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About This Book

Purpose

This book provides a comprehensive introduction to many of the statistical procedures most common in social
science research today. We describe these statistical procedures in detail and list the mathematical assumptions
underpinning these statistical procedures. Moreover, we progress step-to-step through detailed examples,
provide the code and output, and interpret the results. We also provide examples that show how to summarize
and describe study findings for written research reports.

Is This Book for You?

This book is intended for senior undergraduate and graduate statistics courses—for those users with and without
prior SAS exposure—and for those users with and without prior statistics knowledge. The core content is
described in detail in the book’s chapters; yet for those users with no prior SAS knowledge, we provide several
appendices that describe the basics of working with SAS (e.g., working with data files, raw data, correlation,
and covariance matrices).

Prerequisites

There are few prerequisites for this book. Appendices at the end of this book provide the novice SAS user with
foundational information that is required to begin working with SAS. Even without extensive prior experience,
users of this book can learn the basics of factor analyses, path analyses, and structural equation modeling
(SEM).

What’s New in This Edition

In this second edition, we include an extended discussion of statistical power analyses and sample size
requirements for path analyses, confirmatory factor analyses (CFA), and SEM. More precisely, we provide an
easy-to-use table to help users determine sample size requirements for path analyses. With latent variable
models (e.g., CFA and SEM), we provide SAS code to estimate statistical power. We also provide SAS code to
calculate sample size requirements when planning your research to ensure that you will have sufficient
statistical power when later conducting these analyses.

Additionally, we describe contemporary goodness-of-fit statistics (and threshold values) to examine when
reporting CFA and SEM results, describe how and when to revise hypothesized models, and identify procedures
to follow when selecting which goodness-of-fit indices to report.

About the Examples

Software Used to Develop the Book's Content

The examples in this book were computed using SAS 9.3. We walk the user through examples using PROC
FACTOR, PROC CORR, and PROC CALIS.

The data and programs used in this book are available from the authors’ pages at http://support.sas.com/orourke
and http://support.sas.com/hatcher.
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http://support.sas.com/orourke
http://support.sas.com/hatcher

Xiv

Example Code and Data

You can access the example code and data for this book by linking to its authors’ pages at
http://support.sas.com/orourke and http://support.sas.com/hatcher. Look for the cover thumbnail of this book,
and select Example Code and Data to display the SAS programs that are included for this book.

For an alphabetical listing of all books for which example code and data are available, see
http://support.sas.com/bookcode. Select a title to display the book’s example code.

If you are unable to access the code through the Web site, send an e-mail to saspress@sas.com.

Additional Resources

SAS offers you a rich variety of resources to help build your SAS skills and explore and apply the full power of
SAS software. Whether you are in a professional or academic setting, we have learning products that can help
you maximize your investment in SAS.

Bookstore http://support.sas.com/bookstore/

Training http://support.sas.com/training/

Certification http://support.sas.com/certify/

SAS Global Academic Program http://support.sas.com/learn/ap/

SAS OnDemand http://support.sas.com/learn/ondemand/
Or

Knowledge Base http://support.sas.com/resources/

Support http://support.sas.com/techsup/

Training and Bookstore http://support.sas.com/learn/

Community http://support.sas.com/community/

Keep in Touch

We look forward to hearing from you. We invite questions, comments, and concerns. If you want to contact us
about a specific book, please include the book title in your correspondence.

O’Rourke, Norm, and Larry Hatcher. A Step-by-Step Approach to Using SAS® for Factor Analysis and Structural Equation Modeling, Second Edition.
Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.


http://support.sas.com/orourke
http://support.sas.com/hatcher
http://support.sas.com/bookcode
mailto:saspress@sas.com
http://support.sas.com/bookstore/
http://support.sas.com/training/
http://support.sas.com/certify/
http://support.sas.com/learn/ap/
http://support.sas.com/learn/ondemand/
http://support.sas.com/resources/
http://support.sas.com/techsup/
http://support.sas.com/learn/
http://support.sas.com/community/

XV

To Contact the Author through SAS Press

By e-mail: saspress@sas.com

Via the Web: http://support.sas.com/author feedback

SAS Books
For a complete list of books available through SAS, visit http://support.sas.com/bookstore.

Phone: 1-800-727-3228
Fax: 1-919-677-8166

E-mail: sasbook@sas.com

SAS Book Report

Receive up-to-date information about all new SAS publications via e-mail by subscribing to the SAS Book
Report monthly eNewsletter. Visit http://support.sas.com/sbr.

O’Rourke, Norm, and Larry Hatcher. A Step-by-Step Approach to Using SAS® for Factor Analysis and Structural Equation Modeling, Second Edition.
Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.


mailto:saspress@sas.com
http://support.sas.com/publishing/bbu/companion_site/info.html
http://support.sas.com/bookstore
http://support.sas.com/sbr

xvi

O’Rourke, Norm, and Larry Hatcher. A Step-by-Step Approach to Using SAS® for Factor Analysis and Structural Equation Modeling, Second Edition.
Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.



Acknowledgments from the First Edition

I learned about structural equation modeling while on a sabbatical at Bowling Green State University during the
1990-1991 academic year. My thanks to Joe Cranny, who was chair of the Psychology Department at BGSU at
the time, and who helped make the sabbatical possible.

My department chair, Mel Goldstein, encouraged me to complete this book and made many accommodations in
my teaching schedule so that I would have time to do so. My friend and department colleague, Heidar
Modaresi, encouraged me to begin this project and offered useful comments on how to proceed. My secretary,
Cathy Carter, eased my workload by performing many helpful tasks. My friend Nancy Stepanski edited an early
draft of Chapter 4, and provided many constructive comments that helped shape the final book. My thanks to
all. Special thanks to my wife, Ellen, who, as usual, offered encouragement and support every step of the way.

Many people at SAS Institute were very helpful in reviewing and editing chapters, and in answering hundreds
of questions. These include David Baggett, Jennifer Ginn, Jeff Lopes, Blanche Phillips, Jim Ashton, Cathy
Maahs-Fladung, and David Teal. All of these were consistently positive, patient, and constructive, and I
appreciate their contributions.

L.H.

O’Rourke, Norm, and Larry Hatcher. A Step-by-Step Approach to Using SAS® for Factor Analysis and Structural Equation Modeling, Second Edition.
Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.



xviii

O’Rourke, Norm, and Larry Hatcher. A Step-by-Step Approach to Using SAS® for Factor Analysis and Structural Equation Modeling, Second Edition.
Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.



Chapter 1: Principal Component Analysis

Introduction: The Basics of Principal Component Analysis ...cccccccmmmnmsammnsnnsansnsansansnsas 1
A Variable Reduction Procedure ...........ccuurmmmmmmmimmnmissesemmmmnmmsssssssssnnmsssssssssssssssnssssssssssnssssnns 2
An lllustration of Variable Redundancy.........cccccimmmmmmmmmimmmmmmmmssssssssssssssssssssssssssssssssssssnns 2
What Is a Principal Component? ..........cccccccecmmiiierssssssccessssressssssssssmsssseesssssssssssssssssesssssssnmnnnns 4
Principal Component Analysis Is Not Factor AnalySiS.......cccciiuiiiseeemmmmninnsssssssssssssnnnsssssssssnnes 6
Example: Analysis of the Prosocial Orientation Inventory ....ccccccicmmscmscmsnsnnsassnsansnnsnnas 7
Preparing a Multiple-ltem Instrument........................ s 8
Number of ltems per Component..........cccuueeemmmmimies === ————————— 9
Minimal Sample Size Requirements.........cccccccmmiiiinsiissccmmmrrrresssssssssssssssessssssssssssssssessssssssnmmnnnes 9
SAS Program and Output......ccceceumrmmsmsmsmsssssssasssssssssssssssssssssssssnsssnsnssssnnnsnsnsnnnnnnnnsnnnnnnn 10
Writing the SAS Program.........miiiicsiiseccccsnrrsessssssssssmsssssesssssssssmssssssssssssssnmmsssssssessssssnmnnnes 10
Results from the Output ... s 13
Steps in Conducting Principal Component AnalySis ..ccvececmimmmmescmnmmasasasnssnsasssnnsnsannnnns 16
Step 1: Initial Extraction of the Components ........cccccciiiininieese s ———— 16
Step 2: Determining the Number of “Meaningful” Components to Retain.........ccccccemnrrnns 16
Step 3: Rotation to @ Final SolUtioN ... s cer e e e e e e s m e s n e eenas 21
Step 4: Interpreting the Rotated Solution..........ccocmiiiicniin e 21
Step 5: Creating Factor Scores or Factor-Based SCOres........ccuuecmmrrssmmrrnssmmssmssseesssnsssensens 23
Step 6: Summarizing the Results in @ Table......o i 30
Step 7: Preparing a Formal Description of the Results for a Paper .......cccccciiiniiineccecennnnn, 31
An Example with Three Retained ComponentS......cccccimmnmsnismnnsassssnsassssansassssnnsnnsnnas 31
The QUESHONNAIIE ....cciiiiieririirr s s s as s re s s ms s re s s mms s e s s ssmnnnesssnmnnensnnmnnsnsnnns 31
Writing the Programi............iiiiiiiiiiiiiiiiisisssssssssssss s s s s s s s s s s s s s s s s s s s s sssssssssssssssssssssssssssssmmsmsssmmnnnas 32
Results of the Initial ANAlYSiS uuuueeemmmmmeeeeieieeeeiieeeeeeeeeeeeeeeeeeeeeeee s s 33
Results of the Second ANAlYSis .....cccccemmriimiiiisssmmmmmmiiinsssssss s rrssssssssssssssssssssssssssssssssssesssssnnas 37
L0 T e L= T 41
Appendix: Assumptions Underlying Principal Component Analysis ...ccccrememmnnnnnananans 41
REfEreNCES cururuimmrensmsrns s ns s n s n s a RN R A RN R AN A EREEEEAEEREEEEAEEREEEEEEERREEEEEEE 41

Introduction: The Basics of Principal Component Analysis

Principal component analysis is used when you have obtained measures for a number of observed variables and
wish to arrive at a smaller number of variables (called “principal components™) that will account for, or capture,
most of the variance in the observed variables. The principal components may then be used as predictors or
criterion variables in subsequent analyses.
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A Variable Reduction Procedure

Principal component analysis is a variable reduction procedure. It is useful when you have obtained data for a
number of variables (possibly a large number of variables) and believe that there is redundancy among those
variables. In this case, redundancy means that some of the variables are correlated with each other, often
because they are measuring the same construct. Because of this redundancy, you believe that it should be
possible to reduce the observed variables into a smaller number of principal components that will account for
most of the variance in the observed variables.

Because it is a variable reduction procedure, principal component analysis is similar in many respects to
exploratory factor analysis. In fact, the steps followed when conducting a principal component analysis are
virtually identical to those followed when conducting an exploratory factor analysis. There are significant
conceptual differences between the two, however, so it is important that you do not mistakenly claim that you
are performing factor analysis when you are actually performing principal component analysis. The differences
between these two procedures are described in greater detail in a later subsection titled “Principal Component
Analysis Is Not Factor Analysis.”

An lllustration of Variable Redundancy

We now present a fictitious example to illustrate the concept of variable redundancy. Imagine that you have
developed a seven-item measure to gauge job satisfaction. The fictitious instrument is reproduced here:

Please respond to the following statements by placing your response to the left of each statement. In making
your ratings, use a number from 1 to 7 in which 1 = “Strongly Disagree” and 7 = “Strongly Agree.”

1. My supervisor(s) treats me with consideration.

2. My supervisor(s) consults me concerning important decisions that affect my work.
3. My supervisor(s) gives me recognition when I do a good job.

4. My supervisor(s) gives me the support I need to do my job well.

5. My pay is fair.

6. My pay is appropriate, given the amount of responsibility that comes with my job.
7. My pay is comparable to that of other employees whose jobs are similar to mine.

Perhaps you began your investigation with the intention of administering this questionnaire to 200 employees
using their responses to the seven items as seven separate variables in subsequent analyses.

There are a number of problems with conducting the study in this manner, however. One of the more important
problems involves the concept of redundancy as previously mentioned. Examine the content of the seven items
in the questionnaire. Notice that items 1 to 4 each deal with employees’ satisfaction with their supervisors. In
this way, items 1 to 4 are somewhat redundant or overlapping in terms of what they are measuring. Similarly,
notice also that items 5 to 7 each seem to deal with the same topic: employees’ satisfaction with their pay.

Empirical findings may further support the likelihood of item redundancy. Assume that you administer the
questionnaire to 200 employees and compute all possible correlations between responses to the seven items.
Fictitious correlation coefficients are presented in Table 1.1:
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Table 1.1: Correlations among Seven Job Satisfaction Items

Correlations
Variable 1 2 3 4 5 6 7
1 1.00
2 75 1.00
3 .83 .82 1.00
4 .68 .92 .88 1.00
5 .03 .01 .04 .01 1.00
6 .05 .02 .05 .07 .89 1.00
7 .02 .06 .00 .03 .92 .76 1.00
NOTE: N = 200.

When correlations among several variables are computed, they are typically summarized in the form of a
correlation matrix such as the one presented in Table 1.1; this provides an opportunity to review how a
correlation matrix is interpreted. (See Appendix A.5 for more information about correlation coefficients.)

The rows and columns of Table 1.1 correspond to the seven variables included in the analysis. Row 1 (and
column 1) represents variable 1, row 2 (and column 2) represents variable 2, and so forth. Where a given row
and column intersect, you will find the correlation coefficient between the two corresponding variables. For
example, where the row for variable 2 intersects with the column for variable 1, you find a coefficient of .75;
this means that the correlation between variables 1 and 2 is .75.

The correlation coefficients presented in Table 1.1 show that the seven items seem to hang together in two
distinct groups. First, notice that items 1 to 4 show relatively strong correlations with each another. This could
be because items 1 to 4 are measuring the same construct. In the same way, items 5 to 7 correlate strongly with
one another, a possible indication that they also measure a single construct. Even more interesting, notice that
items 1 to 4 are very weakly correlated with items 5 to 7. This is what you would expect to see if items 1 to 4
and items 5 to 7 were measuring two different constructs.

Given this apparent redundancy, it is likely that the seven questionnaire items are not really measuring seven
different constructs. More likely, items 1 to 4 are measuring a single construct that could reasonably be labeled
“satisfaction with supervision,” whereas items 5 to 7 are measuring a different construct that could be labeled
“satisfaction with pay.”

If responses to the seven items actually display the redundancy suggested by the pattern of correlations in Table
1.1, it would be advantageous to reduce the number of variables in this dataset, so that (in a sense) items 1 to 4
are collapsed into a single new variable that reflects employees’ satisfaction with supervision and items 5 to 7
are collapsed into a single new variable that reflects satisfaction with pay. You could then use these two new
variables (rather than the seven original variables) as predictor variables in multiple regression, for instance, or
another type of analysis.

In essence, this is what is accomplished by principal component analysis: it allows you to reduce a set of
observed variables into a smaller set of variables called principal components. The resulting principal
components may then be used in subsequent analyses.
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What Is a Principal Component?

How Principal Components Are Computed

A principal component can be defined as a linear combination of optimally weighted observed variables. In
order to understand the meaning of this definition, it is necessary to first describe how participants’ scores on a
principal component are computed.

In the course of performing a principal component analysis, it is possible to calculate a score for each
participant for a given principal component. In the preceding study, for example, each participant would have
scores on two components: one score on the “satisfaction with supervision” component; and one score on the
“satisfaction with pay” component. Participants’ actual scores on the seven questionnaire items would be
optimally weighted and then summed to compute their scores for a given component.

Below is the general form of the formula to compute scores on the first component extracted (created) in a
principal component analysis:

Ci=b1(X1) + bia(Xa) + ... bip(Xp)
where

C, = the participant’s score on principal component 1 (the first component extracted)
b, = the coefficient (or weight) for observed variable p, as used in creating principal component 1
X, = the participant’s score on observed variable p

For example, assume that component 1 in the present study was “satisfaction with supervision.” You could
determine each participant’s score on principal component 1 by using the following fictitious formula:

C) =44 (X)) + .40 (X) + 47 (X3) + .32 (X4)

+.02 (Xs) + .01 (Xg) +.03 (X7)

In this case, the observed variables (the “X” variables) are participant responses to the seven job satisfaction
questions: X, represents question 1; X, represents question 2; and so forth. Notice that different coefficients or
weights were assigned to each of the questions when computing scores on component 1: questions 1 to 4 were
assigned relatively large weights that range from .32 to .47, whereas questions 5 to 7 were assigned very small
weights ranging from .01 to .03. This makes sense, because component 1 is the satisfaction with supervision
component and satisfaction with supervision was measured by questions 1 to 4. It is therefore appropriate that
items 1 to 4 would be given a good deal of weight in computing participant scores on this component, while
items 5 to 7 would be given comparatively little weight.

Because component 2 measures a different construct, a different equation with different weights would be used
to compute scores for this component (i.e., “satisfaction with pay”). Below is a fictitious illustration of this
formula:

C, =01 (X)) + .04 (X2) + .02 (X3) + .02 (Xa)

+ .48 (Xs) + .31 (Xo) + .39 (X7)

The preceding example shows that, when computing scores for the second component, considerable weight
would be given to items 5 to 7, whereas comparatively little would be given to items 1 to 4. As a result,
component 2 should account for much of the variability in the three satisfaction with pay items (i.e., it should be
strongly correlated with those three items).
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Chapter 1: Principal Component Analysis 5

But how are these weights for the preceding equations determined? PROC FACTOR in SAS generates these
weights by using a special type of equation called an eigenequation. The weights produced by these
eigenequations are optimal weights in the sense that, for a given set of data, no other set of weights could
produce a set of components that are more effective in accounting for variance among observed variables.
These weights are created to satisfy what is known as the principle of least squares. Later in this chapter we
will show how PROC FACTOR can be used to extract (create) principal components.

It is now possible to understand the definition provided at the beginning of this section more fully. A principal
component was defined as a linear combination of optimally weighted observed variables. The words “linear
combination” refer to the fact that scores on a component are created by adding together scores for the observed
variables being analyzed. “Optimally weighted” refers to the fact that the observed variables are weighted in
such a way that the resulting components account for a maximal amount of observed variance in the dataset.

Number of Components Extracted

The preceding section may have created the impression that, if a principal component analysis were performed
on data from our fictitious seven-item job satisfaction questionnaire, only two components would be created.
Such an impression would not be entirely correct.

In reality, the number of components extracted in a principal component analysis is equal to the number of
observed variables being analyzed. This means that an analysis of responses to the seven-item questionnaire
would actually result in seven components, not two.

In most instances, however, only the first few components account for meaningful amounts of variance; only
these first few components are retained, interpreted, and used in subsequent analyses. For example, in your
analysis of the seven-item job satisfaction questionnaire, it is likely that only the first two components would
account for, or capture, meaningful amounts of variance. Therefore, only these would be retained for
interpretation. You could assume that the remaining five components capture only trivial amounts of variance.
These latter components would therefore not be retained, interpreted, or further analyzed.

Characteristics of Principal Components

The first component extracted in a principal component analysis accounts for a maximal amount of total
variance among the observed variables. Under typical conditions, this means that the first component will be
correlated with at least some (often many) of the observed variables.

The second component extracted will have two important characteristics. First, this component will account for
a maximal amount of variance in the dataset that was not accounted for or captured by the first component.
Under typical conditions, this again means that the second component will be correlated with some of the
observed variables that did not display strong correlations with component 1.

The second characteristic of the second component is that it will be uncorrelated with the first component.
Literally, if you were to compute the correlation between components 1 and 2, that coefficient would be zero.
(For the exception, see the following section regarding oblique solutions.)

The remaining components that are extracted exhibit the same two characteristics: each accounts for a maximal
amount of variance in the observed variables that was not accounted for by the preceding components; and each
is uncorrelated with all of the preceding components. Principal component analysis proceeds in this manner
with each new component accounting for progressively smaller amounts of variance. This is why only the first
few components are retained and interpreted. When the analysis is complete, the resulting components will
exhibit varying degrees of correlation with the observed variables, but will be completely uncorrelated with
each another.
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What is meant by “total variance” in the dataset? To understand the meaning of “total variance” as it is
used in a principal component analysis, remember that the observed variables are standardized in the course of
the analysis. This means that each variable is transformed so that it has a mean of zero and a standard
deviation of one (and hence a variance of one). The “total variance” in the dataset is simply the sum of
variances for these observed variables. Because they have been standardized to have a standard deviation of
one, each observed variable contributes one unit of variance to the total variance in the dataset. Because of
this, total variance in principal component analysis will always be equal to the number of observed variables
analyzed. For example, if seven variables are being analyzed, the total variance will equal seven. The
components that are extracted in the analysis will partition this variance. Perhaps the first component will
account for 3.2 units of total variance; perhaps the second component will account for 2.1 units. The analysis
continues in this way until all variance in the dataset has been accounted for.

Orthogonal versus Oblique Solutions

This chapter will discuss only principal component analyses that result in orthogonal solutions. An orthogonal
solution is one in which the components are uncorrelated (“orthogonal” means uncorrelated).

It is possible to perform a principal component analysis that results in correlated components. Such a solution is
referred to as an oblique solution. In some situations, oblique solutions are preferred to orthogonal solutions
because they produce cleaner, more easily interpreted results.

However, oblique solutions are often complicated to interpret. For this reason, this chapter will focus only on
the interpretation of orthogonal solutions. The concepts discussed will provide a good foundation for the
somewhat more complex concepts discussed later in this text.

Principal Component Analysis Is Not Factor Analysis

Principal component analysis is commonly confused with factor analysis. This is understandable because there
are many important similarities between the two. Both are methods that can be used to identify groups of
observed variables that tend to hang together empirically. Both procedures can also be performed with PROC
FACTOR, and they generally provide similar results.

Nonetheless, there are some important conceptual differences between principal component analysis and factor
analysis that should be understood at the outset. Perhaps the most important difference deals with the
assumption of an underlying causal structure. Factor analysis assumes that covariation among the observed
variables is due to the presence of one or more latent variables that exert directional influence on these observed
variables. An example of such a structure is presented in Figure 1.1.
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Figure 1.1: Example of the Underlying Causal Structure That Is Assumed in Factor Analysis

Vi
V2
Satisfaction
with V3
Supervision
V4

/VS

V6

Satisfaction
with Pay

V7

The ovals in Figure 1.1 represent the latent (unmeasured) factors of “satisfaction with supervision” and
“satisfaction with pay.” These factors are latent in the sense that it is assumed employees hold these beliefs but
that these beliefs cannot be measured directly; however, they do influence employees’ responses to the items
that constitute the job satisfaction questionnaire described earlier. (These seven items are represented as the
squares labeled V1 to V7 in the figure.) It can be seen that the “supervision” factor exerts influence on items V1
to V4 (the supervision questions), whereas the “pay” factor exerts influence on items V5 to V7 (the pay items).

Researchers use factor analysis when they believe that one or more unobserved or latent factors exert directional
influence on participants’ responses to observed variables. Exploratory factor analysis helps the researcher
identify the number and nature of such latent factors. These procedures are described in the next chapter.

In contrast, principal component analysis makes no assumption about underlying causal structures; it is simply a
variable reduction procedure that (typically) results in a relatively small number of components accounting for,
or capturing, most variance in a set of observed variables (i.e., groupings of observed variables versus latent
constructs).

Another important distinction between the two is that principal component analysis assumes no measurement
error whereas factor analysis captures both true variance and measurement error. Acknowledgement and
measurement of error is particularly germane to social science research because instruments are invariably
incomplete measures of underlying constructs. Principal component analysis is sometimes used in instrument
construction studies to overestimate precision of measurement (i.e., overestimate the effectiveness of the scale).

In summary, both factor analysis and principal component analysis are important in social science research, but
their conceptual foundations are quite distinct.

Example: Analysis of the Prosocial Orientation Inventory

Assume that you have developed an instrument called the Prosocial Orientation Inventory (POI) that assesses
the extent to which a person has engaged in helping behaviors over the preceding six months. This fictitious
instrument contains six items and is presented here:
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8 A Step-by-Step Approach to Using SAS for Factor Analysis and Structural Equation Modeling, Second Edition

Instructions: Below are a number of activities in which people sometimes engage. For each item, please
indicate how frequently you have engaged in this activity over the past six months. Provide your response by
circling the appropriate number to the left of each item using the response key below:

7 = Very Frequently

6 = Frequently

5 = Somewhat Frequently
4 = Occasionally

3 = Seldom

2 = Almost Never

1 = Never

1234567 1. I went out of my way to do a favor for a coworker.
1234567 2. I wentout of my way to do a favor for a relative.
1234567 3. I wentout of my way to do a favor for a friend.
1234567 4. Igave money to a religious charity.

1234567 5. Igave money to a charity not affiliated with a religion.
1234567 6. I gave money to a panhandler.

When this instrument was developed, the intent was to administer it to a sample of participants and use their
responses to the six items as separate predictor variables. As previously stated, however, you learned that this is
a problematic practice and have decided, instead, to perform a principal component analysis on responses to see
if a smaller number of components can successfully account for most variance in the dataset. If this is the case,
you will use the resulting components as predictor variables in subsequent analyses.

At this point, it may be instructive to examine the content of the six items that constitute the POI to make an
informed guess as to what is likely to result from the principal component analysis. Imagine that when you first
constructed the instrument, you assumed that the six items were assessing six different types of prosocial
behavior. Inspection of items 1 to 3, however, shows that these three items share something in common: they all
deal with “going out of one’s way to do a favor for someone else.” It would not be surprising then to learn that
these three items will hang together empirically in the principal component analysis to be performed. In the
same way, a review of items 4 to 6 shows that each of these items involves the activity of “giving money to
those in need.” Again, it is possible that these three items will also group together in the course of the analysis.

In summary, the nature of the items suggests that it may be possible to account for variance in the POI with just
two components: a “helping others” component and a “financial giving” component. At this point, this is only
speculation, of course; only a formal analysis can determine the number and nature of components measured by
the inventory of items. (Remember that the preceding instrument is fictitious and used for purposes of
illustration only and should not be regarded as an example of a good measure of prosocial orientation. Among
other problems, this questionnaire obviously deals with very few forms of helping behavior.)

Preparing a Multiple-ltem Instrument

The preceding section illustrates an important point about how rnof to prepare a multiple-item scale to measure a
construct. Generally speaking, it is poor practice to throw together a questionnaire, administer it to a sample,
and then perform a principal component analysis (or factor analysis) to determine what the questionnaire is
measuring.

