Each variable name in the preceding “variable-list” should be separated by at least one space. For example, 
assume that you now wish to compute all possible correlations for the variables COMMITMENT, 
SATISFACTION, INVESTMENT, and ALTERNATIVES. The statements that request these correlations are as 
follows: 

proc corr   DATA=D1; 
   var COMMITMENT SATISFACTION INVESTMENT ALTERNATIVES; 
run; 

The preceding program produced the output reproduced here as Output A.5.4: 

Output A.5.4:  Computing All Possible Pearson Correlation Coefficients  

The CORR Procedure 
 

4 Variables: COMMITMENT SATISFACTION INVESTMENT ALTERNATIVES 

 

Simple Statistics 

Variable N Mean Std Dev Sum Minimum Maximum 

COMMITMENT 20 18.60000 10.05459 372.00000 4.00000 36.00000 

SATISFACTION 20 18.50000 9.51177 370.00000 4.00000 36.00000 

INVESTMENT 20 20.20000 9.28836 404.00000 5.00000 34.00000 

ALTERNATIVES 20 20.65000 9.78869 413.00000 5.00000 36.00000 

 

Pearson Correlation Coefficients, N = 20  
Prob > |r| under H0: Rho=0 

 COMMITMENT SATISFACTION INVESTMENT ALTERNATIVES 

COMMITMENT 1.00000 

  

0.96252 

<.0001 
 

0.71043 

0.0004 
 

-0.95604 

<.0001 
 

SATISFACTION 0.96252 

<.0001 
 

1.00000 

  

0.61538 

0.0039 
 

-0.93355 

<.0001 
 

INVESTMENT 0.71043 

0.0004 
 

0.61538 

0.0039 
 

1.00000 

  

-0.72394 

0.0003 
 

ALTERNATIVES -0.95604 

<.0001 
 

-0.93355 

<.0001 
 

-0.72394 

0.0003 
 

1.00000 
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You can interpret the correlations and significance values in this output in exactly the same way as with the 
preceding output. For example, to find the correlation between INVESTMENT and COMMITMENT, you find 
the cell where the row for INVESTMENT intersects with the column for COMMITMENT. The top number in 
this cell is .71, which is the Pearson correlation coefficient for these two variables. Just below this coefficient is 
the p value which is less than .01, meaning that there is less than 1 chance in 100 of obtaining a sample 
correlation this large if the population correlation is really zero. The observed coefficient is statistically 
significant. 

Notice that the pattern of the correlations supports some of the predictions of the investment model: 
Commitment is positively related to satisfaction and investment size and is negatively related to alternative 
value. With respect to magnitude, the correlations range from being moderately strong to very strong. 
(Remember, however, that these data are fictitious.) 

What happens if I omit the VAR statement?  It is possible to run PROC CORR without the VAR statement.  
This causes every possible correlation to be computed between all quantitative variables in the dataset.  Use 
caution in doing this, however.  With large datasets, leaving off the VAR statement may result in a very long 
printout. 

Computing Correlations between Subsets of Variables 
Using the WITH statement in the SAS program, it is possible to compute correlations between one subset of 
variables and a second subset of variables. The general form is as follows: 

proc corr   DATA=dataset-name   options;  
   var   variables-that-will-appear-as-columns; 
   with  variables-that-will-appear-as-rows;   
run;   

Any number of variables may appear in the VAR statement and any number of variables may also appear in the 
WITH statement. To illustrate, assume that you want to prepare a matrix of correlation coefficients in which 
there is one column of coefficients, representing the COMMIT variable and there are three rows of coefficients 
representing the SATISFACTION, INVESTMENT, and ALTERNATIVES variables. The following statements 
would create this matrix: 

proc corr   DATA=D1; 
   var  COMMITMENT; 
   with SATISFACTION INVESTMENT ALTERNATIVES; 
run; 

