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Chapter 1
Introduction: Network Perspectives on
Innovations: Innovative Networks – Network
Innovation

Andreas Pyka and Andrea Scharnhorst

The idea for this book started when we organized a topical workshop entitled
“Innovation Networks – New Approaches in Modeling and Analyzing” (held in
Augsburg, Germany in October 2005), under the auspices of Exystence, a network
of excellence funded in the European Union’s Fifth Framework Program. Unlike
other conferences on innovation and networks, however, this workshop brought
together scientists from economics, sociology, communication science, science and
technology studies, and physics. With this book we aim to build further on a bridge
connecting the bodies of knowledge on networks in economics, the social sciences
and, more recently, statistical physics.

“Network” is the underlying topic in all chapters. “Innovation” as the emer-
gence of something new can be described as an outcome of network activities or
as part of the formation (evolution) of networks. Networks and innovation are com-
mon “objects” or “targets” in different disciplines. Sometimes the meaning of both
notions can differ significantly. One of the aims of this book is to bring these differ-
ent perspectives together. In this introduction we highlight some of the differences.
But, let us first describe the research environment in which this book emerged. This
environment is characterized currently by what one could call “network hype.”

1.1 Network Hype

In the last decade, networks – understood as “complex networks” – have gained a
lot of attention. As part of complexity theory, the network approach seems to be
particularly well-suited to describing natural and social phenomena. In a society,
sometimes labeled as “the information society” (Castells 1996), where infrastruc-
tures and workflows are vital to social life, a network approach seems more than
appropriate for exploring and analyzing the complex social, technical, and natu-
ral environment of which we are a part. Visualizing the internet structure, traffic,
or growth (Dodge and Kitchin 2001), or mapping science and knowledge flows
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2 A. Pyka and A. Scharnhorst

(Börner et al. 2007) as networks are just a few of the positive examples of possible
applications. Recently, a study was conducted to test the ground for “network
science” – social and natural. This idea was triggered by the possible military
implications of network theories (Committee on Network Science 2005). A certain
“network hype” becomes visible, if we carry out a simple topical search in the “Web
of Science.”

Figure 1.1 shows the result of a topical search in the Web of Science. This option
(TS field) searches for documents containing the search string in the title, abstract,
and keywords. The search strings were “graph” OR “graphs” OR “network∗” and
“ ‘complex network’ OR ‘complex networks.” ’ We restricted the search to the doc-
ument type “articles.” Because of the overall growth of the database, we plotted
the shares, that is, the number of documents for the search string divided by all
documents in the database for a particular year. The search results are sensitive
towards using “complex network(s)” as a phrase or as combined words.

Searching for the notions “graph(s)” and “network(s)” in the online version of
the Web of Science reveals a growth of articles which is over-proportional to the
overall growth of documents in this database (Fig. 1.1). A more specific search for
“ ‘complex network’ OR ‘complex networks,’ ” shows a rapid growth process, a
kind of “phase transition,” starting after 2000. According to Scharnhorst (2003),
this rapid growth is the result of the emergence of a new area of specialty in
statistical physics, namely, complex networks theory. A number of recent review
articles and books have also described this new paradigm (cf. Barabási 2002). Net-
works are gaining more attention and not only in physics. In sociology, for instance,

Fig. 1.1 Growth curves for articles on “graph(s)/network(s) �” and “complex network(s) •” (Web
of Science, November 2007). Please note the two y axes



1 Introduction 3

social network analysis has been an established field since the 1950s; in computer
and information sciences, in biology, and of course in mathematics (graph theory)
networks are central representations of objects and methods (De Nooy, forthcom-
ing). More detailed bibliometric studies have examined the individual, cognitive,
and institutional composition of complex network theory (Morris and Yen 2004),
and social network theory (Otte and Rousseau 2002). Among the more impor-
tant pieces of literature are Börner et al. (2007), Bornholdt and Schuster (2003),
Buchanan (2002), Dorogovtsev and Mendes (2003), Otte and Rousseau (2002),
Newman (2003), and Watts (1999, 2004). Of these, Börner et al. (2007) stand out
because they have most recently re-examined network science, considering it as
a possible innovation in information science. All the reviews mentioned include
efforts to build bridges between different scientific disciplines and specialties. In
this book we draw particular attention to the link between evolutionary economics
and statistical physics.

Despite this impressive development, claims that an entirely new science has
been created (Barabási 2002) have nevertheless been the subject of criticism. In-
depth analyses of a subset of “complex networks” contributions (1991–2003) have
shown that the notion of “complex networks” was already prevalent in a number of
different fields before it became practically a “brand name” or the popular label for
a new specialty area in physics, or a new cross-disciplinary paradigm. We do not
point to this fact with the aim to further antagonize the battle for scientific priorities;
the fields of science history, sociology of science, and philosophy of science have
analyzed countless examples of prematurity (Hook 2002; Läsker and Plikat 1985),
duplicate inventions (Merton 1961; Zuckerman 1967), and reoccurrence of ideas.
Independent of the issue of priority, it is also important to take into account that a
variety of meanings can be attached to the use of a single phrase. With this work, our
aim is to encourage the reader to scrutinize more carefully the different connotations
of the network concept. A shared phrase does not necessarily indicate commonali-
ties. However, some hidden commonalities could be present, which would need to
be first exposed and then explored systematically. Although false associations can
sometimes be inferred from an apparently known concept, real commonalities have
the potential to create new links between schools of scientific thought, and to con-
tribute to the discovery and analysis of unexplored areas in the scientific landscape
(Scharnhorst 2001). This book intends to make an initial contribution to defining the
commonalities and dissimilarities by presenting different approaches in parallel. By
creating a platform for them to coexist and where their respective proponents can, in
some sense, speak to one another, we hope to have devised a kind of “trading zone”
(Galison 1997) for network concepts.

In this introduction we try to identify some dimensions along which different
network conceptualizations can be ordered. First, we consider the possibilities of
quantitative analysis. To automatically visualize meaning through context is an old
and new challenge of communication and information science (Leydesdorff 2001).
What is obvious to participants in a discourse, who can identify slight differences in
scientific concepts just by perusing various texts, remains almost a “mission impos-
sible” for algorithms. This is the difference to what has also been termed “embodied
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Fig. 1.2 Semantic map of the words used in the titles of complex network articles. (The 1991–2003
dataset was retrieved from the Web of Science.)

and codified knowledge.”1 Figure 1.2 presents an example in the form of a map of
words occurring in titles and abstracts of complex network articles. Based on the
1991–2003 sample of articles on complex networks (Scharnhorst 2003), CATPAC2

was used to produce and analyze a matrix of word co-occurrence and to present the
results in a two-dimensional map based on multidimensional scaling. Words close
to each other on the map have a tendency to occur more often together in texts.

For a reader familiar with the subject, the new concepts are “scale-free” (net-
works), “small world,” “evolution,” and “dynamic” in the fields of physics and
sociology. One can also recognize the boundaries of scientific disciplines within
the articles themselves. These have been made visible on our map by drawing
in the lines afterwards. However, in this map, as Howard D. White, aptly noted,
“we do not see the new ideas and paradigms occurring.”3 Nevertheless, these maps

1 Personal communication Loet Leydesdorff.
2 CATPAC is a software product marketed by Gallileo. According to their website promotion,
“CATPAC is an intelligent program that can read any text and summarize its main ideas.” See also:
http://www.galileoco.com/N catpac.asp (accessed 31 May 2008).
3 Remark by Howard D. White made during the 11th International Conference of the Society for
Informetrics and Scientometrics (ISSI) on network visualization, held in Madrid, Spain, 25–27
June 2007.
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function well as heuristic tools to disclose hidden information, to reveal undevel-
oped perspectives, or to push for further clarification (Börner et al. 2003; Börner
forthcoming; Thelwall 2008; Thelwall et al. forthcoming). In our case, the biblio-
metric analysis shows that, despite the tremendous growth of articles on networks
in physics since 2000, the notion of “complex networks” (and, even more so,
“networks” in general) is a shared object/subject among different disciplines.

1.2 Network Space

In trying to create a visual idea of the different connotations of “network,” we bor-
row the notion of a “characteristics space” from innovation studies. Characteristics
space in innovation studies was introduced by Saviotti and Bowman (see Saviotti
and Bowman 1984) as analytic tool and to give a visual character to the development
of technological output indicators. When the characteristics space is interpreted as
space of genotypic or phenotypic properties, it is possible to link it to concepts
from evolutionary theory, which portray or visualize evolution as search processes
in fitness or adaptive landscape (Pigliucci and Kaplan 2006). A specific formula-
tion of this approach as a generic tool was first developed in physics (Feistel and
Ebeling 1989; Ebeling and Scharnhorst 2000; Ebeling et al. 2001) and later applied
by Scharnhorst (2001) to different “knowledge landscapes.” To be able to identify
different dimensions of a conceptual space of networks, let us first examine some
perspectives on networks.

Figure 1.3 presents one of the steps towards an ordering of the different network
aspects. One relevant aspect is the micro versus the macro dimension. The relation-
ship between laws or rules of behavior, on the micro-level, and emergent properties
or laws, on the macro-level, has been analyzed for many different systems in self-
organization and complexity theory. From the perspective of networks, individual
behavior can be described in terms of networked interactions while, at the same
time, emergent networks form a point of reference but sometimes also constitute a
constraint on individual actions.

One of the traditional approaches in social network analysis is to measure, ana-
lyze, and interpret “ego networks.” These are star-like networks (radiating from a
single node) in which the social relationships of an individual are followed. Social
network analysis “constructs” networks from social relations and their functions in
society (Wasserman and Faust 1994). The meaning of ties or links is central to the
analysis. The different roles of actors within such a network can be expressed by
a link structure. The dominant role that ego networks had during a certain period
of social network analysis may possibly be explained by the limitations of data
sampling based on interview techniques. Nevertheless, interviewing all members of
even a limited group will also yield information about the entire network. Sociomet-
ric tradition also employs this type of interview – that is, all members of a group,
for instance all of the pupils in a given class.

The advantage of sampling based on interviews is that it delivers detailed insights
into the nature of social relationships and the different roles an individual plays
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Fig. 1.3 Different aspects of network research

with respect to different communities or different processes. This is information
which cannot be directly retrieved using Web 2.0 data4 in conjunction with social
science analysis techniques. This problem has also been addressed in the informa-
tion sciences (Thelwall 2004) and the political sciences (Foot and Schneider 2006).
Large-scale measurements can provide a more complete network, but they leave
the question unanswered, as to what kind of “friendship” or other social activity is
traced.

A reliable statistical analysis of network topologies requires large amounts of
data. The Web and massive web-based, online retrievable data triggered these kinds
of large-scale analyses in social science and interdisciplinary fields such as complex-
ity theory (or complex system theory). From statistical physics, “complex networks
theory” emerged (Huberman 2001; Scharnhorst 2003). In general, the appearance
of this new field (rooted in physics), its universal claims, and a parallel increase in
interest in networks in other fields of scientific inquiry can be interpreted as a spe-
cific expression of Zeitgeist, which reflects both the capabilities and the vulnerability
of a globally networked economy and society.

From a physical perspective, the network can be seen as a space5 with specific
characteristics (a certain topology such as scale-free or small world) which influence

4 Such as that retrievable from MySpace or LinkIn or Facebook.
5 Personal communication from Krzyzstof Suchecki.
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the dynamic processes in that space. When we speak of dynamics in this context, we
are referring to the dynamic processes that influence attributes of the nodes and/or
the links in the network. Sometimes dynamic processes with known outcomes,
which operate on network topologies, can be used to explore these topologies fur-
ther. At the same time, the evolution of networks is considered to be the determinant
for this space – and this is yet another dynamic aspect. Here, the central question is
how rules defined locally lead to the emergence of a certain overall topology. If we
depend on automatic data mining, then the interpretation of the meaning of the links
and nodes fades more into the background. Statistical physics seeks universal laws
for mathematical expressions of the dynamic processes going on in networks.

Related to the micro–macro issue is the “emergence” problem, or “the rela-
tionship between the whole and its parts,” as a further dimension. In this context,
graph-theoretical stochastic models (as applied in social network analysis) and
physics models meet, although the mathematical language is sometimes different.
The common question is how the emergence of a network can be understood from
the bottom up, and how we can work backwards from an existing network structure
to infer the parameters of individual actions or the conditions under which such
actions will occur.

To give an example, by linking back to the micro-level mechanisms of network
formation, we can identify critical parameters for structural phase transitions in net-
work topologies (Fronczak et al. 2007), although the question of social meaning for
real networks still remains open. A possible link between in-depth, content-specific,
systemic structural analysis emerges when networks are analyzed as the outcome of
a dynamic process of node and link creation. By building on seemingly free indi-
vidual actions, self-organization theories have shown that, once a structure begins
to emerge from these actions, this structure begins to act as a parameter or limiting
condition to constrain individual actions. Recently, in social network analysis, a
new network tool, SIENA (Snijders et al. 2007), was developed, which incorporates
modeling and simulation into the statistical analysis of real network data. The cou-
pling of generic node and link introduction rules as preferential attachments to social
attributes offers us a new way to combine mathematical models with social theories.
It gives us the possibility both to test universal assumptions about the basic mecha-
nisms of collective behavior and to refine our descriptions of dynamic mechanisms.
It also allows us to further test, empirically and structurally, the social theories of
human behavior.

In physics, network topologies are used to predict other dynamic processes such
as the spreading of diseases, the movement of traffic, or the dissemination of infor-
mation. Often two processes co-evolve: the growth and change of an underlying
network structure and the dynamics of the processes operating on this structure. The
latter are frequently described as the changing status of a node or link. Networks are
seen more often as heterogeneous, multilevel, and coupled or combined, which adds
another dimension of complexity (cf. Suchecki and Hołyst 2006). In the evolution of
networks, characteristics such as connectivity, betweenness, or the diameter change
of time point to different functions of networks during different phases of their life
cycle (Barabási et al. 2002; Leydesdorff and Schank forthcoming).
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Fig. 1.4 The network space. The chart above was presented to the “Innovation Networks” work-
shop participants. As shown by the two small figures at the bottom, participants located their
research by hand drawings (left) or even proposed other names for the dimensions (right)

In an initial attempt to make the different dimensions of network conceptualiza-
tions visible, we draw the following picture (Fig. 1.4) of a multidimensional space of
aspects or dimensions (Scharnhorst and Hellsten 2005). We are aware that there are
methodologically diverse ways to make the differences in connotations in networks
visible. Among them are the above mentioned semantic webs constructed from the
co-occurrence of words (Leydesdorff 2001; Leydesdorff and Hellsten 2006), ethno-
graphic field work,6 interviews, and literature reviews. For our purposes – on the

6 In the course of discussion about the “space chart,” Katie Vann, Virtual Knowledge Studio, Ams-
terdam, Netherlands, made a critical observation, which the authors of this introduction found
pertinent to the present discourse. Her argument was that an a priori definition of network space
might pre-shape or influence the outcome of our “ethnographic exercise” too much. Moreover,
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occasion of the “Innovation Networks” workshop – with the aim to initiate a dis-
cussion about networks beyond disciplinary boundaries, this rough attempt worked
well. Workshop participants placed their research in the frame presented, and com-
mented critically on the proposed dimensions. This does to take away that it might
be possible to use such a frame to make the “occupation” of different use of the
network concept visible over time in a more sophisticated way (Chen 2003; Börner
et al. 2003).

So far, we have described the research environment which occasioned this
anthology. The ultimate aim of building up a new network science constitutes its
background. In the previous section of this introduction, we considered the explana-
tory power of network perspectives, highlighting some dimensions of network
research; the subsequent and final section will introduce the reader to the individual
chapters of this volume and consider the various attempts by their authors to bridge
economic theory and network approaches.

In economics, the concept of network is used in many different contexts, for
instance, network externalities, innovation networks, networks of trade and exchange,
and corporate social networks. “Interaction and the networks through which it oper-
ates are important in determining aggregate economic phenomena and that this
allows us to start from more plausible models of individuals. . . . If this is accepted,
then we must first understand how networks influence aggregate outcomes. The
next step is to understand how these networks form and if, and why, they persist”
(Kirman 2003, p. 274). We now turn to the different chapters of the book and con-
sider how they address innovation networks, the methods they use to analyze them,
and model networks developed in sociology, economics, and physics.

1.3 Innovation and Networks

In economics, innovation is the implementation of a new or significantly improved
idea, good, service, process, or practice, which is intended to be useful or practical in
the sense that either efficiency gains or new returns are generated. Further notions
which play a role are invention, radical and incremental innovations, process and

by presenting a specific set of dimensions we could also conceivably offend other researchers who
hold quite different views of networks. Indeed, in our discussion so far and in the chart we propose,
we do conceptualize networks graph-theoretically, that is, as objects containing nodes and links.
Other meanings are, of course, possible, by which, for instance, the term “network” is used to
signify common membership or acquaintance, or to denote an object for identification without
intending to further specify it as a graph of relations (Johan Heilbron, personal communication).
However, we do not present this chart with the intention of providing a “complete description;” nor
do we intend it as starting point for a mapping exercise. At the “Innovation Networks” workshop
(Augsburg, Germany, October 2005) this chart was presented to the participants as an input to
reflect the positioning of their own research. The presentation provoked neither controversial nor
extended discussion. It was perceived as just an interesting “artifact” for stimulating discussion.
This “neutral” perception certainly has to do with the variety of disciplinary cultures and the role
of visualizations as “helping hands” in natural sciences (Paton and Neilson 1999).
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product innovation, competition and logistic growth. In a more abstract systems
theoretical approach, innovation can be understood as a critical event which desta-
bilizes the current state of the system, and opens a new process of self-organization
leading to a new stable state. In this latter case, the definition of what constitutes an
innovation becomes dependent on the definition of the system itself. For instance,
what is an innovation for a single firm must not necessarily be an innovation for a
market. If the firm is considered as reference system any technology which is new
to the firm is a systemic innovation. If, however, the market is the system in which
the firm operates, a technology new to the firm does not need to be a technology
new on the market and will therefore need not be a systemic innovation. Further, the
emergence of new scientific specialties, new streams of communication, and new
modes of behavior thus become innovations in a systemic sense.

The contributions to this anthology address different aspects of the relation-
ship between innovation and networks. The chapters incorporate approaches in
evolutionary economics, agent-based modeling, social network analysis, and econo-
physics. Although, all of the chapters belong in some sense to complexity science,
the individual contributions nevertheless reflect clearly different epistemic values
(theories and methods), depending on their disciplinary roots.7 These contributions
represent a spectrum of approaches between two poles, namely, new economic the-
ories (Part I), on the one hand, and mathematical models of complexity (Part II) on
the other, and therefore are supposed to give a comprehensive view on the present
scientific frontier in innovation network analysis.

The authors develop different strategies to handle the epistemic tension between
insights into economic processes and insights into new forms of complex dynam-
ics. These approaches range from a conceptual inspiration from network research
for empirical measurements of the regional knowledge bases (Frenken et al., this
volume) to using qualitative cases of regional modes of innovation as illustration
for the explanatory power of a specific model approach (Diaz-Guilera et al., this
volume). Although the authors in this anthology come from different research tra-
ditions, each chapter represents a unique attempt to create explicit links between
the general issues of complexity theory – network research in particular – and new
branches in economic theory. This results in a comprehensive approach to inno-
vation networks, spanning a broad range of disciplines and methodologies. We as
editors of this anthology attempt in the following to address some of the intersecting
links bridging the various chapters.

To be able to understand why innovation networks and why specific approaches
to innovation networks have become such a hot topic in economics, we need to
compare certain economic theories with actual phenomena in a global, knowledge-
based economy. In the chapter by Nigel Gilbert, Petra Ahrweiler, and Andreas Pyka
on “Agent-based modeling of innovation networks – the fairytale of technological

7 Ratto (2006) discussed how epistemic commitments function as barriers to the introduc-
tion of new research technologies in scientific fields. He examined the use of new simulation
tools in the humanities, in particular, archeology. A similar argument can be made concerning
cross-disciplinary research and the co-opting or re-appropriation of concepts across fields.
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spillovers” expectations vis-à-vis the role of innovation networks in industrial R&D,
as dealt with in economic and organization theory, are compared to observations of
collaborative structures between firms in innovative sectors such as biotechnology.
The authors justify the introduction of “new models” of innovation behavior on
the basis of explanatory gaps and faulty analogies, which can give only incom-
plete or unsatisfactory account of the relationship between macroeconomic impacts
and microeconomic sources of observed phenomena. In particular, technological
spillovers find their explanation on the microeconomic level, for instance, through
the voluntary exchange of knowledge and information in innovation networks.

In the chapter by Pier Paolo Saviotti on “Knowledge networks: structure and
dynamics” the author focuses not on explicit interaction networks but on the rep-
resentation of knowledge as a network. Saviotti discusses the processes by which
scientists have attempted to understand innovation in economic systems. These
processes are embedded in a longer tradition of the exchange of ideas between
physics and economics. Saviotti draws a line between the traditional approaches to
self-organization theory in physics and the approaches of modern network theory.
His question is what principal forms of explanation for the emergence of some-
thing new can be given by complexity theory. What kind of stylized facts (such as
emergence, transition, or growth) can be explained when economics and physics
meet. This question is also addressed on a general level in the chapter by Ingrid
Hartmann-Sonntag, Andrea Scharnhorst, and Werner Ebeling on “Sensitive Net-
works – modeling self-organization and innovation processes in networks.” More
precisely, Saviotti describes the knowledge base of a firm which introduces an inno-
vation as a network of different knowledge resources. Part of these resources is
knowledge produced in publicly funded research laboratories (e.g. university labo-
ratories). This research is codified in publications, and can be at least partly retrieved
from scientific literature databases such as the Web of Science. Collaboration net-
works in science form the underlying structure from which new knowledge emerges,
which, in turn, might diffuse into industrial applications and there generates another
kind of network with other actors and other channels of information exchange.

The various chapters of our anthology collectively add a network perspective as
a further dimension to the long research tradition of modeling innovation diffusion.
Such models reveal questions for empirical measurement concerning both the devel-
opment of growth distributions and information flows in an economy. Networks
of interaction create a specific locality between firms. From an economic point of
view, the question arises, how “neighborhoods” in networks and “neighborhood” in
a geographical sense are related to each other, and how this influences or determines
collaboration structure. The chapter by Koen Frenken, Jarno Hoekman, Suzanne
Kok, Roderik Ponds, Frank van Oort, and Joep van Vliet on “Death of distance
science? A gravity approach to research collaboration” shows the influence of geog-
raphy on collaboration networks in science and by this thematizes again interaction
networks. In this contribution, the authors also discuss how the “nature” of a node –
in this case the type of organization of an institution – and the reference system
(scientific field) exerts influence, and they consider the extent to which “distance”
still matters. In line with a recent trend in economics, Frenken et al. concentrate
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on geographic regions rather than countries. Pure academic collaboration seems to
be less sensitive to distance, perhaps because of the higher degree of codification.
In a similar vein, the agent-based model proposed by Frank Beckenbach, Ramón
Briegel, and Maria Daskalakis in their chapter on “Evolution and dynamics of net-
works in ‘regional innovation systems’ (RIS)” shows the behavioral foundation of
local innovation networks embedded in regional innovation systems. Beckenbach
et al.’s contribution shows that regional innovation networks indeed form the back-
bone of the regional innovation systems which do play such a promising role in
modern innovation economics (cf., e.g., Leydesdorff 2006; Cooke and Schall 2007).

The knowledge base of an innovation system or an industry or a regional cluster
of firms can be measured and made visible in semantic maps of technology classes
or patents, or it can be replicated as a reservoir of behavioral variants in a multi-
agent model (cf., e.g., Gilbert, Ahrweiler, and Pyka, this volume). The first part of
this book introduces networks on different levels of aggregation in the economy
(research institutions, firms, and a single enterprise). These diverse networks form
the necessary conditions for the emergence of innovation. Gilbert et al. also demon-
strate the variety of ways in which networks can be represented in innovation theory,
ranging from the network’s description as a knowledge base to its depiction as a
mode of industrial organization of research and development. From this it becomes
clear that innovation itself can also be understood as a result of an interaction process
between different firms.

These interaction processes are the roots of networks and their dynamics. If the
interaction is modeled as knowledge exchange (as in by Gilbert et al., this volume,
and König et al., this volume), then networks of firms and their structures can be
depicted as adjacent matrices changing in time. According to Albert Diaz-Guilera
and Sergio Lozano in their chapter on “Propagation of innovations in complex
patterns of interaction,” a visualization of patterns of collaboration and influence
is useful if one is seeking structural patterns in different innovation networks and
plausible models or explanations for their emergence. Without a rich and detailed
qualitative description, formal analogies between different network types remain
arbitrary and difficult to understand (see, e.g., the industrial case studies in Pyka
and Küppers 2002).

