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Preface

Nowadays, middleware technologies are the main infrastructure to support
the development and execution of distributed systems, providing design ab-
stractions, programming models and tools, frameworks, protocols, deployment
mechanisms, and runtime services. Due to its broad scope, middleware research
encompasses different research areas, such as distributed systems, operating sys-
tems, networking, multimedia systems, databases, programming languages, and
software engineering.

This volume contains the proceedings of the Eighth Middleware Conference,
held in Newport Beach, California, USA, November 26–30, 2007. Middleware
is a series of conferences that started in 1998 with the aim of being the pre-
mier conference on middleware research and technology, where researchers from
academia and industry can present and discuss the latest middleware results. The
focus of the conference is the design, implementation, deployment, and evalu-
ation of distributed systems platforms and architectures for future computing
environments.

This year, we had 108 submissions from 25 different countries, among which
the top 22 papers were selected for inclusion in the technical program of the
conference. All papers were evaluated by at least three reviewers with respect to
their originality, technical merit, presentation quality, and relevance to the con-
ference themes. The selected papers present the latest results and breakthroughs
on middleware research in areas including peer-to-peer computing, event-based
and publish/subscribe architectures, mobile and ubiquitous systems, grid and
cluster computing, sensor networks, component- and Web-based middleware,
virtual machines, adaptive and autonomic systems, communication protocols
and architectures, scalability, fault-tolerance, quality-of-service, resource man-
agement, multimedia streaming, and novel development paradigms and tools.

Middleware 2007 also featured an Experience Papers session, which consisted
of papers with focus on applications and experience from the use of middleware.
From the research paper submissions, four papers were invited to be presented
in this session. Another eight papers were recommended for inclusion in the
conference’s Work-in-Progress Papers program.

Apart from the papers, the program included seven workshops, a doctoral
symposium, invited talks, poster and demo presentations, and panels. We hope
that the attendees enjoyed this year’s Middleware Conference, gained new knowl-
edge and insights from our program, participated in the presentations and dis-
cussions, and met others working on projects similar to theirs.

We would like to express our deepest appreciation to the authors of the
submitted papers, to all Program Committee members for their diligence in the
paper review and selection process, and to all external reviewers for their help in
evaluating submissions. We would also like to thank ACM, IFIP, and USENIX
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for their technical sponsorship, and the corporate sponsors for their financial
support. Finally, special thanks go to Nalini Venkatasubramanian and all the
other Organizing Committee members for their hard work and effort to make
Middleware 2007 a successful conference.

September 2007 Renato Cerqueira
Roy H. Campbell
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Sabina Serbu
Praveen Sharma
Reza Sherafat
Marc Shiely
Sriram Srinivasan
Biplav Srivastava
Jan Stender
Niko Thio
Muhammad Umer
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R-OSGi: Distributed Applications Through

Software Modularization

Jan S. Rellermeyer, Gustavo Alonso, and Timothy Roscoe

Department of Computer Science, ETH Zurich
8092 Zurich, Switzerland

{rellermeyer, alonso, troscoe}@inf.ethz.ch

Abstract. In this paper we take advantage of the concepts developed
for centralized module management, such as dynamic loading and un-
loading of modules, and show how they can be used to support the devel-
opment and deployment of distributed applications. We do so through
R-OSGi, a distributed middleware platform that extends the central-
ized, industry-standard OSGi specification to support distributed mod-
ule management. To the developer, R-OSGi looks like a conventional
module management tool. However, at deployment time, R-OSGi can
be used to turn the application into a distributed application by sim-
ply indicating where the different modules should be deployed. At run
time, R-OSGi represents distributed failures as module insertion and
withdrawal operations so that the logic to deal with failures is the same
as that employed to deal with dependencies among software modules. In
doing so, R-OSGi greatly simplifies the development of distributed appli-
cations with no performance cost. In the paper we describe R-OSGi and
several use cases. We also show with extensive experiments that R-OSGi
has a performance comparable or better than that of RMI or UPnP, both
commonly used distribution mechanisms with far less functionality than
R-OSGi.

1 Introduction

Modular design is a cornerstone of software engineering, and much effort has been
invested in concepts and tools to manage modules and the dependencies among
them. Nowadays, modularization pervades programming languages, development
environments, and even system architectures. In particular, recent years have
seen the emergence of “module management systems” which handle loading and
unloading of modular program units at runtime, and dynamically creating and
destroying bindings between services in different modules.

In this paper we explore using centralized module management as the basis
for the design and deployment of distributed applications. Our work is based on
the OSGi specification [1], a widely used module management API designed to
work on a single system that we extend extend to work in a distributed setting.

R. Cerqueira and R.H. Campbell (Eds.): Middleware 2007, LNCS 4834, pp. 1–20, 2007.
c© IFIP International Federation for Information Processing 2007



2 J.S. Rellermeyer, G. Alonso, and T. Roscoe

The key insight is that the module boundaries instituted by centralized mod-
ule management systems are generally well-suited to being repurposed as distri-
bution boundaries. In the past, networked applications have typically distributed
their functionality by interposing communication proxies at procedure calls or
object method invocation, with mixed results. In particular, the issue of trans-
parency has dogged distributed computing platforms based on these models: as
Waldo et. al. [2] point out, a remote procedure invocation has fundamentally
different semantics to a local call, and consequently fundamentally different ex-
ception handling code must be written by the programmer.

In contrast, module management systems like OSGi are designed to han-
dle unloading of modules at any time, and include event notification func-
tionality to enable programmers (indeed, to require them) to cleanly handle
services disappearing without notice. We take advantage of this by representing
communication-related failures as local module unloading events.

By doing so, we effectively turn software modules into the potential units of
distribution. The result is Remoting-OSGi (R-OSGi), a distributed middleware
platform that can transparently distribute parts of an application by simply
distributing its software modules. R-OSGi is a middleware layer on top of OSGi.
This matches the lightweight design of OSGi and allows us to use R-OSGi on
any OSGi enabled application.

R-OSGi makes the following contributions:

1. Seamless embedding in OSGi : From the OSGi framework’s point of view,
local and remote services are indistinguishable. Existing OSGi applications
can be distributed using R-OSGi without modification.

2. Reliability: The distribution of services does not add new failure patterns
to an OSGi application. Developers deal with network-related errors in the
same way they deal with errors caused by module interaction.

3. Generality: The middleware is not tailored to a subset of potential services.
Every valid OSGi service is potentially accessible by remote peers.

4. Portability: The middleware runs Java VM implementations for typical
resource-constrained mobile devices, such as PDAs or smartphones. The re-
source requirements of R-OSGi are by design modest.

5. Adaptivity: R-OSGi does not impose role assignments (e.g., client or server).
The relation between modules is generally symmetric and so is the dis-
tributed application generated by R-OSGi.

6. Efficiency: R-OSGi is fast, its performance is comparable to the (highly
optimized) Java 5 RMI implementation, and is two orders of magnitude
faster than UPnP.

In the next section we discuss in more detail the relevance of module man-
agement systems for distributed applications, using OSGi as a case study. In
Section 4 we discuss the architecture and design of R-OSGi, and describe the
implementation in detail in Section 5. Section 6 presents performance results for
R-OSGi, and Section 7 details several use cases including ubiquitous computing
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devices and a tool for refactoring a large, pre-existing OSGi-based application
in Eclipse to run in a distributed setup. We conclude in Section 8.

2 Background

Models and frameworks for building distributed systems have a long history. The
conventional approach is to make remote invocations identical to local procedure
or method calls, as exemplified by Remote Procedure Calls (RPC) [3], Java Re-
mote Method Invocation (RMI), the Common Object Request Broker Architec-
ture (CORBA) [4], or the Distributed Component Object Model (DCOM) [5].
While providing a form of distribution transparency at the level of invocations,
the application must nevertheless be manually factored into distributed com-
ponents, and the large-scale structure of the application usually reflects this
factoring. The same is generally true for analogous operating system-based ap-
proaches, such as Amoeba [6] or SOS [7].

Alternatively, centralized applications written in a component framework can
be automatically factored into distributed components. Coign [8] partitions
COM-based Windows applications into two parts that can be distributed in
a client/server configuration. Coign instruments the code through binary rewrit-
ing, analyzes the dependencies between COM components and calculates a
graph-cutting according to a cost metric for introducing network communica-
tion between the subgraphs. Similarly, JOrchestra [9] automatically partitions
a program by rewriting bytecode to replace local methods with remote invo-
cations, and object references with proxy references. In these approaches, the
distribution is orthogonal to the original design, and occurs along object bound-
aries which were typically not designed with distribution in mind, giving rise to
the kind of transparency and performance problems described in [2].

Recent centralized module management systems, e.g., MJ [10] and OSGi, in
contrast to typical component frameworks, impose boundaries between modules
which are explicit at the level of program code. This is done to better deal
with dynamically loading, updating, and unloading of modules at runtime. We
describe OSGi in more detail below, as it forms the basis of our system.

However, we note that to date, efforts to add distribution support to OSGi
have either followed the OSGi specifications in providing protocol adapters to
existing Jini [11] and Universal Plug and Play (UPnP) [12] infrastructures, or
(as with the Newton Project [13]) introduce an additional component model for
distribution independent of OSGi’s module boundaries and based on an existing
infrastructure like Jini. Both approaches are what might be termed “invasive”:
they require the application to be explicitly structured (or restructured) around
the distribution model provided by Jini or UPnP, and hence the application
must be factored in such a way as to conform to one of these component models.
What is clearly missing is a way to have across remote OSGi instances without
loosing the generality of the OSGi model, or, equivalently, to allow an OSGi
application to be easily distributed along OSGi module boundaries. Filling this
gap is the main result of this paper.
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3 Overview of OSGi

Before discussing the design and implementation of R-OSGi, we briefly describe
all the relevant aspects of the OSGi model. The OSGi specification is maintained
by the OSGi Alliance (including vendors and users). OSGi is used in a number of
systems (e.g., Eclipse [14]) and several open-source implementations exist, such
as Apache Felix [15], Knopflerfish [16], and Concierge [17].

3.1 Basics of OSGi

OSGi is both (1) a programming model to develop Java applications from mod-
ular units (bundles) decoupled through service interfaces, and (2) a runtime
infrastructure or framework for controlling the life cycle of bundles. Among
other features, OSGi allows developers to dynamically manipulate bundles: new
bundles can be added and existing bundles updated or removed all at runtime.
OSGi maintains consistency across modules by keeping track of the dependencies
between modules.

As in systems such as Tomcat [18], OSGi implements module management by
using a separate class loader per bundle and disposing of the entire class loader
when the bundle is unloaded. However, unlike Tomcat, where shared code has
to be placed into the scope of a special shared class loader, all bundles loaded
by an OSGi framework are allowed to define shared Java packages and interact
through services.

3.2 OSGi Services

OSGi implements a centralized service-oriented architecture with loosely cou-
pled services (Figure 1). In the OSGi model, any Java class can be published as
a service to be used by other bundles in the system. Typically, a service includes
an implementation (an instance of a class), one or more service interfaces under
which the service is published, and a set of service properties. The OSGi frame-
work maintains a registry of all services published in the system. Bundles can
retrieve services by the name of their interface, and optionally use LDAP-style
RFC 1960 [19] filter predicates on service properties for higher selectivity.

Fig. 1. OSGi Framework with Bundles and Services
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Over the indirection of a service reference, a client bundle can bind to the
service object and invoke operations on it from its own code. Since services might
not be present or even disappear during the life cycle of the service’s client, access
to service objects must be mediated and controlled. OSGi does this by sending
events whenever the state of a service changes. The typical pattern of service
usage is to listen to such events and either disable parts of the requesting bundle
when the requested service becomes unavailable or even trigger a halt of the
whole bundle, if the presence of the service is required for correct operation of
the bundle.

3.3 The OSGi Whiteboard Pattern

Besides services invoked from other bundles, OSGi services can also be used
to simplify different variations of producer/consumer exchanges. Typically, the
publish/subscribe pattern is used for this purpose: each event source maintains
its own registry of subscribed listeners and delivers events to all subscribers as
the events take place. The whiteboard pattern [20] used in OSGi simplifies this
process. Instead of requiring each listener to subscribe to individual events and
the source to hold the subscriptions, the OSGi service registry is used. Listeners
register themselves under a specific listener service interface. Once this is done,
the listener is not required to dynamically track all sources of events, instead,
it has implicitly acquired a global subscription to all existing and future event
sources. The OSGi registry is thus the whiteboard to which all listeners may
subscribe. Event sources can retrieve all registered listeners whenever an event
occurs. With such an approach, the coupling between listener and source is
reduced to a minimum and the listener can place the subscription even if no
source is currently present. It has been shown that the whiteboard pattern is
often more efficient than traditional publish/subscribe in terms of code size and
the total resulting number of classes [20].

4 The R-OSGi Approach

R-OSGi allows a centralized OSGi application to be transparently distributed
at service boundaries by using proxies. Figure 2 shows a simplified example with
one service provider (I ) and one service consumer (J ). To bundles on peer J, the
R-OSGi proxy is indistinguishable from local OSGi services such as service A and
B. The R-OSGi protocol on the proxy is used to make remote invocations to the
original service, which is located on peer I, and events from I are transparently
forwarded to J and occur as if they were issued by a local bundle. The only
difference between local and remote services are additional properties that allow
services aware of distribution to perform specialized operations, e.g., for system
management.

R-OSGi uses four principal techniques to achieve the goal of transparency:
(1) dynamic proxy generation at bind-time for cross-network invocation of ser-
vices, (2) a distributed Service Registry based on SLP complementary to the
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Fig. 2. Architectural Overview

centralized version in OSGi, (3) mapping network and remote failures to local
module hotplug events, and (4) type injection to resolve distributed type system
dependencies. We describe these in turn.

4.1 Dynamic Service Proxies

R-OSGi creates transparent client proxies for remote services on the fly. To
a service client, these proxies behave as a local service and are also provided
by locally-instantiated bundles. However, a proxy bundle redirects all service
method calls to the original service residing on the remote machine and propa-
gates the result of the method call back to the local client.

The approach of dynamically generating the proxy code at the client facili-
tates spontaneous interaction between services, but also reduces to a minimum
the data (in the form of Java bytecode) that must be stored on the server or
transferred over the network when a client binds to (or fetches) a service.

The typical information required to create a proxy for a particular service
interface is determined by bytecode analysis of the original service when it is
registered. When a client fetches the service interface, the service provider re-
sponds with the corresponding Java bytecode for the interface along with any
serialized properties of the service.

From the interface bytecode, the client can then generate a full proxy for the
service. No precompiled skeletons or stubs need to be provided by the imple-
mentor of the service, and no actual proxy code needs to be transferred. This
is particularly useful in the case of servers running on resource-constrained de-
vices, since the service provider bundle does not need to retain any code for the
client proxy.

4.2 Service Registration and Location

OSGi is built around a centralized service registry. In order to transparently
distribute OSGi applications, a distributed registry implementation is required.
It is not possible to make a distributed service registry look like a local registry
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without changing the OSGi framework implementation. Thus, to avoid limiting
the generality of the platform, R-OSGi works with a complementary service
discovery protocol and builds proxies for remote services which then register
their services with the conventional OSGi service registry. Hence, conventional
OSGi bundles can be used (and distributed) in R-OSGi without modification.

OSGi uses an explicit binding model whereby the client bundle invokes (as a
synchronous method call) the service registry, which hands over a set of service
references in return. The request contains two arguments: the class name of
the requested service and a filter expression which can, for instance, be used to
distinguish between equivalent implementations of the same service type. Filters
are based on the LDAP filter syntax (RFC 1960 [19]). A client in possession of
a valid service reference can then attempt to establish a binding to the service,
and afterwards invoke operations on it.

While the explicit binding model simplifies the handling of network and re-
mote node failures in R-OSGi (see Section 4.3), the approach of building proxies
for services introduces a potential scalability problem since in a large distributed
system there might be a large number of nodes, and a large number of services.
Each service proactively announcing its availability and the system generating
proxies for every available service might increase network traffic, and tie up
processing resources at the nodes.

R-OSGi’s distributed service registry alleviates this problem by making service
discovery (and thus the proxy generation) reactive. Bundles can register services
of type DiscoveryListener and set properties to convey information about
the service interfaces they are interested in, optionally including a filter string.
Following the whiteboard pattern, R-OSGi keeps track of all registered listeners
by observing service registration events from the local service registry. It initiates
remote service discovery whenever there is an entity in the system that has
announced a demand for a service.

Likewise, peers announce their offers of services to the network and allow
remote access to them according to a locally-determined policy. Whenever a
new service is registered with the local framework with properties that indicate
it should be offered remotely, R-OSGi triggers registration of this service with
the remote service discovery layer.

Explicit determination of which services to offer for remote access in this way
can be performed by the application, at the cost of loss of transparency (since the
application must set the required properties). Alternatively, a surrogate bundle
separate from the application but residing on the same node can listen for local
service registrations, and selectively re-export some services remotely without
requiring the application itself to be distribution-aware.

4.3 Transparent Distribution

Transparently distributing programs designed for a single address space context
has been a problematic concept. Waldo et. al. [2] provide a good summary of
the main problems: networked systems are fundamentally different in behavior
to centralized ones, and the semantics of an invocation are also fundamentally
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different. Consequently, the argument goes, it is unlikely that a centralized pro-
gram will perform with acceptable performance, let alone correctly, when fac-
tored into distributed components. The basic problems here are communication
latency and non-determinism, and unreliability (either due to message loss or
partial failure of the nodes or network). These arguments are powerful and per-
suasive.

R-OSGi sidesteps these issues by intelligently exploiting the way that OSGi
programs are already written – the assumption of unknown performance char-
acteristics of cross-bundle calls. Furthermore, rather than masking distributed
failures, R-OSGi exposes these events to application bundles, but in a form that
the bundle is already designed to handle: the disappearance of service bundles
through module unloading.

R-OSGi conceptually maps failures arising from the distribution of compo-
nents to local hot-plug events. From the OSGi model, developers are used to
guarding the code against the case that parts of the system are not available.
Usually, this is done by listening to service events or using the OSGi Service-
Tracker. In a purely local configuration, services can become unavailable when
some entity in the system, in particular a user of the system, decides to stop
or to uninstall the bundle that has provided the service. By mapping network
malfunctions to these events that are already handled by the applications, we
introduce no failure patterns that are not already possible in purely centralized
situations.

For instance, if a service providing peer fails, we detect the breakdown of the
network channel and the failure to reconnect. Having observed this, R-OSGi
immediately uninstalls the proxy bundle. Even if the network operates without
failures, the original service can throw exceptions. We serialize these exceptions
and rethrow them in the proxy bundle to mime the exact behavior of the original
service.

OSGi Services give no guarantee about execution time regardless of whether
they are local or remote. Side effects of services such as threaded design or
database accesses (e.g., a persistence service), can lead to an execution time
that appears to be non-deterministic from the client point of view. A user might
even decide to replace a fast implementation of a service by an extended but
overall slower implementation and the client has to live with this situation. Fur-
thermore, services are often event-driven and since events in OSGi are typically
dispatched asynchronously, no assumptions about timing can be made. This is a
considerable difference to plain objects, that are most often expected to execute
methods within a very short time. A further difference between R-OSGi in com-
parison to systems like CORBA is that the granularity of distributed entities is
much larger. In OSGi, services encapsulate whole functional units and the de-
pendencies between services are typically restricted to semantical dependencies
at the application level. Objects in contrast tend to have a larger number and
often nested interconnections that make bad effects of the network more severe.
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4.4 Type Injection

In OSGi, all code is modularized into bundles and imports of code from other
bundles have to be explicitly declared in the bundle JAR manifest. Several im-
plications arise in the context of proxy bundles. The service interface might use
types in method parameters or return values that do not belong to the standard
Java classes and cannot be assumed to be present at the client. This can either
be the case if the type is declared by a class of the original service bundle, or
because the package to where the class belongs was imported by the original
service bundle. It has to be assured that the generated proxy is resolvable, i.e.,
it contains all the types that are used by methods of the service. R-OSGi thus
has a special strategy to ensure type consistency for the service interface. Type
injection is used to make service proxies self-contained.

When the (remotely accessible) service is registered, every type occurring in
the service interface is observed by a static code analysis. If the type is contained
in the service bundle and the package is declared to be exported by the service
bundle, the corresponding class is added to the so-called injection list. Referenced
types not contained in the service bundle are left out. In a second step, the
transitive closure of all injections is formed, once again distinguishing between
own and imported classes. The injections are saved with the service registration.
Whenever a client fetches the service, the injections are transmitted in addition
to the service interface and the service properties. During proxy generation, the
injections are materialized and stored in the proxy bundle. The packages of all
referenced classes not included in the injections are declared as imports of the
proxy bundle. The packages of all injected classes are declared as exports to
ensure type consistency within the framework. Classes from the packages java.*
and org.osgi.* are excluded from the whole process since it is assumed that
they belong to the execution environment. The result of the injection strategy
is a minimal set of classes and package imports that make the service proxy
self-contained and resolvable.

Beyond the described code analysis to determine the minimal set of injec-
tions, service registrations can be manually provided with classes that have to
be injected into the bundle. This can be useful in particular cases, e.g., if an
argument of a service method is an interface and the service provider wants to
add an instantiable implementation of this interface.

5 Implementation

5.1 Distributed Service Registry

R-OSGi implements the distributed registry using the Service Location Protocol
(SLP) [21,22,23] as the underlying mechanism. We discuss the choice of SLP over
more apparently natural choices like Jini in this section. Rather than using a C-
based daemon implementation of SLP like OpenSLP, we instead developed a pure
Java implementation, jSLP [24]. jSLP implements all the mandatory features of
the SLP protocol, plus most of the optional features, yet has a code footprint of
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only 55kBytes. We do not discuss jSLP further here for reasons of space; further
information and complete source code can be found at [24].

SLP has several compelling features for R-OSGi: its adaptivity, the inher-
ently distributed lookup process, and the similarity with OSGi in the naming of
services. To use SLP as a fully decentralized service registry, we exploit the adap-
tive behavior of the SLP protocol. In SLP, when a dedicated Directory Agent is
present, clients communicate exclusively with this central registry server. If no
DA is present, the clients use multicast (as in SSDP [25]). Through this feature,
R-OSGi implements a distributed SLP layer that can be used in a wide range
of situations. In terms of naming, both OSGi and SLP identify a service by a
single string. In OSGi, this is the fully qualified name of the interface under
which the service has been registered. In SLP, the name is a service URL of
the form service:serviceType://URL where the service type is of the form
abstractType:concreteType By describing all OSGi services by the same ab-
stract type service:osgi and using the fully qualified name of the interface
as the concrete type, we have a bidirectional mapping between OSGi and SLP
services. OSGi supports LDAPv2 filter predicates on service properties to al-
low more declarative and fine-granular services matching. This feature becomes
particularly useful when the service registry is no longer a central but a large
distributed one. With the choice of the SLP protocol that also supports LDAP
filters over service attributes, R-OSGi leverages the power of expressive service
predicate matching for the distributed case.

After a service is discovered, R-OSGi introduces an intermediate step before
the actual service is delivered (i.e., imported into the local framework). This is
important for security reasons as it allows users to, e.g., see the available remote
services in a GUI before connecting to them. With such a step, R-OSGi matches
the behavior of OSGi, which also uses an indirection over service references. R-
OSGi also supports explicit connection to a remote peer if the application has a
priori knowledge of the distribution of services in the system.

5.2 Network Channels and Message Transport

The communication structure of R-OSGi is purely message-based. For efficiency
of parsing and handling, all messages are binary. Messages consist of a header
that indicates the type of the message plus some common attributes, and a body
with the parts specific to the message type.

Network channels in R-OSGi are by default persistent TCP connections using
the TCP keep-alive option. As long as there is traffic within the timeout period,
the connection is kept open. This reduces the overhead for the TCP handshake
that would otherwise precede every call to a service. R-OSGi is nevertheless
extensible. We have, for instance, implemented tunneling of R-OSGi messages
through HTTP to support communication through firewalls.

When a connection through a network channel is established, the two peers
exchange symmetric leases (Figure 3). A lease contains the names of the services
that the peer offers as well as the event topics the peer is interested in. The latter
is used in the context of remote events as discussed in Section 5.5. In R-OSGi,
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Fig. 3. R-OSGi Channel Establishment and symmetric leases

unlike in systems like Jini, a lease is more a contract between the two peers
than a temporal limitation. Whenever changes to services or to subscriptions
are announced through the lease, the peer that has issued the lease is obliged to
invalidate the existing lease.

5.3 Proxy Generation

On the client side, the proxy is created through a Proxy Generator. The Proxy
Generator is based on the ASM library [26], and it uses bytecode manipulation
to create the service interface. First, an empty class is created that implements
both the service interface as well as the OSGi specific interface (the BundleAc-
tivator). The OSGi specific parts, including the registration of the service with
the local framework and retrieving the R-OSGi service, are implemented by
emitting generic templates. Subsequently, every method of the service interface
is visited and the corresponding method implementation created. Each method
implementation delegates the method call to the network channel provided by
R-OSGi and invokes the following method:

Object invokeMethod(final String serviceURL,
final String methodSignature, final Object[] args)
throws RemoteOSGiException;

The serviceURL is known at proxy generation time and hard-coded into the
proxy, since every remote service gets its own proxy. The method signature
is also a constant of each method implementation. The args array is built at
runtime by aggregating the actual arguments.

The proxy-implementation of the service interface is packed into a JAR file to-
gether with the service interface. The required metadata is added to the manifest
to turn the JAR file into a valid bundle. The service interface is then exported.
This allows other bundles to import the interface if it is not yet known. Oth-
erwise, the import statement is used and the newly created bundle is linked
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against the existing interface to preserve consistency within the framework. R-
OSGi stores the generated bundle and installs it, which leads to a registration
of the proxied service. Since the service is registered under the transmitted in-
terface name, local bundles cannot distinguish between a proxied service and a
local service, thereby preserving full location transparency.

5.4 Method Invocation

Every method invocation corresponding to a remote service is transformed into
the invokeMethod call shown above and sent through the underlying R-OSGi
channel. On the other side of the channel, the first step taken is to lookup the
corresponding service. R-OSGi holds references to all services that are released
for remote access in a HashMap to guarantee a quick lookup. On this service
object, a reflective call of the original method is performed. However, the Java
reflection API requires the formal method parameters for matching and these
can differ from the types of the actual arguments. This is particularly true if one
of the formal parameters is an interface or an abstract class. One option would
be that for every method call, the whole type hierarchy of each of the arguments
is used for matching. To avoid this overhead, the signature of the method is
part of the transmitted message. R-OSGi uses the signature to unambiguously
match the original method. If the reflective method call succeeds, the result
value is packed into a response message and sent back. If an exception occurs,
the exception object is serialized, packed into the response message, and thrown
on the other side of the channel. This makes the syntactic behavior of the remote
service indistinguishable from that of local services.

5.5 Remote Events

As in UPnP, R-OSGi implements both remote service invocation as well as an
event based architecture. R-OSGi uses the OSGi concept of events as described
in the R4 specification of the EventAdmin service. In R-OSGi, the EventAd-
min service is implemented as a whiteboard pattern over the distributed service
registry. A bundle registers for an event by registering an EventHandler service
together with the property event.topics and the optional property event.filter
stating a filter that is matched against the property set of occurring events. Topic
strings of events follow a hierarchical structure and can be matched using wild-
cards. Bundles initially register the EventHandler in the local service registry.
The subscription is announced to peers through a symmetric lease transmitted
during the connection phase. On the other side of the channel, an EventHandler
is registered locally for the stated topics and if any matching events are out-
standing, they are sent back through the channel. To publish an event, bundles
post it to the local EventAdmin service which then sends it to all registered
listeners.
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(a) connecting to service (b) displaying a robot service

Fig. 4. ServiceUI for an R-OSGi-driven Lego Mindstorms Robot on a Zaurus PDA

5.6 Presentations

The fact that R-OSGi modules are treated as units for distribution offers unique
opportunities to specialize some of these modules. One such specialization in
R-OSGi is the idea of presentations. A presentation is a single class with an
associated user interface that can be downloaded by the client rather than sim-
ply used remotely. Services can attach presentations by setting the property
service.user interface to the fully qualified name of a class implementing the in-
terface ServiceUIComponent. Declared presentations are automatically injected
into the proxy bundle and registered as services in a whiteboard fashion. On
the client side, it is possible to run the optional R-OSGi ServiceUI bundle. This
bundle displays the information about discovered services and allows the user
to fetch these services. If the service has a presentation attached, the graphical
component provides a Java AWT panel. This panel is displayed in a tabbed
environment to allow the user to interact with multiple remote services.

We have used presentations for controlling smart devices. Figure 4 shows the
screen of a PDA that connects to a Lego Mindstorms robot through R-OSGi.
The software controlling the robot is developed using R-OSGi and contains a
presentation with the user interface to control the robot. The PDA first connects
to the Robot Service as a normal R-OSGi service (Figure 4.a). It then downloads
the presentation with the robot controller interface which now runs locally and
allows the PDA to become the robot controller. As the example shows, with
R-OSGi presentations and the ServiceUI, it is possible to implement the idea of
the universal remote control that can connect to any kind of (R-OSGi enabled)
smart device and control it. The user interface for a service comes directly from
the device and thus allows to connect to previously unknown devices without
any need for configuration or installation of device drivers. Note as well that the
demands on the developer are very small as it is only necessary that the user
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interface is designed as a module, something that it is likely to happen regardless
of whether R-OSGi is used.

6 Experimental Evaluation

Since there is no standard benchmark for evaluating the performance of R-OSGi,
we have adapted two suitable benchmarks from other areas.

The Javaparty/KaRMI [27] benchmark measures the performance of alter-
native RMI implementations. It calls various methods of a sample object using
arguments of different size and complexity. We have implemented the Javaparty
benchmark as an OSGi service which is transparently distributed by R-OSGi.
For comparison, we have also implemented it as a service object which is dis-
tributed by RMI and as a UPnP service accessible through the Domoware UPnP
service implementation [28] for OSGi. The benchmark client calls the different
methods multiple times and determines the average invocation time from the
accumulated runtime. Most of the arguments are instances of primitive types or
primitive arrays with increasing length. We skipped the parts of the performance
benchmarks that are specific to the KaRMI system and not relevant to R-OSGi.

The WSTest benchmark [29] measures the performance of web services. It was
originally used to compare web service performance in Java and in .NET. The
benchmark starts a number of agents that concurrently call one of four sample
methods according to a predefined mix. The arguments of the method calls are
complex objects. In the variant originally used by Sun and Microsoft, only one
of the methods is called at once, concurrently by eight agents. Since UPnP is
not able to use complex objects in service calls, we run this benchmark only for
R-OSGi and RMI.

The benchmarks have been measured with the services running on an IBM
R32 notebook with an 1.6 GHz Intel Pentium 4 Mobile CPU and with 512 MB
RAM. The client was a Pentium 4, 3 GHz Desktop machine with 1 GB RAM. For
the PDA tests a Sharp Zaurus 5500 with a StrongArm SA-1110 CPU running
at 206 MHz and with 64 MB RAM has been used. In the notebook and the
workstation, we use Sun J2SE 1.5 as the underlying VM. The Zaurus runs cvm
[30], Sun’s implementation of the CDC Personal Profile.

6.1 Service Binding

In a first experiment, we measured the binding time. In R-OSGi, this is the time
spent to establish the connection, requesting the service, receiving the interface,
and building the proxy. For RMI, this is the time needed to establish the con-
nection and to download the stub from the codebase. The results are presented
in Table 1. As the Table shows, R-OSGi performs better than RMI even though
the client has more work to do. From our observations, the download of the stub
is the source of the overhead in RMI. The differences between the two bench-
marks are because the binding time depends on the complexity of the service
and, in this case, this complexity is related to the number of service methods.
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Table 1. Binding Time

Service # Methods Binding Time in μs
R-OSGi RMI

JavaParty 7 147381 163702

WSTest 4 97147 168034

The benchmarks show that R-OSGi is more efficient in terms of binding time
than RMI, an interesting result given the additional functionality that R-OSGi
provides.

We have also tested how R-OSGi scales down to mobile devices by measuring
the binding time for the Javaparty service on a Sharp Zaurus 5500 PDA with
802.11b wireless LAN. The measured binding time was 1585 milliseconds. This
is a much higher overhead but comparable with the latency of such operations
on mobile devices. Furthermore, this penalty has to be paid only once for each
service.

6.2 Service Invocation

In a second experiment we compare the cost of invoking a remote service in
R-OSGi, RMI, and UPnP using the Javaparty benchmark. Since UPnP does
not support complex objects as arguments in service method calls, not all test
methods of the benchmarks could be implemented for UPnP. The results are
shown in Table 3. As the table shows, R-OSGi performs slightly better than
RMI in many cases, especially when the arguments are complex objects. We also
measured the round trip time in the test network which was 193 μs (+-7 μs).
Compared with this value, the ping() method using R-OSGi has an overhead
of only 1.5% whereas for RMI it is about 16%. Those tests that can be run with
UPnP have an execution time two orders of magnitude larger than R-OSGi and
RMI. The main reason is the high verbosity (resulting in higher network delays)
and the expensive parsing of the XML involved.

A similar comparison was done using the WSTest benchmark (Table 2) where
we measured both response time and throughput. R-OSGi has a lower response
time per method and a higher throughput. We also tested the scalability of R-
OSGi using this benchmark. The proposed setup of the WSTest specifications
uses only eight agents. When, for instance, the echoVoid method is called by 80

Table 2. WSTest Benchmark Results

Test R-OSGi RMI
Resp.time (μs) Throughput Resp.time (μs) Throughput

echoVoid 5799.109 1378.583 10914.879 732.583
echoStruct 11464.700 697.633 14067.500 568.533
echoList 12238.550 653.500 15390.130 519.767
echoSynthetic 2439.700 3275.567 3069.710 2604.667
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Table 3. Javaparty Benchmark Results

Method invoked Invocation Time in μs and STD
R-OSGi RMI UPnP

void ping() 195.813 ±0.52 225.18 ±0.738 87938.454 ±174.044
int ping() 214.633 ±0.479 227.98 ±0.645 87335 ±27.839
void ping(int) 216.838 ±0.43 227.172 ±0.789 87844.286 ±191.748
void ping(int, int) 227.043 ±0.427 228.885 ±0.509 88558.571 ±126.765
void ping(null) 202.974 ±0.393 228.031 ±0.472 -
void ping(Integer) 218.301 ±0.419 324.855 ±1.162 -
void ping(byte[1]) 246.263 ±0.559 273.345 ±1.317 88770 ±122.241
void ping(byte[2]) 246.237 ±0.425 273.656 ±0.54 88822.857 ±48.613
void ping(byte[4]) 246.58 ±0.517 274.167 ±0.55 88832.857 ±40.958
void ping(byte[8]) 247.94 ±0.51 274.41 ±0.514 88948.571 ±86.426
void ping(byte[16]) 249.463 ±0.492 275.374 ±0.568 89088.571 ±39.071
void ping(byte[32]) 252.988 ±0.514 277.174 ±0.681 89122.857 ±15.779
void ping(byte[64]) 257.396 ±0.47 284.274 ±0.457 89055.714 ±19.166
void ping(byte[128]) 270.142 ±0.704 295.539 ±0.591 89090 ±40.708
void ping(byte[256]) 278.694 ±0.638 317.382 ±0.476 89162.857 ±38.439
void ping(byte[512]) 337.612 ±0.818 363.596 ±0.692 89201.429 ±104.53
void ping(byte[1024]) 429.258 ±0.966 457.977 ±0.947 89467.143 ±32.388
void ping(byte[2048]) 532.447 ±1.031 582.424 ±1.19 89997.5 ±24.875
void ping(byte[4096]) 692.89 ±1.072 718.177 ±1.158 91098.75 ±63.134
void ping(byte[8192]) 1275.493 ±7.605 1095.5 ±2.291 98631.429 ±3185.514
void ping(byte[16384]) 1903.204 ±11.198 1872.352 ±7.369 97718.571 ±36.027
void ping(byte[32768]) 3941.772 ±65.534 3932.065 ±52.933 157588.571 ±93.263
void ping(float[1]) 251.204 ±0.593 275.155 ±0.757 -
void ping(float[2]) 252.204 ±0.574 276.011 ±0.5 -
void ping(float[4]) 253.924 ±0.648 277.676 ±0.374 -
void ping(float[8]) 256.831 ±0.526 279.994 ±0.796 -
void ping(float[16]) 262.098 ±0.488 287.206 ±0.602 -
void ping(float[32]) 273.858 ±0.5 297.677 ±0.662 -
void ping(float[64]) 296.173 ±0.741 317.408 ±0.567 -
void ping(float[128]) 344.244 ±0.701 369.27 ±2.416 -
void ping(float[256]) 439.993 ±0.92 470.157 ±7.577 -
void ping(float[512]) 551.247 ±1.21 605.09 ±9.467 -
void ping(float[1024]) 723.892 ±1.592 749.488 ±3.622 -
void ping(float[2048]) 1224.912 ±2.27 1251.543 ±10.059 -
void ping(float[4096]) 1954.012 ±11.076 1945.257 ±38.723 -
void ping(float[8192]) 4105.288 ±77.579 3982.534 ±59.839 -
void ping(float[16384]) 8036.289 ±132.496 7916.875 ±132.722 -
void ping(float[32768]) 13460.103 ±131.231 13839.062 ±104.921 -
void ping(DM(1024,1024)) 918597.938 ±13063 923121.212 ±12276 -
void ping(DM(2048,2048)) 3557125 ±16284 3614843.75 ±23682 -

concurrent agents, the response time for R-OSGi increases by only 5% whereas
it increases by about 23% for RMI. This indicates that R-OSGi scales very well,
even for large setups with massive distribution.

7 Use Cases

In this section we briefly present two use cases implemented with R-OSGi to
illustrate its potential to distribute complex applications.

7.1 R-OSGi Deployment Tool

The first use case is a tool to help developers to distribute an application by
dragging and dropping between a visualization of the modules of the application
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Fig. 5. Screenshot of the R-OSGi Deployment Tool

and a representation of the distributed nodes available. The tool has been writ-
ten as an Eclipse plugin and provides an overview of all nodes running R-OSGi
and where the application could be distributed. Through the R-OSGi capabili-
ties to make explicit connections, the developer can add new OSGi nodes that
are outside of the scope of service discovery. To distribute an application, the
tool takes an ordinary OSGi application as input. It first analyzes the services
and dependencies between the bundles. Then it graphically displays the archi-
tecture of the application as it would run on a single machine. The developer
can then drag and drop bundles into the different available nodes. An example
deployment with three bundles on two different nodes is shown in Figure 5. The
tool visualizes all dependencies arising from this setup and gives the user an
idea how many network communication is involved in a particular setup. Once
the user commits a configuration, R-OSGi does all the work of deploying the
bundles to the corresponding machines and creating surrogate registrations and
discovery listeners. The result is the original application running in a distributed
environment without requiring the developer to change a single line of code. The
developer has full control on how the application is distributed. The tool is only
intended to create static deployments. In the future, we will extend this tool to
seamlessly introduce module replication, and allow the end-user to profit from
fault-tolerance or load balancing by taking advantage of the distributed setup
and the loose coupling of components.

7.2 R-OSGi Tea Machine

As an example of how to use R-OSGi with small devices, we have implemented
a remote-controlled tea machine (along the lines of the Trojan Room coffee
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(a) Tea Machine (b) Connected
PDA

(c) Presentation

Fig. 6. R-OSGi-driven Smart Tea Machine

machine [31]). We took an off-the-shelf tea machine that is internally driven by
an Atmel AT89C2051 microcontroller with 2KBytes flash and built a mobile
controller for it using R-OSGi. Since the microcontroller is not powerful enough
to run Java and R-OSGi, we added a serial port to the board and implemented
a plain RS232 protocol to give out status messages and to control the brewing.
The tea machine is connected to and controlled by an external LinkSys NSLU2
(Slug) embedded linux device.

The tea machine can be spontaneously remote-controlled by PDAs. When
a user’s PDA comes within range of the machine, it can download the cor-
responding R-OSGi presentation (Figure 6(c)) and then control the machine
(Figure 6(b)). The controlling is done by method invocations on the service that
is running on the Slug. This service interacts with the machine over the RS232
link. The status information received from the tea machine is transmitted to
the presentation on the PDA as remote events. The current application allows
notifications about the status of the tea machine to be sent per e-mail and also
to a desktop machine by using R-OSGi over HTTP.

This use case demonstrates the potential of the concept of presentations. The
current limitation of the approach is that the problem of different ratios and
resolutions of the displays of mobile devices cannot be solved by using predefined
AWT panels as R-OSGi does now. We will address this in future work and plan
to extend R-OSGi’s presentations to support a more declarative way of defining
user interfaces that support adaptation to the end device.

8 Conclusions

R-OSGi allows distributed applications to be built using the same modularity
features of OSGi, and allows existing OSGi applications to be transparently
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distributed along module boundaries. R-OSGi maps partial failures of the dis-
tributed application as a whole onto local module unload events, and represents
traditional distributed systems support functions like service location as exist-
ing OSGi registration services. Experience has shown this novel approach avoids
the problems typically encountered by transparent distribution systems, and we
argue that R-OSGi does not present failure patterns to applications that could
not occur in the centralized case.

While R-OSGi exploits OSGi’s bundle concept to achieve this goal, it ad-
dresses significant further challenges. R-OSGi ensures consistency among shared
classes by the use of type injection, and uses dynamic client proxy generation to
allow even resource-constrained devices to provide services. R-OSGi is portable
to all J2ME CDC profiles, is code compatible with Java back to Java 1.2, and
runs entirely over a standard OSGi implementation. Despite these advantages,
it is remarkably lightweight: R-OSGi has a file footprint of just 120 kBytes,
slightly outperforms RMI in network tests, and is an order of magnitude faster
than UPnP. Consequently, we argue that R-OSGi is an attractive approach to
efficiently handle the complex structure of pervasive environments.
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Abstract. Argos is a microkernel based, small-scale or personal mid-
dleware container that is extendible through deployment of system ser-
vices. System services to support development of end user applications in
sensor network, pervasive, context-aware and mobile setting have been
developed and used to easily allow for application development of user
application in this domain. Argos also gives enterprise container type
support to user-centric application development, without the complexity
and limitations enforced by enterprise containers.

Annotations, notifications, reflection, dependency injection and hot
deployment are together used to create the Arogs run-time extensible
and adaptable personal container.

1 Introduction

Traditional application servers support business applications and have a focus
on scalability, integration, transaction management, safety and security [1]. Such
enterprise application servers are well suited for enterprise applications that
need this kind of system support. However, a large group of applications does
not fit this model. Their demands are different and possibly highly specialized.
One approach to create such applications is to start from scratch and integrate
all needed services in each application. Typical such applications are found in
embedded systems, in sensor networks, in context aware systems, and in personal
or small-scale systems, often with the mobile phone or the laptop computer as
the end user terminal.

Argos supports these kind of applications. Some requirements in these settings
are similar to requirements that appear when developing enterprise applications.
Examples include support for persistence (database), general web support (web
server), and support for web service interface. Other requirements are domain
specific or linked to the fact that such applications can be user-centric. One
such important example is access to local resources (file system, sensors). An-
other observed aspect is that not all applications need the same system support:
”one-size-does-not-fit-all”. This observation led to the design and implementa-
tion of Argos, an expandable small-scale or personal application container with
a minimal microkernel core1.

1 We will refer to the ”microkernel core” as the ”core” in the rest of the text.

R. Cerqueira and R.H. Campbell (Eds.): Middleware 2007, LNCS 4834, pp. 21–40, 2007.
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The minimal Argos core can be extended for different application domains.
The development of Argos applications should focus on the actual logic of the
application and expect specialized support from the container at run-time. Argos
supports rapid development of specialized applications in supported application
domains. Argos is an extensible application server. Its minimal core supports
life-cycle management and a few other core services. In a given setting this core
is extended with system services implementing support needed by its applica-
tions. Such system services can provide persistence, bindings (to be able to bind
to information sources), web services, and so on. The application programmer
develops application components as Java objects (POJO, Plain Old Java Ob-
jects) [2]. Such components can specify application server and system component
dependencies using annotations [3]. Examples are annotations specifying that a
given method of the object should be invoked every 10th second (lifecycle) and
that the current value of a given attribute of the object should be stored in a
database (persistence).

The provided specialized application support makes it possible to create do-
main specific container configurations with Argos. Since Argos supports user-
centric and small-scale systems, its users often refer to the Argos container as
a personal container. In short, Argos is both a personal container and it can be
used to create domain specific container configurations.

2 Argos Core

Argos is a container based middleware system and the Argos core is the mini-
mum configuration that defines the Argos container. The Argos core defines a
service and component model, including component lifecycle handling, implicit
instrumentation (for monitoring and control) and a set of supported annotations.
In the default configuration of Argos, a service is a collection of components,
web pages (one possible presentation), desktop widgets (e.g. Yahoo! Widgets,
another possible presentation), mobile applications (j2me or mobile cf .net ap-
plications), instrument panels (to monitor and control the service), and external
wrappers (not discussed in this paper). An Argos component is a POJO class
with additional meta information expressed using Argos supported annotations.
The annotations are part of the default programming model offered to system
services and user application programmers. The set of supported annotations
can be increased through deployment of new system services. The Argos core
container allows deployment of system services and user applications. System
services are used to augment the intrinsic capabilities of the Argos core.

A system service implementation can be replaced with a different implemen-
tation providing the same kind of service. This can be used to replace a system
service implementation with an improved implementation. It can also be used
to replace the service with another implementation better supporting the cur-
rent application needs and the current environment or setting of the application
(adaptation).
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User applications depend on the functionality of the Argos core and the de-
ployed system services to create end user applications. The Argos core supports
”Hot deployment” of system services and user applications. Argos deployment
is described in more detail in section 3.

Figure 1 gives an overview of the Argos core with the default set of system
services. It is of course possible to start Argos with no extra system services,
but the default set of system services represents an often used configuration.
Jetty [4] is an embedded web server, and Hibernate [5] and Derby [6] together
provides persistence (Derby is a database and Hibernate is an object/relational
persistence and query service). The web service system service provides web
method (SOAP[7] and XML-RPC[8]) access to component methods. A more
detailed description of the different system services will be given in section 4.

Fig. 1. Argos Core overview

The annotations supported by the Argos core are listed in figure 2.
The annotations that are supported by the Argos core are as the figure shows

divided into the following categories:

Lifecycle. Annotations to control the component’s lifecycle. They are used to
annotate functionality performed in a timely manner (e.g. every 10th sec-
ond), or when a component is created or destructed

Notification. Annotations to describe notifications and to handle sending and
receiving of notifications (e.g this function will be performed when the given
notification is received).

JMX related. Annotations to declare and describe instrumented methods and
attributes.
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Fig. 2. Argos core annotations

Injection. Annotations for dependency injection (to get access to core and sys-
tem service infrastructure). Dependency injection is a design pattern that
decouples the client component from the system service implementation com-
ponent [9,10].

Annotations in Argos are standard Java annotations. Using an annotation
does not directly affect a component’s semantics, but they do affect the way an
Argos component is treated by the Argos container and the deployed system
services, which can in turn affect the semantics of the instantiated component.
Annotations in Argos are inspected reflectively at deploy time by the Argos core
and by all the previously deployed system services.

The following example shows how the Weather service POJO component uses
the @Init and @Execute annotations:

public class Weather {
// Instruct container that this is the Weather components init method
@Init public void init() {
...

}
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// Instruct container to call this method at 30s intervals
@Execute(30) public void execute() {
...

}
}

The Argos core uses reflection to identify the annotations supported by the
Argos core and handles them appropriately when the service is deployed to the
container. All annotations are handled before the component is started.

3 Argos Deployment

One of the main functions of the Argos core is to provide the ability to deploy
system services and user applications. System services and applications must
be presented to Argos in a Java archive file (jar) and the content of the jar
file must follow the Argos deployment specification. Basically, the specification
defines that deployment meta information needs to be included in a separate de-
ployment descriptor (deploy.xml file) and that service content that is not POJO
components needs to be added in designated folders in the jar file. In the de-
ployment descriptor it is possible to express the following:

– Service name and version
– Service dependencies – references to other services that have to be deployed

for this service to work properly
– List of components that the service contains (including possibility to express

instantiating of multiple instances of the same POJO)
– Component dependencies
– Listen to properties, i.e. other components this component receives noti-
fications from
– Attribute configuration, i.e. start values for configurable attributes

Argos will store the meta information associated with a service in core objects.
This meta information is available to system services using dependency injection
annotations. Before any components are instantiated, all service dependencies
are checked and validated, errors are logged and the service is not started if
the dependencies are not met. The following example shows the deployment
descriptor for the web service system service2:

<service name="!!Webservices" version="1.0">
<depend on="!!Jetty6"/>
<deploy>
<component name="!!XML-RPC" class="argos.bangbang.xmlrpc.XmlRpc">

<listen to="ComponentManager" />
</component>
<component name="!!Axis" class="argos.bangbang.axis.Axis">

<listen to="ComponentManager" />
</component>

</deploy>
</service>

2 System services in Argos is always deployed in jar files with names that starts with
two exclamation marks (!!). This has also led to the convention that system service
names starts with two exclamation marks.



26 A. Munch-Ellingsen, D.P. Eriksen, and A. Andersen

System services (as theweb service) can listen to notifications emittedby theAr-
gos core (in this case, the core component ComponentManager). In this way they
can perform their necessary actions associated to events emitted by the core. The
web service system service will for example inspect all deployed components for
@Webmethod annotations when the core emits the SERVICE STARTED notifi-
cation. If such annotations are found, their associated methods will be added as
callable web methods (i.e. accessible through XML-RPC and SOAP calls).

4 System Services

A system service is a collection of components that augment the intrinsic func-
tionality of the Argos core. System services are the pinnacle of Argos elasticity.
Typically a system service consists of definitions for new annotations and compo-
nents that semantically handle the functionality related to the new annotations.
The web services system service is a good example. The general idea for this
service is to make it easy for an application programmer to express that he
wants to create a web service. The easiest way to express this would be to allow
the application programmer to simply tag a method in a component’s code in
order to specify that the method shall be offered as a web method (similar to
the WebMethod attribute in C#). It should be possible to use both XML-RPC
and SOAP to invoke the newly created web method. The Argos web service,
@Webmethod annotation allows the application programmer to do just that. If
you tag a method in a component that is part of a service with the @Webmethod
annotation, that method is automatically exposed as a web method by the Argos
container (i.e. accessible through XML-RPC and SOAP calls).

The web service system service (!!Webservice) first defines the new annotation
(@Webmethod). Secondly, it contains the necessary code to reflectively find all
@Webmethod annotations in subsequently deployed user components. Thirdly,
it interacts with the Argos core (using notifications and dependency injection)
and the Jetty web server system service to create the glue between incoming
web service calls and the appropriate method in the instantiated component.
Figure 3 illustrates the concept. The figure shows the chain of events when a
user application (UserApplication.jar) that depends on the web service and Jetty
system services is deployed to the container. First (1) the Argos core emits the
SERVICE STARTED notification. The notification is received by the web ser-
vice system service and it will use reflection (2) to find all (if any) @Webmethod
annotations in all the deployed POJOs in the newly deployed user application.
When it finds @Webmethod annotations it registers the web method with the
Jetty system service (3). The web service system service uses dependency injec-
tion to access and update meta information about the user application.

Using annotations, notifications, reflection and dependency injection in this
manner allows for dynamic deployable extensions to the Argos core.

The possibility to add system services makes it possible to create Argos config-
urations that fit specific needs. Although Argos in many ways resembles Enter-
prise Containers, the focus has been different. Enterprise containers need to be
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Fig. 3. Argos System Services

able to handle thousands of simultaneous requests to services that circle around
legacy data. Our focus has been to provide a similar programming model for the
creation of context aware, embedded or user-centric services that will be used
by one or a handful of users. The design of Argos reflects that services are to be
provided to a small number of simultaneous users. Argos allows deployed services
to access the file system, open incoming and outgoing socket connections and
to create threads. Enterprise systems usually do not allow such actions since it
will make it extremely difficult to handle scaling and safety in a sensible manner
(open connections to sockets or files and multiple threads makes it difficult to
put components in a waiting pool). Argos components can with no restrictions
behave in the same manner as POJOs running directly in a JVM. Argos adds
expressive and powerful annotations to handle complicated tasks that are often
needed when creating new services.

5 System Service Examples

System services can come in many shades. In the following subsections we will
briefly describe a handful of system services that we have created at the time of
writing.

The typical user application we have created uses sensors of some kind to
gather context information. Sensors are often connected to a user’s mobile phone.
Typical sensors we have used are GPS, Step counters, temperature sensors, etc.
In order to make it easy to use information from sensors in an Argos user ap-
plication we have created a SMS system service, a Sensor system service and a
TCP system service. The SMS service makes it possible to send and receive SMS
message from a user application in Argos. The Sensor system service makes it
possible to automatically connect new sensors to a users mobile phone (it also
uses the SMS service for initial interaction with the phone’s sensor framework
client).



28 A. Munch-Ellingsen, D.P. Eriksen, and A. Andersen

You will of course only deploy system services that your user application
needs. In this way it is possible to create lean middleware support only for the
features needed for your user applications. The result is an embedded or personal
middleware system that suits your needs.

5.1 Sensor Framework System Service

The Argos Sensor framework actually consists of three separate parts. The first
part is the Argos sensor system service which is deployed to the Argos container.
The second part is a sensor configuration tool. The sensor system service han-
dles incoming announcement requests from the sensor configuration tool. The
sensor configuration tool is a standalone Java graphical tool used to describe
the characteristics of a sensor. The description given by the user is transformed
into a sensor configuration expressed as an XML document. When a sensor ”an-
nouncement” is done from the tool, this description is transferred to the Argos
Sensor framework system service. The sensor framework system service acts on
the newly announced sensor configurations and handles all the sensor manage-
ment needed to configure and start the sensor at the remote sensor location (i.e.
connecting to the sensor, reading sensor data and transferring results back to
the sensor framework system service. The third part of the sensor framework
is a sensor host (remote) client program. The client program interacts with the
Argos sensor system service to get the sensor configuration and download sensor
specific plugins. The client program also automatically configures and starts the
sensor and sends sensor data back to the Argos sensor system service as XML
documents according to the Argos sensor data XML format. Currently we have
only implemented a Windows Mobile 5.0 client program and a Java Windows
client program. The Windows Mobile 5.0 client allows mobile phones with this
operating system to act as Argos sensor framework clients. The Java Windows
Client program allows Windows PCs to act as sensor framework clients (for ex-
ample to manage USB or RS232 connected sensors). The typical scenario in the
mobile setting is to connect Bluetooth or IR sensors to the mobile phone and
send the collected sensor data to Argos using either a web service or TCP/IP
interface. Once the Windows Mobile client program has been installed on the
mobile phone, arbitrary Bluetooth or IR sensor may be connected to the phone.
The installation, configuration and management of new sensors are done without
touching the phone itself (i.e. remote management) [11].

5.2 TCP System Service

The Argos TCP/IP system service provides a tcp/ip communication abstrac-
tion for Argos user applications. It utilizes a scalable architecture based on the
Java Non-Blocking IO libraries in order to provide a high performance con-
nectivity framework that can support at least hundreds of simultaneous tcp/ip
connections. The service is primarily suited for Argos user applications that need
server functionality, but it also provides tcp/ip client connectivity. The client and
server interface that is exposed to Argos applications is identical and based on
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a stream abstraction. Argos applications either read from the stream or write
to the stream after a tcp/ip connection is established. The following illustrates
usage of this service.

// Inject handler for the tcpService
@Component("!!TCPBinding") public TCPBinding tcpService;

// Use handler to create a server, connectionAccepted is called when clients connects
tcpService.addService(PORT, new ClientHandler());

// When clients connects, this method in the components ClientHandler interface
// is called. ClientHandler is an interface that is implemented by the component
// Note: read is blocking, write is non blocking

public void connectionAccepted(Connection con){
TCPStream stream = con.getStream();
byte[] buf = new byte[10];
stream.read(buf);
stream.write(buf);

}

5.3 Small Messaging Service (SMS) System Service

This service provides an easy to use abstraction (API) to send and receive SMS
messages to/from mobile phones from Argos services. The following example
shows how this system service is used to send a SMS message:

// Inject reference to SMS system service
@Component("!!SMSservice") public SMSservice smservice;
...
// Use the SMS system service to send an SMS
// The parameters are the phone number and the message
smservice.sendSMS("90914546", "How are you?");
...

This system service does not introduce any annotations. As the example
shows, user applications can use dependency injection annotation, defined by
the Argos core, to get a handler to the SMS system service component. This
handler can then be used to send and receive SMS messages by invoking meth-
ods in the system service component.

5.4 Web System Services

Currently we have developed three web related system components. The web ser-
vice system service component has already been described. A web server (Jetty)
is also deployed as a system service in Argos and in addition, support for Axis
(SOAP) is included as a separate system service component (in the web service
system service). The following examples shows how a user application compo-
nent creates a web method. The web method can be reached using SOAP or
XML-RPC when the component is deployed in the Argos container.

public class Something {
@WebMethod public String hello() {
return "Hello, world!";

}
}
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5.5 TwoWay Notification System Service

The TwoWay system service is a service that makes it easy to establish two way
notification listening relationships, meaning that a service A listens to events
submitted from service B and vice versa. The TwoWay system service lets either
end establish the two way connection and avoids the problems of synchronizing
the establishment of a two way connection between the two ends. This system
service is useful when creating distributed services where user applications in
different Argos containers need to cooperate. The following example shows how
this system service is used to set up two way notification listening:

@Component("!!TwoWay") public TwoWay twoWay; // Inject reference

@ComponentMeta public ComponentMetaInfo meta; // Inject own meta info from core

@Init public void init() {
...
// Set up mutual notification listening with the Manager component at host
twoWay.setupTwoWay("Components:name=Manager", host, meta.getMyName());
...

}

5.6 Derby and Hibernate System Services

Support for persistence is handled by two system services components, the Derby
and Hibernate system service components. Derby is an SQL database and Hi-
bernate is an object to entity relationship transformation tool. We have also
experimented with a separate persistence system service that makes it possible
to use annotations to express that component attributes are to be stored in the
embedded database. We are currently considering using Hibernate Annotations
instead.

5.7 JMX Connector System Service

The JMX Connector system service opens an RMI port to the Argos MBean
server. When the RMI port is open, the JMX Connector system service makes
it possible for remote monitoring and management of the Argos container and
its deployed system services and applications. We have also developed a JMX
browser and service monitoring and management tool specific for the Argos
container but any JMX compliant monitoring and management tool may be
used. The special thing about the JMX browser (called Argus) is that it can
use service specific instrument panels to give advanced (graphical) insight into
Argos and its system services and user applications. Figure 4 shows Argus in
use. The left side shows ordinary JMX browsing and the right side shows a user
application specific instrument panel for the satellite ground station service. The
telemetry input from a satellite ground station is visualized in a user application
specific instrument panel. The satellite ground station monitoring service is not
discussed in this paper.
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Fig. 4. Argus JMX monitoring and control tool

5.8 Service Management and Distribution System Service

The service management and distribution system service is a framework to pro-
vide distribution of system services and user applications in Argos. A service
provider creates a remote repository for their services and applications. These
services and applications then become available to their end users through the
service management and distribution system service. End users can download
new services and applications or update their existing services and applications
when an update is available.

The service management system service provides help in managing the con-
tainer its deployed system services and applications. The end user can inspect
meta data associated with each service, and configure these to fit their own
needs. In addition, service management offers start, stop and updating (using
service distribution) of services and applications.

5.9 Transaction Management System Service

An experimental transaction system service for Argos has been developed. The
transaction system service supports flexible transaction processing by providing
the possibility to support an extensible number of transaction managers. The
current version of the experimental transaction system service uses two con-
currently running transaction managers (DB-TM and WS-TM). The DB-TM
(Database Transaction Manager) supports traditional ACID transactions imple-
menting a two-phase commit protocol. The WS-TM (Web Service Transaction
Manager) supports long-running transactions with relaxed atomicity following
a compensation-based scheme. Based on the requirements from the application,
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one of them is selected to control the execution of an issued transaction. The
Transaction Layer integrates both database sources and Web Services by imple-
menting an abstraction layer facilitating the registration of, and the access to,
the various sources.

6 Implementation Details

The Argos core has been developed in Java 5. All functionality in the Argos
core is realized as a set of JMX DynamicMBeans [12]. JMX defines an archi-
tecture for management of distributed resources (local or remote). Resources
must be instrumented to be manageable. In Argos, the instrumentation is done
by associating MBeans to resources. A very good overview of JMX related to
development of middleware containers is found in section 2 of [13].

The JMX technology also provides a component-based architecture that makes
it easier to develop a monitored and manageable middleware system (as com-
pared to starting from scratch). Argos extends the JMX component model with
elements related to component and service metamodels, component lifecycle and
component dependency handling.

The Argos core instantiates all system services and user applications with a
DynamicMBean proxy associated to them. This means that all the major func-
tionality in the Argos core, all Java classes in system services and all Java classes
in user applications are instantiated with associated DynamicMBean proxies.
This makes it possible to monitor and manage the Argos core, the system ser-
vices and user applications through JMX.

System service or user application programmers are not exposed to JMX or
MBeans, meaning that Java classes in system services and user applications
does not have to implement any of the MBean interfaces. The component model
exposed to application programmers is plain Java (with the possibility to add
Argos core and system service specific annotations). Using the proxy pattern
together with reflection and explicitly expressed meta-data is very powerful as it
makes it possible to turn any java object into a DynamicMBean at run-time. The
reflective inspection done by the DynamicProxy is the first of a series of reflective
inspections performed on newly deployed components. The Argos core performs
another inspection just prior to activating the new component. This run is done
to collect information given by lifecycle annotations. In addition, potentially all
deployed system services may inspect every newly deployed component to search
for annotations that are part of that system services supported annotations (if
any). The system service will also perform the actions (service) associated with
the annotation. Dependency injection is just a special type of annotation and
may be handled in all the reflective inspection passes (depending of what you
would like to inject). Figure 5 illustrates the situation when a POJO has been
deployed to the Argos container.

Since JMX and specifically MBeans are intentionally not exposed to the appli-
cation program, the Argos container creates a dynamic MBean acting as a proxy
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Fig. 5. MBean server, DynamicProxy and POJO relationship

to the POJO. The proxy MBean and the Component runner MBean handle all
interaction between the MBean server and the POJO.

7 Example Applications

The Argos container has evolved as a result of needs/requirements that we have
observed when developing software in the areas of:

– Applications related to sensor networks
– Context aware applications including usage of several types of sensors as

context information sources
– Personal or small scale deployed services, i.e. services to one or a small

number of persons
– Personalized services in a mobile phone setting, i.e. applications available

using the mobile phone as end user terminal and sensors related to a person

Many of these applications follow the basic Input, Processing, Output pattern.
The Sensor framework system services has been developed for Argos to make it
easy to include sensors of different types as input sources for Argos applications.
Currently, processing is usually performed in processing components, but we
have ongoing work to include rule based processing as a separate system service.
Output can easily be done to a database or to external endpoints through web
services. Visualization of output can be done through GUI, Widgets or instru-
ment panels. Some of the user applications that we have developed are briefly
explained in the subsequent sections.
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7.1 The Weather Service

This service consists of a very simple component that reads sensor data from
weather instruments. The data is visualized in a service specific instrument panel.
The instrument panel (viewed in the Argos JMX monitor) is shown in figure 6.

Fig. 6. The Weather service instrument panel

The weather service uses the TCP system service to bind to external weather
sensors. The sensor values are stored in a database using the Hibernate and
Derby system service. The service specific instrument panel is the only GUI for
this service and the JMX Connector system service is used to make it possible
to remotely connect to the Argos container that runs the weather service.

7.2 The XUfo Service

Automatically piloting of a flying radio controlled helicopter (called XUfo) using
Bluetooth accellerometer and gyro sensors. The Argos components in this service
read sensor data approximately every 10 ms, use Kalman filters [14] to adjust
the readings and then compute control signals which are transferred back to
the helicopter. The service also includes an instrument panel that visualizes the
helicopter in a virtual 3D room. Figure 7 shows this instrument panel.

The XUfo service uses the Sensor Framework system service to connect to the
Bluetooth sensor package on the helicopter (through a USB Bluetooth dongle).
It also uses the Argos core notification annotations to bind the input and pro-
cessing POJO components together (the input POJO emits notifications when
new sensor readings are available).
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Fig. 7. XUfo service instrument panel

7.3 Lifestyle Services

Together with the Norwegian Center for Telemedicine we are developing a set of
services that we have called ”Lifestyle Services”. In these services we are using
sensors to read end user biometrics (for example Blood Glucose level, heart
rate, activity level etc.). The service uses information from the sensors combined
with a user profile and input from the end user to utilize behavioral change
mechanisms in order to try to affect the end user’s lifestyle. The sensors are
connected to the end user’s mobile phone. The Argos Sensor Framework System
Service is used to connect sensors and to configure the transmission of sensor
data from the mobile phone to the Argos container. Data from sensors is stored
in a database using the Hibernate and Derby system services and is further
processed using rules and processing components to calculate the interaction
with the end user in order to attempt to change the end user’s behavior.

7.4 Experience Sampling Service

The method called Experience Sampling Method(ESM) [15] aims at captur-
ing immediate experiences from participants in a survey. Combining ESM with
mobile technology gives the opportunity to design surveys that are to capture
immediate experiences.

Using the features of Argos, a software tool for generating ESM based surveys
has been designed and implemented. This tool, named esmDesk, is deployed in
Argos as a user application and provides an experimenter with a graphical user
interface where ESM based surveys can be created, modified and distributed to
a set of mobile devices. Distribution of surveys, which are expressed in XML,
is done using web services. When the experimenter has finished creating the
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survey using esmDesk, a set of participants is selected and esmDesk notifies
the participants’ mobile phones by sending an SMS message. The platform for
running surveys on the mobile phone is called esmMobile and it receives the SMS
message notifying that a new survey is available. Using web services esmMobile
downloads the XML representation of the survey from esmDesk, interprets it
and starts running the survey. After all the elements of the survey have been
answered by the participant, answers are sent back to esmDesk, again using web
services. The results are store in a database using Argos persistence support.

7.5 Others

Some other experimental services developed using the Argos middleware or some
of the preceding versions of Argos is very briefly presented here:

Herding. The electronic shepherd system provides farmers with information
describing the state of their animals. The information collected was used by
a back-end system and generated various map views with associated animal
alarms. GPS, temperature and motion sensors were used.

YPIV. Your Personal Infotainment Vault service will serve content to, for ex-
ample, your mobile phone and to others that you decide to share content
with. The content you manage in your YPIV can for example range from: Im-
ages, Music, Movies, Context information, PIM services, Ring tones, MMS
content, Documents etc. The ”sensors” in this service were radio station
rippers and other content ingestion ”sensors”.

FiFamos. The main problem in a fish farm is that most of them are without
supervision for a long time while they are exposed to changing weather
conditions. FiFaMos is an advanced surveillance and alarm system for sea
farms. GPS, camera, temperature, wind, wave, current, water quality and
food level sensors were used.

8 Evaluation

Argos is evaluated by demonstrating that it matches the needs of the target
application domains and by comparing it with other related projects.

8.1 Usage

In section 7 we have described some of the applications developed using Argos.
Argos (including earlier versions of Argos called COMS and APMS) has been
used to develop demonstrators internally at the lab and with external partners.
Currently several projects of external partners have decided to use Argos in
both research projects and in the development of prototypes and demonstrators
of new services and products (including Norwegian Center of Telemedicine and
Telenor R&I, Telenor is a Norwegian telecom company).

The core functionality of the Argos core (service and component model, life-
cycle, notification, instrumentation and dependency injection) and functionality
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provided by deployed system services makes it easier to quickly develop new ap-
plications. The programmer can focus on the core functionality of the
application.

The Weather application, the XUfo application and the Lifestyle applications
described in section 7 all show how easy it is to integrate sensor data in an Argos
application. The Argos core can be easily extended with new system services, and
the Sensor framework system service (see section 5.1) matches some of the needs
of these applications perfectly. In the Weather service the weather sensor data
are collected, stored (see persistence provided by the Hibernate system service
in section 5.6), and presented (see JMX Connector system service in section 5.7)
with little effort from the application developer.

The XUfo application demonstrates that Argos can also be used in a (near
real-time) control system. The efficiency of the Argos core and its notification
support makes it possible to pilot a flying object with gyro and accellerometer
sensors and a feedback loop through the Argos core that includes processing,
visualization, and control signal computation (see figure 7).

The Experience Sampling application uses the persistence support provided by
the Hibernate system service to easily store data collected from several respon-
dents. The requirements of the Experience Sampling application also resulted in
a new system service for SMS (Small Messaging Service). This system service
are used in completely different applications that also includes mobile phones
and SMS messaging (i.e. the Lifestyle service).

8.2 Related Work

Prism-MW [16] defines its setting as ”programming-in-the-small-and-many”.
They claim to have a flexible, efficient, scalable and extensible platform for this
setting of small, resource constrained, and highly mobile computing platforms.
Flexibility is achieved in a similar way as in Argos by providing a core including
a component model and events. However, the actual platform is very different.
Connectors are an important part of the Prism-MW core and their task is to
route events. Each component can be attached to any numbers of connectors,
and each connector can serve any numbers of components. This flexibility is
also used for system reconfigurability. Their focus on scalability and efficiency
are not found in Argos and Argos extensibility can therefore not be compared
to Prism-MW. In Prism-MW extensibility is provided by extending the core
programming model (extending the connector class, the component class or the
event class). Argos is extended by deploying new system-services at run-time.
Hot deployment makes it possible to extend (and update) Argos at run-time.
Argos provides more features for lifecycle support and system services and is
aimed for different application domains.

JBoss [13] is a feature rich application server platform. Similar to Argos it has
a core and is extended with system components to provide different system ser-
vices. The difference here is that JBoss supports complex enterprise applications
while Argos supports a completely different set of applications. Both the size
(memory print and lines of codes) and the complexity of these two applications
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platforms differs a lot. We also argue that complexity for the application pro-
grammer is higher when using JBoss (or any other EJB application server) than
using Argos. This is due to the focus on enterprise applications where more con-
trol is moved to the application server (obviously for efficiency and scaling, but
also for safety and isolation). Another important difference is that in Argos, the
programmer has access to local resources in the same way as any desktop appli-
cation that is implemented using Java. This is important for many applications
in the application domains targeted by Argos.

Gaia [17] and Mobile Gaia [18] is tied to the concept of Active Spaces where
physical and computational infrastructure are merged into an integrated habitat.
The focus is implicit support for resource awareness (discovery), multi-device
interaction, context sensitivity, mobility, run-time adaption and user-centrism.
This is very different from Argos. Argos could probably be used to develop
this kind of platform by providing system services matching the functionality of
Active Spaces. In Argos the term user-centric is used to describe applications and
services accessing and using resources close to or related to the user (personal
assets or private sensor data or similar). In Gaia this is used to describe the need
of the application to adapt to the user (his context and preferences).

Another group of related platforms are MIDAS [19], JAGR [20], The Collective
[21] and [22]. All of these platforms tries to solve the problem of (self) adaptive
containers. In Argos it should be possible to add context aware system services
that has similar approaches, but this is not part of Argos core.

9 Conclusions

The main contributions from the Argos project is that it gives useful (for this do-
main) enterprise container type support (e.g. component model, lifecycle support
and persistence) to desktop and user-centric application development, without
the complexity and limitations enforced by enterprise containers.

This grants developers of desktop and user-centric applications the advantage
of tailored and advanced, flexible and extensible, middleware support. The result
is the possibility to rapid develop feature rich applications that integrates and
aggregates information from different sources and presents the results in different
settings. Information sources can be sensors, user input, filesystem, databases,
web services, and so on. The aggregated and processed data can in turn easily
be presented as web pages, desktop widgets, web services, instrument panels or
ordinary graphical user interfaces. The collected, aggregated and processed data
can be easily persisted or propagated for further processing by other components.

The Argos middleware provides a leaner platform for development of desktop
applications, demonstrators, prototypes and experimental middleware develop-
ment than what would be the case if using for example the JBoss application con-
tainer as a basis. The Argos core and default system services (Hibernate, Derby,
Jetty, JMX Connector, web service) together counts 4,700 physical source code
lines using SLOCCount[23]. In comparison, the JBoss microkernel alone counts
10,844 and a complete Jboss installation contains 630,443 physical source code
lines using SLOCCount.
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Currently the performance of Argos is beeing tested. Some preliminary tests
have shown that the deployment time (including dependency testing) of new
components grows linearly with the number of components deployed (tested up
to 50,000 components). Tests have also shown that notifications are an efficient
way to interact between components, Argos core, and system services. Depen-
dency injection is not as efficient as notifications (probably because it uses re-
flection). The results have shown that usage of dependency injection takes three
times longer than notifications. The most efficient way is ordinary method calls,
but this differ from the two other approaches since it is not possible between
components in different Argos containers.

The Argos middleware and Argus JMX monitor and all system services we
have developed is stable and available under a BSD licence (open source soft-
ware). More information about Argos can be found here:

http://argos.cs.uit.no
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padres. Compadres offers the following advantages: 1) Simple component
definition in Java that abstracts away RTSJ memory management com-
plexity; 2) System assembly from components by connecting ports that
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1 Introduction

Distributed, real-time, embedded (DRE) systems pose significant challenges for
software developers. As embedded systems, they typically have limited process-
ing power and memory; as real-time systems, they have timing and predictability
constraints; and as distributed systems, they must be able to communicate across
heterogeneous platforms. Developing software that meets all of these constraints
is costly and time-consuming: each application is typically custom-coded from
scratch using C/C++ programming language. The limited space and processing
power of DRE systems requires lean, specialized custom code, while the thread-
ing and memory control needed for real-time requirements requires highly-skilled
programming.

By contrast, two existing technologies currently ease and speed development
of non-DRE enterprise systems. First, component technology provides effective
reusability for software applications for enterprise systems, allowing assembly of
pre-coded, pre-tested subsystems into systems, saving both time and money for
system development. Second, Java facilitates software development because not
only is it relatively easy to use, eliminating complex memory management, but
it also offers a large programmer base, library support, platform independence,
and a better memory model that minimizes problems with buffer overruns and
illegal references.

Unfortunately, the advantages of both component frameworks and the Java
programming language have been unavailable to DRE systems developers. Cur-
rent component frameworks incur too much memory overhead, decrease effi-
ciency, and fail to support the real-time predictability requirements needed for
DRE systems. Furthermore, Java cannot be used for real-time systems because
its under-specified thread semantics and automatic memory management cause
unpredictability.

In general, two complementary approaches have been proposed to reduce the
unpredictability of Java– 1) the Real-Time Specification for Java (RTSJ) [1] and
2) real-time garbage collection [2,3]. Real-time garbage collectors (RTGCs) can
be unsuitable for use in hard real-time systems because they cause an inherent
minimum latency and large execution overhead [4]. It is also necessary to accu-
rately predict parameters such as average and maximum allocation rates when
using a RTGC. On the other hand, The RTSJ adds memory and thread models
that enable predictability for real-time systems, but loses much of the ease of pro-
gramming of Java. We have therefore developed a lightweight component model
for RTSJ, called Compadres, that brings the advantages of Java component de-
velopment to DRE systems, while simultaneously simplifying the use of RTSJ
and providing real-time predictability. Compadres components are fine-grained
object-oriented software artifacts that communicate via ports ; applications can
be developed by connecting these ports.

Compadres achieves ease of use, ease of testing, and a high level of reusability
in the following ways:
– Simple component definition in Java: Compadres is a simple com-

ponent model that hides the programming difficulty of the RTSJ scoped
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memory and threading model and yet is powerful enough to define most real-
time systems.1 The component implementations are separated from their
threading model, allowing developers to implement the business code for
the components using Java with some restrictions but without having to
deal with the RTSJ memory management rules. Furthermore, any compo-
nent may be used as an application process. This feature can also be used
to convert a component into a stand-alone application. At a higher level,
applications may be distributed in a network.

– Automatic generation of scoped memory architecture: The Com-
padres compiler (henceforth compiler) processes a user-defined component
composition language file to generate the scoped memory architecture re-
quired for the application to run based on the RTSJ scope access rules. The
compiler thus abstracts away the RTSJ memory management code from the
user.

– Simplified system assembly through composition of components:
Compadres provides hierarchical composition and extension; i.e., compo-
nents may be incrementally composed into larger components. This feature
facilitates incremental testing of components as well as final system testing.

– Simple communication model: Components are composed by connect-
ing ports that communicate through strongly-typed objects, providing se-
mantic checking at compile time.

The remainder of this paper is organized as follows: Section 2 presents the
Compadres component model and describes how it abstracts RTSJ program-
ming challenges. Section 3, presents a simple Real-time CORBA ORB built us-
ing Compadres and compare its performance to RTZen, our Real-time CORBA
ORB for RTSJ [5]. Section 4 presents the related work and section 5 presents
conclusions and future work.

2 The Compadres Component Framework for RTSJ

The process of developing an RTSJ application using Compadres is divided into
two phases (see Fig. 1):

1. Component Definition: In this phase, the application programmer defines
the components and their ports in an XML file following the Component Def-
inition Language (CDL). The CDL file is compiled to generate the skeletons
of the implementation classes of the components and the message handlers
associated with the components’ In ports. The programmer adds the imple-
mentation of the component and message handler classes using plain Java.

2. Component Composition: In this phase, composite components and con-
nections among components are specified in an XML file according to the
Component Composition Language (CCL) to form the application. The pro-
grammer uses the Compadres compiler to validate the CCL file and generate
the RTSJ glue code needed to run the main application.

1 The components may also use an RTSJ-safe library such as Javalution
(http://javolution.org/).
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Finally, the Java compiler is used for compiling the implementation classes of
components and message handlers along with the generated RTSJ glue code to
build the RTSJ application. The rest of the section describes in detail the phases
for developing a Compadres-based RTSJ application.

Component 
Implementation

(Java)

Compadres 
Compiler

Component 
Skeletons and 

Message Handler 
Classes (Java)

RTSJ Glue Code

RTSJ ApplicationJava Compiler

Component 
Definition File

 (XML)

Component 
Composition File

(XML)

Generated Code

Programmer Code

Fig. 1. Generation of a real-time Java application using the Compadres framework

2.1 Component Definition

The application programmer writes the CDL file in XML to define the compo-
nents used in the application as well as the ports of each component. An example
of a CDL file is presented in Listing 1.1. The definition of a component comprises
the name of the component and the set of its ports. The definition of a port in-
cludes its name, its type, and the Java type of the message that is communicated
through the port. Ports may be input ports, which receive messages or output
ports, which send messages. Thus, the type of a port may be set to In or Out
in the CDL file; the direction is specified in relation to the component itself. In
particular, the port types and message types specified in the CDL file will be
used to by the Compadres compiler to validate the CCL file.

The Compadres compiler parses the CCL file and generates the following Java
skeleton classes for each component: 1) a component class and 2) one message
handler class per In port. The component skeleton class extends the Component
class, which contains the addInPort(), addOutPort(), and start() methods.
The addInPort() method associates a message handler class with the corre-
sponding In port, and the start() method is an empty method that may
be implemented by the programmer to initialize the component. Each message
handler skeleton class extends the MessageHandler class, which contains the
process() method. The process() method accept one message object (of any
Java datatype) as a parameter. When a message is sent to an In port, the cor-
responding process() method is called to handle the incoming message. The
process() method of each message handler skeleton class is initially empty, so



Compadres: A Lightweight Component Middleware Framework 45

that the application programmer needs to implement it. The user may allocate
objects using new in the implementation of component and message handler
classes but does not need to determine which RTSJ memory region to use.

<Component>
<ComponentName>Server</ComponentName>

<Port>
<PortName>DataOut</PortName>
<PortType>Out</PortType>
<MessageType>String</MessageType>

</Port>
<Port>

<PortName>DataIn</PortName>
<PortType>In</PortType>
<MessageType>CustomType</MessageType>

</Port>
</Component>

<Component>
<ComponentName>Calculator</ComponentName>
....

</Component>

Listing 1.1. Component Definition Language file

2.2 Component Composition

A vital characteristic of Compadres components is that they are hierarchically
composable. The Component Composition Language (CCL) file, written in XML
format, allows programmers to construct an application from components. The
CCL file is written once per application and defines the connections between
components, thread priorities, and thread assignment to the components. The
CCL decouples the definition of the individual components from their configu-
ration and interaction, thereby enabling component reuse. The component im-
plementations themselves are unaware of the runtime properties; the compiler
handles the assignment of the components to memory regions and threads.

Connecting Components via Ports: Components are composed by con-
necting their appropriate ports, and the port connections are defined in the
CCL file; Out ports must be connected to In ports, and the message types (ob-
tained from the CDL file) must match exactly. However, adapter components
may be introduced to connect two non-matching types.

Connection of ports must follow RTSJ scoping rules to ensure that the com-
piler can map these components into RTSJ scoped memory areas. In order to
enforce the scoping rules, we designate ports as Internal or External in the
CCL file. Hierarchically, components created inside another component are the
children of that component; two or more components inside the same component
are siblings of each other. Internal ports communicate a parent component with
its child components; external ports communicate a child component with its
parent or sibling components. Only sibling components can see the external ports
of each other. Components can only exchange messages between their siblings
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and parent via external ports and between their own children via internal ports.
Therefore, only the following port connections are allowed in the Compadres
model: 1) internal port of the parent component to external port of the child
component, 2) external ports of sibling components. When a component sends
data from one of its Out ports, it relays the data to the In port(s) connected to
it. When data arrives at an In port, the component that owns the port processes
the data immediately in a new execution context and may generate outputs at
its other ports.

A simple example of a hierarchical composition of five components is illus-
trated in Fig. 2. The components are constructed in three levels of scoped mem-
ory. Component A is the level-1 parent component. It has two child components,
B and C, and is connected to them via internal ports. The component C in turn
has two nested components, D and E.

Component A

Component C

Component D

Component E
Component B

Intenal Port
External Port

Fig. 2. Hierarchical composition of components via internal and external ports

The CCL file (example in Listing 1.2) contains application information under
the following XML tags:

– ApplicationName: is the name of the application class to be generated.
– Component: specifies each component used in the application. This tag con-

tains tags that indicate the name of the component class, name of the in-
stance, its type (immortal or scoped), and its nesting level if the component
is of type scoped. Component tags are nested to represent the parent-child
relationship among components.

– Connection: contained in a Component tag, includes the list of ports of the
component and their links with ports of other components.

– Port: represents a port of a component; it includes the name of the port and
its attributes.

– PortAttributes: specifies the threading strategy (shared or dedicated), size
of threadpool, and buffer size of each In port.

– Link: represents the end-point and type (internal or external) of a link be-
tween two component ports.

– RTSJAttributes: includes RTSJ memory pool attributes such as memory
size in bytes and scope pool sizes.
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<Application>
<ApplicationName>MyApp</ApplicationName>
<Component>

<InstanceName>MyServer</InstanceName>
<ClassName>Server</ClassName>
<ComponentType>Immortal</ComponentType>
<Connection>

<!-- Define Ports -->
<Port>

<PortName>DataIn</PortName>
<PortAttributes>

<BufferSize>5</BufferSize>
<Threadpool>Shared</Threadpool>
<MinThreadpoolSize>2</MinThreadpoolSize>
<MaxThreadpoolSize>10</MaxThreadpoolSize>

</PortAttributes>
<!-- Define connection to Out port of child-->
<Link>

<PortType>Internal</PortType>
<ToComponent>Calculator</ToComponent>
<ToPort>DataOut</ToPort>

</Link>
</Port>

</Connection>
<Component>

<InstanceName>MyCalculator</InstanceName>
<ClassName>Calculator</ClassName>
<ComponentType>Scoped</ComponentType>
<ScopeLevel>1</ScopeLevel>
<Connection>

. . . .
</Connection>

</Component>
. . . .

</Component>

<RTSJAttributes>
<ImmortalSize>400000</ImmortalSize>
<ScopedPool>

<ScopeLevel>1</ScopeLevel>
<ScopeSize>200000</ScopeSize>
<PoolSize>3</PoolSize>
. . . .

</ScopedPool>
</RTSJAttributes>

</Application>

Listing 1.2. Component Connection Language file

Any component, whether simple or composite, can be made into an applica-
tion using the CCL file. In this phase the compiler serves two purposes: validation
and glue code generation. First, it uses the CDL file to validate the CCL file for
connections (to ensure that Out(In) ports are connected to In(Out) ports and
there are no loops), RTSJ access rules, and message type matching. The connec-
tions are checked to ensure that each component’s internal port is connected
to the external ports of its children, and that the external ports of siblings
are connected. This process ensures that message passing will not violate RTSJ
memory access rules. The code generation tasks of the compiler in the component
composition phase are: 1) allocating memory to components by analyzing the



48 J. Hu et al.

specified memory needs, 2) defining the RTSJ memory structure for the compo-
nents, 3) generating glue code to create component instances and for component
communication, and 4) generating the main application class that includes an
empty start() method that the programmer will need to implement.

In order to implement component ports, the compiler generates the code for
managing the message buffer and threadpool associated with each In port, and
the RTSJ glue code for connecting them to the MessageHandler of that port.
The incoming messages at an In port are enqueued in its message buffer. The size
of the message buffer is specified in the CCL file. Messages are assigned a priority
in the send() method of the Out port. When a message arrives at an In port,
a thread from the threadpool is assigned the priority of the incoming message
and then calls the process() method of the corresponding MessageHandler.
The number of threads in the pool is initialized to MinThreadpoolSize value
and can go up to the MaxThreadpoolSize value, with both values specified in
the CCL file. If these values are 0, the calling thread executes the process()
method of the In port synchronously.

Structure of Compadres Component Applications: Compadres is a
loosely coupled component model because a component can be 1) individually
implemented and tested independent of the rest of the system, 2) incrementally
deployed in a system, and 3) easily extracted from a system for reuse. Several
components can be encapsulated to compose a new component. Composition
and communication between components must follow the RTSJ memory access
rules. Next, we briefly discuss the RTSJ memory structure and the restrictions
it imposes on programming, and describe how the Compadres framework serves
as an abstraction over the RTSJ memory model.

RTSJ Memory Structure [1]: An application’s memory structure is con-
strained by the rules that govern memory access among the three types of mem-
ory regions defined in the RTSJ—heap, scoped, and immortal. Of these, the heap
memory is garbage collected; therefore, Compadres components support only two
types of RTSJ memory, scoped and immortal. Scoped memory is a region with
a limited lifetime, which ends when there are no more threads executing in the
region. Scoped memory can be of two types, linear-time, or variable-time: our
memory model only uses linear-time or LTScopedMemory, which is allocated in
a time proportional to its size and therefore predictable. ImmortalMemory is a
fixed-sized area whose lifetime is the same as that of the JVM. Objects allocated
in immortal memory, however, will never be garbage collected during the lifetime
of the application. Scoped memory areas may be nested, producing a scoping
structure called a scope stack. Since multiple memory areas can be entered from
an existing memory area, this scope stack can form a tree-like structure. One
key relationship is as follows: if scope B is entered from scope A, then A is con-
sidered the parent of B and B, the child of A (see Fig. 2). Two rules govern
memory access among scopes. Code within a given scoped memory area X can
reference memory in another region Y only if it can be guaranteed that the life-
time of the memory region Y is at least as long as that of the first region X. This
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lifetime can be guaranteed only if the requested object resides in an ancestor
region (e.g., a parent or grandparent), immortal, or heap memory. Another im-
portant constraint is that a memory region can have only one parent, thereby
preventing cycles in the scope stack (the single parent rule). The implication is
that a single scope cannot have two or more threads from different parent scopes
enter it. An important consequence of this restriction on scoping structure is that
a real-time thread executing in a given region cannot access memory residing
in a sibling region and vice versa. In the event that real-time threads in these
two regions need to coordinate to perform some task, they will need to do so
through memory stored in a common ancestor region. For example, in Fig. 3, a
real-time thread in scope C cannot access scope B. They can only coordinate via
objects stored in A or immortal memory. Table 1 depicts the complete access
rules among scopes in Fig. 3.

B

Immortal

A

C

Heap

Fig. 3. Nested scopes

Table 1. Access rules for Fig. 3 assuming real-time threads are used. Note that if
no-heap real-time threads are used, no references to the heap are permitted.

to Heap to Immortal to A to B to C
from Heap – yes no no no

from Immortal yes – no no no
from A yes yes – no no
from B yes yes yes – no
from C yes yes yes no –

Mapping Components to RTSJ Scopes: Each Compadres component is
created in a separate (scoped or immortal) memory area. The RTSJ memory
scopes in Compadres are hierarchical; thus, so are components– they may be
nested inside other components. The outer memory area is the parent of the
nested memory areas. The nested architecture follows the single parent rule,
which ensures that each component has only one parent. The scope in which
a component should be placed is based on 1) the lifetime of the component,
and 2) its interaction with other components. The following rule determines the
lifetime of each scope memory of component: child components have a shorter
lifetime than their parent since they are created in a scoped memory area with
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a depth greater than that of the parent component. Therefore, scoped memory
components that are triggered by other components and have shorter lifetime
should be instantiated as their children.

One method to detect scoped memory regions for allocating objects from Java
programs is to generate a directed acyclic graph based on object lifetimes and ref-
erences and assign RTSJ memory scopes based on the depth of the object in the
graph [6]. We use a similar approach, but at the level of components, rather than
objects. As the lifetimes of scoped components are different, the scoped mem-
ory areas are not bound to components at compile-time, but at runtime. This
memory can be reused after the scoped component is reclaimed. The Compadres
component framework allows component instantiation at application runtime.
Components are created in LTScopedMemory. Further optimization of compo-
nent instantiation can be achieved by creating pools of scoped memory areas in
immortal memory and reusing these areas at runtime. The size and number of
scopes in the pools can be assigned in the CCL file under the RTSJAttributes
tag (Listing 1.2).

Component A

Scoped Memory 
Manager (SMM)

Component B
Component B Component C

Manager

Component C

SMM

Component D Component E

Fig. 4. Parent components communicate with their child components via scoped mem-
ory managers (SMMs)

Component Communication via Scoped Memory Managers: References
to objects in different components are constrained by the RTSJ memory access
rules described previously, but directly exchanging messages across ports may
violate these restrictions. We solve this problem by using a Scoped Memory Man-
ager (SMM), illustrated in Fig. 4. The SMM is used to connect an internal port
of a component to the external port of its child component. In our framework,
each parent component needs only one SMM to communicate with all its chil-
dren. Each SMM of a parent component maintains a virtual proxy for every
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child component. Upon receiving a message intended for a child component, the
SMM checks the proxies for the existing component or, if none are found, cre-
ates a new scoped memory component which should receive the message. After
the messages are processed by the component, the scoped memory objects are
reclaimed. To keep a child alive, the parent component requests a new child
scoped memory component; and a handle is returned to the parent. The parent
can kill the temporary component by calling disconnect() with the handle.
This mechanism is implemented using the wedge thread pattern [7].

One of the most difficult aspects of application development using RTSJ is
to implement the mechanisms to pass messages between objects in different
scoped memory areas. We have identified three mechanisms to handle cross-
scope method invocation and message passing:

– Serialization: The object is serialized and copied to a memory area that
is accessible by the other scoped memory component.

– Shared Object [7]: The object shared by the components is created in a
common ancestor memory area. Users need to identify the common ancestor
memory area of the two child components and create the shared object in
that memory area.

– Handoff Pattern [7]: A thread created in the source memory can access
the destination memory through the memory area of their common ancestor.

The overhead of serialization causes it to be much less efficient than the hand-
off pattern. However, using the handoff pattern requires that developers know
the scoped memory structure of applications. It also results in the component
code becoming tightly coupled and difficult to reuse. The shared object approach
is an efficient method but may lead to memory leaks if not implemented cor-
rectly. Moreover, users need to determine the common ancestor memory area
for two threads, which involves tracing the threads at design time. Based on
experience, we have found the shared object approach to be the most efficient
and easiest to generate as part of the Compadres framework. Thereby, the Com-
padres framework reduces the programming effort by handling inter-component
message passing transparently. This feature enables programmers to implement
their logic inside each component using regular Java and hides the complexity of
RTSJ scope access rules from them. The SMM of the parent component contains
the message buffer of each external port of its child components. This message
buffer serves as the shared object; therefore, the parents and its children can
reference the messages from the buffer.

The Compadres framework creates a message pool per message type in the
parent component’s SMM (allocated in the parent component’s memory area).
To send a message, programmers get a message object from the pool by calling
getMessage(), set the message data, and then send the message through the
port via send(). The message is returned to the pool after it is processed by the
receiver. This mechanism reuses objects, thus preventing the memory areas of
parent components from being exhausted. The only restriction is that message
objects should be RTSJ-safe – all the data contained in a message object must
be allocated in the same memory area. Hence, Compadres is less restrictive than
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programming profiles such as the Ravenscar [8], which strictly disallow many
features such as dynamic task allocation and dynamic priority assignment.

The shared object mechanism is inefficient in the case of message passing
between components that do not have the same parent component but have a
common ancestor, due to additional and expensive message copying. To optimize
this type of communication, we relay the messages from the ancestral memory
area using shadow ports. The Compadres framework provides a shadow port for
a scoped component to communicate directly with its non-immediate ancestors
without having to generate a message for its parent. For example, consider a
three-level component structure in which component C needs to communicate
with its grandparent A, but not with its parent B, illustrated in Fig. 5. In
this case, programmers specifies the direct connection between components C
and A. The compiler detects the need for a shadow port and generates the
port connection that allows direct communication between C and A. The data
structure for a regular port at B will not be generated and the message pool and
buffer are created only in the memory area of component A.

Component A

Component B

Component C

Component A

Component B

Component C
Shadow Port

Design-time Runtime

SMM

Fig. 5. The shadow port allows a child component to communicate with its ancestor
directly rather than via its parent

3 Performance Results

We built and tested two examples using Compadres. The first example was
designed to test Compadres’ pure overhead for a simple round-trip co-located
client-server request-reply. The second example was designed to test Compadres’
usefulness in a more complete, real-world example of an ORB.

3.1 Overhead of the Framework

We first implemented a simple co-located client-server example and measured
the round-trip time to send a client request message and receive a server reply
message. The Compadres implementation of the example is illustrated in Fig. 6,
and the programmer code is shown in Listings 7 and 8.
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At application startup, an instance of an ImmortalComponent (IMC) and SMM
are created in immortal memory, and the start() method is called. The IMC
creates an instance of a scoped memory component (Client) in a level-1 scoped
memory region, Client ports are added, and the message handler P2 Handler is
associated with the In port, P2. IMM sends a trigger message via P1 instructing
the Client to send a request message to the Server. When port P2 receives this
message, the process() method of P2 Handler is called and sends out a request
message to the server via Out port P3. Since Client and Server are defined as
siblings in the CCL file, the SMM creates the server component using connect()
in sibling scoped memory region and sends the request message to the Server.
This invokes the message handler for In port P4, which processes the request
and sends a reply via P5. The reply message is received by the message buffer
in SMM and routed to Client via P6.

IMC

SMMClient Server

Request

Reply

P1

P2 P3 P4

P5P6

send()
Intenal Port

External Port

Fig. 6. The client-server scoped memory example

Testing Environment. This first example was tested on three platforms:

1. a non-real-time Pentium system: a 865 MHz Pentium III processor (Copper-
mine, 256KB Cache) with 512MB PC133 ECC SDRAM, running TimeSys
Linux GPL 4.1 based on the Linux kernel 2.4.21, with the non-real-time Java
Virtual Machine (JVM) Sun JDK 1.4 default garbage collector;

2. a real-time Pentium system: the same Pentium and OS above, with the RTSJ
RI from TimeSys; and

3. a real-time Sun system: a Sun-Fire-V210 with a 1064 MHz UltraSPARC
processor, running SunOS 5.0, with Sun’s Mackinac[9].

Measurements. For all tests, measurements were based on steady state obser-
vations, where the system is run until the transitory effects of cold starts are
eliminated before collecting the measured observations. We used the maximum
of 10,000 observations as an estimate of a system’s “worst case,” a critical mea-
surement for real-time systems that must be designed with the assumption that
the system will always deliver the worst possible performance. A sample size at
least this large was necessary to observe a reasonable estimate for the maximum
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public class MyInteger {
public int value = 0;

}

public class ImmortalComponent extends
Component {

// Compadres framework creates
// ImmortalComponent in immortal memory
public SMM smm = new SMM(...);
//Define out-port
// addOutPort(out-port name, SMM object,
// msg type, destination in-port name)
public OutPort p1 = addOutPort("P1", smm

, MyInteger.class, "MyClient_P2");
public void _start(){

// Get a message from the pool and
// send it to the client component
MyInteger m = (MyInteger) p1.

getMessage();
// Send trigger msg with priority 2
p1.send(m, 2);

}
}

public class Client extends Component {
// addInPort(in-port name, SMM object,
// msg type, buffer size, threadpool
// strategy, min pool size, max pool
// size, message handler class)
public InPort p2 = addInPort("P2", imc.

smm, MyInteger.class, 10, 0, 1, 5,
P2_MessageHandler.class);

public OutPort p3 = addOutPort("P3",imc.
smm,MyInteger.class,"MyServer_P3");

public InPort p6 = addInPort("P6", imc.
smm, MyInteger.class, 20, 0, 1, 5,
P6_MessageHandler.class);

public void _start() {
}

}

Fig. 7. Implementation classes of immor-
tal and client components

public class Server extends Component {
public InPort p4 = addInPort("P4", imc.

smm, MyInteger.class, 20, 0, 1, 5,
P4_MessageHandler.class);

public OutPort p5 = addOutPort("P5",imc.
smm,MyInteger.class,"MyClient_P6");

public void _start(){}
}

public class P2_MessageHandler extends
MessageHandler{

public void process(Object data, SMM smm){
//Get reference to out-port
// connected to server
OutPort p3 = smm.getOutPort("P3");
MyInteger i=(MyInteger)p3.getMessage();
i.value = 3;
// take timestamp ts_0
. . .
p3.send(i, 3);

}
}
public class P4_MessageHandler extends

MessageHandler {
public void process(Object data, SMM smm){

// Get reference to out-port
// connected to client
OutPort p5 = smm.getOutPort("P5");
MyInteger i=(MyInteger)p5.getMessage();
i.value = 4;
p5.send(i, 3);

}
}
public class P6_MessageHandler extends

MessageHandler {
public void process(Object data, SMM smm){

// take timestamp ts_1
. . .

}
}

Fig. 8. Implementation classes of server
component and message handlers

latency because the maximum values tended to be extremely low-probability
events. The range of the observations, i.e., jitter, was used as another measure
of a system’s predictability.

Results. Our framework is reasonably predictable on both Mackinac and Timesys
RI, with jitter of 92μs and 55μs respectively, well within the 10ms described as
typically acceptable for distributed real-time systems [10] The distribution of the
round-trip latency values indicating maximum and minimum bounds is shown
in Fig. 9, while Table 2 lists the jitter for each platform. The jitter on JDK1.4
is large, most likely caused by the garbage collector preempting the application
threads. The jitter on Mackinac is larger than the jitter on Timesys RI; Timesys
RI was installed on a real-time OS and Mackinac on SunOS 5.10. Although
SunOS 5.10 provides some RT scheduling strategies, it is a non-real-time OS,
allowing some system threads to preempt the application threads.
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Table 2. Median and jitter of round-trip times on different platforms

Platform Median (μs) Jitter (μs)
Mackinac 99.58 92.17

RI 114.0 55.0
JDK1.4 56.43 317.27
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Fig. 9. Comparison of round-trip times of simple message passing

3.2 Constructing a Real-World Example: RT-CORBA

We use previous experience in building RTZen [5], an RTSJ implementation of
RT-CORBA, to construct a simple RT-CORBA ORB using Compadres. CORBA
exposes the ability to create and destroy CORBA components, such as POA and
Transport, to the application. RTZen enables this by assigning scoped mem-
ory areas to these components. When the user creates (destroys) one of these
components, the associated memory scope is created (freed). The design of the
Compadres ORB is based on RTZen and is illustrated in Fig. 10. The Com-
padres CORBA client is a 3-level scoped structure. The level-1 memory contains
an ORB component, which is allocated from immortal memory. Inside the ORB
component is the Transport component, created in the level-2 scoped memory
when a request message is received from the ORB component. When the client
application makes a remote method call to the server, the ORB sends a message to
the previously created Transport component. Upon receiving the message, the
Transport creates a MessageProcessing component to generate the request in
the level-3 scoped memory. After the MessageProcessing component obtains
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ORB

POA/ Acceptor

Transport

ORB

Transport

Message 
Processing

Client

Request 
Processing

Server

Fig. 10. Component structure of the Compadres ORB

the reply message from the server, it sends the result back to client application
and destroys itself.

The Compadres CORBA server is a 4-level scoped structure. Similar to the
client, the server-side application creates an ORB component in the level-1 im-
mortal memory. A POA/Acceptor component is created by the ORB component
in level-2 scoped memory. The POA/Acceptor component listens to and waits for
client request messages. Once a client request message comes in, the POA com-
ponent creates a Transport component in level-3 scoped memory to wait for
client request messages. Once a message is received, a RequestProcessing com-
ponent is created to process the client request in level-4 scoped memory. After
processing the request and sending the reply back to the client, this component
is destroyed.

With the hierarchical model of Compadres, it is easy for us to define and reuse
components for the modules of CORBA. Although the Transport components
of Client and Server are located in different memory levels and connected to
different data processing components, we can reuse the Transport component at
both the Client and Server. In addition, binding memory area with components
at design time makes the memory hierarchical structure clearer and easier to
maintain. Finally, the lifetime of each component matches the lifetime of each
CORBA module.

3.3 Comparison of RT-CORBA with Compadres and RTZen

We compared our RT-CORBA ORB implementation using the Compadres frame-
work’s round-trip latency and jitter on a real-time platform with that of RTZen.2

Both RTZen and the Compadres ORB demos were run on the same real-time
platform, Timesys Linux and RI. Moreover, both server-side and client-side were
run on single machine connected via loopback network. Since performance varied
2 For the purposes of this experiment, the Compadres ORB can be considered to be

functionally similar to RTZen; it includes marshalling and demarshalling, the most
computationally-intensive modules of CORBA. The policy check mechanism has not
been implemented, but it is not a computing intensive module and would not incur
much overhead.
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Fig. 11. Comparison of round-trip times of RTZen with the Compadres ORB for dif-
ferent message sizes

across different message sizes, we compared the two ORBs for the message size
from 32 to 1024 bytes.

Both RTZen and the Compadres ORB are highly predictable, with the jitter
value of 230μs and 300μs respectively. The Compadres ORB has a slightly larger
jitter, likely caused by the scoped memory managers (SMMs). The distribution
of the round-trip latency values is illustrated in Fig. 11, with the maximum
and minimum bound indicated and with the ‘x’ representing the median la-
tency. Again, the typical performance and predictability of both RTZen and
the Compadres ORB are within 10ms, typically acceptable for distributed real-
time systems [10]. In general, these jitter values are close to the expected values
and highlight the predictability of RTSJ. Hence, our model demonstrates both
predictability and low overhead.

4 Related Work

During the last decade several component-based real-time (CBRT) frameworks
have been proposed [11,12,13,14]. However, none of these CBRT frameworks
are based on RTSJ and, therefore, they do not deal with the complexities of
the RTSJ’s memory model. In the RTSJ domain, our previous work [15] was
the first to bring together the ease-of-use of programming in Java with the
real-time predictability of RTSJ using a component-based approach. Compadres
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compliments our previous work by providing a component model that supports
the notion of ports and enables asynchronous communication. A similar RTSJ-
based component framework is presented in [16]. It allows active and passive
components to be created in individual scopes, uses a Connector component to
specify the mode of connection between components, and allows creating and
binding sub-components hierarchically.

Scoped Types and Aspects for real-time Java [17] presents an approach to re-
duce the programming complexity of RTSJ by allocating objects in scopes based
on their types. This rule enables static checking and ensures that an assign-
ment does not breach the program structure. However, it requires making minor
changes to the virtual machine and uses aspects to separate real-time concerns
from the Java code. Reflexes [18] is a an alterative to the RTSJ model; the au-
thors use Java annotation to specify the object type as stable or dynamic, which
allows the detection of illegal memory reference at compile time and eliminating
runtime memory checks. However, it is very restrictive– it requires assigning one
thread per reflex, prevents object reference across reflexes, and does not allow
for memory hierarchy.

5 Conclusion

The RTSJ brings real-time performance to Java applications, but presents pro-
gramming difficulties due to its memory model. We have presented Compadres,
a component model that abstracts away the programming difficulty of RTSJ,
while leveraging the advantages of component-based programming. In its cur-
rent state, it provides predictability, RTSJ specification compliance, and reduces
programming complexity. It provides a solid foundation for further research into
implementations of real-time applications based on Java. Future work includes
performance optimization of the component framework, developing a graphical
user interface for connecting components, and code generation for transparently
handling remote communication over a network.
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Abstract. Mobile Ad Hoc Networks (MANETs) offer a flexible way to connect
mobile devices to build complex infrastructures. A key issue in MANETs is ses-
sion set up and management since, unlike in conventional networks, there is no
centralized component to provide such a service. Yet, session set up is necessary
to provide any form of communication beyond unreliable, single message com-
munication. In this paper we describe SIPHoc, a middleware infrastructure for
session set up and management in MANETs. SIPHoc provides the same inter-
face as the SIP standard but its implementation is fully decentralized. Moreover,
SIP session establishment to and from the Internet is possible as soon as a single
node in the MANET has Internet access. The paper presents the architecture and
implementation of SIPHoc and evaluates its performance. The experiments show
that SIPHoc is message efficient and provides a low dial-to-ring delay. SIPHoc
allows SIP based applications to be used in MANETs without modification. In the
paper, this is demonstrated by showing how SIPHoc supports VoIP conversations
within a MANET and between the MANET and end-points on the Internet.

1 Introduction

Multi hop, mobile ad-hoc networks (MANETs) offer the opportunity to extend net-
works beyond the reach of fixed infrastructures. They also allow to build complex dis-
tributed systems using mobile devices. A key problem with ad-hoc networks is that
their very nature makes it difficult to implement any form of communication requiring
sessions rather than just best-effort dissemination of independent packets.

Session establishment and management are key procedures in conventional networks.
There is even a standard, the Session Initiation Protocol (SIP) [20], that is used as a
signaling protocol in applications such as Internet conferencing, telephony, and instant
messaging. Being able to use SIP in MANETs would be a significant step towards turn-
ing MANETs into seamless extensions of conventional networks. The difficulty in doing
so lies on the highly centralized architecture of SIP and the need to provide a seamless
session connection from the MANET to the Internet. Numerous attempts have been
made at adapting SIP to MANETs [16,5,12] and there are studies on the cost of running
SIP on MANETs [2]. Unfortunately, none of these proposals has been implemented and
often they work only on either isolated MANETs or MANETs permanently connected
to the Internet. Moreover, all existing solutions impose limitations on the network topol-
ogy and/or the routing protocol.
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In this paper we present SIPHoc, a middleware platform for session establishment
and management in MANETs that does not suffer from any of the limitations of pre-
vious proposals and has been implemented. SIPHoc does not require any centralized
components, is message efficient (through routing message piggyibacking), and in-
dependent of the routing protocol (currently, SIPHoc supports both AODV [18] and
OLSR [4]). SIPHoc does not impose any topology, and allows seamless interaction
with the Internet (by treating nodes connected to the Internet as gateway services and
making this information known across the MANET as a distributed service). Unlike
previous work, SIPHoc is compatible with the SIP standard.

To demonstrate the potential of SIPHoc and its feasibility, we have used SIPHoc
to provide a Voice-over-IP (VoIP) solution that supports VoIP conversations within a
MANET and between the MANET and end-points on the Internet. As far as we are
aware, SIPHoc is the only platform that allows VoIP applications to run unchanged
whether on the Internet or over a MANET. In the paper we also use the VoIP application
to study the performance of SIPHoc and show that the resulting overhead is close to
optimal and comparable to that of standard operations on MANETs.

2 Related Work and Contributions

The problem of running SIP on MANETs has many facets. In this section we describe
SIP, the design constraints for SIPHoc, and how SIPHoc differs from related work.

2.1 SIP Overview

SIP is a protocol for session initiation and tear-down. SIP works by building an overlay
network on top of a regular IP network using a set of SIP entities such as proxies and
registrar servers. A SIP proxy is an intermediary entity primarily in charge of routing: its
job is to ensure that a request is sent to another entity ’closer’ to the targeted user. A SIP
registrar is used by SIP applications to register their current location. A SIP location
service is used by registrars to store user location information and by SIP proxies to
query user location information.