Output A.5.5 presents the results generated by this program. Note, surprisingly, that the correlations in this 
output are identical to those obtained in Output A.5.4, though the Output A.5.5 is more compact. This is why it 
is often wise to use the WITH statement in conjunction with the VAR statement as this can produce smaller and 
more manageable printouts than obtained if you use only the VAR statement. 
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Output A.5.5:  Computing Pearson Correlation Coefficients for Subsets of Variables 

The CORR Procedure 
 

3 With Variables: SATISFACTION INVESTMENT ALTERNATIVES 

1 Variables: COMMITMENT 

 

Simple Statistics 

Variable N Mean Std Dev Sum Minimum Maximum 

SATISFACTION 20 18.50000 9.51177 370.00000 4.00000 36.00000 

INVESTMENT 20 20.20000 9.28836 404.00000 5.00000 34.00000 

ALTERNATIVES 20 20.65000 9.78869 413.00000 5.00000 36.00000 

COMMITMENT 20 18.60000 10.05459 372.00000 4.00000 36.00000 

 

Pearson Correlation Coefficients, N = 20  
Prob > |r| under H0: Rho=0 

 COMMITMENT 

SATISFACTION 0.96252 

<.0001 
 

INVESTMENT 0.71043 

0.0004 
 

ALTERNATIVES -0.95604 

<.0001 
 

 

Options Used with PROC CORR 
The following items are some of the PROC CORR options that you might find especially useful when 
conducting social science research. Remember that the option names should appear before the semicolon that 
ends the PROC CORR statement: 

ALPH 
prints Cronbach’s alpha which is an estimate of internal consistency of responses for the variables listed in 
the VAR statement; this is an index of scale reliability. Chapter 3 of this text deals with coefficient alpha in 
greater detail. 

COV 
prints the Covariance Matrix for variables. This is useful when you need a variance-covariance table 
instead of a table of correlation coefficients.  

KENDALL 
prints Kendall Tau-b Correlation coefficients, a measure of bivariate association between variables assessed 
at the ordinal level. 

NOMISS 
drops from the analysis any observation with missing data on any of the variables listed in the VAR 
statement. Using this option ensures that all correlations will be based on exactly the same observations 
and, therefore, on the same number of observations. 

NOPROB 
prevents printing the p values associated with the correlation coefficients. 
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RANK 
for each variable, reorders the correlations from highest to lowest (in absolute value) and displays them in 
this order. 

SPEARMAN 
prints Spearman Correlation Coefficients, which are appropriate for variables measured on an ordinal level.   

Appendix: Assumptions Underlying the Pearson Correlation Coefficient 

• Interval-level measurement.  Both predictor and criterion variables should be measured on the 
interval- or ratio-levels of measurement. 

• Random sampling.  Each participant will contribute one score on the predictor variable, and one score 
on the criterion variable. These pairs of scores should represent a random sample drawn from the 
population of interest. 

• Linearity.  The relationship between the criterion and predictor variables should be linear. This means 
that the mean criterion scores at each value of the predictor variable should fall on a straight line. The 
Pearson correlation coefficient is not appropriate for assessing the strength of the relationship between 
two variables with a curvilinear relationship. 

• Bivariate normal distribution.  The pairs of scores should follow a bivariate normal distribution  
(i.e., criterion variable scores should form a normal distribution at each value of the predictor variable). 
Similarly, scores of the predictor variable should form a normal distribution at each value of the 
criterion variable. When scores represent a bivariate normal distribution, they form an elliptical 
scattergram when plotted (i.e., their scattergram is shaped like a rugby ball [i.e., fat in the middle and 
tapered at both ends]). 
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Appendix B: Datasets 

Dataset from Chapter 1: Principal Component Analysis ..........................................395 

Datasets from Chapter 2: Exploratory Factor Analysis ............................................396 

Dataset from Chapter 3: Assessing Scale Reliability with Coefficient Alpha ...........397 