The contributions to this volume demonstrate that different approaches to the
modeling of innovation are possible. One such approach would be to understand
innovation as the result of competing firms in differently structured interaction
networks. The model proposed by Michael König, Stefano Battiston, and Frank
Schweitzer in their chapter on “Modeling evolving innovation networks” links the
dynamics of a network (evolution of a network by changing nodes and links) to
dynamics which operate on the network (the increase of knowledge as attribute
of an agent). Unlike many other econophysics applications, the rules of the model
are derived from economic theories – costs and different sorts of sharing behaviors
are used. Network externalities (often referred to in economic theory as positive
externalities) can be traced back to concrete sources. They are modeled in terms of
a cross-catalytic support term. Costs are considered the central mechanism deter-
mining the “destiny” of a collaborative link and the innovation network as a whole.
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König et al. counter other findings in the literature, which assume an almost natural
growth of innovation networks in a sector; they point, instead, to the vulnerability of
innovation networks. It would be interesting to compare their findings to the growth
of the number of networks predicted in the agent-based model and observation data.
In general, König et al. point to the fact that in order to obtain a positive balance
from the circulation of knowledge, one must find a certain optimum between the
benefits from network externalities and the costs of maintaining the network. This
positive balance also depends on the nature of knowledge, the effects of which are
observable: Is the value of knowledge increased when it is shared, or does mutual
knowledge sharing decrease its value? What makes their contribution so important is
the demonstration of the heuristic power of models by linking certain basic rules for
the behavior of agents to specific phenomena on the macro-level. At the same time,
the authors critically discuss their choice of rules, in the light of the realistic behavior
of firms on an economic market. König et al. make a specific connection between
a population-dynamic approach (for the attributes of the agents) and changing net-
work structure. The adjacency matrix determines when interaction takes place. Each
agent interacts with other agents according to the network structure. This is different
from an approach in which types of agents are grouped together, depending on the
type of knowledge they are using, and where their interactions form a graph or
network which usually will not change over time (see Hartmann-Sonntag et al., this
volume). Innovation in the model proposed by König et al. is the increase in knowl-
edge of a particular agent and eventually throughout the whole network. Innovation
in the Sonntag et al. model is the emergence of a new type of knowledge. Innovation
in the Gilbert et al. model is the result of new combinations of already existing
knowledge (so-called cross-fertilization effects).

If innovation is understood as a dynamic process running on a certain network
structure, one can ask about the influence of different typologies on this process.
This issue was dealt with by Nicolas Jonard and Robin Cowan in their chapter on
“Innovation networks and the distribution of knowledge.” If innovation is under-
stood as a critical event triggering diffusion processes, models of self-organized crit-
icality can be used to describe single and overlapping avalanches (see Diaz-Guilera
and Lozano, this volume). The question thus arises as to whether the mechanisms
assumed in the model building approaches are reasonable to account for the social
interaction patterns in economics or science. Where multi-agent approaches (Gilbert
et al., this volume) try to incorporate the complexity of decision-making processes
for innovations and show how this relates to collaboration, network models from
physics try to find regularities in decision-making processes (for instance, consider-
ing the board of directors of various enterprises) by looking at mutual membership
in different networks (König et al., this volume).

Another important aspect to the statistical analysis of network innovation data is
the identification of patterns. This relates to the more general problem of community
detection in networks, dealt with by Stefan Bornholt and Jörg Reichardt in their
chapter on “Social network analysis – a physics approach.” This chapter presents
a specific algorithm for clustering. The authors link their findings to approaches
in social network analysis. In particular, they show that random graphs (of finite
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size) can also emulate “structures.” For an analysis of data for innovation networks
between firms, such a methodological foundation is absolutely necessary, because
these networks are usually small, sparse, and nodes have only low average degrees.
Conversely, the use of web data (such as that which one could gather from ebay, for
instance) by physicists could initiate a search in economics, sociology, and science
and technology studies for new sources of data.

The aim of this anthology is to create a negotiation platform for notions and
research intentions of the different groups analyzing networks, and innovation net-
works in particular. As can be seen from this introduction, the borderline between
approaches stemming from economics and from complexity theories becomes
extremely fuzzy. Scholars from both disciplines are increasingly willing to step
over this borderline. Today’s research on innovation networks clearly shows in both
camps the application orientation stemming from social sciences and the appli-
cation of complexity theories stemming from theoretical physics. Our anthology
wants to contribute to this promising cross-fertilization and the creation of an
interdisciplinary dialogue in network research.
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Innovation Networks in Economics



Chapter 2
Knowledge Networks: Structure and Dynamics

Pier Paolo Saviotti

2.1 Introduction

There has been recently an upsurge of interest in networks in a literature which
belongs to many different disciplines, ranging from physics to biology to the social
sciences. Interestingly enough, it seems that in spite of the wide differences between
the entities constituting such networks, ranging from the interactions of biological
molecules in cells to the Internet to citations (Barabasi et al., 1999, Barabasi, 2002;
Barabasi and Bonabeau, 2003; Cohen, 2002; Watts and Strogatz, 1998), most such
studies claim some kind of common intellectual framework rooted in complexity
science. Yet the literature on networks does not provide any link between networks
and other parts of the science of complexity which could be considered more fun-
damental. This contribution will proceed first to identify some possible connections
between networks and other theories of complexity; second, to describe and anal-
yse some networks of knowledge and innovation and to interpret their properties
in terms of recent studies of networks; third, to formulate some generalizations
about the dynamics of these networks and about their connection to the dynamics
of variety and efficiency.

2.2 Networks and Complexity

Let us begin by asking the question ‘why do we need complexity science?’ and try
and give it an answer mostly related to economic and social development. One of the
most important tasks of a theory of economic development is to be able to explain
some important stylized facts that we can observe in economic development. Some
of the most important such stylized facts are listed as follows:
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(i) Economic systems do not become more random, or disordered, during their
process of development.

(ii) Economic development is characterized by qualitative change, since the new
entities emerging during its course are not comparable to previously existing
ones.

(iii) The variety/diversity of the economic system rises during the course of eco-
nomic development.

(iv) Order, or structure, emerges from the process of economic development.
Changes in structure occur infrequently and are followed by long periods of
more incremental variations.

As a consequence of these stylized facts, the composition, defined as the list
of entities and processes required to describe the economic system, changes in the
course of time. The important implication of all of this is that not all theories would
predict this type of development. For example, the growing variety of the economic
system could be expected to lead to a growing disorder or randomness (see for
example Georgescu-Roegen, 1971). Amongst the theories of complexity, the one
formulated by Prigogine (see for example Nicolis and Prigogine, 1989) has the great
merit of providing a potential explanation for the growing order and for the growing
variety of the economic system. Let us start by defining structure as given by the
components of a system and by their interactions. We can observe here that the
interactions provide constraint and reduce the number of degrees of freedom of the
system with respect to those of its isolated components. It is precisely this constraint
that creates order. The most important explananda in our economic system are (i)
the emergence of order during the evolution of the system and (ii) the discontinuous
transitions that the system seems to undergo during its evolution.

Prigogine introduced some fundamental concepts and distinctions, which are
very useful in this sense. An important distinction needs to be introduced between
closed and open systems. The former are closed because they do not exchange any-
thing (matter, energy etc.) with their environment. Only closed systems can achieve
an equilibrium, which corresponds to the maximum possible disorder or randomness
of the components of the system, that is, to the contrary of the order we observe in
economic development. Open systems exchange matter, energy, information etc.
with their environment. The rates of flow through the boundaries of the system
measure the distance of such system from equilibrium: the more intense such flows,
the more the system moves away from equilibrium. The interesting behaviour of
these systems only emerges when they are far enough away from equilibrium. In
these conditions, structure may emerge first and transitions between different types
of structure can occur subsequently. Transitions occur when the system, as a con-
sequence of its previous development, becomes unstable and undergoes a transition
to a different configuration. According to Prigogine, instability arises in the form
of fluctuations in some system variables. When fluctuations become sufficiently
intense they induce bifurcations, or transitions to different configurations of the
system, which not are only different from pre-transition ones but can also be in
higher numbers. As a consequence of bifurcations, the number of possible states of
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the system can increase, thus providing an in-principle justification for the growing
variety of the economic system.

Thus, Prigogine’s theory gives a potential explanation to (i) the emergence of
structure, (ii) the presence of transitions between distinguishable states of the system
and (iii) the growth in the number of possible system states after the transition. Pri-
gogine’s theory provides a potential explanation for the stylized facts listed above.
Incidentally, let us note that some very similar stylized facts apply to biological
development. Prigogine’s ideas provide an underlying theoretical framework for
both biological and economic development. Of course, the existence of this under-
lying theoretical framework does not mean that exactly the same type of explanation
will apply to biological and economic phenomena. Complexity theory is expected
to be applicable to many different types of systems at a high level of generality. The
complete analysis of each system involves such a general level and a more specific
one requiring the use of concepts and variables specific to the system itself. Thus,
the actual dynamics of biological and of economic systems cannot be expected to be
identical even if at a high level of generality they share the non-equilibrium nature
of evolution and the possibility of bifurcations.

What relationship can we expect to exist between Prigogine’s theory of complex-
ity and the existence of networks? First, networks are composed of nodes/vertices
and of links/edges. The nodes are the components of the socio-economic systems
and the links are their interactions. Thus, networks are the structure of socio-
economic systems. Following the previous considerations, we can expect (i) net-
works to emerge away from equilibrium and (ii) transitions between different types
of networks to occur, as the relevant system becomes unstable and undergoes a
bifurcation.

We can imagine the development of human networks to have begun as a con-
sequence of the most fundamental aspect of human behaviour, adaptation to the
external environment (Ext.Env). From very early on, it must have turned out that
collective adaptation was superior to individual adaptation. However, collective
adaptation involved coordination of individuals’ actions, resulting in a fall in the
number of degrees of freedom that would otherwise have been available to individu-
als. The constraints existing in the communities that adapted collectively occurred in
the form of rules (Dopfer, 2004) which limited and streamlined people’s behaviour.
Furthermore, coordination involved at its roots communication. Thus, the earliest
systems of rules that could provide coordination must have been language and law.
Such constraints on individual behaviour shaped inter-individual interactions and
shaped the earliest networks.

On the basis of the previous considerations on Prigogine’s theory of complex-
ity, we expect the evolution of a system, represented by a network, to occur by
means of a combination of the gradual adjustments of the system to its Ext.Env,
combined with inter-system transitions, induced by fluctuations in the previous sys-
tem configuration. It is to be pointed out that we can expect fluctuations to arise
endogenously within the system as a result of its previous evolution. Fluctuations
induce bifurcations, leading to discontinuous changes, giving rise to the emergence
of new structures/networks. The emergence of new structures/networks occurs by
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the creation of new boundaries and of new subsets of the system under consid-
eration, with the possible disappearance of older subsets. In network terms, this
amounts to the creation of new nodes and links and to disappearance of older ones.

In this context, fluctuations take an interesting meaning. Instability within an
existing structure/network is likely to arise as a consequence of the instability of
some existing links. This instability can be interpreted as a departure from dominant
rules, which in turn can allow the exploration of new subsets of Ext.Env and the
creation of innovations. This would be compatible with observations which imply
that historically innovations have tended to arise more frequently in societies which
were freer and less bound by tradition (see for example Landes, 1998).

According to stylized fact (iii) stated above, the variety of the economic sys-
tem increases during the process of economic development. In terms of networks
this could imply that the number of networks within the system increases. Another
important feature of network dynamics is the evolution of their connectivity. In fact
the variety of an economic system at best measures the number of its nodes but
does not say anything about its links, which are an important part of its structure.
Therefore, connectivity is an important part of network dynamics. We can expect
innovations to be introduced by entrepreneurs in a rule-poor environment, which
provides the required freedom and the scope for fluctuations. Not all fluctuations
are successful. At any time most of them are likely to be selected out. Precisely
for this reason, a society which is able to create more fluctuations will have a
greater chance of having successful ones. However, if the innovation is successful
we can expect it to be widely imitated and to diffuse gradually in society. In order
to acquire its ‘economic weight’, an innovation also requires the co-evolution of
appropriate institutions (Nelson, 1994). The creation of complementary technolo-
gies and of appropriate institutions leads to the formation of new links, thus raising
the connectivity of the system. For example, the creation of a regulatory institution
can be expected to lead to interactions with the firms and the other organizations
responsible for the production and use of the new technology. These interactions
may be impersonal and simply provide constraint, as it would happen in the case of
standard-creating institutions, or be more localized and directed, as in the case of a
firm producing complementary inputs to the innovation and technology concerned.
Examples of these situations for automobile could be (i) the ministries responsible
for issuing driving permits or driving rules and (ii) the firms producing and dis-
tributing tyres or petrol (Saviotti, 2005). In all these cases, the general meaning
of links is that they reduce the number of degrees of freedom of each node and
provide constraint. The behaviour of the nodes then becomes more highly corre-
lated. This progressive increase in connectivity as an innovation and the relative
technology mature on the one hand increases the potential market size of the new
technology by improving the technology with respect to its initial form but, on
the other hand, makes the new technology progressively more rigid, even if more
coherent. In this way, an increasing connectivity allows a technology to acquire
its full ‘economic weight’ but contributes to the process, whereby diminishing
returns gradually take over and slow down the rate of improvement of maturing
technologies.
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Network dynamics at the industry/technology level can be expected to be char-
acterized by low connectivity during the emergence phase and by growing connec-
tivity as the sector matures. At the aggregate level of the whole economic system,
increasing diversity/variety means an increasing number of nodes. However, this
increase is likely to be unevenly distributed in time and space. The creation of new
nodes cannot be expected to be followed immediately by the creation of new links.
The emergence of important innovations can be expected to lower connectivity
while the subsequent process of diffusion can be expected to raise connectivity.
Thus, aggregate connectivity cannot be expected to grow at all times, but it could
easily oscillate around a given value.

We can then expect some relationships to exist between the evolution of variety
and that of networks. Variety grows by the creation of new economic species (new
products, services etc.):

• First, we can expect the creation of new economic species to lead to a growing
number of distinguishable networks.

• Second, we can expect the phase of emergence of new economic species to occur
in an institutionally poor environment characterized by a low connectivity, but
we can also expect the subsequent phases of diffusion and of maturation of new
technologies to lead to a growing connectivity.

It has been recently discovered that a large class of networks possess some
common properties for which they are called scale-free (Barabasi and Reka, 1999;
Barabasi et al., 1999; Barabasi, 2002; Barabasi and Bonabeau, 2003; Reka et al.,
2000; Reka and Barabasi, 2002). In particular, these networks have a very asymmet-
rical distribution of links around nodes: few nodes have many links and many nodes
have few links. This distribution is very different from that predicted for previously
studied networks, called exponential networks, which had a much more egalitarian
distribution of links around nodes. Scale-free networks have a power law distribu-
tion while exponential networks have a Poisson distribution of links around nodes.
As a consequence, scale-free networks have the interesting property of being very
resistant to random attack: almost 80% of the links can be cut before a scale-free
network is destroyed, while the corresponding percentage for an exponential net-
work is less than 20%. However, a targeted attack selectively cutting links around
the most central nodes (hubs) destroys the network by cutting less than 20% of the
links.

Two conditions are required in order for scale-free networks to exist:

(i) growth – the number of nodes must grow;
(ii) preferential attachment – new links tend to be formed more easily with already

linked nodes.

These conditions are often present in socio-economic networks. In general, the
observed growth in variety of a number of economic species (technologies etc.)
can be expected to lead to a growing number of nodes. Thus, growing variety could
supply one of the two conditions required for the existence of scale-free networks. In
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socio-economic networks, the second condition – preferential attachment – depends
on sources of increasing returns to adoption. Examples of these sources are rep-
utational structure and various types of resources. Let us take the example of an
alliance between an incumbent large diversified firm (LDF) and a start-up. In its
choice of partner the start-up is likely to favour the LDF with the best reputation. If
the alliance leads to a further enhancement of the LDF’s reputation, other start-ups
will continue to favour it with respect to other LDFs. Moreover, if a growing num-
ber of alliances raise the resource base of incumbent LDFs, those already having
a greater number of alliances will be better able to form further ones than other
LDFs. Thus, conditions (i) and (ii) can be often found in socio-economic networks.
The presence of these two conditions leads to a higher probability of creation of
scale-free networks than to other types of networks, or to a higher relative rate
of variation for this type of networks. This condition is at best necessary, but not
sufficient, to justify a high concentration of scale-free networks. However, one of
the most important findings about this type of networks is their resistance to attack.
If we interpret attack as selection, scale-free networks are likely to have a high rate
of variation and a low rate of selection whenever conditions (i) and (ii) are satisfied.
On the other hand, since conditions (i) and (ii) are often present in socio-economic
networks, we can expect the scale-free geometry to be quite common in this type of
network.

These network properties are obviously interesting and highly relevant for socio-
economic networks. However, although research in scale-free networks has concen-
trated on the distribution of links around nodes, other related network properties
are of great importance. For example, the existence of scale-free networks implies
an uneven distribution of the degree of centrality of nodes. Few nodes are highly
central while others have a low centrality. Furthermore, the distribution of centrality
is likely to change dynamically, for example with the distribution becoming at times
more skewed or more even, the relative centrality of some nodes falling and that of
others rising. Another property whose role has already been discussed is connectiv-
ity. We have already seen how we can expect connectivity to rise or to fall during
the evolution of networks. The meaning of this property will be discussed in greater
detail in the next section.

2.3 Examples of Knowledge Networks

In what follows three examples of knowledge-related networks will be discussed:

(i) The network of knowledge itself, which will be presented only conceptually
but which will provide a good basis for the subsequent discussion.

(ii) The network representing the knowledge base of firms.
(iii) Innovation networks (INs) in biotechnology.
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2.3.1 Knowledge as a Network

Two very important properties of knowledge are (Saviotti, 2004)

(i) Knowledge is a correlational structure.
(ii) Knowledge is a retrieval/interpretative structure.

According to property (i) knowledge establishes correlations between different
concepts and variables (see also Loasby, 2001). It is therefore possible to represent
knowledge as a network whose nodes are concepts or variables and whose links
are given by the joint utilization of the concepts or variables. In this representation,
we would attain a complete knowledge of our Ext.Env if we had all the nodes corre-
sponding to all the concepts and/or variables of our Ext.Env and if the corresponding
network was fully connected. However, if we examine the way knowledge develops
we can realize that we are very far from complete knowledge. As the exploration of
our Ext.Env proceeds, we detect new observables and create appropriate variables.
This is done on a local basis, that is, starting from a casual observation or from the
solution of a practical problem (see also Popper, 1972). The subsequent evolution
of different fields of knowledge gives rise to disconnected networks. Let us take an
example.

In the past astronomy and medicine developed in completely separate ways.
There was no awareness that the entities to which the problems could be reduced in
the two fields had anything in common. Thus, astronomy proceeded by identifying
observables (the sun, the earth, planets, stars etc.) and constructed models of the
movements of these entities. Medicine on the other hand proceeded by identifying
organs and by trying to explain the behaviour of the whole body by means of its
organs. The awareness that organs were constituted by cells, cells by molecules
and molecules by protons, electrons and neutrons took centuries to come. In other
words, the networks of knowledge of astronomy and medicine were for a very long
time separate, and it was not realized that they could in principle be connected.
The awareness of the potential connectedness of these two and of other networks of
knowledge came only during the nineteenth century and gave rise to the so-called
Laplacian dream (Mirowski, 1989). One could say that the research programme of
molecular biology aims at connecting the networks of biology and physics. How-
ever, and in spite of the considerable successes achieved in this direction in the last
30 years, we are still very far from having identified all the possible nodes and links.
Thus, we can conclude that, although the final objective of knowledge is to construct
a complete network, containing all the possible variables of our Ext.Env and all the
possible connections linking these variables, the present state of our knowledge is
very far from that.

Some observations can help in understanding the present state of our knowledge
network. First, new observables are continuously discovered, although at a different
speed in different disciplines. Some disciplines (e.g. chemistry) are closer to matu-
rity and generate few new observables, while others (e.g. biology) keep generating
new observables and variables. Second, the rate of creation of new nodes by the
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discovery of new observables and variables precedes in general the creation of links
between the corresponding variables. In many cases we can expect the construction
of links to be a much slower process than the creation of new nodes. When, as a
result of new discoveries, new nodes are introduced in our network of knowledge
we can expect connectivity to fall. As links are established with the newly created
nodes, the connectivity of the system can start rising again. We can reinforce here
some trends we had already seen at a more general level:

(i) The emergence of novelty tends to create new but poorly connected nodes, thus
temporarily reducing the connectivity of the system.

(ii) The subsequent diffusion of the innovations establishes new links and raises
again the connectivity of the system.

(iii) As a result of (i) and (ii), the connectivity of the system is likely to fluctuate
around a given value.

It is important to realize here the role that connectivity can play in the dynam-
ics of socio-economic networks. Connectivity is generally measured by the density
of links per node in a network. Since in knowledge networks links represent the
existence of correlations between nodes/variables, in a high-connectivity knowledge
network variables are highly correlated. In turn, the existence of correlations leads
to a high probability of predicting the values of some variables from those of other
correlated variables. On the whole a high-connectivity knowledge network leads to
a high probability of predicting the behaviour of some parts of the network starting
from the knowledge of other parts. When our knowledge network is used to modify a
subset S of Ext.Env, a higher probability of predicting some parts of the knowledge
network leads to lower costs of modifying a subset S(Ext.Env) (Saviotti, 2004).
Thus, connectivity is a relevant property of a knowledge network, both in a cognitive
and in a technological sense.

The dynamic representation of knowledge used in this contribution (but see
Saviotti, 2004 for greater details) is compatible with Kuhn’s (1962) analysis of
the evolution of science. New observables and variables are likely to be created
when new paradigms emerge. In this early phase, we can expect new variables to be
poorly connected to those existing in the previous network of knowledge. Thus, the
emergence, or revolutionary, phase of a new paradigm is likely to be accompanied
by a falling connectivity of the network of knowledge. On the other hand, we can
expect the subsequent phase of normal science to be characterized by a growing
number of links, and thus by a growing network connectivity.

In a broader sense, the representation of knowledge as a correlational and as
retrieval/interpretative structure is compatible with the idea of knowledge as an
organized structure, to which both Kuhn’s and Lakatos’ theories belong (Chalmers,
1980). In particular, the representation of knowledge described in this contribution
is compatible with some recent structuralist theories of science (Balzer et al., 1987;
Franck et al., 1999) according to which the collection of all empirical science forms
a theoretical holon, composed of constellations of elementary theories, theories that
would be connected by inter-theoretical links of different types, such as equivalence,
specialization, connection.
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2.3.2 The Knowledge Base of Firms and Organizations

We can define the knowledge base of a firm or organization as the collective knowl-
edge that can be used to achieve the firm’s productive objectives. The term collective
is due to the fact that the process of knowledge creation in the firm is based on divi-
sion of labour and on coordination. Many individuals, departments, subsidiaries etc.
of the firm contribute to the creation of new knowledge, each carrying out a small
subset of the whole process. The production of the resultant knowledge necessarily
involves the coordination of all these activities. Clearly the organizational structure
of a firm can be expected to have an impact on the process of knowledge creation.

The study of firms’ (and organizations’) KBs is a very important component of
the creation of an economics of knowledge. In this section, two different methods
to map the KB and to measure its properties will be described. In both cases we
start by identifying some basic units of knowledge. In principle, we could refer to
the considerations of Sect. 3.1 and attempt to find all the variables corresponding to
a given piece of knowledge. This is generally impossible and we use instead more
aggregate units of knowledge, such as the technological classes contained in patents
or the themes contained in patents or publications. The representation of the KB that
we obtain by examining, for example, the patents of a firm is a network in which the
nodes are constituted by our units of knowledge and the links by the interactions of
the units of knowledge. In the work described here the interactions are measured by
the co-occurrence of the units of knowledge in the patents or in the other sources of
information that we are using.

The two methods we use to study firms’ KBs are different in that they refer
to different levels of aggregation. The first method, lexicographic analysis (LA),
detects the units of knowledge in the texts that we use as sources of information. LA
can detect in the text of patents short phrases corresponding to technological themes,
or alternatively the technological classes contained in the patent. The links of these
units are determined by their frequency of co-occurrence in the patents used. This
provides us with a graphic representation of the network of knowledge constituting
the KB at a given time. Repeating the study at different times we can map the evo-
lution of the KB and relate it to changes in firm strategy, firm organization etc. (see
Saviotti et al., 2003, 2005). In other words, LA allows us to represent the ‘brain’ of
the firm.

The second method we use starts by constructing a matrix of co-occurrences of
technological classes and provides us with a more aggregate representation of the
KB. In particular, it allows us to measure some of the properties of the KB, such
as its coherence, specialization, differentiation and similarity. On the basis of these
measures, it is possible to show that the KB of a firm is a determinant of the firm’s
performance (Nesta and Saviotti, 2005). These two methods are complementary.
LA provides us with a more disaggregate representation, by means of which we can
enter the firm’s KB, while the method based on co-occurrence matrices gives us
measures of the resultant properties of each KB. The graphic representation shown
here (Figs. 2.1, 2.2, 2.3, 2.4 and 2.5) was obtained by means of LA.

Figures 2.1 and 2.2 represent the KB of Hoechst for the periods (1993–1995)
and (1996–1998). Figures 2.3 and 2.4 represent the KB of Rhône Poulenc for the
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Fig. 2.1 Diagram for period 2 (1993–1995) of the co-occurrences between the main IPC classes
of Hoechst (the most central classes are represented in dark grey)

periods (1993–1995) and (1996–1998). Figure 2.5 represents the KB of Aventis, the
firm created by the merger of Hoechst and Rhône Poulenc. We can immediately
notice some properties of this KB network:

• The distribution of the frequencies and intensities/strengths of links around nodes
is highly heterogeneous. Few nodes have many links and other nodes have very
few links. Also, some nodes have very strong links while others have very weak
ones.