A SIP application first registers with the system by communicating its SIP user name
and its current location to a registrar (Figure 1a). The registrar to be used is either
determined using DNS or it is statically configured (through the so called outbound-
proxy). Registrars and proxies are logical entities and it is not uncommon to have them
co-located on the same node. When the registrar hears from a node, it builds a binding,
i.e., an association between a SIP user name and the corresponding contact address
(typically an IP address or resolvable name).

To establish a session with another user whose current location is unknown, a SIP
INVITE message is sent to the proxy/registrar (step 1, Figure 1b). The proxy responds
with a 100 Trying message (step 2). The 100 Trying response indicates that the INVITE
message has been received and that the proxy is trying to route the INVITE message to
the final destination. Since the outbound proxy/registrar does not know the location of
user B, it uses a DNS server to locate the proxy of the destination node and forwards
the INVITE message accordingly (steps 3 to 6). The receiving proxy/registrar uses the
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previously registered binding information of the user to locate the destination (steps
7 and 8) and finally delivers the INVITE message to the intended recipient (step 9).
The recipient responds with a 180 Ringing message, which is routed back through the
two proxies in the reverse direction (step 10 to 12). If user B decides to establish the
session with user A, it responds with a 200 OK (step 13 to 15). Finally, user A sends an
ACK message to confirm the reception of the 200 OK message (step 16). At this stage,
the two users have learned each others’ contact address through the INVITE/200 OK
messages and from then on they communicate directly, bypassing the two proxies.

2.2 SIP Compatibility, Decentralization and Message Efficiency

In a MANET, SIP must operate in a fully distributed manner while maintaining the same
interface and procedures. This is a challenge because several of the problems caused
by the decentralized nature of MANETS can be solved by ignoring SIP procedures.
For instance, registrars can be eliminated if all applications pro-actively announce their
contact addresses. This can be done using either a HELLO method [16] or REGISTER
broadcast messages [12]. Such approaches create a significant message overhead and
introduce incompatibilities with session mobility and tear-down. As an optimization,
[12] suggests to use the Service Location Protocol (SLP) [9] to discover the SIP bind-
ings. Unfortunately, SLP is also centralized and very inefficient in MANETs due to the
heavy use of multicast [2]. Existing work to make SLP more efficient in MANETs is
highly routing protocol specific [13].

In SIPHoc we strictly follow the SIP interface and message flow. We have tested the
compatibility with SIP by running KPhone (sourceforge.net/projects/kphone), Twinkle
(www.twinklephone.com), Jain SIP Communicator (snad.ncsl.nist.gov/proj/iptel) and
Linphone (www.linphone.org) on top of SIPHoc without any modifications. SIPHoc
addresses the lack of centralized registrars by using SLP to dynamically discover the
SIP outbound proxy. However, the SLP service we use is adapted to MANETs: it only
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sends message by piggybacking them to the MANET routing messages. At the same
time, SIPHoc does not depend on a particular routing protocol, rather new routing pro-
tocols can be easily incorporated as plug-ins to the platform.

2.3 Topology Independence

SIP relies on DNS to locate nodes (steps 3/4 in Figure 1b). A way to bypass the lack
of a DNS infrastructure in MANETs is to restrict the network topology and assign spe-
cialized roles to given nodes [5]. This approach makes the endpoint discovery process
easier and eliminates the need for (part of) the registrar since the position and com-
munication paths to all nodes are known in advance. This approach does not introduce
message overhead but imposes strong restrictions on the routing protocols. It is also
very difficult to efficiently maintain a fixed routing topology in mobile settings. An
alternative approach to restricted topologies is to form node clusters that act as DNS
surrogates within the MANET [22,7]. However, electing and maintaining specialized
nodes is difficult and expensive in MANETs. In fact, it has been shown [7] that in
terms of transmitted messages, a fully distributed service discovery like the one used in
SIPHoc outperforms the per-cluster approach, especially in mobile scenarios.

SIPHoc has been designed to be independent of the underlying network topology
and, thus, it supports both static and mobile MANETs. As a result, SIPHoc avoids
the problem of having to elect nodes for specialized tasks and replacing them when
conditions change (e.g., when the node is switched off).

2.4 Connecting to and from the Internet

Connecting the MANET to the Internet poses several problems. First, the proxy does
not know whether the target node is in the MANET or outside. Second, establishing
sessions between nodes in and outside the MANET requires stable IP addresses. This
can be done by using NAT [6] but it also requires additional mechanism like STUN [21].
If no NAT is available, extra mechanisms are needed to maintain consistent network
addresses across connections of the MANET to the Internet.

A way to avoid such problems is to assume the MANET is permanently connected to
the Internet. Then one can impose a fixed network topology leading to the gateway [3].
This approach does not work for establishing SIP sessions in MANETs not connected
to the Internet and re-introduces the problems of fixed topologies. Fixed topologies
can be avoided through dynamic gateway discovery [15]. There are also many propos-
als for routing traffic to the Internet from a MANET [23,19]. Unfortunately, all such
proposals are routing protocol specific and cannot be generalized. Routing indepen-
dent approaches exist [14] but require gateway nodes to be located according to a fixed
hierarchy. A more flexible design without topology assumptions is described in [10].
Similarly, there are proposals based on IPv6 [15] and Mobile IP [10,23,19].

SIPHoc has been designed such that seamless and transparent communication with
the Internet is available across the MANET as soon as one node in the MANET has
Internet connectivity. To maintain generality and to be applicable today, SIPHoc does
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not assume NAT, IPv6 or MobileIP. Moreover, any node in the network may act as a
potential gateway: in SIPHoc gateways are established and discovered dynamically.

3 Architecture and System Components of SIPHoc

The SIPHoc architecture is shown in Figure 2. It is based on four components running as
independent operating system processes within a node in the MANET. The components
are divided into two groups, one for implementing SIP in the MANET, and one for
connecting to the Internet.

– SIP in MANET components:

• A MANET SLP layer providing a regular SLP (Service Location Protocol) in-
terface but implementing efficient and decentralized service lookup function-
ality. It runs only on nodes where one of the other three components is present.

• A SIPHoc Proxy with a standard SIP interface but implementing MANET spe-
cific functionality. It only runs on nodes with an end user applications. Each
SIPHoc Proxy serves as an outbound SIP proxy for local SIP applications.

– Internet connectivity components:

• A Gateway Provider that turns the node into a gateway if the node has Internet
access.

• A Connection Provider that manages connections of the node to the Internet
when there is a gateway in the MANET.

The SIPHoc Proxy is accessed by the application through the standard SIP protocol.
The Distributed Service Locator process is accessed using SLP. All processes shown in
Figure 2 can be started and stopped independently of each other.

4 SIPHoc Components for Running SIP in MANETs

The two key problems to solve in this section are how to replace the centralized location
service by a distributed solution, and how to find other proxies without relying on DNS.
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4.1 MANET SLP

MANET SLP is a fully distributed service discovery platform for MANETs. MANET
SLP provides a regular SLP interface over UDP for service registration and lookup
(Figure 3). Services can be registered using the SLP REGISTER interface and looked
up using the SLP LOOKUP interface. All services are soft-state, meaning that they
expire after a specified period of time. The lifetime for locally stored services can be
defined upon startup.

MANET SLP works by piggybacking sevice information onto routing messages (as
also suggested in [24],[8]). This is done by capturing routing messages (using the li-
bipq [1] library under linux) and extending them with service information. As pointed
out above, this idea is not new. What is unique in MANET SLP is that the routing spe-
cific functionality is encapsulated within a routing handler. The routing handler is a
software module that receives raw routing packets as input and generates altered pack-
ets that include the piggybacked service information. Whether the routing handler acts
pro-actively and constantly disseminates information or only on demand (when a ser-
vice is needed) depends on the underlying routing protocol. Which routing handler to
use is decided at system startup. An additional advantage of this design is that, unlike
in [13], routing protocols do not have to be modified to be used in SIPHoc.

4.2 SIPHoc Proxy

A standard SIP proxy/registrar accepts SIP registrations of a collection of users from
certain domains. A SIPHoc proxy typically only accepts SIP registrations from users
(applications) on that particular device. In addition to storing these registrations in its
local location service table, each SIPHoc proxy uses MANET SLP to advertise itself
as the contact address for these registered users (e.g., as the outbound proxy for those
users). If a SIPHoc proxy receives an INVITE message and cannot find the target in its
local location service table, it consults the MANET SLP layer and forwards the INVITE
message to the proxy which was advertised as outbound proxy for this user (we call this
procedure dynamic outbound proxy selection).

An alternative approach would have been to implement a distributed storage solution
using MANET SLP where each proxy knows about all other SIP users in the MANET.
This is very efficient but creates the same problems as the use of broadcast messages
to register SIP applications across the MANET [16,12] (Figure 4). If each proxy can
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find out the location of the final destination of the session by itself (through MANET
SLP), SIP bindings are resolved directly at the caller’s proxy and INVITE messages do
not pass the callee’s proxy. This violates the standard SIP message flow, where INVITE
messages always pass through the proxy where the target is registered (Figure 1b). This
violation creates problems with session mobility and session tear down.

In contrast to this, through dynamic outbound proxy selection, SIPHoc complies with
the traditional SIP message flow. Moreover, the use of a proxy at each device creates an
infrastructure that is by design fully decentralized.

4.3 SIPHoc Proxy Example

How the SIPHoc Proxy works can be best understood with an example (see Figure 5).
The example maps the standard SIP message flow shown in Figure 1 to the SIPHoc
proxy and MANET SLP components just described. We assume two users Alice and
Bob. The IP addresses of the two machines of Alice and Bob are 192.168.220.1 and
192.168.220.2 respectively. Each user runs a SIPHoc Proxy on port 5060 and a SIP
application on port 5062. Both machines are in the MANET, within an arbitrary hop-
distance from each other. ProxyA is the proxy used by Alice and ProxyB that of Bob.

To register with SIPHoc, both users send their URI and contact address to their
proxies (1 and 5, Figure 5)): sip:alice@ethz.ch and (192.168.220.1:5062 for Alice;
sip:bob@ethz.ch and 192.168.220.2:5062 for Bob. The local SIPHoc proxy for each
one of them will then store the corresponding entry in the local location service table
(2,6). It will also contact the underlying MANET SLP and register the entry so that
it is advertised by the MANET SLP module (3,4,7,8). Note that the entry in the local
location service table differs from the entry sent to the MANET SLP in that the latter
contains the contact address of the proxy (port 5060) rather than the one of the user
(port 5062). To establish a SIPHoc session, assume Alice contacts Bob, Alice sends an
INVITE message to sip:bob@ethz.ch (9). ProxyA checks whether the target SIP URI
is in the local location service table (10). If that is not case, then it requests the entry
from the MANET SLP layer (11-12). Once the contact address of the proxy of the user
sip:bob@ethz.ch is found, the INVITE message is forwarded (13). There is no differ-
ence in whether a SIP proxy receives an INVITE message from the local user or from
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another proxy over the network. Hence, ProxyB, upon receiving the INVITE message,
checks whether the requested SIP URI is available in its local location service table
(14). In this case it will find the entry (registered by Bob as 192.168.220.2:5062), and
can then forward the INVITE message to Bob (15).

4.4 SIPHoc over AODV and OLSR

When the SIPHoc proxy contacts the MANET SLP module, what happens depends
on the underlying routing protocol. This is because, depending on how routing takes
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place, the MANET SLP will be either pro-active or act on demand. Currently we have
implemented two different routing handlers. One for AODV [17] (on demand) and one
for OLSR [4] (pro-active). As an example of the differences in terms of how services are
found depending on the routing protocol, the message flow for session establishment in
the case of AODV is shown in Figure 6 and for the case of OLSR in Figure 7. In an on
demand routing handler (AODV), a lookup request from the SIPHoc proxy results in a
route request from the routing protocol with the SIP information piggybacked to it [11].
In a pro-active routing handler (OLSR), the routing messages are exploited to constantly
disseminate and maintain information across all MANET SLP modules. The advantage
of the SIPHoc architecture (Figure 2) is that all these network properties are abstracted
through the routing handler plug-in used in the MANET SLP layer and thus neither the
SIPHoc proxy nor the SIP application are concerned with the routing protocol.

5 Internet-Connected MANETs

In this section we enhance the architecture described in the previous Section to support
Internet connectivity.

5.1 Gateway Provider

A Gateway Provider is a process that can set up a node to become a gateway in case
the node has Internet connection, and removes the gateway functionality in case the In-
ternet connection is lost. Gateway Provider processes are started on nodes who want to
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act as gateways. A gateway is a node that is directly connected to the Internet and con-
figured to provide Internet access to all the nodes within the MANET. Typically, these
are nodes with multiple interfaces, since one interface is configured for communication
with the MANET, and another interface is dynamically attached to the Internet. How
a Gateway Provider works is shown in Figure 8. Once started, the Gateway Provider
process keeps waiting for an Internet connection to become available (Figure 8, step 1).
Detecting whether a node has Internet connection or not is done using a special Inter-
netDetectionAPI. The idea is to exploit system support to efficiently detect a possible
Internet connection. Our current implementation makes use of the operating system
routing table. If an Internet connection has successfully been detected, say on interface
eth0, the Gateway Provider process then creates a bridge device on that node and im-
mediately adds interface eth0 to the bridge (step 2). In a following step, a layer-two
tunnelling device tap0 is created (step 3) and also added to the bridge (step 4). The de-
vice tap0 allows any node within the MANET to set up a layer-two tunnel connection to
the gateway node. Since the tunnel device tap0 is part of the bridge, traffic received on
tap0 is directly forwarded to the Internet via interface eth0. To provide MANET nodes
with such gateway functionality, a Gateway Provider must however first register itself
as a gateway service using the underlying MANET SLP service (step 5). Once a gateway
service is registered, any node within the MANET may look up the gateway’s location
and connect to it. If the Internet connection is lost the service will be de-registered or
will timeout, and both the tunnel endpoint tap0 and the bridge will be removed.

5.2 Connection Provider

A Connection Provider is a process that sets up an Internet connection if a gateway
can be found. Connection Provider processes are started on nodes who want an Internet
connection. How a Connection Provider works is shown in Figure 9. Once started, the
Connection Provider process periodically searches for a gateway service by performing
an SLP lookup request (Figure 9, step 1). If a gateway service can be found1, a layer-two
tunnel connection to the gateway is established (step 2). To finally configure the node

1 Currently, if multiple gateway services are found, the list of all gateways is passed to the
tunnelling component.
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Fig. 10. Network state after the Connection Provider has successfully configured a node for In-
ternet access

for Internet access, a DHCP request is triggered on that newly established tap1 interface
(step 3). Since the tap0 interface at the gateway node is bridged towards the Internet, the
DHCP request will eventually be answered by the DHCP server that is reachable from
the gateway node. The mechanism of IP configuration is encapsulated in an IPConfig-
uration module with a well defined interface. This allows the Connection Provider to
easily adapt to other ways of IP configuration such as, e.g., IPv6 auto-addressing or
MobileIP. After the IP configuration on the tap1 device is done, the corresponding node
is not only able to communicate with any node in the Internet, but nodes from the In-
ternet may also transparently connect to that node within the MANET. A more detailed
perspective on how components such as bridge and layer-two tunnel interfaces interact
with each other is given in Figure 10.

The proposed mechanism differs from previous work for MANET-Internet connec-
tivity in that it combines both a dynamic approach (through the use of a Gateway-
Provider and a Connection-Provider) with a routing independent approach (through
layer-two tunneling) while still being message efficient (due to MANET SLP).

5.3 Enhancing the SIPHoc Proxy

The ultimate vision of a SIP infrastructure that works in both isolated and Internet con-
nected MANETs is that clients can use their Internet registered SIP accounts2

2 A SIP account associated with some official SIP provider in the Internet.
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transparently in the MANETs. In other words, the only change should be the scope
of the corresponding SIP URI which will vary depending on whether the MANET is
currently connected to the Internet or not. For instance, assume again a user Bob in
the MANET with SIP URI sip:bob@ethz.ch. Given that Bob’s SIP account is officially
associated with the SIP provider at ethz.ch, we would like calls to and from the Inter-
net to become possible as soon as the MANET is connected. On the other hand, Bob
should always be able to call any SIP user within the MANET – and vice versa – even
if the MANET is currently disconnected from the Internet. To implement this vision of
transparent and seamless SIP connectivity, two problems have to be solved: First, the
proxy has to know whether the target node is in the MANET or outside. Second, the
proxy has to make sure the contact address used during SIP session establishment is in
fact reachable by the target user.

Let us first see how the proxy determines the SIP target. Suppose the MANET is
currently connected to the Internet3. Besides registering users as described in section
4.2, the proxy now additionally forwards SIP REGISTER messages to the Internet if
a responsible proxy for the specified domain is available. Upon receiving an INVITE
message, the proxy immediately forwards the request to the Internet. If the INVITE
process succeeds, the call is considered to be established. If the INVITE process fails –
because either the target SIP URI is not registered with any proxy in the Internet, or the
user is not online – the INVITE message will simply be forwarded to the responsible
proxy in the MANET, if available. To minimize the call-to-ring delay, looking up the
outbound-proxy is done concurrently with the forwarding of the INVITE message to
the Internet. The workflow of a SIPHoc proxy as described is illustrated in Figure 11.
The activities, highlighted grey and labeled ”Continue as usual”, refer to the procedures
described in section 4.2

Let us now see how the proxy copes with SIP user contact addresses when having
an Internet connection. Typically, nodes with Internet connection have multiple IP ad-
dresses assigned (see section 5.2). Let’s call the IP address used in the MANET internal
and the one used for communicating to the Internet external. The SIP applications we
used implement static binding, meaning that they use the IP address determined at startup
time to be included in the contact address field of any SIP message sent towards the proxy
(REGISTER, INVITE). Since the external IP address is configured dynamically when
Internet connectivity is available, SIP messages would carry contact addresses pointing
to an internal IP address. In practice, for connections to and from the Internet, one would
however like to include the external IP address in the contact header of the SIP message
because these addresses are used later by the application to establish the actual session.
For the application to know which address to include in the contact header, it would
have to know about its connection state (Internet, MANET) and the one of the target.
Since we want out-of-the-box SIP applications to run transparently in heterogeneous
MANETs without the application having to be modified, we propose a concept called
SIP contact-address translation to be implemented in the proxy. In Figure 11 this is
illustrated by two additional activities before the final message forwarding. In the case
of a SIP request (INVITE, REGISTER), the old contact address is first saved. Then, the

3 The SIPHoc proxy detects an Internet connection using the InternetDetectionAPI described in
section 5.1.
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Fig. 11. Activity Diagram of the SIPHoc Proxy (SIP-Processor Component)

contact address is changed to the external IP address of the proxy. Once a response for
a given request is received, the contact address is changed back to the original address
that is used by the local SIP application (Figure 11). This keeps the application totally
unaware of whether it communicates over the Internet or only within the MANET.

6 Case Study: VoIP in MANETs

6.1 VoIP

Since SIPHoc is strictly SIP compatible, it allows out-of-the-box SIP based VoIP ap-
plications to run transparently in MANETs. In this section we use Kphone as a VoIP
application to evaluate our SIP infrastructure. However, we also have successfully tested
SIPHoc with various other Softphones such as Linphone, Twinkle or Ekiga. From a user
perspective, the metric of interest is the dial-to-ring delay, i.e., the time elapsed between
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Fig. 12. Performance of SIPHoc in MANETs

the caller clicking the button on the calling terminal and the time the called party hears
the ringing. This call setup includes a set of SIP messages (INVITE, TRYING, RING-
ING) as well as the associated routing messages with their service extensions embed-
ded. The duration of the call setup depends on the current locations of caller and callee
(MANET, Internet) and on the routing protocol used (AODV, OLSR). The following
two sections evaluate the session setup time for a) pure Ad Hoc environments and b)
Internet-connected Ad Hoc networks.

6.2 Experimental Setup

The measurements were done using 6 notebook computers running Debian 3.1 (Sarge).
Five of them had a 2.0Ghz Mobile Pentium 4 and were equipped with an integrated
11Mbit/s IEEE802.11b wireless network interface card and were running kernel 2.6.8.
The sixth laptop had a Pentium M processor with 1.73GHz combined with a 54Mbit/s
IEEE802.11g wireless network interface card (used at 11Mbit/s through configuration)
and was running kernel 2.6.11. Because it would be difficult to find a spatial separation
of the notebooks which would have required multihop communication between them,
an artificial separation using packet filter rules was used: They were only allowed to
communicate with their direct neighbors , all other traffic was dropped (by the default
policy). All results are averages over a set of 10 tests. The routing performance was
measured by restarting the AODV daemon and issuing an ICMP packet to the target
host afterwards, so the time required for the route discovery could be calculated from
entries in the log of the AODV daemon. The same goes for the service lookup times
where the SLP daemons were restarted after every lookup.

6.3 Performance in a MANET

In Figure 12a we study the session setup time for the AODV case and relate the re-
sults to both the route establishment and the service discovery time. The x-axis in Fig-
ure 12a refers to the number of nodes on the path (hop distance) between the caller
and the callee. A first observation from Figure 12a is that looking up a service using



74 P. Stuedi et al.

MANET SLP only takes a few milliseconds longer than a simple route request for the
same hop distance. Therefore, the price for piggybacking service information into rout-
ing messages is minimal. At the same time, MANET SLP reduces the time necessary to
access a given service, since service lookup and route discovery take place simultane-
ously. As a direct conclusion from this, the SIP dial-to-ring delay is kept very low, only
a few milliseconds more than the MANET SLP service discovery time. The overhead
comes from the three additional messages involved in a SIP session setup (INVITE,
Trying, RINGING). Please note that even if the SIPHoc proxy on the caller part would
resolve the requested SIP URI by some magic oracle in zero time, the dial-to-ring de-
lay would still be at least the sum of these 3 messages plus the route establishment
time. Thus the measurements prove that SIPHoc reduces the dial-to-ring delay almost
to the lowest value possible. The gap in time between three and four hops in Figure 12a
is due to AODV’s expanded ring search technique [17]. In an expanding ring search,
the originating node initially uses a TTL equal 2 in the RREQ packet IP header and
sets a timeout for receiving a RREP. If the RREQ times out without corresponding
RREP, the originator broadcasts the RREQ again with the TTL incremented by 2 until
a TTL threshold is reached4. In Figure 12a, nodes within a distance of three hops can
be reached with a TTL value of 2 (one RREQ message), nodes within a distance of 4
and 5 hops, however, can only be reached with a TTL value of 4 (two RREQ messages)
which leads to a gap in the route and discovery time.

While for the AODV case most of the overhead goes into dynamically looking up the
outbound proxy during session establishment, the major overhead for the OLSR case
is during the SIP registration phase. In Figure 12b we study the time needed for a SIP
registration to be propagated across the network using OLSR. The x-axis of Figure 12b
indicates the hop distance between the local proxy receiving the registration (source
proxy) and the target. We see that even nodes being 5 hops apart from the source proxy
receive the service information in less a second. Thus, already one second after a user
has registered with its local proxy, all nodes within a hop distance of 5 nodes have
the SIP binding of the given user accessible in their local MANET SLP process. Once
the SIP binding of a user is available locally, the SIP dial-to-ring delay reduces to the
time needed to send and receive the messages involved in a call setup (INVITE, Trying,
RINGING), which is about 100ms (Figure 12b).

The conclusion from these results, both for AODV and OLSR, is that the dial-to-ring
delay in an ad hoc network using SIPHoc is comparable to the route discovery time. In
this sense, SIPHoc is close to optimal.

6.4 Internet-Connected Environment: Scenarios

The next experiment evaluates the dial-to-ring delay for Internet connections. The setup
consists of 5 laptops5 arranged to form a linear 4-hop network. On the MANET side,
there is user Alice with no direct Internet access. User Bob is on the other extreme of
the MANET and is on a node that – in some experiments – acts as gateway and has
Internet access. A third user, Chris, is located in the Internet. We also assume a SIP
proxy on sip.ethz.ch located in the Internet. We have evaluated the dial-to-ring delay

4 Initial TTL value and increment can also be configured differently.
5 DELL Latitude, 2Ghz Intel Pentium IV, 256 MB RAM.
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in 7 scenarios as illustrated in Figure 13: (1) Bob calling Chris using an unmodified
out-of-the-box SIP proxy6 as a forwarding proxy for Bob; (2) Bob calling Chris using
SIPHoc; (3) Alice calling Chris using Bob as a gateway; (4) Chris calling Alice using
Bob as a gateway; (5) Bob calling Alice when Bob is disconnected from the Internet;
(6) Bob calling Alice when Bob is connected to the Internet; and (7) Bob calling Alice
when Bob is connected to the Internet and Alice is connected to the Internet using
the gateway provided by Bob (therefore the INVITE message is routed through the
Internet). We also include the cost of an AODV route request (8) for comparison.

6.5 Internet-Connected Environment: Experiments

Each set of bars in Figure 14 corresponds to the result of one scenario, with the x-axis
representing the scenario identifier. For all scenarios except the first one, we consider
both the case where AODV is used as a routing protocol and the case where OLSR is
used. Scenarios 1 and 2 are SIP connections over the Internet. They allow to determine
the cost of SIPHoc over a plain SIP infrastructure. The results show that the overhead
of SIPHoc (scenario 2) is small compared with the cost of using a plain SIP proxy
(scenario 1). The overhead comes from the SIPHoc Proxy that performs various checks
(looking up whether the node has Internet connection or not, preparing MANET SLP
lookup) before forwarding the actual INVITE message to sip.ethz.ch. Since the target
user Chris in scenario 1 is located in the Internet, the SIPHoc proxy invite processing
succeeds without the MANET SLP layer being involved (Figure 11). Thus, there is no
difference between the dial-to-ring delay for AODV and OLSR in scenario 1. Scenarios
3 and 4 are in the range of scenario 2 indicating that the 4-hop latency in the MANET
is rather negligible compared to the whole session setup time. Furthermore, scenarios
3 and 4 confirm that both directions, MANET-Internet and Internet-MANET, perform
similarly. The reason why there is no significant difference between the AODV and
the OLSR case is that the route between Alice and the gateway is established during
the gateway discovery phase which takes place asynchronously in a separate process

6 We have used the JAIN Proxy: http://snad.ncsl.nist.gov/proj/iptel
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(connection provider, Section 5.2) before the actual session establishment. In scenario
5, the target user cannot be found in the Internet, thus calls to the MANET SLP layer are
necessary. If AODV and the corresponding MANET SLP routing handler is used, the
dynamic discovery of the outbound-proxy (section 4.2) results in additional messages
sent across the network, which increases the overall dial-to-ring time. The overhead is
nevertheless in the range of a route request (scenario 8). This is because the outbound-
proxy lookup and the route discovery take place simultaneously. If OLSR is used in
combination with the corresponding MANET SLP routing handler, no overhead at all
is observed when comparing scenarios 5 and 6 with scenarios 3 and 4. This is because
the SIP registration information has been propagated across the network pro-actively,
piggybacked on routing messages. In scenario 6, note that the MANET is considered
to be connected to the Internet. However, since Alice uses an official SIP account, but
is not connected to the Internet, the SIPHoc Proxy receives an offline response from
sip.ethz.ch and then proceeds as in scenario 5, leading to a similar result. Scenario 7 has
an impressive performance considering that the call goes through 4 hops in the MANET,
the gateway and the Internet consecutively. The call is faster than the calls in scenarios
5 and 6 since no MANET SLP lookup is involved, but takes longer than scenarios 3 and
4 because both endpoints use a SIPHoc Proxy. The results for AODV and OLSR again
match quite well since the SIPHoc proxy succeeds immediately to establish a session
over the Internet and no MANET SLP call is necessary.

The results have shown that the overhead for calls to and from the Internet is within
an acceptable range. This is mainly due to the strategy described in section 5, after
which the SIPHoc proxy always first tries to establish a SIP session over the Internet
and only uses dynamic outbound-proxy discovery if necessary. Since the overhead of
calls to the Internet is negligible compared to the overhead within the MANET, the
overhead in case a given user cannot be found in the Internet is almost zero.
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6.6 Gateway Service

One important last question is how fast the gateway service can be discovered in the
MANET. The answer depends on the routing protocol used. For the AODV case, the
gateway service discovery time corresponds to the values for service discovery shown
in Figure 12a. For the OLSR case, the gateway discovery time corresponds to the reg-
istration propagation time shown in Figure 12b.

To see whether tunnel maintenance affects the performance of the gateway, we have
measured dial-to-ring delays for various setups with up to 1000 additional (idle) tunnel
connections, without observing any recognizable slowdown.

We have also studied the packet overhead caused by the fact that the gateway is
accessed through a layer 2 tunnel which wraps the packet and adds its own Ethernet
and IP headers. The Ethernet header uses 14 bytes and the IP header 20 bytes. openvpn,
used as tunneling application in our setting, sends its packets using UDP which adds
another 8 bytes. This results in an overall overhead of 42 bytes per packet. Compared
with the typical MTU of 1500 bytes per packet in Ethernet, an overhead of 42 bytes is
almost irrelevant. For voice data, however, the audio data contained in a UDP packet
is typically in the range of 160-172 bytes. A voice data packet on the wire without the
tunneling overhead would therefore have a size of 214 bytes. With the tunnel header,
the size of each packet increases to 256 bytes. This is an overhead of 20%. If only a few
nodes in the network communicate through the gateway using tunneling this overhead
will not have a large effect. If the network is big and most of the users communicate
through the gateway, an overhead of 20% may decrease the available capacity.

6.7 Discussion

We have shown in sections 6.3 and 6.5 that SIPHoc provides a very efficient SIP mid-
dleware infrastructure for VoIP applications in both isolated and Internet connected
MANETs. Our experiments illustrate that SIPHoc is able to establish sessions within a
few hundred milliseconds, regardless whether the other party is located in the MANET
or in the Internet. Due to the efficient architecture of SIPHoc, the overhead in the dial-
to-ring delay stays in the order of a route discovery time, which is the lowest value
possible since the cost of a route discovery has to be paid anyway.

7 Conclusion

In this paper we have presented SIPHoc, a middleware providing SIP-compatible ses-
sion establishment in both isolated and Internet-connected MANETs. The advantages
over existing work are that SIPHoc does not impose any network topology, does not
involve any centralized components, does not require the modification of existing stan-
dards, is message efficient, and has an overhead comparable to MANET route requests.
In the paper we have used VoIP to show how SIPHoc can be used by SIP-compatible ap-
plications to transparently establish sessions with other parties either located within the
MANET or in the Internet. To the best of our knowledge, SIPHoc is the first complete
implementation of a SIP infrastructure for MANETs and the only one that resolves all
the limitations of existing work.
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Abstract. Developing distributed multiplayer games for ad-hoc net-
works is challenging. Consistency of the replicated shared state is hard to
ensure at a low cost. Current consistency models and middleware systems
lack the required adaptability and efficiency when applied to ad-hoc gam-
ing. Hence, developing such robust applications is still a daunting task.
We propose i) Vector-Field Consistency (VFC), a new consistency model,
and ii) the Mobihoc middleware to ease the programming effort of these
games, while ensuring the consistency of replicated objects. VFC uni-
fies i) several forms of consistency enforcement and a multi-dimensional
criteria (time, sequence and value) to limit replica divergence, with ii)
techniques based on locality-awareness (w.r.t. players position). Mobihoc
adopts VFC and provides game programmers the abstractions to manage
game state easily and efficiently. A Mobihoc prototype and a demonstrat-
ing game were developed and evaluated. The results obtained are very
encouraging.

Keywords: Consistency Management, Replicated Objects, Locality-
Awareness, Multiplayer Games.

1 Introduction

The growing utilization of personal appliances such as PDAs and cell phones en-
ables the proliferation of ad-hoc networks. Ad-hoc networks form spontaneously
between two or more devices communicating via wireless interfaces. Due to their
entertaining nature and motivated by this technological advance, distributed
multiplayer games are particularly interesting to deploy in such environments.
Once an ad-hoc network is formed, people may play these games irrespective of
the place they are (e.g. public transports, restaurants) without the need for a
structured network and without incurring into any connectivity expenses.

In distributed multiplayer games there is a need for data sharing between the
network nodes (e.g. player positions, maps, scores). Enforcing data consistency
requires additional communication for update propagation and synchronization
operations. In ad-hoc networks, communication-intensive operations are critical
and have a twofold negative impact. Firstly, the high latency, the reduced network
bandwidth and the small processing capability of devices brings overheads that
dramatically hinder game playability. Secondly, extensive access to the network
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causes devices batteries to consume rapidly. In order to circumvent these nega-
tive impacts, game programmers tend to use programming tweaks, low level op-
timizations and error-prone message-passing approaches to keep the shared data
consistent. As a side effect, software becomes harder to manage and less reliable.

Current approaches to optimistic consistency [1] relax the strict consistency
model to reduce communication expenses. The common assumption is that
applications may allow data inconsistencies up to a certain limit and enable ap-
plication programmers to specify these limits according to the semantics of ap-
plications. The criteria for slacking consistency varies: by divergence between the
values of replicas, on a time-basis [2], by applying application based predicates on
replica values [3,4], sequential ordering [5], or combining several approaches [4,6].
However, these proposals are inadequate to cope with the dynamics of distributed
games: consistency requirements change often and quickly throughout the game
execution, namely w.r.t. the players’ position in the virtual world. The above men-
tioned systems lack the required adaptability and are inefficient when applied to
the ad-hoc scenario. On the other hand, current middleware for multiplayer games
embodies the notion of locality-awareness (traceable to [7,8]) but offer a very lim-
ited consistency model [9], or use it just to drive load-balancing [10] and network
traffic between servers [11].

In this paper, we propose a new consistency model for replicated objects called
Vector-Field Consistency (VFC) and present Mobihoc, a middleware adopting
VFC to support multiplayer distributed games in ad-hoc networks. A Mobihoc
prototype was implemented on the J2ME platform. To demonstrate its feasibil-
ity, a distributed version of Pacman was implemented on top of Mobihoc. Both
Mobihoc and Pacman were deployed and evaluated in real mobile phones (Nokia
6600) with good performance results.

VFC is an optimistic consistency model allowing bounded divergence of the
object replicas. The VFC novelty is the following. VFC selectively and dynami-
cally strengthens/weakens replica consistency based on the ongoing game state
while elegantly managing i) how the consistency degree changes throughout game
execution, and ii) how the consistency requirements are specified. The first issue
is dealt by employing locality-awareness techniques. It considers that through-
out the game execution, there are certain ‘observation points’ we call pivots
(e.g. the player’s position) around which the consistency is required to be strong
and weakens as the distance from the pivot increases. Since pivots can change
with time (e.g. if the player moves), objects consistency needs can also change
with time. The second issue is handled by providing a 3-dimensional vector for
specifying consistency degrees. Each dimension of the vector bounds the replica
divergence in time (delay), sequence (number of operations) and value (mag-
nitude of modifications) constraints. Game programmers parameterize VFC by
specifying both the pivots and the consistency degrees according to game logic.

The advantages of VFC are manyfold. First, it is flexible and easily perceived
by game programmers: the consistency model based on pivots is intuitive and
the parameterization settings allow the game programmer to specify the consis-
tency requirements for a wide range of game scenarios. Second, from the players
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viewpoint, VFC allows user experience to proceed within acceptable parameters
in the sense that, as far as the players are concerned, the rules of the game
are being abided to, and users are provided with all the relevant information
(e.g. immediate surroundings, opponents’ scores) to make sensible game deci-
sions. Also, by intelligently selecting the critical updates to send and postponing
the less critical ones, VFC is efficient in the utilization of resources, it reduces
network bandwidth usage and masquerades latency. Thus, for each particular
game, programmers are able to specify the consistency requirements that enable
a more efficient use of the network by tolerating bounded inconsistencies that do
not jeopardize the overall game state and the players experience. This is mostly
useful for those games where the number of updates to propagate is high and the
interactivity with the user is demanding. Despite addressing multiplayer games,
VFC and Mobihoc can also be used to develop any other cooperative applications
based on replicated shared-data.

This paper is organized as follows. Section 2 briefly describes the VFC con-
sistency model. Section 3 presents the Mobihoc architecture. Section 4 describes
the implementation details of Mobihoc. Section 5 presents and discusses the
obtained experimental results. Section 6 surveys the relevant related work and
Section 7 draws some conclusions.

2 Consistency Model

In VFC, objects are positioned within a virtual world, an abstraction of an N-
dimensional space. Without loss of generality, we consider the virtual world to
be 2-dimensional. In many games these abstractions map immediately to the
game semantics; for example, in the Pacman game, the virtual world is a 2-
dimensional maze populated with objects such as avatars, ghosts and dots. Each
node of the network has a local view consisting of a full local replica of the
virtual world. Each view may have bounded inconsistencies. VFC characterizes
how these inconsistencies are managed.

The remainder of this section describes the two main ideas underlying the
VFC model: consistency zones describe how the consistency of object replicas
varies in each view (see Section 2.1), and consistency vectors characterize the
consistency degrees (see Section 2.2). Section 2.3, proposes two generalizations
of the basic VFC model and systematizes the parameters for setting VFC from
the game programmers’ viewpoint.

2.1 Field-Generated Consistency Zones

Within a particular view, object consistency depends on their distance to a pivot
(P ). It is characterized by a position in the virtual world and it can move over
time. A pivot can be an object (e.g. the Pacman player) or just a function (e.g.
an editor cursor). Figure 1.a illustrates a virtual world populated with objects
o1, o2, o3, o4 and o5. The pivot (o5) is signed with a star.

By analogy with the electric (−→E ) and the gravitational (−→G ) fields, a pivot
generates a ‘consistency field’ determining the consistency of each object as a
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Fig. 1. Consistency zones centered on a pivot within a virtual world
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Fig. 2. Two views of the same virtual world

function of the distance between the object and the pivot. Thus, pivots generate
consistency zones, iso-surfaces, ring shaped, concentric areas around them, such
that the objects positioned within the same consistency zone are enforced the
same consistency degree. For example, in Figure 1.a, pivot P is in the center
of four consistency zones labeled zi, where 0 ≤ i ≤ 4. Objects o2 and o3 are
enforced the same consistency degree since they are in z3.

Each consistency zone maps to a consistency degree (ci) of a consistency scale.
A consistency scale C = 〈c1, . . . , cn〉 is an ordered set of ci, each specifying the
consistency to be enforced within zone zi. The property ci > ci+1 holds, meaning
that ci enforces stronger consistency than ci+1. Thus, consistency zones are
arranged monotonically; consistency degrees become weaker as the distance to
P increases. In Figure 1.a, darker consistency zones impose stronger consistency
requirements. For example, if P represents the player and the other objects are
ghosts of the Pacman game, ghosts consistency weakens as they are farther from
the player. Specification of consistency degrees is detailed in Section 2.2.
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Consider λi the radius of the outer circumference of zi. We define zi as fol-
lows: i) if i = 1 then z1 is the circle of radius λ1, ii) if i > 1 then zi refers
to the area enclosed between zi and zi−1 (a ring). Thus, if a pivot P is sur-
rounded by n consistency zones, it is necessary and sufficient to specify λi to
all i where 1 ≤ i < n. The consistency zone zn refers to the area beyond the
circumference of radius λn−1. This is represented by vector Z = [λ1, ..., λn−1].
Since it is computationally expensive to determine if an object is within a radial
surface, we define consistency zones as concentric squares instead of concentric
circles, as depicted in Figure 1.b. Also, λ represents not the radius of the outer
circumference, but half the side of the outer square. For example, consistency
zones of Figure 1.b are defined by Z = [1, 2, 3] and objects are distributed by
the following zones: {o1, o5} → z1, {o2, o3} → z2, {o4} → z3.

Determining the consistency degree of an object depends on its relative po-
sition w.r.t. the pivots. Thus, the same object may have different consistency
degrees in different views. Figure 2 illustrates this by depicting the views of two
nodes, A (Figure 2.a) and B (Figure 2.b), respectively, with pivots PA and PB .
Both pivots generate the consistency zone pattern Z = [1, 2, 3]. Hence, for ex-
ample, o2 → z2, in A, while o2 → z4 in B. This implies that o2 consistency is
stronger in A than in B, which is expected since o2 is closest to a pivot in A.

2.2 Consistency Degree Vectors

VFC describes the consistency degrees as 3-dimensional consistency vectors
κ = [θ, σ, ν]. κ bounds the maximum objects divergence in a particular view,
i.e. between the objects latest updates and their replicas in that view. In short,
for each object o, κ bounds the staleness of o in a particular view. Each dimen-
sion is a numerical scalar defining the maximum divergence of the orthogonal
constraints time (θ), sequence (σ), and value (ν)1, respectively.

– Time – Specifies the maximum time a replica can be without being refreshed
with its latest value, irrespective of the number of updates performed in-
between. Consider that θ(o) provides the time passed from the last replica
update. The time constraint κθ enforces that, at any time, θ(o) < κθ. This
scalar quantity measures time in seconds.

– Sequence – Specifies the maximum number of lost replica updates, i.e. up-
dates that were not applied to a replica. Similarly, consider that σ(o) indi-
cates the number of lost updates. The sequence constraint κσ enforces that,
at any time, σ(o) < κσ. The unit is the number of lost updates.

– Value – Specifies the maximum relative difference between replica contents
or against a constant (e.g. top-value). Consider that ν(o) provides this dif-
ference. The value constraint κν enforces that, at any time, ν(o) < κν . The
unit of variation is a percentage. It captures the effects of updates on the
object internal state and is implementation dependent (e.g. it may reflect a
drift regarding the player score or the player life charge).

1 Although in modern Greek, the vee sound is written using the letter β, we prefer to
use the letter ν, for its resemblance with the latin v.
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The overall maximum divergence is obtained by the disjunction of all the κ
vector dimensions. For example, consider the consistency vector κ = [0.1, 6, 20].
Hence, at maximum, replicas are outdated in κθ = 0.1 seconds or κσ = 6 lost
updates or with a κν = 20% variation in the replica internal state. To indicate
the least possible requirements, i.e. no requirements on that dimension, we use ‘.’
(mathematically, this symbol represents ‘∞’). For example, κ = [0.1, 6, .] imposes
no consistency constraints whatsoever regarding the replica internal state.

In VFC, consistency degrees are specified by κ vectors. In order to specify
a consistency scale obeying ci > ci+1 with κi and κi+1 vectors, the condition
κi+1 > κi must hold, i.e. for every κi+1u

≥ κiu and there is at least one v such
that κi+1v

> κiv , u, v ∈ {θ, σ, ν}. For example, C = 〈[0.2, 2, 10], [0.2, 5, 10]〉 is a
valid consistency scale: [0.2, 2, 10] stands for a stronger consistency degree than
[0.2, 5, 10] because the number of admitted lost updates is higher in the latter
(5) than in the former (2) and the other dimensions are equal. Also, we define
κM = [., ., .] as the highest consistency degree, and κm = [0, 0, 0] as the lowest
consistency degree, such that κm ≤ κi ≤ κM .

2.3 VFC Generalization

In this section we introduce two generalizations allowing a broader utilization
of the VFC model: multi-pivot and multi-zones generalizations. The multi-pivot
generalization admits more than one pivot per view. Figure 3 illustrates such
a case, with two pivots P1 and P2 in the same view. Objects are assigned the
consistency degree w.r.t. the closest pivot.

The multi-zones generalization allows different sets of objects to be character-
ized differently w.r.t. their consistency requirements. For example, in Pacman,
objects standing for ghosts and for rooms may be characterized with different
consistency requirements. Thus, n sets of objects may be assigned specifically:
i) consistency zones, ii) consistency degrees, and iii) pivots. Specification of each
set is designated by φi, where 1 ≤ i ≤ n; φ refers to all φi. Figure 4 shows
an example of two object set specific settings φ1 and φ2. The former characterizes
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Parameter Description
Oi Subset of objects that the consistency specification refers to. Oi are exclusive mean-

ing that for every two φi and φj of φ, if o ∈ Oi ⇒ o �∈ Oj . Moreover, for every
object o, there must be a φi such that o ∈ Oi.

Z Consistency zone vector Z specifying how to draw the consistency zones around the
pivots. It is #Z sized and specifies #Z + 1 consistency zones.

C Consistency scale characterizing the consistency degrees for applying into the con-
sistency zones. It is #C sized with #C = #Z + 1 consistency degrees.

V Set identifying the pivot objects for each view of the virtual world.

Fig. 5. Table describing the φ parameters of VFC
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objects {o1, o2, o4, o5}. The latter characterizes objects {o3, o6, o7, o8}. Both have
the same pivot but different consistency zone specifications.

Summary. In order to specify the consistency requirements, game programmers
need to provide the VFC φ settings by describing individual object sets φi. Each
φi setting is described by φi = [Oi, Z, C, V ], where Oi ⊆ O. Figure 5 presents a
table summarizing these parameters. As an example, the φ settings relative to
Figure 2 can be described by φ1 = [O, Z, C, P ], where O = {o1, o2, o3, o4, o5, o6},
Z = [1, 2, 3], C = 〈κm, [., 1, .], [., 2, .], κM〉 and, finally, V = {A → {o6}, B →
{o5}}. In this example, there is a single object set φ1.

3 Architecture

Mobihoc is a middleware platform aimed at supporting the design of multiplayer
distributed games for ad-hoc networks. Mobihoc enforces VFC by managing
the game state between the network nodes and provides programmers with the
adequate means to parameterize VFC according to game semantics.

Mobihoc follows a client-server architecture (see Figure 6).2 Upon the estab-
lishment of the ad-hoc network, one of the nodes becomes the server. Naturally,
the server device may also act as a client allowing all nodes to participate in the
2 The rationale for this choice is mainly due to the limitations of the Bluetooth tech-

nology that imposes a single node of the network to relay all messages between any
two nodes.
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game. The server has a coordinating role regarding data management: write-
lock management, update propagation and VFC enforcement. The client-server
protocol is orchestrated by the Session Manager components of each peer. Com-
munication is performed between clients and the server on a star like topology
using the services of components Network Layer and Serialization Layer.

The remainder on this section presents, firstly, the mechanisms for read-
ing/writing objects (Section 3.1) and, secondly, the mechanisms for VFC en-
forcement (Section 3.2), and exposes other relevant architecture components.

3.1 Read and Write Objects

The shared data is a collection of objects. Each node maintains local replicas
of all objects in the Object Pool container. The server maintains a primary
copy of the object pool while the clients keep replicas of such objects. From the
architectural viewpoint, there is no restriction whatsoever w.r.t. the representa-
tion of data (e.g. object graphs, tuples, relations). Also, the Object Adaptation
Layer maps the application data representation to the Mobihoc internal data
representation.

Mobihoc allows clients to read and write objects through its API. Read oper-
ations are performed on the local replicas without locking requirements (clients
may read stale data). Write operations need to acquire locks in order to pre-
vent the loss of updates. The server manages locks centrally; clients exchange
messages with the server to acquire and release them. Object updates are sent
to the server when clients release locks. The server propagates the new object
versions to the other nodes according to the VFC specification.

With the exception of lock messages (for obtaining and releasing locks), nodes
operate periodically w.r.t. the interactions between them. The server, periodi-
cally, sends a message to all clients defining a round. This has a twofold impli-
cation. In each round, the server sends round messages to the clients; updates
are piggybacked on the round messages and merged at client pools at reception
time. On the other hand, it enables the execution of synchronized application
handler functions (activities) at the client side. Whenever a round message is
received the Activity Manager executes client activities. This feature may be
used by many games based on turns. For example, activities may be used to up-
date players locations, scores or other game state information. Since updates are
received and merged before executing activities, the game programmers know
that local replicas are stable when their activities execute.

3.2 Enforcement of the VFC Model

The Consistency Management Block (CMB) at the server side enforces the VFC
model. The CMB coordinates the propagation of updates to clients according to
the VFC consistency parameters specified by each client. There are two phases:
the setup phase and the active phase. During the setup phase, clients register
the objects to be shared and send their consistency parameters (VFC φ set-
tings) to the server; the CMB aggregates all the clients φ settings. The active
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CMB-Update-Received(o, uo)
1 D[o]← 1
2 Enqueue(U, 〈o, uo〉)

CMB-Round-Triggered(t, M)
1 Merge(O, U)
2 u← New-Vector()
3 for o← 1 to #O

4 do if D[o] = 1
5 then Add(u, O[o])
6 D[o]← 0
7 for c← 1 to #C

8 do Piggyback(M [c], u)

a. CMB update handler. b. CMB round handler.

Fig. 7. Pseudo-code of CMB Version 1

phase is when clients may access the registered objects. In this phase, the server
processes: 1) write requests (sent asynchronously by the clients piggybacked in
lock release messages), and 2) round events (triggered periodically). The CMB is
involved in handling both these events. It provides two functions that are called
by the Session Manager (SM): CMB-Update-Received and CMB-Round-
Triggered. As both functions are called, the CMB accumulates and computes
the required information to build the clients’ consistency views according to
the previously specified φ settings. When called by the SM, the CMB-Round-
Triggered function returns the updates to be sent to each client, which the
SM piggybacks in the round messages.

In spite of implementing VFC, the CMB module offers a generic interface al-
lowing Mobihoc to support different consistency models. The remainder of this
section describes the internals of CMB that enforce VFC. The description of
the CMB algorithm is performed gradually as three versions are progressively
presented for a better understanding: 1) the CMB sends every client all updates
performed since the last round event, 2) the CMB supports consistency degrees
(κ vectors), 3) the CMB provides full VFC support, i.e. update sending obeys
the φ settings specified by clients. For each step we describe the algorithms un-
derlying CMB-Update-Received and CMB-Round-Triggered functions.

Version 1. In order to guarantee that all updates received since the last round
event are sent to all clients in the next round, the CMB keeps track of which
objects became dirty (i.e. were written) meanwhile in array D. Only the dirty
objects are propagated to clients. Figure 7 presents the pseudo-code of the al-
gorithms implementing this semantics. D has an entry per object of the object
pool. Whenever the server receives an update, CMB-Update-Received is in-
voked setting the object as dirty in D and putting the update in the queue
of pending updates U . At each round event, CMB-Round-Triggered is exe-
cuted: it merges the pending updates in the object pool and sends all pending
updates piggybacked in round messages to clients after testing the D dirty flags.
D is then cleared meaning that the new versions were sent to all clients.

Version 2. This version considers that, instead of sending all updates to every
client, there is a consistency vector κ, common to all clients. κ specifies when and
which updates must be propagated to clients. Figure 8 presents the pseudo-code
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CMB-Update-Received(o, uo)
1 Sσ[o]← Sσ [o] + 1
2 if Sσ [o] ≥ κσ or
3 |ν(uo)− Sν [o]| ≥ κν

4 then D[o]← 1
5 Enqueue(U, 〈o, uo〉)

CMB-Round-Triggered(t, M)
1 Merge(O, U)
2 u← New-Vector()
3 for o← 1 to #O

4 do tδ ← t− Sθ[o]
5 if D[o] = 1 or tδ ≥ κθ

6 then Add(u, O[o])
7 D[o]← 0
8 Sθ [o], Sσ[o], Sν [o]← t, 0, ν(O[o])
9 for c← 1 to #C

10 do Piggyback(M [c], u)

a. CMB update handler. b. CMB round handler.

Fig. 8. Pseudo-code of CMB Version 2

of the algorithms that support consistency vectors. The κ consistency vector ex-
presses three orthogonal dimensions (time, sequence and value). Each dimension
is evaluated independently and auxiliary data structures (S arrays) are kept for
each dimension. Without loss of generality, we assume there is a single and fixed
κ vector for all clients, thus all clients receive the same updates obeying κ. Each
dimension is evaluated as follows:

– Time – Sθ keeps the time of the last sent update. Whenever this time exceeds
the one specified by κθ, the update is sent (see Figure 8.b lines 4-5) and the
CMB internal state (D and S arrays) is reset. The time is approximated to
a multiple of the round period.

– Sequence – Sσ is simply a counter of the number of updates that where
received by the server since the last update was sent. There is a counter per
object. When an update is received, this counter is incremented. When the
counter exceeds the value κσ, the object is set to dirty in D in order to send
the update in the next round (see Figure 8.a lines 1-4).

– Value – This qualitative dimension implies querying the object state to test
when the difference to the last propagated version exceeds κν . This query is
evaluated by a function ν, provided by the game programmer and dependent
of the game semantics. Sν keeps the query result of the last propagated
version and do the test of Figure 8.a line 3 whenever an update is received.

Version 3. In order to fully support VFC, it is required to maintain per client
consistency views. This imposes two extensions w.r.t. the CMB Version 2: 1) D
and S become bidimensional matrices where the additional dimension regards
individual client views, and 2) κ vectors are computed per object, per view,
according to clients φ settings. To this extent, additional data structures are
required: K, Z, C and P . K is a bidimensional matrix storing per object κ
vectors of each view, that are valid during a time slot. Z, C and P refer to the
data structures related to the clients φ settings (see Section 2.3).

Calculating κ vectors is straightforward (see Figure 9, lines 11-18). Function
Φ(c, o) → 〈Z, C, P 〉 retrieves the φ settings referring to o for each client view
s: Z, C and P . The algorithm proceeds as follows: 1) determines in which con-
sistency zone zcloser the object is, and 2) resolves and stores in K the object



90 N. Santos, L. Veiga, and P. Ferreira

CMB-Update-Received(o, uo)
1 for c← 1 to #C

2 do if D[c, o] = 1
3 then continue
4 κ← K[c, o]
5 Sσ[c, o]← Sσ[c, o] + 1
6 if Sσ[c, o] ≥ κσ or
7 |ν(uo)− Sν [c, o]| ≥ κν

8 then D[c, o]← 1
9 Enqueue(U, 〈o, uo〉)

CMB-Round-Triggered(t, M)
1 Merge(O, U)
2 for c← 1 to #V

3 do u← New-Vector()
4 for o← 1 to #O

5 do κ← K[c, o]
6 tδ ← t− Sθ [c, o]
7 if D[c, o] = 1 or tδ ≥ κθ

8 then Add(u, O[o])
9 D[c, o]← 0

10 Sθ[c, o], Sσ[c, o], Sν [c, o]← t, 0, ν(O[o])
11 〈Z, C, P 〉 ← Φ(c, o)
12 zcloser ← −
13 for p← 0 to #P

14 do 〈px, py〉 ← 〈P [p].x, P [p].y〉
15 〈ox, oy〉 ← 〈O[o].x, O[o].y〉
16 z ← Max(|px − ox|, |py − oy|)
17 zcloser ← Min(zcloser, z)
18 K[c, o]← C[Z[zcloser]]
19 Piggyback(M [c], u)

a. CMB update handler. b. CMB round handler.

Fig. 9. Pseudo-code of CMB Version 3

consistency degree κ. Regarding the first step, since the object may be positioned
in more than one consistency zone, each one belonging to a pivot, it is necessary
to know which of these consistency zones imposes strongest consistency require-
ments. This is found by detecting which pivot is closer to the object, hence the
z variable to evaluate the distance to a pivot and zcloser to keep the shortest
one. Finding the distance from object o to a pivot P = 〈px, py〉 implies discov-
ering in which P centered square of side l the object 〈ox, oy〉 is positioned such
that z = l/2 = Max(|px − ox|, |py − oy |). Since consistency zones are delimited
by squares centered in P , it is enough to compare z with half the length of
the squares that bound a certain consistency zone (e.g. s1 for the inner square
and s2 for the outer square). Thus, the object is ensured to be in a determined
consistency zone if s1 < z ≤ s2. The operation that provides the number of
the consistency zone based on zcloser is Z[zcloser] in line 18. After determin-
ing which is the consistency zone of the closest pivot, determining which is the
corresponding consistency degree is simply done by consulting the C table.

4 Implementation

A prototype of Mobihoc was implemented on J2ME. Mobihoc can be deployed
on J2ME MIDP 2.0 CLDC 1.0 compliant devices. The prototype design follows
the architecture of Figure 6. In this section, we specify the most relevant imple-
mentation details of the internal components (Section 4.1) and provide a brief
insight on how the game programmers specify the VFC φ settings (Section 4.2).
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Fig. 10. Client and server Session Manager state machines

4.1 Implementation Internals

We adopted Bluetooth to support communication between the network nodes.
The Network Layer (see Figure 6) uses JSR 82, the J2ME Bluetooth API, for
discovery of nearby devices and services, management of active connections and
sending/receiving data. Internally, the Network Layer is multithreaded in order
to prevent blocking and increase parallelism. All messages exchanged between
peers are implemented as Java objects.

Due to the lack of binary object serialization support in J2ME, a Serialization
Layer was implemented in order to (un)marshal objects (see Figure 6). It requires
objects to implement a specific interface allowing the middleware to read and
write the object fields. The game programmer does not have to implement this
code; a compiler was developed that transparently extends the application source
code accordingly. Naturally, since it is not possible to access the already com-
piled class code, there are several limitations concerning the objects that can be
serialized. The fields of the serializable objects are required to be: i) Java primi-
tive types or, ii) serializable objects or, iii) arrays of primitive types/serializable
objects or, iv) Vector and Hashtable objects of the Java API. Message objects
exchanged via the Network Layer observe these restrictions.

Game programmers are invited to share data as Java object graphs. The
current implementation of the Object Adaptation Layer maps directly the ob-
jects of the graph into objects individually managed and stored in the object
pools. Further optimizations may assemble clusters of application level objects
to be managed as single units. Notice that, since these objects require to be
(de)serialized in order to be exchanged between clients and server, game pro-
grammers must follow the constraints imposed by the Serialization Layer.

The Mobihoc core consists of the CMB and the Session Manager components.
The CMB internals implement the algorithms presented in Figure 9, regarding
both the functionality and the data structures. The Session Managers of both the
client and server sides execute the protocol that provides the Mobihoc services to
the game programmers. Each implements its own state machine (see Figure 10).
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Shaded circles represent the states; arrows between the states represent state
transitions. State transitions are triggered by events. Each arrow description has
two parts separated by a slash: the left side is the event name, the right side is the
outgoing message sent to the remote peer. Straight arrows represent incoming
messages, dashed ones represent API requests or internal events.

Due to space constraints it is not possible to fully explain the details of the
Session Manager state machines. Briefly, Session Managers coordinate in order
to enforce the two phases already presented in Section 3: the setup and the active
phases. Broadly speaking, first, the server declares its intention to accept client
connections and enters the Setup state. Then, clients connect to the server and
subscribe into its services. Clients may now submit to the server the objects to
be shared, which the server forwards to every client. When the server receives an
enable request, it switches to the Active state and the system enters the active
phase. While in this state, the server sends periodic round messages and handles
lock and release requests. Updates are received by the server piggybacked with
the release messages. The system leaves this phase when clients send the server
a disable request causing the server to switch to the Idle state.

4.2 Integration with Programming Languages

For a consistency model to be widely used, it should be seamlessly integrated
with popular programming languages, such as Java and C#. In this section, we
describe how programmers can programmatically specify VFC φ settings.

Pivots are registered by name and objects are associated with them using
the Mobihoc overloaded methods setPivot(String, Object) and setPivot(
String, Object []). Sets of objects are selected by applying VFC declar-
ative tags to object classes in source code, represented as Java annotations
(@VFCPlane{}, @VFCZone{}) or .Net attributes ([VFCPlane()], [VFCZone()])
with parameters stating zone ranges and κ-tuple components (e.g. @VFCZone{int
range, float time, int sequence, float valueDiff}).

Java support for annotations is limited. In J2SE, it disallows multiple applica-
tions of the same annotation (even with different parameters) to the same class.
Therefore, we make use of composite annotations (e.g. @VFCPlane{} that en-
capsulates the parameters of multiple @VFCZone{} annotations). In J2ME, there
is no support for annotations whatsoever. Therefore, they are parsed as source
code comments and classes extended to bear annotation parameters as private
static fields. In .Net (including .Net CF) there is support for multiple application
of attributes to classes which eases programmers’ lives (e.g. [VFCZone(range,
time, sequence, valueDiff]) applied as [VFCZone(10,0.5,5,0.2)], [VFC
Zone(20,1.5,15,0.6)] and [VFCZone(30,4.5,25,0.9)]).

To allow inspection of objects by Mobihoc, classes must implement the
IVFCConsistency interface that describes three methods: getPosition for ob-
jects to provide their current coordinates in the virtual world, getValue to
provide their internal data to be propagated, and valueDiff to provide an
application-dependent measure (in percentage) of difference w.r.t. contents of
another object.
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5 Evaluation

The Mobihoc prototype was evaluated in a twofold perspective: quantitative
(Section 5.1) and qualitative (Section 5.2). The former consisted on a Mobihoc
performance study; several mini-benchmarks were implemented for this pur-
pose. The latter evaluated the effectiveness of Mobihoc in developing distributed
games. We implemented a distributed Pacman game for this purpose. The code
was deployed and executed in Nokia 6600 phones.

5.1 Quantitative Evaluation

The main objective was to study the impact of VFC enforcement on the overall
Mobihoc performance. VFC is implemented in Mobihoc according to the CMB
Version 3 algorithm (see Figure 9). Due to space limitations, we focus our at-
tention on the most costly operation – the CMB-Round-Triggered function.
This function not only performs intensive computations but it is also executed
periodically, once per round. Observing the algorithm of Figure 9, it is straight-
forward to see that, disregarding the cost of the merging operation in line 1, the
overall cost is proportional to the number of clients. Thus, we implemented a
micro-benchmark in order to evaluate the algorithm cost for a single client.

Several experiments were conducted by running this micro-benchmark on
Nokia 6600 phones and measuring the execution time of the CMB-Round-
Triggered function (at the server side) by varying two factors: i) the number
of objects in the pool (between 1000 and 10000 objects), and ii) the percent-
age of updates piggybacked in the round messages to the client (0%, 50% and
100% simulated update percentages).3 Additionally, experiments were conducted
with the following fixed conditions: i) the simulated φ settings included 1 pivot
and small C and Z (arrays with 3 positions); ii) object payload was 4 bytes

3 Updates are piggybacked in the round message if the test of line 7 is true. The micro-
benchmark simulated this setting according to the update percentage provided as
input.
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Fig. 13. Two phones enroled in a distributed Pac-
man game

Fig. 14. Game view in
one phone

(e.g. 2 small integers for space coordinates). Figure 11 presents the performance
measurements. Each result is annotated with the corresponding volume of data
to be sent to the client.

In order to better perceive the real impact into the overall system perfor-
mance, we also measured the cost of wireless communication. For this purpose,
we implemented a second micro-benchmark, deployed it and executed it on two
Nokia 6600 phones to measure network propagation time using Bluetooth. The
size of the messages varied from 1 to 10000 bytes. Figure 12 presents the ob-
tained propagation times which allows us to establish a comparison w.r.t. the
VFC evaluation result.

Results show that as the number of updates (sent to clients) grows, the VFC
overheads increases. Thus, we infer that performance is influenced by the VFC
parameterization: weak consistency requirements cause less updates to be sent,
increasing efficiency. Also, considering a reasonable number of objects, the com-
putation time is less than the corresponding transmission time in the network.
Hence, the VFC computation costs can be masqueraded if they are performed in
parallel with the transmission of the updates to clients and there is still time to
attend game logic and rendering on the clients. Further, since the propagation
time is nearly stable for messages below 200 bytes, the CMB may be enhanced
to adapt the number of updates in order to increase efficiency.

5.2 Qualitative Evaluation

To evaluate Mobihoc qualitatively, we implemented a distributed multiplayer
version of the popular Pacman game. Our version of the game considers a maze
divided into a matrix of 8 × 8 rooms; each room is assigned a 2-coordinate
position. Players have access to the whole maze; yet, during the game, each
player’s device only shows the room where its avatar is in at that instant. If two
players’ avatars are in the same room, they can see each other. Figure 13 is a
snapshot of two devices enroled in a Pacman game match. It captures a moment
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were both avatars are in the same room. Figure 14 displays a magnified screen of
one of these devices showing the details of the game in that room, particularly
the avatars and the room coordinates (0, 0) at the center of the screen.

The implementation of this game explores Mobihoc and VFC features for
sharing the game state as follows. The maze is mapped to a bi-dimensional
8 × 8 virtual world. The game state referring to rooms, players and ghosts is
implemented as objects with a position in the virtual world. Rooms are assigned
a fixed coordinate regarding its overall location in the maze. Both players and
ghosts, regardless of having fine grained positions within each room relevant for
the game semantics, w.r.t. consistency, are also assigned a position referring to
the room where they are at each moment. For each player, we consider that there
is only one pivot assigned to its avatar. Also, we defined Z = [0, 1] characterizing
three consistency zones. The first zone affects the objects in the same room as
the avatar; here, consistency is required to be strong. The second refers to the
avatar adjacent rooms; it is a weaker consistency zone and it is relevant mainly
when the avatar leaves the current room. The weakest consistency zone is beyond
the adjacent rooms. We defined three consistency degrees based on the sequence
dimension (σ).

This game, while being very simple and using few VFC features, demon-
strates the usability of VFC and Mobihoc. Our experience, from the application
programmer viewpoint, is that the model is intuitive, it is simple to describe
consistency requirements and to programmatically use Mobihoc employing VFC
as a consistency model. We believe it is straightforward to describe consistency
requirements for more demanding game scenarios.

6 Related Work

In this section, we discuss relevant work related to ours. Since we are addressing
consistency enforcement for multiplayer games in ad-hoc networks, we focus on:
i) other work regarding optimistic consistency (see [1] for a thorough survey)
in the presence of replicated data, ii) game development for ad-hoc and mobile
networks using resource constrained devices such as PDAs and mobile phones, iii)
other techniques leveraging locality-awareness (in games) to improve middleware
performance and scalability, and iv) middleware support for game development
and deployment.

Optimistic Concurrency and Divergence Bounding. Optimistic consis-
tency techniques are mostly used in loosely-coupled scenarios (e.g. mobile com-
puting). We find they are also suitable to multiplayer games in ad-hoc networks,
as they may be employed to circumvent known issues associated with low band-
width and high latency.

Real-time guarantees [2] allow an object replica to remain stale and still be
used (i.e., without being refreshed) for a specified maximum time, before the
replica must be made consistent. Order bounding [5] is used to limit the num-
ber of uncommitted updates that may be applied to a replica. This allows given
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transactions to proceed faster because they can ignore the effects of a bounded
number of transactions preceding them.

Numeric bounding is introduced in TACT [4,6], a multi-dimensional consis-
tency model that proposes its combination with order bounding. Numeric bound-
ing is based on the notion of defining maximum quotas for allowable updates to
each replica (e.g. $10 for a number of replicas of a $100 bank balance). Once the
quota has been completely used by a replica (e.g. to withdraw money from the
account), the replica can no longer be updated until it is made consistent w.r.t.
operations performed on the other replicas. Although TACT proposes a multi-
dimensional model for consistency enforcement and limiting replica divergence,
it does not embody any notion of locality-awareness. There is no notion of spacial
relation neither among individual data objects nor among users. The middleware
is oblivious to them. State is simply represented as individual database records
or shared/replicated variables in servers. Therefore, it cannot be used in game
scenarios where the consistency degree required for an object varies with player
position and corresponding sensing and acting ranges. Numeric bounding is also
related with escrow techniques [3] on data updates which are employed by mobile
databases during disconnection periods, such as reservations in Mobisnap [12].

In VFC, besides introducing support for locality-awareness in existing opti-
mistic consistency techniques, we are also able to extend them. We leverage the
fact that in the ad-hoc networks we address, there is a central node in charge
of routing that is able to monitor all object updates. Therefore, we are able to
further extend escrow and numeric bounding techniques, allowing application
programmers to define limits on the value divergence resulting from updates
performed by other nodes (instead of simply limiting their own updates in a
conservative manner).

Game Development for Ad-hoc and Mobile Networks. The work in [13]
compares the two dominant platforms for ad-hoc gaming (Java J2ME, and .Net
Compact Framework) w.r.t. portability and performance of native code invoca-
tion, numerical and graphic code. It also studies the performance of several com-
munication strategies (namely packet forwarding). Though providing insights on
the environments we are addressing, it assumes a strict consistency model, with
a centralized game server.

The work in [11] is focused on traffic selection according to its urgency (im-
mediate forwarding) and relevancy (reliable delivery) to maintain scalability in
wide-area scenarios in multiplayer games. Game developers must define stati-
cally, for each entity (e.g. class of objects), levels of urgency and relevance. The
middleware generates code that assigns network resources dynamically during
the game based on the provided requirements. Although offering control at some
level over replica divergence, this work does not explore locality-awareness. Thus,
the divergence of all objects of a given type (e.g. representing players) is bound
by global parameters irrespective of their relative spatial position w.r.t. each
player. This one-size-fits-all approach is inflexible and may waste bandwidth
w.r.t. a more fine-grained and adaptive approach embodied in our proposal.
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Locality Awareness in Large-Scale Multiplayer Middleware. The no-
tions of locality-awareness can be traced back to interest-management [8], used
to filter routing massive volumes of data in large-scale distributed simulations.
Locality-awareness is employed in [10] to perform load balancing on massive mul-
tiplayer games. The authors propose a transparent mechanism to partition vast
virtual worlds into a cluster of dedicated servers to ensure scalability. Based on
their locations, players are redirected to servers in charge of the corresponding
partition. As this approach is vulnerable to hot-spots in the game (e.g. crowding,
player flocking), it employs heuristics when to reduce server load (by splitting
highly populated partitions) and leverage idle resources (coalescing empty par-
titions in the same server).

The work described in [14] proposes the use of peer-to-peer (P2P) network
topologies, such as Pastry [15], to handle massive multiplayer games, in a scal-
able and cost-effective way, due to the increased flexibility provided by self-
organization, while obviating the need for dedicated servers. This also enables
game creation and enrollment to be performed in a ad-hoc manner, instead of
handled exclusively by central servers. These properties can be leveraged with
locality-awareness in order to dynamically organize nodes in groups, reflecting
common areas of interest within the virtual world. Therefore, updates to objects
are only propagated to other nodes within the same group, which encloses an
isle of consistency within the virtual world.

Communication between nodes is handled by multicast using Scribe [16]. Ob-
ject state is kept consistent by employing a coordinator-based approach, anal-
ogous to the tokens employed in Mobihoc. The effects of varying population
density, growth, message aggregation, and network dynamics are also studied.
Programmers must explicitly pre-define the static partitioning of the virtual
world, defining areas of interest. Consistency is therefore strictly enforced within
each one and ignored outside altogether.

Matrix [9] proposes the use of locality-awareness by perceiving a multiplayer
game as a decomposable system [7] where there is stronger interaction within
each given subsystem (e.g. a room, a game level) than among different subsys-
tems (e.g. across rooms). Based on this premise, a radius or zone of visibility
can be identified for each event in the game, outside of which, the corresponding
updates need not be propagated (e.g. a shot in another room). Thus, the sys-
tem enforces pockets of locally-consistent state. Matrix requires programmers to
explicitly tag individual packets carrying updates with their corresponding spa-
tial coordinates where they took place in the game. With this information, the
middleware checks the game visibility radius (a global parameter) and decides
whether and where to forward the packet. While providing a very interesting
approach based on localized consistency, Matrix also adheres to an overly lim-
itative approach of all-or-nothing consistency, with no method of stating maxi-
mum replica divergence. Furthermore, it makes use of a global consistency radius
instead of multiple and dynamic zones of consistency with different divergence
bounds, as we propose.
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The work in [17] also explores locality-awareness but w.r.t. actual physical lo-
cation of players that must wear tags. It describes a number of experiments trying
to determine how game accuracy and feed-back detail (e.g. graphics, sound) may
be balanced against the communication latency observed.

Other Large-Scale Multiplayer Middleware. Regarding online games in
wide-area networks, the work in [18] proposes to re-use server infrastructure
to deploy several MMOG4 side-by-side. It describes a service platform that
can host a number of games on-demand, leveraging existing grid technology.
The work described in [19] proposes a methodology to reduce human-resources
costs in MMOG development. It makes use of message-oriented middleware, ar-
guing that games typically operate in an event-driven manner. Protocol and
message-handling code for clients and servers is automatically generated from
message descriptors written in XML. Game and virtual-world logic is managed
via adapters, which can be plugged-in asynchronously, on-the-fly within an entire
running MMOG application. These works, while being relevant cases of employ-
ment of middleware to support online multiplayer games, are not targeted to the
kinds of constrained devices and ad-hoc networks we are addressing.

7 Conclusions

In this paper we present a novel consistency model to manage replicated data
(VFC) and a middleware platform (Mobihoc) adopting VFC to support mul-
tiplayer distributed games in ad-hoc networks. While some of previous works
embody the notions of consistency radius, locality of interest, or isles of local-
ized consistency, they adopt a rather all-or-nothing approach. Thus, objects in-
side an area of interest must be kept strongly consistent, while the values (or
updates to it) of objects outside are simply discarded. VFC combines and ex-
tends more sophisticated consistency models (such as TACT), with the notions
of locality-awareness in a unified model. VFC and Mobihoc provide intuitive,
simple and flexible abstractions such that application programmers are able to
easily express their consistency requirements according to application semantics.
Moreover, VFC and Mobihoc are widely applicable, not being restricted to the
development of distributed games for ad-hoc networks.

Regarding future work, we envisage to perform thorough empirical studies
to compare the performance of VFC and Mobihoc with other game consistency
protocols and frameworks. Also, we aim to employ our solution to different types
of real games in order to i) analyze the benefit of our solution in terms of ef-
ficiency/playability, and ii) to explore the flexibility of VFC in parameterizing
consistency requirements for different game scenarios. Although the partitioning
of the game space into zones depends on the application semantics, we envisage
to develop the mechanisms to help game programmers better deciding how to
partition the game space into zones. Additionally, we intend to study how this
approach scales across either number of objects or number of nodes, and possibly
to redesign Mobihoc to environments other than ad-hoc networks.
4 Massive Multiplayer Online Games.
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Abstract. The resource impoverished environment on mobile devices results
in a poor experience for users browsing the World Wide Web. Proxy-based
middleware that transform content on the fly to better suit the resource conditions
on a user’s device provide a promising solution to this problem. A key challenge
in such systems is deciding how to adapt content, especially when the same
content has multiple uses that have varying adaptation requirements. In this paper,
we show that it is possible to provide fine grain adaptation of multi-purpose
content by detecting correlations in the adaptation requirements of past users
across multiple objects on a web site, and using this history to make adaptation
predictions for users encountered subsequently. To evaluate our technique, we
built prototype page layout and image fidelity adaptation systems, and used these
to gather traces from users browsing multi-purpose web content in a laboratory
setting. Our experimental results show that using correlations to make adaptation
predictions can significantly reduce bandwidth consumption, browsing time,
energy usage and user effort required to adapt content.

Keywords: Content Adaptation, Mobile Devices, Customization, Web Browsing,
Experimentation.

1 Introduction

The severe resource constraints on mobile devices make browsing the World Wide
Web an unpleasant experience for users. At present, the majority of content on the
Web is targeted towards use on desktop computers with ample displays and high-speed
connections to the Internet. These assumptions do not hold in a mobile environment,
where devices have small screens, low-bandwidth, limited battery capacity, processing
capabilities, I/O facilities and storage. The problem of mobile web access is further
complicated due to the considerable heterogeneity among different classes of devices
(laptops, PDAs, cell phones, pagers, etc.). Also, as users move about naturally during
the course of their activities, the mobile computers they carry with them experience
significant variability in wireless connectivity – at one moment the user may be in range
of an accessible well-connected, lightly loaded 802.11g access point, whereas at other
times, she may only have access to a WWAN service (such as GPRS, CDMA 1X, etc.)
that charges her based on the number of kilobytes that are transferred over the link.
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A promising solution to these problems is adaptation middleware, interposed in the
network path between the client and web server, which automatically tailors content for
individual mobile devices [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. For example, images on web pages
can be served to the user at a reduced fidelity in order to conserve bandwidth and energy,
and improve download times. Also, the layout and size of content objects (such as
images) can be changed to better fit on a small display. However, a key challenge in such
systems is how to identify appropriate adaptations. This is a difficult problem because
optimal adaptation depends on the usage semantics of content (the user’s purpose vis-à-
vis the content) as well as the user’s context (characteristics of the user’s device as well
as their surroundings).

In previous work [11, 12, 13], we introduced Usage-Aware Interactive Content
Adaptation (URICA), an automatic adaptation technique that customizes content for
mobile devices based on the content’s usage semantics and the user’s context. URICA
learns how to adapt content from implicit feedback provided by users carrying out their
tasks. This is achieved by having the system make an initial adaptation decision, and
allowing users who are unsatisfied with the system’s adaptation decision to take control
of the adaptation process and make changes (e.g., increase the fidelity of a transcoded
image or change the layout of a page). The successful adaptation is recorded and used
in making future adaptation decisions for the same and other users. URICA works
well when users utilize content in a similar manner. For example, Figure 1(a) shows
histograms of image display sizes that satisfied users for two distinct images in a system
that scales the dimensions of images to fit on a small screen. Here, making predictions
using the history of individual objects works well; we see that presenting Image 1 at
size 2 and Image 2 at size 9 will satisfy the majority of users. However, URICA is less
effective for multi-purpose content, where objects on a web page are used for different
tasks with varying adaptation requirements. Figure 1(b) illustrates the case when users
can perform one of two tasks on a page. For the first task, they require a small version
of Image 1 and a large version of Image 2, while these requirements are reversed in the
second task. Here, if we only consider the history of the object that is being adapted,
there is no single adaptation that will satisfy all users.

Fortunately, typical web tasks involve more than one object. This paper shows that
for web tasks that involve multiple objects, it is possible to leverage the feedback
provided by the user on a few initial objects to narrow the history used to make
subsequent predictions to include only those users who have similar adaptation
requirements. This is achieved by finding correlations in adaptation requirements
between different objects on a web site using the history of previously encountered
users. Once these correlations are uncovered, the interactive feedback provided by the
user to adapt some objects can be used to adapt other related objects on the page or site.
For example, for the content depicted in Figure 1(b), we can see from the adaptation
history of the two images that the sizes of Image 1 and 2 are inversely correlated. Once
this determination is made, if a user increases the size of Image 1, the system can
automatically decrease the size of Image 2.

Correlation-based prediction works well for multi-purpose content because, while
users can utilize the same content in different ways, it is quite likely that there are
at least some users who use the content in each of the different ways.
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(b) Multi-Purpose Content

Fig. 1. Histograms of image display sizes that satisfied past users. The vertical axis shows the
number of users who desired each of the adaptations on the horizontal axis. When content is
single-purpose (a), one adaptation decision works well for most users. For multi-purpose content
(b), there may be correlations in the adaptation requirements of users across objects.

Correlation-based predictions can also be useful in the case of single-purpose content
when users have different context. If the context in question affects adaptation
requirements, the adaptation history of individual objects will be noisy just as in the case
of multi-purpose content. That is, a single adaptation will not satisfy users with different
context. In such situations, adaptation based on correlations will also be beneficial.

We experimented with two well-known machine learning techniques that enable
correlations between objects to be uncovered automatically: Decision Stumps, which
directly encodes relationships between the adaptation requirements of objects, and the
Gaussian Mixture Model, which finds correlations implicitly by clustering users with
similar adaptation requirements. Our experience showed that these techniques only
perform well when users have an incentive to fix incorrect adaptation decisions made by
the system. For instance, in a system that adapts the dimensions of images, users have
a clear incentive to correct images that are larger or smaller than what they require.
However, such incentives may not always exist. For instance, in a system that adapts
image fidelity, if the initial set of images on a site is served to the user at a fidelity that
is greater than that required, there is little incentive for the user to interact with these
images to lower their fidelity given that the bandwidth to transfer the images would have
already been spent. For these situations, we developed an algorithm called all-in that
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Fig. 2. A schematic of a web page with images of MP3 players and laptop computers. Users
in group 1 are shopping for MP3 players, whereas those in group 2 are shopping for laptop
computers. If the user improves the quality of one image of an MP3 player, it is likely that they
will want the other MP3 player images at high quality as well (the same holds for laptop images).

clusters together the histories of past users with similar adaptation requirements, and
as a user provides feedback, it rapidly narrows down a cluster of users with similar
adaptation preferences.

We built two prototype adaptation systems for the purpose of evaluation. One scaled
the dimensions of images on web pages and the other adapted their fidelity. We collected
traces from users browsing multi-purpose content using our prototypes in a laboratory
setting, and used these to evaluate the performance of alternative algorithms for making
adaptation predictions. We found that making adaptation predictions using correlations
results in significant performance improvements. For image scaling, we observed that
using correlations to make predictions required 66% fewer user interactions. In the
case of image fidelity adaptation, we observed that correlation-based predictions reduce
bandwidth consumption by 63%, user interactions by 48%, energy consumption by 17%
and time to completion by 20%.

The rest of this paper is organized as follows. Section 2 describes algorithms for
multi-purpose content adaptation. Section 3 provides a description of our experiments.
Section 4 presents the result of our evaluation. Finally, Section 5 discusses related work,
and Section 6 concludes the paper and suggests avenues for future work.

2 Adapting Multi-purpose Content

When the same content can be used for multiple purposes, users may have varying
adaptation requirements for the same object based on the particular task they are trying
to perform on a web page or site. For example, Figure 2 shows the schematic of a web
page that contains six images and represents the front page of an online retailer that
sells MP3 players and laptop computers. The first three images on the page show MP3
players and the next three show laptop computers. A user who pays for downloads by
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the kilobyte will most likely not want to see all images at high quality - users shopping
for MP3 players will want to see the top three images at a higher quality than the others
(and vice versa). In this case, the varying adaptation requirements of different users
leads to a noisy history for every object - no single adaptation will satisfy all users.

Fortunately, typical web tasks involve more than one object, and when there is
correlation in the adaptation requirements of these objects, the feedback provided by
users on a few objects can be used to adapt others. Continuing our previous example,
the system can determine that users who want any one of the MP3 player images at
high quality will likely want the other two at a high quality as well (the same holds for
laptop images). The adaptation system would initially serve all images at low quality,
and as soon as the user requests an improvement for one of the images (say, an image
of an MP3 player), the system can improve the quality of not just that image, but also
the quality of other images whose quality levels are highly correlated (the other images
of MP3 Players).

It is important to note that objects do not have to be tagged with any meta-data by the
content creator for this approach to work. Nor are users required to explicitly specify
the task they are performing. The only information required is the history of how users
have adapted objects on the page in the past, which is gathered automatically by the
system at run-time.

In this section, we start by describing the two types of implicit feedback that can
be provided by users in interactive adaptation systems: two-sided feedback and one-
sided feedback. The type of feedback available plays a crucial role in the design and
performance of algorithms that predict adaptation requirements. We then describe three
algorithms for taking advantage of correlations in user preferences.

2.1 Type of Feedback

The type of adaptation being performed influences the nature of feedback provided by
users. In some cases, the constrained resource cannot be recovered when an adaptation
decision results in overconsumption. In such situations, users have no incentive to
provide additional feedback to the adaptation system. That is, users only provide
feedback until the adapted object is “good enough”. We call this one-sided feedback.
For example, in image fidelity adaptation, if the system serves an image at a fidelity
that is lower than what is desired by the user, we can expect the user to interact with
the system to obtain a higher fidelity representation. However, if the system provides
a representation that is of a higher fidelity than that which is required, the user has
no incentive to provide feedback. This is because the cost of downloading the higher
quality representation has already been incurred. Thus, if the system provides an image
at some initial fidelity level (say, level 5, where there are 10 fidelity levels in total) and
the user does not improve the object, we cannot say for certain that the user required
fidelity 5. We only know that the user may have desired a fidelity between 1 and 5.

In other cases, where overused resources can be reclaimed, users are motivated to
keep interactively adapting an object until it has been appropriately customized. We
call this two-sided feedback. For example, in image screen size adaptation, if the system
overuses the screen real-estate resource, it can be reclaimed. Users have an incentive to
shrink and enlarge images until they are suitable for their purpose.
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2.2 Prediction Algorithms

We initially investigated two standard techniques from machine learning that enable
correlation-based predictions: Decision Stumps, which directly encodes relationships
between the adaptation requirements of objects, and the Gaussian Mixture Model,
which finds correlations implicitly by clustering users with similar adaptation require-
ments. We observed these techniques to perform well when users provide two-sided
feedback. However, when only one-sided feedback is available, these algorithms can
perform badly if the system over-predicts on the initial set of objects on the page. For
example, in a system that adapts image fidelity, if the initial set of images on a site
is served to the user at a high fidelity, there is little incentive for the user to interact
with these images to lower their fidelity, and the system cannot accurately gauge the
user’s adaptation requirements. This problem can be overcome by under-predicting on
the initial set of objects as a way of probing for the user’s true adaptation requirements.
However, this can require the user to frequently interact with objects. To address this
problem, we developed an algorithm called all-in that under-predicts without causing
an excessive number of interactions.

Decision Stumps: In order to investigate the effectiveness of directly correlating the
adaptation requirements of different images, a method using decisions stumps [14] for
predicting adaptation requirements was implemented. A decision stump is a decision
tree with only a single branch. In reference to the motivating example, it encodes a
decision of the form: Was the required fidelity for image X < 5? If yes, then a fidelity
of 5 is sufficient for image Y ; otherwise 5 is not sufficient for Y . Several decision
stumps (alternatively, they may be thought of as rules) are weighted and combined into
a final model, which is used to make predictions. Each decision stump in this model
represents some relationship between the object whose adaptation requirement is being
predicted and some other object. The weighting of the decision stumps is calculated
during training in order to minimize error; it may be thought of as specifying the relative
predictive ability of each relationship. Due to the multiple decision stumps that compose
a single model, more than one relationship can be captured and the multi-purpose nature
of any given object preserved.

For each object (call this the target object) and every subset of the non-target objects,
a distinct prediction model is generated. This model is generated by feeding the history
of all user adaptation requirements for the given set of non-target objects along with the
corresponding adaptation requirements for the target object into a training procedure.
This training procedure uses boosting [15] which generates a set of decision stumps and
weights that predict adaptation requirements with a low error rate. A model for each
subset must be generated because, as we are encoding correlations directly, a prediction
for an image X may be based on different images, depending on the set of objects for
which the user has provided some feedback.

Predictions are made by selecting the appropriate model for the target image, and
providing as input the already-specified set of required fidelities. For example, suppose
we are generating predictions for the electronics retailer used in the motivating example
of this section. Suppose the user has seen and possibly interacted with two images, X
and A, and we must now predict a fidelity for the image Y . First, we retrieve our model
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that was trained with adaptation requirements for X and A and predicts Y . Based on
the current user’s requirements for X and A, we predict an appropriate requirement for
Y . Since this model is a combination of decision stumps that involve rules regarding
the required fidelities of X and A, we can simply evaluate them all and determine a
final score. This final score corresponds to the predicted required fidelity. This process
is repeated with all remaining images other than Y , as predicted images are loaded and
the user provides feedback.

In the evaluation section, the use of this model with both one-sided and two-sided
feedback is explored. This method may encode many complex relationships between
objects, and requires no specification of parameters in advance (such as number of
clusters). Unfortunately, the cost of training and generating the large number of models
for this method may be high, although there could exist optimizations to alleviate this
problem. Another disadvantage of this method is that it may also have a tendency to
over-fit training data, especially for users with non-typical adaptation requirements.
This may manifest itself as a single out-of-character requirement given by a user
throwing off several predictions due to over-emphasis on a particular image.

For our implementation of this method, we used the MultiBoost [15] algorithm
implemented by the Weka [14] toolkit. The MultiBoost algorithm combines Ad-
aBoost [16] with wagging, and it was shown to be more effective in reducing error
than either of its constituent techniques [15].

Gaussian Mixture Model: In a Gaussian mixture model, all sets of adaptation
requirements are assumed to be sampled from a set of Guassian distributions spread
throughout the space of all possible adaptation requirements. Given a set of training
data, the parameters of the distributions are set by running an expectation-maximization
(EM) algorithm in order to maximize the likelihood that the given data was sampled
from the mixture of distributions. As input for this training procedure, all available
history of user adaptation requirements is provided. The number of distributions must
be selected a priori, however.

For prediction, based on a user’s currently specified set of adaptation requirements
and the training distributions, a candidate distribution for the user is selected by
computing the likelihood of her belonging to each distribution, then selecting the
most probable. The mean of this candidate distribution is used to provide any missing
adaptation requirements. If this mean is insufficient for the user for some particular
object, the most probable distribution with a higher adaptation requirement is selected
for that object instead. Eventually, these adaptation requirements which are not well-
represented may lead to the selection of a better candidate distribution.

Similar to the scenario given for decision stumps, suppose that we are serving
images for users browsing the online electronics retailer. The user has seen and possibly
interacted with the images X and A and we must now predict image Y . Based on their
required fidelities for X and A, the probability of the user belonging to each Gaussian
distribution d, p(d), is computed. This is a calculation over only the images which the
user has seen (X and A), in this case given by

p(d) = αd

∏

i={X,A}

1
σd(i)

√
2π

exp(− (xi − μd(i))
2

2σd(i)2
)
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for each distribution d with means μd(i), standard deviations σd(i) and prior αd (all set
by the EM training procedure). The distribution with the highest p(d) is selected, call
this dbest, and the means of dbest are used to provide a prediction for the adaptation
requirements of other images. In this case, since we need to predict Y , we would use
μdbest

(Y ), the mean of the distribution dbest for the image Y .
Logically, these distributions can be thought of as the center of clusters. During the

training procedure, they will tend to each cover different groups of users’ adaptation
requirements. This model is representable in a compact way, and has the advantage that
each distribution, or cluster, has an explicit variance for each object. This is useful for
intentional overprediction and underprediction, based on user preference. For example,
the user may favour underprediction in order to conserve bandwidth. Also, since the
identification of a candidate cluster is based on all objects, a single odd requirement
from a user is likely to have less of an impact on other predictions than in the case of
decision stumps.

The all-in Algorithm: We designed the all-in algorithm1 for use when only one-sided
feedback is available, and investigate it in the context of image fidelity adaptation. The
algorithm starts off by using the standard K-means clustering algorithm to partition
users into multiple groups. The idea is that users within a group share similar adaptation
requirements - not just for a single object but rather across all objects on a web page or
web site. Once we have a set of clusters, the system transitions into prediction mode.
The system then uses an online classification algorithm to make predictions.

The goal of the all-in algorithm is to rapidly classify the user into a single cluster. For
each user, the adaptation decisions made by the system early on are aggressive in that
they may be wasteful. However, once the system is able to correctly classify the user,
it starts making moderate predictions, such as serving the mean of the image fidelities
that was requested by other users within a cluster.

At the outset, the algorithm assumes that the user can belong to any cluster. Also,
it computes an upper and lower threshold for each object in every cluster. These
thresholds correspond to the range of values where an object’s desired fidelity may
lie, for users belonging to this cluster. We take the highest and lowest fidelity that
was previously observed as the upper and lower threshold, respectively2. When serving
an image initially, the algorithm makes an aggressive prediction: it serves the image
at the lowest upper threshold across all clusters. If the user is not satisfied with this
adaptation, she will request an improvement and the system will remove the cluster
whose upper thresholds are violated. The process is repeated until the user no longer
requests improvements to an object, and moves on to a different page or object. In
this case, the system checks if there exist any clusters whose lower thresholds are
violated, and removes them. Once the system has classified the user into a single cluster,
the algorithm behaves less aggressively, and serves objects at the mean of the image
fidelities that were requested by other users within the cluster.

1 The phrase “all-in” is taken from poker where a player bets his entire stake on a hand. When
there are only two players, this move forces the opponent to evaluate her hand and make a
decision on whether to accept the bet (“call”) or give up the hand (“fold”).

2 Other alternatives are possible, such as taking the endpoints of the 5-95 percentile range. This
would help eliminate outliers in a production system.
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It is possible for the system to reach a point where there is no cluster that the user can
belong to. This can occur for two reasons: first, there may be no cluster that captures
the current user’s preferences or second, we may have removed the user from a cluster
that she would otherwise have fit into because her adaptation preference on some prior
object was radically different. With regards to making adaptation predictions for this
particular user, we can do nothing about the first possibility. However, we can address
the second by making all clusters valid again for the user. For the particular object under
consideration, we give up, and serve it without any adaptation. In a production system,
we can take the first possibility into account as well. Any time the system runs into
a large number of users who cannot be classified, it can transition into training mode
again, and regenerate the clusters.

2.3 Practical Considerations

Parameters, such as the number of clusters to use in the all-in algorithm, can be
automatically determined in a production system. Once the system has encountered
some number of users (say T, specified by the operator of the adaptation proxy),
it can run profiling experiments that compare the performance that would have
been experienced by the previously encountered users in different conditions. The
experiments may compute a variety of performance metrics for different parameter
settings, and the system can set parameters to be the values that result in the best
performance. A single metric or a composition thereof can be used for this purpose,
based on the goals of the proxy operator or the preferences of users. Indeed, if users
specify different goals to the adaptation system, it can provide them with varying
predictions tailored to their requirements based on the same history.

3 Experimental Methodology

To evaluate our prediction algorithms, we considered two types of adaptation: page
layout and image fidelity. For each type of adaptation, we created a prototype that allows
users to interactively adapt content. We used the prototypes to perform experiments
in which participants adapted content in a laboratory setting. The traces of the user’s
adaptation decisions were then used to evaluate the prediction algorithms.

In this section, we first describe our trace gathering experiments. We then discuss the
methodology used to evaluate the prediction algorithms on the collected traces.

3.1 Gathering User Traces

We conducted our experiments in a laboratory at the University of Toronto. For
the experiments we recruited three groups of participants from the general student
population. The first group adapted the layout of web pages, while the second and third
groups adapted the fidelity of images on web pages. Table 1 summarizes the setup of
the experiments. During the experiments, the prediction component of the adaptation
system was disabled so that participants would have to interact with images in order to
achieve an appropriate adaptation. That is, the system did not take advantage of past
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interactions of the current or previous users. This forces participants to reveal their
true adaptation preferences as well as avoiding any effects arising from the ordering of
participants in our study.

Page Layout Adaptation Experiment: The goal of our first experiment was to
investigate a scenario in which users naturally provide two-sided feedback. We created a
prototype page layout adaptation system that allowed users to increase and decrease the
screen dimensions of images on a web page. While all of the participants in this study
were given the same task to perform, we varied the device used to browse the web
across individuals. Thus, the primary source of variation in the adaptation requirements
of users is the difference in device context.

The experiment consisted of four web pages, each containing three images of postage
stamps. For each page, participants were asked to modify the dimensions of the images
in a manner such that it would be easy to identify differences between two images
and find details on a third image. We obtained traces from 30 participants who were
randomly divided into three sub-groups which used different simulated displays: a
PocketPC SmartPhone, a PocketPC PDA and a Toyota GBook vehicular terminal. The
setups for these traces are referred to in Table 1 as SmartPhone, PDA and GBook,
respectively.

Image Fidelity Adaptation Experiments: The goal of our second and third exper-
iment was to consider a case where users are only motivated to provide one-sided
feedback. To this end, we created an image fidelity adaptation system in which the
images on a web page are initially served at low fidelity (for faster download), and
users can click on individual images to improve their fidelity. In these studies, different
participants were given varying tasks. However, all of the participants performed their
assigned tasks on the same device. As such, variations in the adaptation requirements
of users stem from differences in their assigned task.

For these experiment, we designed two image-rich sites. The first, a movie posters
site, had images of popular movie posters. The second, a map site, had a map of the
University of Toronto’s campus represented in a grid of 6 x 6 images. For each site, we
designed three tasks, and each participant performed only one of those tasks. For the
movie posters site, each task consisted of detailed questions pertaining to a different
subset of the posters. For example, participants were asked to identify the director, title
and release date of some of the movies. For the map site, participants were asked to
provide directions from one given building to another within the university’s campus.
To accomplish these tasks, participants had to increase the fidelity of relevant images
until sufficient details were visible. Participants were able to adjust image fidelities on
a scale between 1 and 10. The tasks were designed so that participants would find some
images in a web page relevant while others not as much.

For these experiments, participants used a laptop equipped with our adaptation
system and an available network bandwidth of 56kbps, which is a reasonable approxi-
mation of a GPRS WWAN connection. We recruited 231 participants who were divided
in six sub-groups of 37 to 40 individuals. Our setup is described in Table 1.
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Table 1. Summary of experiments

# of Pages Images per Page Total Images Setup # of Users
Page Layout
Postage Stamps 4 3 12 SmartPhone Display 10

PDA Display 10
GBook Display 10

Image Fidelity
Movie Posters 9 1 9 Task-1 37

Task-2 37
Task-3 37

Map 1 36 36 Path-1 40
Path-2 40
Path-3 40

3.2 Trace-Based Evaluation

In order to determine the effectiveness of each algorithm considered, we evaluated them
using the traces collected from the participants in our experiments. For the page layout
experiment, we collected for each participant, their required image dimensions for every
image. From the fidelity experiment, we obtained for each participant their minimum
required fidelity for every image.

To test each algorithm, we used leave-one-out cross-validation. That is, each
algorithm was trained with the traces of all users except one. The algorithm was then
used to predict the dimensions or fidelities of the images served to the user, depending
on the experiment.

For this testing, we created a user simulator. At the start, the prediction algorithm
provides an adapted version of each image on a page. The simulated user, based
on the collected traces, goes through each of the images on the page in turn and
provides an “interaction” for the first image it finds that is not properly adapted. When
the simulated user provides an interaction, the prediction algorithm recalculates an
appropriate adaptation for all of the images on the page and presents it to the simulated
user once again. This process is repeated until all of the images are adapted according
to the user’s preferences.

For the page layout adaptation experiment, the primary metric used to evaluate
the different algorithms is the number of user interactions. However, for the fidelity
experiments, a number of metrics are used for evaluation: the number of user interac-
tions required, fulfillment time, wasted bandwidth and energy consumed. Number of
interactions is the number of times a user had to interact with the images in order to
achieve her desired adaptation. Fulfillment time is the aggregate of interaction time
(the time users spend interacting with images until their fidelity requirements are
met) and download time. Wasted bandwidth is calculated as the amount of bandwidth
used beyond what would be required by the user if all images were served at their
exact required fidelity immediately. Energy consumed is the energy measure, in Joules,
consumed by the device for viewing and downloading content.

In order to compute fulfillment time and energy consumption with our simulator, we
measured the average interaction time from one of our user studies (2388 milliseconds).



112 I. Mohomed et al.

We then ran several experiments on an HP iPAQ h6325 PDA in order to measure
download speeds and energy characteristics of real hardware. With a GPRS connection,
we observed effective download speeds of approximately 33kbps. When the device was
idle, it consumed 0.67 Joules/second (with GPRS radio and backlight on) and when the
device was downloading, it consumed 1.59 Joules/second.

For any particular algorithm, there is a clear trade-off between wasted bandwidth and
the number of interactions: under-predicting the fidelity required for an image will lead
to more user interactions and over-predicting the fidelity will lead to wasted bandwidth.
However, good algorithms can perform well at both simultaneously. Indeed, a perfect
prediction algorithm that knows the exact adaptation required by users (we call this
oracle) would not waste any bandwidth, nor would it require any interactions by the
user.

4 Experimental Results

In this section, we provide the results of our evaluation. We start by considering the
case of two-sided feedback, which occurs naturally during the course of our page layout
experiment. Next, we consider the performance of different algorithms when only one-
sided feedback is available, as is the case in our fidelity adaptation experiments.

All of the results presented in this section are mean results, averaged across
individual users over the entire web site for any given experiment. The algorithm that
we use as our baseline for performance is the single object history (SOH) prediction
algorithm from our previous work [12,13]. This algorithm makes adaptation predictions
for each object by considering its adaptation history in isolation. For image fidelity
adaptation, the SOH algorithm initially serves an image at the mean value of the fidelity
that was desired by previously encountered users. If this is not satisfactory, the SOH
algorithm provides a subsequent prediction by ignoring the desired fidelities below that
which was just served, and recomputing the mean. For page layout adaptation, the initial
prediction of the SOH algorithm is computed in the same way (taking the mean of the
desired image sizes of previously encountered users). However, when a user decides to
increase or decrease an image, the algorithm removes from the history all of the desired
image sizes of previous users that are less than or greater than the size that was just
provided, respectively. SOH makes the next prediction by computing the mean value
from the remaining history.

4.1 Two-Sided Feedback

We tested both the decision stump algorithm and the Gaussian mixture model algorithm
on the postage stamp experiment, where users were required to adapt images by re-
sizing them. For this experiment, feedback was provided for predictions that were too
high or too low. Because the images were already downloaded, there was no notion of
bandwidth wasted for this experiment. Using the SOH algorithm, the mean number of
interactions required of a user during the experiment was 15. By leveraging correlations
between adaptation requirements however, the decision stumps algorithm achieved a
mean of 5.1 interactions, while the Gaussian mixture model achieved 5.9 (with six
distributions), both demonstrate a vast improvement over using only SOH.
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Table 2. The performance of several variations of decision stumps on the movie poster dataset.
We observe that significantly more bandwidth is wasted with one-sided feedback (line 2) than in
the hypothetical case of perfect feedback (line 1). We also observe that under-prediction greatly
reduces wasted bandwidth but comes at the cost of more interactions required of the user (line 3).

Variation # of Interactions Bandwidth Wasted (KB)
Perfect Feedback 2.50 200.74

One-Sided Feedback 0.32 830.19

Under-prediction on First Image 6.71 113.67
with One-Sided Feedback

These results demonstrate that using correlation based prediction methods for cases
where two-sided feedback is available is an excellent idea, and that standard machine
learning techniques work well. After all, this a very straight-forward prediction problem.

4.2 One-Sided Feedback

One-sided feedback introduces a twist to the prediction problem. We compare the
performance of our different algorithms and explore the effect of under-prediction on
the movie posters experiment. We show that the all-in algorithm leverages this effect
and provides strong performance across all studies where only one-sided feedback is
available. Finally, we evaluate the algorithms on the movie posters experiment using
two metrics of practical interest: fulfillment time and energy usage.

Without any adaptation, 2.70MB are transferred to download the 9 images in the
movie posters experiment. However, if an oracle were to exist such that we were able to
provide users with their desired fidelity, only 1.29MB would have been downloaded on
average. That is, without adaptation, an average of 1.41 MB of bandwidth is consumed
needlessly. Making predictions using single object history results in an average wastage
of only 378KB of bandwidth; this occurs at an average cost of 5.4 interactions. When
we consider how interactions are distributed across images, we observe that the users
must interact with approximately two-thirds of the images on the web site.

In the case of image fidelity adaptation, only one-sided feedback is available.
However, in order to establish the validity of the methods in general, we first consider
the performance they achieve if users provided perfect feedback. For perfect feedback,
we assume the algorithm knows by how much each image was over-predicted, without
incurring any additional interactions (under-predictions still result in interactions). We
then show results for the case where users provide one-sided feedback.

The first line of Table 2 shows the result of making predictions using decision
stumps when perfect feedback is provided. We see that, beyond the single object
history case, the amount of wasted bandwidth is reduced by 47%. In addition, the
number of interactions is decreased from 5.4 to only 2.5. However, for image fidelity
adaptation as the problem is made manifest (only one-sided feedback is available),
the wastage increases significantly. The second line of Table 2 shows the result
of making predictions under these conditions. Although the number of interactions
required is minimal, the wasted bandwidth is significantly higher (830KB) than using
the predictions generated by the single object history method (378KB).
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Figure 3(a) shows the performance achieved when making predictions using a
mixture of Gaussians when perfect feedback is available. The x-axis in the graph
indicates the number of distributions that are created based on the observed training
data. The y-axis on the left indicates the mean number of interactions required by
each user and the y-axis on the right provides the mean wasted bandwidth per
user. We observe that after about four distributions, the algorithm achieves consistent
performance. With six distributions, users waste 212KB with 1.4 interactions. Like the
decision stumps method, this represents a significant improvement over the predictions
generated with only single object history which wastes 378KB with 5.4 interactions.
When only one-sided feedback is given, the number of interactions remains consistently
low, however, the wasted bandwidth climbs above 700KB. Figure 3(b) shows the
performance of the Gaussian Mixture Model in this case.

We conclude that when only one-sided feedback is available, the two standard
techniques that we considered suffer from poor performance.

Effect of Under-prediction: In situations where users only provide one-sided feed-
back, the performance of prediction algorithms that use correlations can be improved
by purposely under-predicting on the initial set of images on a web page. We now show
the performance of the decision stumps and Gaussian mixture model algorithms for the
movie posters dataset when we under-predict on the first image.

The third line of Table 2 shows the result of making predictions using decision
stumps, but with a purposeful under-prediction on the first image served. We see that
the amount of wasted bandwidth is reduced by nearly 70% compared to the case where
only single object history is used. However, this comes at the cost of more interactions,
6.7 versus 5.4 in the case of single object history.

Figure 4(a) shows the performance of the Gaussian mixture model with one-sided
feedback for the case of six clusters. Due to the nature of the model, it is natural to
under-predict on images by some standard deviation of the required fidelities of the
object. The x-axis indicates the amount of under-prediction (in terms of the number
of standard deviations). Similar to Figure 3, the y-axis on the left and right indicate
the average number of interactions required per user and the average amount of
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(b) One-Sided Feedback

Fig. 3. The performance of the Gaussian Mixture Model on the movie posters dataset with perfect
and one-sided feedback. We observe that significantly more bandwidth is wasted with one-sided
feedback (b) than in the hypothetical case of perfect feedback(a).



Correlation-Based Content Adaptation for Mobile Web Browsing 115

 0

 2

 4

 6

 8

 10

-5 -4 -3 -2 -1  0  1
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

N
um

be
r 

of
 In

te
ra

ct
io

ns

W
as

te
d 

B
an

dw
id

th
 (

K
ilo

by
te

s)

Standard Deviations

Interactions
Wasted Bandwidth

(a) Gaussian Mixture Model (Six Distribu-
tions) with Under-Prediction
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(b) One-Sided Feedback with Fixed Amount of
Under-prediction (3.3 std dev)

Fig. 4. The effect of under-prediction on the Gaussian mixture model on the movie posters dataset.
We observe that wasted bandwidth decreases as we under-predict with more standard deviations
(a). For e.g., -4 on the x-axis refers to under-predicting the mean by four standard deviations.
Alternatively, for a fixed amount of under-prediction, we observe that GMM has far less wasted
bandwidth (b) compared to GMM with no under-prediction.

wasted bandwidth per user, respectively. If the algorithm under-predicts by 3.3 standard
deviations, compared to using single object history for predictions, users waste 45%
less bandwidth and require 1.4 fewer interactions. Figure 4(b) shows the performance
of the Gaussian Mixture Model when under-predicting by 3.3 standard deviations for
various numbers of distributions.

From these results, we conclude that under-prediction results in a significant
reduction in the amount of wasted bandwidth. However, doing so may result in more
interactions required of the user.

Performance of the all-in Algorithm: Figure 5(a) shows the performance achieved
when making predictions using the all-in algorithm for the movie posters data set.
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Fig. 5. The performance of the all-in algorithm on the studies where only one-sided feedback
is provided. We observe that all-in performs consistently well on all datasets for both wasted
bandwidth and number of interactions.
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The x-axis indicates the number of clusters into which users may be classified. These
clusters are created using the observed training data. Similar to the previous figure, the
y-axes on the left and right indicate the mean number of interactions required by each
user and the mean amount of wasted bandwidth per user, respectively. With respect to
the number of interactions required, the algorithm performs optimally when there are
three clusters. In this case, users waste only 138KB (a reduction of 63% compared to
using single object history) at the cost of just 2.6 interactions (2.8 interactions less than
single object history).

The all-in algorithm also performs well on the map experiment 5(b). When we
compare the performance of the three methods, we find that the all-in algorithm has the
best performance. One of the key features of the all-in algorithm is that until the user is
isolated into a single cluster, the initial prediction made for each object is lower than the
average fidelity required by users. When doing correlation-based adaptation with one-
sided feedback, purposeful under-prediction for the first few objects provides significant
benefit. This is because when the algorithm under-predicts, it forces the user to interact.
This leads to an accurate history for a small set of objects, which can be leveraged to
provide better quality predictions for the remainder of the objects on a web site.

Energy and Fulfillment Time: To characterize the exact benefits that the different
methods may provide in practice, we evaluated all of them and several baseline and naive
approaches with respect to fulfillment time and energy consumption. Figure 6 shows
the fulfillment time and energy consumption for a number of adaptation policies: no
adaptation (NA), single object histories (SOH), decision stumps (DS), decision stumps
with under-prediction (DSU), Gaussian mixture model (GM), Gaussian mixture model
with under-prediction (GMU), all-in (AI) and oracle (OR). Oracle, discussed earlier, is
able to exactly predict the user’s required fidelity, wasting no bandwidth nor requiring
any interaction. It gives an upper bound on the performance of prediction algorithms.

For both fulfillment time and energy, we see that under-prediction results in
significant improvement for both decision stumps and Gaussian mixture model. all-
in performs the best for both fulfillment time and energy consumption, and performs
close to oracle. In all cases, the correlation based approaches that use under-prediction
offer both better fulfillment time and energy usage. Of all of them however, all-in also
requires the fewest interactions.