Better results are much more likely when you make a priori decisions about what you want the questionnaire to
measure, and then take steps to ensure that it does. For example, you would have been more likely to obtain
optimal results if you:

® began with a thorough review of theory and research on prosocial behavior

® used that review to determine how many types of prosocial behavior may exist

® wrote multiple questionnaire items to assess each type of prosocial behavior
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Chapter 1: Principal Component Analysis 9

Using this approach, you could have made statements such as “There are three types of prosocial behavior:
acquaintance helping; stranger helping; and financial giving.” You could have then prepared a number of items
to assess each of these three types, administered the questionnaire to a large sample, and performed a principal
component analysis to see if three components did, in fact, emerge.

Number of Items per Component

When a variable (such as a questionnaire item) is given a weight in computing a principal component, we say
that the variable loads on that component. For example, if the item “Went out of my way to do a favor for a
coworker” is given a lot of weight on the “helping others” component, we say that this item “loads” on that
component.

It is highly desirable to have a minimum of three (and preferably more) variables loading on each retained
component when the principal component analysis is complete (see Clark and Watson 1995). Because some
items may be dropped during the course of the analysis (for reasons to be discussed later), it is generally good
practice to write at least five items for each construct that you wish to measure. This increases your chances that
at least three items per component will survive the analysis. Note that we have violated this recommendation by
writing only three items for each of the two a priori components constituting the POI.

Keep in mind that the recommendation of three items per scale should be viewed as an absolute minimum and
certainly not as an optimal number. In practice, test and attitude scale developers normally desire that their
scales contain many more than just three items to measure a given construct. It is not unusual to see individual
scales that include 10, 20, or even more items to assess a single construct (e.g., Chou and O’Rourke 2012;
O’Rourke and Cappeliez 2002). Up to a point, the greater the number of scale items, the more reliable it will be.
The recommendation of three items per scale should therefore be viewed as a rock-bottom lower bound,
appropriate only if practical concerns prevent you from including more items (e.g., total questionnaire length).
For more information on scale construction, see DeVellis (2012) and, Saris and Gallhofer (2007).

Minimal Sample Size Requirements

Principal component analysis is a large-sample procedure. To obtain reliable results, the minimal number of
participants providing usable data for the analysis should be the larger of 100 participants or 5 times the number
of variables being analyzed (Streiner 1994).

To illustrate, assume that you wish to perform an analysis on responses to a 50-item questionnaire. (Remember
that when responses to a questionnaire are analyzed, the number of variables is equal to the number of items on
that questionnaire.) Five times the number of items on the questionnaire equals 250. Therefore, your final
sample should provide usable (complete) data from at least 250 participants. Note, however, that any participant
who fails to answer just one item will not provide usable data for the principal component analysis and will
therefore be excluded from the final sample. A certain number of participants can always be expected to leave
at least one question blank. To ensure that the final sample includes at least 250 usable responses, you would be
wise to administer the questionnaire to perhaps 300 to 350 participants (see Little and Rubin 1987). A
preferable alternative is to use an imputation procedure that assigns values for skipped items (van Buuren
2012). A number of such procedures are available in SAS but are not covered in this text.

These rules regarding the number of participants per variable again constitute a lower bound, and some have
argued that they should be applied only under two optimal conditions for principal component analysis: when
many variables are expected to load on each component, and when variable communalities are high. Under less
optimal conditions, even larger samples may be required.
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What is a communality? A communality refers to the percent of variance in an observed variable that is
accounted for by the retained components (or factors). A given variable will display a large communality if it
loads heavily on at least one of the study’s retained components. Although communalities are computed in
both procedures, the concept of variable communality is more relevant to factor analysis than principal
component analysis.

SAS Program and Output

You may perform principal component analysis using the PRINCOMP, CALIS, or FACTOR procedures. This
chapter will show how to perform the analysis using PROC FACTOR since this is a somewhat more flexible
SAS procedure. (It is also possible to perform an exploratory factor analysis with PROC FACTOR or PROC
CALIS.) Because the analysis is to be performed using PROC FACTOR, the output will at times make
reference to factors rather than to principal components (e.g., component 1 will be referred to as FACTORI in
the output). It is important to remember, however, that you are performing principal component analysis, not
factor analysis.

This section will provide instructions on writing the SAS program and an overview of the SAS output. A
subsequent section will provide a more detailed treatment of the steps followed in the analysis as well as the
decisions to be made at each step.

Writing the SAS Program

The DATA Step

To perform a principal component analysis, data may be entered as raw data, a correlation matrix, a covariance
matrix, or some other format. (See Appendix A.2 for further description of these data input options.) In this
chapter’s first example, raw data will be analyzed.

Assume that you administered the POI to 50 participants, and entered their responses according to the following

guide:
Line Column Variable Name Explanation
1 1-6 V1-Vé6 Participants’ responses to survey

questions 1 through 6. Responses were
provided along a 7-point scale.

Here are the statements to enter these responses as raw data. The first three observations and the last three
observations are reproduced here; for the entire dataset, see Appendix B.

data D1;
input V1-Vé6 ;

datalines;
556754
567343
777222

767151
455323
455544

’

run;
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The dataset in Appendix B includes only 50 cases so that it will be relatively easy to enter the data and replicate
the analyses presented here. It should be restated, however, that 50 observations is an unacceptably small
sample for principal component analysis. Earlier it was noted that a sample should provide usable data from the
larger of either 100 cases or 5 times the number of observed variables. A small sample is being analyzed here
for illustrative purposes only.

The PROC FACTOR Statement

The general form for the SAS program to perform a principal component analysis is presented here:

proc factor data=dataset-name
simple
method=prin
priors=one
mineigen=p
rotate=varimax
round
flag=desired-size-of-"significant"-factor-loadings ;
var variables-to-be-analyzed ;
run;

Options Used with PROC FACTOR

The PROC FACTOR statement begins the FACTOR procedure and a number of options may be requested in
this statement before it ends with a semicolon. Some options that are especially useful in social science research
are:

FLAG
causes the output to flag (with an asterisk) factor loadings with absolute values greater than some specified
size. For example, if you specify

flag=.35
an asterisk will appear next to any loading whose absolute value exceeds .35. This option can make it much

easier to interpret a factor pattern. Negative values are not allowed in the FLAG option, and the FLAG
option can be used in conjunction with the ROUND option.

METHOD=factor-extraction-method
specifies the method to be used in extracting the factors or components. The current program specifies

method=prin

to request that the principal axis (principal factors) method be used for the initial extraction. This is the
appropriate method for a principal component analysis.

MINEIGEN=p
specifies the critical eigenvalue a component must display if that component is to be retained (here, p = the
critical eigenvalue). For example, the current program specifies

mineigen=1

This statement will cause PROC FACTOR to retain and rotate any component whose eigenvalue is 1.00 or
larger. Negative values are not allowed.

NFACT=n
allows you to specify the number of components to be retained and rotated where n = the number of
components.
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OUT=name-of-new-dataset
creates a new dataset that includes all of the variables in the existing dataset, along with factor scores for
the components retained in the present analysis. Component 1 is given the variable name FACTORI,
component 2 is given the name FACTOR?2, and so forth. It must be used in conjunction with the NFACT
option, and the analysis must be based on raw data.

PRIORS=prior-communality-estimates
specifies prior communality estimates. Users should always specify PRIORS=one to perform a principal
component analysis.

ROTATE-=rotation-method
specifies the rotation method to be used. The preceding program requests a varimax rotation that provides
orthogonal (uncorrelated) components. Oblique rotations may also be requested (correlated components).

ROUND
factor loadings and correlation coefficients in the matrices printed by PROC FACTOR are normally carried
out to several decimal places. Requesting the ROUND option, however, causes all coefficients to be limited
to two decimal places, rounded to the nearest integer, and multiplied by 100 (thus eliminating the decimal
point). This generally makes it easier to read the coefficients.

PLOTS=scree
creates a plot that graphically displays the size of the eigenvalues associated with each component. This can
be used to perform a scree test to visually determine how many components should be retained.

SIMPLE
requests simple descriptive statistics: the number of usable cases on which the analysis was performed and
the means and standard deviations of the observed variables.

The VAR Statement

The variables to be analyzed are listed on the VAR statement with each variable separated by at least one space.
Remember that the VAR statement is a separate statement and not an option within the FACTOR statement, so
don’t forget to end the FACTOR statement with a semicolon before beginning the VAR statement.

Example of an Actual Program

The following is an actual program, including the DATA step, that could be used to analyze some fictitious
data. Only a few sample lines of data appear here; the entire dataset may be found in Appendix B.

data D1;
input #1 @1 (V1-V6) (1.)

datalines;
556754
567343
777222

767151
455323
455544

’

run;

proc factor data=D1l
simple
method=prin
priors=one
mineigen=1
plots=scree
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rotate=varimax
round
flag=.40 ;
var V1 V2 V3 V4 V5 V6;
run;

Results from the Output

The preceding program would produce three pages of output. Here is a list of some of the most important
information provided by the output and the page on which it appears:

® page 1 includes simple statistics (mean values and standard deviations)
® page 2 includes scree plot of eigenvalues and cumulative variance explained

® page 3 includes the final communality estimates

The output created by the preceding program is presented here as Output 1.1.

Output 1.1: Results of the Initial Principal Component Analysis of the Prosocial Orientation Inventory
(POI) Data (Page 1)

The FACTOR Procedure

Input Data Type Raw Data
Number of Records Read 50
Number of Records Used 50
N for Significance Tests 50

Means and Standard Deviations
from 50 Observations

Variable Mean Std Dev
\'Al 5.1800000 = 1.3951812
V2 5.4000000 = 1.1065667
V3 5.5200000 @ 1.2162170
V4 3.6400000 = 1.7929567
V5 4.2200000 = 1.6695349
Vé 3.1000000 & 1.5551101
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Output 1.1 (Page 2)

The FACTOR Procedure
Initial Factor Method: Principal Components

Prior Communality Estimates: ONE

Eigenvalues of the Correlation Matrix: Total
=6 Average =1

Eigenvalue Difference @ Proportion = Cumulative

1 2.26643553 0.29182092 0.3777 0.3777
2 | 1.97461461 1.17731470 0.3291 0.7068
3 | 0.79729990 0.35811605 0.1329 0.8397
4 | 0.43918386 0.14791916 0.0732 0.9129
5  0.29126470 0.06006329 0.0485 0.9615
6 | 0.23120141 0.0385 1.0000

2 factors will be retained by the MINEIGEN criterion.
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Factor Pattern

Factor1 Factor2
Al 58 * 70
V2 48 = 53 *
V3 60  * 62 *
V4 64  * -64 *
V5 68  * -45 *
V6 68  * -46 | *

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an "*'.
Variance Explained by Each
Factor
Factor1 Factor2

2.2664355 1.9746146

Final Communality Estimates: Total = 4.241050
\'Al \'/] V3 V4 V5 V6

0.82341782  0.50852894 0.74399020 @ 0.82257428 @ 0.66596347 0.67657543

Output 1.1 (Page 3)

The FACTOR Procedure
Rotation Method: Varimax

Orthogonal Transformation Matrix

1 2
1 0.76914 0.63908
2 -0.63908 0.76914

Rotated Factor Pattern

Factor1 Factor2
V1 0 91  *
V2 3 71
V3 7 86 *
v4 90 * -9
V5 81 * 9
V6 82 * 8

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an '*'.
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Variance Explained by Each
Factor

Factor1 Factor2

2.1472475 2.0938026

Final Communality Estimates: Total = 4.241050
V1 V2 V3 va V5 V6

0.82341782  0.50852894 0.74399020 @ 0.82257428 @ 0.66596347 0.67657543

Page 1 from Output 1.1 provides simple statistics for the observed variables included in the analysis. Once the
SAS log has been checked to verify that no errors were made in the analysis, these simple statistics should be
reviewed to determine how many usable observations were included in the analysis, and to verify that the means
and standard deviations are in the expected range. On page 1, it says “Means and Standard Deviations from 50
Observations,” meaning that data from 50 participants were included in the analysis.

Steps in Conducting Principal Component Analysis

Principal component analysis is normally conducted in a sequence of steps, with somewhat subjective decisions
being made at various points. Because this chapter is intended as an introduction to the topic, this text will not
provide a comprehensive discussion of all of the options available at each step; instead, specific
recommendations will be made, consistent with common practice in applied research. For a more detailed
treatment of principal component analysis and factor analysis, see Stevens (2002).

Step 1: Initial Extraction of the Components

In principal component analysis, the number of components extracted is equal to the number of variables being
analyzed. Because six variables are analyzed in the present study, six components are extracted. The first can be
expected to account for a fairly large amount of the total variance. Each succeeding component will account for
progressively smaller amounts of variance. Although a large number of components may be extracted in this
way, only the first few components will be sufficiently important to be retained for interpretation.

Page 2 from Output 1.1 provides the eigenvalue table from the analysis. (This table appears just below the
heading “Eigenvalues of the Correlation Matrix: Total = 6 Average = 1”.) An eigenvalue represents the amount
of variance captured by a given component. In the column heading “Eigenvalue,” the eigenvalue for each
component is presented. Each row in the matrix presents information for each of the six components. Row 1
provides information about the first component extracted, row 2 provides information about the second
component extracted, and so forth.

Where the column heading “Eigenvalue” intersects with rows 1 and 2, it can be seen that the eigenvalue for
component 1 is approximately 2.27, while the eigenvalue for component 2 is 1.97. This pattern is consistent
with our earlier statement that the first components tend to account for relatively large amounts of variance,
whereas the later components account for comparatively smaller amounts.

Step 2: Determining the Number of “Meaningful” Components to Retain

Earlier it was stated that the number of components extracted is equal to the number of variables analyzed. This
requires that you decide just how many of these components are truly meaningful and worthy of being retained
for rotation and interpretation. In general, you expect that only the first few components will account for
meaningful amounts of variance, and that the later components will tend to account for only trivial variance.
The next step, therefore, is to determine how many meaningful components should be retained to interpret. This
section will describe four criteria that may be used in making this decision: the eigenvalue-one criterion, the
scree test, the proportion of variance accounted for, and the interpretability criterion.
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The Eigenvalue-One Criterion

In principal component analysis, one of the most commonly used criterion for solving the number-of-
components problem is the eigenvalue-one criterion, also known as the Kaiser-Guttman criterion (Kaiser 1960).
With this method, you retain and interpret all components with eigenvalues greater than 1.00.

The rationale for this criterion is straightforward: each observed variable contributes one unit of variance to the
total variance in the dataset. Any component with an eigenvalue greater than 1.00 accounts for a greater amount
of variance than had been contributed by one variable. Such a component therefore accounts for a meaningful
amount of variance and (in theory) is worthy of retention.

On the other hand, a component with an eigenvalue less than 1.00 accounts for less variance than contributed by
one variable. The purpose of principal component analysis is to reduce a number of observed variables into a
relatively smaller number of components. This cannot be effectively achieved if you retain components that
account for less variance than had been contributed by individual variables. For this reason, components with
eigenvalues less than 1.00 are viewed as trivial and are not retained.

The eigenvalue-one criterion has a number of positive features that contribute to its utility. Perhaps the most
important reason for its use is its simplicity. It does not require subjective decisions; you merely retain
components with eigenvalues greater than 1.00.

Yet this criterion often results in retaining the correct number of components, particularly when a small to
moderate number of variables are analyzed and the variable communalities are high. Stevens (2002) reviews
studies that have investigated the accuracy of the eigenvalue-one criterion and recommends its use when fewer
than 30 variables are being analyzed and communalities are greater than .70, or when the analysis is based on
more than 250 observations and the mean communality is greater than .59.

There are, however, various problems associated with the eigenvalue-one criterion. As suggested in the
preceding paragraph, it can lead to retaining the wrong number of components under circumstances that are
often encountered in research (e.g., when many variables are analyzed, when communalities are small). Also,
the reflexive application of this criterion can lead to retaining a certain number of components when the actual
difference in the eigenvalues of successive components is trivial. For example, if component 2 has an
eigenvalue of 1.01 and component 3 has an eigenvalue of 0.99, then component 2 will be retained but
component 3 will not. This may mistakenly lead you to believe that the third component was meaningless when,
in fact, it accounted for almost the same amount of variance as the second component. In short, the
eigenvalue-one criterion can be helpful when used judiciously, yet the reflexive application of this approach can
lead to serious errors of interpretation. Almost always, the eigenvalue-one criterion should be considered in
conjunction with other criteria (e.g., scree test, the proportion of variance accounted for, and the interpretability
criterion) when deciding how many components to retain and interpret.

With SAS, the eigenvalue-one criterion can be applied by including the MINEIGEN=1 option in the PROC
FACTOR statement and not including the NFACT option. The use of the MINEIGEN=1 will cause PROC
FACTOR to retain any component with an eigenvalue greater than 1.00.

The eigenvalue table from the current analysis appears on page 2 of Output 1.1. The eigenvalues for
components 1, 2, and 3 are 2.27, 1.97, and 0.80, respectively. Only components 1 and 2 have eigenvalues
greater than 1.00, so the eigenvalue-one criterion would lead you to retain and interpret only these two
components.

Fortunately, the application of the criterion is fairly unambiguous in this case. The last component retained (2)
has an eigenvalue of 1.97, which is substantially greater than 1.00, and the next component (3) has an
eigenvalue of 0.80, which is clearly lower than 1.00. In this instance, you are not faced with the difficult
decision of whether to retain a component with an eigenvalue approaching 1.00 (e.g., an eigenvalue of .99). In
situations such as this, the eigenvalue-one criterion may be used with greater confidence.
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The Scree Test

With the scree test (Cattell 1966), you plot the eigenvalues associated with each component and look for a
definitive “break” between the components with relatively large eigenvalues and those with relatively small
eigenvalues. The components that appear before the break are assumed to be meaningful and are retained for
rotation, whereas those appearing after the break are assumed to be unimportant and are not retained.
Sometimes a scree plot will display several large breaks. When this is the case, you should look for the last big
break before the eigenvalues begin to level off. Only the components that appear before this last large break
should be retained.

Specifying the PLOTS=SCREE option in the PROC FACTOR statement tells SAS to print an eigenvalue plot
as part of the output. This appears as page 2 of Output 1.1.

You can see that the component numbers are listed on the horizontal axis, while eigenvalues are listed on the
vertical axis. With this plot, notice there is a relatively small break between components 1 and 2, and a
relatively large break following component 2. The breaks between components 3, 4, 5, and 6 are all relatively
small. It is often helpful to draw long lines with extended tails connecting successive pairs of eigenvalues so
that these breaks are more apparent (e.g., measure degrees separating lines with a protractor).

Because the large break in this plot appears between components 2 and 3, the scree test would lead you to retain
only components 1 and 2. The components appearing after the break (3 to 6) would be regarded as trivial.

The scree test can be expected to provide reasonably accurate results, provided that the sample is large (over
200) and most of the variable communalities are large (Stevens 2002). This criterion too has its weaknesses,
most notably the ambiguity of scree plots under common research conditions. Very often, it is difficult to
determine precisely where in the scree plot a break exists, or even if a break exists at all. In contrast to the
eigenvalue-one criterion, the scree test is often more subjective.

The break in the scree plot on page 3 of Output 1.1 is unusually obvious. In contrast, consider the plot that
appears in Figure 1.2.

Figure 1.2: A Scree Plot with No Obvious Break
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Figure 1.2 presents a fictitious scree plot from a principal component analysis of 17 variables. Notice that there
is no obvious break in the plot that separates the meaningful components from the trivial components. Most
researchers would agree that components 1 and 2 are probably meaningful whereas components 13 to 17 are
probably trivial; but it is difficult to decide exactly where you should draw the line. This example underscores
the qualitative nature of judgments based solely on the scree test.
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Scree plots such as the one presented in Figure 1.2 are common in social science research. When encountered,
the use of the scree test must be supplemented with additional criteria such as the “variance accounted for”
criterion and the interpretability criterion, to be described later.

Why do they call it a “scree” test? The word “scree” refers to the loose rubble that lies at the base of a cliff
or glacier. When performing a scree test, you normally hope that the scree plot will take the form of a cliff. At
the top will be the eigenvalues for the few meaningful components, followed by a definitive break (the edge
of the cliff). At the bottom of the cliff will lay the scree (i.e., eigenvalues for the trivial components).

Proportion of Variance Accounted For

A third criterion to address the number of factors problem involves retaining a component if it accounts for
more than a specified proportion (or percentage) of variance in the dataset. For example, you may decide to
retain any component that accounts for at least 5% or 10% of the total variance. This proportion can be
calculated with a simple formula:

Eigenvalue for the component of interest

Proportion = - - -
Total eigenvalues of the correlation matrix

In principal component analysis, the “total eigenvalues of the correlation matrix” is equal to the total number of
variables being analyzed (because each variable contributes one unit of variance to the analysis).

Fortunately, it is not necessary to actually compute these percentages by hand since they are provided in the
results of PROC FACTOR. The proportion of variance captured by each component is printed in the eigenvalue
table (page 2) and appears below the “Proportion” heading.

The eigenvalue table for the current analysis appears on page 2 of Output 1.1. From the “Proportion” column,
you can see that the first component alone accounts for 38% of the total variance, the second component alone
accounts for 33%, the third component accounts for 13%, and the fourth component accounts for 7%. Assume
that you have decided to retain any component that accounts for at least 10% of the total variance in the dataset.
With the present results, this criterion leads you to retain components 1, 2, and 3. (Notice that use of this
criterion would result in retaining more components than would be retained using the two preceding criteria.)

An alternative criterion is to retain enough components so that the cumulative percent of variance is equal to
some minimal value. For example, recall that components 1, 2, 3, and 4 accounted for approximately 38%,
33%, 13%, and 7% of the total variance, respectively. Adding these percentages together results in a sum of
91%. This means that the cumulative percent of variance accounted for by components 1, 2, 3, and 4 is 91%.
When researchers use the “cumulative percent of variance accounted for” criterion for solving the number-of-
components problem, they usually retain enough components so that the cumulative percent of variance is at
least 70% (and sometimes 80%).

With respect to the results of PROC FACTOR, the cumulative percent of variance accounted for is presented in
the eigenvalue table (from page 2), below the “Cumulative” heading. For the present analysis, this information
appears in the eigenvalue table on page 2 of Output 1.1. Notice the values that appear below the heading
“Cumulative.” Each value indicates the percent of variance accounted for by the present component as well as
all preceding components. For example, the value for component 2 is approximately .71 (intersection of the
column labeled “Cumulative” and the second row). This value of .71 indicates that approximately 71% of the
total variance is accounted for by components 1 and 2. The corresponding entry for component 3 is
approximately .84, indicating that 84% of the variance is accounted for by components 1, 2, and 3. If you were
to use 70% as the “critical value” for determining the number of components to retain, you would retain only
components 1 and 2 in the present analysis.

The primary advantage of the proportion of variance criterion is that it leads you to retain a group of
components that combined account for a relatively large proportion of variance in the dataset. Nonetheless, the
critical values discussed earlier (10% for individual components and 70% to 80% for the combined
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components) are quite arbitrary. Because of this and related problems, this approach has been criticized for its
subjectivity.

The Interpretability Criterion

Perhaps the most important criterion for solving the number-of-components problem is the interpretability
criterion: interpreting the substantive meaning of the retained components and verifying that this interpretation
makes sense in terms of what is known about the constructs under investigation. The following list provides
four rules to follow when applying this criterion. A later section (titled “Step 4: Interpreting the Rotated
Solution”) shows how to actually interpret the results of a principal component analysis. The following rules
will be more meaningful after you have completed that section.

1. Are there at least three variables (items) with significant loadings on each retained component? A
solution is less satisfactory if a given component is measured by fewer than three variables.

2. Do the variables that load on a given component share the same conceptual meaning? For
example, if three questions on a survey all load on component 1, do all three of these questions appear
to be measuring the same construct?

3. Do the variables that load on different components seem to be measuring different constructs?
For example, if three questions load on component 1 and three other questions load on component 2, do
the first three questions seem to be measuring a construct that is conceptually distinct from the construct
measured by the other three questions?

4. Does the rotated factor pattern demonstrate “simple structure”? Simple structure means that the
pattern possesses two characteristics: (a) most of the variables have relatively high factor loadings on
only one component and near zero loadings on the other components; and (b) most components have
relatively high loadings for some variables and near-zero loadings for the remaining variables. This
concept of simple structure will be explained in more detail in “Step 4: Interpreting the Rotated
Solution.”

Recommendations

Given the preceding options, what procedures should you actually follow in solving the number-of-components
problem? We recommend combining all four in a structured sequence. First, use the MINEIGEN=1 option to
implement the eigenvalue-one criterion. Review this solution for interpretability but use caution if the break
between the components with eigenvalues above 1.00 and those below 1.00 is not clear-cut (e.g., if component
1 has an eigenvalue of 1.01 and component 2 has an eigenvalue of 0.99).

Next, perform a scree test and look for obvious breaks in the eigenvalues. Because there will often be more than
one break in the scree plot, it may be necessary to examine two or more possible solutions.

Next, review the amount of common variance accounted for by each individual component. You probably
should not rigidly use some specific but arbitrary cutoff point such as 5% or 10%. Still, if you are retaining
components that account for as little as 2% or 4% of the variance, it may be wise to take a second look at the
solution and verify that these latter components are truly of substantive importance. In the same wayi, it is best if
the combined components account for at least 70% of the cumulative variance. If less than 70% is captured, it
may be prudent to consider alternate solutions that include a larger number of components.

Finally, apply the interpretability criteria to each solution. If more than one solution can be justified on the basis
of the preceding criteria, which of these solutions is the most interpretable? By seeking a solution that is both
interpretable and satisfies one or more of the other three criteria, you maximize chances of retaining the optimal
number of components.
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Step 3: Rotation to a Final Solution

Factor Patterns and Factor Loadings

After extracting the initial components, PROC FACTOR will create an unrotated factor pattern matrix. The
rows of this matrix represent the variables being analyzed, and the columns represent the retained components.
(Note that even though we are performing principal component analysis, components are labeled as FACTORI,
FACTOR2, and so forth in the output.)