Dataset from Chapter 1: Principal Component Analysis 
Fictitious data from the Prosocial Orientation Inventory: 

data D1; 
   input   #1  @1  (V1-V6)   (1.) ; 
datalines; 
556754 
567343 
777222 
665243 
666665 
353324 
767153 
666656 
334333 
567232 
445332 
555232 
546264 
436663 
265454 
757774 
635171 
667777 
657375 
545554 
557231 
666222 
656111 
464555 
465771 
142441 
675334 
665131 
666443 
244342 
464452 
654665 
775221 
657333 
666664 
545333 
353434 

O’Rourke, Norm, and Larry Hatcher. A Step-by-Step Approach to Using SAS® for Factor Analysis and Structural Equation Modeling, Second Edition.  
Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



396   A Step-by-Step Approach to Using SAS for Factor Analysis and Structural Equation Modeling, Second Edition  
 

666676 
667461 
544444 
666443 
676556 
676444 
676222 
545111 
777443 
566443 
767151 
455323 
455544 
; 

Datasets from Chapter 2: Exploratory Factor Analysis 
Fictitious data from the investment model study: 

data D1; 
   input   #1  @1  (V1-V6)   (1.) 
               @8  (COMMIT)  (2.) ; 
datalines; 
776122 24 
776111 28 
111425  4 
222633 24 
551666  4 
666524  4 
633112 24 
766212 23 
454444 17 
111332  8 
444343 21 
556212 20 
543332 11 
677222 27 
666234 15 
557322  6 
555221 18 
544111 17 
424232 28 
445435 13 
767232 13 
444422  8 
653211 15 
555323 16 
655123 17 
221121 11 
666421 20 
454332  9 
655321 25 
444332 12 
433222 27 
777314 16 
555212  7 
443221  4 
243334 11 
666111 15 
423412 11 
555222 18 
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223332  8 
333335 13 
445433 22 
444323 12 
455556 22 
444112 17 
334445 12 
444321 16 
655222 15 
433344 15 
557332 20 
655222 13 
; 

Intercorrelations between 25 scales from the Job Search Skills Questionnaire, decimals omitted; standard 
deviations appear in parentheses along the diagonal, N = 220: 

 

Dataset from Chapter 3: Assessing Scale Reliability with Coefficient Alpha 
The dataset described in Chapter 3 is identical to the dataset from Chapter 1, which appears earlier. 

O’Rourke, Norm, and Larry Hatcher. A Step-by-Step Approach to Using SAS® for Factor Analysis and Structural Equation Modeling, Second Edition.  
Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



398   
 

 

O’Rourke, Norm, and Larry Hatcher. A Step-by-Step Approach to Using SAS® for Factor Analysis and Structural Equation Modeling, Second Edition.  
Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



Appendix C: Critical Values for the Chi-Square  
                    Distribution 

 

O’Rourke, Norm, and Larry Hatcher. A Step-by-Step Approach to Using SAS® for Factor Analysis and Structural Equation Modeling, Second Edition.  
Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



400   
 

 

O’Rourke, Norm, and Larry Hatcher. A Step-by-Step Approach to Using SAS® for Factor Analysis and Structural Equation Modeling, Second Edition.  
Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



Index 

A 
a priori models   151, 173  
absolute index 

in confirmatory factor analysis   214, 226 
in path analysis   144–146, 160, 164 
in structural equation modeling   267, 282 

adjusted correlation matrix   52 
ALL option, CALIS procedure   128 
ALPHA option, CORR procedure   101 
analyses of covariance structures 

See structural equation modeling 

B 
bivariate normal distribution 

in exploratory factor analysis   95 
in principal component analysis   41 

Bonferroni correction   242 

C 
CALIS procedure 

about   108, 201–202 
ALL option   128 
checking output from   138–149, 206–213 
correlation matrix and   200 
COV option   127–128 
COV statement   126, 135–137, 205, 260 
COVARIANCE option   127–128 
DATA= option   128 
estimating sample size requirements   114–115 
FCONV= option   128 
general form   127 
in confirmatory factor analysis   201–206 
in path analysis   111–113 
in principal component analysis   10 
in structural equation modeling   258–260 
KU option   128 
KURTOSIS option   126, 128 
Lagrange multiplier test and   127, 150, 153–166 
large differences in standard deviation and   127 
LINEQS statement   126, 129–134, 157, 162,  