4.3 Summary of Results

We first considered the performance of our prediction algorithms on an adaptation
problem where two-sided feedback is available. We found that, in this case, all
correlation-based techniques perform better than if we were to make predictions using
only SOH. We then considered the algorithms’ performance in the case where only
one-sided feedback is available and found that for both the decision stumps and
Gaussian mixture model algorithms, over-predictions on the initial set of objects lead
to poor predictions for later objects. We modified these algorithms to perform under-
prediction, which while reducing wasted bandwidth significantly, burdened the user
by requiring more interactions. The all-in algorithm performed consistently well, even
when only one-sided feedback was available, due to its aggressive under-prediction.
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Fig. 6. The average fulfillment time and energy consumption per user for several adaptation
techniques on the movie posters dataset

Finally, we considered the fulfillment time and energy consumed during the movie
posters experiment by each of the algorithms. We found that the all-in algorithm
outperformed all others, and provides effective fine-grain adaptation even in the case
of multi-purpose content.

5 Related Work

There is significant research on content adaptation for mobile devices [1,2,3,4,5,6,8,9,
10, 17, 18, 19, 20], and even a few commercial adaptation systems have been deployed
[1, 21].

Content providers have traditionally adapted content manually, by offering device
specific versions of their content. This approach places significant overhead on content
providers as they need to maintain multiple versions of their content.

There has also been research on systems which automatically adapt content on-the-
fly. Most automatic systems generate adaptation policies either based on rules [1, 6, 7,
20, 22] or constraints [4, 7, 19, 23]. In both approaches, adaptation policies are defined
using high-level programming languages or mathematical formulas [22,23]. Rule-based
systems rely on high-level rules to guide the adaptation process. When adapting an
object, the system determines the subset of rules that apply and adapts accordingly
(e.g., convert images larger than 50 KB to progressive JPEG images). Constraint-
based adaptation extends rule-based adaptation to encode tradeoffs between possible
adaptation strategies. A constraint captures, in a mathematical formula, the relationship
between resource consumption and user satisfaction for a specific adaptation. An
automatic solver adapts content by finding a solution that meets all constraints,
minimizes resource consumption, and maximizes user satisfaction. Unfortunately,
content providers cannot be expected to provide constraints or rules for every data
object, as this imposes significant onus. As a result, small sets of rules apply to broad
sets of content (e.g., all JPEG images are adapted the same way independent of their
purpose or value to the user). Moreover, determining the relationship between user
satisfaction and content metrics, such as resolution or frame rate, is hard and often
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depends on the semantics of the content being adapted and the user’s task, which is
rarely taken into consideration in these approaches.

In contrast, in our approach, end-users provide feedback for only a small subset of
the content of web pages (by clicking on the objects), and the system is able to correctly
adapt the larger set of content by considering the correlation in adaptation requirements
of users. Also, because the end-user has control over the degree of adaptation, the
system is guaranteed to provide adaptations that are satisfactory to the user.

End-user adaptation is also explored in [24, 25], however, those systems provide
solutions specific to the layout of web pages on small screens, and as such do not
explore correlations in user adaptation requirements.

Our work is related to previous efforts on recommendation-based systems. Most
recommendation systems [26, 27, 28, 29] use collaborative filtering, in which people
collaborate to help one another perform filtering by recording their reactions to
documents they read. Balabanovic et al. [30] add the ability to evaluate and provide
feedback in order to learn and improve on the recommendations. A collection of
histories [31] can be created and then mined to recommend to the user a set of candidate
functions and to detect users’ erroneous behavior. Semantics can be used to build a
model of the user [32] such as that used by online retailers like Amazon.com, which
can then be used to recommend other items in the same class of products.

In our previous work, we introduced the URICA technique, which adapts single-
purpose content based on the history of previously encountered users [12], and
considers the context of those adaptations [13]. In this paper, we have shown how to
provide fine-grain adaptation in the more challenging case of multi-purpose content.
This is achieved by finding correlations in user adaptation requirements between
different objects on a web site, and leveraging a user’s feedback across multiple objects.

6 Conclusions and Future Work

In this paper, we showed that correlations in user adaptation requirements across
different objects can be used to provide fine-grain adaptation for multi-purpose
content. We considered two techniques from machine learning that enable correlation-
based predictions: decision stumps, which directly encodes relationships between the
adaptation requirements of objects, and the Gaussian mixture model, which finds
correlations implicitly by clustering users with similar adaptation requirements. These
techniques do not perform well when users have no incentive to correct over-predictions
made by the system. We provide an algorithm called all-in, which groups together users
with similar adaptation requirements and then makes predictions in a way that rapidly
classifies users into a single cluster. We showed that for one-sided feedback, the all-
in algorithm performs significantly better than other techniques when considering key
metrics such as bandwidth usage, number of user interactions, fulfillment time, and
energy consumption.

In the future, we intend to do a large scale, real-world deployment of an image
fidelity adaptation system. The goal of this endeavor is to learn about the behavior
of users performing interactive adaptation on web content outside a lab environment,
and over an extended period of time. A version of this system for devices that can run
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the Firefox browser has already been made publicly available [33], and versions for the
Minimo and Pocket Internet Explorer web browsers are currently being tested.
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Abstract. Distributed computations, dealing with large amounts of
data, are scheduled in Grid clusters today using either a task-centric
mechanism, or a worker-centric mechanism. Because of the large data
sets, the execution time is bounded by the cost of data transfer. In this
paper, we introduce new worker-centric scheduling strategies that are
novel in that they aim to implicitly exploit the locality of interest in
order to reduce the cost of data transfer. Many Grid applications are
characterized by such a locality of interest, i.e., a file is often accessed
by multiple tasks and, more importantly, a set of files that are accessed
by one task are also likely to be accessed together by other tasks. Our
new deterministic, as well as probabilistic, scheduling algorithms implic-
itly exploit this feature to improve running time. Our experiments are
done with traces of a real Grid application (Coadd), and show that our
algorithms are able to achieve utilization of over 90%, while reducing
makespan significantly compared to task-centric approaches.

Keywords: worker-centric scheduling, task-centric scheduling, data-
intensive applications, Grid environments.

1 Introduction

Data-intensive Grid applications are the applications that run on distributed
Grid sites and are characterized by their access of large amounts of data sets. In
attempting to minimize the execution time for such applications, schedulers of
the Grid application are hampered by the sheer size of the data sets involved.
While these data sets are mostly read-only and predefined, their size ranges
from several terabytes to petabytes [1]. Examples of such data-intensive Grid
applications can be found in many scientific domains such as Physics, Earth
science, and Astronomy, e.g., [2, 3].

At run time, this large scale of the data sets makes it impractical to replicate
all the data at every execution site, where the term “site” refers to a cluster of
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client machines (“workers”). Instead, the typical approach to structuring such
a data-intensive Grid application (i.e., the “job”) is to partition the execution
code into several small “tasks”, and to divide up the data into several disjoint
pieces, each of which we call a “file”. Thus, each task requires a specific subset of
the files that constitute the job data, and a site begins the execution of a given
task by retrieving all those required files.

When running a data-intensive Grid application across a collection of sev-
eral sites, one of the most challenging problems is the design of a (global) Grid
scheduling algorithm. Specifically, since the cost of data transfer is a major bot-
tleneck for the execution time [2,4,5,6], the main goal of the (global) scheduling
algorithm becomes assigning tasks to sites in such a way as to reduce the fre-
quency and amount of data transfer [4, 5, 6]. Fortunately, many data-intensive
Grid applications exhibit locality of interest, i.e., a file is often accessed by mul-
tiple tasks and also, a set of files that are accessed by one task are also likely
to be accessed together by other tasks [7] (note: we will also use data-sharing
whenever appropriate).

Our analysis of Coadd (Sloan Digital Sky Survey southern-hemisphere coad-
dition [2,3]) (explained in detail in Section 2.1) also shows the locality of interest
in data-intensive Grid applications. There is a significant number of files accessed
by multiple tasks (Figure 1(a)) and there is a large number of tasks that access
the same set of files during their execution (Figure 1(b)). This locality of interest
gives an opportunity to reduce the numbers of both redundant file transfers and
file replicas, and is present in wide variety of applications including data mining,
image processing, genomics [4], and spatial processing applications which consist
of tasks that process overlapping regions [2].

Previously, locality of interest has been exploited for scheduling and workflow
planning in Grid data-intensive applications. Casanova et al. [6], Ranganathan
et al. [5] and Santos-Neto et al. [4] successfully demonstrated the benefits of
their locality-aware schedulers over traditional schedulers. However, the sched-
uler design in all the mentioned papers is task-centric, i.e., the global scheduler
assigns a task to a worker, without considering whether or not the worker can
start executing the task immediately after the task assignment.

We observe that such task-centric scheduling suffers from two major issues
when dealing with data-intensive applications. First, there is a possibility of
unbalanced task assignments, resulting in some sites being overloaded with tasks.
Second, conditions at a site during scheduling time of a task may be different
from the conditions at the site during execution of the task, because each task
usually waits in the site’s (or worker’s) task queue for a while.

We argue that an alternative worker-centric scheduling [8, 9], where a sche-
duling decision to a worker is made only when the worker can start executing
the task immediately, is amenable to approaches that exploit locality in file ac-
cesses, and addresses both of these issues. In worker-centric scheduling, the times
of task assignment to a worker are determined solely by the worker’s preference
based on its local criteria, e.g., by using policies based on local CPU load, site
queue length, time of the day, etc. The task execution begins as soon as the task
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arrives at the worker. The scheduling problem then becomes the one of designing
a global scheduler that assigns the best possible as-yet-unscheduled task to the
“best” worker, based on such characteristics as the files already present at the
worker’s site, and the data required by the unscheduled tasks.

There are two options for implementing worker-centric scheduling strategies
- either (1) workers could pull tasks from a task repository associated with the
global scheduler, when the worker’s local policies allow it to do so; or (2) the
global scheduler could push tasks out to workers, depending on the worker’s pref-
erence. We consider only the pull variant ((1) above) since it is simpler and more
practical. Henceforth in this paper, whenever we use the term “worker-centric”,
we will be referring to only the pull variant of the worker-centric algorithm.

In this paper, we present the first (to the best of our knowledge) worker-
centric scheduling strategies that implicitly exploit the locality of interest in
data-intensive Grid applications. We then demonstrate the advantages of worker-
centric scheduling over task-centric scheduling for data-intensive Grid applica-
tions through experiments. In our worker-centric strategies, each worker requests
a task from the global scheduler when convenient to the worker. Upon receiv-
ing this request, the global scheduler iterates over the list of as-yet-unscheduled
tasks and finds the best task to assign to the worker. The “best” task could be
selected according to a variety of metrics, which we discuss later in detail.

We propose three different metrics that consider the different aspects of lo-
cality of interest in data-intensive Grid applications, and aim to: (1) maximize
the chance of reusing the data, and (2) to minimize the number of file transfers.
Our simulation results with Coadd confirm that worker-centric scheduling gives
better performance than task-centric scheduling in many scenarios. We select
Coadd for all our experiments in this paper because (1) it is difficult to obtain
Grid application traces, and (2) Coadd is a real Grid application used by several
research organizations [2, 3] and it shows many typical characteristics of data-
intensive Grid applications. Thus, we believe that our results will hold for many
other data-centric Grid applications.

It is important to note that our Grid model is general, and not intended to
specifically target production Grids such as Grid2003 [10]. Rather, we use the
term “Grid” as a generic model, where a set of cooperating sites (a cluster of
workers) can be used to execute a job (which consists of tasks sharing read-
only data). Also, our scheduling strategies focus only on scheduling data-sharing
tasks within a single large job (application), instead of multiple disconnected jobs
injected into the system by different users. However, for realistic evaluation, we
do simulate the presence of background jobs running concurrently with our main
Grid job in our experiments in Section 4.

The rest of the paper is organized as follows. In Section 2, we present back-
ground information including the detailed problems of task-centric scheduling
and advantages of worker-centric scheduling. Section 3 presents our basic algo-
rithm and various metrics that we consider. Section 4 presents our simulation
results and Section 5 discusses related work. Section 6 concludes our paper.
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Fig. 1. (a) Coadd file access distribution. Note that the x-axis is in decreasing order,
so each point in the CDF represents the minimum number of files accessed.(b) Locality
of interest in Coadd.

2 Background and Basics

In this section, we motivate the scheduling problem by presenting the charac-
teristics of data-intensive applications. We then elaborate on the two types of
schedulers mentioned: task-centric and worker-centric. Lastly, we discuss sche-
duling issues for data-intensive applications.

2.1 Characteristics of Data-Intensive Applications

We discuss characteristics of data-intensive applications here to motivate the
problem. As a real example, we use one particular application, Coadd (Sloan
Digital Sky Survey southern-hemisphere coaddition [2, 3]) in our discussion.

In general, tasks in a data-intensive application access a large set of files,
thus data transfer time significantly affects the entire execution time (i.e. data-
intensive applications are network-bound [11, 4]). In addition, the tasks have a
high degree of data-sharing among them, which gives an opportunity to reuse
data in local storage [6, 11, 2, 5, 4].

For example, Coadd is a spatial processing application that has 44,000 tasks
accessing 588,900 files in total. It is reported by Meyer et al. [2] that when it
was run on Grid3 [10] with over 30 sites and 4,500 CPUs, it took roughly 70
days to complete. One of the reasons for the observed long completion time was
the large number of files necessary for each task. Meyer et al. [2] state that these
characteristics would also be expected in other spatial processing applications.

Our analysis of Coadd indeed confirms the characteristics of data-intensive
applications. In Coadd, each task accesses a different number of files ranging
from 36 to 181, and approximately 124 files on average. Moreover, roughly 90%
of files are accessed by 6 or more tasks, as shown in Figure 1(a). If we as-
sume that each file is fixed at 5MB as in [2], then the total size of all the
files is roughly 2.8TB, and each of 44,000 tasks potentially requires 620MB of
data transfer on average and up to 905MB in the worse case for each execution.
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Considering the number of tasks and size of data transfers, it is desirable to
reduce the redundant file transfers.

To show locality in Coadd, we first pick 1,000 sample pairs of files (say, A and
B) accessed by Coadd tasks. We then plot the ratio between the actual number
of tasks accessing both files, and the expected number of tasks accessing the
same files. Figure 1(b) shows the result. The former (the actual number, say,
C) is directly counted from our Coadd workload, and the later (the expected
number) is derived from a

T × b
T × T , where T is the total number of tasks, and

a, b are the numbers of tasks accessing A and B, accordingly. The Y-axis shows
C/( a

T × b
T × T ). As we can see, the values are much larger than 1, which means

that the number of tasks that access the same pair of files is much larger than
statistically expected.

2.2 System Model

Before comparing task-centric to worker-centric solutions, we present our system
model. We assume that:

1) A job is defined as an application composed of multiple parallel tasks. Each
task does not need to communicate with other tasks in order to proceed (i.e., a
job is a Bag-of-Tasks [4]). However, tasks do share read-only files (data). These
files are provided a priori along with the job specification.
2) There are multiple sites. Each site has at least one computation server or
worker (and possibly multiple workers), and one data server to store data lo-
cally. We further assume that there is only one data server (or local storage) per
site. If there are multiple data servers at a site, we consider all these data servers
as combined storage. Storage size at a site is limited.
3) The data server of a site receives all file requests from the workers in the
same site, and sends batch file requests for the missing files to the external file
server. The data server processes requests one by one. This is more efficient than
simultaneous requests, given the bandwidth limits.
4) Each task issues exactly one batch file request.
5) A worker starts executing a task by transferring all the files necessary for the
task to the local data storage. After the transfer is over, the worker begins the
actual computation of the task.
6) There is one external (global) scheduler that contains information about all
tasks and gives tasks out on-demand to workers. Also, there is an external file
server that has all the files necessary for all tasks, and hands them out to data
servers on-demand.
7) Intra-site communication costs are negligible compared to inter-site commu-
nication costs.
8) In order to simplify our exposition, we will henceforth assume that all files
are equally-sized. However, all our algorithms can be easily extended to variable
sized files, by modifying the considered metrics to reflect the data size rather
than the number of files.
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(b) Task-centric scheduling

Fig. 2. An illustration of worker-centric and task-centric scheduling

We use the following two terms throughout the paper:

1) Makespan [12] is the total execution time of the job in consideration. This is
the main metric for performance measurement.
2) Utilization of worker A is defined as, (total computation time of A) / (total
execution time of A).
3) A task and a local storage (i.e. the data server at a site) are said to overlap
with each other, when at least one file necessary for the task is already present
in the local storage. We use the term, overlap cardinality, to indicate the number
of overlapping files.

The main goals for a scheduling algorithm are then to: (1) reduce the make-
span, (2) reduce the number of files transferred to sites, and (3) increase the
utilization at workers.

2.3 Task-Centric and Worker-Centric Schedulers

We elaborate two types of schedulers, namely, task-centric schedulers and worker-
centric schedulers. Figure 2 shows an illustration of worker-centric and task-
centric scheduling. In essence, this categorization is based on whether or not a
scheduling strategy considers immediate task execution of a worker after a task
assignment.

Concretely, a scheduler is worker-centric, if the task assignment to a worker is
done when the worker can start executing the task immediately. As mentioned be-
fore, we consider only the pull-based variant of worker-centric scheduling and the
term “worker-centric” refers to this pull-based variant of worker-centric scheduler
throughout the paper. This variant has each worker pull a task from a task repos-
itory associated with the global scheduler, when its local policies allow it. These
local policies may be a function of CPU load, free RAM space, time of day, etc. For
instance, a site could have a policy that Grid jobs are executed only over night or
at a specific time of the day. Another policy might state that a site could execute
Grid jobs only when the average CPU load has been below a specified threshold
for a while. This architecture is similar to a server-client architecture - a worker
requests a task to the scheduler, and the scheduler finds the “best” task for the
worker according to a set of metrics and local policies of the worker. One example
of this type of worker-centric strategies is the traditional workqueue algorithm,
which dispatches a task in FIFO order to an idle worker [13].
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On the contrary, a scheduler is task-centric, if a task assignment is done with-
out considering whether or not the worker can execute the task immediately. For
a given set of tasks and a set of workers, the global scheduler chooses the best
match (based on its certain metrics other than immediate task execution) be-
tween workers and tasks, and assigns each task to the best worker. Each worker
has a task queue and executes the tasks in the queue one by one; an empty queue
means the corresponding worker is not executing tasks for that job. Typical met-
rics used by schedulers are CPU load, network bandwidth, data overlap, etc. For
example, scheduling strategies in [5] and storage affinity-based schemes [11] are
task-centric.

Since our focus in this paper is to show the effectiveness of worker-centric
scheduling in exploiting locality compared to task-centric scheduling, we do not
discuss various policies of worker-centric scheduling further. In Section 4, we
first evaluate our task-centric and worker-centric strategies using a simple policy
called always available - a worker requests a task from job X immediately after
it finishes the previous task from the same job X. Later, to consider the effect
of slowdown due to background CPU load, we experimentally study the effect
of local jobs at individual workers (which might be submitted by local users or
through other schedulers) - these background jobs run concurrently with tasks
of the Grid job under consideration.

2.4 Scheduling Issues for Data-Intensive Applications

Several previous studies have identified that reusing data in local storage gives
a dramatic performance improvement for data-intensive applications [6, 2, 5, 4].
Among others, studies by Ranganathan et al. [5] and Santos-Neto et al. [4] pro-
pose various task-centric scheduling strategies for data-intensive applications.
Their studies suggest that making scheduling decisions based on data reuse in-
deed improve performance over other scheduling strategies that consider various
different metrics altogether. Broadly, both types of strategies calculate and use
the overlap cardinality (either the number of files or bytes) between all possible
task-site pairs, in order to make the scheduling decisions.

The reason why schedulers considering overlap cardinality work better is intu-
itive. As we state in Section 2.1 and show in Figure 1(a), (a) data transfer time
significantly affects the entire execution time of a data-intensive application, and
(b) tasks have a high degree of data-sharing among themselves. This strategy
also works well in the real world because data location is relatively static and
easy to obtain compared to dynamic metrics such as network bandwidth and
CPU loads [4].

2.5 Problems of Task-Centric Scheduling and Possible Solutions

We observe two problems from task-centric scheduling strategies. These prob-
lems are significant because data replication and task replication [5, 4] never
address the second problem, although the first problem can be avoided by both
mechanisms.
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1) Unbalanced Task Assignments: As mentioned by Ranganathan et al. [5],
task-centric scheduling with data reuse has the problem of overloading certain
sites with popular files. Since the overlap cardinality is the primary metric when
assigning a task, workers with popular files may be assigned more tasks than
the workers with less popular files. Since this problem is inherent in task-centric
scheduling, other mechanisms need to be used to avoid the problem, e.g., data
replication [5] and task replication [4].

With data replication, the system keeps track of the popularity of each file. If
a file’s popularity exceeds the pre-determined threshold, it is replicated to other
sites. Thus, data replication helps to distribute the load of sites with popular
files [5].

Task replication can also help to distribute the unbalanced load caused by pop-
ular files. With task replication, the scheduler first distributes its tasks according
to the overlap cardinality. Once the initial assignment is done, the scheduler waits
until at least one worker becomes idle. Then it picks a task already assigned to
a worker and replicates it to the idle worker. If one of the workers finishes the
task, the other worker cancels the task. The process is repeated whenever there
is an idle worker. This strategy, called storage affinity, is proposed and evalu-
ated by Santos-Neto et al. [4]. They show that a task-centric scheduler with data
reuse and task replication performs better than other scheduling strategies with
dynamic information such as CPU loads and available bandwidth.

2) Long Latency between scheduling and execution: Task-centric sche-
duling typically has long latency between scheduling and execution. The follow-
ing two reasons cause this problem - (1) Since each worker accepts tasks passively
from the scheduler and stores received tasks in its queue, there is latency be-
tween task assignment time and the actual execution time. (2) Since storage at
a site is limited in size, some files required by a task may have been replaced by
other required files between the scheduling and execution times of the task.

Therefore, it is possible that a worker was assigned a task because it had
some files needed by the task, but at the time of execution, the worker might no
longer have some of those files. This “premature scheduling decision” can cause
performance degradation with small storage sizes as we show in Section 4.

2.6 Advantages of Worker-Centric Scheduling

In comparison to the above approach, worker-centric scheduling does not suffer
from the unbalanced task assignment problem because a worker requests a new
task to the scheduler only when its local policies allow it to execute a task.
This means that it is not necessary to have other mechanisms to resolve the
issue. Therefore, a worker-centric scheduler only needs to consider its scheduling
metric, which leads to a simpler scheduler design.

In fact, both data replication and task replication are orthogonal mechanisms
to improve performance in worker-centric schedulers. Thus, they might help the
performance of worker-centric schedulers, but are not necessary. However, task-
centric schedulers require other mechanisms because unbalanced task assignment
causedbypopular files actuallyhurts theperformanceof task-centric schedulers [5].
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while(forever):
req = GetNextRequest()
if taskQueue is empty:

wait for a task
for each task t in taskQueue:

CalculateWeight(t)
t = ChooseTask(n)
ReturnRequest(t)

Fig. 3. Pseudo-code of the basic algorithm. The global scheduler performs this algo-
rithm whenever a worker requests a task.

In addition, worker-centric scheduling has short latency between scheduling
and execution compared to task-centric scheduling. This arises because w.r.t. a
worker, this is a just-in-time scheduling policy. Each worker executes a task as
soon as the task has arrived at the worker. Thus, it does not suffer from the
premature scheduling decisions.

In Section 3, we focus on worker-centric scheduling strategies and propose var-
ious metrics that consider data-reuse. We also show in Section 4 that worker-
centric scheduling without additional mechanisms can achieve better performance
in many scenarios than task-centric scheduling with additional mechanisms.

3 New Worker-Centric Scheduling Algorithms

In this section, we present our new worker-centric scheduling algorithms that
attempt to exploit locality by considering data-reuse during scheduling.

3.1 Basic Algorithm

Our basic algorithm is shown in Figure 3. It is a worker-centric algorithm, with
one global scheduler and multiple sites, each containing multiple workers. Upon
receiving a request from a worker, the global scheduler calculates the weight of
each as-yet-unscheduled task (CalculateWeight()) and chooses the best task to
assign to the requesting worker (ChooseTask()). Notice that worker requests are
processed sequentially. CalculateWeight() and ChooseTask() take into account
the set of files already at the worker’s site, and the set of files required by the
worker, thus attempting to exploit locality. These are detailed next.

As mentioned in Section 2.2, for simplicity of exposition, we restrict our dis-
cussion to tasks that share equally-sized files. However, our algorithms can easily
be extended to varied file sizes by merely considering a “file block” (instead of
a file) as a unit of sharing among tasks.

3.2 CalculateWeight()

CalculateWeight() calculates a weight for each each task in order to exploit the
locality of file access. This weight can be calculated via one of three possible
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metrics - Overlap, Rest, and Combined. Before further discussion, we need to
define the following terms and conditions:

1) T : the set of all unscheduled tasks that the scheduler currently has in its
queue.
2) Ft: the set of overlapping files between task t and the data storage at the site
of the requesting worker.
3) |t|: the total number of files required by task t.
4) ri: the number of past references of the file i at the local storage (i.e. data
server) of the requesting worker, i.e., the number of previously completed tasks
at the site that accessed file i.
5) Task t is said to be better than task t′, when
CalculateWeight(t) > CalculateWeight(t′)

Now we consider three metrics that could be used by the scheduler.

1) Overlap: This metric is the overlap cardinality (discussed in Section 2.2). It
counts the number of files that are needed by the given task and are already
present in the local storage of the requesting worker. Thus, |Ft| is the overlap
cardinality. Intuitively, the goal of this metric is to maximize the chance of
reusing the data already stored in the local storage of the requesting worker. As
mentioned before, this metric is the primary metric of task-centric scheduling
strategies in the previous studies.

2) Rest : This metric is the inverse of the number of files that need to be trans-
ferred in order to execute the given task, i.e., restt = 1

|t|−|Ft| . Intuitively, the
goal of this metric is to minimize the number of files that need to be transferred.
This is a complement of overlap metric conceptually.

3) Combined : For this metric, each data server keeps for each file the number
of past references, i.e., the number of previously completed tasks at the site
that have accessed the file. It combines these past references and rest using an
equation defined as follows. We define ref t to be the total references of all the
overlapping files of task t at the worker’s site, i.e., ref t =

∑
i∈Ft

ri. Now, let
totalRef be the sum of all ref t over all t in T (w.r.t. the requesting worker’s
site), i.e., totalRef =

∑
t∈T ref t. Also, let totalRest be the sum of all rest t over

all t in T , i.e., totalRest =
∑

t∈T restt. Then, combined t = ref
t

totalRef + totalRest
rest t

.

Intuitively, this metric attempts to exploit locality of file access, and thus min-
imize both the number of files that need to be transferred as well as to prefer
workers that accessed the same files in the past.

3.3 ChooseTask()

Since the scheduler greedily assigns a task to a worker based on the value of
CalculateWeight(), there is some possibility of sub-optimal assignments. One
reason for this is the sequential nature of such worker-centric scheduling. For
example, suppose worker h is a better candidate to execute task t than worker
h′, but worker h′ requests a task right before worker h requests a task. In this
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Fig. 4. A reference table example. Each entry contains a reference counter. We use
N/A to indicate that the entry is not present for the sake of demonstration.

case, the scheduler will assign task t to worker h′ rather than h. This can happen
quite often especially for data-intensive applications - since file transfer time is
usually long after a task assignment, the global scheduler can receive a number
of requests from different workers during the transfer. So it is possible that a
better worker comes by while the previously-assigned worker has not even started
processing, i.e., it is still awaiting the file transfer to complete.

To take these types of scenarios into account, we use randomization when
choosing a task through ChooseTask(n). ChooseTask(n) then executes two steps.
First, it chooses a set, Tn, of the best n tasks among all tasks (i.e., tasks with n
largest values calculated by CalculateWeight()), where n is a parameter. Second,
it chooses one task among the best n tasks with a probability proportional to
the CalculateWeight() values. Thus the probability of choosing task t is,

Pt = CalculateWeight(t)
�

k∈Tn
CalculateWeight(k) .

If n ≥ 2, this is a randomized approach. If n = 1, this is a deterministic
approach that greedily chooses the best task. Notice that this procedure, in
combination with CalculateWeight()), attempts to implicitly exploit the locality
of file access.

3.4 Reducing Communication Cost

In order to make the scheduling decision for a requesting worker, we assumed
above that global scheduler has all the necessary information about files currently
stored at the requesting worker’s site, namely, (1) names of files that the data
server is currently storing, and (2) the reference count for each of these files.
In other words, we assumed that the global scheduler implicitly maintains a
reference table, as shown in Figure 4. In this table, there is one column per file
in the job, and one row per site in the Grid. Each entry (i, j) specifies “reference
count” for file j at site i. The reference count denotes the past references of file
j at site i and also shows the presence of file j at site i.

There are two efficiency sub-problems that need to be addressed: how to main-
tain this table efficiently, and how to keep it updated with minimal network band-
width overhead. The first sub-problem is addressed by having the global scheduler
maintain a local hash table per site (row in the reference table), containing the
names of files currently stored at that site along with their reference counts. File
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names are the keys for this data structure. Notice that lookup, insertion and dele-
tion into this hash table are each O(1) on expectation.

The bandwidth problem is addressed by piggybacking each task-requesting
message, from a worker to the global scheduler, with the set of file names that
have been replaced at the data server of the worker’s site since the last request
from the same site, i.e., the list of names of files that were eliminated from
the site’s data server since its last request. The global scheduler deletes these
file names from the hash table for that site. Then, once it makes the requested
scheduling decision for the worker, the new files required by the assigned task
are inserted into this hash table and the corresponding reference counts are
initialized to 1. For all other files that are already present at the site and required
by the assigned task, the global scheduler increments corresponding reference
counts by 1. In this way, the communication between the worker to the global
scheduler is reduced to only once per request no matter how many files are added
and/or deleted from the site’s data server.

This approach is very efficient for our considered cases. In spite of file-sharing
across tasks, each task in our observed data-intensive applications typically ac-
cesses a relatively small number of files compared to the total number of files for
a given application. For example, in the Coadd traces, no task accesses more than
181 files out of a total of 588,900, in spite of data-sharing. This also means that
at most 181 files are replaced between two consecutive requests. Thus, assuming
file names are 4 bytes each, the additional information piggybacked along with
a worker request is at most 724 bytes in size, which is reasonably small.

3.5 Complexity

If |T | is the number of currently waiting tasks, and |I| is the maximal number
of files required by any task, then the total communication complexity of our
algorithm arises out of the per-request piggybacked information as described in
the previous section - this is O(|I|) per task assigned to a worker. Similarly,
the computation complexity is O(|I| + |T | × |I|) per task assigned to a worker,
with the first term accounting for the hash table operations, and the second one
for the scheduler’s operation itself. This is O(|T | × |I|), and more efficient than
task-centric strategies used by Ranganathan et al. [5] and Santos-Neto et al. [4],
which compare all pairs of tasks and sites. Their complexity is O(|T | × |I| × |S|)
(where |S| is the total number of sites), even assuming the use of a hash table
similar to that described in the previous section. Our approach is more efficient
because we do not assume any knowledge (a priori or otherwise) about sites
other than the requesting worker’s.

4 Evaluation

In this section, we present our evaluation of worker-centric scheduling strategies
and discuss the results.
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4.1 Simulation Overview

To demonstrate the advantages of worker-centric scheduling over task-centric
scheduling, we implement our basic algorithm with three metrics on the SimGrid
simulator [14]. For comparison, we also implement storage affinity [4], a task-
centric scheduling with data reuse and task replication.

We vary five main parameters in our experiments - (1) capacity of each data
server, (2) number of workers per site, (3) computation time, (4) number of
sites, and (5) file size. The default values for these parameters are summarized
in Table 1, and used in our experiments unless otherwise noted. However, we
vary each of these 5 parameters in our experiments to see the effects of different
values. Throughout the experiments, the computation time of each task is linear
to the number of files (i.e., (number of files) * (unit computation cost)).

Table 1. Default parameters for experiments

Unit computation cost 1,000 MFLOPS

capacity of each data server 6,000 files

number of workers per site 1

number of sites 10

file size 25 MB

Our main workload is Coadd (Sloan Digital Sky Survey southern-hemisphere
coaddition [2,3]). As mentioned before, Coadd is a spatial processing application
that has 44,000 tasks accessing 588,900 files in total. We use only the first 6,000
tasks of Coadd to finish our experiments in a reasonable amount of time. A total
of 53,390 files are accessed by these 6,000 tasks. More workload characteristics
are shown in Table 2. Although we only use the first 6,000 tasks, our workload
characteristics remain similar to Figure 1(a).

4.2 Simulation Environment

Network Configuration: We use 5 different topologies, each with 90 sites, gen-
erated with Tiers topology generator [15]. Tiers is a structural topology genera-
tor that generates hierarchical cluster topologies. We use Tiers because it is well-
supported by SimGrid, the simulator we use in our experiments. Only a subset of
90 sites are used in each experiment. For each topology, there are one global sched-
uler and one global file server which stores all the files. At each site, there are 30
workers and 1 data server. All 30 workers and the data server in a site share outgo-
ing links to the global scheduler and the file server. Intra-site communication cost
(cause by bandwidth and latency) is negligible. Inter-site communication cost is
determined by underlying network links generated by Tiers. Each path between
two sites consists of multiple network links, and the bandwidth and latency of
each of these links determine the inter-site communication cost. Table 3 summa-
rizes the average and standard deviation of bandwidth values between a site to the



134 S.Y. Ko, R. Morales, and I. Gupta

Table 2. Characteristics of Coadd with 6,000 tasks

Total number of files 53,390

Max number of files needed by a task 101

Min number of files needed by a task 36

Average number of files needed by a task 78.4327

file server for each topology. Each worker’s computation capacity (in MFLOPS)
is chosen randomly from top500 list [16] and is uniformly divided by 100, since
most of the 500 machines are too powerful. Each experiment is performed with 5
different topologies and the results are averaged over the 5 runs.

Table 3. Average bandwidth and standard deviation between a site and the file server

Avg (MB/s) Std dev

Topology 0 4.418 5.416

Topology 1 4.631 6.734

Topology 2 3.858 2.599

Topology 3 3.432 1.432

Topology 4 3.932 2.778

Background Jobs: We perform our experiments with background jobs as well as
without background jobs. We use background jobs to evaluate the performance
of different strategies in the presence of competing applications running on each
site. Since a site is typically shared by different schedulers and local users, this
gives us a more realistic setting.

We simulate background jobs through varying each worker’s CPU load. A
worker is always executing a task for the Grid job in question, but in addition
it is also running background jobs. The background jobs thus slow down the
execution of the task at the worker. The load due to these background jobs
is simulated as follows: at each worker, once every 5 minutes, the background
CPU load is picked as a floating-point number uniformly at random between
0 to 100. This becomes the worker’s background load over the next 5 minutes.
Considering that the total job execution time in our simulations is O(tens to
hundreds of days), we consider the granularity of 5 minutes to be fine-grained
enough to capture dynamics of background jobs.

4.3 Algorithms

We compare the following 6 different algorithms. The first algorithm is task-
centric; the rest are worker-centric.

1) task-centric storage affinity : The task-centric scheduling with data reuse and
task replication [4]. This is a deterministic algorithm.
2) overlap : Our basic algorithm with the overlap metric. This is a deterministic
algorithm.
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Fig. 5. (a) Makespan and (b) file transfers of each algorithm with different capacities
of 3,000, 6,000, 15,000, and 30,000 files (with background jobs)

3) rest : Our basic algorithm with the rest metric. n = 1 for ChooseTask(n).
This is a deterministic algorithm.
4) combined : Our basic algorithm with the combined metric. n = 1 for Choose-
Task(n). This is a deterministic algorithm.
5) rest.2 : Our basic algorithm with the overlap metric. n = 2 for ChooseTask(n).
This is a randomized algorithm.
6) combined.2 : Our basic algorithm with the overlap metric. n = 2 for Choose-
Task(n). This is a randomized algorithm.

We have tried different values of n for ChooseTask(), but only 1 and 2 give
good results. Thus, we only show the results of n = 1 and 2.

4.4 Capacity per Data Server

Figure 5(a) shows the makespan (i.e. total execution time) of each algorithm
with different capacities of 3,000, 6,000, 15,000, and 30,000 files in the pres-
ence of background jobs. We do not present the results without background jobs
since the performance characteristics are similar. Randomized algorithms, rest.2
and combined.2, perform the best in all cases, which confirms that it avoids
sub-optimal scheduling decisions described in Section 3.3. Storage affinity has a
negative performance impact with smaller capacities because of premature sche-
duling decisions as discussed in Section 2.5. However, the performance becomes
comparable to worker-centric scheduling as the storage size increases.

Figure 5(a) also shows the importance of considering the number of files that
actually need to be transferred. Among the worker-centric strategies, overlap
performs worse than other metrics because it does not explicitly consider the
number of file transfers, while other metrics do. As we can see in Figure 5(b),
overlap usually has higher number of file transfers than other metrics. Overall,
the randomized algorithms appear to perform the best (i.e., rest.2 and com-
bined.2 ).

The makespan of each metric in worker-centric scheduling shows steady be-
havior because the working set of a Coadd task is not big. As is shown in Table 2,
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Fig. 6. (a) Average utilization at worker, with different capacities of 3,000, 6,000,
15,000, and 30,000 files (with background jobs) (b) Makespan with different numbers
of workers at a site (without background jobs)

a task needs 101 files at most, and roughly 78 files on average. Thus, a storage
with 3,000 files can actually give similar performance as a storage with, say,
10,000 files.

Figure 6(a) shows the average utilization of each worker (accounting for both
the main Grid job and the background jobs). For task-centric storage affinity, the
low utilization with the capacity of 3,000 files means that the greedy approach
requests files more often than other strategies. This behavior shows (1) that
randomized decisions can be better than taking what looks as the “best” decision
at some particular time and, again, that (2) the task-centric storage affinity
suffers from premature scheduling decisions.

Due to the lack of space, we do not present the utilization results without
background jobs here. However, the utilization of each worker with background
jobs is slightly higher than that of each worker without background jobs. There
are two factors contributing to this result. The first factor is obviously back-
ground jobs running on each worker. The second factor is that it takes more
time for a worker to finish a task with background jobs. Thus, the utilization
goes higher with background jobs.

4.5 Number of Workers per Site

Figure 6(b) shows the makespan of each algorithm with different numbers of
workers at a site. combined.2 performs the best mostly, which shows that min-
imizing file transfers as well as considering past references helps to reduce the
makespan. Overall, worker-centric scheduling metrics perform well with smaller
numbers of workers, but storage affinity performs well with larger numbers of
workers. Also, randomized algorithms that consider the number of file transfers
perform better than others.

The makespan of each algorithm flattens as the number of workers increases. In
some cases, the performance is worse with more workers (in Figure 6(b))! We can
understand the reason behind this behavior with two factors that contribute to the
makespan. First, as the number of workers increases at a site, the contention at the
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Fig. 7. (a) Average number of file transfers per worker with different numbers of work-
ers at a site (b) Average worker utilization, with different numbers of workers at a site.
We only show the results without background jobs, since the presence of background
jobs does not show any different behavior.

data server of the site increases. Since the data server processes each request one
by one so as to minimize the redundant file transfers (as mentioned in Section 2.2),
this contention is unavoidable. This factor has a negative impact on the makespan
(i.e. increases it). On the contrary, as the number of workers increases, the number
of files that can be shared by the workers also increases. This factor has a positive
impact on the makespan. The interaction of these two factors results in different
behaviors of different algorithms.

Table 4. Result of the rest metric at a site with 2 workers, 4 workers, 6 workers,
and 8 workers. All numbers are averages per worker. Note that rest shows the worst
makespan with 6 workers at a site.

waiting transfer # of file
time (hrs) time (hrs) transfers

2 workers 3.59 30.35 3998.5

4 workers 40.32 45.45 2086.5

6 workers 98.35 33.85 1335.17

8 workers 75.93 18.81 906.38

To validate the reason, Figure 7(a) shows the number of file transfers per
worker and Figure 7(b) shows the corresponding utilization. It shows that the
average number of file transfers per worker decreases as the number of workers
increases. Thus, it shows that good file-sharing is achieved intra-site as the num-
ber of workers increases. In addition, Table 4 shows the result of the rest metric
at one particular site with 2, 4, 6, and 8 workers. It shows (1) average waiting
time that a file request spends at the data server’s waiting queue, (2) transfer
time that it takes to transfer all the files from the external file server to the data
server, and (3) associated number of file transfers.
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Fig. 8. (a) Average utilization per worker, and (b) total file transfer time compared
to makespan, for different unit computation costs of 50, 200, 400, 600, 800, and 1,000
MFLOPS

In the case of 2 workers in Table 4, the contention at each data server and
the file server is very low compared to other settings, simply because there are
fewer workers. Thus, the waiting time and the transfer time are rather small
even though the number of file transfers is high.

We can reason why the performance is sometimes worse with more workers
with the data of 4 workers, 6 workers, and 8 workers. If we look at the data in
this range, both the average number of file transfers and the average transfer
time decrease as the number of workers increases, but the average waiting time
peaks at 6 workers. This means that the reduced transfer time is not enough to
compensate the increased competition at the data server for rest with 6 work-
ers at a site. For the same reason, other algorithms sometimes exhibit a worse
makespan with more workers.

4.6 Effect of Computation Time

With our default parameter values in Table 1, the average utilization per worker
is usually more than 90%, which means that each worker spends most of its
time on computation. Thus, we perform an experiment with smaller values of
unit computation time in order to understand how different computation-to-
communication ratios affect the behavior of each strategy. As mentioned before,
the computation time of each task is linear to the number of files that it needs to
process, i.e., (computation time) = (number of files) * (unit computation cost).
We vary the unit computation cost in this experiment.

Figure 8(a) and Figure 8(b) show that our experiment covers a wide range of
communication-to-computation ratio. As shown in Figure 8(a), the utilization
of each worker (i.e., (total computation time of the worker) / (total execution
time of the worker)) varies from roughly 0.2 to 0.9. Also, Figure 8(b) shows that
the file transfer time (i.e., communication time) takes from roughly 50% to al-
most 100% of the entire makespan. Thus, our experiment covers a wide range of
communication-to-computation ratio, and still captures the characteristic of long
communication time in data-intensive applications. Although Figure 8 shows the
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Fig. 9. (a) Makespan (percentile) of each algorithm with different unit computation
costs of 50, 200, 400, 600, 800, and 1,000 MFLOPS (b) Makespan with different file
sizes (both with background jobs)

results without the presence of background jobs, the overall behavior remains
similar even with background jobs. Note that file transfer time does not directly
contribute to worker utilization as in Figure 8. The reason is because computa-
tion is parallelized, and hence, most workers are busy with doing computation
even when the file server transfers files. This explains a seemingly inconsistent
behavior of Figure 8, in which the file transfer time takes roughly 50% with the
unit computation cost of 1,000 MFLOPS in Figure 8(b), even when the average
utilization of each worker is roughly 90% in Figure 8(a).

Figure 9(a) shows the makespan (with background jobs) of each algorithm in
percentile scale using task-centric storage affinity as a baseline comparison. We
do not present the results without background jobs since they exhibit similar be-
haviors. Overall, we observe that the performance trend remains similar across
different strategies even with various computation-to-communication ratios.
Worker-centric strategies perform better than the task-centric storage affinity in
terms of makespan. In the best case, worker-centric rest takes roughly 28% less
makespan time than task-centric storageaffinity.Also, the gapbetween task-centric
storage affinity and other strategies generally becomes wider as the unit computa-
tion cost decreases. This is an expected behavior since file transfer time becomes
more dominating in total execution time as the unit computation cost decreases.

4.7 Number of Sites

Figure 10(a) shows the makespan of each algorithm with different numbers of
sites and Figure 10(b) shows the number of file transfers accordingly. Generally,
the makespan of each algorithm reduces as the number of sites increases, as ex-
pected. combined.2 performs the best, which again confirms that minimizing file
transfers as well as considering past references helps to reduce the makespan.
In the best case, combined.2 takes roughly 17% less makespan time than task-
centric storage affinity. Randomized algorithms perform better than determinis-
tic algorithms, which again shows that it avoids sub-optimal scheduling decisions
described in Section 3.3.
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Fig. 10. (a) Makespan with different numbers of sites (b) Number of file transfers with
different numbers of sites (both with background jobs)

4.8 File Size

Figure 9(b) shows the makespan of each algorithm with different file sizes. We
choose small (5MB), middle (25MB), and large (50MB) file sizes. The makespan
grows almost linearly as the file size grows. Since all algorithms consider files
as the primary metric, various file sizes do not result in dramatically different
behaviors. combined.2 shows the best performance just like many other scenarios
shown before. The general behavior remains the same even in the presence of
background jobs.

5 Related Work

Spatial Clustering [2] creates a task workflow based on the spatial relationship
of files in the input data set. It improves data reuse and diminishes file transfers
by clustering together tasks with high input-set overlap. Two drawbacks to this
approach are that (1) it cannot handle new jobs arriving asynchronously, and
(2) it is application specific.

Storage Affinity [4] also addresses file reuse for data-intensive applications.
The algorithm computes a data affinity value for each task, for each site, ac-
cording to the input set of each task and the data currently stored at a site’s
networked storage. To address inefficient CPU assignments, they propose repli-
cating tasks, also based on the storage affinity. The algorithm shows improved
makespan and good data reuse, specially when compared to the XSufferage [17]
scheduling heuristic.

Decoupling data scheduling from task schedulingwas proposedbyRanganathan
et al. [5].Thework evaluates four simple task schedulingmechanismsand three sim-
ple data scheduling mechanisms. Best results are obtained when a task is scheduled
to a site that has a goodpart of its input data already in place, combinedwithproac-
tive replication of a popular input data-set to a random/least-loaded site.

A pull-based scheduler is proposed by Viswanathan et al. [8]. It employs an
Incremental Based Strategy, where a scheduler determines how to fraction a
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job among available workers, based on worker’s computing speed and estimated
buffer. This work completely ignores data transfer time, and requires knowledge
of CPU speed and memory size in all workers.

Rosenberg et al. [9] study global scheduling strategies in the Grid-like en-
vironments theoretically. Their scheduling strategies focus mainly on DAGs of
tasks, where tasks are inter-dependent and pre-ordered, and the dependency
structure follows DAG (Directed Acyclic Graph). Although they discuss pull
and push strategies, their studies do not assume (1) data-intensive applications
(transfer time, storage capacity, data correlation, etc), (2) data-sharing, and (3)
task-independence. Thus, the issues are not related to our work.

6 Conclusion and Future Work

We argued that worker-centric scheduling is more desirable than task-centric
scheduling to exploit locality of interest present in data-intensive applications.
We base our argument on two problems of task-centric scheduling, namely,
unbalanced task assignments and premature scheduling decisions. We proposed
various metrics, both deterministic and randomized, that can be used with
worker-centric scheduling and found that metrics considering the number of file
transfers generally give better performance over metrics considering the overlap
between a task and a storage. We also found that worker-centric scheduling algo-
rithms achieve better or comparable performance to task-centric scheduling, with
the randomized approaches performing best. Our future work includes quanti-
fying how much data-sharing is required for our algorithms to be effective, and
using multiple applications to evaluate the performance of our algorithms.
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Abstract. Snowbird is a middleware system based on virtual machine (VM)
technology that simplifies the development and deployment of bimodal appli-
cations. Such applications alternate between phases with heavy computational-
resource needs and phases rich in user interaction. Examples include digital
animation, as well as scientific, medical, and engineering diagnostic and design
tools. Traditionally, these applications have been manually partitioned into dis-
tributed components to take advantage of remote computational resources, while
still providing low-latency user interaction. Instead, Snowbird lets developers
design their applications as monolithic units within a VM, and automatically
migrates the application to the optimal execution site to achieve short completion
time and crisp interactive performance. Snowbird does not require that applica-
tions be written in a specific language, or use specific libraries, and it can be
used with existing applications, including closed-source ones, without requiring
recompilation or relinking. Snowbird achieves these goals by augmenting VM
migration with an interaction-aware migration manager, support for graphics
hardware acceleration, and a wide-area peer-to-peer storage system. Experiments
conducted with a number of real-world applications, including commercial
closed-source tools, show that applications running under Snowbird come within
4% of optimal compute time, and provide crisp interactive performance that is
comparable to native local execution.

Keywords: Bimodal Applications, Migration, Virtual Machines, Thin Clients,
Interactive Response, Variable Thickness.

1 Introduction

A growing number of applications in many domains combine sophisticated algorithms
and raw computational power with the deep knowledge, experience and intuition
of a human expert. Examples of such applications can be found in simulation and
visualization of phenomena in scientific computing, digital animation, computer-aided
design in engineering, protein modeling for drug discovery in the pharmaceutical
industry, and computer-aided diagnosis in medicine. These bimodal applications
alternate between resource-intensive crunch phases that involve little interaction,
and cognitive phases that are intensely interactive. During the crunch phase, short
completion time is the primary performance goal, and computing resources are the
critical constraints. During the cognitive phase, crisp interactive response is the primary
performance goal, and user attention is the critical constraint.

R. Cerqueira and R.H. Campbell (Eds.): Middleware 2007, LNCS 4834, pp. 143–163, 2007.
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Optimizing both phases is important for a good user experience, but achieving this
end is complicated by the large disparity in the performance goals and bottlenecks
of the two phases. Today, developers manually split a bimodal application into a
distributed set of components [1,2,3,4]. Crunch phase components are executed on
compute servers or server farms. Distant data servers are sometimes used because
datasets are too large to cache or mirror locally, or are constrained by organizational
or regulatory policies that forbid caching or mirroring. In contrast, cognitive phase
components are executed locally where they can take advantage of local graphics
acceleration hardware. Unfortunately, this approach requires developers to manage
communication and coordination between application components, and to be aware at
all times of whether a particular component will be executed locally or remotely. This
adds software complexity above and beyond the intrinsic complexity of the application
being developed, and hence slows the emergence of new bimodal applications.

This paper introduces Snowbird, middleware based on virtual machine (VM)
technology that simplifies the development and deployment of bimodal applications.
Snowbird masks the complexity of creating a bimodal application by wrapping the
application, including all its executables, scripts, configuration files, dynamically
linkable libraries, and operating system, into a migratable VM. During execution,
Snowbird automatically detects phase transitions in the application and migrates the
VM containing its complex web of dependence to the optimal execution site. Snowbird
does not require applications to be written in a specific language, nor to be built
using specific libraries. Existing closed-source applications can use Snowbird without
recoding, recompilation, or relinking.

Snowbird extends existing VM technology with three mechanisms: an interaction-
aware migration manager that triggers automatic migration; support for graphics
hardware acceleration; and a peer-to-peer storage subsystem for efficient sharing of
persistent VM state at Internet scale. Experiments conducted with a number of real-
world applications, including commercial closed-source tools such as the Maya 3D
graphics animation package, show that applications running under Snowbird come
within 4% of optimal crunch completion times, while exhibiting crisp interactive
performance that is comparable to native local execution.

From a more abstract perspective, Snowbird can be viewed as a tool that provides
seamless transitions between thick and thin client modes of execution. It has long
been known that the strengths of thick and thin clients complement each other. Thin
clients are attractive in CPU-intensive and data-intensive situations because application
execution can occur on remote compute servers close to large datasets. Unfortunately,
high network latency and jitter between the application execution site and the user
site can lead to poor interactive performance. Thick clients offer a much better user
experience in that situation. By transparently morphing an application between thick
and thin client modes of execution, Snowbird gives a user the best of both worlds.

2 Design and Implementation

The dominant influence on the design of Snowbird was our desire to simplify the
creation and deployment of bimodal applications without imposing onerous constraints
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Fig. 1. Snowbird Overview

on developers. The use of VM technology is the key to achieving this goal. It allows a
developer to focus on the creation of a single monolithic entity rather than the more
difficult programming task of creating a distributed system. This monolithic entity,
called an agent, is the migratable embodiment of an application that transparently
and seamlessly relocates itself to achieve optimal performance. At run time, Snowbird
automatically detects phase transitions and migrates the agent to the optimal execution
site. The example illustrated in Figure 1(a) shows an agent that starts at the user’s
desktop to provide good interactive response during a cognitive phase. It then migrates
to several remote sites, where it leverages the superior compute power of a shared-
memory multiprocessor and improved I/O performance from proximity to a large
dataset. The agent then returns to the desktop for the next cognitive phase.

The logical encapsulation provided by an agent eases the complexity of developing
and deploying a bimodal application. Simplicity is reinforced by the fact that all the
paraphernalia associated with a large application (such as other processes, dynamically
linked libraries, and specific OS features upon which an application relies) is atomically
moved with the same containing agent. Hence no application-specific code has to be
pre-installed in order to run on a site. An agent only requires SSH access credentials to
execute on a Snowbird-enabled site. The SSH credentials are also used to encrypt all
communications. Note that an agent can be a tool chain composed of several processes
executing simultaneously or sequentially in a pipeline fashion.

Snowbird’s use of VM technology offers three significant advantages over existing
approaches to code mobility. First, applications do not have to be written in a specific
language, to be built using specific libraries, or to run on a particular OS. Second, legacy
applications do not have to be modified, recompiled, or relinked to use Snowbird.
This greatly simplifies real-world deployments that use proprietary rather than open-
source applications. Third, migration is transparent and seamless to the user, beyond
the obviously desirable effects of improved interactive or computational performance.

A second factor influencing Snowbird’s design is our desire to support applications
at an Internet scale, particularly those using remote datasets over WAN links. It is
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Table 1. Internet2 Round Trip Times

RTTs (ms)End Points
Min Mean Max c

Berkeley – Canberra 174.0 174.7 176.0 79.9
Berkeley – New York 85.0 85.0 85.0 27.4
Berkeley – Trondheim 197.0 197.0 197.0 55.6
Pittsburgh – Ottawa 44.0 44.1 62.0 4.3
Pittsburgh – Hong-Kong 217.0 223.1 393.0 85.9
Pittsburgh – Dublin 115.0 115.7 116.0 42.0
Pittsburgh – Seattle 83.0 83.9 84.0 22.9

end-to-end latency, not bandwidth, that is the greater challenge in this context. Table 1
shows recent round-trip time (RTT) values for a representative sample of Internet2
sites [5]. The theoretical minimum RTT values imposed by speed-of-light propagation,
shown in the last column c, are already problematic. Unfortunately, technologies
such as firewalls and overlay networks further exacerbate the problem, causing the
minimum observed RTT values to far exceed the substantial propagation delays.
Although bandwidths will continue to improve over time, RTT is unlikely to improve
dramatically. These performance trends align well with the design of Snowbird; the
critical resource in VM migration is network bandwidth, while the critical resource for
crisp interaction is RTT.

A third factor influencing Snowbird’s design is the peer-to-peer (P2P) relationship
between migration sites that is implicit in Figure 1(a). Since Snowbird can migrate to
any Internet site for which it possesses SSH credentials, there is no notion of clients or
servers. Solely for purposes of system administration, Snowbird associates a home host
with each agent. This is typically a user’s desktop machine or so some other nearby
computer where the user spends most of her time interacting with the agent. The home
host acts as the authoritative machine on which the commands shown in Figure 1(b)
are issued. The command line interface for Snowbird includes commands for managing
an agent’s life cycle, for controlling agent migration, and for system administration.
Migration control commands are typically used by the migration manager described in
Section 2.2. However, they are available for explicit user control, if desired.

Sections 2.1 to 2.4 present more details on four specific aspects of Snowbird.
Section 2.1 expands upon our use of VM technology. Section 2.2 describes the
interaction-aware migration manager. Section 2.3 describes the use of hardware-
accelerated graphics by VM applications. Section 2.4 presents Snowbird’s wide-area
peer-to-peer storage subsystem for sharing persistent VM state.

2.1 Choice of VM Technology

The current version of Snowbird is based on the Xen 3.0.1 VMM. We chose Xen
because its open-source nature makes it attractive for experimentation. However, our
design is sufficiently modular that using a different VMM such as VMware Workstation
will only require modest changes.
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Snowbird uses VM migration [6,7] to dynamically relocate the agent from a source
to a target host. To migrate an agent, its VM is first suspended on the source. The
suspended VM image, typically a few hundred MBs of metadata and serialized memory
contents, is then transferred to the target, where VM execution is resumed. Snowbird
uses live-migration [8] to allow a user to continue interacting with the application during
agent relocation. This mechanism makes migration appear seamless, by iteratively
prefetching the VM’s memory to the target while the VM continues to execute on the
source host. When the amount of prefetched VM memory reaches a critical threshold,
a brief pause is sufficient to transfer control.

Modern VMMs allow the creation of VMs with multiple virtual CPUs regardless
of the underlying number of available physical cores. Thus, when migrating from
uniprocessor to multiprocessor hosts, Snowbird agents are able to transparently leverage
the increased computing power by configuring their containing VMs as SMPs.

2.2 Interaction-Aware Migration Manager

While users can explicitly control migration decisions using the commands in Fig-
ure 1(b), Snowbird provides system-controlled agent relocation as one of its key
features. In other words, the decision to migrate, the choice of migration site, and the
collection of information upon which to base these decisions can all happen under the
covers in a manner that is transparent to the user and to the agent.

A key feature of Snowbird is that it accounts for the quality of the application’s
interactive response when making its migration decisions. This is in stark contrast
to the large body of related work on automated process migration policies [9],
which concentrates on computationally-intensive applications devoid of interactions.
Snowbird uses an interaction-aware migration manager module that bases its decisions
on three sources: interactivity sensors that extract relevant data from the Snowbird user
interface; performance sensors that extract their data from the VMM; and migration
profiles that express the migration policy as transitions of a finite state machine triggered
by sensor readings. Snowbird’s clean separation between policy and mechanism
simplifies the use of different profiles and sensors.

Interactivity sensors. The interaction sensor is built into Snowbird’s agent graphical
user interface, described in the next section. As shown in Figure 2, the interaction sensor
collects a stream of time-stamped events corresponding to keyboard/mouse inputs and
screen updates. The intensity of the user’s interactive demand and the quality of the
agent’s response can both be inferred from this stream.

Our measure of interaction intensity is the number of input events per unit of
time. Our measure of interactive response quality is the number of frames per second
triggered by an input event. This metric can be derived by assuming that all screen
updates are causally related to the most recent input event. The frames per second (FPS)
triggered by that input event is thus the number of related screen updates divided by
the time from the event to the last of those updates. The FPS metric reflects both the
smoothness and the swiftness of an interactive response. Remote interaction usually
relies on non-work-conserving thin-client algorithms such as VNC [10] that under
adverse network conditions skip frames to “catch up” with the output. Skipping frames
in this manner results in jerky on-screen tracking of mouse and keyboard inputs that
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Fig. 2. Interaction Intensity and Smoothness
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can be annoying and distracting. For work-conserving thin-client algorithms like X, a
low FPS rating means that the same amount of screen updates happened in more time,
resulting instead in a sluggish response. We thus quantify the quality of the interactive
response of an event window as the average FPS yielded by all the inputs in that window.
High interaction intensity combined with a low-quality response is the cue used by the
migration manager to trigger a remote-to-local transition.

Performance Sensors. Snowbird provides performance sensors for CPU utilization,
and network utilization. These sensors periodically poll the VMM for an agent’s
share of CPU time, and the number of bytes transmitted on its network interfaces,
respectively. The poll interval is configurable with a default value of one second.

Migration Profiles. A migration profile defines a finite state machine (FSM) that is
used to model the agent’s behavior. As shown in Figure 3, each state in this machine
characterizes a particular level of resource demand and/or interaction. Profile rules
define when and how sensor readings should trigger state transitions. The profile also
specifies the amount of past sensor information that should be averaged to evaluate
the rules, which defaults to ten seconds. Each state defines an optimal execution site.
The mapping of application profile-defined FSM states to hosts is dependent on the
infrastructure available to each particular user. While the figure exemplifies the typical
FSM derived from the three sensors we implemented, profile writers are free to generate
more complex FSMs using more sensors and states.

Profile creation involves a characterization of an agent’s resource usage and may be
done by application developers or by third-parties such as user groups, administrators,
or technically adept users. In the absence of an application-specific profile, the
migration manager uses a generic profile that identifies typical crunch and cognitive
phases. The default profile is shown in Figure 3; most of its values are fairly intuitive and
conservative. We use the long-established 20 FPS threshold [11] to trigger interactive
response-based migrations. The input threshold of 15 inputs per window of ten
seconds is derived from observations of the average input event generation rate in our
experiments. We were able to use this generic application profile for all the experiments
described in Section 3.5.

We plan to augment the Snowbird migration manager with many of the features
developed by the process migration community in the scope of automated migration,
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such as selecting destination sites based on their current load [9]. One relevant concern
in our environment is the handling of applications with overlapping crunch and
cognitive phases, that could compromise the agent’s stability by “thrashing” between
the two states. The straightforward solution we have implemented is to specify a priority
favoring interactive performance when conflicting migration rules are simultaneously
triggered. Another solution would be to invoke hysteresis mechanisms [12] to prevent
the migration manager from adopting this erratic behavior.

2.3 Hardware-Accelerated Graphical Interface

The graphical user interface for an agent has to comply with two requirements. First,
a user should be able to interact seamlessly with an agent, regardless of its current
location. Second, many of the applications targeted by Snowbird (such as scientific
visualization and digital animation), require the use of 3D graphics acceleration
hardware, a feature absent from most virtualized execution environments.

Snowbird uses VMGL [13] to meet these requirements. VMGL includes an enhanced
thin client interface based on VNC [10], and provides agents with access to 3D graphics
hardware acceleration. When the agent is running on a remote host, the thin client protocol
is used to communicate screen updates and user inputs (i.e., keystrokes and mouse) over
the network. When the agent runs on the user’s desktop, the network becomes a loopback
connection. Interaction is never interrupted during agent relocation because network
connections persist through live-migrations: for relocations within the same L2 subnet, a
gratuitous ARP-reply binds the agent’s IP address to the new physical host. Relocations
across subnets are supported with VPN tunnels or L2 proxys like VNETs [14].

VMGL provides applications running in a VM access to 3D graphics hardware accel-
eration by virtualizing the OpenGL API. This cross-platform API for 3D applications
is supported by all major graphics hardware vendors. We use library preloading to
masquerade as the system’s native GL driver and intercept all GL calls made by an
application. GL primitives are then forwarded over the network, using the WireGL
protocol [15], to a remote rendering module where they are rendered directly by
3D graphics acceleration hardware. Although this setup allows complete flexibility,
we expect the rendering module to execute in the user desktop’s administrative VM,
physically co-located with the agent VM during cognitive phases.

Figure 4 shows how we adapted VMGL for use in Snowbird. GL primitives bypass
the VNC server and are rendered using 3D hardware on the user’s desktop. Updates
from non-3D APIs (e.g. Xlib) used by standard applications are rendered by the VNC
server on its virtual framebuffer and shipped to the viewer. A modified VNC viewer
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composes both streams and offers a combined image to the user. Input events are
handled entirely by the thin client protocol. Similar mechanisms can be used to support
the Direct3D rendering API for Windows VMs [16].

2.4 The WANDisk Storage System

VM migration mechanisms only transfer memory and processor state; they do not
transfer VM disk state, which is typically one to three orders of magnitude larger (many
GBs). Therefore, each VM disk operation after migration usually involves network
access to the source host. While this is standard practice on the LAN environments
that are typical of VM deployments in data centers (SANs, Parallax [17], distributed
file systems like Lustre), it is unacceptable for the high-latency WAN environments
in which we envision Snowbird being used. A distributed storage mechanism is thus
needed to take advantage of read and update locality in disk references. Furthermore,
while several WAN-optimized distributed storage choices were available to us, none of
them satisfied two key characteristics of the Snowbird deployment model. First, there
are multiple symmetric hosts on which an agent might run, thus precluding storage
systems that are limited to a single replica support (DRBD), and systems that centralize
data transfers on a server (NFS, AFS, Coda [18], VM disk mechanisms used by the
Collective [7] and Internet Suspend/Resume [6], etc). Second, in this P2P-like model
there is no need to maintain complex multiple-writer synchronization protocols [19], as
the agent executes – and modifies its underlying disk state – in a single host at a time.

We have therefore implemented a distributed storage system called WANDisk, that
provides efficient WAN access to multiple replicas of an agent’s virtual disk. To
provide flexibility in the choice of migration site, WANDisk follows a P2P approach
where any Internet host can maintain a persistent replica of the agent’s state. To
reduce data transfers, WANDisk relies on the persistence of the replicas, which are
created on demand as new migration sites are identified. WANDisk’s replica control
mechanism uses two techniques for optimizing the efficiency of agent migration. First,
lazy synchronization is used to avoid unnecessary data transfers to inactive migration
sites or for unused parts of a virtual disk. Second, differential transfers are used between
replicas to reduce synchronization overhead.
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Figure 5 shows the two-tiered WANDisk architecture, which consists of a kernel
module and a user-space disk manager, both operating within Xen’s administrative
VM. The kernel module presents a pseudo block device that is mapped to an agent’s
virtual block device. All agent-originated block requests are handled by the pseudo
block device and redirected into the user-space disk manager.

The disk manager partitions the agent’s virtual disk into chunks and uses a chunk
table to keep track of versioning and ownership information. Chunk size is configurable
at agent creation time; we use a chunk size of 128 KB in our experiments, which
we have found to work well in practice. As the agent modifies blocks in its virtual
block device, the mapped chunk’s version number is incremented, and its ownership
transferred to the host where the agent is executing. Each host thus “owns” the chunks
which the agent modified while executing there. Before the agent accesses any of
those chunks at a different host, the chunk table will point WANDisk to the location
of the freshest copy. The chunk table is thus the only piece of metadata necessary
for the correct execution of WANDisk, and becomes a crucial addition to an agent’s
migratable state. To account for this, we have modified live migration in Xen to include
the chunk table; however, actual chunk transfers are not involved in the critical path
of agent migration. WANDisk fetches chunks exclusively on-demand, using the rsync
algorithm [20] to perform efficient differential data transfer.

The heavyweight sync command shown in Figure 1(b) is available for bringing
any replica up to date under explicit user control. This command may be used for
performance or reliability reasons. The command blocks until the replica at the specified
migration site is both complete and up to date. At this point, agent execution can
continue at that site even if it is disconnected from other replicas.

3 Usage Experience and Experimental Evaluation

We have gained hands-on usage experience with Snowbird by applying it to four
bimodal applications from distinct application domains. None of these applications
was written by us, and none had to be modified for use with Snowbird. Two of the
applications (Maya and ADF) are commercial closed-source products whose success in
the marketplace confirms their importance. The other two applications (QuakeViz and
Kmenc15) have open source user communities. Section 3.1 describes these applications
in more detail.

We found that using these applications with Snowbird was straightforward. Installing
each as an agent was no more complex or time-consuming than installing it on a
native machine. The only extra step was the creation of an application profile for the
migration manager. Our generic application profile proved to be adequate for these four
applications, but we recognize that some customization effort may be needed in the case
of other applications.

This positive qualitative experience leads to a number of quantitative questions.
What performance overheads does Snowbird incur? How much does it improve task
completion time in the crunch phase, and crispness of interaction in the cognitive phase?
How close is Snowbird’s performance to that achievable through optimal partitioning
(which is necessarily application-specific)?
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The rest of this section describes our answers to these and related questions.
Section 3.1 begins by describing the four applications and the benchmarks based
on them. Section 3.2 then describes our approach to balancing realism and good
experimental control in the cognitive phase, even in the face of unpredictable user
behavior. Sections 3.3 and 3.4 describe our experimental setup. Finally, Section 3.5
presents our results.

3.1 Application Benchmarks

To demonstrate Snowbird’s broad applicability, we experimented with applications that
are representative of the domains of professional 3D animation, amateur video produc-
tion, and scientific computing, and include both open source as well as commercial
closed source products. For each application, we designed a representative benchmark
that consists of a crunch and a cognitive phase.

Maya (Digital Animation, closed source)
This is a commercial closed source high-end 3D graphics animation package used for
character modeling, animation, digital effects, and production-quality rendering [21] .
It is an industry standard employed in several major motion pictures, such as “Lord
of the Rings,” and “War of the Worlds.” Our benchmark encompasses the typical work
involved in completing an animation project. During the 29-minute cognitive phase,
a digital character is loaded, a number of intermediate positions are generated by
tweaking the character’s skeleton and joints, and the animation pattern is scripted.
The user periodically visualizes a low-fidelity preview of the animation, which Maya
generates using graphics hardware acceleration. The crunch phase consists of rendering
a photo-realistic version of each frame in the animation. This is a highly parallelizable
CPU-intensive process that does not use graphics hardware. Maya allows the crunch
phase to be initiated on a remote compute server, thus providing a case of application-
specific partitioning against which to compare Snowbird.

QuakeViz (Earth Sciences, open source)
This is an interactive earthquake simulation visualizer, and the only benchmark that
accesses a remote dataset. Our benchmark consists of the visualization of a 1.9 GB
volumetric dataset depicting 12 seconds of ground motion around a seismic source in
the Los Angeles Basin [22]. In our experiments, this dataset is stored on the remote
compute server and accessed via NFS. During the crunch phase, QuakeViz mines the
dataset to extract ground motion isosurfaces, surfaces inside the volume for which all
points are moving in the same direction and at the same speed. The result is a set of
triangular meshes depicting isosurfaces at successive time steps. Transformations such
as smoothing and normals calculation are applied to the meshes to generate a more
visually appealing result. In the cognitive phase, the isosurface meshes are rendered on
the screen, and the user studies the seismic reaction by moving forwards or backwards
in time and zooming, rotating, or panning the isosurfaces. Our benchmark explores 30
different time-steps during its 23-minute long cognitive phase.

ADF (Quantum Chemistry, closed source)
This is a commercial closed-source tool, used by scientists and engineers to model
and explore properties of molecular structures [23]. In the ADF benchmark, the crunch
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phase consists of performing a geometry optimization of the threonine amino-acid
molecule, using the Self-Consistent Field (SCF) calculation method. ADF distributes
this intensive calculation to multiple CPUs using the PVM library, providing a second
case of application-specific partitioning against which to compare Snowbird. The SCF
calculation generates results that are visualized in a subsequent cognitive phase, such
as isosurfaces for the Coulomb potential, occupied electron orbitals, and cut-planes
of kinetic energy density and other properties. Analysis of these properties through
rotation, zooming, or panning, are examples of the actions performed during the 26
minute-long cognitive phase.

Kmenc15 (Video Editing, open source)
This is an open-source digital editor for amateur video post production [24]. Users can
cut and paste portions of video and audio, and apply artistic effects such as blurring or
fadeouts. Kmenc15 can process and produce videos in a variety of standard formats.
This benchmark does not exploit graphics hardware acceleration. In the 15-minute
cognitive phase of our benchmark, we load a 210 MB video of a group picnic and
split it into four episodes. We then edit each episode by cropping and re-arranging
portions of the recording and adding filters and effects. The crunch phase converts the
four edited episodes to the MPEG-4 format. Kmenc15 converts the four episodes in
parallel, exploiting available multiprocessing power.

3.2 Interactive Session Replay

One of the challenges in evaluating interactive performance is the reliable replay of user
sessions. To address this problem, we developed VNC-Redux, a tool based on the VNC
protocol that records and replays interactive user sessions. During the session record
phase, VNC-Redux generates a timestamped trace of all user keyboard and mouse
input. In addition, before every mouse button click or release, VNC-Redux also records
a snapshot of the screen area around the mouse pointer. During replay, the events in the
trace are replayed at the appropriate times. To ensure consistent replay, before replaying
mouse button events the screen state is compared against the previously captured screen
snapshot: if sufficient discrepancies are detected, the session must be reinitialized
and replay restarted. Screen synchronization succeeds because VNC, like most other
thin client protocols, is non work-conserving and can skip intermediate frame updates
on slow connections. This results in the client always reaching a stable and similar
(albeit not always identical) state for a given input. Therefore, given an identical initial
application state, the entire recorded interactive session can be reliably replayed.

Unfortunately, the simple screen synchronization algorithms used by other replay
tools [25] do not work well in high-latency environments. These algorithms typically
perform a strict per-pixel comparison with a threshold that specifies the maximum
number of pixel mismatches allowed. Something as simple as a mouse button release
being delayed by a few milliseconds due to network jitter can cause a 3D object’s
position to be offset by a small amount. This offset causes the algorithm to detect a
large number of pixel mismatches, stalling replay.

To address this problem, we developed an algorithm based on Manhattan distances
to estimate image “closeness”. For two pixels in the RGB color space, the Manhattan
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distance is the sum of the absolute differences of the corresponding R, G, and B values.
If a pixel’s Manhattan distance from the original pixel captured during record is greater
than a given distance threshold, it is classified as a pixel mismatch. If the total number
of pixel mismatches are greater than a pixel difference threshold, the screenshots being
compared are declared to be different. Our experiments confirm that this improved
matching algorithm works well over high latency networks.

3.3 Experimental Configurations

We investigate four configurations for executing bimodal applications:

– Local Execution: The application executes exclusively in an unvirtualized environ-
ment on a typical desktop-class machine. During interactive phases, 3D graphics
are rendered using locally available hardware acceleration. This represents the best
scenario for cognitive phases, but the worst case for crunch phases.

– Remote Execution: The application executes exclusively in an unvirtualized en-
vironment on an SMP compute server located behind a WAN link and close to
external datasets. This represents the best scenario for crunch phases. As the user
interacts with the application over a WAN link using a standard VNC thin client,
3D rendering on the remote server is software based, representing the worst case
for the cognitive phases.

– Partitioned: The application executes in an unvirtualized environment on the
desktop-class machine, but is able to ship intensive computation to the remote
compute server in an application-specific manner. This execution mode combines
the best of remote and local execution, but is fully dependent on application support
and requires multiple installations of the application. Not all of our benchmarks
provide this mode of execution.

– Snowbird: Snowbird is used to dynamically switch between local and remote
execution modes, independently of application support or lack of it. Both the user’s
desktop and remote compute server run the Snowbird infrastructure: Xen VMM,
WANDisk, the hardware-accelerated agent GUI, and the migration manager. All
benchmarks are initiated in an agent running at the user’s desktop, with the
WANDisk state at all hosts initially synchronized. The single generic application
profile is used for all of our experiments.

By running the complete benchmark in each of the Remote and Local modes, we
obtain two sets of results. First, a measure of what is clearly undesirable: running
the crunch phase on an underpowered configuration (Local), and interacting with an
application executing behind a WAN link (Remote). By comparing against these results
we quantify the benefits of Snowbird in terms of reduced completion time for the crunch
phase and improved interactive performance for the cognitive phase.

Conversely, the execution of the crunch and cognitive phases on the Remote and
Local configurations, respectively, represents the ideal application partitioning. This
provides an upper bound on the performance of any manual partitioning, as each phase
is executed in the most advantageous location and no cost for communication overhead
or added computational complexity is included. We compare Snowbird’s performance
against these set of results to quantify its overhead.
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Finally, we can compare Snowbird to manual application partitioning for those
applications that provide that option. While we expect manual application partitioning
to be very close to optimal performance for both application phases, we also expect
Snowbird to provide similar crunch and interactive performance.

3.4 Experimental WAN Testbed

Our experimental testbed consists of a user desktop, which is a 3.6 GHz Intel Pentium
IV equipped with an ATI Radeon X600 Graphics Processor Unit (GPU), and a compute
server, which is a four-way SMP (two dual-threaded cores) 3.6 GHz Intel Xeon.
The desktop and server communicate through a NetEm-emulated WAN link with a
bandwidth of 100 Mbit/s and RTTs of 33, 66, and 100 ms. These RTTs are conservative
underestimates of the values observed between US and Europe, as shown in Table 1. We
use a paravirtualized 2.6.12 Linux kernel for the Snowbird experiments and Fedora’s
2.6.12 Linux kernel for the non-Snowbird experiments. Both kernels are configured
with 512 MB of RAM. Agent VMs are configured as 512 MB SMP hosts, allowing them
to fully utilize the computing power of the compute server’s multiple cores. Snowbird
uses the WAN-optimized HPN-SSH [26] protocol for data transfers.

3.5 Results

This section present the results of our experiments with the four benchmarks introduced
in Section 3.1. All benchmarks include a cognitive and a crunch phase. In Maya and
Kmenc15, the cognitive phase precedes the crunch phase, whereas in QuakeViz and
ADF, the cognitive phase follows the crunch phase. Maya and ADF are the only
applications we used that provide a partitioned execution mode. Unfortunately, the
partitioned execution mode of ADF badly underperformed in our WAN testbed: with
a 33 ms RTT, crunch phase completion time expands to roughly six times as much as
in thin client mode. The vendor-supplied partitioning is designed for tightly-connected
cluster computing and hence uses a very “chatty” synchronization protocol. This is
an example of Snowbird overcoming the negative effects of an application-specific
partitioning scheme that was not designed for WANs.

Crunch Phase. Figure 6 shows the total completion time of the crunch phase for the
benchmarks and configurations investigated. Each result is the mean of five trials; error
bars show the observed standard deviations. For reasons explained earlier, partitioned
execution results are not presented for ADF. As Figure 6 shows, Snowbird outperforms
local execution by a significant margin. Since the impact of RTT on crunch phase
performance is very small, we only show it for Snowbird. The crunch phases of all
the benchmarks are CPU intensive and benefit from the increased computational power
of the multiprocessor server. QuakeViz also takes advantage of the lower latency and
increased bandwidth to its dataset, located on the compute server. More specifically,
at 33 ms RTT, Snowbird approximately halves the length of the crunch phase for
all applications, and comes within 4 to 28% of the ideal performance of the remote
configuration. For Maya, it comes within 4 to 9% of the performance obtained through
vendor-supplied partitioning.

Table 2 shows how long it takes the migration manager to detect the transition into
the crunch phase, and how long it takes to migrate the agent to the remote compute
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Table 2. Crunch Phase Migration Time

Time (seconds)
Latency = 33 ms Latency = 66 ms Latency = 100 ms

Application Detect Migrate Suspend Detect Migrate Suspend Detect Migrate Suspend
Maya 10.8 51.9 3.5 10.8 53.5 4.7 11.5 58.2 5.6

QuakeViz 8.1 49.9 3.5 8.1 49.9 5.0 8.1 55.6 6.3
ADF 12.5 62.0 4.9 11.5 62.0 6.2 13.1 64.9 6.7

Kmenc15 8.1 51.8 4.7 9.1 54.0 5.7 8.4 59.5 6.7

server. Each result in this table is the mean of five trials, and the largest standard
deviations observed for Detect, Migrate, and Suspend are 22%, 4%, and 7% of the
corresponding means. As Table 2 shows, the maximum time taken by the migration
manager is 14 seconds. Even with the worst-case latency of 100 ms, agent migration
never takes more than 70 seconds to complete. In all cases, the agent spends less than
1.5 minutes on the user’s desktop after it enters a crunch phase, which amounts to less
than 5% of the total benchmark time. The table also shows that the maximum time for
which an agent would appear to be unresponsive to user input during migration is six
seconds or less. This is an order of magnitude smaller than the best value attainable
without live migration (512 MB of VM RAM at 100 Mbit/s � 41 s).

Cognitive Phase. Figure 7 shows the Cumulative Distribution Functions (CDFs) of
the number of FPS per interaction for each of our four benchmarks under three con-
figurations: local, remote, and Snowbird. Plots to the right indicate better performance
than plots to the left. We show results for different network RTTs for the remote and
Snowbird configurations. The cognitive phases for QuakeViz and ADF start on the
remote compute server soon after the crunch phase terminates. The migration manager
detects this transition and migrates back to the user’s desktop. On the other hand, the
cognitive phase of Maya and Kmenc15 start with the agent already running on the user’s
desktop. We do not include results for Maya and ADF’s partitioned mode, as they are
practically identical to local interaction.
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Fig. 7. Interactive Response

Our results show that Snowbird delivers a much better cognitive performance than
remote interaction. More importantly, the median number of FPS delivered by Snowbird
is above the long-established 20 FPS threshold needed for crisp interactivity [11]. In
general, Snowbird’s quantitative interactive performance is between 2.7 to 4.8 times
better than that delivered by a thin client, with the interactive response in thin client
mode rarely exceeding 10 FPS. Even though the agent has to migrate from the compute
server to the user’s desktop, Snowbird’s cognitive performance tends to be independent
of the WAN latency. Further, the network latency has a negligible impact on both the
time taken before the decision to migrate is made and the time required to migrate the
agent; we omit the migration time results for cognitive phases as they are very similar
to those in Table 2.

The results also show that the FPS delivered by Snowbird is not as high as
in unvirtualized local interaction. Local execution experiments delivered anywhere
between 1.1 to 2.6 times more FPS in the median case. Nevertheless, once the agent
migrates to the local host, in our subjective experience, the user experience delivered
by Snowbird is indistinguishable from that of the native configuration for all of the
benchmarks.

Summary. Our results confirm that Snowbird offers significant benefits for bimodal
applications. Without any application modifications, relinking, or binary rewriting, such
applications are able to improve crunch performance through remote infrastructure.
This improvement is achieved without compromising cognitive performance. Even
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when an application vendor supplies a partitioned mode of operation for cluster
computing, Snowbird is able to offer comparable performance (within 4%), and in some
cases greatly exceed its benefit over WANs.

4 Implementation Limitations and Future Extensions

The Snowbird prototype has certain limitations in functionality and performance. Some
of these limitations arise from our goal of rapidly creating an experimental prototype
rather than a robust, complete and efficient product. Other limitations have deeper roots
in the design of Snowbird, and will therefore require more effort to overcome.

One limitation is that parallel Snowbird applications execute in a single SMP virtual
machine. While the current trend of aggressively scaling processors to a hundred or
more cores favors our design, some applications might be inherently designed to use
multiple machines in a large cluster. Extending Snowbird to those applications would
require new mechanisms such as “gang VM migration” that treat a group of VMs
as a unit. We anticipate that these mechanisms will be conceptually simple, but their
implementation may involve nontrivial complexity.

A second limitation arises from our use of hardware virtualization. At startup, an
application might configure itself to take advantage of vendor-specific extensions to
the x86 instructions set architecture, such as Intel’s SSE or AMD’s 3DNow!. Upon
migration to different hardware, the application will crash when it attempts to execute
an unsupported instruction. One possible solution is to use dynamic binary rewriting.
Another approach is to extend Snowbird so that it never attempts migration to an
incompatible destination.

A third limitation is that Snowbird assumes a distinct separation of crunch and
cognitive phases. Applications that consistently overlap these phases will not benefit
from Snowbird. More generally, Snowbird is beneficial only when its agility of
adaptation exceeds the rate of change of application behavior, and when remote
execution provides sufficient improvement to overcome the cost of migration. Figure 8
illustrates this tradeoff for crunch phases. The horizontal axis shows migration time in
minutes, which depends on the quality of the Snowbird implementation. This measure
of system agility includes both the swiftness with which migration can be triggered,
and the efficiency with which it can be completed. The vertical axis shows the crunch
speedup when executing remotely, which depends on the application and the available
remote resources. Each curve plots the relation speedup = C/(C − migration time)
for three hypothetical applications, where C is the crunch phase completion time when
executing locally. Above each curve, Snowbird is beneficial; the expected performance
gain exceeds the migration cost. Below each curve, Snowbird becomes harmful, as its
migration cost eclipses any potential performance gains.

The simple model shown Figure 8 illustrates how improving migration time broadens
the set of applications for which Snowbird is applicable. For a given speedup, workloads
with smaller crunch time benefit as migration time decreases. And for a given crunch
time, swifter migration reduces the constraints on the quality of the remote resources
needed. Conversely, high migration times limit the applicability of Snowbird to
applications with long crunch phases, or to remote platforms capable of yielding very
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high speedups. In the current prototype, detection and change of modality occur in
roughly 10 seconds, while the migration that follows typically takes about 60 seconds
plus lazy WANDisk chunk fetches. Mapping these values to Figure 8 indicates that
crunch phases below ten minutes and speedups below a factor 2 will probably not show
benefits with the current prototype.

It should be noted that a complementary attribute of agility is stability, which
characterizes the ability of the implementation to avoid frivolous migrations that may
lead to thrashing. It is well known from control theory that agility and stability
are two sides of the same coin, and have to be considered together in the design
of an adaptive system. Improvements to Snowbird’s agility may necessitate more
sophisticated mechanisms for stability.

5 Related Work

To the best of our knowledge, Snowbird is the first system that exploits VM tech-
nology for the purpose of simplifying the development and deployment of bimodal
applications. Closest in spirit to Snowbird is the large body of process migration
research [9,12,27,28]. Although extensively investigated for over two decades, no
operating system in widespread use today supports process migration as a standard
facility. We conjecture that this is because process migration is a brittle abstraction: a
typical implementation involves so many external interfaces that it is easily rendered
incompatible by a modest change. Snowbird implements a more resilient abstraction
because the code and state implementing these interfaces is part of the OS that is
transported with the application.

Language-based code mobility is another well-explored approach to moving compu-
tation. Relevant examples of work in this genre are Emerald [29] and one.world [30].
Java’s remote method invocation framework has made this approach feasible and
relevant to a range of computing environments. Snowbird’s language-independent
approach has the advantage of preserving substantial investments in legacy libraries,
tool chains, and applications. It is also flexible with respect to code structure: an
application can be a single monolithic process, or it can be a tool chain with scripts
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that glue the chain together. The crunch phase can have a finer structure, such as the use
of multiple large datasets each of which is located at a different Internet site.

Snowbird can function as an adjunct to Grid computing middleware toolkits such
as Globus [31] and Condor [32], that are widely used by the scientific computing
community today. Snowbird complements the functionality provided by these toolkits
by transforming a single monolithic application into an entity that can be easily
migrated under toolkit control. More recently, the use of VMs has also been advocated
for the Grid [14,33], as enablers of simpler security and manageability abstractions.

Researchers have also developed toolkits for distributed visualization of large remote
datasets. Examples include Dv [34], Visapult [2], SciRun [4], and Cactus [3]. Unlike
Snowbird, these tools require applications to be written to a particular interface and are
therefore useful only when application source code is available.

From a broader perspective, Snowbird was inspired by the substantial body of recent
work on applying VM technology to a wide range of systems problems, including
security [35], mobile computing [6,36], and software maintenance [7]. Since the first
technical report to describe our work [37], others have examined related techniques.
Sandpiper [38] is a migration manager for cluster area networks that does not consider
interaction-triggered relocations. Similar to VMGL, Blink [39] virtualizes GL-based
3D-rendering, but is specific to Xen-paravirtualized Linux. Bradford et al. [40] provide
a virtual disk relocation scheme for the wide area with a full-prefetch policy that adds
several minutes of downtime during migration.

6 Conclusion

A growing number of bimodal applications alternate between resource-intensive crunch
phases and intensely interactive cognitive phases. The crunch phase may be CPU-
intensive, memory-intensive, data-intensive, or some combination of all three. The
cognitive phase must avoid sluggish or jerky responses in order to ensure low user
distraction. This demands low end-to-end latency and may also require the use of local
graphics acceleration hardware.

Snowbird simplifies the creation of bimodal applications by masking the distributed
systems complexity of resource management, synchronization, and data consistency. It
presents the simple programming abstraction of a VM to the developer, and assumes
full responsibility for seamlessly migrating this VM to the best execution site. In
experiments that include closed-source commercial applications, Snowbird offers crisp
interactive performance that is superior to the best achievable through remote execution.
At the same time, it is able to bring remote resources to bear on crunch phase
performance. Without user or developer intervention, Snowbird is able to promptly
detect application transitions between crunch and cognitive phases, and to automatically
migrate the application to the most appropriate execution site.

An alternative viewpoint is to regard Snowbird as a tool that enables seamless
transitions between the thin and thick client modes of execution. Thin clients are
favored due to their ability to harness remote resources, while thick clients provide an
unparalleled user experience during highly interactive tasks. By transparently morphing
an application between the thick and thin client modes of execution, Snowbird gives a
user the best of both worlds.
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In closing, Snowbird’s extensive use of multiple machines to meet the needs of
a single user reflects an evolutionary trend that began with timesharing (fraction of
a machine per user) and continued through personal computing (single machine per
user) and client-server computing (local machine plus remote machines in fixed roles).
Snowbird proposes a new step in this evolution by seamlessly and transparently using
local and remote machines in flexible roles.
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Abstract. Grids are becoming more and more dynamic, running par-
allel applications on large scale and heterogeneous resources. Explicitly
stopping a whole distributed application is becoming increasingly diffi-
cult. In that context, there is a strong need to free resources a soon as
they become useless, leading to automatic termination, using distributed
garbage collecting techniques. We propose in this paper a new distributed
garbage collector for active objects taking into account cycles but with
a complexity similar to the distributed garbage collector of Java/RMI.
The algorithm is based on a different approach to collect acyclic and
cyclic garbage. On one hand, acyclic garbage is collected by knowing the
immediate referencers of an active object and detecting the lack of these
referencers. This behavior with respect to acyclic garbage is common
to the distributed garbage collector of RMI. On the other hand, cyclic
garbage is detected by considering the recursive closure of all the ref-
erencers of an active object and finding cycles of active objects waiting
for requests. These cycles are found by letting idle active objects make a
consensus on a common final activity. The algorithm is fully distributed
and has been implemented with no modifications to the local garbage
collector. Benchmarks have shown the scalability of the algorithm in a
grid context.

Keywords: distributed garbage collection, cycle detection, grid comput-
ing.

1 Introduction

Computer grids can be used to deploy complex and long running applications
made of distributed activities. To optimize the resource usage of the global appli-
cation, it is important to free resources held by idle activities as soon as possible.

When these grid applications are written in a high level language such as Java,
the underlying platform exposes a local garbage collector to simplify the memory
management. The automatic garbage collection mechanism has been adapted to
objects accessible over a network in the form of distributed garbage collectors,
abbreviated DGC. Currently, the most used DGC implementation seems to be
the one of RMI [1,2]. However, this DGC is unable to collect distributed cycles
of garbage since it is based on a reference listing [3] approach. Recent cyclic
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distributed garbage collector [4] typically suffers from a large space complexity,
because each process has a view of the whole distributed system.

This paper presents a DGC geared towards the collection of distributed activ-
ities which is able to collect both acyclic and cyclic garbage, typically referred
to as a complete DGC. Activities are represented by the active object [5] model
which provides asynchronous method calls to the object model, thus is well
suited to grid applications. More precisely, active objects are remotely accessible
objects with their own thread of activity and requests queue.

As they attempt to find cycles of active objects, complete DGC algorithms
need a view of the reference graph in order to find cycles in it.

The contributions of this paper consist of:

– a method to build the reference graph between activities without modifying
the local garbage collector,

– the identification of cycles of idle activities as cyclic garbage instead of the
more common unreachable strongly connected component,

– a DGC algorithm using this characterization of cyclic garbage and
– experimental results of an implementation of this DGC algorithm.

The rest of the paper is organized as follows: section 2 describes the con-
struction of the reference graph which provides the necessary input for the DGC
algorithm. How the algorithm identifies garbage (both acyclic and cyclic) based
on this reference graph is described in section 3 while section 4 discusses some
implementation issues as well as the complexity of the algorithm. Experiments
are described in section 5. Finally, section 6 discusses the related work, and some
future work ends the paper.

2 The Reference Graph

A crucial aspect of the garbage collection of activities is determining which other
activities still hold references to the activity currently being examined and may
activate it later on. The references between different activities are in fact tran-
sitive references, since there can be a chain of local pointers between the active
object and the remote reference. This is identical to the graph summarization
technique in [4].

This work is built upon the active object model which permits some assump-
tions, but these assumptions are not fundamental to the DGC algorithm. One
of these assumptions is the no-sharing property described below, and we will
describe in the discussion in Section 4.1 an approach to relax this requirement.

2.1 The No-Sharing Property

As the distribution of activities on the grid is often unknown beforehand, ac-
tivities should typically not share (by aliasing) references to the same passive
object (standard object). Since references to other activities are represented by
passive objects called stubs, such stubs of remote objects are not shared either.
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Fig. 1. The no-sharing property: no passive objects are referenced by more than one
active object

Fig. 2. Remote references are needed for referenced active objects, but only a unique
ID is needed to track referencers

This rule1, illustrated in Figure 1, is called the no-sharing property. With this
property, once we know that a given active object references a given stub, we
can assume that this stub will always be exclusively referenced by this same
active object. This property allows, as we will see in the next section, to build
the reference graph without modifying the local garbage collector.

2.2 Building the Reference Graph

An active object maintains two kinds of relationship with other active objects.
There are referencers and referenced active objects. The connectivity require-
ments for these two kinds of active objects are different. On one hand, the DGC
algorithm will try to contact referenced active objects, so an access to the remote
references used by the application is needed. On the other hand, referencers only
need to be identified by a unique ID, as the DGC algorithm will never try to
directly contact them. Concretely, as seen in Figure 2, the DGC algorithm will
only try to contact referenced active objects and will just store the ID of the
active objects contacting it. This is an important property of the algorithm in
that it does not require more connectivity than the deployed application. This

1 Practically speaking, the only way to defeat this rule is to put a remote reference
in some static variable since communications between local or remote active objects
always go through a serialization and deserialization step, so no sharing is possible
with only these communications.
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aspect is particularly useful in grid contexts where the deployment has to deal
with connectivity limitations like firewalls and NATs.

The proposed reference graph can be built transparently on top of a local
garbage collector. The graph is constructed by hooking into the deserialization
of stubs, and by remembering which local active object A (i.e. the recipient of
the message) triggered the deserialization, then A can add the stub target B to
its list of referenced active objects. When A subsequently sends a DGC message
to B, B will add A to the list of its referencers.

Iterating this process of adding edges between active objects builds the ref-
erence graph. The reference graph is represented for each active object instance
by the list of its remote references. However, a local active object instance may
reference several stubs representing the same remote active object. As a conse-
quence, it is crucial to keep track of all of these stubs, as only the disappearing
of all of them indicates that an edge should be removed in the reference graph.
Instead of independently tracking these stubs, a more efficient way is to add
a common tag (a reference to a dummy object) in every stub instance for the
same remote object owned by the same local active object, and then the DGC
just has to keep a weak reference to this tag in order to detect the local garbage
collection of all of these stubs.

3 The Distributed Garbage Collector Algorithm

The distributed garbage collector algorithm relies on the following Garbage prop-
erty to discriminate garbage activities:

∀x, Garbage(x) ⇔ (∀y, y →∗ x ⇒ Idle(y)) (1)

An active object (x) is said to be garbage if and only if the reflexive transitive
closure of its referencers (y) is idle, the active object x is included in the reflexive
transitive closure of its referencers. The concept of local idleness (Idle(x)) for
an active object must be provided by the middleware.

The Garbage property is verified using two different approaches for acyclic
and cyclic garbage. On one hand, acyclic garbage is found by ensuring that the
set of the direct referencers of an active object is empty, this satisfies the Garbage
property. On the other hand, cyclic garbage is found by letting an active object
make a consensus on a “final activity clock” by the reflexive transitive closure
of its referencers.

3.1 Detecting Acyclic Garbage Using a Heartbeat

To detect acyclic garbage we request that referencers of an activity periodically
send a DGC message to the referenced activity in a heartbeat fashion. Its fre-
quency, thereafter referred to as TTB for TimeToBeat, is a constant known by
all participating active objects in the distributed system. Therefore, increasing
TTB lowers the overhead of the DGC but makes it slower to reclaim garbage.
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If an active object receives no DGC messages for a certain amount of time,
it considers itself as garbage, and is thus destroyed. This amount of time is
called TTA for TimeToAlone. This parameter designates the delay after which
an active object considers it must have received a DGC message from all of its
referencers.

When a local active object deserializes a reference to a remote active object, it
makes sure that at least one DGC message is sent to this remote active object at
the next broadcast. In other words, even if the reference is quickly garbage col-
lected, the algorithm remembers that one DGC message must be sent anyway.
This ensures that a reference to a remote active object that would be quickly ex-
changed between two other active objects receives DGC messages to keep it alive.

The TTA value should satisfy the formula TTA > 2 ∗ TTB + MaxComm
with MaxComm being an upper bound on the communication time between
active objects. This formula ensures that referencers always get a chance to send
a DGC message before declaring that no messages were received. The worst case
is an active object A giving just before its broadcast a reference B to another
active object C that has just broadcasted. If the B stub on A is collected just
after giving it to C, then C will have to wait 2∗TTB+Comm without receiving
DGC messages from A or C, Comm being the time to send the reference.

3.2 Detecting Cyclic Garbage by Making a Consensus

The very high level view of our algorithm to find distributed cyclic garbage is
to traverse the recursive closure of an active object’s referencers in order to find
cycles of idle activities. This traversal checks at each step that the currently
visited active object is idle. An active object may not be able to directly contact
its referencers (firewall, NAT), hence the traversal is done in the opposite direc-
tion, using the periodic DGC messages described in the previous section. The
outcome of the traversal is not affected by this restriction on the direction as a
traversal in the correct direction is simulated over the traversal in the opposite
direction.

This traversal builds a reverse spanning tree over the reference graph. This
means that every active object except the originator (maker of the consensus)

Fig. 3. A reference graph and an associated reverse spanning tree: the reverse spanning
tree is used by the originator to make a consensus on its “final activity clock”
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promotes a single of its referenced active objects as its parent. The reverse span-
ning tree is represented by active objects knowing their parent instead of their
children because of the connectivity restrictions. Figure 3 shows a reference graph
and a possible reverse spanning tree rooted at A over this graph. This tree per-
mits to explore the recursive closure of A’s referencers even if it contains cycles.

Activity Clock. The traversal ensures that all visited active objects are idle.
As this is obviously a source of races, for each active object the local check is
more thorough.

The cyclic garbage collector algorithm requires every active object to maintain
a named Lamport logical clock [6], which is used to determine which activity was
the last active. The clock is named in the sense that the ID of the active object
incrementing the clock is embedded in the clock. This active object is called the
owner of the activity clock. This additional information provides a total ordering
of the named clocks by letting the comparison function of two activity clocks
first compare the clock values and then the active object IDs if the clock values
are identical.

The essence of using a Lamport logical clock is that if an active object receives
a DGC message with a clock which is more recent than its own view of the clock,
it updates its clock accordingly. When an active object A increments the activity
clock ID : V alue, it turns it into A : V alue + 1. A garbage cycle is detected by
an active object A when the following conditions are met:

– the recursive closure of A’s referencers have a common activity clock called
final activity clock and

– A is the owner of this final activity clock and is idle.

In order to check that every recursive referencer of an active object has the
same activity clock, we construct a reverse spanning tree among the active ob-
jects having the same activity clock. If all the recursive referencers agree on the
activity clock, then the spanning tree will span all the referencers; which will
finally agree on the garbage collection: the consensus will be transmitted over a
tree. If some referencers have a different activity clock, then at least one of these
referencers references an active object of the spanning tree, and this referenced
active object will not agree on the consensus for the final activity clock: no active
object is garbage collected.

The activity clock is used to regulate the concurrent execution of the dis-
tributed garbage collection and the application which may modify the reference
graph through the passing of objects as parameters or return values. The relevant
occasions when the activity clock is incremented will be detailed after.

DGC Messages and Responses. For active objects to agree on a final activity
clock, all active objects first need to be notified of the new activity clock. To
this end, an active object sends DGC messages containing the activity clock to
all the active objects it references. The agreement on a consensus is detected by
interpreting the DGC responses active objects send upon reception of a DGC
message. The precise traversal is discussed in more detail below.
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DGC messages flow from the referencers to the referenced active objects in
order to advertise their view of the final activity clock while DGC responses flow
in the opposite direction (on the same connection) to propagate the activity
clock candidate for a consensus. DGC messages also contain the acceptance (or
not) of the consensus candidate received in the previous DGC response. Between
two active objects DGC messages and responses cannot race with application
messages as they are sent over the same FIFO connection.

The reference graph traversal is not a traditional traversal where messages
are forwarded as soon as they are received. On the contrary, DGC messages are
sent every TTB; DGC responses are sent only in response to DGC messages.
The effect is that there are no DGC phases, it is a continuous process.

The content of a DGC message is:

– sender ID: used to detect new referencers and to know which DGC re-
sponse’s final activity clock the consensus boolean refers to,

– final activity clock: to propagate the final activity clock throughout the
reference graph,

– consensus: a boolean indicating the acceptance of the final activity clock
received in the previous response; this is actually in response to the previous
DGC response.

The consensus boolean in a DGC message is set according to these rules:

– if the destination is the parent: the conjunction of the consensus values
of the sender’s direct referencers and the local agreement of the sender,

– if the sender has a parent which is not the destination: whether the
sender locally agrees with the final activity clock (only the local agreement).

The content of a DGC response is:

– final activity clock consensus candidate: the consensus attempt by the
traversal,

– has parent: boolean indicating if the referenced active object can be a
parent, this ensures that the reverse spanning tree is rooted at the originator.

The reverse spanning tree is constructed by having every active object promote
one of its referenced active objects as its parent. The reverse spanning tree will
conduct the consensus from the active objects to the originator. The hasparent
boolean in the DGC response checks if the sending active object has chosen a
parent or is itself the consensus originator. This ensures that the chosen parent
leads to the originator.

An active object updates its view of the final activity clock in the graph
using its own activity clock and the DGC messages. It also stores the last DGC
message of its referencers in order to compute the consensus boolean value.

The activity clock contained in the DGC response is never used to update an
active object’s clock, only to try to build a consensus. For example, in Figure
4, if the cycle C1 is busy it will propagate activity clocks in the cycle C2, but
the latter will never propagate activity clocks in the cycle C1. As references are
oriented, C2 must not prevent C1 from being garbage collected.
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Fig. 4. Activity clocks are not propagated in DGC responses, otherwise C2 would
prevent C1 from being garbage collected until C2 is garbage too

Making a Consensus. An idle active object decides that a consensus has
been made when all of its referencers sent it a DGC message with the consensus
boolean set for its own final activity clock. This is also the current final activity
clock of the originator, and the one it sent in the previous DGC responses. The
active object detecting the garbage cycle is the root of the reverse spanning tree.
Let us see what this means for an active object to be in this state:

– it has propagated its final activity clock in a part (or the whole) of the
recursive closure of its referenced active objects,

– the recursive closure of its referencers have all accepted this final activity
clock.

An active object needs to propagate its final activity clock only in the part of
its referenced active objects that belongs to the same cycle as itself, hence not
necessarily all of its referenced active objects.

When is the activity clock incremented. The activity clock is incremented
on these three occasions:
Active object becoming idle. This is the primary reason for the existence of the
clock. During a traversal, active objects could alternate between being idle and
busy (i.e. an active object receives and starts serving requests before the traversal
completes) so the outcome of the traversal would be inconsistent. In this case,
with the clock, active objects can be idle but still disagree on the proposed final
activity clock.
Loss of a referencer. According to the rules for detecting garbage cycles, the ac-
tive object that breaks the cycle is the owner of the final activity clock, provided
that it is idle. As a consequence, we have to enforce that the owner of the final
activity clock be in the recursive closure of referencers.

Consequently when an active object detects that one of its referencers has
disappeared (i.e. it has not received DGC messages from this referencer in a
TTA period), it must increment its activity clock. This is also the reason why
active objects track the list of their referencers IDs.

Therefore, when an active object disappears, its referenced active objects in-
crement their activity clocks, so that cycles without external referencers cannot
agree upon an unowned activity clock. The latter could result in a cycle where
all active objects have a common final activity clock, but as the owner of this
final activity clock is not in the cycle, it cannot break the cycle.
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Fig. 5. The loss of a referencer must be detected to avoid uncollectible cycles

In Figure 5, the active object A references a cycle and propagated its final
activity clock in this cycle. When A terminates the cycle should not keep its final
activity clock that belongs to nobody in the cycle (Case 1). Instead B should
notice that it lost a referencer (A) and then should increment its activity clock
to obtain B:9 (Case 2).

Loss of a referenced. The reverse spanning tree built over the active object ref-
erences is built by, for each activity, choosing a single referenced active object
and considering it as its parent. An active object tells to its referenced active
objects if its activity clock is the same as the referenced’s one, but will tell to its
parent if its referencers and itself agree on the final activity clock. This simulates
a graph traversal with the references other than the parent being the nodes al-
ready visited, in order to avoid cyclic dependencies. To justify this traversal, let

Fig. 6. The loss of a referenced must be detected to avoid collecting live cycles
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us suppose instead that an active object would propagate an agreement on a fi-
nal activity clock only if it received such an agreement from all of its referencers,
in this case a consensus would never be reached in cycles.

Therefore, when an active object loses a reference, it may actually lose its
parent. And without its parent, an active object will have nobody to tell if
its referencers disagree about the final activity clock. In Figure 6, only D is
busy, so it prevents the cycle from being garbage collected. C’s parent in the
reverse spanning tree is A, so C will tell to A that the consensus is rejected, but
will not tell it to E as it is not its parent. If the reference edge from C to A
disappears, nobody will say to A that the consensus is rejected, and the cycle
will wrongfully be garbage collected. The solution is to increment the activity
clock when a reference disappears.

The active object A will nevertheless detect the loss of a referencer (C), but
detecting the loss of a referenced ensures that C does not have a final activity
clock from someone else and no parent, a condition that would break the reverse
spanning tree.

3.3 Algorithms

Here we show a pseudo-code version of the four DGC algorithms for: the recursive
agreement of the referencers, the broadcasting every TTB, the reception of a
DGC message and the reception of a DGC response. For clarity, they have been
simplified by omitting the following details: the management of referencers and
referenced active objects, the activity clock incrementation in the three cases
seen in Section 3.2, and the error handling.

Algorithm 1. referencers.agree(clock): Recursive agreement on clock?
for all referencer in referencers do

if referencer.clock �= clock or referencer.consensus = false then
return false

return true

Algorithm 2. Every TTB on every active object AO

if AO.isIdle() then
if now() − AO.lastMessageT imestamp > TTA then

AO.terminate() // acyclic garbage
if AO.clock.owner = AO and AO.referencers.agree(AO.clock) then

AO.terminate() // cyclic garbage
for all dest in AO.referenced do

consensus ← AO.isIdle() and dest.lastResponse.clock = AO.clock and
(AO.clock.owner = AO or AO.parent �= nil) and
(AO.parent �= dest or AO.referencers.agree(AO.clock))

dest.sendMessage(AO.id, consensus, AO.clock)
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Algorithm 3. Reception of a DGC message by active object AO

if message.clock > AO.clock then
AO.clock ← message.clock
AO.parent ← nil

AO.referencers[message.sender].clock ← message.clock
AO.referencers[message.sender].consensus ← message.consensus
AO.lastMessageT imestamp ← now()
hasParent ← AO.parent �= nil or AO.clock.owner = AO
return response(AO.clock, hasParent) // DGC response

Algorithm 4. Reception of a DGC response from ref by active object AO

ref.lastResponse ← response
if response.clock = AO.clock and response.hasParent and

AO.parent = nil and AO.clock.owner �= AO then
AO.parent ← ref

4 Discussion

4.1 Middleware Integration

The DGC algorithm has been implemented on top of the Java platform which
provides a local garbage collector albeit one with a very restricted public inter-
face. In spite of these restrictions we have decided against modifying the Java
Virtual Machine or the compiler, because doing so makes applications harder to
debug and hinders portability. In the rest of this section, we provide guidelines for
the integration of the DGC algorithm in a middleware, taking the ProActive [7]
middleware as reference.

The ProActive middleware is a Java implementation of active objects. Method
calls on active objects are transparently asynchronous as they return a future.
A future is an object that serves as a placeholder for the actual result. After
an asynchronous call, execution continues on the caller side and the caller will
transparently wait for the return value of the call when first using the future.

Idle Active Objects. The DGC algorithm requires the ability to decide if
an active object is busy or idle. An active object is typically implemented as
a server listening for requests and serving them. Hence, in the case of single
threaded active objects, it is easy to decide whether an activity is currently busy
serving a request or not: an active object waiting for requests is said to be idle.

Some kinds of active objects are never idle, they would be the roots in a local
garbage collector. In this DGC, the roots are:

– registered active objects as anyone can look them up at any time, this is
identical to marking the registry as a root when the implementation permits
(registry implemented as an active object),
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– dummy active objects used as referencers when non active code references
an active object.

The second item needs more explanation. It was stated that the referencers of
an active object are active objects too. This is not always the case for example
when some main() method acquires a reference to a remote active object, it is
not part of an active object. To this end, the middleware creates a dummy active
object that has no activity but provides the non functional properties needed by
the middleware and the DGC. This allows the assumption that all referencers
are active objects.

Reference Orientation. Reference edges are oriented, therefore a busy ref-
erenced active object will not prevent an idle referencer from being garbage
collected, as seen in Figure 4. This implies that a referenced active object may
not be able to update a future with its value for its referencer (caller) if the latter
was garbage collected. This property is not necessary for garbage collection but
fits with the middleware as the receipt of an updated future cannot wake up an
idle activity by itself. An active object waiting for a future is busy as waiting for
a future can only be done during the service of a request. Hence, this property is
accepted as it is more aggressive towards garbage. Nevertheless, we could get rid
of this property by dropping the orientation of references edges in a middleware
where the reception of a future can wake up an idle activity, with a callback
mechanism for example.