The entries in the matrix are factor loadings. A factor loading (or, more correctly, a component loading) is a
general term for a coefficient that appears in a factor pattern matrix or a factor structure matrix. In an analysis
that results in oblique (correlated) components, the definition of a factor loading is different depending on
whether it is in a factor pattern matrix or in a factor structure matrix. The situation is simpler, however, in an
analysis that results in orthogonal components (as in the present chapter). In an orthogonal analysis, factor
loadings are equivalent to bivariate correlations between the observed variables and the components.

For example, the factor pattern matrix from the current analysis appears on page 2 of Output 1.1. Where the
rows for observed variables intersect with the column for FACTORI, you can see that the correlation between
V1 and the first component is .58, the correlation between V2 and the first component is .48, and so forth.

Rotations

Ideally, you would like to review the correlations between the variables and the components, and use this
information to interpret the components. In other words, you want to determine what construct seems to be
measured by component 1, what construct seems to be measured by component 2, and so forth. Unfortunately,
when more than one component has been retained in an analysis, the interpretation of an unrotated factor pattern
is generally quite difficult. To facilitate interpretation, you will normally perform an operation called a
“rotation.” A rotation is a linear transformation that is performed on the factor solution for the purpose of
making the solution easier to interpret.

PROC FACTOR allows you to request several different types of rotations. The preceding program that analyzed
data from the POI study included the statement

rotate=varimax

A varimax rotation is an orthogonal rotation, meaning that it results in uncorrelated components. Compared to
some other types of rotations, a varimax rotation tends to maximize the variance of a column of the factor
pattern matrix (as opposed to a row of the matrix). This rotation is probably the most commonly used
orthogonal rotation in the social sciences (e.g., Chou and O’Rourke 2012). The results of the varimax rotation
for the current analysis appear on page 5 of Output 1.1.

Step 4: Interpreting the Rotated Solution

Interpreting a rotated solution means determining just what is measured by each of the retained components.
Briefly, this involves identifying the variables with high loadings on a given component and determining what
these variables share in common. Usually, a brief name is assigned to each retained component to describe its
content.

The first decision to be made at this stage is how large a factor loading must be to be considered “large.”
Stevens (2002) discusses some of the issues relevant to this decision and even provides guidelines for testing
the statistical significance of factor loadings. Given that this is an introductory treatment of principal component
analysis, simply consider a loading to be “large” if its absolute value exceeds .40.

The rotated factor pattern for the POI study appears on page 3 of Output 1.1. The following text provides a
structured approach for interpreting this factor pattern.
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5. Read across the row for the first variable. All “meaningful loadings” (i.e., loadings greater than .40)
have been flagged with an asterisk (“*””). This was accomplished by including the FLAG=.40 option in
the preceding program. If a given variable has a meaningful loading on more than one component, cross
out that variable and ignore it in your interpretation. In many situations, researchers drop variables that
load on more than one component because the variables are not pure measures of any one construct.
(These are sometimes referred to as complex items.) In the present case, this means looking at the row
heading “V1” and reading to the right to see if it loads on more than one component. In this case it does
not, so you may retain this variable.

6. Repeat this process for the remaining variables, crossing out any variable that loads on more than
one component. In this analysis, none of the variables have high loadings on more than one component,
so none will have to be deleted. In other words, there are no complex items.

7. Review all of the surviving variables with high loadings on component 1 to determine the nature
of this component. From the rotated factor pattern, you can see that only items 4, 5, and 6 load on
component | (note the asterisks). It is now necessary to turn to the questionnaire itself and review the
content in order to decide what a given component should be named. What do questions 4, 5, and 6 have
in common? What common construct do they appear to be measuring? For illustration, the questions
being analyzed in the present case are reproduced here. Remember that question 4 was represented as
V4 in the SAS program, question 5 was V5, and so forth. Read questions 4, 5, and 6 to see what they
have in common.

1234567 1. Went out of my way to do a favor for a coworker.
1234567 2. Went out of my way to do a favor for a relative.
1234567 3. Went out of my way to do a favor for a friend.
1234567 4. Gave money to a religious charity.

1234567 5. Gave money to a charity not affiliated with a religion.
1234567 6. Gave money to a panhandler.

Questions 4, 5, and 6 all seem to deal with giving money to persons in need. It is therefore reasonable to label
component 1 the “financial giving” component.

8. Repeat this process to name the remaining retained components. In the present case, there is only
one remaining component to name: component 2. This component has high loadings for questions 1, 2,
and 3. In reviewing these items, it is apparent that each seems to deal with helping friends, relatives, or
other acquaintances. It is therefore appropriate to name this the “helping others” component.

9. Determine whether this final solution satisfies the interpretability criteria. An earlier section
indicated that the overall results of a principal component analysis are satisfactory only if they meet a
number of interpretability criteria. The adequacy of the rotated factor pattern presented on page 3 of
Output 1.1 is assessed in terms of the following criteria:

a. Are there at least three variables (items) with significant loadings on each retained
component? In the present example, three variables loaded on component 1 and three also loaded
on component 2, so this criterion was met.

b. Do the variables that load on a given component share similar conceptual meaning? All three
variables loading on component 1 measure giving to those in need, while all three loading on
component 2 measure prosocial acts performed for others. Therefore, this criterion is met.

c. Do the variables that load on different components seem to be measuring different
constructs? The items loading on component 1 measure respondents’ financial contributions,
while the items loading on component 2 measure helpfulness toward others. Because these seem
to be conceptually distinct constructs, this criterion appears to be met as well.

d. Does the rotated factor pattern demonstrate “simple structure”? Earlier, it was noted that a
rotated factor pattern demonstrates simple structure when it has two characteristics. First, most of
the variables should have high loadings on one component and near-zero loadings on other
components. It can be seen that the pattern obtained here meets that requirement: items 1 to 3 have
high loadings on component 2 and near-zero loadings on component 1. Similarly, items 4 to 6
have high loadings on component 1 and near-zero loadings on component 2. The second
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characteristic of simple structure is that each component should have high loadings for some
variables and near-zero loadings for the others. The pattern obtained here also meets this
requirement: component 1 has high loadings for items 4 to 6 and near-zero loadings for the other
items whereas component 2 has high loadings for items 1 to 3 and near-zero loadings on the
remaining items. In short, the rotated component pattern obtained in this analysis does appear to
demonstrate simple structure.

Step 5: Creating Factor Scores or Factor-Based Scores

Once the analysis is complete, it is often desirable to assign scores to participants to indicate where they stand
on the retained components. For example, the two components retained in the present study were interpreted as
“financial giving” and “helping others.” You may now want to assign one score to each participant to indicate
that participant’s standing on the “financial giving” component and a second score to indicate that participant’s
standing on the “helping others” component. Once assigned, these component scores could be used either as
predictor variables or as criterion variables in subsequent analyses.

Before discussing the options for assigning these scores, it is important to first draw a distinction between factor
scores and factor-based scores. In principal component analysis, a factor score (or component score) is a linear
composite of the optimally weighted observed variables. If requested, PROC FACTOR will compute each
participant’s factor scores for the two components by:

®  determining the optimal weights
*  multiplying participant responses to questionnaire items by these weights

®  summing the products

The resulting sum will be a given participant’s score on the component of interest. Remember that a separate
equation with different weights is computed for each retained component.

A factor-based score, on the other hand, is merely a linear composite of the variables that demonstrate
meaningful loadings for the component in question. In the preceding analysis, for example, items 4, 5, and 6
demonstrated meaningful loadings for the “financial giving” component. Therefore, you could calculate the
factor-based score on this component for a given participant by simply adding together her responses to items 4,
5, and 6. Notice that, with a factor-based score, the observed variables are not multiplied by optimal weights
before they are summed.

Computing Factor Scores

Factor scores are requested by including the NFACT and OUT options in the PROC FACTOR statement. Here
is the general form for a SAS program that uses the NFACT and OUT option to compute factor scores:

proc factor data=dataset-name
simple
method=prin
priors=one
nfact=number-of-components-to-retain
rotate=varimax

round
flag=desired-size-of-"significant"-factor-loadings
out=name-of-new-SAS-dataset ;

var variables-to-be-analyzed ;

run;
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Here are the actual program statements (minus the DATA step) that could be used to perform a principal
component analysis and compute factor scores for the POI study:

proc factor data=D1
simple
method=prin
priors=one
nfact=2
rotate=varimax
round
flag=.40

(1) out=D2 ;

var V1 V2 V3 V4 V5 V6;
run;

Notice how this program differs from the original program presented earlier in the chapter (in the section titled
“SAS Program and Output”). The MINEIGEN=1 option has been removed and replaced with the NFACT=2
option. The OUT=D2 option has also been added.

Line @ of the preceding program asks that an output dataset be created and given the name D2. This name is
arbitrary; any name consistent with SAS requirements would be acceptable. The new dataset named D2 will
contain all variables contained in the previous dataset (D1), as well as new variables named FACTORI and
FACTOR2. FACTORI1 will contain factor scores for the first retained component, and FACTOR2 will contain
scores for the second. The number of new “FACTOR?” variables created will be equal to the number of
components retained by the NFACT statement.

The OUT option may be used to create component scores only if the analysis has been performed on a raw data
as opposed to a correlation or covariance matrix. The use of the NFACT statement is also required.

Having created the new variables named FACTOR1 and FACTOR2, you may be interested to see how they
relate to the study’s original observed variables. This can be done by appending PROC CORR statements to the
SAS program, following the last of the PROC FACTOR statements. The full program minus the DATA step is
now presented:

proc factor data=D1
simple
method=prin
priors=one
nfact=2
rotate=varimax
round
flag=.40
® out=D2 ;
var V1 V2 V3 V4 V5 V6;
run;

® proc corr data=D2;
var FACTOR1 FACTOR2;
with V1 V2 V3 V4 V5 V6 FACTOR1 FACTOR2;
run;

Notice that the PROC CORR statement on line @ specifies DATA=D2. This dataset (D2) is the name of the
output dataset created on line @ the PROC FACTOR statement. The PROC CORR statement requests that the
factor score variables (FACTOR1 and FACTOR?2) be correlated with participants’ responses to questionnaire
items 1 to 6 (V1 to V6).

The preceding program produces five pages of output. Pages 1 to 2 provide simple statistics, the eigenvalue
table, and the unrotated factor pattern. Page 3 provides the rotated factor pattern and final communality
estimates (same as before). Page 4 provides the standardized scoring coefficients used in creating factor scores.
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Finally, page 5 provides the correlations requested by the corr procedure. Pages 3, 4, and 5 of the output created
by the preceding program are presented here as Output 1.2.

Output 1.2: Output Pages 3, 4, and 5 from the Analysis of POl Data from Which Factor Scores Were
Created (Page 3)

The FACTOR Procedure
Rotation Method: Varimax

Orthogonal Transformation Matrix

1 2
1 -0.87835 0.47802
2 0.47802 0.87835

Rotated Factor Pattern

Factor1 Factor2
V1 -86  * 7
V2 -12 93 *
V3 85 * -2
V4 -40 47 ¢
V5 79 -38
V6 -37 67 *

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an ''.
Variance Explained by Each
Factor
Factor1 Factor2

2.4042522 1.6940222

Final Communality Estimates: Total = 4.098274
\'Al V2 V3 V4 V5 V6

0.75027648 = 0.88099977 | 0.73071122 | 0.38098475 0.76187043 @ 0.59343168
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Output 1.2 (Page 4)

The FACTOR Procedure
Rotation Method: Varimax

Scoring Coefficients Estimated by Regression

Squared Multiple Correlations
of the Variables with Each

Factor
Factor1 Factor2
1.0000000 1.0000000

Standardized Scoring Coefficients

Factor1 Factor2
V1 -0.37829 -0.08350
V2 0.08170 0.57602
V3 0.38060 0.11024
v4 -0.24662 -0.35975
V5 0.29827 -0.12660
V6 -0.06907 0.37569

Output 1.2 (Page 5)

The CORR Procedure

8 With Variables: = V1 V2 V3 V4 V5 V6 Factor1 Factor2

2 Variables: Factor1 Factor2

Simple Statistics

Variable N Mean Std Dev Sum  Minimum Maximum
V1 8 560956 134602 4487647 353434 767153
V2 8 544528 182498 4356220 142441 676222
V3 8 574671 190693 4597367 265454 777222
Va4 8 662603 80496 5300822 544444 777443
V5 8 621159 78894 4969272 445332 666665
Vé 8 534284 175061 4274270 244342 767151
Factor1 8 0 1.00000 0 -1.38533 1.30018
Factor2 8 0 1.00000 0 -1.85806 1.32865
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Pearson Correlation Coefficients, N =8
Prob > |r| under HO: Rho=0

Factor1 Factor2
pl 0.86364 | 0.06629
0.0057 0.8761
2 011991 | 0.93003
0.7773 0.0008
v3 0.85453 = -0.02227
0.0069 0.9583
LA 039537 | -0.47399
0.3323 0.2354
Vs 0.78663 = -0.37826
0.0206 0.3555
e 037238 | 0.67436
0.3636 0.0666
gactor 1.00000 = 0.00000
1.0000
Factor2

0.00000 1.00000
1.0000

The simple statistics for PROC CORR appear on page 5 in Output 1.2. Notice that the simple statistics for the
observed variables (V1 to V6) are identical to those that appeared at the beginning of the factor output discussed
carlier (at the top of Output 1.1, page 1). In contrast, note the simple statistics for FACTOR1 and FACTOR?2
(the factor score variables for components 1 and 2, respectively). Both have means of 0 and standard deviations
of 1; these variables were constructed to be standardized variables.

The correlations between FACTOR1 and FACTOR?2 and the original observed variables appear at the bottom
half of page 5. You can see that the correlations between FACTOR1 and V1 to V6 on page 4 of Output 1.2 are
identical to the factor loadings of V1 to V6 on FACTORI on page 3 of Output 1.1, under “Rotated Factor
Pattern.” This makes sense, as the elements of a factor pattern (in an orthogonal solution) are simply
correlations between the observed variables and the components themselves. Similarly, you can see that the
correlations between FACTOR2 and V1 to V6 from page 5 of Output 1.2 are also identical to the corresponding
factor loadings from page 5 of Output 1.1.

Of particular interest is the correlation between FACTOR1 and FACTOR?2, as computed by PROC CORR. This
appears on page 5 of Output 1.2, where the row for FACTOR?2 intersects with the column for FACTORI.
Notice that the observed correlation between these two components is zero. This is as expected; the rotation
method used in the principal component analysis was the varimax method which produces orthogonal, or
uncorrelated, components.
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Computing Factor-Based Scores

A second (and less sophisticated) approach to scoring involves the creation of new variables that contain factor-
based scores rather than true factor scores. A variable that contains factor-based scores is sometimes referred to
as a factor-based scale.

Although factor-based scores can be created in a number of ways, the following method has the advantage of
being relatively straightforward:

1. To calculate factor-based scores for component 1, first determine which questionnaire items had high
loadings on that component.

2. For a given participant, add together that participant’s responses to these items. The result is that
participant’s score on the factor-based scale for component 1.

3. Repeat these steps to calculate each participant’s score on the remaining retained components.

Although this may sound like a cumbersome task, it is actually quite simple with the use of data manipulation
statements contained in a SAS program. For example, assume that you have performed the principal component
analysis on your questionnaire responses and have obtained the findings reported in this chapter. Specifically,
you found that survey items 4, 5, and 6 loaded on component 1 (the “financial giving” component), while items
1, 2, and 3 loaded on component 2 (the “helping others” component).

You would now like to create two new SAS variables. The first variable, called GIVING, will include each
participant’s factor-based score for financial giving. The second variable, called HELPING, will include each
participant’s factor-based score for helping others. Once these variables are created, they can be used as
criterion or predictor variables in subsequent analyses. To keep things simple, assume that you are simply
interested in determining whether there is a significant correlation between GIVING and HELPING.

At this time, it may be useful to review Appendix A.3, “Working with Variables and Observations in SAS
Datasets,” particularly the section on creating new variables from existing variables. This review should make it
easier to understand the data manipulation statements used here.

Assume that earlier statements in the SAS program have already entered responses to the six questionnaire
items. These variables are included in a dataset called D1. The following are the subsequent lines that will then
create a new dataset called D2. This dataset will include all of the variables in D1 as well as the newly created
factor-based scales called GIVING and HELPING.

® data D2;

(2] set DI1;
©® GIVING = (V4 + V5 + V6);
HELPING = (V1 + V2 + V3);

® proc corr data=D2;
(5] var GIVING HELPING;
® run;

Lines @ and @ request that a new dataset be created called D2, and that it be set up as a duplicate of existing
dataset D1. On line @, the new variable called GIVING is created. For each participant, the responses to items
4,5, and 6 are added together. The result is each participant’s score on the factor-based scale for the first
component. These scores are stored as a variable called GIVING. The component-based scale for the “helping
others” component is created on line @, and these scores are stored as the variable called HELPING. Lines @ to
O request the correlations between GIVING and HELPING be computed. GIVING and HELPING can now be
used as predictor or criterion variables in subsequent analyses. To save space, the results of this program will
not be presented here. However, note that this output would probably display a nonzero correlation between
GIVING and HELPING. This may come as a surprise because earlier it was shown that the factor scores
contained in FACTORI1 and FACTOR?2 (counterparts to GIVING and HELPING) were completely
uncorrelated.
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The reason for this apparent contradiction is simple: FACTOR1 and FACTOR?2 are true principal components,
and true principal components (created in an orthogonal solution) are always created with optimally weighted
equations so that they will be mutually uncorrelated.

In contrast, GIVING and HELPING are not true principal components that consist of true factor scores; they are
merely variables based on the results of a principal component analysis. Optimal weights (that would ensure
orthogonality) were not used in the creation of GIVING and HELPING. This is why factor-based scales
generally demonstrate nonzero correlations while true principal components (from an orthogonal solution) will
not.

Recoding Reversed Iltems Prior to Analysis

It is almost always best to recode any reversed or negatively keyed items before conducting any of the analyses
described here. In particular, it is essential that reversed items be recoded prior to the program statements that
produce factor-based scales. For example, the three questionnaire items that assess financial giving appear again
here:

1234567 4. Gave money to a religious charity.
1234567 5. Gave money to a charity not affiliated with a religion.
1234567 6. Gave money to a panhandler.

None of these items are reversed. With each item, a response of “7” indicates a high level of financial giving. In
the following, however, item 4 is a reversed item; a response of ““7” indicating a low level of giving:

1234567 4. Refused to give money to a religious charity.
1234567 5. Gave money to a charity not affiliated with a religion.
1234567 6. Gave money to a panhandler.

If you were to perform a principal component analysis on responses to these items, the factor loading for item 4
would most likely have a sign that is the opposite of the sign of the loadings for items 5 and 6 (e.g., if items 5
and 6 had positive loadings, then item 4 would have a negative loading). This would complicate the creation of
a component-based scale: with items 5 and 6, higher scores indicate greater giving whereas with item 4, lower
scores indicate greater giving. You would not want to sum these three items as they are presently coded. First, it
will be necessary to reverse item 4. Notice how this is done in the following program (assume that the data have
already been input in a SAS dataset named D1):

data D2;
set DI1;

® V4 =28 - V4;

GIVING = (V4 + V5 + V6);
HELPING = (V1 + V2 + V3);

proc corr DATA=D2;
var GIVING HELPING;
run;

Line @ of the preceding program created a new, recoded version of variable V4. Values on this new version of
V4 are equal to the quantity 8 minus the value of the old version of V4. For participants whose score on the old
version of V4 was 1, their value on the new version of V4 is 7 (because 8 — 1 = 7) whereas for those whose
score is 7, their value on the new version of V4 is 1 (because 8§ — 7 = 1). Again, see Appendix A.3 for further
description of this procedure.
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The general form of the formula used to recode reversed items is

variable-name = constant - variable-name ;
In this formula, the “constant” is the following quantity:

the number of points on the response scale used with the questionnaire item plus 1

Therefore, if you are using the 4-point response format, the constant is 5. If using a 9-point scale, the constant is
10.

If you have prior knowledge about which items are going to appear as reversed (with reversed component
loadings) in your results, it is best to place these recoding statements early in your SAS program, before the
PROC FACTOR statements. This will make interpretation of the components more straightforward because it
will eliminate significant loadings with opposite signs from appearing on the same component. In any case, it is
essential that the statements used to recode reversed items appear before the statements that create any factor-
based scales.

Step 6: Summarizing the Results in a Table

For reports that summarize the results of your analysis, it is generally desirable to prepare a table that presents
the rotated factor pattern. When analyzed variables contain responses to questionnaire items, it can be helpful to
reproduce the questionnaire items within this table. This is presented in Table 1.2:

Table 1.2: Rotated Factor Pattern and Final Communality Estimates from Principal Component Analysis
of Prosocial Orientation Inventory

Component
1 2 h? Items
.00 91 .82 Went out of my way to do a favor for a coworker.
.03 71 51 Went out of my way to do a favor for a relative.

.07 .86 74 Went out of my way to do a favor for a friend.
.90 -09 82 Gave money to a religious charity.
.81 .09 .67 Gave money to a charity not associated with a religion.

.82 .08 .68 Gave money to a panhandler.

Note: N = 50. Communality estimates appear in column headed h”.

The final communality estimates from the analysis are presented under the heading “h*’ in the table. These
estimates appear in the SAS output following “Variance Explained by Each Factor” (page 3 of Output 1.2).

Very often, the items that constitute the questionnaire are lengthy, or the number of retained components is
large, so that it is not possible to present the factor pattern, the communalities, and the items themselves in the
same table. In such situations, it may be preferable to present the factor pattern and communalities in one table
and the items in a second. Shared item numbers (or single words or defining phrases) may then be used to
associate each item with its corresponding factor loadings and communality.
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Step 7: Preparing a Formal Description of the Results for a Paper
The preceding analysis could be summarized in the following way:

Principal component analysis was performed on responses to the 6-item questionnaire using ones as prior
communality estimates. The principal axis method was used to extract the components, and this was followed
by a varimax (orthogonal) rotation.

Only the first two components had eigenvalues greater than 1.00; results of a scree test also suggested that only
the first two were meaningful. Therefore, only the first two components were retained for rotation. Combined,
components 1 and 2 accounted for 71% of the total variance (38% plus 33%, respectively).

Questionnaire items and corresponding factor loadings are presented in Table 1.2. When interpreting the rotated
factor pattern, an item was said to load on a given component if the factor loading was .40 or greater for that
component and less than .40 for the other. Using these criteria, three items were found to load on the first
component, which was subsequently labeled “financial giving.” Three items also loaded on the second
component labeled “helping others.”

An Example with Three Retained Components

The Questionnaire

The next example involves fictitious research that examines Rusbult’s (1980) investment model (Le and Agnew
2003). This model identifies variables believed to affect a person’s commitment to a romantic relationship. In
this context, commitment refers to the person’s intention to maintain the relationship and stay with a current
romantic partner.

One version of the investment model predicts that commitment will be affected by three antecedent variables:
satisfaction, investment size, and alternative value. Satisfaction refers to a person’s affective (emotional)
response to the relationship. Among other things, people report high levels of satisfaction when their current
relationship comes close to their perceived ideal relationship. Investment size refers to the amount of time,
energy, and personal resources that an individual has put into the relationship. For example, people report high
investments when they have spent a lot of time with their current partner and have developed mutual friends
that may be lost if the relationship were to end. Finally, alternative value refers to the attractiveness of
alternatives to one’s current partner. A person would score high on alternative value if, for example, it would be
appealing to date someone else or perhaps just be alone for a while.

Assume that you wish to conduct research on the investment model and are in the process of preparing a 12-
item questionnaire to assess levels of satisfaction, investment size, and alternative value in a group of
participants involved in romantic relationships. Part of the instrument used to assess these constructs is
presented here:

Indicate the extent to which you agree or disagree with each of the following statements by specifying the
appropriate response in the space to the left of the statement. Please use the following response format to
make these ratings:

7 = Strongly Agree

6 = Agree

5 = Slightly Agree

4 = Neither Agree Nor Disagree
3 = Slightly Disagree

2 = Disagree

1 = Strongly Disagree
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I am satisfied with my current relationship.
My current relationship comes close to my ideal relationship.
I am more satisfied with my relationship than the average person.
I feel good about my current relationship.
I have invested a great deal of time in my current relationship.
I have invested a great deal of energy in my current relationship.
I have invested a lot of my personal resources (e.g., money) in developing my current relationship.
My partner and I have established mutual friends that I might lose if we were to break up.
There are plenty of other attractive people for me to date if I were to break up with my current
partner.
10. It would be appealing to break up with my current partner and date someone else.
11. It would be appealing to break up with my partner to be alone for a while.
12. It would be appealing to break up with my partner and “play the field.”

2 B2 = @y Eh g 1 D) =

In the preceding questionnaire, items 1 to 4 were written to assess satisfaction, items 5 to 8 were written to
assess investment size, and items 9 to 12 were written to assess alternative value. Assume that you administer
this questionnaire to 300 participants and now want to perform a principal component analysis on their
responses.

Writing the Program

Earlier, it was noted that it is possible to perform a principal component analysis on a correlation matrix (or
covariance matrix) as well as on raw data. This section shows how the former is done. The following program
includes the correlation matrix that provides all possible correlation coefficients between responses to the 12
questionnaire items and performs a principal component analysis on these fictitious data:

data DIl (type=corr) ;

input _type $
_name_ $
V1-V12 ;
datalines;
n . 300 300 300 300 300 300 300 300 300 300 300 300
std . 2.48 2.39 2.58 3.12 2.80 3.14 2.92 2.50 2.10 2.14 1.83 2.26
corr V1 1.00 .
corr V2 .69 1.00 .
corr V3 .60 .79 1.00 .
corr V4 .62 .47 .48 1.00 .
corr V5 .03 .04 .16 .09 1.00 .
corr V6 .05 -.04 .08 .05 .91 1.00 .
corr V7 .14 .05 .06 .12 .82 .89 1.00 .
corr V8 .23 .13 .16 .21 .70 .72 .82 1.00 .
corr V9 -.17 -.07 -.04 -.05 -.33 -.26 -.38 -.45 1.00 .
corr V10 -.10 -.08 .07 .15 -.16 -.20 -.27 -.34 .45 1.00
corr V11 -.24 -.19 -.26 -.28 -.43 -.37 -.53 -.57 .60 .22 1.00
corr V12 -.11 -.07 .07 .08 -.10 -.13 -.23 -.31 .44 .60 .26 1.00

run ;
proc factor data=D1
method=prin
priors=one
mineigen=1
plots=scree
rotate=varimax
round
flag=.40 ;
var V1-V12;
run;
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The PROC FACTOR statement in the preceding program follows the general form recommended for the
previous data analyses. Notice that the MINEIGEN=1 statement requests that all components with eigenvalues
greater than 1.00 be retained and the PLOTS=SCREE option requests a scree plot of eigenvalues. These options
are particularly helpful for the initial analysis of data as they can help determine the correct number of
components to retain. If the scree test (or the other criteria) suggests retaining some number of components
other than what would be retained using the MINEIGEN=1 option, that option may be dropped and replaced
with the NFACT option.

