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Preface

For many websites, revenue generated from advertisements (or ads for short) is crit-
ical for survival. This in turn raises the question: How should ads at a website be
scheduled to maximize revenue? This monograph aims to provide an overview of
such optimization issues in web and mobile advertising. This monograph begins
with discussing the evolution of web advertising over time. This is followed by the
discussion of prominent pricing models. The initial models mainly considered the
problem of scheduling ads competing to be placed on a web page. Here, the ads
were specified by geometry and display frequency, and both of these factors were
considered in developing a solution to the ad scheduling problem. These models
were similar in nature to the problem of scheduling ads on newspaper or television,
but the pricing structure was different. As the web advertising evolved, the initial
models were augmented by considering how the schedule of ads is changed based
on individual user click behavior. Thus, these models considered personalization in
web advertising. The landscape of web advertising changed further with the growth
of ad-firms. The ad-firms usually match an advertiser’s ads with a publisher’s web-
site and with a web user who visits the website. The recent studies analyze the
problem from the perspective of ad-firms. More recently, there has been tremen-
dous growth in mobile advertising. In this domain, the most popular vehicle for
displaying ads is a mobile application (or app for short). In mobile advertising, an
important problem for ad-firms is demand-supply optimization problem. The last
chapter discusses some of the key future trends in web and mobile advertising, and
associated challenges. This book is written for (a) academicians and professionals
involved in web/mobile advertising with an interest in optimization issues, and (b)
academicians and professionals involved in optimization problems with an interest
in web/mobile advertising.

College Station, TX, USA Subodha Kumar
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Chapter 1
Evolution of Web Advertising

Abstract The number of Internet users is increasing dramatically. With the sharp
increase in online users, the market for web advertising is also growing. In the last
decade, the web advertising revenues in the United States, as well as worldwide,
have increased significantly. With the growth of web advertising, several web sites
have now begun to depend heavily on the revenue generated by the advertisements
displayed on the site. For such sites, revenue generated from advertisements is crit-
ical for survival. This chapter discusses how the web advertising evolved over time.

1.1 History of Web Advertising

We begin with discussing the growth of web advertising in its early phases.

1.1.1 Early Phases of Web Advertising

Advertising on the World Wide Web became mainstream in early 1994 when
HotWired, a web magazine (part of Wired magazine), sold a banner ad to AT&T
and displayed it on their web page [3, 17]. The exploding supply of web pages in
1994 led to the birth of several search engines [5]. These search engines also sold
advertising to make money. During the early period, fairly traditional methods of
advertising were mimicked on the web. These included web versions of business
directories similar to the yellow pages such as yellowpages.com; web versions of
newspaper classified ads such as Craigslist; and web versions of direct mail and
telephone marketing such as CheetahMail [5].

In 1995, fewer than one third of U.S. households had computers, and fewer than
half of those machines had decent Internet connections [21]. Hence, there was lot
of skepticism about the web advertising. This skepticism grew further in late 1995.

© The Authors 2016
S. Kumar, Optimization Issues in Web and Mobile Advertising, SpringerBriefs
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2 1 Evolution of Web Advertising

However, it did not stop advertisers from using web as a new media of advertising.
While web advertising was going through a defining phase in 1995, the two most
debated issues were: (a) tracking of users’ visits to the websites, and (b) pricing
for advertising located on content sites [21]. In this period, many small advertisers
took a “wait and see” approach, but big names (such as Fox, Chrysler, Sports Illus-
trated, and ESPN) started using web advertising. The rates for web advertisement
(hereafter also referred to as “ad”) in late 1995 varied from a few thousand dollars
to $1 million. For example, HotWired charged $30,000 for an 8 week sponsorship,
and ESPN charged $1 million for a 1 year sponsorship of ESPNET [21].

Advertisers in 1995 mainly focused on attracting clickers via the web itself,
rather than using traditional media (such as magazines, newspaper, and TV). How-
ever, according to a 1996 survey by Market Facts, half of 500 respondents said that
they visited a website because they saw the web address in a magazine or newspaper
ad [21]. Hence, in 1996, companies started launching ads for websites on traditional
media. Piggybacking (also referred to as affiliate marketing) was another innova-
tive approach that gained popularity in 1996. In this approach, websites created
business-to-business links with partners in order to increase traffic. Sports sites, such
as ESPN, were among the first to use this approach by providing links for their part-
ners on their sites, with the expectation that the link would be reciprocated [21].

In the first half of 1996, the web advertising revenue reached an all-time high
at approximately $81.8 million [9]. Also, the studies showed that users were
going online primarily to gather news and information [21]. Hence, many adver-
tisers switched from entertainment-oriented ads of 1995 to information-oriented
ads. Such ads were referred to as advertorials that combined ads with editorial
content. CDNow was an early innovator in web advertising. It started use of edi-
torial content as a means to promote interest in all sorts of music. It also created
the first affiliate marketing program on the Internet, which was later perfected by
Amazon.com.

1.1.2 Targeting Phase of Web Advertising

As Rich LeFurgy (Chairman and Senior Vice President of Internet Advertising
Bureau) stated: “1997 was definitely a breakthrough year for Internet advertis-
ing” [10]. This was also reflected by the fact that the web advertising revenue in
1997 reached $906.5 million (compared to $267 million in 1996) [9, 10]. In this
period, search engines found new revenue streams by rounding up cobranding spon-
sorships. For example, in the second quarter of 1997, Yahoo reported $13.5 million
in revenue (up 42 % from the first quarter), Excite’s reported $9.5 million (up 26 %
from the first quarter), and Infoseek reported $7.7 million (up 25 % from the first
quarter) [21].

In this phase, the web advertisers matured and started focusing on personal-
ization of web advertising. Instead of links, advertisers became more concerned
with proximity and immediacy [21]. This is mainly attributed to the technological
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advances in 1997. Until 1997, it was difficult to know who was using the web. How-
ever, in 1997 (and onwards), several companies started providing services related to
targeting customers on web. For example, a company called PC Meter provided two
types of services: (a) comparative research on web sites, and (b) tracking consumer
and business usage trends. Similarly, another company, called RelevantKnowledge,
started providing data about business usage by ranking top websites in a variety of
categories. Until 1997, one of the major drawbacks of web advertising was consid-
ered to be geographic limitations. The advertisers and website started overcoming
this limitation in 1997 by asking users to register their zip codes. Several advertis-
ers and search engines reported that the response improved by geographic targeting.
One of the reasons why the web advertising landscape changed in this period is
attributed to the fact that the efforts of traditional media (such as Newspaper, radio,
and TV stations) to go online became intense. For example, The Wall Street Journal
launched a career site to attract online advertisers.

The innovations in web advertising continued in 1998. In this period, another
form of ads, called Interstitial Ads, started becoming more common. These ads
appear while users wait for screens to download. Another major event that occurred
in 1998 was that Google received its first funding with a contribution of $100,000
from Andy Bechtolsheim, a co-founder of Sun Microsystems [19]. By 1998, Google
had indexed 60 million pages with their search algorithm and began ranking them.
This was an important step in the domain of web advertising.

1.1.3 Growth of Web Advertising in the Twenty-First Century

Although Yahoo started search ads around 1996, a big leap in web advertising
happened in 2000 when Google developed AdWords. Google’s AdWords allowed
advertisers to display their ads in the Google content network. Another important
development in the twenty-first century was the growth of firms as DoubleClick.
DoubleClick was one of the earliest known Application Service Provider (ASP) for
Internet “ad-serving.” Such companies offered technology products and services for
advertising agencies and media companies to allow clients to traffic, target, deliver,
and report on their interactive advertising campaigns. With the growth of these ser-
vices, the advertisers were able to improve targeting and personalization for their
ads, which resulted in increased expenditure on web advertising.

The growth of social media (such as Facebook, Twitter, and Linkedin) in the
twenty-first century provided a big boost to web advertising. For example, around
$5.1 billion were spent on social advertising in 2013 [20]. According to the stud-
ies by BI Intelligence and BIA/Kelsey, the U.S. social-media ad revenue will reach
nearly $14–15 billion in 2018 [2, 7]. In the third quarter of 2014, Facebook brought
in $2.96 billion in advertising revenue, and Twitter generated $320 million [1].
Mobile advertising is also closely related to web advertising, but its reach is far
greater. Hence, it is expected that advertisers and media industry will increasingly
take account of a bigger and fast-growing mobile market, especially in the social
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media. It is evident from the fact that, in the third quarter of 2014, 66 % of Facebook
advertising revenue came from mobile ads, and Twitter generated 85 % of its total
revenue from mobile advertising [1]. According to BIA/Kelsey, the year 2014 rep-
resented the greatest year-over-year jump in social media ad revenues, growing to
$8.4 billion, largely due to increases in mobile advertising [2].

Overall, the revenue from web advertising grew tremendously in the twenty-first
century. In 2013, it increased by 17 % over 2012 to reach $42.78 billion [11]. This
trend is expected to continue: It is estimated that the web advertising revenue in the
United States will reach $50 billion by 2015 [4]. Another estimate shows that the
U.S. web advertising will reach $77 billion in 2016, and will comprise 35 % of all
advertising spending, overtaking television advertising [8]. Finally, Internet adver-
tising is not purely a U.S. phenomenon. In the United Kingdom, online advertising
revenues in 2013 increased by 15.2 % over 2012 to reach almost $6.3 billion [13]. In
2013, Internet passed newspapers to become the world’s second-largest ad medium,
behind TV—Internet now captures one in five ad dollars [16]. According to a report
by Digital TV Research, global Internet advertising spending will reach $143 billion
in 2017 [18].

1.2 Types of Web Ads

Web advertising is broadly classified into following categories [5]: (a) Display
Advertising, (b) Search Engine Marketing, (c) Online Classified Advertising, (d)
Affiliate Marketing (also called “Lead Generation”), (e) E-Mail Advertising, and
(f) Interstitial Advertising. As discussed earlier, two new and emerging delivery
methods for web advertising are: (a) Social Media Advertising, and (b) Mobile
Advertising.

Display advertising is the earliest form of web advertising that began in the early
1990s. Display ads on websites look like those in newspapers and magazines. These
can be further classified into following categories [5]: (a) Banners, (b) Sponsor-
ships, (c) Rich Media, (d) Slotting Fees, and (e) Digital Video. A banner ad is a
small, typically rectangular, graphic ad displayed within a web page. In the early
1990s, a commercial online service, Prodigy, displayed banners at the bottom of
the screen to promote Sears products [6]. The first clickable web ad was sold in
1993 by Global Network Navigator to a Silicon Valley law firm [3]. As discussed
earlier, the web banner advertising became mainstream in 1994 when HotWired
sold banner ads to AT&T and other companies [3, 17]. Next, sponsorships represent
custom content created for an advertiser that may or may not include ad elements
(for example, reskinning a section of a website with the advertiser’s branding) [5].
Rich media ads include some interactivity using different features, such as anima-
tion and sound. Slotting fees ads are specific types of display ads in which a fee is
charged for premium ad placement and/or exclusivity. Finally, the digital video ads
include commercials that appear in live, archived, and/or downloadable streaming
content [3]. This format of display ads has gained popularity in the last few years.
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Search engine marketing (SEM) is designed to increase the visibility of a web-
site in search engine results. Search engines provide sponsored results and organic
(non-sponsored) results based on the query of a web searcher [14]. Search ad refers
to paying Internet companies to present an ad linked to a specific search word or
phrase [5]. It includes: (a) paid listings in sponsored results (text links appear at
the top or side of search results for specific keywords), and (b) paid inclusion in
organic results (guarantees that a marketer’s URL is indexed by a search engine).
Search engines usually employ visual cues to differentiate sponsored results from
organic results. Since 2005, search ads have been the most prominent format of web
advertising (in terms of revenue). Before that, display ads were the most prominent
format. In 2013, search revenues accounted for 43 % of the total web advertising
revenues [11].

When the web advertising started, it was believed that if media and advertising
standards were not put in place, the online advertising medium could never mature
and capture a brand’s advertising spend [15]. Unlike traditional media (which had
established formats and specifications across the multiple channels), every web page
could be a separate media company with different specifications and measurements
in place. Hence, in 1996, the Interactive Advertising Bureau (IAB) was founded to
empower the media and marketing industries to thrive in the digital economy. One
of the core objectives of IAB is: “Coalesce around market-making measurement
guidelines and creative standards” [12].

1.3 Differences Between Web Advertising and Offline
Advertising

Although the goal of both web advertising and offline advertising is to attract
customers, these two have some fundamental differences. First of all, the structure
of online media allows advertisers and websites to gather much more information
about the users. For example, in the online channel, using the IP address of the com-
puter and the cookies, the advertiser can attempt to understand the intent as well as
the precise location of the individual user. These cookies can also provide important
information regarding what other sites the user has visited. However, in an offline
media, such as TV, radio, and newspaper, it is usually not possible to collect such in-
formation about each individual user. Using these information, the online advertisers
can present personalized and targeted ads to each user. Therefore, the effectiveness
of well-executed web ad is usually much better than that of an offline ad.

Second, it is much easier to evaluate the effectiveness of a web ad compared to
that of an offline ad. In the online media, the advertisers precisely know when the ad
is displayed to each user. However, in an offline media, such as newspaper, it is not
possible to know when exactly the ad is displayed to the user. Further, if an online
user clicks on a web ad, it is registered directly in the system. However, such mea-
surement is quite difficult in an offline media. The information about the time also
helps the online advertiser in customizing the ad. The reach of an online ad is also
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much higher than that of an offline ad, because an online ad can be placed anywhere
globally. Another advantage of online advertising is that it can be customized based
on the actions of the users (even in the real-time). However, it is difficult to change
an offline ad based on the actions of the users.

Because of the differences discuss above, the optimization issue in web adver-
tising are different from those in offline advertising. The purpose of this book is to
discuss the optimization models for web advertising that exploit the unique aspects
of online channel. In this book, we also discuss the new optimization issues aris-
ing because of the emerging trends, such as mobile advertising and ad exchanges.
Before discussing the optimization models, in Chap. 2, we present different pricing
models used in web advertising.
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Chapter 2
Pricing Models in Web Advertising

Abstract The method to determine the price of web advertising is one of the most
striking innovations. In the early phases, most of the web advertisements were sold
through traditional exposure-based pricing models, such as the flat fee model or the
cost per impression model. However, over time, some other models also emerged
in practice where the pricing is based on a visitor taking some specifically defined
action in response to an advertisement. In fact, such models are now becoming more
popular than the traditional models. This chapter presents different pricing models
used in web advertising and analyze them.

2.1 Traditional Exposure-Based Pricing Models

In the early days of web advertising (around late 1994 and early 1995), few websites
or advertisers understood the real value of the web as an advertising medium, let
alone what price to assign to web advertising. The advertising managers certainly
understood the value of a 30 s television spot or a classified ad in the back of the
book, due to factors including industry norms, program ratings, years of marketing
research, and managerial experience. But, except for a handful of pioneering online
programs like CDNOW’s BuyWeb, which produced measurable results, there was
simply no way to understand the value of web advertising [9]. This presented a
dilemma for those managers who wished to advertise online.

Given little knowledge about the effectiveness of web advertising, the flat fee
pricing model were the earliest web advertising pricing model [10]. Flat fee pric-
ing charges the advertiser for their ads on a website in a certain period (e.g., per
month). Flat fee can be without or with traffic guarantees [2]. Naturally, it would be
advantageous for the advertiser to request guarantees of traffic level. At a minimum,
accurate information on site traffic must be made available to the advertiser, so that
the advertiser may evaluate alternative web media vehicles. Hence, the advertisers
started requesting for the traffic information. Assuming accurate traffic information,

© The Authors 2016
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flat fee prices may be readily converted into a CPM (cost-per-thousand-exposures)
model. In the CPM model, an advertiser pays an amount based on the number of
impressions (exposures) of an ad [12]. The number of impressions during a visit
is the number of times that the ad is displayed to the user during the visit [16].
As with conventional broadcast and print advertising, this approach measures only
the amount of advertising delivered, broken down, at best, by demographic or psy-
chographic segments.