The Process Graph. If the no-sharing property is not desired or available we
cannot reliably build a local reference graph without stopping all the threads
or modifying the local garbage collector. Therefore, only a coarser graph would
be available in this case: the graph of address spaces (processes). The bounds
of address spaces are clearly identifiable as a serialization and a deserialization
step are always needed to cross them. The graph of processes contains the same
vertices as the reference graph, to wit, all objects in the distributed system. The
edges (x, y) of this graph (P ) can be determined from the reference graph (R)
with the following formula:

∀(x, y) ∈ R, ∀x′ ∈ Proc(x), ∀y′ ∈ Proc(y), (x′, y′) ∈ P (2)

x, x′, y, y′ are active objects and Proc(x) is the process hosting the active
object x. Using the process graph instead of the reference graph makes the DGC
algorithm implementable on a broader range of middlewares, but limits its ability
to find cyclic garbage to whole processes. For instance, a garbage cycle spanning
some processes where some active objects are still live will not be collected if
only the process graph is available.

The DGC of RMI uses another graph: each remote object maintains the list of
stubs targeting this remote object, as dictated by the reference listing approach.
Edges in this graph thus connect vertices of different types: stubs to remote
objects, hence this graph is not suitable for cycle detection as it does not contain
edges from remote objects to stubs.



176 D. Caromel, G. Chazarain, and L. Henrio

4.2 Asynchrony - Real-Time Needs

This DGC algorithm is not fully asynchronous because, as seen in Section 3.1,
it requires an upper bound on the communication time. Fully asynchronous
distributed garbage collectors, while resistant to transient failures, have the lim-
itation that undetected failures can prevent garbage collection as these are in-
distinguishable from transient failures. Consequently, and like the DGC of RMI,
our algorithm is hard real-time as a missed deadline can cause a malfunction
in the application if an active object is wrongfully garbage collected. However,
the synchronization between active objects is very loose as it is represented by
TTA − 2 ∗ TTB. As this difference can be made as large as needed, deadlines
can therefore be pushed arbitrarily far away, obviously slowing down the DGC.

For deadlines in the range of minutes (the common case) care must be taken
to avoid letting TCP timeouts be the cause of missed deadlines. To this end,
a basic TCP streaming socket should be avoided for the broadcasting because
of its synchronous nature as blocking on a socket will delay for no reason the
remaining of the broadcast. The alternative is to broadcast in parallel using
either non-blocking I/O, asynchronous I/O or threads.

Another cause of missed deadlines can be the pauses caused by the local
garbage collector. This was significant enough to justify the increase of the de-
fault lease time of the RMI DGC from one minute to one hour [8] in Sun Java
1.6. In our experiments, we have not yet found the need for these long deadlines.

4.3 Complexity Analysis

The presented distributed garbage collector works by building the reference
graph and then a reverse spanning tree. Nevertheless, at no point in time is
the whole graph known by a single active object. Active objects keep informa-
tion only about their immediate neighbors (referencers and referenced active
objects).

To sum up, for each active object, the added size in data structures is pro-
portional to the numbers of referencers and referenced active objects.

DGC messages and responses between active objects are of fixed size and are ex-
changed every TTB between every couple of referencer/referenced active objects.

Figure 7 shows an abridged example with the main steps both in the presence
of garbage, and when a single object prevents the formation of garbage. The
time complexity of finding garbage can be determined by reviewing the steps (as
shown in Figure 7) needed to detect a garbage cycle:

1. propagating the final activity clock through the reference graph (DGC mes-
sages),

2. propagating the consensus candidate through a reverse spanning tree (DGC
responses),

3. propagating the consensus decision through the reference graph (DGC mes-
sages).

These steps proceed in an unsynchronized parallel fashion as the construction
of the reference graph in the different active objects may be at different steps.
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Fig. 7. Two cycle detection examples: a garbage compound cycle, and a single live ob-
ject preventing the compound cycle from being collected. The three steps are separated
but their execution is actually unsynchronized.

To evaluate the time complexity, we introduce h as the maximum height of all
spanning trees and reverse spanning trees for the distributed system to consider,
which can be bigger than the diameter of the reference graph. The maximum
height spanning tree represents the time needed to propagate DGC messages
while the maximum height reverse spanning tree represents the time needed to
propagate the DGC responses; they may not be equal as the reference graph
may not be exclusively made of cycles. Then the order of the time to detect a
garbage cycle is in O(h ∗ TTB).

After detecting a garbage cycle, to evaluate the time needed to fully collect
it we need to take into account an optimization in the algorithm. For simplicity
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reason, this optimization has not been introduced in Section 3.2 as it is not re-
quired by the algorithm. When a consensus is made, the active object finding
itself in a dead cycle waits during TTA before terminating. During this time it
stops sending DGC messages as it does not need anymore to keep its referenced
active objects alive, and it gives DGC responses indicating that a consensus has
been reached in order to propagate the information through the referencers. This
behavior is not required by the algorithm as it could simply terminate a single
active object and expect the acyclic or cyclic garbage collector to go on with
the remaining active objects. Nevertheless, cyclic data structures can contain
sub-cycles so that the acyclic garbage collector cannot take care immediately
of the remaining active objects. For this reason, and as will be shown by the
benchmarks, we argue that propagating the result of the consensus is an impor-
tant optimization, otherwise the acquired knowledge is partially dropped and
the consensus process must start again for the sub-cycles. Therefore, a fourth
step is added to go from the detection of a garbage cycle to its full collection:

4. propagating the consensus acceptation through a reverse spanning tree
(DGC responses).

With this optimization in mind, a precise order of the time to garbage collect
a cycle is in O(h ∗ TTB) + TTA. The added TTA recalls that all active objects
in cyclic garbage wait during TTA before terminating, so the last one will wait
needlessly during TTA.

5 Experiments

For the experiments, the DGC algorithm has been implemented in the ProActive
middleware.

In all of the following benchmarks, we measured the total network traffic by
using an instrumented local SOCKS server [9] on every machine. All JVMs are
instructed to forward all of their connections to the local SOCKS server which
then simply forwards the connection and prints its transferred size at the end.
Thus, our communication numbers only include the TCP payload but are not
impacted by unrelated network traffic. Accounting only TCP is enough as all
communications are over RMI, and the DNS usage is extremely low. Also, DGC
messages and responses transmitted inside a single JVM are not accounted as
they are directly passed by reference.

5.1 Hardware, Network and Software Environment

The following experiments have been realized on clusters in three sites of the
French Grid’5000 [10] platform: Bordeaux, Sophia and Rennes. We used 49 nodes
from Bordeaux, 39 from Sophia and 40 from Rennes, totalizing 128 nodes. Hard-
ware and software details follow:

– Bordeaux: AMD Opteron 248 or Intel Xeon EM64T 3GHz, Dual CPU,
2G RAM, Gigabit Ethernet, RTT latency: 0.2ms. Debian 4.0 x86 64, Linux-
2.6.18, Sun Java 1.5.0 10.



Garbage Collecting the Grid: A Complete DGC for Activities 179

– Sophia: AMD Opteron 2218, Dual CPU, 4G RAM, Gigabit Ethernet, RTT
latency: 0.1ms. Rocks 3.3.0 x86 64, Linux-2.4.21, Sun Java 1.5.0 10.

– Rennes: Intel Xeon 5148 LV, Dual CPU Dual Core, 2G RAM, Gigabit
Ethernet, RTT latency: 0.1ms. Ubuntu 6.10 x86 64, Linux-2.6.19.1, Sun Java
1.5.0 10.

The RTT network latencies between sites are as follows: 8ms between Rennes
and Bordeaux, 10ms between Bordeaux and Sophia, 20ms between Rennes and
Sophia.

5.2 NAS Benchmarks

We used a ProActive/Java implementation of some of the NAS Parallel Bench-
marks [11], this implementation uses explicit termination of active objects, there-
fore we know the earliest time at which objects could be garbage collected. Hence,
we could measure both the overhead in computation time and the time required
by the DGC to collect all the active objects at the end.

This NAS Benchmarks implementation is the worst case in terms of communi-
cation overhead for the DGC algorithm as every active object has a reference to
every other active object because of global barriers. By this account, every TTB
there is a communication between every couple of active objects. Nevertheless,
the DGC algorithm itself is not exercised much as the reference graph is static:
references are created at initialization time and are not changed thereafter.

This benchmark shows the impact of the DGC on a real workload. The DGC
parameters are set in a slightly aggressive manner as the TTB is set to 30 seconds
and the TTA to 61 seconds as per the formula in Section 3.1.

The tested kernels are:

– CG: A conjugate gradient method used to compute an approximation to the
smallest eigenvalue of a large, sparse, symmetric positive definite matrix.

– EP: An embarrassingly parallel kernel.
– FT: A 3-D partial differential equation solution using FFTs.

The benchmarks are class C on 256 active objects with a round-robin dis-
tribution. We show the average and standard deviation of the total bandwidth
consumed over 3 runs. The overhead is evaluated as Tdgc−Tnodgc

Tnodgc
. The DGC algo-

rithm is independent of the communication pattern, so a heavily communicating
kernel like CG or FT will experience a lower overhead than a lightly communi-
cating kernel like EP.

As expected, the bandwidth overhead of a lightly communicating benchmark
like EP is very high as most of the communication is caused by the DGC algo-
rithm. The DGC time is the time between when the benchmark has its result and
when the DGC collects all the active objects. As the TTB was set to 30 seconds,
the benchmark shows that the 256 active objects are collected in 15 or 17 DGC
messages/responses broadcasting iterations. This speed is caused by two factors.
The first one is the optimization that consists in propagating a notification that
a garbage cycle has been found to all the members of the cycle. Without this
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Kernel
No DGC DGC

Overhead
Average Std. dev. Average Std. dev.

CG 194351.81 MB 3965.60 MB 223639.83 MB 1532.94 MB 15.07 %

EP 69.75 MB 0.56 MB 717.92 MB 47.00 MB 929.28 %

FT 41999.48 MB 3383.64 MB 48187.78 MB 873.03 MB 14.73 %

Fig. 8. Bandwidth overhead

Kernel
No DGC DGC

Overhead
DGC time

Average Std. dev. Average Std. dev. Average Std. dev.

CG 3529.45 s 27.11 s 3190.00 s 5.41 s -9.62 % 534.31 s 26.77 s

EP 8.36 s 0.54 s 8.37 s 0.44 s 0.12 % 530.41 s 42.40 s

FT 424.40 s 7.31 s 427.66 s 2.46 s 0.77 % 457.41 s 3.61 s

Fig. 9. Time overhead

optimization, after each consensus, a single active object is collected and the
consensus must start again. The other reason for the speed is the fact that the
reference graph in this benchmark is a complete graph, so consensus attempts
are quickly propagated throughout the graph.

The negative time overhead for CG can be explained by the differences in the
network usage caused by the DGC algorithm. The ProActive middleware is built
on top of RMI and the DGC algorithm does its broadcast in a separate thread. By
default, RMI closes the sockets it opens after 15 seconds [12] of inactivity. Conse-
quently, the DGC broadcasting implicitly opens the sockets in its own thread and
the benchmark code will not be slowed down by the latency of opening a TCP con-
nection. Experimenting with a very high connectionTimeout value, hence pre-
venting the closing of RMI sockets, gives a positive overhead. The running time
rises from 2488.2 seconds without the DGC to 2499.23 seconds with the DGC,
giving an overhead of 0.44%. However, the drawback of this kind of tuning is the
increase in resource usage as sockets are accumulated and never closed.

These NAS benchmarks have shown that the time overhead of the DGC al-
gorithm is insignificant, the bandwidth overhead in slightly communicating ap-
plications is important but does not result in a slowdown of the application.

5.3 DGC Torture Test

A special purpose test to stress the DGC algorithm was made. This is a simple
master/slave application where slaves continuously exchange references between
themselves and the master during at least ten minutes, then become idle. Thus
a very complex reference graph is created and the DGC has to destroy it after
the ten minutes of intense activity.

The only data exchanged by active objects consists in the remote references,
so the communication overhead of the DGC is predominant. We measured the
impact of changing the TTB and TTA values on the total communication size
and total time.
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Fig. 10. Evolution of the number of idle and garbage collected active objects

Experiments havebeen realized in the same hardware and software environment
as the NAS with 128 machines, each of them hosting 50 slave active objects. The
total number of active objects is therefore 6401, including the master active object.

In Figure 10 we can see that active objects start to become idle after their last
running iteration 600 seconds after being started. During this phase, some acyclic
garbage is quickly reclaimed, then the consensus is being made. Finally, thanks to
the optimization that consists in notifying the referencers when a garbage cycle
is found the whole graph is rapidly collected. The total bandwidth consumed
for the TTB values 30s and 300s are respectively 1699MB and 2063MB. For
reference, without the DGC algorithm, the total bandwidth consumed is 228MB
and the last active object finishes after 1718 seconds.

This benchmark has shown that the DGC algorithm scales to a large number
of active objects with a very dynamic reference graph.

6 Related Work

One can find lots of distributed garbage collector algorithms in the literature, we
will concentrate here on a representative sample. We exclude special purposes
algorithms having requirements like a central server or migration support.

In the DGC algorithm [4] by Veiga and Ferreira, cycle detection messages
traverse the reference graph and grow information about it. Referencers are
called dependencies and represent the still unknown part of the graph. At each
step of the traversal, the cycle detection message may add some unresolved
dependencies or may resolve some of them depending on the traversed object. A
garbage cycle is identified as such when it has no more unresolved dependencies;
one of its elements is then terminated. A drawback of this approach is that the
growth of the message is limited only by the total size of the distributed system,
so the communication overhead can become large.

The DGC algorithm presented by Le Fessant [13] is based on the propagation
of marks from referencers to their referenced objects. Marks have a color: black
for activities, white for idleness, and gray if both colors were encountered. These
marks are generated by local roots and remote objects, a cycle is detected when
a remote object receives only its own mark with the white color. This algorithm
requires a tight cooperation with the local garbage collector. Unfortunately, no
information is provided about the time complexity for the collection of cycles.
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Lang, et al. [14] describe a DGC algorithm based on the construction of hier-
archical groups over the reference graph. Each group performs a mark and sweep
to destroy cycles it fully contains. The determination of groups leaves room for
optimization by the application. But, as cycles are collected depending on the
formed groups, no indication is given of the time needed to detect a cycle.

7 Future Work

7.1 Dynamic Parameters

The presented algorithm is configured by only two parameters: TTB and TTA.
They are supposedly constant and known to every active object in the distributed
systems. Two improvements are considered:

– allowing each active object to specify its own TTB and TTA value,
– dynamically adjusting the TTB and TTA in respect to the presence of sus-

pected garbage and according to the communication rate.

The first envisioned improvement addresses the cases of applications with
disparate garbage collection needs. A distributed application can be composed
of a static part and a more dynamic one. The more dynamic part would benefit
from smaller TTB and TTA, resulting in faster garbage collection, while the
static part would lower its DGC overhead by increasing TTB and TTA.

Then, dynamically adjusting them becomes attractive in order to augment
the broadcasting frequency when some garbage is suspected, i.e. when an active
object gets a parent and some of its referencers agree with the consensus, or
lower it when the distributed system is highly loaded.

7.2 Breadth First Spanning Tree

The DGC algorithm makes a consensus by traversing a reverse spanning tree,
therefore the height of the reverse spanning tree influences the speed of finding
garbage cycles. Shallow reverse spanning tree are thus preferred as their traversal
is faster. Currently, the reverse spanning tree is constructed by choosing the first
referenced active object with the right response as the parent. This produces
shallow trees by relying on the time to reply, that is, one edge should be traversed
faster than two unless the broadcasts are fortuitously synchronized. Nevertheless,
a proper algorithm to ensure that the height is minimal is being considered.

8 Conclusion

We have shown a practical algorithm and its implementation for complete dis-
tributed garbage collection including cycles of garbage. Though this algorithm
can be adapted to any distributed environment, it is particularly precise in a
middleware featuring the no-sharing property, as in the active objects model.
Cycle detection is based on a consensus reached by exploring a reverse spanning
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tree, but the algorithm does not require more connectivity than the original
application. To summarize, the algorithm only relies on the knowledge of idle
processes, and of their remote references. Also, benchmarks have shown the scal-
ability of the algorithm in grid contexts. All these properties make our algorithm
particularly adapted to any middleware having only a limited control over the
local garbage collector, and in particular for grid computing.
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Abstract. This paper presents the design and implementation of
XenSocket, a UNIX-domain-socket-like construct for high-throughput in-
terdomain (VM-to-VM) communication on the same system. The design
of XenSocket replaces the Xen page-flipping mechanism with a static cir-
cular memory buffer shared between two domains, wherein information
is written by one domain and read asynchronously by the other domain.
XenSocket draws on best-practice work in this field and avoids incurring
the overhead of multiple hypercalls and memory page table updates by
aggregating what were previously multiple operations on multiple net-
work packets into one or more large operations on the shared buffer.
While the reference implementation (and name) of XenSocket is written
against the Xen virtual machine monitor, the principle behind XenSocket
applies broadly across the field of virtual machines.

Keywords: shared-memory IPC, interdomain communication, virtual
machine, stream processing, security architectures, Xen.

1 Introduction

Virtual machine technologies offer a number of benefits in the design of middle-
ware. These include the ability to make more efficient use of hardware resources
and to minimize network overhead by colocating multiple parties acting on the
same data on the same physical machine. In addition, virtualization can provide
increased robustness and security by isolating different applications and critical
system components into separate protection domains within the same physical
system. Finally, virtual machine technologies facilitate efficient monitoring and
resource control of these different protection domains or partitions to ensure
that adequate resources are available to critical domains. Figure 1 illustrates, at
a conceptual level, how security can be improved by employing virtualization.

Unfortunately, the disappointing I/O performance of virtual machines has
limited their adoption in application domains that require data-intensive, high-
throughput network computing. Even with the recent advances in virtualization
technology, virtual network and interdomain communication performance re-
main a problem. Taking the Xen [3] version 3.0.2 virtual machine monitor as an

R. Cerqueira and R.H. Campbell (Eds.): Middleware 2007, LNCS 4834, pp. 184–203, 2007.
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Fig. 1. Improved Security via Virtualization. In (a), the untrusted component might
compromise the Operating System on which it is running which in turn leads to com-
promise of the trusted component running on the same OS. By isolating the trusted and
untrusted components into separate Virtual Machines in (b), it is significantly more
difficult for the untrusted component to affect the integrity of the trusted component.
We are assuming that, because the Virtual Machine Monitor (VMM) is much smaller
compared to a modern monolithic kernel, it is therefore much harder to break.

example, Figure 2 shows the transport throughput of two guest domains on the
same machine communicating through a TCP connection. For comparison, the
figure also shows the throughput of two Unix processes communicating through
a UNIX domain socket stream on a native Linux system. As shown in the figure,
the disparity is enormous, 13952 Mb/s for a UNIX domain socket vs. a mere 130
Mb/s for a TCP socket.

Analyses of the literature, combined with our own empirical observations, led
us to speculate that a large source of overhead in Xen’s interdomain network-
ing was caused by the overhead of the TCP/IP stack as well as the repeated
issuance of hypercalls to invoke Xen’s page flipping mechanism. As described by
Barham et al. [3], the Xen virtual machine monitor supports an atomic opera-
tion that updates the page tables in two virtual machines to swap the mapping
of a pair of pages between the domains. This operation is used to implement
a zero-copy network transmission from one domain to another: data in a net-
work packet is page-aligned in one domain, the operation is invoked, and the
data is now resident in the other domain. While this is a useful general solution
for low-bandwidth messaging between domains, we speculated that it led to low
throughput and high processor overhead for inter-domain communication bound
applications.
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To address these problems we designed and built XenSocket—a specialized in-
terdomain transport based on memory buffers that are shared statically
between a pair of domains. Applications inside a domain access this shared
memory segment using the standard POSIX socket API, from which we derived
the name XenSocket. A XenSocket is conceptually similar to a UNIX domain
socket as would be provided by an operating system for interprocess communica-
tion; we note that we cannot simply use UNIX domain sockets for same-system
component-to-component communication due to the need for virtualization-
based isolation as described above.

The idea of using shared memory buffers for interprocess communication is
obviously not new. However, one critical design issue for the virtualized environ-
ment is that information leakage is a sincere concern in a scheme that involves
the direct sharing of memory resources between two dissimilar virtual machines
(such as Domain-0 and an unprivileged domain). Special care must be taken to
ensure that the integrity of the interdomain protections are maintained after the
shared memory channel is torn down or after a workload is complete.

Another contribution of this paper is our exposition of one of several poten-
tially useful techniques for high-throughput interdomain messaging in a virtual
machine environment. Our sockets-based interface to the shared-memory-based
transport provides a straightforward integration mechanism for large applica-
tions that require a mix of intra-machine and inter-machine communications.

We have realized an implementation of XenSocket against the Xen 3.0.2
release. Beyond Xen, the technique of using shared memory buffers for high-
throughput communications applies generally across the field of virtual machines
as well as other low-level resource protection schemes such as microkernels.

We summarize the key contributions of our paper below:

1. We designed and implemented an interdomain transport on Xen using shared
memory. Our approach requires no modification to Xen or the Operating
System.

2. Our design takes special care to maintain the interdomain protection pro-
vided by the original security architecture.

3. We measured the performance of our implementation and compared with
previous approaches.

4. We demonstrated that security can be achieved with marginal performance
loss—we were able to achieve throughput close to that of a native Unix
Domain Sockets with much better security and robustness guarantees than
we otherwise could with a monolithic kernel approach.

The remainder of this paper is organized as follows. Section 2 presents an
example of a complex middleware application and details the existing perfor-
mance problems we encountered with Xen. Section 3 describes our high-level
design objectives with XenSocket. Section 4 discusses details of our Xen-based
implementation. Section 5 presents the performance of our reference implemen-
tation. Section 6 describes related work. Section 7 discusses current status, open
issues and future work surrounding XenSocket. Section 8 presents our concluding
remarks.
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2 Background and Motivation

2.1 A Motivating Example: System S

Outside the context of this paper, we are involved in building the security ar-
chitecture for the large-scale distributed stream processing system known as
System S being developed at IBM Research. The goal of System S is to extract
important information by analyzing voluminous amounts of unstructured and
mostly irrelevant data. Example applications for System S include analyzing
audio, video and data feeds carrying information about financial, business and
current events in order to support trading activities in financial institutions, and
supporting responses to disasters such as Hurricane Katrina, based on analysis
of vehicular movements, traffic and other sensors, news reports etc. System S
has been designed to simultaneously address a number of challenges including

– Rapid Reconfiguration: The system must be quick to adjust to external
events and the changing requirements and priorities of its users to the rapidly
evolving data forms and types.

– Perpetual Overload: The system is required to “process” orders of mag-
nitude higher data rates than existing systems, so a design goal has been
to ensure that it functions well at high load. In fact, the system is designed
to operate under a perpetual state of overload and must adjust its resource
allocations to support the highest priority activities. This means that there
will not be enough processing resources to completely analyze all the data
being ingested, nor the bandwidth to transmit all the intermediate results,
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nor the storage to store all the data, so applications have to be designed
to be resilient to variations in processing resources and to operate despite
missing data.

– System Security and Information Confidentiality: The system must
be resilient against compromise from data-driven attacks originating from
the ingested data and must adequately protect the confidential information
being processed within it from unauthorized disclosure.

– Heterogeneity: System S has to be designed to be a distributed system
running on a heterogeneous collection of platforms, each specialized for par-
ticular types of processing.

The Stream Processing Core (SPC) is the middleware component of Sys-
tem S that hosts the distributed stream processing applications over heteroge-
neous hardware platforms and manages the stream connections, resources and
dataflow autonomically. From a logical perspective, applications running on Sys-
tem S consist of multiple software-based processing and analysis components
known as Processing Elements (PEs) which can communicate with each other
via a unidirectional data stream abstraction. Each application can therefore be
viewed as a directed graph with the PEs as nodes and the streams as edges, and
at any point in time multiple applications could be running concurrently within
System S. The SPC is responsible for providing both the execution environment
for the PEs running in the system as well as the underlying data transport mech-
anism that implements the streams abstraction. The actual PE’s are processes
that are scheduled throughout a large physical installation and communicate
with the rest of the system via the abstractions provided by a Streams Library
(SL) that is linked into the PE executable. This library is also responsible for
providing the streams API to the PEs, with the actual data transport across
PEs managed by a separate data routing and transport component known as
the Data Fabric. Each PE takes in chunks of data (known as stream data objects
or SDOs) from one or more incoming streams, operates atomically and collec-
tively on the input SDOs, and passes out results in the form of SDOs into one
or more outgoing streams. These output SDOs are then transferred by the PE’s
streams library to the Data Fabric, which is then responsible for transporting
them to the Streams Library of the subsequent PEs that need to consume them.1

2.2 Security Requirement of System S and Virtualization

Virtualization technology is an important component of the System S architec-
ture. Although virtualization is not yet pervasively used throughout the system,
it is critically needed in select places for the purposes of aggregation, colocation
and most importantly for security and robustness. Given the large attack surface
of applications analyzing large quantities of unstructured data of all types, it is
1 The interested reader will find more information on the scale and scope of the Sys-

tem S components in the treatment by Amini et al. [1] and on the Web; only those
details that motivate the design of our high-throughput messaging system are in-
cluded in this paper.
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highly likely that application PEs and even the operating systems hosting them
could be compromised by exploits within the ingested data. The security archi-
tecture for System S (see Section 6 in [4]) therefore requires that application PEs
that are not robust enough to handle low-integrity external data be confined and
restricted in the way they can interact with other PEs as well as the rest of the sys-
tem. This could be done by exploiting the protections provided by a virtualization
layer; for example PEs operating on streams with different security or privacy la-
bels could be isolated from each other and the virtualization protection could also
be used to ensure the integrity of System S itself, in that trusted portions of the
system (such as the Data Fabric modules that route SDOs between PEs) exist ei-
ther on standalone physical machines or in isolated virtual machines, so as to be
protected from damage from poorly designed or compromised PEs. In particular,
the security architecture calls for the PEs and the Data Fabric to be resident in
separate partitions or nodes, whereas in the current implementation these reside
on the same node and the Streams Library transports the SDOs back and forth
from the Data Fabric using Unix Domain Sockets.

2.3 Performance Requirement of System S

The fundamental performance bottleneck of System S is designed to be the sat-
uration of the network links between each processing component [7]. In other
words, throughput—the number of chunks per second passing through the sys-
tem (or between components)—is a key metric of goodness for our purposes.2In
contrast, the latency incurred by chunks moving from component to component
does not have an important impact on the overall performance of the Stream
Processing Core, and the fraction of processing time consumed for each chunk is
expected to be negligible in comparison with the fraction of the network capacity
consumed by each SDO.

2.4 Problem Statement

Unfortunately, our empirical experience with Xen as a virtualization platform
for System S showed that interdomain communication using the Xen virtual
network fell well short of the throughput metrics identified for the project. In
addition, the processor overhead consumed by the virtual network infrastructure
was substantial enough to take away resources needed by each SDO. Specifically,
domain-to-domain throughput capped out at around 130 Mb/s to 142 Mb/s
(13-14% of the available raw physical network capacity), while maxing out the
CPU utilization of the guest domains and requiring 18-20% of the processor in
Domain-0.

The inefficiency of virtual machines as regards same-system networking per-
formance is a well-known problem. In the literature, Menon et al. use profiling to
explain some inefficiencies in the Xen virtual network [13], and in follow-up work

2 Actually, the metric of goodness in System S is the utility of the work done within
the system [2], but networking throughput remains a key bottleneck.
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Menon, Cox, and Zwaenepoel discuss performance optimizations to the network
stack that leverage the fact that two domains on the same system are not con-
strained by physical network effects such as small packet sizes and the need to
calculate and verify checksums [12]. Through these optimizations the authors
achieve a maximum receive throughput of 970 Mb/s and transmit throughput
of 3310Mb/s. While these improvements are noteworthy, the performance of the
resulting system still falls short compared to that of Unix Domain Sockets (over
10,000Mb/s, see Figure 2).

In order to support the use of virtualization in our distributed stream process-
ing application, our objective is to achieve throughput performance on both the
send and receive paths at speeds approaching those of a UNIX domain socket
for mid-sized messages (tens or hundreds of kilobytes).

3 Design

XenSocket provides a sockets-based interface to one or more large shared memory
buffers for domain-to-domain communication. We make the design assumption
that a XenSocket provides a one-way tunnel between a sender domain and a
receiver domain. As discussed in Section 7, this assumption is not a requirement
of a shared-memory-based transport; rather, the choice was made to conserve
memory in the event that only one-way communications are needed.

Our shared-memory-based system is especially appropriate for asymmetric
broadcast communications, where one domain sends a lot of information to mul-
tiple other domains on the same system (perhaps including an I/O domain for
retransmission to other physical machines) without expecting to receive anything
in return other than an acknowledgment of receipt.

3.1 Shared Memory and Circular Buffers

XenSocket was designed to test our hypothesis that per-packet page flipping is a
large source of inefficiency in the Xen virtual network design. This was inspired
in large part by the work of Menon, Cox, and Zwaenepoel [12] who demonstrated
substantial performance gains in the Xen virtual network by transmitting more
information per hypercall and, notably, replacing some instances of page flipping
between domains with a memory copy between the domains.

XenSocket uses shared memory for message passing. There are two types of
memory pages shared by each endpoint of a XenSocket: a descriptor page and
buffer pages. The descriptor page is used to store control information. The buffer
pages together form the circular buffer. When a socket connection is established
between two domains, a shared memory region is reserved by one domain and
mapped by the other domain. This shared memory is treated as a circular buffer:
the sender writes data into this buffer, and the receiver reads directly from the
buffer in FIFO order. This design differs from the well-utilized method of using
Xen communication rings and page flipping, where data are first placed onto a
memory page by the sender and then that page is remapped into the receiver’s
address space.
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3.2 Sharing and Security

When sharing pages between domains of different trust levels (say, between an
unprivileged domain and Domain-0), it is important that pages are only shared
from the less-trusted domain and only mapped by the more-trusted domain.
This design is to prevent the less trusted domain from launching a Denial of
Service (DoS) attack on the more trusted domain by repeatedly establishing
XenSocket connections to the more trusted domain without tearing them down,
eventually exhausting the resources of the more trusted domain. We refer to the
less-trusted domain as the server domain, since it provides the pages used for
the circular buffer. The more-trusted domain is then the client domain, since it
maps these pages into its own memory space. Note that the label of server and
client is independent of which domain acts as the sender of data and which as
the receiver.

It is currently necessary for the designer of a shared-memory-based transport
to consider this, as Xen does not support the forced revocation by the hypervisor
of a mapped page by a domain. This security design must be enforced by the
existing security architecture of the application using an explicit policy, as Xen
by default does not assign trust labels to domains (other than the hardwired fact
that Domain-0 is more trusted than any other domain). One way of implementing
this is through sHype, the secure hypervisor architecture for Xen [16].

Each XenSocket uses one descriptor page per one-way connection. The de-
scriptor page is mapped read-write by both domains and is used for transmis-
sion of control information passing between the domains. An alternate design is
possible where each domain provides its own descriptor page that is readable by
both domains but only writable by itself. However, such a split design is both
undesirable (from the standpoint of only wanting less-trusted domains to expose
pages) and unnecessary, as long as none of the domains use the information in
an unsafe, unchecked manner. In other words, if there is operationally-sensitive
information that domain S shares with domain R, then S should keep the au-
thoritative copy of the information in memory that is not shared or visible to
R. In this way, if R overwrites the copy of this information on the shared page,
it will not affect the correct operation of S—R’s overwrites will only impact R
itself.

3.3 A Sockets Interface to Shared Memory

In XenSocket, a sender application in one domain can create a socket (just as it
would create a socket for TCP/IP-based communication or Unix Domain Sock-
ets) and use send() (or write()) to push data into the socket. A receiver appli-
cation in another domain can also create a socket and use recv() (or read())
to pull data from the socket. The choice of a sockets-based interface was initially
made because existing System S components such as the Stream Processing Core
(SPC) already make use of a sockets interface in their communications, but we
believe that a sockets-based interface is a generally useful one to support the
migration of distributed applications into a virtual machine environment.
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In our design, a domain does not specify whether it will be a sender or a
receiver on a XenSocket; this choice is indicated the first time the domain issues
a write() or read() operation on the socket—after issuing a command of one
type (e.g., write), any commands of the opposite type (read) will immediately
return with a failure code.

4 Implementation

XenSocket is a socket-based solution for increasing interdomain throughput in
Xen. Its APIs follow from standard socket APIs. Underneath this socket API,
XenSocket uses shared memory for implementing high-throughput, interdomain
data transfer. Our implementation is based on Xen version 3.0.2. XenSocket
compiles into a kernel module and currently requires no changes to Xen or Linux.
Work is in progress to port the implementation to newer versions of Xen.

XenSocket allocates two shared memory regions accessible by both the sender
and receiver. One region consists of just one 4KB page for storage of state and
control variables shared by the sender and receiver, which is called the descriptor
page. The second region is comprised of multiple 4KB buffer pages that form
one shared circular buffer. In our present implementation, thirty-two pages are
allocated to realize a 128 kilobyte circular buffer. Figure 3 shows the architecture
of the XenSocket implementation.

4.1 User Perspective

From a user perspective, XenSocket has a simple sockets-based interface, so cho-
sen because of its simplicity and because existing components in our application
already communicated over a socket interface. In this section we show how an
application would use the XenSocket API, highlighting the differences between
XenSocket API and standard socket API.
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Server (Receiver) Client (Sender)
s = socket(); s = socket();

... ...
gref = bind(s, xaddr); ...

... connect(s, xaddr);
recv(s); send(s);

... ...

... shutdown(s);
shutdown(s);

Fig. 4. XenSocket Usage Example

Figure 4 illustrates the time sequence whereby XenSockets are established and
used by a client (sender) and server (receiver) in a typical scenario3. The receiver
in one domain first creates a socket by calling the socket()API. It then calls the
bind() API to bind the socket to an address (xaddr). Additionally, it allocates
physical memory to establish both a descriptor page and a shared circular buffer.
Unlike the normal bind() call, which returns an error code indicating success
or failure, the XenSocket bind() call returns the grant table reference to the
descriptor page (gref) on success so that the sender can later use it to establish
the sharing of that page. The bind() API also allocates an event channel to be
used for communication with the sender whose identity, its domain number, is
passed in as part of the socket address (xaddr) parameter. The receiver then
calls read() or recv() for receiving data. The receiver blocks until it detects
data in the circular buffer. The receiver calls shutdown() upon detecting that
the sender has ended the connection.

The sender similarly calls socket() to create a socket just as the receiver
does. The sender then calls connect(), supplying the receiver’s domain ID and
the grant table reference of the shared descriptor page4, both are part of the
xaddr parameter. The connect() call gets the addresses of the physical pages
of the shared circular buffer, which were placed in shared memory when the
receiver called bind(), and maps them into the virtual address space of the
sender. Additionally, it establishes the other end of the event channel facilitating
communication of events between the client and server. With all this in place,
the sender can now transmit data by calling send() or write() to deposit data
into the circular buffer. The sender shuts down when all data has been sent.

4.2 Data Transfer

One core piece of the implementation is an efficient data transfer algorithm
using atomic operations provided by the Linux kernel. A sketch of the send
3 Note that although in this example, the server acts as a receiver and the client as

a sender, the mapping between the server and the receiver (similarly the client and
the sender) is not fixed, as discussed in Section 3.2.

4 In our current implementation, the grant table reference value is passed to the con-
nect() call manually, however in the future we intend to automate this.
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Procedure: xen sendmsg
Input : target bytes
Output : written bytes

begin
num bytes ← 0;
written bytes ← 0;
while written bytes < target bytes do

num bytes ← atomic read(available bytes);
num bytes ← min(num bytes, target bytes);
if num bytes = 0 then

wait with timeout;
continue;

end
write num bytes into circular buffer;
send offset ← (send offset + num bytes) mod BUFFER SIZE ;
atomic sub(available bytes, num bytes);
signal receiver of newly available data;
written bytes ← written bytes + num bytes ;

end
return written bytes;

end

Algorithm 1. Send Algorithm. The use of atomic operations eliminates the need

for conventional locks and thus improves performance.

Procedure: xen recvmsg
Input : target bytes
Output : read bytes

begin
num bytes ← 0;
read bytes ← 0;
while read bytes < target bytes do

num bytes ← atomic read(available bytes);
num bytes ← min(num bytes, target bytes);
if num bytes = 0 then

wait with timeout;
continue;

end
read num bytes from circular buffer;
recv offset ← (recv offset + num bytes) mod BUFFER SIZE ;
atomic add(available bytes, num bytes);
signal sender of newly available space;
read bytes ← read bytes + num bytes ;

end
return read bytes;

end

Algorithm 2. Receive Algorithm
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and receive algorithms is shown in Algorithm 1 and Algorithm 2 respectively.
Pseudo procedures starting with atomic indicate atomic operations. The send
and receive algorithms use one shared control variable, available_bytes, which
indicates the number of bytes available for write in the circular buffer. Both the
sender and the receiver maintain local read/write offsets into the circular buffer,
which are not shared.

Currently, our implementation supports only blocking reads and writes. When
there is no room in the circular buffer for writing, send() will block. The sender
will remain in a wait loop, awaking periodically, until space becomes available in
the circular buffer. Similarly, recv() blocks when the buffer is empty. It remains
in the blocking state until data is available for read. The sender signals the
receiver of available data via the event channel when more data is written to the
buffer. Similarly, the receiver signals the sender of available space when more
data is consumed from the buffer.

4.3 Connection Teardown

Unlike Unix Domain Sockets, where either endpoint of the connection can shut
down independent of the other, care must be taken to tear down a connection
in XenSocket to ensure a smooth unmapping process because of the shared
resources between the two endpoints. Since the server is the one that allocates
the shared resources, our current implementation of XenSocket ensures that
the client shut down first. If we had allowed the server to shut down first, the
descriptor page, event channel, and circular buffer would all have been torn
down, making communication between the client and server for the purpose of
synchronization impossible. On the other hand, the shutdown API provides the
user applications with the capability of initiating a shutdown at either endpoint.
To support this, our shutdown implementation uses two shared control variables
to serialize the shutdown. shutdown() first detects whether the client or the
server is the caller. In the former case, the shutdown proceeds as usual, and
one shared variable is set to indicate that the client has shutdown. The server
application is notified of this condition after all data sent by the client has
been emptied from the circular buffer. The server application can then issue
a shutdown call, which properly deallocates all shared resources. If the server
application issues a shutdown() call first, a second shared control variable is set
to indicate that the server has initiated a shutdown and waits for the client to
shut down first. When the client detects such a situation, it immediately stops
sending data and returns an error code to the application, which in turn will
eventually issue a shutdown() call. The shutdown process then proceeds as if
the client had initiated the shutdown first.

Our XenSocket implementation is resistant against misbehaving server do-
mains. We assume that the high integrity client domain is trustworthy and
therefore can be relied upon to behave correctly. In our implementation, the
client domain is non-blocking – it merely notifies the server domain that it has
initiated a shutdown. Therefore, if the server misbehaves, it will only hurt itself.
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Fig. 5. Throughput Comparison of XenSocket vs. Unix Domain Sockets and TCP for
Message Sizes Between 512 Bytes and 16 KB. XenSocket achieves up to 72 times the
throughput of standard TCP stream at message size of 16 KB.

5 Performance Evaluation

We evaluated our XenSocket implementation on an IBM HS20 blade with dual
2.8GHz Pentium Xeon processors and 4GB RAM. We use netperf version 2.4.2
as our primary benchmark. All data reported was run on Xen version 3.0.2 and
Linux version 2.6.16.18. Each test was run 3 times, with the average reported.
All experiments were run in single CPU mode with hyper-threading disabled to
minimize performance variation.

5.1 Performance for Common Message Sizes

Figure 5 shows the reported throughput as a function of message size for
XenSocket between two guest domains, as compared to that for Unix Domain
Sockets of two processes on native Linux, and that for unmodified TCP between
two DomUs. As demonstrated in the figure, XenSocket achieves up to 72 times
the throughput of standard TCP stream in the peak case (message size = 16
KB). However, XenSocket still lags Unix Domain Sockets by 33% in this case.
We are very encouraged by this initial performance result and are continuing to
optimize XenSocket further.

The gradual increase of the throughput as the message size increases indicates
that at small message sizes, the performance is dominated by the per-message
call overhead (one system call plus one Xen Hypercall each side). When the
message size increases, the performance becomes dominated by the overhead of
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Table 1. CPU Utilization vs. Achieved Throughput in XenSocket. As discussed in
Section 2, the existing Xen virtual network requires 18-20% CPU usage in Domain-0
to transfer only 130-142 Mb/s between two guest domains.

Throughput
CPU Utilization

Sender Receiver Domain-0
3320 Mb/s 6% 11% 1%
972 Mb/s 3% 4% 0%
136 Mb/s 0% 2% 0%

actually transferring the data. At the message size of 16 KB, XenSocket reaches
a peak throughput of 9295 Mb/s. At this rate, the CPU utilizations of both guest
domains reach 100%, whereas Domain-0 remains at near zero CPU utilization.

A direct comparison with the results of Menon et al. [12] is not illustrative,
as described below, but it is useful to point out the design choices that cause
our results to differ. Their results are asymmetric, with a maximum receive
performance of 970 Mb/s and a maximum transmit performance of 3310 Mb/s.
In addition, there is a big difference between running the benchmark in the driver
domain and in the guest domain. In our case, since we run both the receiver and
the sender on the same machine, we only look at the maximum bandwidth that
can be achieved between the two. Additionally, since XenSocket does not require
Domain-0 to be involved in the data exchange, it does not make much difference
whether the sender (or receiver) resides in the driver domain or the guest domain.

To make the comparison more complete, we also look at the CPU utilization
of XenSocket at performance close to 3310 Mb/s, 970 Mb/s and 130 Mb/s, the
maximum transmit and receive throughputs achieved in Menon et al., and in
unmodified TCP on Xen (see Section 2). We modify netperf to sleep at a certain
rate so as to bring down the performance to the specific target level. Since the
throughput varies at each run, it is difficult to fix the throughput at exactly a
static value. Thus, we chose the throughput level that is closest to the target
level. The CPU utilization at the sender and receiver is taken from the statistics
reported by netperf. For Domain-0, we use the percentage of total processor
time spent idle reported by the vmstat tool. Table 1 lists the CPU utilization of
the sender and receiver guest domains, and domain-0. At 3320 Mb/s, the CPU
utilization is around 6% for the sender and 11% for the receiver. At 972 Mb/s,
the CPU utilization is around 3-4% for the sender and the receiver. At 136 Mb/s,
the CPU utilization is close to 0% for the sender and about 2% for the receiver.
In all cases, Domain-0 is mostly idle.

Note that this is not an exact apples to apples comparison for two reasons:
First, we run the sender and the receiver on the same machine, whereas in
the case of Menon et al., the sender and the receiver are evaluated separately.
Secondly, we have different assumptions on the intended usages of XenSocket
than that of Menon et al. Our intended applications are high-throughput dis-
tributed stream systems, thus we relax the latency requirement, and can do
batching at the receiver side. In contrast, Menon et al. have to support interactive
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Unix Domain Sockets.

networking, and therefore have to dispatch any network packet received from
the network immediately to the receiver.

Despite these differences, we believe that the comparison is still meaningful
in that it highlights the unique features of our approach and shows how the
differences in the two approaches affect performance.

5.2 Performance for Larger Message Sizes

Figure 6 shows the throughput of XenSocket, Unix Domain Sockets and TCP
for large message sizes (ranging from 16 KB to 64 MB). It’s interesting to note
that for both XenSocket and Unix Domain Sockets, the throughput starts to
drop off after a certain message size (16 KB for XenSocket and 64 KB for Unix
Domain Sockets), then stabilizes when the message size is larger than 512 KB.
Interestingly, XenSocket performs about 33% better than Unix Domain Socket
(6534 Mb/s vs. 4907 Mb/s for message size of 2 MB). For TCP, the throughput
is virtually unchanged at about 141 Mb/s.

We investigated the cause of the performance drop off for large message sizes
using the OProfile tool [10] and its extension to Xen [13]. Our initial results
indicate that there is a strong correlation between the throughput performance
and the L2 cache hit ratio. We thus believe that the drop off is caused by some
caching effects of the L2 cache. Another indication that this is due to cache effects
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comes from the fact that performance of the Unix Domain Socket varies across
identically configured hardware platforms. A precise characterization of the per-
formance variation and pinpointing the causes will require further research. It
suffices to say that the variation is comparable to the performance difference be-
tween XenSocket and Unix Domain Socket, confirming that XenSocket indeed
achieves throughput close to that of Unix Domain Socket.

6 Related Work

Our approach is inspired by previous research on using shared memory buffers for
interprocess communication. As an earlier example, we note the use of cached
fast buffers by Druschel, Peterson, and Davie [5] in their optimization of the
Osiris network adaptor. More recently, Götz implemented a shared-memory-
based transport for high-throughput data transfer in the L4 microkernel [6].
There are also examples other than our work on System S that motivate high-
throughput communication in a VM environment, such as the virtualization of
a transaction processing system that contains multiple front-end web servers,
interconnected database servers, and back-end storage system nodes.

The Xway project [8] also uses a sockets interface over a shared-memory
transport to improve Xen interdomain communications throughput. The Xway
and XenSocket projects were developed independently but share similar designs.
The core difference is the type of socket interface presented to the user or ap-
plication. With Xway, applications create sockets using the existing AF INET
protocol family. Modified INET socket code creates a shared-memory transport
whenever both endpoints are on the same physical host. The Xway design al-
lows deployment of the shared-memory transport without requiring changes to
existing applications. With XenSocket, sockets are created using a new AF XEN
protocol family. The XenSocket design enables communication between domains
that do not have virtual network devices or that do not share a common Inter-
net Protocol-based network interface. This level of isolation is important for
System S security and in such architectures as that described by Payne [15].

The PROSE System prototype developed by Van Hensbergen and Gross [17]
uses shared buffers for low-latency IPC in a hybrid microkernel-and-virtual-
machine environment. Their work focuses on latency and no performance de-
tails are available for bandwidth benchmarks. In addition, their approach uses
polling at the receiving side, which leads to more CPU usage than a non-polling
algorithm.

Liu et al [11] looked at improving device I/O of Virtual Machines by leveraging
the virtualization capabilities of the device itself and bypassing the VMM all
together for performance critical operations. The idea was inspired by early work
on OS-bypassing I/O where user-level applications can directly access physical
devices in order to improve performance. While their approach shares similar
principle with ours in that both try to improve performance by minimizing the
involvement of the VMM, there are two fundamental differences between the two
approaches. In our approach, the VMM is always involved in the communication
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(e.g., it’s never bypassed). In addition, our approach does not involve physical
devices. Rather, it only concerns the communication of two VMs on the same
physical platform.

An orthogonal area of memory sharing research on virtual machines focuses
on improving the spatial efficiency of memory usage. For example, Kloster et
al [9] employs hashing to locate identical pages that belong to different VMs and
transparently share the page among VMs, thereby reducing the total number of
required physical pages. Because the pages are identical, and sharing is performed
transparently from the VM’s perspective, there is no security implication of this
optimization, except for the possibility of opening up potential side channels.

7 Discussion

As described above, our design of a XenSocket is a one-way communications
pipe between two domains. While the traditional view of a socket is a two-way
mechanism, we chose the one-way design as a balance between our desire to
minimize overall system impact and our interest in ensuring a large circular
buffer to avoid stalling by the sender or receiver. A more complete design would
include variable-size circular buffers whose logic is capable of adapting the buffer
reservation size to the actual usage of the buffer. In this way a two-way socket
could be the norm, where the initial circular buffer size is small but grows to most
efficiently match the demand. A variant on this idea would be to dynamically
move pages between the two circular buffers in order to adapt the buffer size to
the workload while maintaining a constant amount of memory reservation per
XenSocket.

An unexplored aspect of our design for XenSocket is its use in a local multi-
cast environment; i.e., in the case where one domain sends identical messages to a
constant set of multiple other domains on the same system. When one or more of
these other domains act as an external network bridge, this could represent a mul-
ticast to applications running both in local domains and on remote systems. The
descriptor page in our design could be extended to include acknowledgments from
each of the receiving domains. This would reduce the memory and computational
pressure on the sending domain—both in comparison with the design presented
in this paper and with the original Xen virtual network—as the sending domain
would only have to copy each message once into a shared memory buffer instead
of performing work for each receiving domain. However, it remains to be explored
the degree to which such an approach is open to denial-of-service attacks when one
domain chooses not to acknowledge on a timely basis the data it receives, filling
up the circular buffer and therefore halting the information flow.

There are other aspects of performance optimization that we have not yet
explored. For example, we can offload control of memory transfers into and out
of the shared memory space to the DMA controller or the I/O memory man-
agement units. Resource contention may become an issue for multiple instances
of XenSocket running in parallel due to the extra memory copies needed into
and out of the circular buffer. However, we note that even in the original Xen
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page-flipping scheme for virtual networks, it is still necessary to copy data into
and out of the pages that are flipped. Another optimization is to implement
the shared pages in the hypervisor memory, which is mapped to all VMs. An
advantage of this approach is reducing the number of cache and TLB flushes
due to context switches. A disadvantage is that it does not scale to large number
of concurrent connections. A third optimization is using cooperative scheduling
mechanisms such as gang scheduling [14], where the sender and the receiver are
scheduled together to minimize waiting time.

A hardware trend that is relevant to our work on XenSocket is the emer-
gence of multi-core processors. In a virtualized multi-core environment—where
a currently-open question is “what are we going to do with all those cores?”—
one class of applications that will map well to the environment contains those
distributed applications that compute sequential analyses over large local data
sets. Examples of these are image recognition or feature extraction applications.
While such applications could be written as large multi-threaded programs with
a common shared memory pool, we postulate that the preservation of isolation
boundaries combined with a distributed message-passing paradigm will provide
the most useful transition path for minimally-modified distributed software ar-
chitectures into a multi-core environment.

8 Conclusion

As virtualization becomes more widely deployed, we foresee a growing num-
ber of applications that require high-performance interdomain communication.
This is in part driven by security and reliability concerns—by separating compo-
nents of a complex software system into different domains, one achieves better
isolation among the components, thus improving security and reliability. For
example, in our target application, a large-scale distributed stream processing
system consisting of components with different trust levels, our security design
mandates that components of different trust levels must be placed either on
separate machines or on separate virtual machines, in both cases with a proper
security-label-based gating of communication between the machines. Achieving
this with only marginal degradation of communication performance in a virtual
machine environment is particularly crucial for our target application whose suc-
cess depends on the ability to transfer large amounts of data rapidly between
the distributed application components.

In this paper we present XenSocket, a shared-memory-based construct that
provides a POSIX sockets-based mechanism for high-throughput interdomain
communications. XenSocket draws on best-practice work in this field and avoids
incurring the overhead of multiple hypercalls and memory page table updates
by aggregating what were previously multiple operations on multiple network
packets into one or more large operations on the shared buffer. Our performance
evaluation indicates that with XenSocket we have successfully achieved our goal
of same-system interdomain transport throughput that approaches that of in-
terprocess communication using UNIX domain sockets.
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We have released the source code for our XenSocket reference implementation
under the name XVMSocket. XVMSocket is freely available at the SourceForge
open source software development web site [18] for use under the terms of the
GNU General Public License.
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Abstract. In this paper we describe an approach in creating private network 
overlays in user-space to support the dynamic creation of personal clusters on-
demand. These personal clusters are created by submitting job proxies to High 
Performance Computing (HPC) clusters. Job proxies contribute CPU resources 
back to the personal cluster when they eventually run, allowing application jobs 
to execute on them in a system call virtualized run-time environment. The 
virtualized run-time environment enables additional personal cluster-wide 
services to be interposed, including a private network overlay instantiated for 
each personal cluster created. The interposed private network overlay allows the 
personal clusters to tunnel IP traffic thorough gateway nodes at each 
contributing HPC cluster site in order to provision resources across private 
networks, survive transient network outages, support critical services like 
distributed filesystems, and in some cases, improve network transfer throughput 
across the wide-area network. This paper describes our design and 
implementation strategy, and concludes with some general guiding principles to 
aid other projects of a similar nature.  

Keywords: High performance computing, resource management, cluster 
computing, overlay networks. 

1   Introduction 

We describe our experience in implementing a user-space private network overlay 
across High Performance Computing (HPC) clusters to support a TeraGrid production 
software system called MyCluster [1][2]. 

TeraGrid is a multi-year, multi-million dollar, NSF funded project to build the 
world’s largest HPC cyberinfrastructure for open scientific research [3]. The project 
currently links nine resource provider sites across the continental United States, 
providing in aggregate over 200 teraflops of compute resource and four petabytes of 
online disk storage. Resources on the TeraGrid include HPC clusters, visualization 
clusters, and online data collections, accessible through a 30 Gbps wide-area network 
(WAN) backbone.  

MyCluster is a system for provisioning resources from distributed HPC sites into 
personal clusters created on-demand. These personal clusters can be created on a  
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per-user, per-experiment, basis, allowing them to be used as job containers for 
experiments conducted within a personalized computing laboratory. In 2006, the 
system was used to acquire over 800,000 CPUs for researchers on the TeraGrid to 
support computational experiments across a broad range of scientific disciplines 
[5][6].  

The MyCluster system provisions resources for building personal clusters by 
deploying semi-autonomous agents at each HPC site. These semi-autonomous agents, 
reacting to local and global load conditions, submit and manage job proxies through 
the local scheduler at each HPC site. Job proxies then contribute CPUs back to the 
personal clusters when they are run by the local scheduler. Job proxies also allow 
application jobs, submitted into the personal cluster, to execute in a system call 
virtualized run-time environment where additional cluster-wide services are 
interposed in user-space.  

MyCluster enables users to select a commodity job management system to 
aggregate the provisioned CPU resources into their personal clusters. Job management 
systems that are supported, in various stages of prototype to production form, include 
Condor [7][8], Sun Grid Engine (SGE) [10] and OpenPBS [9]. Users therefore benefit 
from using a single, well-known interface to interact with their jobs across the 
heterogeneous clusters on the TeraGrid. Users also benefit from the ability to reuse the 
plethora of tools that have been developed for these systems over the years.  

Finally, MyCluster is a completely user-space system, with no requirement for 
administrator privilege for deployment. This choice allows the system deployment 
model to easily scale, allowing it to aggregate any HPC cluster accessible across the 
internet. A user can simply invoke a self-installer at a site, boot-strap a personal 
version of the system, and enable the provisioning of resources from that site for 
computational experiments.  

Within the context of the MyCluster project, we have been developing a system for 
building private network overlays across HPC clusters to enable the seamless creation 
of personal clusters. Like MyCluster, the system is deployable in user-space, without 
administrator privilege. It allows the creation of a class B network, enabling compute 
nodes in internal networks to acquire a virtual IP address, advertise it, and exchange 
messages between each other using the standard BSD network socket interface. 
Programs do not have to be recompiled to use the network overlay. Our system 
transparently tunnels IP (TCP and UDP) traffic through a series of packet relays in the 
overlay to deliver message packets between addresses in the private network.  

The network overlay instills some critical properties to the MyCluster system. 
First, the network overlay enables MyCluster to provision resources from HPC 
clusters with compute nodes in internal networks, allowing its deployment on most 
HPC cluster configurations. Second, the network overlay allows MyCluster to survive 
transient WAN outages, providing increased quality of service guarantees for long 
running experiments executing in the personal clusters. Third, the network overlay 
allows the WAN distributed filesystem XUFS [4] to be deployed within the personal 
cluster. This allows jobs running in the personal cluster to transparently access files 
from the submission directory across remote sites, emulating the shared filesystem in 
a real cluster. Fourth, in some cases, the network overlay improves transfer 
throughput across the WAN, enabling more efficient bulk data transfers across remote 
sites.  
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The rest of this paper will be as follows. Section 2 compares our work against other 
similar projects described in the literature. Section 3 describes the design and 
implementation of our network overlay in detail. In particular, it describes the 
mechanisms used to transparently interpose our overlay behavior into unmodified 
applications, the algorithm used to provide fault-tolerance to applications using our 
overlay, an optional kernel patch to improve the potential performance of one version 
of our system, and a brief overview of how a distributed filesystem is enabled by our 
overlay. Section 4 describes the experimental evaluation of our network overlay on 
the local area network (LAN) and on the TeraGrid WAN. It also describes some 
apparent anomalies in our experimental results, and determines their cause. The 
section also examines how much overhead is introduced to HPC applications running 
in our virtualized run-time environment. Finally, section 5 derives some important 
guiding principles from our experience, and concludes this paper.  

2   Related Work 

MyCluster creates personal clusters using resources across the WAN. It is therefore 
related to the projects like Cluster-On-Demand (COD) [12][13], VioClusters [14], In-
VIRGO [15], WOW [16] and Virtual Workspaces [17]. In particular, VioClusters, 
InVirgo and WOW also create network overlays using the technologies VIOLIN [26], 
Virtuoso [24][25], and IPOP [27] respectively.  

At the risk of over simplifying, these systems adopt the same basic approach of 
instantiating a system virtual machine with its network device bridged to a TAP 
device, configured in promiscuous mode, on the host computer. Marshalling 
processes on the host computer then forward Ethernet frames from the TAP device, 
originating from the system virtual machine, to the external network as UDP packets 
or, more interestingly, as packets to a P2P overlay like Brunet [29]. Conversely, un-
marshalling processes on the host computer forward Ethernet frames it receives from 
the external network back to the TAP device into the system virtual machine.  

The use of system virtual machines provides many useful properties to these 
projects. In particular, system virtual machines ensure resource, fault and security 
isolation between applications running on the same server. These isolation properties 
are important in IT hosting environments and infrastructures like PlanetLab [28] 
where multiple applications may be consolidated on the same server hardware. 
System virtual machines also offer the opportunity for users to ensure a correct 
operating system environment for their running jobs. This guarantees some level of 
quality of service, in terms of expected operating system environment, when jobs run. 
Our system however does not use system virtual machines for a number of reasons. 

The first reason why we do not use system virtual machines is because the isolation 
properties offered by them are not as compelling a reason for their use in HPC 
clusters. This is because running jobs are already naturally resource isolated by the 
job schedulers on HPC clusters. These job schedulers fairly allocate time and space 
on the cluster nodes to jobs requesting them. Thus, for the period of time when the job 
runs, no other users are consuming resources on the same nodes. Also, HPC jobs are 
user-level processes that do not require kernel modifications, i.e. the installation of 
kernel modules. Unlike IT hosting environments where applications with special 
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kernel module requirements may cause crashes and affect other running applications 
on the same server, HPC jobs run on dedicated compute nodes in isolation from other 
jobs in the cluster. Thus, a fault in a HPC job does not affect other running jobs in a 
cluster. Finally, the compute nodes in many HPC clusters are within private networks, 
completely isolated from the corporate and external network. Also, these nodes are re-
imaged on a weekly or bi-weekly basis. Thus compute nodes already offer good 
security isolation.  

The second reason why we do not use system virtual machines is because of the 
finely tuned execution environments in HPC clusters. HPC clusters have many 
software packages that are compiled and configured by HPC specialist to run well at 
the site. Also, these HPC clusters have operating system environments that are 
configured to reduce phenomena like operating system jitter [11], and to function well 
with internal components like the high-speed interconnect and parallel filesystem. For 
example, the IBM GPFS [30] and Lustre [31] filesystems on many HPC clusters work 
with only a small subset of Linux kernel versions which need to be further patched 
with vendor-specific modifications. These site-specific requirements severely restrict 
the choice of operating systems that can be instantiated by the user anyway.  

The third reason why we do not use system virtual machines is because they often 
require the pre-installation of administrator-level components like virtual machine 
monitors, and/or hypervisors. Even with type II virtual machine monitors [18] (e.g. 
VMWare Workstation and User-Mode-Linux) setting up external networking for 
these virtual machines require bridge devices like TUN/TAP to be set up and 
configured in promiscuous mode. These actions require administrator permission, 
limiting the broad applicability of the approach only to sites that have agreed to 
deploy the appropriate configuration. 

The fourth reason why we do not use system virtual machines is because each 
virtual machine instance requires a root filesystem image to boot. Root filesystem 
images are typically at least 500 megabytes in size, and this needs to be distributed 
across the WAN and replicated for every virtual machine instance created. For large 
HPC computational runs, there could be many thousands of virtual machines in use, 
requiring the replication and management of multiple gigabytes of image files. 

Our network overlay project is also related to other tools that support IP traffic 
tunneling between private networks and the WAN. These tools include SOCKS [19], 
GCB [22], OpenSSH, OpenVPN [20] and PPTP [21]. All these tools have at least one 
deficiency which prevented their use in our system. SOCKS does not allow 
connections from an external network to a node in a private address space, while GCB 
assumes that the node in the private address space has at least outbound external 
network connectivity in order to operate correctly. In many cluster configurations, 
compute nodes have no external network connectivity in any direction. Also, 
OpenSSH, OpenVPN and PPTP represent point-to-point solutions, i.e. from a client to 
a gateway node. They do not easily cater for the scenario our network overlay 
supports, i.e. multiple nodes behind multiple gateways joining a private network 
infrastructure, without requiring extensive scripting and additional coding effort. 
Also, all the above technologies do not assign virtual IP addresses to the compute 
nodes in the private network. This is needed to prevent addressing conflicts for nodes 
from multiple internal networks. 
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Realm-Specific IP (RSIP) [23] is an experimental IETF proposal that is very 
similar to our network overlay solution. RSIP allows nodes in a private address space 
to register and temporarily lease a public IP address from a RSIP gateway. These 
nodes can then advertise their addresses and have external connections to them 
relayed through the RSIP gateway. There are however a number of problems with 
RSIP. First RSIP it is not widely implemented. It is intended as a replacement for 
NAT, but this has not occurred. Second, RSIP leases public IP addresses to the nodes 
in the private address space. This approach limits the number of available addresses 
that can be used. 

3   Design and Implementation 

3.1   MyCluster Overview 

MyCluster builds Condor, SGE or OpenPBS clusters when a user creates a virtual 
login session. Within this virtual login session, users can submit, monitor and manage 
jobs through a single job management interface, emulating the experience of a 
traditional cluster login session. Fig 1 shows an example of a SGE virtual login 
session. 

 

Fig. 1. Formatted snapshot of a SGE virtual login session 

A high level overview of the MyCluster processes relevant to the discussion in our 
paper is shown in Fig 2. When a user first starts a virtual login session, the system 
remotely spawns a proxy manager at the head node of each of the clusters 
contributing resources to the session. These proxy managers submit and manager job 
proxies to the local scheduler at the site. When the local scheduler runs the job proxy, 
it starts the job starter daemon for the job management system selected for the 
session, i.e. Condor, SGE or OpenPBS. The job starter daemon then registers back to 
the master processes at the job submission host across the WAN. Jobs submitted to  
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Fig. 2. MyCluster process architecture overview 

the personal cluster can then be dispatched to the newly registered job starter, with the 
user seeing an expanding and shrinking cluster as these job starter daemons register 
and terminate over time.  

3.2   Private Network Overlay Architecture 

The MyCluster system requires the provisioned compute nodes in a virtual login 
session to have full bi-directional access to the external network. This is to allow the 
job starter to register and accept jobs from the job management master processes in 
the personal cluster. Many of the TeraGrid clusters have compute nodes with full 
network connectivity to the TeraGrid WAN, and thus MyCluster is easily supported 
on these systems.  

However, to enable MyCluster to be deployed on HPC clusters with the more 
traditional configuration where compute node are within a private network, a network 
overlay has been implemented to enable external network connectivity for these job 
starters.  

The network overlay we have implemented allows a private class B network to be 
deployed, instantiated, and destroyed by user–level processes, requiring no 
administrator privilege, pre-installed virtual machine or outbound WAN connectivity 
for the compute nodes. Using interposition methods, our solution overrides the socket 
system calls in the application process to allow connections between privately 
assigned class B IP addresses to be tunneled through a series of subnet routers. These 
subnet routers run as user-level processes and are strategically located at the head (or 
some gateway) node of the clusters with access to the external network.  

Subnet routers initialize their internal route tables by reading a route table file 
.uvpn_route_<id> created for each virtual network instance. This file specifies, 
for a particular session, the subnet to which the host cluster belongs and the contact 
addresses for routers of other subnets in the network overlay. 

Fig 3 shows the augmented MyCluster process architecture with the network 
overlay support for routing IP traffic between compute nodes provisioned by a virtual 
login session. When a user starts a virtual login session, each host cluster is allocated 
a subnet in a virtual class B network and a subnet router is spawned at the head node. 
Each node provisioned by a job proxy is then assigned a virtual IP address in the 
subnet, with the home router (at the cluster head node) keeping a database of real to 
virtual IP address mapping.  
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Fig. 3. MyCluster process architecture with a network overlay 

When the application process in a job proxy, i.e. the job starter, invokes the 
connect() system call to an address within the private network, a series of 
connections are made to establish an IP packet relay path between the source and 
destination addresses. First, the interposed connect() makes a connection to the 
home router and sends a connection header containing the source and destination 
address end-points associated with the desired virtual connection. The format of the 
connection header is shown in Fig 4.  

 

Fig. 4. Network overlay connection header 

The home router then searches its route table for the location of the peer router 
responsible for the subnet associated with the virtual destination address. A 
connection is then made to the peer router and the connection header forwarded. The 
peer router, on receiving the connection header, looks up the real IP address 
associated with the virtual destination address, and makes a connection to this real 
address. The connection header is then forwarded to the destination process, which 
then stores the information contained in the connection header for future reference. 

When the relay path is finally created from the home router, through the peer 
router, to the real IP address, the connect() call returns the socket descriptor for 
this relay. Equivalently, the accept() call, which is also interposed at the 
destination, returns the socket descriptor for the other end of this relay. This relay 
connection simulates a dedicated leased-line, allowing the processes at both ends to 
issue send (or write) and recv (or read) calls to exchange bytes between them. 
If a process decides to query information associated with the socket connection, we 
interpose the getsockname() and getpeername() calls to return the 
information associated with the virtual connection, instead of information associated 
with the real connection to the home routers. 



 Creating Private Network Overlays for High Performance Scientific Computing 211 

3.3   Interposition Mechanisms 

The system supports two mechanisms for interposing our network overlay 
functionality into the BSD socket call interface. The first uses the UNIX shared object 
preloading mechanism available in most UNIX variants. For example, on Linux this 
involves defining the location of a shared object in the LD_PRELOAD environment 
variable. This shared object will then be used by the linker to override the system 
shared library implementation of the socket interface, allowing our overlay behavior 
to be interposed.  

Table 1. Interposed socket system calls 

PRELOAD PTRACE 

Connection-less based protocols 

sendto, recvfrom sendto, recvfrom 

Connection based protocols 

connect, accept connect, accept 

Shadow socket management 

 socket, listen, bind, 

setsockopt 

Connection information 

getsockname, 
getpeername 

getsockname, 
getpeername 

Connection termination 

close close 

Shadow socket duplicate tracing 

 dup, dup2, fctnl, fork 

The shared library preloading mechanism however only works on dynamic linked 
executables. Furthermore, some UNIX variants, in particular AIX, do not support the 
preloading mechanism. To remedy this, we provide an alternative mechanism to 
interpose our overlay functionality. This alternative mechanism uses the UNIX ptrace 
debugging interface. The ptrace interface allows a parent process to monitor the 
execution of its children processes, allowing system calls in the children processes to 
be traced and modified by manipulating the CPU architecture registers prior to and 
after their invocation.  

The socket calls interposed by the two mechanisms are shown in Table 1. The 
preloading mechanism interposes the connect() and accept() calls to support 
the creation of the virtual connection relay for connection based protocols. For 
connection-less protocols, the sendto() and recvfrom() calls are also 
interposed. The getsockname() and getpeername() calls are interposed to 
return the correct information about the virtual connection as explained before. 
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Finally, the close() system call is interposed to allow the managed termination of 
virtual connections. 

The preloading mechanism allows our system to directly query and manipulate 
socket descriptors in the interposed application. Interposing the overlay functionality 
using the ptrace mechanism however requires additional effort. The ptrace monitoring 
process runs in a separate process image, making querying and manipulating socket 
descriptors in the monitored application process difficult.  

To overcome this difficulty, our strategy for the ptrace mechanism is to implement 
the overlay functionality in the parent monitoring process itself. Overlay connections 
are established between shadow sockets in the ptrace monitoring processes that 
exactly mirror the sockets created in the application processes. Fig 5 illustrates the 
basic idea.  

 

Fig. 5. Shadow sockets negotiate relay connection between ptrace parent processes 

For every successful socket() invocation in the interposed application process, 
the ptrace monitoring process also creates an equivalent shadow socket. Subsequent 
calls to bind(), listen(), and setsockopt() on a socket in the application 
process causes the same action to be performed on its associated shadow socket in the 
ptrace monitoring process.  

To avoid clashes in the local network port namespace, the application requested 
port number for the bind() call on the original socket is replaced with a free port in 
the range [51000, 52000]. Only the shadow socket is allowed to bind to the 
application requested port number instead. Note in particular that the shadow socket 
at the receiving peer is now set to listen to the application requested port instead of 
the original socket. To avoid confusing the user application, the getsockname() 
call is interposed to return the application requested port for the original socket when 
it is invoked.  

When a TCP connection is initiated in a network overlay using the ptrace 
mechanism, the connecting application process is redirected to connect to a 
dynamically created relay thread in the monitoring parent. The shadow socket that is 
associated with the original socket then creates the virtual connection relay to the 
monitoring parent at the receiving peer as described before. The monitoring parent at 
the receiver peer then connects to the socket in the application process which is 
listening on the alternative port we had previously assigned it to.  

Messages to/from the virtual connection are then routed through the additional 
relay thread in the monitoring parent to/from the subnet routers. The information 
contained in the connection header for the virtual connection is maintained in the 
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monitoring parent at either end-point, and the getpeername() and 
getsockname() calls in the application are interposed to return this information as 
necessary. 

3.3.1   Tracing Duplicate Socket Descriptors 
In order to properly terminate virtual connections, the ptrace mechanism also needs to 
closely trace socket descriptors that are duplicated within and across processes. To do 
this, our network overlay system also traces the dup(), dup2(), fcntl() and 
fork() system call. For the fork() call in particular, our system will check if any 
shadow sockets has the FD_CLOEXEC flag set. If it is not set, the socket descriptor is 
expected to be duplicated in the new process.  

When a socket descriptor is duplicated, we increment a reference count to a 
structure record we maintain for each shadow socket. Subsequent close() calls on 
the duplicated socket descriptor decrements this shared reference count. When the 
reference count reaches 0, the shadow socket is then closed, and any associated virtual 
connection terminated. 

3.4   Tolerating WAN Outages 

An important benefit of creating our network overlay is the WAN fault tolerant 
properties it instills to the end-points in the virtual connection. The IP packet relay 
created by our network overlay effectively isolates the connected application 
processes at either end-points from the less reliable WAN. When a network outage 
causes the connection between peer subnet routers to be temporarily disconnected, 
this disconnection is not propagated to the end-points.  

To prevent the lose of in-flight messages during a WAN outage, Fig 6 details the 
WAN recovery algorithm used in our network overlay. Messages that are sent from 
the application to the subnet router are immediately forwarded to the destination 
socket connected to a peer subnet router in the connection relay. If the forwarding is 
successful, a count s_bytes is incremented with the number of bytes sent, while at 
the destination peer subnet router, the count r_bytes is incremented with the 
number of bytes received. The message itself is also appended to a circular buffer of 
sent messages. The size of this circular buffer is equal to the size of the socket’s 
internal send buffer size, i.e. SO_SNDBUF.  

If the subnet router fails to forward an application message, the message is 
appended to an unsent message file and the subnet router periodically (every 5 
minutes) attempts to reconnect with the peer subnet router in the connection relay.  

When the connection with the peer subnet router is re-established, a hand-shake is 
performed to ensure recovery of any lost in-flight data. First, the peer router sends its 
r_bytes count to the reconnecting router. Second, the reconnecting router compares 
this against its s_bytes count. Third, if the s_bytes value is larger then the 
received r_bytes value, the reconnecting router sends s_bytes-r_bytes bytes 
from the circular buffer of sent messages. Fourth, the reconnecting router then 
forwards the content of the unsent message file to the peer router, after which the 
connection relay resets back to its original fault-free state.  
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Fig. 6. WAN outage recovery algorithm 

3.5   Personal Global File Namespaces 

The network overlay allows compute nodes provisioned in the virtual login session to 
communicate with the submission workstation from which the personal cluster is 
created. An important collateral benefit is that this provides the ability for compute 
nodes, provisioned from an internal private network, to mount the XUFS distributed 
filesystem enabling jobs running on them to access files from the submission 
directory. XUFS allows the submission directory to be mounted in user-space and, 
like our network overlay, can be deployed, instantiated and destroyed without 
administrator privilege. Also, similar to our network overlay solution, XUFS uses 
interposition mechanism to allow this transparent remote access to files and 
directories. More details about XUFS can be found in our prior publications [3]. 

3.6   “ptrace is slow” 

In adopting the ptrace debugging mechanism as one method of imposing our network 
overlay functional into the socket interface, we have often encountered the comment 
“ptrace is slow”. This is usually accompanied by anecdotal stories supporting the 
claim. Later in section 4.4, we examine the overhead of running a collection of HPC 
benchmarks representing different workload types in our ptrace interposed 
environment. We will see later that for many HPC workloads this assertion is not 
necessarily true.  

In this section we look at the degenerate case where a program’s execution time is 
dominated by many repeated system calls. An example of such a degenerate case is a 
program whose only task is reading and writing a very large file using very small 
read/write message buffers. Later we show in section 4.1 an example of such a 
degenerate case in one of our scenarios in the experimental evaluation of the TCP 
throughput of our network overlay solution  

In these degenerate cases, the ptrace mechanism is expected to introduce large 
overheads. This is because the ptrace mechanism causes the operating system to stop 
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the application process every time a system call is invoked. This allows the 
monitoring parent process to examine and modify the execution of the application as 
necessary. Furthermore, this stop-start behavior occurs twice for every system calls 
invoked in the application process; once prior to a system call invocation and once 
after it has been completed by the operating system.  

We have implemented an optimization to the ptrace mechanism in Linux to allow 
the monitoring process to selectively decide what system calls are of interest to it. For 
example, our network overlay mechanism is only interested in a subset of the socket 
system calls. Often repeated system calls like send(), write(), recv(), and 
read() do not need to be interposed by our system. This design choice is deliberate 
to ensure we introduce as little overhead to the original application as possible.  

The optimization we have implemented in Linux introduces a new 
PTRACE_SYSCALL_MASK option to the ptrace system call. We allow the 
monitoring process to use a bit-mask data structure to selectively set the bits 
associated with system calls of interest to it. The monitoring process then uses this 
bit-mask as the input parameter to the ptrace() system call when the 
PTRACE_SYSCALL_MASK option is used. The ptrace mechanism then only stops 
the application processes when a system call defined in this bit-mask is invoked. A 
code fragment illustrating how this option is used by a monitoring process who is 
only interested in the open() system call is shown below: 

scall_set syscall_mask; 
 
SC_ZERO(&syscall_mask); 
SC_SET(__NR_open, &syscall_mask); 
ptrace(PTRACE_SYSCALL_MASK,pid,&syscall_mask,__NR_open+1); 

We have implemented this ptrace enhancement in the Linux kernel version 2.6.16 
[32]. We show in our experimental evaluation section later that this improves the 
performance in all our scenarios when comparing the TCP connection throughput 
performance in our network overlay against the native socket connection throughput. 
We are encouraged by this, and also by the fact that this option is already under 
discussion by the mainline Linux development community, albeit in a different 
implementation version [33]. 

4   Experimental Evaluation 

4.1   Local Area Network TCP Throughput Evaluation 

In this section, we describe results from experiments comparing the TCP transfer 
throughput of a native connection versus a connection through the proposed network 
overlay on a local area network (LAN). The experiments were conducted between 
two Linux 2.6.16 X86_64 hosts connected through a 100 Mbs switch. Each host was 
designated a subnet, with a subnet router running on each. For all experiments, the 
TCP throughput was measured using NETPERF [34]. Fig 7 illustrates the LAN 
experiment setup for the network overlay. 
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Fig. 7. LAN experiment setup for the network overlay 

Table 2 shows the TCP throughput on the LAN using a native TCP socket 
connection versus a connection made through the network overlay using the 
preloading mechanism. The network overlay connection shows no degradation in 
throughput performance compared to the native connection. 

Table 2. TCP throughput (Mbs) of native connection versus connection through the overlay 
using the preload mechanism 

Send  
size 
(bytes) 

100 200 300 400 500 600 700 800 900 1000 

Native  93.95 94.03 94.03 94.03 94.03 94.03 93.99 94.02 94.03 94.02 

preload 94.2 94.25 94.3 94.27 94.31 94.28 94.28 94.3 94.29 94.3 

Fig 8 shows the TCP throughput on the LAN using a native TCP socket connection 
versus a connection made through the network overlay using the ptrace mechanism. 
The experiment show the throughput performance degrading considerably for small 
send sizes. This experiment demonstrates the degenerate case expounded on in 
section 3.6. For small send sizes, many more send() system calls are invoked, 
causing the application process to be stopped much more frequently then when large 
send sizes are used.  
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Fig. 8. TCP throughput (Mbs) of native connection versus network overlay connection using 
the ptrace mechanism 
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Table 3 shows the TCP throughput on the LAN using a native socket connection 
versus a connection made through the network overlay using the ptrace mechanism 
with the PTRACE_SYSCALL_MASK enhancement enabled. We see that the 
network overlay connection shows no degradation in throughput. 

Table 3. TCP throughput (Mbs) of native connection versus connection through the overlay 
using the ptrace mechanism (PTRACE_SYSCALL_MASK enhancement enabled) 

Send size 
(bytes) 

100 200 300 400 500 600 700 800 900 1000 

Native 93.95 94.03 94.03 94.03 94.03 94.03 03.99 94.02 94.03 94.02 

Ptrace+enh 94.29 94.28 94.3 94.28 94.28 94.31 94.3 94.3 94.29 94.3
 

4.2   Wide Area Network TCP Throughput Evaluation 

In this section, we describe results from experiments comparing the TeraGrid WAN 
TCP transfer throughput of a native connection versus that of a connection through 
our network overlay. The experiments were conducted between an SDSC cluster 
compute-node and the NCSA cluster head node, with the network overlay subnet 
routers deployed at the cluster head nodes. All IP traffic was tunneled through the 
firewall at each site using one of the free ports in the range [50000,51000] open for 
traffic between the two sites. For all experiments, the TCP throughput was measured 
using NETPERF. Fig 9 illustrates the experimental setup. The 
PTRACE_SYSCALL_MASK ptrace option was not tested in the experiments in this 
section because we did not have to the opportunity to patch the running kernels at 
these sites.  

 

Fig. 9. TeraGrid WAN experimental setup for the network overlay 

Fig 10 shows the TCP throughput on the TeraGrid WAN using a native connection 
versus connections through the network overlay using the different interposition 
mechanisms. The TCP throughput through the network overlay show no perceptible 
overhead, except for the degenerate case for small send sizes when the ptrace 
interposition mechanism is used. The throughput in the network overlay using the 
ptrace mechanism shows a 21% degradation in performance for the 100 byte send size 
scenario. However, we note that because of the lower bandwidth of the WAN, this 
degradation is not as pronounced as that observed in the LAN experiments. 
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Fig. 10. TCP throughput of native connection versus network overlay connections between 
NCSA and SDSC 

4.3   TCP Throughput Anomaly 

An experiment was conducted on the TeraGrid WAN between TACC and NCSA with 
the setup similar to Fig 9, except with the SDSC cluster replaced with the TACC 
cluster. Fig 11 shows the TCP throughput of a native connection and a network 
overlay connection between a TACC cluster compute-node and the NCSA cluster 
head node. The network overlay configuration tunnels the TCP connection through a 
relay between subnet routers located at the TACC and NCSA cluster head nodes. 
Surprisingly, the results show a 500% improvement in the TCP throughput using the 
network overlay compared to the native TCP socket connection. 

After some investigation, this apparent anomaly was explained by the different 
network device configurations at the compute and head nodes on the TACC cluster. 
The TACC cluster compute nodes had their network device MTU (Maximum 
Transmission Unit) set to the default 1500. This MTU value is optimized for the LAN 
rather than the WAN, because the network device was also used for mounting the 
internal NFS (network file system) home directories on the compute node. However, 
the TACC cluster head node had its network device MTU set to 9000, optimized for 
sending jumbo packets across the WAN. Therefore, rerouting IP traffic through the 
head node improved the TCP throughput performance across the WAN significantly.  
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Fig. 11. TCP throughput of native connection versus network overlay connection between 
TACC and NCSA 
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4.4   Execution Overhead 

In this section, we investigate the overhead introduced when HPC applications are 
executed in the system call virtualized environment where the network overlay and 
distributed filesystem (XUFS) services are interposed.  

Fig 12 (a) and (b) show the run-time of the applications in the NAS [35] and 
BioBench [36] benchmarks respectively. We ran the benchmarks in our virtualized 
environment and compared the run-times when executed natively. All benchmarks 
were run on a Linux 2.6.16 kernel X86_64 host with one gigabyte of memory. 

Most of the benchmark applications show no perceptible overhead when executed 
in our system call virtualized run-time environment. Only the FASTA application in 
the BioBench benchmark exhibited a 19% degradation in performance when executed 
in the ptrace interposed environment.  
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Fig. 12. Run-times of NAS (a) and BioBench (b) benchmarks in the system call virtualized run 
time environments 

All the benchmark applications, except FASTA, have system call profiles similar 
to the BLASTP system call invocation histogram shown in Fig 13 (a). The BLASTP 
profile illustrates the read, compute, and write phases common to most HPC 
applications. The profile also shows that the majority of the run time is dominated by 
the compute cycle.  
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Fig. 13. Histogram of system call frequency for BLASTP (a) and FASTA (b) 
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In contrast, for FASTA we see a more evenly spread system call invocation profile 
across the entire run-time of the application, as shown in Fig 13 (b). But because of 
the compute bound nature of FASTA, this mitigates the overhead introduced by the 
ptrace mechanism to only 19% in our case.  

5   Conclusions 

We have described our mechanism for providing a network overlay to support the 
creation of personal clusters in the MyCluster system. The system is unique in 
providing a completely user-space solution, requiring no pre-installation of virtual 
machine monitors or hypervisors. Furthermore, our solution provides additional fault-
tolerance to application processes communicating over the WAN and throughput 
benefits in certain deployment scenarios.  

Some general principles can be derived from our experience to help guide other 
projects building similar widely distributed system call virtualized run-time 
environments.  

First, user-space interposition mechanisms do not provide the properties of 
resource, fault, and security isolation, but they are highly appropriate for augmenting 
the properties of the native system to enable more productivity for the user. Consider 
if the required level of isolation guarantees is already satisfied by the system, and if 
needed, consider the range of alternative mechanisms for providing this, such as QoS 
schedulers [38], kernel-level interposition techniques [39][40] or full system virtual 
machines. For example, MyCluster currently provides isolation properties through 
personal cluster containers with HPC cluster QoS schedulers assigning dedicated 
resources for each instance.  

Second, shared object preloading is a very efficient user-space interposition 
mechanism and should be used where possible to implement overlay behavior. Where 
appropriate this can be used in conjunction with other techniques for providing 
isolation properties to the system. 

Third, the ptrace debugging interface is an acceptable mechanism to interpose 
overlay behavior for compute-bound applications. For non compute-bound 
applications which frequently invoke system calls, high execution overheads can be 
expected. However, new ptrace system call options like PTRACE_SYSCALL_MASK 
can be implemented to mitigate this.  

Fourth, WAN fault-tolerant properties can be transparently added into network 
applications by isolating the connection end-points from the WAN in an overlay. This 
can be used to ensure legacy applications, originally developed for the LAN, are able 
to survive transient network outages in the less reliable WAN.  

Finally, network bulk transfer throughput across a WAN can be improved by 
routing network connections through WAN optimized intermediaries in an overlay. 
The cost of implementing additional connection hops can sometimes be more then 
compensated by the gain in transfer throughput. 
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Abstract. Large-scale, value-added Internet services composed of independent
cooperating or competing services will soon become common place. Several
groups have addressed the performance, communication, discovery, and descrip-
tion aspects of these services. However, little work has been done on effectively
composing paid services and the quality-of-service (QoS) guarantees that they
provide. We address these issues in the context of distributed file storage in this
paper. In particular, we propose, implement, and evaluate a cost-effective, QoS-
aware distributed file service comprising a front-end file service and back-end
(third-party) storage services. Our front-end service uses mathematical modeling
and optimization to provide performance and availability guarantees at low cost
by carefully orchestrating the accesses to the back-end services. Experimental re-
sults from our prototype implementation validate our modeling and optimization.
We conclude that our approach for providing QoS at low cost should be useful to
future composite Internet services.

Keywords: Distributed storage, quality of service, cost optimization.

1 Introduction

Large-scale, value-added Internet services composed of independent cooperating or
competing services will soon become common place. We refer to these services as com-
posite services. Two technology trends suggest this new class of services: the progress
toward ubiquitous Internet connectivity even from devices with limited resources, and
the increasing adoption of service communication, discovery, and description stan-
dards, such as the Simple Object Access Protocol (SOAP), the Universal Description,
Discovery and Integration Service (UDDI), and the Web Service Definition Language
(WSDL). Together, these trends are forcing functionality and data into the network in-
frastructure in the form of remotely accessible services.

Composite services promise anytime, anywhere access to powerful services and vast
data sets. A composite service may use constituent services that provide complementary
functionality or data. For example, a composite stock service might use a service that
provides stock quotes in some currency and a service that translates an amount of money
(e.g., a stock quote) in one currency into another. In contrast, a composite service may
use services that provide the same functionality or data. For example, a composite job-
scheduler service might use multiple job-execution services. Regardless of type, we
expect that composite services and their constituent services will provide service-level
agreements (SLAs) for a monetary charge.

R. Cerqueira and R.H. Campbell (Eds.): Middleware 2007, LNCS 4834, pp. 223–243, 2007.
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In terms of structure, composite services are organized into a front-end service and
multiple independent back-end services. The front-end service monitors and aggregates
the back-end services, whereas the back-end services communicate with the front-end
service but not with each other. In the above examples, the stock and job-scheduler
services are called front-end services, whereas the stock-quote, currency-exchange, and
job-execution services are called the back-end services.

For several years, researchers have been studying composite services in one form
or another in the CORBA, Grid, and Web Service communities. These works have
mostly focused on the performance, communication protocols, discovery mechanisms,
and description of these composite services. Little work has been done on effectively
composing paid services and the quality-of-service (QoS) guarantees that they provide.

In this paper, we address these issues in the context of distributed file storage. In par-
ticular, we propose, implement, and evaluate a cost-effective, QoS-aware composite file
service comprising a front-end file service and back-end (third-party) storage services.
The composite file service is intended to support soft real-time applications that involve
large data files, such as the visualization of large-scale scientific data (e.g., [1]). For
these applications, it is important to guarantee that data files will be available a large
fraction of the time, and that a large percentage of file accesses will be served within a
certain amount of time.

The composite service provides “soft” availability and performance guarantees, i.e.
in extreme scenarios, such as a network partition separating front-end and back-end
services, the guarantees may be violated. When these violations occur, the service com-
pensates users for the violations.

Our front-end service allows users to choose the performance and availability guar-
antees that they desire on a per-file basis. Based on the chosen availability guarantee,
the front-end service replicates the file across the back-end services. Based on both cho-
sen guarantees, the back-end services’ behaviors, and their SLAs, the front-end service
intelligently distributes the requests across the back-end services to provide the chosen
guarantees at low cost.

The front-end service uses mathematical modeling and optimization to carefully or-
chestrate the accesses to the back-end services. More specifically, the front-end service
combines two algorithms: Base and OptWait. Base is reminiscent of traditional job
scheduling. It sends each request to one of the back-end services that replicate the cor-
responding file, according to a ratio determined by the mathematical machinery to meet
the file’s performance guarantees while minimizing access cost. In contrast, OptWait is
more sophisticated. It may actually send each request to multiple back-end services in
turn (starting with the cheaper ones) until the request is satisfied. The amount of time
it waits for each service to respond is determined mathematically and depends on the
probability that the service will return a reply during that time and on the file’s per-
formance guarantee. Because we can mathematically decide on the best algorithm, our
composite service picks the best algorithm for each file.

Because our initial focus (and the focus of this paper) is on the request-distribution
aspect of our work, we have implemented a prototype of our composite service with a
single front-end file server. The server implements the NFS protocol and executes our
mathematical machinery. It communicates with client machines using a standard NFS
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protocol over UDP, whereas it communicates with back-end services using XML over
HTTP. Several Internet storage services, e.g. Amazon.com’s S3 [2], could implement
the back-end services. However, for greater control of our experiments, we implemented
our own back-end services, which provide data blocks named by absolute number.

Experimental results from our prototype implementation validate our modeling and
optimization approach. Our analysis of the algorithms studies several different parame-
ters, including the performance and availability guarantees, and the characteristics and
behavior of the back-end services. Our most important results show that our composite
service is successful at providing the guarantees that it promises. The results also show
that, independently, Base and OptWait provide the lowest cost in different parts of the
parameter space, whereas our combined system always produces the lowest cost.

2 Related Work

Our work builds upon previous research on service composition, QoS-aware resource
management, and distributed file and storage systems.

Service composition. This has been an important research topic in the Web Services
community, e.g. [3,4]. These works typically consider the QoS-aware composition of
services from constituent services that provide complementary computational function-
ality. For this reason, they do not consider request-distribution policies across the ser-
vices. Our work differs from these efforts as we study request-distribution policies that
are both QoS- and cost-aware, across functionally-equivalent constituent services.

QoS-aware resource management. A large body of work has been done on this topic,
especially in the context of networks, server clusters, and grid environments, e.g. [5,6,7].
These works consider resource allocation, provisioning, reservation, and negotiation,
as well as admission-control policies in guaranteeing QoS (and sometimes optimizing
costs) for the systems’ users.

The extent of the performance guarantees provided by our composite service is lim-
ited to the front-end and back-end services’ behaviors, as well as the communication
between front-end and back-end services; the composite service cannot provide perfor-
mance guarantees about the communication between clients and the front-end service.
All other works on server-side QoS guarantees have this same limitation. We envision
combining our QoS guarantees with those of future networks to completely eliminate
this limitation. Nevertheless, an easy approach to tackle this problem with current net-
work technology is to place front-end servers on the same local-area network as clients.
In this approach, the front-end server could be an appliance, like today’s load balancing
or storage appliances.

Although we can benefit from previous QoS works in managing the resources of
our front-end service and by leveraging network QoS, this paper focuses on request
distribution across the black-box back-end services, which allow us no control over
their resource allocation. In fact, the back-end services can themselves be distributed.
The only information about them that we rely upon is their SLAs.

Distributed file and storage systems. Most of the research in distributed file and stor-
age systems has been focused on cluster or local-area network environments, in which
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resources are dedicated to the system and owned by the same administrative entity, e.g.
[8,9,10]. Due to their low communication latencies, these systems are amenable to small
data and meta-data transfers. In contrast, peer-to-peer file and storage systems have also
become prominent in recent years, e.g. [11,12,13]. These works have typically concen-
trated on achieving extreme performance scalability and availability in the presence of
high churn in the online membership of constituent nodes.

Although our composite file service can be seen as a peer-to-peer system in the
strictest sense, it lacks a few defining characteristics of previous systems, such as peers
that often become unavailable. Further, we are interested in pushing the boundaries of
traditional distributed file systems, such as NFS, by using them across the wide area.
Two papers have addressed the effect of high latencies on file system traffic [14,15], but
neither of them considered QoS or costs. We expect Internet block-storage services to
become widespread in the future, as protocols such as iSCSI become more popular.

Summary of contributions. As far as we know, this paper is unique in a few respects.
First, our work seems to be the first to focus on cost- and QoS-aware request distribu-
tion across third-party services. Second, our OptWait request-distribution algorithm de-
parts from traditional scheduling policies by potentially assigning a request to multiple
back-end services in turn. Finally, our approach of considering the entire set of recent
response times from each back-end service, rather than using a single metric such as the
recent average response time or the maximum recent response time, in mathematically
determining request distributions is also novel.

3 Our Composite File Service

In this section, we discuss the basic principles behind our composite file service, our
request-distribution algorithms, and our current implementation.

3.1 Basic Principles

Overview. As already mentioned, our composite file service comprises a front-end file
service and a number of back-end block-storage services. The front-end service trans-
lates the file system API, e.g. create, read, write, unlink, into block accesses that are
forwarded to one or more back-end services. The front-end service composes the user-
requested guarantees from the back-end services at low cost. In fact, even if a single
storage service could provide the required guarantees directly to the user (who could
use a local file system and iSCSI, for example, bypassing the front-end service), the
composite file service could still provide them for a lower cost, e.g. by forwarding some
of the requests to a back-end service with lower cost per access whenever possible.

In our design, the front-end service is implemented by a number of distributed servers
for both performance and availability. Each user mounts the file system through one of
the front-end servers, which is chosen using a separate Web interface listing all available
front-end servers and their geographical locations. The same file system can be mounted
concurrently at different front-end servers. However, the front-end service provides no
consistency guarantees when read-write and write-write file sharing is not done on the
same front-end server. When the same front-end server is used, strong consistency is
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Table 1. Notation and definitions

Notation Definition
Afront Availability of the front-end service

Ai Availability guarantee provided by back-end service i
(Pi, Li) Performance guarantee provided by back-end service i:

When service is available, Pi% of requests should be served in Li time
(cr

i , cw
i , cs

i ) Read, write, and storage costs of back-end service i

Af Availability requested by the creator of file f
(Pf , Lf ) Performance requested by the creator of file f :

When service is available, Pf % of requests should be served in Lf time
Hf Set of back-end services that store file f
Sf Size of file f

rf , wf Expected percentage of reads and writes to file f
Rf , Wf Actual percentage of reads and writes to file f
P r

f , P w
f Percentage of reads and writes to file f that complete in Lf time

CDFi(L) Percentage of requests served by back-end service i in L time
pi Probability of sending a request to back-end service i (optimized by Base)

(li, pi) Length of wait at back-end service i and expected percentage of
requests served by i during the wait (optimized by OptWait)

Cost(f) Expected monetary cost of serving file f
AccessCostt(f) Actual monetary cost of serving file f during interval t
T otalCost(f) Actual monetary cost of serving file f over all intervals

guaranteed. To guarantee high availability and fault tolerance, all data and meta-data
are replicated across several back-end services. Furthermore, the front-end servers only
store soft state, such as a disk cache of meta-data, and keep write-ahead logs of updates
in the back-end. All files are accessible from an inode-map stored at a few specific
back-end services (and cached on the disks of the front-end servers). Thus, if a front-
end server fails, the user can mount the file system through another front-end server,
which can take over for the failed server using its write-ahead log.

The back-end block-storage services may be provided by different service providers.
Although our front-end service treats the back-end services as “black boxes”, we do
assume that each back-end service is bounded by an SLA with the front-end file service.
In particular, each back-end service i promises to meet an availability guarantee of Ai

and a performance guarantee of (Pi, Li) at a cost of (cr
i , cw

i , cs
i ). The two guarantees

specify that service i will be servicing access requests Ai% of the time and, when it is
available, Pi% of the accesses will complete within time Li. The SLAs are defined over
a long period of time, say one month, so that short-lived performance anomalies do not
cause SLA violations. The cost tuple (cr

i , cw
i , cs

i ) specifies that each read access costs
cr
i , each write access costs cw

i , and each unit of storage per unit of time costs cs
i . Table 1

summarizes the notation used in our modeling.
In computing request distributions, the front-end service uses the availability and

cost information from the SLAs with the back-end services. Instead of relying on the
performance guarantees provided by the back-end services in computing distributions,
we use the latency of requests as observed at the front-end service to encompass the
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latency of the wide-area network. Specifically, the front-end service monitors the la-
tency of block accesses to each back-end service over two periods of 12 hours per day.
The request distributions computed during a period of 12 hours are based on the cumu-
lative distribution function (CDF) of the latencies observed during the same period of
the day before. For example, the request distributions computed during the afternoon on
Wednesday are based on the latencies observed during the afternoon on Tuesday. This
approach is motivated by the cyclical workloads of many Internet services [5]. We plan
to investigate more sophisticated approaches for considering block access latencies as
future work.

File creation and access. When a file f is first created, the user can specify a desired
availability guarantee of Af and a performance guarantee of (Pf , Lf ). (Files for which
the user requests no guarantees are stored at a single back-end service and served on
a best-effort basis.) These desired characteristics, if accepted by the front-end service,
determine that it must be able to serve access requests to f Af % of the time and that
Pf % of the requests must complete within time Lf , when the service is available. If
a file access request involves n > 1 blocks, the target latency for the request becomes
nLf . Again, these guarantees are defined over a long period of time, e.g. one month.

Obviously, we can only meet the requested availability if the front-end service itself
is more available than Af . If that is the case, it will choose a set of back-end services
Hf to host f that meets (or exceeds) Af . The front-end service randomly selects back-
end services from three classes – inexpensive, medium, and expensive – one at a time
in round-robin fashion. These classes are likely to correspond to services with generally
high, medium, and low response times, respectively, although that is not a requirement.
Assuming that failures are independent, the front-end service will select a set of back-
end services that satisfies the following inequality:

Afront × (1 −
∏

i∈Hf

(1 − Ai)) ≥ Af (1)

where Afront is the availability of the front-end service. This formulation assumes
that the back-end services are always reachable from the front-end service across the
network. However, it can be easily replaced by more sophisticated formulations without
affecting the rest of the system.

The front-end will choose a minimal set Hf in the sense that, if any back-end service
is removed from Hf , the remaining set would no longer be able to meet Af . Once Hf

has been chosen, the front-end service will solve a cost-optimization problem for the
two algorithms and choose the one that produces the lowest cost for f .

At this point, file f can be accessed by clients. On a read to f , the front-end service
will forward a request to a subset of Hf for each needed block according to the chosen
algorithm. On a write, the front-end will forward the request to all back-end services in
Hf to maintain the target data availability, while concurrently writing to the write-ahead
log if necessary. The front-end service only waits for the possible write ahead and one
back-end service to process the write before responding to the client. In the background,
the front-end service will ensure that the write is processed by the other back-end ser-
vices in Hf as well. When write sharing is done through the same front-end server,
this approach to processing writes favors lower latency without compromising strong
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consistency; the pending writes can be checked before a subsequent read is forwarded
to the back-end.

Optimizing costs. Our request-distribution algorithms, Base and OptWait, are run by
the front-end service to minimize the cost of accessing the back-end services in Hf . As
mentioned above, their respective optimization problems are solved at first during file
creation, but they may need to be solved again multiple times over the file’s lifetime. In
particular, whenever the file is opened, a new distribution is computed but only if the
current distribution is stale, i.e. it was not computed based on the same period of the
day before. After the back-end services are selected and the request distribution is com-
puted, the front-end service can inform the client about the cost of each byte of storage
and the (initial) average cost of each block access, given the requested guarantees. Note
that the cost of accessing the write-ahead logs is not included in the cost computations;
this cost is covered by our service fees (discussed below).

Because we select the Hf back-end services randomly from three classes of ser-
vices, our cost optimization produces a “locally” optimal cost; it is possible that this
cost will not be the lowest possible cost (i.e., the “globally” optimal cost) for a system
with a large number of back-end services. Attempting to produce the lowest possible
cost would involve searching an exponentially large space of back-end service group-
ings, which could take hours/days of compute time to explore meaningfully, even if a
heuristic algorithm were to be used. We plan to explore this issue in our future work.

The front-end accumulates the access costs accrued during the periods of stable re-
quest distribution, i.e. in between consecutive changes to the request distribution. The
overall cost of the composite service is then the sum of the costs for each stable period.
Periodically, say every month, the front-end service charges each of its users based on
how many accesses and how much storage the front-end service required of its back-end
services on behalf of the user. Formally, the total cost to be charged is:

TotalCost(f) =
∑

∀t

AccessCostt(f) + Sf

∑

i∈Hf

cs
i (2)

where AccessCostt(f) is the access cost of each period t of stable request distributions
since the last calculation of TotalCost(f) and Sf is the maximum size of the file since
the last calculation of TotalCost(f). We define AccessCostt(f) exactly below.

Service fees and compensation. Finally, note that the costs incurred by the front-end
service are actually higher than the sum of TotalCost(f) for all files. As mentioned
above, the cost of accessing the write-ahead logs is not included in TotalCost(f). In
addition, when the client load is low, the front-end service may need to send additional
accesses to the back-end services to properly assess their current performance (and
availability). These extra accesses increase costs for the front-end service; the extra
cost can be amortized across the set of users as a “service fee”.

Further, there may be situations in which the guarantees provided by the front-end
service are violated. For example, the network between the front-end service and some
of the back-end services may become unusually slow or back-end services may start
violating their SLAs. As mentioned above, the front-end service responds to these sit-
uations by recomputing its request distributions accordingly, but the recomputations
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may not occur early enough. Nevertheless, in case of back-end SLA violations, the
front-end service will be compensated for them and the compensations can be passed
on to its users. In case of network problems, the front-end service can use its service
fees to compensate users.

3.2 Base

In Base, a read request to a file f is forwarded to a single back-end service i ∈ Hf with
probability pi. (Writes are sent to all back-end services in Hf .) Base computes these
probabilities so as to minimize the cost of servicing accesses to f while respecting the
performance guarantees requested for the file. Formally, Base needs to minimize:

Cost(f) = rf

∑

i∈Hf

pic
r
i + wf

∑

i∈Hf

cw
i (3)

subject to the following two constraints:

1. ∀i ∈ Hf , pi ≥ 0 and
∑

pi = 1 2. rfP r
f + wfPw

f ≥ Pf

where rf is the fraction of read block accesses to f , wf is the fraction of write block
accesses to f , P r

f is the percentage of read accesses that complete within Lf , and Pw
f

is the percentage of write accesses that complete within Lf .
Equation 3 computes the average cost of reads and writes, reflecting the read-to-

write ratio (rf : wf ), and the fact that each read incurs the cost of only 1 back-end
access according to the probabilities pi (hence pic

r
i ), while each write incurs the cost of

accessing all back-end services. Constraint 1 states that the probabilities of accessing
each back-end service in Hf have to be non-negative and add up to 1. Constraint 2
requires that the percentage of reads and writes that complete within Lf time must be
at least Pf to meet the guarantees requested by the user.

We then define P r
f and Pw

f as:

P r
f =

∑

i∈Hf

piCDFi(Lf ) Pw
f = max

i∈Hf

(CDFi(Lf )) (4)

where the CDFi(L) operator produces the percentage of requests satisfied within L time
by back-end service i, as observed at the front-end service. Pw

f is determined by the best
performing back-end service because the front-end forwards each write in parallel to all
back-end services and replies to the client when the first one completes.

Equations 3 and 4 together with the two constraints completely define Base’s op-
timization problem, except for how to determine rf and wf . The user can optionally
estimate rf and wf and pass them as parameters at file creation time. If the user does
not provide this information, we split constraint 2 above into two parts, P r

f ≥ Pf and
Pw

f ≥ Pf , and instantiate Equation 3 with the assumption that rf = 1 and wf = 0.
This approach correctly but conservatively ensures that the solution to the optimization
problem provides the required guarantees for f . For details on this point, please refer to
the longer, technical report version of this paper [16].
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After each period t of stable request distributions computed by Base, we compute
the cost of accessing the Hf back-end services during the period as:

AccessCostt(f) = Rf

∑

i∈Hf

pic
r
i + Wf

∑

i∈Hf

cw
i (5)

where Rf is the number of read requests and Wf is the number of write requests ser-
viced during period t.

Finally, note that a malicious client is not able to lower its access costs by providing
fake values for rf and wf , since these costs are computed based on the actual requests
made by the client during each period of time.

3.3 OptWait

In OptWait, the front-end service takes the different approach of possibly forwarding
a read request to more than one back-end service. In particular, the front-end service
forwards each read request to the back-end services in sequence, from least to most
expensive, waiting for a bounded amount of time for each service to respond before
trying the next service.

l1l2 lf

p1

p2

Fig. 1. Performance CDFs for three services. An OptWait
distribution might specify that a request should be forwarded
to multiple back-end services in turn.

The basic idea behind Opt-
Wait is illustrated in Figure 1,
which shows three perfor-
mance CDFs for three back-
end services. Let us assume
that the left-most curve rep-
resents the most expensive
service, whereas the right-
most curve represents the least
expensive service. OptWait
would first forward a request
to the least expensive service,
waiting for an amount of time
l1. This would allow OptWait
to take advantage of the per-
centage of requests (p1) that
complete fairly quickly. If the
request did not complete within l1 time, OptWait would then forward the request to
the medium-cost service and wait for some wait time l2. Again, the goal would be to
leverage the steep part of the medium-cost service’s CDF. If, after l1 + l2 time, the re-
quest still had not completed at either back-end service, OptWait would then forward
the request to the most expensive service and wait for the request to complete at any of
the three back-end services.

The key to OptWait is setting appropriate li times. Like in Base, we do so by op-
timizing the access cost under the performance constraints imposed by the guarantees
requested by the user. Assuming Hf with 3 back-end services, our problem is to mini-
mize the following equation:
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Cost(f) = rf [p1C1
+((1 − CDF1(l1 + l2))p2 + CDF1(l1 + l2) − p1)(C1 + C2)
+(1 − (1 − CDF1(l1 + l2))p2 − CDF1(l1 + l2))(C1 + C2 + C3)]

+wf

∑
i∈Hf

cw
i

(6)
where pi = CDFi(li), CDFi(l) = 0 when service i is not being used for reads (i.e.,
li = 0), Ci = 0 when service i is not being used for reads and Ci = cr

i when it is, and
li = ∞ when i is the last service being used for reads. (We only present the equation for
the restricted case of 3 back-end services for clarity and because of space constraints.
We refer the interested reader to [16] for the general formulation.)

Equation 6 computes the cost of writes in the same manner as the Base cost function
(Equation 3), as the two algorithms treat writes in the same way. More interestingly,
it computes the cost of reads by summing up the multiplication of the probability that
each back-end service will need to be accessed by the cost of doing so. For example, if
services 1 and 2 are used for reads, the first two lines of the equation compute the cost,
whereas the third line becomes 0. The first line multiplies the probability that service 1
replies within l1 time (p1) by the cost of accessing service 1. For the requests that are
not serviced by service 1 within l1, service 2 would be activated. Thus, the second line
of the equation sums up the probability that service 1 does not reply within l1 + l2 time
but service 2 does reply within l2 time ((1−CDF1(l1 + l2))p2), and the probability that
service 1 replies after l1 but before l1 + l2 time (CDF1(l1 + l2) − p1). The second part
of the cost is obtained by multiplying this probability by the cost of making one access
to service 1 and one access to service 2.

Equation 6 should be minimized subject to the following constraints:

1. ∀i ∈ Hf , li ≥ 0 2. rfP r
f + wfPw

f ≥ Pf

where constraint 1 simply states that times have to be non-negative and constraint 2 is
the same as that for Base. (Just as for Base, the front-end service can break constraint 2
into two parts and compute costs for rf = 1 and wf = 0, if the user does not provide
information about rf and wf as a parameter.) We define Pw

f just the same as for Base,
since the two algorithms handle writes in the same way. In contrast, P r

f is defined as:

P r
f = CDF1(Lf )

+(1 − CDF1(Lf ))CDF2(Lf − l1)
+(1 − CDF1(Lf ))(1 − CDF2(Lf − l1))CDF3(Lf − l1 − l2)

(7)

where again CDFi(l) = 0 when service i is not being used for reads.
In plain English, the first additive component of Equation 7 represents the probability

that the least-expensive service will reply in a timely manner (within Lf time) if it is
used, the second component is the probability that service 2, if used, will reply in a
timely manner (given that a request is only forwarded to it after l1 time) but not service
1, and so on. (Again, because the general formulation and its closed form [16] are hard
to read, we only present the equation for a system with exactly 3 back-end services.)

After each period t of stable request distributions computed by OptWait, we compute
the cost of accessing the Hf back-end services during the period by replacing rf and
wf in Equation 6 by Rf and Wf , respectively.
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3.4 Implementation

We have implemented a prototype front-end file service called Figurehead to explore
our request-distribution algorithms in real systems with real workloads. Although Fig-
urehead should be supported by multiple geographically distributed servers in practice,
it is currently based on a single node as a proof-of-concept implementation.