• In the KBs of both Hoechst and Rhône Poulenc we can see two parts which
have a high internal density of links while being very lightly connected to each

Fig. 2.2 The KB of Hoechst for period 3 (1996–1998) as represented by the co-occurrences
between the main IPC classes of its patents (the most central classes are represented in dark grey)
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Fig. 2.3 The KB of Rhône Poulenc for period 2 (1993–1995) as represented by the co-occurrences
between the main IPC classes of its patents (the most central classes are represented in dark grey)

other. Each of the two separate subsets of the KB of Hoechst and Rhône Poulenc
corresponds to a different type of knowledge, chemistry and biology, respectively.
Taking into account that during the period studied the two firms were attempting
to move away from chemistry and towards life sciences, the two subsets corre-
spond to the past and to the intended future of the firm, respectively. In other
words, Figs. 2.1, 2.2, 2.3 and 2.4 represent the changes in the KB of both firms
following from their strategic reorientation.

• Figure 2.5, representing the KB of Aventis after the merger, no longer shows
the separation into two distinguishable subsets, corresponding to chemistry and

Fig. 2.4 The KB of Rhône Poulenc for period 3 (1996–1998) as represented by the co-occurrences
between the main IPC classes in its patents



30 P.P. Saviotti

Fig. 2.5 The KB of Aventis after the merger, as represented by the co-occurrences of the
technological classes in the patents of Aventis

to life sciences. The whole KB seems to be better connected, realizing a more
complete integration of old and new knowledge. This better integration is con-
firmed by a measure of the number of links per node, which can be considered
an approximate measure of network density and which is considerably higher for
Aventis after the merger with respect to both Hoechst and Rhône Poulenc before
the merger (Table 2.1). Furthermore, the distribution of links around nodes is
highly asymmetrical.

Table 2.1 Number of nodes, links and links per node in the above representation of the KB of
Hoechst, Rhône Poulenc and Aventis

Hoechst Rhône Poulenc Aventis

P2
(1993–1995)

P3
(1996–1998)

P2
(1993–1995)

P3
(1996–1998) 2002

Nodes (N) 33 22 31 32 24
Links (L) 55 36 46 54 73
L/N 1.67 1.64 1.48 1.69 3.04
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2.3.3 Innovation Networks

Another type of knowledge-related network that we studied is that of INs in biotech-
nology. They are constituted by small dedicated biotechnology firms (DBFs), by
LDFs, mostly pharmaceutical but sometimes belonging to other sectors, and by
public research institutes (PRIs). These three types of actors interact by forming
alliances one of whose main objectives is the creation of new knowledge. These
networks were studied during the period 1973–1999 using data from the RECAP
database (Catherine, 2005). INs are part of a class of inter-firm alliances which
emerged starting from the early 1980s. At that time INs were considered by many
economists a temporary form of industrial organization. Existing economic theories
predicted that only markets and hierarchical organizations could be stable. Inter-firm
alliances were considered a temporary response to shocks, a response which would
have disappeared once the shocks had been absorbed by the economic system. Yet,
25 years later the number of INs keeps increasing (Fig. 2.6). INs seem to have
become a new and stable form of industrial organization. However, the full answer
is more subtle than that.

If we break down the whole period 1973–1999 into two sub-periods distin-
guished by the main technologies used in each one, the picture becomes consid-
erably different. If we consider that modern biotechnology was created by the
potential industrial applications of molecular biology, we can distinguish in its
subsequent evolution two generations of biotech, linked to recombinant DNA and
monoclonal antibodies and to genomics, respectively. The former begins in the mid-
1970s and the latter in the mid-1980s. By classifying all the technological alliances
in the data set as belonging either to the first or to the second generation, we can plot
separately curves describing their numbers, represent separately their networks and
measure properties of these networks, such as density, centrality (Figs. 2.15, 2.16
and Tables 2.2 and 2.3). A number of interesting results emerge:
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Table 2.2 Centrality of the different actors (DBFs = PM, LDFs = GGI, PRIs = INS) involved in
the first generation of biotechnology alliances

First-generation
biotechnology Period 1976–1984 Period 1985–1992 Period 1993–1999

Actor’s type DBFs LDFs PRIs DBFs LDFs PRIs DBFs LDFs PRIs

Average number
of agreement

5.67 3.20 2.63 6.20 10.79 2.61 6.12 15.50 2.05

Average Ndegree
centrality

5.84 3.30 2.71 1.71 2.97 0.72 1.41 3.58 0.47

Median Ndegree
centrality

3.09 2.06 2.06 1.10 1.38 0.55 0.92 1.73 0.23

Average
betweeness
centrality

4.95 2.82 0.85 0.71 1.38 0.20 0.40 1.40 0.10

Median
betweeness
centrality

1.17 0 0 0.20 0.53 0 0.07 0.18 0

• First, the total number of INs in biotechnology keeps increasing (Fig. 2.7).
• Second, the number of INs corresponding to the first generation reaches a

maximum in 1996 and then starts declining (Fig. 2.8).
• Third, if in each generation we separate the alliances linked to R&D from those

linked to marketing we see that they have a different dynamics. In particular,
alliances related to R&D dominate in the early phases but peak out and decline
later, while marketing alliances emerge later but dominate the late phases of the
life cycle of the biotech generation we are considering (Figs. 2.9 and 2.10).

One of the most interesting results of this study is that INs in each generation of
biotechnology follow a life cycle, in which the number of INs rises at first, reaches a
maximum and then declines. In the meantime, the type of agreement changes from
R&D to marketing passing from the early to the late phases of the life cycle.

Other interesting results emerge when we represent graphically the INs corre-
sponding to the two generations (Figs. 2.11, 2.12, 2.13 and 2.14). Here, we can
see that for each generation both the number of nodes and the number of links
rises during the life cycle. However, the density of links seems to be falling all

Table 2.3 Centrality of the different actors (DBFs = PM, LDFs = GGI, PRIs = INS) involved in
the second generation of biotechnology alliances

Second-generation biotechnology Period 1985–1992 Period 1993–1999

Actor’s type DBFs LDFs PRIs DBFs LDFs PRIs

Average number of agreement 5.98 5.90 5.48 12.50 25.13 9.27
Average Ndegree centrality 2.48 2.45 2.27 1.68 3.38 1.25
Median Ndegree centrality 2.08 1.66 1.66 1.21 1.55 0.81
Average betweeness centrality 2.70 2.21 2.69 0.41 0.97 0.13
Median betweeness centrality 1.91 1.36 2.14 0.18 0.15 0.07
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Fig. 2.11 Networks, first-generation biotech, 1973–1984

Fig. 2.12 INs, first-generation biotech, 1993–1999
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Fig. 2.13 INs, second-generation biotech, 1985–1992

Fig. 2.14 INs, second-generation biotech, 1993–1999
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Fig. 2.15 Evolution of network density for the first-generation biotechnology

throughout the life cycle, with the possible exception of the very late phases of the
first generation (Figs. 2.15, 2.16 and 2.17).

Finally, the centrality of the different actors changes during the evolution of the
life cycle (Tables 2.2 and 2.3). The Ndegree centrality of DBFs (PM) is high initially
and tends to fall as the life cycle tends towards maturity, that of LDFs (GGIs) falls
slightly while remaining rather high, that of PRIs (INS) is initially high but falls to
the lowest values of the three actors. The first and second generations show qualita-
tively the same type of evolution but differ for the relative extent of decline as the life
cycle moves towards maturity: in the case of genomics the Ndegree centrality shows
a more moderate fall, perhaps due to the shorter duration of the period studied.

Summarizing the results of this section we could say the following:

• INs in biotechnology seem to undergo a life cycle in which the number of
alliances rises at first, reaches a maximum and then declines. During the same
life cycle, the character of alliances changes from mostly R&D based in the early
phases towards mostly marketing based in the late phases.

• This cyclical behaviour can be observed only at the level of aggregation of the
generation of biotechnology (1st = Recombinant DNA+monoclonal antibodies,
2nd = genomics). The overall time profile of the number of alliances shows a
continuous growth.

• The networks of both generations of biotechnology show an asymmetrical distri-
bution around nodes. The distribution has not yet been measured.
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Evolution de l'indice de Centralization réticulaire de la 2nde génération biotechnologique
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• During the life cycle observed so far, the number of nodes grows and the number
of links grows but network density seems to fall.

• The Ndegree centrality of the different actors involved in the networks (DBFs,
LDFs, PRIs) tends to fall at different rates, that of LDFs remaining the highest in
the long run.

A short comment is required here to interpret the meaning of network density
in this case. The creation of new nodes is here due to the creation of new firms.
At the beginning we can expect these firms to be relatively poorly connected to the
existent economic system. Their early emergence can be expected to be accompa-
nied by a low density of their networks, thus reducing the overall density of the
networks in which they can be embedded. However, in order to grow the new firms
have to establish interactions with dealers, regulators, customers, suppliers etc., thus
leading to a growing density of their networks. The same situation is likely to apply
to all firms in new, emerging sectors. Thus, we can expect new sectors to start with
low-density networks and to undergo a growth of network density as they mature. In
this sense, we can expect new sectors to benefit from the growth in network density
occurring during their maturation, although this greater density will also imply a
greater difficulty of introducing into the sector further innovations, especially if
they are challenging the existence of the links already formed in the network. Of
course, the same reasoning can be expected to apply to the technologies which give
rise to the creation of new sectors or sub-sectors, as in this case. In fact, one of
the main reasons for which network density can be expected to behave in the way
described above is the role played by knowledge in the creation and in the dynamics
of industrial sectors.

2.4 Conclusions

In this contribution, we studied the properties of a number of knowledge-related net-
works and tried to interpret them in the light of some recent literature on complexity
and on networks. The existence and properties of networks can find their roots in
more general theories of complexity, such as that of Prigogine. According to these
theories the emergence of structure, or order, in a system requires the system to
be open and therefore away from equilibrium. Furthermore, transitions involving
changes of structure in the system occur as the open system moves further away
from equilibrium. Networks, constituted by nodes and links, can be considered the
structure of socio-economic systems. Thus, both their existence and their transitions
can in principle find an explanation if they are open systems away from equilibrium.

In general, we can expect the number of distinguishable networks in an economic
system to grow as the variety of the same system grows. Furthermore, we can expect
the connectivity/density of a network to vary in meaningful ways, for example to
fall during the emergence phase of new structures and to rise during the subse-
quent phases of diffusion and maturation. The connectivity/density of a network
can be expected to involve both advantages and disadvantages. Advantages can be
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the greater ease of connecting different variables and the greater economic scope
acquired by new firms when they improve their links to the rest of the economic
system. Disadvantages are the growing rigidity of highly connected networks and
the consequent difficulty in introducing into them further innovations. In Schum-
peterian terms one could expect the entrepreneurial activity leading to innovations
to be accompanied by a low network density and the subsequent routinization of
innovations to be accompanied by a growing network density.

The actual networks of knowledge we studied tend to confirm a number of these
expectations:

• In general, they show not only a heterogeneous distribution of links around nodes
but also a highly asymmetrical distribution of strengths or intensities of the links.

• The conditions required for the existence of scale-free networks are generally
present. In particular, during the emergence phase of new structures or of novelty,
the number of nodes tends to increase rapidly.

• As a consequence, the connectivity/density of the network tends to fall during
the emergence phase and to fall during the subsequent phases of diffusion and
maturation.

• The expected time path of connectivity/density is more likely to fluctuate than to
rise uniformly.

• We can expect a meaningful relationship to exist between variety growth and net-
work dynamics. As pointed out above, the emergence of new economic species,
giving rise to a growing variety, is likely to be accompanied by a fall in connec-
tivity/density while the subsequent phases of diffusion and maturation are likely
to see a rise in connectivity/density.

• Since variety only measures the number of nodes, the addition of connectivity,
based on the interactions of the components of the system, provides us with a
more complete analysis of the evolution of the complexity of a socio-economic
system.

This contribution is much more speculative than definitive, concentrating on
possible generalizations of the role and dynamics of socio-economic systems. A
considerable amount of further work will be required to test and articulate the propo-
sitions suggested in this contribution. However, it seems that the themes treated
are of central importance to understand the complex dynamics of socio-economic
systems, in particular as we move towards a knowledge-based society.
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Chapter 3
Death of Distance in Science? A Gravity
Approach to Research Collaboration

Koen Frenken, Jarno Hoekman, Suzanne Kok, Roderik Ponds, Frank van
Oort, and Joep van Vliet

3.1 Introduction

One of the major transitions in recent scientific research is the rise of network theory
motivating a variety of new research programmes in and across various disciplines.
Economic geography has been no exception. The work on networks in economic
geography can be divided into two types of research. First, there are studies on inter-
firm networks and their impact on firm performance. For a large part, such studies
have been carried out in the context of geographical clusters, which are often char-
acterised by strong network relations (Uzzi, 1997). A second approach, an example
of which is presented below, concerns the study of inter-regional networks and their
impact on regional growth. Here, the unit of analysis are territories, typically sub-
national regions. The interest in this topic stems from Castells (1996) and others
who have argued that regional growth increasingly depends on a region’s position
in global networks rather than its specific local characteristics such as institutions,
endowments and amenities (‘space of flows’ versus the ‘space of places’).

The reorientation in economic geography from the study of the ‘space of places’
to the ‘space of flows’ has lead some to argue that a new ‘relational economic
geography’ paradigm is emerging. In such a paradigm, territories are not to be
seen as meaningful unit of analysis with certain objective characteristics, but as
‘socially constructed’ in the ongoing interactions between social actors (Bathelt and
Glückler, 2003). Such a conception fits well with the concept of the knowledge-
based society where economic development is increasingly dependent on intangibles.

The study of inter-regional networks and the Castells thesis also relate to evo-
lutionary economics and its application to economic geography (Boschma and
Frenken, 2006). In recent evolutionary models of network formation, network evo-
lution is understood as an entry process of new nodes connecting with certain
probability to existing nodes depending on the latter connectivity (Barabasi and
Albert, 1999). This logic of ‘preferential attachment’ explains the emergence of
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spatial core-periphery structure among regions as a process of network growth.
Such networks concern, for example, transportation systems, multinational corpo-
rations and labour mobility flows. More recent models have explicitly incorporated
geography in evolutionary models of network evolution by having the connection
probability of a new node to an existing node also depend on the geographical prox-
imity between two nodes (Guimerà and Amaral, 2004; Barrat et al., 2005). In this
way, a parameter can be introduced to reflect transportation costs such that different
network structures can be explained by differences in transportation costs.

In this study, we are interested in inter-regional networks of scientific knowl-
edge production as a specific example of spatial networks. Popular belief holds that
geography no longer matters in scientific collaboration. With the arrival of cheap
air travel, English as a global language and the Internet, science has become truly
global – at least according to common wisdom. What is more, increasing fund-
ing opportunities to engage in international partnerships have further facilitated
long-distance collaboration. A growing number of studies on international collab-
oration seem to evidence this trend (Narin et al., 1991; Luukkonen et al., 1993;
Frenken, 2002; Wagner and Leydesdorff, 2005; Maggioni and Uberti, 2007).

Yet, without disputing the secular trend of the internationalisation of scientific
research in recent history, the ‘death of distance’ hypothesis has not been proven
in this particular field. One may wonder whether the forces that are ‘flattening’ the
world indeed removed the geographical barriers to collaborate in science. Earlier
studies looking at inter-regional collaboration found that geography is still rele-
vant in facilitating scientific collaboration within countries. Studies on collaboration
within the UK (Katz, 1994), China (Liang and Zhu, 2002) and The Netherlands
(Ponds et al., 2007) show that geographical distance reduces the probability of
researchers to collaborate.

We test the ‘death of distance in science’ hypothesis by focusing on both interna-
tional and inter-regional research collaboration based on scientific publications with
multiple addresses. Our data set consist of three distinct subsets that cover geo-
graphical areas at several spatial levels of aggregation. We explain the collaboration
intensity between 36 countries in the world, 1316 regions in Europe and 40 regions
in the Netherlands from their respective scientific output and geographical distance
using gravity equations. In addition to possible barriers stemming from geographi-
cal distance, we also analyse barriers stemming from ‘institutional distance’ in the
form of national borders and in the form of dissimilarities between organisational
backgrounds, respectively.

3.2 Science and Proximity

If anything has characterised knowledge production in science during the twentieth
century, it is its increased collaborative nature (Meyer and Bhattacharya, 2004).
Co-authorships accounted for less than 10% of all publications at the start of the
twentieth century, while co-authorships account for over 50% of all publications
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at the end of the twentieth century (Wagner-Doebler, 2001). The share of inter-
national collaboration has also been increasing (Narin et al., 1991; Wagner and
Leydesdorff, 2005).

The general facilitator of this trend has been technological advance in trans-
port and in information and communication technology. Yet, there are also specific
reasons that explain the increasing tendency to collaborate. With the universe of
scientific knowledge ever expanding, researchers need to specialise to remain able
to contribute to state-of-the-art knowledge production. Specialisation in turn neces-
sitates to collaborate with relevant partners, which may only be found over longer
distances. As the costs of training and research infrastructures are increasing, col-
laboration also provides opportunities to pool resources and to realise savings by
avoiding duplication of research efforts (Katz and Martin, 1997).

Collaboration is expected to bring intellectual benefits from the cross-fertilisation
of ideas that previously were unconnected. One way to indicate these benefits is
by comparing citation rates. Co-authored papers receive more papers than single-
authored ones, and internationally co-authored papers receive more citations than
nationally co-authored ones (Narin et al., 1991; Katz and Martin, 1997; Frenken
et al., 2005).

At the national and European level, particular funding schemes provide economic
incentives to promote collaborative knowledge production. For instance, the partic-
ular aim of the European Union is to create an integrated pan-European research
system (i.e. European Research Area). Hence, their funding schemes are explicitly
focused on funding international research projects and on removing barriers that
currently hinder researchers. The financial efforts of the European Union for collab-
oration in science and technology have once again been increased substantially in
the seventh framework programme (2007–2013).

While the internationalisation trend in research collaboration has received a lot
of attention in recent times, only a few scholars have focused on the specific role of
geography in scientific knowledge production. Yet, we hypothesise that geography
is still important for research collaboration for reasons related to the background
of the scholar as well as to the context in which he/she operates. With regard to
the latter aspect, transportation costs are still present and in view of this, costs of
collaboration are expected to increase as a function of geographical distance. Hence,
two researchers that are geographically proximate are more inclined to collaborate
as compared to two researchers that are geographically distant. Furthermore, many
barriers to collaboration still have to be overcome when crossing national borders
as most of the relevant institutions such as property right regimes, labour markets,
university regulations and funding schemes are still organised predominantly at the
national level (Edquist and Johnson, 1997). Accordingly, two researchers operating
in the same country are more inclined to collaborate as compared to two researchers
operating in two different countries.

With respect to the background of the scholar, barriers exist when researchers
from different organisations are collaborating due to differing goals and underlying
incentive structures. For instance, academic scholars want to maximise the diffu-
sion of their knowledge, while industrial agents want to minimise such diffusion.
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The complexity of these collaborations renders it generally impossible to encode all
contingencies in a contract and consequently, these collaborations have to rely, at
least partially, on less formal institutions thereby reducing the risk of opportunism.
Therefore, it is expected that in the case of collaboration between academic and non-
academic organisations geographical proximity may be supportive in establishing
successful partnerships. Geographical proximity may help to overcome problems
related to differing goals and incentives, because of a common interest in exchang-
ing labour, accessing local funds and mutual trust induced by informal contacts
and interaction. Thus, two researchers from organisations with similar backgrounds
are more inclined to collaborate over longer distances than two researchers with
different backgrounds.

In short, despite the decreased costs associated with long-distance collaboration
due to cheap air travel and the Internet, and despite the efforts of the European Com-
mission to further promote international collaboration with the European Union, we
expect ‘proximity’ – both in the form of geographical and in the form of institu-
tional proximity – to remain an important determinant of research collaboration
(Gertler, 2005; Boschma, 2005; Torre and Rallet, 2005).

3.3 Data and Methodology

3.3.1 Data

In this study, the quantity of scientific collaboration is measured using co-publications.
Scientific publications are the most common form of output in scientific research,
which implies that collaboration in scientific research will often be reflected in a
co-publication. The data on these co-publications have been retrieved from web of
sciences (wos). Web of science contains information on publications in all major
journals in the world from 1988 onwards. From this database we retrieved the
address information on publications and constructed three distinct data sets.

The first data set concerns international co-publications between countries for 36
countries in the world for the year 2004. The countries were selected based on their
scientific output and population numbers.1 Subsequently, the number of collabora-
tions between countries was identified by using the AND query in the address field
applied to each possible pair of countries and covering all scientific disciplines.

1 More specifically, we selected all countries with a population of more than one million inhab-
itants and with a total scientific output of more than 5000 articles in 2004. We ended up with
the following 36 countries: (1) Argentina, (2) Australia, (3) Austria, (4) Belgium, (5) Brazil, (6)
Bulgaria, (7) Canada, (8) China, (9) Denmark, (10) Finland, (11) France, (12) Georgia, (13) Ger-
many, (14) Greece, (15) Hungary, (16) Ireland, (17) Israel, (18) Italy, (19) Japan, (20) Korea, (21)
Mexico, (22) Netherlands, (23) New Zealand, (24) Norway, (25) Poland, (26) Portugal, (27) Roma-
nia, (28) Singapore, (29) South Africa, (30) Spain, (31) Sweden, (32) Switzerland, (33) Taiwan,
(34) Turkey, (35) United Kingdom, (36) United States.
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The second data set (Frenken et al., 2007) was constructed for two scientific
disciplines. The disciplines concern ‘biochemistry and molecular biology’ (BMB)
and ‘electrical and electronical engineering’ (EEE), following the classification of
Verbeek et al. (2002). This database consists of all inter-regional co-publications
in the EU27 and Norway and Switzerland for the period 1988–2004. Regions are
classified on the NUTS3 level, which roughly corresponds to labour market areas.
We were not able to locate all addresses and also removed some remote locations
from the database. The outcome is a total number of 1316 NUTS3 regions instead
of 1329.2 Hence, all addresses occurring in publications have been assigned to one
of the 1316 NUTS3 regions in the aforementioned 29 countries in Europe.

The third database (Ponds et al., 2007) contains all scientific publications in the
Netherlands for eight selected scientific disciplines in physical and life sciences,
again following the classification of Verbeek et al. (2002).3 More specifically, all
publications with at least one address in the Netherlands have been retrieved for the
period 1988–2004 and subsequently classified at the NUTS3 level. This database
also distinguishes between three different types of organisations: academic organi-
sations, firms and governmental/non-profit-making organisations. In order to do so,
we used an algorithm with a list of abbreviations and words to assign each address
to one of three types of organisations. For example, organisations with ‘univ’ in
its name are assumed to be a university and therefore an academic organisation.
Furthermore, specific names of Dutch research organisations were included in the
algorithm. In the end, 99% of the organisations were assigned correctly to one of
the three types of organisations and one of 40 NUTS3-regions.

In all the data sets, a collaboration link is represented by a co-publication with
multiple addresses, either in different countries (database 1) or in different regions
(databases 2 and 3). The collaboration intensity between region i and j, labelled Ii j ,
is then defined by the number of times addresses from these two countries/regions
co-occur in a publication. Intensity of collaboration between two countries or
regions is thus measured by ‘full counting’. For example, if a publication con-
tains three addresses in three different regions, the collaboration intensity between
each pair of regions is 1. Alternatively, one can use fractional counting where a

2 We were not able to locate the addresses within the greater urban areas of London and Manchester
and as a result consolidated them into two new ones. Furthermore, we excluded some islands
due to their remote locations and disproportional great geographical distances to other regions.
These islands are: Guadeloupe Las Palmas (ES), Santa Cruz de Tenerife (ES), Guadeloupe (FR),
Martinique (FR), Guyane (FR), Réunion (FR), Região Autónoma dos Acores (PT) and Região
Autónoma da Madeira (PT). The outcome is a total number of 1316 NUTS3 regions instead of
1329.
3 These technologies are: (1) agriculture and food chemistry, (2) biotechnology, (3) organic fine
chemistry, (4) information technology, (5) optics, (6) semiconductor technology, (7) telecommu-
nication technology, (8) analysis, measurement and control technology. The two scientific disci-
plines analysed in exercise 2 are subdisciplines of biotechnology and semiconductor technology,
respectively.
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co-occurrence of two regions in a publication is divided by the total number of col-
laborations. For example, if a publication contains three addresses in three different
regions, the collaboration intensity between each pair of regions is 1/3.4

3.3.2 Gravity Model

We apply a gravity model to explain the number of co-publications between two
countries or regions from the respective size of the entities and their geographical
and institutional proximities.5

Spatial interaction, the process whereby actors at different points in physical
space make contacts, can be revealed by applying an analogical model of Isaac
Newton’s Theory of Universal Gravitation (Tinbergen, 1962; Sen and Smith, 1995;
Roy and Thill, 2004). In a gravity model, the gravitational force – in this case the
collaboration intensity between two objects – is assumed to be dependent on the
mass of the objects and the distance between them. The basic gravity equation is
therefore as follows:

Ii j = α1

MASSα2
i MASS α3

j

DISTANCE−α4
i j

. (3.1)

Taking logarithms on both sides of the equation and introducing general expo-
nents, such a gravity model can be estimated using linear regression:

ln Ii j = ln α1 + ln α2MASS i + ln α3MASS j + α4 ln DISTANCE i j + ε, (3.2)

where MASS i stands for the total number of publications in country/region i,
MASS j stands for the total number of publications in country/region j, and
DISTANCE i j for the geographical distance between two countries/regions.6 It is
important to take into account the total number of publications in a country or a
region, because collaboration intensity is highly dependent on size. If collaboration
would be random, most collaborations will automatically occur between the largest
spatial units.