Results of the Initial Analysis
The preceding program produced three pages of output, with the following information appearing on each page:

® page 1 reports the data input procedure and sample size
® page 2 includes the eigenvalue table and scree plot of eigenvalues

® page 3 includes the rotated factor pattern and final communality estimates

The eigenvalue table from this analysis appears on page 1 of Output 1.3. The eigenvalues themselves appear in
the left-hand column under the heading “Eigenvalue.” From these values, you can see that components 1, 2, and
3 have eigenvalues of 4.47, 2.73, and 1.70, respectively. Furthermore, you can see that only these first three
components have eigenvalues greater than 1.00. This means that three components will be retained by the
MINEIGEN criterion. Notice that the first nonretained component (component 4) has an eigenvalue of
approximately 0.85 which, of course, is well below 1.00. This is encouraging, as you have more confidence in
the eigenvalue-one criterion when the solution does not contain “near-miss” eigenvalues (e.g., .98 or .99).

Output 1.3: Results of the Initial Principal Component Analysis of the Investment Model Data (page 1)

The FACTOR Procedure

Input Data Type Correlations
N Set/Assumed in Data Set 300
N for Significance Tests 300
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Output 1.3 (page 2)

The FACTOR Procedure
Initial Factor Method: Principal Components

Prior Communality Estimates: ONE

Eigenvalues of the Correlation Matrix: Total
=12 Average = 1

Eigenvalue | Difference | Proportion | Cumulative

1 447058134 1.73995858 0.3725 0.3725
2 2.73062277 1.02888853 0.2276 0.6001
3  1.70173424 0.85548155 0.1418 0.7419
4  0.84625269 0.22563029 0.0705 0.8124
5 0.62062240 0.20959929 0.0517 0.8642
6 0.41102311 0.06600575 0.0343 0.8984
7 0.34501736 = 0.04211948 0.0288 0.9272
8 0.30289788 @ 0.07008042 0.0252 0.9524
9  0.23281745 0.04595812 0.0194 0.9718
10 0.18685934 0.08061799 0.0156 0.9874
11 0.10624135 0.06091129 0.0089 0.9962
12 0.04533006 0.0038 1.0000

3 factors will be retained by the MINEIGEN criterion.
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Factor Pattern

Factor1 Factor2 Factor3
\'Al 39 76  * 14
V2 31 82 * -12
V3 34 79 9
v4 31 69 * 15
V5 80 * -26 41
V6 79 > -32 41
v7 87 * -27 26
\'L] 88 * -14 9
V9 -61  * 14 47 >
V10 -43 | * 23 68 *
V11 72 ¢ -6 12
V12 -40 19 72

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an '*'.

Variance Explained by Each Factor
Factor1 Factor2 Factor3

4.4705813 = 2.7306228 1.7017342

Output 1.3 (page 3)

The FACTOR Procedure
Rotation Method: Varimax

Orthogonal Transformation Matrix

1 2 3
1 0.83136  0.34431  -0.43623
2  -0.29481 0.93864 @ 0.17902

3 047110  -0.02022 0.88185

Rotated Factor Pattern

Factor1 Factor2 Factor3
V1 3 85 * -16
V2 -4 88 * -10
V3 9 86 * 8
V4 13 75 12
V5 93 2 -3
V6 95  * -4 -4
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Rotated Factor Pattern

Factor1 Factor2 Factor3
v7 93 * 4 -19
V8 81 * 17 -33
V9 -32 -9 7o
V10 -1 6 82 *
V11 -52  * -30 41
V12 -5 3 84 *

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an "*'.

Variance Explained by Each Factor
Factor1 Factor2 Factor3

3.7048597  2.9364774 2.2616012

The eigenvalue table in Output 1.3 also shows that the first three components combined account for slightly
more than 74% of the total variance. (This variance value can be observed at the intersection of the column
labeled “Cumulative” and row “3”.) The “percentage of variance accounted for” criterion suggests that it may
be appropriate to retain three components.

The scree plot from this solution appears on page 2 of Output 1.3. This scree plot shows that there are several
large breaks in the data following components 1, 2, and 3, and then the line begins to flatten beginning with
component 4. The last large break appears after component 3, suggesting that only components 1 to 3 account
for meaningful variance. This suggests that only these first three components should be retained and interpreted.
Notice how it is almost possible to draw a straight line through components 4 to 12. The components that lie
along a semi-straight line such as this are typically assumed to be measuring only trivial variance

(i.e., components 4 to 12 constitute the “scree” of your scree plot).

So far, the results from the eigenvalue-one criterion, the variance accounted for criterion, and the scree plot are
in agreement, suggesting that a three-component solution may be most appropriate. It is now time to review the
rotated factor pattern to see if such a solution is interpretable. This matrix is presented on page 3 of Output 1.3.

Following the guidelines provided earlier, you begin by looking for factorially complex items (i.e., items with
meaningful loadings on more than one component). A review shows that item 11 (variable V11) is a complex
item, loading on both components 1 and 3. Item 11 should therefore be discarded. Except for this item, the
solution is otherwise fairly straightforward.

To interpret component 1, you read down the column for FACTORI1 and see that items 5 to 8 load significantly
on this component. These items are:

5. T'have invested a great deal of time in my current relationship.

6. I have invested a great deal of energy in my current relationship.

7. 1 have invested a lot of my personal resources (e.g., money) in developing my current relationship.
8. My partner and I have established mutual friends that I might lose if we were to break up.

All of these items deal with the investments that participants have made in their relationships, so it makes sense
to label this the “investment size” component.

The rotated factor pattern shows that items 1 to 4 have meaningful loadings on component 2. These items are:
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I am satisfied with my current relationship.

My current relationship comes close to my ideal relationship.

I am more satisfied with my relationship than the average person.
I feel good about my current relationship.

s> 89 [ =

Given the content of the preceding items, it seems reasonable to label component 2 the “satisfaction”
component.

Finally, items 9, 10, and 12 have meaningful loadings on component 3. (Again, remember that item 11 has been
discarded.) These items are:

9. There are plenty of other attractive people around for me to date if I were to break up with my
current partner.

10. It would be appealing to break up with my current partner and date someone else.

12. It would be appealing to break up with my partner and “play the field.”

These items all seem to deal with the attractiveness of alternatives to one’s current relationship, so it makes
sense to label this the “alternative value” component.

You may now step back and determine whether this solution satisfies the interpretability criteria presented
earlier.

Are there at least three variables with meaningful loadings on each retained component?

Do the variables that load on a given component share the same conceptual meaning?

Do the variables that load on different components seem to be measuring different constructs?
Does the rotated factor pattern demonstrate “simple structure”?

bl e

In general, the answer to each of these questions is “yes,” indicating that the current solution is, in most
respects, satisfactory. There is, however, a problem with item 11, which loads on both components 1 and 3. This
problem prevents the current solution from demonstrating a perfectly “simple structure” (criterion 4 from
above). To eliminate this problem, it may be desirable to repeat the analysis, this time analyzing all of the items
except for item 11. This will be done in the second analysis of the investment model data described below.

Results of the Second Analysis

To repeat the current analysis with item 11 deleted, it is necessary only to modify the VAR statement of the
preceding program. This may be done by changing the VAR statement so that it appears as follows:

var V1-v10 V12;

All other aspects of the program will remain as they were previously. The eigenvalue table, scree plot, the
unrotated factor pattern, the rotated factor pattern, and final communality estimates obtained from this revised
program appear in Output 1.4:
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Output 1.4: Results of the Second Analysis of the Investment Model Data (Page 1)

The FACTOR Procedure

Input Data Type Correlations
N Set/Assumed in Data Set 300
N for Significance Tests 300

Output 1.4 (page 2)

The FACTOR Procedure
Initial Factor Method: Principal Components

Prior Communality Estimates: ONE

Eigenvalues of the Correlation Matrix: Total
=11 Average = 1

Eigenvalue | Difference | Proportion | Cumulative

1 4.02408599 1.29704748 0.3658 0.3658
2 | 272703851 1.03724743 0.2479 0.6137
3  1.68979108 1.00603918 0.1536 0.7674
4  0.68375190 0.12740106 0.0622 0.8295
5 0.55635084 0.16009525 0.0506 0.8801
6  0.39625559 0.08887964 0.0360 0.9161
7 0.30737595 0.04059618 0.0279 0.9441
8 0.26677977 @ 0.07984443 0.0243 0.9683
9  0.18693534 0.07388104 0.0170 0.9853
10 0.11305430 0.06447359 0.0103 0.9956
11 0.04858072 0.0044 1.0000
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3 factors will be retained by the MINEIGEN criterion.

Scree Plot Variance Explained
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Factor Pattern

Factor1 Factor2 Factor3
V1 38 77 -17
V2 30 83 * -15
V3 32 80 * 8
V4 29 70 > 15
V5 83 * -23 38
V6 83 * -30 38
v7 89 * -24 24
V8 88 * -12 7
V9 -56 ¢ 13 47 *
V10 -44 22 70 *
V12 -40 18 YC

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an .

Variance Explained by Each Factor
Factor1 Factor2 Factor3

4.0240860 = 2.7270385 1.6897911
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Output 1.4 (Page 3)

The FACTOR Procedure
Rotation Method: Varimax

Orthogonal Transformation Matrix

1 2 3
1 084713 0.32918 -0.41716
2 -0.27774 | 0.94354 0.18052

3 0.45303  -0.03706 @ 0.89073

Rotated Factor Pattern

Factor1 Factor2 Factor3
V1 3 86 * -17
V2 -4 89 * -1
V3 8 86 * 8
V4 12 75 14
V5 94 4 -4
V6 96 -2 -6
V7 93 * 5 -20
V8 81 * 18 -33
V9 -30 -8 68 *
V10 -12 4 85 *
V12 -5 1 86 *

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an "*'.

Variance Explained by Each Factor
Factor1 Factor2 Factor3

3.4449528 2.8661574 @ 2.1298054

The results obtained when item 11 is deleted from the analysis are very similar to those obtained when it was
included. The eigenvalue table of Output 1.4 shows that the eigenvalue-one criterion would again result in
retaining three components. The first three components account for close to 77% of the total variance, which
means that three components would also be retained if you used the variance-accounted-for criterion. Also, the
scree plot from page 2 of Output 1.4 is cleaner than observed with the initial analysis; the break between
components 3 and 4 is now more distinct and the eigenvalues again level off after this break. This means that
three components would also likely be retained if the scree test were used to solve the number-of-components
problem.

The biggest change can be seen in the rotated factor pattern that appears on page 4 of Output 1.4. The solution
is now cleaner in the sense that no item loads on more than one component (i.e., no complex items). The current
results now demonstrate a somewhat simpler structure than the initial analysis of the investment model data.
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Conclusion

Principal component analysis is an effective procedure for reducing a number of observed variables into a
smaller number that account for most of the variance in a dataset. This technique is particularly useful when you
need a data reduction procedure that makes no assumptions concerning an underlying causal structure
responsible for covariation in the data.

Appendix: Assumptions Underlying Principal Component Analysis

Because a principal component analysis is performed on a matrix of Pearson correlation coefficients, the data
should satisfy the assumptions for this statistic. These assumptions are described in Appendix A.5, “Preparing
Scattergrams and Computing Correlations,” and are briefly reviewed here:

o Interval-level measurement. All variables should be assessed on an interval or ratio level of
measurement.

* Random sampling. Each participant will contribute one score on each observed variable. These sets of
scores should represent a random sample drawn from the population of interest.

® Linearity. The relationship between all observed variables should be linear.

® Bivariate normal distribution. Each pair of observed variables should display a bivariate normal
distribution (e.g., they should form an elliptical scattergram when plotted).
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Introduction: When Is Exploratory Factor Analysis Appropriate?

Exploratory factor analysis can be used when you have obtained responses to several of measures and wish to
identify the number and nature of the underlying factors that are responsible for covariation in the data. In other
words, exploratory factor analysis is appropriate when you wish to identify the factor structure underlying a
set of data.
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For example, imagine that you are a political scientist who has developed a 50-item questionnaire to assess
political attitudes. You administer the questionnaire to 500 people, and perform a factor analysis on their
responses. The results of the analysis suggest that although the questionnaire contained 50 items, it really just
measures two underlying factors, or constructs. You decided to label the first construct the social conservatism
factor. Individuals who scored high on this construct tended to agree with statements such as “People should be
married before living together,” and “Children should respect their elders.” You chose to label the second
construct economic conservatism. Individuals who scored high on this factor tended to agree with statements
such as “The size of the federal government should be reduced,” and “Our taxes should be lowered.”

In short, by performing a factor analysis on responses to this questionnaire, you were able to determine the
number of constructs measured by this questionnaire (two) as well as the nature of those constructs. The results
of the analysis showed which questionnaire items were measuring the social conservatism factor, and which
were measuring economic conservatism.

The use of factor analysis assumes that each of the observed variables being analyzed is measured on an interval
or ratio scale. Some additional assumptions underlying the use of factor analysis are listed in an appendix at the
end of this chapter.

NOTE: You will see a good deal of similarity between the issues discussed in this chapter and those discussed
in the preceding chapter on principal component analysis. This is because there are many similarities in terms of
how principal component analysis and exploratory factor analysis are conducted even though there are
conceptual differences between the two. Some of these differences and similarities are discussed in a later
section titled “Exploratory Factor Analysis versus Principal Component Analysis.”

It is likely that some users will read this chapter without first reviewing the previous chapter on principal
component analysis; this makes it necessary to present much of the material that was already covered in the
principal component chapter. Readers who have already covered the principal component chapter should be
able to skim this material more quickly.

Introduction to the Common Factor Model

Example: Investment Model Questionnaire

Exploratory factor analysis will be demonstrated by performing a factor analysis on fictitious data from a
questionnaire designed to measure construct from Rusbult’s investment model (1980). The investment model
was introduced in the preceding chapter (Le and Agnew 2003); you will remember that this model describes
certain constructs that affect an individual’s commitment to a romantic relationship (i.e., one’s intention to
maintain the relationship). Two of the constructs that are believed to influence commitment are alternative value
and investment size. Alternative value refers to the attractiveness of alternatives to one’s current romantic
partner. For example, a woman would score high on alternative value if it would be appealing for her to leave
her current partner for a different partner, or simply to leave her current partner and be unattached. Investment
size refers to the time or personal resources that a person has put into a relationship with a current partner. For
example, a woman would score high on investment size if she has invested a lot of time and effort in developing
her current relationship, or if she and her partner have many mutual friendships that would be lost if the
relationship were to end.

Imagine that you have developed a short questionnaire to assess alternative value and investment size. The
questionnaire is to be completed by persons who are currently involved in romantic associations. With this
questionnaire, items 1 to 3 were designed to assess investment size, and items 4 to 6 were designed to assess
alternative value. Part of the questionnaire is reproduced below:
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Please rate each of the following items to indicate the extent to which you agree or disagree with each
statement. Use a response scale in which 1 = “Strongly Disagree” and 7 = “Strongly Agree.”

1. I have invested a lot of time and effort in developing my relationship with my current partner.

2. My current partner and I have developed interests in a lot of activities that I would lose if our
relationship were to end.

3. My current partner and I have developed a lot of mutual friendships that I would lose if our
relationship were to end.

4. It would be more attractive for me to be involved in a relationship with someone else rather than
continue a relationship with my current partner.

5. It would be more attractive for me to be by myself than to continue my relationship with my
current partner.

6. In general, the alternatives to remaining in this relationship are quite attractive.

Assume that this questionnaire was administered to 200 participants, and their responses were entered so that
responses to question 1 were coded as variable V1, responses to question 2 were coded as variable V2, and so
forth. The correlations between the six variables are presented in Table 2.1.

Table 2.1: Correlations Coefficients between Questions Assessing Investment Size and Alternative Value

Intercorrelations
Question V1 V2 V3 V4 V5 V6
Vi 1.00
V2 .81 1.00
V3 .79 92 1.00
V4 -.03 -.07 -.01 1.00
V5 -.06 -.01 -.11 78 1.00
V6 -.10 -.08 -.04 .79 .85 1.00
NOTE: N=200.

The preceding matrix of correlations consists of six rows (running horizontally) and six columns (running
vertically). Where the row for one variable intersects with the column for a second variable, you will find the
correlation coefficient for that pair of variables. For example, where the row for V2 intersects with the column
for V1, you can see that the correlation between these items is .81.

Notice the pattern of intercorrelations. Questions 1, 2, and 3 are strongly correlated with one another, but these
variables are essentially uncorrelated with questions 4, 5, and 6. Similarly, question 4, 5, and 6 are strongly
correlated with one another, but are essentially uncorrelated with questions 1, 2, and 3. Reviewing the complete
matrix reveals that there are two sets of variables that seem to “hang together:” Variables 1, 2, and 3 form one
group, and variables 4, 5, and 6 form the second group. But why do responses group together in this manner?

The Common Factor Model: Basic Concepts

One possible explanation for this pattern of intercorrelations may be found in Figure 2.1. In this figure,
responses to questions 1 through 6 are represented as the six squares labeled V1 through V6. This model
suggests that variables V1, V2, and V3 are correlated with one another because they are all influenced by the
same underlying factor. A factor is an unobserved variable (or latent variable). Being “latent” means that you
cannot measure a factor directly like you would measure an observed variable such as height or weight. A factor
is a hypothetical construct: You believe it exists and that it influences certain manifest (or observed) variables
that can be measured directly. In the present study, the manifest or observed variables are participant responses
to items 1 through 6.
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Figure 2.1: Six Variable, 2-Factor Model, Orthogonal Factors, Factorial Complexity=1
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When representing models as figures, it is conventional to represent observed variables as squares or rectangles,
and to represent latent factors as circles or ovals. You can therefore see that two factors appear in Figure 2.1.
The first is labeled “F1: Investment Size,” and the second is labeled “F2: Alternative Value.”

We now return to the original question: Why do variables V1, V2, and V3 correlate so strongly with one
another? According to the model presented in Figure 2.1, these variables are intercorrelated because they are all
measuring aspects of the same latent factor: Participants’ standing on the underlying “investment size”
construct. This model proposes that, within participants’ belief systems, there is a construct that you might call
“investment size.” Furthermore, this construct influences the way that participants respond to questions 1, 2,
and 3 (notice the arrows going from the oval factor to the squares). Even though you cannot directly measure
someone’s standing on the factor (i.e., it is a hypothetical construct), you can infer that it exists by:

® noting that questions 1, 2, and 3 correlate highly with one another
® reviewing the content of questionnaire items 1, 2, and 3 (i.e., noting what these questions actually say)

® noting that all three questions seem to be measuring the same basic construct, a construct that could
reasonably be named “investment size”

(Please don’t misunderstand, the preceding is not a description of how to perform factor analysis; it is just an
example to help convey the conceptual meaning of the model presented in the figure.)

Common Factors

The investment size factor (F1) presented in Figure 2.1 is known as a common factor. A common factor is a
one that influences more than one observed variable. In this case, you can see that variables V1, V2, and V3 are
all influenced by the investment size factor. It is called a common factor because more than one variable shares
it in common. Because of this terminology, the type of analyses discussed in this chapter is sometimes referred
to as common factor analysis.

In the lower half of Figure 2.1, you can see that there is a second common factor (F2) representing the
“alternative value” hypothetical construct. This factor affects responses to items 4, 5, and 6 (notice the
directional arrows). In short, variables V4, V5, and V6 are intercorrelated because they have this alternative
value factor in common. In contrast, variables V4, V5, and V6 are not influenced by the investment size factor
(notice that there are no arrows going from F1 to these variables), and similarly, V1, V2, and V3 are not
influenced by the alternative value factor, F2. This should help clarify why variables V1, V2, and V3 tend to be
uncorrelated with variables V4, V5, and V6.
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Orthogonal versus Oblique Models

A few more points must be made in order to understand the factor model presented in Figure 2.1 more fully.
Notice that there is no arrow connecting F1 and F2. If it were hypothesized that the factors were correlated with
one another, there would be a curved double-headed or bidirectional arrow connecting the two ovals. A double-
headed arrow indicates that two constructs are correlated with no cause-and-effect relationship specified. The
absence of a double-headed arrow in Figure 2.1 means that the researcher expects these factors are uncorrelated,
or orthogonal. If a double-headed arrow did connect them, we would say that the factors are correlated, or
oblique. Oblique factor models will be discussed later in this chapter.

In some factor models, a single-headed arrow connects two latent factors, indicating that one factor is expected
to have a directional effect on the other. Such models are normally not examined with exploratory factor
analysis, however, and will not be discussed in this chapter. For information on models that predict
relationships between latent factors, see Chapter 5 “Developing Measurement Models with Confirmatory Factor
Analysis” and Chapter 6: “Structural Equation Modeling.”

Unique Factors

Notice that the two common factors are not the only ones that influence the observed variables. For example,
you can see that there are actually two factors that influence variable V1: (a) the common factor, F1; and (b) a
second factor, “Ul.” Here, Ul is a unique factor: One that influences only one observed variable. A unique
factor represents all of the independent factors that are unique to that single variable including the error
component that is unique to that variable. In the figure, the unique factor U1 affects only V1, U2 affects only
V2, and so forth.

Factor Loadings

In Figure 2.1, each of the arrows going from a common factor to an observed variable is identified with a
specific coefficient such as by, by, or by,. The convention used in labeling these coefficients is quite simple:
The first number in the subscript represents the number of the variable that the arrow points toward, and the
second number in the subscript represents the number of the factor where the arrow originates. In this way, the
coefficient “b,,” represents the arrow that goes to variable 2 from Factor 1; the coefficient “bs,” represents the
arrow that goes to variable 5 from Factor 2; and so forth.

These coefficients represent factor loadings. But what exactly is a factor loading? Technically, it is a
coefficient that appears in either a factor pattern matrix or a factor structure matrix. (These matrices are
included in the output of an oblique factor analysis.) When one conducts an oblique factor analysis, the loadings
in the pattern matrix will have a definition that is different from the definition given to loadings in the structure
matrix. We will discuss these definitions later in the chapter. To keep things simple, however, we will skip the
oblique analysis for the moment, and instead describe what the loadings represent when one performs an
analysis in which the factors are orthogonal (uncorrelated). Factor loadings have a more simple interpretation in
an orthogonal solution.

When examining orthogonal factors, the b coefficients may be understood in a number of different ways. For
example, they may be viewed as:

® Standardized regression coefficients. The factor loadings obtained in an analysis with orthogonal
factors may be thought of as standardized regression weights. If all variables (including the factors) are
standardized to have unit variance (i.e., variance = 1.00), the b coefficients are analogous to the
standardized regression coefficients (or regression weights) obtained in regression analysis. In other
words, the b weights may be thought of as optimal linear weights by which the F factors are multiplied
in calculating participant scores on the V variables (i.e., the weights used in predicting the variables
from the factors).

®  Correlation coefficients. Factor loadings also represent the product-moment correlation coefficients
between an observed variable and its underlying factor. For example, if bs, = .85, this would indicate
that the correlation between V5 and F2 is .85. This may surprise you if you are familiar with multiple
regression, because most textbooks on multiple regression point out that standardized multiple
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regression coefficients and correlation coefficients are different things. However, standardized
regression coefficients are equivalent to correlation coefficients when predictor variables are
completely uncorrelated with each other. And that is the case in factor analysis with orthogonal factors:
The factors serve as predictor variables in predicting the observed variables. Because the factors are
uncorrelated, the factor loadings may be interpreted as both standardized regression weights and as
correlation coefficients.

®  Path coefficients. Finally, b coefficients are also analogous to the path coefficients obtained in path
analysis. That is, they may be seen as standardized linear weights that represent the size of the effect
that an underlying factor has in predicting variability in the observed variable. (Path analysis is covered
in Chapter 4 of this text.)

Factor loadings are important because they help you interpret the factors that are responsible for covariation in
the data. This means that, after the factors are rotated, you can review the nature of the variables that have
significant loadings for a given factor (i.e., the variables that are most strongly related to the factor). The nature
of these variables will help you understand the nature of that factor.

Factorial Complexity

Factorial complexity is a characteristic of an observed variable. The factorial complexity of a variable refers to
the number of common factors that have a significant loading for that variable. For example, in Figure 2.1 you
can see that the factorial complexity of V1 is one: V1 displays a significant loading for F1, but not for F2. The
factorial complexity of V4 is also one: It displays a significant loading for F2 but not for F1.

Although the Figure 2.1 factor model is fairly simple, Figure 2.2 depicts a more complex example. As with the
previous model, two common factors are again responsible for covariation in the dataset. However, you can see
that both common factors in Figure 2.2 have significant loadings on all six observed variables. In the same way,
you can see that each variable is influenced by both common factors. Because each variable in the figure has
significant loadings for two common factors, it may be said that each variable has a factorial complexity of two.

Figure 2.2: Six Variable, 2-Factor Model, Orthogonal Factors, Factorial Complexity=2
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Observed Variables as Linear Combinations of Underlying Factors

It is possible to think of a given observed variable, such as V1, as being a weighted sum of the underlying
factors included in the factor model. For example, notice that in Figure 2.2, there are three factors that affect
V1: Two common factors (F1 and F2), and one unique factor (U1). By multiplying these factors by the
appropriate weights, it is possible to calculate any participant’s score on V1. In algebraic form, this would be
done with the following equation:

V1= bll(Fl) + blz(Fz) + dl(Ul)
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In this equation, by, is the regression weight for F1 (the amount of weight given to F1 in the prediction of V1),
by, is the regression weight for F2, and d1 is the regression weight for the unique factor associated with V1.
You can see that a given person’s score on V1 is determined by multiplying the underlying factors by the
appropriate regression weights, and summing the resulting products. This is why, in factor analysis, the
observed variables are viewed as linear combinations of underlying factors.