Figurehead consists of four components: an NFS version 2 facade that allows the
file service to be accessed through standard NFS clients, a file system that supports the
NFS facade and uses remote back-end block services for storage, an optimization mod-
ule that computes the best request distribution strategy, and a module that constantly
monitors the performance of the back-end services. All components were written in
Java and run in user space. Relevant details about these four components are as follows.

NFS facade. The multi-threaded NFS facade accepts NFS remote procedure calls via
UDP. It implements the NFS version 2 protocol almost completely; the only calls that
have not been implemented are those dealing with symbolic links.

The one complication that the NFS protocol poses for Figurehead is that opens and
closes are not sent through to the server. Thus, whenever the NFS facade receives a
create or the first access to an unopened file, it opens the file and caches the opened-file
object returned by the file system. A cached opened-file object is closed and discarded
after it has not been accessed for 5 minutes.

File system. The file system behind our NFS facade uses the same meta-data scheme
to represent a file as the Linux ext2 file system. The inode was changed to include
information about the availability and performance guarantees requested by the creator
of a file. An inode-map maps each inode to the set of back-end services that is hosting
the file. All data and meta-data except for the inode-map are stored at the back-end
services in 8-KByte blocks. The file system communicates with the back-end services
over a Web Service interface, namely the RPC implementation from Apache Axis [17].

When a file is first created, the file system chooses a set of back-end services to
host the file as described in Section 3.1. It then allocates an inode, saves the availabil-
ity and performance guarantees for the file in the inode (along with other traditional
file-system information, such as owner and time of creation), enters the mapping of
inode-number → Hf into its inode-map, and writes the inode to the appropriate back-
end services. The file system also opens the file.

When a file is opened, the file system extracts the set of back-end services that is
hosting the file (Hf ) from the inode-map, obtains their access time CDFs from the
monitoring module, reads the inode to obtain the performance guarantees, and asks the
request distribution module to compute the best request distribution strategy for the
file. This last step is not necessary when the file is being re-opened and the current
request distribution was computed based on the same period of the day before. To de-
termine whether to recompute a request distribution, Figurehead maintains information
about when each distribution is computed. When a previous request distribution exists
but a new computation is required, the computation is performed in the background
and adopted when completed. When client requests arrive, the file system uses the
file meta-data to identify the corresponding blocks and forwards the appropriate block
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operations to the back-end services. Reads are handled according to the current request
distribution, whereas writes are forwarded to all back-end services in Hf .

The file system maintains a write buffer to ensure that each write to a file f eventually
reaches all of the nodes in Hf . When a write request arrives, the file system assigns a
thread per back-end service in Hf the task of ensuring that the write eventually reaches
a particular back-end. Each write is then discarded from the write buffer once it has
propagated to all back-ends in Hf . We assume that the back-end services can handle
small “overwrites;” that is, a write that only partially overwrites a previously written
block can be sent directly to the back-end services without having to read the old data
and compose a new complete-block write. This avoids making small overwrites more
expensive than a complete-block write because of the need to read the block.

The file system implements two levels of meta-data caching. First, all meta-data is
currently cached on a local disk (and is never evicted) using a Berkeley database [18].
This cache reduces the number of accesses to the back-end services by eliminating
repeated remote meta-data accesses. In fact, the cache makes the meta-data accesses
to the back-end services relatively infrequent for the large-file applications we target
(dominated by reads and/or overwrites), so these accesses are not currently reflected
in our mathematical machinery. Second, file-specific meta-data, i.e. inodes and indirect
blocks, are cached in memory for open files as the meta-data is accessed. This avoids
repeatedly accessing the cache on disk for a stream of accesses to the same file. Meta-
data of an open file that is cached in memory is evicted when the file is closed. Our
policy of holding a file opened in the NFS facade for 5 minutes beyond its last access
implies that meta-data for an open file is also cached in memory by the file system for
the same amount of time.

Finally, since the NFS clients cache data themselves, our file system (in fact, the
entire front-end service) does not cache data at all.

Request-distribution module. This module solves the optimization problems posed by
Base and OptWait, and chooses the algorithm that produces the lowest cost. The Base
optimization problem is solved using the linear programming solver lp solve [19] and
produces the pi probabilities with a precision of a few decimal places. Unfortunately,
minimizing cost in OptWait is not a linear programming problem. To solve it, we con-
sider all feasible combinations of the probabilities pi’s (in steps of 1% in our current
implementation) for the back-end services in Hf to compute the best li’s wait times.
Even though this is essentially a brute force approach, it does not take long to compute
as the size of Hf is small (typically two or three), even for high Pf requirements. We
report running times for this module in Section 4.

Monitoring module. This module is responsible for monitoring each back-end service
in terms of its performance as seen at the front-end service. Specifically, this module
probes each back-end service periodically with regular block accesses (every 5 seconds
in our current implementation). With the access times measured from these accesses,
this module constructs the performance CDF for the service.

Figurehead limitations. Currently, Figurehead has three limitations. First, as we men-
tioned above, it is implemented by a single server, rather than a collection of geograph-
ically distributed servers. Second, we have not yet implemented the write-ahead log
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for crash recovery. Third, the monitoring module currently does not use information
from regular accesses to the back-end services, always issuing additional block accesses
to assess their performance (and availability). These extra accesses increase costs and
would not be required when the regular load on the back-end services is high enough.
We are currently addressing these limitations.

4 Evaluation

In this section, we first explore and compare the two request distribution algorithms over
the space of different costs and back-end service behaviors. We then study the impact of
using past access time data to predict current behaviors of the back-end servers. Finally,
we evaluate our prototype Figurehead implementation, and validate that it provides the
performance guarantees computed by the mathematical machinery.

Ideally, we would like to study our system using actual back-end services on the
Internet. However, at this point, there are not enough of them to provide a large range
of data. Thus, we have collected access times over a period of close to one month
from 50 PlanetLab machines to support our evaluation. These data were collected by
running a simple block-storage service on each machine, populating each service with
5120 blocks, and randomly accessing a block according to a Poisson process with mean
inter-access time of 1 second from a client machine located at our site.

4.1 Base vs. OptWait

We first compare Base and OptWait mathematically assuming fixed access time CDFs
for the back-end services. In particular, we chose data from three PlanetLab nodes,
planetlab2.cs.umass.edu, planetlab1.cs.unibo.it, and
planet-lab.iki.rssi.ru, whose CDFs are shown in Figure 1. We study a set of
three nodes because they provide a sufficiently rich space to understand the behaviors
of the two algorithms, yet is not overly complicated to explain.
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Overall results. Figure 2 plo-
ts the average cost (Cost(f))
achieved by Base and OptWait
for a read-only workload as a
function of the per-file guar-
anteed latency (Lf ), with a
per-file percentage guarantee
(Pf ) of 95%. (The results are
similar for other Pf values.)
Each of the curves represents
a different combination of al-
gorithm and per-access cost
for each back-end service. For
example, the curve labeled
OptWait [5,10,15] represents
the cost computed by OptWait
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Table 2. Costs and distributions with back-end service costs = [5,10,15] and Pf = 95%. The Base
distributions are listed as [p1, p2, p3], whereas the OptWait distributions are listed as [(l1, p1),
(l2, p2), (l3, p3)]. l1, l2, l3 are given in ms.

Lf (ms) Base Cost Base Dist OptWait Cost OptWait Dist

500 14.17 [0,17,83] 15.00 [(0,0),(0,0),(∞,100)]
600 12.50 [0,50,50] 11.65 [(0,0),(511,89),(∞,100)]
700 10.00 [0,100,0] 10.00 [(0,0),(∞,100),(0,0)]
800 10.00 [0,100,0] 10.00 [(0,0),(∞,100),(0,0)]
900 9.83 [3,97,0] 10.00 [(0,0),(∞,100),(0,0)]

1000 9.66 [7,93,0] 10.00 [(0,0),(∞,100),(0,0)]
1100 9.46 [11,89,0] 9.80 [(923,68),(0,0),(∞,100)]
1200 9.40 [12,88,0] 9.80 [(923,68),(0,0),(∞,100)]
1300 9.21 [16,84,0] 8.80 [(794,62),(∞,100),(0,0)]
1400 8.85 [23,77,0] 8.20 [(923,68),(∞,100),(0,0)]
1500 7.86 [43,57,0] 7.10 [(1404,86),(0,0),(∞,100)]
1600 5.00 [100,0,0] 5.00 [(∞,100),(0,0),(0,0)]

when cr
1 = 5, cr

2 = 10, and cr
3 = 15 fractions of dollar per access (what fraction exactly

is irrelevant to our study). Table 2 lists the optimized costs and request distributions for
Base and OptWait for costs [5,10,15].

From these figures, we can see that neither Base nor OptWait is always better than
the other. At the extremes, i.e. at very low or very high latency guarantees, the two
algorithms behave the same because there is no room for optimization. For very low
latency guarantees, the only choice is to use the most expensive service all the time (if
it is possible to meet the guarantee at all). For very high latency guarantees, the obvious
best choice is to use the cheapest service all the time.

In between these extremes, the relative behavior of Base and OptWait depends on
the shapes of the access time CDFs of the back-end services, as well as their costs. For
example, consider the costs achieved by Base and OptWait for cost [5, 10, 15] at latency
guarantees of 500ms and 600ms. At 500ms, Base achieves lower cost than OptWait
because it is able to use the medium-cost service 17% of the time, whereas OptWait
cannot yet use the medium-cost service (see Table 2). In this case, for p2 in OptWait
to be greater than 0, l2 would have to be at least 365ms, leaving insufficient time for
accessing the high-cost service should the request fail to complete at the medium-cost
service within l2. At 600ms, OptWait does better than Base because its greater use of
the medium-cost service, 89% vs 50%, more than offsets the 11% of the time that it has
to use both the medium-cost and high-cost service.

In general, we observe that Base can typically start using a lower-cost back-end
service before OptWait as the guaranteed response time increases. This is because Base
never resends requests. However, eventually, OptWait can use the lower-cost service
more aggressively because it can avoid the tail of the CDF by re-sending requests to the
more expensive services as needed.
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Table 3. Costs and distributions with Pf = 95%, as a function of Lf and back-end service costs.
The Base distributions are listed as [p1, p2, p3], whereas the OptWait distributions are listed as
[(l1, p1), (l2, p2), (l3, p3)]. l1, l2, l3 are given in ms.

Lf Back-End Base Base OptWait OptWait
(ms) Costs Cost Dist Cost Distribution

1200 [5,10,15] 9.40 [12,88,0] 9.80 [(923,68),(0,0),(∞,100)]
1200 [5,6,15] 5.88 [12,88,0] 6.00 [(0,0),(∞,100),(0,0)]
1200 [5,14,15] 12.92 [12,88,0] 9.80 [(923,68),(0,0),(∞,100)]

1300 [5,10,15] 9.21 [15.79,84.21,0] 8.80 [(794,62),(∞,100),(0,0)]
1300 [5,6,15] 5.84 [15.79,84.21,0] 6.00 [(0,0),(∞,100),(0,0)]
1300 [5,14,15] 12.58 [15.79,84.21,0] 9.50 [(1064,70),(0,0),(∞,100)]

1400 [5,10,15] 8.85 [23.08,76.92,0] 8.20 [(923,68),(∞,100),(0,0)]
1400 [5,6,15] 5.77 [23.08,76.92,0] 6.00 [(0,0),(∞,100),(0,0)]
1400 [5,14,15] 11.92 [23.08,76.92,0] 8.30 [(1285,78),(0,0),(∞,100)]
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Fig. 3. (a) CDFs for 4 back-end services. (b) Access cost achieved by Base and OptWait when
using two different sets of three back-end services {low-cost-1, medium-cost, high-cost} and
{low-cost-2, medium-cost, high-cost}. Both with cost [5,10,15] and Pf = 95%.

Impact of the back-end service costs. Observe that Base’s distribution of requests
is independent of the ratio between the costs of the three back-end services. That is,
as long as cr

3 > cr
2 > cr

1, Base will choose the same set of distribution probabilities
(p1, p2, p3) regardless of the ratios c1:c2:c3. OptWait, on the other hand, may alter
its distribution strategy based on the cost ratios. For example, consider in Table 3 the
distributions computed for Lf within the interval [1200ms, 1400ms] for costs [5, 6, 15]
vs. [5, 10, 15]. For [5, 10, 15], OptWait chooses to use either the low- and medium-cost
or low- and high-cost services. For [5, 6, 15], OptWait only chooses to use the medium-
cost service. This is because the medium-cost service is only slightly more expensive
than the low-cost service; immediately choosing it is less costly than potentially having
to forward the request to two services.

Impact of the shape of the CDFs. Base and OptWait also behave differently with
respect to the shapes of the CDFs. In general, Base’s behavior depends on the three key
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points CDF1(Lf), CDF2(Lf ), and CDF3(Lf ), whereas OptWait’s behavior depends
on the shape of all CDFs between 0% and CDFi(Lf). These dependencies can be seen
clearly in Figures 3(a) and (b). Figure 3(a) shows the CDFs for 4 back-end services
from which we derived two sets of three services {low-cost-1, medium-cost, high-cost}
and {low-cost-2, medium-cost, high-cost}.

Figure 3(b) shows that OptWait behaves significantly better when using low-cost-2
in the interval [600ms, 1600ms] because low-cost-2 is substantially “steeper” than low-
cost-1. Base is also able to leverage low-cost-2’s better behavior to improve its cost, but
less so than OptWait. The reason is that Base only leverages the fact that low-cost-2
gives a better CDF1(Lf) than low-cost-1, rather than the fact that low-cost-2 gives an
additional 30% of requests completing under 700ms over low-cost-1 in this interval.

4.2 Validating the Mathematical Machinery

We now validate our mathematical approach when servicing actual file system work-
loads. We also validate that the prediction of back-end service behaviors using past
access time data do not significantly degrade our QoS guarantees. First, we use sim-
ulation to analyze the mathematical approach independent of the details of an actual
implementation. Next, we evaluate our prototype implementation.

Workloads. We use two realistic workloads. The first models an interactive visual-
ization application, where the user is navigating through a large amount of data–for
example, a large rendering model or large scientific data set. This application is exactly
the type of soft real-time application that Figurehead is designed to support.

This workload is constructed based on publications on visualization systems
[20,21,22], and has the following attributes: a random Poisson read access stream with
a mean interarrival time of 50ms on a large data file. It currently does not make a dif-
ference to Figurehead whether a read stream is random or sequential, since Figurehead
does not currently do any prefetching or caching. We assume a random read access
stream because these accesses are dependent on the user’s interactive navigation.

The second workload models a scientific application running on a grid environment.
Although this is not a classical soft real-time application, it still constitutes an interest-
ing workload because predictability of data access can significantly reduce the burden
of resource management and coordination of the stages of a multi-stage application
such as the one described in [23].

This workload is constructed based on data extracted from [1,23,24,25], and has the
following attributes: a sequential read access stream from a single large file followed by
a sequential write access stream to the same file. This read/write access stream repre-
sents a multi-phase application with an initial read phase to load input data and a final
write phase that saves the computed results. We assume that intermediate results gen-
erated between the initial and final phases are stored on local storage rather than a file
system such as Figurehead. We further assume that the initial input data and the final
results have the same size; thus, the read-to-write ratio is 1:1. Finally, both the read and
write access streams are Poisson processes with mean interarrival times of 50ms.

Because the WAN latencies we consider are larger than 50ms, we assume that the
access streams of both applications are generated by a number of concurrent threads.
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Table 4. Simulation results with (Pf , Lf ) = (95%, 600ms) and costs [5,10,15]. V denotes the
visualization workload, S the scientific workload, B the Base algorithm, and O the OptWait al-
gorithm. Expected is the percentage of requests expected to complete before Lf as computed
by the algorithm. Simulated is the actual percentage of requests that completed before Lf in a
simulation run. Min, Max, Avg are the minimum, maximum, and average values across 18 runs
using 18 half-day traces from the PlanetLab machines.

V-B S-B V-O S-O
Expected Simulated Expected Simulated Expected Simulated Expected Simulated

Min 95 95.06 95 95.28 95.2 95.61 95 95.56
Max 95 95.89 95 97.28 97.36 97.89 97.33 98.56
Avg 95 95.48 95 96.07 96.22 96.57 95.7 96.78

Simulation using a priori knowledge of back-end service behaviors. Our first ex-
periment is as follows. Take a trace of the three machines whose overall behaviors are
shown in Figure 1 over a period of 9 days. Construct a CDF for each back-end service
for each 12-hour period of the 9 days. For each 12-hour period, use the corresponding
CDF to compute the distribution using Base and OptWait for Pf = 95%, Lf = 600ms,
costs [5,10,15], and cr = cw for all back-end services. Then, simulate Figurehead’s
response time for 18000 accesses for each workload using the 12-hour traces that were
used to construct the CDFs. This corresponds to statistical oracular knowledge of the
behaviors of the back-end services.

Table 4 shows the results for 18 runs of each application/distribution algorithm pair,
where each run was performed using a distinct half-day period of the 9-day trace. For
both workloads under Base and OptWait, the simulation always leads to exceeding the
QoS guarantee. This is because we construct and use the CDFs in a conservative man-
ner. In particular, each CDF is represented by a set of 100 discrete points, representing
the latency corresponding to each percentage point on the CDF. Now suppose that the
mathematical engine needs a percentage value corresponding to the latency 1000ms. If
our CDF has the points (999ms, 95%) and (1001ms, 96%), then we would return 95%,
rather than an interpolated value between 95% and 96%. We choose this conservative
approach because an interpolated value would be optimistic sometimes but pessimistic
other times, making the mathematical machinery less predictable.

An additional interesting observation to make is that mathematically, Base always
achieves a distribution that should theoretically give the exact Pf required (in this case,
95%). OptWait, on the other hand, because of our discrete approach for computing the
best distribution, typically overachieves compared to the required Pf . (Note that, for
Lf = 600ms, OptWait achieves lower cost than Base despite this overachievement.)
As shall be seen, this overachievement makes OptWait more robust when the CDF is
computed based on past data.

Impact of using past access times to predict current back-end service behaviors.
We now consider the impact of not having a priori information on the expected behav-
iors of the back-end services. In particular, as mentioned in Section 3.1, we run the same
experiments as above but use a CDF constructed from the response times observed in
the same 12-hour period 1 day ago to predict each back-end service’s behavior in the



240 K. Le, R. Bianchini, and T.D. Nguyen

Table 5. Simulated results for (Pf , Lf ) = (95%, 600ms) and costs [5,10,15] when using data
access times from 12 hours ago to predict the current behaviors of back-end services. The notation
is the same as in Table 4. Failures is the number of 12-hour simulation runs that did not meet the
QoS guarantee.

V-B S-B V-O S-O
Expected Simulated Expected Simulated Expected Simulated Expected Simulated

Min 95 92.72 95 94.28 95.2 93.83 95 95.67
Max 95 97.72 95 98.33 97.36 98.83 97.33 98.61
Avg 95 95.35 95 96.11 96.24 96.42 95.76 96.8

Failures 0 5 0 6 0 5 0 0

current 12-hour period (e.g., 8am-8pm from Tuesday to predict behavior for 8am-8pm
Wednesday). Table 5 shows the results for 16 12-hour runs (we could not use the first
two half-day periods because they did not have any past history for prediction).

As expected, past data is not a perfect predictor of current behavior. This leads to a
number of 12-hour simulation runs where Figurehead would not be able to achieve the
QoS guarantee. In fact, approximately 35% of the runs missed the QoS guarantee under
Base. OptWait has a comparable failure rate for the Visualization workload but was
perfect for the Scientific workload. As already mentioned, OptWait is somewhat more
resilient to the imperfect predictor because it typically overachieves compared to the
required Pf . On the other hand, the imperfect predictor can also lead the 12-hour runs
to achieve more than the QoS requirement, i.e. more than Pf of the requests complete
within Lf time. In fact, the Max values for both Base and OptWait are larger in Table 5
than in Table 4.

However, the most important observation here is that both request-distribution al-
gorithms provide the performance guarantees that they promise when the entire 8 day
period is considered (see the simulated Avg entries). (Recall that QoS guarantees are
defined over long periods of time, such as one month.) The reason for this result is that
the QoS requirement is exceeded during the majority of the 12-hour periods, which
more than compensates for the many fewer periods when the requirement is not met.

4.3 Prototype Behavior

We now validate that our prototype, Figurehead, actually provides the performance
guarantees computed by the mathematical machinery. All results reported below were
obtained by running on 5 PCs connected by a Gb/s Ethernet switch. Each PC is con-
figured with 1 hyper-threading Intel Xeon 2.8 GHz processor, 2 GBytes of main mem-
ory, and 25 GBytes of disk space. Three of the machines were used as back-end block
servers and one as the client. The other machine ran Figurehead. We always assume that
the three back-end services are needed to meet the client’s specified availability require-
ment. Again, all the experiments assume Pf = 95%, Lf = 600ms, costs [5,10,15], and
cr = cw for all back-end services. To mimic a wide-area network, we inserted delays
to the completion times of accesses to the back-end services. We use the same 9-day
trace as in the last subsection; the delays were randomly chosen from the appropriate
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half-day period. (We used the traces instead of running the back-end services them-
selves on PlanetLab nodes for repeatability.)

Microbenchmarks. We first present results from microbenchmarks to illustrate the per-
formance of Figurehead. For these microbenchmarks, we did not inject any network
delays so that performance reflects what is achievable over a LAN. We also assume
that rf and wf are known ahead of time; i.e., rf is 1 when measuring read performance
and 0 when measuring write performance. We measured write performance for appends
(rather than overwrites) to a file.

Using these microbenchmarks, we find that the times required to read and write 1
byte of data are approximately 30ms and 66ms, respectively. Appends are more expen-
sive than reads because they require writing meta-data. Overall, Figurehead reads and
writes are about one order of magnitude slower than on a local disk. The higher ac-
cess latency of Figurehead arises mainly from using a Berkeley database as disk cache
and the Web Services interface to access the back-end block servers. These inefficien-
cies can be easily eliminated in a production-grade implementation. However, the fairer
comparison is between accessing a back-end service through Figurehead and accessing
it directly, both on a WAN. Because network trips dominate in this scenario, Figure-
head would impose a much lower overhead. For example, the lowest average latency
we measured for the PlanetLab nodes is 165ms. Given this latency, Figurehead would
impose roughly a 30% degradation when all accesses are appends.

Another important issue is the overhead of computing request distributions. The time
to solve a Base and OptWait optimization problem is approximately 710us and 14ms,
respectively. We found that, while the time to solve OptWait does increase with Lf , it
does so quite modestly. The reason for the slight time increase is that a higher Lf tends
to generate a larger search space in OptWait. Finally, these optimization times do not
change significantly with changing Pf and so we do not show those results here.

Macrobenchmarks. Finally, we ran the two workloads described in the last section
concurrently against a running instance of our Figurehead prototype. We ran each work-
load/distribution algorithm pair 4 times, each time for a distinct half-day period from the
9-day trace (the first 4 half-day periods). Overheads from the system (e.g, computing
time inside the Figurehead front-end) led to a degradation in meeting the QoS require-
ment Pf by almost nothing to at most 1%. Detailed measurements show that the main
sources of overheads were synchronization delays, inaccuracies in the sleep function
used to emulate WAN latencies, and accessing the Berkeley DB. Despite these over-
heads, the prototype consistently provides the proper guarantees when all the periods
are considered.

5 Conclusions

In this paper, we addressed the issue of composing functionally-equivalent, third-party
services into higher level, value-added services by developing a distributed file ser-
vice. In this context, we proposed two request-distribution algorithms that optimize
costs at the same time as providing performance and availability guarantees. To achieve
this goal, both algorithms rely on information about the behavior of the third-party
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services to mathematically determine the request distributions. While one algorithm is
reminiscent of traditional scheduling policies, the other departs significantly from these
policies, as it may schedule the same request at multiple third-party services in turn.

We found that both algorithms provide the guarantees that they promise. Compar-
ing the algorithms, we found that neither is consistently the best. Nevertheless, using
our mathematical modeling, the system can actually select the best algorithm for each
file a priori. Experimental results from our prototype implementation characterized its
performance and the optimized access costs under the two algorithms.

Composite services such as the one we studied are in the horizon. Based on our
experience and results, we believe that these services can benefit from our modeling
and optimization approach for guaranteeing quality-of-service at low cost.
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Abstract. As the complexity of IT systems increases, performance management
and capacity planning become the largest and most difficult expenses to control.
New methodologies and modeling techniques that explain large-system behavior
and help predict their future performance are now needed to effectively tackle
the emerging performance issues. With the multi-tier architecture paradigm be-
coming an industry standard for developing scalable client-server applications,
it is important to design effective and accurate performance prediction models
of multi-tier applications under an enterprise production environment and a real
workload mix. To accurately answer performance questions for an existing pro-
duction system with a real workload mix, we design and implement a new ca-
pacity planning and anomaly detection tool, called R-Capriccio, that is based on
the following three components: i) a Workload Profiler that exploits locality in
existing enterprise web workloads and extracts a small set of most popular, core
client transactions responsible for the majority of client requests in the system; ii)
a Regression-based Solver that is used for deriving the CPU demand of each core
transaction on a given hardware; and iii) an Analytical Model that is based on a
network of queues that models a multi-tier system. To validate R-Capriccio, we
conduct a detailed case study using the access logs from two heterogeneous pro-
duction servers that represent customized client accesses to a popular and actively
used HP Open View Service Desk application.

1 Introduction

As IT and application infrastructures become more complex, predicting and controlling
the issues surrounding system performance and capacity planning become a difficult
and overwhelming task. For larger IT projects, it is not uncommon for the cost factors
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related to performance tuning, performance management, and capacity planning to re-
sult in the largest and least controlled expense. Application performance issues have an
immediate impact on customer satisfaction. A sudden slowdown can affect a large pop-
ulation of customers, can lead to delayed projects, and ultimately can result in company
financial loss. It is not unusual for a piece of new hardware to be added into the infras-
tructure to alleviate performance issues without fully understanding where the problem
really is.

With complexity of systems increasing and customer requirements for QoS growing,
the research challenge is to design an integrated framework of measurement and system
modeling techniques to support performance analysis of complex enterprise systems in
order to explain large-system behavior. Predicting and planing future performance is of
paramount importance for the commercial success of enterprise systems.

Large-scale enterprise development projects are relying more and more on the
Service-Oriented Architecture (SOA) design. This approach provides a collection of
mechanisms and interfaces for a dynamic enterprise IT environment to connect ap-
plications where classic, data-processing legacy systems can be integrated with agile,
web-based front-end applications. Application servers provide a standardized platform
for developing and deploying scalable enterprise systems. As a result of this, appli-
cation servers are a core component of an enterprise system and an integral part of a
new trend towards building service-oriented architectures. Today, the three-tier archi-
tecture paradigm has become an industry standard for building scalable client-server
applications.

In multi-tier systems, frequent calls to application servers and databases place a
heavy load on resources and may cause throughput bottlenecks and high server-side
processing latency. Typically, preliminary system capacity estimates are done by us-
ing synthetic workloads or benchmarks which are created to reflect a “typical applica-
tion behavior” for “typical client requests”. While capacity planning based on synthetic
workloads or benchmarks can be useful at the initial stages of design and development
of a future system, it may not be adequate for answering more specific questions about
an existing production system. Often, a service provider does need to answer the fol-
lowing questions:

– How many additional clients can be supported by the existing system i) while still
providing the same performance guarantees, e.g., response time under 8 sec., and
ii) assuming that new clients perform similar activities as already existing clients in
the system, i.e., the system processes the same type of workload?

– If the client activities and behaviors change over time in a specified way, how is the
performance of the system affected?

In this work, we propose a new capacity planning framework, called R-Capriccio,
for practical capacity evaluation of existing production systems under “live” workloads
that can provide answers to all of the above questions. R-Capriccio can assist in pro-
viding answers for advanced “what-if” scenarios in system capacity analysis where the
evaluated system operates under a diverse workload mix. R-Capriccio is comprised of
the following key components:
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– Workload profiler: The profiler extracts a set of most popular client transactions,
called core transactions, to characterize the overall site workload and the most pop-
ular client sessions at the site.

– Regression-based solver: Using statistical regression, the solver approximates the
resource cost (CPU demand) of each core transaction on a given hardware. Thus
a real workload mix can be directly mapped into the corresponding CPU demand
requirements.

– Analytical model: For capacity planning of multi-tier applications with session-
based workloads, an analytic model based on a network of queues is developed,
where each queue represents a tier of the application.

Another important problem that needs to be addressed is a preliminary analysis of
performance issues that often occur during the application updates and new software
releases: this is also known as anomaly detection. Typically, when a new software re-
lease is introduced and unexpected performance problems are observed, it is important
to separate performance issues that are caused by a high load of incoming workload
from the performance issues caused by possible errors or inefficiencies in the upgraded
software. R-Capriccio can be used to distinguish the performance issues that are not
caused by the existing system workload and essentially be used as an alarm to identify
anomalies in the system operation.

For most production multi-tier services the I/O traffic (both network and disk) is not
a system bottleneck. The memory requirements increase linearly with the number of
concurrent users in the system [2] and can be computed in a straightforward way. In
this work, we concentrate on systems with CPU bottlenecks and evaluate the capacity
requirements for support of a given workload with a specified constraint on the latency
of user response times. This additional latency constraint makes this modeling problem
non-trivial and challenging.

A prerequisite for applying our framework is that a service provider collects the
following information:

– the application server access log that reflects all processed client requests and client
activities at the site, and

– CPU utilization at all tiers of the evaluated system.

Thus the problem is to approximate the CPU costs of different client transactions at
different tiers, and then use these cost functions to evaluate the resource requirement
of scaled or modified transaction workload mix in order to accurately size the future
system. In this work, we continue developing the approach that is based on linear re-
gression for approximating the CPU transaction cost in a system running the TPC-W
benchmark [24]. However, it is much more challenging to apply and validate this mod-
eling approach with real, live workloads that exhibit much more complex and diverse
behavior than the synthetic TPC-W benchmark.

To validate our approach, we use a 1-month long access logs and CPU utilization data
from two heterogeneous application servers that provide customized client access to a
popular and actively used HP service: Open View Service Desk (OVSD). We demon-
strate that the proposed regression method provides a simple, but powerful solution
to accurately approximate CPU transaction costs for both heterogeneous application
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servers under study. We use the results of the regression method to parameterize an an-
alytic model of queues. We then use the analytic model to complete the last step of the
capacity planning process and derive the maximum number of clients that the studied
application servers can support for a given workload mix under different constraints on
transaction response times.

The rest of the paper is organized as follows. Section 2 provides a detailed workload
analysis and a workload profiler. Section 3 introduces our regression-based method for
deriving the CPU cost of the site transactions. Section 4 presents the analytic model for
predicting multi-tier application performance. Section 5 presents related work. Finally,
a summary and conclusions are given in Section 6.

2 Workload Characterization

In this section, we analyze a 1-month trace collected from the heterogeneous application
servers at the OVSD business portal during July 2006. This trace has a detailed infor-
mation about each processed request, including its arrival and departure time, request
URL, and client session ID.

2.1 Units of Client/Server Activities

Since often service providers are interested in capacity planning rules for their pro-
duction systems under live, real workloads, we need to understand properties of these
workloads, and identify a set of workload characteristics that are essential for a capacity
planning framework.

We first define client activity as follows. Typically, a client communicates with a web
service (deployed as a multi-tier application) via a web interface, where the unit of activ-
ity at the client-side corresponds to a download of a web page. In general, a web page is
composed of an HTML file and embedded objects such as images. Typically, the HTML
page is dynamically generated by the application server, and depending on the applica-
tion and its business logic, the page generation may involve issuing multiple (or none)
database calls. A browser retrieves a web page by issuing a series of HTTP requests for
all objects: first it retrieves the main HTML file and after parsing it, the browser retrieves
all the embedded images. Thus, at the server side, a web page retrieval corresponds to
processing of multiple smaller objects that can be retrieved either in sequence or via
multiple concurrent connections. It is common that a web server and application server
reside on the same hardware, and shared resources are used by the application and web
servers to generate main HTML files as well as to retrieve page embedded objects1. In
the access logs that we obtained from the OVSD application server, there are both types
of entries: web page requests and subsequent entries for embedded images. The HTTP
protocol does not provide any means to delimit the beginning or the end of a web page:
this is why it is very difficult to accurately measure the aggregate resources consumed
due to web page processing at the server side. In this work, we define a transaction as
a web page accessed by the client (also called web page views).

1 It is common for applications in many production systems implemented using the PHP web-
scripting/application development language [15].
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Client access to a web service occurs in the form of a session consisting of multiple
individual transactions (web pages). For example, in an e-commerce site, placing an
order through the web site involves further requests relating to selecting a product,
providing shipping information, arranging payment agreement, and finally receiving a
confirmation. Thus, for a customer trying to place an order, or a retailer trying to make
a sale, the real measure of such a web service performance is its ability to process
the entire sequence of individual transactions needed to complete a higher-level logical
transaction. The number of such concurrent client sessions that a multi-tier system can
support without violating transaction response time is a measure of system capacity.

In this section, we present the analysis of OVSD workload performed by our Work-
load Profiler:

– first, it characterizes a set of client transactions and extracts the distribution of trans-
actions over time;

– second, it characterizes a set of user activities by analyzing and extracting the ses-
sion characteristics over time.

2.2 Transactions

In our analysis, we consider a reduced trace that contains only transactions (web page
views) as discussed above. We omit all embedded images, style sheets, and other
format-related primitives. Moreover, we further distinguish a set of unique transac-
tion types and a set of client accesses to them. For static web pages, the URL uniquely
defines a file accessed by clients. For dynamic pages the requests from different users
to the same web page URL may appear as requests to different URLs due to the client-
specific extension or a corresponding parameter list. We carefully filter out these client-
specific extensions in the reduced trace.

There are 984,505 transactions in the reduced trace. Fig. 1 illustrates the number of
transactions in each hour. It reflects a typical enterprise diurnal access pattern, i.e., high
loads during work hours, and low loads during nights and weekends. In addition, the
studied workload exhibits a regular and predictable load pattern.

Overall, in the reduced trace, there are 756 different unique transactions (or transac-
tion types). Fig. 2 shows the cumulative distribution function (CDF) of client accesses
to different transaction types ranked by the transaction popularity. The transaction with
rank 1 represents the most popular transaction type. Fig. 2 reflects that the studied
workload exhibits a very high degree of reference locality: i.e., a small subset of site
transactions is responsible for a very high percentage of client accesses, e.g.,

– the top 10 transaction types accumulate 79.1% of all the client accesses;
– the top 20 transaction types are responsible for 93.6% of the site accesses;
– the top 100 transaction types account for 99.8% of all site accesses.

This characterization is consistent with earlier works [5,6,7] that have demonstrated
that web server and e-commerce workloads exhibit a high degree of reference locality.
Complementary to the characterization of the most frequently accessed files, we also
see that the percentage of the files that are requested only a few times over an entire
month is very high for this site. These rarely accessed files may play a less important
role in the capacity planning framework, as we demonstrate later.
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Fig. 1. Arrival rate of transactions for each hour
in July, 2006

Fig. 2. CDF of the transaction types
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Fig. 3. Arrival rate of the first 6 most popular transactions across time
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Fig. 4. Portions of the transactions belonging to the top 6 popular transactions across time

Fig. 3 shows the arrival rates of the transactions for the 6 most popular types over
time, and Fig. 4 shows the percentages of these transaction types in the workload mix
over time. Each point in these figures corresponds to one-hour statistics. The figure
shows that the transaction mix is not stationary over time. For example, the most pop-
ular, rank 1 transaction can cotribute to 15% to 40% in the workload depending on the
hour of the day. Similar observations apply to other transactions as well.

Traditional capacity planning methodologies usually examine peak loads and system
utilization to conclude on the number of clients that can be handled by the system. These
methods aim to accommodate variations in load while assuming that the set of workload
transactions is stationary, i.e., that the distribution of different transaction types is fixed.
Many of industry standard benchmarks are built using this principle [3,4]. But real
workloads rarely exhibit this feature as shown by the analysis above. Therefore, instead
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Fig. 6. CDF of the session durations
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of focusing on loads solely, a robust capacity planning methodology must also consider
the changing workload mix since the system capacity directly depends on the types of
user activities.

2.3 Sessions

Understanding user activities at the session level is essential for capacity planning, as
the number of concurrent sessions in the trace is actually a representation of the num-
ber of concurrent clients handled by the system. Fig. 5 displays the arrival rate of new
sessions over time, which follows the same trends as the transaction arrivals. Addition-
ally, it indicates that the high load of transactions during peak time is mainly due to the
increased number of customers.

Fig. 6 shows the CDF of client session durations. A session duration is defined as the
time between the beginning of the first transaction and the end of the last transaction
with the same session ID. The most typical session duration is around 600 seconds. It
is related to the timeout parameter in the application server: if a session is inactive for
600 seconds it is timed out by the server.

Fig. 7 gives the CDF of the session length, i.e., the number of transactions within
each session. Most sessions have a small number of transactions, i.e., 93.1% of the ses-
sions have less than 10 transactions, and 37.6% of the sessions have only one
transaction.
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Since the traces are collected independently at two application servers supported by
heterogeneous machines with different CPU speeds, we turn to the workload in each
server to further understand the session-based behavior of users.

2.4 Workloads of Different Servers

In this sub-section, we present the workload and utilization analysis of each of the two
application servers, which then is used by our capacity planning framework to show
that the framework can effectively support heterogeneous resources.

The two application servers handle client requests after a load balancing point. Fig. 8
shows that the load balancing in this system works well. A similar number of transac-
tions are dispatched to each of the two servers, and both exhibit the characteristics of
the entire workload as described above. 2 Server 2 has a faster CPU. As a result, its
CPU utilization is lower compared to server 1 (see Fig. 9). Most of the time, CPU uti-
lization in both servers is under 10%. Note that for each weekend, there is a spike of
CPU utilization which is related to administrator back-up tasks.
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Fig. 9. Average CPU utilization of each appli-
cation server

Fig. 10 shows the average number of concurrent sessions over time processed sep-
arately by server 1 and by server 2. During peak time, there are about 60 concurrent
sessions for each server, but during the weekends, the number of concurrent sessions
decreases to 10.
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Fig. 10. Average number of concurrent sessions of each application server

2 The workload mixes and the transaction popularity ranking at each server are similar to the
entire system. We do not report the figures here due to space limitation.
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When server 2 receives a slightly higher number of requests than server 1 (since
server 2 has a faster CPU, and its typical CPU utilization is lower), this leads to a slightly
higher number of concurrent sessions hosted by the server 2 as shown in Fig. 10.

2.5 Summary of Workload Analysis

To summarize, the following observations have to be taken into account for an accurate
capacity planning and performance evaluation of production systems with live work-
loads:

– The transaction mix varies over time and hence can not be treated as a fixed, sta-
tionary distribution.

– The workloads exhibit a strong locality property, i.e., a small number of transaction
types are responsible for a large fraction of client requests.

– Most of users have a high think time.

The Workload Profiler collects a set of the following metrics over time: i) the average
CPU utilization, ii) the number of different transactions, iii) the number of concurrent
sessions, and iv) the client think times. These metrics are collected for each time win-
dow of 1 hour (this is a tunable tool parameter) and for each application server. These
metrics can then be used to parameterize the analytic model in Section 4.

3 CPU Cost of Transactions

In this section, we use a statistical regression-based approach for an efficient approx-
imation of CPU demands of different transaction types. We have introduced this ap-
proach in our earlier paper [24], where we evaluated it by using a testbed of a multi-tier
e-commerce site that simulates the operation of an on-line bookstore, according to the
classic TPC-W benchmark [4]. The challenge is to apply and validate this technique
with real, live workloads that exhibit much more complex and diverse behavior than
synthetic ones. With the knowledge of CPU demands of transactions one can easily
compose the resource requirement of scaled or modified transaction mixes. Thus, this
methodology can be directly applied to production systems and can be used to explain
large-scale system behavior and predict future system performance. In this section, we
analyze challenges of applying this method to production systems operating under live,
real workloads, and introduce an optimization technique that enables an efficient use of
the proposed approach.

3.1 Regression Methodology

To capture the changes in server workload we observe a number of different transactions
over fixed length time intervals, denoted as monitoring windows. The transaction mix
and system utilization are recorded at the end of each monitoring window.

Assuming that there are totally M transaction types processed by the server, we use
the following notations:
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– T is the length of the monitoring window;
– Ni is the number of transactions of the i-th type, where 1 ≤ i ≤ M ;
– UCPU,n is the average CPU utilization at the n-tier during this monitoring window;
– Di,n is the average service time of transactions of the i-th type, at the n-tier of the

systems, where 1 ≤ i ≤ M .
– D0,n is the average CPU overhead related to activities that “keep the system up”.

There are operating system processes or background jobs that consume CPU time
even when there is no transaction in the system.

From the utilization law, one can easily obtain Eq. (1) for each monitoring window [8]:

D0,n +
∑

i

Ni · Di,n = UCPU,n · T . (1)

Because it is practically infeasible to get accurate service times Di,n (since it is an
over-constrained problem), we let Ci,n denote the approximated CPU cost of Di,n for
0 ≤ i ≤ M . Then an approximated utilization U ′CPU,n can be calculated as

U ′CPU,n =
C0,n +

∑
i Ni · Ci,n

T
. (2)

To solve for Ci,n, one can choose a regression method from a variety of known methods
in the literature. Finding the best fitting method is outside of the scope of this paper.
In all experiments, we use the Non-negative Least Squares Regression (Non-negative
LSQ) provided by MATLAB to get Ci,n. This non-negative LSQ regression minimizes
the error

ε =
√∑

j

(U ′CPU,n − UCPU,n)2j ,

such that Ci,n ≥ 0, where j is the index of the monitoring window over time.

3.2 Applying Regression to a Production System with Live Workload

We use the one-month trace analyzed in Section 2 to evaluate the accuracy of the
regression-based method described above. We had to limit our validation exercise to
the application server tier because we could not get relevant CPU utilization measure-
ments at the database tier.

For each 1-hour time window3 the Workload Profiler provides the average CPU uti-
lization as well as the number of transactions Ni for the i-th transaction type, where
1 ≤ i ≤ M . The OVSD trace profile has the format shown in Table 1.

When we first introduced and applied the regression-based technique for evaluating
the transaction cost in [24], there were only 14 different transaction types in TPC-W.
The analysis of OVSD workload revealed that the real workloads often have a much
higher number of transaction types, e.g., OVSD workload operates over 756 different
transaction types. In order to apply the regression technique to OVSD workload we

3 In [24], we showed that a larger monitoring window improves the accuracy of regression re-
sults. For the production system under study a monitoring window of 1 hour produced the best
results.
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Table 1. An example of transaction profile in server 1

Time (hour) N1 N2 N3 N4 · · · N756 UCPU (%)

1 21 15 21 16 · · · 0 13.3201
2 24 6 8 5 · · · 0 8.4306
3 18 2 5 4 · · · 0 7.4107
4 22 2 4 7 · · · 0 6.4274
5 38 5 6 7 · · · 0 7.5458

· · ·

would need to collect more than 756 samples of 1-hour measurements. Such a collection
would require to observe this workload for more than 1-month before we would collect
enough “equations” for evaluating the OVSD transaction cost.

The workload analysis presented in Section 2.2 shows that the studied workload
exhibits a very high degree of reference locality, i.e., a small subset of site transactions
is responsible for a very high percentage of client accesses, e.g., the 100 most popular
transactions already cover 99.8% of all client accesses. From the other side, there is a
high percentage of transactions that are rarely accessed, i.e., so called, “one-timers”.
We divided the original 1-month trace in two halves. The additional workload analysis
revealed that there are 203 transactions that are accessed only once in the first half of
the trace, and which are not accessed in the second half of the trace. Similarly, there are
189 transactions that are accessed only once in the second half of the trace, and which
are not accessed in the first half of the trace. The non-negative LSQ regression used in
this paper returns “0” as a typical value for “rare” variables, since there is not enough
information in the original set of equations to produce a more accurate solution.

So, the question is whether accurate performance results can be obtained by approx-
imating the CPU cost of a much smaller set of popular (core) transactions. In other
words, if we use regression to find the CPU cost of a small number of core transactions,
can this small set be useful for an accurate evaluation of the future CPU demands in the
system?

Following this idea, we only use the columns N1 to NK and UCPU in Table 1 to ap-
proximate Ci for 1 ≤ i ≤ K . The approximated U ′CPU of every hour is then computed
by these N1 to NK and C1 to CK values.

We also consider the results produced by the non-negative LSQ regression method
when K is equal to 10, 20, 60 and 100 transactions respectively. We use the relative
error of the approximated utilization as the metric to validate the regression accuracy.
For every hour, the relative error of the approximated utilization is defined as

ErrorR =
|U ′CPU − UCPU |

UCPU
. (3)

We divide the OVSD trace into two parts. The first half is used as a training set to solve
for the CPU cost Ci using the non-negative LSQ regression method. The second half
is treated as a validation set. Because the administration jobs during weekends might
introduce a significant noise to the CPU utilization, the training set for the regression
consists of data from workdays only.
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Fig. 11. Server 1. CDF of relative errors under a different number of of core transactions chosen
for a regression method: (a) training set, (b) validating set.
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Fig. 12. Server 2. CDF of relative errors under a different number of core transactions chosen for
a regression method: (a) training set, (b) validating set.

The regression method produces similar results for the two heterogeneous applica-
tion servers in the system. Figs. 11-12 show the CDF of the relative errors for training
and validating sets for servers 1 and 2, respectively.

The regression results can be summarized as follows:

– Overall, the non-negative LSQ regression achieves good results for all examined
values of K , i.e., when the regression method is applied to approximate the CPU
cost of the top 10, 20, 60, or 100 most popular transactions. For the training set, at
least 60% of the points have relative errors less than 10%, and at least 90% of the
points have relative errors less than 20% (see Figs. 11(a) and 12(a)). The method’s
accuracy for the validating set is only slightly worse (see Fig.11(b), 12(b)).

– Larger K achieves a higher accuracy for the training set. However, this improve-
ment is not significant: for K = 100 there is only a 4% improvement compared to
the results with the top 10 transactions.

– The larger values of K , e.g., K = 100, show a worse prediction accuracy for
the validating set compared to K equal to 10 or 20 core transactions as shown
in Fig. 11 - 12. These results again can be explained by the workload properties.
While we consider 100 most popular transactions, the last 80 of them only respon-
sible for 6% of the client requests. These transactions have an irregular access pat-
tern. Some of those transactions appear only in the first or second half of the trace
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(while not being a “one-timer”). As a result, computing the individual cost of these
transactions does not help to evaluate the future CPU demands, and introduces a
higher error compared to the regression based on a smaller transaction set.

Regression produces the best results when a representative set of core transactions
is used and rarely accessed transactions are omitted. Since some of the rarely accessed
transactions might only appear in the first half of the trace, while some different rarely
accessed transactions may only appear in the second half of the trace, it is beneficial to
use only core transactions in linear regression as well as in the overall capacity plan-
ning. The additional CPU overhead that is due to the rarely accessed transactions is
“absorbed” by the CPU cost of the core transactions. Consequently, a small additional
CPU usage by the distinct and rarely accessed transactions is accounted via the CPU
cost of the most frequently and consistently accessed core transactions.

We conclude that considering the top 20 core transactions (i.e., K = 20) leads to
the most accurate results. Note that the top 20 transactions are responsible for 93.6% of
the total transactions in the analyzed trace. Therefore, selecting the top K transactions
that account for 90% - 95% of all client accesses for the regression method results in
a good representative subset of the entire workload. The regression solver produces
a solution for 200 equations with 20 variables only in 8 millisecond. In general, the
common least squares algorithms have polynomial time complexity as O(u3v) when
solving v equations with u variables, and hence, can be efficiently used as a part of on-
line resource evaluation method [1]. Combining the knowledge of workload properties
with statistical regression provides a powerful solution for performance evaluation of
complex production systems with real workloads.

3.3 Anomaly Detection

Shortened product development cycle, frequent software updates, and more complex in-
tegration dramatically increase the risk of introducing poorly performing applications.
Consequently, another problem that needs to be addressed is a preliminary analysis of
performance issues that often occur during the application updates and new software
releases: this is also known as anomaly detection. Typically, when a new software re-
lease is introduced and unexpected performance issues are observed, it is important to
make sure that these performance issues are not caused by the current workload, i.e.,
system overload due to a higher rate of client requests. When the system performance
can not be explained by the existing workload mix in the system, it suggests that the ob-
served performance issues might be caused by the latest software modification. Thus, it
is important to evaluate the resource usage caused by the existing transaction mix in the
system, and to generate the alarm events when system utilization significantly deviates
from the predicted utilization value computed from the existing workload.

Using the observed workload mix we compute the expected CPU utilization of the
system U ′CPU by Eq. 2 and compare it against the measured CPU utilization UCPU

for the same time period. The service provider can set a threshold Th that defines the
acceptable deviation of expected system utilization U ′CPU from the observed utilization
UCPU . If

UCPU − U ′CPU

U ′CPU

≥ Th (4)
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then our tool generates an alarm event. We only consider the situations when the mea-
sured CPU utilization is significantly higher than the expected one, since in this case,
something else besides the observed workload causes performance problems.

Fig. 13 demonstrates the anomaly detection feature of the tool for the OVSD trace
with Th = 2. Our method accurately predicts CPU utilization caused by this mix. Over
weekends our method has generated the alarm warnings (marked with circles in Fig. 13)
indicating that something else, besides the transaction processing, happens in the system.
During these time intervals the predicted and observed utilizations are drastically differ-
ent. Our method correctly identifies a non-typical CPU utilization caused by a set of ad-
ditional administrative tasks, extensively performed over weekends (see remarks about
this in Section 2.4), and which had nothing to do with the processed transaction mix.

While in this paper, we defined an anomaly situation as one where observed CPU
utilization significantly exceeds predicted CPU utilization, one can consider a sym-
metrical situation where observed CPU utilization is significantly lower than predicted
CPU utilization as a result of transaction mix, and verify the reasons behind it: for ex-
ample, it might be related to unavailable embedded objects in the serviced web pages
due to some storage subsystem problems. Currently, we are working on optimizing the
regression technique that provides a better support for performance anomaly detection
as well as on designing a technique for tuning the threshold parameters that minimize
false positive alarms.
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Fig. 13. Anomaly detection with R-Capriccio

4 Capacity Planning

Modern Internet servers typically employ a multi-tier structure consisting of web
servers, application servers and databases as given in Fig. 14. Each tier gets the re-
quests from its preceding tier, and may generate certain requests to its successor. For
scalability, a tier may consist of several replicated servers. These servers may be hetero-
geneous, and a dispatcher may employ a special load balancing strategy for distributing
the incoming requests across the replicated servers.

Due to the session-based client behavior, a multi-tier system is usually modeled as
a closed system with a network of queues (see Fig. 15). The number of clients in the
system is fixed. When a client receives the response from the server, it issues another
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Fig. 14. A multi-tier structure of a server
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Fig. 15. Queuing network modeling of a multi-tier closed system

request after certain think time. This think time is modeled as an infinite server Q0 in
Fig. 15. Once the service time in each queue is obtained, this closed system can be
solved efficiently using Mean-Value Analysis (MVA) [8].

Workload characterization of real traces in Section 2 shows that the workload mix
changes over time, and hence the service time could not be modeled as a fixed distribu-
tion for the entire lifetime of the system but one can treat the workload as fixed during
shorter time intervals (e.g., 1 hour). R-Capriccio performs the capacity planning proce-
dure for each monitoring time window of 1 hour and then combines the results across
these time points to get the overall solution 4.

4.1 MVA

MVA is based on the key assumption that when a new request enters a queue, this
request sees the same average system statistics in the system as without this new request.
Fig. 16 presents a description of the detailed MVA algorithm [22].

The visit ratio Vi (definition in Fig. 16) is controlled by the load balancing policy.
For example, if the load balancing policy used is equally partitioning the transactions
across all servers, then the number of visits Vs to server s in tier l is equal to 1/ml,
where ml is the number of servers in tier l.

4 For the TPC-W benchmark and most production multi-tier services CPU is a typical sys-
tem bottleneck. However, in practice, when one needs to make a projection of the maximum
achievable system throughput, additional “back of the envelope” computations for estimat-
ing memory and network requirements under the maximum number of concurrent clients are
required to justify this maximum throughput projection.
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Inputs:
N = number of clients
Z = think time
L = number of servers
Si = service time per visit to the i-th queue
Vi = number of visits to the i-th queue

Outputs:
X = system throughput
Qi = average number of jobs at the i-th queue
Ri = average response time of the i-th queue
R = system response time (excluding think time)
Ui = utilization of the i-th queue

1. Initialization: for i = 1 to L do Qi ← 0
2. Iterations:

for n = 1 to N do
a. for i = 1 to L do

Ri = Si(1 + Qi)

b. R =

L�

i=1

RiVi

c. X =
n

Z + R
d. for i = 1 to L do Qi = XViRi

3. for n = 1 to L do
a. Xi = XVi

b. Ui = XSiVi

Fig. 16. The MVA algorithm [8]

Note that the original MVA (as in Fig. 16) takes the number of clients N as input,
and computes the average performance metrics for a system with N clients. In capac-
ity planning, the number of clients is unknown. In the contrary, the model needs to
be solved for exactly this unknown variable. Here, we assume that the Service Level
Agreement (SLA) specifies a threshold ΓR (i.e., upper bound) of the average transac-
tion response time. Then the condition in step 2 of MVA is changed to the following
condition: “while R ≤ ΓR do”.

4.2 Case Study

In this section, we demonstrate how R-Capriccio helps to answer the following capacity
planning question:

– How many clients can be supported by the existing system:
• providing the desirable performance guarantees, e.g., response time under ΓR,

and
• assuming that the system processes a given (varying, non-stationary) type of

workload?
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The detailed sequence of steps performed by R-Capriccio is summarized in Fig. 17.

1. Workload profiler:
For each monitoring window w, and each server s:
a. collect the number of transactions Ni,s,w of each type i;
b. collect the average utilization Us,w.
For each monitoring window w:
a. select the top K most popular transaction types;
b. collect the transaction mix in the system,

i.e., the percentage pi of the transactions for type i
for all 1 ≤ i ≤ K;

c. collect the average think time Zw.

2. Regression-based solver:
For each server s:

Compute the cost function Ci,s for each transaction
type i as described in Section 3, where 1 ≤ i ≤ K.

3. Analytical model:
For each monitoring window w:
a. approximate the service time Ss for each server s as

Ss =
�K

i=1 pi · Ci,s;
b. compute the maximum number of clients MAXw can

be handled with average response time less than ΓR

using MVA algorithm.
Build the profile with entry as (w, MAXw).
Find the minimal MAXw value X.

X is the number of concurrent customers the system can support
with the average transaction response time less than ΓR

Fig. 17. The R-Capriccio Framework

The first two steps of R-Capriccio that use the Workload Profiler and the Regression-
based Solver have been presented in the previous two sections. We use the same work-
load as input to the third step of the analytic model. In the case study, we had to limit
our capacity planning exercise to the application server tier (which is a bottleneck tier
in the OVSD service) because we could not get relevant CPU utilization measurements
at the database tier (this particular database was shared across a few different services,
and we had only access to the OVSD part of the application servers).

Since the traces are collected from the two servers independently, we treat each het-
erogeneous server as an independent system. Later, we show how to combine the ca-
pacity planning results from those heterogeneous servers together.

All the experiments are conducted for the top 20 most popular transaction types, i.e.,
K is set to 20. Following step 3.a. in Fig. 17, we approximate the average service time
for each 1-hour time interval for both servers as shown in Fig. 18. Because server 2 has
a faster CPU, it is expected that it has a smaller service time than server 1. For each time
interval there is a vector of parameters representing the average think time, the average
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Fig. 18. Approximated service time using the CPU cost of the top 20 transaction types
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Fig. 19. Server 1. Measurements versus analytic model: a) Throughput of transactions; b) CPU
utilization.

service time, and the number of concurrent clients. We apply the MVA model at each
time interval for each server.

Fig. 19(a) shows the validation results by comparing the throughput of the analytic
model and the measured transaction throughput of server 1. The analytic model captures
the real system behavior well, i.e., 90% of the relative errors are below 18.7%. Cop-
marisons of the throughput of the analytic model and the measured session throughput
of server 2 are of similar accuracy.

Fig. 19(b) compares the average measured utilization over time with the utilization
results provided by the analytic model. We observe a nearly perfect match between the
measured and analytic results. Except for the utilization spikes observed in the real sys-
tem measurements over weekends that are due to special administration-related tasks as
discussed in Sections 2.4 and 3.3. Our method predicts a much lower CPU utilization
using the observed transaction mix for these time periods. This presents an additional
functionality of R-Capriccio that can help in generating “alarm” conditions when pre-
dicted utilization for processing the existing workload significantly deviates from the
system measurements. The analytic results for server 2 show a similar performance
trends and are not presented here for brevity.

Fig. 20 and Fig. 21 illustrate the CDF of the maximum number of clients that can be
supported by server 1 and server 2 under the changing OVSD transaction mix over time,
where the transaction response time is limited by ΓR equal to 1, 3, 6 and 10 seconds
respectively. These results are computed using the same think time and service time as
in the above experiments.
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Fig. 21. Server 2: CDF of the maximum
number of clients under different threshold
ΓR of the average response time

The summary of results are shown in Table 2. As expected, server 2 has a much
higher capacity than server 1. Higher values in threshold ΓR allow for a larger number
of clients to be supported by the system.

Table 2. Maximum number of clients under different ΓR

ΓR(sec) Server 1 Server 2 Total

1 472 1349 1821
3 528 1478 2006
6 565 1534 2099
10 608 1580 2188

The capacity of the entire application server composed of these two heterogeneous
servers is determined by the load balancing policy as well. For example, if the SLA de-
fines that the average transaction response time is not higher than 1 second, the studied
application server can handle 1821 concurrent clients but only if the load balancer is
aware of the heterogeneous capacity of these two servers and can split the load propor-
tionally to server capacity. If the load balancer partitions transactions equally, capacity
reduces to 944, just half of the previous one. Such a big difference indicates the sig-
nificant impact of a load balancing policy on system capacity as heterogeneous CPU
speeds must be taken into account.

5 Related Work

Performance evaluation and capacity planning of software and hardware systems is a
critical part of the system design process [8]. There is a number of capacity planning
techniques proposed for different popular applications.

Among these techniques, queuing theory is a widely used methodology for modeling
a system behavior and answering capacity questions [16,17,18]. Modeling of a single-
tier system, such as a simple HTTP server, has been studied extensively. Even for a
multi-tier structure which is employed ubiquitously for most servers, the system is usu-
ally abstracted as the most bottle-necked tier only: in [16], only the application tier for
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the e-commerce systems are modeled by a M/GI/1/PS queue; similarly in [19] the appli-
cation tier with N node cluster is modeled by a G/G/N queue. Recently B. Urgaonkar et
al. proposed analytic models for both open and closed multi-tier systems [17,18]. These
models are validated by synthetic workloads running in real systems. However the ex-
pense of accurately estimating model parameters, i.e., service times and visit ratios,
from each server log makes this model difficult to apply in production environments.
Direct measurements in [18] do not characterize transactions as we do in this paper.
Moreover, existing capacity planning methods are based on evaluating the system ca-
pacity for a fixed set of typical user behaviors. Once the service time is estimated, it
is consistent throughout the planning procedure. This approach does not consider the
fact that a changing workload for the same system has different service times and may
result in different system capacity. Our experiments show that such techniques as those
in [18] may fail to model a real system because of its dynamic nature.

In this paper, we use a similar closed multi-tier model as in [18], but in contrast
to [18] or other examples in the existing literature of capacity planning, we propose a
methodology that does not need a controlled environment for analytic model param-
eterization. Instead of characterizing the overall service time of every server, we use
a statistical regression method to approximate the service cost of individual transac-
tions. This CPU cost function together with the transaction mix help to approximate the
system service time that varies with the changing transaction mix.

The use of statistical methods in capacity planning has been proposed in the early
80’s [9,8], but the focus was on a single machine/cluster that is much simpler than
current large-scaled multi-tiered systems. Recently statistical methods are getting more
attention in computer performance analysis and system performance prediction. In [20]
the authors use multiple linear regression techniques for estimating the mean service
times of applications in a single-threaded software server. These service times are cor-
related with the Application Response Measurement package (ARM) data to predict
system future performance. In [21],[23] the authors focus on transaction mix perfor-
mance models. Based on the assumption that transaction response times mostly consist
of service times rather than queueing times they use the transaction response time to
approximate the transaction service demand. The authors use linear regression to iden-
tify performance anomalies in past workloads and to scrutinize their causes. We do not
use measured transaction response times to derive CPU transaction demands (this ap-
proach is not applicable to the transactions that themselves might represent a collection
of smaller objects). One of their basic assumptions is that the transaction mix consists
of a small number of transaction types.

We have introduced a statistical regression-based approach for the CPU demand ap-
proximation of different transaction in our earlier paper [24], where we evaluated this
approach by using a testbed of a multi-tier e-commerce site that simulates the opera-
tion of an on-line bookstore, according to the classic TPC-W benchmark [4]. Using the
TPC-W benchmark, we demonstrated that the use of linear regression provides promis-
ing results. However, TPC-W operates using only 14 transaction types. In this work, we
continue applying the linear regression technique for approximating the CPU transac-
tion cost as was introduced in [24] but in a much more challenging environment. Here,
we applied and validated this technique with real, live workloads that exhibit much more
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complex and diverse behavior than the synthetic TPC-W benchmark. Among the contri-
bution of the current paper is a novel approach that illustrates how the regression-based
technique can be applied to the production sites with large set of transaction types. By
applying the regression to a set of popular, so-called “core” transactions (that are re-
sponsible for 90% - 96% of the site traffic) we are able to obtain the accurate estimates
of transaction CPU cost that can be used for a variety of performance anomaly detection
cases and capacity planning tasks in the production sites with real, live workloads.

6 Conclusion

In this paper, we present R-Capriccio, a new capacity planning framework which pro-
vides a practical, flexible and accurate toolbox for answering capacity planning and
anomaly detection questions for multi-tier production systems with real workloads.
More importantly, it can be used for explaining large-scale system behavior and pre-
dicting future system performance.

We used the access logs from the OVSD application servers to demonstrate and val-
idate the three key components of R-Capriccio: the workload profiler, the regression-
based solver, and the analytic model. In our capacity planning framework, we identify
the set of most popular core transactions and sessions for building a site profile, compute
transaction cost, and size the future system under the real workload. In order to derive
the resource cost of each core transaction (i.e., CPU time required for corresponding
transaction processing), we observe a number of different core transactions over fixed
length time intervals and correlate these observations with measured server utilization
for the same time interval. Using a non-negative least-squares regression method we
approximate the resource cost of each core transaction. The statistical regression works
very well for estimating the CPU demands of transactions that themselves might repre-
sent a collection of smaller objects and where the direct measurement methods are not
feasible.

While this paper concentrates on evaluating the CPU capacity required for support
of a given workload, we believe that regression methods can be efficiently applied for
evaluating other shared system resources. We plan to exploit this avenue in our future
work.
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1 Introduction

Today’s large-scale distributed settings contain hundreds to thousands of hosts,
and include Grids [5,10,29], peer-to-peer (p2p) systems, and geographically-
distributed clusters such as PlanetLab [20]. Modern and emerging distributed
applications running in such settings will have to address two challenges: het-
erogeneous availability variation of underlying hosts, and the requirement for
system-wide monitoring operations. Further, these challenges have to work even
under non-cooperative situations, where hosts may behave selfishly.

The availability of hosts (i.e., their fraction uptime) in any of these systems
varies widely across both time and across hosts. For instance, in the Overnet
p2p system 50% of hosts have a 10-day availability lower than 30% [3]. This
heterogeneity across space and time is visible even in Grid applications. For
instance, Grid5000 designers report that each machine reboots several tens of
times per day, depending on the applications that are scheduled to run on it [5].

Orthogonally, in addition to this heterogeneity, several researchers and indus-
trial companies have pointed out the dire need for monitoring and management
of end-user distributed applications. Jim Gray opined that management was the
most difficult problem for any distributed system [19]. The 2005 NSF report
on “Grand Challenges in Distributed Computer Systems” lists among its pri-
mary concerns real-time management, automated monitoring, and dealing with
heterogeneity in distributed systems [7]. Finally, end-user applications routinely
form 24% to 33% of the TCO (Total Cost of Ownership) of today’s clusters [26].

Finally, it is well-known that p2p and Grid systems (e.g., @Home-style ap-
plications, or spread over multiple institutions) consist of many nodes that are
selfish and would like to obtain maximum benefit from the overlay, in spite of
their low availability. For instance, Adar and Huberman point out in [1] that as
many as 70% of nodes in Gnutella are freeloaders. Authors have looked at avoid-
ing the effect of selfish nodes for multicast, e.g., [12], however, we believe we are
the first to look at availability-based management tasks under a non-cooperative
node model.

The conjunction of the above three concerns motivates the problem of de-
signing middleware that executes availability-based monitoring and management
tasks for such distributed settings. To stay concrete, we consider four spe-
cific types of such availability-based tasks (which we sometimes also refer to
as queries), each with significant and varied uses:

I. Threshold-multicast and Threshold-anycast: Multicast (or anycast) to
all nodes with availability > b (where b ∈ [0, 1)), starting from any arbitrary
initiator node. This would be useful for both control and data operations. Con-
trol operations include selecting a supernode in a p2p system with a minimal
threshold availability, e.g., akin to [13,14,16]. Data operations include a publish-
subscribe or multicast application where packets are sent out to only nodes above
a certain availability, e.g., [21]. Such a multicast application would incentivize
hosts to have higher availability, in order to obtain good reliability.
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II. Range-multicast and Range-anycast: Multicast (or anycast) to a node
with availability in range [b, b + δ] ⊆ [0, 1], starting from any arbitrary initiator
node. This operation can be used to fingerprint characteristics of the nodes
within an availability range, e.g., one could find out the average bandwidth of
nodes below a certain availability, in order to understand the correlations. In
addition, threshold anycast would be useful for selection of replica locations for
a file [4,6], and of deployment instances for a distributed Grid application [5].

There are many other availability-based management operations not listed
above that may be desired by applications. However, we find that all of the exist-
ing overlays in literature are availability-agnostic while selecting neighbors, thus
making it inefficient to run the above classes of tasks. This observation motivates
the need for an availability-aware overlay, that would support availability-based
management operations like the ones listed above.

1.1 Design Goals, Challenges, and Principles

A decentralized solution to the availability-based management problems just de-
scribed consists of two components: (I) an overlay among the nodes that helps
each node maintain a set of neighbors (or a membership list), based on the avail-
abilities of these nodes; and (II) operations to execute the desired management
operations by leveraging this overlay. Furthermore, these components require an
availability monitoring service, which can be queried to learn the availability of
any node in the system.

In building the overlay (component (I) above), we face two challenges. The
first arises because we consider a system model where nodes may be selfish. Under
this setting, nodes (especially those with low availabilities) would like to have as
many other nodes (possibly of high availability) in their own membership list,
and to communicate with them. Further, these selfish nodes may wish to flood
the network with copies of a genuine anycast or multicast request they received1.
To address this challenge, we select neighbors of a given node x, based on the
availabilities of the nodes, in a manner that is consistent in spite of changes in
the system.

Concretely, given a node x and y, let M(x, y) be a binary variable that denotes
whether y is a valid entry in x’s membership list or not. Consistency requires
that the value of M(x, y) depend only on the addresses (IP and port) of x, y, and
their availabilities av(x), av(y) as reported by the availability monitoring service.
M(x, y) should not be influenced by any external factors such as other nodes
in the system, the system size, or churn in the system (i.e., nodes joining and
leaving the system), etc. Notice that consistency allows both the recipient node
y of any message and a third node to verify the value of M(x, y), regardless of
other factors in the system. This implies that any node x (selfish or otherwise)
will be able to send messages only to other nodes y that are legitimately its
neighbors under the consistent predicate, i.e., for which M(x, y) = 1.

1 Corruption of messages is not considered here, as it is an orthogonal problem, and
how to tolerate it has been previously addressed [17].
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The second challenge arises from the fact that we would like to maintain
connectivity in the overlay as well as support efficient anycast and multicast
operations, yet maintain only a small number of neighbors. A small number of
neighbors translates to a lower bandwidth, memory, and computation overhead.
In order to ensure connectivity, scalability, and efficiency, we require the neighbor
selection criteria to be flexible, besides being consistent. Our approach addresses
this challenge by coupling consistency with randomization.

Finally, for component (II) above, we would like to execute anycast and mul-
ticast operations in a manner that is fast (i.e., has low latency), scalable (i.e.,
uses a small number of messages), and reliable (i.e., manages to complete suc-
cessfully). We address this challenge by using a variety of techniques, ranging
from flooding and greedy approaches, to gossip and simulated annealing.

1.2 Other Related Work and Eliminated Solutions

Using a centralized solution to execute the management tasks mentioned is pro-
hibitive because this would limit the number of simultaneous tasks that can be
addressed, especially if these tasks are for the multicast variants above. It is
well-known that such central-database solutions are rather ineffective at provid-
ing real-time answers to instantaneous queries.

In the realm of decentralized solutions, one potential alternative is to leverage
p2p ring-based distributed hash tables (DHTs) such as Pastry [22] or Chord [24].
Such an approach would decide DHT nodeIDs for nodes based on the node’s
availability, rather than a hash of its IP address. Although this allows manage-
ment tasks to be resolved via the DHT routing algorithm itself, this approach
causes an unacceptable amount of churn in the DHTs. This churn arises since
a nodeID changes with the node’s availability, besides the fact that nodes are
continuously going offline and coming online. In addition, when using ring-based
DHT routing the latency for answering a range-multicast task is linear in the
number of nodes involved, thus making it inefficient.

Another alternative could be p2p solutions that are specially built to support
range searches (or range queries) such as skip trees, graphs and others [2,9,23,30],
or content-based publish-subscribe architectures like Sub-2-Sub [28]. In this ap-
proach, nodes would be organized and placed in the overlay based on their cur-
rent availability, so that anycast and multicast tasks could be executed by doing
a range search on the appropriate availability range. Once again however, there
is a high degree of churn in the system; as nodes’ availabilities change over time,
their positions in the overlay will move around as well. Further, p2p range query
structures are known to be difficult to manipulate under concurrent operations.
Note that no system targets range or threshold operations under a selfish node
model.

Finally, we would like to eliminate broadcast-based solutions that flood out
the multicast or anycast to all nodes, since this is inefficient, unscalable, and
causes spam to nodes outside the target range.



270 R. Morales, B. Cho, and I. Gupta

Availability

1.0

0.0 Fraction of Nodes 1.0

X

Node x

Vertical sliver at node x

Horizontal sliver at node x

Fig. 1. AVMEM membership lists at a node x: Horizontal Sliver and Vertical Sliver

1.3 Contributions of This Paper

In order to meet the above goals, this paper presents AVMEM which, to the
best of our knowledge, is the first proposed availability-aware membership pro-
tocol. AVMEM explicitly leverages availability information of nodes in the sys-
tem while selecting neighbors. AVMEM avoids the effects of selfish nodes, and
allows efficient execution of our targeted availability-based management opera-
tions. Concretely, each node in AVMEM maintains two small membership lists:
a horizontal sliver (HS) and a vertical sliver (V S). The horizontal sliver at node
x contains a small (random) subset of nodes with availability “close” to av(x),
the availability of x. In contrast the vertical sliver contains a small (random)
subset of nodes from among those with availability that is not in the vicinity of
av(x). This is illustrated in Figure 1.

Most importantly, AVMEM supports an arbitrary class of membership pred-
icates that are random and consistent. This gives an application developer the
choice from a family of AVMEM predicates in order to build the appropriate
overlay for their application. The horizontal and vertical slivers at each node are
selected in a randomized and consistent fashion by using the application-specified
predicate. This maintains connectivity, reduces the effect of selfish nodes, and
provides efficiency, scale and reliability for the management operations.

We discuss and analyze the family of predicates supported by AVMEM in
Section 2. Then, in Section 3, we present decentralized AVMEM protocols that
achieve scalable and fast discovery as well as updating of neighbors at each
node. Finally, we solve: (1) anycast by using greedy and simulated-annealing
approaches, and (2) multicast by using either a flooding or a gossip-based ap-
proach. We have implemented AVMEM, and we present trace-based simulations
in Section 4. Specifically, we use churn traces from the Overnet p2p system [3]
to evaluate and compare the effectiveness the management operations, as well
as to microbenchmark the behavior of the AVMEM overlay itself. Due to the
novelty of AVMEM, we prefer to do a thorough and comprehensive evaluation,
rather than creating a strawman system to make comparisons. We conclude in
Section 5.
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2 AVMEM Membership Graph Predicates

This section presents a range of predicates for creating random and consistent
membership graphs (or overlays) that are availability-aware. Section 3 will de-
scribe the discovery of membership graphs for any such given predicate.

Basics and Notation: The availability of a node x, as reported by the availabil-
ity monitoring service, is denoted as av(x). Further, the identifier (hash-based
or IP-port) of node x is denoted as id(x). Given two nodes x and y and a mem-
bership predicate, M(x, y) is a binary variable that indicates whether node x
(with availability av(x)) should contain node y (with availability av(y)) in its
membership list or not.

Due to our principles of randomization and consistency, we use the following
framework for the AVMEM predicate in the rest of the paper:

M(x, y) ≡ {H(id(x), id(y)) ≤ f(av(x), av(y))} (1)

Here, H(.) is a (consistent) normalized cryptographic hash function with range
[0, 1], used for its randomization – a normalized version of SHA-1 or MD-5 could
be used for this purpose. Further, f is a function that takes as input a pair of
variables in the range [0, 1], and outputs a value that lies in [0, 1].

The above predicate means that for given nodes x, y, node x will include y in
its membership list only if the value of H(id(x), id(y)) is less than the value of
f(av(x), av(y)). This provides consistency, since the value of M(x, y), as specified
by equation 1, depends only on the identifiers and availabilities of nodes x and
y, but not on anything else in the system. Further, regardless of who evaluates
the condition 1 above, it will produce the same result for nodes x, y.

Since we assume that H is a fixed and well-known function, the actual
AVMEM predicate is thus determined by the nature of f . For instance, if f(., .) =
p, (p ∈ [0, 1]), then we derive a random overlay (like SCAMP[8] or CYCLON[27]),
but with the additional property of consistency. In other words, for this example,
given two nodes x and y, then M(x, y) = 1 consistently with probability p.

Section 2.1 next discusses a family of interesting AVMEM predicates specified
under the framework of equation (1). Section 2.2 analyzes these predicates.

2.1 A Family of Availability-Aware AVMEM Predicates

We consider a family of interesting predicates that leverage the known probabil-
ity distribution function (PDF) of the availability variation in a given system.
The availability variation PDF in several deployed p2p systems has been ob-
served to remain fairly stable from one day to another [25]. Notice that such
information can be collected and analyzed offline by either a crawler or a central
server. This information can then be communicated to all nodes at pre-run-time
and used consistently. Suppose the PDF of the availability distribution of the
system is specified as p : [0, 1] → [0, 1], i.e., p(a) ·da is the fraction of nodes with
availability between a and (a−da), when da → 0. Then, our canonical AVMEM
predicate is specified as:
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f(av(x), av(y)) =
{

hs(av(x), av(y), p(.)) if |av(x) − av(y)| < ε. [Hor. Sliver]
vs(av(x), av(y), p(.)) otherwise. [Vertical Sliver]

Recall that a horizontal sliver at node x is defined as a partial list of nodes
(called horizontal sliver neighbors of x in the overlay) with “similar” availability
as node x. According to the above framework, we use an availability range of
(±ε) around av(x) as candidate nodes for the horizontal sliver at node x. The
value of ε is fixed globally, and does not depend on the target ranges of multicast
or anycast operations (or vice-versa). Our experiments find that using ε = 0.1
suffices to give good scalability and reliability for management tasks.

To understand the horizontal sliver concept intuitively, the reader may re-
alize that the horizontal sliver is somewhat like similar notions in DHTs, i.e.,
like the “leaf table entries” in Pastry [22], and the “successors/predecessors”
in Chord [24]. However, our setting is different since those systems deal with
hashed nodeIDs, while we are dealing with availability space instead. The hori-
zontal sliver helps to maintain a connected overlay among nodes with availability
around av(x). Notice that if there are L such nodes, the number of neighbors
has to be O(log(L)), selected uniformly at random, for connectivity to hold with
high probability (w.h.p.) [8].

On the other hand, a vertical sliver at node x is defined as a random sample
of nodes with availabilities ranging all the way from 0 to 1. The goal of a vertical
sliver is to maintain connectivity throughout the system via a sufficient number
of “long-distance” links (in availability space) among nodes. This is most akin to
the routing table entries in Pastry or Chord DHTs [22,24]. However, once again,
we are dealing with the availability space rather than hashed nodeIDs, thus our
problem setting is quite different.

Below we describe and analyze several AVMEM predicates. Some of these
predicates will assume knowledge of the expected system size (i.e., number of
online nodes) as a parameter N∗. In p2p systems [3,?], overlays like PlanetLab,
and Grid systems, the actual number of online nodes varies within a small con-
stant factor of N∗. Thus, N∗ need not be accurate – our algorithms and analysis
hold even when the actual system size is off by a constant factor from the value
of N∗, although they might cease to hold with an order of magnitude varia-
tion. Just like the availability PDF, the value of N∗ can be calculated offline by
crawlers, and communicated to all nodes consistently. N∗ would not be changed
even if the actual number of online nodes changes.

While vs() and hs() can be arbitrary, below we first discuss several useful
options for selecting the vertical sliver (i.e., different vertical sub-predicates) and
then for selecting the horizontal sliver (i.e., different horizontal sub-predicates).

I. Vertical Sub-Predicate Possibilities: There are several ways of specifying the
vertical sliver sub-predicate, i.e., vs(). We discuss three options below, in in-
creasing order of complexity. We are most interested in the second option (I.B)
and analyze it in detail in Section 2.2. The first option we discuss is availability-
independent:
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vs(av(x), av(y), p(.)) = d1, d1 = O( log(N∗)
N∗ ) [I.A: Constant Vertical Sliver]

This predicate works best in a system where the availability PDF distribu-
tion is a uniform one. However, distributed systems rarely have homogeneous
availability PDFs. This motivates us to consider other predicates that are more
expressive. We derive a very generic vertical sliver sub-predicate:

vs(av(x), av(y), p(.)) = min( c1·log(N∗)
N∗·p(av(y)) , 1.0) [I.B: Logarithmic Vertical Sliver]

Here, c1 is a constant. Section 2.2 proves that this predicate ensures a unifor-
mity of coverage of the availability space (Theorem 1). In other words, for any
availability range [b, b + ε] (non-overlapping with [av(x) − ε, av(x) + ε]), a node
x will have the same expected number of vertical sliver neighbors in this range,
regardless of the value of b.

Finally, one may desire that the density of vertical sliver neighbors in an in-
finitesimal interval around a value b becomes smaller and smaller as the absolute
value of |b − av(x)| becomes larger and larger. This would provide an overlay
somewhat akin to Pastry routing table entries and Chord finger table entries,
where neighbors are chosen with exponentially increasing distance as one moves
away (there, in the hashed nodeID space). This is realized by the following pred-
icate, as proved in Corollary 1.1 of Section 2.2:

vs(av(x), av(y), p(.)) = min( c1·log(N∗)
N∗·p(av(y))·|av(y)−av(x)| , 1.0)

[I.C: Logarithmic-Decreasing Vertical Sliver]

II. Horizontal Sub-Predicate Possibilities: Just like for vertical slivers, there
are several possible horizontal sliver sub-predicates. We enumerate two of them
below. The second of these predicates (I.B) is more interesting, and is analyzed
in Section 2.2.

The first option is to select a constant fraction of the nodes that lie in the
availability range [av(x) − ε, av(x) + ε]. The predicate is:

hs(av(x), av(y), p(.)) = d2, d2 = O( log(N∗)
N∗ ) [II.A: Constant Horizontal Sliver]

Although this ensures connectivity w.h.p. among the nodes in this availabil-
ity range, it involves too many nodes. Specifically, it is possible that the range
[av(x) − ε, av(x) + ε] contains much fewer nodes than N∗. This raises the pos-
sibility that the size of the horizontal sliver at a node x can be reduced. This
leads us to the following predicate:

hs(av(x), av(y), p(.)) = min(
c2·log(N∗

av(x))
N∗min

av(x)
, 1.0)

[II.B: Logarithmic-Constant Horizontal Sliver]

Here, c2 is a constant. This formulation involves two new parameters - N∗av(x)

and N∗min
av(x) . First, N∗av(x) is the expected number of online nodes in the
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availability range [av(x)− ε, av(x)+ ε]. Mathematically, this can be derived from
the PDF of the availability distribution. That is, N∗av(x) = N∗×

∫ av(x)+ε

av(x)−ε
p(a)da,

where N∗ = the stable system size. Second, N∗min
av(x) is the minimum number of ex-

pected online nodes present in any availability interval of width ε that lies wholly
within [av(x) − ε, av(x) + ε]. This can also be calculated from the PDF of the
availability distribution as follows: N∗min

av(x) = N∗× (min{
∫ v+ε

v
p(a)da, [v, v + ε] ⊆

[av(x) − ε, av(x) + ε]}).
Note that these values can be easily calculated from a discretized PDF dis-

tribution of the system created from a small sample set of nodes.
∫ v+ε

v
p(a)da is

merely the number of nodes that have availability lying in this interval, divided
by the total number of entries in the discretized PDF.

Section 2.2 shows, via Theorems 2 and 3, that the logarithmic constant vertical
sliver sub-predicate maintains connectivity w.h.p. among all nodes lying in the
range [av(x) − ε, av(x) + ε].

2.2 Analysis of AVMEM Predicates

In this section, we show that the logarithmic vertical sliver ensures uniformity of
coverage in the availability space (Theorem 1), the logarithmic-constant horizon-
tal sliver ensures connectivity among online nodes whose availabilities lie close
to each other (Theorem 2), and that the above two sliver rules together ensure
a small, scalable set of online neighbors for each node in the system (Theorem 3).

Theorem 1. The logarithmic vertical sliver sub-predicate (equation I.B) ensures
that, given a node x, for any a ∈ [av(x) − ε, av(x) + ε], the expected number
of online nodes with availability in an (infinitesimally small) interval around a,
that are vertical sliver neighbors of node x, does not depend on the value of a.

Proof. The expected number of online nodes, in the vertical sliver of node x,
that have their availabilities lying in an interval of size da around a, is given as
=p(av(y))da · N∗ × c1·log(N∗)

N∗·p(av(y)) = c1 · log(N∗)da. This is independent of a. ��

Corollary 1.1. The logarithmic-decreasing vertical sub-predicate (equation I.C)
selects online neighbors that are at exponentially increasing distances from node
x, where distances are measured in the availability space av(.). (The proof fol-
lows along similar lines as Theorem 1.)

Theorem 2. The logarithmic-constant horizontal sliver (equation II.B) sub-
predicate ensures that for a given node x, the sub-overlay consisting of all online
nodes with availabilities in the interval [av(x) − ε, av(x) + ε] is connected w.h.p.

Proof. For the given node x, define X+ as the set of all online nodes (other than
x itself) that have availability ∈ [av(x), av(x)+ε]. Similarly, define X− as the set
of all online nodes (other than x) that have availability ∈ [av(x) − ε, av(x)). We
will show the proof in three parts: (i) the sub-overlay graph of nodes in X+ is
connected w.h.p., (ii) the sub-overlay graph of nodes in X− is connected w.h.p.,
and (iii) x knows at least one node in X+ and at least one node in X− w.h.p.
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For any node u, define N∗+av(u) and N∗−av(u) as the expected number of online
nodes lying respectively in the upper half and lower half of the interval [av(u)−
ε, av(u) + ε]. That is, N∗+av(u) = N∗ ×

∫ av(u)+ε

av(u) p(a)da, and N∗−av(u) = N∗ ×
∫ av(u)

av(x)−ε
p(a)da.

We first prove (i), and the proof of (ii) follows analogously. For any node
y ∈ X+, notice first that the interval [av(y) − ε, av(y) + ε] wholly contains the
interval [av(x), av(x) + ε]. We use a well-know result from [8] that in a graph of
M nodes, if each node has Ω(log(M)) neighbors that are selected at random,
then the graph is connected w.h.p.

Firstly, from the definition of the logarithmic-constant horizontal sliver rule,
notice for each node u that belongs to X+, the probability of y picking u as
neighbor is independent of where av(u) lies. Thus, neighbors are picked uniformly
at random. Secondly, we need to show that if there are M = N∗+av(x) nodes in
the interval X+, each node in that interval has an expected Ω(log(M)) online
neighbors lying in X+. From the horizontal sliver rule at node y, the expected
number of online nodes from the interval X+ that y has as neighbors is:

=
∫ av(x)+ε

av(x)
(c2 ·

log(N∗av(y))

N∗min
av(y)

× (N∗ · p(a)))da

=
c2 · log(N∗av(y))

N∗min
av(y)

· N∗+av(x)

≥ c2 · log(N∗av(y)), (since N∗+av(x) ≥ N∗min
av(y) )

≥ c2 · log(N∗+av(x)), (since N∗av(y) ≥ N∗+av(x))

This completes the proof of (i), and thus (ii). Finally, to prove (iii), notice
that we can derive, based on the same reasoning as above, the probability of x
knowing at least one node in the set X+, and at least one node in X−, as:

≥ (1 − (1 − c2 · log(N∗)
N∗+av(x)

)N∗+
av(x)) × (1 − (1 − c2 · log(N∗)

N∗−av(x)

)N∗−
av(x))

≥ (1 − e−c2·log(N∗)) · (1 − e−c2·log(N∗))

≥ (1 − 2
(N∗)c2

) ��

Theorem 3. The logarithmic-constant horizontal sub-predicate (equation II.B)
and the logarithmic vertical sub-predicate (equation I.B) , together, ensure that
the total expected number of online neighbors (vertical sliver + horizontal sliver)
at a given node x: (i) is at most (N∗av(x) − 1 + c1 · log(N∗)); and (ii) O(log(N∗))
if N∗min

av(x) = θ(N∗).

Proof. Consider a node x. From the discussion of Theorem 1’s proof, the ex-
pected number of online vertical sliver neighbors at x is:
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=
∫ av(x)−ε

0 c1 · log(N∗)da +
∫ 1

av(x)+ε
c1 · log(N∗)da ≤ c1 · log(N∗)

Since the horizontal sliver at node x can contain at most (N∗av(x) −1) nodes, this
proves the part (i) of the theorem.

To show (ii), we use a similar derivation as in the discussion of Theorem
2’s proof. We can show that the expected number of online horizontal sliver
neighbors of node x is:

≤
∫ av(x)+ε

av(x)−ε
(c2 · log(N∗

av(x))
N∗min

av(y) ·ε
× (N∗ · p(a)))da = c2 · log(N∗

av(x))
N∗min

av(y)
× N∗

Since N∗min
av(x) = θ(N∗) and N∗av(x) ≤ N∗, this is O(log(N∗)) . ��

3 AVMEM Maintenance and Management Operations

We first discuss in Section 3.1 how nodes discover their AVMEM neighbors
according to any application-specified predicate. Then, Section 3.2 describes how
the anycast and multicast operations are executed atop the AVMEM overlay.

3.1 AVMEM Membership Maintenance

In this subsection, we first describe the techniques used by AVMEM to discover
and maintain neighbors, i.e., horizontal sliver (HS) and vertical sliver (V S)
neighbors, in conformity with the application-specified AVMEM predicate. We
then analyze the optimality of this protocol, and check whether the memory,
bandwidth, and discovery time scale to medium-scale systems.

For discovery and maintenance, we leverage two types of existing services in
a black-box manner. These services are:

1. an availability monitoring service, e.g., centralized, or distributed such as
AVMON [18]; and

2. a decentralized shuffling partial membership service, e.g., SCAMP [8], CY-
CLON [27], T-MAN [11], LOCKSS [15].

An availability monitoring service is defined as one that can be queried for
the long-term availability (e.g., raw, or aged) of any given node. It returns an
answer that is reasonably accurate, and that is reasonably consistent over time.
The level of accuracy and consistency of course depends on the actual availability
monitoring protocol itself. The more accurate and consistent it is, the better our
AVMEM discovery will perform. For our practical implementation, we leverage
our own availability monitoring service called AVMON [18]; our experiments
show that this gives good results. Furthermore, AVMON’s overhead is low; for
instance, in a system with 2000 nodes, the average node bandwidth is 6.81Bps,
average node memory is 52 Bytes, and average node CPU time is 0.57ms per
minute.

A decentralized shuffling membership service allows a node to maintain a
random list of some of the nodes in the system (irrespective of any predicate).
This is a weakly consistent list that is incomplete, and may even contain stale
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entries. Further, this list is shuffled, i.e., its contents are continuously changed
by the underlying shuffling protocol, so that given a node y and node x that stay
long enough in the system, the entry for node y will eventually appear in the
shuffled list at node x. For our practical implementation, we could have chosen
any one of existing systems such as SCAMP [8], CYCLON [27], T-MAN [11],
LOCKSS [15], etc. However, we chose to use our AVMON implementation’s un-
derlying coarse view mechanism [18], which fulfills the requirements of shuffling
membership. This simplifies the overall design of our system, and Section 4 shows
this approach performs well in practice.

Given the above two services, the core AVMEM maintenance protocol consists
of two sub-protocols: (I) a Discovery sub-protocol, and (II) a Refresh sub-protocol.
The discovery protocol enables nodes to discover new AVMEM relationships and
thus HS and V S neighbors. On the other hand, the refresh protocol continuously
checks whether existing HS and V S neighbors still satisfy the predicate, and elim-
inates them if they do not. Each sub-protocol is elaborated below.

I. Discovery Sub-Protocol: At any given node x, the discovery protocol runs
periodically, i.e., once every discovery protocol period time units (typically 1
minute). It iterates through the entries in the coarse view (i.e., the shuffled
membership list). For each entry node y that is not already in HS(x) ∪ V S(x),
it queries the availability monitoring service for the availability of y, and checks
the AVMEM predicate to see if y is a valid HS or V S neighbor of x. If one of
these sub-predicates evaluates to true, then y is included in HS(x) or V S(x), as
appropriate. We will soon analyze the discovery time of this protocol.

II. Refresh Sub-protocol: The refresh sub-protocol periodically iterates through
the entries of the HS(x) and V S(x) lists. For each node y in these lists, the sub-
protocol queries the availability monitoring service for y’s current availability,
and evaluates the appropriate AVMEM predicate to see if M(x, y) = 1 or not.
If M(x, y) has become 0, then y’s entry is deleted from the appropriate list.
It is easy to see that once M(x, y) becomes false, node x will delete y from its
AVMEM membership list within a worst case time of 1 refresh protocol period. In
our implementation, we found that using a refresh period of 20 minutes suffices
for reasonable maintenance of AVMEM predicates.

Discovery Protocol - Optimality and Reality Check: The underlying shuffling mem-
bership protocols we are considering (SCAMP[8], CYCLON[27], T-MAN[11],
LOCKSS[15], AVMON’s coarse view [18]) all maintain a view of size v at each
node, where the entries in this view are randomly selected as well as continuously
shuffled2. For AVMEM, we are concerned about the memory, computation, and
bandwidth spent by a node on the one hand, and the discovery time for neighbors
on the other hand. The former three scale linearly with v - memory is of course
v, computation comes from evaluating the predicate periodically for each entry in
the view (thus v), and bandwidth from fetching the availability information for
these entries (O(v)).
2 Since we are using AVMON [18], this v would be the same as cvs in [18], i.e., AVMON’s

“coarse view size”.
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Discovery time is defined as follows: given a pair of nodes x and y for which
M(x, y) = 1, this is the time until x actually includes y in its HS(x) or V S(x),
as appropriate. The discovery time depends on the operation of the underlying
shuffling protocol, but fortunately, the fact that there is constant shuffling tells
us that the expected time for a given node y to appear in x’s view is O(N

v ).
In order to optimize the above concerns, we thus wish to minimize f(v) = v+ N

v .
Differentiating this with v, gives df(v)

dv = 1 − N
v2 = 0, or v = O(

√
N), which is

a minimum. This is a reasonably small number for medium-scale systems. Even
for N = 100, 000, v =

√
N � 320. With 20 B per entry and a 1 minute protocol

period, theper-nodememory is 6.3KB,and thebandwidth is 105Bps.Finally, if the
average discovery time is N

v protocol periods, this turns out to be around 5 hours.
This is reasonable given that large-scale Grid computations run for several days,
users survive in p2p systems for months, and PlanetLab nodes are up for years.

3.2 Management Operations over AVMEM

In this section, we describe algorithms for executing the four operations laid out
in Section 1, namely: threshold-multicast, threshold-anycast, range-multicast,
and range-anycast. For ease of exposition, we first discuss the two anycast oper-
ations, and then the multicast operations.

I. {Threshold, Range} Anycast: We discuss how to route an anycast mes-
sage intended for range R – a threshold anycast follows a similar approach, where
the range R stretches from the threshold to 1.0. A node x receiving an anycast
message checks to see if it itself lies within range R - if yes, then the anycast
is successful and we are done. Each anycast has a TTL (time-to-live) that is
decremented by 1 at each virtual hop. If this TTL value is 0 the message is
not forwarded. In any other case the message is forwarded to another node. We
discuss three approaches for forwarding of an anycast below.

• Greedy Forwarding: Node x forwards the anycast to an AVMEM neighbor that
lies inside R. If there is no such neighbor, x selects as the next hop the neighbor
whose availability is closest to r.
• Retried Greedy Forwarding: To increase the reliability for anycasts, we allow
nodes to retry a prospective next-hop if the previous candidate was not respon-
sive (i.e., was found to be offline). To implement this, we introduce an integer
parameter retry, initialized to k at the initiator. Each forwarded message carries
the value of retry = k. This parameter determines the number of nodes tried
using the greedy metric, before dropping the message. Specifically, each next-hop
node is required to acknowledge receipt of the anycast message - failing this, the
previous hop node will decrement the value of retry by 1, and retry its next-best
neighbor, according to the greedy metric (i.e., distance to range target R). The
retrying stops when either retry reaches 0, or there are no more next-best nodes
left in the AVMEM neighbor list of node x.
• Simulated Annealing: An alternative approach is to follow simulated annealing,
where the probability of choosing a random next-hop is high initially
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(in the first few hops) but decreases as the anycast proceeds. Specifically, we
choose p = e−Δ/ttl, where ttl = remaining time to live, and Δ = the Euclidean
distance between the edge of R and the availability of the current next-hop un-
der consideration. At each hop, a random next-hop can be selected (from among
the AVMEM neighbors) with probability p, as the list of neighbors is traversed,
otherwise the greedy approach is used (with probability (1 − p)).

A few notes are due about the above approaches. Each of the above three
variants naturally has three flavors, depending on whether only the horizontal
sliver neighbors of x are used (HS-only), only the vertical sliver is used (VS-only),
or whether both are used (HS+VS). To be generic, we referred to the considered
set of sliver neighbors as merely “AVMEM neighbors” above. Thus, we have a
total of nine algorithms. Section 4 presents data on the most promising variants.

Further, when node x is considering potential next-hops for an anycast, it
uses cached values of availabilities for its neighbors. Typically, these cached val-
ues were fetched the last time the refresh operation was done at node x - this
eschews querying the availability service for each forwarded message. Section 4
evaluates how much using cached values allows flooding attacks by selfish nodes.

II. {Threshold, Range} Multicast: For these operations, we once again
consider only the range R; the threshold-based variant follows similarly. The
multicast operation follows a two-stage process: an anycast into the range R,
followed by a multicast within the range. The anycast follows the techniques
listed above. Hence, we now discuss multicast only when the initiator is within
the range R. Once a node x has received a multicast message M for a range R
(where av(x) ∈ R), it can use one of two approaches for forwarding it:

• Flooding: Node x forwards the multicast to all its AVMEM neighbors that lie
in range R. Any duplicate copies of the multicast are ignored, and the forward-
ing is done only once. This is a highly reliable approach, but is wasteful since
each node will receive multiple copies of the multicast - in the worst case, it may
receive one copy from each of its in-neighbors.

• Gossip: To avoid the above overhead, we use a gossip-based approach. Here,
node x (after receiving the multicast) gossips the multicast M . It does so period-
ically - once every protocol period seconds, it selects up to fanout of its AVMEM
neighbors: (1) whose availabilities lie within the range R, and (2) to whom x has
not already forwarded M . These neighbors could be selected randomly, but for
our implementation we use a deterministic iteration through the list in order to
select gossip targets. The node repeats the above process for Ng protocol periods
after it first receives the multicast. Any duplicate copies of the multicast it re-
ceives are eliminated. We select Ng and fanout so that (Ng ×fanout) = log(N∗),
thus ensuring dissemination w.h.p. via gossip [8].

Just as for anycast, there are three variants for each of the above two ap-
proaches - HS-only, VS-only, and HS+VS, depending on which set of AVMEM
neighbors are used for the operations. This gives us a total of six algorithms. We
implemented all these options, and Section 4 presents data from the best ones.
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Fig. 2. System Snapshot of Online Nodes showing: (a) the distribution of online
nodes (b) the size of horizontal slivers and (c) the size of vertical slivers with respect
to availability (each dot in the plot stands for a node). There are 442 online nodes.

4 Experiments

We implemented AVMEM in C, and present evaluation results from a discrete
event simulation. In order to be realistic, we inject churn (availability variation)
traces from the Overnet p2p system [3] into our system. These traces were origi-
nally collected over a 7 day period, at 20 minute intervals, for a fixed population
of 1442 hosts, and are injected as such. By default, we build and use AVMEM
overlays using the two sub-predicates of Logarithmic Vertical Sliver (equation
I.B) and Logarithmic-Constant Horizontal Sliver (equation II.B), from Section 2.
We evaluate both the AVMEM overlay (Section 4.1) as well as the management
operations atop it (Section 4.2).

4.1 Microbenchmarks: AVMEM Overlay Properties

Overlay Properties: We evaluate whether the number of horizontal and ver-
tical sliver neighbors in our implementation follow theoretical predictions. The
system was allowed to warm up for 24 hours, and a snapshot was taken of online
nodes. Figure 2(a) shows that the availability distribution of online nodes in this
snapshot is highly skewed, making this trace set a good test for our algorithms.

Figures 2(b,c) respectively show the distributions of horizontal sliver size and
vertical sliver size at all these online nodes. From Figure 2(c), it is clear that the
median values of the vertical sliver sizes are uncorrelated to the availability, as
expected. Figure 2(b) shows an increasing median value of the horizontal sliver
size with node availability. Yet, Figure 3 demonstrates that this increase is only
sublinear - the horizontal sliver size grows sublinearly with the total number of
nodes present within ±ε availability. Finally, Figure 4 counts the total number of
incoming vertical sliver links to nodes in different availability ranges. We observe
that this number is largely uncorrelated to the distribution of nodes (seen in
Figure 2(a)). Thus, we conclude that the AVMEM slice sizes follow theoretical
analysis, even under a realistic churn model.

Attack Analysis: We first evaluate the effect of a flooding attack, where a
selfish (or malicious) node wishes to send out a message to all nodes that are not
part of its AVMEM neighbor list(s). Although each node checks each incoming
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Fig. 5. Flooding Attack: Fraction of
peers that are not currently neighbors
that would accept communications. Mea-
surement averaged across 0.1-wide avail-
ability ranges.
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Fig. 6. Legitimate Rejection Rate:
Fraction of nodes that will reject commu-
nications from an AVMEM in-neighbor.
Measurement averaged across 0.1-wide
availability ranges.

message to verify if its sender is a valid in-neighbor (according to the AVMEM
predicate), and reject it if not, this is open to attacks due to several reasons: (1)
nodes may use cached and stale availability information to do this check, and (2)
availability information reported by our underlying AVMON service could give
inconsistent or inaccurate answers. Figure 5 (line for cushion=0) depicts that
regardless of the availability of the selfish node, fewer than 10% of nodes outside
of its AVMEM neighbor list accept its flooding message. This is reasonable - it
means that to receive an audience from one additional peer, a selfish node must
obtain information about 10 additional peers.

Second, we evaluate how the above inaccuracies and cached information affect
the rejection of valid messages sent to AVMEM neighbors. Figure 6 shows that
this number is below 30% regardless of the sending node’s availability. To reduce
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this effect further, we add a constant cushion to the right hand side of equation
(1) in Section 2, i.e., to function f . This reduces the rejection rate to below 20%
while slightly increasing the effect of flooding attacks (see also Figure 5). This is
reasonable - it means that a node attempting to forward a message will have to try
only an expected 1

0.8 = 1.25 neighbors before succeeding. From these two attacks,
we conclude that AVMEM provides uniform attack resilience and acceptance rate
for legitimate messages, independent of the sending node’s availability.

4.2 Management Operations over AVMEM

In order to explore anycasts and multicasts systematically, we select the initiator
node in one of three ways, and the target range in one of three ways, thus
effectively giving us nine combinations for each management operation. Although
we evaluated all the nine combinations, for brevity, we show data for only the
most interesting ones below. Specifically, the initiator is chosen as either (1)
LOW ∈ [0, 0.3333), or (2) MID ∈ [0.3333, 0.6666), or (3) HIGH ∈ [0.6666, 1.0). For
threshold operations (anycasts or multicasts), the target availability range was
either 0.25, or 0.49 or 0.90. For range operations, the target availability range
was either one of [0.2, 0.3], or [0.44, 0.54], [0.85, 0.95]. Each point on any plot is
the average of 5 different protocol runs, each with 50 messages.

Basic Anycast Operations: We first evaluate anycast based on greedy for-
warding using VS-only, HS-only, and HS+VS, as well as simulated annealing
with HS+VS (see Section 3.2). The retried-greedy variation will be discussed
soon. All anycasts are sent with TTL = 6. Among the nine options discussed
above, the following four settings were the most interesting. First, Figure 7 shows
the results for a range-anycast experiment with initiator in the MID and target
[0.85, 0.95]. All variants gave a 100% success rate for messages, with all except
HS-only finishing w.h.p. within 1 hop. This makes intuitive sense as messages
will not travel far in availability space by using HS-only.

Second, Figure 8 shows the number of delivered range anycasts out of 50
sent, from nodes in availability range HIGH to three different target availability
ranges: [0.85, 0.95], [0.44, 0.54], and [0.2, 0.3]. The third of these is the harshest
scenario, since it is very likely that either (1) there are no nodes online in the
low availability ranges, or (2) the anycast takes a longer path via low-availability
nodes, and thus has a high probability of being dropped inside the overlay, as
its TTL expires. Of the multiple options, HS+VS comes out the best.

Retried-Greedy Anycast: Figure 9 shows the reliability and latency of
retried-greedy forwarding, for different values of retry, under the harshest pos-
sible scenario of the initiator in HIGH and target range [0.2, 0.3]. The latency
on each virtual hop here was selected uniformly at random from the interval
[20ms, 80ms]. Notice that even under such harsh scenarios, retry = 8 gives as
good a performance as the 60% delivery plateau, with a low average latency of
739ms.

Benefit of AVMEM Predicate: In order to compare the usefulness of the
horizontal (logarithmic-constant) and vertical (logarithmic) sub-predicates used
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in the above AVMEM overlay, we ran exactly the same range-anycast operation
from Figure 9, but over a random overlay graph similar to those created by
alternative membership protocols like SCAMP [8], CYCLON [27], T-MAN [27],
etc. For fairness, the outdegree of each node in the random graph is O(log(N∗)).
Figure 10 shows the data for this, and should be compared against Figure 9. A
look at these figures tells us that for management operations: (1) overlays based
on AVMEM predicates give a higher success rate than random graphs, while (2)
both achieve similar latencies.

Multicast Operations: Figure 11 shows the latency performance of range-
and threshold-multicast, using both flooding (default) and lower-cost gossip
(fanout = 5, Ng = 2, gossip period=1 s). The latency for each multicast is
the worst case, i.e., it is the time of the last receiving node obtaining the mul-
ticast. The CDF shows that this stays below 300ms for flooding, and 5.5s for
gossiping. Figure 12 shows that the spam factor for multicasts is low, i.e., the
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fraction of multicasts overflowing the target range, and reaching a node outside
is below 8% for most cases, except the topmost case where data is skewed by the
small number of nodes in the target range. Finally, Figure 13 shows that flooding
gets a reliability above 90%, while gossip reaches 70%. Bandwidth savings due to
gossip may thus be worthwhile to applications less concerned about reliability.
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5 Conclusions

We have presented the design and evaluation of AVMEM, an availability-aware
overlay. We showed that AVMEM overlay construction is scalable and that a set
of availability-based management operations can be run efficiently and reliably
on this overlay.

Our experimental evaluation using realistic overlay traces shows that the
theoretical properties hold in our implementation. Selfish nodes are implicitly
kept under control and good overlay connectivity is achieved by the proposed
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AVMEM predicates. This allows in reliable and scalable anycast and multicast
operations to availability ranges.
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Abstract. It is obvious that big, complex enterprise systems are hard to manage.
What is not obvious is how to make them more manageable. Although there is
a growing body of research into system self-management, many techniques are
either too narrow, focusing on a single component rather than the entire system,
or not robust enough, failing to scale or respond to the full range of an adminis-
trator’s needs. In our iManage system we have developed a policy-driven system
modeling framework that aims to bridge the gap between manageable compo-
nents and manageable systems. In particular, iManage provides: (1) system state-
space partitioning, which divides a large system state-space into partitions that
are more amenable to constructing system models and developing policies, (2)
online model and policy adaptation to allow the self-management infrastructure
to deal gracefully with changes in operating environment, system configuration,
and workload, and (3) tractability and trust, where tractability allows an admin-
istrator to understand why the system chose a particular policy and also influence
that decision, and trust allows an administrator to understand the system’s confi-
dence in a proposed, automated action. Simulations driven by scenarios given to
us by our industrial collaborators demonstrate that iManage is effective both at
constructing useful system models and in using those models to drive automated
system management.

Keywords: Policies, Self-Management, Bayesian Networks, Enterprise-Systems.

1 Introduction

Consider large systems that are integral parts of an enterprise’s IT infrastructure. Exam-
ples of such systems include those supporting enterprise websites, or inventory manage-
ment subsystems, or even the distributed information systems supporting a company’s
daily operations. Administrators managing these systems are not only expected to keep
them running, but in addition, many such systems must meet certain processing con-
straints, be highly available, offer differentiated levels of Quality of Service (QoS), meet
certain Service Level Agreements (SLAs), and may be subject to unforeseen demands.

R. Cerqueira and R.H. Campbell (Eds.): Middleware 2007, LNCS 4834, pp. 287–307, 2007.
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Unfortunately, even the occurrence of seemingly routine events like load changes, node
and link failures, software patches, or modifications of certain environmental param-
eters can cause such systems to behave in unexpected ways, often resulting in their
failure to meet current objectives. Given these facts and acknowledging enterprises’
growing reliance on their computing infrastructures, solutions must be found for sys-
tem self-management. These solutions must be driven by high level business goals,
be open and receptive to administrators, cope with dynamic changes in requirements
and conditions, and scale from small, tightly managed individual subsystems to large
company-wide support infrastructures.

The existing tools and techniques for enabling self-management of enterprise-scale
systems are insufficient because they are either too general or are too specific. For
instance, the state-of-the-art system management tools deployed at large enterprises
include software suites like IBM’s Tivoli, which is a systems management platform
and HP’s OpenView (now combined with Mercury), which can be used for managing
large-scale systems and networks1 These tools are equipped with methods for system
monitoring and for graphically displaying system status to administrators. However,
their functionality for automated symptom determination, reasoning about symptom
causes, and taking appropriate corrective actions remains rudimentary, in part due to
the lack of standards and more importantly, due to the general nature of these tools.
In contrast, researchers have successfully embedded self-managing capabilities into
specific well-defined subsystems like database backends [28], request schedulers for
multi-tier web services [8] and others. To complement the self-management work be-
ing done for specific subsystems, several researchers have been focusing on issues like
policy-specification language [11], model building techniques [4] and efficient moni-
toring schemes [1]. Similarly, there has been some excellent research in the domain of
automating specific tasks that are required for enabling self-management. A particular
effort of note is the work on automated problem diagnosis, presented in [9,32]. The
work focuses on using the monitoring data gathered from a system to detect service
level objective violations and correlating the violation to earlier violations for gaining
useful insights. While automating subsystems and problem diagnosis is important, these
specific techniques must be combined into a comprehensive framework in order to be
effective for complex systems.