4 The final matrix of inter-regional interaction strength based on full counting is very similar to the
final matrix obtained by fractional counting.
5 In this, we follow Maggioni and Uberti (2007) who applied this model to EU regions using
datasets other than co-publications (co-inventorships, student mobility flows, hyperlinks and EU
framework projects). A similar approach was also followed by Maurseth and Verspagen (2002)
using inter-regional patent citation data.
6 Because collaboration links are undirected by definition, we included a pair of countries/regions
only once, which implies that the value of the coefficient of the two masses may slightly differ.
Note also that in the second exercise we added one to all masses in order to allow for logarithmic
transformations of observations without any publications.
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In the first exercise we analyse collaborations between countries. Although mea-
suring geographical distances between countries is not straightforward, we use a
proxy that captures the flight distances between the capitals of the respective coun-
tries. We also include a dummy for the countries that are members of the European
Union to test whether these countries are more inclined to collaborate with each
other. So, we get

ln Ii j = ln β1 + β2 ln MASS i + β3 ln MASS j+
β4 ln DISTANCE i j + β5 EUi j + ε.

(3.3)

In the second exercise, we analyse collaboration intensity between NUTS3
regions, where we use the logarithm of geographical distance in kilometres, where
geographical distance DISTANCE i j is calculated between the central points of the
regions (as the crow flies) using maps made available by the European Spatial Plan-
ning Observation Network (ESPON). In addition, we specify institutional proximity
by a dummy COUNTRY i j which takes on a value of 1 for two regions belonging
to the same country and 0 otherwise. So we get

ln Ii j = �1 + �2 ln MASS i + �3 ln MASS j + �4 ln DISTANCE i j

+ �5COUNTRY i j + ε.
(3.4)

In the third exercise, we analyse collaborations between Dutch NUTS3 regions,
where we distinguish between three different types of collaborations: collaborations
between academic organisations, collaborations between academics and firms and
collaborations between academic and governmental organisations. Since we were
able to trace back the travel times between NUTS3-regions in the Netherlands, we
used the more accurate variable TRAVELTIME i j instead of the physical distance
between the regions.

ln Ii j = δ1 + δ2 ln(MASS iMASS j )+ δ3 ln TRAVELTIME i j + ε. (3.5)

Following Ponds et al. (2007), we treat masses here as the product, which is a
different yet equivalent specification of the gravity equation.7

For collaborations between countries in the first data set and for collaborations
within the Netherlands in the third data set, the gravity equation is estimated using
negative binomial regression techniques. As we deal with count data and we have
a conditional variance that is larger than the conditional mean (overdispersion), the
negative binomial regression model seems to be most appropriate.

In the second data set (inter-regional collaboration) an excessive number of zero
counts biases the results, for which we corrected by the use of a zero-inflated nega-
tive binomial regression. This method considers the existence of two (latent) groups

7 The treatment of zeroes differs as well compared to the previous studies. For an overview of the
exact data-treatment of the third exercise, we refer to Ponds et al. (2007).
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Table 3.1 Specification of regression models

Disciplines and types of Regression
Model Scale Period Countries collaborations technique

1 Countries 2004 36 countries All scientific disciplines Negative
Binomial

2–3 NUTS3 1988–2004 EU27 Norway
Switzerland

Biochemistry and
molecular biology
(BMB)

Zero Inflated
Negative
Binomial

Electrical and
electronical
engineering (EEE)

4–11 NUTS3 1988–2004 Netherlands Eight disciplines in life
sciences and physical
sciences
differentiating
between academic,
academic-firm and
academic-
governmental
collaborations

Negative
Binomial

within the population: a group having strictly zero counts and a group having a
non-zero probability of counts different than zero. Correspondingly, its estimation
process consists of two parts. The first part contains a logit regression of the pre-
dictor variables on the probability that there is no collaboration between two given
regions at all. The second part contains a negative binomial regression on the prob-
ability of each count for the group that has a non-zero probability of count different
than zero. A good technical discussion of the zero-inflated negative binomial model
is provided by Long (1997). An overview of the three data sets and estimation
techniques is provided in Table 3.1.

3.4 Results

Table 3.2 shows Model 1 reporting on the estimates for collaborations between
countries. The alpha-statistic turns significant indicating that the estimates of the
negative binomial regression model are most reliable in this case. The fit statistics
of the model suggest that the added covariates adequately fit the data. Indeed size
contributes positively indicating an increase in collaboration between two countries
if the actors in these countries produce a larger number of publications.

The explanatory of main interest, geographical distance, shows a statistical sig-
nificant effect on the knowledge collaboration between countries too. Geographical
distance yields a negative and significant effect, indicating major impediments
towards collaborations over longer distance. What is more, a significant effect for
research collaborations within the EU is not found, suggesting that, apart from
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Table 3.2 Regressions results for international collaborations between 36 countries in the world
(Eq. 3.3)

Model 1

Constant 3.711 (0.443)∗∗

MASSi (ln) 0.535 (0.020)∗∗

MASS j (ln) 0.754 (0.018)∗∗

DISTANCEi j −0.425 (0.039)∗∗

EU 0.076 (0.096)

Fit statistics
Over dispersion (α) 0.571 (0.031)∗∗

Log-likelihood 3795.263
Mc Fadden’s Adj. R2 0.119
AIC 12.068
N 630

Note: Significance levels: ∗∗ 0.99, ∗ 0.95, Standard error in parentheses.

advantages that accrue from shorter distances between EU member states, collab-
orations between these states do not occur more often than collaborations between
other countries in the world.

In Table 3.3 Models 2–5 are presented. The table shows the inter-regional regres-
sion models with both models presenting successively a negative binomial part, a
zero-inflated part and some general fit statistics. The latter include tests checking

Table 3.3 Regressions results for inter-regional collaborations in Europe (Eq. 3.4)

Model 2 Model 3

BMB EEE
Negative binomial part
Constant −5.401 (0.086)∗∗ −4.064 (0.133)∗∗

MASSi (ln) 0.649 (0.005)∗∗ 0.533 (0.009)∗∗

MASS j (ln) 0.636 (0.005)∗∗ 0.552 (0.010)∗∗

DISTANCEi j (ln) −0.368 (0.010)∗∗ −0.301 (0.016)∗∗

COUNTRYij 1.160 (0.022)∗∗ 0.824 (0.036)∗∗

Zero-inflated part
Constant 7.366 (0.165)∗∗ 6.999 (0.202)∗∗

MASSi (ln) −0.770 (0.009)∗∗ −0.851 (0.013)∗∗

MASS j (ln) −0.779 (0.009)∗∗ −0.832 (0.014)∗∗

DISTANCEi j (ln) 0.359 (0.021)∗∗ 0.423 (0.027)∗∗

COUNTRYij −1.359 (0.048)∗∗ −1.112 (0.059)∗∗

Fit statistics
Over dispersion (�) 0.881 (0.014)∗∗ 1.333 (0.034)∗∗

Vuong-statistic 27.250∗∗ 20.410∗∗

Log-likelihood −99774.550 −51301.529
Mc Fadden’s Adj. R2 0.458 0.439
AIC 0.231 0.119
N 865270 865270
Non-zero observations 25589 12531

Note: Significance levels: ∗∗ 0.99, ∗0.95. Standard error in parentheses.
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whether the choice of zero-inflated negative binomial regression models is appro-
priate. Overall, the likelihood ratio test of over dispersion and the Vuong-statistic
are significant suggesting that the zero-inflated negative binomial regression model
presents the most efficient estimates.

It is essential to keep in mind that a positive sign in the zero-inflated part indicates
that with a one percent positive change in the predictor, the chance of belonging
to the ‘strictly zero group’ increases, ceteris paribus. Thus, the coefficients in the
zero-inflated part should be interpreted reversely in comparison to the negative bino-
mial part: a positive value in the negative binomial part has the same meaning as a
negative value in the zero-inflated part and vice versa.

Again the estimations indicate that geographical proximity matters for collab-
orations. An increase in distance negatively affects the chance and intensity of
collaboration between two regions. The dummy variable indicating institutional
proximity (here, whether two regions belong to the same country) shows the
expected positive signal and turns out to be significant. This indicates that apart
from a general effect of geographical distance on research collaboration, there is
also an extra effect of institutional distance on the chance and intensity of research
collaboration.

In Tables 3.4, 3.5 and 3.6, Models 4–11 further zoom in and show the results for
inter-regional collaborations between Dutch NUTS3-regions differentiated to insti-
tutional backgrounds. Within life sciences (Models 4–6), travel time has a significant
and negative effect on the intensity of collaboration for all the three distinguished
forms of collaboration.

The coefficient for travel time is higher for collaboration between academic
and governmental organisations than for academic collaboration and collabora-
tion between firms and academics. Differences are, however, relatively small. The
higher coefficients for collaboration between academic and non-academic organi-
sations suggest that geographical proximity is more important for these forms of
collaboration.

In the case of the physical science-based technologies (Models 7–11), travel time
has no significant effect on the intensity of academic collaborations at all. Collab-
orations between all other types of collaborations turn out to be significant with
the exception of academic-company relations in the field of optics. Yet, in physical
sciences differences between academic-governmental relations and academic-firm
relations are absent with the exception of the fields of optics8.

We thus obtain quite different results for academic collaborations when com-
pared to all other types of collaborations. Even at the relatively small scale of the
Netherlands, geographical proximity is still important for collaborations. Yet, the
importance varies between forms of collaboration, and academic collaborations do
not seem to be sensitive for geographical distance. The result suggests that univer-
sity scholars are less sensitive for geographical distance in collaboration. One can

8 A more explicit treatment of differences between scientific disciplines in the extent and reach of
collaboration can be found in Ponds et al. (2007).
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assume that academic collaborations involve the production of knowledge that is
more codified than the knowledge produced in collaborations in which a firm or
government agency participates. In this light, our results are in line with the idea
that collective production of codified knowledge is less dependent on face-to-face
contact, and thus less sensitive to geographical distance.

3.5 Conclusions

In this contribution, we tested the ‘death of distance’ hypothesis for research col-
laboration using data on publications with multiple addresses. In contrast with
previous studies focusing on collaborations between nation states, this study also
analysed inter-regional collaboration both within countries and between countries.
We tested the effect of geographical proximity and institutional proximity using the
gravity equation and found strong evidence that geographical distance and national
borders still hamper research collaboration. However, by distinguishing between
different types of collaborations for the Netherlands, we find that geographical
proximity matters significantly less in establishing collaboration between academic
organisations than in case of all other types of collaborations.

In light of research policy, our analysis proves that policies to enhance the
propensity of collaboration over long distances and across national borders remain
necessary. We found evidence that the effect of geographical proximity exists inde-
pendently of national borders, suggesting that the process of integration between
as well as within countries is incomplete. This means that in further integrating
research systems there is a role for actors at several spatial scales. Thus, in light of
European policy the efforts to create a European Research Area seem well justified
but also need to be complemented by efforts of its member states.9
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Chapter 4
Evolution and Dynamics of Networks in
‘Regional Innovation Systems’ (RIS)

Frank Beckenbach, Ramón Briegel and Maria Daskalakis

4.1 Introduction

In 1992, Cooke introduced the notion of ‘regional innovation systems’ (RIS) (Cooke,
1992). The notion synthesizes two strands of research: the discussion about ‘national
innovation systems’ (NIS) and empirical studies on regional development dynamics.

The research about NIS was founded by Freeman (1987) and Lundvall (1988)
and rapidly gained acceptance (e.g., McKelvey, 1991; Nelson, 1993; Metcalfe, 1995).
A lot of studies specified the notion of NIS since then (e.g., Freeman, 1995; Lund-
vall et al., 2002; Lundvall, 2007). The background of the seminal work of Freeman
and Lundvall was a new perspective on innovation. At that time, Kline and Rosen-
berg (1986) had introduced their model of a ‘chain linked process of innovation.’
The concept of NIS goes beyond this model in that it takes into consideration the
influences of space, common norms, institutions, and cooperation on the innovation
process. The characteristics of these aspects together with the ability of the firms to
absorb and transform knowledge constitute an NIS.

During the 1980s seminal studies about the fundamentals of regional develop-
ment have been done, including the investigation of regional innovative capacities
(e.g., in the Emilia Romagna (Italy), Baden-Württemberg (Germany), and Wales
(England)) (cf. Sabel et al., 1989; Cooke and Morgan, 1990, 1991). Those stud-
ies gave evidence that not only the national level is of importance for the analysis
of innovation systems but also the regional level. Particularly, not only as regards
common norms and culture, but also as regards regional policy institutions a more
‘locally’ oriented perspective was called for.

Hence, following Asheim and Isaksen (2002, p. 83) RIS can be defined as
‘. . .places where close inter-firm communications, social structures, and the insti-
tutional environment may stimulate socially and territorially embedded collective
learning and continuous innovation.’ This definition is backed by the observation

F. Beckenbach (B)
Department of Economics, University of Kassel, Nora-Platiel-Str. 4, 34109 Kassel, Germany
e-mail: beckenbach@wirtschaft.uni-kassel.de

A. Pyka, A. Scharnhorst (eds.), Innovation Networks, Understanding Complex Systems,
DOI 10.1007/978-3-540-92267-4 4, C© Springer-Verlag Berlin Heidelberg 2009

59



60 F. Beckenbach et al.

that agents in a region can intensify their relations due to ‘proximity’ in terms of
space and social as well as technological compatibility. This proximity is promoted
(and in some cases even initiated) by different forms of institutions ranging from
‘hard’ infrastructure and regulation to ‘soft’ mental models and trust. In compar-
ing RIS with regions where no such integration of different resources takes place,
researchers claim that making use of regional proximity is a source of additional
generation and diffusion of knowledge, a faster learning process, and an increase
of innovations. Consequently, the selective formation of RIS is used as an explana-
tion for the significant differences in the development of regions in terms of gross
domestic product (GDP) and employment.

For rendering plausible these allegations about the additional yields of RIS it is
not sufficient to relate the regional boundary conditions (e.g., in terms of political
regulations and knowledge transfer from universities) on one side and the outcome
(e.g., in terms of innovations, GDP, and employment) on the other side. Rather, it is
necessary to analyze the internal processes in RIS more closely. First, innovations –
representing a specific mode of action – are neither ‘coming out of the blue’ nor
are they automatically generated by competitive market conditions. This mode of
action requires agents willing to innovate and promoting the corresponding activities
(thereby leaving other modes of actions). Second, attributing the binary distinction
‘innovation’ vs. ‘not innovation’ to these agents is too simplistic in the context of
RIS. As regards the regional effect, mere imitations are different from innovations;
incremental innovations have to be distinguished from radical innovations, and indi-
vidual innovations differ from cooperative innovations. Third, multiple coordination
mechanisms interact in the formation of RIS: market relations are supplemented
as well as structured by institutional relations and network relations are overarch-
ing both. Hence, analyzing RIS more closely necessitates to take into account the
involved agents, their different modes of action, and their embeddedness in different
coordination mechanisms.

Due to the complexity of the subject matter and to the dominant aggregated per-
spective (meso-level) of the research about RIS, the aforementioned topics are not
yet systematically taken into account. A starting point for such a research endeavor
is simulation studies about the importance of proximity and networking for inno-
vations in a regional context using an agent-based perspective (cf. Brenner, 2001;
Gilbert et al., 2001; Zhang, 2003). The present elaboration follows this strand
of research, but tries to be more specific in terms of integrating the agent-based
perspective and regional network analysis.

Taking agents as the basic unit of a RIS, it seems necessary to pick up modern
insights of cognitive psychology (cf. Anderson, 2000) for explaining the agent’s
repertory of the ways to act as well as the conditions for selecting a specific mode
of action in a given situation (in terms of internal and external states). Even if there
is a common understanding of what is going on within a given mode of action (like
routine, imitation, innovation) it is crucial for a behavioral foundation of RIS to
focus the triggering conditions for the different modes of action (including innova-
tion and networking). Hence, we use a multi-mode approach to human action (cf.
Camerer et al., 2005; Svenson, 1996; Louis and Sutton, 1991) and systematize it
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by incorporating insights from the Ajzen school as well as the Carnegie school of
behavioral research.

This agent-based perspective implies a specific approach to networks as a part
of activities in RIS. Contrary to the usual top down perspective focusing global
network properties (like efficiency, stability) a bottom up perspective is required
taking into account the agent’s motivations, capabilities, and constraints to act in
a network context.1 Due to the different coordinating mechanisms operating at the
same time in a RIS, it seems appropriate not to subsume all relations in that system
under a broad notion of network but to reserve this notion for a specific way to
coordinate activities lying between market coordination on one side and hierarchical
inner firm coordination on the other side (cf. Ménard, 2004). Taking into account the
‘distance’ (in spatial, social, cultural, technological, or cognitive terms) necessarily
inherent in market operations (cf. Cowan, 2004) as well as the ‘threat’ (again in
spatial, social, cultural, technological, or cognitive terms) of hierarchical relations
(cf. Miller, 1992), networks are creating a mid-term proximity for which the region
is the generic place.2

Integrating the agent-based perspective and regional network analysis then has
a two-fold meaning: on one side, the micro-economic conditions for regional net-
working (constraints as well as possibilities) have to be specified; on the other side,
the feedback from ongoing regional networks to the level of individual activity
has to be included in such an analysis. In pursuing such a perspective, Sect. 4.2
addresses the required conceptual foundations: in Sect. 4.2.1 layers of RIS in terms
of modes of action and institutional embeddedness are distinguished; in Sect. 4.2.2
the factors determining the behavior of agents and correspondingly their willingness
to contribute to a RIS are analyzed more closely. These conceptual foundations (as
well as additional empirical observations) are the background for the architecture of
the simulation model which is presented in Sect. 4.3. The results of this simulation
model are dealt with in Sect. 4.4 especially focusing the network dynamics being
the core of a RIS. Some conclusions are discussed in Sect. 4.5.

4.2 Conceptual Foundations

4.2.1 A Multi-layer Concept of RIS

Taking into consideration that RIS have a specific environment and a differentiated
internal structure, multiple layers can be distinguished according to the internal

1 Hence, neither large ‘scale-free’ networks (Barabasi, 2003) nor the usual ‘small-world’ network
approach (Watts, 1999) is appropriate for the perspective chosen here; for different reasons they
are not related to the micro-level of economic agents.
2 Cowan (2004) identifies three (inter-related) drivers toward a network-type of interaction and
coordination: (i) ‘Imperfectness’ of markets as regards to product- and person-related background
information; (ii) outsourcing of firm activities bringing about new coordination requirements; and
(iii) transfer of knowledge as a specific part of economic interaction.
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RIS environment (layer 1)

RIS (layer 2)

Core of RIS (layer 3)

Agents Relations

Fig. 4.1 ‘Onion concept’ of RIS

mode of action of agents and their institutional embeddedness.3 Every additional
layer adds at least one additional type of relation to the relations already existing
(cf. Fig. 4.1).4 Switching between layers then implies a modification of the internal
states of the agents being the entity promoting the different levels of activities. This
modification may include a difference in the orientation toward other agents as well
as a difference in mobilizing capabilities to act.

The first outer layer – actually the environment of RIS – is given by political
(legal), geographical, and cultural attributes determining the interaction of agents.
Apart from this common denominator, the agents are only loosely coupled (e.g., by
regional markets and regional political processes). The agents in this layer are not
(yet) engaged in a novelty-creating activity (innovation or imitation). The second
layer – the first layer of RIS proper – is defined by additional institutional structures
being relevant for those agents who are willing to create novelties (either by imitat-
ing or by innovating). The bases for these additional institutional components are
declarations or commitments of a subset of agents (firms, politicians, and scientists)

3 In the analysis of RIS the (multi-)layer concept normally is used for grasping the relations
between functionally different groups and institutions like firms, universities, and political admin-
istration (cf. Braczyk et al., 2004; Etzkowitz and Leydesdorff, 2000). In the present study layers
are characterized by different modes of activities of the same groups.
4 The relations that are important for RIS are: market relations, institutional relations, knowledge
relations, and – most importantly – network relations.
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to promote a subpart of the region leading to some kind of supplementary struc-
tures (e.g., regional manager, regular meetings). Correspondingly, the agents on this
layer are internally in a mode of action aiming to create a novelty (innovation or
imitation).5 Furthermore, having a strong willingness to innovate is a necessary (but
not sufficient) condition for collaboration and cooperation in terms of innovation.
Agents being on this layer have to figure out (at least potentially) the appropriate
interests in the knowledge of others as well as the requirements for institutional
settings dealing with transaction costs and overcoming opportunism in the context
of networking. If the necessary conditions for such cooperation are given, the agents
start to build up trust against each other, by reinforcing the process of collaboration
and cooperation. Hence, the third layer – the core of RIS proper – is given by those
agents who actually decide to cooperate in searching for and implementing inno-
vations (they are internally in the cooperative innovation mode). In this layer there
is an agreement about the goals pursued by innovative activities of different agents
and the resources dedicated to this goal followed by processes to implement this
agreement. Stabilizing trust between cooperating agents is a crucial factor for the
success of these processes, i.e., its prosecution until all possible comparative advan-
tages of cooperation (due to transferring specific knowledge, realizing economies of
scale and scope, and implementing the division of tasks and parallelism in research
activities) are exhausted. The existence of institutions stabilizing trust will increase
the probability of success for these cooperation processes.

Taking the perspective of a single agent, he/she either remains on a given layer or
switches between different layers according to the institutional embeddedness and
to the mode of action he/she is pursuing. The RIS as a whole and its dynamics is
specified by the frequency of the agents in the different layers over a longer time
span.

The difference between the three layers of RIS can be further specified in terms
of the respective knowledge dynamics as well as the institutional dynamics. The
knowledge dynamics being a result as well as a condition for the agent’s switch-
ing between the different layers can be characterized by referring to the different
nature of knowledge and the various ways it comes into existence from the agent’s
perspective. Here, first a distinction is made between general knowledge which is
more or less public and specific knowledge which is accessible at a cost. Second, a
distinction is made between virtual and real knowledge, i.e., between knowing that
there is something to know and actually knowing something.

On layer 1 nothing else but a constitution of virtual general knowledge about the
region happens. Agents in a region are endowed with information about their legal
and political boundary conditions as well as about the regional associations, public,
and semi-public institutions in the region.

5 As regards to the distance to the core of RIS, this layer can be further differentiated into two sub-
parts, one consisting of agents with moderate willingness to create novelties (imitation) and another
with agents having a stronger willingness to create novelties in terms of looking for innovations
proper.
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On layer 2 the establishment of additional regional institutions is tantamount to
the (partial) transformation of virtual general knowledge into real general knowl-
edge by way of a simple knowledge transfer. This transfer takes place on regional
meetings, within regional associations and may be induced by political programs.
Crucial for the knowledge transfer on layer 2 is an agreement on how to proceed
in the endeavor to cooperate. Hence, to homogenize the procedural knowledge to
a certain degree is another condition for success on this level. On the other side, it
seems necessary to maintain some heterogeneity of the declarative knowledge as a
basis for the division of research activity between different agents on level 2: this
establishes one of the comparative advantages over research done by isolated agents.
Correspondingly, the beginning of the communication between different regional
agents (or groups of agents) leads to a (virtual) formation of specific knowledge
relevant for the different domains in the regional context.6

Finally, on layer 3 the transfer of common knowledge is continued and accom-
panied by a (partial) transfer of specific knowledge. Both takes place within the
cooperation formed for the sake of innovation. Private declarative knowledge is
selectively revealed between cooperating partners without becoming public knowl-
edge. The heterogeneity of the declarative knowledge between cooperating agents
is an important source for the propensity to cooperate. Revealing (at least partly)
this knowledge in the process of cooperation is therefore at the same time eroding
(at least partly) the cooperation.

For the institutional dynamics on the different layers (being also – like knowl-
edge – cause and effect of the RIS-process at the same time but more influenced by
exogenous political and cultural factors) of RIS two attributes (and the respective
attribute’s expression) seem to be important (cf. Quéré and Ravix, 2003):

(i) the difference between ‘hard’ (technological, legal) and ‘soft’ (cognitive, social,
cultural) institutions; and

(ii) the difference between a genesis of institutions by design and self-organization.

Going from level 1 to level 3 there is an increasing importance of soft institu-
tions. On level 1 and especially on level 2 legal and political regulations as well
as infrastructure are necessary initial conditions for any kind of cooperation proce-
dures. These auxiliary instruments are required for overcoming regional inertia and
routines and for establishing a critical mass for the RIS-dynamics. But for level-
3 activities this is not sufficient: a self-enforcing trust building process strongly
depends on soft institutions like shared visions and goals as well as mechanisms
for punishing defecting agents.

Hard institutions are often designed by political actors and – due to lack of
knowledge of their designers – not necessarily appropriate for the needs of their

6 The main problem for low-developed regions in terms of knowledge is a lack of declarative
knowledge (about technological fields, market domains, and other regional agents). Hence, the
transfer of declarative knowledge is crucial for these regions.
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respective target groups. Hence, their binding function for these groups requires a
self-organized adaptation process of agents as well as of institutions (e.g., by exit
and entry of agents and/or a modification of the institutional design). These adap-
tation processes are necessary for establishing coordination procedures in which
these – adapted – hard institutions are accomplished by soft institutions.7

In the following, only the internal processes of the agents on the different layers
are conceptualized more closely.

4.2.2 Behavioral Foundation of Agent’s Mode of Action on the
Different Layers of RIS

The behavioral foundation for agent’s mode of action on the different layers of RIS
is elaborated in two steps: (i) In the first step we are looking for a behavioral foun-
dation for creating novelties comprising activities different from routine and choice.
Here we differentiate between the behavioral elements leading to innovation and
those elements leading to imitation. (ii) In the second step we are investigating
more closely the behavioral elements in favor of innovation, and by drawing on
additional circumstances we distinguish further between a behavioral foundation
for a cooperative and an isolated way to innovate. Step (i) is backed by referring
to two different concepts of action being synthesized for the given context. Step
(ii) is done by specifying different conditions for the emergence and proceeding of
innovation networks from a micro-perspective.