In the early phases of web advertising, CPMs were inflated and flat fee deals
were even worse. There were no guarantees and there was no rationality to the mar-
ket. Many of the early online selling efforts were conducted by magazine salespeo-
ple with little experience regarding how new media actually worked. Thinking of
banner ads in the same way as they thought of a 30 s television spot or a print ad
in a magazine, they sought to base their prices on the number of people who would
see an ad—what in the trade was called “exposure-based cost-per-thousand pric-
ing” [9]. Hence, they quite literally invented CPM rates in the low $70s or charged
flat fees from $5000 to $10,000 per month to advertise on some of the earliest com-
mercial websites. It did not take long for the advertisers to determine that those
current CPMs were inflated and an obvious bad buy. At the flat rate of $10,000,
the ad would never even generate enough revenues to cover its costs. Consider the
following. Suppose the price of a single banner ad exposure (i.e., one page view)
was seven cents, because the web provider demanded a $70 CPM. If 1 % of the vis-
itors that saw the banner actually clicked, a single click would cost $7. But, since
only a small percentage of those visitors were converted into paying customers,
the customer acquisition costs were actually sky high. Assuming a 1 % conversion
rate, the cost to acquire that new customer was $700 [9]. As advertisers started real-
izing such problems with the high costs of CPM pricing model, the web advertising
industry increasingly moved towards performance-based pricing models. However,
until 2005, the CPM pricing model was the most prominent model in web advertis-
ing. Even in 2013, approximately 33 % of the total web advertising revenues were
priced on the basis of CPM [11].

2.2 Performance-Based Pricing Models

The performance-based pricing has been the most prevalent pricing model since
2006. In 2013, approximately 65 % of the web advertising revenues were priced
on a performance basis [11]. The earliest performance-based pricing model in web
advertising is the cost-per-click pricing model.
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2.2.1 Cost-Per-Click Pricing Model

Paying by the number of viewers (i.e., the CPM model) remained the norm until
Procter & Gamble negotiated a deal with Yahoo! in 1996 that compensated the
web portal for ads based on the “cost-per-click,” commonly known as “CPC” [4].
Yahoo! was paid only when a user clicked on the ad; this was the web-version of
paying for direct response commonly used by advertisers for things such as mail
and telephone solicitations. By 2002, the CPC model had been adopted by both
Google and Yahoo!, and it became the most widely used pricing model in paid
search advertising [3].

A relatively small proportion of those exposed to a banner ad actually click on
the banner. In 2006, DoubleClick reported that 4 % of web site visitors who were
exposed to a banner ad clicked on the ad the first time they saw it [10]. The top
25 % performing ads in the DoubleClick Network had an average click-through rate
(defined as the number of times that the ad is clicked upon divided by the num-
ber of times that it is exposed) of 8 %, with some click rates as high as 12–15 %.
Click-through rates decline after the first exposure, falling to 2 % for the second
and third exposures, and to 1 % or less at four exposures. Therefore, the payment
based upon the number of clicks guarantees that the visitor is not only exposed to
the banner ad, but also actively decides to click on the banner (to become exposed
to the target communication). Therefore, the payment based on the number of clicks
may be viewed as payment for target communication exposures. In other words, the
CPC model was an attempt to develop a more accountable way of charging for web
advertising [12].

In spite of its benefits, CPC model also had its controversies. Some website
providers continued to feel that this pricing strategy was unfair, arguing that the
click-through was at least partially a function of the level of creativity of the ad
and the level of interest generated in the viewer by it, which were not under the
control of website providers [16]. On the other hand, as discussed above, applying
only traditional exposure-based models to the web does not take into account its
unique, interactive nature. Additionally, the Internet is the first commercial medium
in which it is actually possible to measure consumer response, not just to assume
it. Although the CPC model might not represent the optimal approach to measuring
the value of interactivity, it offered a departure point from which to proceed.

2.2.2 Cost-Per-Action Pricing Model

Although the payment based on CPC model guarantees that there was visitor
exposure to target communications, it does not guarantee that the visitor liked the
communication or even spent any substantial time viewing it. Hence, it is proposed
that an additional measure of the value of an ad should be based upon the degree
to which the visitor interacts with the target communication [10]. An interactivity
metric might be based upon the duration of time spent viewing the communication,
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the depth or number of pages of the target communication accessed, the number of
repeat visits to the target communication, or some other elements. Such a practice
was announced for the first time in 1996 when a member of the Internet mailing list
posted to the list that Modem Media, the interactive advertising agency, had devel-
oped a pricing model in which its clients would pay, not for exposures or clicks, but
only for activity at the client’s website.

This development raised anew the controversy surrounding the best web media
pricing models, with website providers arguing that the problem with performance-
based measures, such as the number of clicks or some action, is that the website
provider cannot be held responsible for the activity related to an ad. An analogy is
drawn to print, with the web publisher arguing that the print medium charges for
ads, regardless of whether they lead to sales. Not surprisingly, advertisers and their
agencies continue to argue that, since the web medium allows for accountability, it
is possible and desirable to develop models that measure consumer behavior [16].
Therefore, some leading practitioners are now moving toward measures as the “cost-
per-action” (CPA) pricing model proposed by Snap.com, where an action refers
to a realized purchase, download, registration, subscription, or lead [5]. A number
of merchants are following this trend, including Google, ZiXXo (pay-per-print),
Ingenio (pay-per-call), and others [3]. In 2006, Google attracted media attention
when it started to test a CPA model [7, 8]. Google regards CPA as the “Holy Grail”
of targeted advertising [6], and many online advertising companies have adopted it,
including eBay, ValueClick, and Snap.com.

2.2.3 Outcome-Based Pricing Model

The advertisers are eventually interested in outcomes, and the ultimate outcome is
purchase. As Stephen Klein, former I/PRO manager, stated: “One hundred thousand
people going to a site is worth something, but a site that only five people visit can
be worth more if they are the right five people” [14]. The metrics discussed above
relates to early stages of the purchase process: Banner ads affect the consumer’s
awareness, and the action affects the consumer’s comprehension and understanding.
Beyond these initial stages are the marketing objectives of attitude change, purchase
intention, and, ultimately, purchase. An outcome-based pricing model begins by
specifying precisely the advertiser’s goal for the target communication. Examples of
typical outcomes include influencing attitudes, motivating the consumer to provide
personal information, or leading the consumer to purchase. Whatever the marketing
objective, the web provides a vehicle for integrated marketing campaigns, which
allows the marketer to track and to measure the effectiveness of the ad. An example
is per-inquiry (PI) ads where the royalty is paid only on actual product sales, and no
other payment is required [10].
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2.3 Hybrid Pricing Models

The CPM model and the performance-based model represent two extreme pricing
strategies. Pure CPM pricing favors the website provider because there is no risk:
The website provider is paid whether or not the ad is clicked upon. On the other
hand, the performance-based pricing model favors the advertiser because the web-
site provider carries all the risk: If the performance criterion of the advertiser is not
met, no revenue accrues to the website provider [12]. Several recent studies analyze
and compare different pricing models (e.g., see [1, 5, 13, 15]). These studies recom-
mend a hybrid pricing model that shares the risk between the website provider and
the advertiser. In [12], a hybrid pricing model is considered for optimal schedul-
ing and placement of web ads. In 2013, approximately 2 % of the web advertising
revenues were priced on a hybrid basis [11].
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Chapter 3
Scheduling Advertisements on a Web Page

Abstract Many web sites (e.g., Hotmail, Yahoo, Google) provide free services to
the users while generating revenues from advertising. Advertising revenue is, there-
fore, critical for these sites. This in turn raises the question, how should ads at a
web site be scheduled in a planning horizon to maximize revenue. Consider a set of
ads competing to be placed in a planning horizon that is divided into time intervals
called slots. An ad is specified by its size and display frequency. The size represents
the amount of space the ad occupies in a slot. An ad is said to be scheduled if a
pre-specified number of copies of that ad are placed in the slots subject to the re-
striction that a slot contains at most one copy of an ad. In this chapter, we present
two problems. The MINSPACE problem minimizes the maximum fullness among
all slots in a feasible schedule where the fullness of a slot is the sum of the sizes of
ads assigned to the slot. For the MAXSPACE problem, in addition, we are given a
common maximum fullness for all slots. The total size of the ads placed in a slot
cannot exceed that common maximum fullness. The objective is to find a feasible
schedule of ads such that the total occupied slot space is maximized. We examine the
complexity status of both problems and present heuristics with performance guar-
antees. For the MAXSPACE problem, we also present a hybrid genetic algorithm
(GA).

3.1 Introduction

As discussed earlier, a banner ad is a small graphic image that is linked to a target
ad. Many different types of banner ads with different sizes are being used in web
advertisement. Rectangular ads are the most common type of banner ads. These
ads usually appear on the side, top, or bottom of a screen as a distinct, clickable
image [19]. Banner ad size is usually measured in pixels: width × height. Many
different accepted sizes, in pixels, are identified by the Standards and Practices
Committee of the Interactive Advertising Bureau [14]. Various types of banner

© The Authors 2016
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ads can be observed. For example, www.cheaptickets.com displays three
side banner ads and www.travelocity.com displays six side banner ads of
different sizes [5]. Typically, a set of ads competes for space on a web page in a plan-
ning horizon, say an hour. If ads are updated every 40 s on the web page, we have
90 time intervals to schedule ads. In each time interval, a rectangular slot (e.g., side
banner) consisting of ads is displayed for viewers. For example, UtopiAd’s desktop
companion Magellan (www.utopiAd.com) updates ads after every 20 s.

This chapter presents two problems namely, MINSPACE and MAXSPACE,
which are theoretical models designed to address the problem of scheduling ads
competing to be placed on a web page. A block is a rectangular space allocated on
a web page, usually on the left, right, top or bottom, which houses one or more ban-
ner ads. A given planning horizon is divided into a number of time intervals called
slots. Ads scheduled in a block for a particular slot are displayed for users who visit
the site during that time interval. In scheduling ads, these problems consider two
factors: (a) the size of the ad and (b) the number of times (slots) that an advertiser
would like the ad to appear on the web site during a planning horizon.

Since the maximum space to be used by ads on a web page is limited, the adver-
tisement provider may not be able to place all the ads that are competing for space in
a given planning horizon. The advertisement provider is then faced with the problem
of selecting and placing ads in such a way that his/her profit is maximized. This issue
is addressed by the MAXSPACE problem. The use for the MINSPACE problem is
primarily during the design stage of a web page whose contents may change over
time. The advertisement provider wants to place all ads that are requested by cus-
tomers in a given planning horizon. Here, the space to be allocated for all ads needs
to be decided optimally.

3.2 Problem Description

Consider a set of n ads A = {A1, . . . ,An}. A planning horizon is divided into N
equal time intervals (slots). An ad placed in a particular slot will be displayed for
the time interval corresponding to that slot. Each ad has two characteristics: size and
frequency. The size of an ad Ai is denoted by si and represents the amount of space
Ai occupies in a slot. The frequency of an ad Ai is denoted by wi and is the number
of slots which should contain a copy of the ad. Advertisers do not want to display
more than one copy of an ad in the same slot and therefore an ad Ai can be displayed
at most once in a slot.

Definition. Ad Ai is said to be scheduled if a total of wi copies of Ai appear in the
slots with at most one copy in a slot.

Clearly, wi ≤ N, ∀ i. We assume that the width of the ads placed in a slot is the
same as the width of the slot as this is the ad presentation scheme followed by most
web sites. The fullness of a slot j is defined as f j =∑Ai∈B j

si, where B j is a set of ads
which have a copy in slot j. The height of the schedule, f , is the maximum fullness
of the slots, i.e., f = max j f j .

www.cheaptickets.com
www.travelocity.com
www.utopiAd.com
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In the MINSPACE problem, all the ads are to be placed in N slots. The objective
is to find a schedule with minimum height, say f

∗
. For example, consider the prob-

lem instance given in Fig. 3.1a. A feasible schedule is shown in Fig. 3.1b. Here, the
fullness of slot 2 is s1 + s3 = 9 and the height of the schedule is f = 10. Figure 3.1c
shows an optimal schedule with f

∗
= 9. It should be noted that during any time

interval only one of these five slots is shown to a user accessing the web page. The
choice of which slot to display in a time interval can be made by cycling through a
deterministic permutation of the N slots.

In the MAXSPACE problem, a common upper bound, S, on the fullness of each
slot is specified. For this problem, a feasible schedule is a placement of a subset
A

′ ⊆ A of ads such that (a) for each Ai ∈ A
′
, exactly wi copies are placed in the

slots with at most one copy of an ad in each slot and (b) the fullness of any slot
must not exceed S, i.e., ∑Ai∈B j

si ≤ S, ∀ j, where B j ⊆ A
′

is a set of ads which have

a copy in slot j. Without loss of generality, we can assume that for each Ai ∈ A
′
,

si ≤ S. The objective of the problem is to find a feasible schedule of A
′ ⊆ A ads

such that the total weight of the scheduled ads (∑Ai∈A′ siwi) is maximized. Here, an
underlying assumption is that the profit for the web site owner increases with the size
of the scheduled ad (i.e., the total number of pixels required to display the ad). This
is a reasonable assumption and is often valid in practice [20]. A feasible schedule
for the problem instance given in Fig. 3.1a with S = 6 is shown in Fig. 3.1d with
∑Ai∈A′ siwi = 27, where A

′
= {A1,A3,A6,A7,A8}. An optimal schedule is shown in

Fig. 3.1e with ∑Ai∈A′ siwi = 30, where A
′
= {A1,A3,A5,A6,A7}.

3.3 Earlier Results for Special Cases of the Problem

A special case of the MINSPACE problem with wi = 1 for all ads Ai, i = 1, . . . ,n, is
equivalent to the classical problem of multiprocessor scheduling [2, 17, 22] that can
be stated as follows: n independent tasks require processing on any of m identical
parallel processors. The objective here is to find a schedule of tasks that minimizes
the total completion time of all tasks (or the makespan of the schedule). In this spe-
cial case, N (number of slots) is equivalent to m parallel processors and the problem
reduces to the problem of scheduling n ads (tasks) in N slots (machines). Here, the
size si of each ad Ai corresponds to the processing time of a task in the context of the
multiprocessor scheduling problem. One popular algorithm for the multiprocessor
scheduling problem is the LPT (largest processing time first) algorithm. The worst
bound of LPT is 4

3 − 1
3m [11].

When wi = 1 for all ads i = 1,2, . . . ,n, the MAXSPACE problem has some sim-
ilarity to the bin-packing problem [9]. Given a list of real numbers between 0 and
1, the bin-packing problem is the problem of placing all the elements of the list in
a minimum number of bins so that no bin contains numbers whose sum exceeds 1.
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Fig. 3.1 An example to illustrate MINSPACE and MAXSPACE problems. (a) Problem data.
(b) A feasible, nonoptimal schedule. (c) An optimal schedule. (d) A feasible, nonoptimal schedule.
(e) An optimal schedule

However, in the MAXSPACE problem, the number of bins, N, is fixed and items
are placed to maximize the space utilization of N bins. A survey of approximation
algorithms for bin-packing is available in [4].