The goal of our research is to develop abstractions and methods that help bridge the
gap between (i) the excellent progress made in the general domain of self-management,
like automation of well-defined subsystems or specialized techniques for self-
management tasks vs. (ii) the more general challenges posed by managing more com-
plex and/or larger IT infrastructures and applications. Toward this end, we build on such
prior work for online system management, we adopt the use of online monitoring and
behavior detection tools and techniques [10], and we endorse the use of ECA policies to
describe and build our self-management framework. To also address the broader man-
agement challenges posed by complex and dynamic IT applications and infrastructures,
however, we propose a novel representation of the system state-space that is geared to-
wards policy-based self-management, and we develop new techniques for dealing with
the problems of scale, dynamism, tractability and trust. Tractability here refers to an

1 IBM, Tivoli, HP, OpenView and Mercury are registered trademarks of their respective owners.
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administrator’s ability to understand current management actions undertaken by the
system and to the system’s ability to expose its reasoning for those actions. To achieve
the goal of system manageability, our system, iManage, offers the following tools:

– A system modeling framework - iManage collects system parameters and metrics
(collectively called system variables) into a single representation of the system
state-space, and identifies which actions are available to change the system state.

– A scheme for reducing the complexity of the system model - Since a typical system
model is too complex to be used or even properly constructed, our tools provide
mechanisms to partition the state-space into smaller units that are easier to deal
with. These micro-models allow us to more precisely model critical aspects of the
system, and to more effectively develop policies.

– Techniques for evolving system models - Policies that are appropriate under one
set of conditions may become invalid as operating conditions and the environment
changes. iManage provides techniques for evolving system models and policies,
including methods to learn new policies and incorporate human knowledge and
experience to refine the policies.

– Techniques for quantifying our confidence in a system model - In order for our sys-
tem models to be useful, the system administrator must be able to trust them. iMan-
age associates a confidence value with each self-management policy, and allows
the administrator to both understand and use this confidence value when deciding
whether to let the system manage itself.

In the following section we motivate the iManage approach by describing certain sub-
systems and properties of the operational information system deployed by Delta Air
Lines, one of our industry partners. Our interactions with the administrators and devel-
opers at that site have motivated much of this work.

1.1 Motivating Example

The Passenger Information Delivery System – PIDS (shown in Figure 1) – is a middle-
ware developed at Delta Technology, Inc. to serve two important needs of the airline.
First, it is responsible for managing the passenger data sourced from the airline’s TPF
mainframe. Second, it provides access to passenger information via events and service
interfaces. The PIDS middleware, which according to estimates by Delta Technology
processes around 9.5 billion events annually, ensures near real-time delivery of pro-
cessed events to ‘consumers’ – programs that need to receive the events – and to a
database of current booking and flight information used in activities like those in sup-
port of Delta’s web site. PIDS collects data from all over the airline. While much of
its information comes out of the airline’s TPF-based Deltamatic Reservation and Op-
erational Support System (OSS), additional inputs like gate information, information
about weather, etc. arrive from airports throughout Delta’s worldwide system. Further
passenger information is provided by the reservation system. Finally, most planes gen-
erate and transmit their own landing time, which is provided to PIDS via FPES (the
flight progress event system).

There are hundreds of variables associated with the PIDS system that capture the
current state of the PIDS servers, the current load conditions, client specific metrics and
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Fig. 1. Some Interactions in the PIDS Middleware System

several others. Some of these variables are enumerated in Table 1. A system administra-
tor manages the system by virtue of having the ability to modify some of these variables,
examples including the number of client service threads or the number of workflow ser-
vice threads. More specifically, such modifications of state variables constitute the set
of actions allowed for managing the system. The actions of a system administrator to
respond to an event (like increased workflow processing delay) are based on his wisdom
(mental model of the system behavior) and the prevailing conditions (values of differ-
ent variables representing the current state). However, partial (and sometimes complete)
failures of PIDS middleware are not uncommon, often resulting in delayed and/or can-
celed flights, and eventually leading to loss of revenue. Such failures can be attributed
to the scale of the PIDS middleware and to the dynamic load conditions posed by the
application domain.

The above example justifies our focus on the issue of scalability when designing our
self-management framework. Moreover, in order to deal with the dynamic load con-
ditions experienced by the PIDS middleware one must make use of self-management
techniques that can continuously evolve. Finally, our interaction with the system ad-
ministrators running the PIDS middleware motivated the need to keep the humans in
the self-management loop and in control of the adaptation actions which translated to
the requirements for tractability and trust.

1.2 Road Map

The rest of this paper is organized as follows. In Section 2 we present an overview
of the overall approach, introduce the system state-space model used by the iManage
framework and describe the requirements for policy enablement. Section 3 focuses on
the specifics of our approach by describing the algorithms and techniques used by our
framework, these include - the partitioning algorithm, the model building technique
and the specifics of policy learning, adaptation and the confidence attribute. In Section 4
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Table 1. Some variables associated with the PIDS middleware

Variable Description
Global Variables

E2EL The end-to-end latency introduced by the processing workflow.
ELPP The average queuing delay at individual PIDS processing nodes.
CLIE Number of cache access clients being served at any time.
ETTR Expected time to recover from a failure.
EDRR Events dropped in last 100,00,000 events.
CSTH Client service threads at individual PIDS processing nodes.
WSTH Workflow service threads at individual PIDS processing nodes.
NGAG Number of active boarding gates
NBCA Number of active baggage claim
NCIC Number of active check-in counters
NOVR Number of active overhead displays

Gate Agent Variables
TTFD Time to flight departure
DEST Identifies whether a flight is domestic or international
NPAS Number of passengers scheduled to board the flight

we present the evaluation of our techniques. Section 5 discusses the related work and
finally, we conclude in Section 6 with some open problems for further research in this
area.

2 Overview and State-Space Model

In this section we present an overview of our solution approach, which is followed by a
formal description of iManage’s system state-space model and thereafter we present the
requirements for policy-enablement of an enterprise-system. The formal model is used
in the following sections to formally describe the various algorithms and techniques
used by the iManage framework.

2.1 Solution Overview

The iManage framework for policy-driven self-management of enterprise-scale systems
provides an abstraction of a system state-space, where each axis represents an identi-
fiable system variable (e.g., end-to-end delay, throughput, etc.). The state-space model
specifically identifies two sets of variables - one set contains the variables that deter-
mine the operational status of the system and the other set contains the variables that
can be modified to affect the state of the system. The first set is used for specifying
the goals or SLAs and the second set is used to determine ‘actions’ that later become
part of ECA policies for the system. In order to manage the system one needs to es-
tablish a model that connects the set of action variables to the set of goal variables.
However, given the scale of the state-space for enterprise-scale systems and the fact
that the system can exhibit different behaviors in different state sub-spaces, model-
ing the state-space is not straight-forward. The iManage framework utilizes a novel
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state-space partitioning scheme to deal with the problems of scale and heterogeneous
system behavior. iManage then makes use of tree augmented naive Bayesian networks
or TANs to build ‘micro-models’ for each partitioned sub-space that results from the
state-space partitioning algorithm. As a result, the system model becomes a collection
of the ‘micro-models’ constructed for each sub-space. In case some goal violation is
detected, the system model is consulted to arrive at new values for the set of action
variables. In terms of policy the goal violation becomes the event, the value of system
variables at the time of violation become the condition and the assignment of new values
to the set of action variables becomes the action. Since, probabilistic models are used
to arrive at a solution in case of goal violation, even the suggested policy actions are
associated with a certain probability of bringing the system to a state of non-violation,
this probability acts as the confidence attribute for the policy. A policy is enforced only
when the confidence attribute exceeds the threshold set by a system administrator.

2.2 System State-Space Model

The following convention is used to describe the system state-space model. We use
boldface capital letters such as, V,Vφ to denote sets, and assignment of values to vari-
ables in these sets are denoted by regular capital letters such as V1, V2. Similarly, we
use boldface lower case letters such as, vi,vj to represent variables that occur in the
sets, and regular lower case letters such as, v1, v2 denote specific values taken by those
variables.

We consider a system whose state can be represented by a set V of n variables
{v1, ...,vn}, which are not necessarily independent. Out of these n variables the sys-
tem’s operational status (like failed, stable, unstable, etc.) can be determined by using
only a subset Vφ (an example of such variable would be the delay experienced by the
users of an enterprise’s website) of the state variables in V. Therefore, Vφ is the set of
variables of interest as far as the system’s operational status is concerned.

Furthermore, we associate the system with a set A of m action interfaces{a1,...,am},
such that an instance a1 of action interface variable ai represents an action that can be
invoked on the system. The invocation of an action a1 on a system state V1 is denoted by
Ω(a1, V1), which possibly translates the system to a new state. The effect of invocation
of action a1 on an instance of a system state-space variable v1 is similarly represented
using ω(a1, v1). The above discussion is used to arrive at the following definition of a
deterministic action-variable pair.

Definition 1. A tuple (ai,vi)is said to be a deterministic action-variable pair if ω(aj ,vk)
is known for all instances (aj , vk) of ai and vi.

The set of all deterministic action-variable pairs of a system constitutes the set D, and
the set of all state-space variables that occur in any tuple in the set D constitute the
set Vα, also called the set of actionable variables. The following lemma holds for all
members of the set Vα.

Lemma 1. If v1 and v2 are two possible values of the state-space variable vi
α ∈ Vα

then there exists an instance a of ai such that (ai,vi
α) ∈ D and ω(a, v1) = v2.

In order to manage a system, and affect its status, one needs to be able to deterministi-
cally modify the value of variables contained in Vφ. However, we only know of ways
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to deterministically modify the value of variables contained in Vα. Therefore, if one
could discover a function χ that maps the space of variables of interest, Vφ to the space
of actionable variables, Vα then one would be able to manage the system as described
next. Let, Vcurrent represent the current state of a system and Vcurrent

φ and Vcurrent
α

represent values of the corresponding sets of variables Vφ and Vα. Now, if the system
needs to be translated to a new feasible state such that the variables of interest take the
value Vgoal

φ , then one should be able to determine Vgoal
α using the function χ and then

use the set D to determine the actions required to change the value of variables in Vφ

from Vcurrent
α to Vgoal

α .
Note that the set of variables in V−(Vφ ∪Vα) are not redundant and as we shall see

in Section 3.1 they play an important role in determining the function χ. An example of
such variable would be a measurement of number of disk-operations - such a variable is
usually not a member of Vφ, which is used to determine acceptable system operational
status; and this metric, in general, cannot be deterministically affected by allowed sys-
tem actions (e.g. allocating another disk-array). However, such variables may give hints
about the actions to be taken to remedy a certain problem.

To put the above discussion in context, such a system model can be readily applied to
the example discussed in Section 1.1. For example, the list of variables, enumerated in
Table 1, constitute the set V of state variables for the PIDS system. The set of variables
{E2EL, CLIE} are the variables of interest as far as the operational status of the PIDS
middleware is concerned and therefore constitute the set Vφ (this corresponds to two
of the several requirements imposed on the PIDS middleware -the processing workflow
should not introduce a delay of more than 1 second and the system should be able to
handle 3000 concurrent requests from the clients). The set Vα = {CSTH, WSTH}
constitutes the set of variables that have action associations.

Limitations. In the above discussion we assumed that all the variables that constitute
the system state-space are known. This is not true for several systems where due to con-
siderations like monitoring overhead and complexity some of these variables might not
be monitored. However, the probabilistic modeling techniques used by our framework
are able to perform sufficiently well even when some of the variables are not listed as
members of the system state-space, or are not monitored by the system. One must note
that failure to include some important state-space constituents may lead to a system
model which might not be manageable.

The second limitation arises from the fact that the function χ might return multiple
possible instances of the set Vα corresponding to the goal state represented by Vgoal

φ .

For example, if Vgoal
φ corresponds to reduction in end-to-end delay for a three tier web-

server then there may exist multiple actions like increasing the number of front-end
servers or upgrading the backend database server that may lead to reduction in end-to-
end delay. Our probabilistic techniques will suggest the solution which has the highest
probability of resolving the problem without any guarantees about the efficiency or
optimality of the solution. This opens up the possibility of a difference between ‘man-
ageable’ and ‘efficiently’ or ‘optimally’ manageable system. However, in this paper we
will limit ourselves to the concept of manageability.
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2.3 Enabling Policies

There are certain requirements that should be met by any system to become eligible
for policy-driven self-management. Firstly, the system should be able to measure and
export the current value of variables that constitute the state-space for the system. One
can think of this as ‘dials’ on a control dashboard used for managing a very large sys-
tem. Secondly, the ability to modify some of the variables is also central to the idea of
policy enablement. One can similarly think of this capability as the ‘knobs’, which can
deterministically change the value displayed on some ‘dials’. In terms of our system
state-space model, the variables represented by ‘dials’ are the variables in the set V.
The variables which have an associated ‘knob’ constitute the set Vα. The ‘knobs’ can
in turn be used to take actions specified using ω(ai, v

j
α).

In order the enable policies in a policy-ready system we need to have a way for rep-
resenting the policies, mechanisms that discover and learn policies at runtime, ways to
enforce policies and techniques for keeping the policies updated for the current sys-
tem environment. The following sub-sections briefly describe our approach to handling
these issues. Some of these issues will later be dealt in detail in Section 3.

Policy Specification - We use a modified form of the well accepted event-condition-
action (ECA) format for specifying the policies. The ECA specification is very useful
when it comes to enforcing policies for any system. We however, extend the specifi-
cation to include a confidence-attribute that is related to the probability of the policy
having a desired effect when the action specified as part of the policy is taken under
appropriate conditions. The event in our policy description is a change in the value of
some variable(s) in Vφ. The condition that triggers the action associated with the pol-
icy is specified over the set of variables in V. The action is similarly specified as the
modification in the value of some variables contained in Vα.

Policy Discovery - We believe that all policies cannot be specified and that the system
may need to discover some policies on the fly. We use a novel state-space partitioning
scheme, described in Section 3.1 to first reduce the system state-space under considera-
tion at any instant. Then for each partition we make use of greedy algorithm to discover
the most important variables from the set Vα (i.e. the right knobs). We finally make
use of Bayesian networks to build ‘micro-models’ of the the state-space corresponding
to each partition, thereby enabling us to find the values to which the ‘knobs’ should be
adjusted to. We elaborate on these techniques in the following sections.

Policy Enforcement - The interfaces that export the current value of system variables are
continuously monitored for any changes. These changes in the value of some variables
may cause some policy to evaluate its condition and if the condition evaluates to true the
action specified as part of the policy is taken. In simple words, when a problem occurs
(i.e. the value on some dials signals something bad) the self-management subsystem
tries to (1) find the ‘right-knobs’ and then (2) adjusts them to some appropriate new
values. The enforcement of any policy is also contingent on the confidence-attribute,
which should be more than a system-wide threshold set by the system administrator.
This gives the administrator a control over the degree of self-management.
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Policy Refinement - Policies that are either specified or are learnt by the system may
need to be changed because the conditions under which such policies are valid may
change with time. An instance of this would be the addition of more nodes to the
network underlying the operational information system. Such instances may lead to
changes in threshold values that trigger an action specified as part of the policy. Our
techniques are able to keep track of such changes in the environment and in response,
they suitably modify the policies.

3 Solution Approach

The system state-space model proposed in Section 2.2 showed that V, Vφ, Vα, A,
D and χ are the parameters that should be known for arriving at a self-management
solution for a system. One can safely assume that for most of the systems the sets
V, Vφ, Vα, A and D are known apriori. This implies that the system variables, the
variables of interest and the deterministically modifiable variables along with the ways
to modify them are known. This is true for enterprise-scale systems where the system
variables like number of network nodes, link capacities, etc. are known, similarly the
variables of interest like end-to-end delay are also known apriori and lastly one knows
of variables like allocated buffer-length at network nodes which can be deterministically
modified by changing some system parameters. The problem is to find the function χ,
and this means that we need to find a way to model the system. Remember that the
function χ relates the variables in Vφ to the variables in Vα and the function χ can
change for different values of variables in V − (Vφ ∪ Vα). Once the function χ has
been determined for the system state-space, one can easily find and/or adapt the actions
that form part of the policy specification.

However, building a model (i.e. determining χ) for understanding the behavior of
an enterprise-scale system is a tough task. This can be attributed to the fact that in
such systems there are a large number of variables (e.g., bandwidth, workload, queue
length at servers, etc.), each one of which can potentially affect the state of the system
and more often than not these variables also interact amongst themselves. For example,
in a certain sub-space of the system’s state-space the bandwidth between participating
nodes may be the bottleneck and any modification to the priority of processes may have
little or no effect on the observed performance. The situation may similarly be reverse
for some other system state sub-space where server capacity may be the bottleneck
and any modification to the inter-node bandwidths may have no effect on the observed
performance. The two insights that follow from the above discussion are that -

1. Finding a single function to model the entire state-space of an enterprise-scale sys-
tem might lead to very crude and incorrect system models.

2. There exists system state sub-spaces where the effect of certain variables can es-
sentially be ignored from the system model.

The above discussion motivates the need to partition the system state-space. The fol-
lowing sub-section elaborates on the specific requirements for the partitioning scheme
and then describes the partitioning algorithm in detail.
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3.1 System State-Space Partitioning

The aim of our partitioning scheme is to create system state-space partitions such that -

– the involved system variables exhibit some homogeneity in their behavior inside
the partition, which is beneficial for building the system model.

– the number of ‘knobs’ required to manage the system within the partition is min-
imized, which is beneficial for the purpose of learning and adapting the actions
specified as part of policy.

To incorporate the concept of partition homogeneity we create partitions such that op-
erational states contained in the partition are close to each other. Note that partition
homogeneity corresponds to macro-level states of the system, for instance in one parti-
tion the underlying network may be the bottleneck (making server capacity redundant)
while in some other partition the server capacity may be the bottleneck (similarly mak-
ing the network capacity redundant). In order to minimize the ‘knobs’ we want to ensure
the partitions are created such that the ‘knobs’ needed in one partition are possibly not
needed in the other. This corresponds to making partitions which are orthogonal to each
other. The partitioning algorithm employed by our framework is described next.

The Partitioning Algorithm. A system state can be defined as the binding of appro-
priate values to the variables contained in the set V. The partitioning algorithm aims to
partition many such observed system states to achieve the objective mentioned in the
previous section. We define a partition to be a collection of observed system states. A
partition inherits the sets V and Vφ from the system state-space but the sets Vα, A and
D can vary between the partitions.

Let, S be the observed operational states contained in the initial system state-space
partition for which D defines the association of action interfaces in A with the variables
in Vα. For simplicity the discussion here assumes that it is possible to define a mea-
sure of normalized distance between any two operational states. Techniques for doing
such operations exist and interested readers may refer to well-known techniques like
Mahalanobis distance [24]. We define an operator δR over a pair of operational states
from a partition, which finds the normalized distance between the two operational states
considering only the dimensions contained in the set R, where R ⊆ V. We also define
the operation θ over a pair of operational states from a partition. The operation θ finds
the number of places in which the two states differ, considering only the dimensions
corresponding to the set Vα for the partition under investigation. Finally, we define

υ(s1, s2) = η × δV(s1, s2) + μ × θ(s1, s2) (1)

where, η and μ can take values from the range [0,1] and these are used to configure
υ for weighted distance and orthogonality. To evaluate if we need to partition a given
system state-space P , we try find a subset V′α of Vα such that

∑

∀si,sj∈S

δVα−V′
α
(si, sj) ≤ Δmax (2)

|V′α| ≤ f (3)
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where Δmax is a user defined parameter that represents the maximum allowed rep-
resentation error for the actionable variables and f represents the maximum number
of actions that can be used to manage the system in the given partition. We employ a
greedy approach for finding V′α, i.e. we add the member of Vα to V′α which causes the
greatest reduction in the L.H.S. of the equation 2. We repeat the above process until the
L.H.S. becomes lesser than Δmax, at this point we look at the cardinality of the set V′α
- if the cardinality is less than f we do not partition the system state-space, otherwise
we proceed to partition the system state-space. The V′α so determined becomes the Vα

for the partition. We start by finding a pair of states s1 and s2 from the set of all such
pairs contained in the set S such that υ(s1, s2) is maximized. The pair s1 and s2 acts
as the seed for the two new system state sub-spaces S1 and S2 that will be created. We
then iterate through the remaining operational states in the set S, adding the operational
state si to S1 if δV(si, s1) ≤ δV(si, s2). One can alternatively use the centroid of ex-
isting operational states in the evolving partitions to determine the membership. Once
the two new partitions S1 and S2 have been created, we find the set Vα for them using
the greedy approach described above. If the criteria defined by Δmax and f is not met
by any partition then we repeat the above scheme for that partition. We now enumer-
ate the advantages of the partitioning scheme for the purpose of enabling policy-driven
self-management.

– Simplifies Policy Learning. Our approach intelligently reduces the space of possi-
ble actions that could be taken in response to an event. This greatly simplifies the
process of correlating the events to actions for the purpose of determining ECA
policies.

– Assists in Problem Diagnosis. The system might migrate through a series of system
state ‘partitions’ before ending in an unacceptable state (e.g. SLA violation). The
path followed by a system before a failure may contain information about the events
that may have led to a failure, and can therefore assist in problem diagnosis and
constructing complex policies.

– Simplifies Problem Resolution. If a system enters an unacceptable state during its
operation then the model corresponding to the partition to which this unacceptable
state belongs can possibly be used to arrive at a resolution to the problem.

– Reducing Monitoring Overhead. The partitions that are created by our algorithm
allow us to ignore a subset of variables when the system is operating in that parti-
tion. This can potentially allow us to monitor such variables at reduced frequencies.
However, we have not fully explored this possibility.

Once the system state-space has been partitioned we build a system micro-model corre-
sponding to each partitioned sub-space. A system model in our framework consists of
several micro-models each one of which models a sub-space of possible system states.
The micro-model to be applied is determined based on the current state of the system.
Since, we attempt to model only a small partition of the entire system state-space at a
time we are able to build models even for systems with a very high number of variables.
This makes our approach highly scalable. A similar approach was presented in [32],
which made use of an ensemble of probabilistic models to detect SLO violations, and
was shown to perform significantly better than the approach which used a single mono-
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lithic model to detect violations. The approach works by adding new models when the
existing models do not accurately capture the current system behavior.

3.2 Building System Micro-models

We want to create micro-models such that they can predict the the values for the vari-
ables in Vα given the values for the variables in V − Vα. Here we take advantage of
the fact that our system state sub-spaces have a reduced dimension in terms of action-
able variables. For all the variables in Vα we exhaustively enumerate all the possible
values and create a new variable c which can take values corresponding to such an ex-
haustive enumeration. For example, if |Vα| = 2 and each variable in Vα can take 3
discrete values then c can take 9 distinct enumerated values. We assume that the ac-
tionable variables take discrete values and if the variable is continuous, one can use
existing techniques to discretize continuous data (actually the Bayesian modeling tech-
niques, which are referred to in this paper make use of such techniques). The system
state space V can now be represented as {c} ∪ (V − Vα).

To find the best value from the variable c which helps translate the system to a desired
state we resort to making using of probabilistic modeling techniques. We use a variant
of Bayesian network [16] called the Tree Augmented Naive Bayes [15] or TANs to
probabilistically model the system state-space. A Bayesian network is represented as an
acyclic graph whose vertices encode random variables and the edges represent statistical
dependence relations among the variables and local probability distributions for each
variable given values of its parents. The main advantage of using a Bayesian network
(or one of its variants) is that their representation provides and easy way to inspect
the relationships between the involved variables. This allows an expert to embed his
knowledge or the common wisdom into the self-management framework by proposing
an initial model, which can be further refined using learning techniques. Furthermore,
by simple inspection an expert can single out any faults in the learnt system model.
Our choice for making use of TANs was driven by the fact that unrestricted forms of
Bayesian network are computationally very costly to build as they need to evaluate all
the dependencies amongst the set of random variables. A TAN, on the other hand allows
only a tree structured dependence amongst the set of random variables (other than the
class variable) and is therefore cheaper to build and has been shown to perform almost
as well as the unrestricted version. A TAN model when used as a classifier is able to
determine the following probability

p = Pr(x|a1, a2, ...,an) (4)

for the set {a1,a2, ...,an,x}, from a given training set. The variable x assumes a special
status in this equation and is called the class variable and the other variables are called
the attributes.

To create the micro-model we designate the newly formed variable c as the class
variable and the remaining variables, i.e. the set of variables in V − Vα are designated
as attributes. The resulting micro-model is able to determine the following probability.

p = Pr(c|V − Vα) (5)
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The above equation determines the probability of the variable c taking a certain value
given the values of the variables in the set V − Vα. This procedure for achieving a
desirable and feasible system state is as follows. Let, Vcurrent represent the current
system state and Vgoal

φ represent the new desired values for the set Vφ. To find the
values of variables in Vα that can possibly lead to the goal state, we create the set
V′ = V−Vα. We create an instance Vgoal of the set V′ by assigning the corresponding
values from the set Vcurrent and thereafter resetting the values corresponding to the set
Vφ using the values from Vgoal

φ . We then use the instance Vgoal to find the instance cgoal

of variable c that maximizes Equation 5. The values of Vα corresponding to cgoal so
determined are used as the new values for actionable variables.

Discussion. Note that the state depicted by Vgoal may not exist in a real system. This
is because the variables that are contained in V − Vφ ∪ Vα inherit their values from
the state instance Vcurrent, and it may so happen that when the system translates to the
new goal state, the values for variables other than the variables of interest and action-
able variables may also change. However, experimental results presented in Section 4
show that the predicted values of Vα are mostly able to achieve the goal state. This
can be attributed to the fact that attribute discretization adds some degree of tolerance
causing some smaller changes not to be reflected until they occur at the points where
discretization partitions the continuous data space. Another important consideration for
future work may be the consideration of the magnitude of change in the values of the
variables in Vα, a solution that requires smaller change in magnitude may sometimes
be preferred over the most probable solution.

3.3 Policy Learning, Adaptation and Confidence Attribute

The system state space model and the micro-model play a central role in supporting the
task of policy learning. The high-level directives or goal statements are described over
the set of variables contained in the set Vφ. For example, a high-level directive like
delay < 20msec can be used to learn the corresponding policy using the procedure
described next. The framework instantiates a trigger for capturing delay ≥ 20msec
which acts as the event in terms of policy. If at any time the event occurs the current
system state Vcurrent is used in conjunction with system sub-space micro-model to
arrive at a corrective action. The event, the current system state (condition) and the
corrective action is recorded as a policy. Due to space limitations we cannot give the
full details of policy construction here. Interested readers may refer to an extended
version [20] of this paper.

In a dynamic system the micro-models may evolve with time. This may cause some
learned policies to become invalid with time because the corrective actions that were
determined using an earlier version of the model may not be applicable any more. Policy
adaptation requires periodic evaluation of the actions specified as part of the learned
policies.

The confidence-attribute associated with each policy helps us to deal with the issue
of administrator’s trust in our self-management framework. The confidence-attribute
for a policy is equal to the probability p determined using the Equation 5. The system
administrator can declare a threshold value to have control over the policies that will be
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enforced. Only the policies with a confidence-attribute greater than the threshold value
are autonomically enforced by the self-management framework.

3.4 Implementation

We have implemented the system state-space partitioning algorithm in C++, which
takes as input a set of data which contains actual observed values from a running (or
simulated) system and the index of variables which can be modified deterministically.
The user also needs to provide values for the partitioning parameters η, μ, Δmax and f
as defined in Section 3.1. The output from the partitioning algorithm is the set of parti-
tions and the corresponding index of variables which can be modified deterministically.
The output is generated in the well-known C4.5 format to facilitate further processing.
We then make use of jBNC [17], a java based implementation for the Bayesian net-
works to build a TAN micro-model corresponding to each partition. The TAN is then
used for finding corrective actions, policy adaptation, etc.

4 Experiments

Our goal was to study the suitability of our techniques in managing large enterprise-
scale systems where a large number of variables can potentially affect the state of the
system. In this section, we present our findings based on simulation experiments un-
der a variety of workloads and operating conditions. Our techniques, for instance, were
able to detect bottleneck nodes in our simulation of a PIDS-like middleware and were
able to avoid several SLA violations that would have otherwise occurred. We start with
a description and validation of the simulator testbed, which is followed by a brief de-
scription of the workload and evaluation metrics. We present our experimental results
starting from Section 4.3.

4.1 Simulator Testbed

We wanted to evaluate our techniques for self-management using applications that are
representative of the ones used by large enterprises. We evaluated the possibility of us-
ing well-known benchmarks and real-enterprise applications for putting our techniques
to test. However, we soon realized that the applications available to us in our lab envi-
ronment (like RUBiS [26] and an implementation of industrial middleware from Delta
Technology [12]) were not instrumented well enough to sense and actuate a sufficiently
large set of variables, and often changing any environment parameter (like maximum
number of worker threads, number of MySQL connections, memory allocations and
MySQL cache size) required restarting the application for the changes to take effect.
Of course, in order to use our techniques, these systems could be enhanced to provide
more monitoring and dynamically tunable parameters. Furthermore, it was not possible
for us to make use of such applications for a large-scale (say 500 underlying nodes)
evaluation of our techniques.

In order to overcome the problems mentioned above we decided to design a well
instrumented simulator for simulating a large system implementing service oriented
architecture (SOA). An implementation of SOA contains a set of services running on a
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distributed network of nodes that can be invoked by sending a message to the service,
messages may or may not be generated as a result and if the messages are generated
they may be forwarded to the source, to a sink or to some other service(s). The PIDS
middleware described in Section 1.1 can be implemented as a SOA. Our SOA simulator
consists of four main components - server, service, network-link and client. A server
represents a processing facility with a limited number of cycles per second, a limited
memory, connections to other servers and ability to throttle server frequency at the
expense of more power. A service represents a software which accepts certain types
of messages, possibly generates some messages in response and determines the server
cycles that will be used to process a certain message type given the available memory.
There may be more than one service running on a server and they may have different
priorities. A network-link has an associated bandwidth, delay, and cost per unit of data
transmitted. Finally, a client represents a source or a sink for the messages. An event
source has a rate of generating events that can vary with time. A sink measures the
incoming event-rate, the average delay for update propagation and the current delay
measured over a recent window.

A simulation can be started by providing a network topology which instantiates the
basic distributed network of servers and network-links, this is followed by addition
of some services for processing messages and some clients. The simulation is run for a
pre-specified amount of time and it dumps the state at configurable regular intervals. We
make use of these state dumps to evaluate to build system models and then use these
system models to arrive at policies for managing the simulated system. The network
topologies for the simulations were generated using the GT-ITM [30] generator.

4.2 Simulator Validation

To validate our simulator we compared the measurement we got from our simulator
with the ones we got from using the same experimental setup on Emulab [14] testbed.
Our experimental setup consisted of a 13 node topology and an event processing graph
that consisted of 3 sources, 2 services and 2 sinks. On the Emulab testbed we created
the specified 13 node topology and then made use of the IFLOW middleware [22] to
setup the event processing graph. We instantiated the same setup using our simulator.
The services were configured to take a specified amount of time for processing the
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Table 2. Effect of partitioning parameters on
|Vα| & number of partitions

Original Partition
f Δmax |V| |Vα| avg |Vα| partition count
3 0.1

71 11
2.8 5

4 0.2 4.0 3
3 0.1

227 31
2.7 7

4 0.2 3.8 5

Table 3. Comparison between the accuracies
(in %age) of single and micro-models

Data Set Model Type
|Vα| Single Model Micro-Model
71 89.4 ± 2.8 92.3 ± 3.2

277 86.3 ± 1.9 90.7 ± 2.3

incoming events depending upon the incoming event type, and server load. We mea-
sured the event propagation delay between a source and a sink under a variety of varia-
tions which included events that take different processing times, variation in event rate
from sources and change in event-size. The same event workload was used for both
the Emulab testbed and the simulator. The measurement of event propagation delay for
both the Emulab testbed and the simulator is shown in Figure 2. Our simulator was able
to closely follow the behavior of real emulation testbed for the same experimental setup
paving the way for simulations at a larger scale.

4.3 Microbenchmarks

We ran two simulations with 8 and 32 servers, each for 4 simulated hours. The two sim-
ulations dumped 71 and 227 state variables, respectively every 30 seconds. During the
course of simulation we kept modifying the system conditions like the event rates from
the sources, modifying the server frequencies, using alternate high or low-cost links to
the destination and changing the priorities for various services running at a server. We
also ran the simulation for another 20 minutes, dumping data at every 30 seconds to
evaluate the accuracy of generated models. We collected 3 such sets of observations.

The first experiment focused on determining the effect of partitioning parameters
Δmax and f on the number of partitions that are created for a given system state-space
and the average number of actionable variables that appear across the partitions. The
results obtained by using one set of observation from the simulation described above are
shown in Table 2. The table enumerates results from two set of simulations described
above which generated 480 observed system states each. The results show that our
techniques were able to significantly reduce the average number of actionable variables.
For example our partitioning scheme was able to able to achieve a 90% reduction in
number of actionable variables per partition for a system state-space with 31 variables.
As far as the number of partitions are concerned, they are an important contributors
towards the scalability of our techniques. However, a very high number of partitions
may lead to partitions that may have a very sparse population leading to bad system
models. The number of actionable variables are required to be low for our techniques
to be effective as long as the manageability of the system partition is maintained, which
can be controlled by setting a low value for Δmax.

The next experiment was conducted to examine the effect of partitioning on the ac-
curacy of the system models. To construct a single system state-space model for the set
of observations collected earlier we proceeded as follows. We eliminated any Vα from
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the set if it did not change its value during the simulation run. This reduced |Vα| to
≈ 5 and ≈ 11 for the simulations with 71 and 227 variables, respectively. Notice that
even with a discretization factor of 2 for each variable, the simulation with 227 variable
had 211 = 2048 possible values for the variable c. In the real world this translates to
the confusion of which ‘knobs’ to turn to fix the system. Using the technique described
in 3.2 we then constructed the single system models. For building micro-models corre-
sponding to the partitioned sub-spaces we did not have to perform the pruning of the set
Vα as the partitioning algorithm takes care of removing the redundant members from
the set Vα. The micro-models were then constructed for each of the partitioned sub-
space. We used the generated models to predict the value of actionable variables given
the value of other system variables from the test data set. Results reported in Table 3
show that the specialized micro-models work better than a single model at correctly
predicting the values of variables in Vα.

To examine the effect of the number of observed system variables (i.e. |V|) on the
accuracy of predicting the right values for the variables in Vα we conducted the fol-
lowing experiment. We used our SOA simulator to simulate systems that had 37, 71,
150, 320 and 644 variables that could be observed. Each system was simulated under
varying workload conditions with appropriate corrective actions being taken at several
points in the simulation. The time a system was simulated for was proportional to the
number of variables being observed for that system. The smallest system with 37 vari-
ables was simulated for 1 hour simulation time. We used our techniques to build models
for each of the systems and then used 10 minutes of generated test data to calculate the
prediction accuracy corresponding to each model. We repeated the experiment 3 times.
Results shown in Figure 3 show a slight decrease in prediction accuracy with the in-
crease in number of observed system variables. However, the prediction accuracy only
shows a linear trend in decrease as the number of variables are increase exponentially.
We acknowledge that the results obtained may be highly dependent on the training set
and the test data set that were generated during the simulation.

4.4 Evaluation of the Self-management Framework

The next set of experiments was conducted to evaluate the end-to-end efficiency of our
framework in managing large-scale systems. We study the impact of suggested policy
actions and the confidence attribute on the end system metrics at runtime. The simulations
wereconductedforasystemwith227variablesandconsistedof32simulatedservernodes.
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The simulation setup consisted of an event-flow that contained 3 sources, 2 services
and 1 sink, and 2 query response services which received a stream of queries from a
co-located client. Each event-flow service was located on a separate server but shared
the server with another query response service. The variables that could be modified
included the priority of the event-flow service thread, the priority of the query service
thread and the frequency of the server. The dynamic workload conditions were sim-
ulated by varying the event rates from the sources and the query clients. The metrics
of interest included delayflow and delayquery . The goals for the simulation run were
specified as delayflow < 12.5msec and delayquery < 7.5msec, and both the threads
were assigned the same priority. Figure 4 shows the delay observed at the event-flow
sink and at one of the query client with and without self-management. Our techniques
were mostly able to avoid any violations of the specified goals. The confidence thresh-
old for this experiment was set to 85.0%.

We next conducted an experiment using the above setup to examine any unwanted
behavior that may happen due to low confidence-threshold. When the confidence
threshold was reduced to 75.0%, we actually observed delays at the event-flow sink
that were more than the delays observed without the self-management in place. Con-
fidence thresholds even lower than 75.0% made the system behave erratically when
self-management was turned on. This was corroborated by re-examination of some of
our earlier data used for prediction accuracy experiments. 90.0% of the predictions that
lead to false predictions had a confidence-attribute lesser than 65.0%. These findings
can be attributed to the use of probabilistic models by our framework. A low-confidence
threshold means that there is possibility that a certain other assignment of values to vari-
ables in Vα also has a high probability of occurrence. This may lead to two assignments
having almost the same probability of occurrence leading to a higher chance of erro-
neous choice of assignment by the system.

5 Related Work

Policy Research
There has been a lot work in the domain of using policies for simplifying the man-
agement tasks associated with system administration. Over the last decade, researchers,
both in academia and industry, have focused on issues like policy specification lan-
guages [11], frameworks [5,27] and toolkits [23]. The research presented in this pa-
per builds on the work done in the above mentioned areas and is a logical next-step,
as the focus is on applying the policy-research to the management intensive domain
of enterprise-scale systems. The policy research in the domain of automated network
management that deals with issues like security, access control and other associated
management tasks [29,25] justifies our stand on studying the impact and application of
policy research to another rich domain. More recently, researchers have started evaluat-
ing the pros and cons of applying policy research for managing IT systems at large busi-
ness enterprises [7]. This research, which is in its nascent stages, promises to provide
systems that will manage themselves in accordance to high-level business goals [2]. The
issues concerning human expertise and policy representation have also been explored
in a recent paper [18].
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Autonomic Computing & Self-Managing Systems
The task of implementing self-managing systems is a multi-step process in which poli-
cies can play an important role. Policies are a way to dictate the behavior of a self-
managing system. This is in line with the vision of autonomic computing - ‘to design
computing system that can manage themselves given high-level objectives from ad-
ministrators’ - as described in [19]. There has been a lot of work in the domain of
enabling self-management for a wide variety of systems. The SLA-based approach
to manage systems has been explored by number of researchers [31]. In our prior
work, we had focused on enabling self-management capabilities for distributed data
stream systems [21,22]. Some researchers have also explored the use of rule-based self-
management approach for managing applications [4]. The use of utility-functions for
self-management has also been explored in specific reference to event-based systems [6]
and an interesting take on aggregate utility-functions is presented in [3]. It turns out that
defining utility-functions for enterprise-scale applications is a tough task because it may
not be possible to mathematically model all the factors that can potentially affect the
state of the enterprise system.

Bayesian Networks & Problem Diagnosis
Bayesian networks or the Belief networks have found applicability in a number of AI
domains and they represent one of the best classification tools available to researchers.
A tutorial on Bayesian networks is presented in [16]. Several specializations of the
Bayesian networks have been proposed in literature the most important ones being the
Naive Bayes [13] and the Tree Augmented Naive Bayes or the TANs [15]. In reference
to applying Bayesian networks for modeling computer systems, a very innovative ap-
proach for correlating instrumentation data to system states is presented in [9]. This was
later extended in [10] to develop signatures that could be used to more efficiently cor-
relate the SLA violations that may occur in a system. More recent work in this domain
makes use of an ensemble [32] of system models for the purpose of problem diag-
nosis. The work presented in this paper not only detects possible violations of higher
level goals by the system but also suggests appropriate corrective actions to arrive at a
solution for the problem.

6 Conclusions and Future Work

In this paper we described a system modeling framework that collects the system param-
eters and metrics into a unified abstraction, we call the system state-space, and identifies
the actions that can be used to manage the system. To deal with complex system state-
spaces, typical of enterprise-scale systems, we presented techniques that can be used to
reduce the complexity and to more precisely model critical aspects of the system, and
to more effectively develop policies. Additionally, iManage has capabilities for dealing
with dynamic environment and for letting the administrator incorporate human knowl-
edge and experience to refine the policies. Finally, the confidence-attribute associated
with the policies learnt by iManage framework allows the administrator to fine-tune the
enforcement of such policies. As part of the future work we are trying to address the
issues related to monitoring overhead and making use of dynamic Bayesian networks
to incorporate the consideration of time into the system model.
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Abstract. Generic middleware can often not provide satisfactory solu-
tions, but neither is it acceptable to let the application developer re-
invent the wheel each time. Therefore, middleware shall support reuse of
infrastructural services while leaving the application in control. In par-
ticular, we contribute with a middleware approach to support adaptive
dependability by balancing integrity and availability in distributed sys-
tems. To achieve this goal, we add a new middleware service for explicit
runtime management of data integrity constraints. In order to provide
the desired balancing with respect to an application’s requirements and
environment conditions, our approach supports the application developer
with explicit interaction between middleware, application, and metadata.
Based on our prototype implementation, we show how adaptive balanc-
ing of integrity and availability improves the overall dependability. The
performance impairments of our approach are typically worth their costs
in systems where the read-to-write ratio is high or write performance is
not a limiting factor.

Keywords: Middleware, dependability, adaptivity, constraint consis-
tency, inconsistency, replication.

1 Introduction

Today’s software systems often face availability requirements of 24 hours per
day, 7 days a week. While availability close to 100% is already hard to achieve
in a healthy system, e.g., due to system maintenance operations, the situation
becomes even worse if parts of a system suffer from failures and the system there-
fore operates in a degraded mode. However, availability (the readiness for correct
service) is only one attribute of dependability [1]. Integrity, the absence of im-
proper system alterations, is another. Within our work, we focus on consistency
of data with respect to data integrity constraints, i.e., constraint consistency [2].
The constraints stem from an application’s requirements and have typically to
be satisfied in the course of business transactions. Consistency of the constraints
themselves, e.g., whether they represent conflicting requirements, is not within
the focus of our work.

Failures are threats to dependability and hence to availability and integrity.
While failures affecting availability might lead to a non-responsive system, in-
tegrity violations may lead to inconsistent data. We focus on node and link
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failures, assuming the crash failure model [3] for nodes—pause-crash for server
nodes—and links may fail by losing some messages but do not duplicate or cor-
rupt messages. Link failures may subsequently lead to network partitions, effec-
tively splitting a system into parts that are not able to communicate. However,
as node and link failures cannot be differentiated at the time when they occur [4],
we initially treat node failures as partitions with a single node. Whether a node
or link failed can be detected after the node is reachable again.

Replication [5], the process of maintaining several copies (replicas) of the same
entity (data item, object), is well-known to provide fault tolerance for improved
availability in case of node and link failures. The replication of entities, however,
introduces a new integrity criterion: replica consistency. Replica consistency re-
quires that replicas of an entity are consistent according to the used replica con-
sistency model, e.g., 1-copy-serializability [6] or looser consistency models like
ε-serializability [7] and eventual consistency. As replica consistency may impair
constraint consistency, it is in the focus of our work as well.

It is well known that Consistency, Availability, and Partition-tolerance (CAP)
cannot be optimized independently of each other. This interdependency is stated
more precisely in the (strong) CAP principle [8,9] providing that only two of the
three requirements can be achieved, e.g., a system can be available and consis-
tent but not be partition-tolerant. However, the weak CAP principle specifies
that the stronger guarantees are provided for two of these properties, the weaker
guarantees can be provided for the third. Obviously, these three properties have
to be balanced according to an application’s requirements. Moreover, it would
be beneficial if the system could adapt to changing requirements during runtime,
e.g., due to node or link failures.

While in the past adaptation mechanisms were incorporated into software on a
per system basis, where they are hard to change, reuse, or analyze, the prolifera-
tion of such systems suggests to include adaptation support into the middleware.
Thus, the adaptation mechanisms can be reused in numerous systems, analyzed
separately from the system being adapted, and easily changed to incorporate new
adaptations. Moreover, they provide a natural home for encoding the expertise of
system designers and implementers about adaptation strategies and policies.

It is important to note that we are not aiming at transparent adaptivity:
While the initial motivation to introduce middleware stems from the goal to
re-use infrastructure code and encapsulate it behind coherent service interfaces
for the application programmer, soon transparency was introduced to conceal
the distribution of components from the user and the application programmer,
so that the system is perceived as a single coherent system rather than as a col-
lection of independent components. Different kinds of transparency have been
standardized by ISO (International Standardization Organization, ISO 10746-
1:1998, http://www.iso.org/) and ANSA (Advanced Network Systems Archi-
tecture) [10] and have been in the focus of middleware research.

Unfortunately, generic transparency (if not impossible at all) often comes at
the cost of impaired performance and other quality properties. Additionally,
users or application developers sometimes require knowledge about certain dis-
tribution aspects (e.g., in the presence of certain failure scenarios). Consequently,
transparency in itself is not the ultimate design goal of a distributed system, but

http://www.iso.org/
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neither is it advisable to unconditionally follow the so-called “end-to-end argu-
ment” that some properties can only reasonably be provided under consideration
of the application semantics and therefore have to be actually implemented by
the application itself. Rather should middleware support the integration of ap-
plications with configurable re-used infrastructure services.

If application requirements are available during run-time in a processable
form, they can explicitly be manipulated, configured, and processed by the ap-
plication as well as the middleware, which allows such a system to balance or
trade certain requirements against each other during run-time. By applying these
principles, the application can be left in control to avoid costly generic solutions.
In particular, we contribute with a middleware approach to support adaptive
dependability by balancing integrity and availability. In order to provide the
desired balancing with respect to an application’s requirements and environ-
ment conditions, our approach supports the application developer with explicit
management of data integrity constraints.

Paper Overview. First, Sect. 2 introduces our concept of balancing availability
and integrity before Sect. 3 describes a prototype implementation with explicit
runtime constraint consistency management. Section 4 then provides evaluation
results and corresponding conclusions. We give an insight into related work in
Sect. 5 and conclude this paper in Sect. 6.

2 Balancing Concept

For investigating the trade-off between integrity and availability, we concentrate
on data-centric systems [11], which have their focus on the (business) data, typ-
ically stored in database management systems and represented by the business
objects (entities) of an application and the relations between them. The Enter-
prise JavaBeans (EJB) platform, for example, represents such business objects
by entity beans. Furthermore, our focus is on distributed object systems where
communicating objects reside on different nodes. The main reason for having
objects distributed among nodes and not being centralized is strong ownership
of these nodes, e.g., the objects might be bound to some hardware facilities
or different administrative domains. Application data are encapsulated by ob-
jects and their relationships and are modified by (possibly nested) invocations
of methods of these objects.

One example for such an application scenario is a distributed telecommuni-
cation management system (DTMS) [12]. The DTMS is a software application
that manages voice communication systems (VCS), installed at different sites.
Each site has its own instance of a DTMS, but configuration of the VCS requires
DTMS instances of different sites to cooperate. The hardware facilities of the
VCS are represented by objects within the DTMS that are bound to the site of
the VCS for decentralized management reasons—a failure of a DTMS site should
not have effects beyond the specific site. The objects of the DTMS are subject
to integrity constraints that possibly span objects of multiple sites, e.g., the con-
figuration parameters for a voice communication channel have to be consistent
to enable communication between different sites.
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RepairReportAlarm

affectedComponent
repairComment

alarmKind
description

context RepairReport inv ComponentKindReferenceConsistency:
alarm.alarmKind.equals("Signal") implies 

 (affectedComponent.equals("Signal Controller") or
 affectedComponent.equals("Signal Cable"))

Fig. 1. Simplified ATS model with constraint

Another application scenario, where a prototype has been implemented by
an industry partner based upon our middleware, is a distributed alarm tracking
system (ATS) [13]. A simplified model of this system is given in Fig. 1 for our
studies within this paper. The simplified ATS has two objects Alarm and Repair-
Report. Alarms are managed by administrative operators while the repair reports
are filled out by technical operators. The alarmKind determines which kinds of
components might have to be repaired (affectedComponent). Hence, the system
applies certain integrity constraints between an Alarm and a RepairReport. The
example provided in Fig. 1 specifies that an alarm with alarmKind=“Signal” can
only be removed by repairing a component that is either a “Signal Controller” or
a “Signal Cable”. Administrative operators and technical operators are working
at different locations, potentially accessing different servers. If a network split
occurs between these servers, the system should still be available to all of them
and allow to make progress.

2.1 Constraints and Consistency Threats

Generally, data integrity constraints are predicates on data, evaluating to true,
if a constraint is satisfied, or false, if it is violated. In our case, constraints
are defined upon a class model, e.g., by using the Object Constraint Language
(OCL) for Unified Modeling Language (UML) class diagrams. We follow the
well-established approach to differentiate between preconditions (bound to and
checked before a specific method invocation), postconditions (bound to and
checked after a method invocation), and invariant constraints (bound to a certain
class—the context class) [14]. For invariant constraints, we further differentiate
between hard (checked at the end of an operation during a transaction) and soft
constraints (checked at the end of a transaction) [15]. Invariant constraints are
defined solely on the state of objects (static constraints) and hence can be vali-
dated at any time. Dynamic constraints defined on state transitions, sequences
or temporal predicates are not in the primary focus of our work.

While pre- and postconditions are explicitly bound to methods and hence
have to be triggered before or after method invocations, invariants are bound to
a certain class and the triggering methods for validation of invariants have to
be specified. Triggering constraint validation of invariant constraints upon each
call to a method of the context class or only upon each call to a public method
of the context class are two possible options. However, invariant constraints
have at least to be checked whenever a method that potentially might lead to a
constraint violation—an affected method of the constraint—was called.

Although an invariant constraint is defined for a certain context class, affected
methods might belong to other classes as well. For our example in Fig. 1, the
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constraint ComponentKindReferenceConsistency has to be checked whenever the
alarmKind of an Alarm or the componentKind of a RepairReport is changed. Con-
sequently, Alarm.setAlarmKind(. . . ) and RepairReport.setComponentKind(. . . ) are
affected methods of the constraint ComponentKindReferenceConsistency
while the constraint itself is an affected constraint of these methods with two
affected objects, an Alarm object and a RepairReport object. Obviously, the af-
fected methods of a constraint cannot generically be determined without further
knowledge of the constraint. Moreover, checking the ComponentKindReference-
Consistency constraint if only the description of an alarm is changed (caused by
following the “trigger constraint at all public method invocations” paradigm)
unnecessarily impairs performance. Due to these reasons, we only trigger con-
straint checking for affected methods specified by the application developer.

In a distributed system, where objects are located at different nodes, con-
straint validation is affected by node and link failures as some affected objects
might not be available. If the objects are replicated, we might be able to val-
idate the constraints (partially based on backup copies). However, if updates
on replicas are allowed in different partitions, we cannot be sure whether the
validation is reliable, because backup replicas of affected objects might be stale
due to an update in another partition. For example, if the technical operator
of an ATS application sets componentKind in a RepairReport while the system
operates in degraded mode. The administrative operator might have changed
the corresponding Alarm in the meantime in another partition. Consequently,
the constraint validation performed because of the changed RepairReport is not
fully reliable. Hence, we call such a situation a consistency threat [2].

2.2 Availability Improvements and Reconciliation

Systems with a strict consistency model require to block or abort operations if
a consistency threat occurs. However, some constraints might not be critical for
“sufficiently” correct system operation and can temporarily be relaxed (traded).
The application developer decides which constraints are tradeable and specifies
the according metadata about the constraint. During runtime, the middleware
is responsible to appropriately trigger constraint validation.

Whenever a consistency threat is detected and the corresponding constraints
are tradeable, the middleware triggers the negotiation process to decide whether
to accept or not accept the current consistency threat. Negotiation can either be
performed descriptively, e.g., accept the threat if no affected objects are older
than n seconds, or algorithmically via an application callback. In an algorithmic
negotiation process, the application may associate application-specific informa-
tion with accepted threats. Whether a threat is accepted can be decided by the
callback handle provided by the application developer on its own, or it might
even contact the end user for a threat-specific decision. However, if the threat
is not accepted, the current transaction is aborted. If the consistency threat is
accepted, the middleware stores this threat (including the application data) to
be re-evaluated at a later time when node or link failures are repaired.

After two partitions are reunified (node or link failure repaired), our sys-
tem starts the reconciliation phase. First of all, the replication protocol starts
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to propagate updates performed in one partition to the replicas in the other
partition(s). If replica (write-write) conflicts are detected, conflict resolution can
either be performed generically, e.g., by performing a rollback to previous states,
or application-specific, e.g., through an application callback by the replication
protocol. However, replica conflicts are also provided to the constraint consis-
tency component in order to support re-establishment of constraint consistency.

After replica consistency is re-established, constraint consistency has to be
restored (constraints are defined upon objects and not between replicas of a sin-
gle object). For this purpose, the stored consistency threats are re-evaluated.
If re-evaluation is successful, i.e., the corresponding constraint is satisfied, no
inconsistency was actually introduced by the consistency threat—if not, ap-
propriate actions have to be taken. Such actions, again, can be generic (e.g.,
roll-back) or application-specific (e.g., call-back) including compensation. One
further generic option is to validate constraints based on different selections of
replicas for objects with replica conflicts detected during replica reconciliation. If
any of these combinations satisfies the constraint, the solution can automatically
be established or be presented to the application for confirmation.

2.3 Relationship to the Concept of Transactions

Traditional systems apply ACID (Atomicity, Consistency, Isolation, Durability)
transactions [16], requiring that all four properties are met. Replication (“R”) can
synchronously be bound to transactions. However, in case of node or link failures,
synchronous update propagation would block. Consequently, update propagation
can be relaxed to asynchronous behavior, e.g., synchronous per network parti-
tion, to avoid blocking. Moreover, if constraints cannot be checked (unreachable
objects) or cannot reliably be checked (stale backup copies involved), constraint
consistency (the “C”) needs to be relaxed, too. Interestingly, Coulouris et al. [17]
do not include consistency in their list of transaction properties and rather specify
that the “C” is under the responsibility of the application developer.

A I D
C R

A Atomicity
C Constraint consistency
I Isolation (concurrency consistency)
D Durability
R Replication

A C I D

R

Fig. 2. Trading transactional properties for adaptive dependability

Atomicity (“A”) is not relaxed in principle in our approach, although one
business transaction (completed as a single transaction in a healthy system)
may result in two or more transactions (one in degraded mode and one or
more transactions to resolve conflicts during reconciliation). These considera-
tions rather correspond to the concepts of atomic transactions [18] vs. business
activities [19] in the area of Web services (WS). However, in our approach we did
not follow these ideas and consequently bound atomicity, isolation, and durabil-
ity strictly to transactions. Consequently, replication and constraint consistency
management operate then on top of such “AID” transactions, see Fig. 2.
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3 Middleware Support

These concepts for adaptive dependability have been integrated into a platform
independent system architecture [20], which has been implemented in different
prototypes using several technologies (EJB, CORBA, .NET). Within this sec-
tion, we first provide how our general concepts and the general architecture were
mapped to and integrated into the EJB middleware platform as provided by the
JBoss application server (AS). Second, we contribute with a detailed description
of constraint consistency management as a new middleware service.

(a) System components (b) Component usages

Fig. 3. EJB/JBoss AS specific system architecture

3.1 System Architecture

Two components of our architecture are primarily responsible for the balancing
of availability and integrity, the replication support (RS) and the constraint consis-
tency manager (CCMgr) provided within the grey areas of Fig. 3. Other
important components are the invocation service, used for interception of point-to-
point invocations, the transaction manager, managing distributed transactions,
persistence to store application data, information about consistency threats, and
historical replica versions to allow for rollback during reconciliation, the group
membership service to detect node and link failures, and the group communica-
tion component that is used for update propagation (from primaries to backups)
by the replication support. The naming service, allowing for name to object bind-
ings, and the activation service, responsible for appropriate activation of objects,
are not of immediate interest within our platform.



Middleware Support for Adaptive Dependability 315

Although quite common and concise, the layered representation in Fig. 3(a)
is not sufficient to illustrate how the components cooperate by using each other:
First, strict layering is often not possible and second, layering does not imply
actual usage. Therefore, Fig. 3(b) further provides an overview of usage-relations
between the major components. This part of the figure shows that transaction
management and invocation service are the two central services where almost
all of the other services depend upon.

3.2 Constraint Consistency Management

Explicit runtime constraint consistency management is a new middleware ser-
vice we introduced for balancing integrity and availability. In our approach,
constraints are explicitly available during run-time and validated upon request
of the middleware. The specification/implementation of constraints is up to the
application developer as they result from the application requirements. On the
other hand, triggering the validation of constraints as well as detection and man-
agement of consistency threats is performed by the middleware.

Explicit (Runtime) Constraint Representation. Obviously, constraints
are processed by the middleware (management, triggering validation, etc.) as
well as the application (performing the actual validation). Hence, this concept
needs a contract between the two parties. For this purpose, we encapsulate the
integrity constraints within explicit constraint classes similar to Verheecke et
al. [21]. The primary contract between middleware and application is the Con-
straint.validate(ctx : ConstraintValidationContext) method (Fig. 4) that has to be
implemented by the application developer and provides true or false as return
value or throws an exception to indicate that constraint checking is impossible,
e.g., due to unreachable objects. The middleware’s responsibility is to ensure that
validate(. . . ) is called appropriately. Moreover, the beforeMethodInvocation(. . . )
call to a constraint supports postconditions that check whether state transitions
caused by a method call are correct. Within this call, a postcondition might store
some values (state before the method invocation) and check during the call to
validate(. . . ) whether the method invocation actually produced a correct result
with respect to the state before the method invocation.

The content of the ConstraintValidationContext provided to validate(. . . ) de-
pends on the type of a constraint and the circumstances under which the con-
straint is validated. It generally contains:

– The context object for invariant constraints, i.e., their “starting point” for
constraint validation. Starting from this object, the constraint is able to reach
all objects that are needed for validation of the constraint. For example, the
context object for the OCL expression context Person inv: getAge() >= 18
would be an instance of the context class Person.

– The called object, called method, and method arguments for preconditions.
– The called object, method, method arguments, and result for postconditions.

To allow the middleware to trigger constraint validation appropriately, the
affected methods have to be specified in addition to the constraints. Moreover,
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Fig. 4. Constraint runtime model

the context class can be specified for invariant constraints. Some invariant con-
straints, however, may not need a context object as they, for example, use a
query operation to get their affected objects.

Finally, constraints may have associated freshness criteria (maximum age),
one per affected class of objects (ObjectClass). These classes have to implement
the VersionedEntity interface that allows to retrieve the version of the object
getVersion() and the estimated latest version getEstimatedLatestVersion(). The
estimated latest version is the one that the object would expect to have. For
example, if an object is usually updated every n seconds and the last update
producing version v happened 3n seconds ago, getVersion() would return v while
getEstimatedLatestVersion() would return v + 3, indicating that the object most
probably missed 3 updates. This mechanism can be used by the application
developer to specify conditions for the negotiation of consistency threats.

Constraint Configuration and Registration. To allow appropriate valida-
tion, we need to know which constraints are affected by which method invoca-
tions. As motivated in Sect. 2.1, we require the application developer to declare
constraints and affected methods as well as other details about a constraint,
e.g., the constraint type or freshness criteria, in a configuration file. Similar to
the EJB deployment descriptor, the constraint configuration file is read after
deployment of an EJB application. The information contained in this file is then
used to register the constraints within a constraint repository. This constraint
repository allows to look up constraints, e.g., by class, method, or constraint
type. Listing 1.1 provides an example of a constraint specification within the
configuration file.

The constraint ComponentKindReferenceConsistency implements the integrity
constraint of the ATS application provided in Fig. 1. It is a hard constraint, speci-
fies that the constraint implementation requires a context object, it can be relaxed
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Listing 1.1. Constraint configuration example

name=“ComponentKindReferenceConsistency”
type=“HARD” p r i o r i t y=“RELAXABLE” contextObject=“Y”
minSat i s f a c t i onDegree=“UNCHECKABLE”>
<c l a s s>ComponentKindReferenceConstraint</ c l a s s>
<context−c l a s s>RepairReport</ context−c l a s s>
<a f f e c t ed−methods><a f f e c t ed−method>

<context−preparat ion>
<preparat ion−c l a s s>Cal l edObject I sContextObject</ preparat ion−c l a s s>

</ context−preparat ion>
<objectMethod name=“setAffectedComponent”>

<ob j e c tC l a s s>RepairReport</ ob j e c tC l a s s>
<arguments><argument>java . lang . S t r i ng</argument></arguments>

</objectMethod>
</ a f f e c t ed−method><a f f e c t ed−method>

<context−preparat ion>
<preparat ion−c l a s s>Refe rence IsContextObject</ preparat ion−c l a s s>
<params><param name=“g e t t e r ” va lue=“getRepairReport”/></params>

</ context−preparat ion>
<objectMethod name=“setAlarmKind”>

<ob j e c tC l a s s>Alarm</ ob j e c tC l a s s>
<arguments><argument>java . lang . S t r i ng</argument></arguments>

</objectMethod>
</ a f f e c t ed−method></ a f f e c t ed−methods>

</ c on s t r a i n t>

during degraded mode, and the negotiation process will accept any consistency
threats (minSatisfactionDegree=“uncheckable”)—ifno negotiation callback handle
is registered by the application to be dynamically contacted for a threat-specific
decision. A consistency threat occurs whenever the satisfaction degree of a con-
straint is possibly satisfied or possibly violated (constraint validation based on pos-
sibly stale objects) or uncheckable (e.g., due to unreachable objects). Considering
constraint violations the least acceptable situation and satisfied constraints the
desired case, we apply the following ordering of satisfaction degrees: violated <
uncheckable < possibly violated < possibly satisfied < satisfied.

The <class> element specifies the Java implementation class of the constraint
that will be instantiated while the configuration file is read during the deploy-
ment of an EJB application. The <context-class> is the class of the context
object (RepairReport) required for constraint validation. Within the <affected-
methods> element, affected methods of the constraint are provided. Each af-
fected method is specified by stating the declaring class, the method name, and
the method parameters. As the constraint is implemented for a specific context
class, the ConstraintValidationContext (see Fig. 4) must be initialized appropri-
ately. Values such as called object, called method, and method parameters are
already set by the middleware. However, the <preparation-class> is responsible
to extract the context object based on these values. The context object for the
method RepairReport.setAffectedComponent(. . . ) is the called object itself while
the context object for the method Alarm.setAlarmKind(. . . ) is obtained by calling
getRepairReport() upon the called object (an instance of Alarm).

Constraint Consistency Manager. The CCMgr is notified by the invocation
service before and after method invocations. Upon such notifications, the CCMgr
looks up preconditions, postconditions, hard and soft invariant constraints and
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triggers validation according to their constraint type. To allow such behavior of
the CCMgr it is also registered with the transaction manager (TxMgr) as a trans-
actional resource to take part in the two-phase commit. If any constraints are
violated, the CCMgr sets the state of the current transaction to “rollback-only”.
Hence, any constraint violation (or unacceptable consistency threat) prevents an
ongoing transaction from successful commit.

In degraded system mode, the CCMgr provides additional functionality to
support the integrity/availability balancing by interacting with the replication
support in order to detect consistency threats caused by possibly stale objects.
Typically, in order to provide replication transparency, respectively application
independence from a particular replication protocol, a proxy object serves as
interface between the application and the replication protocol. For the appli-
cation, this proxy object provides a local view onto the logical object based
on the reachable replicas. In our case, this object view becomes possibly stale
if updates on the same logical object can occur in another network partition.
Whether or not an object1 is possibly stale depends on the presence of node or
link failures and the underlying replication protocol. For example, in the pri-
mary partition protocol [22], each object accessed in a non-primary partition is
possibly stale. In the case of the primary-per-partition protocol [23], objects are
possibly stale in every network partition. However, before the CCMgr triggers
the validation of a constraint, it starts to gather accessed objects, see Fig. 5.
After the constraint validation returns, the CCMgr asks the replication manager
whether any of these objects are possibly stale. If this is the case, the validation
result (satisfaction degree) of the constraint is changed from satisfied to possi-
bly satisfied, or from violated to possibly violated, as the constraint validation is
not fully reliable. If there were any unreachable objects, the validation result of
the constraint is uncheckable. These situations indicate a consistency threat and
trigger negotiation of the threat.

Gather affected objectsConstraint validation

[ Consistency threat 
present ]

Remember consistency threat

Threat negotiation

[ No consistency threat ]

Start constraint 
validation

[ Threat 
accepted ]

[ Threat not 
accepted ]

Validation result Affected objects

Continue operation

Abort operation

Middleware

Application

[ Constraint 
violated ]

[ Constraint 
satisfied ]

Fig. 5. Detection and negotiation of consistency threats

1 For simplification, we use the term “object” as synonym for the local object view
onto the logical object.
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To perform algorithmic negotiation, the application must register a negoti-
ation callback handler with the CCMgr. Such a negotiation handler is bound
to the current transaction and responsible to decide whether to accept or not
accept arising consistency threats. If no negotiation handler is registered at the
CCMgr, declarative negotiation is performed based on the current satisfaction
degree, the configured minimum satisfaction degree, and—if applicable—given
freshness criteria. For this process, the current satisfaction degree of the con-
straint is compared with the minimum satisfaction degree. Moreover, the differ-
ence getEstimatedLatestVersion() - getVersion() is compared with the maximum
age defined by available freshness criteria. Both, minimum satisfaction degree
and optional freshness criteria are specified in the constraint configuration file.

Not accepting a consistency threat results in rollback of the current trans-
action. If a consistency threat is accepted, the consistency threat as well as
application-specific information associated with the threat is persisted and used
later during the constraint reconciliation phase. Reconciliation of constraint con-
sistency is performed after reconciliation of replica consistency. Consequently,
the CCMgr only starts its work after having received a notification from the
replication manager that it has finished its reconciliation work.

To reconcile constraint consistency, the constraint consistency manager looks
up accepted consistency threats and re-evaluates the corresponding constraints.
If a constraint is satisfied, no inconsistency was introduced during degraded
mode and the data about the consistency threat are removed. If a constraint is
still threatened (node or link failures affecting the constraint are still present),
re-evaluation of the corresponding threat is postponed until further repair. If a
constraint is violated, an inconsistency was introduced during degraded mode
and appropriate actions have to be taken to satisfy the constraint.

Invocation Interception. A key requirement for middleware integration of
constraint consistency management is the possibility to intercept invocations.
In EJB, each component and hence entity bean must provide a home and a
business interface. These interfaces are implemented by the EJB container (a
JBoss proxy in our case). After a call to the interface implementation, the EJB
container can perform several middleware tasks, e.g., association of a security
context or transaction with the call, before it finally forwards the call to the
bean implementation.

In the case of JBoss, the JBoss proxy builds up an object representing the invo-
cation and passes this object through an interceptor chain where each interceptor
invokes the next interceptor until the final interceptor invokes the bean instance.
The result of the invocation is passed back in the reverse order. The interceptors
are responsible to provide middleware services for the invocation—enhanced by
constraint consistency management and replication in our case. Fortunately, the
invocation interceptors of the chain can be specified in a configuration file of the
JBoss AS and therefore enhancing JBoss with additional functionality is rather
easy to achieve. Consequently, it was only necessary to implement a new inter-
ceptor and put it into the interceptor chain. This interceptor is then responsible
for appropriately including the CCMgr within the process of an invocation. The
implementation of the replication protocol is based on the ADAPT replication
framework [24], which also hooks into JBoss through custom interceptors.
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Fig. 6. JBoss invocation interception

Unfortunately, the interceptor chain is only traversed if the invocation comes
from a call to the interface which is passed through the interceptor chain by the
JBoss proxy (EJB container). If the bean instance calls another method on itself,
this (internal) invocation is not intercepted, e.g., call number four in Fig. 6.
This behavior would prevent any affected constraints of internal invocations
from being checked. This issue can be solved by using the JBoss aspect-oriented
programming (AOP) framework with which plain Java method invocations can
be intercepted. Similarly to the approach above, the AOP framework transforms
invocations into explicit invocation objects and calls interceptors registered with
the AOP framework. Hence, we are able to use the same approach as above for
triggering constraint validations for internal invocations as well.

3.3 Replication Support

To maximize availability for systems capable of applying our concept of adap-
tive dependability, the middleware should provide replication support. Within
our prototype, we implemented the primary-per-partition protocol (P4) [23] to
replicate the state of entity beans. The P4 behaves like a traditional primary-
backup replication protocol in a healthy system with the specific setup that each
object might have its primary on a different node instead of using only a single
designated primary server node. However, during degraded mode, a temporary
primary is chosen per partition. This further increases availability because op-
erations can be performed on objects in different partitions as long as only
non-critical constraints are affected. During repair, detected conflicts are solved
either by rollback to previous states or by an application-specific compensation
callback—potentially even involving a system operator.

However, the reconciliation process of the replication protocol has an influence
on the handling of constraints and consistency threats. Consequently, constraints
are further divided in intra- and inter-object constraints to address this fact.
Intra-object constraints are constraints that can be evaluated on a single object
and require access to the (primitive/value) attributes of the object only. Inter-
object constraints need access to more than a single object.

If the replica reconciliation process resolves replica conflicts (replicas of a sin-
gle logical object were written in different partitions) through selection of one
copy (and not by creating a new state for the object by merging values of dis-
joint sets of attributes of the different replicas), a differentiation of integrity con-
straints into intra- vs. inter-object constraints is useful. In this case, intra-object
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constraints will not be violated retrospectively by the replica reconciliation pro-
cess. Therefore, constraint validations based upon possibly stale objects can still
return satisfied or violated instead of possibly satisfied or possibly violated for intra-
object constraints. This reduces the number of consistency threats and hence the
amount of associated information gathered during degraded mode and required to
be processed in the constraint reconciliation phase. Inter-object constraints could
be further classified into intra-class (all objects of the same class, e.g., uniqueness
of an attribute for all objects of a class) and inter-class (objects of different classes,
e.g., Fig. 1) constraints. Although this differentiation is useful for constraint im-
plementation, it is not significant with respect to our balancing of dependability.

4 Evaluation

For our performance measurements, we used a mixture of different computers,
each between 2–3 GHz and 1 GB of RAM, connected via 100 MBit Ethernet net-
work links. The configuration denoted as “No DeDiSys” is a standard JBoss AS
4.0.4 with JBoss TS 4.2.1b1 as transaction service for distributed transactions
and MySQL 5.0.21 for persistent storage. The “DeDiSys” configuration addi-
tionally applies the principles provided within this paper as well as the P4 repli-
cation protocol and is measured in healthy mode as well as degraded mode. In
order to ensure repeatability of the tests, we used the script-based DedisysTest
application described in [13].

The test case performed for measurement started with the creation of 1000
entity beans. Afterwards, a setter for String attributes of these entity beans
was called 1000 times followed by 1000 calls getter methods of String attributes
and 1000 calls to an empty method without associated constraints. The next
steps only applicable to the DeDiSys configurations were 1000 calls to an empty
method with a satisfied constraint and 1000 calls to an empty method with
violated constraints. Constraint satisfaction or violation was achieved by simply
returning true or false within the Constraint.validate(. . . ) method in order to
eliminate the validation overhead for reasonable overhead comparison. Details
on this issue are available in [25]. To measure the behaviour in degraded mode
when consistency threats occur, we called an empty method with an associated
constraint 1000 times. The occurring consistency threats were negotiated with a
dynamic negotiation handler and persisted afterwards. Finally, the 1000 entity
beans created in the first step were deleted. Obviously, the create and delete case
operate on 1000 different objects. The “accepted threat” case is the primary issue
to investigate for the degraded mode and therefore split into a good case and bad
case scenario. The values for the other operations were obtained by taking the
average of 1000 operations on the same object and 1000 operations on different
objects, i.e., one operation per object.

Figure 7 provides an overview of the performance of three different system
configurations. “No DeDiSys” is performed on a single node (the fastest one),
“No DeDiSys (average of 3 nodes)” is the average of the single-node performance
of the three nodes taking part in the replicated setting, and the two DeDiSys
configurations (healthy and degraded mode) use a setting with three replicated
nodes. One drawback of the DeDiSys configurations is that creation, change,
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Fig. 7. No DeDiSys vs. DeDiSys in healthy and degraded mode

and deletion of entity beans is slower than the “No DeDiSys” setting. There are
two main reasons for this performance loss. First, the replicated setting has to
store data about the replicas of entity beans, e.g., JNDI name and primary key
to identify the corresponding entity bean and the (serialized) request used to
create the entity bean (required to create backup replicas). Second, propagating
the update messages from the primary copies to the backup copies requires
network access in contrast to the single-node “No DeDiSys” setting. Although
an efficient implementation of the P4 protocol was not in our primary focus, the
provided figures give a rough estimation of the expected performance loss due
to fault- and partition-tolerant replication.

Moreover, we observe that operation in degraded mode is slightly slower for
write operations than operation in healthy mode. This is primarily caused by
keeping a history of states per replica (requires database access). However, this
comparison serves only to show the overhead of degraded mode compared to
healthy mode if the number of nodes is equal. In practice, such a situation
can not occur as at least a single node will not be reachable and therefore the
number of nodes in degraded mode is at least one less than in healthy mode.
Consequently, the degraded mode might be even faster than the healthy mode
for operations triggering the replication protocol. Whether this is true for a
certain application further depends on the configuration of constraints and hence
the number of consistency threats produced during degraded mode as the data
about consistency threats have to be replicated, too. On the other hand, read
performance decreases with a reduced number of nodes in a partition.

The case where methods without associated constraints were called shows the
interception overhead introduced by our middleware enhancement as well as the
ADAPT replication framework [24]. This is on the one hand the time required
by the constraint consistency manager, e.g., accessing the constraint repository
to search for affected constraints, and on the other hand running through the
replication component that does not replicate if the called method is not a set-
ter changing the state of an entity bean. In this case, the performance drops
to about 73% of the “No DeDiSys” configuration, which we consider quite a
good achievement as 22% of the 27% loss are caused by the ADAPT replica-
tion framework [24]. Consequently, the overhead introduced by our middleware
enhancement for empty operations is about 5%.
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Handling of satisfied and violated constraints only occurs in the DeDiSys con-
figurations as this is a new middleware service added by our prototype. Although
there are some minor differences between satisfied and violated constraints in
certain scenarios, they show the same performance in average for the healthy as
well as the degraded mode.

The “accepted threats” case for operation in degraded mode primarily shows
the overhead introduced by consistency threat negotiation as well as persistence
and replication of consistency threats in addition to the time required to handle
satisfied constraints. In order to investigate a good case and a bad case sce-
nario, we performed 1000 operations on a single object producing 1000 identical
consistency threats2 on the one hand and 1000 operations producing 1000 differ-
ent consistency threats on the other hand. Of course, depending on the system
configuration, even more than 1000 threats would be possible. The good case sce-
nario shows the advantage of storing identical threats only once. Consequently,
only a single threat has to be stored in this case and we could serve 74 business
operations per second. On the other hand, the bad case scenario requires replica-
tion and persistence of 1000 different consistency threats, which is a rather costly
operation. In this case, we could only serve three business operations per second.
Obviously, this case heavily depends on the specific application. However, the
operation in degraded mode shows the greatest benefit of our approach compared
to traditional systems that either block, i.e., are unavailable, or operate in an
uncontrolled inconsistent way—thereby impairing dependability in one or the
other way.

Although the contribution of this paper is not focused on an efficient imple-
mentation of the P4 replication protocol, the effects of introducing replication
are of course an interesting aspect to investigate. Our implementation of the
P4 protocol uses synchronous update propagation from the primary to all cur-
rently reachable nodes. While this slows down updates (create, setter, delete),
the performance of read operations is enhanced as reads can be performed on
any node.

Figure 8 shows that the performance of one node using DeDiSys (and hence
the P4 replication protocol) drops to 71% for entity bean deletion, 43% for entity
bean creation, and 57% for local writes. This primarily shows the overhead of the
ADAPT replication framework and the replication protocol through database
accesses to persist details about entity bean replicas. Adding a second DeDiSys-
node further reduces update performance to 28% (delete), 15% (create), and
22% (writes) compared to the “No DeDiSys” case. This shows a little bit less
than 50% performance of the single DeDiSys node case, caused by the fact that
the primary first executes the update and afterwards propagates the updates
synchronously to the backups. Even though the backup nodes process the update
messages from the primary in parallel, adding additional nodes decreases update
performance slightly further.

On the other hand, read performance is increased by roughly 50% of the
single node per additional node, starting from 78% of the “No DeDiSys” case

2 Two consistency threats are identical if they refer to the same constraint and—if
applicable—to the same context object.
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Fig. 8. Replication effects on different operations

for the single node scenario and reaching 227% in the four node replicated setting.
Empty methods operate at a rather constant ratio independent of the number
of nodes in the system. The reason for this is that they do not trigger update
propagation on the one hand. On the other hand, as these methods do not adhere
to any naming convention, we consider them as write operations—to be on the
safe side—and therefore execute them only on the primary node. This behaviour
is the same as for the test cases with satisfied and violated constraints. However,
the backup nodes show no CPU load for non-update operations and hence can
serve further client requests.

In order to investigate the theoretical maximum of (update) operations possible
per second due to restrictions of group communication and transaction handling,
we started a transaction, sent 1000 ping messages from the primary to the backups,
associated the transaction context at the backups, responded with a pong message
to the primary and finally committed the transaction. This is the “Multicast + Tx
handling” case in Fig. 8. Obviously, the round-trip time of multicasts and trans-
action handling become more and more influential with an increased number of
nodes, limiting the possibilities for performance improvements.

We conclude that only under extremely demanding performance requirements
the performance impairment due to explicit constraint management may turn
out to be a problem, see also [2,25] for further details. On the other hand,
synchronous replication significantly reduces system performance for update op-
erations while the performance of read operations is improved. Therefore, syn-
chronous replication should be applied if the read to write ratio is high and/or
write performance is not the limiting factor. In other cases, asynchronous repli-
cation protocols or only partial replication (updates are only propagated to some
but not all nodes within the system) should be applied.

5 Related Work

The balancing of integrity and availability has already been investigated with
respect to isolation [26,27] and replica consistency [28,7,29] and different strate-
gies to optimistic replication are already well-known [30]. The focus of our work
to trade constraint consistency for availability did not yet receive too much



Middleware Support for Adaptive Dependability 325

attention. Balzer [31] uses pollution markers to temporarily allow and denote
constraint violations in a healthy system to allow certain business cases. The
application using this approach tolerates inconsistency in the way that reports
are marked appropriately if they contain data affected by pollution markers. Al-
though our stored consistency threats roughly correspond to pollution markers,
Balzer accepts constraint violations in a healthy system and does not consider
node or link failures while we aim at fully consistent data in the healthy system
and accept consistency threats during degraded mode. However, integration of
both approaches would most likely provide further benefits to an application
developer.

Representing data integrity constraints as explicit constraint classes was in-
spired by Verheecke et al. [21] who perform a transformation from UML class
diagrams enhanced with OCL constraints into Java objects and Java constraint
checking classes. Their approach generates skeletons for the classes with hard-
wired triggers for constraint validation while we require that constraints are
explicitly manageable at runtime for adaptivity with respect to node and link
failures. However, the specification of affected methods of a constraint, is a rather
tedious task. To relieve the application developer from this work as well as from
the implementation of the constraints themselves, the model driven approach
used by Verheecke et al. could be integrated with our constraint checking frame-
work. Consequently, entity beans, constraints and metadata could be generated
based on UML models annotated with OCL constraints.

ADAPT [24] provides a replication framework to allow rapid prototyping of
replication protocols in J2EE (Java 2 Enterprise Edition) environments. This
framework is based upon the JBoss AS. The primary mechanism used is invoca-
tion interception at the client side as well as at the server side. The replication
protocol building upon this framework is notified about different events, such as
creation of, calls to, and deletion of enterprise beans. Consequently, this frame-
work proved quite useful for our prototype implementation of the P4 replication
protocol.

6 Summary and Conclusion

This paper presents a middleware approach to support adaptive dependability by
balancing integrity and availability. We show how explicit runtime management
of constraints as a middleware service can support the application to provide the
envisaged balancing with respect to an application’s requirements and environ-
ment conditions. This concept allows detection and negotiation of consistency
threats as a means to bound the potentially introduced inconsistency during de-
graded mode. According to our prototype implementation and additional evalua-
tion studies [2,25], performance impairment due to explicit constraint consistency
management is not an issue while the performance loss through synchronous
replication is acceptable if (i) the read-to-write ratio is high, (ii) the number
of replicated nodes within the system is small, and/or (iii) write performance is
not a limiting factor. However, our approach increases availability at the expense
of increased aggregate complexity during system reconciliation. Therefore, this
system mode is subject to improvements and future research questions.
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Abstract. Data centers are the most critical infrastructure of companies demand-
ing higher and higher levels of quality of service (QoS) in terms of availability
and scalability. At the core of data centers are multi-tier architectures providing
service to applications. Replication is heavily used in this infrastructure for either
availability or scalability but typically not for both combined. Additionally, most
approaches replicate a single tier, making the non-replicated tiers potential bot-
tlenecks and single points of failure. In this paper, we present a novel approach
that provides both availability and scalability for multi-tier applications. The ap-
proach uses a replicated cache that takes into account both the application server
tier (middle-tier) and the database (back-end). The underlying replicated cache
protocol fully embeds the replication logic in the application server. The protocol
exhibits good scalability as shown by our evaluation based on the new industrial
benchmark for J2EE multi-tier systems, SPECjAppServer.

Keywords: scalability of middleware, replication, caching, reliability, fault-
tolerance.

1 Introduction

The new vision of Enterprise Grids [1] is demanding for the creation of highly scal-
able and autonomic computing systems for the management of companies’ data cen-
ters. Data centers are the most critical infrastructure of companies demanding higher
and higher levels of quality of service (QoS) in terms of availability and scalability. At
the core of data centers lies a multi-tier middleware architecture providing services to
applications. A multi-tier architecture provides separation of concerns in regard to pre-
sentation (front end), business logic (middle-tier), and data storage (back-end). Clients
interact with the front end, which acts as a client of the middle-tier or application server.
Most computation is done at this level and data is stored in the back-tier.
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Replication can provide both scalability (load can be distributed across the replicas),
and fault-tolerance (load submitted to a failed replica can be redirected to available
replicas). Recent work on multi-tier replication, however, only replicates the applica-
tion server tier while using a single database [2,3,4,5,6,7]. We call these shared database
approaches horizontal replication (they replicate a single tier). The main shortcoming is
that the shared database becomes a bottleneck and a single point of failure. An alterna-
tive is to replicate both tiers independently. However, attaining a consistent integration
in a scalable way is still an open problem [8]. Furthermore, some of the approaches, e.g.,
FT-CORBA [9,10] or [6] for J2EE focus on availability and use either primary-backup
or active replication. Thus, they do not address scalability since neither technique allows
the sharing of load among replicas.

J2EE application servers cache an object oriented view of the database items used
by the application. In order to keep this view consistent with the database, application
servers implement a concurrency control policy for the cache. They typically provide
serializability as correctness criteria, implemented via locking or optimistic schemes,
since databases have relied on serializability for a long time. However, today many
databases provide snapshot isolation as the highest isolation level (e.g., Oracle, Post-
greSQL, FireBird, etc.) and others implement it (MS SQL Server). Therefore, current
application server implementations are incorrect when used with databases providing
snapshot isolation. Snapshot isolation provides a similar level of isolation as serializa-
bility (it passes the tests for serializability of standard benchmarks such as the ones
from TPC). Snapshot isolation is usually implemented via a multi-version mechanism
in which transactions see a snapshot of the database as of transaction start [11]. There-
fore, readers and writers do not interfere. In contrast, when implementing serializability,
read-write conflicts lead to blocking or aborts, reducing the potential concurrency and
the performance of the system. That is avoided by snapshot isolation.

In this paper we propose a replicated multi-version cache that improves performance
by avoiding frequent access to the database. It also provides availability, consistency,
and scalability. In our architecture each application server is connected to a local copy
of the database. The pair of application and database server is the unit of replication
(vertical replication). This avoids that the database becomes a single point of failure
and a bottleneck. Our replication solution is fully implemented within the application
server tier on top of an off-the-shelf database. This fact is important for pragmatic rea-
sons since it enables the use of the replication platform with any existing database and
without requiring access to the database code. The replicated cache is based on snap-
shot isolation. That is, using a single server, the cache provides caching transparency,
i.e., its semantics is the same as a system that does not use caching. In a replicated sys-
tem, it provides one-copy correctness and fault-tolerance, that is, the replicated system
behaves as a non-replicated system (consistency) that never fails.

To the best of our knowledge this paper is the first to provide a scalable and integrated
solution for the replication of both the application server and database tier. It is also the
first paper to implement snapshot isolation for the cache of the application server tier
so that it works properly with a database based on snapshot isolation. We have im-
plemented the replicated multi-version cache and integrated it into a commercial open
source J2EE application server, JOnAS [3]. The performance of the implementation has
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been evaluated with the new industrial benchmark, SPECjAppServer [12]. The proto-
type outperforms the non-replicated application server and shows good scalability in
terms of throughput and response time.

In the remainder of the paper, Section 2 introduces background on J2EE and snap-
shot isolation. Sections 3 and 4 present the replication model and the cache protocol,
respectively. Failure handling is described in Section 5. The performance evaluation is
shown in Section 6. Section 7 presents related work, and Section 8 conclusions.

2 Background and Motivation

2.1 J2EE

J2EE [13] is a framework that provides a distributed component model along with other
useful services such as persistence and transactions. J2EE components are called En-
terprise Java Beans (EJBs). In this paper, we consider the EJB 2.0 specification. There
are three kinds of EJBs: session beans (SBs), entity beans (EBs) and message driven
beans. We will not consider message driven beans in this paper. SBs represent the busi-
ness logic and are volatile. SBs are further classified as stateless (SLSBs) and stateful
(SFSBs). SLSBs do not keep any state across method invocations. In contrast, SFSBs
are associated with a client and keep session related information across invocations.

EBs model business data and are stored in some persistent storage, usually a
database. EBs are shared by all the clients. An EB typically represents a tuple of the
database. Thus, the set of EBs can be viewed as a cache of the database. Therefore,
EBs are accessed within the context of transactions. EBs are typically managed by the
application server (container managed persistence). The J2EE application server (AS)
takes care of reading from and writing to the database by generating the adequate SQL
statements (object oriented to relational model translation). Furthermore, it implements
some concurrency control mechanism on the cache to satisfy the isolation level pro-
vided by the database, typically serializability.

In J2EE, transactions are coordinated by the Java Transaction Service (JTS). Trans-
actions access this service using the Java Transaction API (JTA). In J2EE transactions
can be handled either explicitly (bean managed transactions) or implicitly (container
managed transactions, CMT). With CMTs, the container intercepts bean invocations
and demarcates transactions automatically. We will focus on CMTs.

2.2 Snapshot Isolation

Snapshot Isolation (SI) [11] is a multi-version concurrency control mechanism used
in databases (e.g., Oracle, PostgreSQL, MS SQL server). One of the most important
properties of SI is that readers and writers do not interfere. This is a big gain compared
to serializability, the traditional correctness criteria for databases, where a locking im-
plementation prevents concurrent reads and writes on the same object while optimistic
concurrency control aborts the reader.

SI can be implemented as follows. The system maintains a counter C of committed
transactions. At commit time, C is incremented and the new value is assigned to the
committing transaction T as commit timestamp CT(T). At start, a transaction T receives
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Fig. 1. Snapshot Isolation

as start timestamp ST(T) the current value of C. When a transaction writes a data item
x, it creates a new (private) version of x. When reading a data item x a transaction
T either reads its own version (if it has already performed a write on x) or it reads
the last committed version as of the start of T . That is, it reads the version created by
a transaction T ′ so that CT (T ′) is the maximum CT of all transactions that wrote x
and CT (T ′) ≤ ST (T ). By reading from a snapshot, reads and writes do not interfere.
However, if two concurrent transactions want to write the same data item, SI requires
one to abort. Such conflicts can be detected at commit time. When a transaction T wants
to commit, a validation phase checks whether there was any concurrent transaction T ′

(i.e. CT (T ′) > ST (T )) that already committed and wrote a common data item. If such
a transaction exists T aborts, otherwise it commits. If T commits, its changes (writeset)
are made visible to other transactions that start after Ti commits.

Fig.1(a) shows an example with four transactions. We assume C = 10 and the trans-
action T with CT (T ) = 10 updated x (not shown in the figure). Now T 1, T 2 and T 3
start concurrently and all receive as start timestamp the value 10. T 2 writes x. Its valida-
tion succeeds and CT (T 2) is set to 11. T 3 reads the version of x created by T . Since it
is read-only, no validation is necessary and it does not receive a commit timestamp. T 1
reads the version of x created by T , and then writes x creating its own version. When
T 1 wants to commit, however, validation fails since there is a committed transaction T 2,
CT (T 2) > ST (T 1), and T 2 also wrote x. Therefore, T 1 has to abort. Finally, T 4 starts
after T 2 commits and receives ST (T 4) = 11. It reads the version of x created by T 2.

2.3 Application Server Caching and Replication

J2EE implementations provide caching for entity beans as follows. An entity bean (EB)
represents a cached tuple of the database. We denote the entity bean representing tuple
x as EBX . When accessing an EB, if it is not in memory the corresponding tuple is
read from the database. If the EB is updated, the associated tuple will be updated at
the database when the corresponding transaction commits. The EB is then cached in
memory so that it can be directly accessed by further transactions. Access to EBs is
typically controlled via locking in order to provide serializability. However, this can
lead to executions that neither provide serializability nor snapshot isolation when the
database system uses snapshot isolation.

Let’s look at an example. Assume two transactions T 1 and T 2 start concurrently at
the application server (Fig.1(b)). T 1 wants to write x and y. For that, the application
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Fig. 2. Replication model

server reads the values of x and y into EBX and EBY , respectively, T 1 gets locks and
updates both beans. Concurrent transaction T 2 reads z into EBZ , and then wants to
read y but is blocked because T 1 has a lock on EBY . Now T 1 commits. The new values
for x and y are written to the database and the locks are released. Both EBX and EBY
remain cached. T 2 receives the lock on EBY and reads the current value of EBY ,
namely the value written by T 1. Now assume the cache replacement policy evicts EBX
from the cache. Later, T 2 wants to read x. x is reread into a new incarnation of EBX .
However, since the database uses snapshot isolation and T 2 is concurrent to T 1 in the
database, the old value of x is read. Therefore, T 2 reads for y the value written by
T 1 but for x a previous value. This does neither conform to snapshot isolation nor to
serializability.

In order to avoid the anomalies of J2EE caching when used with a snapshot isolation
database, we propose a multi-version cache for EBs that enforces snapshot isolation. For
each EB, instead of keeping a single copy in the cache, a list of potentially more than one
version is cached. Each bean version EBXi of data item x is tagged with the commit
timestamp i of the transaction that created (and committed) this version. Additionally,
the multi-version cache is replicated at several application servers in order to provide
scalability, and availability. The semantics of the replicated multi-version cache is as if
there was a single multi-version cache providing snapshot isolation (consistency).

3 Replication Model

We consider a vertical replication model in which a J2EE application server (AS) and
a database (DB) are collocated in the same site [8]. This is the unit of replication, also
called replica. Each AS communicates with its DB and with the remaining ASs. That
is, DBs are not shared among ASs. The set of all replicas is called a cluster (Fig.2).

In here, we are interested in container managed transactions, where each client re-
quest is automatically bracketed as a transaction by the application server. This means,
there is a one-to-one relationship between requests and transactions. Clients call meth-
ods of a session bean, and the session bean may access other session or entity beans.
A client can be connected to any of the replicas. That replica will execute the transac-
tions of the client. The changes of update transactions have to be executed at all replicas.
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Our protocol uses a group communication system [14] for communication among the
replicas. The next section discusses the replication protocol when no failures occur.
Section 5 discusses failure handling.

4 Replication Protocol

In this section, we describe the multi-version cache replication protocol (Fig.3). We first
present the main ideas and then discuss the protocol in detail.

Overview
When a request is submitted to a replica, a transaction is started at the application server
(AS) and at the database (DB). The transaction might read data that is already cached
at the AS or that has to be read from the DB. The cache protocol makes sure that the
correct version is read according to snapshot isolation. If the transaction is read-only, it
simply commits locally and the result is returned to the client. If the transaction updates
a data item x, a new private version of the corresponding entity bean EBX is cre-
ated. At commit time, the replication protocol multicasts all EB versions created by the
transaction (i.e. its writeset) using a total order multicast provided by the group commu-
nication system. That is, although different replicas might multicast at the same time,
all replicas receive all writesets in the same order. At each replica, the replication pro-
tocol now validates incoming writesets in the same order. If validation determines that
a concurrent transaction that already validated had an overlapping writeset, validation
fails and the transaction is aborted. If validation succeeds, the replica assigns a commit
timestamp, tags the EB versions of the transaction with the commit timestamp and adds
them to the cache. Then the transaction commits at AS and DB. When the transaction
commits at the local replica, the result is returned to the client. Each replica validates
the same set of update transactions in the same order, and decides on the same outcome
for each individual transaction. Thus, each committed transaction has the same commit
timestamp at each replica.

Protocol Details
We now discuss in detail how transactions are executed. When a transaction is submitted
to a replica R, the replica starts a local transaction T at the local AS and a transaction t
at the local DB. The correlation between AS transactions and DB transactions is stored
in a table (Fig.3 line 6). Each transaction T at the AS will be associated with a start
timestamp ST (T ) when it starts (line 3), and a commit timestamp CT (T ) at commit
time (line 54) which is assigned from a counter that is increased every time a trans-
action commits. The start timestamp ST (T ) of a transaction T is the highest commit
timestamp CT (T ′), and indicates that T should read the committed state that existed
just after the commit of T ′. We assume that the initial start timestamp is 0 at all replicas.
Each bean version EBXCT (T ) of a data item x is tagged with the commit timestamp
CT (T ) of the transaction T that updated (and committed) this version. When a trans-
action T reads a data item x it has written before, it reads its own version (lines 10-11).
Otherwise, it first looks for EBX in the cache. It reads the version EBXi such that
i ≤ ST (T ) ∧ �EBXj : i < j ≤ ST (T ), i.e. it reads the last committed version
as of the time it starts (lines 12-13). If no appropriate bean is cached in memory, the
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transaction reads x from the DB and the corresponding EBX version is created (lines
15-18). Since a transaction is started at the DB when a transaction starts at the AS, and
the DB provides snapshot isolation, the DB will return the correct version for x. This
process guarantees that each transaction observes a snapshot as of the start of the trans-
action and therefore it does not violate snapshot isolation. Since the DB does not show
the versions associated to tuples, when a version of data item x is read from the DB the
corresponding tag of the EBX version is unknown. Thus, the bean is tagged with -1.

In order to guarantee that transactions always read the appropriate bean version,
the cache guarantees that for each data item x the following holds: (i) If both T
and T ′ updated x, and CT (T ′) > CT (T ) and the version EBXCT (T ) is cached,
then EBXCT (T ′) is also cached. That is, if the cache contains a certain version of a
bean, then it also contains all later versions of this bean; (ii) If there exists a version
EBXCT (T ) and there exists an active local transaction T ′ that is concurrent to T , i.e.,
ST (T ′) > CT (T ), then EBXCT (T ) is cached. That is, a version is cached at least as
long as there exists a concurrent local transaction that has not yet terminated. Having
all these versions cached is important for reads.

Note that our approach requires the DB to provide snapshot isolation. This is needed
because the cache cannot keep the entire database, i.e., all versions of all tuples. To show
that snapshot isolation is needed at the DB level, assume the DB uses the isolation level
read committed (or serializability via locking). Assume further that a transaction Ti

reads and modifies x while a concurrent transaction Tj updates y and commits. Assume
now further that Ti wants to read y and, due to lack of memory, the version of EBY
that Ti needs to read, was evicted from the cache. Hence, it has to read it from the DB.
Assuming transactions run at the DB with read committed (or serializability) isolation
level, Ti reads the value of y committed by Tj . That is, it will not read the value of EBY
at the time Ti started. Thus, the AS cannot provide by itself the snapshot isolation level.

In snapshot isolation, when two concurrent transactions update the same data item,
only one may commit, the other has to abort. In order to detect such conflicts early, we
use locking and version checking. When a transaction Ti wants to update a data item x,
it has to first acquire a write lock on EBX (line 25). Write locks guarantee that at most
one transaction updates data item x at any time. If another transaction holds a lock on
EBX , T has to wait until the lock is released which is done at transaction abort (line
45) or commit (line 73). Lock requests are inserted into a FIFO wait-queue, i.e., when
a transaction releases a lock the first in the wait queue receives it. Once a transaction T
has a lock, a version check on the version EBXj with the highest version number in
the cache is performed. If j > ST (T ), then this version was created by a concurrent,
already committed transaction, and T must abort (lines 26-27). If no such version exists,
T can perform the update, i.e., create its own version and add it to its writeset (line 29-
31). For now, this version is only seen by T itself. This guarantees that a transaction
observes its own updates (lines 10-11) and prevents other transactions from observing
uncommitted changes.

When a transaction wants to commit, if the transaction was read-only it is simply
committed at the DB (lines 36-37). Otherwise, the writeset is multicast to all repli-
cas using a total order multicast (line 39). All replicas in the multicast group (includ-
ing senders) receive all messages in the same order. When a replica processes such a
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Data:
timestamp = 0;
cache = ∅ ;
committedTx = ∅;
transactionTable = ∅;
mutex;;
oldestActiveTx = array[1..NumberReplicas] of Int = 0;

begin(T)1

set mutex ;2

ST(T) = timestamp;3

WS(T) = ∅;4

t = begin transaction in the DB;5

store(transactionTable, T, t);6

release mutex ;7

end8

read(T, EBX)9

if EBXTprivate ∈ WS(T) then10

return EBXTprivate ;11

else if12

∃EBXi ∈ cache : i = max(j) | EBXj ∈ cache ∧ j < ST (T )
then

return EBXi ;13

else14

t = getTx(transactionTable, T);15

EBX−1 = read(t,EBX) from the DB;16

cache = cache ∪{EBX−1};17

return EBX−1;18

end19

end20

write(T, EBX, value)21

if ∃EBXTprivate ∈ WS(T) then22

write(EBXTprivate, value);23

else24

acquire lock on EBX for T;25

if ∃EBXi ∈ cache | i > ST (T ) then26

abort(T);27

else28

create(EBXTprivate);29

WS(T) = WS(T) ∪{EBXTprivate};30

write(EBXTprivate, value);31

end32

end33

end34

commit(T)35

if WS(T) == ∅ then36

Commit (getTx(transactionTable, T)) in DB;37

else38

multicast(WS(T), T, minLocalTx(transactionTable));39

end40

end41

abort(T)42

∀ EBXTprivate ∈ WS(T) do43

delete(EBXTprivate);44

release lock on EBX;45

end46

abort getTx(T) in DB;47

delete(transactionTable, T);48

end49

upon delivery of (WS(T), T, oldestLocalActiveTx)50

set mutex;51

oldestActiveTx[Sender(T)] = oldestLocalActiveTx;52

if �TK ∈ committedTx : ST (T ) > CT (Tk)∧53

WS(T ) ∩ WS(TK) 	= ∅ then
CT(T) = + + timestamp;54

if local(T) then55

∀EBXTprivate ∈ WS(T) do56

replace tag Tprivate with tag CT (T );57

cache = cache ∪{EBXCT (T )};58

end59

else60

t = begin transaction in the DB;61

store(transactionTable, T, t);62

∀EBXTprivate ∈ WS(T) do63

if ∃ local transaction LT that has lock on EBX then64

abort(LT)65

end66

acquire lock on EBX for T (put lock request at begin of67

wait queue);
replace tag Tprivate with tag CT (T );68

cache = cache ∪{EBXCT (T )};69

end70

end71

commit (getTx(transactionTable, T)) in the DB;72

∀EBX ∈ WS(T ) release lock on EBX;73

committedTx = committedTx ∪{T};74

delete(transactionTable, T));75

release mutex;76

end77

garbageCollection()78

oldestTx = min(oldestActiveTx);79

∀T ∈ committedTx do80

if CT (T ) < ST (oldestTx) then81

committedTx = committedTx - {T} ;82

end83

end84

oldestLocalTx = oldestActiveTx[R];85

∀EBX ∈ cache do86

if ∃EBXi ∈ cache ∧ i 	= −1 ∧ i < ST (oldestLocalTx) then87

cache = cache - EBXi;88

if EBX−1 ∈ cache then cache = cache-EBX−1;89

end90

end91

end92

Fig. 3. Replicated Cache Protocol for Replica R

message (line 50), the corresponding transaction performs a final validation (line 53).
This will help to find conflicts among transactions that executed at different replicas.
Since all transactions perform deterministic validation in the same order, all replicas
decide on the same outcome. A transaction passes validation, if there is no transaction
in the system that is concurrent, already committed and has overlapping changes.

When a transaction T passes validation, it receives a commit timestamp (line 54). At
the local replica, the private versions are tagged with the commit timestamp and added
to the cache (lines 55-59). T and the corresponding DB transaction t commit and the
locks are released (lines 72-73). Note that committing the DB transaction automatically
propagates the changes to the DB. The protocol keeps track of all committed transac-
tions (line 74) for validation purposes. At a remote replica, a DB transaction is started
for T (lines 61-62). T first gets the locks on the data items. If a local transaction T ′ has
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a lock on one of the data items it has to abort because it is concurrent to T , has updated
the same data item and is not yet validated and committed (lines 64-65). T has to be
the first to get the lock (line 67). Then, the versions sent in the message are tagged with
the commit timestamp and added to the cache (lines 68-69). From there, the transaction
commits as in the local replica (lines 72-75).

If a transaction T does not pass validation, nothing has to be done. At remote replicas,
the message can simply be discarded since nothing has yet been done on behalf of T .
At the local replica, T can only fail validation if a conflicting remote transaction T ′ was
received between sending and receiving T . In this case, however, as described above T ′

found the lock held by T and T was already forced to abort.
Note that messages are processed serially, that is, one after the other, in order to

guarantee that validation and commit order are the same at all replicas. Furthermore,
starting transactions have to be coordinated with committing transactions in order to
guarantee that transactions see, in fact, the correct snapshot. Therefore, an appropriate
mutex is set (lines 2,7, 51 and 76).

Examples
We illustrate the execution along two examples. Fig.4 shows an example of the evo-
lution of the cache on a single replica (ignoring the replication part). We assume the
cache is empty and the commit counter is at value 10. Transactions T 1 and T 2 obtain
the same start timestamp (10) and each creates a corresponding DB transaction. Then,
T 2 reads x. Since no bean version exists in the cache, the data item is read from the DB
and a version EBX−1 is created. The value of x is a. Now T 1 reads x and y. Since
EBX−1 is cached and −1 ≤ 10, T 2 reads EBX−1. Furthermore y is read from the
DB and stored in EBY−1. Its current value is b. Now T 1 updates EBX to the value
c and EBY to the value d. For that, it creates private versions of EBX and EBY .
Finally, it requests the commit. It receives commit timestamp CT (T 1) = 11, the ver-
sions are tagged with this timestamp and added to the cache. The corresponding DB
transaction commits meaning that the changes are transferred to the DB. Since the DB
implements SI, new versions for both x and y are created also in the DB. When T 2 now
reads y, it does not read EBY11, since 11 > ST (T 2). Instead, it reads EBY−1 that is,
the old value b of y. Since T 2 is read-only, it simply commits in the DB and no commit
timestamp is assigned.

In our second example (Fig. 5) we assume two replicas R1 and R2. We assume the
commit counter at each replica is 10 when transaction T 1 starts at R1 and T 2 at R2.
Both receive start timestamp 10. Now assume both read data item x, reading it from
the local DB and loading it into EBX−1. The current value is a. Now both transactions
update EBX . Since they run in different replicas, both acquire the lock, and create their
own private EBX versions. T 1 sets the new value b, T 2 sets the new value c. When
T 1 and T 2 finish at their local replicas, their changes are multicast. Let us assume the
total order is T 1, T 2 and there is no other concurrent conflicting transaction. Let’s first
have a look at R1. When T 1 is delivered at R1, its validation succeeds. T 1 is local at
R1. It receives the CT (T 1) = 11 and its version is tagged (EBX11 = b) and added
to the cache. T 1 commits at the DB. When now T 2 is delivered at R1 validation fails
since T 1 is concurrent (CT (T 1) > ST (T 2)), conflicts, and has already committed.
Therefore, nothing is done with T 2 at R1. At replica R2 transactions are validated in
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Fig. 4. Evolution of the cache in a single replica

the same order. T 1’s validation succeeds. T 1 is a remote transaction at R2 and has
to acquire the locks. However, T 2 has a lock on EBX . T 2 is local and has not yet
validated. Therefore, it is aborted, its private version discarded and its lock released.
EBX11 = b is created and added to the cache. The value is propagated to the DB
and the transaction committed. When later T 2 is delivered at R2, validation fails. The
transaction has already aborted, and nothing has to be done. Therefore, the two replicas
commit the same transactions and keep the same values (with the same version tag) in
both the cache and the DB.

Dealing with Creation and Deletions of EBs. Creation and deletion of EBs is also
handled by the protocol (not shown in Fig.3). When a new EB is created (no corre-
sponding data item exists in the DB), a private version is created for the transaction and
there is no other version available. A lock is also set on the EB to prevent concurrent
creations of the same EB (with the same primary key). When the transaction commits,
the version becomes available for transactions that started after the creating transaction
committed and the corresponding tuple is inserted in the DB.

Deletions create a tombstone version of the EB. The tombstone is also a private
version of the transaction until commitment. If the transaction tries to access the EB,
it will not find it, since the protocol will find the tombstone and recognize the EB as
deleted. When the transaction commits, the tombstone version will become public. Even
after transaction commit previous versions of the EB cannot be removed, since there
might be active transactions associated to older snapshots (all transactions that started
before the one that deleted the EB committed), that may read the older EB version.
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Fig. 5. Two concurrent conflicting transactions

Garbage Collection. Since EB versions are kept in memory (in the cache), they should
be removed to free space in the cache when they are not needed. For this purpose,
there is a garbage collection mechanism that discards unneeded EB versions (Fig.3
garbageCollection). Each replica removes versions that are older than the oldest start
timestamp among local active transactions (lines 85-88). If a version of an EB, EBi, is
not needed (there is no local active transaction with start timestamp smaller than i), then
version EB−1 is also not needed, since EB−1 is older (line 89). Moreover, if EB−1 is
not evicted from the cache and a new transaction T (ST (T ) > i) reads EB, it would
read EB−1, which is incorrect, since it should read a later committed version (EBi or
even a later version, since ST (T ) > i).

Uncommitted updated EBs are pinned in the cache. If the cache gets full with pinned
EBs, the J2EE application server writes locked EBs from the cache to a local disk repos-
itory (not the database) by means of a standard hibernation mechanism. Thanks to this,
our versioning is not affected by the eviction policy of the cache. When a hibernated
EB is going to be accessed the AS brings the hibernated EB to memory including all
EB versions and their tags. Note that updated EBs whose changes have been committed
will be evicted from the cache according to the cache policy.

Writesets (committedTx) are also garbage collected. Since they are used for valida-
tion, a writeset can only be garbage collected when there are no more active concurrent
transactions in the system (lines 79-82).

Session Replication. Stateful session beans (SFSBs) keep conversational state from a
client and their replication is not required to provide consistency and availability of EBs.
However, if they are not replicated, a failure of a replica will cause the loss of the con-
versational state kept in the SFSB corresponding to all previously run transactions by the
client at that replica. The conversation could not be resumed after the failover, what re-
sults in loss of session availability. For this reason, the replication protocol also replicates
the state of SFSBs after each method invocation. Papers [15,7] focus on this topic.
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5 Failure Handling

Clients connect to the application server through stubs that are obtained from the ap-
plication server through JNDI (Java Naming and Directory Interface). Since stubs are
generated by the application server, the necessary replication logic can be incorporated
in a way fully transparent to clients. We have extended the stubs to be able to perform
replica discovery and load-balancing, relying on IP-multicast. When a client wants to
connect, the stub IP-multicasts a message to an IP-multicast address associated to the
application server cluster. Clients are identified by a unique client identifier. When the
replicas in the cluster receive a connection request, one of them (depending on the client
identifier) returns to the stub a list of available replicas (their IPs) as well as an indica-
tion of their current load. Replicas multicast information about their load periodically
(e.g., piggybacked on the writeset message). The stub then selects a replica randomly
with a selection probability inversely proportional to the load of the replicas to attain
load balancing. The stub connects to the selected replica and sends all client requests to
this replica (sticky client). Each request receives a unique number (a counter kept at the
stub that is incremented after each successful request).

The AS replicas build a group using the group communication service. The group
communication system provides the notion of view (currently connected cluster mem-
bers). Whenever a member fails, the available members are informed via a view change
message. The group communication system provides strong virtual synchrony that guar-
antees that the relative order of delivering view changes and multicast messages is the
same at all replicas. The total order multicast used for the writeset messages in the
replication protocol also provides reliable delivery guaranteeing that all available repli-
cas receive the same set of messages [14]. Furthermore, the writeset also contains the
client identifier, request identifier plus the response that is going to be returned to the
client. The remote replicas store for each client the latest request identifier, the outcome
of the transaction (commit/abort), and in case of commit, the response.