202–204, 259 
MAXITER= option   128, 140 
METHOD= option   128–129 
MOD option   127, 129, 153–155, 202 
MODIFICATION option   127, 129, 153–155, 202 
overidentified models and   125 
PSUM option   129 
PSUMMARY option   129 
recursive path models and   125–126 
RES option   129 
RESIDUAL option   129 
RMSEA support   189 
S option   129 

SIMPLE option   129 
SUMMARY option   129 
TE option   129 
testing latent variable models   182 
TOTEFF option   129 
underidentified models and   122 
VAR statement   126, 137, 206 
VARIANCE statement   126, 134–135, 204–205, 

225, 259–260 
capitalization on chance   111 
causal models   247 
CFA 

See confirmatory factor analysis 
CFI (Comparative Fit Index) 

in confirmatory factor analysis   215 
in path analysis   144–145, 149 
in structural equation modeling   266–267 

chi-square difference test 
defined   240 
in confirmatory factor analysis   240 
in path analysis   153, 177–178 
in structural equation modeling   274–275 

chi square test 
in exploratory factor analysis   86 
in path analysis   142–144 

coefficient alpha 
assessing with CORR procedure   100–104 
computing   97 
formula for   100 
interpreting high value   100 

common factor analysis 
basic concepts   45–50 
defined   46 
investment model study   44–45 

common factors   46, 51–52 
common variance   52, 63 
communality 

defined   10, 49 
unique component versus   49–50 

Comparative Fit Index (CFI) 
in confirmatory factor analysis   215 
in path analysis   144–145, 149 
in structural equation modeling   266–267 

complex variables   196 
component loading   21 
component scores   23–27 
composite reliability   234–237 
confidence interval test   243 
confirmatory factor analysis 

about   182, 186 
additional information   245–246 
advantages of   186–187 
covariance structure analysis   186–187 
investment model study   192–245 
latent variable analyses concepts   185–186 
model of determinants of work performance    

182–184 

O’Rourke, Norm, and Larry Hatcher. A Step-by-Step Approach to Using SAS® for Factor Analysis and Structural Equation Modeling, Second Edition.  
Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



402   Index 

 

confirmatory factor analysis (continued) 
necessary conditions for   188–189 
sample size requirements for   189–192 
structural equation modeling versus   247 
two-step approach with latent variables   182 
variables supported in   111 

convergent validity   185–186, 238–239 
CORR procedure 

ALPHA option   101 
assessing coefficient alpha with   100–104 
exploratory factor analysis support   74 
4-item scale example   102–103 
NOMISS option   101, 126, 200 
NOPROB option   126 
POI example   26–27 
principal component analysis support   24 
3-item scale example   104 
VAR statement   101 

correlation coefficients, factor loading and   47–48 
correlation matrix   3, 126, 200 
COV option, CALIS procedure   127–128 
COV statement, CALIS procedure 

estimating, fixing, and constraining covariances   
136–137 

in confirmatory factor analysis   205 
in path analysis   135–136 
in structural equation modeling   260 
naming covariance estimates   136 
path analysis code example   126 
starting values for covariance estimates   137 

covariance matrix   126, 200 
COVARIANCE option, CALIS procedure   127–128 
covariance structure analysis 

See confirmatory factor analysis 
covariances 

as COV statement parameters   136–137 
as LINEQS statement parameters   132–133 
identifying among exogenous variables   118–119 
identifying for estimating   120 
reviewing significance tests for   148–149 