An application of bin-packing problem to the multiprocessor scheduling problem
shows that the bin-packing problem is the dual problem of scheduling n independent
tasks on m identical processors [3]. Based on the first-fit decreasing algorithm
for bin-packing, an algorithm for multiprocessor scheduling, called the multifit
algorithm, satisfies a bound of 6

5 [3, 7], which is better than the bound given by LPT
(i.e., 4

3 ). Algorithms such as improved multifit [8] with a guarantee of 72
61 and 1+ ε

approximation scheme [12] are also available for the multiprocessor scheduling
problem.
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3.4 MINSPACE Problem: Formulation and Complexity

We start by providing an integer programming formulation for the MINSPACE
problem. Later, in Sect. 3.4.1.1, we present an approximation algorithm based on
the linear programming relaxation of this formulation.

min F

subject to F ≥
n

∑
i=1

sixi j, j = 1,2, . . . ..,N. (IPmin)

N

∑
j=1

xi j = wi, i = 1,2, . . . ..,n.

where
xi j = 1, if ad Ai is assigned to slot j,

= 0, otherwise.
where wi = frequency of ad Ai i = 1,2, . . . ..,n , si = size of ad Ai i = 1,2, . . . ..,n.
The first set of constraints, together with the objective, minimize the height of the
schedule. The second set of constraints ensure that for ad Ai, a total of wi copies are
assigned to the slots. Since xi j ∈ {0,1}, at most one copy of ad Ai can be assigned
to a slot j. The MINSPACE problem is NP-hard in the strong sense (Theorem 2.1
in [1]).

3.4.1 Approximation Results for the MINSPACE Problem

An algorithm, called Largest-Size Least-Full (LSLF), for the MINSPACE problem
works as follows [1]:

Algorithm LSLF [1]

Step 1: Sort the ads in nonincreasing order of their size. Let s1 ≥ s2 . . .≥ sn.
Step 2: Assign the ads in the sorted order, where ad Ai is assigned to the wi least

full slots.

Step 1 requires time O(n logn). In Step 2, assigning each ad requires sorting of the
N slots and hence takes time O(N logN). Therefore the total time required for Step 2
is O(nN logN). The time complexity of the algorithm is thus O(n logn+ nN logN).
It is shown in [1] that LSLF is a 2-approximation for the MINSPACE problem.
Moreover, in the special case when the ads, sequenced in nonincreasing order of
their size, satisfy that si

si+1
is an integer, i = 1, . . . ,n− 1, LSLF finds an optimum

solution.
In [5], the authors propose a polynomial time approximation algorithms for the

MINSPACE problem and prove the corresponding performance guarantees. Recall
that, for a given schedule h, f h denotes the maximum slot fullness among all the
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slots, i.e., f h = max1≤ j≤N f h
j . In this context, scheduling refers to “deciding which

ads will appear in a particular slot (time interval) and to determine the sequence in
which the slots will appear.” However, we deal only with the problem of assigning
the ads to slots. The choice of which slot to display in a time interval can be made
by cycling through a deterministic permutation of the slots corresponding to a given
planning horizon.

The objective is to find a schedule, h∗, with f h∗ = minh f h where the minimum
is taken over all valid schedules. For simplicity of notation, we denote the optimum
solution value by f ∗ and use f to denote the solution value given by an approx-
imation algorithm. Note that f ∗ is the optimum solution value for (IPmin). In [5],
the authors present the following linear programming based 2-approximation algo-
rithm for the MINSPACE problem, and then give an improved algorithm with a
performance guarantee better than 2.

3.4.1.1 A Linear Programming Relaxation Based 2-Approximation Algorithm

Denote the linear programming (LP) relaxation of (IPmin) by LPmin. The assignment
of ads to slots can be viewed as assignments in a bipartite graph, G(V1 ∪V2,E),
where nodes V1 represent the ads and the nodes V2 represent the slots. An edge
(i, j) ∈ E represents the assignment of ad Ai to slot j. Let x̄ be an optimum basic
feasible solution to LPmin and let fl p denote the value of the optimum LP solution.
Let g denote the vector of fractional variables of x̄. Define the residual graph, RG, as
the subgraph of G induced by the edges of g. In [5], the authors present the following
structural result.

Lemma 3.1. The residual graph, RG, of the linear programming relaxation LPmin is
a forest [5].

We can consider each connected component of RG separately. Let f̄ j denote the
fullness of slot j in x̄. In RG, if a slot node has degree 1, then we refer to that slot as
a singleton slot. A simple rounding step can be used to remove a singleton slot from
RG. Consider a singleton slot j and let edge (i, j), where node i corresponds to ad
Ai, be the single edge incident to slot j. Let gi j = x̄i j. Let gi j1 ,gi, j2 , . . . ,gi, jp be the
values corresponding to other edges in RG incident on node i (see Fig. 3.2a).

Note that the quantity gi j +∑p
k=1 gi jk is an integer, say z, since the frequency, wi,

of ad Ai is an integer. The rounding step sets gi j = 1 and gi jk = ( z−1
z−gi j

)gi jk , k =

1, . . . , p (Fig. 3.2b). Observe that the frequency of ad Ai remains unchanged in the
solution after this rounding step. Moreover, the singleton slot j disappears from RG

since there are no fractional edges incident on it.

Note A rounding step on a singleton slot node removes at least one edge from the
residual graph. We continue to denote the updated residual graph by RG.

Each ad node in the residual graph has degree at least two since the ad frequency
is an integer and the residual graph contains only the edges corresponding to the
fractional variables. Since RG has no cycle, there must exist at least one singleton
slot. Otherwise, each slot node will have degree at least two and since each ad node
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Fig. 3.2 Rounding step for a singleton slot (a) before rounding (b) after rounding

has degree at least two in RG, there would exist a cycle in RG which is a contradic-
tion to Lemma 3.1. Moreover, at least one singleton slot continues to exist as the
rounding procedure proceeds.

As the rounding procedure proceeds, the residual graph RG continues to be
acyclic since the original residual graph was acyclic and the rounding step does
not introduce any new edges. Therefore, RG has at least one node with degree 1.
Moreover, this node cannot be an ad node as this would mean that there exists an ad
node with degree 1 in RG which contradicts the property that for each ad node i, the
sum of edge weights incident on node i is the integer wi. Therefore, as the rounding
procedure proceeds by executing the rounding step on singleton slots in the residual
graph RG, it will always find at least one singleton slot unless the residual graph is
empty (i.e. has no edges).
The description of the LP Rounding (LPR) algorithm is thus straightforward.

Algorithm LPR

Step 1: Obtain a vertex solution x̄ to the LPmin. Construct the residual graph RG

based on the fractional variables.
Step 2: Find a singleton slot node in RG and perform the rounding step as shown in

Fig. 3.2. Update RG. Repeat Step 2 until RG is empty (i.e. RG has no edges).

Using the properties discussed above, the following result is presented in [5].

Theorem 3.2. LPR is a 2-approximation for the MINSPACE problem and this bound
is asymptotically tight [5].

Solving the linear programming relaxation in Step 1 requires time O(n3N3L) where
L is the length of the binary encoding of LPmin [15, 21]. Since the residual graphs are
acyclic and the number of edges decreases by at least one in each iteration, Step 2
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is repeated at most n+N − 1 times. The rounding procedure for a singleton slot
requires time O(N). The time complexity of algorithm LPR is O(n3N3L+N(n+
N − 1)).

An interesting consequence of Theorem 3.2 is that the integrality gap, defined as
the difference in the optimal solutions of an integer program and its linear program-
ming relaxation, for IPmin is bounded above by smax. That is, f ∗ − fl p < smax.

3.4.1.2 An Improved Approximation Algorithm

Unlike the LSLF algorithm, the next algorithm for the MINSPACE problem, called
Largest-Frequency Least-Full (LFLF), assigns ads in the nonincreasing order of
their frequency. The description of the algorithm follows.

Algorithm LFLF [5]

Step 1: Sort the ads by frequency, from largest to smallest.
Step 2: Assign the ads in the sorted order, where ad Ai is assigned to the wi least

full slots.

Step 1 requires time O(n logn) and Step 2 requires time O(nN logN). The time
complexity of the algorithm is thus O(n logn+nN logN). Since LSLF makes direct
use of the size of an ad in its packing criterion, it is expected to perform better
than LFLF. The next result, which is somewhat counter-intuitive, shows that the
performance guarantee of LFLF is better than LSLF.

Theorem 3.3. The performance bound for the algorithm LFLF for the MINSPACE
problem is f

f ∗ ≤ r where: [5]

1. r = 2− 1
N−w0+1 when w0 ≤ N+1

2 and

2. r = max{1, 2N
N+2 (

S∗−s0
S∗ )} when w0 >

N+1
2

and w0 = min{w1, . . . ,wn}, s0 = min{s1, . . . ,sn}, S∗ = ∑n
i=1 si. In both cases, the

bound is tight.

3.4.1.3 Constant Factor Approximation Algorithms

Further, in [6], the authors design polynomial time heuristics for the MINSPACE
problem that provide solutions with a performance guarantee. In particular, they
provide a solution within a constant factor of the optimum solution. Their results
include:

1. An online (2− 1
N )-approximation algorithm.

2. A (offline) (1+ 1√
2
)-approximation algorithm.

3. A (offline) 3
2 -approximation algorithm.



3.5 The MAXSPACE Problem 23

3.4.2 Special Cases

In this section, we present improved approximation algorithms for three special
cases of theoretical interest.

(1) when all of the ad frequencies are the same. That is, wi = w, i = 1, . . . ,n. In this
situation, we denote the MINSPACE problem by MINw.

(2) when all of the ad frequencies are the same and furthermore, the number of
slots N is an integer multiple of the common frequency w. That is, k = N

w is an
integer. Here, we denote the MINSPACE problem by MINN|w.

(3) when si = s, i = 1, . . . ,n. Let MINs denotes this special case for the MINSPACE
problem.

Since the MINSPACE problem is NP-hard in the strong sense (Theorem 2.1
in [1]), the problem MINw is also strongly NP-hard. We now observe that LSLF
algorithm provides a much tighter bound for MINN|w. Next, in [5], the authors
present the following result.

Theorem 3.4. Algorithm LSLF is a ( 4
3 − 1

3k )-approximation for MINN|w and this
bound is tight [5].

Remark 1: As a consequence of the result above, multiprocessor scheduling algo-
rithms such as multifit [7] and improved multifit [8] with performance guarantees of
6
5 and 72

61 , respectively, and the 1 + ε approximation scheme [12] are also available
for problem MINN|w.

Remark 2: The best known bound for problem MINw is the one established in
Theorem 3.3 for algorithm LFLF.

Algorithms LSLF and LFLF, when used for problem MINs, provide a solution

value of s�∑n
i=1 wi
N �. It is easy to see that this is optimal, thus proving that MINs is

polynomially solvable. We record the result below.

Theorem 3.5. Algorithms LSLF and LFLF solve problem MINs optimally.

3.5 The MAXSPACE Problem

Given a set of ads {A1, . . . ,An}, the number of slots, N, a common upper bound S
on the fullness of each slot and the values for si, wi for each Ai, we may not be
able to assign all the ads given in A. Thus, we are required to find a subset A

′ ⊆ A
which forms a valid schedule and maximizes ∑i∈A′ siwi. An integer programming
formulation for the MAXSPACE problem is given below. Later, in Sect. 3.6, we use
this formulation to present the optimum solution or an upper bound on the optimum
solution.
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max
N

∑
j=1

n

∑
i=1

sixi j

subject to
n

∑
i=1

sixi j ≤ S, j = 1,2, . . . ..,N (IPmax)

N

∑
j=1

xi j = wiyi, i = 1,2, . . . ..,n.

where

xi j =

{
1, if ad Ai is assigned to slot j
0, otherwise.

yi =

{
1, if ad Ai is assigned,
0, otherwise.

Note that wi = frequency of ad Ai i = 1,2, . . . ..,n, si = size of ad Ai i =
1,2, . . . ..,n. The first set of constraints restrict the sum of ad sizes in a slot to be at
most S. The second set of constraints ensure that, when an ad Ai is assigned, exactly
wi copies of the ad are placed in the slots. Since xi j ∈ {0,1}, at most one copy of an
ad can be placed in a slot. The MAXSPACE problem is NP-hard in the strong sense
(Theorem 2.5 in [1]).

We now introduce the following subroutine which will simplify our presentation
of subsequent algorithms:

LSLF(u,S): Application of Algorithm LSLF for the ads in set u, discarding any
ad that, when placed, violates the limit S for the size of a slot.

3.5.1 Approximation Results for the MAXSPACE Problem

For the MAXSPACE problem, an algorithm called SUBSET-LSLF is presented in
[1] that has arbitrarily bad performance. In this section, we present approximation
algorithms for the MAXSPACE problem and the associated performance bounds.
For an algorithm in this section, let A

′ ⊆ A be the set of ads scheduled and let p =

∑i∈A′ siwi be the weight assigned. Let p∗ be the weight assigned by an optimal
solution.

We start by describing an algorithm, called MAX1, for the MAXSPACE problem
that has been proposed in [5]. This algorithm decomposes the set of ads into two
subsets based on frequencies. Based on the total weight of ads in each subset, the
procedure gives priority to ads in one subset and achieves a performance guarantee
of 1

4 +
1

4N . Before proceeding with the description of the algorithm, we record two
trivial upper bounds on p∗, the optimum solution value.

p∗ ≤
n

∑
i=1

siwi = p0 (3.1)
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and
p∗ ≤ SN. (3.2)

Algorithm MAX1 [5]

Step 1: Given si, wi, i = 1,2, . . . ..,n, the number of slots N and the size of each
slot S, let u = {Ai | wi <

N+1
2 }, u = {Ai | wi ≥ N+1

2 }, Bu = ∑Ai∈u siwi, Bu =

∑Ai∈u siwi.
Step 2: Let u be the set among u,u for which Bu ≥ p0

2 . Then,

2(a). Apply LSLF(u,S); let Su be the resulting partial assignment.
2(b). Starting with Su, apply LSLF(A− u,S).

The time complexity of MAX1 is O(n logn+nN logN). The proof is available in [5].

Theorem 3.6. The performance bound for the algorithm MAX1 for the MAXSPACE
problem is p

p∗ ≥ 1
4 +

1
4N . Moreover, this bound is tight [5].

To achieve a better performance guarantee, a more detailed analysis of the problem
input is required. Our next algorithm, MAX2 (proposed in [5]), uses the knowl-
edge of ad sizes and frequencies in a more effective way to obtain a bound of 3

10 .
The description and the analysis of this algorithm follows.

Algorithm MAX2 [5]

Step 1: Given si, wi, i = 1,2, . . . ..,n, the number of slots N and the size of each
slot S, let v = {Ai | wi ≤ 2N

5 }, v = {Ai | wi >
2N
5 }, Bv = ∑Ai∈v siwi, Bv =

∑Ai∈v siwi. Set p0 = SN.

Step 2: If Bv ≥ 3p0
10 , then apply LSLF(v,S) and terminate.

Step 3: If Bv ≥ 7p0
10 , then ads in v are divided into two sets as follows. Let c = {Ai |

si ≥ S
4}, c = {Ai | si <

S
4}.

Step 4: Placing ads in c = {Ai | si ≥ S
4}. Find k ≤ 3 and ads Ar1 , . . . ,Ark in c having

∑k
j=1 sr j wr j ≥ 3p0

10 and which can be assigned without violating the size limit
for any slot. If successful, assign ads Ar1 , . . . ,Ark and terminate.

Step 5: Placing ads in c = {Ai | si <
S
4}. Apply LSLF(c,S). If Bc = ∑Ai∈c siwi ≥ 3p0

10
or if at least one ad is rejected when placing the ads from c, terminate.