The preceding equation is therefore similar to the multiple regression equation as described in most statistics
texts. In factor analysis, the observed variable (i.e., V1) serves as counterpart to the criterion variable (Y) in
multiple regression, and the latent factors (i.e., F1, F2 and Ul) serve as counterparts to the predictor variables
(i.e., the X variables) in multiple regression. We generally expect to obtain a different set of factor weights, and
thus a different predictive equation, for each observed variable in a factor analysis.

Where does one find the regression weights for the common factors in factor analysis? These are found in the
factor pattern matrix. An example of a pattern matrix is presented below:

Table 2.2
Factor Pattern
Variable Factor 1 Factor 2
\"2! .87 26
V2 .80 48
V3 77 .34
V4 -.56 49
V5 -.58 52
V6 -.50 .59

You can see that the rows (running left to right) in the factor pattern represent the different observed variables
such as V1 and V2. The columns in the factor pattern represent the different factors, such as F1 and F2. Where a
row and column intersect, you will find a factor loading (or standardized regression coefficient). For example,
in determining values of variable V1, F1 is given a weight of .87 and F2 is given a weight of .26; in determining
values of V2, F1 is given a weight of .80 and F2 is given a weight of .48.

Communality versus the Unique Component

A communality is a characteristic of an observed variable. It refers to the variance in an observed variable that
is accounted for common factors. If a variable exhibits a large communality, it means that this variable is
strongly influenced by at least one common factor. The symbol for communality is h’. The communality for a
given variable is computed by squaring that variable’s factor loadings for all retained common factors, and
summing these squares. For example, using the factor loadings from the previous factor pattern, you may
compute the communality for V1 in the following way:

h’= by’ + by’
=(.87)* +(.26)
= 755 +.068

= .82
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So the communality for V1 is approximately 82. This means that 82% of the variance in V1 is accounted for by
the two common factors. You can now compute the communality for each variable, and add these values to the
table that contains the pattern matrix:

Table 2.3
Factor Pattern

Variable Factor 1 Factor2 h’
Vi .87 26 .82
V2 .80 48 .87
V3 77 34 71
V4 -.56 49 .55
V5 -.58 .52 .61
V6 -.50 .59 .60

In contrast to the communality, the unique component refers to the proportion of variance in a given observed
variable that is not accounted for by the common factors. Once communalities are computed, it is a simple
matter to calculate the unique component: Simply subtract the communality from one. The unique component
for V1 can be calculated in this fashion:

d12:1_h12
=1-.82
=.18

And so, 18% of the variance in V1 is not accounted for by the common factors; alternatively, you could say that
18% of the variance in V1 is accounted for by the unique factor, U1.

If you then proceed to take the square root of the unique component, you can compute the coefficient “d.” This
should look familiar, because we earlier defined d as the weight given to a unique factor in determining values
on the observed variable. For variable V1, the unique component was calculated as .18. The square root of .18 is
approximately .42. Therefore, the unique factor Ul would be given a weight of .42 in determining values of V1
(ie., d, = .42).

Exploratory Factor Analysis versus Principal Component Analysis

Some readers may be struck by the many similarities between exploratory factor analysis and principal
component analysis. In fact, these similarities have even led some researchers to incorrectly report that they
have conducted “factor analysis” when, in fact, they have conducted principal component analysis. Because of
this common misunderstanding, this section will review some of the similarities and differences between the
two procedures.

How Factor Analysis Differs from Principal Component Analysis

Purpose

Only factor analysis may be used to identify the factor structure underlying a set of variables. In other words, if
you wish to identify the number and nature of latent factors that are responsible for covariation in a dataset, then
factor analysis, and not principal components analysis, should be used.
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Principal Components versus Common Factors

A principal component is an artificial variable; it is a linear combination of the (optimally weighted) observed
variables. It is possible to calculate where a given participant stands on a principal component by simply
summing that participant’s (optimally weighted) scores on the observed variable being analyzed. For example,
one could determine each participant’s score on principal component 1 using the following formula:

Ci=bn(X1) +bia(Xa) + ... bip(Xp)

where

C, = the participant’s score on principal component 1 (the first component extracted)

b, = the regression coefficient (or weight) for observed variable p, as used in creating principal component 1

X, = the participant’s score on observed variable p
In contrast, a common factor is a hypothetical latent variable that is assumed to be responsible for the
covariation between two or more observed variables. Because factors are unmeasured latent variables, you may
never know exactly where a given participant stands on an underlying factor (though it is possible to arrive at
estimates, as you will see later).
In common factor analysis, the factors are not assumed to be linear combinations of the observed variables (as

is the case with principal component analysis). Factor analysis assumes just the opposite: That the observed
variables are linear combinations of the underlying factors. This is illustrated in the following equation:

Xy =bi(F) + by(F>) + ... by(Fg) +di(Uy)
where
X, = the participant’s score on observed variable 1

b, = the regression coefficient (or weight) for underlying common factor g, as used in determining the
participant’s score on X

F, = the participant’s score on underlying factor q
d, = the regression weight for the unique factor associated with X;
U, = the unique factor associated with X

Because similar steps are followed in extracting principal components and common factors, it is easy to
incorrectly assume that they are conceptually identical. Yet the preceding equations show that they differ in an
important way. With principal components analysis, principal components are linear combinations of the
observed variables; however, the factors of factor analysis are not viewed in this way. In factor analysis the
observed variables are viewed as linear combinations of the underlying factors.

Some readers may be confused by this point because they know that it is possible to compute factor scores in
exploratory factor analysis. Furthermore, they know that these factor scores are essentially linear composites of
observed variables. In reality, however, these factor scores are merely estimates of where participants stand on
the underlying factors. These so-called factor scores generally do not correlate perfectly with scores on the
actual underlying factor. (For this reason, they are referred to as estimated factor scores in this text.)

On the other hand, the principal component scores obtained in principal component analysis are not estimates;
they are exact representations of the extracted components. Remember that a principal component is simply a
mathematical transformation (a linear combination) of the observed variables. So a given participant’s
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component score accurately represents where that participant stands on the principal component. It is therefore
correct to discuss actual component scores rather than estimated component scores.

Variance Accounted For

Factor analysis and principal component analysis also differ with respect to the type of variance accounted for.
The factors of factor analysis account for common variance in a dataset, while the components of principal
component analysis account for total variance in the dataset. This difference may be understood with reference
to Figure 2.3.

Figure 2.3: Total Variation in Variable X, as Divided Into Common and Unique Components
Total

—
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Assume that the length of the line in Figure 2.3 represents the total variance for observed variable X, and that
variables X through X4 undergo factor analysis. The figure shows that the total variance in X; may be divided
into two parts: Common variance and unique variance. Common variance corresponds to the communality of
X: The proportion of total variance for the variable accounted for by the common factors. The remaining
variance is the unique component: That variance (whether systematic or random) specific to variable X;.

With factor analysis, factors are extracted to account only for the common variance; the remaining unique
variance remains unanalyzed. This is accomplished by analyzing an adjusted correlation matrix: A correlation
matrix with communality estimates on the diagonal. You cannot know a variable’s actual communality prior to
the factor analysis, and so it must be estimated using one of a number of alternative procedures. We recommend
that squared multiple correlations be used as prior communality estimates. A variable’s squared multiple
correlation is obtained by using multiple regression to regress it on the remaining observed variables. (Below,
you will find that these values can be obtained easily by using the PRIORS option with PROC FACTOR.) The
adjusted correlation matrix that is analyzed in factor analysis has correlations between the observed variables
off the diagonal and communality estimates on the diagonal.

With principal component analysis, however, components are extracted to account for total variance in the
dataset, not just the common variance. This is accomplished by analyzing an unadjusted correlation matrix:
A correlation matrix with ones (1.00) on the diagonal. Why ones? Since all variables are standardized in the
analysis, each has a variance of one. Because the correlation matrix contains ones (rather than communalities)
on the diagonal, 100% of each variable’s variance will be accounted for by the combined components, not just
the variance that the variable shares in common with other variables.

It is this difference that explains why only factor analysis—and not principal component analysis—can be used
to identify the number and nature of the factors responsible for covariation in a dataset. Because principal
component analysis makes no attempt to separate the common component from the unique component of each
variable’s variance, this procedure can provide a misleading picture of the factor structure underlying the data.
Either procedure may be used to reduce a number of variables to a more manageable number; however, if one
wishes to identify the factor structure of a dataset (such as that portrayed in Figure 2.1), only factor analysis is
appropriate.

How Factor Analysis Is Similar to Principal Component Analysis

Purpose (in Some Cases)

Both factor analysis and principal component analysis may be used as variable reduction procedures; that is,
both may be used to reduce a number of variables to a smaller, more manageable number. This is why both
procedures are so widely used in analyzing data from multiple-item questionnaires in the social sciences; both
procedures can be used to reduce a large number of survey questions into a smaller number of “scales.”
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Extraction Methods (in Some Cases)

This chapter shows how to use the principal axis method to extract factors. This is the same procedure used to
extract principal components in the chapter on principal component analysis. (We will later show how to use the
maximum likelihood method: An extraction method that is typically used only with factor analysis.)

Results (in Some Cases)

Principal component analysis and factor analysis often lead to similar conclusions regarding the appropriate
number of factors (or components) to retain, as well as similar conclusions regarding how the factors (or
components) should be interpreted. This is especially the case when the variable communalities are high (near
1.00). The reason for this should be obvious: When the principal axis extraction method is used, the only real
difference between the two procedures involves the values that appear on the diagonal of the correlation matrix.
If the communalities are very high (near 1.00), there is little difference between the matrix that is analyzed in
principal component analysis and the matrix that is analyzed in factor analysis; hence the similar solutions.

Preparing and Administering the Investment Model Questionnaire

Assume that you are interested in measuring two constructs that constitute important components of Rusbult’s
investment model (1980). One construct is investment size: The amount of time or personal resources that the
person has put into his or her relationship with a current partner; and the other construct is alternative value:
The attractiveness of alternatives one’s current romantic partner (Le and Agnew 2003).

Writing the Questionnaire Iltems

The questionnaire used discussed in the preceding chapter is again reproduced below. Note that items 1 to 3
were designed to assess investment size whereas items 4 to 6 were designed to assess alternative value.

Please rate each of the following items to indicate the extent to which you agree or disagree with each
statement. Use a response scale in which 1 = “Strongly Disagree” and 7 = “Strongly Agree.”

1. I have invested a lot of time and effort in developing my relationship with my current partner.

2. My current partner and I have developed interests in a lot of activities that I would lose if our
relationship were to end.

3. My current partner and I have developed lot of mutual friendships that I would lose if our
relationship were to end.

4. It would be more attractive for me to be involved in a relationship with someone else rather than
continue a relationship with my current partner.

5. It would be more attractive for me to be by myself than to continue my relationship with my
current partner.

6. In general, the alternatives to this relationship are quite attractive.

Number of Items per Factor

As mentioned in the previous chapter on principal component analysis, it is highly desirable to have at least
three (and preferably more) variables loading on each factor when the analysis is complete. Because some of the
items may be dropped during the course of the analysis, it is generally good practice to write at least five items
for each construct that one wishes to measure; in this way, you increase the likelihood that at least three items
per factor will survive the analysis. (You can see that preceding questionnaire violates this recommendation by
including only three items for each factor at the outset.)

NOTE: Remember that the recommendation of three items per scale actually constitutes a lower bound. In

practice, test and attitude scale developers normally desire that their scales contain many more than just three
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items to measure a given construct. It is not unusual to see individual scales that include 10, 20, or even more
items to assess a single construct (e.g., O’Rourke and Cappeliez 2002). Other things being equal, the more items
in a scale, the more reliable responses to that scale will be. The recommendation of three items per scale should
therefore be viewed as a rock-bottom lower bound, appropriate only if practical concerns prevent you from
including more items concerns (e.g., overall length of the questionnaire battery). For more information on scale
construction, see Clark and Watson (1995), DeVellis (2012) and, Saris and Gallhofer (2007).

Minimal Sample Size Requirements

Exploratory factor analysis is a large-sample procedure, so it is important to use the following guidelines to
choose the sample size which will be minimally adequate for an analysis as a general rule of thumb.

The minimal number of participants in the sample should be the larger of:

® 100 participants or
® 10 times the number of variables being analyzed (Floyd and Widaman 1995)

If questionnaire responses are being analyzed, then the number of variables is equal to the number of
questionnaire items. To illustrate, assume that you wish to perform an exploratory factor analysis on responses
to a 50-item questionnaire. Ten times the number of items on the questionnaire equals 500. Therefore, it would
be best if your final sample provides usable (complete) data from at least S00 participants. It should be
remembered, however, that any participant who fails to answer just one item will not provide usable data for the
factor analysis, and will therefore be dropped from the final sample (unless you impute for missing responses;
van Buuren, 2012). A certain number of participants can always be expected to leave at least one question
blank; therefore, to insure that the final sample includes at least 500 usable responses, you would be wise to
administer the questionnaire to perhaps 550 participants.

These rules regarding the number of participants per variable again constitute a lower bound, and some have
argued that they should apply only under two optimal conditions for exploratory factor analysis: When many
variables are expected to load on each factor; and when variable communalities are high. Under less optimal
conditions, larger samples may be required.

SAS Program and Exploratory Factor Analysis Results

This section provides instructions on writing the SAS program, along with an overview of the SAS output. A
subsequent section will provide a more detailed treatment of the steps followed in the analysis, and the
decisions to be made at each step.

Writing the SAS Program

The DATA Step

To perform an exploratory factor analysis, data may be input in the form of raw data, a correlation matrix, a
covariance matrix, as well as other types of datasets (see Appendix A.2). In this example, raw data will be
analyzed.
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Assume that you administered your questionnaire to sample of 50 participants, and then entered their responses
to each question. The SAS names given to these variables, and the format used in entering the data, are
presented below:

Line Column Variable Name Explanation

1 1-6 V1-V6 Participants’ responses to
survey questions 1
through 6. Responses
were made using a 7-
point scale, where higher
scores indicate stronger
agreement with the
statement.

89 COMMIT Participants’ scores on the
commitment variable.
Scores may range from 4
to 28, and higher scores
indicate higher levels of
commitment to maintain
the relationship.

At this point, you are interested only in variables V1 to V6 (i.e., participant responses to the six questionnaire
items). Scores on the commitment variable (COMMIT) are also included in the dataset because you will later
compute correlations coefficients between estimated factor scores and COMMIT.

Below are the statements that will input these responses as raw data. The first three observations and the last
three observations are reproduced here. For the entire (fictitious) dataset, see Appendix B, “Datasets.”

data D1;
input #1 @1 (V1-Ve6) (1.)
@8 (COMMIT) (2.)

datalines;
776122 24
776111 28
111425 4

433344 15
557332 20
655222 13

’

run;

The dataset in Appendix B includes only 50 cases so that it will be relatively easy for interested readers to
replicate these analyses. It should be restated, however, that 50 observations constitute an unacceptably small
sample for an exploratory factor analysis (Floyd and Widaman 1995). Earlier it was said that a sample should
provide usable data from the larger of either 100 cases or 10 times the number of observed variables. A small
sample is being analyzed here for illustrative purposes only.
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The PROC FACTOR Statement

The general form for the SAS program to perform an exploratory factor analysis with oblique rotation is
presented below:

proc factor data=dataset-name
simple
method=factor-extraction-method
priors=prior-communality-estimates
nfact=n
plots=scree
rotate=promax
round
flag=desired-size-of-"significant"-factor-loadings ;

var variables-to-be-analyzed ;
run ;

Below is an actual program, including the DATA step that could be used to analyze some fictitious data from
the investment model study.

data D1;
input #1 @l (V1-Vo6) (1.)
@8 (COMMIT) (2.)
datalines;
776122 24
776111 28
111425 4

433344 15
557332 20
655222 13

’

run ;

proc factor data=D1
simple
method=prin
priors=smc
nfact=2
plots=scree
rotate=promax
round
flag=.40 ;

var V1 V2 V3 V4 V5 V6;
run;

Options Used with PROC FACTOR

The PROC FACTOR statement begins the factor procedure, and a number of options may be requested in this
statement before it ends with a semicolon. Some options that are especially useful in social science research are
presented below:

FLAG
causes the printer to flag (with an asterisk) factor loadings with absolute values greater than some specified
size. For example, if you specify

flag=.35
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an asterisk will appear next to any loading whose absolute value exceeds .35. This option can make it much
easier to interpret a factor pattern. Negative values are not allowed in the flag option, and the flag option
should be used in conjunction with the round option.

METHOD=factor-extraction-method
specifies the method to be used in extracting the factors. The current program specifies

method=prin

to request that the principal axis (principal factors) method be used for the initial extraction. Although the
principal axis is a common extraction method, most researchers prefer the maximum likelihood method
because it provides a significance test for solving the “number of factors” problem, and generally provides
better parameter estimates. The maximum likelihood method may be requested with the option

method=ml

MINEIGEN=p

specifies the critical eigenvalue a factor must display if that factor is to be retained (here, p = the critical
eigenvalue). Negative values are not allowed.

NFACT=n
allows you to specify the number of factors to be retained and rotated, where n = the number of factors.

OUT=name-of-new-dataset
creates a new dataset that includes all of the variables of the existing dataset, along with estimated factor
scores for the retained factors. Factor 1 is given the variable name FACTORI, factor 2 is given the name
FACTOR2, and so forth. OUT= must be used in conjunction with the NFACT option, and the analysis
must be based on raw data.

PRIORS=prior communality estimates
specifies prior communality estimates. The preceding specifies SMC to request that the squared multiple

correlations between a given variable and the other observed variables be used as that variable’s prior
communality estimate.

ROTATE=rotation method

specifies the rotation method to be used. The preceding program requests a promax rotation that results in
oblique (correlated) factors. This option is requested by specifying

rotate=promax

Orthogonal rotations may also be requested; Chapter 1 showed how to request an (orthogonal) rotation by
specifying

rotate=varimax

ROUND

factor loadings and correlation coefficients in the matrices printed by PROC FACTOR are normally carried
out to several decimal places. Requesting the ROUND option, however, causes all coefficients to be limited
to two decimal places, rounded to the nearest integer, and multiplied by 100 (thus eliminating the decimal
point). This generally makes it easier to read the coefficients.

PLOTS=SCREE

creates a plot that graphically displays the size of the eigenvalue associated with each factor. This can be
used to perform a scree test to visually determine how many factors should be retained.

SIMPLE

requests simple descriptive statistics: The number of usable cases on which the analysis was performed and
the means and standard deviations of the observed variables.
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The VAR Statement

The variables to be analyzed are listed on the VAR statement, with each variable separated by at least one
space. Remember that the VAR statement is a separate statement not an option within the factor statement, so
do not forget to end the FACTOR statement with a semicolon before beginning the VAR statement.

Results from the Output

The preceding program would produce four pages of output. The following lists some of the information
included in this output, and the page on which it appears:

® Page | presents simple statistics.

® Page 2 includes prior communality estimates, initial eigenvalues, scree plot of eigenvalues and
cumulative variance, and final communality estimates.

® Page 3 includes the results of the orthogonal transformation matrix (varimax rotation), the rotated
factor pattern matrix for the varimax solution, and final communality estimates.

® Page 4 includes results from the oblique rotation method (promax rotation) such as the inter-factor
correlations, the rotated factor pattern matrix (standardized regression coefficients), the reference
structure (semipartial correlations), the factor structure correlations and estimates of variance explained
by each factor (ignoring other factors).

The following section reviews the steps by which exploratory factor analysis is conducted. Integrated into this
discussion will be excerpts from the preceding output, along with guidelines for interpreting this output.

Steps in Conducting Exploratory Factor Analysis

Factor analysis is normally conducted in a sequence of steps, with somewhat subjective decisions being made at
various steps. Because this is an introductory treatment of the topic, it will not provide a comprehensive
discussion of all the options available to you at each step; instead, specific recommendations will be made,
consistent with practices often followed in applied research. For a more detailed discussion of exploratory factor
analysis, see Kim and Mueller (1978a; 1978b), Loehlin (1987), and Rummel (1970).

Step 1: Initial Extraction of the Factors

The first step of the analysis involves the initial extraction of the factors. The preceding program specified the
option

method=prin

which calls for the principal factors, or principal axis method. This is the same method used to extract the
components of principal component analysis.

As with component analysis, the number of factors extracted will be equal to the number of variables being
analyzed. Because six variables are being analyzed in the present study, six factors will be extracted. The first
factor can be expected to account for a fairly large amount of the common variance. Each succeeding factor will
account for progressively smaller amounts of variance. Although a large number of factors may be extracted in
this way, only the first few factors will be sufficiently important to be retained for interpretation.

As with principal components, the extracted factors will have two important properties: (a) each factor will
account for a maximum amount of the variance that has not already been accounted for by other previously
extracted factors; and (b) each factor will be uncorrelated with all of the previously extracted factors. This
second characteristic may come as a surprise, because earlier it was said that you were going to obtain an
oblique solution (by specifying ROTATE=PROMAX) in which the factors would be correlated. In this analysis,
however, the factors are in fact orthogonal (uncorrelated) at the time they are extracted. It is only later in the
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analysis that their orthogonality is relaxed, and they are allowed to become oblique. This will be discussed in
more detail in a subsequent section on factor rotation.

These concepts will now be related to some of the results that appeared in the output created by the preceding
program. Pages land 2 of the output provided simple statistics, the eigenvalue table, and some additional
information regarding the initial extraction of the factors. Those pages are reproduced here as Output 2.1.

Output 2.1: Simple Statistics, Prior Communalities, and Eigenvalue Table from Analysis of Investment
Model Questionnaire (page 1)

The FACTOR Procedure

Input Data Type Raw Data
Number of Records Read 50
Number of Records Used 50
N for Significance Tests 50

Means and Standard Deviations
from 50 Observations

Variable Mean Std Dev
V1 4.6200000  1.5371588
V2 4.3800000 1.5103723
V3 4.3600000 1.6383167
v4 2.7600000 @ 1.2545428
V5 2.3600000 @ 1.1021315
V6 2.5600000 @ 1.3726185

Output 2.1 (page 2)

The FACTOR Procedure
Initial Factor Method: Principal Factors

Prior Communality Estimates: SMC
\'Al V2 V3 v4 V5 Vé

0.78239483  0.81705605 0.67662145  0.47918877 @ 0.52380277 @ 0.49871459

Eigenvalues of the Reduced Correlation Matrix: Total = 3.77777847 Average = 0.62962975

Eigenvalue Difference Proportion Cumulative
1 2.87532884 1.59874396 0.7611 0.7611
2 1.27658489 1.28903380 0.3379 1.0990
3 -.01244892 0.07484205 -0.0033 1.0957
4 -.08729097 0.03685491 -0.0231 1.0726
5 -.12414588 0.02610362 -0.0329 1.0398
6 -.15024950 -0.0398 1.0000
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2 factors will be retained by the NFACTOR criterion.
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Factor Pattern
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V1 87 * 26
V2 80 * 48  *
V3 77t 34
V4 -56 | * 49 >
V5 -58 | * 52  *
V6 -50 | * 59  *

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an "'
Variance Explained by Each
Factor
Factor1 Factor2

2.8753288 1.2765849

Final Communality Estimates: Total = 4.151914
\'Al \'/] V3 V4 V5 V6

0.81677554  0.87417817 | 0.70443448 | 0.55882781  0.60705615 @ 0.59064158

On page 1 of Output 2.1, the simple statistics section shows that the analysis was based on 50 observations.
Means and standard deviations are also provided.

The first line of page 2 says “Initial Factor Method: Principal Factors.” This indicates that the principal factors
method was used for the initial extraction of the factors.

Next, the prior communality estimates are printed. Because the program included the PRIORS=SMC option, the
prior communality estimates are squared multiple correlations.
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Below that, the eigenvalue table is printed. An eigenvalue represents the amount of variance that is accounted
for by a given factor. In the column labeled “Eigenvalue,” the eigenvalue for each factor is presented. Each row
in the matrix presents information about one of the six factors: The row labeled “1” provides information about
the first factor extracted. The row labeled “2” provides information about the second factor extracted, and so
forth.

Where the column headed “Eigenvalue” intersects with the rows labeled “1” and “2,” you can see that the
eigenvalue for factor 1 is approximately 2.88, while the eigenvalue for factor 2 is 1.28. This pattern is consistent
with our earlier statement that the first factors extracted tend to account for relatively large amounts of variance,
while the later factors account for relatively smaller amounts.

Step 2: Determining the Number of “Meaningful” Factors to Retain

As with principal component analysis, the number of factors extracted is equal to the number of variables
analyzed, necessitating that you decide just how many of these factors are truly meaningful and worthy of being
retained for rotation and interpretation. In general, we expect that only the first few factors will account for
meaningful amounts of variance, and that the later factors will tend to account for relatively small amounts of
variance (i.e., largely error variance). The next step of the analysis, therefore, is to determine how many
meaningful factors should be retained for interpretation.

The preceding program specified NFACT=2 so that two factors would be retained; because this was the initial
analysis, you had no empirical reason to expect two meaningful factors, and specified NFACT=2 on a hunch. If
the empirical results suggest a different number of meaningful factors, the NFACT option may be changed for
subsequent analyses.

The chapter on principal component analysis discussed four options that can be used to help make the “number
of factors” decision; the first of these was the eigenvalue-one criterion or Kaiser-Guttman criterion (Kaiser
1960). When using this criterion, you retain any principal component with an eigenvalue greater than 1.00.

The eigenvalue-one criterion made sense in principal component analysis, because each variable contributed
one unit of variance to the analysis. This criterion insured that you would not retain any component that
accounted for less variance than had been contributed by one variable.

For the same reason, however, you can see that the eigenvalue-one criterion is less appropriate in common
factor analysis. Remember that each variable does not contribute one unit of variance to this analysis but,
instead, contributes its prior communality estimate. This estimate will be less than 1.00, and so it makes little
sense to use the value of 1.00 as a cutting point for retaining factors. Without the eigenvalue-one criterion, you
are left with the following three options.

The Scree Test

With the scree test (Cattell 1966), you plot the eigenvalues associated with each factor and look for a “break”
between factors with relatively large eigenvalues and those with smaller eigenvalues. The factors that appear
before the break are assumed to be meaningful and are retained for rotation; those appearing after the break are
assumed to be unimportant and are not retained.