Cronbach's alpha   101 
curved double-headed arrow   109 

D 
data-driven modifications   150 
DATA= option, CALIS procedure   128 
DATA step 

performing confirmatory factor analysis   200–201 
performing exploratory factor analysis   54–55 
performing path analysis   125–126 
performing principal component analysis   10–11 

datasets, total variance in   6, 52 
degrees of freedom   143, 177 
dependent variables   109–110 
direct and indirect effects model   173 
directional paths in path analysis   109–110, 152–153 
discriminant validity   185–186, 239–244 

disturbance term   184, 253–255 
See also residual terms 

E 
ECVI (Expected Cross-Validation Index)   146 
effect sizes   114 
eigenequation   5 
eigenvalue-one criterion   17, 61 
eigenvalues 

defined   16 
eigenvalue-one criterion   17, 61 
proportion of variance criterion   19–20, 62–63 
scree test   18–19, 61–62 

endogenous variables 
CALIS procedure and   111–112 
defined   110 
disturbance term and   184 
identifying disturbance terms for   253–255 
identifying residual terms for   118–119, 196–197 
reviewing R2 values for   146–147, 274 

error term 
See residual terms 

estimated factor scores   51, 72–75 
exogenous variables 

defined   110 
estimating variances for   119–120 
identifying covariances among   118–119 
residual terms and   119 
testing significance of correlation between   149 

Expected Cross-Validation Index (ECVI)   146 
exploratory factor analysis 

about   43–44 
assumptions underlying   95 
investment model study   44–45, 53–54 
job search skills questionnaire   80–95 
orthogonal versus oblique models   47 
principal component analysis versus   50–52 
SAS program and output   54–58 
similarity to principal component analysis   52–53 
steps in conducting   58 

F 
factor analysis 

principal component analysis versus   6–7, 50–52 
similarity to principal component analysis   52–53 
underlying causal structure in   6–7 
variable communality and   10 

factor-based scales 
in exploratory factor analysis   75–77 
in principal component analysis   28 

factor-based scores   23, 28–29 
factor loadings 

in confirmatory factor analysis   216–219 
in exploratory factor analysis   47–48, 64 
in principal component analysis   21 
in structural equation modeling   268 
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factor pattern matrix 
in exploratory factor analysis   49, 64 
in principal component analysis   21 

FACTOR procedure 
eigenequation support   5 
factor analysis support   6, 10–13 
FLAG= option   11, 22, 56–57, 68 
METHOD= option   11, 57 
MINEIGEN= option   11, 17, 20, 24, 33, 57 
NFACT= option   11, 17, 23–24, 33, 57, 61,  

73–74, 87 
OUT= option   12, 23–24, 57, 73 
PLOTS= option   12, 18, 33, 57, 61 
POI example   13–16, 25–26 
PRIORS= option   12, 57 
ROTATE= option   12, 21, 57–58, 66 
ROUND option   12, 57 
SIMPLE option   12, 57 
VAR statement   12–13 

factor scores 
computing for principal component analysis    

23–27 
defined   23, 72 
estimating for exploratory factor analysis   73–75, 

77 
factor structure   70 
factor structure matrix   21, 70 
factorial complexity   48 
factors 

common   46 
defined   45–46 
initial extraction of   58–61 
number of items per   53–54 
unique   47 

FCONV= option, CALIS procedure   128 
FLAG= option, FACTOR procedure 

in exploratory factor analysis   56–57, 68 
in principal component analysis   11, 22 

four-factor model in exploratory factor analysis   91–95 

G 
goodness-of-fit test 

CALIS procedure and   112 
characteristics of ideal fit   149–150 
chi square test and   142–144 
confirmatory factor analysis and   215 
just-identified models and   123 
path analysis and   141–149, 168 
recursive path models and   123 
sexual harassment example and   175 
structural equation modeling and   266 