Step 6: If LSLF(v,S) assigns all the ads in v, then apply LSLF(v,S), LSLF(c,S) and
the result of Step 4 to solve the problem optimally for the sets of ads v, c
and c. Let p∗(v), p∗(c) and p∗(c) be the corresponding values. Select the
schedule associated with the largest of these three values.

The time complexity of algorithm MAX2 is O(n3N + nN logN). The proof is
available in [5].

Theorem 3.7. The performance bound for the algorithm MAX2 for the MAXSPACE
problem is p

p∗ ≥ 3
10 and this bound is tight [5].
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3.5.2 Hybrid Genetic Algorithm

For the MAXSPACE problem, in [16], the authors first propose an algorithm, called
LSMF, based on the idea of a classical bin-packing algorithm. Then, they develop a
genetic algorithm (GA) to solve the problem. Finally, they design a hybrid GA by
combining GA with LSMF and an existing algorithm. In order to improve the per-
formance of GA, they use the design of experiments to find the good GA parameter
settings before running the GA.

3.5.3 Special Cases

In this section, we present improved approximation algorithms for three special
cases of theoretical interest.

(1) when all of the ad frequencies are the same. That is, wi = w, i = 1, . . . ,n. In this
situation, we denote the MAXSPACE problem by MAXw.

(2) when all of the ad frequencies are the same and furthermore, the number of
slots N is an integer multiple of the common frequency w. That is, k = N

w is an
integer. Here, we denote the MAXSPACE problem by MAXN|w.

(3) when si = s, i = 1, . . . ,n. Let MAXs denotes this special case for the MAXS-
PACE problem.

Problems MAXw and MAXN|w are NP-hard since an arbitrary instance of the
0–1 knapsack problem [18] is a special case of both problems. MAXs is NP-
hard since the subset-sum problem [18] is a special case. Below, we describe a
1
3 -approximation algorithm (proposed in [5]), called MAX3, for problem MAXw.
The same algorithm is a 1

2 -approximation for MAXN|w.

Algorithm MAX3 [5]

Step 1: If w > N
2 , then

1(a). Find an ad Ar1 having sr1 ≥ NS
3w . If successful, assign the ad Ar1 and go to

the post-processing step, Step 3.
1(b). Find any two ads Ar1 and Ar2 having sr1+ sr2 ≥ NS

3w and which can be as-
signed without violating the size limit for any slot. If successful, assign ads
Ar1 and Ar2 and go to post-processing step, Step 3.

1(c). Apply LSLF(A,S).
Step 2: If w ≤ N

2 , then
2(a). Sort the ads by size si from largest to smallest. The N slots are divided into

b+ 1 groups where the first b groups contains exactly w slots and bw >
(N −w). The last group contains (N − bw) slots, where (N − bw)< w.

2(b). Ads are placed in such a way that all the copies of an ad are assigned to the
slots in the same group and an ad Ai is assigned to the slots in group l + 1
if and only if it cannot be assigned to the slots in groups 1,. . . ,l without
violating the size limit of slots in these groups.
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Step 3: Post-processing step: Sort the remaining unassigned ads by size si from
largest to smallest. Assign the ads in the sorted order such that each ad Ai

is assigned to w least full slots. Discard any ad that, when placed, would
violate the size limit for some slot.

The time complexity of algorithm MAX3 is O(n2N+nN logN). The proof of the
following theorem is available in [5].

Theorem 3.8. Algorithm MAX3 is a 1
3 -approximation for MAXw [5].

For problem MAXN|w, the heuristic solution, p, from algorithm MAX3 satisfies
p
p∗ ≥ 1

2 . The proof of this result follows from that of Theorem 3.8 by noting that

w ≤ N
2 and bw = N. Again, the tightness of this bound is easy to show. We state the

result below.

Corollary 3.9. Algorithm MAX3 provides a 1
2 approximation for problem MAXN|w

and this bound is tight.

It is easy to observe that problem MAXs can be solved by solving the well-known
0–1 knapsack problem [10, 18, 21]: The item weights as well as item profits for
the knapsack problem are the frequencies wi, i = 1, . . . ,n and the knapsack capacity
is N S

s �. As such, a pseudopolynomial algorithm is available for solving the problem
to optimality [18]. Also, a number of approximation algorithms are known for the
problem including a 1+ ε approximation scheme [13].

3.6 Computational Experience

In this section, we report on the computational performance of the algorithms pre-
sented in this chapter. In order to examine the performances of algorithms proposed
by the authors in [5] for both MINSPACE and MAXSPACE problems (i.e., LFLF,
MAX1, and MAX2), they conduct experiments with a test bed of 10 sets of prob-
lems with each set consisting of 10 problem instances. They find that the average
performance of the heuristics is much stronger than their provable worst case guar-
antees: The average percentage gap between the heuristic and optimum solutions is
approximately within 30 %, 15 % and 20 % for heuristics LFLF, MAX1, and MAX2,
respectively.

In [16], the authors also conduct experiments to examine the performance of their
hybrid GA for the MAXSPACE problem. They find that hybrid GA provides the
optimal solution for all the test problems with known optimal values. For other test
problems, the hybrid GA solutions are within 3 % of the upper bounds generated
by CPLEX on the average. It provides up to 87 % improvement over the existing
heuristic proposed by Adler et al. [1]. Further, in [16], the authors implement the
proposed hybrid GA for an actual dataset. This dataset is obtained by observing
the ads on ValuePay’s pIggy Adbar for 1 h. In this case study, the improvements were
of the order of 4–24 %. They report that it can result in substantial improvement
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in revenue. For example, a 4 % increase in revenue in the case study could lead
to $22,176 increase in monthly revenue, while a 24 % increase could lead to an
increase in revenue of $111,240 per month.
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Chapter 4
Personalization of Web Advertising

Abstract As discussed in Chap. 2, the performance-based pricing has become the
most prevalent web advertising pricing model. Hence, in this chapter, we consider a
hybrid pricing model where the price advertisers pay is a function of (a) the number
of exposures of the ad, and (b) the number of clicks on the ad. The problem is to
find an ad schedule to maximize web site revenue under a hybrid pricing model.
Further, as discussed in earlier chapters, the Internet is the first commercial medium
in which it is actually possible to measure consumer response, not just to assume
it. Both the advertisers and the website providers attempt to exploit this unique, int-
eractive nature of the medium. Therefore, in this chapter, we consider two versions
of the problem: static and dynamic, and present a variety of efficient solution tech-
niques that provide near-optimal solutions. In the dynamic version, the schedule of
ads is changed based on individual user click behavior. We show that a schedule
that adapts to user click behavior consistently outperforms one that does not. We
also demonstrate that to benefit from observing user click behavior, the associated
probability parameter need not be estimated accurately. For both these versions, we
present the sensitivity of the revenue with respect to the model parameters.

4.1 Introduction

Typically, a web site displays a specific sequence of ads to each user during her visit
to the site. For example, the site may display a specific set of ads to a user during the
first minute of the visit and a different set of ads during the next minute of the visit.
Ads compete for exposure during each time interval (e.g., 1 min) and the goal is
usually to optimize some objective calculated for the visit. For the purposes of this
study, the planning horizon is the duration of a user’s visit. For example, a typical
planning horizon may consist of 10 min. A scheduling problem that arises is one of
choosing a subset of ads for each time interval within the planning horizon.

© The Authors 2016
S. Kumar, Optimization Issues in Web and Mobile Advertising, SpringerBriefs
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The models discussed in the previous chapter considered the web ad scheduling
similar to (or identical to) the ad scheduling in traditional media, such as a magazine
or a newspaper. However, in this chapter, we consider the unique aspects of web as
a medium for advertising. First, we focus on optimizing advertising objectives at the
level of a single user. In the last decade, web advertising targeted at the individual
user has gained popularity [3, 4, 8]. Second, the model in this chapter incorporates
results studies on clickstream analysis that predict the probability of an ad being
clicked upon during a user’s visit. In particular, the model in this chapter is based
on the observations that the repeated exposure of an ad during a user’s visit has a
negative linear effect and a positive quadratic effect on the click rate. Here, the mag-
nitude of the negative coefficient of the linear term is significantly larger than the
positive coefficient of the quadratic term. Thus, the positive quadratic effect begins
to dominate only after a certain number of exposures of an ad. These observations
are central to our discussion in this chapter. Third, a novel aspect of the model in
this chapter is the ability to adapt the sequence of ads shown to a user based upon
the user’s actual click behavior.

4.2 Problem Statement, Assumptions, and Approach

4.2.1 Problem Statement and Assumptions

Given a set of ads that can be displayed to a user and a planning horizon consisting
of a sequence of slots, the goal is to select a subset of ads in each slot to maximize a
revenue objective of the web site owner. Next, we discuss problem constraints and
revenue calculation.

There are three problem constraints: size constraint, exposure constraints, and
pairwise ad constraints. The size constraint in this model is the same as that in the
MAXSPACE problem (in previous chapter) where the sum of the heights of the
ads selected for a slot is at most the height of the slot. The exposure constraints—
motivated by the web ad scheduling practice—ensure that, for each slot, at most one
copy of any ad is selected for display. The pairwise ad constraints are of two kinds:
(a) inclusion constraints, and (b) exclusion constraints. An inclusion constraint is a
constraint that applies to an ordered pair of ads and requires that the first ad in the
pair be exposed in a slot only if the second ad in the pair is exposed in that slot.
Such constraints represent situations that correspond to complementary products
(e.g., a real estate and a mortgage ad could be required to be exposed together).
An inclusion constraint may also be used to model a competitive situation where
two firms with competing ads require that their ads be exposed simultaneously in
a slot. An exclusion constraint, on the other hand, imposes that whenever one of
the ads in the pair is exposed, the other ad in the exclusion pair cannot be shown.
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In general, exclusion constraints capture two types of situations: (a) where a very
effective ad could adversely affect the value of another less effective ad, and (b) two
competitors do not want their ads to be displayed together.

The objective is to maximize the total expected revenue in the planning horizon
(i.e., the duration of a user’s visit) which is the sum of the expected revenues in each
slot. For a slot, the expected revenue is the sum of the expected revenue of each
ad displayed in the slot. The expected revenue, per unit size, of an ad in a slot is
derived using a hybrid pricing model. In this model, an ad is charged a fixed amount
for exposure in a slot and a variable amount that depends on whether or not the ad
is clicked upon by the user as a result of that exposure.

The probability of a click resulting from the kth exposure of an ad during a user’s
visit depends on two effects: exposure effect and re-click effect [6].

• exposure effect: In web advertising, the differential impact of each successive ad
exposure during a user’s visit is initially negative and non-linear but becomes
positive later at higher levels of ad exposure. This U-shaped functional form
has been observed in recent research on individual clickstream analysis using
data from a commercial web site and is different from the inverted U-shaped
response found in traditional broadcast media. Due to the exposure effect, the
click probability in the kth exposure of ad Ai is

eik =−ai1k+ bi1k2 + ai0 (4.1)

where ai0, ai1 and bi1 are positive constants with ai1 >> bi1.
• re-click effect: A user clicking on an ad during a visit increases her probability

of clicking on that ad in future exposures during the same visit. Thus, if an ad
has been clicked upon, the re-click effect increases the click probability by an
amount p in all subsequent exposures of the ad during the current visit.

The two effects, exposure and re-click, capture the typical behavior of a consumer
on a website. The decreasing portion of the U-shaped exposure effect has been
attributed to wear-out, while the increasing portion occurs due to wear-in or fa-
miliarity [2, 9]. The re-click effect has been attributed to a consumer’s interest in an
ad [7].

We consider two versions of the problem. In the static version, click events are
not observed and scheduling decisions are therefore made based upon the total
expected click probability. In the dynamic version, the user click behavior during
a visit is observed and this information is exploited in scheduling decisions.

In the static version, the total expected click probability, Cik, for the kth exposure
of ad Ai can be calculated as follows. For the first exposure, Ci1 = ei1, where eik

is the click probability in the kth exposure of ad Ai due to the exposure effect. For
the second exposure, the total expected click probability is Ci2 =Ci1(ei2 + p)+(1−
Ci1)ei2 = pCi1 + ei2, representing an expectation of the two possible values of the
click probability in the second slot: ei2 + p, if the ad is clicked upon in the first slot
(with probability Ci1) and ei2 otherwise. In general, for k ≥ 2,
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Cik =

{
1−

k−1

∏
l=1

(1−Cil)

}
p+ eik (4.2)

In the dynamic version, the probability of a click in the kth exposure of ad Ai is
given by:

Cik = eik + p′ (4.3)

where p′ = 0 if ad Ai has not been clicked upon thus far during the visit (i.e., in
exposures 1 through k− 1), and p′ = p otherwise.

In both the static and dynamic versions, the expected revenue, per unit size, from
the kth exposure of ad Ai is given by:

Rik = ai2 + bi2Cik (4.4)

where ai2 and bi2 are positive constants.

4.2.2 Approach

We first present a linear integer programming formulation for the static version of
the revenue maximization problem. Although realistic instances can be solved to
optimality in a few minutes using state-of-the-art integer programming solvers, we
present a heuristic solution for two reasons. First, since the problem class defined by
the static version is strongly NP-hard, it is conceivable that obtaining an optimum
solution may become difficult for extremely large instances. Second, an effective
algorithm (discussed in Sect. 4.5) to solve the dynamic version requires repeated
solutions of the static version. Since providing real-time solutions is a requirement
for the dynamic version, a fast and near-optimal heuristic for the static version be-
comes a necessity. The heuristic proposed in [6] solves a sequence of knapsack-like
problems (one for each slot) and is easy to implement, runs very quickly, scales
reasonably well, and provides good quality solutions.

4.3 Formulating the Static Version

Consider a set of n ads A = {A1, . . . ,An} competing for space in a planning horizon
that is divided into N time intervals (slots). Each slot is a rectangle of height S and
width W . Ad Ai has height si. We assume that the width of all the ads is W . Ad Ai

is said to be scheduled in slot j if one copy of Ai appears in that slot. A feasible
schedule is a placement of a subset A

′
j ⊆ A of ads in slot j such that the following

condition is satisfied: for j = 1, . . . ,N, the sum of ad sizes assigned to slot j must
not exceed S. That is, ∑Ai∈A′

j
si ≤ S ∀ j. Clearly, si ≤ S ∀ i.
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Notation:

N number of slots.
n number of ads.
S height of a slot.
Din set of pairs of ads on which an inclusion constraint is imposed:

(Au,Av) ∈ Din implies that ad Au is exposed in a slot only if ad Av

is also exposed in that slot.
Dex set of pairs of ads on which an exclusion constraint is imposed:

(Au,Av) ∈ Dex implies that at most one of Au and Av can be
exposed in a slot.

Rik expected revenue, per unit size, from the kth exposure of ad Ai.
rik expected revenue from the kth exposure of ad Ai; rik = siRik.
Tik expected revenue from k exposures of ad Ai; Tik = ∑k

l=1 ril .
zik 1 if ad Ai is exposed a total of k times; 0 otherwise.
xi j 1 if ad Ai is scheduled in slot j; 0 otherwise.