Specifying the PLOTS=SCREE option in the PROC FACTOR statement causes SAS to print an eigenvalue plot
as part of the output. This scree plot is presented here as Output 2.2.
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Output 2.2: Scree Plot of Eigenvalues from Analysis, and Proportion of Variance Explained, of Investment
Model Questionnaire

Scree Plot Variance Explained
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The scree plot graph appears on the left. You can see that the factor numbers are listed on the horizontal axis,
while eigenvalues are listed on the vertical axis. With this plot, notice that there is a relatively large break
between factors 1 and 2, another large break between factors 2 and 3, but that there is no break between factors
3and 4, 4 and 5, or 5 and 6. Because factors 3 through 6 have relatively small eigenvalues, and the data points
for factors 3 through 6 could almost be fitted with a straight line, they can be assumed to be relatively
unimportant factors. Because there is a relatively large break between factors 2 and 3, factor 2 can be viewed as
a relatively important factor. Given this plot, a scree test would suggest that only factors 1 and 2 be retained
because only these factors appear before the last big break. Factors 3 through 6 appear after the break, and thus
will not be retained.

Proportion of Variance Accounted For

A second criterion in making the number of factors decision involves retaining a factor if it accounts for a
certain proportion (or percentage) the variance in the dataset. For example, you may decide to retain any
factor that accounts for at least 5% or 10% of the common variance. (See right-hand side graph, Output 2.2.)
This proportion can be calculated with a simple formula:

Eigenvalue for the factor of interest
Proportion = ———-———-————-—-— -
Total eigenvalues of the correlation matrix

In principal component analysis, the “total eigenvalues of the correlation matrix” was equal to the total number
of variables being analyzed (because each variable contributed one unit of variance to the dataset). In common
factor analysis, however, the total eigenvalues will be equal to the sum of the communalities that appear on the
main diagonal of the matrix being analyzed.

The proportion of common variance accounted for by each factor is printed in the eigenvalue table from output
page 2 below the heading “Proportion.” The eigenvalue table for the preceding analysis is presented again as
Output 2.3.
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Output 2.3: Eigenvalue Table from Analysis of Investment Model Questionnaire

Eigenvalues of the Reduced Correlation Matrix: Total = 3.77777847 Average = 0.62962975

Eigenvalue Difference Proportion Cumulative
1 2.87532884 1.59874396 0.7611 0.7611
2 1.27658489 1.28903380 0.3379 1.0990
3 -.01244892 0.07484205 -0.0033 1.0957
4 -.08729097 0.03685491 -0.0231 1.0726
5 -.12414588 0.02610362 -0.0329 1.0398
6 -.15024950 -0.0398 1.0000

2 factors will be retained by the NFACTOR criterion.

From the “Proportion” column of the preceding eigenvalue table, you can see that the first factor alone accounts
for 76% of the common variance, the second factor alone accounts for almost 34%, and the third factor accounts
for less than 1%. (In fact, Factor 3 actually has a negative percentage; see the following box for an explanation.)
If one were using, say, 10% as the criterion for deciding whether a factor should be retained, only Factors 1 and
2 would be retained in the present analysis. Despite the apparent ease of use of this criterion, however,
remember that this approach has been criticized (Kim and Mueller 1978b).

How can you account for over 100% of the common variance? The final column of the eigenvalue table
(labeled “Cumulative”) provides the cumulative percent of common variance accounted for by the factors.
Output 2.3 shows that factor 1 accounts for 76% of the common variance (the value in the table is 0.76), and
factors 1 and 2 combined account for 110%. But how can two factors account for over 100% of the common
variance?

In brief, this is because the prior communality estimates were not perfectly accurate. Consider this: If your
prior communality estimates were perfectly accurate estimates of the variables’ actual communalities, and if
the common factor model was correctly estimated, then the factors that you retained would have to account
for exactly 100% of the common variance, and the remaining factors would have to account for 0%. The fact
that this did not happen in the present analysis is probably because your prior communality estimates (squared
multiple correlations) were not perfectly accurate.

You may also be wondering why some of the factors seem to be accounting for a negative percent of the
common variance (i.e., why they have negative eigenvalues). This is because the analysis is constrained so
that the “Cumulative” proportion must equal 1.00 after the last factor is extracted. Since this cumulative value
exceeds 1.00 at some points in the analysis, is was mathematically necessary that some factors have negative
eigenvalues.

Interpretability Criteria

Perhaps the most important criteria to use when solving the “number of factors” problem is the interpretability
criteria: Interpreting the substantive meaning of the retained factors and verifying that this interpretation
“makes sense” in terms of what is known about the constructs under investigation. Below are four rules to
follow when doing this. (A later section of this chapter will provide a step-by-step illustration of how to
interpret a factor solution; the following rules will be more meaningful at that point.)
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1. Are there at least three variables (items) with significant loadings on each retained factor? A
solution is less satisfactory if a given factor is measured by less than three variables.

2. Do the variables that load on a given factor share some conceptual meaning? For example, if
three questions on a survey all load on Factor 1, do all three of these questions seem to be measuring
the same underlying construct?

3. Do the variables that load on different factors seem to be measuring different constructs? For
example, if three questions load on Factor 1, and three other questions load on Factor 2, do the first
three questions seem to be measuring a construct that is conceptually different from the construct
measured by the last three questions?

4. Does the rotated factor pattern demonstrate “simple structure?” Simple structure means that the
pattern possesses two characteristics: (a) most of the variables have relatively high factor loadings on
only one factor, and near-zero loadings for the other factors; and (b) most factors have relatively high
factor loadings for some variables, and near-zero loadings for the remaining variables. This concept of
simple structure will be explained in more detail in a later section.

Recommendations

Given the preceding options, what procedure should you actually follow in solving the number of factors
problem? This text recommends combining all three in a structured sequence. First, perform a scree test and
look for obvious breaks in the data. Because there will often be more than one break in the eigenvalue plot, it
may be necessary to examine two or more possible solutions. Next, review the amount of common variance
accounted for by each factor. We hesitate to recommend the rigid use of some specific but arbitrary cut off
point, such as 5% or 10%. Still, if you are retaining factors that account for as little as 2% or 3% of the variance,
it may be wise to take a second look at the solution and verify that these latter factors are of truly substantive
importance. Finally, apply the interpretability criterion. If more than one solution can be justified on the basis of
a scree test or the “variance accounted for” criteria, which of these solutions are the most interpretable? By
seeking a solution that satisfies all three of these criteria, you maximize chances of correctly identifying the
factor structure of the dataset.

Step 3: Rotation to a Final Solution

After extracting the initial factors, the computer will print an unrotated factor pattern matrix. The rows of this
matrix represent the variables being analyzed, and the columns represent the retained factors. The entries in the
matrix are factor loadings. In a factor pattern matrix, the observed variables are assumed to be linear
combinations of the common factors, and the factor loadings are standardized regression coefficients for
predicting the variables from the factors. (Later, you will see that the loadings have a different interpretation in
a factor structure matrix.) With PROC FACTOR, the unrotated factor pattern is printed under the heading
“Factor Pattern,” and appears on output page 2. The factor pattern for the present analysis is presented as Output
2.4.
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Output 2.4: Unrotated Factor Pattern from Analysis of Investment Model Questionnaire

Factor Pattern

Factor1 Factor2
V1 87 * 26
V2 80 * 48
V3 77 34
V4 -56 | * 49
V5 -58 | * 52  *
V6 -50  * 59  *

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an ™.

Variance Explained by Each
Factor

Factor1 Factor2

2.8753288 1.2765849

Final Communality Estimates: Total = 4.151914
\'Al \'/] V3 V4 V5 V6

0.81677554  0.87417817 | 0.70443448 @ 0.55882781  0.60705615 0.59064158

When more than one factor has been retained, an unrotated factor pattern is usually difficult to interpret. Factor
patterns are easiest to interpret when some of the variables in the analysis have very high loadings on a given
factor, and the remaining variables have near-zero loadings on that factor. Unrotated factor patterns often fail to
display this type of pattern. For example, consider the loadings under the column heading “FACTOR1” in
Output 2.4. Notice that variables V1, V2, and V3 do display fairly high loadings for this factor, which is good.
Unfortunately, however, variables V4, V5, and V6 do not display near-zero loadings for this factor; the loadings
for these three variables range from -.50 to -.58, which is to say that they are of moderate size. For reasons that
will be made clear shortly, this state of affairs would make it difficult to interpret Factor 1.

To make interpretation easier, you will normally perform a linear transformation on the factor solution called a
rotation. The previous chapter on principal component analysis demonstrated the use of an orthogonal rotation.
It was explained that orthogonal rotations result in components (or factors) that are uncorrelated with one
another.

In contrast, this chapter will illustrate the use of the promax rotation, which is a specific type of oblique
rotation. Oblique rotations generally result in correlated factors (or components).

A promax rotation is actually conducted in two steps. The first step involves an orthogonal varimax prerotation.
At this point in the analysis, the extracted factors are still uncorrelated. During the second step (the promax
rotation), the orthogonality of the factors is relaxed, and they are allowed to become correlated. Below, it will
be seen that the interpretation of an oblique solution is more complicated than the interpretation of an
orthogonal solution, though oblique rotations often provide better results (at least in those situations in which
the actual, underlying factors truly are correlated).
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Step 4: Interpreting the Rotated Solution

Orthogonal Solutions

During the prerotation step, SAS produces a rotated factor pattern similar to that which would be produced if
you had specified ROTATE=VARIMAX. This matrix appears on output page 3 of the current output, and is
presented as Output 2.5.

Output 2.5: Varimax (Orthogonal) Rotated Factor Pattern from Analysis of Investment Model
Questionnaire

The FACTOR Procedure
Prerotation Method: Varimax

Orthogonal Transformation Matrix

1 2
1 0.82009 -0.57223
2 0.57223 0.82009

Rotated Factor Pattern

Factor1 Factor2
\'Al 86 * -28
V2 93 * -7
V3 82 * -16
v4 -18 73
V5 -17 76
V6 -7 77

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an ™.
Variance Explained by Each
Factor
Factor1 Factor2

2.3518179 1.8000959

Final Communality Estimates: Total = 4.151914
\'Al \'/] V3 V4 V5 V6

0.81677554  0.87417817 | 0.70443448 | 0.55882781  0.60705615 @ 0.59064158

If you were interested in an orthogonal solution, it would be perfectly acceptable to interpret this rotated factor
pattern in the manner described in the previous chapter on principal component analysis. Interested readers may
turn to that chapter for a detailed discussion of how this is done. Because this chapter deals with oblique
rotations, it will instead focus on how one interprets the results of the promax procedure.
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Oblique Solutions

Before interpreting the meaning of the retained factors, you should first check the inter-factor correlations that
appear on output toward the bottom of page 5. The results for the current analysis are presented here as Output
2.6.

Output 2.6: Inter-Factor Correlations from Analysis of Investment Model Questionnaire

Inter-Factor Correlations

Factor1 Factor2
Factor1 100  * -34
Factor2 -34 100  *

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an "'.

In Output 2.6, look in the section heading “Inter-Factor Correlations.” Where the row heading “FACTOR1”
intersects with the column heading “FACTOR2,” you will find a correlation coefficient of -.34. This means that
there is a correlation of -.34 between the two factors. At this point in the analysis, you do not know exactly what
this correlations means, because you have not yet interpreted the meaning of the factors themselves. You will
therefore return to this correlation after the interpretation of the factors has been completed.

In a sense, interpreting the nature of a given factor is relatively straightforward: You begin by looking for
variables (survey items) that have high loadings on that factor. A high loading means that the variable is, in a
sense, “measuring” that factor. You must review all of the variables with high loadings on that factor, and
attempt to determine what the variables have in common. What underlying construct do all of the items seem to
be measuring? In naming this construct, you name the factor.

As always, however, somewhat qualitative decisions must often be made. For example, how large must a factor
loading be before you will conclude it is a “high” loading? As with the preceding chapter, we suggest that
loadings equal to or greater than .40 be treated as meaningful loadings, and that loadings under .40 generally be
ignored. As you gain expertise in performing factor analyses, you should explore the more sophisticated
procedures for identifying “significant” loadings, such as those discussed by Stevens (2002).

With an orthogonal rotation, factor interpretation was fairly straightforward: You simply reviewed the factor
pattern matrix to identify the variables with significant loadings on a given factor. With oblique rotations,
however, the situation is somewhat more complex, because you must interpret two, and in some cases three
different matrices, in order to fully understand the results. In all cases, the rotated factor pattern and factor
structure matrices should be reviewed; in some cases, it may also be necessary to review the reference structure
matrix.

First, you should review the rotated factor pattern matrix. This matrix appears on page 5 of the output for the
current analysis. It is presented here as Output 2.7.
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Output 2.7: Promax (Oblique) Rotated Factor Pattern from Analysis of Investment Model Questionnaire

Rotated Factor Pattern
(Standardized Regression
Coefficients)

Factor1 Factor2
\'Al 85 * -14
V2 97 10
V3 84 * -1
V4 -5 73
V5 -4 7%
V6 7 79

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an "'

Notice that “Standardized Regression Coefficients” appears in parentheses in the heading of this matrix. This
should help remind you that the loadings appearing in this factor pattern are regression coefficients of the
variables on the factors. In common factor analysis, the observed variables are viewed as linear combinations of
the factors, and the elements of the factor pattern are regression weights associated with each factor in the
prediction of these variables. The loadings in this matrix are also called pattern loadings, and may be said to
represent the unique contribution that each factor makes to the variance of the observed variables (Rummel
1970).

You should rely most heavily on this rotated factor pattern matrix to interpret the meaning of each factor. The
rotated factor pattern is more likely to display simple structure than the structure matrix (to be discussed below),
and will be more useful in determining what names should be assigned to the factors.

The chapter on principal component analysis provided a structured procedure to follow in interpreting a rotated
factor pattern. These guidelines are reproduced again below:

1. Read across the row for the first variable. All “meaningful loadings” (i.e., loadings greater than .40)
have been flagged with an asterisk (“*””). This occurred because the FLAG=.40 option was specified in
the preceding program. If a given variable has a meaningful loading on more than one factor (i.e.,
complex items), scratch that variable out and ignore it in your interpretation. In many situations,
researchers wish to drop variables that load on more than one factor, because the variables are not
“pure” measures of any one construct. In the present case, this means reviewing the row labeled V1,
and reading to the right to see if it loads on more than one factor. In this case it does not, so you may
retain this variable.

2. Repeat this process for the remaining variables, scratching out any variable that loads on more
than one factor. In this analysis, none of the variables have high loadings for more than one factor, so
none will have to be dropped.

3. Review all of the surviving variables with high loadings on Factor 1 to determine the nature of
this factor. From the rotated factor pattern, you can see that only items 1, 2, and 3 load on Factor 1
(note the asterisks). It is now necessary to turn to the questionnaire itself and review the content of the
questions in order to decide what a given factor should be named. What do questions 1, 2, and 3 have
in common? What common construct do they seem to be measuring? For illustration, the questions
being analyzed in the present case are again reproduced below. Remember that question 1 was
represented as V1 in the SAS program, question 2 was V2, and so forth. To interpret Factor 1, you
must read questions 1, 2, and 3 to see what they have in common.
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Please rate each of the following statements to indicate the extent to which you agree or disagree with each
using a response scale in which 1 = “Strongly Disagree” and 7 = “Strongly Agree.”

1. Ihave invested a lot of time and effort in developing my relationship with my current partner.

2. My current partner and I have developed interests in a lot of fun activities that I would lose if our
relationship were to end.

3. My current partner and I have developed lot of mutual friendships that I would lose if our
relationship were to end.

4. It would be more attractive for me to be involved in a relationship with someone else rather than
continue in a relationship with my current partner.

5. It would be more attractive for me to be by myself rather than to continue the relationship with my
current partner.

6. In general, the alternatives to remaining in this relationship are quite attractive.

Questions 1, 2, and 3 all seem to be dealing with the size of the investment that the respondent has put into the
relationship. It is therefore reasonable to label Factor 1 the “investment size” factor.

4. Repeat this process to name the remaining retained factors. In the present case, there is only one
remaining factor to name: Factor 2. This factor has high loadings for questions 4, 5, and 6. In
reviewing these items, it becomes clear that each seems to deal with the attractiveness of alternatives to
one’s current relationship. It is therefore reasonable to label this the “alternative value” factor.

5. Determine whether this solution satisfies the "interpretability criteria.” An earlier section
indicated that the overall results of a principal factor analysis are satisfactory only if they meet the
following interpretability criteria:

a. Are there at least three variables (items) with significant loadings on each retained factor?
In the present example, three variables loaded on Factor 1, and three also loaded on factor 2, so
this criterion was met.

b. Do the variables that load on a given factor share some conceptual meaning? All three
variables loading on Factor 1 are clearly measuring investment size, while all three loading on
Factor 2 are clearly measuring alternative value. Therefore, this criterion is met.

c. Do the variables that load on different factors seem to be measuring different constructs?
Because the items loading on the “investment size” factor seem to be conceptually very different
from the items loading on the “alternative value” factor, this criterion seems to be met as well.

d. Does the rotated factor pattern demonstrate “simple structure?” Earlier, it was said that a
rotated factor pattern demonstrates simple structure when it has two characteristics. First, most of
the variables should have high loadings on one factor, and near-zero loadings on other factors.
You can see that the pattern obtained here meets that requirement: Items 1 to 3 have high loadings
on Factor 1, and near-zero loadings on Factor 2. Similarly, items 4 to 6 have high loadings on
Factor 2, and near-zero loadings on Factor 1. The second characteristic of simple structure is that
each factor should have high loadings for some variables, and near-zero loadings for the others.
Again, the pattern obtained here also meets this requirement: Factor 1 has high loadings for items
1 to 3 and near-zero loadings for other items, while Factor 2 has high loadings for items 4 to 6,
and near-zero loadings on the remaining items. In short, the rotated factor pattern obtained in this
analysis does seem to demonstrate simple structure.

As stated earlier, the rotated factor pattern should be the first matrix reviewed in naming the factors. However,
it does have one limitation: The pattern loadings of this matrix are not constrained to range between +1.00 and
-1.00. In rare cases in which the factors are strongly correlated, some loadings may be as large as 10.00 or even
larger. In such cases the interpretation of the pattern matrix may be difficult.

When faced with such a situation, it is generally easier to instead review the reference structure matrix. This
appears under the heading “Reference Structure (Semipartial Correlations)” on output page 5. The reference
structure for the current analysis of the investment model questionnaire is presented here as Output 2.8.
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Output 2.8: Reference Structure (Semipartial Correlations) from Analysis of Investment Model
Questionnaire

Reference Structure (Semipartial Correlations)

Factor1 Factor2
V1 80 * -13
V2 91 ¥ 10
V3 78 * -1
V4 -5 68  *
V5 -4 72
V6 6 74

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an "*'.

The heading for the reference structure parenthetically includes the words “Semipartial Correlations.” This is
because the coefficients in this matrix represent the semipartial correlations between variables and common
factors, removing from each common factor the effects of other common factors.

The steps followed in interpreting the reference structure are identical to those followed in reviewing the factor
pattern. Notice that the size of the loadings in the above reference structure is very similar to those in the rotated
factor pattern. It is clear that interpreting the reference structure in this study would have led to exactly the same
interpretation of factors as was obtained using the rotated factor pattern.

In addition to interpreting the rotated factor pattern (and reference structure, if necessary), you should also
review the factor structure matrix. The structure matrix for the present study also appears on page 5, and is
presented here as Output 2.9.

Output 2.9: Factor Structure (Correlations) from Analysis of Investment Model Questionnaire

Factor Structure (Correlations)

Factor1 Factor2
V1 89 * 43 *
V2 93  * -23
V3 84 * -30
V4 -30 7%t
V5 -30 78
V6 -20 77t

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an *'.

The word “Correlations” appears in parentheses in the heading for this matrix, because the structure loadings
that it contains represent the product-moment correlations between the variables and common factors. For
example, where the row for V1 intersects with the column for FACTORI, a structure loading of 89 appears.
This indicates that the correlation between item 1 and Factor 1 is +.89.
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The structure matrix is generally less useful for interpreting the meaning of the factors (compared to the rotated
pattern matrix) because it often fails to demonstrate simple structure. For example, notice that the “low”
loadings in this structure matrix are not really that low: The loading of V1 on Factor 2 is -.43; the corresponding
loading from the rotated pattern matrix was considerably lower at -.14. Comparing the rotated pattern matrix to
the structure matrix reveals the superiority of the former in achieving simple structure.

If this is the case, then why review the structure matrix at all? We do this because the pattern matrix and the
structure matrix provide different information about the relationships between the observed variables and the
underlying factors: The factor pattern reveals the unique contribution of each factor to the variance of the
variable. The pattern loadings in this matrix are essentially standardized regression coefficients, comparable to
those obtained in multiple regression.

The factor structure, on the other hand, reveals the correlation between a given factor and variable. It helps you
understand the “big picture” of how the variables are really related to the factors. For example, consider the
rotated factor pattern matrix which appeared on page 4 of the current output. It is presented again here as Output
2.10.

Output 2.10: Promax (Oblique) Rotated Factor Pattern from Analysis of Investment Model Questionnaire

Rotated Factor Pattern (Standardized Regression Coefficients)

Factor1 Factor2
V1 85 * -14
v2 97 = 10
V3 84 * -1
V4 -5 73 0
V5 -4 76 *
V6 7 79

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an "'

Notice that the pattern loading for V1 on Factor 2 is only .14. Do not allow this very weak pattern loading to
mislead you into believing that V1 and Factor 2 are completely unrelated. Because this is a pattern loading, its
small value merely means that Factor 2 makes a very small unigue contribution to the variance in V1.

For contrast, now consider the structure loading for V1 on Factor 2 (from Output 2.9). The structure loading
reveals that V1 actually demonstrates a correlation with Factor 2 of -.43. Why would V1 be negatively
correlated with Factor 2? Because V1 is directly related to Factor 1, and Factor 1, in turn, is negatively
correlated with Factor 2. This negative correlation is illustrated graphically in Figure 2.4. Notice that there is a
curved double-headed arrow that connects Factors 1 and 2. The arrow is identified with a negative sign. This
curved arrow shows that these factors are negatively correlated with no assumed causation between them.
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Figure 2.4: Path Model for a 6-Variable, 2-Factor Model, Oblique Factors, Factorial Complexity = 1
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The model presented as Figure 2.4 is identical to Figure 2.1 with one exception. A curved double-headed arrow
now connects Factors 1 and 2. This means that the factors are now oblique or correlated. This figure helps
demonstrate how a variable could have a moderately large structure loading for a factor, but a small pattern
loading. The structure loading for V1 and Factor 2 is -.43 because V1 is caused by Factor 1, and Factor 1 is
negatively correlated with Factor 2. However, the pattern loading for V1 and Factor 2 is much smaller at -.14,
because Factor 2 has essentially no direct effect on V1.

In summary, one should always review the pattern matrix to determine which groups of variables are measuring
a given factor, for purposes of interpreting the meaning of that factor. One should then review the structure
matrix to get the “big picture” concerning the simple bivariate relations between variables and factors.

If the structure matrix is so important, then why was it not discussed in the chapter on principal component
analysis? This is because the pattern matrix and the structure matrix are one and the same in a principal
component analysis with an orthogonal rotation. Technically, the loadings of the pattern matrix in principal
component analysis can be viewed as regression coefficients, as in common factor analysis. Remember,
however, that the principal components of this analysis are orthogonal, or uncorrelated. Because of this
orthogonality, the regression coefficients for the components are equivalent to the correlation between the
components and the variables. This is to say that the loadings of the pattern matrix can also be interpreted as
correlations between the components and the variables. Hence, there is no difference between a factor pattern
matrix and a factor structure matrix in principal component analysis with an orthogonal rotation. This is why
only the pattern matrix is printed and interpreted.

Step 5: Creating Factor Scores or Factor-Based Scores

Once the analysis is complete, it is often desirable to assign scores to each participant to indicate where that
participant stands on the retained factors. For example, the two factors retained in the present study were
interpreted as an investment size factor and alternative value factor. You may wish to now assign one score to
each participant to indicate where that participant stands on the investment size factor, and a different score to
indicate where that participant stands on the alternative value factor. With this done, these factor scores could
then be used either as predictor variables or as criterion variables in subsequent analyses.

Before discussing the options for assigning these scores, it is necessary to first draw a distinction between factor
scores versus estimated factor scores. A factor score represents a participant’s actual standing on an underlying
factor. An estimated factor score, on the other hand, is merely an estimate of a participant’s standing on that
underlying factor. In practice, researchers are never able to compute true “factor scores.” This is because of a
fundamental indeterminancy in factor analysis. In the end, factor scores are estimated by creating linear
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composites of the observed variables. That is, one computes factor scores by adding together optimally
weighted scores on the observed variables. But remember that the common part of a given variable (that part
influenced by the common factor) is inseparable from that variable's unique component. This means that there
will always be some error associated with the computation of factor scores, and so it is therefore better to refer
to them as estimated factor scores.

Estimated Factor Scores

Broadly speaking, two scoring approaches are available. The more sophisticated approach is to allow PROC
FACTOR to compute estimated factor scores. An estimated factor score is a linear composite of the optimally
weighted variables under analysis. For example, to calculate the participant’s estimated factor score on factor 1,
you would use the following equation:

F'i'= buVi+bipVa+bisVs+.. bV,
where
F'| = the estimated factor score for factor 1
by = the scoring coefficient for survey question 1 used in creating estimated factor score 1
V; = the participant’s score on survey question 1
by, = the scoring coefficient for survey question 2 used in creating estimated factor score 1
V, = the participant’s score on survey question 2

b,, = the scoring coefficient for survey question p (the last question), used in creating estimated factor
score 1

V, = the participant’s score on survey question p
A different equation, with different scoring coefficients, would be used to calculate participants’ scores on the
remaining retained factors. In practice, you do not actually have to create equations such as those appearing
here; instead, these estimated factor scores may be created automatically by requesting the creation of a new
dataset within the SAS program. This is done by including the OUT and NFACT options in the FACTOR
statement.
The general form for the NFACT option is

nfact=number-of-factors-to-be-retained

The general form for the OUT option is

out=name-of-new-SAS-dataset
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The following SAS program incorporates these options:
proc factor data=D1l

simple
method=prin
priors=smc
nfact=2
rotate=promax
round
flag=.40

(1) out=D2 ;

var V1-Ve6 ;
run;

® proc corr data=D2;
(3) var COMMIT FACTOR1 FACTORZ2;
® run;

Line @ of the preceding programs asks that an output dataset be created and given the name “D2.” This name
was arbitrary; any name consistent with SAS requirements would have been acceptable. The new dataset named
D2 will contain (a) all of the variables contained in the previous dataset, as well as (b) new variables named
FACTORI1 and FACTOR2. FACTORI1 will contain estimated factor scores for the first retained factor, and
FACTOR?2 will contain estimates for the second factor. The number of new “FACTOR” variables created will
be equal to the number of factors retained by the NFACT statement.