H 
hypothetical constructs   183 

I 
identified models   122 
incremental index 

in confirmatory factor analysis   214, 227 
in path analysis   144–145, 160, 164 
in structural equation modeling   267, 282 

independent variables   109–110, 131 
indicator variables 

See also manifest variables 
choosing   185–186 
conditions for confirmatory factor analysis   188 
reliability of   232–233 

indirect effects model   173 
Intelligence Quotient (IQ)   110 
internal consistency   99, 101 
interpretability criterion 

in exploratory factor analysis   63–64, 69 
in principal component analysis   20, 22 

interval-level measurement 
in exploratory factor analysis   95 
in path analysis   112 
in principal component analysis   41 

investment model study 
about   31–32, 114–116, 192 
assessing fit between model and data   141–150, 

213–219 
assessing reliability and validity of constructs and 

indicators   232–244 
characteristics of ideal fit   149–150, 244–245, 

275–276 
conducting analysis   58–80, 192–194 
identifying parameters to be estimated   198–199, 

255–257 
interpreting results of analysis   33–40, 137–150, 

260–275 
modifying the model   150–166, 219–232, 276–284 
preparing formal description of analysis and results 

for paper   80, 105, 166–170, 284–291 
preparing program figure   117–125, 194–200, 

253–257 
preparing SAS program   32–33, 54–58, 200–206, 

258–260 
questionnaires in   31–32, 44–45, 53–54 
research method   192–194 
results from output   58, 138–141, 206–213 
rules for performing confirmatory factor analysis   

194–195 
rules for performing path analysis   116–117 
rules for performing structural equation modeling   

252–253 
theoretical model   192, 249–252 

IQ (Intelligence Quotient)   110 
item-total correlation   103 

J 
just-identified models   122–123 
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K 
Kaiser-Guttman criterion   17, 61 
KU option, CALIS procedure   128 
KURTOSIS option, CALIS procedure   126, 128 

L 
Lagrange multiplier (LM) test 

defined   127, 220 
in confirmatory factor analysis   220–223 
in path analysis   127, 150, 153–166 
in structural equation modeling   280 

large sample theory   189 
latent variables 

basic analysis concepts involving   185–187,  
247–249 

defined   108, 183 
determinants of work performance model    

182–184 
estimating measurement error   186 
manifest variables versus   110, 185, 247–248 
representing in diagrams   111 
structural equation modeling and   182–184 
two-step approach to analyses with   182 

least squares principle   5 
Likert-type scales   98 
linearity 

in exploratory factor analysis   95 
in principal component analysis   41 

LINEQS statement, CALIS procedure 
estimating, fixing, and constraining paths    

132–133 
identifying relationships between variables   126 
identifying variables for equations   130–132 
in confirmatory factor analysis   202–204 
in path analysis   129–130 
in structural equation modeling   259 
naming manifest variables   130 
naming path coefficients   130 
naming residual terms   130 
revising equation for endogenous variables   157, 

162 
specifying standard errors   138–139 
starting values for path coefficients   134 

LISREL-type models   247 
LISTWISE procedure   200 
LM (Lagrange multiplier) test 

defined   127, 220 
in confirmatory factor analysis   220–223 
in path analysis   127, 150, 153–166 
in structural equation modeling   280 

M 
manifest variables 

See also path analysis 
as linear combinations of underlying factors    

48–49 

assigning short variable names to   117–118 
communality in   10, 49–50 
defined   108, 110, 183 
determinants of work performance model    

182–184 
factorial complexity of   48 
identifying covariances to be estimated   120 
latent variables versus   110, 185, 247–248 
naming   130 
representing in diagrams   111 
underlying constructs and   98 

maximum likelihood estimation 
in confirmatory factor analysis   215–218, 220 
in path analysis   128, 147, 157–164, 176–177 
in structural equation modeling   269–274, 277 

maximum likelihood method of factor extraction   53, 
57, 83, 86 

MAXITER= option, CALIS procedure   128, 140 
measured variables 

See manifest variables 
measurement error 

defined   98 
estimating   186 
path analysis and   112 

measurement models 
See also confirmatory factor analysis 
convergent validity of   185–186, 238–239 
defined   186, 248 
discriminant validity of   185–186, 239–244 
estimating revised   224–232 
in formal description   288–289 
modifying   219–224 

measurement variables   186 
mediator variables   110 
METHOD= option 

CALIS procedure   128–129 
FACTOR procedure   11, 57 

MINEIGEN= option, FACTOR procedure 
in exploratory factor analysis   57 
in principal component analysis   11, 17, 20, 24, 33 