Let us now consider the failover logic at the application server side. Each replica
consists of a pair of AS and DB. If any of them fails or the site in which they are
collocated fails, the replica is considered as failed. If only the AS or the DB fails, the
other component automatically shuts down. We assume only crash failures.

At the client side the failure will be detected when the stub times out waiting for
the response to an outstanding request. The stub will reconnect to a new replica and
resubmit that request. Notice that we are considering container managed transactions,
where each client request will be automatically bracketed as a transaction. Thus, there
is a one-to-one relationship between requests and transactions. A failure can now occur
at two logical timepoints. (1) The replica failed before multicasting the writeset related
to the request to the other replicas. (2) The replica failed after multicasting the writeset.

If there have been previous interactions with that client, the new replica to which the
stub connects to will have the last state of the stateful session bean (SFSB) associated
to the client and processes the resubmitted client request in the following way. In case
(1), the new replica does not yet have any information about this request and thus, will
process it as a new request. In case (2) it has already stored the request identifier and
the outcome of the corresponding transaction. It recognizes the resubmitted request as
a duplicate for which it has already the outcome stored. If the outcome was commit, it
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returns the response to the client. Otherwise, it returns an exception to the client noti-
fying that the transaction was aborted since snapshot isolation could not be guaranteed
(the failed replica would have done the same if it had not failed).

6 Evaluation

6.1 Evaluation Setup

The evaluation has been performed in a cluster of 10 machines connected through a
100 Mbps switch. Sites have 2 AMD Athlon 2GHz CPUs, 1 GB of RAM, two 320
GB hard disks and run Fedora Linux. Each replica consists of one JOnAS v4.7.1 ap-
plication server (AS) and a PostgreSQL v.8.2 database. JGroups [16] is used as group
communication system.

We use the dealer application of SPECjAppServer in our evaluation. SPEC-
jAppServer is a benchmark developed by SPEC (System Performance Evaluation Co-
operative) to measure the performance of J2EE application server implementations
[12]. In this application there is a workload generator (driver) that emulates automo-
bile dealers interacting with the system through HTTP. The driver injects three different
transaction types: purchase vehicles (25%), manage customer inventory (25%), browse
vehicle catalog (50%). Browse transactions are read-only, purchase transactions have
a significant amount of writes, and management transactions exhibit the highest frac-
tion of updates. The main parameter in the tests is the injection rate (Ir), which models
the injected load. The number of clients is Ir × 10. The SPECjAppServer specifies a
maximum response time for all requests (2 seconds). Furthermore, the response time
corresponding to the 90% percentile may be at most 10% higher than the average re-
sponse time. The throughput is measured as the business transactions completed per
second (Tx/sec).

We compare the results of our replicated multi-version cache with the traditional
caching of JOnAS (no replication) and a replicated application server (JOnAS) with 2
replicas sharing a single database (horizontal replication) where only stateful session
beans are replicated.

6.2 SPECjAppServer Benchmark Results

Fig. 6(a) shows the overall throughput with increasing loads. The figure shows graphs
for traditional caching without replication, horizontal replication with 2 replicas (HR
Shared DB) and our approach for 1-10 replicas. The first noticeable fact is that tradi-
tional caching and horizontal replication can only handle a load up to 3 Ir. In contrast,
our replicated multi-version cache outperforms these two implementations by a factor
of 2, even if there is only one replica. The reason is that the multi-version cache is able
to avoid many database reads compared to regular caching. Horizontal replication did
not help because the shared database was already saturated with two application server
replicas. With 3 replicas (not shown), the system deteriorated and did not even achieve
an Ir of 1. The replicated multi-version cache is able to handle a load up to 14 Ir achiev-
ing a throughput of 14 Tx/sec with 10 replicas compared to a load of 6 Ir and throughput



Consistent and Scalable Cache Replication for Multi-tier J2EE Applications 341

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Load (Ir)

T
h

ro
u

g
h

p
u

t 
(T

x
/

se
c)

Regular Caching
HR Shared DB
1 Rep
2 Rep
3 Rep
4 Rep
5 Rep
6 Rep
7 Rep
8 Rep
9 Rep
10 Rep

0

3

6

9

12

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Load (Ir)

A
v
g

. 
R

e
sp

. 
T
im

e
 (

S
e
c)

Regular Caching
HR Shared DB
1 Rep
2 Rep
3 Rep
4 Rep
5 Rep
6 Rep
7 Rep
8 Rep
9 Rep
10 Rep

(a) Throughput (b) Response Time Browse

0

3

6

9

12

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Load (Ir)

A
v
g

. 
R

e
sp

. 
T
im

e
 (

S
e
c)

Regular Caching
HR Shared DB
1 Rep
2 Rep
3 Rep
4 Rep
5 Rep
6 Rep
7 Rep
8 Rep
9 Rep
10 Rep

0

3

6

9

12

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Load (Ir)

A
v
g

. 
R

e
sp

. 
T
im

e
 (

S
e
c)

(c) Response Time Purchase (d) Response Time Manage

Fig. 6. SPECjAppServer Results

of 6 Tx/sec with a single replica (and 3 Ir resp. 3 Tx/sec with traditional caching). That
is, by adding new replicas a higher number of clients can be served.

At the beginning, adding a new replica will increase the throughput by 2 Tx/sec,
after a certain number of replicas the increase is 1 Tx/sec. From nine to ten replicas the
gain is around 0.5 Tx/sec. The reason is that changes performed by update transactions
have to be applied at all replicas. By increasing the load each replica spends more time
applying changes and has less capacity to execute new transactions. Nevertheless, the
scale-up achieved with our approach by far outperforms horizontal replication.

Even when the replicated cache configurations saturate (the throughput is lower than
the injected load), configurations with a higher number of replicas exhibit a more grace-
ful degradation. For instance, for Ir =13, both the 5-replica an 8-replica configuration
are saturated. However, the achieved throughput with 8 replicas is higher than with 5
replicas, providing clients a better service. This is very important, since it will help the
system to cope with short-lived high peak loads without collapsing.

Fig. 6(b-d) show the response time for browse, purchase and management
transactions with increasing load. Interestingly, browse transactions (i.e., read-only
transactions) are not affected by the saturation of update transactions. As can be seen
in Fig. 6(b) the response time graphs are almost flat independently of the number
of replicas even at high loads when the system reaches saturation. The reason is
that for read-only queries our application server caching is very effective avoiding
expensive database access in many cases. Also, read-only transactions do not require
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communication. We can observe that both regular caching and horizontal replication
saturate with Ir = 3, since the response times increase exponentially for browse transac-
tions.

Purchase transactions (Fig. 6(c)) are quite different since they are update transac-
tions. The response time for all configurations reaches saturation (it grows exponen-
tially) at some time point. The response times for traditional caching and horizontal
replication are worse than for the multi-version approach even for low loads show-
ing that our caching strategy saves expensive access to the database. Furthermore, the
replicated architecture provides low response times until saturation is reached. Finally,
the more replicas the system has, the more graceful is the degradation of the response
time at the saturation point. This is important since acceptable response times can be
provided in case of short-lived peaks.

The different behavior of the purchase transactions compared to browse transactions
has to do with the fact that update transactions propagate their changes to all the replicas
in the system, and also have to write changes to the database. Thus, a higher overhead
is created leading to worse response time. This behavior is even more noticeable in the
case of manage transactions, which have the highest percentage of updates (Fig. 6(d)).
Again, however, degradation of response times is more graceful with larger number of
replicas.

6.3 CPU Analysis

In this section we look at the CPU usage of the database and the application server
during 16 minutes of executing the benchmark. Each of the following figures shows two
graphs. One graph is the CPU usage of the database and the other is the overall CPU
usage. The gap between the two graphs is mostly the application server (and replication
protocol) CPU usage.

The results for regular caching and our multi-version cache with a single replica for
Ir = 4 are shown in Fig. 7. At this load, the system is saturated with a 100% usage of
the CPU with 1 replica and regular caching (Fig. 7(a)). The database consumes most
of the CPU. There are depressions in the utilization graph of the database. They have
to do with the way PostgreSQL handles updates. Periodically, when buffers are full, it
stops transaction processing and forces data to disk. This results in underusing the CPU.
The single replica multi-version cache configuration shows a significantly smaller CPU
usage (Fig. 7(b)). The CPU usage of the database is much smaller due to the multi-
version cache. This saves database access and reduces the CPU resources required by
the database instance. Thus, the system is not saturated for Ir = 4.

Examining the 2-replica configuration of our replicated cache for Ir = 4 (Fig. 8(a)),
the results are quite different. Although there are some high peaks in the CPU usage,
the area covered is much smaller than for the 1-replica configuration. The overall CPU
usage has been significantly reduced. This means that for the same load the overhead
at each replica is smaller, resulting in an effective sharing of the load. In the 6-replica
configuration and Ir = 4 (Fig. 9(a)), CPU usage is even further reduced with a very low
amount of CPU devoted to the database. This explains the scalability of our approach.
The more replicas in the system, the better the load is distributed.
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Fig. 7. CPU usage: One replica, Ir = 4
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Fig. 9. Multi-version cache. CPU Usage: Six replicas.

Fig. 8(b) shows the 2-replica configuration when it is saturated at Ir = 10. At this
load, the database usage of the CPU amounts to 80% which means that the database
is the bottleneck. The 6-replica configuration is not saturated in this setting (Fig. 9(b))
since the CPU usage of the database is lower. This confirms the effective distribution of
the entire load (application server and database load) among replicas, which results in
the scalability of the approach.

Another important conclusion is the efficacy of collocating application and database
server on the same site which distinguishes our vertical replication approach from
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Table 1. JProfiler Results

No Replication Replication When
JGroups 130,00 update tx
Replication Classes 143,00 update tx
Entity Serialization 3,20 update tx
SFSB Serialization 4,91 SFSBs update
Entity bean caching 152,00 110,00 always
DB Access 227,00 110,00 always

previous solutions. It enables adapting the CPU resources needed by each kind of server
without replica configurations. The operating system takes care of distributing CPU to
the servers according to their needs.

6.4 Profiling Tool Results

We also used a profiling tool, JProfiler, to analyze the differences in response time be-
tween the application server with and without the multi-version cache. It measures both
the replication overhead and the savings obtained by the multi-version cache. Since
the profiling tool introduces a very high overhead, the profiling could only be done
with a single replica and the lowest Ir of 1. The results show the overall number of
seconds spent during the whole experiment on methods with different functionalities
(Table 1). The group communication system (JGroups) and the replication classes in-
troduce a non-negligible overhead as expected. However, it must be noticed that read
only transactions (50% of the load) are not affected by this overhead. The multi-version
cache compensates the replication overhead by improving the caching efficiency
and reducing the database access (rows at the bottom) in a 27.6% and 51.5%,
respectively.

6.5 Scalability Analysis

In this section we measure the scalability of the replicated cache, i.e., how much we can
increase the load when increasing the number of replicas. To measure the scalability we
take the response time (RT) threshold of the SPECjAppServer benchmark, 2 seconds,
and observe for each configuration (i.e. number of replicas) the maximum load (Ir) for
which the response time remained below the 2-second threshold. Additionally, in order
to observe the behavior under peak loads, we have also measured the maximum load
for a 5-second threshold.

Fig. 10 shows the scalability results. For browse transactions we do not show any
graphs since for all tested replica configurations and injected Ir the response time was
well below 2 seconds. For purchase transactions, we can see that for small configura-
tions the sustainable load increases sharply when increasing the number of replicas,
while it only increases slightly when there are already many replicas in the system. This
means, 5 replicas are able to manage a total of 110 clients (Ir = 11), that is, an average
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Fig. 10. Scalability Analisys

of 110/5=22 clients per replica. 10 replicas manage 150 clients (Ir = 15), that is, an
average of 15 clients per replica. Still, scalability is considerably good considering the
substantial fraction of updates involved in purchase transactions.

For manage transactions the system does not scale as well as for purchase transac-
tions. This is expected since manage transactions have a higher percentage of updates
resulting in a higher replication overhead. For this kind of transactions the system does
not scale beyond 6 replicas for the 2-second threshold. However, if we look at the tol-
erance to peak loads (threshold RT <= 5 secs) having additional replicas is beneficial.
Manage transactions with a threshold RT<=5 scale almost as well as purchase transac-
tions. That is having 10 replicas, the system can still provide reasonable response time
(below 5 seconds) at high loads, while this is not the case for 6 replicas.

7 Related Work

Early work in application server replication looked mainly at CORBA and focused on
fault-tolerance [9]. This work resulted in the FT-CORBA specification [17], where the
application server is replicated and the database is shared (horizontal replication). This
results in solutions providing availability for the application server tier. Replication of
CORBA with transactional consistency has been addressed in [10].

[15] presents a primary-backup approach for the replication of J2EE servers. It pro-
vides session availability, as we do in this paper. However, being primary-backup does
not provide any scalability. [7] is also a primary-backup approach for the replication
of J2EE servers supporting multiple transactional patterns (e.g. several client requests
may be encapsulated within one server transaction or a single client request can initiate
several server transactions). [2] introduces a caching algorithm for J2EE application
servers. Application servers are replicated and share the database (horizontal replica-
tion). Consistency is guaranteed through a certification protocol. At commit time, every
read entity bean is re-read to check whether it was modified. This approach has the
shortcoming of all horizontal approaches since the shared database becomes the bottle-
neck. The certification is heavier than the validation of our replication protocol since it
has to re-read every read entity bean.

On the theoretical side, papers [5,4] defined formally exactly-once correctness
in multi-tier systems. They study the replication of stateful and stateless application
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servers with a shared database. In these proposals, each client request is executed as a
single transaction. For each transaction a “marker” is inserted in a shared database. The
new primary will look for this marker during failover in order to ensure exactly once
execution of each client request. In this case, the database is a single point of failure.
[6] applies this technique in a J2EE environment.

In contrast to aforementioned approaches, our proposed replicated cache provides
both scalability and availability and avoids that the shared database becomes a single
point of failure and a bottleneck.

[18] also explores middle-tier caching. The authors propose a freshness approach
for data consistency in which inconsistency is bounded to miss a maximum number
of update transactions (termed freshness). This consistency is very relaxed and con-
trasts sharply with the strong consistency provided by our approach. The simulation
performed in the paper is evaluated with an ad-hoc benchmark. Our approach provides
a high level of consistency via snapshot isolation and it is a real implementation evalu-
ated with an industrial benchmark.

[19] studies different approaches for providing consistent caching in dynamic web
applications. This approach shares the same strong consistency goal as our multi-
version cache. The main difference lies in that our approach also provides scalability.

Clustering (replication) is a facility provided by many commercial J2EE application
servers. However, current approaches focus on the replication of SFSBs and rely on a
shared database. This is the case of JBoss open source J2EE application server [20], Or-
acle9iAS [21], WebLogic clustering [22] and WebSphere 6.0 [23]. The state of SFSBs
is multicast to the rest of the replicas after each method invocation. JBoss Cache is a
replicated transactional cache for entity beans with a shared database [24]. It provides
two ways to maintain data consistency: replication and invalidation. With replication,
every entity bean in the cache is replicated to the rest of the replicas at the end of a trans-
action. That includes all data read by the transaction, which may be a huge amount of
data. If the invalidation policy is used, only the primary keys of the entity beans are sent.
Then, these entity beans are invalidated in the cache of the rest of the replicas, which
must read the entity beans from the database. Moreover, there is a two-phase-commit
protocol (2PC) in order to commit a transaction resulting in a very heavy-weight proto-
col. This approach only provides availability of the application server tier, and does not
provide scalability, unlike our replicated cache.

8 Conclusions

We have presented a replicated multi-version cache that achieves integral replication
of multi-tier systems. The replication protocol takes into account both the application
server and the database encapsulating the replication logic within the application server.
This enables the use of off-the-shelf databases. The replicated multi-version cache
scales even for update workloads, and takes advantage of modern snapshot-isolation
databases such as Oracle and PostgreSQL. The implementation is based on a commer-
cial J2EE application server, JOnAS. A thorough evaluation has been performed using
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an industrial benchmark, SPECjAppServer, and the results have demonstrated the good
scalability of the approach.
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Abstract. There are currently a number of streaming data analysis sys-
tems in research or commercial operation. These systems are generally
large-scale distributed systems, but each system operates in isolation,
under the control of one administrative authority. We are developing mid-
dleware that permits autonomous or semi-autonomous streaming analy-
sis systems (called “sites”) to interoperate, providing them opportunities
for data access, performance improvements, and reliability far exceed-
ing that available in a single system. Unique characteristics of our sys-
tem include an architecture for the management of multiple cooperation
paradigms depending on the degree of trust and dependencies among
the participating sites; a multisite planner that converts user-specified
declarative queries into specifications of distributed jobs; and a mecha-
nism for automatic recovery of site failures by redispatching failed pieces
of a distributed job. We evaluate our architecture via experiments on a
running prototype, and the results demonstrate the advantages of multi-
site cooperation: collaborative jobs that share resources, even across only
a few sites, can produce results 50% faster than independent execution,
and jobs on failed sites can be recovered within a few seconds.

Keywords: System S, streaming data analysis, Grid computing, Virtual
Organizations, planning.

1 Introduction

Data stream processing systems take continuous streams of input data, process
that data in certain ways, and produce ongoing results. There are currently a
number of data stream processing systems in research [1,2,3,4] or commercial [5]
operation. These systems are generally large-scale distributed systems, but each
system operates in isolation, under the control of one administrative authority.
Generally speaking, data that are brought into one such system are available
to any application running on the system, and similarly any data created by
one application are immediately available to other applications. This sharing
is conducive to improving performance and scalability through the synergy of
overlapping queries within one system [4,6]. However, the scale and functionality
of an individual system can still be limited when facing extreme data rates (e.g.,
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telemetry from radio telescopes [7]) or complex environments (e.g., supporting
real-time disaster response). Additionally, resources (such as input data streams)
that are available to one system are inaccessible to other systems.

In this paper we describe a middleware for Collaborating, Autonomous
Stream Processing systems (CLASP). It sits above separate data stream pro-
cessing systems and enables these systems to cooperate. We assume that each
system, which we call a site in the larger cooperative environment, is at least
partly autonomous. Thus the extent to which different sites cooperate is a matter
of policy, determined by the administrators of each of the sites involved.

CLASP allows sites to benefit in several respects. They can share data sources
that were owned and available individually. Thus a site can access a much wider
spectrum of data input, greatly increasing the breadth of its analysis. They can
share derived streams, which are processed results of existing applications, thus
avoiding duplicating processing done by other sites and improving efficiency.
They can help each other absorb any sudden increase in workload or decrease
in resources by rebalancing processing across sites. They can also improve the
reliability of job execution by recovering jobs from failed sites.

The middleware has been designed and prototyped in the context of Sys-
tem S [8], a project within IBM Research to enable sophisticated stream process-
ing using arbitrary application logic (rather than relational algebra operations
such as used in several other streaming analysis systems [1,2,3]). Although some
details like application interfaces are specific to System S, the architecture itself
is generic enough for the interoperation of streaming systems of other kinds.

We make several contributions in this paper. We analyze what functions are
needed for stream processing sites to collaborate and propose an architecture
that provides them. We extend the traditional Virtual Organization [9] (VO)
concept to allow sites to form different VO structures based on the degree of
mutual trust and coordination. We implement the architecture on a representa-
tive streaming system (System S) to demonstrate its feasibility and evaluate the
benefits sites can gain through real testbeds and applications.

The rest of the paper is organized as follows. The next section describes Sys-
tem S in greater detail. Policies governing site interaction follow in Section 3.
The architecture of CLASP is described in Section 4. Section 5 reports exper-
imental results using a real testbed and application. The paper finishes with
related work and conclusions.

2 System S

The goal of System S is to extract important information from voluminous
amounts of unstructured and mostly irrelevant data. Example applications of
such a system include analyzing financial markets (predicting stock value by pro-
cessing streams of real-world events) [5], detecting patterns of fraudulent insur-
ance claims, supporting responses to disasters such as Hurricane Katrina (based
on vehicle movement, available supplies and recovery operations), or processing
sensor data such as telemetry from radio telescopes [7] or volcanic activity [10].
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We summarize the architecture of System S as a representative of streaming
systems and describe some of its key components:

User Interface (UI) Users pose inquiries to the system through a front end to
answer certain high-level queries. For example, “Show me where all bottled
water is in the hurricane area.” After the raw data have been processed
by application logic (e.g., filtered, joined, and analyzed), results are passed
back to the UI via data streams, where they can be presented to the user
for further exploitation.

Inquiry Service (INQ) accepts specifications of the desired final results in a
format called Inquiry Specification Language (ISL), which depicts the se-
mantic meaning of the final results and specifies user preferences such as
which data sources to include or exclude [11]. Given an inquiry, a Planner
subcomponent [12] automatically composes data sources and processing in
the form of jobs to produce desired results. It then submits such jobs to the
Job Management component for execution.

Job Management (JMN) A job in System S is a set of interconnected Pro-
cessing Elements (PEs), which process incoming stream objects to produce
outgoing stream objects that are routed to the appropriate PE or storage.
The PEs can perform stateless transformation or much more complicated
stateful processing. System S reuses PEs among different applications when
possible to avoid redundant processing.

Stream Processing Core (SPC) manages the execution of PEs [13,8]. It
supports the transport of streams consisting of Stream Data Objects be-
tween PEs and into persistent storage. It also provides adaptive connectivity
and fine-grained scheduling of communicating applications.

With the exception of INQ, these components map reasonably closely to other
data stream analysis systems and are used here as a representative example. INQ
is, by comparison, unique to System S: other systems do not have such automatic
application composition capability and jobs are usually hand-crafted.

Each System S site runs an instance of each of these system components,
possibly as a distributed and fault-tolerant service [14]. Each site may belong to
and be managed by a distinct organization; administrators who manage one site
generally have no control over another site. Collaboration among multiple sites
is thus similar to Grid Computing [9]: sites share resources but retain substantial
local autonomy.

As with the Grid, sites that want to collaborate for common goals and benefits
can negotiate and form Virtual Organizations (VOs) [9]. However, there exist
unique requirements in the streaming context, including the need for higher
degrees of scalability and various administrative relationships among sites. Sec-
tion 3 describes how we address these issues.

3 Virtual Organizations and Common Interest Policies

Sites that want to collaborate can form VOs. The members of a VO formalize
their permissible interoperations as a Common Interest Policy (CIP), which
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specifies how they may share various types of resources and processing. VOs can
be either Federated or Cooperative.

A Federated VO has an appointed leader site that assumes a coordination role
and is able to exert a level of control over the other sites. This VO is appropriate
when the sites share a common set of goal(s) that they want to achieve, or are
all subject to a common authority. It allows the VO Lead to optimize resource
and processing usage for the common good of the VO.

In a Cooperative VO, there is no central point of authority. VO members
interact as peers of each other; they are independent and may have separate
agendas. They may interoperate out of altruism, giving access to some resources
freely, or they may charge a cost for access (cost could be monetary or credits
in some sort of virtual economy).

VOs may have different relationships with each other. A whole VO can be in-
cluded hierarchically as a member of another larger VO [15,16]. This allows sites
to scale up for wide scope of collaboration. Two or more VOs may have common
members which belong to these VOs simultaneously. The kinds of resources the
common members share within each of these overlapping VOs, however, can be
completely different. The exact resource sharing within the VO is specified by
its CIP terms.

3.1 CIP Terms and Agreements

A CIP contains terms that dictate resource sharing, such as:

– Which set of data streams and locally stored data can be shared by which
other remote sites. The set can be defined based on attributes such as the
data type or data rate.

– Which set of processing resources can be used to run jobs from which other
sites; which kinds of PEs coming from which other sites will the local site
execute.

– In times of failure, which sites will perform what function (e.g., monitor,
backup data, recover jobs) of the failure recovery process.

The CIP is known by all the members in a VO. By specifying these terms,
VO members advertise resources that others may request to use. However, it
does not guarantee access, since multiple members may request a resource that
can only be used exclusively. Therefore, a VO member must reserve a resource
in advance by establishing an agreement with the providing member to secure
access to the resource for some duration.

Besides defining the kinds of resource sharing that are possible in a VO, the
CIP also specifies what parameters are associated with an agreement (such as
quality of service levels, costs, and limitations on the resource usage). Once es-
tablished, this agreement must then be referenced when accessing this resource.
The agreement’s terms and conditions, along with costs and penalties, will be
continuously monitored by some auditing functions at both System S sites pro-
viding and consuming the resource.
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(a) CLASP architecture (b) Multiple collaborating sites

Fig. 1. CLASP architecture includes several components. They provide the functions
needed for sites to collaborate.

This notion of agreement shares similarities with the WS-Agreement specifi-
cation from the Grid community [17]. For System S, a portion of a CIP term
serves as the analogy to the WS-Agreement Agreement Factory and provides the
creation template that is needed for creating an agreement between the provider
and consumer of the resource. More details are presented in Section 4.2.

4 Architecture

4.1 Overview

Figure 1(a) shows the detailed CLASP architecture on one site. UI, JMN and
SPC are single-site components and CLASP is between the UI and JMN. Multi-
ple sites can work together through the interaction of their CLASP middleware
(illustrated in Figure 1(b)). CLASP has a number of components providing var-
ious functions to support collaboration.

VO Manager deals with the construction of VOs and decisions on permissible
cross-site resource usage; Section 4.2 provides details.

VO Planner produces plans utilizing resources from within the VO and parti-
tions a global plan into a distributed job containing multiple subjobs. It is
described further in Section 4.3.

Resource Awareness Engine (RAE) provides information about available
resources to the VO Planner; see Section 4.4.

Remote Execution Coordinator (REC) extends JMN to the multi-site case
by deploying distributed jobs submitted by the VO Planner. Each subjob in
a distributed job may run on a different site (elaborated upon in Section 4.5).

Tunneling Manager (TM) manages tunnels that transmit streams from PEs
on one site to PEs on another site (details in Section 4.5).



CLASP: Col laborating, Autonomous Stream Processing Systems 353

VO Failover Management (FM) handles site monitoring, arrangement of
backup sites, and recovery of jobs after site failures. Failover is discussed
elsewhere [18] and summarized in Section 4.6.

VO Heterogeneity Management (HM) is intended to manage the mapping
or translation of data types, database schemas, security and privacy labels,
and similar features between sites; see Section 4.7 for a brief discussion.

4.2 VO Management

The CLASP prototype supports the formation and management of VOs by using
text-based CIP definition files. Each VO has a corresponding CIP file, containing
three types of terms: VO type, membership, and sharing. Every CIP file must
indicate whether the VO is federated or cooperative. For every member of the
VO, there must be a membership term, specifying either a site member or a VO
member. The CIP file may contain numerous sharing terms. Each sharing term
defines what resources can be shared between which two sites, with attributes
and their values, agreement creation parameters (separated by semicolons). Be-
low is an example sharing term:

This term has a type (2, resource sharing), an index (2) of this term among those
of the same type, identifiers of the sites involved (provider is siteA and consumer
is siteB), what resource is being shared (site monitoring capability), access advice
(SHOULD), attributes such as cost and initiation cost (10, 100), and what
parameters are available when the term is used as an template to create an
agreement, including which parameters are mandatory (e.g. action upon failure)
or optional (e.g minimum monitoring frequency). We are currently moving to
XML, which will provide a more structured framework for this specification.

We expect human administrators to negotiate and install CIP terms on their
sites. To create a VO, one site’s VO management component parses the CIP
file and contacts other sites’ VO management components about the creation
of the new VO. When there are hierarchical VO members, all descendants of
VO members are notified recursively about the new VO. Once a VO is in place,
components can establish agreements according to the CIP terms. A component
(such as the Failover Manager) does this by first querying its local VO Manage-
ment for the set of candidate CIP terms that are applicable to its requirements.

For example, if it needs to find possible providers in a VO to monitor a partic-
ular site, it submits a query specifying this capability. VO Management will then
search and return the matching CIP terms within the specified VO. The FM com-
ponent will then analyze the terms and conditions of the returned candidate CIP
terms and select the “best” one, e.g. a site that can monitor at a small cost. After
filling in the creation parameters such as monitoring frequency, it calls local VO
Management, which will in turn contact the VO Management on the provider site
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to establish the agreement. That VO Management component must contact the
providing component and gain its commitment to support the agreement. Once
established, the agreement will be referenced when making the inter-site request.
The agreement is terminated after its lifetime, or explicitly by the requester.

4.3 VO Planner

The VO Planner is unique to System S. It automatically produces plans that
utilize data sources and PEs from all sites in the VO. It accepts inquiries that
describe the semantics of desired final results in Inquiry Specification Language
(ISL) [11]. The Planner reads in the semantic description of data sources and
the required input and output streams of PEs, and uses a branch and bound
search algorithm [12] to find plans that can produce the final results.

Given one inquiry, the Planner produces multiple distributed plans in the form
of flow graphs, consisting of interconnected PEs and data sources. These plans
have different performance/cost tradeoffs and can be presented to the user, who
can decide which one to deploy. The planner then partitions the selected plan
into multiple sub-plans, each of which is a subjob assigned to one member site for
execution. The planner also inserts tunneling PEs into subjobs; each pair of sink
and source tunneling PEs transport one stream across sites. Finally, a distributed
job that contains multiple subjobs, each of which contains a normal job (for
data processing) and multiple tunneling PE jobs (for data transportation), is
produced and submitted for execution.

Plan composition within the VO Planner is implemented using a plan solver
module that operates on an abstract formulation expressed in Stream Processing
Planning Language (SPPL) [12]. SPPL is designed to enable efficient planning
in stream processing by introducing language primitives that natively model
streams. The semantics of data sources and PEs are represented using OWL
ontology [19] files. Since the semantic descriptions are relatively static, these
files do not change frequently. When a site joins a VO, it can copy these files
over to the VO Planner’s site.

4.4 Resource Awareness Engine

Resource awareness refers to the propagation of information about data sources,
PEs, and other kinds of resources among multiple collaborating sites. Sites need
such remote resource information for operations such as planning, failure recov-
ery. Such information may be stored in relational or semantic data stores, shared
memory, or text files. The component that facilitates information propagation
among sites is the Resource Awareness Engine (RAE).

We intend to use ROADS [20], a resource discovery service, as the basis for
this component. ROADS allows multiple sites to query and search for resource
information from others. The RAE components on these sites will form a tree
hierarchy, whose exact topology depends on the trust and administrative re-
lationships among sites. Each site’s RAE will publish its resource information
in a highly condensed summary format. The summaries from child sites will
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be aggregated by a site’s RAE and propagated further up the tree. Thus each
RAE will have the aggregated summary about the resource information of all its
descendants, and the root RAE obtains the summary of all resource information.

When a site needs to query resource information, it sends a query to the
root RAE. The root will evaluate the query against the summaries of its child
branches, and find out which branches have the required resource information.
It will forward the query down these branches. Each RAE in the hierarchy will
follow the same process. Finally the RAEs possessing matching resource infor-
mation will return it to the requesting site. The details about how summaries
are produced and queries are evaluated against them can be found in [20].

For the prototype described in this paper, the RAE is integrated directly
with the VO Planner. That is, the Planner is given a configuration file with
the description of data sources in each site in its VO. Then as it generates new
distributed jobs, the Planner augments its view of available derived streams to
include the newly created streams on each site, which it can reuse when needed.

4.5 Distributed Execution

The Remote Execution Coordinator (REC) is responsible for the execution of
distributed jobs. The VO planner submits a distributed job to the REC of the
owner site, which is the one from which the inquiry was received. This REC will
coordinate the execution of the subjobs, including their recovery upon failures.
The REC dispatches the subjobs to the RECs on the corresponding execution
sites, as specified by the planner. An example is illustrated in Figure 2. Site 3 is
the owner site and its REC executes the third subjob and dispatches two other
subjobs to Sites 1 and 2 for execution. The REC at the owner site maintains a
subjob table about which subjobs are running at which other site. The table is
used for recovery of subjobs on failed sites.

The REC executing a subjob first parses its Job Description Language (JDL)
to identify one normal job, and multiple tunneling PE jobs. One thread is
launched to handle each of them. The thread customizes the JDL, such as as-
signing a host for each PE. Then it deploys the job through its local Job Man-
agement. For a source PE job, the REC needs to contact the local Tunneling
Manager responsible for assigning the network address and port on which the
source PE will be listening for incoming connections. It deploys the source PE
job and reports the assigned network location to the REC at the owner site.
For a sink PE job, the REC needs to query the REC of the owner site for the
network location of the corresponding source PE. Then it configures and deploys
the sink PE job.

4.6 Failure Recovery

Failover in CLASP has been described elsewhere [18], with emphasis on the
problem of identifying which sites are most appropriate for failure recovery in
a large-scale VO with many available alternatives. Here we describe the imple-
mentation for detecting and handling failures.
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Fig. 2. Execution of a distributed job consisting 3 subjobs. Owner Site 3 executes one
subjob, and dispatches two subjobs to Site 1 and 2 for execution. Site 4 monitors Sites
1 and 2.

The FM at the owner site arranges the failover monitoring for sites executing
subjobs. By querying CIP terms, it finds which sites can monitor the liveness
of execution sites, using periodic heartbeat messages. When an execution site
fails, the FM at a monitoring site detects the failure and notifies the owner
site. The REC at the owner site examines the subjob table and finds out which
subjobs were running on the failed site. It then dispatches these subjobs to a
new execution site, selected from candidate sites returned from VO Management.
Algorithms by Rong, et al. [18] can be used for the selection. The new execution
site will deploy the subjob.

Although executing normal jobs is straightforward, re-establishing broken tun-
nels needs special attention. To recover tunnel sink jobs, the REC at the new
execution site queries the network location for corresponding tunnel source jobs,
then configures and executes the tunnel sink job. The recovery of tunnel source
jobs is a bit complex, as the old tunnel sink job might still be sending data to
the failed site. The REC deploys such jobs and notifies the owner site about
the new network location. The FM at the owner site will inform other execution
sites to terminate tunnel sink jobs that send streams to the failed site. These
tunnel sink jobs will be restarted using the new network locations of recovered
tunnel source jobs. During the above process, new agreements might be created
for additional monitoring and execution.

We also envision recovering critical applications from failed sites, even when
they run entirely within the site that fails. This will require advance registration
of the jobs to resubmit, with an agreement with another site to monitor the site
making the request and to restart the critical applications if needed.

4.7 Heterogeneity

Our current prototype assumes a homogeneous environment. In the more gen-
eral case, each site may have differences in its operating environment. This
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heterogeneity can arise in the runtime environment, type system, security and
privacy policies, user namespace, and other aspects.

The general approach to heterogeneity is through mapping functions and com-
mon base agreements. The CIPs that govern how sites interoperate must specify
operations to perform to ensure consistency. Differences in data types will be
handled through explicit conversion functions: for example, converting a nine-
digit US ZIP code into a five-digit one would involve truncating the additional
level of detail. For security, System S assumes lattice-based [21] secrecy and
integrity policy models [22]. Each site will understand the format and implied
relationships of security labels used by all sites; the access rights and restrictions
encoded within a security label are uniformly applicable throughout all the sites.
We will address operation in heterogeneous environments in the future.

5 Experimentation

5.1 Test Environment

We have implemented the CLASP architecture in Java (with the exception of
the tunneling PEs, written in C++). The prototype currently has about 40,000
lines of code. We use a testbed that consists of Linux SUSE 9 machines. Each
machine has 2 Xeon 3.06 GHz CPUs, 800MHz, 512KB L2 cache, 4G memory and
80G Hard drive. They are connected through a 1Gbps LAN. Multiple machines
can be grouped together as a System S site, which CLASP runs above. For
most experiments, we use a Federated VO that contains four sites, one of which
is a backup site, while the others are execution sites.

The goal of experiments is two-fold. 1) Quantify the benefits collaborating
sites can gain compared to operating individually. We use the total number of
produced results as the main metric. 2) Benchmark the time overhead of basic
operations of CLASP, such as planning, job submission, and failure recovery.
This gives us a basic understanding of the efficiency of the system.

To evaluate our system, we use an application we entitle “Enterprise Global
Service” (EGS). EGS is intended for enterprises to monitor the quality of service
of their customer service personnel. Customers talk with service representatives
through a corporate VoIP network. A business analyst can issue various inquiries
to examine the status of employee services. These inquiries include: find the
location and “courtesy level” of a particular employee, find the satisfaction level
of a particular customer, etc. We use a VoIP traffic generator [23] to produce
the VoIP streams between employees and customers. Each inquiry’s job contains
about 15 PEs and a job produces results continuously during its lifetime.

Figure 3 shows an example of two distributed jobs deployed in the VO. Each
of the two jobs (location of SHIMEI, location of EMILY) has three subjobs,
running on Sites 1, 2 and 3. Roughly speaking, these jobs work as follows: A
source PE pulls in all streams from the traffic generator. An annotator PE
extracts Real Time Protocol fields and turns them into SDO attributes, then a
value-based filter PE removes background noise. A speaker detection PE detects
the identities of persons; location/courtesy/satisfaction analyzing PEs produce
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Fig. 3. Two distributed jobs are de-
ployed within a VO of 4 sites. Each job
has 3 subjobs that run on Sites 1, 2 and
3. Tunnel PEs connect subjobs across
sites.

Fig. 4. After Site 2 fails, the two sub-
jobs running on Site 2 are recovered on
Site 4. Tunnel PEs are reconnected so
that the two distributed jobs continue
producing results.

the location, courtesy or satisfaction of persons. Their results are joined and
then filtered based on which person the inquiry is looking for. The final results
are reported and shown in a GUI.

Among all the PEs, location/courtesy/satisfaction analyzing PEs are the most
computing-intensive. Beyond the mimimum processing required to perform the
required tasks, the amount of extra processing they perform on each incoming
SDO, defined as the load level, can be tuned. In the experiments we vary the
load level for them to evaluate the system behavior under different computation
intensities; zero load level corresponds to normal processing.

Figure 4 shows what happens after Site 2 fails. Site 4 detects the failure and
notifies the owning site, Site 3, which recovers the failed subjobs on Site 4. The
tunnel PEs are reconfigured such that cross-site data streams reconnect to the
same subjobs recovered at the new site.

5.2 Result Production

We measure the performance of our prototype in several respects. We first com-
pare the number of results obtained by collaborating sites in a VO, or using sites
individually, under the same inquiry load. We produce three sets of inquiry load.
Within each set, there are 6 inquiries submitted to each of the three execution
sites in a VO. An individual site uses its own data sources and resources to pro-
duce plans and run the jobs. The sharing of streams is confined within each site.
When the same 18 inquiries are submitted to the VO, the VO planner produces
jobs that can reuse remote derived streams across sites.

Due to the sharing of more common processing, jobs running in a VO will
generally produce results more efficiently. The more common processing across
sites, the higher the savings by sharing existing processing. The three sets of
inquiries correspond to different degrees of sharing (shown in Table 1). In the
first set, the 6 inquiries (2 location, 2 courtesy, 2 satisfaction) submitted to each
site are the same. When a new instance of the same inquiry is submitted, only
additional tunneling and result reporting PEs are needed. They correspond to
the maximum degree of cross-site sharing.
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Table 1. The 3 sets of inquiries used in the experiments loc refers to getting the
location of an employee; cor obtains their courtesy; and sat computes customer satis-
faction

Set Site 1 Site 2 Site 3

Set 1 loc SHIMEI loc SHIMEI loc SHIMEI
maximum loc FAYE loc FAYE loc FAYE
reuse cor SHIMEI cor SHIMEI cor SHIMEI

cor FAYE cor FAYE cor FAYE
sat SHIMEI sat SHIMEI sat SHIMEI
sat FAYE sat FAYE sat FAYE

Set 2 loc SHIMEI cor LEONARD sat SHIMEI
minimum loc FAYE cor NORMAN sat LEONARD
reuse loc ENRIQUE cor MARK sat MARK

loc NAOMI cor FAYE sat EMILY
loc LEONARD cor ENRIQUE sat NAOMI
loc EMILY cor SHIMEI sat FAYE

Set 3 loc ENRIQUE cor FAYE sat FAYE
average sat EMILY sat NORMAN cor MARK
reuse cor NAOMI sat FAYE sat LEONARD

sat NORMAN cor EMILY sat NORMAN
loc MARCIA cor NORMAN loc SHIMEI
sat SHIMEI loc MARCIA cor LEONARD

In the second case, each site has a distinct set: Site 1 has only location in-
quiries, Site 2 only courtesy inquiries, and Site 3 only satisfaction inquiries.
This corresponds the minimum degree of sharing. Inquiries of different sites can
share only a few PEs such as the source PE and background noise reduction
PE. They have to do the most computing-intensive processing (finding loca-
tion/courtesy/satisfaction) by themselves. The third set is a middle ground be-
tween the two. Each site has a random mixture of inquiries, including different
types and person names. The degree of sharing is less than the first but greater
than the second set. This is likely what would happen in reality. For each set, we
vary the computation intensity of jobs by changing the load level. We let jobs
run for 2 minutes, and average the results over five runs.

Figure 5 compares the total number of results of all the 18 jobs in set 1 when
running in the VO or individually. They produce about the same amount when
the load level is zero. As the load level increases, running in the VO can produce
as much as 50% more results, because jobs can tap into the processed results
across sites and avoid duplicating common processing. For those running at an
individual site, however, they can only tap into processing within the same site.
We also examined the number of results produced by each individual job, when
running in a VO or one site. The phenomena is similar and we do not elaborate
due to space limitations.

Figure 6 compares the number of results for set 2. Jobs running in a VO produce
slightly fewer results than in set 1. The reason is that the cost paid for sharing



360 M. Branson et al.

Fig. 5. The total number of results pro-
duced by the 18 jobs in set 1, running
at individual sites or within the VO

Fig. 6. The total number of results of
all the 18 jobs for Set 2, running at in-
dividual sites or within the VO

Fig. 7. The total number of results for
all the 18 jobs for Set 3, running in VO
or individual sites

Fig. 8. The job sequence number as a
function of time. Once detected, failed
jobs are recovered in about 3.5s.

offsets the benefits. In set 2, each site has only one type of job (location, courtesy
or satisfaction). Jobs at different sites do not share computation-intensive pro-
cessing. Thus running in a VO does not reduce the amount of processing much.

On the other hand, there is a cost to pay for a VO. Extra tunneling PEs are
one factor. Another is a synchronization effect. A PE consuming SDOs slowly
may cause its producing PE to wait since reliable transport is used to send SDOs
between PEs. Other consuming PEs receiving SDOs from the same producing
PE will have to wait as well. Thus one job that runs more slowly affects other
jobs when they share input streams. Set 2 is the worst case where little pro-
cessing can be shared across sites, thus the savings are not enough to cover the
cost.

Figure 7 shows the comparison for set 3. The result is quite similar to that of
set 1: running in a VO produces more results. This similarity is because each site
has a random sequence of jobs that contains all different types and person names.
The common processing across different sites is significant. The VO allows jobs
to reuse the processing across site, thus producing results more efficiently.
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Fig. 9. The aggregate result sequence number for jobs running in a VO and on Site 4
with varying load levels

5.3 Failover

Sites in a VO can backup and recover jobs for each other when some of them fail.
Figure 8 shows the details about one VO job’s result sequence number change
for failover. Around time 402.5s a site fails, then after another 13s the failure
is detected. (The detection time depends on the heartbeat interval, which can
be set to achieve the desired detection speed.) In about 3.5s the failed jobs are
recovered. Since the job needs some time to rebuild the lost state, it resumes
producing results 10s later.

We use the number of results produced to demonstrate the advantage of
failover. We run three types of jobs on Sites 1-3 in a VO. Site 4 is monitoring
Sites 1-3. Upon the failure of any of them, Site 4 will recover subjobs running
on the failed site. Site 4 also runs three types of jobs on itself. We let all jobs
run for one minute, then we kill Site 1. After jobs are recovered on Site 4, we let
them run for another two minutes.

Figure 9(a) shows the aggregate sequence number as a function of time, for
all VO jobs and all Site 4 jobs, when the load level is zero. At any time, the
aggregate sequence number for a collection of jobs is defined as the total number
of results produced by these jobs up to that time. Starting around time 7240s, all
jobs are producing results. At around 7300s, Site 1 fails. The aggregate sequence
number for VO jobs stays flat, while for Site 4 jobs it is still increasing. After Site
4 detects Site 1’s failure and recovers its subjobs (around 7350s), the VO jobs
start to produce results. Since the load level is low, there is sufficient processing
capacity on Site 4 to accommodate the failed subjobs without affecting those of
its own. The speed of sequence number increase for Site 4 after failover remains
about the same as before.

Figure 9(b) shows the same comparison under load level 80000. The sequence
numbers increase more slowly. Eventually Site 4’s and VO jobs produce about
1100/450 results, less than the 1400/650 results when the load level is 0. Al-
though jobs for both Site 4 and VO produce less results, it is still much better
than without failover (the VO jobs would not produce any more results).
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Another interesting observation is that Site 4’s jobs produce results more
quickly between 7800-7850s. This is due to the lack of any synchronization effect
during recovery. Since all jobs receive input streams from the same data source,
more jobs will slow down the producing rate of the data source. When VO jobs
have failed but not recovered, only Site 4’s jobs are consuming data.

5.4 Planner

Plan Solver Performance. We measure the time it takes the VO planner to
find plans that produce the desired final results. The Stream Processing Planning
Language (SPPL) solver we use to implement the VO planner has been evaluated
within one single site. It is scalable with large numbers of PEs, source and plan
sizes [12]. The VO planner adds tunneling PEs to plans and optimizes plans
for distributed metrics such as minimizing cross-site bandwidth consumption,
calculated using bandwidth consumption for PEs and sources that produce cross-
site streams.

We run the VO planner on a 3GHz Intel Pentium 4 PC with 4 GB memory. We
use a setting that includes 5 sites. Data sources are uniformly randomly assigned
to a site and each data source is available at that site only. PEs are available
on all sites. This is reasonable because PE code can be easily transfered and
installed at other sites (assuming they are secure and trusted). PEs and sources
are given randomly constructed descriptions of their inputs and outputs, and
random output bandwidth.

Since there could be many PEs that are not relevant to an inquiry, the pro-
cessing graphs are likely to be of relatively small sizes. However, the planner
still takes time to search through plans including irrelevant PEs. To model this
scenario, we vary the number of PEs per site from about 72 to 1500, most of
which are not relevant to the specified goal. To ensure plans that produce a given
final result do exist, we generate random global processing graphs first and use
their final results as input to the planner. There exist only 2 candidate plans of
6 nodes each (excluding tunneling PEs) for the goal. We average the results over
10 runs.

The planning time as a function of the number of PEs per site is presented
in Table 2. We can see that it takes the planner less than one second to find the
optimal plan for sites having up to about 160 PEs. Even in the case of 1500 PEs,
it is only a little bit over 8s. Since many streaming jobs are expected to run for
a long time, spending a few seconds to find an optimized one is reasonable.

We further evaluate the time to the first plan as a function of the plan size,
i.e., the number of PEs in the plan (see Table 3). In all cases the planner can
find a reasonably good plan within about a second. In general, the larger the
plan size, the greater the time it takes. However, this time is not completely
monotonic with the size of the plan, because the search time depends on the
structure of individual plans as well.

Since proving optimality is a more difficult problem, it takes long time to
decide whether a discovered plan is optimal. However, empirical results show that
plans found initially are close to optimal ones. In 10 randomly generated planning
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Table 2. Planning times for optimal 6-
PE plans, as a function of the number
of PEs per site

Number of Time to Optimal
PEs per site Plan (s)

72 0.37
102 0.36
162 0.51
312 1.46
612 2.20

1512 8.39

Table 3. Planning times for the first
plan, as a function of the total number
of PEs in the plan

Number of PEs Time to first plan (s)

5 0.17
10 0.592034
20 0.753005
40 0.680179
50 1.01968

100 0.966948

problems that require 6 PEs and sources in the plan, the solver considered on
average 104 candidate plans. The first plan is found between the first 7.3% and
25% of the plan search time. This plan is within 1.2% of the optimal one, using
a quality measure that combines an additive PE and source quality metric and
inter-site bandwidth consumption.

Hence, when the search takes longer than several seconds, we terminate the
search early and present the current plan for deployment assuming that it is
close to the optimal. We leave further improvement on the scalability of the
SPPL solver to future work.

Agreements-Driven Replanning. A prerequisite to successfully deploy a dis-
tributed job is that all agreements are established. To avoid incurring possible
costs before job deployment, the planner does not establish agreements at plan-
ning time. Instead, agreements are established when the job is being deployed.
If not all of the required agreements can be established, one must replan.

We have measured the time that replanning takes in the EGS application by
distributing the job to 3 sites and configuring the sites to reject initial agree-
ments. The planner then replans the jobs with higher priority (and possibly
higher site-dependent execution budget). Replanning was performed 3 times be-
fore deployment, resulting in higher job priorities and different plan partitioning.
The whole cycle requires less than 7s. Although in this case replanning happens
completely automatically, the VO planner provides APIs for developing more
sophisticated GUIs to allow human feedback when replanning is needed.

5.5 Job Deployment Time

To understand the responsiveness of the system, we also measure the time it
takes to deploy a distributed job. This is from the submission of the JDL of a
distributed job, to the dispatching of its subjobs to other sites, until finally all
subjobs are up and ready to process data. We use the same JDLs as before and
they each contain about 20 PEs (including tunneling PEs).

Figure 10 shows the detailed time breakdown for a distributed job, with three
subjobs, each of which has two tunnel jobs and one normal job. For each subjob,



364 M. Branson et al.

Fig. 10. The dispatching time details
of a distributed job, from submission
to finally it is deployed and ready to
run

Fig. 11. The detailed breakdown of
each subjob. Subjob 1 has two tunnel
sink jobs, subjob 2 has one sink and
one source, subjob 3 two sources.

a separate thread is launched to dispatch it to the corresponding site. Thus the
overall time is dominated by the longest subjob. After a site receives a subjob,
it processes the JDL first, then it launches one thread for each of the jobs: the
normal job and the two tunnel jobs. The time for a subjob is in turn dominated
by the job taking the longest time. From Figure 10, subjob 1 takes the most time,
about 600ms. The other two subjobs take about 500ms and 400ms, respectively.
Within each subjob, one tunnel job takes the longest time. The whole distributed
job takes about 700ms.

Figure 11 shows the finer breakdown for each normal job and tunnel job. We
find that the tunnel sink query takes the longest time. The reason is that, al-
though a tunnel sink job can be deployed almost simultaneously as its tunnel
source end, it has to query and wait for the tunnel source to register the listen-
ing IP address and port. Thus a tunnel sink is always deployed later than its
source end. We plan to explore a “gateway” approach where multiple cross site
streams can be multiplexed between a pair of gateway PEs to further improve
the performance.

6 Related Work

CLASP has a strong relationship, yet significant differences, with two general
areas of computing: Grid computing [9] and streaming data analysis [3,2,1]. With
respect to Grid computing, a recent article [24] highlights the similarities be-
tween cooperative stream processing and Grid computing. They describe similar
environments: “distributed, multidisciplinary, collaborative teams” that attack
problems in a distributed fashion due to the nature of their various “intellectual,
computational, data, and other resources.” Indeed, our system adopts some Grid
constructs, such as VOs. In addition, there has been substantial work in match-
making between different organizations based on required capabilities (e.g., Liu,
et al. [25] and the recent work on WS-Agreements [26,17]).

At the same time, there are a number of important differences. Our ar-
chitecture supports multiple cooperation paradigms, including Federated and
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Cooperative (peer-to-peer) VOs. It allows sites to collaborate more closely, with
hierarchical layers of VOs to provide arbitrary scalability. This is suitable for
complex stream processing that cannot be easily broken into smaller and similar
pieces and requires complementary contributions from all sites. The distributed
planning component of System S is significantly more sophisticated and flexible
than the Grid models.

Borealis [3] is a distributed stream processing analysis system with a number
of similarities to System S. It has explicit support for fault tolerance [27] as well
as contracts to “sell” load between sites in a federated system [28]. CLASP,
using System S, differs fundamentally from Borealis and other stream processing
systems such as STREAM [1] and TelegraphCQ [2] in a number of aspects.
First, although each such system itself can be distributed, there is no support
for streaming systems belonging to different administrative authorities to work
together. They cannot benefit from the sharing of data streams and processing
to improve efficiency, reliability, or the breadth, depth and scale of analysis.

Second, System S supports generic application-specific processing rather than
database operations— a more difficult problem due to higher complexity, devel-
opment costs and times to completion [29]. System S has an Inquiry Specification
Language that allows users to specify application declaratively at semantic level.
This is very important to allow users focus on application level tasks, rather than
deal with the complexity of finding the optimum set and interconnection of data
sources and PEs.

7 Conclusions and Future Work

In this paper we have demonstrated that CLASP, our middleware for cooperat-
ing data stream processing sites, enables such sites to increase the scale, breadth,
depth, and reliability of analysis beyond that available within a single site. Ex-
periments with our prototype have demonstrated the performance benefits gained
from reusing processing from other sites, as well as quantifying some of the over-
head incurred in the system. There also exist other more qualitative benefits, such
as access to remote data sources to broaden the breadth of analysis.

One of the important aspects we will investigate in the future is what mech-
anisms are needed to support security and trust. The current system works in a
benign environment. When sites do not have full trust for each other, or some
of them are selfish or even malicious, security checks should be enforced. In ad-
dition, as the system evolves, we will incorporate features such as fully dynamic
resource awareness and support for heterogeneity.

We also plan to investigate the scalability of the system. Our testbed was a
small number of sites, which is probably consistent with typical interoperating
agreements one might expect from a system of this sort: in a real system, each
site would itself be a very large-scale distributed system. Beyond that, we are
currently experimenting with issues regarding large, multilateral agreements,
particularly in competitive economic environments in which sites do not provide
resources simply out of altruism.
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Abstract. Content-based Publish/Subscribe (CPS) is a powerful
paradigm providing loosely-coupled, event-driven messaging services.
Although the general CPS model is well-known, many features remain
implementation specific because of different application requirements.
Many of these requirements can be captured in policies that separate ser-
vice semantics from system mechanisms, but no such policy framework
currently exists in the CPS context. In this paper, we propose a novel
policy model and framework for CPS systems that benefits from the
scalability and expressiveness of existing CPS matching algorithms. In
particular, we provide a reference implementation and several evaluation
scenarios that demonstrate how our approach easily and dynamically
enables features such as notification semantics, meta-events, security
zoning, and CPS firewalls.
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1 Introduction

To date, many publish/subscribe (pub/sub) systems have been developed to
provide loosely-coupled, event-driven messaging services [1,2,3,4,5,6]. In par-
ticular, the Content-based Publish/Subscribe (CPS) paradigm is designed to
support flexible and dynamic enterprise applications by routing on message con-
tent rather than destination identities or explicit network routes. Although the
general CPS model is well understood, many CPS feature details still remain
non-standardized for the good reason that different application scenarios have
different requirements. While some CPS features can be addressed with sys-
tem reconfigurability [7,8], others are more suitably expressed in policies that
separate application requirements from infrastructure mechanisms [9,10]. For ex-
ample, advanced features such as notification semantics, meta-events, security
zoning, and CPS firewalls are appropriate for being realized as policies. These
kinds of novel CPS features depend on being able to dynamically change system
behaviour and are achievable through the flexibility of policies. However, no such
policy framework currently exists in the CPS context. To address this problem,
we present a content-based policy framework that is scalable, expressive, and
extensible. Our policy framework supports a novel approach that applies poli-
cies based on the results of content-based matching. We find that this approach

R. Cerqueira and R.H. Campbell (Eds.): Middleware 2007, LNCS 4834, pp. 368–388, 2007.
c© IFIP International Federation for Information Processing 2007
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enables many unique CPS capabilities that would otherwise be difficult or costly
to achieve. In particular, we present a novel post-matching policy model capable
of achieving scalable and expressive CPS policies. We also present a reference
implementation of our policy framework using the PADRES 1 CPS middleware
platform and a number of evaluation scenarios to highlight several unique and
novel CPS features that become possible with our approach.

We first overview related work in Sec. 2 before presenting the concepts for
our policy framework in Sec. 3. Our implementation is presented in Sec. 4 and
several scenarios used to evaluate our approach are presented in Sec. 5. Finally,
we conclude and discuss future work in Sec. 6.

2 Related Work

While there has been little research to date on policies in the CPS context, we
are aware of the following related work. Opyrchal et al. [11] address issues of
publication privacy in the context of pervasive environments using a centralized
policy engine. Our work is different from theirs in many respects since they focus
specifically on providing access control on publications. In addition to being dis-
tributed, our policy framework does not specifically target access control policies
but also general feature and service policies such as notification semantics. Be-
lokosztolszki et al. [12] incorporate Role-Based Access Control (RBAC) into the
Hermes pub/sub system [3]. They address issues of policy management, broker
trust, and access control optimization. Our work represents a different approach
to pub/sub policies that targets issues orthogonal to RBAC in unstructured
rather than structured overlays. Sturman et al. [13] propose a pub/sub architec-
ture capable of message transformations. Our focus is not on the transformations
themselves, but a framework that can support specifying policies on when and
how to perform transformations among other features. In general, we are intro-
ducing a policy model that has significant expressiveness benefits complementing
existing work.

Reconfigurable pub/sub systems allow the customization of middleware to suit
the needs of different applications. Cugola and Picco [7] address issues of overlay
and routing configurability by implementing a modular system architecture cus-
tomizable at deployment time. Sivaharan et al. [8] present a component-based
framework that allows pub/sub systems to easily cope with the diversity of mo-
bile and heterogeneous network environments. Both are flexible systems that
can be reconfigured with different pub/sub semantics as necessary. Our work
is complementary because it addresses a different problem of separating system
policies from mechanism, allowing applications to specify how a configured and
running system should provide its services based on message content. Indeed,
a benefit of our approach is that the main framework can be implemented in
well-componentized, interceptor-based, or aspect-oriented system architectures
without too much difficulty.

1 http://padres.msrg.utoronto.ca (extended version of paper also available)
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In the domain of traditional network environments, there is already a signifi-
cant amount of work on policies addressing various issues from Quality of Service
(QoS) to network management and security [14,15,16]. Stone et al. [17] present
a survey of existing network policy languages and also propose their own Path-
based Policy Language. Their approach explicitly declares the nodes in a network
path to which policies are applicable. This approach is clearly not suitable in the
CPS domain since it fundamentally conflicts with the paradigm of decoupling
clients from message routing details. Agrawal et al. [18] present a policy-based
system for autonomic management of computing resources. However, their work
is again applicable in a different domain. The WS-Policy framework [19] focuses
on providing an extensible syntax to express policies between Web service end-
points. However, not only is our focus on developing an actual policy mechanism
rather than a syntax for expressing policies, the distributed CPS domain also
has many concerns not addressed by end-point interactions such as routing. Ex-
isting policy frameworks for traditional network environments generally do not
migrate easily into the CPS domain.

3 Content-Based Policy Framework

In this section, we introduce the main concepts of our content-based policy
framework and discuss the implications of our approach with respect to policy
composition and application in a distributed CPS system.

3.1 The Post-matching Policy Model

Since content-based matching algorithms are an integral part of CPS systems, the
natural intuition is to protect these systems by enforcing policies before messages
reach the matching algorithm. Although our policy framework supports enforcing
policies before matching, such an approach does not easily achieve content-based
expressiveness without duplicating the functionality of matching algorithms and
incurring additional overhead. CPS systems generally provide highly scalable and
expressive message filtering capabilities already [1,2,20]. By leveraging the high-
performance matching algorithms that already exist, it is possible to build a policy
framework that achieves the same scalability and expressiveness as the host CPS
system itself. The basic concept behind our policy framework is summarized in
Alg. 1 using an event-condition-action policy model [21].

In this model, a content-based match event serves as the trigger for policy
application, which involves evaluating policy conditions and executing policy ac-
tions. Hence, we refer to this semantic as the post-matching policy model. While
the model itself is deceptively simple, it enables a powerful policy framework
since any application context that surfaces as message content is also reflected in
the policy framework. Note that since we only depend on the notion of a content-
based match event, this model is applicable to any CPS system that performs
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when content-based match occurs
if additional policy condition(s) satisfied then

perform
Action1;
. . . ;
Actionn;

Algorithm 1. Post-matching policy model

matching at the message granularity2. The remainder of this paper focuses on
the post-matching policy model even though we also support enforcing policies
before matching in our framework.

3.2 Policy Framework Approach

More formally, our approach associates each filter F (advertisement or subscrip-
tion) with an optional policy statement T 3, which contains one or more pol-
icy rules. Policy rules specify the conditions to evaluate and actions to execute
when the policy is applied. When a message M is processed by a CPS broker,
the matching algorithm computes a set Φ = {(F1, T1), (F2, T2) . . . (Fn, Tn)} of
matching filters Fi and their associated policy statements Ti containing policy
rules applicable to M . Applying the policies T1 . . . Tn against M involve evaluat-
ing the conditions and executing the actions specified in the policy rules of each
policy statement. The result of applying the policies could include the rejection of
M for routing, transformations on the format or content of M , or the triggering
of other actions such as broker state maintenance and debugging. Essentially, our
policy framework extends the CPS paradigm by giving applications the ability
to specify policies intercepting content-based match events. In Sec. 5, we present
example scenarios to highlight the benefits of the post-matching model and this
approach.

It is important to note that the computation of Φ does not require any addi-
tional processing beyond what is already performed by the existing matching al-
gorithm. If M is a publication, then Φ contains matching advertisements and sub-
scriptions as computed by the matching algorithm. If M is a subscription, then
Φ contains matching advertisements. For example, suppose a client issues two
advertisements A1 = [(x < 100), (y < 50)] and A2 = [(x > 75), (y < 100)] to its
local broker. Policies Ta1 and Ta2 are associated with advertisements A1 and A2,
respectively. When the broker receives a subscription S1 = [(x > 25), (y < 75)]
that intersects with both A1 and A2, the application of both policies Ta1 and
Ta2 against S1 is triggered. In contrast, a subscription S2 = [(x < 100), (y > 75)]
would only trigger application of policy Ta2 because the subscription only in-
tersects with advertisement A2. Suppose there is a further policy Ts1 associated
with S1. Then a publication P1 = [(x, 90), (y, 30)] would trigger application
2 This excludes matching algorithms that compress message sets into bit vectors, for

instance, but includes topic-based approaches.
3 From here on, we will use the terms “policy statement” and “policy” synonymously.
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of all three policies Ta1, Ta2, and Ts1 against P1. In contrast, a publication
P2 = [(x, 30), (y, 30)] only triggers application of policies Ta1 and Ts1. In this
way, the content-based expressiveness of the hosting CPS system is reflected in
the policy framework.

Although we have discussed our approach in the context of advertisement-
based semantics, these concepts are equally applicable in the context of subscrip-
tion-based semantics.

3.3 Implications for Policy Composition

Deploying an application in a CPS system involves the decomposition of appli-
cation contexts into messages. In this process, the application developer thinks
in terms of event schemas4 and event spaces5. Consequently, it is natural for
an application developer to compose an overall policy by designing policies
around the event schemas and event spaces that make up the application. By
associating policies with filters, we implicitly achieve policy composition [22]
with content-based expressiveness. For example, consider a supply-chain scenario
where inventory report publications Pi = [(class,report ), (d1, xi1) . . . , (dn, xin)]
with many data attributes are issued regularly. A management application sub-
scribing to reports may consider d1 to be a critical attribute. As such, if the
value xi1 of that attribute is above a certain threshold, then the client would
like to know the identity of the previous overlay hop of the message for track-
ing purposes. On the other hand, if xi1 is below a certain value, then the
remaining attributes are uninteresting so the client would like the broker to
remove them before delivering the notification. To achieve this, the manage-
ment application can issue two subscriptions S1 = [(class=report), (d1 > Xhigh)]
and S2 = [(class=report), (d1 < Xlow)] with policies T1 and T2 associated
with each, respectively. Policy T1 = AppendPrevHop() specifies a single ac-
tion that appends the attribute (PrevHop ID) to the notification while policy
T2 = RemoveAttributes(d2, . . . , dn) specifies a single action that removes the
given list of attributes from the notification. With these policies in place, notifi-
cations delivered to the management application may now have an extra PrevHop
attribute, missing d2 . . . dn attributes, or both depending on the value of the d1
attribute. Furthermore, the management application is able to specify this no-
tification policy without affecting other clients subscribing to the same events
since the policies are only associated with subscriptions belonging to the manage-
ment application clients. In this example, policies T1 and T2 have been composed
together to specify a notification semantic for inventory reports by leveraging
the content-based filtering capabilities of subscriptions, which already exist as a
fundamental concept in CPS systems. No additional policy-specific composition
language or content-based processing is needed in our approach. In contrast,
a generic policy framework layered on top of the CPS system would need to
explicitly process the contents of publications to achieve the same result.

4 Advertisements or message type definitions.
5 The set of all possible messages matching a filter.
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3.4 Interception Points in CPS Overlays

The CPS policy concepts we have presented so far are equally applicable in both
centralized and distributed CPS systems [1,2,4,20]. In particular, we have ad-
dressed when policy application occurs – either before or immediately after a
content-based match event. For distributed CPS systems however, it is equally
important to address where in the overlay policy application occurs. For in-
stance, are policies only applied at edge brokers? Or are they applied at every
overlay hop? Since there are valid scenarios for either case, our approach lets ap-
plications specify where policy application occurs based on interception points.

Fig. 1. Policy interception points

The three important interception
points are ingress, egress, and rout-
ing, which correspond to the brokers
at which a message enters, leaves, and
routes through an overlay. Fig. 1 il-
lustrates the concept of interception
points. Note that for a single isolated
overlay, ingress and egress points cor-
respond to the brokers at which injec-
tion and notification occurs between
brokers and clients. However, in a fed-
erated CPS system, ingress and egress
points correspond to the brokers at
the edges of sub-overlays.

4 Policy Framework Implementation

In this section, we present the implementation of our policy framework, which
builds upon the model and approach described earlier. In particular, we describe
the mechanisms for creating, distributing, and enforcing content-based policies
in a distributed CPS system. Our framework is built on top of PADRES [5],
an existing rule-based CPS middleware platform implemented by our research
group in Java.

4.1 API and Language

Only minor changes to the API are needed to support our policy framework. The
subscribe(msg), advertise(msg), and publish(msg)methods previously used
by clients have simply been extended to accept an optional policy statement ar-
gument, resulting in subscribe(msg, policy), advertise(msg, policy), and
publish(msg, policy) as the new API. For advertisements and subscriptions,
setPolicy(msgID, policy) also allows for specifying policies after the mes-
sage has already been issued. There is a factory class that can create commonly
used policy statement objects directly, but it is also possible to build a policy
statement from either XML specifications or a more compact language shown
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in Fig. 2. However, our focus in this paper is on developing the policy frame-
work mechanisms rather than providing a specific syntax for writing policies.
This language represents the construction of a single self-contained policy state-
ment. Each policy statement contains one or more policy rules enclosed by the
On(...) keyword and two mandatory parameters that define policy rule types.

1 PolicyStatement {
2 On (
3 [Forward | Insert],
4 [Advertisement | Subscription
5 | Publication | Unsubscription
6 | Unadvertisement]) {
7
8 @matching: [Before | After]?
9 @broker: [Ingress | Egress | Routing]*

10 @attach: [Never | Always | KeepExisting
11 | IfYield]?
12 @yield_attach: [False | True]?
13
14 If <conditions ...> Then <actions ...>
15 Elseif <conditions ...> Then <actions ...>
16 ...
17
18 OnException {
19 If <conditions ...> Then <actions ...>
20 Elseif ...
21 } } }

Fig. 2. Policy language

The parameter choices on line 3
specify whether the rule is ap-
plicable to messages being for-
warded or to messages being
inserted into broker routing ta-
bles. The parameter choices on
lines 4 to 6 specify which type
of message the policy rule is ap-
plicable to. Lines 8 to 12 show
optional qualifiers that further
define when and where the pol-
icy is applicable. When the rule
is applied, the conditions specified
on line 14 are evaluated and the
actions are executed if the condi-
tions all return true. Subsequent
condition clauses are only eval-
uated if the preceding condition
clause fails. Line 18 encloses con-

ditions to evaluate and actions to attempt if an exception occurs when applying
the rule. In the following sections, we discuss how this is used to specify policies
and control how they are applied.

4.2 Creation and Distribution of Policies

Using the new API, both clients and brokers can create policies either when
CPS messages are first issued or by associating policies with filters (advertise-
ments and subscriptions) at any time afterwards. For instance, advertise(msg,
policy) attaches a policy to the advertisement when it is issued. The at-
tached policy is routed along with the advertisement and stored by brokers,
who associate the policy with the advertisement. Similarly, subscribe(msg,
policy) attaches a policy to the subscription that is routed through the over-
lay and stored by brokers. The policies stored by brokers can also be set using
setPolicy(msgID, policy), which updates the policy associated with either
an advertisement or subscription. In general, a policy that routes with a mes-
sage in the overlay is said to be attached, while a policy that is stored by a
broker and linked to a filter is said to be associated. Policies can be attached to
any CPS message type but can only be associated with either advertisements or
subscriptions.

Table 1 summarizes the available methods for specifying policies applicable
to each message type. For example, publication policies (i.e., policies applied
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Table 1. Specification methods for policies

Policy \ Message Adv. Sub. Pub. Unadv. Unsub.

Adv. Attached × × × ×
Sub. On(*) Attached × × ×
Pub. On(*) On(*) Attached × ×
Unadv. On(*) × × Attached ×
Unsub. × On(*) × × Attached

to publications) can either be specified by policies associated with advertise-
ments and subscriptions using the On(Publication) qualifier or attached to the
publication itself, while unsubscription policies can only either be specified by
policies associated with subscriptions using the On(Unsubscription) qualifier
or attached to the unsubscription itself. Similarly, advertisement policies can
only be created and attached to the advertisements they are to be applied to.
However, subscription policies can either be attached directly to the subscrip-
tion or associated with advertisements as On(Subscription) policy rules. In
the latter case, the @attach and @yield attach qualifiers can additionally be
used to allow subscriptions to inherit the policy from the advertisement. That
is, the subscription policy associated with the advertisement can be attached to
the subscription rather than applied normally. These additional qualifiers allow
greater control over the specification of default policy attachments.

4.3 Enforcing Applicable Policies

Brokers are solely responsible for interpreting and enforcing the policies applica-
ble to messages they receive. When a policy is enforced by evaluating conditions
or executing actions, we say that the policy is being applied to a message. In
general, if a broker receives a message M with a policy TM attached to it and M
matches a set of filters {F1, · · · Fn} associated with a set of policies {T1, · · · , Tn},
then the set {TM , T1, · · · , Tn} contains all policies potentially applicable to M .
However, the applicability of a policy rule to any given message depends on a
combination of the policy rule type and the policy rule qualifiers6. For instance,
a publication matching an advertisement-associated policy that contains only
subscription rules will not have any of those rules applied to it. Two qualifiers
are currently supported to further specify when and where a policy rule is ap-
plicable.

The @match qualifier specifies whether the rule is applied before or after the
message goes through content-based matching. Rule application before matching
is supported since some policies may require checking conditions or executing
actions before accepting the message for matching. Policies for fast message for-
warding that bypass matching altogether or content-independent authorizations
are more appropriate for application before matching, for example. However,

6 From here on, we will use the terms “policy rule” and “rule” synonymously.
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such policies do not benefit from the advantages of scalability and expressive-
ness that are possible with rules applied after matching. More specifically, a
powerful implication of evaluating rules after matching is that the rules are se-
lectively applied based on message content. We focus on exploring the benefits
of post-matching policy rules with our evaluation scenarios in Sec. 5.

The @broker qualifier specifies the broker overlay contexts where the rule is
applicable and can be any combination of ingress, egress, and routing as shown
in Fig. 1 and discussed in Sec. 3. Ingress rules are evaluated for messages entering
the CPS system, egress rules are evaluated for messages leaving the CPS system,
and routing rules are evaluated for messages at internal brokers.

Together, the @match and @broker qualifiers give applications significant flex-
ibility in specifying when and where policy rules are applicable.

4.4 Framework Extensibility with Modular Rule Elements

Fig. 3. Policy rule structure

The level of functionality achievable
in our framework depends on the
conditions and actions supported in-
side policy rules. In our framework,
all conditions and actions are im-
plemented as rule elements chained
together inside policy rules. Every
policy rule contains one or more rule
element chains. Applying a policy rule
essentially involves traversing its rule
element chains, evaluating and exe-
cuting the corresponding conditions and actions as appropriate. Fig. 3 shows an
example of how conditions and actions are represented as a policy rule. In this ex-
ample, the rule elements A, B, C are accessed in order first. Should the conditions
corresponding to either rule elements A or B fail for instance, then the next chain
consisting of rule elements D, E, F is accessed. Recall that a single policy state-
ment may also contain multiple policy rules, one for each type of message at each
interception point. If an exception occurs while traversing the rule elements, com-
pensation policy conditions and actions as specified in the OnException clause
shown in Fig. 2 are accessed. Further exceptions during compensation actions
are no longer handled by the policy framework itself and instead, a meta-event
(as presented in Sec. 5) that describes the exception is generated.

Although we have already implemented a number of rule elements presented in
Sec. 5 that cover a wide range of CPS functionality, our framework is designed to
be easily extensible with new rule elements in response to emerging application
requirements.

5 Evaluation Scenarios

In this section, we evaluate our policy framework by applying it to a number
of different scenarios, demonstrating the expressiveness and flexibility achieved
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using the language presented in Sec. 4. Several of these scenarios represent novel
CPS features that become easy to specify and implement using our policy frame-
work. Where appropriate, we also present experimental data resulting from the
implementation of these scenarios. We do not include any experimental data for
scenarios that are purely functional and instead present only the associated poli-
cies. Since we focus on the post-matching model, all policy statements shown
are implicitly qualified with @matching: After to avoid repetition in presen-
tation. All experiments presented in this section were run using separate Intel
Dual Xeon 3.xGHz processor, 2GB memory systems for each broker or client.
We divide our evaluation into two broad scenario categories: CPS semantics and
security.

5.1 Specifying CPS Semantic Policies

Since there has been no standardization of CPS implementations, there are still
many subtle operational semantics that are open to interpretation by imple-
menters. As such, it is useful to have a flexible CPS system that allows cus-
tomization of operational semantics according to the needs of applications. The
following examples highlight how we can dynamically tune system semantics
using policies.

Notification Semantics. Although the semantic of delivering notifications
only to interested subscribers is well-established [1,2,3,4,6], the actual con-
tent delivered in notifications typically remains an implementation decision.
However, different applications may want notifications delivered to them
in different forms. Suppose there is a stream of publications of the form
Pi = [(class,event), (a1, vi1), . . . , (an, vin)]. A subscriber issuing a subscription
S =[(class=event), (a1 > x1), . . . ,(ak > xk)] can optionally associate
the policy in Fig. 4 with S. This policy specifies that just before notifications

PolicyStatement {
On(Forward,Publication) {

@broker: Egress
If {} Then {TrimAttributes()}

} }

Fig. 4. Notification policy

are delivered to the subscriber (at Egress bro-
kers), they are “trimmed“ to match attributes
in the subscription. In this example, attributes
ak+1 . . . an would be removed from all Pi since
they do not appear in the subscription. The
TrimAttributes() action automatically selects
attributes for removal based on the subscription,
but other possible notification semantic actions
include RemoveAttributes(attributeList)

and KeepOnlyAttributes(attributeList), which allow a subscriber to
remove or keep a specified list of attributes, respectively. Although we expect
some performance improvement from removing unnecessary attributes, it is not
immediately obvious exactly how much improvement can be achieved because
of other factors such as message header overhead.

Fig. 5 shows that the effects of trimming attributes on network traffic are
still very significant in our system despite message header overheads. We used
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three different streams of publications consisting of 10, 20, and 30 attribute pub-
lications. A subscription was associated with policies for removing from 0 to all
attributes. The solid lines for each stream show the network usage of receiving
full publications and the dashed lines show the network usage of delivering the
same publications if notification policies are applied. The values shown are aver-
ages over 100 publications. Clearly, even removing a small number of unwanted
attributes could mean substantial overall network performance improvements
when delivering to large numbers of subscribers. Since the infrastructure cannot
always predict application workloads, our framework allows applications to help
optimize performance by specifying exactly which attributes are relevant and
should be delivered.

0 5 10 15 20 25 30
0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

No. of trimmed attributes

N
et

w
or

k 
us

ag
e 

(K
B

 p
er

 m
es

sa
ge

)
Received
Transmitted

Fig. 5. Trimming notifications

In addition to improving net-
work performance, notification poli-
cies have functional benefits as well.
Transformation from one syntax to
another is also easily expressed using
the same policy by using the appropri-
ate action such as ToXML(). The ac-
tions can of course be stacked as well
to compose more complicated notifi-
cation policies such as

Then {TrimAttributes(), ToXML()}

that both trims the notification and
then converts it to XML syntax. For example, such transformation policies can
be used to create proxy brokers between different CPS infrastructures that re-
quire different message formats by using the @broker: Routing qualifier and
specifying appropriate conditions and actions such as

If {AuthenticateReceiver(Domain1)} Then {ToFormat1()}
Elseif {AuthenticateReceiver(Domain2)} Then {ToFormat2()}

The important point is that different subscribers may specify different notifica-
tion policies, thereby receiving different versions of the same event. Note also
that no condition has been specified in the policy we show here, but it is easy
to imagine how notification semantics can be combined with conditions such as
authentication to achieve access control.

Distributed Tracing. Although keeping the infrastructure transparent to
clients is an important CPS feature, applications sometimes need information
about the infrastructure for monitoring or debugging purposes. Policies are well-
suited for specifying this type of message content augmentation on an as-needed
basis for applications. For example, consider the policy in Fig. 6.

This policy specifies that at every broker hop, publications are augmented with
information about the broker, the load state of the broker, and the total time
spent processing the publication. When attached to publications, this policy is
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applied on a per-publication basis and does not affect other publications that do
not have the policy attached. Consequently, this is most useful if tracing is only
needed occasionally. Alternatively, the policy can be automatically attached to
publications by adding the @attach: Always qualifier and associating the policy
with an appropriate advertisement, which would give tracing information to all
subscribers by default. Associating the policy with subscriptions would instead
allow the augmentation to occur on a per-subscriber basis. The @broker qualifier
and If{} conditions can of course also be changed to restrict augmentation to
certain brokers. The unique combination of content-based expressiveness, policy
language, and policy framework gives applications great flexibility in choosing a
suitable tracing semantic.

The actions shown here place augmented
PolicyStatement {

On(Forward,Publication) {
@broker: Ingress,Egress,Routing

If {}
Then {AugmentBrokerHostInfo(),

AugmentBrokerLoadIndex(),
AugmentProcessingTime()}

} }

Fig. 6. Tracing policy

data into a binary payload that is part of
the publication, but similar alternative ac-
tions can instead extend the publication by
placing augmented data into reserved CPS
attributes. The second method would allow sub-
scribers to further specify notification semantics
on tracing attributes even when advertisement-
associated or publication-attached tracing poli-
cies are used.

Meta-Events and Triggers. Sometimes events in the CPS system itself can
be of interest to clients and brokers. As such, our policy framework enables
generating publications based on system events such as matches occurring un-
der certain conditions. For example, consider the policy in Fig. 7. This policy

PolicyStatement {
On(Insert,Subscription) {
@broker: Ingress

If {MessageSizeIndex() > 0.8
&& BrokerLoadIndex() > 0.75}

Then {UninsertMessage(),
Publish("[class,DropMessage]

,[cause,’Broker load’]
,[message,$Message]")}

}

On(Forward,Subscription) {
@broker: Ingress

If {MessageSizeIndex() > 0.8
&& BrokerLoadIndex() > 0.75}

Then {BlockMessage()}
} }

Fig. 7. Meta-event policy

specifies that if a large subscription is injected at a time when the broker is suf-
ficiently loaded, then the subscription is not stored in routing tables (uninserted
using the UninsertMessage() action) and also prevented from propagating any
further (blocked using the BlockMessage() action). Furthermore, a publication
is internally generated by the policy framework regarding this event using the
Publish() action. The variable $Message inserts the offending subscription as a
string into the generated publication content. Internally generated publications
are processed by the same broker that generated it and treated as a normal
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publication for matching and routing purposes. Effectively, this policy speci-
fies a simple load resilience scheme where interested subscribers are notified of
dropped subscriptions. The dropped subscription event may be relevant to ap-
plications for recovery purposes or to system management services for resource
provisioning.

Note that this policy does not necessarily affect all subscriptions since the ap-
plication can choose which subscriptions are potentially dropped by associating
this policy with the appropriate advertisements. For instance, associating this
policy with the advertisement A = [(class = CustomerOrder), (priority < 5)]
specifies that only subscriptions to low priority customer orders will be dropped
and all other subscriptions will be unaffected by the policy. This kind of policy is
not possible in normal pre-matching policies or generic policy framework layers
without duplicating content-based functionality.

Flooding Semantics. In terms of routing efficiency, there are some situations
in which flooding subscriptions may be preferable to flooding advertisements.
This can be the case if a particular application consists of many publishers and
only a few subscribers interested in content from all publishers or if publishers are
highly mobile while subscribers are mostly stationary. Our CPS system is based
on advertisement flooding by default, but preference for subscription flooding
can be specified using the policy in Fig. 8.

When attached to advertisements, this pol-

PolicyStatement {
On(Forward,Advertisement) {

@broker: Ingress,Routing

If {} Then {BlockMessage()}
}

On(Forward,Subscription) {
@broker: Ingress,Routing

If {} Then {FloodMessage()}
} }

Fig. 8. Flooding policy

icy prevents the advertisement from prop-
agating beyond a single broker hop using
BlockMessage(). Furthermore, any subscrip-
tion that matches an advertisement associated
with this policy will be tagged for flooding to all
neighbours. A broker can control which event
schemas are flooded by internally generating
an appropriate advertisement and associating
this policy with it. For example, a group of
brokers can agree to flood infrastructure man-
agement subscriptions by internally storing the
advertisement A = [(class = BrokerManage-

ment), · · · ] in each of their own routing tables associated with the above policy.
Notice that the enforcement of subscription flooding is left up to the discretion
of brokers and does not occur at brokers that do not similarly store this policy.

We set up the scenario shown in Fig. 9 where subscribers are situated at
different brokers and remain stationary while publishers move from broker to
broker frequently in between issuing publications. This scenario reflects charac-
teristics found in applications where mobile clients need to continuously send lo-
cation and status updates to home servers, for instance. Fig. 11 shows that under
the normal advertisement flooding scheme, advertisement, unadvertisement, and
subscription messages are continuously routed throughout the network as the
application runs. Subscriptions are routed as a result of the unadvertisements/re-
advertisement process, which triggers removal and re-propagation of subscrip-
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Fig. 9. Highly mobile publishers
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tions. However, if a subscription flooding policy is used, then no additional ad-
vertisement or subscription messages need to be routed while the application
runs since subscribers remain stationary. Fig. 12 shows that significant network
traffic is saved by using subscription flooding. Furthermore, the subscription
flooding policy only incurs overhead when the advertisements are initially is-
sued and subscriptions are flooded. Subsequent notification response times are
unaffected as Fig. 10 shows.

Of course, there are reverse scenarios (such as subscriber mobility) that favour
advertisement flooding instead. However, our purpose is only to show that differ-
ent application scenarios can benefit significantly from different flooding seman-
tics. With our policy framework, both semantics can be active simultaneously
and specified on a per event schema basis.

5.2 Specifying Security Policies

Although security mechanisms are typically orthogonal to the policy framework,
security behaviours can still be specified at the CPS level. We implemented a
simple security mechanism for use with our policy framework in which authen-
tication and encryption is based on Trust Group membership. Trust groups are
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conceptually similar to secure multicast groups [23]. Each trust group is associ-
ated with a shared group secret Kg so that members of the same group are able
to perform authentication and encryption within the group. To establish Kg,
there must be an out-of-band bootstrapping process to either set up Kg directly
or set up public/private keys on the appropriate clients and brokers so that Kg

can be exchanged securely. We support both bootstrapping methods since the
first has the advantage of simplicity and low overhead while the second method
is more flexible.

Authenticated Event Scope. Although advertisements are normally flooded
in our CPS system, trust group authentication can be used to limit the visibility
of events in the overlay on a per schema basis by issuing advertisements attached
with the policy in Fig. 13. This policy specifies that the advertisement must only
be sent to brokers belonging to either the TrustGroup1 or TrustGroup2 trust
groups. If the receiver of the advertisement is successfully authenticated, the
advertisement is sent normally and no additional special actions are performed.
However, if authentication fails for both groups, the delivery of the advertisement
is blocked by the BlockMessage() action. Alternatively, the condition

If {AuthenticateReceiver(TrustGroup1)
&& AuthenticateReceiver(TrustGroup2)}

can be used to specify that only brokers belonging to both trust groups will
receive the advertisement. Although authentication is currently based on trust
group membership, the same policies can be used to express authentication based
on other mechanisms such as public key identities or Role-Based Access Con-
trol [12] since the actual authentication process uses out-of-band mechanisms.

PolicyStatement {
On(Forward,Advertisement) {
@broker: Ingress,Routing

If {AuthenticateReceiver(
TrustGroup1)} Then {}

Elseif {AuthenticateReceiver(
TrustGroup2)} Then {}

Elseif {} Then {BlockMessage()}
} }

Fig. 13. Authentication

Fig. 14 shows publication processing time
when a sender-authentication policy is in place
between two brokers (the policy is associated
with a subscription). Each step in the plot rep-
resents 0, 1, 3, and 5 different trust group au-
thentications required by the policy. For the
“Authorization” line, the receiving broker is
able to authenticate the sending broker for
all five trust groups. Since authentication re-
sults are not cached, the authentication proto-
col must run for every publication, resulting in
worst case performance that is proportional to

the number of trust groups specified in the policy. For the “Denial” line, the
sending broker belongs to no trust groups so that authentication fails on the
first attempt regardless of how many trust groups are specified in the policy.
However, by caching authentication results, we can avoid running the authenti-
cation protocol for every message at the expense of lower responsiveness to trust
group membership changes. The “Cached” line shows that since cached entries
do not expire simultaneously, performance remains acceptable even when sev-
eral groups are specified in the policy. Therefore, incurred overhead is due to
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the authentication process itself rather than processing and management per-
formed by the policy framework. Note that we set the expiry time to a low value
here in order to observe the effects of authentication cache expiry. Since our
focus is on the policy framework and not the authentication mechanism itself,
we implemented a protocol similar to CHAP [24] for the purposes of this eval-
uation. Without the post-matching model, the policy framework would have to
duplicate content-based functionality to achieve expressive, fine-grained authen-
tication policies based on content.

Security Zones. Suppose a broker network is divided into restricted, controlled,
and uncontrolled security zones as shown in Fig. 15. This setup is not uncommon
in organizations separating their intranet (restricted) systems from the Internet
(uncontrolled) using a demilitarized zone (DMZ, controlled). To enforce privacy,
all attributes may be visible within the restricted zone but some attributes must
not appear in the controlled zone. No events from the application should be
visible at all in the uncontrolled zone. Furthermore, only authorized clients may
subscribe from either zone. These application requirements can be expressed
by attaching the policy in Fig. 16 to an advertisement issued from within the
restricted zone.

This policy combines the use of authentication, message transformations, and
meta-events to enforce privacy across different security zones. Fig. 15 illustrates
the resulting meta-event message flow for an event schema using this policy.

Content-Based Firewall. In CPS systems, subscriptions are analogous to fire-
wall “allow” rules on publications while advertisements are analogous to “allow”
rules on subscriptions. In this respect, the existing filtering capabilities of CPS
systems already provide some firewall functionality. However, consider a stable
application in which advertisements have been established and no longer need to
change. Subscriptions originating from an “internal” overlay are sent to a neigh-
bouring “external” overlay and attract publications. In order to temporarily
block certain publications from entering the internal overlay, the subscriptions
used by the application must change. For instance, this may be necessary as a
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PolicyStatement {
On(Forward,Advertisement) {

@broker: Ingress,Routing

If {AuthenticateReceiver(Restricted)}
Then {}

Elseif {AuthenticateReceiver(Controlled)}
Then {RemoveAttributes(a, ... ,n)}

Elseif {} Then {BlockMessage()}
}
On(Forward,Subscription) {

@broker: Ingress

If {AuthenticateSender(AuthorizedSubscribers)}
Then {}

Elseif {}
Then {Publish("[class,UnauthorizedSubscribe],

[message,$Message]")}
}

On(Forward,Publication) {
@broker: Routing (Ingress)
@attach: Always // Routing only

If {AuthenticateReceiver(Restricted)} Then {}
Elseif {AuthenticateReceiver(Controlled)}
Then {RemoveAttributes(a, ... ,n)}
Elseif {} Then {BlockMessage()} } }

Fig. 16. Security Zones policy

reaction to detecting fraudulent publications that suddenly need filtering. Not
only would such a change affect subscriptions throughout both overlays, the re-
sulting subscriptions could potentially become a cumbersome mix of filters for
attracting wanted publications and filters for fine-grained blocking of unwanted
publications. Depending on the subscription language, this could be very diffi-
cult or even impossible to express in a single subscription. Similarly, preventing
certain subscriptions from exiting the internal overlay would require changing
the advertisements that originated from the external overlay. The same issue of
expressing “allow” and “deny” filters in a single advertisement exists.

Fig. 17. Content-based firewall setup

To block publications from enter-
ing the internal overlay, we can issue
subscriptions from an internal firewall
broker Bif to an external firewall bro-
ker Bef as shown in Fig. 17 with the
policy in Fig. 22 attached. This policy
blocks forwarding of all publications
strictly matching the subscription as
determined by the StrictMatch()
condition. A publication strictly mat-
ches a subscription if the publication
contains exactly the same attributes
as the subscription, while a subscrip-
tion strictly matches an advertisement if their filters are the same. For example,
a subscription S = [(class = C), (a < 10)] is strictly matched by the publication
P1 = [(class, C), (a, 9)] but not P2 = [(class, C), (a, 9), (b, 5)] even though
P2 normally matches S. Strict matching conditions can be used to achieve
content-based firewall rules with more precision if needed but are not required
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Fig. 19. Merged firewall subscription
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Fig. 21. Merged firewall subscription

in situations where the normal matching semantic is sufficient. The subscription
and its associated policy is analogous to a single content-based firewall rule on
publications. Note that authenticated event scoping is used to restrict firewall
subscriptions and advertisements to the firewall brokers. Similarly, subscriptions
are blocked by issuing an advertisement from Bef to Bif and attaching the same
policy using On(Subscription) instead of On(Publication). In Figs. 18 and
20, we issue 100 separate firewall subscriptions to the internal firewall broker
that block roughly 80% of the incoming publications overall. The publication
rate P.Rate remains steady at the external broker (Fig. 18) but is much lower
at the internal broker (Fig. 20) when the firewall policies are in effect. The time to
process both publications and subscriptions (P.Time and S.Time, respectively)
increases when the 100 firewall subscriptions are received.

When firewall subscriptions are first issued and processed with their policies,
broker processing times spike briefly before returning to normal sub-millisecond
values. Subsequent removal of the same 100 firewall subscriptions via unsub-
scription is significantly faster, incurring no noticeable overhead. In Figs. 19
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PolicyStatement {
On(Forward,Publication) {
@broker: Routing

If {StrictMatch()}
Then {BlockMessage()}

} }

Fig. 22. Firewall policy

and 21, we issue a single subscription merged
from the 100 separate firewall subscriptions that
block the same amount of traffic. As there is
only a single subscription and policy rule to pro-
cess, Fig. 21 shows that there is no noticeable
disruption to broker processing when the policy
takes effect and is later removed. The original
subscription issued by the application did not
need to change in either case. This technique

allows us to dynamically specify content-based firewall rules that are totally in-
dependent of the filters specified by existing applications. In these experiments,
the firewall subscriptions were issued to the internal broker by a normal CPS
client, but the authentication policies described earlier can be used to place ac-
cess control policies on who is able to issue firewall filters. Note that a reverse
scenario where publications are blocked from leaving the internal overlay and
subscriptions are blocked from entering is also possible.

6 Conclusion and Future Work

In this paper, we have presented a content-based policy framework for distributed
CPS systems that supports a novel post-matching policy model. Evaluations of
our reference implementation show that this model is capable of achieving scal-
able and expressive policies in distributed CPS systems with little overhead. In
particular, we showed that our policy framework enables new features related
to both CPS semantics and security such as notification semantics, meta-events,
security zoning, and CPS firewalls. By leveraging the capabilities of existing
CPS matching algorithms, our policy model allows these features to be speci-
fied easily and dynamically. Since our model is based on generic CPS matching
concepts, our approach is appropriate across different CPS systems using either
advertisement or subscription based semantics.

Although we have addressed many concepts in our policy framework
implementation, some future work still remains. In particular, we have not dis-
cussed self-management features such as conflict resolution in any detail. Al-
though many conflict resolution strategies are possible [25,21], none are univer-
sally applicable across all conflict situations. At the moment, we use our own
meta-notification feature to inform the application about policy conflicts and
exceptions when they are detected. However, certain conflicts may be resolvable
automatically by the system. We have started work in this area by identifying
conflict situations amongst authorization and message transformation policies
in the CPS context. Also, the policies we presented in this paper are based
mostly on authorization and message transformation. There are still other types
of policies that need to be explored, such as generic obligation actions [10] in-
volving logging, persisting messages to a database, and other similar actions.
The meta-notification feature implemented using our policy framework is work
in this direction.
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Abstract. Epidemic protocols have demonstrated remarkable scalability and ro-
bustness in disseminating information on internet-scale, dynamic P2P systems.
However, popular instances of such protocols suffer from a number of significant
drawbacks, such as increased message overhead in push-based systems, or low
dissemination speed in pull-based ones.

In this paper we study push-based epidemic dissemination algorithms, in terms
of hit ratio, communication overhead, dissemination speed, and resilience to fail-
ures and node churn. We devise a hybrid push-based dissemination algorithm,
combining probabilistic with deterministic properties, which limits message over-
head to an order of magnitude lower than that of the purely probabilistic dissem-
ination model, while retaining strong probabilistic guarantees for complete dis-
semination of messages. Our extensive experimentation shows that our proposed
algorithm outperforms that model both in static and dynamic network scenarios,
as well as in the face of large-scale catastrophic failures. Moreover, the proposed
algorithm distributes the dissemination load uniformly on all participating nodes.

Keywords: Epidemic/Gossip protocols, Information Dissemination, Peer-to-Peer.

1 Introduction

Large-scale information dissemination constitutes fundamental functionality for a mul-
titude of applications, ranging from file-sharing and web-casting to the massive dis-
tribution of software, security patches, and world-wide worm alert notifications. The
emergence of new types of applications for large-scale decentralized systems drives the
need for efficient, reliable, and scalable information dissemination frameworks.

Early attempts for information dissemination focused on network-layer solutions,
leading to a number of IP Multicast protocols. These protocols rely on functionality
embedded in routers, that enables the dynamic construction of spanning trees that reach
all participating nodes, but generally provide no reliability guarantees. A number of so-
lutions have been proposed on top of IP Multicast, such as SRM [6] and RMTP [13], to
improve its reliability. Nevertheless, IP Multicast is not widely deployed on the Internet
mainly due to extra complexity and state imposing on routers.
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Application-layer multicast forms an alternative class of solutions that has emerged
in the recent years. The main advantage of these solutions is that they are very gene-
ric, and, therefore, they can be directly deployed over today’s network infrastructure.
There exist application-layer multicast protocols that provide reliability guarantees [8].
However, many of them do not scale well to a large number of nodes [17].

A class of application-layer multicast has recently emerged [3,2,21], based on the
structure of DHTs such as Chord, Pastry, and Tapestry. What is common in these DHTs
is that, in their respective overlays, each node is the root of a tree spanning the whole
network. These spanning trees are used for message dissemination. Although systems
of this class are nearly optimal with respect to message overhead, a single failure along
a spanning tree can result in a whole branch missing a message. Failures are disregarded
as a whole in [3], where the assumption of reliable communication is made. Scribe [2]
provides by default best-effort delivery. Reliability is improved to some extent by im-
posing TCP connections among nodes, a rather heavy assumption for dynamic, large-
scale P2P networks. Finally, Bayeux [21], a system mainly targeted at data streaming,
improves on reliability by redundantly disseminating messages across different paths of
a spanning tree. However, its design is exposed to scalability problems, as each request
to join a group is routed to a single node managing that group.

Gossip-based protocols, such as Bimodal Multicast (pbcast) [1] and Directional Gos-
sip [14] form an alternative to broadcasting approaches without sufficient redundancy.
Each node forwards a message to a small random subset of the network, and so on. These
protocols generally provide only probabilistic guarantees for message delivery. How-
ever, they are attractive because they are easy to deploy and resilient to node and link
failures, due to redundant message deliveries. On the other hand, scalability can suffer if
nodes are required to maintain full knowledge of the network, notably when node churn
is at stake. Optimizations have been suggested in [1] to overcome such scalability issues.

Other gossiping protocols, such as lpbcast [4,5] and [12,7] provision for member-
ship management too. In particular, [7] describes a hybrid dissemination system, that
multicasts messages using a tree-based hierarchical structure, and locally switches to
gossiping when a large number of failures is detected. These protocols drop the as-
sumption of full knowledge of the network. Each node maintains a small view of the
network, consisting of a few links to neighbors, which are used for dissemination. This
makes them highly scalable. However, due to their probabilistic nature, a message may
fail to reach the whole network even in a fail-free environment. To alleviate this, highly
redundant message forwarding is employed.

Excessive redundancy of push-based approaches can be reduced while retaining a
high hit ratio, by employing pull-based epidemic techniques: nodes periodically poll
other nodes to pull messages they may have missed. However, the periodic nature of
pull-based gossiping results in relatively long latency of message dissemination, sig-
nificantly longer than reactive push-based approaches. We will not consider pull-based
techniques in this paper.

Contributions

The contributions of this paper are three-fold. First, we study the algorithm proposed
in [12] (which we call RANDCAST), we observe and quantify the excessive message
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overhead it imposes on the network, and explain why the class of flat, probabilistic
dissemination algorithms requires high levels of redundancy to disseminate messages
to the whole node population.

Second, we reason that imposing some level of determinism on probabilistic dissem-
ination algorithms can substantially reduce the dependence on message redundancy,
introducing the class of hybrid (probabilistic/deterministic) dissemination algorithms.
Protocols of this class achieve deterministic dissemination to all nodes in fail-free envi-
ronments. When failures occur, their reliability degrades gracefully with the number of
failures.

Third, we propose RINGCAST, a novel hybrid dissemination algorithm, which
achieves complete dissemination of messages (hit ratio 100%) with an order of magni-
tude lower message overhead compared to RANDCAST. Our extensive experimentation
and side by side comparison of the two protocols, show that RINGCAST outperforms
RANDCAST in terms of hit ratio, message redundancy, tolerance to node churn, and
resilience to (even large-scale) node failures. Moreover, both algorithms distribute the
dissemination load uniformly on all participating nodes.

2 Evaluating a Dissemination System

A number of issues are of concern when evaluating or comparing information dissemi-
nation systems. It is essential for the rest of this paper to list the metrics used to evaluate
the effectiveness and usefulness of a dissemination system.

Hit ratio. This is defined as the ratio of nodes that receive a message over the total node
population. It rates the dissemination reliability. Ideally, a reliable dissemination
system should always achieve a hit ratio of 100%. In our evaluation (Section 7) we
present graphs of the complementary miss ratio metric, defined as: MissRatio =
1 − HitRatio.

Resilience to failures and churn. For a dissemination system to be meaningful in a
real-world dynamic network, it should operate reasonably well in the presence of
node or link failures, and node churn. The operation under such conditions is eval-
uated by means of the hit ratio, described above.

Dissemination speed. The time required for the dissemination of a particular message
to complete. The faster a message is disseminated the better. Dissemination speed
depends on two principal factors. First, the delay in forwarding messages (process-
ing delay on nodes plus network latency). Second, the number of hops a message
takes to reach the last node. In our evaluation we focus on the latter factor.

Message overhead. The overall number of times a message is forwarded during its
dissemination. For a message to reach N recipients, it should be forwarded a min-
imum of N times. In practice, however, messages are forwarded a number of re-
dundant additional times, to sustain churn and failures. Message overhead rates a
dissemination system with respect to preserving or wasting network resources.

Load distribution. The distribution of load over nodes, in terms of messages received
and messages forwarded. Ideally, load should be evenly distributed among partici-
pating nodes.
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when node P generates message m,
or receives m from node Q do

if m not already seen then
targets ← selectGossipTargets(Q)
foreach T ∈ targets do send(T , m)

endif
end

function selectGossipTargets(Q)
targets ← view-{Q}
return targets

end

(a) (b)

Fig. 1. (a) The generic dissemination algorithm. (b) Gossip target selection for deterministic dis-
semination (flooding).

In this paper we are interested in reliable dissemination of messages originating at
any node to all participating nodes. We do not focus on optimizing the dissemination
of messages with respect to any proximity metric or by building a spanning tree. Also,
we do not consider positive or negative acknowledgements, or requests for retransmis-
sion of lost messages. Instead, we introduce redundancy in message dissemination and
examine its relation to the level of reliability achieved. We investigate the power of
epidemics at disseminating messages to all nodes, with a high probability.

3 Deterministic Dissemination

Consider a system consisting of N nodes, and a set of directed links among them. A
message can originate at any of the participating nodes, and aims at reaching the whole
network. A node that generates a new message or receives a message for the first time,
forwards it across all its outgoing links. If a node receives a message for the second
time, it simply ignores it. As an optimization, a message is never forwarded back to
the node it was just received from. This basic algorithm is often referred to as flooding.
Figure 1(a) shows the pseudocode for the dissemination algorithm.

The distinguishing characteristic of flooding is that one can deterministically con-
trol dissemination by imposing the appropriate overlay on the nodes. The underlying
requirement to guarantee complete dissemination starting from any participating node,
is to form a strongly connected directed graph1 including all nodes. A multitude of
overlays have been proposed for information dissemination by means of flooding, each
one demonstrating a different behavior with respect to the metrics listed in the previous
section.

Spanning trees or simply trees were among the first types of overlays proposed for
flooding. Their strong point is that they are optimal with respect to the number of links
maintained and, consequently, to the message overhead associated with dissemination.
Indeed, in a network consisting of N nodes, the complete dissemination of a message
over a tree involves exactly N − 1 point-to-point communications. Their main disad-
vantage, though, is that a single failure of any link or any non-leaf node disconnects
the tree prohibiting messages from reaching all nodes. Also, maintaining a valid tree
structure, ensuring the graph is connected and yet acyclic, is not a trivial task in the

1 A directed graph in which there is a directed path between any ordered pair of nodes.
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presence of failures. For these reasons, trees are not suitable for dynamic environments
where failures can happen.

A special type of tree-based overlays for flooding is the server-based class (star
graphs), where all nodes are connected by bidirectional links to a single node acting as
a relay server. In these overlays all but the server node are leaf nodes, therefore their
failure has no effect on the remaining nodes, but the server becomes a single point of
failure. In addition, such overlays demonstrate the worst possible load distribution, the
server node being linearly loaded by the number of nodes and number of messages
being disseminated, rendering it a non-scalable solution.

On the other end of the spectrum lie cliques (complete graphs). In such a setting,
every node has a complete view of the network. A node broadcasts a message by send-
ing it to every other node in the network. This provides maximum reliability, at the cost
of high maintenance costs. Although messages always reach all nodes irrespectively of
how many nodes have failed, maintaining this type of overlay is impractical. Maintain-
ing a fully connected graph is expensive in networks larger than a few dozen nodes,
notably when the membership changes continuously.

A class of flooding overlays deserving more attention is the one based on Harary
graphs, introduced by Harary in [9], further studied by Jenkins and Demers [11], and
applied by Lin et al. [15] in flooding. A Harary graph of connectivity t is a minimal
link graph that is guaranteed to remain connected when up to t − 1 nodes or links fail.
Its minimum cut, therefore, consists of t links. Moreover, in a Harary graph links are
evenly distributed across nodes, each node having either t or t + 1 bidirectional links.
An example Harary graph of connectivity two is a bidirectional ring, that we will use
later in Section 5.1. Such overlays are very appealing for information dissemination in
the presence of failures, as they are guaranteed to sustain up to a certain number of fail-
ures while imposing the minimum message overhead (for the corresponding reliability
guarantees), and this overhead is evenly balanced across all nodes. The maintenance of
such graphs, notably of higher connectivity t, can be a complicated and expensive task
for large-scale, dynamically changing networks.

4 Probabilistic Dissemination

Acquiring reliability by imposing systematic structure on overlays is infeasible in dy-
namic networks of massive scale. In this section we take a look at an appealing alter-
native, probabilistic dissemination algorithms, which trade-in deterministic reliability
guarantees in return of overlay construction and maintenance simplicity.

In these algorithms, dissemination is not guaranteed by means of a strategic topol-
ogy, but by increased redundancy in message forwarding. The basic idea is that a node
receiving a message forwards it to a number of random other nodes. It turns out that if
that number is sufficiently high, messages reach all nodes with a high probability [12].
The choice of random nodes to forward messages to can be easily handled by a PEER

SAMPLING SERVICE, as described in [10]. The main advantage of probabilistic dis-
semination algorithms is that they are very simple to implement and inherently tolerant
to dynamic environments, at the cost of increased message overhead.
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4.1 The RANDCAST Dissemination Algorithm

We consider a system consisting of N nodes. Each node runs the PEER SAMPLING

SERVICE, providing it with a small, random, partial view of the network. A message
can originate at any of the participating nodes, and aims at reaching the whole network.
A node that generates a new message or receives a message for the first time, forwards
it to (up to) F nodes, called the node’s gossip targets, chosen randomly from its PEER

SAMPLING SERVICE view. F is a system-wide parameter, called the fanout. A message
is never forwarded back to the node it was just received from. Figure 2 shows the pseu-
docode for the selection of gossip targets in the RANDCAST dissemination algorithm.

function selectGossipTargets(Q)
targets ← F random nodes from view-{Q}
return targets

end

Fig. 2. Gossip target selection for the RANDCAST dissemination algorithm

Note that this algorithm is quite efficient at spreading a message to a considerable
percentage of the nodes in the network very fast, specifically at exponential speed with
base F : A new message progressively reaches F 0 (=1, the message generator), F 1,
F 2, . . . other nodes. Consequently, a message spreads very fast even for small values
of F ≥ 2. As expected, dissemination slows down when the message is forwarded to
nodes that have already received it. However, if the selection of nodes to forward a
message to is uniformly random, this slowdown is expected to be negligible until the
message has reached a substantial percentage of the network.

Despite its strength at spreading messages fast, RANDCAST is not as efficient at
achieving complete dissemination, that is, to reach every single node in the network. It
is by nature a probabilistic algorithm. Even in the absence of failures, it provides no hard
guarantees that a message will reach all nodes. It is not hard to see why. By forwarding
messages at random, a node has no guarantees that at least one of its incoming links will
be chosen to forward the disseminated message. To alleviate this, abundant redundance
should be introduced by means of a large fanout. However, this is not desirable, because
message overhead increases proportionally to the fanout, as we will see in the evaluation
in Section 7. The RANDCAST dissemination algorithm has been analyzed and evaluated
by Kermarrec et al in [12].

In the following section we introduce a novel class of hybrid dissemination algo-
rithms, combining deterministic and probabilistic dissemination. We also present a par-
ticular protocol of this class. We defer the evaluation of both protocols until Section 7,
where they are compared side by side.

5 Hybrid Dissemination

As we discussed above, although probabilistic protocols are good at spreading messages
fast even for small values of F , a large value of F is mandated to reach every single node
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in the network. This inefficiency can be tackled by introducing some determinism in the
selection of gossip targets, ensuring any possible dissemination graph is connected and
includes all nodes.

Hybrid dissemination protocols aim at combining probabilistic and deterministic be-
havior. To that end, they establish two types of links among nodes. Random links (r-
links) contribute to their probabilistic behavior, and deterministic links (d-links) bring
in determinism. R-links are simply links randomly selected, just like in purely prob-
abilistic dissemination protocols. When presented with a message, a node forwards it
across a few r-links. Consequently, messages initially spread to a large portion of the
network at close to exponential speed.

However, a message being disseminated should reach every single node in the net-
work. That is, it should be forwarded across at least one incoming link of each node.
The basic idea is to establish a set of d-links, and have nodes deterministically forward
messages across all their outgoing d-links, in addition to a few of their outgoing r-links.
If the set of d-links forms an overlay compliant to the deterministic dissemination pro-
tocols’ requirement, that is, it forms a strongly connected directed graph including all
nodes, complete dissemination of messages is guaranteed. In such a graph, each node’s
indegree is at least 1. Moreover, if we ensure that the graph defined by the d-links has a
minimal cut of t, then complete dissemination is guaranteed even in the presence of up
to t − 1 faulty nodes.