The OUT option may be used only if the factor analysis has been performed on raw data (as opposed to a
correlation or covariance matrix). The use of the NFACT statement is also required.

Having created the new estimated factor score variables named FACTOR1 and FACTOR?2, you may be
interested in seeing how they relate to some of the study’s other variables (i.e., variables not analyzed in the
factor analysis itself). You may therefore append a PROC CORR statement to your program following the last
of the PROC FACTOR statements. In the preceding program, these statements appear on lines @ to @.

These PROC CORR statements request that COMMIT be correlated with FACTOR1 and FACTOR?2.
COMMIT represents participants’ “commitment to the relationship.” High scores on this variable indicate that
participants intend to remain in the relationship with their current partners. (Assume that the variable COMMIT
was also measured with the questionnaire, and that scores on COMMIT were entered as part of dataset D1.)
These PROC CORR statements result in the SAS output that is presented here as Output 2.11.

Output 2.11: Correlations between COMMIT and Estimated Factor Score Variables FACTOR1 and

FACTOR2
The CORR Procedure
3 Variables: COMMIT Factor1 Factor2
Simple Statistics
Variable N Mean Std Dev Sum Minimum Maximum
COMMIT 50 15.52000 6.67692 776.00000 4.00000 28.00000
Factor1 50 0 0.95720 0 -2.25877 1.68987
Factor2 50 0 0.88955 0 -1.29220 2.75565

O’Rourke, Norm, and Larry Hatcher. A Step-by-Step Approach to Using SAS® for Factor Analysis and Structural Equation Modeling, Second Edition.
Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.



Chapter 2: Exploratory Factor Analysis 15

Pearson Correlation Coefficients, N = 50
Prob > |r| under HO: Rho=0

COMMIT Factor1 Factor2

elilihi 100000 = 031881 = -0.29307
0.0240 0.0389
G 0.31881 1.00000 = -0.39458
0.0240 0.0046

Factor2

-0.29307 -0.39458 1.00000

0.0389 0.0046

The correlations of interest appear in Output 2.11 below the heading “Pearson Correlations Coefficients, N =
50.” Look at the first column of coefficients, under the heading “COMMIT.” Where this column intersects with
the row headed FACTOR1, you can see that FACTORI1 displays a correlation of approximately +.32 with
commitment. This makes sense, because the first retained factor was interpreted as the “investment size” factor.
It is logical that investment size would be positively correlated with commitment to maintain the relationship.
The second estimated factor score variable, FACTORZ2, has a correlation of -.29 with commitment; this too is
logical. The second retained factor was interpreted as “alternative value.” It makes sense that commitment
would decrease as the attractiveness of one's alternatives increases. FACTOR1 and FACTOR2 may now be
used as predictor or criterion variables in any other appropriate SAS procedure.

Factor-Based Scales

A second (and less sophisticated) approach to scoring involves the creation of factor-based scales. A factor
based scale is a variable that estimates participant scores on the underlying factors, but does not use an
optimally weighted formula to do this (as was the case with the estimated factor scores created by PROC
FACTOR).

Although a factor-based scale can be created in a number of ways, the following method has the advantage of
being relatively straightforward:

® To calculate scores on factor-based scale 1, first determine which questionnaire items had high
loadings on Factor 1.

® For a given participant, add together that participant’s responses to these items. The result is that
participant’s score on the factor-based scale for Factor 1.

® Repeat these steps to calculate each participant’s score for remaining retained factors.

Although this may sound like a cumbersome task, it is actually quite simple using SAS data manipulation
statements. For example, assume that you have performed the factor analysis on your survey responses and have
obtained the findings reported in this chapter. Specifically, it was found that survey items 1, 2, and 3 loaded on
Factor 1 (the investment size factor), while items 4, 5, and 6 loaded on Factor 2 (the alternative value factor).

You would now like to create two new SAS variables. The first variable, called INVESTMENT, will include
each participant’s score on the factor-based scale for investment size. The second variable, called
ALTERNATIVES, will include each participant’s score on the factor-based scale for alternative value. Once
these variables are created, you can use them as criterion variables or predictor variables in subsequent multiple
regressions, ANOV As, or other analyses. To keep things simple for the present example, assume that you are
simply interested in determining whether there is a substantive correlation between COMMIT and
INVESTMENT and between COMMIT and ALTERNATIVES.

At this point, it may be useful to review Chapter 4, “Working with Variables and Observations in SAS
Datasets,” from A Step-By-Step Approach to Using SAS for Univariate and Multivariate Statistics (O’Rourke,
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Hatcher, and Stepanski 2005), particularly the section on “Creating New Variables from Existing Variables.”
Such a review should make it easier to understand the data manipulation statements below.

Assume that earlier statements in the SAS program have already input participant responses to questionnaire
items, including participants’ scores on the variable COMMIT. These variables are included in a dataset called
D2. Below are the subsequent lines that would create a new dataset called D3 which would include all of the
variables in D2, as well as the newly created factor-based scales called INVESTMENT and ALTERNATIVES.

data D3;

set D2;
INVESTMENT = (V1 + V2 + V3);
ALTERNATIVES = (V4 + V5 + V6);

proc corr data=D3;
var COMMIT INVESTMENT ALTERNATIVES;
run;

000 ©O® 0o

Lines @ and @ request that a new dataset called D3 be created, and that this dataset be set up as a duplicate of
existing dataset D2. On line @ the new variable called INVESTMENT is created. For each participant, his or
her responses to items 1, 2, and 3 are added together. The result is the participant’s score on the factor-based
scale for the first factor. These scores are stored in a variable called INVESTMENT. The factor-based scale for
the alternative value factor is created on line @, and these scores are stored in the variable called
ALTERNATIVES. Lines @ to @ request correlation coefficients between COMMIT, INVESTMENT, and
ALTERNATIVES be computed.

Fictitious results from the preceding program are presented as Output 2.12.

Output 2.12: Correlations between COMMIT and Factor-Based Scales INVESTMENT and ALTERNATIVES

The CORR Procedure

3 Variables: COMMIT INVESTMENT ALTERNATIVES

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum
COMMIT 50 @ 15.52000 6.67692 776.00000 4.00000 28.00000
INVESTMENT 50 = 13.36000 4.36479 668.00000 3.00000 21.00000
ALTERNATIVES @ 50 7.68000 3.22895 384.00000 3.00000 18.00000

Pearson Correlation Coefficients, N = 50
Prob > |r] under HO: Rho=0

COMMIT |  INVESTMENT = ALTERNATIVES
Gelalaly 1.00000 0.33798 -0.26380
0.0164 0.0642
INVESTMENT 0.33798 1,00000 -0.30588
0.0164 0.0308
ALTERNATIVES | oca00 .0.30588 1.00000
0.0642 0.0308
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You can see that the correlations between COMMIT and the estimated factor scores (FACTORI and
FACTOR?) discussed earlier are slightly different from the correlations between COMMIT and the factor-
based scales INVESTMENT and ALTERNATIVES) presented above. For example, the correlation between
COMMIT and FACTORI1 (the estimated factor-score variable for investment size) was approximately .32,
while the correlation coefficient between COMMIT and INVESTMENT (the factor-based scale for investment
size) was slightly higher at approximately .34. These differences are to be expected as the estimated factor
scores (FACTORI1 and FACTOR?Y) are optimally weighted linear composites, while the factor-based scales
(INVESTMENT and ALTERNATIVES) are not optimally weighted. In fact, it would be instructive to create a
single correlation matrix that includes both the estimated factor scores as well as the factor-based scales. This
could be done with the following statements:

proc factor data=D1l
simple
method=prin
priors=smc

nfact=2
rotate=promax
round
flag=.40
out=D2 ;
var V1-V6 ;
run;
data D3;
set D2;
INVESTMENT = (V1 + V2 + V3);
ALTERNATIVES = (V4 + V5 + V6);

proc corr data=D3;
var COMMIT FACTOR1 FACTOR2 INVESTMENT ALTERNATIVES;
run;

This program resulted in the correlation matrix presented here as Output 2.13.

Output 2.13: Correlations between COMMIT, Estimated Factor Score Variables FACTOR1 and FACTOR2,
and Factor-Based Scales INVESTMENT and ALTERNATIVES

The CORR Procedure

5 Variables: COMMIT Factor1 Factor2 INVESTMENT ALTERNATIVES

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum
COMMIT 50 | 15.52000 6.67692 776.00000 4.00000 28.00000
Factor1 50 0 0.95720 0 -2.25877 1.68987
Factor2 50 0 0.88955 0 -1.29220 2.75565
INVESTMENT 50 = 13.36000 4.36479 668.00000 3.00000 21.00000
ALTERNATIVES 50 7.68000 3.22895 384.00000 3.00000 18.00000
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Pearson Correlation Coefficients, N = 50
Prob > |r| under HO: Rho=0

commIT Factor1 Factor2  INVESTMENT  ALTERNATIVES
selilelly 1.00000 0.31881 -0.29307 0.33798 -0.26380
0.0240 0.0389 0.0164 0.0642
EEET 0.31881 1.00000 -0.39458 0.99431 -0.32121
0.0240 0.0046 <0001 0.0229
gaciorz -0.29307 -0.39458 1.00000 -0.38401 0.99043
0.0389 0.0046 0.0059 <0001
Lot 0.33798 0.99431 -0.38401 1.00000 -0.30588
0.0164 <.0001 0.0059 0.0308
ALTERNATIVES | 56350 -0.32121 0.99043 -0.30588 1.00000
0.0642 0.0229 <.0001 0.0308

The correlations of interested appear under the heading “Pearson Correlation Coefficients, N = 50.” Remember
that FACTORI1 contains the estimated factor scores for investment size, while INVESTMENT is the factor-
based scale for investment size. Where the row for FACTORI intersects the row for INVESTMENT, you will
find a correlation coefficient of .99, meaning that the estimated factor score variable and the factor-based scale
for this construct are almost perfectly correlated. Similarly, the correlation of .99 between FACTOR2 and
ALTERNATIVES shows that the estimated factor score variable and the factor-based scale for alternative value
is also very strongly correlated.

Recoding Reversed Items Prior to Analysis

It is generally best to recode any reversed or negatively keyed items before conducting any of the analyses
described here. In particular, it is essential that reversed items be recoded prior to the program statements that
produce factor-based scales. The three questionnaire items designed to assess investment size are once again
presented below:

Please rate each of the following statements to indicate the extent to which you agree or disagree with each
using a response scale in which 1 = “Strongly Disagree” and 7 = “Strongly Agree.”

1. Thave invested a lot of time and effort in developing my relationship with my current partner.

2. My current partner and I have developed interests in a lot of fun activities that I would lose if our
relationship were to end.

3. My current partner and I have developed a lot of mutual friendships that I would lose if our
relationship were to end.

None of the above items are reversed; with each item, a response of “7” indicates a high level of investment.
Below, however, item 1 is a reversed item. In contrast to the previous item, a response of “7” now indicates a
low level of investment:

1. T have invested very little time and effort in developing my relationship with my current partner.

2. My current partner and I have developed interests in a lot of fun activities that I would lose if our
relationship were to end.

3. My current partner and I have developed a lot of mutual friendships that I would lose if our
relationship were to end.
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If you were to perform a factor analysis on responses to these items, the factor loading for item 1 would have a
sign that is the opposite of the sign of the loadings for items 2 and 3 (e.g., if items 2 and 3 had positive loadings,
item 1 would have a negative loading). This would complicate the creation of a factor-based scale: With items 2
and 3, higher scores indicate greater investment whereas with item 1, lower scores indicate greater investment.
Clearly, you would not wish to sum these three items together given the way they are presently coded. First, you
will reverse item 1. Notice how this is done in the following program. (Assume that the data have already been
input in a SAS dataset named D1.)

data D2 ;
set D1 ;

(1) Vvl = 8 - V1;

INVESTMENT (V1 + V2 + V3) ;
ALTERNATIVES = (V4 + V5 + V6) ;

proc corr data=D2 ;
var COMMIT INVESTMENT ALTERNATIVES ;
run ;

With line @, you are creating a new version of variable V1. Values on this new version of V1 will be equal to
the quantity “8 minus the value of the old version of V1.” Therefore, for participants whose score on the old
version of V1 was 1, their value on the new version of V1 will be 7 (because 8 — 1 = 7). For participants whose
score on the old version of V1 was 7, their value on the new version of V1 will be 1 (because 8 —7 = 1), and so
forth.

The general form of the formula used when recoding reversed items is:
Variable name = constant - variable name ;
In this formula, the “constant” is the following quantity:

(the number of points on the response scale used with the questionnaire item + 1)

Therefore, if you are using the 4-point response scale, the constant is 5; if you are using a 9-point scale, the
constant is 10.

If you have prior knowledge about which items are going to appear as reversed items (with reversed factor
loadings) in your results, it is best to place these recoding statements early in your SAS program, before the
PROC FACTOR statements. This will make interpretation of the factors more straightforward, because it will
eliminate significant loadings with opposite signs from appearing on the same factor. In any case, it is essential
that the statements that recode reversed items appear before the statements that create any factor-based scales.

Step 6: Summarizing the Results in a Table

In some cases, you may wish to prepare a table presenting the rotated factor pattern and factor structure for the
variables analyzed. One possible format is presented in Table 2.4, below.
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Table 2.4: Questionnaire Items and Corresponding Factor Loadings from the Rotated Factor Pattern
Matrix and Factor Structure Matrix, Decimals Omitted

Factor Pattern Factor Structure

1 2 1 2 Questionnaire Item

85 -14 89 -43 1. I have invested a lot of time and effort in developing my
relationship with my current partner.

97 10 93 -23 2. My current partner and I have developed interest in a lot of fun
activities that I would lose if our relationship were to end.

84 -1 84 -30 3. My current partner and I have developed lot of mutual friendships
that I would lose if our relationship were to end.

-5 73 -30 75 4. It would be more attractive for me to be involved in a relationship

with someone else rather than continue the relationship with my
current partner.

-4 76 -30 78 5. It would be more attractive for me to be by myself than to
continue my relationship with my current partner.
7 79 -20 77 6. In general, my alternatives to remaining in this relationship are

quite attractive.

NOTE: N=50.

If feasible, it is ideal to include an additional column presenting the final communality estimates; the column
heading would be “h”” which is the symbol for communality. These final communality estimates appear in the
output following the factor structure matrix. Table 1.2 from the previous chapter on principal component
analysis shows how communalities may be presented in a table.

When many factors are retained or when the questionnaire items are long or numerous, it may not be possible to
present the factor loadings, communalities, and questionnaire items all in a single table. In these instances, the
loadings and communalities are presented in one table, and the items are presented in a second table (or within
the text of the paper).

Step 7: Preparing a Formal Description of the Results for a Paper

The level of detail reported in research papers tends to be comparatively brief as factor analysis is often the first
step in a series of analyses. The preceding analysis could be briefly summarized as follows:

Responses to the 6-item questionnaire underwent exploratory factor analysis using squared multiple
correlations as prior communality estimates. The principal factor method was used to extract factors,
followed by a promax (oblique) rotation. A scree test suggested two meaningful factors so only these
factors were retained for rotation.

In interpreting the rotated factor pattern, an item was said to load on a given factor if the factor
loading was .40 or greater for that factor, and was less than .40 for the other. Applying these criteria,
three items were found to load on the first factor, which was subsequently labeled the investment size
factor. Three items also loaded on the second factor, which was labeled the alternative value factor.
Questionnaire items and corresponding factor loadings are presented in Table 2.4.

A More Complex Example: The Job Search Skills Questionnaire

The results presented in the preceding section were designed to be relatively simple to introduce the basic
concepts of factor analysis. In conducting actual research, however, the results are seldom as clear cut. Very
often you are forced to make somewhat qualitative decisions and are forced to choose between more than one
interpretable solution. This section illustrates these problems by presenting a somewhat more complex analysis.

Assume that you are now conducting research in the area of college student career development. You have
developed an instrument to assess student knowledge and ability in a wide variety of areas related to
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occupational choice and the job-search process. The instrument consists of 100 items, and the items are divided
into 25 scales; each scale contains four items.

Below are the SAS variable names for each scale. Following the SAS variable name is the full name for the
scale (in italics) and a sample item from the scale (in parentheses). Reviewing the scale names and sample items
should make clear what type of knowledge or ability is assessed by each scale.

For example, the first scale is identified with the SAS variable name, “VALUES.” The full name for this scale
is “Clarifying values and interests,” and the sample item is “My ability to describe just what are my work-
related interests.” Participants responded to each item on the questionnaire using a 7-point scale in which 1 =
“Very Bad” and 7 = “Very Good.”

1. VALUES: Clarifying values and interests (e.g., “My ability to describe just what are my work-related
interests”).

2. ABILITY: Identifying work-related abilities and skills (e.g., “My ability to describe just what are my
strongest work-related skills and abilities”).

3. ASSESS: Using assessment instruments (e.g., “My knowledge of what specific assessment instruments
are available to help assess my interests”).

4. STRATEGY: Identifying effective job search strategies (e.g., “My knowledge of effective job search
strategies”).

5.  EXPERIENCE: Getting job-related experience (e.g., “My knowledge of how I could get relevant job
experience in my field before I graduate”).

6. ORGCHAR: Identifying preferred organizational characteristics (e.g., "My ability to clearly describe
the exact characteristics an organization should have in order to satisfy my personal preferences").

7. RESOCCUP: Researching potential occupations (e.g., "My knowledge of what specific books,
Internet sources, and other resources that provide useful information about specific occupations").

8. RESEMPLOY: Researching specific employers (e.g., "My ability to collect detailed information on a
specific organization just before an employment interview").

9. GOALS: Setting goals (e.g., "My ability to clearly describe my career goals for the next five years").

10. BARRIER: Dealing with occupational barriers (e.g., "My knowledge of what types of occupational
barriers that are likely to stand in my way of getting the job I really want").

11. MOTIVATED: Staying motivated (e.g., "My ability to maintain a high level of motivation throughout
my job search").

12. RESUMES: Using résumés (e.g., "My ability to write a highly effective résumé").

13. RECOMMEND: Using letters of recommendation (e.g., "My knowledge of what I should do to insure
that my referee writes a very effective letter of recommendation for me").

14. DIRECT: Using the cover letter/direct mail approach (e.g., "My knowledge of just what should be
included in a cover letter used in the direct mail approach™).

15. APPLICAT: Completing application forms (e.g., "My ability to complete an application form in such a
way as to make the best possible impression on a prospective employer™).

16. IDEMPLOY:: Identifying potential employers (e.g., "My knowledge of exactly what books/references
are available to help me identify organizations that might hire me").

17. CARDEVEL: Using campus career development services (e.g., "My ability to clearly describe exactly
what services are offered by the career development office on this campus™).

18. AGENCY: Using employment agencies (e.g., “My knowledge of how to make effective use of an
employment agency”).

19. FAIRS: Using job fairs (e.g., “My ability to make effective use of a job fair”).

20. ADVERT: Responding to advertised job openings (e.g., “My knowledge of how to effectively respond
to a job advertisement”).

21. COUNSEL: Using career counselors/consultants (e.g., “My knowledge of how to use career
counselors/consultants to make the most of the services they offer”).

22. UNADVERT: Applying directly for unadvertised jobs (e.g., “My knowledge of the correct way to
directly apply for an unadvertised position”).

23. NETWORK: Using the networking approach to job search (e.g., “My knowledge of the most effective
ways of producing job leads by asking for help from friends, relatives, past employers and other
contacts).
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24. INTERVIEW: Managing the employment interview process (e.g., “My knowledge of how to respond
to tough interview questions”).
25. SALARY: Negotiating salary (e.g., “My ability to successfully negotiate a fair and motivating salary™).

Assume that you administered your scale to 258 college students and obtained usable responses from 220 of
these. You determined each student's score on each of the 25 scales, meaning that there are 25 data points for
each student. You now wish to perform an exploratory factor analysis to identify the latent structure underlying
the data (from Ruddle, Thompson and Hatcher 1993).

Notice that the analysis will be performed on the 25 scale scores, not on the responses to each of the 100
individual questionnaire items. This approach is justifiable only if you have reason to believe that each of the 25
scales assesses just one construct. It would not be appropriate if, for example, items 1 and 2 within scale 1
assess one construct, and items 3 and 4 assess a different construct. In this latter case, it would be more
appropriate to perform a factor analysis using all 100 of the individual items. (Of course, that analysis would
require a large sample size in order to attain a good ratio of participants to variables.)

However, assume you have evidence that each scale does, in fact, assess just one construct. Assume that
coefficient alpha exceeds .80 for each scale, and that the item-total correlations are quite high; these findings
would suggest that the individual scales are unifactorial. Therefore, you will use scores on the 25 scales as
observed variables in the factor analysis.

The SAS Program

The data analyzed here appear in Appendix B. Below is the SAS program (minus the DATA step) to perform an
exploratory factor analysis on the data from your study.

proc factor data=D1
simple
method=ml
priors=smc
nfact=1
plots=scree
rotate=promax
round
(4] flag=.40 ;

(oo )

var V1-v25 ;

/* VALUES ABILITY ASSESS STRATEGY EXPERIENCE ORGCHAR
RESOCCUP RESEMPLOY GOALS BARRIER MOTIVATED
RESUMES RECOMMEND DIRECT APPLICAT IDEMPLOY
CARDEVEL AGENCY FAIRS ADVERT COUNSEL UNADVERT
NETWORK INTERVIEW SALARY ; */

run;

In most respects, the preceding program is similar to the other exploratory factor analysis presented previously
in this chapter. The PRIORS option @ requests that squared multiple correlations again be used as prior
communality estimates, and the FLAG option @ requests that factor loadings whose absolute values exceed .40
be flagged with asterisks. The NFACT option @ requests that one factor be retained. (Once again, you have no
empirical evidence to expect any specific number of factors at this stage of the analysis; one factor was
specified simply as a starting point.)

This program differs from the other analyses, however, in that the METHOD=ML option @ requests that the
maximum likelihood method be used to extract factors. As previously indicated, most researchers prefer this
method because it generally provides more accurate parameter estimates, and also provides a significance test to
help solve the number of factors problem. Because of these advantages, the use of the maximum likelihood
method will be described in this section.
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The preceding program would produce three pages of output. Some of the information appearing on each page
is summarized below:
® Page | presents the sample size and simple statistics.

® Page 2 includes the eigenvalue table, scree plot of eigenvalues, iteration history, the significance tests
for the number of factors extracted, unrotated factor pattern matrix, and the final communality
estimates.

® Page 3 simply includes a note reminding you that factor rotation is not viable with just one factor.

Portions of this output will be reproduced on the following pages as Output 2.14, Output 2.15, and Output 2.16.

Determining the Number of Factors to Retain

The Scree Plot

Because 25 scales were analyzed, you know that 25 factors will be extracted. The eigenvalue table for these
factors, along with the scree plot, is reproduced here as Output 2.14.

Output 2.14: Preliminary Eigenvalues from Analysis of Job Search Skills Questionnaire

The FACTOR Procedure
Initial Factor Method: Maximum Likelihood

Preliminary Eigenvalues: Total = 40.1355388
Average = 1.60542155

Eigenvalue Difference Proportion Cumulative

1 33.4862182 30.2592664 0.8343 0.8343
2 3.2269518 1.6761612 0.0804 0.9147
3 1.5507906 0.1822790 0.0386 0.9534
4 1.3685116 0.3091964 0.0341 0.9875
5 1.0593152 0.2961206 0.0264 1.0139
6 0.7631945 0.1079114 0.0190 1.0329
7 0.6552831 0.2233701 0.0163 1.0492
8 0.4319130 0.1148151 0.0108 1.0600
9 0.3170979 0.0201290 0.0079 1.0679
10 0.2969689 0.1244940 0.0074 1.0753
11 0.1724749 0.0544826 0.0043 1.0796
12 0.1179923 0.0738060 0.0029 1.0825
13 0.0441863 0.0961917 0.0011 1.0836
14 -0.0520054 0.0594319 -0.0013 1.0823
15 -0.1114373 0.0174893 -0.0028 1.0795
16 -0.1289267 0.0361906 -0.0032 1.0763
17 -0.1651172 0.0548644 -0.0041 1.0722
18 -0.2199817 0.0027468 -0.0055 1.0667
19 -0.2227285 0.1178582 -0.0055 1.0612
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Preliminary Eigenvalues: Total = 40.1355388
Average = 1.60542155

Eigenvalue Difference Proportion Cumulative
20 -0.3405867 0.0203781 -0.0085 1.0527
21 -0.3609648 0.0438742 -0.0090 1.0437
22 -0.4048391 0.0013121 -0.0101 1.0336
23 -0.4061512 0.0431700 -0.0101 1.0235
24 -0.4493211 0.0439786 -0.0112 1.0123
25 -0.4932997 -0.0123 1.0000

1 factor will be retained by the NFACTOR criterion.

Output 2.15: Scree Plot from Analysis of Job Search Skills Questionnaire
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How many factors should you retain and rotate? Earlier, the scree test was used to help you make this decision.
Remember that, with the scree test, you look for a major break in the eigenvalues. You hope that, following this
break, the line will begin to “flatten out.” Factors that appear before the break are retained whereas those

appearing along the flat line after the break are assumed to account for only trivial variance and will not be
retained.

In the scree plot of Output 2.15, there is clearly a major break following Factor 1. This may mean that this
questionnaire is unifactorial (i.e., most of the scales may measure just one general “job search skills” factor). To
assess the interpretability of this “one-factor” model, you will consult the factor pattern to determine which

variables display the largest loadings for this factor. Identifying the variables with the highest loadings will help
label the factor.