MOD option, CALIS procedure 
in confirmatory factor analysis   202 
in path analysis   127, 129, 153–155 

model modification 
about   150 
investment model study   150–166, 219–232,  

276–284 
problems associated with   150–151 
recommendations for   151–152 

MODIFICATION option, CALIS procedure 
in confirmatory factor analysis   202 
in path analysis   127, 129, 153–155 

MTMM (multi-trait, multi-method) procedure   239 
multi-trait, multi-method (MTMM) procedure   239 
multicollinearity 

confirmatory factor analysis and   188 
path analysis and   112 
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multivariate normality in exploratory factor analysis   
95 

N 
N-1 rule   114–116 
necessary conditions 

for confirmatory factor analysis   188–189, 231 
for path analysis   112 
sufficient conditions versus   189 

nested models   178 
NFACT= option, FACTOR procedure 

in exploratory factor analysis   57, 61, 73–74, 87 
in principal component analysis   11, 17, 23–24, 33 

no effects model   173 
NOMISS option, CORR procedure   101, 126, 200 
nonrecursive path models   111 
NOPROB option, CORR procedure   126 
normal distribution 

confirmatory factor analysis and   188 
path analysis and   112 

number-of-components/factors problem 
in exploratory factor analysis   61–64, 83–87 
in principal component analysis   16–20 

O 
oblique solutions 

in exploratory factor analysis   47, 67–72 
in principal component analysis   6 

observed variables 
See manifest variables 

orthogonal solutions 
in exploratory factor analysis   47, 66 
in principal component analysis   6 

OUT= option, FACTOR procedure 
in exploratory factor analysis   57, 73 
in principal component analysis   12, 23–24 

overidentified models 
confirmatory factor analysis and   188 
defined   112, 122 
verifying   121–125, 199–200 

P 
parsimony index 

in confirmatory factor analysis   214, 227 
in path analysis   143–145, 160, 164–166 
in structural equation modeling   267, 282 

path analysis 
See also manifest variables 
about   108–110 
additional information   178–179 
CALIS procedure in   108, 111–112 
confirmatory factor analysis versus   186–187 
curved double-headed arrow in   109 
directional paths in   109–110, 152–153 
investment model study   115–170 
necessary conditions for   112 

process overview   112–113 
REG procedure and   111–112 
sample size requirements for   113–115 
sexual harassment example   170–178 
straight single-headed arrow in   109–110 
terms used in   110–111 
work performance study   186–187 

path coefficients 
as LINEQS statement parameters   132–133 
defined   120 
factor loading and   48 
identifying for estimating   120–121 
naming   130 
reviewing in structural equation modeling   268 
reviewing significance tests for   148–149 
starting values for   134 

pattern loadings   68, 71 
PLOTS= option, FACTOR procedure 

in exploratory factor analysis   57, 61 
in principal component analysis   12, 18, 33 

preparing SAS program   125–137 
principal component analysis 

about   1 
additional information   41 
additional references   41 
as variable reduction procedure   2 
assumptions underlying   41 
common factors versus   51–52 
example with three retained components   31–40 
exploratory factor analysis versus   50–52 
factor analysis versus   6–7, 50–52 
minimal sample size requirements   9 
orthogonal versus oblique solutions   6 
POI analysis example   7–16, 25–27 
preparing multiple-item instruments   8–9 
principal components in   4–6 
SAS program and output   10–16, 32–33 
similarity to exploratory factor analysis   52–53 
similarity to factor analysis   52–53 
steps in conducting   16–31 
total variance in   6 
variable redundancy concept   2–3 

principal components 
characteristics of   5 
computing   4–5 
defined   4 
number of components extracted   5 

principle of least squares   5 
PRINCOMP procedure   10 
PRIORS= option, FACTOR procedure 

in exploratory factor analysis   57 
in principal component analysis   12 

program figure (investment model study) 
defined   117, 194 
preparing   117–125, 194–200, 253–257 

promax rotation   65, 68, 71, 88 
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proportion of variance criterion 
in exploratory factor analysis   62–63 
in principal component analysis   19–20 