4.2.2.1 Synthesizing the Ajzen- and the Carnegie-Approach

In the given context of RIS there are two requirements for the behavioral expla-
nation: First, the different modes of action specific for the different layers of RIS
(routine, imitation and innovation) should be part of the explanandum. Second, this
explanation should be empirically meaningful. Unfortunately, there is no concept in
the behavioral scientific literature fulfilling simultaneously these two requirements.8

Therefore, we synthesize two well-known behavioral approaches each of which has
been applied to empirical problems and was used to explain more than one mode of
action.

The focus of the approach of Ajzen is to explain intentional activities, i.e.,
activities resulting from a conscious plan to do something. According to this
approach, this plan (intention) is influenced by three different cognitive factors
(cf. Ajzen, 1991, p. 181): (i) the attitude of the agent toward the attributes of the

7 The dynamics of RIS (i.e. their ‘paths’) differ according to the degree in which their institu-
tions are dominated by hard institutions and according to the amount these institutions are simply
designed or accomplished (or even dominated) by self-organized processes.
8 Attempts in this direction are: Jager, 2000; Fagiolo and Dosi, 2003; Beckenbach, 2004;
Briegel, 2006. Our suggestion is in the tradition of this research at the intersection of economics
and psychology.
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planned activity itself, (ii) the appropriateness of this activity for the social norms
the agent is pursuing, and finally (iii) the agent’s ability to control the intended
activity. This implies that the agent tries to anticipate the salient attributes of the
activity under consideration, that he is aware of norms he wants to follow (as well
as the persons or groups representing these norms), and that he has an idea about
his ability to control the intended activity. All these circumstances are valued by the
agent and – in the case of multiple arguments – aggregated for each factor. Hence,
for each of the factors (i–iii) there exists a subjective weight, influencing the overall
intensity to pursue an intended activity.

From an economic perspective this approach can be assessed in a twofold man-
ner: On one side, it contains the essential features of an economic approach in that
it combines goals (attitudes) and constraints/endowments (abilities to control) for
explaining activities. On the other side, this framework is broader than the economic
standard approach to decisions in that it includes a subjective perception of social
embeddedness (in terms of reference groups, norms, etc.) as a core element for
intentional activities. This approach is also different from a game theoretic treatment
of interaction patterns in that it is not bound to any type of common knowledge
assumptions and well-defined strategies.

In the context of explaining agent’s activities in RIS, the first shortcoming of this
approach is the exclusion of dynamics. Even if Ajzen principally concedes that the
experience of past behavior influences the initial conditions (in terms of subjective
attitudes, subjective norms, and subjective control beliefs) for explaining present
behavior (cf. Ajzen, 1991, p. 203), it is not clear at all how this influence takes
place. The second shortcoming of the Ajzen approach in the given context is the
neglect of other modes of action: in focusing the deliberative procedures leading to
an intention, this approach deals exclusively with (a component of) decision pro-
cesses. Neither circumventing intentions by automatic processes nor the search for
new options of activity are explicitly part of this framework. Nevertheless, attitudes,
norms, and control still seem to play a role when these other modes of actions are
selected. So it appears to be worthwhile to integrate these modes of actions in the
given framework.

Obviously there is only a narrow scope for integrating modes of action based on
automaticity into the Ajzen approach. Ajzen himself (1991, p. 203) suggested that
in the case of a very low level of subjective control (few elements of control with a
low influence on behavior) intentions do not determine behavior. Rather, in this case
there is a direct influence of the strong constraints on the resulting behavior. This
kind of automaticity urged by the situation-specific circumstances is different from
a ‘learned’ automaticity. The latter takes place if the situation remains rather similar
for a longer time, and a specific way to act proves to be rather successful in this sit-
uation (cf. Verplanken and Aarts, 1999, p. 104).9 Then the perception of situational
cues seems to be sufficient for performing the well-known activity. Implementing an

9 To act in a manner which conforms to the requirement of the situation can be a result of previously
planned behavior; but it can also be derived from other types of activity such as teaching.
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intention by consciously selecting attributes of action, reference persons, and assess-
ing control abilities is dispensable in such a case. Rather, what takes place here is an
unconscious activation of schemata or scripts stored in the long-term memory. This
kind of learned automaticity (different from urged automaticity mentioned above)
is at the core of what usually is called ‘habit’ or ‘routine.’10

The Carnegie-approach is important in two respects: First, this approach sheds
light on two usually neglected modes of decision making: routines and search. Fur-
thermore, the decision units (especially firms) are not conceptualized as a consistent
unit but rather as entities with internal conflicts being moderated in different ways
(cf. Cyert and March, 1992, p. 214, p. 229). A common denominator of these
features of such a decision unit is the restriction of rationality, i.e., of perceiving
information as well as of the ability to transform this information into activity.
Therefore, a specification of the bounded rational way to settle and use goals as
well as capacities by constituting an aspiration level, by following satisficing behav-
ior, and by varying organizational slack is the second reason for referring to this
approach.

Originally, the aspiration level has been conceptualized in psychological field
theory backed by observations about the context-dependence of the expected result
of an activity and about the role of these expectations for future activities. In its
economic adaptation, the core idea behind the aspiration level is to internally fix a
level of goal attainment which is related to past experience and/or to the observable
experience of other agents being in a similar situation (cf. Cyert and March, 1992,
p. 162, p. 172).11 Generally, the divergence between the aspiration level and the
actual performance level is seen as a source for modifications in behavior. This is
due to an evaluation according to which a negative discrepancy (performance level
is lower than aspiration level) leads to the internal state of dissatisfaction whereas a
positive discrepancy (performance level is higher than aspiration level) leads to an
increase of ambition.

Orienting behavior toward such an aspiration level then defines satisficing instead
of optimizing in goal attainment. Hence, the aspiration level gives a cue for dealing
with bounded rationality: ‘Actually satisficing is less a decision rule than a search
rule. It specifies the conditions under which search is triggered or stopped, and it
directs search to areas of failure’ (cf. March, 1994, p. 27). A negative discrepancy
triggers a different mode of action in terms of information gathering and risk taking
(cf. Cyert and March, 1992, p. 228).12

10 ‘Habit’ is the notion used in sociology and is meant to include a wide range of social and cultural
explanantia; ‘routine’ is the notion used in economics and is more focused on explanantia inherent
in the activity under consideration.
11 In terms of the concept of Ajzen the aspiration level has to be classified as a norm because it
indicates a social interaction leading to an ‘appropriate’ level of goal attainment.
12 Basically the notions of aspiration level as well as satisficing are related to the individual. In
organizations like firms the level of goal attainment may be group-specific and therefore be a
source for a conflict. Managing this conflict is then a boundary condition for the pursuit of the
original goal (cf. March and Simon, 1993, p. 132; Simon, 1997, p. 159).
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The aspiration level as well as the satisficing goal attainment do not take into
account the endowment of agents (in terms of knowledge, finance, and time) and
their corresponding capacities to act. Given the (fast) dynamics of the endeavors to
meet the aspiration level and the statics (or slow dynamics) of these endowments,
there is a varying surplus in the capacity to act. This surplus is called ‘slack.’ If
this slack is large, it is seen as an additional source for novelty-generating proce-
dures because then constraints are loose giving room for playful experimentation.
Contrary to the ‘failure-induced’ search, this kind of search is ‘success-induced’
(cf. March, 1994, p. 31; cf. Cyert and March, 1992, p. 188; March and Simon, 1993,
p. 203).13

This success-induced search can be specified on the level of the individual as
well as on the level of organizations (firms). The corresponding individual trait is
curiosity as a search for new information, new knowledge, and new experience for
its own sake.14 Recent research in this field reveals that curiosity is not simply a
genetically programmed drive (activated in a crude stimulus response context)15

but rather has cognitive sources either in searching for congruity and sense making
or in practicing idle competences (cf. Loewenstein, 1994, p. 80). Hence, curiosity
is in the neighborhood of creativity and intimately related to the above-mentioned
phenomenon of slack.

On the level of firms, the slack is a necessary implication of the organizational
‘coordination failure.’ Given an organization consisting of a multitude of agents
and resources, bounded rationality as well as opportunism will play a role in the
coordination of these organizational elements. ‘When the presence of slack relaxes
coordination and control pressures, decision makers are free to pursue idiosyncratic
local preferences’ (cf. March, 1994, p. 31; Cyert and March, 1992, p. 41). This will
release a search for novelties on the different levels of the firm because it opens up
possibilities for the different organizational departments to strengthen their relative
position. The harmonizing of these different (potentially) innovative activities will
be a central task for the strategic management.

For the behavioral synthesis at stake here the architecture of the Ajzen approach
is used as the basic heuristics. This is due to the broader scope of this approach and
to its greater flexibility. But first, the factors used by Ajzen have to be specified for
the domain of a firm in a competitive market economy and for the given context
of explaining the dynamics of regional innovation. Curiosity, risk orientation, and
expectations about the properties of an option are taken into account as personal

13 Similar to the approach of Ajzen the endowment of the agent (and the correlating control capac-
ity) is taken into account here. The difference to this approach is given by the assumption that the
amount of control capacity does not simply determine an intention to act but rather a specific way
to act, e.g., the switch to searching behavior.
14 In the Carnegie-approach curiosity and the corresponding exploration drive is dealt with as a
component of the risk attitude. Apart from this curiosity component, the risk attitude is seen to
consist of a personal trait and risk taking depending on the level aspiration attainment (cf. Cyert
and March, 1992, pp. 227–228; March, 1994, pp. 35–55).
15 This notion of curiosity is related to a part of the work of Berlyne and was ‘imported’ into
economics by Scitovsky (1976).
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(or organizational) attitudes in the context of market and firms and are accomplished
by including goals as an important feature of economic actors. Aspirations in terms
of different economic goals are specified as the relevant ‘norms.’ The control com-
ponent is derived from the usual elements of economic endowment (knowledge,
finance, and time). Second, these factors are not used for explaining a specific activ-
ity (or intention to do that activity); rather, according to the necessary behavioral
enhancement, they are used for explaining the selection of the mode of action16 and
hence, for explaining one source of the dynamics between the different layers of a
RIS (cf. Fig. 4.2).

Integrating aspirations and slack in this framework allows for dealing with the
behavioral dichotomy in terms of switching between search and routines. According
to the context under investigation, here the search mode is further differentiated in a
twofold manner: a distinction is made between a search for novelties already prac-
ticed by others (imitation) and novelties which are created by the searching agent
(innovation).17 These different modes compete for being activated by the agent due
to endogenously generated forces. Activating imitation necessitates overriding the
‘default mode’ of routine. Practicing innovation requires higher innovation pressure
to overcome the lower pressure toward mere imitation.

Attitudes Norms Endowment

Selecting mode
of action

Aspirations
Personal

traits
Goals

Risk

Curiosity 

Asp./
performance

Knowledge Finance

Slack

Performance

Fig. 4.2 Causal chain diagram for selecting mode of action

16 Cf. Svenson, 1990; Louis and Sutton, 1991 and Jager, 2000 for such a multi-mode concept of
human action.
17 It is assumed that slack (and the curiosity derived therefrom) is only relevant in the case
of innovations and that the expected costs of imitations are lower than the expected costs of
innovation.
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4.2.2.2 Micro-economic Conditions for Innovation Networks

In the previous section we have specified the behavioral conditions or the willing-
ness of the agent to innovate. What has not dealt with is the question, whether, and
if so why, agents choose to conduct their innovations in a collaborative manner.
More precisely, the reasons why agents are moving to and from the core of the RIS
are not explained. This moving as well as the collaborative innovation at the core
constitutes the dynamics of the RIS. In the following, we will take into consideration
the network aspect of RIS and distinguish two interdependent levels of analysis:
the morphology of the network and the states of the agents involved in network
activities.

4.2.2.3 ‘Social Network Analysis’ (SNA)

Although networks are undoubtedly a central feature of RIS, the respective research
usually does not comprise the network morphology and, accordingly, not the feed-
backs between states of agents and the network as a whole. However, recently two
aspects have been investigated: the morphology of patent networks (cf. Breschi
and Lissoni, 2004; Cantner and Graf, 2006) on one side and the specific contents
of the relationship between agents involved in an innovation network, namely the
role of trust and knowledge transfer (cf. Nooteboom, 2004, 2006; Daskalakis and
Monz, 2006; cf. Sect. 4.2.1 above) on the other side. Both research fields lack a
unified perspective: whereas the former deals with the multiple contents of net-
work relations, the latter is less concerned with the morphology of the network.18

The common denominator of both fields of research is the social network analysis
(SNA). Hence, it is worthwhile to take a closer look at the SNA and the options this
paradigm might provide for the analysis of innovation networks.

The SNA provides a formal method to analyze the morphology of networks and
the impacts it has on the network’s performance. The main thesis of the SNA is
that an agent is embedded in a social environment and is influenced by this. Agents
(either individuals or organizations) are connected to other agents in their social
environment by interaction. These connections between the agents are called ‘rela-
tional ties’ and the agents themselves are called ‘nodes.’ The main focus of the SNA
lays on the analysis of the structure of these ties, especially on the pattern and/or
regularities of these structures (cf. Wasserman and Faust, 2007, p. 3). Besides the
structure, the SNA is also concerned with the contents of ties which might be, for
example, biological elements, material resources, information, knowledge, or trust.

Within the SNA, a basic distinction is made between an analysis of individ-
ual agent networks, especially ego-centric networks, the analysis of sub-groups
within networks, and the investigation of networks as a whole (e.g., Wasserman
and Faust, 2007; Scott, 2005). The formal tools provided by the SNA differentiate
between all three levels. Relevant measurements are, for example: centrality, cluster,

18 An exception is given by Kauffeld-Monz and Fritsch, 2007.
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cohesion, density, (mean) degree, multiplexity, path distance as well as value and
direction of ties (cf. Wasserman and Faust, 2007).

There are several possibilities to apply SNA to the analysis of RIS. As regards
the simulation model (Sect. 4.3), four measures are considered more closely: (i)
multiplexity, (ii) values of graphs, (iii) direction of ties, and (iv) mean degree.

(i) Multiplexity refers to the circumstance that between two nodes (ni, nj) there
might be more then one tie (Wasserman and Faust, 2007, p. 73). For example,
if two agents at the core of the RIS are engaged in mutual knowledge transfer

and if this transfer is based on mutual trust, then one tie ni
k←→ nj reflects

the knowledge (k) transferred and a second tie ni
tr←→ nj contains trust (tr).

Multiplexity can be measured by simply counting the number of different ties
between two agents.

(ii) The value of a tie describes the frequency and/or intensity of the interac-
tion (cf. Wasserman and Faust, 2007, p. 140). With regard to the relationship

ni
k←→ nj, for example, the value �k is measured in terms of knowledge-units

being transferred and/or in terms of frequency of interaction. Accordingly, the
value of trust ties represents the level of trust. In case of multiplexity, the values
of the respective ties are summed up.

(iii) For both measurements, the multiplexity and the value of ties, it is reasonable to
distinguish between undirected and directed ties. The two measures introduced
above are related to undirected ties. They give no information about differences
in case the ties are decomposed, e.g., by analyzing the amount of knowledge

given from ni to nj (ni
k−→ nj) and vice versa (nj

k−→ ni). Those differences
are measured by directed ties. For example, if ni is giving more knowledge to
nj than ni receives from nj then the value of the ties is different with �ijk>�jik.
Different amounts of trust between ni and nj can be formalized accordingly.

(iv) The degree measures the number of ties with which one agent is connected
to others. The minimum degree (d) is 0, if an agent has no connection; the
maximum is given with d=g−1 (g being the number of nodes). The mean
degree of a network comprises the ratio of the number of actual ties between
the agents and the number of nodes.
Thus, the mean degree (d̄) is given by

d =
∑g

i=1 d(ni)

g
= 2L

g
,

where L denotes the number of ties in the network. If directed ties are inves-
tigated, a difference can be made between the indegree (amount of ties ni is
receiving) and the outdegree (amount of ties leaving ni).

If analyzing RIS from a social network perspective, it seems plausible to view
RIS as network which is subdivided into several interconnected sub-networks.
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Within our model, those sub-networks are expressed by the different layers of RIS.
Applying the methods of the SNA to the analysis of the RIS-layers then provides
useful insights to the internal components of the networks and the respective result-
ing output of the RIS. How many agents are connected in and between the layers
and how does this share impacts the outcome of the RIS (e.g., in terms of completed
innovations)? To what extent does the structure of degrees at the core influences the
dynamics of the network? Are there observable negative effects of network size?

Applying SNA to the analysis of RIS, however, implies necessarily to take into
account the inherent economic logic of innovation networks. First, a formal descrip-
tion of the relevant contents and strength of ties between agents in a RIS has to be
given. Second, the dynamics of the networks within the RIS have to be considered:
at least within the core of RIS and the movement from and to the core, the dynamics
are supposedly much stronger than in the networks usually investigated with SNA
tools (as, for example, friendship networks). This dynamic aspect is a challenge for
the application of the SNA. Furthermore, if one aims to explain and analyze the
movement between the layers of RIS, one has to take into account the reasons of
why the agents are moving into the core (instead of conducting their innovation
alone).

4.2.2.4 Network Behavior of Innovative Agents

If a combination of behavioral traits (risk attitude, curiosity) and a critical relation-
ship between aspiration level and actual performance is given activating the agent’s
willingness to innovate, the question arises if such an agent is oriented toward doing
the innovation alone or by cooperating with other agents in a network.

Filling up the gap in terms of micro-foundation for networking in general (cf.
Sect. 4.1) necessitates to distinguish between the following:

• the triggering condition for building a network (in what situation does a firm look
out for network partners?);

• the matching condition for the networking agents (what is expected from the
partners in a network?);

• the exchange condition (which resources are transferred between network agents
under what conditions?); and finally

• the replication condition (is there a positive or negative feedback of the network
results on the continuation of the network?).

The ability of a network to overcome the ‘distance’ inherent in any market oper-
ation (cf. Sect. 4.1) is the common denominator of all these conditions. In economic
terms this means to relate the cost for reducing the distance inherent in market rela-
tions to the yields which can be expected from this networking. The important costs
in this context are the transportation cost (if distance is related to space)19 and the
transaction costs (in all other dimensions of distance). The yields of networks are

19 To analyze these costs is the basic tenet of economic geography.
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due to specificity advantages, to economies of scale and scope, to socializing risk
(or uncertainty), and to solving a critical mass problem.

Cooperative innovations represent a specific type of network: (i) there are no
structural asymmetries in terms of power and command between the networking
agents; (ii) there is a formalized agreement about the goals of the network and the
tasks of the network participants; and finally (iii) generating and exchanging knowl-
edge is an important part of the network activities (cf. Fritsch and Franke, 2004;
Antonelli, 2000; Sternberg, 2000).

An economic analysis of this type of network necessitates to relate the prospects
for distance-reducing costs and yields to the nature of knowledge transformed and
transferred in the network as well as to the nature of the relationships between the
network partners. As regards the nature of knowledge from an economic perspec-
tive, the most important distinction is between ‘public/explicit’ on one side and
‘private/implicit’ on the other side. Between these two extreme cases, there are many
possible degrees of these attributes. It seems reasonable to assume that the cost to
acquire a given set of knowledge (a subspecies of transaction costs) is higher the
more specific the knowledge, i.e., the more it tends to the ‘private/implicit’ extreme.
Correspondingly, the more this is the case the higher is the specificity advantage the
knowledge acquiring agent can expect. Contrary to this economic specificity effect
of knowledge transfer, the scale effect is related simply to the number of knowl-
edge components which are transferred between network partners. Here it seems
appropriate to assume that the cost of transferring knowledge linearly depends on
the number of knowledge components, whereas the yields are increasing with the
number of knowledge components due to economies of scale and scope.20 Hence,
as regards the knowledge transfer, both the degree of knowledge specificity and the
number of knowledge components are influencing the micro-economic efficiency
prospects of a network.

Concerning the nature of the relationships between the network partners trust is
the most important factor in economic terms. Corresponding to the literature about
trust and dynamic transaction costs (cf. Nooteboom, 2002; Lorenz, 1999) it can be
expected that trust operates on the side of cost and yields at the same time: On the
one hand, the more often a cooperation between two agents has been successfully
accomplished the lower are the transaction costs in terms of finding an appropri-
ate partner and coordinating the activities. On the other hand, a well-functioning
partnership makes it easier to find new knowledge components and to increase the
economic yield (e.g., by improving the product quality).

In formal terms this means that the transaction cost (TC) of an innovation net-
work are a function of the knowledge specificity (s), the number of knowledge
components (q), and trust (tr) in terms of the frequency of past successful knowledge
transfers:

TC = f(s, q, tr) (4.1)

20 Cf. the formal analysis of transaction cost and asset specificity in Williamson, 1985.
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The yield which can be expected from that innovation network (Ycop) is influ-
enced by the same arguments:21

Ycop = g(s, q) (4.2)

The countervailing effects of these factors are depicted in Fig. 4.3.

Fig. 4.3 Graphical
representation of factors
influencing the
micro-economic network
efficiency

smin
smax

TC(s)
Y(s)

s* s**

q

TC(q)

Y(q)

q*

tr

TC(tr)

21 Due to strong irregularity we skip the influence of trust here.



4 Evolution and Dynamics of Networks in ‘Regional Innovation Systems’ (RIS) 75

These factors for the micro-economic efficiency of networks are not transparent
for the agents: they are realized in a time-dependent manner due to constraints and
path-dependencies of the agents.

Taking into account these peculiarities of innovation networks, the above-
mentioned general micro-economic conditions for networking can be specified:

• the triggering condition comprises not only a willingness to innovate but more
specifically a combination of individual traits and competitive environment lead-
ing to a preference for cooperative innovation;

• the matching condition implies a correspondence between the dominant innova-
tion drive of the agent looking for network partners on one side and knowledge
endowments of these partners (including that the expected yields of a network
fulfilling this matching condition exceed the transaction costs) on the other side;

• the exchange condition is related to a transfer of different types of knowledge;
and finally

• the replication condition is constituted by memorizing and communicating the
experience of the network activity leading either to reinforcing or exiting the
network.22

4.3 Simulation Model

4.3.1 Agents and Their State Variables

Agents are characterized by state variables and parameters in all the branches of the
behavioral concept:

(i) They are endowed with financial and cognitive resources giving them more
or less control over the environment they operate in. The cognitive resources
comprise especially procedural and declarative knowledge. The procedural
knowledge is tantamount to the ability of the agent to pursue different modes
of action. These modes of action each comprise a specific way to perceive a
situation and the possibilities to act, to evaluate these possibilities, and to select
one way to act. The declarative knowledge is related to the domain of activity
the agent is engaged in. It is composed of common and specific elements.

(ii) They are determined by attitudes, i.e., mental commitments giving them a basic
orientation and mood in their way to act especially as regards selecting the
different modes of action. Hence, it is not only an external situation which
influences the selection of a mode of action; additionally, these attitudes play
an essential role. Apart from risk acceptance and curiosity as basic personal
traits, the goals of the agents are considered as an important element of attitude.

22 In terms of the graphs depicted in Fig. 4.3, this means that the frequency of successful network
in relation with a given partner is stagnating and the trust-dependent component of the transaction
cost is no more diminishing.



76 F. Beckenbach et al.

Agents have two (monetary) goals, namely to gain profit and to achieve a high
market share.

(iii) As proposed by SNA agents are considered as socially embedded entities
being influenced by proximate reference groups or past interaction experi-
ence. According to the Carnegie-approach this is reflected in the notion of
the aspiration level, the plimsoll line for goal achievement. This aspiration
level is dynamically adjusted according to the actually reached current profit
resp. market share (moving target). Furthermore, especially for the cooperative
innovation, trust is an important result of interaction, being an agent-specific
norm for selecting partners to cooperate with and for the decision about the
continuation of a cooperation.

4.3.2 Modes of Action and Their Selection

In the given context the modes of action are routine (as the default mode), imi-
tation, and innovation (the latter either as individual or as cooperative activity).
Both novelty-creating modes (innovation and imitation) require not only cognitive
effort, but also temporal and financial resources.23 The temporal and financial cost
of an imitation project is smaller than the one of an innovation project. However, as
regards the possible returns, there is a disadvantage for an imitator compared to an
innovator. The reason for this is that an imitator can only participate in the fraction
of the total demand potential of the imitated innovative product which is not yet
exhausted (in the course of diffusion of the product) at the time of accomplishment
of the imitation. Generally, the expectation value for the demand potential assigned
to a novel product just created is set proportionally to a certain power of the amount
of declarative knowledge of the firm(s) that has/have created it, more precisely, to
the number of knowledge domains where the firm(s) has/have got knowledge.24

Picking up the conceptual reflections in Sect. 4.2.2.1, the innovation force (F2)
itself consists of different components such as curiosity, the degree of satisfaction
as regards profits, and the degree of satisfaction as regards market shares. These
degrees of satisfaction are indicated by the relationship of the aspiration level for
profits (asp) and for market shares (asm), respectively, to the corresponding actual
performance level (p and m): asp/p, asm/m. The activation level of these different
components is influenced by personal attitudes such as the exploration drive (w0) as
well as the weight and elasticity of the profit resp. market share aspiration (w1 and
ε1 resp. w2 and ε2). Finally, the innovation force is modulated by the expected cost
for the innovation endeavor (cin) and the risk acceptance (α) which maps the will-
ingness to accept the higher risk of innovation compared to imitation. The aspiration

23 The time to develop an innovation (resp. imitation) is set probabilistically (drawn from a uniform
random distribution) for each innovation (resp. imitation) project; the minimal and maximal values
of the corresponding distributions are model parameters.
24 The background for this assumption is the positive relation between the broadness of knowledge
and the firm’s ability to meet the needs of (potential) customers.
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levels are updated at the end of each time step according to the difference equation

asp(t+ 1) = (1− φ)asp(t)+ φ p(t) (4.3)

(and analogously for asm) where φ is the flexibility of adaptation, which is another
personal trait (0 ≤ φ ≤ 1).