Hybrid protocols effectively decouple the two fundamental goals in information dis-
semination. On one hand, spreading a message to a large percentage of the nodes fast,
and on the other, reaching every single node. The probabilistic component carries out
the bulk of the dissemination task, while the deterministic one takes care of the fine-
grained details.

What makes hybrid dissemination protocols attractive, is that the set of d-links does
not need to form a particularly sophisticated and hard-to-maintain structure. The sole
requirement is that the set of d-links forms a strongly connected directed graph over all
nodes. A simple structure satisfying this requirement is a ring. In the following section
we explore how it can be used as a basis for a practical hybrid dissemination system.

5.1 The RINGCAST Dissemination Algorithm

We introduce RINGCAST, a novel hybrid dissemination algorithm that—even with a
very low fanout—guarantees complete dissemination in a failure-free environment. In
the presence of failures, its performance degrades gracefully, nevertheless still outper-
forming RANDCAST. Finally, when confronted with continuous churn, RINGCAST

proves again more reliable than RANDCAST, excluding nodes that joined the system
very recently (for which it performs worse).

As discussed above, hybrid dissemination algorithms maintain two types of links
between nodes, namely r-links and d-links. R-links are random links, obtained by a
membership management protocols such as the PEER SAMPLING SERVICE [10]. With
respect to d-links, RINGCAST organizes nodes in a global bidirectional ring structure.
A bidirectional ring constitutes a strongly connected graph, as required by determinis-
tic dissemination protocols. Figure 3 illustrates an example RINGCAST overlay, where
nodes form a bidirectional ring, and each one has a single outgoing r-link.
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Fig. 3. Example of a RINGCAST overlay.
Nodes are organized in a bidirectional ring
(by means of the d-links), and each one has
a number (in this case only one) outgoing
random links (r-links).

Fig. 4. Example of a message dissemination in
a partitioned ring. For clarity, only a few of the
followed r-links are shown.

function selectGossipTargets(Q)
targets ← {}
if ringNeighbor1 �= Q then targets ← targets + {ringNeighbor1}
if ringNeighbor2 �= Q then targets ← targets + {ringNeighbor2}
targets ← targets + (F−targets.size) random nodes from (view−{Q})
return targets

end

Fig. 5. Gossip target selection for the RINGCAST dissemination algorithm

Just like in the dissemination protocols discussed earlier, a node that generates a new
message or receives a message for the first time, forwards it to (up to) F nodes, where F
is the system-wide fanout parameter. However, in the case of RINGCAST, a node always
forwards a message to its two ring neighbors (sending it across its two outgoing d-links),
and across F − 2 randomly selected r-links. If the message was received through one
of the node’s ring neighbors, the node forwards it to the other ring neighbor, and across
F −1 random r-links. Figure 5 shows the pseudocode for the selection of gossip targets
in the RINGCAST dissemination algorithm.

Note that a bidirectional ring is a Harary graph of connectivity two, that is, its mini-
mal cut is two. Consequently, although no single node failure can break the ring in two
disjoined partitions prohibiting complete dissemination to the remaining nodes, such a
situation will occur if two non-adjacent nodes fail. In most cases, however, this is not a
crucial problem for dissemination, as d-links are only one facet of the process. R-links
can carry the message to arbitrary nodes, most often bridging the gap between two or
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more disjoined ring partitions. Effectively, it suffices if any one node of an isolated ring
partition receives the message, as the message will propagate to the whole partition
over the d-links. Figure 4 presents a complete dissemination scenario over a ring split
in several partitions. As we will see in the evaluation in Section 7, RINGCAST achieves
a high hit ratio (higher comparatively to RANDCAST) even in the presence of many
failed nodes.

6 Building the RANDCAST and RINGCAST Overlays

The r-links and d-links are built using epidemic protocols too:

Random links (R-links). Several methods may be applied to randomly sample peers
in an unstructured peer-to-peer overlay, e.g. by means of the PEER SAMPLING SER-
VICE [10]. In RINGCAST we use CYCLON [19], an epidemic protocol that is an instance
of the PEER SAMPLING SERVICE, and that has shown to produce overlays that strongly
resemble random graphs. Omitting certain details, in CYCLON each node maintains a
small view of �cyc links to random other nodes. A node periodically gossips with an-
other node, trading some of their links with each other. As a result, node views are
periodically refreshed by links to random other nodes in the network. At any given
moment, the current snapshot of the nodes along with their links resembles a random
graph.

Deterministic ring links (D-links). Such links are maintained using a proximity-based
topology construction epidemic protocol, here we use VICINITY [20]. The basic idea is
that nodes maintain short views of the network of length �vic. They periodically gossip
to random other nodes, exchanging their views. Upon epidemic view exchanges, a node
keeps the �vic links to the closest peers according to a given proximity metric. This way,
the neighbor set of each node gradually converges to the closest peers out of the whole
node population. Here proximity refers to the distance between—arbitrarily chosen—
sequence IDs, which determine the organization of nodes in a ring structure. The d-
links of a node are the two peers with just higher and just lower sequence ID. Links to
a few more peers with gradually higher and lower sequence IDs are not involved in the
dissemination protocol, but are useful in maintaining the ring in dynamic conditions.

Note that both these protocols have a periodic nature. Each node initiates an epidemic
view exchange (per protocol) once every T time units (nodes have independent, non-
synchronized timers). We refer to T as the cycle of the protocol. This will be relevant
in Section 7.3, where the churn rate is defined relative to the cycle length.

7 Evaluation

We evaluate the two protocols side by side in three scenarios. First, in a static and
failure-free network. Second, in a static network right after a catastrophic failure, that is,
after the sudden failure of a large number of nodes. Finally, in a dynamic network under
continuous node churn. Evaluation was done with respect to the following criteria, as
discussed in Section 2:
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1. Hit ratio
2. Dissemination speed
3. Message overhead

We do not explicitly address load balancing, because both protocols are by nature dis-
tributing the load across all nodes evenly. A node receiving a message forwards it to F
others, just like any other node.

Experiments were carried out using the PeerSim simulator [16]. We tested all sce-
narios by instantiating a network of 10,000 nodes. Each node was running CYCLON

and, in the case of RINGCAST, VICINITY too, as described above, with view length 20
for each protocol (�cyc = �vic = 20). The view lengths are not crucial for the behavior
of these algorithms ([20]). Nodes were initially supplied with a certain single contact
in their CYCLON views, forming a star topology. VICINITY views were initially empty.
After letting the network self-organize (for the record we let it run for 100 cycles, which
were more than enough), we started disseminating messages from various nodes picked
at random.

We assume a very simple dissemination model, that allows us to study the evolution
of disseminations in terms of discrete rounds, that we call hops. The generation of a
message is marked hop 0. At hop 1, the message reaches F neighbors of the origin
node. At hop 2, it further reaches the neighbors’ neighbors, and so on. This way, we can
evaluate the progress of a dissemination by counting the number of messages sent and
the number of new nodes notified per hop.

An implicit assumption underlying our dissemination model is that the processing
delay and network latency between all pairs of nodes are the same. Although latencies
vary in a real wide-area network, our assumption does not have an effect on the macro-
scopic behavior of dissemination with respect to the hit ratio. Dissemination relies on
nodes forwarding the messages they receive. A node that receives a message for the
first time, forwards it to the same number of neighbors picked with the same logic, irre-
spectively of the time this happens. Consider for instance two scenarios of RANDCAST,
executing over the same static overlay (assume gossiping is currently stalled), starting
from the same origin and each node picking the same gossip targets in both cases. If
pair-wise latencies are different in the two scenarios, the order in which nodes are noti-
fied may change, but the exact same set of nodes will have been eventually notified. In
the case of RINGCAST, the set of nodes notified may change, but the same macroscopic
behavior is maintained.

7.1 Evaluation in a Static Failure-Free Environment

We first evaluate and compare the two protocols side by side by considering a failure-
free static environment.

We instantiated a network of 10,000 nodes in PeerSim. Each node was running CY-
CLON and, in the case of RINGCAST, VICINITY too as described above, with view
length 20 for each protocol. Nodes were initially supplied with a given single contact
in their CYCLON views, forming a star topology. VICINITY views were initially empty.
After letting the network self-organize for 100 cycles, we started posting messages and
observing their dissemination.
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We ran a number of experiments—not presented here—to investigate the effect of
gossiping speed on dissemination. More precisely, we explored the relation between the
gossiping period and message forwarding time, that is, the time is takes a node to pro-
cess a message and forward it to a neighbor. We varied the message forwarding time
from zero to several times the gossiping period. We recorded no effect whatsoever on
the macroscopic behavior of disseminations. That is, although changing the message for-
warding time results in different experiments, with different nodes being reached each
time and in a different order, all macroscopic properties, such as the hit ratio, dissemina-
tion speed, and message overhead, are preserved. It is not hard to see why. With respect
to VICINITY-managed d-links, they are not even altered by gossip exchanges once the
optimal sets have been obtained. With respect to CYCLON-managed r-links, these are
random links anyway, irrespectively of whether they are being updated fast or are cur-
rently fixed. Consequently, forwarding a message along a few of them has an equivalent
effect regardless of whether gossiping runs at a high rate or is currently stalled.

Having verified this, we chose to disseminate messages over fixed overlays in all ex-
periments presented in this section. This choice was primarily made to limit simulation
execution to a reasonable time, considering the large number of experiments we carried
out. So, in each experiment, after self-organizing for 100 cycles, the overlay was frozen
and only then did disseminations start.
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Fig. 6. Dissemination effectiveness as a function of the fanout, for a failure-free static network of
10K nodes. (a) Miss ratio averaged over 100 experiments; (b) Percentage of 100 experiments that
resulted in complete dissemination.

For each value of F ranging from 1 to 20, we posted 100 messages from various
nodes picked at random, resulting in a total of 2000 experiments for each protocol.
Since the hit ratio approaches 100% even for small values of F , it is more meaningful
to present the miss ratio instead, in logarithmic scale. Figure 6(a) presents the dissem-
ination miss ratio averaged over 100 experiments for each value of F . RANDCAST

and RINGCAST are represented by light and dark bars, respectively. The miss ratio for
RANDCAST appears to be dropping exponentially as a function of the fanout F . Note
that no dark bars appear in this graph, as the miss ratio for RINGCAST is zero for any
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Fig. 7. Dissemination progress in a static failure-free network of 10K nodes. 100 experiments of
each protocol are shown.

choice of F . This comes as no surprise, as RINGCAST’s operation guarantees complete
dissemination in failure-free static networks.

Figure 6(b) shows the percentage of experiments that resulted in a complete dissem-
ination, for each value of F . With respect to RANDCAST, it is interesting to see that
the transit from 0% to 100% follows a rather steep curve. For instance, even with a
fanout of 5, although the overall hit ratio was above 99.9% (Fig. 6(a)), none of the 100
experiments resulted in a complete dissemination. With a fanout of 7, more than half
of the disseminations were complete, while by further increasing the fanout to 11 or
higher we get only complete disseminations. As far as RINGCAST is concerned, this
graph validates once again that disseminations are always complete, irrespectively of
the chosen fanout.

Having seen to what extent messages eventually spread, we now take a closer look
at the evolution of dissemination hop by hop. Figure 7 shows the progress of all 100
dissemination for each protocols, for four different fanouts. More specifically, it shows
the number of nodes that have not yet been notified, as a function of the hops taken.

Four main observations can be made by examining these graphs. First, for a given
fanout, all experiments of a protocol demonstrate very small variations in their progress
with respect to the hit ratio and dissemination latency. This is important as it shows that
by selecting the appropriate fanout value, we can tune a system’s dissemination behav-
ior to a good level of accuracy. Second, we notice a clear—expected—influence of the
fanout on dissemination latency. The higher the fanout, the shorter a dissemination’s
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Fig. 8. Total number of messages sent, divided in messages sent to not-yet-notified and already
notified nodes

duration. Third, we observe that the progress of disseminations for the two protocols
is alike for a few initial hops, when the message has not yet reached a significant por-
tion of the network. The protocols differentiate only after a substantial percentage of
the nodes (i.e., at least 80%-90%) have been notified. This is a direct effect of the two
protocols’ operation. By forwarding messages at random, RANDCAST hardly reaches
any more non-notified nodes, in an already saturated network. On the contrary, by also
forwarding messages along the ring, RINGCAST exhaustively reaches out to every sin-
gle node. Finally, we see that the higher the fanout the more similarly the two protocols
disseminate messages. However, in all cases RINGCAST reaches the last node in fewer
hops, demonstrating a lower dissemination latency.

The third metric we are interested in is message overhead. As we already mentioned
in Section 4.1, message overhead increases proportionally to the fanout. Indeed, if a
node forwards a newly received message to F other nodes and Nhit nodes are reached
in a dissemination, the total number of messages sent is F ×Nhit. Figure 8 confirms this
assessment. The shaded segments represent the number of messages reaching nodes for
the first time (noted as “virgin” nodes). The striped segments represent the number of
redundant messages, that is, messages reaching already notified nodes, and therefore
constitute a waste of network resources. As the network consists of 10K nodes, for
a given fanout F a complete dissemination involves F × 10K total messages, out of
which 10K are messages to “virgin” nodes, and the rest (F − 1) × 10K are redundant.
The two graphs are practically identical except for low fanouts, for which RANDCAST

disseminations do not reach all nodes. These graphs are illustrative with respect to the
reason the fanout should be kept as low as possible.

7.2 Evaluation After Catastrophic Failure

For a system to be usable in a realistic environment, it has to cope with failures. In this
section we explore the behavior of the two protocols in the face of catastrophic failures,
that is, when a number of nodes suddenly break down.

We set up the experiments like the ones in the previous section, but before starting the
disseminations we kill a randomly chosen portion of the nodes. That is to say, for each
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experiment we simulate a network of 10,000 nodes, let it self-organize for 100 cycles,
and stall gossiping. We subsequently remove a randomly chosen set of the nodes and
examine dissemination over the remaining ones.

Unlike failure-free static networks where ongoing gossiping has no influence on dis-
semination after some point (see Section 7.1), in the face of failures gossiping does have
an effect, namely a positive one. Following a catastrophic failure, gossiping allows the
network reorganize itself, removing links to dead nodes and reestablishing valid ring
links. In our experiments gossiping was not allowed following the catastrophic failure,
exploring the ability of a partially damaged overlay to disseminate messages without
giving it the chance to self-heal. This was our deliberate choice, aiming at testing a
catastrophic failure’s worst-case influence on dissemination.

Figure 9 presents the dissemination effectiveness for both protocols after catastrophic
failures killing 1%, 2%, 5%, and 10% of the nodes. Similarly to Figure 6 in the previ-
ous section, the graphs on the left show the miss ratio, and the ones on the right the
percentage of disseminations that reached all nodes, as a function of the fanout F . One
can clearly see that RINGCAST is more effective at disseminating messages in all ex-
periments. A closer look at these graphs shows that as the volume of the catastrophic
failure grows larger, the difference between the two protocols’ effectiveness decreases.
However, even when 10% of the nodes are killed at once, RINGCAST demonstrates an
order of magnitude lower miss ratio than RANDCAST. The lower miss ratio of RING-
CAST reflects on the significantly higher percentage of complete disseminations for
small fanouts.

Figure 10 shows the evolution of disseminations after a catastrophic failure of 5% of
the nodes, in accordance to Figure 7 in the previous section. Once again, the relation
between the chosen fanout and dissemination latency is verified. We also see that the
evolution of disseminations exhibits small variations for a given configuration, like in
the case of a failure-free static network.

7.3 Evaluation Under Churn

Apart from catastrophic failures, a system should also be able to deal with node churn,
that is, continuous node arrivals and departures. In this section, we examine the behavior
of the two protocols under churn.

We evaluate the two protocols against the artificial churn model described here. In
each cycle a given percentage (known as the churn rate) of randomly selected nodes are
removed, and the same number of new ones join the network. Note that this constitutes
a worst case churn scenario, as removed nodes never come back, so dead links never
become valid again, and new nodes have to join from scratch. We tested both protocols
with a churn rate of 0.2%, which, given a gossiping period of 10 seconds, corresponds
to the churn rate observed in the Gnutella traces by Saroiu et al [18].

Unlike experiments on static networks where a small number of cycles sufficed to
warm up the respective overlays (Sections 7.1 and 7.2), experiments on dynamic net-
works required significantly more warm-up cycles. A network of 10,000 nodes was let
gossip in the presence of continuous artificial churn, until every node had been removed
and reinserted at least once. For all experiments this took several thousand cycles. Then
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Fig. 9. Dissemination effectiveness as a function of the fanout for static network of 10K nodes,
after catastrophic failures of 1%, 2%, 5%, and 10% of the nodes
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Fig. 10. Dissemination progress in a static network of 10K nodes, after catastrophic failure killing
500 nodes (5%). 100 experiments of each protocol are shown.

the respective network was frozen, and the resulted overlay was tested with respect to
dissemination effectiveness.

Figure 11 shows the miss ratio and the percentage of complete disseminations as a
function of the fanout. Although RINGCAST results in a lower miss ratio than RAND-
CAST for low fanouts (2 to 5), it performs slightly worse for fanouts 6 or higher. It
should also be noted that none of the protocols achieves any complete disseminations,
except when maximizing the fanout, in which case RANDCAST appears to be perform-
ing better again.

By looking at these quantitative graphs alone, one could come to the conclusion that
RINGCAST is not any better—if not worse—than RANDCAST when node churn is at
stake. A closer, qualitative examination of which groups of nodes contribute to each
protocol’s miss ratio will prove otherwise. As we will see, RINGCAST’s miss ratio is
almost entirely due to its poor performance at reaching newly joined nodes, while it
provides good dissemination guarantees to all older nodes.

Along these lines, we now investigate the relation between a node’s lifetime, that is,
the number of cycles since it joined the network, and its chance of receiving a dissemi-
nated message. Figure 12 presents the distribution of node lifetimes after the execution
of several thousand cycles, when every node has been removed and reinserted at least
once. In fact, Figure 12 plots the exact count of nodes having a given lifetime, aggre-
gated over 100 experiments, in log-log scale. Given that the network consists of 10,000
nodes and the churn rate is 0.2%, at each cycle 20 random nodes are evicted and 20 new
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Fig. 11. Dissemination effectiveness as a function of the fanout, in the presence of node churn.
In each cycle, a randomly selected 0.2% of the nodes was removed, and replaced by an equal
number of newly joined nodes.

are added. Therefore, the number of nodes having a given lifetime cannot exceed 20.
For all 100 experiments together, the number of nodes of a given lifetime ranges from
0 to 2000, hence the range of the vertical axis.
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Fig. 12. Distribution of node lifetimes, summed over 100 experiments

The distribution of lifetimes of nodes that were not notified during dissemination, is
presented in Figure 13. The distributions for two fanouts are shown, 3 (top) and 6 (bot-
tom). It is clear that in all cases newly joined nodes (i.e., ones that joined up to 20 or
30 cycles ago) experience significantly higher miss ratio than other, older nodes. RING-
CAST, in particular, results in quite more misses (notice the log scale) than RANDCAST

for these nodes. Nevertheless, for nodes that have been in the network for at least 20 or
30 cycles, it demonstrates a substantially lower miss ratio, almost negligible compared
to that of RANDCAST. For instance, let us take a look at dissemination with fanout
6. Although RINGCAST appears to have a higher overall miss ratio than RANDCAST

(Fig. 11), it hardly suffers any misses for nodes that joined at least 20-30 cycles earlier,
contrary to RANDCAST. Its miss ratio is entirely attributed to misses in newly joined
nodes.
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The implication behind this observation is worth noting. RINGCAST proves to be
a better dissemination tool, except for the first few cycles after a node’s join. Once a
warm-up period of a few cycles has elapsed, a node receives all disseminated messages
with very high probability. For a gossiping period of 10 seconds and a view length
�cyc = 20, the warm-up phase amounts to a bit over 3 minutes. In applications where
faster node joins is vital, new nodes can gossip at an arbitrarily higher rate for the first
few cycles, to complete their warm-up phase correspondingly fast. However, this is a
mere optimization and will not be considered further in this paper.
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Fig. 13. Distribution of lifetimes of nodes that were not notified, summed over 100 experiments

At this point, it is interesting to understand why new nodes experience more misses,
and why this phenomenon is more intense in RINGCAST. Nodes are notified through
their incoming links. Their probability of being notified is tightly related to how well
they are known by other nodes. A new node joins the network with zero indegree,
and gradually increases it. Until a node’s indegree reaches the average indegree of the
network, it has less chance to receive a message than older, better connected nodes. This
shows clearly in the aforementioned graphs (Fig. 13).

More specifically, a new node’s r-link indegree increases by one in each of its first
few cycles, and takes approximately �cyc (here �cyc = 20) cycles to stabilize to the
average indegree of the network (which is �cyc too). This is a property of CYCLON,
which manages r-links. So, for RANDCAST, which depends solely on CYCLON, we
observe a steep decrease in misses for nodes of lifetimes 1 through 20, followed by an
immediate stabilization thereafter. This is a direct effect of the join process in CYCLON,
which takes approximately �cyc cycles to establish the average number of incoming
links.

On the other hand, RINGCAST also depends on VICINITY to form the d-links (i.e.,
the edges of the ring). However, a node does not benefit from incoming VICINITY links
until the appropriate incoming d-links are formed, that is, until it eventually becomes
known by its two direct ring neighbors. Generally this does not happen instantly, but
may require an undefined—yet small—number of cycles. Until then, a newly joined
node relies only on its incoming r-links to receive messages. During that phase, it
is clear that newly joined nodes have better chances to receive messages in RAND-
CAST, where messages are forwarded to F r-links, as opposed to only F − 2 r-links in
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RINGCAST. This explains why RINGCAST exhibits more misses than RANDCAST for
nodes that joined roughly in the last 20 cycles (Fig. 13).

Note that the further curve in misses for lifetimes greater than 100 simply follows
the lifetime distribution of the general node population (Fig. 12).

8 Conclusions and Discussion

We explored push-based epidemics for information dissemination in very large-scale
systems, focusing on limiting redundant messages while retaining strong probabilistic
delivery guarantees. We introduced a new class of push-based epidemic dissemination
protocols, which combine probabilistic with deterministic features. The probabilistic
component contributes in the exponential spreading of messages, while the determinis-
tic component takes care of the “fine-grained job”, making sure that a message reaches
every single node. We proposed RINGCAST, a new protocol of this hybrid class, and
by extensive experimentation in static, dynamic, and catastrophic failure scenarios per-
formed better than RANDCAST, and at a significantly lower communication cost (mes-
sage overhead).

Some applications may require higher reliability in dynamic environments. Recall
from Section 3 that a bidirectional ring is a Harary graph of minimal cut two. One
way to increase reliability, would be to design gossiping protocols that form Harary
graphs of higher connectivity. Another, simpler way, is to organize nodes in multiple
rings, assigning them a different random ID per ring. In both cases, reliability would be
improved at the cost of increased gossip traffic.

Another potential optimization is proximity-based dissemination. Proximity can
have many faces, e.g., geographic distance, domain name, network hops, etc. In the pro-
tocols examined in this paper, proximity is not taken into consideration. For instance, a
message originating in the Netherlands could follow a path such as Netherlands → Aus-
tralia → Switzerland → Canada → Greece → Uruguay → New Zealand. Obviously,
such a path is far from optimal.

A straightforward way to partially deal with domain name proximity in RINGCAST,
is to incorporate domain names in the VICINITY similarity function. In this version of
RINGCAST, a node forms its ID by reversing its domain name (country domain first) and
appending a randomly chosen number. I.e., the ID of a node at the .inf.ethz.ch
domain of the ETH Zurich could be ch.ethz.inf.1234. Without any additional
modifications, nodes naturally self-organize in a ring sorted by domain name, and do-
mains sorted by country.

Finally, it should be noted that the protocols discussed in this paper are perfectly suit-
able for topic-based publish/subscribe too. In topic-based pub/sub, a number of topics
are defined, and each event is associated with one of them. All events associated with a
topic should be delivered to all nodes subscribed to that topic. The usage of dissemina-
tion protocols such as RANDCAST and RINGCAST for event dissemination is straight-
forward. Each topic forms its own, separate dissemination overlay. Subscribers join the
overlay(s) of the topics of their interest. Finally, events are multicast by disseminating
them in the appropriate dissemination overlay.
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In this research we have explicitly not considered pull-based dissemination. We ex-
pect it to significantly improve the efficiency of the protocol in terms of reliability.
However, additional issues have to be taken into account, such as the pull frequency,
the duration for which nodes maintain old messages, the size of buffers on nodes, etc.
Pull-based dissemination is left as future work, as it constitutes a natural extension of
our current research.
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Abstract. Although unstructured Peer-to-Peer (P2P) networks provide
economical platforms for supporting group communication applications,
their ad-hoc nature poses significant challenges to the performance of
the group communication services. This paper presents the design and
implementation of GroupCast − a utility-aware middleware architecture
for scalable and efficient P2P group communications. The GroupCast
design is characterized by two unique features. First, we present a util-
ity function for quantifying the role of unicast links in enhancing the
scalability and efficiency of the group communication applications. Sec-
ond, we develop a utility-aware distributed spanning tree construction
algorithm for efficiently propagating group communication messages. It
dynamically creates and maintains the group communication channels by
optimizing the utility value of the group communication spanning trees.
In addition, we also outline a utility-based overlay management proto-
col for constructing and maintaining low-diameter overlay networks. Our
experiments show that the GroupCast system can improve the scalabil-
ity of wide-area group communication services by one to two orders of
magnitude.

Keywords: Peer-to-peer systems, Overlay networks, Utility functions.

1 Introduction

Multi-party group communication applications such as multi-player online games,
online community based advertising, real-time conferencing [3], and instant mes-
saging [2] have experienced a surge of popularity in the past few years. The
applications are characterized by exchanges of textual or multimedia contents
among multiple participants. Decentralized Peer-to-Peer (P2P) networks have
evolved as a promising paradigm for providing open and distributed information
sharing services by harnessing widely distributed, loosely coupled, and inher-
ently unreliable computer nodes (peers) at the edge of the Internet. The success
of Skype [5] has demonstrated both the opportunity and the feasibility of uti-
lizing P2P networks as economical infrastructures for providing wide-area group
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communication services. However, the overlay networks in Skype are used only
for service lookup and control signaling. Under the multi-party conference set-
tings, each node is required to send the payloads directly to other participants
of the communication group through its IP unicast links [9]. This places severe
limitations on the scalability of multi-party conference calls in Skype.

The natural questions that come up include: Can P2P overlays be utilized for
implementing scalable group communication services over wide-area networks?
If so what techniques and system level optimization are critical for enhancing
the efficiency and scalability of decentralized wide area group communications?
Although several researchers have explored a related problem in the context
of designing application-level multicasting or end-system multicasting (ESM)
schemes [20,22] over P2P overlays, surprisingly most of these works are designed
to work in conjunction with structured P2P networks, and they rely on the
distributed hash table (DHT) abstractions of the P2P network for inter-peer
communication and routing [11,21]. However, it is widely recognized that in
environments that exhibit high churn rates maintaining DHT-based structures
imposes severe overheads, which can affect the performance of the applications
running on top of these networks to a considerable extent [13]. In contrast,
unstructured P2P networks like Gnutella [25] are simple to implement, have low
maintenance costs, and provide better resilience to network churn caused by
peer entries, exits, and failures. To the best of our knowledge, very few group
communication applications have been implemented on top of unstructured P2P
networks. We hypothesize that common concerns about the non-deterministic
nature of communication and service lookup in unstructured overlay networks
and their inefficient utilization of the underlying IP network resources are the
main reasons for the lack of work in this area.

Designing scalable group communication services on top of unstructured P2P
networks poses three main challenges. The first challenge is to translate wide-area
group communication application requirements such as communication efficiency
and system scalability into the metrics that can be used while designing the
communication structures and managing the topologies of the overlay networks.
Second, the unstructured P2P networks suffer from heavy messaging overheads
and high service lookup latencies. The challenge is to devise low-cost service
lookup mechanisms that are effective for both control signaling and communica-
tion group management. The resilience of unstructured P2P overlays to network
churn is rooted in the fact that they do not use any global control mechanisms for
regulating resource distribution and the network topology. The third challenge
is to design overlay network management protocols such that the features crit-
ical to the performance of group communication applications are incorporated
without trading away the inherent randomness of these overlays.

Towards addressing these challenges, this paper presents GroupCast - a util-
ity aware decentralized middleware architecture for scalable and efficient P2P
group communication applications. In designing the GroupCast system, this pa-
per makes two unique contributions:
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– First, we propose a utility function to quantify the usefulness of unicast
links to the efficiency of individual communication groups as well as to the
scalability of the entire group communication infrastructure. This utility
function provides a careful combination of the two most important factors
that influence the performance of the system, namely network proximities of
the peers and resource availabilities at the end hosts.

– Second, we design a utility-aware mechanism for constructing spanning trees
required for disseminating group communication payloads. The objective of
this scheme is to optimize the utility-values of the resultant spanning trees.
Further, considering the decentralized nature of unstructured P2P networks,
this scheme has been designed to operate in a completely distributed fashion,
and it does not rely upon any global topological information.

In addition to the above contributions, we also outline a utility-based P2P over-
lay network management protocol that uses the proposed generic utility function
for constructing low-diameter unstructured P2P overlays that are comparable to
structured P2P network in their scalability and efficiency. This paper presents
several experiments to evaluate the utility-aware middleware architecture and
its component techniques. The results show that the proposed techniques pro-
vide significant scalability and efficiency benefits for the group communication
applications.

2 The Basic P2P-Based Group Communication
Framework

Spanning tree forms the fundamental structure in most group communication
schemes. The spanning tree is an acyclic overlay connecting all the participants
of a communication group. The group communication messages (payload) are
disseminated through the spanning tree so that they reach all the participants.
The various group communication schemes differ in the manner in which they
construct and maintain the spanning trees. Our system employs multi-level span-
ning trees for achieving the scalability needed for supporting group communica-
tion in large wide-area networks. The proposed framework includes completely
distributed strategies for building and maintaining spanning trees of communi-
cation groups.

We introduce a few notations that would be used in the rest of the pa-
per. The P2P network is conceptualized as a directed graph G < V, E >,
where V = {p0, p1, p2, . . . , pN−1} represents the peers in the network and E =
{e0, e1, . . . eM−1} denotes the logical links in the network. The spanning tree
TP t < VPt, EPt > is defined as a connected, acyclic sub-graph of G, where the
participant set VPt ⊆ V and links set EPt ⊆ E. Each peer is aware of only its
immediate neighbors. Further, the network does not have any distributed hash
table (DHT) abstractions.
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2.1 Constructing a Distributed Spanning Tree

One of the challenges in developing group communication systems is to design
a completely distributed scheme for building spanning tree. Several application
level multicast (end-system multicast) systems have addressed a very similar
problem (the problem of constructing multicast trees). However, as we explain
below, none of them are directly applicable for building spanning trees on un-
structured P2P networks.

The existing multicast tree construction schemes can be classified into three
broad categories. In the first approach, the participants of a multicast group
explicitly choose their parents in the multicast tree from a list of candidate
nodes [7,18,17]. Due to the complexity of those protocols, there are very few ac-
tual implementations of these algorithms. The second approach, which is adopted
by systems like Narada [14] and Scattercast [12], constructs the spanning tree
in two-steps. The first step constructs a well-connected mesh from the nodes
in the network. The second step uses this mesh structure and constructs short-
est path spanning trees through well-known distributed algorithms. However,
these systems do not scale well, especially when the underlying network ex-
periences considerable churn. The third approach, represented by systems like
CAN-multicast [21] and SCRIBE [11], assumes that the nodes of the underlying
network are organized as a structured P2P network [20,22]. The multicast tree
is constructed using the deterministic routing functionalities of these P2P net-
works. As we discussed in Section 1, DHT-based structured P2P networks are
not suitable for scenarios wherein the peer populations are transient. In short,
none of the current multicast tree construction approaches are applicable for the
problem at hand.

We have developed completely decentralized scheme for building group com-
munication spanning trees on a generic unstructured P2P network. We leverage
techniques such as selective message forwarding for reducing the communication
costs of spanning tree construction and maintenance.

2.2 Building the Communication Group

The objective of our communication group construction algorithm is to select the
edges or the links in the P2P overlay to form the spanning tree that connects
all the group participants. The communication group construction algorithms
usually includes the implementation of two functionalities. First, participants
should be aware of the existence of the communication group to which they will
join. Second, a newly joined participant should be able to setup a connection to
the existing nodes in the chosen communication group for sending and receiving
the communication payloads.

The first task is usually accomplished by appointing a node as the rendezvous
point or the multicast source, and publishing the node’s information at a well-
known location such as a bulletin board system. Two strategies have been pro-
posed for implementing the second functionality. The first scheme is similar to
the DVMRP IP-multicast protocol [16]. Instead of using the IP level network de-
vices such as routers to implement the polling and pruning processes of multicast



414 J. Zhang et al.

group management, this strategy uses overlay networks and peers. This strat-
egy is adopted by the Scattercast system [12], in which the source node solely
advertises route information and each node in the overlay forwards this adver-
tisement and builds the local routing table entries. To remove loops and to avoid
the problem of counting-to-infinity, the full path information is embedded into
the forwarded advertisement messages. We refer to this scheme as Non-Selective
Service Announcement(NSSA) scheme. In the second strategy, the multicast
source is mapped to a well-known node serving as the rendezvous point, and the
subscribers use this identifier as the keyword in their subscribing requests [11].
The structured system topology and the deterministic routing algorithms decide
the series of peers through which each subscription request would be forwarded
so that it reaches the rendezvous point or an existing participant in the multi-
cast group. The reverse of this path would be used for forwarding the multicast
payloads down from the multicast source.

Two characteristics of our system prevent us from directly reusing these
schemes. First, the nature of group communication applications is different from
end-system multicast systems. In end-system multicast systems, communication
payloads are forwarded in one direction in most of the cases (from the multi-
cast source to all the other nodes), while in group communication systems, each
participant may initiate messages in addition to receiving them. Second, the un-
structured nature of our P2P overlay prevents us from directly using the reverse
of the searching path as the payload communication path.

We have proposed a scheme that combines the advantages of these two schemes,
while avoiding their disadvantages. We call our scheme the Selective Service An-
nouncement (SSA) scheme. In this scheme, the spanning tree for a communica-
tion group is established in three steps.

Step 1 - Choosing Rendezvous Point: First, a peer in the P2P overlay is chosen
as the rendezvous point. Unlike the rendezvous point in SCRIBE [11], to which
all the multicast payloads are first forwarded, our rendezvous point serves as
the source of the group advertisement messages and will behave as a normal
node in the communication spanning tree. There are several ways to choose such
a rendezvous point. It can be setup as a dedicated server donated by a service
provider who injects contents into the communication group. For groups that are
setup for applications like online conferences, the first participant can initiate a
random walk search to locate a node that has enough access network bandwidth
and computational power to act as a rendezvous point.

Step 2 - Advertising: In the second phase, the rendezvous point advertises the
group information to the potential participants of the communication group. The
flooding scheme used for similar purposes in DVMRP [16] and Scattercast [12]
incurs redundant messages in the overlay network. Our SSA scheme alleviates
the communication overheads in the following manner. In our scheme, each peer
that receives the advertisement message will forward it to a few of its neighbors,
rather than flooding the message to all neighboring nodes. Our basic group
communication framework uses a very simple approach for selecting neighbors,
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namely the random strategy. In this algorithm, the rendezvous point and the
other nodes receiving the advertisement message randomly select a pre-specified
fraction of their neighbors and send them the message. The message propagation
terminates when the TTL becomes zero. However, this simple advertisement
scheme suffers from two major drawbacks. We discuss these limitations later in
the paper and present schemes for mitigating them.

Step 3 - Subscribe: Subscription activities are initiated when a peer pi decides
to join a communication group. Two scenarios need to be considered. First, if
the potential service subscriber (peer pi) has already received and routed the
service advertisement, then it is already on the message forwarding path of this
communication group. All it needs to do is to start the subscription process by
sending the joining message in the reverse direction of incoming SSA message.
However, note that the advertisement message might not reach all potential
subscribers. In case the subscriber has never received the SSA message, a search
method provided by the P2P overlay is triggered to look up the neighborhood of
the peer for discovering nodes that might have received the SSA advertisement
message.

The search method is implemented as a ripple search in standard Gnutella P2P
network, with initial TTL (Time to Live) value set to a very low value. Because
our advertisement mechanism would have already pushed the service information
to different topological regions of the network, a potential subscriber can find a
nearby neighbor that has received the SSA message with high probability. Our
experiment reports that the average success rate of subscription search is close
to 100%, even when the TTL of the search messages are set to 2. Once such a
node is discovered, the subscription message is sent to it, which then forwards
in the reverse direction of the original SSA message.

2.3 Limitations of the Basic Framework

The basic group communication framework has two important limitations which
can affect its efficiency and scalability. The first limitation is the manifestation
of the overlay-underlay mismatch problem. Since, in the advertisement phase
of the scheme, a node receiving the advertisement forwards the message to a
randomly chosen subset of neighbors, the resulting tree might not always be
efficient in terms of the relative locations of its nodes on the physical network.
For example, a node pi located in New York might have a node pj located in
Australia as one of its children, which in-turn might have a child pl located in
Boston. This has a negative effect on the latencies experienced by the group
communication messages. Similarly, the capability (resource availability) of a
node pi in the spanning tree might be completely different from the capabilities
of its parents or children. This mismatch among the capacities of the neighbors
in the spanning tree can result in high packet losses. This again affects the
performance of group communication.

We propose two middleware level techniques for overcoming the above draw-
backs, namely a utility-aware spanning tree construction scheme and a
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utility-aware topology management scheme for the underlying P2P network.
While the first technique addresses the question as to how should the connec-
tions in the overlay be utilized for group communication applications?, the second
technique addresses the question of how the peers should choose and maintain
their neighbors in the overlay? However, it is interesting to observe that these
two questions are the manifestations of the same design issue, namely given a list
of nodes, say L, what are the metric(s) that dictate which of these nodes a peer
pi should connect to? Both these techniques rely upon a unique utility-function,
which assigns different preferences (rankings) to each peer in the list L. In the
next section, we explain the formulation of the utility function. We then describe
how this utility function is utilized in the proposed techniques.

3 The Utility-Aware Middleware for P2P Group
Communication

This section focuses on the two main components of the GroupCast design.
First, we describe the utility function we use to quantitatively model the critical
performance metrics of wide area group communication applications. Second,
we discuss how to employ our utility function to optimize the group commu-
nication channel construction and maintenance by developing a utility-aware
distributed spanning tree construction algorithm that can efficiently propagate
group communication messages. Finally, we also outline our utility-based overlay
management protocol which provides the capability for constructing and main-
taining low-diameter overlay networks to further enhance the performance of the
group communication services.

3.1 The Utility Function

The group communication in overlay networks essentially occurs by forward-
ing the communication payload through unicast IP network links. Hence, the
properties of the unicast links interconnecting peers in the P2P overlay largely
decide the performance and the efficiency of the group communication system.
Our utility function considers the two important factors that determine the per-
formance of unicast links, namely the network proximity of the end-nodes and
the similarity between among the capacities of the peers. The network proximity
between the end-hosts determines the latency of the unicast link. Similarly, it
is known that mismatch between the packet-forwarding workloads and the ca-
pacities of peers introduces bottlenecks in the communication overlay and may
result in high packet losses. We note that these two factors might sometimes be
counteracting. For instance, a peer in the list L which is closest to pi, might have
completely different resource availabilities than pi. Our utility function provides
a careful combination of these two factors based on the utility preference of peer
pi, as well as the desired performance properties of the entire overlay.

Concretely, for each node pj in the list L (recall that L represents a list on
potential nodes from which the peer pi chooses a subset), we assume that two
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types of information are available: the node capacity Cj , and the relative distance
between peer pi and peer pj , denoted by D(pi, pj). The capacity of a peer is
measured in terms of its accessible network bandwidth, since the performance
of a peer in a distributed environment like P2P networks is largely decided by
its access network bandwidth available for forwarding communication payloads.
The access network bandwidth can be specified by the end user in terms of
the number of 64kbps connections the node is willing to support. Alternatively,
it can also be estimated by network probing techniques. We use the network
coordinates to estimate the relative distance between any two peers. Vivaldi [15]
and GNP [1] are some of the techniques proposed for measuring the network
coordinates of nodes in wide area networks.

We define two utility-based preference metrics based on the two important
performance factors namely network proximity and node capacity. Given a list
of peers L, we define the Distance Preference of peer pi to peer pj ∈ L as the
probability that peer pi chooses peer pj out of L, based on the network coordinate
distance between them. The closer the peer pj is to peer pi, the more likely it is
chosen. The Distance Preference is computed as indicated in Equation 1.

PDpi(L, pj) =
1

dpi
(L,pj)

− α
∑

pk∈L
1

pdi
(L,pk) − α

(1)

where α ∈ (−∞, 1) is a tunable parameter that indicates the degree to which
pi’s prefers closer peers. Higher values of α indicates that pi strongly prefers
closer peers and vice-versa. We choose α < 1 so that there is nonzero preference
on each pj ∈ L. The function dpi(L, pj) gives the normalized distance between
pi and pj . dpi(L, pj) is defined as follows:

di(L, j) =
D(pi, pj)

MAXpk∈LD(Pi, pk)
(2)

Note that 0 < dpi(L, pk) ≤ 1 for each peer pk in the list L.
Similarly, we define the Capacity Preference utility metric of peer pi with

respect to peer pj as the probability that peer pi chooses peer pj out of L based
on the node capacity of peer pj . The goal is to utilize higher capacity nodes to
relay group communication messages to larger number of peers. Equation 3 gives
the formulation for the Capacity Preference utility metric.

PCpi(L, pj) =
Cpj − β∑

pk∈L Cpk
− β

(3)

Here Cpj is the node capacity of the peer pj . The parameter β ∈ (−∞, 1) plays
a similar role as that of α in equation 1.

While the Capacity Preference and Distance Preference encapsulate the
utility of nodes in L from two different perspectives, we need a means to com-
bine these two utility parameters into a single utility function. In this regard,
it is interesting to observe that the peer pi which wants to select a subset of
peers from L should also consider its own resource availability (capacity) while
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making its choices. If the peer pi possesses more resources, we would like to
use it as a forwarding hub in the overlay network and applications. Such a peer
should be connected to those peers that have similar resources and play similar
roles in the overlay network, which would make it a member of the “core” of
the overlay network. On the contrary, if the resources of peer pi are limited, it
should not be placed into the core as that would easily exhaust its resources.
A better choice for such a limited resource peer would be to connect to peers
that are physically closer to it and use them to access the overlay network.
Hence, the weightage given to the two utility metrics (Capacity Preference and
Distance Preference) depends upon the capacity of peer pi. Accordingly, we de-
fine the combined utility function Selection Preference of peer pi to peer pj ∈ L
as a weighted combination of Capacity Preference and Distance Preference.

Ppi(L, pj) = γ · PCpi(L, pj) + (1 − γ) · PDpi(L, pj) (4)

Here γ is the weightage factor such that 0 ≤ γ ≤ 1.
The configurable parameters α, β, and γ gives us the flexibility to fine-tune

the utility function for different application scenarios. For instance, in an overlay
network supporting applications that are sensitive to network proximity, α can
be set to higher values and γ to be set to lower values. This would ensure that
network proximity is the dominating factor when peers make their choices. On
the contrary, for an overlay network that emphasizes more on load balancing, a
higher value for β and a higher value for γ would be more preferable.

The values of parameter α, β, and γ can be mathematically derived by using
techniques similar to the ones used by Bu and Towlsey [10]. However, these tech-
niques require information about the exact number of peers and the exact dis-
tributions of the various system-level parameters. In decentralized environments
like P2P networks where global statistical mechanisms are expensive to imple-
ment, it is unlikely that such information would be available. The GroupCast
system adopts an approximation approach to address this problem. Specifically,
we define Resource Level ri as the fraction of peers that have less capacity than
peer pi in the overlay network. ri can be estimated by sampling a few peers that
are known to pi. We use the resource levels of various peers to set the three
parameters as α = 1 − ri, β = ri, and γ = r

−ln(ri)
i . Substituting the values for

α, β, γ, PC, and PD into equation 4, we obtain:

Pi(L, j) = r
− ln(ri)
i · Cj − ri∑

k∈L Cj − ri
+ (1 − r

− ln(ri)
i ) ·

1
di(L,j) − (1 − ri)

∑
k∈L

1
di(L,k) − (1 − ri)

(5)

We note that this configuration reflects our design rationale. The β and γ
parameters assume higher values for peers with higher capacities. Hence, these
peers would give preference more powerful peers while choosing a subset from
L. In contrast, for peers with less resources α assumes higher values whereas β
and γ become small. Thus, for these peers the subset selection is predominantly
based upon the network proximities. In other words, the less powerful peers
connect to nodes that are closer to them. Further, they avoid peers with large
capacities, thereby shielding themselves from getting overloaded.
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Fig. 1. Selection preference of low capacity
peer vs. distance to other peers
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Fig. 2. Selection preference of high capac-
ity peer vs. distance to other peers

To evaluate the effectiveness of the selection preference metric, we simulate
the selecting process of three peers, using a set of synthetic data. We assign each
of them with different resource level value. The one with ri = 0.05 represents a
peer with low capacity. Similarly, the one with ri = 0.5 simulates a peer with
medium capacity, and the one with ri = 0.95 represents a powerful peer. For
each of them, we generated a list of 1 × 103 peers, each of which is assigned a
capacity value that follows a zipf distribution with parameter 2.0. We assume
that the distance between each candidate peer and the peer evaluating them
follows a uniform distribution Unif(0ms, 400ms).
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Fig. 3. Selection preference of low capacity
peer vs. capacity of other peers
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Fig. 4. Selection preference of high capac-
ity peer vs. capacity of other peers

Figure 1 ∼ Figure 4 plot the simulation results, which exactly reflects our
design rationale. For a weaker peer that has ri = 0.05, the selection preference to
other peers is dominantly decided by its distance to them, as plotted in Figure 1
and Figure 3. On the contrary, the selection preference of a powerful peer is
largely decided by the node capacity of peers in the candidate set as shown in
Figure 2 and Figure 4. For peers that has medium amount of resources, it equally
prefers powerful and nearby peers [27].
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3.2 Utility-Aware Spanning Tree Construction

In this section, we describe our technique for infusing utility-awareness into
spanning tree construction for group communication. The central idea of this
technique is to ensure that the edges in the spanning trees have very high utility
values, thereby optimizing the overall group communication performance. If the
topology of the P2P network and the utility values of all the unicast links in the
network were to be available in a centralized location, we could have used one of
the several optimization techniques for constructing utility-aware spanning tree.
Unfortunately, due to the very nature of P2P systems collecting topological and
utility information at a centralized location would be extremely expensive, if
not impossible. Therefore, the challenge is to design a completely distributed
spanning tree construction technique that is not only effective in ensuring high
utility values for the edges in the tree but is also efficient and lightweight.

We observe that the basic spanning tree construction technique that we ex-
plained in Section 2 is indeed completely distributed, and it does not rely upon
any centralized topological information. Therefore, the question is whether it is
possible to achieve high utility values while retaining the overall spanning tree
construction framework?

Our utility-aware spanning tree construction scheme is based upon the fol-
lowing crucial observation. Of the three phases of the basic spanning tree con-
struction scheme, the advertisement phase has the most significant influence on
the structure of the resultant spanning tree. In other words, the advertisement
decisions made by various peers more or less determine the structure of the
spanning tree. This is because, if a node pl receiving an advertisement decides
to participate in the group being advertised, the very links through which the
advertisement was propagated to pl from the rendezvous node would become a
part of the corresponding spanning tree. However, in the basic group communi-
cation framework, each peer receiving the advertisement sends it to a randomly
selected subset of its neighbors.

From the above observation, we conclude that the most natural way for in-
jecting utility-awareness into the spanning tree construction process is to incor-
porate it at the advertisement phase. Accordingly, in the utility-based spanning
tree construction technique, peer receiving the advertisement forwards it to a
subset of its neighbors based on their utility values. Specifically, the probability
of a neighbor being included in the subset selected for forwarding the advertise-
ment is directly proportional to its utility value. Thus, a neighbor that has a
higher utility value has a higher chance of being included in the subset of nodes
to which the advertisement is forwarded.

Specifically, a rendezvous point rp evaluates the utility value of its neighbors
using Equation 5. Based on these utility values, it chooses the peers either have
similar capacities as rp or are physically close to rp, depending on the capacity
of rp. These peers are the ones that are more useful to rp. They receive the
advertisement and are likely to be included in the spanning tree.

Upon receiving an SSA message, an arbitrary peer pk performs two tasks.
First, peer pk uses a local hashing table to check and record if it has already
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received the same message from any other neighbors. The message will be drop-
ped if it is a duplicated one. Otherwise, it uses a similar mechanism as that of the
rendezvous point to select neighbors for further propagating the SSA messages.

In effect, when a peer receives an advertisement, it is more likely that the ad-
vertisement traversed a path in which each link had a high utility value. If this
peer decides to participate in the group being advertised, the path of the adver-
tisement becomes a part of the corresponding multicast tree. Thus, our scheme
seamlessly incorporates utility awareness into the spanning tree construction
process.

3.3 Utility-Aware Topology Management

Our utility-aware spanning tree construction algorithm builds the spanning tree
from existing connections of the overlay. Thus, the performance of the resultant
spanning trees depend upon the topology of the underlying P2P network. With
the aim of further enhancing the performance of the GroupCast middleware, we
have designed a utility-aware overlay construction mechanism. In this section,
we briefly outline the mechanism.

The objective of the utility-aware overlay construction technique is to create
P2P networks in which the neighbors of an arbitrary node pi have reasonably
high utility values with respect to pi. Unlike many P2P networks that are based
on the concept of super nodes, our technique inserts both high-capacity and low-
capacity peers into the same overlay. Our technique essentially works as follows:
When a peer pi joins the overlay, it gathers the information of a number of exist-
ing peers as its neighbor candidates. The new peer calculates the probability of
connecting to each candidate by using the utility function defined in Equation 5.
These probabilities and the total number of connections that the pi intends to
maintain determine whether pi would establish a connection with an arbitrary
neighbor candidate peer.

Specifically, a joining peer pi obtains a list of existing peers either using its lo-
cal cache which contains its P2P network neighbors carried from the last session
of activities or by contacting a host cache server. Upon receiving a query request
from peer pi, the host cache sorts its cached entries in the ascending order by
their network coordinate distances to peer pi. From the top of this sorted list,
the host cache selects a list of peers BDi. They are returned to peer pi together
with a list of randomly selected peers BRi. Starting from the subset Bi of boot-
strapping peers received upon its entry, Peer pi sends a probing message Mprob

to each peer pk ∈ Bi. Each peer pk that receives this probing message sends
back a responding message Mprob resp, which is augmented with a list of pk’s
P2P network neighbors Nbr(pk). Peer pi assembles all the neighbor information
contained in the probing replies and compiles them into a candidate list LCi.
For each unique peer pj ∈ LCi, peer pi computes two types of information: (1)
The occurrence frequency of peer pj , which records the number of appearances of
peer pj in LCi, denoted as fi(pj). As LCi serves as a sampling of the peers in the
network, fi(pj) is the sample of the degree of peer pj . (2) The estimation of the
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physical network distance between peer pi and peer pj, denoted by di(LCi, pj),
as defined in Equation 2.

Based on these two sets of information, the peer pi computes the utility value
of each peer in LCi using the equation 6. Depending upon its own its own node
capacity, peer pi selects a certain number of peers from the list LCi and adds
them into its neighbor list (Nbr(pi)). The chances a peer pk ∈ LCi being added
to the neighbor list of pi is directly proportional to pks utility values. Concretely,
the probability of pk being selected as a neighbor of pi is given by the following
equation.

Pi(LCi, pj) = r
− ln(ri)
i · fi(pj) − ri∑

pk∈LCi
fi(pk) − ri

+

(1 − r
− ln(ri)
i ) ·

1
di(LCi,pj)

− (1 − ri)
∑

pk∈LCi

1
di(LCi,pk) − (1 − ri)

(6)

The peer pi now sets up its outgoing edges (forwarding connections) to each
node in its neighbor list. It then initiates the process to setup the incoming
edges (back links to pi) by sending a backward connection request to each peer
pk ∈ Nbr(pi). The request is augmented with the capacity information Ci of
peer pi and its network coordinates. A peer receiving a backward connection
request utilizes a similar utility principle to decide whether to accept the request.
This ensures that powerful peers are easily accepted by other powerful peers as
their neighbors whereas weaker ones are good candidates only when they are
close enough. The GroupCast system also includes an epoch-based scheme for
maintaining the structure of the P2P overlay even when the network experiences
significant churn [27].

4 Experimental Evaluation

We have implemented a discrete event simulation system to evaluate Group-
Cast. This system is an extended Java version of p-sim [19] system. We used the
Transit-Stub graph model from the GT-ITM topology generator [26] to simulate
the underlying IP networks. Peers are randomly attached to the stub domain
routers and organized into overlay networks using the algorithm presented in
Section 3.3. The capacity of peers is based on the distribution gathered in [23],

Table 1. Capacity distribution of peers

Capacity level Percentage of peers

1x 20%
10x 45%
100x 30%
1000x 4.9%
10000x 0.1%
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as shown in Table 1. We use GNP [1] to assign network coordinate to each peer.
Each experiment is repeated over 10 IP network topologies. Each IP network
supports 10 overlays, and each overlay network provides service for 10 commu-
nication groups.

4.1 Evaluating the GroupCast Service Lookup Mechanism

We begin by evaluating the utility-aware spanning tree construction and group
communication mechanisms of the GroupCast system. Most unstructured use ei-
ther scoped flooding (broadcast) or random walk as their communication
paradigm. However, flooding-based mechanisms are expensive in terms of mes-
sage loads they impose, whereas random walks result in longer delays. The
GroupCast system includes a selective service announcement (SSA) mechanism
for efficient and low-cost service lookups.

The first experiment evaluates the effectiveness and efficiency of the SSA
scheme by simulating the service announcement processes in a number of over-
lay networks that are generated using either our utility-aware overlay construc-
tion mechanism or the centralized PLOD algorithm. In order to gain a better
understanding, we compare the SSA mechanism with the non-selective service
announcement (NSSA) scheme (see Section 2.1). For each overlay network, we
randomly select 10 peers as rendezvous points, and initiate the selective ser-
vice announcement (SSA) process and the non-selective service announcement
(NSSA) process from each of them. For both SSA and NSSA, we first record the
fraction of peers in the overlay that have received the service announcement. As
we mentioned earlier, when these peers want to subscribe for the group com-
munication service, they can circumvent the service searching process. For peers
that have not received the service announcement message, subscription process
involves searching its neighborhood for peers that have received the service an-
nouncement message. In our simulator, these peers use a ripple flooding search
scheme for this purpose with TTL being set to 2. We measure the success rates
of service lookups for both SSA and NSSA schemes. We also record the total
number of messages generated by these two schemes.

The results in Figure 5 show that the SSA scheme reduces the total number of
messages generated in both GroupCast and random power-law overlay networks.
The SSA scheme limits the number of subscription messages sent to neighbors
that are not likely to be a part of the communication group. This reduces the
message load by 63% to 70% when compared with NSSA scheme for the Group-
Cast overlay. The reduction is 35% to 44% for the random power-law overlay.
We notice that the number of subscription messages of SSA scheme in random
power-law overlays is almost negligible. This is because GroupCast overlays have
lower cluster coefficient values than the random power-law topologies generated
using PLOD. Thus, SSA messages reach fewer peers. The results also show that
the SSA scheme performs better for networks with higher connectivity value.

Figure 6 leads to two interesting observations. First, fewer peers in GroupCast
receive the SSA messages compared to random power-law topology. Second, all
subscribers can locate their services with 100% success rate even when the initial
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Fig. 5. Message loads of service lookup
schemes

Fig. 6. Success rate of service lookup in
GroupCast overlay and random power-law
overlay with SSA

TTL of the subscription messages is set to two. This is essentially because, in the
GroupCast overlay, the neighbors of individual peers are likely to have higher
utility values. Hence, at each step of the SSA process, more candidate peers
meet utility-aware selection criterion. This is also the reason for the relatively
large number of service announcement messages in the GroupCast overlay when
compared with random power-law network. However, the peers chosen by our
utility-aware selection mechanisms are more suitable to the group communica-
tion spanning trees and they ensure high subscription success rates even at very
small TTL values.

Fig. 7. Latency of service lookup in
GroupCast overlay networks and random
power-law overlay networks using selective
service announcement

Fig. 8. Delay penalty of group communi-
cation applications

4.2 Improvement of Application Performance

The second set of experiments studies the effects of the proposed techniques on
a group communication application. The group communication application we
consider is that of end-system multicasting (ESM). ESM has been proposed as
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an alternative for IP multicast, which has suffered from lack of wide acceptance
and deployment. In this approach, peers form overlay networks and implement
multicast functionality. Multicast data are replicated on peers and propagated
through unicast edges of the overlay networks. ESM is inherently less efficient
than IP multicast, as ESM may send packets with same payload multiple times
over the same physical network link. Moreover, the ESM workload distribution
among heterogeneous peers affects the overall system performance.

We simulated P2P overlay networks consisting of 1 × 103 to 3.2 × 104 peers.
P2P overlay networks are constructed using our utility-aware mechanism as well
as the centralized PLOD algorithm. We used the routing weights generated by
the GT-ITM package to simulate the IP unicast routing. IP multicast systems
are simulated by merging the unicast routes into shortest path trees. We use
both SSA and NSSA for service announcement and subscription management.

We quantify the performance of the schemes using Relative Delay Penalty and
Link Stress parameters, which are the two popular metrics for evaluating the
efficiency of ESM systems. Relative delay penalty is defined as the ratio of the
average ESM delay to the average IP multicast delay. Link stress is defined as
the ratio of the number of IP messages generated by an ESM tree to the number
of IP messages generated by an IP multicast tree interconnecting the same set
of subscribers.

Fig. 9. Link stress of group communication applications

Figure 8 shows the relative delay penalties when multicasting is implemented
through various combinations of the two overlay management schemes (utility-
aware (GroupCast) and random power-law) and the two spanning tree construc-
tion schemes (SSA and NSSA). Figure 9 shows the respective link stress values.
The results show that ESM implemented on GroupCast overlays yield significant
improvements in terms of both metrics when compared with their counterparts
implemented on random power-law networks. The delay penalty of ESM imple-
mented on GroupCast overlay is around 1.5, which is close to the theoretical
lower bound of 1. The link stresses of ESM implemented on GroupCast is about
two-thirds the link stresses of ESM implemented on top of random power-law
network. The improvements are due to the network proximity awareness of the
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GroupCast overlay networks. Multicast payloads are forwarded through shorter
paths, thus generating fewer IP packets in the underlying IP network.

It is interesting to note that the impact of the SSA scheme on application
performance is almost negligible in GroupCast overlay networks, whereas the
impact in random power-law networks is significant. We attribute this behavior
to the fact that GroupCast overlay networks are already aware of the network
proximity of peers. Thus, the peers chosen by the SSA scheme are most likely be
the ones that are actually used in the information dissemination spanning tree.

5 Related Work

The work on group communication in P2P networks has mainly focused on struc-
tured P2P networks. Researchers have proposed several application-level multi-
casting schemes for DHT-based structured overlay networks [20,22,24]. However,
structured P2P networks have high maintenance costs, especially in highly dy-
namic environments. In contrast, the GroupCast system does not require any
DHT abstractions from the overlay. Instead, Our techniques are completely dis-
tributed, and they rely only on local information.

Many distributed group communication systems rely on the services of overlay
networks for operation [7,11,14]. Usually, end-hosts in the communication groups
use the unicast links of overlay networks to exchange application and manage-
ment messages. Researchers have explored various techniques to optimize the
system performance at the application level with the objective of designing effi-
cient and scalable query processing mechanisms [13].

A popular approach to improving P2P networks is to utilize the rankings of
different peers in terms of their node capacity and organize them into different hi-
erarchical layers [4,25]. However, such predetermined hierarchical structures can
introduce system vulnerabilities. Further, for efficiency purposes, the supernodes
maintain the state information of the normal peers they serve. However, such
state information is generally tied to the application, and it is hard to design
a supernode overlay layer that can serve as a generic middleware to support
different services.

Adaptation mechanisms have been studied in the context of application-layer
multicasting [8,28]. Our research is complimentary to these works. These sys-
tems can utilize the GroupCast protocols for constructing well-regulated span-
ning trees. Our protocol can help reduce the number of adaptations by ensuring
the efficiency of initial spanning trees. Techniques such as RON [6] have been
designed for building generic overlays that are independent of the applications
built on top of them. However, unlike these works, the GroupCast system con-
structs overlay networks that incorporate network proximity information, and
it also builds scale-free power-law topologies assigning connections according to
the peers’ capacities.

In short, the work presented in this paper has several unique features and our
system addresses a problem that is crucial for the success of several multi-party
collaborative applications.
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6 Conclusion

This paper presents the design and evaluation of GroupCast − a utility-aware
decentralized middleware architecture for scalable and efficient wide-area group
communications. The GroupCast design incorporates three novel features: (a) A
utility function that measures the usefulness of unicast links to the scalability
and efficiency of the group communication application; (b) A distributed utility-
aware scheme for constructing efficient spanning trees for disseminating group
communication payloads; and (c) A utility-based overlay management protocol
for generating and maintaining low-diameter overlay networks. Our experiments
show that GroupCast provides an order of magnitude improvement in the scal-
ability of wide-area group communication applications.
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Abstract. Wireless sensor networks (WSNs) are evolving to support sense-and-
react applications, where actuators are physically interspersed with the sensors
that trigger them. This solution maximizes localized interactions, improving re-
source utilization and reducing latency w.r.t. solutions with a centralized sink.
Nevertheless, application development becomes more complex: the control logic
must be embedded in the network, and coordination among multiple tasks is
needed to achieve the application goals.

This paper presents TeenyLIME, a WSN middleware designed to address the
above challenges. TeenyLIME provides programmers with the high-level abstrac-
tion of a tuple space, enabling data sharing among neighboring devices. These
and other WSN-specific constructs simplify the development of a wide range of
applications, including sense-and-react ones. TeenyLIME yields simpler, cleaner,
and more reusable implementations, at the cost of only a very limited decrease
in performance. We support these claims through a source-level, quantitative
comparison between implementations based on TeenyLIME and on mainstream
approaches, and by analyzing measures of processing overhead and power con-
sumption obtained through cycle-accurate emulation.

Keywords: Wireless sensor and actuator networks, middleware, tuple spaces.

1 Introduction

Wireless sensor networks (WSNs) are a popular technology for monitoring and con-
trol applications, where they simplify deployment, maintenance, and ultimately reduce
costs. Early WSN efforts were primarily concerned with sensing from the environment
and reporting to a central data sink [1]. In contrast, an increasing number of applica-
tions (e.g., [2,3,4]) now include nodes hosting actuators, able to react to external stimuli
gathered by nearby sensors and affect the environment under control.

The sense-and-react pattern has a relevant impact on application development. Ap-
propriate programming constructs are required to deal with the increased complexity of
specifying how multiple tasks coordinate to accomplish the desired global functionality.

R. Cerqueira and R.H. Campbell (Eds.): Middleware 2007, LNCS 4834, pp. 429–449, 2007.
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Dedicated abstractions must be provided to describe the stateful interactions commonly
present in control mechanisms. The ability to locally react based on external stimuli
is as important as—if not more important than—the ability to gather data. These as-
pects are discussed in more detail in Section 2, where we both describe a paradigmatic
sense-and-react application and illustrate that many of its characteristics are typical of
common sense-only applications and lower-level system functionality.

To meet the requirements above we developed TeenyLIME, a WSN middleware
whose foundation is the notion of distributed tuple space [5], a repository of elementary
sequences of typed fields called tuples. This is revisited in TeenyLIME by considering
WSN requirements (e.g., resource consumption and reliability) in the programming
model. TeenyLIME adopts a minimalist approach: a limited number of powerful op-
erations, with a simple and yet efficient implementation, allow for the development
of both application-level and system-level functionality. An overview of TeenyLIME’s
base concepts and application programming interface (API) is provided in Section 3,
while Section 4 illustrates concretely the power of its WSN-specific abstractions by
showing them in action in the design of the aforementioned sense-and-react applica-
tion. Section 5 provides a concise account of the TeenyLIME architecture.

Section 6 evaluates quantitatively TeenyLIME along two dimensions. First, we as-
sess the effectiveness of its programming model in different contexts. We examine the
implementation of the reference application, whose design we sketched in Section 4,
and report about uses of TeenyLIME in sense-only applications and at the system level.
We derive code metrics for the TeenyLIME implementations and their counterparts,
implemented using plain nesC or the higher-level support provided by Hood [6]. Re-
sults indicate that the expressive power of TeenyLIME yields cleaner, simpler, and more
compact code. Second, we analyze the TeenyLIME implementation. We compare its
overhead, in terms of processing time and energy consumption, against existing pro-
gramming platforms. The results gathered using cycle-accurate emulation demonstrate
that the beneficial higher level of abstraction provided by TeenyLIME comes with only
a very limited overhead.

Finally, existing node-level abstractions for WSN programming are reviewed in Sec-
tion 7, before our concluding remarks in Section 8.

A preliminary description of TeenyLIME appeared in a short paper [7]. Here, in
addition to a more precise and exhaustive presentation, we illustrate key aspects entirely
missing in [7], namely: i) a complete TeenyLIME-based design of a sense-and-react
application; ii) a quantitative, source-level evaluation of the benefits to the programmer;
iii) a quantitative, cycle-accurate evaluation of the run-time performance.

2 Scenario and Motivation

Sense-and-react applications emerge in many settings, from home automation [3] to
road traffic control [4]. As a paradigmatic example, we consider building monitoring
and control. Modern buildings typically focus on the following functionality:

1. heating, ventilation, and air conditioning (HVAC [2]) systems provide fine-grained
control of indoor air quality;

2. emergency control systems provide guidance and first response, e.g., in case of fire.
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Fig. 1. High-level scheme of a building monitoring and control application

These applications, as with any other embedded control system, feature four main
components, illustrated in Figure 1. The user preferences represent the high-level sys-
tem goals, e.g., the desired temperature in the building and the need to limit fire spread-
ing. Sensing devices gather data from the environment and monitor relevant variables, in
our case, humidity and temperature sensors monitor air quality, while smoke and tem-
perature detectors recognize the presence of a fire. Actuator devices perform actions
affecting the environment under control: air conditioners adjust the air quality, while
water sprinklers and emergency bells are used in case of fire. Control laws map the data
sensed to the actions performed, to meet the user preferences. In our case, a (simpli-
fied) control loop may activate air conditioners when temperature deviates significantly
from the user preferences, tuning this action based on the humidity in the same location.
Further, it may immediately activate emergency bells when the temperature increases
above a safety threshold, but operate water sprinklers only if smoke detectors actually
report the presence of fire. Oscillating behaviors must be avoided in all situations.

Application development in these scenarios is complicated not only by the peculiari-
ties of devices, but also by the complexity of their interactions. The many requirements
can be grouped into high-level challenges common to several settings:

– Localized computations [8] must be privileged, to keep processing close to where
sensing or actuation occurs. In sense-and-react applications it is indeed unreason-
able to funnel all the sensed data to a single base-station, as this may negatively
affect latency and reliability, without any significant advantage [9].

– The system performs multiple tasks in parallel. In our example, two control laws
coexist: one for air conditioning, the other for handling emergencies. These need to
share data (e.g., temperature readings) generated by a subset of the sensing devices.

– Differently from sense-only scenarios, sense-and-react applications often require
stateful coordination, e.g., using current shared conditions (state) to act collabora-
tively. This, in combination with the use of WSNs for safety critical applications,
motivates an explicit account for reliability in the programming model.

– Reactive interactions, actions that automatically fire based on external conditions,
assume a prominent role. In our case, a temperature reading deviating from user pref-
erences triggers an action in both of the two application tasks. Proactive interactions,
common in many sense-only scenarios, are still needed to gather information and
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fine tune the actuation about to occur. For instance, the sprinklers in the building ask
for smoke readings before taking any action.

Note how sense-and-react scenarios essentially subsume sense-only ones. Therefore,
the aforementioned requirements represent the most general set of application-level is-
sues WSN developers must cope with. Also, subsets of these requirements must be
accounted for at lower levels, below the application. For instance, localization algo-
rithms [10]—often one of the many tasks of object tracking applications [11]—must
rely on localized interactions, as most of the approaches in the field base the posi-
tion estimation on data reported by nearby hosts. Similarly, multi-hop routing mech-
anisms [12] require reactive interactions to adapt to mutable network conditions, and
may also exploit reliable operations to guarantee message delivery [13]. The Teeny-
LIME programming model, described next, supports application development without
losing the ability to express system-level mechanisms.

3 TeenyLIME: Basic Concepts and API

TeenyLIME is based on the tuple space abstrac-

Fig. 2. Tuple space sharing in Teeny-
LIME

tion, originally proposed in Linda [5], and here re-
elaborated in the context of WSNs. A tuple space
is a repository of data represented as tuples, se-
quences of typed fields such as 〈“foo”, 29〉. Three
core Linda operations allow processes to manip-
ulate the tuple space by creating (out), reading
(rd), and removing (in) tuples. Tuple selection
with rd and in is based on matching patterns such
as 〈“foo”, ?integer〉 against the tuple space con-
tent. Patterns may use either actual or formal val-
ues, the latter serving as a kind of “wild card”
matching any data of a particular type.

In Linda, the tuple space is assumed globally accessible to all processes—an unde-
sirable choice in WSNs. Instead, in TeenyLIME each node hosts a tuple space, shared
among nodes within direct (one-hop) communication range. Sharing means that a node
views its local tuple space as containing its own tuples, plus those in the tuple spaces
hosted by its neighbors, as shown in Figure 2. Operations span the whole shared tuple
space. For instance, a query issued by a node may return a matching tuple found in any
tuple space in the one-hop neighborhood—including the local one. Therefore, Teeny-
LIME programmers can specify interactions among nodes abstractly, by focusing on
the application logic (e.g., reading temperature in the neighborhood) and leaving sys-
tem configuration issues (e.g., tracking node identity and presence) to the middleware.

The choice to limit sharing to one-hop neighbors is motivated by the fact that inter-
actions with these nodes are the most frequent in WSNs. Whitehouse et al. analyzed 16
publicly available applications to determine the node interactions, and

“All neighborhoods discovered were one-hop neighborhoods [...]” ( [6], p.9)



Programming Wireless Sensor Networks with the TeenyLIME Middleware 433

interface TupleSpace {
// Standard tuple space operations
command TLOpId_t out(bool reliable, TLTarget_t target, tuple *tuple);
command TLOpId_t rd(bool reliable, TLTarget_t target, tuple *pattern);
command TLOpId_t in(bool reliable, TLTarget_t target, tuple *pattern);
// Group operations
command TLOpId_t rdg(bool reliable, TLTarget_t target, tuple *pattern);
command TLOpId_t ing(bool reliable, TLTarget_t target, tuple *pattern);
// Managing reactions
command TLOpId_t addReaction(bool reliable, TLTarget_t target, tuple *pattern);
command TLOpId_t removeReaction(TLOpId_t operationID);
// Returning tuples
event result_t tupleReady(TLOpId_t operationId, tuple *tuples, uint8_t number);
// Request to reify a capability tuple
event result_t reifyCapabilityTuple(tuple *capTuple, tuple *pattern);

}
interface NodeTuple {

// Request to provide a tuple containing node-level system information
event tuple* reifyNodeTuple();

}

Fig. 3. TeenyLIME API

Interestingly, all neighborhoods were of limited size (at most ten nodes), and were
used either directly at the application level to gain access to nearby information, or
as a building block for lower-level system functionality, e.g., to implement multi-hop
routing. These considerations also support our design choice, drawing the foundations
for a highly-reusable programming model supported a by lightweight, scalable im-
plementation. Furthermore, it should be noted that the applications considered in [6]
were conventional sense-only ones. Sense-and-react applications exacerbate the need
for localized interactions [8], and are therefore expected to benefit even more from
our design. As a result, the TeenyLIME programming model can be used in many
contexts, ranging from sense-and-react to sense-only, and from application-level to
system-level.

Figure 3 shows the TeenyLIME API. While in principle the programming model is
independent of the node platform, we present here the API in nesC, as our middleware
is currently built on top of TinyOS. The interface provides the operations to manipulate
TeenyLIME’s shared tuple space. The first three operations correspond to the Linda
operations discussed earlier, while rdg and ing are variants (as in [14]) that return all
matching tuples, instead of a single match.

TeenyLIME operations are asynchronous, allowing the application to continue while
the middleware completes the operation execution1. This approach blends well with the
event-driven concurrency model of nesC. Therefore, all operations are split-phase [15]:
the operation is issued, and later the tupleReady event is signaled when the operation
completes. The tupleReady event contains an identifier allowing the application to
associate the event with its earlier request. Depending on the operation, one or more
tuples, indicated by the number parameter, may also be contained in the event.

The operations provided in the API deserve further discussion. However, instead of
describing them in isolation, in the next section we discuss them “in action”, i.e., hand-
in-hand with the TeenyLIME-based design of our reference application.

1 In most Linda systems rd and in are blocking, i.e., do not return until a tuple is matched.
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Fig. 4. Sequence of operations to handle a fire. Notified about increased temperature, a node
controlling water sprinklers queries the smoke detectors to verify the presence of fire. If necessary,
it sends a command activating nearby sprinklers.

4 Application Development with TeenyLIME

As discussed in Section 2, our reference application contains two sub-tasks, one man-
aging the air conditioning system (HVAC) and the other for emergency situations such
as fire. Each sub-task involves different types of nodes, e.g., humidity sensors in the
HVAC sub-task, and smoke detectors to address fire emergencies. Temperature sensors
are instead used in both sub-tasks. For all types of nodes, the application processing has
been implemented in a single component sitting entirely on top of the TupleSpace in-
terface, which masks completely TinyOS’ generic communication layer. An additional
component is employed to interact with the sensors/actuators attached to the node.

In the following, we explain the rest of our reference application’s design and imple-
mentation. We illustrate how we exploit data sharing and related operations, and how
interactions among nodes benefit from the WSN-specific API features. Throughout, the
reference application is used as a motivation and source of examples for the discussion.

Sharing Application Data through Proactive and Reactive Interactions. In our de-
sign, sensed data and actuating commands take the form of tuples. These are shared
across nodes (and components on the same node) to enable coordination of activities as
well as data communication. Access to this data can occur proactively, e.g., using the
rd and in operations. However, TeenyLIME supports also a notion of reaction, a code
fragment whose execution is automatically triggered upon the appearance of a given
tuple anywhere in the shared tuple space. The tuples of interest are identified through
pattern matching, and the tupleReady event is used to signal a reaction firing. This
provides an easy and yet very powerful way to monitor changes in the neighbors’ data
through the content of the shared tuple space.

Figure 4 uses the fire control sub-task to illustrate how proactive and reactive inter-
actions are used together to trigger notifications, to perform distributed operations for
gathering data from neighboring nodes, and to request actuation commands. Notably,
similar patterns of interactions recur in both sub-tasks of our application.

Both emergency bells and water sprinklers have a reaction registered on their neigh-
bors, watching for temperature tuples, as shown in the code in Figure 5. Temperature
sensors periodically take a sample and pack it in a tuple, which is then stored in the local
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command result_t StdControl.start() {
tuple tempTemplate = newTuple(2, actualField_uint16(TEMPERATURE),

formalField(TYPE_UINT16_T));
call TS.addReaction(FALSE, TL_NEIGHBORHOOD, &tempTemplate);
return SUCCESS;

}
event result_t TS.tupleReady(TLOpId_t operationId,

tuple *tuples, uint8_t number) {
// Notification triggered ...

}

Fig. 5. TeenyLIME code for an actuator node interested in temperature values

command result_t StdControl.start() {
return call SensingTimer.start (TIMER_REPEAT, SENSING_TIMER);

}
event result_t SensingTimer.fired() {
return call TemperatureSensor.getData();

}
event result_t TemperatureSensor.dataReady(uint16_t reading){
tuple temperatureValue = newTuple(2, actualField_uint16(TEMPERATURE),

actualField_uint16(reading));
call TupleSpace.out(FALSE,TL_LOCAL,&temperatureValue);
return SUCCESS;

}

Fig. 6. TeenyLIME code for a temperature node

tuple space, as shown in Figure 6. Insertion is accomplished using out by setting the
target parameter to TL LOCAL, which entails outputting the tuple to the local tuple
space. This operation, by virtue of one-hop sharing, automatically triggers all the afore-
mentioned reactions2, which process the tuple contained in the event tupleReady.
However, different types of actuator nodes behave differently when high temperatures
are detected. The node hosting the emergency bell immediately activates its device.
Instead, the water sprinkler node proceeds to verify the presence of fire, as shown in
Figure 4. The latter behavior, specified as part of the reaction code, consists of proac-
tively gathering the readings from nearby smoke detectors, using a rdg restricted (by
setting target to TL NEIGHBORHOOD) to the union of their tuple spaces. If fire is
reported, the water sprinkler node requests activation of nearby sprinklers through a
two-step process that relies on reactions as well. The node requesting actuation inserts
a tuple representing the command on the nodes where the activation must occur, using
out with target set to the sprinkler node address. The presence of this tuple trig-
gers a locally-installed reaction delivering the activation tuple to the application, which
reads the tuple fields and operates the actuator device accordingly.

Reliable Operations. Since fire detection requires the maximum degree of reliability,
its implementation takes advantage of reliable operations for guaranteeing correct com-
munication of reactions and query results of the rdg operation on smoke detectors and

2 We assume that actuators are interested in all temperature values. We show later how notifica-
tions can be triggered only when temperature is above (or below) a given threshold.
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of the out operations towards actuators. Furthermore, in the HVAC sub-task the system
runs the risk of oscillating behavior if multiple nodes controlling air conditioners in the
same location (e.g., same floor) independently run the control algorithm. To prevent
this, we designed a mechanism to assign a master role to only one of the co-located
controller nodes, achieving a sort of distributed mutual exclusion. The master node is
identified as the one holding a special token tuple, periodically exchanged among co-
located nodes to achieve a form of load-balancing. As a token loss implies no controller
acting as the master, strong guarantees on token transfer are imperative. Therefore, the
token exchange from the previous to the new master node is accomplished using a reli-
able in operation performed by the latter.

As shown in Figure 3, the selection between unreliable and reliable is done using a
flag, available in most operations. The former offers a lightweight form of best-effort
communication suitable for state-less applications (e.g., data collection), while the latter
offer stronger guarantees to applications requiring stateful interactions.

Sharing System Data. Coordination of activities across heterogeneous nodes some-
times relies on system information, such as the node location or capabilities. In Teeny-
LIME, this information is made available in the same way as application data, i.e., as
tuples shared among neighboring nodes. In our scenario, these tuples contain a field
describing the (logical) location (e.g., a room) where a node is deployed, and the sen-
sor/actuator devices attached. Which data to provide is defined by the application pro-
grammer, by specifying the body of the handler for the reifyNodeTuple event,
shown in Figure 3. This event is signaled periodically by the TeenyLIME run-time, and
the execution of the corresponding handler regenerates the tuple with new application-
defined values. In our implementation, the local tuple space on every node contains tu-
ples describing each of its neighbors. This is accomplished by appending the neighbor
tuple to all outgoing messages; therefore, when the message is overheard by neighbors,
they extract the neighbor tuple and insert it locally. This way, it is easy to query the
tuple space to obtain information on neighbors with specific capabilities.

Filtering Data. In many WSN applications, including ours, action must be taken only
when a sensed value crosses a given threshold. Nodes controlling air conditioners must
receive notifications when temperature falls outside a user-defined threshold. Simi-
larly, the nodes controlling water sprinklers and emergency bells described previously
only need to receive notifications when temperature rises above a safety threshold.
These conditions require a predicate over tuple field values—something that cannot be
achieved with the standard Linda matching semantics, which is based on either types or
exact values. In TeenyLIME, patterns are extended to support custom matching seman-
tics on a per-field basis. For instance, the requirement concerning safety thresholds can
be expressed concisely by using range matching, requiring the temperature field to be
greater than a given parameter, as in:
tuple temperatureTempl = newTuple(2, actualField_uint16(TEMPERATURE),

greaterField(TEMPERATURE_SAFETY));

The above uses the default range matching, which the programmer can easily redefine.
Note how the issue is not simply one of expressive power, as it deeply affects commu-

nication. Without filtering, the programmer can only specify a generic pattern matching
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command result_t StdControl.start(){
tuple capTSmoke = newCapabilityTuple(2, actualField_uint16(SMOKE),

formalField(TYPE_BOOL));
call TupleSpace.out(FALSE,TL_LOCAL,&capTSmoke);
return SUCCESS;

}
event result_t TupleSpace.reifyCapabilityTuple(tuple *ct, tuple *p){
return call SmokeDetector.getData(); // Request a reading from the sensor

}
event result_t SmokeDetector.dataReady(uint16_t reading){ // Sensor reading
tuple smokeValue = newTuple(2, actualField_uint16(SMOKE),

actualField_bool(reading));
call TS.out(FALSE,TL_LOCAL,&smokeValue);
return SUCCESS;

}

Fig. 7. TeenyLIME code for a smoke detector node

any temperature. All matching, outputted tuples would be transmitted (in our case, each
time a new sample is available) and frequently discarded as out of range by the reaction
code of the requester in Figure 5, wasting significant communication resources.

Dealing with Short-Lived Data. In some cases, sensor data remain useful only for a
limited time after collection. For instance, an emergency bell is not interested in tem-
perature values sensed an hour before. Instead, the same data may be of interest for a
component that is periodically run to build a day-long analysis of temperature trends.

In TeenyLIME, time is divided into epochs of constant length, and every data tuple is
stamped with an application-accessible field containing the current epoch value. Three
helper functions allow the application developers to deal with time:
setFreshness(pattern,freshness)
getFreshness(tuple)
setExpireIn(tuple,expiration)

The first customizes a pattern, similarly to range matching above, to impose the addi-
tional constraint to match tuples no more than freshness epochs old. If a pattern
does not specify freshness, it matches any tuple regardless of its age. The second func-
tion returns the number of epochs elapsed since the tuple was created. Finally, the
third specifies how many epochs the tuple is allowed to stay in the tuple space. When
the timeout associated to the tuple expires, the tuple is automatically removed.

Generating Data Efficiently. In our application, humidity sensors and smoke detec-
tors need not be monitored continuously: their data is accessed only when actuation is
about to occur. However, when a sensed value is requested (e.g., by issuing a rd) fresh-
enough data must be present in the tuple space. If these data are only seldom utilized,
the energy required to keep tuples fresh is mostly wasted. An alternative is to require
that the programmer encodes requests to perform sensing in a way similar to actuation
commands, enabling the receiving node to perform sensing on-demand and return the
result. However, this solution requires extra programming effort, is error-prone, adds
processing overhead, and is therefore equally undesirable.

To deal with these (frequent) situations, TeenyLIME provides the ability to output
capability tuples indicating that a device has the capability to produce data of a given
pattern. A code example for a smoke detector is shown in Figure 7. When a query is



438 P. Costa et al.

remotely issued with a pattern matching a capability tuple, the reifyCapability-
Tuple event is signaled. This reports the pattern included in the query and the match-
ing capability tuple. The application handles this event by taking a fresh reading and
outputting the actual data to the tuple space. The sequence of operations is depicted
in Figure 8. Note how, from the perspective of the data consumer, nothing changes.
Instead, on the side of the data producer, capability tuples enable considerable energy
savings as the readings are taken only on-demand, without the need to maintain con-
stantly fresh data in the tuple space.

Interestingly, capability tuples can be gen-

Fig. 8. Processing of capability tuples

eralized to allow any action to be taken by
the data producer. For example, matching a
pattern to a capability tuple may invoke any
application function (e.g., computing the av-
erage of all temperature tuples), whose re-
sults are inserted in the tuple space and
returned to the requester.

5 The TeenyLIME Middleware

The design of TeenyLIME aims at enabling easy customization and extension of the
middleware. Therefore, local processing, distributed processing, and communication
concerns are fully decoupled, and one aspect can be changed without impact on the rest
of the system. Due to space constraints, here we focus only on a few aspects of our
architecture, namely, the implementation of distributed reactions and capability tuples,
and the support for reliable operations. More details about the current prototype are
reported in [16].

The implementation of remote reactions currently rely on a soft-state approach, to
deal with nodes joining or failing. Each node periodically sends a message containing
control data for all reactions that should be installed on its neighbors. Upon receipt of
this message, a timer associated with installed reactions is refreshed. If and when a
timer expires, the corresponding reaction is removed. This may happen either because
the registering node became unreachable, or the application deregistered the reaction
thus no longer refreshing it. Similar approaches are widely used in WSN, (e.g., in [17]),
as they are sufficiently lightweight and effective.

Processing capability tuples requires keeping track of the source nodes whose query
matched a local capability tuple so that, once the actual tuple is (locally) output by the
application, it can be returned to the appropriate node. Due to nesC split-phase opera-
tions [15], this processing requires a lot of bookkeeping code. However, we noted that
this processing is the same as if a reaction (for the same pattern as the query) were
installed by a neighbor before the application outputs the actual tuple. Our implemen-
tation exploits this observation and installs a local reaction for the query pattern before
firing the reifyCapabilityTuple event. When the node outputs the tuple, this
matches the aforementioned reaction and is subsequently, automatically delivered to
the intended recipient. The only additional processing required is to remove the reac-
tion right after it fires. This solution only requires 24 nesC lines.
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Finally, TeenyLIME poses only a single requirement on the communication layers:
the ability to overhear messages for populating the tuple space with neighbor tuples. As
a result, many existing solutions (e.g., [18,19]) can be employed to provide reliable op-
erations. Nevertheless, if reliability is only seldom required, the solutions above may be
overkill, e.g., because scheduling mechanisms (as in [19]) negatively impact latency. To
meet scenarios where reliable operations are rare, our current prototype includes a sim-
ple reliability scheme based on explicit acknowledgments. Messages contain a unique
identifier, reported in the corresponding acknowledgment when transmission succeeds.
Therefore, lost packets are easily recognized and retransmitted upon timeout expira-
tion. Control information is piggybacked on application messages whenever possible,
to reduce overhead. Our protocol is not tied to TeenyLIME, and exports the same in-
terface as TinyOS’ generic communication layer. Therefore, it can be re-used by plain
TinyOS applications demanding reliable communication. More details on its internals
and performance can be found in [16].

6 Evaluation

We compare quantitatively TeenyLIME against common alternatives, analyzing its im-
pact on the application source code and on run-time performance.

6.1 Evaluating the Programming Model

Our objective is to assess the effectiveness of TeenyLIME in enabling a flexible de-
sign and clean implementations. To the best of our knowledge, there are no program-
ming abstractions expressly designed for application scenarios such as sense-and-react.
Therefore, we compare a TeenyLIME-based implementation of our reference applica-
tion against one implemented directly on top of TinyOS. On the other hand, the ap-
plicability of TeenyLIME goes beyond sense-and-react applications, and reaches into
system-level mechanisms, below the application layer. We substantiate this claim by
reporting about implementations in both TeenyLIME and Hood [6], a programming ab-
straction designed around similar requirements.

Reference Application. In the TinyOS version of our reference application, each type
of node (e.g., temperature sensors or air conditioners) has a component configuration
similar to the one mentioned in Section 4, where however TeenyLIME is replaced by
the TinyOS GenericComm component3. However, the TinyOS-based implementation
is far more complex. The reader can informally verify this statement by visually com-
paring the excerpt of TinyOS code for a temperature sensor in Figure 9 against the
complete (and much simpler) TeenyLIME-based equivalent shown earlier in Figure 6.
The superior expressive power of TeenyLIME manifests itself in several aspects:

– Developers using plain TinyOS must keep track within the application code of all
the potential data consumers. This requires several dedicated functions, such as
matchesInterest() in Figure 9. Using TeenyLIME, the same functionality is
achieved using reactions: no application-level bookkeeping is required.

3 Or with our reliability component if reliable interactions, not supported by TinyOS, are re-
quired by the application. We elaborate further on reliability in Section 6.2.
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bool pendingMsg, pendingReading;
TOS_Msg sendMsg, queueMsg[MAX_QUEUE_SIZE];
uint8_t nextQueueMsg, lastQueueMsg;
nodeInterest interests[MAX_AIR_CONDITIONERS];
void interest(uint16_t node,uint8_t t,uint16_t tShold,uint16_t tStamp){ // ... }
bool isRecipient(struct InterestMsg* msg,uint16_t nodeId) { // ... }
bool matchesInterest(uint16_t reading) { // ... }
bool enqueueMsg(TOS_Msg msg) { // ... }
bool messageWaiting() { // ... }
bool sendQueuedMsg() { // ... }
command result_t StdControl.start() {
// ... data initialization ...
return call SensingTimer.start(TIMER_REPEAT, SENSING_TIMER);

}
event result_t SensingTimer.fired() {
pendingReading = TRUE;
return call TemperatureSensor.getData();

}
event TOS_MsgPtr ReceiveInterestMsg.receive(TOS_MsgPtr m) {
struct InterestMsg* payload = (struct InterestMsg*) m->data;
if (!pendingReading && isRecipient(payload, TOS_LOCAL_ADDRESS))

interest(payload->sender, payload->type,
payload->threshold, payload->timestamp);

return m;
}
event result_t TemperatureSensor.dataReady(uint16_t reading){
TOS_Msg msg;
struct DataMsg* payload = (struct DataMsg*) msg->data;
payload->sender = TOS_LOCAL_ADDRESS;
payload->type = TEMPERATURE;
payload->value = reading;
if (!pendingMsg && matchesInterest(reading)) {

atomic {
pendingMsg = TRUE;
sendMsg = msg;

}
if (call SendDataMsg.send(TOS_BCAST_ADDR,

sizeof(struct AppMsg),&sendMsg)!= SUCCESS) {
pendingMsg = FALSE;

}
} else if (pendingMsg)

enqueueMsg(msg);
pendingReading = FALSE;
return SUCCESS;

}
event result_t SendDataMsg.sendDone(TOS_MsgPtr msg, result_t success) {
if (msg == sendMsg) pendingMsg = FALSE;
if (messageWaiting()) sendQueuedMsg();
return SUCCESS;

}

Fig. 9. A temperature node in our reference application, using plain TinyOS. The processing
above is equivalent to the TeenyLIME version in Figure 6.

– Figure 9 contains two separate execution flows: one begins when a message is re-
ceived (ReceiveInterestMsg.receive), the other when a reading from the
sensing device is ready (TemperatureSensor.dataReady). These two flows
are not at all evident in the code, due to nesC split-phase operations [15]. Thus,
maintenance and debugging are greatly complicated [20]. This problem is signifi-
cantly alleviated using TeenyLIME, as only the latter execution flow is necessary.

– Distributed processing forces TinyOS programmers to delve into the details of mes-
sage transmission, parsing, and buffering, therefore mixing communication aspects
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Explicit states Lines of code

Component TeenyLIME Plain TinyOS TeenyLIME Plain TinyOS
% of application

data in TeenyLIME

AirConditioner 3 8 93 282 72%
MutualExclusion (ML× 2) (ML× 3) + 1 153 205 48%
TemperatureSensor 0 NC + 2 44 107 100%

Fig. 10. Comparing the TeenyLIME-based implementation against plain TinyOS. ML represents
the maximum number of different locations the component implementing token exchange han-
dles, NC represents the maximum number of air conditioners around a temperature sensor.

with the application semantics. Instead, the TeenyLIME component in Figure 6 con-
tains only application-specific processing related to the actual data of interest.

– As a consequence of all the above, TinyOS programmers must manage state vari-
ables to deal with nearby air conditioners (interests), the sensing device (pen-
dingReading), and the radio (pendingMsg). These can be the source of race
conditions [15]. Conversely, in TeenyLIME these aspects are either handled by the
middleware, or no longer required.

A good way to assess the complexity of implementations is to analyze them as state
machines and count the number of explicit application states, as in [6]. These are typ-
ically stored in state variables, modified by commands and event handlers to express
state transitions. The higher the number of application states, the harder it is to express
state transitions [20], and the more complex and error-prone applications become.

Figure 10 reports this and other metrics for the temperature sensor and other com-
ponents of our sense-and-react application, showing that the advantages of TeenyLIME

hold for all the (diverse) tasks of our application. For instance, the plain-TinyOS com-
ponent implementing the air conditioner control law has 8 explicit application states,
whereas the TeenyLIME-based one has only 3. The reduction is due to the aforemen-
tioned ability of TeenyLIME to hide communication details, here complemented by
the ability to express data filtering as patterns. The former avoids the use of several
state variables, while the latter delegates most of the data processing to the middleware.
Nicely, the reduction of explicit states in the application code causes the number of lines
of code to decrease as well, as shown in the second column of Figure 10. Indeed, fewer
state transitions, and therefore far less bookkeeping code, are needed.

It is worth noting that the above simplifications are not accomplished by remov-
ing application information. Doing so would indeed affect the application semantics.
Rather, they are obtained by moving information and related processing from the ap-
plication components into TeenyLIME. This is not possible using plain TinyOS, as its
abstractions provide only message passing and do not explicitly represent state. This is
instead achieved in TeenyLIME using the tuple space, as its content is persistent. For
instance, a reading tuple output by a temperature sensor node represents its current state
and remains in its tuple space until a new reading becomes available.

To quantify this aspect, the rightmost column in Figure 10 indicates the amount
of information that can be moved from the application component into TeenyLIME,
expressed as the percentage ratio between the TeenyLIME-based and the TinyOS-based
applications. We compute it by looking at the per-component storage of global variables
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concerned with application data. The results confirm the reasoning above, showing that
a considerable portion of the application state can be managed inside the middleware.
Remarkably, all the application data and related processing for a temperature sensor
can be moved into the tuple space, as shown by comparing Figure 6 and 9.

The advantages above come at the price of a slight increase in the size of the binary
code deployed on the motes. The code of a temperature node occupies 69 Kbytes using
plain TinyOS and 80 Kbytes using TeenyLIME (including the middleware itself). These
figures increase to 72 Kbytes and 90 Kbytes, respectively, for the air conditioner. We
note, however, that the latter is a complex component, and yet it remains well within
the limits imposed by commercially available sensor platforms (e.g., 128 Kbytes for
MICA2).

Sense-only Applications and System-level Functionality. TeenyLIME provides rele-
vant benefits also to the development of sense-only applications and system-level func-
tionality. We support this statement by illustrating insights obtained by re-implementing
some of the applications used in [6] to evaluate Hood, a programming abstraction
geared towards sense-only applications and system mechanisms that, like TeenyLIME,
focuses on one-hop interactions. Notably, by limiting ourselves to sense-only (instead
of sense-and-react) applications, and comparing against Hood on the same applications
used for its evaluation, we put ourselves in the most challenging situation.

Specifically, we consider the object tracking application and the multi-hop rout-
ing protocol called Mutation Routing, both described in [6]. In these applications, the
evaluation using the same quantitative metrics considered earlier for plain-TinyOS ap-
plications shows that TeenyLIME achieves slight improvements also w.r.t. Hood. For
instance, only three explicit application states are needed to implement Mutation Rout-
ing, whereas five states are required using Hood. Space constraints prevent us from
an in-depth discussion of these aspects, available in [16]. Instead, we draw qualitative
considerations showing that TeenyLIME yields cleaner and more reusable designs:

– TeenyLIME achieves a more flexible software architecture w.r.t. Hood. In object
tracking, for instance, three components cooperate on a node to implement the de-
sired processing: a localization algorithm, a tracking mechanism, and a geographi-
cal routing protocol. In Hood, the three need to be wired together using dedicated
nesC interfaces. Therefore, adding a further component (e.g., to log the position of
the moving object on external memory) requires modifications in several places. In-
stead, in TeenyLIME the three components are fully decoupled, and exchange data
anonymously through the local tuple space. Thus, adding a logging component can
be easily achieved without affecting the rest of the application.

– TeenyLIME fosters code re-use to a great extent. For instance, in Mutation Routing
two nodes are appointed the role of source or destination for packets flowing along a
multi-hop path. The source (destination) role must be passed between neighboring
devices as some physical phenomena moves. In a TeenyLIME-based implemen-
tation, this processing can be accomplished by reusing as is the component im-
plementing the token-based, mutual exclusion mechanism described in Section 4.
Simply, we create a token for each role at system start-up, exchanged based on the
presence of the moving target close to a given node. In Hood this functionality is
interspersed with message processing, preventing its reuse.
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– TeenyLIME’s one-hop shared tuple space and associated operations are sufficiently
powerful to express multi-hop mechanisms. In both Mutation Routing and the ge-
ographical routing component of object tracking, messages are easily described as
tuples. At each hop, these are output to the tuple space of the next-hop node, where
a previously-installed reaction delivers the tuple to the routing component. There,
the subsequent forwarding to the next-hop node is determined based on the status
of neighboring devices, as reflected by the information locally available in the tuple
space. As a result, all the routing decisions are encapsulated in the tupleReady
event handler. This provides an easy and clean way to implement this functionality
that cannot be achieved in Hood due to the absence of abstractions to describe the
node state.

The considerations above confirm that TeenyLIME’s benefits in terms of better de-
sign and simpler code hold not only for the development of application logic in sense-
and-react scenario, but also for sense-only applications and system-level functionality.

6.2 Evaluating the Middleware Implementation

To verify that the advantages we identified do not negatively affect the system perfor-
mance, we extend our evaluation beyond the programming model, into TeenyLIME’s
implementation. Specifically, a middleware layer may impact the network overhead and
execution time, due to the additional processing w.r.t. a plain TinyOS implementation.
As a consequence, the system lifetime may decrease as well. The latter is key in WSNs,
as nodes are usually battery-powered and must operate unattended for long periods.

To investigate the above concerns, we conducted experiments using Avrora [21], an
instruction-level emulator for WSNs equipped with a precise energy model. The latter
is based on experimental data relative to MICA2 [22] nodes, a widespread hardware
platform for WSNs. This approach allows us to gather realistic, fine-grained statistics
regarding the energy consumption of arbitrary nesC code. We consider two benchmarks:

1. The HVAC sub-task we illustrated in Section 2, whose TeenyLIME implementation
is described in Section 4. We place a variable number of temperature/humidity
sensors in the same neighborhood as an air conditioner node. Every 10 seconds,
each temperature sensor randomly generates a reading, whose value can deviate
from the user preference with a 20% probability. This triggers actuation at the air
conditioner controller, which first queries nearby humidity sensors for their most
recent reading, and then decides on the specific actions to be taken.

2. A simple application using the token-based, mutual exclusion component illustrated
in Section 4. A variable number of nodes, in the same neighborhood, express the in-
tention to obtain the token. Every 10 seconds the token is released by the node hold-
ing it, and a different, randomly chosen node is selected as the new token holder.

Both applications above involve several TeenyLIME-specific constructs. In the first
one, a temperature reading may trigger a remote reaction previously installed by the air
conditioner, whose pattern contains a dedicated range field to express the user prefer-
ence as a temperature interval. Moreover, humidity values are represented as capability
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tuples. Therefore, the (unreliable) query coming from the air conditioner triggers the
execution of the reifyCapabilityTuple event on the humidity sensors. These
react by locally outputting the actual tuple4, which is delivered by TeenyLIME to the air
conditioner as the result of the initial query. Similarly, in the mutual exclusion appli-
cation, releasing the token entails outputting a token tuple in the local tuple space, and
possibly triggering some previously installed, remote reaction. Nodes receiving this no-
tification then perform a reliable in operation to obtain the token. Among them, only
one succeeds.

The processing above is the same in other scenarios where the data involved have
different semantics. For instance, the processing to exchange the token (i.e., a reaction
firing followed by a reliable query) is the same executed by a water sprinkler in the fire
sub-task, shown in Figure 4: only the tuple content changes. In this sense, the meaning
of our results extends beyond the benchmark applications we consider here.

Application

TeenyLime

TupleSpace

ReliableComm
(when needed)

SendMsg/ReceiveMsg

GenericComm

SendMsg/ReceiveMsg

TinyOS

(a) TeenyLIME-based.

Application

ReliableComm
(when needed)

SendMsg/ReceiveMsg

GenericComm

SendMsg/ReceiveMsg

TinyOS

(b) TinyOS-based.

Fig. 11. Component
configurations

For comparison, we consider a plain TinyOS implementa-
tion of the same applications. Figure 11 illustrates the compo-
nent configurations in the two cases. To compare them on com-
mon ground when required, we provide TinyOS with reliable
communication by using our reliable protocol, mentioned in
Section 5.

The emulation settings, in Figure 12, are taken from real
MICA2 motes. The larger message size in TeenyLIME is due
to the additional control information contained in the tuples.
As independent variables, we vary the number of nodes in a
neighborhood and the probability ε of losing a message, to in-
vestigate TeenyLIME’s overhead w.r.t. system scale and network
conditions.

Results. In our benchmark applications, TeenyLIME does not
generate any increase in the number of messages exchanged
w.r.t. a TinyOS-based implementation. Therefore, TeenyLIME’s
overhead in execution time is essentially due to extra local pro-
cessing. In this respect, Figure 13 analyzes the CPU time taken
to perform a set of relevant operations in our benchmark appli-
cations. The worst case accounts for a 10.08% overhead, which
is reasonable given the absolute values involved. We believe
these results are due to the generality of TeenyLIME’s abstractions. These can capture
commonly-used sequences of operations in a natural way, which allows our TeenyLIME

implementation to perform close to application-specific mechanisms.

Parameter Name Value

MAC Layer standard TinyOS MAC for CC1000 chip
Initial Energy Budget ≈ 2 AA batteries
Message Size 47 bytes (TinyOS), 104 bytes (TeenyLIME)

Fig. 12. Emulation parameters

4 Gathering of physical readings from the sensor device is assumed to be instantaneous.
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Operation TeenyLIME Plain TinyOS Overhead

Notifying the
Air Conditioner

2.18ms 1.99ms 9.54%

Sending a
Humidity Query

1.97ms 1.85ms 6.48%

Replying to a
Humidity Query

2.25ms 2.03ms 10.08%

(a) HVAC.

Operation TeenyLIME Plain TinyOS Overhead

Releasing the
Token

2.03ms 1.97ms 3.04%

Sending a Token
Notification

2.28ms 2.07ms 8.21%

Requesting the
Token

2.09ms 1.92ms 8.85%

(b) Mutual exclusion.

Fig. 13. Execution times in the components of our benchmark applications
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Fig. 14. CPU time breakdown in TeenyLIME-based implementations

Figure 14 further elaborates on the timing aspects in our TeenyLIME implementa-
tions, showing the breakdown of CPU time in the different layers. Figure 14(a) illus-
trates the aforementioned metric for an air conditioner node in the HVAC application,
against the number5 of temperature/humidity nodes in its neighborhood. TinyOS is re-
sponsible for most of the processing, as it handles all hardware interrupts and radio-
related functions, triggered quite frequently. The trend of the processing dedicated to
the application and to TeenyLIME is due to the number of notifications and query replies
received at the air conditioner, that grows with the number of nearby nodes. TeenyLIME

engages the CPU at most 15% of the time, when 10 nodes are in reach of the air condi-
tioner. The above metric is not directly affected by the message error rate in the HVAC
application, as reliability guarantees are not required.

Conversely, when reliability is required it becomes the dominant factor, and system
scale bears little effect on our metrics. Figure 14(b) analyzes the CPU time breakdown
in the mutual exclusion application against a varying message error rate, with eight
nodes in the neighborhood. The chart indeed shows how the reliability protocol increas-
ingly engages the CPU as communication becomes less reliable. In fact, our reliable
protocol runs periodic activities (e.g., checking whether messages not yet acknowl-
edged need a retransmission) that take a time proportional to the number of buffered
messages. In absolute values, TeenyLIME execution times remain the same regard-
less of mutable network conditions. Therefore, its relative contribution decreases as the

5 Half of the nodes in the x-axis are temperature nodes, while the other half are humidity nodes.
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Fig. 15. System lifetime

reliable protocol is more stressed. This is a result of our design: TeenyLIME and the re-
liable communication component are fully decoupled, and the processing implemented
in the former is independent from the latter.

It is interesting to look at how TeenyLIME affects the overall system lifetime. Fig-
ure 15(a) shows the time until the air conditioner node in the (unreliable) HVAC ap-
plication runs out of power. This metric is only marginally affected by TeenyLIME,
whose additional overhead is always under 4%. The chart also illustrates an almost
constant behavior w.r.t the number of temperature/humidity nodes. This is expected:
reactions and queries are issued in broadcast by the air conditioner, therefore the energy
expenditures for communication are independent of the number of neighbors. Con-
versely, the number of temperature/humidity sensors affects the local processing, as
more neighbors correspond to more replies received. Nevertheless, the extra overhead
imposed by TeenyLIME has a very limited impact on the overall lifetime. Along the
same lines, Figure 15(b) shows the lifetime in the (reliable) mutual exclusion applica-
tion, measured as when the last node depletes its battery. The trends here are strongly
tied to the message error rate: an increasing number of retransmissions are indeed
required as communication becomes less reliable. TeenyLIME’s overhead, however,
is comparable to the HVAC application, and becomes less relevant as the probabil-
ity of losing a message increases and, consequently, the reliable protocol is involved
more.
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Fig. 16. Performance of TeenyLIME re-
liable protocol

Finally, we analyzed our reliable protocol,
to verify that our results are not biased by an
inefficient implementation. Instead, Figure 16
shows that our solution can provide 100% mes-
sage delivery with a very small number of re-
transmissions. This performance is in line with
alternative reliability mechanisms in the lit-
erature [23], and therefore confirms that our
reliable protocol is a valid choice in our
evaluation.
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In conclusion, the trade-offs between the benefits of the programming model and
its run-time overhead are reasonable, making TeenyLIME an effective middleware for
WSNs.

7 Related Work

TeenyLIME is inspired by LIME [24], which originally introduced the notion of shared
tuple spaces in mobile ad hoc networks. However, not only is TeenyLIME’s imple-
mentation based on entirely different technologies and mechanisms from LIME, but
its model and API introduce novel concepts geared expressly towards WSNs, such as
range matching, capability tuples, freshness, and explicit control over reliability. Teeny-
LIME follows in time another adaptation of LIME to WSNs, called TinyLIME [25].
The two, however, profoundly differ in target scenario, model, and implementation.
TinyLIME focuses on mobile data collection and employs the standard LIME middle-
ware to provide data sharing over 802.11 among mobile sinks (the data consumers)
that, in turn, gather data from nearby WSN sensor nodes (the data producers). There-
fore, intelligence is on sinks: the TinyLIME code deployed on sensors is “dumb” and
largely application-agnostic, reporting data to external sinks (its only interlocutor) on
request. Instead, TeenyLIME is expressly designed for scenarios where the application
intelligence is in the network, built around node-to-node interactions inside the WSN.

The work most closely related to TeenyLIME is Hood [6], a neighborhood abstraction
where nodes can share state with selected one-hop neighbors. Selection is based on
attributes periodically broadcast by neighbor nodes. Neighborhoods are specified using
extensions to the basic nesC constructs, precompiled into plain nesC. Therefore, unlike
TeenyLIME, in Hood data sharing is decided at compile-time. Moreover, Hood provides
neither the ability to affect the state of another node nor the abstractions to react to
changes in the shared state. This hampers its use in sense-and-react applications, and in
general provides a less expressive programming framework.

In Abstract Regions [26] 〈key , value〉 pairs are shared among nodes in a region (i.e.,
a set of topologically-related nodes), and manipulated through read/write operations.
Again, there is no way to receive notifications when some given data appears in the
system, unlike TeenyLIME. Moreover, although nodes in a region may leverage multi-
hop communication, this and other aspects must be coded explicitly by the programmer
on a per-region basis, therefore hampering generality and applicability.

Context Shadow [27] exploits multiple tuple spaces, each hosting only locally-sensed
information representing a given context. Applications retrieve the data of interest by
explicitly connecting to one of them. Similarly, the tuple spaces used in Agilla [28] for
coordinating among mobile agents are shared only local to a node. Instead, TeenyLIME

enables data sharing in a neighborhood by creating the illusion of a single address space.
Moreover, these systems lack WSN-specific tuple space constructs.

8 Conclusions

Developing WSN applications is a difficult task, and sense-and-react applications are
the most challenging. This paper presented and evaluated TeenyLIME, a middleware
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designed for sense-and-react WSN applications, but whose programming constructs are
effective in a wide range of applications. TeenyLIME yields simpler, cleaner, and more
reusable designs, as we demonstrated quantitatively in non-trivial applications. More-
over, our evaluation with cycle-accurate emulation demonstrated that these benefits
are supported by an efficient implementation that introduces low overhead w.r.t. plain-
TinyOS implementations. The TeenyLIME middleware is freely available for download
at http://lime.sf.net/teenyLime.html.
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