Maximize
n

∑
i=1

N

∑
k=1

Tikzik

subject to
N

∑
j=1

xi j =
N

∑
k=0

k.zik; i = 1,2, . . . ,n (4.5)

N

∑
k=0

zik = 1; i = 1,2, . . . ,n (4.6)

xu j + xv j ≤ 1; j = 1,2, . . . ,N; (Au,Av) ∈ Dex (4.7)

xu j − xv j ≤ 0; j = 1,2, . . . ,N; (Au,Av) ∈ Din (4.8)
n

∑
i=1

sixi j ≤ S; j = 1,2, . . . ,N (4.9)

xi j ∈ {0,1}, i = 1,2, . . . ,n; j = 1,2, . . . ,N

zik ∈ {0,1}, i = 1,2, . . . ,n; k = 1,2, . . . ,N

zik = 1 implies that ad Ai has been displayed a total of k times and, hence,
∑N

j=1 xi j = k. Constraints (4.5) and (4.6) ensure this relationship. For each pair of
ads in Dex, Constraint (4.7) imposes that at most one ad can be exposed in each slot.
For each ordered pair of ads (Au,Av) ∈ Din, Constraint (4.8) imposes that the first
ad in the pair be exposed in a slot only if the second ad in the pair is also exposed in
that slot. Thus, for each slot j, xu j = 1 implies xv j = 1. Constraint (4.9) ensures that
the sum of the heights of the ads selected for a slot is at most the height of the slot.

It is easy to see that the static problem is strongly NP-hard: an arbitrary instance
of the strongly NP-hard Multiple Subset Sum Problem [1] can be polynomially
reduced to an instance of the static problem. While we could easily solve realistic
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instances of the static problem to optimality using the CPLEX optimizer, the
computation times required to obtain an optimal solution can be substantial for
very large instances. Also, most state-of-the-art integer program solvers employ a
variety of techniques—search strategies, different types of cutting planes, heuristics,
etc—to make the search for integer solutions efficient. Therefore, there is typically
a significant amount of variability in the performance of different solvers on the
same class of problems. Thus, in [6], the authors propose an efficient heuristic that
provides near-optimal solutions quickly, and scales well with problem size.

4.3.1 A Successive Slot Knapsack (SSK) Heuristic

The basic idea behind the SSK heuristic is easy to explain: if the planning hori-
zon consisted of a single slot, then the revenue maximization problem is similar to
the classical 0–1 knapsack problem [5] with the only difference being the presence
of the inclusion and exclusion constraints. For a problem involving more than one
slot, such a problem can be solved successively for each slot. That is, we can first
determine the optimal allocation of ads in first slot. Then, using the result of this
allocation (i.e., the set of ads which are displayed in the first slot), the expected rev-
enue of the ads displayed in the first slot can be updated and an optimal allocation
for the second slot can be obtained. The allocation for the second slot then sets up
the problem for the third slot and so on.

Consider an ad Ai ∈ A. Let mi j be the expected revenue from assigning ad Ai

to slot j. The value mi j depends on the number of exposures of ad Ai in the slots
preceding slot j (i.e., slots 1,2, . . . , j− 1). Using the same notation as in the integer
programming formulation of the previous subsection, it is easy to see that, for j ≥ 2,
mi j = rik, where k = ∑ j−1

q=1 xiq + 1; and mi1 = ri1. Thus, given the ad assignments
for the slots preceding slot j, the values mi j can be computed and the following
modified-knapsack problem can be solved to maximize the expected revenue for
slot j:

MKP( j) = Maximize
n

∑
i=1

mi jxi j

subject to

xu j + xv j ≤ 1; (Au,Av) ∈ Dex

xu j − xv j ≤ 0; (Au,Av) ∈ Din
n

∑
i=1

sixi j ≤ S

xi j ∈ {0,1}, i = 1,2, . . . ,n

The optimal allocation obtained by solving problem MKP( j) can then be used to set
up the problem for the next slot. A formal description of the SSK heuristic follows.
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Algorithm SSK [6]

Step 1: Define mi1 = ri1; i = 1,2, . . . ,n. Set j = 1.
Step 2: Solve problem MKP( j). Let xi j, i = 1,2, . . . ,n, be an optimal solution for

MKP( j). Set j = j+ 1.
Step 3: If j ≤N, update the values of mi j, i = 1,2, . . . ,n, as follows: mi j = rik, where

k = ∑ j−1
q=1 xiq + 1 and go to Step 2; otherwise, terminate.

Algorithm SSK is essentially a greedy algorithm wherein the emphasis, while
deciding the schedule for a slot, is on maximizing the revenue of only that slot.
The problem to be solved for each slot, namely, the modified-knapsack problem is
itself an NP-hard problem [5], but can be solved quite efficiently in practice using
state-of-the-art integer program solvers.

4.4 Computational Experience: Static Version

The computational experiments conducted in [6] indicate that the quality of the
solutions obtained by the SSK heuristic is very good over a wide variety of problem
instances. Also, they report that the SSK heuristic is very quick. In [6], the authors
also conduct sensitivity analysis to examine the importance of arriving at precise
estimates for the click probability parameters for different families of ad scheduling
problems. A secondary goal of sensitivity analysis is to demonstrate the impact of
the revenue parameters on the scheduling objective, namely, the expected revenue
to the web site.

The results of sensitivity analysis in [6] show that the impact of a particular click
probability parameter on the revenue is usually significant when small changes in
the value of the parameter permit or restrict ads from being displayed in the increas-
ing part of the click probability curve. However, the effect of a click probability
parameter is influenced by the primary parameter settings: when the planning hori-
zon is short (or there are many ads), changes in the click probability parameters may
have very little impact on the revenue. The sensitivity analysis also demonstrate that
the revenue parameters (a2 and b2) have a direct and linear impact on the revenue.

4.5 A Dynamic Version

A drawback of the revenue maximization model in Sect. 4.3 is that it does not take
advantage of a user’s click behavior during a visit. Therefore, in [6], the authors
propose a dynamic version that aims at exploiting this behavior. Recall that the main
idea in the dynamic version is to revise, at the end of a slot, the user’s probability
of clicking on an ad, and incorporate this revised estimate while deciding on the
schedule in forthcoming slots. In [6], the authors use a fixed positive probability p
to capture the re-click effect.
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Note that the probability revision, to be used for scheduling ads during a visit,
requires the knowledge of the actual click behavior during all previous slots in the
same visit. We therefore have a dynamic (or online) version of the revenue maxi-
mization problem. The dynamic algorithm begins by solving the static problem for
N slots. From the corresponding solution, we use the allocation of ads in the first
slot. Then, actual click events for these ads in the first slot are observed and an allo-
cation for the second slot is obtained by again solving the static problem for N − 1
slots and so on.

Let uik be the click probability of an ad Ai in its kth exposure and η be the
number of slots that have been displayed when uik is being calculated. The value of
uik depends on the actual click events of ad Ai in the η displayed slots. Let us denote
the number of exposures of ad Ai in these η slots as Miη . Note that Miη = ∑η

q=1 xiq.
We need to calculate uik for each ad Ai ∈ A and each exposure k where Miη < k ≤
(N−Miη). It is easy to see that ui1 = ei1. Next, we calculate the value of uik for k ≥ 2.
If ad Ai has been clicked in any of the η displayed slots, then uik = eik+ p; otherwise
uik is calculated in a manner similar to Eq. (4.2) as follows: for k=Miη +1, uik = eik;

and for k > Miη + 1, uik = eik +
{

1−∏k−1
q=Miη+1(1− uiq)

}
p. Recall from Sect. 4.3

that Tik is the total expected revenue from k exposures of Ad Ai. Using these values
of uik and Eq. (4.4), we can easily calculate the values of Tik. The optimal allocation
for (η + 1)th slot can now be obtained by solving the static problem for the last
N −η slots using the values of Tik. A formal description of the algorithm is given
below.

A Look-Ahead Dynamic Algorithm [6]

Step 1: Solve the static problem (Sect. 4.3) for N slots. Based on the solution, sched-
ule the ads in the first slot. Set η = 1.

Step 2: Observe actual click events for the ads scheduled in slot η .
Step 3: As explained above, calculate the updated values of uik for each ad Ai ∈ A

and each exposure k where Miη < k ≤ (N −Miη). Here, Miη = ∑η
q=1 xiq.

Step 4: Using Eq. (4.4) and the values of uik, calculate the updated values of Tik.
Step 5: Solve the static problem again for the last N −η slots using the updated

values of Tik. Schedule the ads in (η +1)th slot based on the solution of this
problem.

Step 6: If η = N − 1, then terminate; otherwise set η = η + 1 and go to Step 2.

4.5.1 Generation of Hypotheses and Statistical Validation

The dynamic version should outperform the static version because of its information
advantage (pertaining to click events) over the static version. Our goal in this section
is to study the effect of the different parameters on the amount of gain resulting from
this information advantage. The mathematical analysis of the comparison of the
static and dynamic versions encounters two difficulties. First, since the scheduling
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problem is NP-hard, there is no known non-enumerative way to express its solution.
Second, tracking the information advantage of the dynamic version across many
slots is difficult. However, tracking this advantage from one slot to the next is the
crux of the issue.

Based on the above discussion, in [6], the authors propose the following three
hypotheses:

Hypothesis 1 If p < min
i

min
{k:eik>ei(k+1)}

(eik − ei(k+1)), and there are sufficient ads

available so that it is possible to fill all the slots without repeating an ad, then
the expected revenue is the same in the static and dynamic versions.

Hypothesis 2 If the expected click probability from repeating an ad Ai is higher
than that from selecting a new ad (i.e., Ci(k+1) > Cj1, ∀ j �= i,∀k), and there are
sufficient ads available so that it is possible to fill all the slots without repeating
an ad, then the difference in the expected revenue between the dynamic and static
versions increases or remains the same with an increase in ai1.

Hypothesis 3 The difference in the expected revenue between the dynamic and the
static versions increases or remains the same with an increase in p.

In [6], the authors first present the mathematical justification of these hypotheses
based on the analysis of the restricted version of the problem where equal-sized
ads with the same effectiveness level and the same revenue parameter values are
scheduled over two slots. For the general case (i.e., arbitrary ad sizes with different
effectiveness levels, and more than two slots), they conduct experiments with a wide
variety of problem instances [6]. Their experimental results provide support for all
three hypotheses.

4.5.2 A Myopic SSK Heuristic for the Dynamic Version

Obtaining a dynamic schedule requires us to repeatedly solve the static problem.
Since the static problem is strongly NP-hard, there is a need for an efficient heuristic
that can provide an optimal or a near-optimal solution for large instances. Therefore,
in [6], the authors propose a dynamic version of the SSK heuristic, and call it the
myopic algorithm.

The dynamic version of the SSK heuristic exploits the knowledge gleaned from
the user click behavior during a visit [6]. The only difference between this heuristic
and the static version of algorithm SSK (given in Sect. 4.3.1) is in calculation of the
value of mi j at Step 3. Recall that mi j is the expected revenue from assigning ad Ai

to slot j. In the dynamic version, mi j = ai2 + bi2(eik + p′), where k = ∑ j−1
q=1 xiq + 1.

Here, p′ = p if the ad Ai has been clicked in any of the slots preceding slot j, or
p′ = 0 otherwise.

The experimental results in [6] show that the revenue of the myopic algorithm
is within 0.2 % of the revenue of the look-ahead dynamic algorithm. Therefore, we
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can conclude that the myopic algorithm is an effective and efficient alternative to the
look-ahead dynamic algorithm, especially for large instances. Since the dynamic
schedule operates in real-time, the myopic algorithm (which solves very quickly)
should be a strong candidate for use in practice.

4.6 Discussions and Recommendations

We now summarize and discuss the main results, and offer guidelines for solving the
ad-scheduling problem in practice. Here, we address the overall question regarding
the choice of a scheduling method, namely static versus dynamic. The analysis and
computational tests presented in this chapter illustrate that the dynamic approach,
if implemented correctly, should increase revenue to the web site. However, the
dynamic approach depends on our knowledge of the re-click probability p. A natural
question arises: how critical is it to predict the value of p accurately? Clearly, if the
success of the dynamic approach critically depends on an accurate estimation of p,
then its use may be limited by this requirement.

The results of the experiments conducted in [6] show that the revenue changes
only for those values of p that are significantly lower than the correct p value. Also,
the revenue is not affected for any positive error values. In [6], the authors offer the
following explanation: for values of p that are higher than the correct value, if an
ad has been clicked upon in any slot, its click probability in all subsequent expo-
sures becomes relatively higher. Consequently, an overestimation should not affect
the scheduling decision. However, large negative error values (i.e., significantly un-
derestimating the value of p) may reduce the chances of clicked ads being selected
in subsequent slots and may impact the schedule.

In [6], the authors also observe that an error in p value affects the static and
dynamic schedule in a similar fashion. Moreover, the dynamic revenue is always
greater than the static revenue at any error level. Therefore, we conclude that it is
always better to use the dynamic schedule even when we do not have a good estimate
of the value of p. Also, it is better to overestimate rather than underestimate the value
of p.

Although the look-ahead dynamic approach outperforms the static approach,
one practical concern that is relevant is the time needed to execute the dynamic
approach. Note that while the static approach computes the entire schedule in ad-
vance, the look-ahead dynamic approach must recompute an updated schedule after
every slot. When a real-time solution is desired, the computational requirements
of the look-ahead dynamic approach may be excessive. The myopic implementa-
tion of the dynamic approach solves very quickly and provides solutions that almost
match the performance of the look-ahead dynamic approach [6]. The myopic imple-
mentation may have another advantage over the look-ahead version. We discuss this
next. The look-ahead dynamic approach requires the knowledge of N, the planning
horizon. In practice, however, there is no guarantee that a customer will stay for the
entire duration of the horizon. Interestingly, the myopic version benefits when the
customer departs earlier than planned [6].
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To summarize, on the issue of static versus dynamic scheduling, it is recom-
mended to use the dynamic approach. Within dynamic approaches, for practical
reasons (real-time requirements, and uncertain planning horizons), the use of the
myopic implementation is favored [6].
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Chapter 5
Internet Advertising Firms

Abstract In this chapter, we analyze a problem faced by an Internet advertising firm
(Chitika) that operates in the Boston area. Chitika contracts with publishers to place
relevant ads over a specified period on publisher websites. Ad revenue accrues to
the firm and the publisher only if a visitor clicks on an ad (i.e., we are considering
the CPC model). This might imply that all visitors to the publisher’s website be
shown ads. However, this is not the case if the publisher imposes a click-through-
rate constraint on the ad-firm. This performance constraint captures the publisher’s
desire to limit ad clutter on the website and holds the ad-firm responsible for the
publisher’s opportunity cost of showing an ad that does not result in a click. We
present a predictive model of a visitor clicking on a given ad. Using this prediction
of the probability of a click, we present a decision model that uses a threshold to
decide whether or not to show an ad to the visitor. The decision model’s objective is
to maximize the advertising firm’s revenue subject to a click-through-rate constraint.
We present and contrast two competing solutions: (1) a static solution, and (2) a
rolling-horizon solution that re-solves the problem at certain points in the planning
horizon. The static solution is shown to be optimal when accurate information on
the input parameters to the problem is known. However, when the parameters to
the model can only be estimated with some error, the rolling-horizon solution can
perform better than the static solution. When using the rolling-horizon solution, it
becomes important to choose the appropriate re-solving frequency.

5.1 Introduction

Other than the visitor, there are three main entities involved in Internet advertising:
(1) the advertiser (whose advertisement is displayed), (2) the publisher (that pro-
vides the real-estate where the advertisement is displayed), and, (3) the advertising
firm (usually referred to as “ad-firm”). The ad-firm’s business is one of monetiz-
ing the traffic for publishers (website owners, mobile application providers, etc.).

© The Authors 2016
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An ad-firm gathers data on visitor behavior from its large publisher network and
uses this knowledge to target advertisements (hereafter also referred to as “ads”)
to visitors on a variety of websites. Such firms collect ads from advertisers (or ad
aggregators) and display these ads to targeted visitors on different publisher sites.