According to the discussion in Sect. 4.2.2.1, curiosity is strongly related to
the phenomenon of ‘slack,’ i.e., the reserve capacities in terms of knowledge and
finance. In any given time step this slack is tantamount to balancing the given state
of knowledge and finance on one side and the amount needed of these resources for
a given mode of action on the other side. Again, the intensity of curiosity triggered
by this slack is depending on a personal trait, the exploration drive (w0).

These considerations can be formalized as follows: We define three component
forces fi for curiosity (i=0), profit aspiration (i=1) and market share aspiration
(i=2) by

f0 = w0(kr+ fr) (4.4)

f1 = w1

(
asp

p

)ε1

(4.5)

f2 = w2

(asm

m

)ε2

(4.6)

Here kr and fr denote the knowledge resp. financial reserves of an agent in a
given time step. The knowledge reserves are operationalized as the relation of the
number of specific sharable knowledge domains (see below) where the agent pos-
sesses knowledge to the total number of sharable knowledge domains; the financial
resources are operationalized as the share of the current profit with respect to the
current turnover. Finally, the innovation force F2 is defined by

F2 = α
f0 + f1 + f2

cin
(4.7)

The imitation force (F1) is different from the innovation force in three respects:
First, curiosity (or the personal exploration drive) plays no role in it ( f0 is omitted
here). Second, there is a comparative difference in expected cost: cim < cin. Third,
the risk acceptance α, which was introduced to map the willingness to accept the
higher risk of innovation compared to imitation (see above), is omitted here. Hence,
the imitation force can be formalized as

F1 = f1 + f2

cim
(4.8)
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Fig. 4.4 Causal chain diagram for selecting a mode of action in the simulation model

Finally, we set the preservation (or routine) force

F0 = 1 (4.9)

as a reference value.25 Figure 4.4 depicts the triggering conditions for the differ-
ent modes of action and the feedback from the economic performance on these
conditions as it is implemented in the simulation model.

A firm agent who has selected the action mode of innovation still has two options
(see above): He can try to develop an innovation on his own (individual innovation)

25 Setting the preservation force to a constant is no restriction of generality, since the absolute
values of the forces Fi don’t matter; it is only the ratio between them which determines the action
mode. There are three special or exceptional cases in which the selection mechanism mentioned
above is not applied (or even not applicable):

(a) A new firm (start-up), which at the moment of its entry has zero turnover and zero profit, is
assigned the action mode of innovation and in the case of cooperation the reason is assumed
to be curiosity.

(b) When a new firm has just finished the development of its first innovation, it is assigned the
routine action mode for a short period (which is determined by the mean development duration
of an innovation).

(c) A firm with negative or zero profit which doesn’t belong to case (b) is assigned the action
mode of innovation and – if it is willing to cooperate – the cooperation reason (see the next
section for a formal definition of this notion) is assumed to be profit dissatisfaction.
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or he can seek for cooperation in order to enable or facilitate the development of an
innovation.

4.3.3 Cooperative Innovations and Their Network Implications

Two types of cooperations and, correspondingly, network relations are distinguished
in the model; actually, they are two subsequent phases of a cooperation’s lifespan:

(i) An innovation development cooperation which aims at the development of a
marketable innovative product. This process involves an exchange of (sharable)
specific knowledge (see below) between the member firms of the cooperation.
If the development of such an innovation is successfully finished, the innovation
development cooperation is transformed into a sales cooperation (see below).

(ii) A sales cooperation for the innovative product or service means that the coop-
eration partners put the product on the market together and share the production
cost and the returns of the sale of this product. The production of the innovative
product is stopped and the sales cooperation is dissolved when the production
cost is not covered by the sales returns.26

Given the importance of innovative cooperation for RIS, it is necessary to specify
the micro-economic conditions for this type of network activity (cf. Sect. 4.2.2.2) in
the given modeling context. The triggering conditions for the innovation develop-
ment cooperation are derived from the behavioral synthesis (cf. Sect. 4.2.2.1) and
from empirical observations (cf. Section 4.3.4). According to this behavioral frame-
work it is a combination of personal attitudes, subjective norms, and endowment
conditions which influences the orientation of an agent’s willingness to innovate
toward a cooperative mode for this innovation. First, the three forces shaping the
innovation drive (cf. above formula 4.4, 4.5, and 4.6) are basic for the agent’s will-
ingness to cooperate in terms of innovation.27 These forces are related to the actual
market performance of the agent. Second, different behavioral types of agents have
a different propensity to cooperate. This takes into consideration that not only the
actual market position is an important component for explaining cooperative inno-
vations but also some ‘deeper’ attitudes stemming from different communication

26 Generally it holds: If for a firm agent – be it an innovator or an imitator – the production cost
is not covered by the sales returns for two subsequent time steps and this deficit is increasing from
the first of these time steps to the second, the firm agent stops the production of this product.
The corresponding demand for the product is then transferred to other firm agents, which produce
the same product; if there are no such agents, the product disappears from the market and the
corresponding demand is substituted by conventional products of the same branch.
27 Contrary to the innovation force, this innovation drive is not discounted by any kind of aversion
against risk or uncertainty; furthermore, the calculation of expected costs does not play an essential
role here.
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Fig. 4.5 Triggering conditions for cooperative innovation (without subsidies)

styles in different innovation milieus. Third, at least in a regional context, the fre-
quency of cooperative innovations can be observed. Hence, they can help to reduce
the uncertainty associated with this type of innovative activity in that they facilitate
the search for partners and demonstrate the possibilities to overcome opportunism.
Fourth, subsidies coming from political institutions and attributed to cooperating
firms act as an exogenous incentive to form a cooperation. Figure 4.5 shows how
this triggering of cooperative innovation is embedded in the behavioral framework
(solid lines) and how the outcome of cooperative innovation in turn influences these
triggering conditions (dotted lines).

Denoting the propensity to cooperate by χ , the share of cooperative innovations
Nc (related to the total number of innovations N) by Nc/N, and the amount of
subsidies for cooperation by sc, the cooperation force of an agent is given by

cp(t) = (1− ifb− iff− ifs)χ + ifb
Nc(t)

N(t)
+ iff

2∑

i=0

fi(t)+ ifs sc (4.10)

ifb, iff, and ifs being parameterized weights for the different triggering forces.
Actually, a cooperation is pursued by an agent if this cooperation force is larger
than a threshold (ct):

ct < cp(t) (4.11)
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Given the willingness of an agent to switch to the cooperative innovation mode,
the matching procedure (matching conditions) has to be specified. Matching condi-
tion 1 requires that the partners for a cooperation should either belong to the same
branch or that they are related to each other as suppliers or customers.28 Matching
condition 2 picks up the distinction between different kinds of knowledge the agent
is equipped with (cf. Sect. 4.2.2.2):

• The first kind of knowledge is general knowledge. This is meant to be the nec-
essary requirement for doing a business in any branch of activity and is essential
for the communication between cooperation partners. This kind of knowledge is
composed of generally accessible (public) explicit knowledge and basic parts of
implicit knowledge.

• The second kind of knowledge is ‘specific’ knowledge. This kind of knowledge
consists of (private) explicit knowledge which is not generally accessible and of
those parts of implicit knowledge which are not basic.

It is assumed here for the sake of simplicity that only the explicit parts of the spe-
cific knowledge are sharable between the partners of a cooperation; implicit knowl-
edge is considered as not transferable.29 Hence, the whole (declarative) knowledge
base30 of a firm agent is composed of three elements: common knowledge that is
eo ipso not subject to transfer, transferable specific (explicit) knowledge, and non-
transferable specific (implicit) knowledge. This knowledge base is mapped in the
model as vector components corresponding to knowledge domains in each of which
the agent may or may not have knowledge.31 Given these specifications the matching
condition 2 requires a minimum amount of common general knowledge compo-
nents.32 Matching condition 3 relates the cooperation reason, which is defined as
the dominant component in the innovation force of the agent, with the availability
of certain knowledge components on the part of the cooperation partner(s):

• The cooperation reason should be the same for all partners.
• If the profit aspiration drive is the dominant innovation force, a sufficient amount

of common transferable specific knowledge is required.

28 At the beginning, each firm is assigned randomly a set of supplier firms, being fixed for the
whole simulation.
29 Contrary to that it is sometimes assumed that implicit knowledge can be transferred at a certain
cost (cf. e.g. Nonaka et al., 2000; Cowan, 2004). This is only reasonable if there are different
degrees for the specificity of knowledge (cf. Sect. 4.2.2.2).
30 The procedural knowledge (e.g. to know what to do in a given mode of action) is assumed to
be the same for all agents.
31 This means that there is no cardinal measure for the knowledge in a certain domain; each com-
ponent of the agent’s knowledge vector can take only one of the two values ‘available’ (1) and ‘not
available’ (0).
32 The distinction between ‘general’ and ‘specific’ knowledge is related to the availability of
knowledge; the distinction between ‘common’ and ‘individual’ refers to the distinction between
knowledge actually shared with other agents and knowledge being unique for one agent.
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• If market share aspiration drive or curiosity is dominating the innovation drive, it
is necessary for a successful matching of partners that each of the two agents has
a sufficient amount of transferable specific knowledge which is complementary
for the other.

If these matching conditions are fulfilled and there is someone to cooperate with,
this causes a transaction cost (cf. Sect. 4.2.2.2). In specifying Eq. 4.1 it is assumed
here that the transaction cost of a cooperative innovation depends linearly on trust,
i.e., it is composed of a fixed element (tcc) which is the same for every transaction
and an element which varies according to the level of trust one agent has in the other
agent to cooperate with.33 The maximum amount for this component of the transac-
tion cost (no trust at all) is generally given by the parameter tct. This maximum is
the more reduced, the more trust (tr) has been built up.34 Formally this is depicted as

TC(t) = tcc + tct (1− tr(t)) (4.12)

If there is more than one candidate for cooperation, the one for whom the
trust is highest and the corresponding transaction cost is lowest is selected (cf.
Sect. 4.2.2.2). This selection is repeated (and the number of partners augmented)
until the given budget earmarked for this purpose is exhausted.

Once the initiator of a cooperation has selected his partner(s), a process of
knowledge transfer is started (exchange condition). This process lasts as long as
the development duration of the innovation project (cf. above). In each time step,
knowledge in one domain is transferred from the agent initiating the cooperation
to his partner(s) and vice versa with a certain probability35. This probability (kp)
depends on one hand positively on the trust (tr) of the knowledge-giving agent
in the knowledge-receiving agent and on the other hand, positively on the absorp-
tive capacity (ac) of the receiving agent36. Formally, the probability for knowledge
transfer is given by37

kp(t) = se (tr(t)− 1)+ ac (4.13)

where se denotes the sensitivity of the transferring probability with respect to trust,
which is another model parameter.38

33 Hence this variable element is not necessarily symmetric.
34 It holds: 0 ≤ tr ≤ 1.
35 This stochastic modeling reflects the conjectural nature of this process due to the bounded ratio-
nality of the agents. The corresponding random number is drawn for each partner and for each
transfer direction, rendering these knowledge transfers stochastically independent.
36 The absorptive capacity is conceptualized here simply as a given probability weight for the
happening of the knowledge transfer. Sometimes the influence of absorptive capacity is modeled
the other way round as a constraint for a perfect adoption of knowledge (cf. Cowan, 2004).
37 If the right hand side of the formula is negative, the probability is set to 0. We assume 0 ≤ tr ≤ 1
and 0 ≤ ac ≤ 1.
38 These endeavors to exchange knowledge within the cooperation cause an additional cost in
every time step the cooperative innovation is given (cf. Eq. 4.1).
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Generally the replication or continuation condition for the cooperation is the
expectation of the agents that in the case of a successful knowledge transfer the
quality of the product can be improved and the demand for it will increase. The
state variable depicting this feature of the cooperative innovation is trust. Each time
this knowledge transfer doesn’t happen, the trust of the ‘receiving’ agent in the
‘giving’ one is diminished by a certain decrement; on the contrary, trust is raised
by a certain increment each time the transfer actually happens. If the trust of a
member of the cooperation falls beyond a certain threshold, this agent is leaving
the cooperation.39 The decrement and increment of trust as well as the threshold are
model parameters.40

Figure 4.6 shows the different micro-economic conditions for the cooperative
innovation and the selection of cooperation partners as a flow diagram. Figure 4.7
depicts the dynamics of trust and knowledge transfer within the cooperation process
as well as the breaking-off condition for cooperation.

Quantity Constraints

Ranking

Partners
Trust

Individual
innovation

Cooperative
innovation

Trigger
conditions: 
Willingness?

Matching? Only one?

no
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Start

Fig. 4.6 Flow chart for selection of cooperation mode and partners for cooperative innovation

39 This can have different consequences for the cooperation depending on the size of the coop-
eration and the role the leaving agent plays in it. If the leaving agent is not the initiator of the
cooperation (i.e. he has been selected as a cooperation partner by the initiator) and the number
of remaining members is greater than one, there is no further consequence, i.e. the remaining
members continue the cooperation process. If, on the contrary, the leaving agent is the initiator of
the cooperation or if there is only one member left, the cooperation is completely broken off and
the joint innovation development project is cancelled.
40 Analogously to this stochastic process for maintaining or leaving a cooperative innovation, there
is a lottery in the course of the process of individual innovation: during the development of an indi-
vidual innovation, in each time step, the innovation project is abandoned with a certain probability,
which is a model parameter.
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Fig. 4.7 Dynamics of trust during the innovation cooperation process

4.3.4 Empirical Calibration of Behavioral Parameters

Calibrating multi-agent systems (MAS) by using empirical data generally is a
neglected topic. One reason for this might be the difficulty to gain agent-related
data – especially in the economic realm where time is a scarce resource for both,
the researcher and the researched. Another reason might be that there is simply no
appropriate standard procedure for gathering these kinds of data. The data used for
calibrating parts of the model sketched in the previous section were gained during
the last year in Northern Hesse, Germany. The first data set (D1) is based on a
written questionnaire which was sent out by the authors of this article to 1783 firms.
This sample consisted of the whole population of firms in Northern Hesse with
more than three employees. These firms all belong to the manufacturing sector and
related service sectors. Altogether, 527 firms responded to the survey (response rate
of 29.6%). To gain the second data set (D2), a random sample of 400 firms was
drawn from the 527 firms which form the data set D1. Two hundred and seven
firms responded to the second survey (51.6%). Whereas the first questionnaire dealt
with innovation, cooperation, and networking more generally, the second one was
especially designed to capture behavioral variables more thoroughly (cf. Daskalakis
and Krömker, 2007).
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The design of the survey questions is mostly based on five-point (D1) and
six-point (D2) Likert scales. For calibrating the model, the means of the relevant
parameters were first calculated and second linearly transformed in order to fit
the model scales (cf. Table 4.1). Correlation analyses (Kendall tau-b) as well as
non-parametric tests (Mann-Whitney U-test) were applied in order to get statistical
proves for the calibration (see Table 4.2).

Table 4.1 Statistical calibration of behavioral model parameters

Parameter
Data
set

Empirically derived means Transformed means

Variable F IR F IIM F ROUT Scale F IR F IIM F ROUT

Risk acceptance α D1 2.3 2.0 – 1–5 3 2.5 3
D2 4.1 4.2 3.5 1–6

Exploration drive w0 D141 3.3 2.6 – 1–5 0.25 0.2 0.15
D242 4.6 4.3 3.7 1–6

Profit aspiration w1 D2 5.1 4.7 4.7 1–6 0.04 0.04 0.04
Market share

aspiration
w2 D2 4.9 3.9 4.3 1–6 0.06 0.04 0.05

Cooperation
propensity

� D1 (70%) (34.5%) – – 1.3 1 0.7

Regional trust tr0
43 D1 4.0 3.9 – 1–5 0.75 0.75 0.75

Table 4.2 Statistical tests of behavioral model parameters

Mann-Whitney test
significances (two-tailed)

Kendall’s tau-b
correlation coefficient

Variable Parameter Data set F IIM
and
F IR

F ROUT
and
F IIM

F ROUT
and F IR

F IR F IIM F ROUT

Risk acceptance α D1 0.051 – – −0.54 −0.091 –
D2 0.724 0.075 0.092 0.082 −0.057 −0.098

Exploration drive w0 D144 0.000 – – 0.236∗∗ −0.205∗∗ –
D245 0.231 0.143 0.001 0.199∗∗ −0.089 −0.139∗

Profit aspiration w1 D2 0.483 0.686 0.128 0.019 0.103 −0.125
Market share

aspiration
w2 D2 0.021 0.413 0.030 0.168∗ −0.025 −0.067

Cooperation
propensity

X D1 0.000 – – 0.276∗∗ −0.120∗ –

Regional trust tr0 D1 0.788 – – 0.082 0.004 –
∗Significance at 5% level (two-tailed); ∗∗Significance at 1% level (two-tailed)

41 This variable comprises the items ‘developing new markets’ and ‘creating new needs’.
42 This variable comprises the items ‘experimental drive’ and ‘creativity’.
43 This empirical value is only used to calibrate the initial value of the parameter.
44 This variable comprises the items ‘developing new markets’ ‘creating new need’.
45 This variable comprises the items ‘experimental drive’ and ‘creativity’.
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To derive the relevant means it is necessary to distinguish different (behavioral)
types of firms. With regard to the model, three types of firms are classified: radical
innovators, imitators, and routinizing firms (cf. Table 4.3). The distribution of the
type of firms (D1) is as follows: The share of Type F IR in the product innovators
was 30% and the share of the firms type F IIM was 15%. About 20% of the firms
conducted no innovation at all (firm type F ROUT).46 The share of the respective
population of firms within the model simulation is set up accordingly.

Afterwards the relevant parameters have been identified. As regards the model
parameters presented in the previous sections, two types have been distinguished:

(i) Behavioral parameters which influence the choice of the modes of action. Here
the designs of the questionnaires allow for investigating the following parame-
ters: ‘risk acceptance,’ ‘exploration drive,’ ‘market share aspiration,’ and ‘profit
aspiration.’

(ii) Behavioral parameters which affect the choice between individual and cooper-
ative innovation as well as the course of the cooperation. Those are ‘propensity
to cooperate’ and ‘trust toward the (regional) cooperation partner.’

These variables are evaluated according to the three different types of firms.
Thus, we derive the parameter means for the respective firm types. The data being
used are from both data sets. D2 has the advantage that the parameters matching
(i) and (ii) are available for all three types of firms whereas in D1 those questions
were only answered by the innovating firms. Hence, D2 provides a better founda-
tion for the calibration. Unfortunately, the absolute number of firms of type F IIM
in D2 is low. This might be the reason why differences between F IR and F IIM

Table 4.3 Mapping from empirical firm classes to agent types in the model

Firm class Agent type

Radical innovators (F IR)47 Experimental
Imitators (F IIM)48 Cautious
Routinizing firms (F ROUT) Conservative

46 Altogether, about 80% of the 527 firms were innovating, most of them conducted product (and
service) innovations (88%), the shares for process innovations and organizational innovations were
63% and 46%, respectively. Product innovators who conducted incremental innovations and are
not part of F IR (55% of the product innovators) are excluded from our analysis. We thus analyze
a very specific – yet quite relevant – section of possible innovation activities. This allows for
implementing the empirical findings in the simulation model.
47 Those firms might also have realized incremental innovation as well as imitation.
48 Those firms solely accomplished imitation.
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are quite clear cut when analyzing the respective variables of D1 but not visible
when using D2.49

Ad (i): The means of the behavior parameters are illustrated in Table 4.1. They
range from 2.3 to 4 within D1 and from 3.5 to 5.1 within D2.50 Table 4.2 gives
the evidence that the correlations between the selected items and the types of firms
are significant only in the case of ‘exploration drive’ and ‘market share aspiration.’
The differences between the types of firms prove to be significant with regard to
the following: in D1 imitators and radical innovators have different levels of ‘risk
acceptance’ and ‘exploration drive,’ the latter accepting more risk and having more
‘exploration drive.’ They do not differ with regard to ‘profit aspiration.’ Hence the
transformed means for the latter are set equally for all three types of firms. In D2 sig-
nificant differences can be found, concerning the ‘exploration drive’ (F ROUT vs.
F IR) as well as the ‘market share aspiration’ (F IIM vs. F IR; F ROUT vs. F IR).

Ad (ii): To investigate the propensity to cooperate, we only refer to data set D1.
As shown above, the share of innovating firms was about 88%. Nearly 45% of these
firms stated that they were involved in cooperative innovations, and 37% of the
cooperative innovations were conducted with regional partners. With a coopera-
tion rate of about 70%, the firms of type F IR were the most cooperative firm type
(cooperation rate type F IIM: 34.5%). In more detail: about 40% of the firms of type
F IR had accomplished a cooperation during the investigated time span; about 47%
still had been involved in innovation cooperation (type F IIM: 9.1% and 29.1%).51

Accordingly, the correlation between the items capturing the cooperation activities
and both types of firms has a different level of significance and the statistics show a
remarkable difference between both types of firms.

With regard to trust, our findings are ambivalent. Trust seems to be a relevant
pre-condition for cooperative innovations as the means are relatively high. Yet, there
are no significant correlations between the type of firms and the level of trust to be
found. There are also no differences in the level of trust between the firm types.
Therefore, the corresponding transformed means are set equal for all three types of
firms.52 However, the statistics show that within cooperative innovations trust and
knowledge exchange are interdependent. This is approved in the data set D2 by a
high correlation between the item ‘we have given our cooperation partners a lot of
assistance’ and the cooperative firms.53

49 The number of firm type F IIM in D2 is 20. The respective answers of the firms concerning the
behavioral foundation are thus only used to calibrate the model, if either the statistical evidences
concerning those variables are sufficient and/or if statistical evidences from data set D1 support the
findings.
50 Note the different Likert scales!
51 Most of the cooperations (respective over 90%) were aligned to product innovations.
52 There can be significant differences in the levels of trust toward regional and national part-
ners: the regional cooperation partners were trusted more profoundly; level of significance
(Mann-Whitney test) for the two highest values: 0.001 (two-tailed).
53 Kendall’s tau: 0.202; p < 0.01. This is in accordance with the empirical findings in Daskalakis
and Kauffeld (2006).
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4.4 Simulation Results

4.4.1 Change of RIS-Layers Over Time

Analyzing the dynamics of the RIS as a whole necessitates to look at the action
modes the agents pursue in the course of time and to decipher the network relations
(according to the definition in Sect. 4.1) resulting therefrom. As regards the fre-
quency of the modes of action (cf. Fig. 4.8 (above)) an inverse relationship between
routine and imitation on one side and between imitation and innovation on the other
side can be observed. This corresponds to the competition of behavioral forces
expressed in Eqs. (4.7, 4.8 and 4.9). Contrary to that the frequency of individual and
cooperative innovation is moving in about the same direction. Because the individ-
ual innovation creates the knowledge resources being exchanged in the cooperative
innovation, the latter follows the former with a time lag. The only mode of action
increasing over the whole time span under investigation is the sales cooperation.
This is due to the difference in the entry and exit dynamics for this special mode of
cooperation: the entry is determined by successful former cooperative innovations
whereas the exit depends on a loose cost condition (cf. Sect. 4.3.3). Generally it can
be observed that there are two phases in the development of RIS: in the first phase
up to about t = 50 there is an increase in the modes of action related to creating
novelties and a corresponding decrease of the frequency of agents being in a routine
mode. In the second phase of RIS (for t > 50) all modes of action (except the sales
cooperation) fluctuate around a rather stable level.

In terms of the multi-layer concept (onion-concept) of RIS this means that
although the agents individually are continuously switching between the different
layers there are patterns on the meso-level in terms of the size of subpopulations
on the different layers. In Fig. 4.8 (middle) two snapshots for the RIS-onion com-
posed of (numbered) agents on the different layers are depicted (t = 60: RIS (60);
t = 120: RIS (120)). In such a graph the network relations either in an ongoing
cooperative innovation or in a sales cooperation stemming from a former innova-
tive collaboration are visible. What can be observed here is that agents with higher
degrees (cf. Sect. 4.2.2.1) are more dissipated among all layers in RIS (120) com-
pared to RIS (60) due to the persisting of sales cooperation. The possibility for an
agent to earn profits or to maintain a market share by such sales cooperation might
hinder the novelty creation. Figure 4.8 (below) finally shows the network of trust
ties for the corresponding time steps (RIS (60) and RIS (120)). These ties indicate
all experiences the agents made with each other in terms of knowledge exchange.
Contrary to the relations in the actual innovation network and sales network, the
trust relations are not necessarily symmetric between agents, and they differ in
value.54

54 In terms of SNA, this network is represented by a directed asymmetric graph with ties of
different values.
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Phase I Phase II

RIS (60) RIS (120)

Fig. 4.8 (Above) Modes of action over time; (middle) RIS (60) (stars, pentagons, squares, and
circles symbolizing agents in cooperative innovation, individual innovation, imitation, and routine
respectively; solid lines and dotted lines symbolizing network relation in cooperative innova-
tion and sales cooperation, respectively) and RIS (120); (below) Trust network in RIS (60) and
RIS (120)
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Due to the difference in persistence three different network components can be
associated with a RIS indicating the multiplexity property (cf. Sect. 4.2.2.1): (i) a
brittle and temporary innovation network, (ii) a more stable sales network on the
medium range, and (iii) a long-term trust network. Whereas the sales network is a
simple outcome of the innovation network, the trust network is a cause and effect for
the innovation network at the same time because it is determining the replication of
a given innovation network as well as the matching condition for a new innovation
network.