PSUM option, CALIS procedure   129 
PSUMMARY option, CALIS procedure   129 

Q 
questionnaires 

in exploratory factor analysis   44–45, 53–54,  
80–95 

in principal component analysis example   31–32 
investment model study   44–45, 53–54 
job search skills example   80–95 

R 
random sampling 

in exploratory factor analysis   95 
in principal component analysis   41 

ratio-level measurement   112 
recoding reversed items prior to analysis 

for exploratory factor analysis   78–79 
for principal component analysis   29–30 

recursive models 
defined   111, 182 
estimating covariances and   120 
goodness-of-fit test and   123 

reference structure matrix   69 
REG procedure   111–114 
regression coefficients, factor loading and   47 
reliability 

as property of responses to scales   99 
composite   234–237 
defined   98–99, 232 
4-item scale example   101–103 
internal consistency   99 
item-total correlation   103 
preparing formal description of results for paper   

105 
reliability coefficient in   98–99 
summarizing results in tables   105 
test-retest reliability   99 
3-item scale example   104 
true scores and measurement error   98 
underlying constructs versus observed variables   

98 
reliability coefficient   98–99, 103 
RES option, CALIS procedure   129 
RESIDUAL option, CALIS procedure   129 
residual terms 

defined   118–119, 184 
estimating covariances and   120 
identifying for endogenous variables   118–119, 

196–197 
naming   130 

response reliability 
See reliability 

reversed items, recoding prior to analysis 
for exploratory factor analysis   78–79 
for principal component analysis   29–30 

RMSEA (Root Mean Square Error of Approximation) 
in confirmatory factor analysis   189, 215 
in path analysis   144–145, 149 
in structural equation modeling   266–267 

Root Mean Square Error of Approximation (RMSEA) 
in confirmatory factor analysis   189, 215 
in path analysis   144–145, 149 
in structural equation modeling   266–267 

ROTATE= option, FACTOR procedure 
in exploratory factor analysis   57–58, 66 
in principal component analysis   12, 21 

rotated factor pattern 
in exploratory factor analysis   63, 88 
in principal component analysis   21–23, 30 

rotated factor pattern matrix   67 
rotated solutions 

in exploratory factor analysis   66–72 
in principal component analysis   21–23 

rotations   21, 65 
ROUND option, FACTOR procedure 

in exploratory factor analysis   57 
in principal component analysis   12 

S 
S option, CALIS procedure   129 
sample size 

calculating requirements   190–192 
confirmatory factor analysis requirements    

189–192 
exploratory factor analysis example   54 
model modification and   150–151 
path analysis requirements   113–115 
principal component analysis considerations   9 
statistical power and   113–114 
structural equation modeling requirements    

189–192 
saturated models   122, 253 
scale indeterminacy problem   199 
scale reliability 

See reliability 
scree test 

in exploratory factor analysis   61–62, 83–86 
in principal component analysis   18–19 

self-contained models   112 
SEM 

See structural equation modeling 
sexual harassment study 

in path analysis   170–178 
in structural equation modeling   291–296 

significance tests 
reviewing in confirmatory factor analysis   216–219 
reviewing in path analysis   148–149 
reviewing in structural equation modeling   268 
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SIMPLE option 
CALIS procedure   129 
FACTOR procedure   12, 57 

specification searches   151 
SRMR (Standardized Root Mean Square Residual) 
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