As discussed earlier, despite the obvious attractiveness (to advertisers) of a
performance-based payment scheme (such as a CPC model), at the end, it is the
publisher that must bear the opportunity cost of an ad display that does not result in
a click. To address this incentive misalignment, an emerging trend in the ad indus-
try is to require the ad-firm to manage ad display at a publisher’s site such that an
efficiency (or a click-through-rate) constraint is respected. Typically, the publisher
and the ad-firm enter into a contract. At the end of each month, the ad-firm pays a
publisher a (contractually agreed upon) fraction of the revenue accrued from clicks
that were generated by the ads displayed on the publisher’s site. In addition, the pub-
lisher enforces a click-through-rate constraint on the ad-firm, which requires that the
monthly average click-through-rate (over the contract period that could be several
months) is above a specified value. Such a constraint ensures that the publisher’s
space for ads on its website is used efficiently. An impression (an ad placed) that did
not result in a click is an indication of a wasted opportunity for the publisher. The
publisher could have either placed more relevant ads, or used the space for addi-
tional content. The click-through-rate constraint essentially balances two opposing
goals of the publisher: (1) generate as much revenue as possible from ads, and (2)
keep the website content interesting so that visitors continue to patronize the web-
site. If a publisher becomes too greedy and shows an excessive number of ads, this
could come at the expense of the content; the main driver of traffic to the website.
In this case, the publisher would likely suffer in the long run. On the other hand, if a
visitor clicks on an ad, it often indicates that she likes it. In such cases, the ad could
be considered to be almost indistinguishable from content.

Earlier chapters have focused on solving the problem of choosing the best ad
to a given visitor or a given slot. The implicit assumption in most extant studies
on campaign management is that ads are shown to every arriving visitor. Given
the emphasis on efficiency (namely, the click-through-rate constraint), this chapter
focuses on deciding when not to show an ad to a visitor. This filtering of ads must
occur in a manner to balance the opposing goals of revenue and efficiency. If too
many ads are filtered, the efficiency constraint would be met (or even exceeded),
but opportunities to generate clicks would likely be lost. On the other hand, if not
enough filtering is done, more clicks would likely be generated at the cost of not
meeting the target efficiency constraint.

5.2 Overview of Solution

The ad-firm usually manages multiple publishers. However, the problem for each
publisher can be considered a separate problem as long as there is no constraint
from the advertisers that links two publishers. In the problem setting considered in
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Fig. 5.1 Overall solution process

this paper, the advertisers do not impose any such constraint. Therefore, we analyze
the problem for each publisher separately.

Essentially, any solution to the user profiling problem can only address the prob-
lem by some variant of an ad filter: using this filter, only some users are selected
to be shown ads. In past studies, this filter is also referred to as targeting [1, 2].
The actionable information associated with a user includes the available details of
the impression. Based on these details, a decision needs to be made to show or not
to show an ad. One convenient way to use the impression details is to map them
to a click-probability. That is, given these details, what is the probability of a click
for the ad associated with the impression? Next, for this click-probability, should
we show the ad? The above discussion suggests the use of a threshold policy. This
policy can be stated as follows. If the click-probability of an impression is greater
than a threshold, then show the ad, else do not show it. We later show that such a
threshold policy is optimal. Figure 5.1 illustrates the overall solution process. The
figure depicts that the solution to the user profiling problem consists of two parts:
(1) a step involving data analytics (to predict the click-probability, p), and (2) a
follow-up step involving decision analytics (to choose the threshold, α).

With regard to the problem of choosing the correct threshold, the natural question
arises: should the threshold be held constant over the planning horizon, or should
the value of the threshold be varied depending on the current state of the problem,
i.e., the impressions and clicks that have been observed so far and the time left in the
planning horizon (typically, this horizon is 1 month)? Put differently, should the dis-
play criterion (the threshold) be relaxed or tightened, depending on how much time
is left in the planning horizon and whether the current click-through-rate is above
or below the target level that has to be achieved by month end (on average). If we
are ahead (i.e., the current click-through-rate is above the target value), then should
the threshold be lowered (so more ads can be shown) to potentially earn more ad
revenue? On the other hand, if we are behind (i.e., the current click-through-rate is
below the target value), then should the threshold be increased (so that ads are only



44 5 Internet Advertising Firms

shown to more interested visitors), in an attempt to meet the click-through-rate con-
straint? Increasing the threshold sacrifices ad revenue, but we may need to take this
action to achieve the target click-through-rate at the end of the planning horizon.

5.3 Model and Solution

5.3.1 Description of the Data Analytic Model

Here we describe how the probability of a click and the distribution of these proba-
bilities in the visitor population for a publisher is estimated.

5.3.1.1 Predicting the Probability of a Click

The prediction method uses a vector of observations collected from the visitor’s
cookie as well as meta data available from the http header [3]. These observa-
tions include variables such as the visitor’s search string, Internet browser, operat-
ing system, previous click data, and so on. One of the major strengths of an ad-firm
lies in its ability to develop a large publisher network. This enables the firm to have
repeated interactions with visitors across different websites, thus enabling the firm
to develop a profile of each visitor. The Logit model uses this profile information to-
gether with other information about the publisher’s website to estimate the chances
that a visitor will click on a given ad. This model can be expressed as a function
p = L(X), where p is the estimated click-probability, and X is the vector of vari-
ables used for the prediction. The model uses over 50 different variables; some of
the important ones are given in [4, 5].

5.3.1.2 The Click-Probability Distribution

Using the above Logit model, the value of p for any given visitor to the publisher’s
site can be estimated. We can estimate the click-probability distribution for a given
publisher using a sample of these probabilities. The click-probability distribution
provides us with vital information. As we show later, the optimal policy requires
us to show an ad to a visitor only if the click-probability (p) meets or exceeds a
given threshold value (say, α). That is, show the ad only if p ≥ α , where 0 ≤ α ≤ 1.
For any given threshold, the click-probability distribution allows us to estimate the
probability that an ad will be shown to a randomly selected visitor and the condi-
tional probability that a visitor will click on an ad given that the click-probability
exceeds the threshold. Conceptually, the probability that an ad will be shown is the
upper tail of the distribution (i.e., the area under the density curve above α), and the
click-probability that a visitor will click on an ad is the conditional expectation of
the upper tail of the distribution.

http
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Let f (p) denote the probability density of p and β (α) denote the probability that
an ad is shown to a visitor for a given threshold α . Then, β (α) can be calculated as

β (α) =

∫ 1

α
f (p)d p. (5.1)

It is clear from the expression for β (α) that the probability of showing an impression
decreases with the threshold, α . Let δ (α) denote the conditional probability that a
visitor will click on an ad, given that the click-probability exceeds the threshold α .
This probability is given by

δ (α) =

∫ 1
α p f (p)d p

β (α)
. (5.2)

Now, in the following proposition, we present an important property of δ (α). Proofs
for all the propositions in this chapter are available in [5].

Proposition 5.1. The conditional probability of a click (i.e., δ (α)) increases with

α , i.e., dδ (α)
dα ≥ 0 [5].

The above result highlights the trade-off between the revenue and the click-
through-rate. As α increases, the probability of showing an impression (i.e., β (α))
decreases. Therefore, the expected number of clicks (hence, the revenue of the
ad-firm) also decreases with α . However, as shown in Proposition 5.1, the con-
ditional probability of a click increases with α . Hence, as α increases, the click-
through-rate increases.

5.3.2 Description of the Decision Analytic Model

Table 5.1 summarizes the main notation in the decision analytic model. We divide
the planning horizon into K periods where each period corresponds to an arrival of
a visitor to the publisher’s website. For each arrival, we need to decide whether or
not to show an ad. As discussed earlier, the objective is to maximize the expected
number of clicks subject to the following click-through-rate constraint:

E

[
r̃
m̃

]
≥ η . (5.3)

This constraint can be difficult to calculate. However, it is possible to approximate
the constraint very accurately using the ratio of expectations, rather than finding the
expectation of the ratio. We present this result below.

Proposition 5.2. As the number of arrivals (i.e., K) approaches ∞, E
[

r̃
m̃

]
approaches E[r̃]

E[m̃]
[5].
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Symbol Definition

K Number of periods in the planning horizon
m̃ Random variable for the number of impressions in the planning horizon
r̃ Random variable for the number of clicks in the planning horizon
p Click-probability for a visitor

f (p) Density function for the click-probability
α Click-probability Threshold (Decision Variable)

β (α) Probability of impression for threshold α
δ (α) Conditional probability of click for threshold α given that the ad is shown

η Publisher’s click-through-rate constraint

Table 5.1 Model parameters and variables

We therefore consider the revised optimization problem with the left-side of Con-
straint (5.3) suitably replaced. The revised constraint can be calculated as follows.
Let I[x, i, j, l] denote the 1−0 decision variable to show or not an ad to the ith arrival
with characteristics X = x, where j and l represent the number of impressions and
the number of clicks, respectively, before the ith arrival, i = 1,2, . . . ,K. Further, P[x]
represents the click-probability for a visitor with characteristics x. Then, we have

E [r̃] = E

[
K

∑
i=1

I[x, i, j, l]P[x]

]
, and

E [m̃] = E

[
K

∑
i=1

I[x, i, j, l]

]
.

The optimization problem can now be formally expressed as
Problem P:

max
I(.)

E

[
K

∑
i=1

I[x, i, j, l]P[x]

]
,

s.t.

E

[
K

∑
i=1

I[x, i, j, l]P[x]

]
−ηE

[
K

∑
i=1

I[x, i, j, l]

]
≥ 0.

The Lagrange Dual Function for this problem can be written as

L(ψ) = max
I(.)

{
E

[
K

∑
i=1

I[x, i, j, l]P[x]

]

+ψ

(
E

[
K

∑
i=1

I[x, i, j, l]P[x]

]
−ηE

[
K

∑
i=1

I[x, i, j, l]

])}
, (5.4)

where ψ is the Lagrange multiplier. This dual function can be rewritten as

max
I(.)

E

[
K

∑
i=1

I[x, i, j, l](P[x]+ψ (P[x]−η))

]
.
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Thus, for each arrival, an ad should be displayed iff

P[x]≥ ψη
1+ψ

.

Hence, the optimal policy is a threshold policy (i.e., α = ψη
1+ψ ), and it is static in the

sense that the decision to display an ad does not depend on the state < i, j, l >.
An upper bound for Problem P is

min
ψ≥0

L(ψ).

When ψ = 0, the first term of the dual function in Eq. (5.4) is maximum and the
second term is 0. If the constraint in Problem P is satisfied at ψ = 0, then it is optimal
to set ψ = 0. This is because any increase in ψ will make it strictly positive and
the constraint will also be strictly greater than zero, thus violating complementary
slackness. If the constraint is not satisfied at ψ = 0, then we should increase the value
of ψ to a value (say ψ̄) where the constraint is just satisfied at equality. Any further
increase in ψ will violate complementary slackness. Thus, the optimal solution is
either ψ = 0 (if the constraint is satisfied at this value of ψ) or the smallest value of
ψ that satisfies the constraint at equality. The constraint at equality can be written as

E

[
K

∑
i=1

I[x, i, j, l] (P[x]−η)

]
= 0.

One possible solution to this equation is I[x, i, j, l] = 0 ∀i. In this solution, the objec-
tive function value is clearly zero. Another possible solution is obtained by setting

P[x] = η , where P[x] = δ
(

ψη
1+ψ

)
= δ (α). In this solution, the objective function is

greater than or equal to zero. Hence, this solution is optimal.
The constraint is satisfied at ψ = 0 only when δ (0) ≥ η . Clearly, δ (0) = E[p].

Based on the above discussion, we now present the optimal solution in the following
proposition.

Proposition 5.3. The optimal solution to Problem P is: [5]

(a) α = 0; if E[p]≥ η .
(b) The smallest value of α that satisfies δ (α) = η; otherwise.

Observe that the above proposition states that the optimal policy is static. That
is, there is no need to use different threshold values for different states.

5.4 Impact of Inaccurate Problem Parameters

We now examine the impact of inaccurate problem parameters on the solution
presented in Proposition 5.3. With inaccurate parameters, let us assume that the
true functions β and δ are wrongly estimated as β̂ and δ̂ respectively. To address
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inaccurate parameters, we propose a rolling-horizon approach. In a rolling-horizon
approach, Problem P (presented in Sect. 5.3.2) is re-solved at certain points during
the planning horizon. Formally, after s arrivals (or (K − s) remaining arrivals), s ∈
(1,2, . . . ,K − 1), given that the impressions and the clicks that have occurred are ms

and rs, respectively, the following optimization problem is solved

max
I(.)

E

[
K

∑
i=s+1

I[x, i, j, l]P[x]

]
,

s.t.

E

[
K

∑
i=s+1

I[x, i, j, l]P[x]

]
−ηE

[
K

∑
i=s+1

I[x, i, j, l]

]
≥ msη − rs.

Then, as shown earlier, the threshold that is used for the (s+1)th arrival is given by
the solution of

rs +(K− s)β̂ (α)δ̂ (α)

ms +(K − s)β̂(α)
= η .

The rolling-horizon approach can be expected to cope well in presence of
inaccurate model parameters because it uses actual state information to update the
threshold in each period. We explain the basic idea behind varying the thresholds as
follows. Imagine that we are at the beginning of the planning horizon, i.e., the first
period of the planning horizon. We set the threshold at the smallest level such that
the target click-through-rate level should just be achieved at the end of the month
(on average). We keep this threshold value constant for the current period. At the
end of the period, we collect data on the number of impressions and the number of
clicks. The current click-through-rate value is the number of clicks divided by the
number of impressions. If this value is better than the required click-through-rate
at the end of the month, we can afford to lower the threshold and show more ads.
Conversely, if the current click-through-rate value is below the threshold, we must
set the next period’s threshold higher. At the beginning of each period, we set the
threshold to a value that, if kept constant for the rest of the planning horizon, would
just achieve, on an expected basis, the revised target threshold for the rest of the
planning horizon.

In Fig. 5.2, we consider a simple example to illustrate how the rolling-horizon
approach works. Imagine that there are 3 days in the planning horizon and that the
value of the threshold (α) is updated on a daily basis. Let the click-through-rate con-
straint be 0.01. At the beginning of the first day, we find the lowest value of α that
(if held constant) would just achieve the required click-through-rate. Suppose this
value is α1. We set the threshold to α1 for the first day. At the end of the first day, we
observe the number of clicks (say r1) and the number of impressions (say m1). We
next use these values (r1 and m1) to find the lowest value of α that, if held constant
for the remaining 2 days, would just achieve the required click-through-rate of 0.01.
Suppose this value is α2. Intuitively, this value should be higher than α1 if the click-
through-rate in the first day was below the required target (0.01), otherwise it should
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Day 1 Day 2 Day 3 

Impressions m0 m1 m2

Clicks r0 r1 r2

Decision Variables a1 a2 a3

Fig. 5.2 The mechanics of the rolling-horizon approach

be lower. After considering the fact that we are behind (ahead) on the constraint, we
set the value of α to α2 for the second day. Similarly, at the beginning of the third
day, we use the actual clicks and impressions that have occurred so far to calculate
the lowest value of α needed to achieve the click-through-rate constraint (say, α3).
For this problem, the static approach would have used a constant threshold value
(α1) for the entire duration, that is, the threshold value used by the rolling-horizon
approach in the first period.

The rolling-horizon approach has the advantage that it can increase or reduce
the threshold to incorporate state information. In any particular state, we may be
better or worse than what we need to be with respect to the target click-through-
rate constraint. If we are doing better, we can afford to use a lower value of α.
Conversely, if real-world feedback is such that we are behind on the constraint, we
need to tighten (increase) the threshold to catch up.