4.4.2 Dynamic Features of Networks

According to the conceptualization of RIS given in Sect. 4.3.1, the cooperative inno-
vations are the most important driving forces for the dynamics of RIS. In the context
of the model framework proposed here, they are the only source for the network
relations between the agents belonging to RIS. These network relations are either
related to knowledge and trust (innovation cooperation) or based on common market
operations (sales cooperation).

The implementation of a cooperative innovation requires at least the fulfilling
of the triggering as well as the matching conditions specified in Sect. 4.3.3. As a
first step for analyzing the background of the cooperative innovation activity in the
RIS in Fig. 4.9, the triggering conditions in terms of behavioral forces relevant for
this type of activity are depicted over time. What is obvious here is that the will-
ingness to cooperate is much more spread over the new innovative agents than the
actual ability to implement such a cooperation (cf. Fig. 4.8 (above)). This indicates
that the knowledge- and finance-related requirements for these cooperations play an
important role.55 Furthermore, Fig. 4.9 reveals that the importance of curiosity for
cooperative innovations is reduced in the second phase where the resources in terms
of knowledge and finance are more efficiently used. Market share frustration and
profit frustration (resulting from missing the corresponding aspiration levels) are
getting more important in the second phase of RIS because competition is increas-
ing. Nevertheless, the peaks of the fluctuating frequency of realized cooperative
innovations in the second phase of RIS (e.g., between t = 75 and t = 88 or
between t = 110 and t = 115; cf. Fig. 4.8(above)) seem to correlate with high
levels of curiosity.

Focusing in a second step the number of realized cooperative innovations, it can
be observed that the constraints implied in the exchange as well as the replication
conditions are preventing an uneven participation of agents in this type of activity.
As regards the frequency of being in the core of RIS, about 50% of the agents
are there only up to three times; the other 50% are distributed in the range from
being four times up to 16 times in the core of RIS (cf. Fig. 4.10). Hence, there

55 Cf. the sensitivity analysis as regards to the role of transaction costs parameters (Fig. 4.15) for
a specification of this argument.
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Fig. 4.9 Behavioral forces for cooperative innovation over time

distribution of number of successful cooperations (cumulated over time) over all agents
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Fig. 4.10 Cumulated frequency of agents for being in the core of RIS

seems to be some ‘big players’ in this RIS, and also a large number of agents with
moderate or small engagement in innovation cooperations. Obviously, there is no
regular relationship between the number of agents and the frequency of finishing a
cooperative innovation.

This assessment is confirmed if the mean degree (cf. the definition in Sect. 4.2.2.1)
for the innovation network relations is plotted over time (cf. Fig. 4.11). For the first
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Fig. 4.11 Mean degrees for cooperation over time

phase of RIS this degree is slightly increasing. In the second phase of RIS, it is
almost stable with regards to the number of cooperative innovations (cf. Fig. 4.8
(above)). A major cause for this result is certainly the limitation that a firm agent
can only engage in one (cooperative or individual) innovation project at a time in
our model. Hence, there is not much room for ‘hubs’ being established in such
a network.

The picture changes if the sales cooperations (resulting from successful cooper-
ative innovations) are included (cf. Fig. 4.11). Due to the much softer constraint for
this type of cooperation, they can persist temporarily leading to an increasing num-
ber of network relations on the level of agents. This is indicated by the continuous
increase in the mean degree for the network relations resulting from this type of
cooperation in the second phase of RIS (after enough cooperative innovations have
been finished). Against this backdrop temporary network-hubs are possible (mainly
consisting of sales relations) as can be seen from Fig. 4.8 (middle, left), e.g., for
agents no. 55, 99 and in Fig. 4.8 (middle, right), e.g., for agents no. 38, 55, and 110.
In Fig. 4.12 the distribution of the degree for all network relations for all agents
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Fig. 4.12 Cumulated frequency distribution for cooperation degree



4 Evolution and Dynamics of Networks in ‘Regional Innovation Systems’ (RIS) 93

cumulated over the whole simulation span is shown. Obviously, the corresponding
frequency distribution is left skewed, i.e., the frequency decreases with the level of
the degree. Hence, high-level degrees do not occur very often or do not persist over
a longer time period.

4.4.3 Spread of Knowledge

Individual and cooperative innovation are the two sources of new private (but
sharable) knowledge in the given simulation model. For the sake of simplicity,
it is assumed here that in each time step for both types of innovation, there is a
chance to acquire only one additional element of sharable knowledge. This element
of knowledge is related to a domain (e.g., knowledge about raw material of a certain
type) and is coded in a binary manner (‘1’ means there is knowledge in a given
domain; ‘0’ means there is no knowledge in this domain). Hence, in every time step
the number of agents getting new knowledge (switching from ‘0’ to ‘1’ in a given
domain) can be counted for both types of innovation activities (Fig. 4.13).

For both types of innovation there is a tendency to deliver additional knowledge
for an increased number of agents. In the first phase of RIS the number of agents
involved in the spreading of knowledge in the case of cooperative innovation is
growing faster than the corresponding number in the case of individual innovation:
the former starts from a lower level and depends on the preceding of the individual
innovation as a primary source. Apart from these tendencies the fluctuations of both
sources for knowledge acquisition correspond to the time-dependent frequency of
the respective modes of action (cf. Fig. 4.8 (above)).

It can be summarized that – except in the initial phase – the cooperative inno-
vation plays an important role for the spreading of knowledge on the regional
level. Due to the assumed possibility to transform this additional knowledge in
quality improvements of commodities, the number of agents being able to increase
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Fig. 4.14 Domain-specific spread of knowledge

their market performance increases. This additional innovation potential triggers a
growing value added and employment in the region as a whole.56

From the perspective of agents the acquisition of knowledge is only the first step
of knowledge processing. The storage and the use of knowledge are other steps
in this knowledge processing of agents, which may imply that parts of the knowl-
edge disappear due to memory constraints and to devaluation effects for unused or
useless knowledge. Hence, the knowledge string of an agent varies in the course
of time depending on the acquisition on one side, and forgetting and devaluation
of knowledge components on the other side. Therefore, the behavioral differences
of the agents do not only endow them with heterogeneous knowledge strings; fur-
thermore, the knowledge for the region as a whole (measured by the frequency for
the different knowledge domains of being a part of the agent’s knowledge string) is
different in every time step. Figure 4.14 shows for selected knowledge domains how
their distribution over the knowledge strings of agents evolves in the course of time.
This indicates that different knowledge domains are of different importance for the
development of a region (for example domain no. 32 is compared with domain no.
0 in Fig. 4.14).

4.4.4 Sensitivity Analysis

According to the conceptualization of RIS in Sect. 4.2.1 and according to the
findings of the simulation model presented in Sect. 4.4.3, the number of cooper-
ative innovations and the related spread of knowledge between agents are the most
important performance indicators of RIS. In the specification of the explanantia
for this performance output (explanandum) of the simulation model (cf. especially

56 Cf. Beckenbach et al. 2007 for a specification of these effects of cooperative innovation on the
region as a whole.
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Sects. 4.3.2 and 4.3.3) cognitive as well as economic parameters have been used.
Hence, it remains to be demonstrated how the above-mentioned indicators for
the core performance of RIS are influenced by these parameters.57 In each of the
following sensitivity tests the parameter space around the standard parameter con-
figuration58 used in Sects. 4.4.1, 4.4.2, and 4.4.3 is investigated by means of Monte
Carlo simulations.

In Fig. 4.15 it is shown how the number of cooperative innovations and the
average stock of sharable knowledge changes if the average aspiration flexibility
(φ in Eq. 4.3) and cooperation threshold (ct in Eq. 4.11) is varied. This reveals that
an increase of the aspiration flexibility leads to an increase in finished cooperative
innovations only if ct is not too high (Fig. 4.15a). Due to the important role the coop-
erative innovation plays for the regional spread of knowledge basically the same
critical relationship between the aspiration flexibility and the cooperation threshold
holds for the average stock of sharable knowledge (although this relationship is not
as strong as in the former case because individual innovation is another source for
the stock of knowledge) (Fig. 4.15b).

In Fig. 4.15(c,d) both outputs indicating the performance of the RIS-core are
related to the parameter ifb, which determines the weight of the frequency compo-
nent of the cooperation force (cf. Eq. 4.10), and to the initial value for the trust level
of the agents (tr(0)). The latter is important for the amount of transaction costs of a
cooperative innovation (cf. Eq. 4.12) and for the probability of knowledge transfer
within such a cooperation (cf. Eq. 4.13). Here it is obvious that for low and moderate
values, there is almost no influence of ifb on the frequency of successful cooperative
innovations; for high values of this parameter, there is even a negative influence
on the former (cf. Fig. 4.15c). This can be explained by the constraining effect an
increase of ifb has on the propensity to cooperate (χ ) according to Eq. (4.10). Hence,
only if low and medium range values for ifb are given an increase in the initial
value for trust has a positive influence on the number of successful cooperative
innovations (due to a reduction in transaction cost and an increase in the probabil-
ity of knowledge transfer). Again the same delicate relationship between tr(0) and
ifb is principally observable as regards the average stock of sharable knowledge
(cf. Fig. 4.15d) (though not in the same drastic manner because private innovation
is another source for knowledge generation).

Finally, the dynamics of the RIS-core have been checked for varying transaction
cost parameter tcc (cf. Eq. 4.12) on one side and the amount of subsidies sc (cf.
Eq. 4.10) on the other side (cf. Fig. 4.15e, f). In this constellation the increase of the
transaction cost parameter has almost no influence on the frequency of cooperative
innovations. Hence, to pursue a cooperative innovation seems not to be a purely
financial problem. This constellation changes if – due to subsidies – the coopera-
tion force (as expressed in Eq. 4.10) increases and the financial constraint matters:

57 For getting a representation of the spread of knowledge by a real number, the number of domains
of sharable knowledge in the knowledge strings of agents is simply summed up and divided by the
number of agents (average stock of sharable knowledge).
58 In Fig. 4.15, this configuration is marked by a black point.
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now an increase in transaction costs reduces the number of cooperative innovations
(cf. Fig 4.15e). Contrary to that enhancing the amount of subsidies increases the
number of cooperative innovations for any given level of transaction costs. Due to
the partial role of cooperative innovations for knowledge generation, these relation-
ships do not hold in the same way for the average stock of sharable knowledge
(cf. Fig. 4.15(f)). In this case a low level of transaction costs and a moderately high
level of subsidies give the best results.

4.5 Conclusions

In this contribution it is shown how one can proceed if the often neglected internal
dynamics of RIS shall be explained. Then the agents, their different modes of action
as well as the coordination of their activities by markets, networks, and institutions
have to be taken into account. It was proposed here to explain the internal dynam-
ics of RIS by referring to different layers in terms of action modes the agents can
pursue. This implies to explain the selection of these different modes of action by
considering behavioral as well as situational components. In that context the core of
RIS is the mode of cooperative innovation of several agents in a region. This mode
of action was identified as a source for multiplex network relations lying between
market relations on one side and hierarchy relations on the other side.

The simulations with the agent-based model of RIS show the emergence of
patterns as regards the frequency of the different modes of action and hence the
dynamics on the different layers of RIS. These patterns on the regional (meso) level
‘grow’ out of the ongoing behavioral dynamics of the individuals (micro-level) con-
tinuously switching between the different modes of action. These patterns on the
meso-level comprise different evolution paths for the network components: a brittle
development of cooperative innovations on a rather low level, a stable medium range
growth of sales cooperation, and a high-level growth for trust relations.

Finally, the sensitivity analyses as regards the parameters for cooperative inno-
vation reveal a ‘network landscape’ behind the observable dynamics of RIS. Broad-
ening the perspective of a singular path to include such a network landscape sheds
light on the conditions for good network performance in terms of parameter constel-
lations. Hence, such simulations can be a starting point for a bottom up improvement
of the performance of RIS and the networks included. This is in sharp contrast to the
usual top down optimization perspective in network research and the corresponding
perspective of a designer or even planner of a RIS.

Acknowledgments We gratefully acknowledge the funding of this research by the VW-Stiftung.

References

Ajzen, I. (1991). The Theory of Planned Behavior. Organizational Behavior and Human Decision
Process 50(2): 179–211.

Anderson, J. R. (2000). Cognitive Psychology and its Implications. W.H. Freeman, New York.



98 F. Beckenbach et al.

Antonelli, C. (2000). Collective knowledge communication and innovation: the evidence of
technological districts. Regional Studies, 34(6): 535–547.

Asheim, B. T. and A. Isaksen (2002). Regional Innovations Systems: The Integration of Local
`Sticky’ and Global `Ubiquitious Knowledge’. The Journal of Technological Transfer 27:
77–88.

Barabasi, A. L. (2003). How Everything is Connected to Everything Else and What it Means.
Perseus Publishing. Cambridge.

Beckenbach, F. (2004). Das Handlungskonzept in der evolutorischen Mikroökonomik. Studien zur
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Quéré, M. and L. Ravix (2003). The Austrian Theory of Institutions Applied to Science-Industry
Relationships: The Relevance of Innovative Institutions. Review of Austrian Economics 16
(2–3).

Sabel, C. F., G. B. Herrigel, R. Deeg, and R. Kazis (1989). Regional Prosperities Compared:
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Chapter 5
Agent-Based Modelling of Innovation
Networks – The Fairytale of Spillover

Andreas Pyka,∗ Nigel Gilbert and Petra Ahrweiler

5.1 Introduction

Today’s knowledge-based economies are more than places where goods and ser-
vices are bought and sold; they are the sites where complex logistic processes
are coordinated, where innovation takes place, where knowledge is generated,
communicated, re-combined and exchanged. In such competitive and knowledge-
intensive environments characterized by price as well as innovation competition and
in which there are quickly changing global technological and economic require-
ments (Bahlmann, 1990; Hanusch and Pyka, 2007a) and a variety of institutional
infrastructures (Amable, 2003; Hanusch and Pyka, 2007b), a firm can improve its
performance only by exploiting resources more creatively and intelligently than
its competitors (Lam, 2003). To keep a competitive edge, firms have to engage
in continuous learning. Organizationally, cooperative research in so-called innova-
tion networks has become a prominent alternative, which allows access to external
knowledge sources. These innovation networks were almost neglected in the theory
of industrial organization (IO) due to a misinterpretation of technological spillover
effects. In innovation networks, which are the outcome of various horizontally and
vertically bilateral/multilateral collaborations, the actors of the innovation process
share and co-develop new knowledge with other actors (Pyka, 2002).

In economics knowledge transfers between different actors basically were
described by technological spillovers. This concept is borrowed from macro-econo-
mics, where spillovers are the engine of economic growth due to the positive
feedbacks they induce in economic development (e.g. Romer, 1990). On the level
of micro- and industrial economics, the concept of technological spillovers was
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carried over almost one-to-one by referring to the public good nature of new tech-
nological knowledge. Accordingly, in the incentive-based approaches of neoclas-
sical industrial economics, technological spillovers are considered as involuntary
knowledge flows, which reduce the incentives to be engaged in costly R&D. Obvi-
ously, the negative interpretation of technological spillovers on the industrial level
also has had an impact on the assessment of collaborations in industrial R&D.

In the theory of IO in the first place, collaborative R&D was considered to
be a temporary phenomenon only (e.g. Harrigan, 1985; Sapienza, 1989). Addi-
tionally, on the basis of well-established anti-trust principles, collaborative agree-
ments generally were supposed to be suspicious. For example, in transaction costs
theory, innovation networks were taken as a hybrid form of IO, between hierar-
chy and markets, which finally will disappear. Exemplarily the developments in
the biotechnology-based industries were cited, where since the late 1980s well-
established pharmaceutical firms were engaged frequently in cooperative research
with specialized biotech start-up companies (e.g. Pyka and Saviotti, 2005). These
cooperations were supposed to allow access to the upcoming biotechnology
paradigm for the established pharmaceutical firms, which were specialized so far
in organic chemistry. The cooperations, furthermore, were supposed to disappear
soon again: either the large pharmaceutical firms will build up their own compe-
tences in biotechnologies (which include the acquisition of biotech start-ups) and
therefore, no longer need collaboration partners or the biotech start-ups will even-
tually displace the large pharmaceutical firms and become the dominant actors in
the pharmaceutical industries themselves. In this perspective, a long-lasting room
for collaborations is inconceivable, and implicitly knowledge flows between firms
(i.e. technological spillovers) are considered to insert negative effects on the level of
R&D investment.

Until today, neither of these two extreme alternatives becomes true. In the early
years of the 21st century, both populations of actors, the pharmaceutical firms and
the small biotech firms, still co-exist and also innovation networks still shape the
IO of R&D processes in this industry. Meanwhile, in the literature of organizational
learning (OL) the term ‘liability of disconnectedness’ is describing the importance
for industrial actors to get access to external knowledge sources via collaboration
(Powell et al., 1996).

This lack of interest in R&D collaborations prevailing in the theory of IO until the
end of the 1980s can entirely be traced back to the negative view on technological
spillovers characteristic for neoclassical industrial economics. As mentioned above,
technological spillovers, i.e. the involuntary and uncontrollable knowledge flow due
to the supposed public good nature of new technological knowledge, were basically
considered to reduce R&D incentives (e.g. Levin and Reiss, 1988) and therefore,
as detrimental for economic welfare. Not before the end of the 1980s this view
changed, and R&D collaborations slowly moved into the centre of interest. In 1988,
D’Aspremont and Jacquemin showed that pre-competitive cooperation in R&D
leads to higher R&D intensity in an industry in the case of a high degree of techno-
logical spillovers. Cohen and Levinthal (1989) introduced the concept of absorptive
capacity, which firms need in order to benefit from technological spillovers. The
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multi-faceted nature of new technological knowledge more and more moved in
the centre of interest, challenging the idea of being a public good. Knowledge is
characterized as tacit (Polany, 1962), local (Atkinson and Stiglitz, 1969), cumula-
tive (Cowan et al., 2000) and complex (Malerba and Orsenigo, 1993). Accordingly,
technological spillovers are very likely to also support industrial innovation pro-
cesses by spurring the collective innovation process and allowing for the exploration
of extensive technological opportunities (Coombs, 1988), whereas the incentive-
reducing effects are relevant only for a small fraction of technological spillovers
affecting the intensive technological opportunities (Coombs, 1988) within a sin-
gle industry. Referring to this important discussion, Nelson (1989) coined the
notion of knowledge being a ‘latent public good’ only. Appropriability conditions
are far better than the traditional view on new technological knowledge suggests
and accordingly, the incentives to undertake R&D are far less endangered by
technological spillovers.

Of course, this switch from the ‘incentive-based’ to the ‘knowledge-based’ view
on the nature of industrial R&D also has consequences for the idea to consider tech-
nological spillovers as involuntary knowledge flows. Geroski (1995, p. 85) stressed
this point: ‘In particular, what often appears to be an involuntary flow of knowl-
edge between firms may be nothing more than a pair of draws from a narrow but
common pool shared by a group of agents within a common set of problems.’ In
other words, firms may have to take positive actions to make their newly developed
knowledge available to others (Nelson, 1988) in order to spur the collective innova-
tion process which they participate. Technological spillovers are hardly conceivable
without being embedded in innovation networks, which are bound by collaborative
R&D projects between the different actors in an industry. In this light, the traditional
discussion of technological spillovers and their impact on the behaviour of firms and
on industrial dynamics is misleading without considering the innovation networks
as a means for knowledge flows.

The emphasis on knowledge collaboration and innovation networks first became
central in a new strand of literature, namely industrial dynamics (ID) in a
Neo-Schumpeterian tradition (Hanusch and Pyka, 2007a). In ID, besides the
incentive-reducing effects of spillovers, their knowledge-creating effects are heav-
ily emphasized (see e.g. Cantner and Pyka, 1998; Eliasson, 1995). Furthermore,
exactly these knowledge-creating effects have to be considered as the basic motive
for industrial actors to engage themselves in collaborative R&D. To analyse the
impact of these mutual knowledge flows in industrial learning processes, the tradi-
tional modelling framework with its strong assumptions, in particular the equilib-
rium orientation, perfect rationality and related homogeneous technologies, is not
applicable. Instead, to capture the dynamics going on in industrial learning pro-
cesses fed by heterogeneous actors, in ID numerical simulations are adopted (see
e.g. Windrum, 2007). Within the last few years in particular, the methodology of
agent-based modelling (ABM) is frequently applied (see among others Gilbert and
Troitzsch, 1999; Tesfatsion, 2001).

The ABM approach offers certain advantages (Pyka, 2006; Pyka and Fagiolo,
2007) for the investigation of innovation-driven dynamics and allows for the first
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time the analysis of the processes going on in innovation networks and shaping
their evolution. It basically consists of a decentralized collection of agents acting
autonomously in various contexts. The massively parallel and local interactions can
give rise to path dependencies, dynamic returns and their interaction. In such an
environment global phenomena as the development and diffusion of technologies,
the emergence of networks, herd-behaviour etc. which may cause a transformation
of the observed system can be modelled. This modelling approach focuses on depict-
ing the agents, their relationships and the processes governing their transformation.
Very broadly, the application of ABM offers two major advantages with respect to
the knowledge and learning orientation in ID:

(i) The first advantage of ABMs is their capability to show how collective phenom-
ena come about and how the interaction of the autonomous and heterogeneous
agents leads to their genesis. Furthermore, ABMs aim at the isolation of critical
behaviour in order to identify agents that more than others drive the collective
result of the system. They also endeavour to single out points of time where the
system exhibits qualitative rather than sheer quantitative change.

(ii) The second advantage lies in the possibility to use ABM as computational lab-
oratories to explore various institutional arrangements, various potential paths
of development so as to assist and guide, e.g. firms, policy makers in their
particular decision context.

The aim of this contribution is to introduce an agent-based simulation model
(SKIN – Simulating Knowledge Dynamics in Innovation Networks; for a detailed
introduction into the model’s architecture see Ahrweiler et al., 2004), which allows
studying innovation networks and their developments and to overcome the short-
comings of the discussions of technological spillovers in industrial economics. The
agents are designed in a way which reflects the knowledge-based view of ID, i.e.
they are characterized by imperfect knowledge which they try to improve; they act
in strong uncertain environments which also are continuously affected and modified
by their actions. Furthermore, the actors actively search for collaboration partners
in order to struggle successfully in a complex innovation process.

This chapter builds on the results of the SKIN analysis of OL (Gilbert et al., 2007),
the results of the analysis of network dynamics (Pyka et al., 2007) and the results
of the analysis of the relation between agency and network architectures (Ahrweiler
et al., 2007) and aims at a better understanding of innovation networks without
which technological spillovers hardly occur. The basic structure of the model is
briefly outlined in Sect. 5.2. In Sect. 5.3, various simulation experiments are shown
in order to demonstrate the model’s performance. In particular, it is shown that
innovation networks can be a persistent organizational form of industrial R&D
(Sect. 5.3.1) and not only of transitory nature as claimed in traditional IO theory.
The phenomenon of innovation networks is closely related to the emergence of the
so-called knowledge-based economies since the 1980s. The innovation networks
in reality show certain characteristics in their architecture and dynamics which
are knowledge-driven (e.g. Powell et al., 2005) and which do also appear in our
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artificial innovation networks. In Sect. 5.3.2, we analyse these features, in partic-
ular the scale-free attributes of innovation networks. Some conclusions close the
chapter.

5.2 Modelling Innovation Networks

SKIN is a multi-agent model containing heterogeneous agents which act and inter-
act in a complex and changing environment. The actors are engaged in learning
processes, both individually and collectively in network organizations. The basic
structure of the model is summarized in Fig. 5.1. A more detailed description can
be found in Appendix 1 of this chapter.

The agents represent innovative firms who not only try to sell their innovations to
other agents and end users, but also have to buy raw materials or more sophisticated
inputs from other agents (or material suppliers) in order to produce their outputs.
This basic model of a market is extended with a representation of the knowledge
dynamics in and between the firms. Each firm tries to improve its innovation per-
formance and its sales by improving its knowledge base through adaptation to user
needs, incremental or radical learning, and cooperation and networking with other
agents allowing for combinatorial innovation processes.

The core concept of the framework is knowledge, which will manifest itself in
the innovative production or delivery of manufactured and service products. The
approach to knowledge representation used in the model is similar to Toulmin’s

firm actors

search for a

innovation cooperation

innovation process

– incremental

– radical

innovation & economic successexit

start-
up 

cooperative strategy go-it-alone

new and/or modified knowledge

Fig. 5.1 Basic structure of the SKIN model
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(1967) evolutionary model of knowledge production. He identified concepts, beliefs
and interpretations as the ‘genes’ of scientific/technological development evolving
over time in processes of selection, variation and retention. Ackermann (1970) inter-
preted the works of Kuhn and Popper according to this perspective allowing for
different selection systems. In the SKIN model, the concept of a ‘kene’ is used to
represent the aggregate knowledge of an organization (Gilbert, 1997).