The interpretation of a one-factor solution is slightly different from the interpretation of multiple-factor models
(as earlier presented). When only one factor is retained, rotation is not possible (whether orthogonal or oblique).
This actually makes your task easier: When only one factor is retained, it is possible to review the unrotated

factor pattern to interpret the factor. The unrotated factor pattern from your one-factor solution is presented here
as Output 2.16.
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Output 2.16: Factor Pattern from the One-Factor Solution, Analysis of Job Search Skills Questionnaire

Factor Pattern

Factor1
V1 VALUES 48 *
V2 ABILITY 51 *
V3 ASSESS 63 *
va STRATEGY 73
V5 EXPERIENCE 69 *
V6 ORGCHAR 56 *
v7 RESOCCUP 7% *
V8 RESEMPLOY 81 *
V9 GOALS 53 *
V10 BARRIER 67 *
V11 MOTIVATED 57 *
V12 RESUMES 71t
V13 RECOMMEND 76
V14 DIRECT 75 ¥
V15 APPLICAT 64 *
V16 IDEMPLOY 83 *
V17 CARDEVEL 69 *
V18 AGENCY 70 *
V19 FAIRS 68 *
V20 ADVERT 83 *
V21 COUNSEL 77
V22 UNADVERT 75 *
v23 NETWORK 73
V24 INTERVIEW 72 ¢
V25 SALARY 76 *

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an "*'.

Notice that every variable in Output 2.16 demonstrates a “meaningful” loading on Factor 1 (i.e., loading over
.40). This is indicated by the fact that the loading for each variable is flagged with an asterisk. For example, the
variable “VALUES” displays a loading of .48, the variable “ABILITY” displays a loading of .51, and so forth.

To interpret Factor 1 more effectively, it would be helpful to isolate those variables that demonstrate the largest
loadings for it. Therefore, we will somewhat arbitrarily choose the value of .70 as a cut-off, and will construct a
table that lists the scales that demonstrate a loading of .70 or greater for factor 1. These scales are listed in Table
2.5.
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Table 2.5: Scales with Larger Factor Loadings from Output 2.16, Sorted by Size of Loadings

Factor Loading Variable Description

.83 IDEMPLOY Identifying potential employers

.83 ADVERT Responding to advertised job
openings

81 RESEMPLOY Researching specific employers

77 COUNSEL Using career counselors/consultants

.76 RESOCCUP Researching potential occupations

.76 RECOMMEND Using letters of recommendation

.76 SALARY Negotiating salary

75 DIRECT Using the cover letter/direct mail
approach

75 UNADVERT Applying directly for unadvertised
jobs

73 STRATEGY Identifying effective job search
strategies

73 NETWORK Using the networking approach to
job search

72 INTERVIEW Managing the employment
interview process

1 RESUMES Using résumés

.70 AGENCY Using employment agencies

Table 2.5 lists the scales that demonstrated a loading on Factor 1 of .70 or greater, and these scales are
reordered according to the size of their loadings. Notice that most of the scales that loaded heavily on Factor 1
pertain to the “nuts-and-bolts” tasks associated with the job hunt itself (e.g., responding to job openings,
learning about potential employers, negotiating salary). Because of this, if you ultimately decide that a one-
factor solution is best, you will probably define this dimension as a general job-search skills factor.

Variance Accounted For

Before accepting the one-factor solution as your “final” solution, you will first review other criteria and
consider some alternative solutions. The “Proportion” row of the eigenvalue table from Output 2.14 shows that
the first factor accounts for approximately 83% of the common variance. Factor 2 accounts for an additional 8%
of the variance: An amount that many researchers would consider meaningful. This information alone would
probably warrant exploring a two-factor solution.

The Chi Square Test

As was mentioned earlier, one advantage of the maximum likelihood method of factor extraction is the fact that
it provides a chi square test to help make the number of factors decision. The chi square test for the current
analysis is presented as Output 2.17.
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Output 2.17: Significance Tests For One-Factor Model, Job Search Skills Questionnaire

Significance Tests Based on 220 Observations

Pr>

Test DF | Chi-Square @ ChiSq

HO: No common factors 300 3737.4335 <.0001
HA: At least one common factor

HO: 1 Factor is sufficient 275 775.0342  <.0001

HA: More factors are needed

Chi-Square without Bartlett's Correction 811.47003
Akaike's Information Criterion 261.47003
Schwarz's Bayesian Criterion -671.77754

Tucker and Lewis's Reliability Coefficient 0.84131

Squared Canonical
Correlations

Factor1

0.96399635

The test you are most interested in appears to the right of the test “HO: 1 Factor is sufficient, HA: More factors
are needed.” This heading is self-explanatory; it tells you that the chi square statistic tests the null hypothesis
that retaining one factor is sufficient. If you obtain a small p value for this test (i.e., p <.05), you are to reject
this null hypothesis and consider the alternative hypothesis that more factors should be retained.

Output 2.17 shows that the obtained value of chi square for the test was large at approximately 775.03

(DF = 275). To the left of the chi square statistic and the degrees of freedom, the output provides the entry,

“Pr > ChiSq < .0001.” This is the p value for the obtained chi square statistic. Because this obtained p value is
less than .05, you may reject the null hypothesis that one factor is adequate. This finding can be used as
evidence that more factors should be retained. Under these circumstances, some researchers would sequentially
add additional factors to the model until a nonsignificant chi square value is obtained.

However, we caution against the temptation to rely too heavily on the chi square test. Under circumstances that
are often encountered in applied research, reliance on the chi-square test alone can lead you to retain too many
factors. This is especially likely when the sample is large or there is even a minor misfit between the model and
the data (Kim and Mueller 1978b). For this reason, use the chi square test as only one piece of information in
making the number of factors decision; if the test suggests that additional factors are needed, consult other
criteria before making a final decision (e.g., the scree test, proportion of variance accounted for, and
interpretability criteria).

A Two-Factor Solution

So far you have obtained mixed support for a one-factor model. The scree test could be interpreted as
supporting the retention of only one factor. One the other hand, the eigenvalue table showed that Factor 2
accounts for over 7% of the common variance, and the chi square test rejected the one-factor model. Combined,
these findings justify exploring the possibility of a two-factor model.

The analysis was therefore repeated, this time specifying NFACT=2. This revised program again produced four
pages of output, some of which is reproduced here as Output 2.17, Output 2.18, and Output 2.19. Some of the
information appearing on these 12 pages of output is summarized below:
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® Page 1 provides simple statistics.

® Page 2 includes the eigenvalue table, the factor pattern matrix, and significance tests for the number of
factors extracted.

®  Page 3 includes the orthogonal transformation matrix.

® Page 4 includes the rotated factor pattern matrix, variance explained by each factor (weighted and
unweighted), the factor structure matrix, and final communality estimates.

The rotated factor pattern from the promax rotation is presented as Output 2.18.

Output 2.18: Rotated Factor Pattern from Promax Rotation, Two-Factor Solution, Job Search Skills
Questionnaire

Rotated Factor Pattern (Standardized
Regression Coefficients)

Factor1 Factor2
V1 VALUES -9 78
V2 ABILITY 7 61 *
V3 ASSESS 51  * 17
V4 STRATEGY 65  * 13
V5 EXPERIENCE 46 32
V6 ORGCHAR 0 770
v7 RESOCCUP 60  * 22
V8 RESEMPLOY 69  * 18
V9 GOALS -1 74
V10 BARRIER 35 44 >
Vi1 MOTIVATED 8 67 *
V12 RESUMES 58  * 20
V13 RECOMMEND 59  * 25
V14 DIRECT 76 1
V15 APPLICAT 47 | 23
V16 IDEMPLOY 79 7
V17 CARDEVEL 76 | * -7
V18 AGENCY 76 -6
V19 FAIRS 80  * -14
V20 ADVERT 78 9
V21 COUNSEL 2 * -14
V22 UNADVERT 750 2
V23 NETWORK 60  * 19
V24 INTERVIEW 60 * 17
V25 SALARY 74 0 4

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an "'
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Remember that the pattern matrix reflects the unique contribution that each factor makes to the variance in a
variable, so it is this matrix that you will first use to determine which variables load on which factor. For this
analysis, you have flagged any loading over .40 with an asterisk, and will assume the flagged loadings are
meaningful.

First, you should read across each row from left to right to see if any variable has a significant loading for more
than one factor; these are known as complex items. These complex items need to be identified so that they will
not be included in any factor-based scale that you will later create. It turns out that no variables load on both
factors.

Next you should read down the first factor to see which variables demonstrated significant loadings for this
factor. What do these variables have in common? What general construct do they all seem to be measuring?
This process is then repeated in order to interpret Factor 2. While doing this, try to determine the way in which
Factor 1 differs from Factor 2. In what way do the variables loading on Factor 1 (as a group) tend to differ from
those loading on Factor 2?

To make this process easier, Table 2.6 sorts the scales according to the factors on which they load, and provides
brief descriptions for the scales. (In this table, the variables have not been sorted according to the size of their
loadings.)

Table 2.6: Variables Loading on Factors 1 and 2 According to Rotated Factor Pattern, Two-Factor
Solution, Job Search Skills Questionnaire

Variables loading on Factor 1

3. ASSESS Using assessment instruments

4. STRATEGY Identifying effective job search strategies

5. EXPERIENCE Getting job-related experience

7. RESOCCUP Researching potential occupations

8. RESEMPLOY Researching specific employers

12. RESUMES Using résumés

13. RECOMMEND Using letters of recommendation

14. DIRECT Using the cover letter/direct mail approach
15. APPLICAT Completing application forms

16. IDEMPLOY Identifying potential employers

17. CARDEVEL Using campus career development services
18. AGENCY Using employment agencies

19. FAIRS Using job fairs

20. ADVERT Responding to advertised job openings

21. COUNSEL Using career counselors/consultants

22. UNADVERT Applying directly for unadvertised jobs

23. NETWORK Using the networking approach to job search
24. INTERVIEW Managing the employment interview process
25. SALARY Negotiating salary

Variables loading on Factor 2

1. VALUES Clarifying values and interests

2. ABILITY Identifying work-related abilities and skills
6. ORGCHAR Identifying preferred organizational characteristics
9. GOALS Setting goals

10. BARRIER Dealing with occupational barriers

11. MOTIVATED Staying motivated

With Factor 1, you can see significant loadings for such variables as STRATEGY, RESEMPLOY, DIRECT,
ADVERT, COUNSEL, UNADVERT, SALARY. In general, variables loading on Factor 1 seem to deal with
the ability to perform tasks related to the job search process. People who score high on Factor 1 tend to be
knowledgeable about which job search strategies are effective, how to conduct research on specific employers,
how to make use of the services offered by career counselors, how to negotiate salary, and so forth. It therefore
seems appropriate to label this the job search skills factor.
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With Factor 2, on the other hand, you can see significant loadings for such scales as VALUES, ABILITY,
ORGCHAR, GOALS, and MOTIVATED. People who score high on Factor 2 are able to clearly describe their
work-related values and abilities. They know what their goals are, and feel that they will be able to stay
motivated during their job search. Therefore, you might label Factor 2 the goal clarity and motivation factor.
From the perspective of interpretability (at least) this two-factor solution appears to be acceptable.

Now that you have interpreted the meaning of the factors, it would be useful to know the nature of the
relationship between Factor 1 and Factor 2. For this information, you may turn to the inter-factor correlations
provided in the output. These are presented as Output 2.19.

Output 2.19: Inter-Factor Correlations from Two-Factor Solution, Job Search Skills Questionnaire

Inter-Factor Correlations

Factor1 Factor2
Factor1 100 * 60 *
Factor2 60 * 100 *

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an ™.

The inter-factor correlation of +.60 from Output 2.19 reveals a moderately strong positive correlation between
the job search skills factor and the goal clarity and motivation factor; and this seems logical. It only makes sense
that people who have a good deal of self-insight and motivation related to their careers would also have higher
levels of the skills necessary to actually find a job. (In fact, this correlation is so high that some might wonder
whether you are really justified in interpreting them as two separate factors.)

To understand the “big picture” concerning the relationship between factors, you will now review the factor
structure matrix for your two-factor solution. This is presented as Output 2.20.

Output 2.20: Factor Structure from Promax Rotation, Job Search Skills Questionnaire

Factor Structure (Correlations)

Factor1 Factor2
V1 VALUES 37 72
V2 ABILITY 43 | * 65 *
V3 ASSESS 61 * 48
V4 STRATEGY 73 52 *
V5 EXPERIENCE 66  * 60 *
V6 ORGCHAR 46 | * 77
v7 RESOCCUP 74 58 *
V8 RESEMPLOY 79 59 *
V9 GOALS 44 | > 73
V10 BARRIER 61 * 65 *
V11 MOTIVATED 48 | * 72 *
V12 RESUMES 70  * 55 *
V13 RECOMMEND 73 60 *
V14 DIRECT 77 47 >
V15 APPLICAT 61 * 52 *
V16 IDEMPLOY 84 * 55 *
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Factor Structure (Correlations)

Factor1 Factor2
V17 CARDEVEL 72 39
V18 AGENCY 73 40
V19 FAIRS 72 35
V20 ADVERT 83 * 56  *
v21 COUNSEL 81 * 40  *
V22 UNADVERT 76 47
V23 NETWORK 7 55 *
V24 INTERVIEW 70 * 53 *
V25 SALARY 77 49 =

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an "'.

Notice that almost all of the scales are flagged as having significant loadings for both factors. This finding only
makes sense in light of the strong inter-factor correlation reported earlier. Remember that in a structure matrix,
the loadings represent the correlation between a variable and a factor. Given the strong correlation between
Factor 1 and Factor 2, it only makes sense that any variable that loads on Factor 1 will also be correlated with
Factor 2, and that any variable that loads on Factor 2 will also be correlated with Factor 1. This is why it is
necessary to review the structure matrix to fully understand an oblique solution: Reviewing only the pattern
matrix would not reveal how strongly most variables are related to both factors.

A Four-Factor Solution

To illustrate that it is often possible to obtain more than one interpretable solution from a factor analysis, a four-
factor solution will now be reviewed. Consider the eigenvalue table, reproduced once again here as Output 2.21.

Output 2.21: Eigenvalue Table from Analysis of Job Search Skills Questionnaire

Preliminary Eigenvalues: Total = 40.1355388
Average = 1.60542155

Eigenvalue @ Difference @ Proportion | Cumulative

1 33.4862182 30.2592664 0.8343 0.8343
2 3.2269518  1.6761612 0.0804 0.9147
3 1.5507906 @ 0.1822790 0.0386 0.9534
4 1.3685116  0.3091964 0.0341 0.9875
5 1.0593152  0.2961206 0.0264 1.0139
6 0.7631945 0.1079114 0.0190 1.0329
7  0.6552831  0.2233701 0.0163 1.0492
8 04319130 0.1148151 0.0108 1.0600
9 0.3170979  0.0201290 0.0079 1.0679
10 0.2969689 @ 0.1244940 0.0074 1.0753
11 0.1724749  0.0544826 0.0043 1.0796
12 0.1179923  0.0738060 0.0029 1.0825
13 0.0441863  0.0961917 0.0011 1.0836
14 -0.0520054  0.0594319 -0.0013 1.0823
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Preliminary Eigenvalues: Total = 40.1355388
Average = 1.60542155

Eigenvalue @ Difference @ Proportion | Cumulative

15  -0.1114373  0.0174893 -0.0028 1.0795
16 -0.1289267  0.0361906 -0.0032 1.0763
17  -0.1651172  0.0548644 -0.0041 1.0722
18  -0.2199817  0.0027468 -0.0055 1.0667
19 -0.2227285 0.1178582 -0.0055 1.0612
20 -0.3405867 @ 0.0203781 -0.0085 1.0627
21  -0.3609648  0.0438742 -0.0090 1.0437
22  -0.4048391  0.0013121 -0.0101 1.0336
23  -0.4061512  0.0431700 -0.0101 1.0235
24 -0.4493211  0.0439786 -0.0112 1.0123
25 -0.4932997 -0.0123 1.0000

4 factors will be retained by the NFACTOR criterion.
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There is a clear break following Factor 1, another (much smaller) break following Factor 2, and from that point
on the eigenvalues seem to “flatten out.” On the basis of these “breaks” in the eigenvalues alone, it would be
difficult to justify rotating four factors.

Still, some have argued that retaining and rotating too few factors has a more serious negative effect on the
factor structure than rotating too many, and that it is probably best to err in the direction of over-factoring
(Cattell 1952, 1958; Rummel 1970). In fact, one of Cattell’s (1958) proposed solutions to the number of factors
problem is to retain enough factors to account for 99% of the variance. With the preceding eigenvalue table, you
can see that this would involve retaining the first four factors. This can be seen by reviewing the figures in the
“Cumulative” column of Output 2.20. Notice that Factors 1 to 4 (combined) account for approximately 96% of
the common variance in the dataset, while Factors 1 to 5 (combined) account for approximately 102% of the
common variance. If you were to heed Cattell’s recommendation, you would therefore retain and interpret
Factors 1 to 4.

As an illustration, the results of this four-factor solution will be presented here. Output 2.22 provides the factor
pattern matrix resulting from a promax rotation of four factors.
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Output 2.22: Rotated Factor Pattern from Promax Rotation, Four-Factor Solution, Job Search
Skills Questionnaire

Rotated Factor Pattern (Standardized Regression Coefficients)

Factor1 Factor2 Factor3 Factor4
V1 VALUES -6 76 1 -1
V2 ABILITY 12 58 * -6 3
V3 ASSESS 9 18 33 20
V4 STRATEGY 40 10 19 17
V5 EXPERIENCE -2 31 36 27
V6 ORGCHAR 1 72 -3 8
V7 RESOCCUP 4 6 5 83 *
V8 RESEMPLOY 52 * 7 -4 37
V9 GOALS 3 72 * 2 -2
V10 BARRIER 28 41 = 10 4
V11 MOTIVATED 12 65 * 1 -1
V12 RESUMES 51 * 21 15 -5
V13 RECOMMEND 60 * 25 10 -8
V14 DIRECT 64 * 3 22 -5
V15 APPLICAT 55 * 22 2 -7
V16 IDEMPLOY 41 = -2 14 46 =
V17 CARDEVEL 7 2 86 * -4
V18 AGENCY 60 * -5 25 -3
V19 FAIRS 37 -10 48  * 5
V20 ADVERT 7% * 4 5 5
V21 COUNSEL 47 -11 48 = 4
V22 UNADVERT 73 -2 6 3
V23 NETWORK 45 * 17 16 7
V24 INTERVIEW 81 * 10 -14 -1
V25 SALARY 63 * -7 -4 32

Printed values are multiplied by 100 and rounded to the nearest integer. Values greater than 0.4 are flagged by an ™.

As before, you should begin by reviewing the rows of the factor pattern matrix to identify any variables with
significant loadings for more than one factor. This process identifies that the variable IDEMPLOY loads on
both Factors 1 and 4; also, the variable COUNSEL loads on Factors 1 and 3. These variables will therefore not
be used in interpreting the factors.

To make it easier to interpret the meaning of these four factors, Table 2.7 groups together the scales according
to the factors on which they load.
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Table 2.7: Variables Loading on Factors 1, 2, 3, and 4 According to Rotated Factor Pattern, Four-Factor
Solution, Job Search Skills Questionnaire

Variables loading on Factor 1

4. STRATEGY Identifying effective job search strategies

8. RESEMPLOY Researching specific employers

12. RESUMES Using résumés

13. RECOMMEND Using letters of recommendation

14. DIRECT Using the cover letter/direct mail approach
15. APPLICAT Completing application forms

18. AGENCY Using employment agencies

20. ADVERT Responding to advertised job openings

22. UNADVERT Applying directly for unadvertised jobs

23. NETWORK Using the networking approach to job search
24. INTERVIEW Managing the employment interview process
25. SALARY Negotiating salary

Variables loading on Factor 2

1. VALUES Clarifying values and interests

2. ABILITY Identifying work-related abilities and skills
6. ORGCHAR Identifying preferred organizational characteristics
9. GOALS Setting goals

10. BARRIER Dealing with occupational barriers

11. MOTIVATED Staying motivated

Variables loading on Factor 3

17. CARDEVEL Using campus career development services
19. FAIRS Using job fairs

Variables loading on Factor 4

7. RESOCCUP Researching potential occupations

According to Table 2.7, the scales that loaded on Factor 1 all seem to deal with the finding and following-up on
job leads. People who score high on this factor feel that they understand the best job-search strategies, are able
to research employers and identify organizations that might hire them, are able to respond effectively to
advertised and unadvertised job openings, are able to manage the interview process, and are able to successfully
negotiate a good salary. This might therefore be labeled the finding and pursuing job leads factor.

Factor 2, on the other hand, should look familiar at this point: People who score high on this factor know what
are their work-related values and abilities, and feel that they are able to set goals and stay motivated throughout
their job search. This factor is similar to the goal clarity and motivation factor observed with the two-factor
solution.

Only two variables loaded exclusively on Factor 3. Participants who scored high on this factor know how to use
the campus career services office and also how to make effective use of job fairs (events that are typically
coordinated by campus career development offices). This factor could be labeled the using campus career
services.

Only 1 variable loads on Factor 4; a second variable was excluded as it loaded on both Factors 1 and 4
(i.e., complex item). The remaining variable pertains to researching potential occupations.
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This factor solution proved to be fairly interpretable. For each factor, all variables that load on that factor seem
to be measuring a similar underlying construct (i.e., all scales loading on Factor 1 seem to measure a “finding
and pursuing job leads” construct). In addition, each factor seems to measure a conceptually different construct
(i.e., the “finding and pursuing job leads” factor is conceptually different from the “goal clarity and motivation”
factor).

Unfortunately, the solution is unsatisfactory because two of the factors are composed of less than three
variables. Either new items need to be written focusing on the constructs that appear to be measured by Factors
3 and 4 (and another exploratory factor analysis later computed with a new dataset), a three-factor solution
computed on the current data, or another scale selected.

Conclusion

Exploratory factor analysis is often an iterative process in which you begin with some a priori ideas regarding
the nature of the factors to be investigated (hopefully based on theory and prior research), and then identify a
number of variables that can be expected to be measure these factors. Performing an exploratory factor analysis
on the obtained data will often teach you something that was not previously known: Perhaps a five-factor model
emerges when a three-factor model was expected; or perhaps variables expected to load on Factor 1 instead load
on Factor 4. These results should encourage you to return to the relevant literature, revise the initial model, and
perhaps even find new ways of measuring your constructs of interest. A program of research that includes a
number of exploratory factor analyses on different datasets, perhaps using improved measures at each step,
stands the best chance of discovering the true nature of the factor structure which underlies your construct of
interest.

Appendix: Assumptions Underlying Exploratory Factor Analysis

As with principal component analysis, a factor analysis is performed on a matrix of correlations, and this means
that the data should satisfy the assumptions for the Pearson correlation coefficient. These assumptions are
briefly reviewed below:

* Interval-level measurement. All analyzed variables should be assessed on an interval or ratio level of
measurement.

* Random sampling. Each participant will contribute one score for each observed variable. These sets
of scores should represent a random sample drawn from the population of interest.

® Linearity. The relationship between all observed variables should be linear.

® Bivariate normal distribution. Each pair of observed variables should display a bivariate normal
distribution (e.g., they should form an elliptical scattergram when plotted). When the maximum
likelihood method is used to extract factors, the output provides a significance test for the null
hypothesis that the number of factors retained in the current analysis is sufficient to explain the
observed correlations. The following assumption should be met for the probability value associated
with this test to be valid:

®  Multivariate normality. Responses obtained from participants should demonstrate an approximate
multivariate normal distribution.
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Introduction: The Basics of Response Reliability

You compute coefficient alpha when you have administered a multiple-item rating scale and want to determine
the internal consistency of responses to the scale. Scale items may be scored dichotomously (scored as “right”
or “wrong”) or a multiple-point rating format (e.g., participants may respond to scale item using a 7-point
scale).

This chapter shows how to use the CORR procedure to compute the coefficient alpha for the types of scales that
are often used in social science research. However, this chapter will not show how to actually develop a
multiple-item scale for use in research. To learn more about scale development, see DeVellis (2012), and Saris
and Gallhofer (2007).
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Example of a Summated Rating Scale

A summated rating scale usually consists of a short list of statements, questions, or other items to which
participants respond. Very often, items that constitute the scale are statements, and participants indicate the
extent to which they agree or disagree with each statement by selecting some response on a rating scale (e.g., a
7-point rating scale in which 1 = “Strongly Disagree” and 7 = “Strongly Agree”).The scale is called a summated
scale because the researcher typically sums responses to all selected responses to create an overall score on the
scale. These scales are commonly referred to as Likert-type scales.

Imagine that you are interested in measuring job satisfaction in a sample of employees. To do this, you might
develop a 10-item scale that includes items such as “in general, I am satisfied with my job.” Employees respond
to these items using a 7-point response format in which 1 = “Strongly Disagree,” 4 = Neither Agree nor
Disagree, and 7 = “Strongly Agree.”

You administer this scale to 200 employees and compute a job satisfaction score for each by summing his or her
responses to the 10 items. Scores may range from a low of 10 (if the employee circled “Strongly Disagree” for
each item) to a high of 70 (if the employee circled “Strongly Agree” for each item). Given the way these items
were written, higher scores indicate higher levels of job satisfaction. With the job satisfaction scale now
developed and administered to a sample, you hope to use it as a predictor or criterion variable in research.
However, the people who later read about your research are going to have questions about the psychometric
properties of responses to your scale. At the very least, they will want to see empirical evidence that responses
to the scale are reliable. This chapter discusses the meaning of scale reliability and shows how SAS can be used
to obtain an index of internal consistency for summated rating scales.

True Scores and Measurement Error

Most observed variables measured in the social sciences (e.g., scores on your job satisfaction scale) actually
consist of two components: a true score that indicates where the participant actually stands on the variable of
interest, and a measurement error. Almost all observed variables in the social sciences contain at least some
measurement error, even variables that seem to be objectively measured.

Imagine that you assess the observed variable “age” in a group of participants by asking them to indicate their
age in years. To a large extent, this observed variable (what the participants wrote down) is influenced by the
true score component. To a large extent, what they write will be influenced by how old they actually are.
Unfortunately, however, this observed variable will also be influenced by measurement error. Some will write
down the wrong age because they do not want to disclose how old they are, and other participants will write the
wrong age because they did not understand the question. In short, it is likely that there will not be a perfect
correlation between the observed variable (what the participants write down) and their true scores on the
underlying construct (i.e., their actual age).

This can occur even though the “age” variable is relatively objective and straightforward. If a question such as
this is going to be influenced by measurement error, imagine how much more error might result when more
subjective constructs are measured (e.g., items that constitute your job satisfaction scale).

Underlying Constructs versus Observed Variables

In applied research, it is useful to draw a distinction between underlying constructs versus observed variables.
An underlying construct is the variable that you wish to measure. In the job satisfaction study, for example,
you wanted to measure the underlying construct o