5.5 Experimental Results

The primary goal of the numerical experiments in this section is to provide answers
to two questions that are of practical interest: (1) What update frequency should
be used in the rolling-horizon approach? (2) In the presence of inaccurate prob-
lem parameters (or noise), which method (static or rolling-horizon) should be used?
The first question essentially boils down to asking: within practical constraints,
should the most frequent update frequency be used? The danger of updating too
frequently (more importantly, if updating is based on the outcomes of a small num-
ber of arrivals) is that the threshold could be changed based upon a unlikely random
draw (of impressions and clicks). Thus, in an attempt to cope with noise, an exces-
sively frequent update policy could lead to poor decisions, and hurt overall perfor-
mance. The second question may be especially relevant when we expect there to be
a moderate or small amount of noise. In such situations, there is a tension between
the benefits of using an optimal approach (i.e., static) versus the virtues of using a
sub-optimal one that is able to cope with noise.

We describe the findings of experiments corresponding to the two questions dis-
cussed above: how to choose update frequency, and which method to use when
there is noise. To study noise, we consider the use of an inaccurate shape param-
eter corresponding to the click probability distribution. The factors varied are the
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click-through-rate constraint (η), the wrong shape parameter (k), and the update
frequency (μ). The correct shape parameter is denoted by k′ and the scale parame-
ter is denoted by q. Therefore, the expected value of the click probability p is k′q,
i.e., E[p] = k′q. Before discussing the details of experiments, we present the follow-
ing analytical result regarding the performance of the static approach in presence of
wrong shape parameter.

Proposition 5.4. In presence of the wrong shape parameter, the performance of the
static approach is described as follows: [5]

(a) The static approach provides an optimal solution when either (i) η ≤ min
[k′q,kq], or (ii) k = k′.

(b) The static approach provides a sub-optimal solution when either (i) kq < η ≤
k′q, or (ii) kq < k′q ≤ η .

(c) The static approach provides an infeasible solution when either (i) k′q<η ≤ kq,
or (ii) k′q < kq ≤ η .

In [5], the authors examine all the conditions presented in this proposition exper-
imentally. Clearly, the rolling-horizon approach may perform better than the static
approach for the conditions presented in parts (b) and (c) of the proposition.

5.5.1 Choice of Update Frequency

For some publishers that have relatively low traffic, the rolling-horizon could suf-
fer from having to update the threshold after a relatively small sample of arrivals
(impressions, clicks). These updates may not be as reliable as the ones that were
made with a large sample of impressions and clicks. Because of the inherent instabil-
ity of inferences drawn from small samples, the rolling-horizon approach may some-
times be led astray and its performance could suffer vis-a-vis the static approach
that does not rely on actual events to choose the threshold. It is here that we could
expect to observe the malicious side of frequent updating. These speculations are
borne out in our experiments that are discussed below.

Let us consider a relatively extreme case of a publisher with approximately 10
arrivals per period (= λ ). We find that, when η = 0.005 or 0.0075, both the static and
the rolling-horizon methods show ads to all the visitors. Hence, at these levels of η ,
there is no benefit of using the rolling-horizon approach. For all other values of η ,
the static approach performs better than the rolling-horizon approach. Further, the
solution of rolling-horizon approach does not even meet the click-through-rate con-
straint as the update frequency increases. Thus, to summarize, the rolling-horizon
approach indeed suffers when the update decisions are based on relatively small
samples.

To avoid this problem with the rolling-horizon approach, we use an update period
that ensures that the number of arrivals is large enough such that the update decision
is not based on an unlikely draw of random events. Let the number of arrivals in
one period be λ . We need to find a threshold (λ̂ ) such that it is safe to update every
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period if λ > λ̂ . Further, let α be the threshold at the beginning of a given period.
The update decision at the end of the period depends on the number of impressions
and clicks in that period, as well as the total clicks and impressions observed until
the beginning of that period.

Recall that the new value of the threshold at the end of a period is calculated
using

R+ r̃+(K− s)β̂ (α)δ̂ (α)

M+ m̃+(K − s)β̂(α)
= η ,

where r̃ and m̃ are the number of clicks and impressions observed in the current
period and R and M are the total clicks and impressions observed until the beginning
of the period. The randomness in the quantities r̃ and m̃ is what affects the quality
of the update decision. If these quantities are close to their mean values, then the
update decision will likely be of good quality. However, if there is large variation
in these quantities, then the update decision can be poor and would likely hurt the
performance of the rolling-horizon approach.

From the above equation, it is clear that the distribution of the quantity (ηm̃− r̃)
is of key interest. The mean number of impressions is E[m̃] = λ β (α) and the mean
number of clicks is E[r̃] = λ β (α)δ (α). Using Wald’s theorem for variance, it can be
shown that the variance of the number of impressions is V[m̃] = λ β (α)(1−β (α))
and the variance of the number of clicks is V[r̃] = λ β (α)δ (α)(1 − β (α)δ (α)),
where the functions β and δ are defined in Eqs. (5.1) and (5.2). The variance of
the quantity (ηm̃− r̃) is given by η2

V[m̃] +V[r̃]− 2COV[ηm̃, r̃]. Further, we can
approximate (ηm̃− r̃) to be Normally distributed with mean μ = ηE[m̃]−E[r̃] and
variance σ2 = η2

V[m̃]+V[r̃]− 2COV[ηm̃, r̃].
We have, COV[m̃, r̃] = E[m̃r̃]−E[m̃]E[r̃]. Also,

E[m̃r̃] =
λ

∑
m=0

m

∑
r=0

mrP[r|m]P[m]

=
λ

∑
m=0

mP[m]
m

∑
r=0

rP[r|m]

=
λ

∑
m=0

mP[m]
m

∑
r=0

r
m!

(m− r)!(r!)
δ (α)r(1− δ (α))m−r

=
λ

∑
m=0

mP[m] ·mδ (α)

= δ (α)
λ

∑
m=0

m2
P[m]

= δ (α)(λ β (α)(1−β (α))+ (λ β (α))2).

Thus, COV[m̃, r̃] = λ β (α)δ (α)(1−β (α)).
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Using the above expression, the variance of the quantity (ηm̃− r̃) is

σ2 = λ β (α)
(
η2(1−β (α))− 2ηδ (α)(1−β (α))+ δ (α)(1−β (α)δ (α))

)
.

Hence, in order to ensure that any random draw of the quantity ηm̃− r̃ is relatively
stable, we can derive a minimum sample size that ensures that the quantity stays
within an error of χ around its mean with a probability of 100(1−φ) percent. Using
standard procedures for constructing confidence intervals, the lower bound on the
number of arrivals in each period (i.e., λ̂ ) can be calculated as follows:

λ̂ =
Z2

1−φ/2

[
η2(1−β (α))+ δ (α)(1−β (α)δ (α))− 2ηδ (α)(1−β (α))

]
β (α)χ2(η − δ (α))2 .

We use the above expression for the minimum number of arrivals before which
an update can be safely performed. When δ (α) = η , the above expression is not
valid. This condition usually satisfies only in the first period. After the first period,
because of randomness, δ (α) is usually not equal to η . When δ (α) = η , since the
mean of the random quantity is zero, we use the notion of an absolute error (e) and
calculate the threshold using

1
η2(1−β (α))+ δ (α)(1−β (α)δ (α))− 2ηδ (α)(1−β (α))

(
e2

β (α)Z2
1−φ/2

)
.

Below the threshold, the update could be based on an unlikely draw of events and
hurt performance. For example, when η = 0.0175,α = 0,χ = φ = 0.05, k′ = 2.25,

and q = 0.005, λ̂ = (1.96)2×2.25×0.005[1−(2.25×0.005)]
(0.05)2[0.0175−(2.25×0.005)]2

= 437,573, or 0.5 million (ap-

proximately). Thus, for a publisher with the above characteristics, and a traffic of
about 100,000 hits per day, a daily update policy is not appropriate. That is, we need
to wait for about 5 days to get a reasonable sample size to perform an update. To
provide a sense for the above traffic volumes, we observe that at Chitika, enterprise
level publishers have a traffic in excess of 1 million hits per day. Many publishers,
however, are in the range of 50,000–100,000 hits per day. There is also a long tail;
a significant number of publishers have a daily traffic of about 5000 hits per day.

We will refer to a publisher as a high-volume publisher if the total number of
arrivals per month exceeds the update threshold for that publisher (λ̂ ). Note that
we need to calculate the threshold for all possible values of α ∈ [0,1] and use the
maximum threshold value across these values of α . If the monthly traffic is not
sufficient to warrant at least one update, we will refer to such a publisher as a low-
volume one.
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Fig. 5.3 Final recommendations

5.5.2 Final Recommendations

Based on the experimental results in [5], the final recommendations are as follows.
For low-volume publishers, the static approach is recommended to avoid the dan-
ger of updating based on small samples. Also, when η is low, the static approach
and the rolling-horizon approach have similar performance for any level of error.
Here, it may be better to use the static approach to avoid the overhead of imple-
menting an approach that attempts to update the threshold, but ends up not needing
to since the value of η is low. For high-volume publishers and high levels of η ,
the rolling-horizon approach outperforms the static approach for most error levels.
In the case of overestimation errors, neither approach meets the click-through-rate
constraint but the rolling-horizon approach comes closer to meeting this constraint.
Since overestimation errors often lead to infeasible solutions, it is better to be con-
servative while estimating the parameters of the click-probability distribution for a
new publisher (Fig. 5.3).
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Chapter 6
Mobile Advertising

Abstract In this chapter, we present the problem of the mobile business unit of a
web advertising firm, Chitika. In mobile advertising, the delivery of ads is achieved
with the joint efforts of three distinct parties: the App aggregator (supply-side),
the Ad aggregator (demand-side), and the Ad network (an intermediary between
the supply and demand sides). We study a problem of optimal ad delivery from
the perspective of the Ad network. An App aggregator generates a request that
must be assigned to a particular Ad aggregator that provides an Ad for the request.
Because of the presence of supply-side and demand-side constraints, a constrained
allocation problem must be solved to maximize the profit earned by the Ad net-
work. This problem is formulated and solved using a standard solver (CPLEX). The
solution is examined to provide specific guidance to the Ad network to manage its
supply and demand side contracts to increase profit.

6.1 Introduction

The context of this chapter is mobile advertising. In this domain, the most popular
vehicle for displaying ads is a mobile application (or app for short). When a mobile
phone user clicks on an app (for example, to display the current weather), an ad is
inserted in the response (often at the bottom of the screen of the phone device). An
interesting feature of the mobile ad industry is the presence of aggregators in both
the supply and demand sides of the market. Supply side aggregators (or app aggre-
gators) integrate with hundreds of app owners (analogous to publishers). Examples
of app aggregators are Jiwire, Tweetcaster, etc. These app aggregators connect a
variety of apps to an ad network for obtaining ads. On the demand-side, the ad
network (e.g., Chitika, Rocketfuel, etc.) calls an ad aggregator for supplying ads.
Examples of ad aggregators are Super Pages, Ad Marvel, etc.

© The Authors 2016
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in Operations Management, DOI 10.1007/978-3-319-18645-0 6
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To provide a concrete example, consider a mobile I-phone user who taps on the
Yelp app on her phone device. Let the app aggregator for Yelp be Click-to-Call.
Suppose that Click-to-Call works with the ad network Chitika. Upon receiving the
ad request from Click-to-Call, Chitika forwards the request to Super Pages, an ad
aggregator that works with a large number of merchants (who are often service
providers, such as dentists, plumbers, restaurants, etc.). Chitika’s call to Super Pages
returns an ad for a restaurant that is in the vicinity of end user of the phone device.
If the user taps on the ad, it could, for example, connect a call to the restaurant,
presumably for making a reservation.

In this chapter, we consider a demand-supply optimization problem faced by
an ad network, such as Chitika. Chitika has different contracts with supply-side
partners that allow it access to the supply side of the market. For example, in a CPM
contract, Chitika pays the app aggregator for each ad request that it accepts from the
supply partner. On the other hand, in a revenue sharing contract, Chitika shares a part
of the revenue it earns from the ad aggregator when there is a qualified action (e.g.,
a click, a call, etc.) on the ad. On the demand-side, Chitika earns some revenue from
the ad aggregator if there is a qualified action on an ad. Upon receiving a request
from an app aggregator, Chitika must choose a particular ad aggregator to call for
an ad. If this call fails (i.e., the ad aggregator fails to provide an ad), Chitika can
contact another ad aggregator for an ad and so on. However, there is a time window
for which an ad can be obtained: in practice, no more than about 3 calls can be
made for obtaining an ad. Beyond 3 calls, the ad display would be delayed beyond
an acceptable amount. In such cases (no ad is obtained by Chitika), the opportunity
to display an ad is lost. This process is illustrated in Fig. 6.1.

While attempting to maximize profit, Chitika must respect certain supply and
demand side constraints. An important supply side constraint that Chitika must
respect is a coverage constraint. Coverage is defined as the proportion of ad requests

Fig. 6.1 Illustration of the process
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from a supplier that are satisfied by an ad. Suppliers do not like it if the coverage
provided by Chitika falls below a specified amount, and are likely to withdraw their
supply if Chitika fails to deliver at or above a specified coverage threshold. On the
demand side, ad aggregators place a limit on the number of calls (usually totaled for
a day) made to them for ads. Because ad aggregators often work with multiple ad
networks, this constraint reflects an ad aggregator’s way of throttling the share of
demand that Chitika can access from them.

The core problem that Chitika must solve is a matching problem. When it
receives a request from a supply partner, it must judiciously choose an appropri-
ate demand partner to match the request. The demand partner should be chosen
based on a variety of factors. One consideration is the probability that the ad aggre-
gator will return an ad corresponding to the request. Another consideration is the
revenue that Chitika will earn if there is a click. Also, the probability that there is
a click depends on the demand-supply pair. The above mentioned considerations
must be balanced in the presence of the call limits imposed on Chitika by demand
side partners.

The demand-supply matching problem is formulated as a Mixed Integer Pro-
gram and solved using a standard solver (CPLEX) [3]. While the solution to the
optimization problem is one of the goals of Mookerjee et al. [3], the solution also
provides some guidance on solving a higher-level problem of managing contracts
with Chitika’s demand and supply partners. One example is as follows. For certain
supply partners, Chitika pays an amount that is the higher of a revenue share and a
CPM contract. To illustrate this, consider that the cost of an impression from a par-
ticular supply partner is $m per 1000 impressions. Further, let us assume a revenue
share of 60 % with this partner. Then, the amount Chitika pays the supply partner
is the higher of $mn and $0.6rc, where n is the number of impressions (in thou-
sands), r is the number of clicks, and c is the average revenue earned by Chitika per
click. Using the solution of the optimization problem, it is possible to recommend
to Chitika to negotiate a better contract with a particular supply or demand partner.
In the example above, we could find out that Chitika would earn a higher profit if it
(for example) offers a higher revenue share (70 % instead of 60 %) but replaces the
hybrid contract with a pure revenue sharing contract.

There are commercial interests that drive both the supply and demand sides of the
mobile advertising market. For an ad network such as Chitika, the problem in this
study can be considered as a generalization of the multiple, fractional bin packing
problem, which is an NP-hard problem [2]. The total number of requests made by
an app aggregator needs to be allocated across several ad aggregators. Although a
particular request can result in multiple calls (typically, not more than 3), the number
of ads returned cannot be greater than the number of requests. Drawing an analogy
with multiple fractional bin packing, this aspect of the problem corresponds to the
possibility an item being fractionally distributed across multiple bins. However, in
our problem, a request may not result in an ad, and there may be more calls than
requests. Despite the complex nature of the optimization problem, we can solve the
instances of realistic sizes using solvers as CPLEX. However, we also discuss some
special cases of the problem that can be solved either optimally using a polynomial
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time algorithm or approximately using a good heuristic. Based on the results of
this model, we also discuss how supply and demand side contracts can be better
configured to improve Chitika’s revenue.

6.2 Optimization Model

As discussed earlier, a mobile app is registered with an app aggregator. Similarly
advertisers contract with the ad aggregators and make their ads available to them.
When an end user clicks on an app on her mobile device, a request for an ad is
sent by the app aggregator to Chitika. Chitika then forwards this request to the ad
aggregator who (likely) responds with an ad. Chitika then sends the ad to the mobile
device. The information included in ad request are: type of phone, time of day, day
of week, zip code, app generating the request, etc. The possible reasons for an ad
aggregator not responding with any ad are: contracted advertisers are out of budget,
no appropriate ad is available, there is technical time-out, etc. The payment system
works as follows: Chitika pays the app aggregator (i.e., the supplier) based on any
one of the following three schemes: (a) by impression, (b) by click, or (c) by best
(for the supplier) of the two. On the other hand, Chitika is paid by the ad aggregator
(i.e., the demand side) using the cost-per-click model.

The constraint imposed by an app aggregator on Chitika (referred to as supplier
constraint) is as follows: Each app aggregator has a coverage constraint such that

Number of impressions
Number of ad requests

≥Coverage.

On the other hand, the constraints imposed by an ad aggregator on Chitika (referred
to as demand side constraints) are as follows: (a) There is an upper bound on the
number of calls that an ad aggregator will accept per day. (b) There is an upper
bound on the number of impressions that an ad aggregator can provide per day.
(c) There is an upper bound on the number of clicks that an ad aggregator wants per
day. (d) There is an upper bound on the amount paid by an ad aggregator per day.

The following information is available to Chitika: (a) For each demand partner,
P[supplying an ad to Chitika], (b) P[impression] for each demand/supplier combina-
tion, (c) P[click] for each demand/supplier combination, and (d) Earnings/Click (for
Chitika) for each demand/supplier combination. Currently, Chitika calls its demand
partners one-by-one based on some static rankings. Problem challenge arises from
the fact that though the coverage constraint is provided for the whole day, demand
side coverage as well as the request rate varies hourly.
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6.2.1 Notations

We begin with presenting the notations used in the model.
Parameters:

T Number of time slots (hours) in a planning horizon (a day).
n Number of ad aggregators. n ≈ 15.
m Number of app aggregators requesting ads. m ≈ 20.
Rit Expected number of ad-requests from app aggregator i at time slot t.
pi jt Probability that an ad is delivered to app aggregator i if it is allocated to

ad aggregator j at time slot t.
qi jt Probability that an ad is clicked by an user associated with app aggregator

i when it is delivered by ad aggregator j at time slot t.
ri j Amount of revenue made by the company (Chitika) if the ad is clicked by

an user associated with app aggregator i when it is delivered by ad aggrega-
tor j.

D j Upper bound on the number of requests (calls) made to ad aggregator j
during the planning horizon.

I j Upper bound on the number of impressions provided (to the app
aggregators) from ad aggregator j during the planning horizon.

Cj Upper bound on the number of clicks made (by the users) for ads from ad
aggregator j during the planning horizon.

Pj Upper bound on the amount paid by ad aggregator j during the planning
horizon.

si Lower bound on the fraction of ad-requests from
app aggregator i resulting into impression during the planning horizon.

Π Profit of the company (Chitika).
A1 A set of app aggregators paid (by Chitika) per impression.
A2 A set of app aggregators paid (by Chitika) per click.
A3 A set of app aggregators paid (by Chitika) for better (for the app aggregator)

of the above two.
di Payment per impression for app aggregator i ∈ A1 ∪A3.
ci Payment per click for app aggregator i ∈ A2 ∪A3.

Variables:

Zi jt Planned number of requests (calls) to ad aggregator j to fulfill requests from
app aggregator i at time slot t.

Xi jt Expected number of impressions to app aggregator i from ad aggregator j at
time slot t, where Xi jt = pi jtZi jt .

Ei Total payment (from Chitika) to app aggregator i ∈ A3 over the planning hori-
zon.
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6.2.2 Formulation

We now present the formulation for the optimization problem.

MIP(0): MaxΠ = (6.1)
T

∑
t=1

n

∑
j=1

m

∑
i=1

ri jqi jtXi jt −
T

∑
t=1

n

∑
j=1

∑
i∈A1

diXi jt −
T

∑
t=1

n

∑
j=1

∑
i∈A2

ciqi jtXi jt − ∑
i∈A3

Ei

n

∑
j=1

Xi jt ≤ Rit , i = 1,2, . . . ,m; t = 1,2, . . . ,T (6.2)

T

∑
t=1

n

∑
j=1

Xi jt ≥ si

T

∑
t=1

Rit , i = 1,2, . . . ,m (6.3)

Xi jt = pi jtZi jt , i = 1,2, . . . ,m; j = 1,2, . . . ,n;

t = k,k+ 1, . . . ,T (6.4)
T

∑
t=1

m

∑
i=1

Zi jt ≤ D j, j = 1,2, . . . ,n (6.5)

T

∑
t=1

m

∑
i=1

pi jtZi jt ≤ I j, j = 1,2, . . . ,n (6.6)

T

∑
t=1

m

∑
i=1

qi jt pi jtZi jt ≤ Cj, j = 1,2, . . . ,n (6.7)

T

∑
t=1

m

∑
i=1

qi jt pi jt ri jZi jt ≤ Pj, j = 1,2, . . . ,n (6.8)

Ei ≥
T

∑
t=1

n

∑
j=1

diXi jt , i ∈ A3 (6.9)

Ei ≥
T

∑
t=1

n

∑
j=1

ciqi jtXi jt , i ∈ A3 (6.10)

Xi jt ≥ 0,Ei ≥ 0,Zi jt ∈ Z
+, i = 1,2, . . . ,m; j = 1,2, . . . ,n; t = 1,2, . . . ,T (6.11)

In this formulation, Constraint set (6.2) suggests that the total number of ad
impressions to app aggregator i at time slot t should not be more than the specified
value Rit . Next, the app aggregator i requires that a minimum faction, si (0< si < 1),
of total number of requests from i results into impressions during the planning hori-
zon. This is expressed in Constraint set (6.3). Constraint set (6.4) suggests that in
order to obtain Xi jt number of ad impressions to app aggregator i from ad aggre-
gator j at time slot t, Zi jt number of ad requests (calls) needs to be sent to j from
i. Constraint set (6.5) imposes an upper bound D j on the number of requests made
to ad aggregator j during the planning horizon. Constraint set (6.6) imposes an up-
per bound I j on the number of impressions provided (to the app aggregators) from
ad aggregator j during the planning horizon. Next, Constraint set (6.7) imposes an
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upper bound Cj on the number of clicks made for ads provided by ad aggregator j
during the planning horizon. Constraint set (6.8) ensures that the maximum amount
paid by ad aggregator j during the planning horizon is Pj.

6.2.3 Special Case 1

We consider a special case where set A3 is empty, and I j, Cj, and Pj are very large
numbers so that constraints (6.6)–(6.8) can be ignored. That is I j =Cj = Pj = ∞ for
all j. By replacing Xi jt by pi jtZi jt , the special case can be formulated as follows.

MIP: MaxΠ =
T

∑
t=1

n

∑
j=1

m

∑
i=1

ri jqi jt pi jtZi jt −
T

∑
t=1

n

∑
j=1

∑
i∈A1

di pi jtZi jt −
T

∑
t=1

n

∑
j=1

∑
i∈A2

ciqi jt pi jtZi jt

n

∑
j=1

pi jtZi jt ≤ Rit , i = 1,2, . . . ,m; t = 1,2, . . . ,T

T

∑
t=1

n

∑
j=1

pi jtZi jt ≥ si

T

∑
t=1

Rit , i = 1,2, . . . ,m

T

∑
t=1

m

∑
i=1

Zi jt ≤ D j, j = 1,2, . . . ,n

Zi jt ≥ 0, i = 1,2, . . . ,m; j = 1,2, . . . ,n; t = 1,2, . . . ,T

This special case can be formulated as generalized min-cost flow problem with
leakage (or losses) in the sense that if we send Zi jt calls, then only pi jtZi jt will be
realized [3]. If all pi jt = 1, then the problem is a regular min-cost flow problem that
can be solved efficiently by a polynomial time algorithm providing integer solution
Zi jt ∈Z

+ to the problem [1, 4]. The generalized min-cost flow problem with leakage
can be solved efficiently as well if Zi jt are allowed to be continuous variables [5].
Although the generalized min-cost flow problem with leakage is NP-hard, there are
good approximate algorithms available for integer solution Zi jt [6].

6.2.4 Special Case 2

We now consider another special case where set A3 is empty, and D j, I j, Cj, and
Pj are very large numbers so that constraints (6.5)–(6.8) can be ignored. That is
D j = I j =Cj =Pj =∞ for all j. Since all column constraints related to j are ignored,
the problem can be decomposed into m subproblem for each i, and we can solve
them independently for each i = 1,2, . . . ,m. For a given i, the special case can be
formulated as follows.
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MIP: MaxΠi =
T

∑
t=1

n

∑
j=1

ri jqi jt pi jtZi jt −
T

∑
t=1

n

∑
j=1

dipi jtZi jt −
T

∑
t=1

n

∑
j=1

ciqi jt pi jtZi jt

n

∑
j=1

pi jtZi jt ≤ Rit , t = 1,2, . . . ,T

T

∑
t=1

n

∑
j=1

pi jtZi jt ≥ si

T

∑
t=1

Rit

Zi jt ≥ 0, j = 1,2, . . . ,n; t = 1,2, . . . ,T

If Zi jt > 0, then each unit of this call will generate profit wi jt , where wi jt =
(ri jqi jt pi jt − dipi jt − ciqi jt pi jt). Here, ci = 0 for all i ∈ A1, and di = 0 for all i ∈ A2.
This problem again can be formulated as the generalized min-cost flow problem
with leakage [3]. However, the following special case can be solved by a polynomial
time algorithm as described below.

For given i, if si = 1 and all pi jt = 1, then this problem can be solved by the
following greedy algorithm: for each time t, find j∗ such that wi j∗t is the largest
resolving the tie arbitrarily. Then, set Zi j∗t = Rit and Zi jt = 0 if j �= j∗. It is easy to
show that this algorithm delivers an optimal solution, and runs in polynomial time
in the order of O(nT ) [3].

6.3 Comparison with the Existing Practice at Chitika

In Figs. 6.2 and 6.3, we illustrate the effectiveness of presented optimization model
using an example with five app aggregators and five ad aggregators [3] . For sim-
plicity, we consider one time slot in this example, i.e., T = 1. Figure 6.2 presents the
solution of an existing greedy approach used by Chitika, whereas Fig. 6.3 presents
the solution of the proposed optimization approach for the same example. Even
though we use the actual names for app aggregators and ad aggregators, the values
are normalized for confidentiality.

First and foremost, as can be seen in the figures, the improvement in profit
(shown in the last column of figures, in 104 dollars per day) using the solution of the
optimization model is 1.08−0.78

0.78 ×100%= 38.46%. This improvement results in the
increased profit of about $3000 per day for Chitika. Further, in the greedy approach,
the calls are made such that the realized coverage is almost the same as the cover-
age constraint for all app aggregators. However, in the solution of the optimization
model, the realized coverage is much higher than the coverage constraint for two app
aggregators (tweetcaster clicktocall and tweetcaster clicktocall iphone). Hence, the
optimization model not only improves the profit of Chitika, but also improves the
coverage for the app aggregators. This, in turn, improves Chitika’s relationship with
the app aggregators.

We would also like to point out that, in both approaches, the cost is more than the
revenue for some app aggregators (jiwire iphone and network android admarvel).
This is caused due to the coverage constraint for each app aggregator. This result
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Fig. 6.2 Solution of the existing practice at Chitika

Fig. 6.3 Solution of the proposed optimization model

indicates that Chitika needs to be careful in signing contract with app aggregators.
More specifically, it may be beneficial for Chitika not to sign contract with some app
aggregators. However, the optimal selection of app aggregators is itself an optimiza-
tion problem. We are currently working on this problem, and plan to present some of
these results during conference presentation. This result also suggests that Chitika
should negotiate the coverage constraint with some of the app aggregators, such as
jiwire iphone and network android admarvel, maybe at the expense of increasing
the payment per impression and/or payment per click.
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Chapter 7
Future Trends and Challenges in Web
and Mobile Advertising

Abstract In this chapter, we present future trends in web and mobile advertising,
and associated challenges.

7.1 Inclusion of Advertiser Constraints in the Problem
of Ad-Firm

For the ad-firms, in addition to the publisher’s constraint about exceeding a given
click-through-rate (CTR), the advertiser often poses an additional constraint, a
cost-per-conversion constraint. Hence, although this problem is similar to the one
described in Chap. 5, here the solution must also respect the performance constraint
of advertiser. The advertiser’s constraint requires that the cost-per-conversion value
is below a specified constant. The cost-per-conversion value is the ratio of the total
advertising cost, that is, the per-click cost times the number of clicks, divided by
the number of conversions (e.g., a sale or registration) that are generated from the
clicks. Once again, for a constant cost-per-click value, we can express the adver-
tiser’s constraint as one that imposes a lower limit on the ratio of the number of
conversions to the number of clicks (or conversion ratio).

To solve this problem, we can use the data analytics step to predict both the prob-
ability of a click and the probability of a conversion, similar to that in Chap. 5 [1].
The decision to show an ad depends on both probabilities. That is, we use two
thresholds (one for the click probability and the other for the conversion probability),
both of which must be satisfied to display an ad. Figure 7.1 depicts the overall
solution process [1]. The inclusion of advertiser constraints often applies to situa-
tions in which the ad-firm contracts directly with the merchant for ad display, rather
than obtaining these ads from a partner.

© The Authors 2016
S. Kumar, Optimization Issues in Web and Mobile Advertising, SpringerBriefs
in Operations Management, DOI 10.1007/978-3-319-18645-0 7

65



66 7 Future Trends and Challenges in Web and Mobile Advertising

Fig. 7.1 Solution process for a problem with advertiser constraints

7.2 Real-Time Media Buying

To extend its access to publishers, ad-firms as Chitika actively consider buying
impressions at advertising exchanges. These exchanges allow advertising networks
such as Chitika to place a bid to buy the rights to show ads to a particular visitor
on a particular website, which is outside the advertising network’s current publisher
network. Because of its large publisher network, the ad-firm has often previously
encountered these visitors within its network. Therefore, it has visitor profiles on
them, which it can leverage to target them with relevant ads. The main difference
between the problem addressed in Chap. 5 and the real-time media buying problem
is that, in real-time bidding, the ad-firm pays for the impression whether or not a
visitor clicks. Thus, instead of a CTR constraint, the cost of the impression becomes
part of the ad-firm’s objective function. In this problem, the CTR constraint disap-
pears, but a cost-per-impression value is included in the objective function. Thus,
Ad-firm’s objective in the media buying case is to maximize profit—revenue from
clicks minus cost of impressions—by choosing an optimal value of the threshold
α . If the advertiser is a direct client of ad-firm, a conversion constraint might still
be applicable in the real-time media buying problem. A huge market opportunity
awaits the firm that is able to fine-tune and adapt the ideas presented in Chap. 5 to
media buying [1].

7.3 Fading Ads

The concept behind fading ads is to show an ad, but fade away after a specific
amount of time (e.g., τ), depending on the visitor’s previous click history. This is a
relaxation of the model discussed in Chap. 5, in which either the time for which the
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ad is shown is zero (for the case p < α) or the ad is shown for a fixed amount of
time. This click history includes data on whether or not the visitor has clicked on
ads and the time it took the visitor to generate these clicks. Such an innovation, if
implemented correctly, would provide the ad-firm with a very distinctive product in
the Internet advertising space [1].
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