Knowledge flows between the agents do not occur automatically but are depen-
dent on the condition of an agreement of knowledge sharing and exchange within
innovation cooperation. In this respect, our model sharply differs from traditional
approaches in neoclassical industrial economics, because no (involuntary) techno-
logical spillovers exist. Of course, access to external knowledge sources is essen-
tial. However, as new technological knowledge is only a latent public good, the
appropriability conditions allow excluding actors who are not participating in a
collaboration. The possibilities of actors to include successfully knowledge from
their collaboration partners of course depend on their absorptive capacities, i.e. the
particular knowledge-make-up of their kenes.

5.3 The Emergence of Innovation Networks
in an Artificial World

Following the strategies of empirically grounded and history-friendly modelling as
pointed out by Malerba et al. (2001), the model draws on the theoretical frameworks
and empirical insights from socio-economic innovation research.1 For validation,
namely whether the outputs for given inputs/parameters resemble empirical obser-
vations (although because the processes being modelled are stochastic and because
of unmeasured factors, identical outputs are not to be expected, as discussed in detail
in Gilbert and Troitzsch, 1999), we compare the model’s outputs with empirical
data. For this, we use our own case study on innovation networks in the UK and
German bio-pharmaceutical industries (see Ahrweiler et al., 2006).

In the empirical as well as in our artificial world, we observe an initial shake-out
of actors and a strong increase of collaborative activity in the early phase of industry
development because of missing absorptive capacities and the inflexibility of estab-
lished big firms which have to rely on specialized small high-tech enterprises. For
their part, small firms need the large ones as ‘commercializers’ of their technological
knowledge. As a result, we observe a change of the sectoral knowledge base while
actors form networks in order to benefit from one another’s competences and to
perform combinatorial innovation processes.

In a more mature sector, the composition, attachment strategies and structural
properties of the networks change – both empirically and in the simulated industry –

1 Empirical results from five case studies of European innovation networks in different technolog-
ical domains carried out in the EU project “Simulating self-organizing Innovation Networks” (see
Pyka and Küppers, 2002) were initially used to set up a first version of the model.
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to a stronger focus on partnerships between equals and to the growth of financing as
a tie between firms, in addition to R&D links (for a description of a similar evolution
of empirical network dynamics in the US biotech industries, see Powell et al., 2005).
The risks and uncertainty inherent in new drug development are indicated by the
high exit rate of projects and firms. Our model is able to reproduce these observed
empirical features.

The following sections introduce the developments in our artificial world and
show the wide possibilities to analyse network evolution there. We first show devel-
opments for a scenario which we label standard scenario and then focus on some
experiments, modifying parameters and settings. For the standard scenario, the
parameters of the starting distribution can be found in Appendix 2 of this chapter.
The actors in the standard scenario apply the so-called conservative strategy, i.e. they
were looking for actors with similar knowledge bases and the attractiveness thresh-
old, i.e. the threshold which has to be surpassed in order to create a new partnership
is set to a low value of 0.3. Figure 5.16 in appendix 3 gives the max–min-corridor
of one of our observables in a Monte Carlo simulation to illustrate the robustness
of our results. In Sect. 5.3.2 different scenarios, modifying the cooperation strategy,
the number of large actors in the initial distribution as well as the attractiveness
threshold are analysed. The purpose of this analysis is to gain a better understanding
of the determinants of network evolution, their structures as well as their impact on
the performance of the artificial industry.

5.3.1 Innovation Networks as a Persistent Form
of the IO of R&D

The first aim of our modelling analysis is to show that innovation networks are
a viable form of organization of industrial R&D and therefore are characterized
by persistence. For this purpose we compile a scenario, labelled standard scenario,
which should correspond closely to the conditions characteristic for knowledge-
intensive industries where the phenomenon of innovation networks frequently
appears in reality. The firm actors in our artificial world are engaged in innovation
processes in order to survive in an environment, where besides price competition the
competition for innovation plays a crucial role. Among the 500 actors in the initial
distribution of the standard scenario, we find 50 large actors. The consideration of
large actors and this particular relationship should reflect the situation characteristic
for knowledge-intensive industries, where a few very large companies co-exist with
quite a large number of small dedicated technology firms.

Figure 5.2a displays the development of the number of actors. Due to the align-
ment in the first iterations – products demanded by customers have to be developed
as well as adequate input factors for production have to be purchased – a large
share of small firm actors do not survive this period due to their only small endow-
ment with capital. With successful market transactions appearing after around 300
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iterations, however, life becomes easier for small actors and entry processes follow-
ing the successful introduction of novelties are responsible for an again increasing
number of actors. This situation repeats a couple of times during the simulation
leading to a cyclical development, which follows the discovery of profitable regions
in the innovation space, the exploitation of these possibilities and the subsequent
exploration of new regions in the innovation space. These new regions are opened
up by new combinations of the actors’ kenes.

Figure 5.2b shows that this development is accompanied by a continuous evo-
lution of networks measured by their number. During the shake-out periods, where
the rate of successful innovations due to depleted opportunities decreases and with
it the entry processes of start-ups slow down, some networks disappear temporarily.
With the upswing in innovation and the related entries, the number of networks
increases again. The cyclical development of cooperation activities therefore corre-
sponds closely to the discovery of new major technologies (i.e. profitable region in
the innovation space) leading to pronounced networking activities.2

Although the steadily increasing number of innovation networks gives a first hint
on the persistence of this form of IO of R&D, only a closer look on the cooperative
connections and the composition of networks allows for the conclusion that innova-
tion networks are a viable form of R&D organization leading to a prolific industry
development.

In Fig. 5.3, the frequency of the distribution of network sizes is illustrated. Rather
obviously the majority of innovation networks encompass only a few actors and
quite often consist of long-run bilateral cooperation. However, also a few innova-
tion networks exist which include six and more actors. These large networks play
a crucial role for knowledge flows in our artificial industry. This is underlined in
Fig. 5.4, where the development of connectivity is displayed. Connectivity is a

2 For example, Saviotti and Nesta (2006) have shown that the cyclical nature in innovation
networks in the biotechnology-based industry corresponds to major technological waves (from
RDNA, monoclonal antibodies, genetics to protein design and so on). Each technological shock
introduces a new wave of cooperative activities in these industries.
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measure in graph theory, which relates the number of actual connections to the
number of potential possible connections in a network. It is usually applied as a
rough indicator for the spread of information diffusion in networks. The consid-
erable high values of connectivity over the whole time horizon of the simulation
illustrates multi-channelled knowledge flows. This indicates a high degree of knowl-
edge diffusion which has to be considered one of the major functions of innovation
networks.

Following the results of our standard scenario simulations, we can show the
persistent nature of innovation networks in knowledge-based industries. In the fol-
lowing section, we test different settings and their impact on the evolution of the
innovation networks in order to develop a better intuition for the prerequisites and
consequences of cooperative R&D in networks as well as of the networks’ structural
composition.

5.3.2 Scenario Analysis of Network Architecture

After having shown that innovation networks are a persistent organizational form of
industrial R&D, we will now focus on the characteristics of networks and the design
of their structures. Empirically, innovation networks in knowledge-intensive indus-
tries show features of so-called scale-free networks (Barabasi and Albert, 1999)
and small worlds (Watts and Strogatz, 1998). The attribute of scale-free is related
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to the dynamic growth of networks, whereas small worlds describe architectures
combining a high rate of knowledge diffusion with a high speed of knowledge
diffusion. The growth of these innovation networks seems to follow certain advan-
tageous conditions concerning the stability and effectiveness of networks which
leads to an unequal distribution of network connections. In these networks some
actors are characterized as central actors because of their high number of collab-
orative relationships relative to other actors with only a few cooperative relations.
Among others, Powell et al. (2005) have discovered scale-free attributes as well as
small-world architectures for example in biotechnology innovation networks.

In our artificial world the question arises whether these attributes of real net-
works can be reproduced and which conditions are responsible for generating these
particular network architectures. For this purpose, we run several experiments mod-
ifying parameters from the standard scenario and look at their impact on network
evolution. The parameters modified are the initial distribution of firm sizes, the
cooperation strategy as well as the attractiveness threshold.

(i) Modifying the initial distribution of firm sizes, i.e. whether we start with an
equal distribution of similar (small) actors, or whether we include a num-
ber of considerably larger actors (big firms) in the initial distribution, can
be considered as an experiment which allows the analysis of the impact
large actors have on the network development. This is of particular impor-
tance in knowledge-intensive industries where in reality usually large actors,
e.g. large pharmaceutical companies or the former national monopolists in
telecommunication, co-exist with small technology-dedicated firms.

(ii) Modifying the cooperation strategy should give a hint on the rationale actors
apply in the real world concerning the selection of cooperation partners. Obvi-
ously, the intention is to acquire knowledge which is not existent in the own
firm and difficult to create alone. However, the degree of novelty of the external
knowledge and its integration can vary from cases where firms try to reduce the
difficulties of mutual knowledge exchange by looking for cooperation partners
with rather similar knowledge (conservative strategy) to cases where firms try
to maximize the amount of new knowledge transferred from cooperation part-
ners (progressive strategy), hazarding the difficulties the integration of external
knowledge might cause.

(iii) Finally, the modification of the attractiveness threshold allows analysing the
general attitude of cooperation, i.e. whether the actors rather quickly decide to
cooperate or not.

The different combinations of these modifications are summarized in Table 5.1,
which describes the settings of the scenarios.

Figures 5.5 and 5.6 illustrate the development of actors in the different scenarios
according to the applied cooperation strategy.

The scenarios with the conservative cooperation strategy are more successful
with respect to the entry processes, and as entry is correlated to innovation, the actors
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Fig. 5.5 Development of the actors’ population in scenarios where the conservative strategy is
applied
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Fig. 5.6 Development of the actors’ population in scenarios where the progressive strategy is
applied

applying the conservative strategy are also more often introducing successful inno-
vations compared to similar settings when only the progressive strategy is applied.
Table 5.2 shows the linear growth trends3 of the different scenarios. Only in the case
of scenario II with the high attractiveness threshold, this value is (somewhat) lower
compared to the corresponding scenario III with the progressive strategy.

3 The linear growth trends are measured as the slope of a linear regression line.
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Table 5.2 Linear trends in the growth of actors

Standard I II III IV V VI VII

Trend of growth
in the number
of firms

0.241 0.001 –0.03 –0.021 0.167 0.153 0.371 0.063

The lower attractiveness threshold is generally combined with more pronounced
shake-outs or higher volatility. In these cases actors are less selective in their selec-
tion of cooperation partners accepting implicitly the potential higher risk of failures
and market exits.

The diverse development in the number of actors obviously must have an impact
on the development of concentration (market shares) in the industry. Market con-
centration is measured by the Herfindal-index4, which is exemplarily displayed for
the standard scenario and scenario IV in Fig. 5.7.

In contrast to the standard scenario, in scenario IV no large actors are in the
initial distribution of firm sizes. Accordingly, we start with lower concentration val-
ues. However, the considerable shake-out of unsuccessful actors in the early periods
leads to a considerable increase in concentration. The few actors remaining in the
market are characterized by an extraordinary relative growth in market shares which
leads to higher degrees of concentration over the whole simulated development.
From this one can conclude a certain stability improvement introduced into the
system by having an unequal initial distribution of firm sizes.

0
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Herfindal - Index
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Fig. 5.7 Development of concentration

4 The Herfindal index H is computed according to the following formula: H ≡
n∑

j=1
s2

j where s j

stands for the market shares of the j actors, j ∈ {0, . . . , n}.
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Fig. 5.8 (a) Comparison of profits (standard and IV). (b) Comparison of profits (II and III)

Figure 5.8a and b compares the development of the profit situation for different
scenarios. The impact of the pronounced shake-out in scenario IV without large
actors in the initial distribution of firm sizes, which has caused the higher degree of
concentration, is also reflected in profit development. Compared to the standard sce-
nario, the recovery period takes longer and during the further simulation the profit
situation is almost always below to the one of the standard scenario.

Similar recovery problems characterize the profit situation of scenario III
(progressive strategy) relative to scenario II (conservative strategy) both with the
higher attractiveness threshold (0.7). As in both cases we have large actors in the
initial distribution of firm sizes, the concentration effect cannot offer an expla-
nation. An additional effect seems to be working, stemming from the innovation
networks. Figure 5.9a and b, which shows the distribution of network sizes in the
last iteration (1500) on a log–log scale, together with Table 5.3 illustrates a further
commonality of the standard scenario and scenario II compared to the scenarios
III and IV.

The SKIN model allows observing the structure of the emerging networks.
Figure 5.9a and b shows the distribution of network sizes after 1500 iterations on
a log–log scale. Besides a large number of networks encompassing only a small
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standard I

distribution of network sizes

100 1000

Fig. 5.9a Distribution of network sizes (conservative vs. progressive strategy, low attractivity
threshold)
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Fig. 5.9b Distribution of network sizes (conservative vs. progressive strategy, high attractivity
threshold)

Table 5.3 The coefficients of power-law distributions of the networks after 1500 iterations

Standard I II III IV V VI VII

Coefficient of
power-law
distribution

(R2) 1.53
(0.822)

0.67
(0.582)

1.60
(0.894)

0.54
(0.603)

1.64
(0.874)

1.43
(0.697)

2.35
(0.868)

1.40
(0.521)

number of actors (up to 6), larger networks with up to 10 members and even more
can be observed. This observation indicates that even if networking behaviour seems
to be a widely shared strategic alternative, the actors in the various scenarios are
engaged in networking to very different degrees. The particular shape also corre-
sponds closely to the distribution of network links one might expect in so-called
scale-free networks. In order to test this feature, Table 5.3 displays the coefficient of
a power-law distribution for the eight scenarios under investigation.

Seyed-Allaei et al. (2006) have proved that indeed scale-free attributes of net-
works show up with rather small coefficients around 2. The figures in the table
show that scale-free attributes of the underlying network emerge in the standard
scenario as well as in scenario II (also the regression coefficient is close to one).
In the cases of scenarios I and III, the coefficients are not large enough and the
regressions are not significant to claim scale-free attributes for networks emerging
in these scenarios. In scenarios IV and VI, we find coefficients sufficiently large
(and regression coefficients sufficiently close to one) to state scale-free attributes to
emerge. In scenarios V and VII, the coefficients of the power-law distribution are
also not too small but the low regression coefficient in these cases does not allow
to speak of scale-free attributes. From this comparison of the different scenarios
one commonality of the scale-free solutions clearly stands out: only in the scenarios
where the actors do apply the conservative collaboration strategy, networks with
scale-free attributes emerge.

This feature of scale-free networks over longer time periods for scenarios with
the conservative strategy shows that the SKIN model allows for the evolution of
innovation networks, which are not only stable and a persistent organizational
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form of industrial R&D but also, under certain circumstances, structurally cor-
responds to network architectures found in the reality of knowledge-intensive
industries.

By these scenario analyses another crucial advantage of this type of model anal-
ysis can be demonstrated: with the help of our agent-based model, we can identify
strategic dispositions of actors which lead to network dynamics resembling those in
the real world. Empirically, these strategic dispositions are hardly to be measured
but remain empirically more or less hidden.

Finally, we are interested in the possibilities of our model to generate innova-
tion networks showing the features of small worlds. Seyed-Allaei et al. (2006) have
shown that for rather extreme scale-free degree distributions with a power-law coef-
ficient smaller than 2 automatically small-world architectures emerge. Accordingly,
also in our model this particular combination of small path lengths amongst agents
in the networks and a high degree of cliquishness should show up. This particu-
lar network architecture is beneficial in the organization of innovation processes
because they guarantee both a fast diffusion of knowledge as well as a high spread
of new knowledge (e.g. Baum, Shipilov and Rowley, 2003). Following Watts (1999)
and Kogut and Walker (2001), we calculate the ratio of our artificial world’s clus-
tering coefficient and a random network with the same size concerning number of
actors and ties and divided it by the ratio of the artificial networks’ path length with
respect to a purely random network of the same size (Fig. 5.10). Values above two
are signalling small-world architectures.

Within the observed evolution of innovation networks in our standard scenario,
we find almost from the beginning a strong prevalence for small worlds as an
emergent property confirming the expectation by Seyed-Allaei et al. (2006).

In Fig. 5.11 we calculate in the same way the respective values for innovation
networks in the biotechnology-based industries (Pyka and Saviotti, 2005). Since
1995, our real networks show features coming close to those of small worlds. These
further correspondences of our artificial world with the dynamic developments of
cooperation in innovation in this particular industry allow us to conclude that major
mechanisms and inter-relations determining collaborative innovation processes and
industrial learning are captured in our agent-based model.
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Fig. 5.10 Clustering coefficients (C) and path length (L) in the standard scenario
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Fig. 5.11 Clustering coefficients (C) and path length (L) in biotechnology-based industries

5.4 Conclusions

The SKIN model is an attempt to improve our understanding of the complex
processes going on in modern innovation processes. The model goes far beyond
previous theoretical attempts in economics of analysing the IO of innovation pro-
cesses. Instead of integrating strategic alliances and cooperative R&D in a standard
equilibrium model of oligopolistic competition, insights coming from numerous
case and industry studies are used to model the decision procedures. Technological
spillovers are no longer considered to be automatically available, e.g. by correlating
their size to the overall amount of industry R&D expenditures. Instead, the agents
create a tight network consisting of mutual innovation collaborations which pro-
vides the channels for knowledge to flow between the actors and by this contribute
to the collective innovation process. Using an agent-based simulation allows the
modelling of innovation which can abstract from reality without assuming away the
essentials of innovation processes (e.g. true uncertainty, historical time, heteroge-
neous agents learning experimentally and learning from each other in partnerships
and networks) which are heavily emphasized by modern innovation economics (e.g.
Nelson, 2001). In this sense, the book of fairytales of technological spillovers on
the micro- and industry-level is closed and the new book on innovation networks
is opened.

SKIN is designed in a way that allows the investigation of different indus-
tries. For calibration of the model’s parameters different strategies can be envis-
aged: First, parameters can be estimated econometrically from various industry
data sets describing the industry’s cooperative behaviour which are increasingly
available, for e.g. biotechnology-based industries. Alternatively, the second
strategy focuses on the historical development of a particular industry
which is reproduced in the simulation thereby identifying an adequate set of
parameters.

In this chapter, we followed the second strategy and reproduced some stylized
facts of real-world innovation networks in knowledge-intensive industries. It has
been shown that SKIN can reproduce viable and persistent networks supporting
the actors in their knowledge creation and diffusion processes. Furthermore, the
networks evolving in the artificial SKIN-world show structural similarities with
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real-world networks with respect to their degree distribution as well as particu-
lar network architectures. Under certain circumstances, SKIN innovation networks
tend to be characterized by scale-free attributes and small worlds which are also
characteristic for the architecture of innovation networks in knowledge-intensive
industries.

SKIN is supposed to offer a first alternative within the broad set of possibilities
of agent-based models for the analysis of the evolution of and the processes going
on in innovation networks. The application of this class of models to this important
phenomenon in the IO of R&D will obviously improve our understanding of the
complex processes shaping industry evolution.

Appendix 1: The Agents and Their Knowledge

The individual knowledge base of a SKIN agent, its kene (Fig. 5.12), contains a
number of ‘units of knowledge’. Each unit is represented as a triple consisting of a
firm’s capability C in a scientific, technological or business domain (e.g. biochem-
istry), represented by an integer, its ability A to perform a certain application in this
field (e.g. a synthesis procedure or filtering technique in the field of biochemistry),
represented by a real number, and the expertise level E the firm has achieved with
respect to this ability (represented by an integer). The firm’s kene is its collection of
C/A/E-triples which is of variable size and represents an artificial knowledge space.

Fig. 5.12 The kene of an
agent
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Each firm, when it is set up, has also a stock of initial capital. It needs this capital
to produce for the market and to improve its knowledge base, and it can increase
its capital by selling products. The amount of capital owned by a firm is also used
as a measure of its size and additionally influences the amount of knowledge that it
can support, represented by the number of triples in its kene. Most firms are initially
given a starting capital allocation, but in order to model differences in firm size, a
few randomly chosen firms can be given extra capital. In many knowledge-intensive
industries, we find a co-existence between large and small actors (e.g. the large
pharmaceutical firms and the biotech start-ups, or the former national monopolists
and high technology specialists in the ICT-industries). This particular distribution of
firm sizes makes it necessary to discriminate between large and small actors in the
simulation set-up.
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Market Relationships and Innovation Processes

Firms apply their knowledge to create new products that have a chance of being
successful in the market. The special focus of a firm, its potential innovation, is
called an innovation hypothesis (IH) (Fig. 5.13). In the model, IH is derived from a
subset of the firm’s kene triples.

Fig. 5.13 Deriving an IH
from an actor’s kene {     }, {     }, {     }, {     }, {     },...
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The underlying idea for an innovation, represented by IH, is the source an
agent uses for its attempts to make profits. Transforming the IH into a product
is a mapping procedure, where the capabilities of IH are used to compute an
index number that represents the product. The particular transformation procedure
applied allows similar products resulting from different kenes, which is not too far
from reality where the production technologies of firms in a single industry vary
considerably.

A firm’s product, P, is generated from its IH as

P =
∑

I H

Ci mod N , (5.1)

where N is a constant.
The product has a certain quality which is also derived from the IH, by multiply-

ing the abilities and the expertise levels for each triple in the IH and normalizing the
result.

In order to realize the product, the agent needs some input factors. These can
either come from outside the sector (raw materials) or from other firms, which gen-
erated them as their products. What exactly an agent needs is also determined by the
underlying IH (Fig. 5.14): the kind of material required for an input is obtained by
selecting subsets from the innovation hypotheses and applying the standard mapping
function (see Eq. 5.1 above).

These inputs are chosen in such a way that each is different and differs from
the firm’s own product. In order to be able to engage in production, all the inputs
need to be available on the market, i.e. provided by other agents or available as raw
materials. If the inputs are not available, the agent is not able to produce and has
to give up this attempt to innovate. If there is more than one supplier for a certain
input, the agent will choose the one at the cheapest price and, if there are several
similar offers, the one with the highest quality.
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Fig. 5.14 The firm’s input
requirements IH =

Input 1: (A1 + A2) modulus N 
Input 2: (A3 + A4 + A5) modulus N 
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If the agent can start its production, it has to find a price for its own product
which takes account of the input prices it is paying and a possible profit margin.
While the simulation starts with product prices set at random, as the simulation
proceeds, a price adjustment mechanism increases the selling price if there is high
demand, and reduces it (but no further than the total cost of production) if there are
no customers. A range of products are considered to be ‘end-user’ products and are
sold to customers outside the sector: there is always a demand for such end-user
products, provided that they are offered at or below a fixed end-user price. An agent
will then buy the requested inputs from its suppliers using its capital, produces its
output and puts it on the market for others to purchase. Using the price adjustment
mechanism, agents are able to adapt their prices to demand side and in doing so
learn by an adaptive feedback.

In making a product, an agent applies the knowledge in its IH and this increases
its expertise in this area. This way learning by doing/using is modelled. The exper-
tise levels of the triples in the IH are increased by 1 and the expertise levels of the
other triples are decremented by 1. Unused triples in the kene eventually drop to an
expertise level of 0 and are deleted from the kene; the corresponding abilities are
‘forgotten’ or ‘dismissed’ (cf. e.g. Hedberg, 1981).

Learning and Cooperation: Improving
Innovation Performance

In trying to be successful on the market, the firms are dependent on their IH and
thus on their kene. If a product does not meet any demand, the firm has to adapt its
knowledge in order to produce something else for which there are customers (cf. e.g.
Duncan, 1974). In the model, a firm has several ways of improving its performance,
either alone or in cooperation, and in either an incremental or a more radical fashion.
All strategies have in common that they are costly: the firm has to pay a ‘tax’ as the
cost of applying an improvement strategy.

Incremental Innovation

If a firm’s previous innovation has been successful, i.e. it has found buyers, the firm
will continue selling the same product in the next round. However, if there were no
sales, it considers that it is time for change (evaluating feedback). If the firm still
has enough capital, it will carry out ‘incremental’ research (R&D in the firm’s labs).
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Fig. 5.15 Incremental
research
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Performing incremental research (Cohen and Levinthal, 1989) means that a firm
tries to improve its product by altering one of the abilities chosen from the triples in
its IH, while sticking to its focal capabilities. The ability in each triple is considered
to be a point in the respective capability’s action space. To move in the action space
means to go up or down by an increment, thus allowing for two possible ‘research
directions’ (Fig. 5.15).

Initially, the research direction of a firm is set at random. Later it learns to adjust
to success or failure: if a move in the action space has been successful the firm will
continue with the same research direction within the same triple; if it has been a
failure, the firm will randomly select a different triple from the IH and try again
with a random research direction.

Radical Innovation

A firm under serious pressure that is in danger of becoming bankrupt, i.e. using up its
capital stock will turn to more radical measures, by exploring a completely different
area of market opportunities. In the model, an agent under financial pressure turns
to a new IH after first ‘inventing’ a new capability for its kene. This is done by
randomly replacing a capability in the kene with a new one and then generating a
new IH.

Cooperation and Networking: Combinatorial Innovation

Partnerships

An agent in the model may consider partnerships (alliances, joint ventures, etc.)
in order to exploit external knowledge sources. The decision, whether and with
whom to cooperate, is based on mutual observations of the firms, which estimate
the chances and requirements coming from competitors, possible and past partners
and clients.

The information a firm can gather about other agents is provided by a marketing
feature: to advertise its product, a firm publishes the capabilities used in its IH.
(Capabilities not included in its IH and thus in its product, are not visible externally
and cannot be used to select the firm as a partner.) The firm’s advertisement is then
the basis for decisions by other firms to form or reject cooperative arrangements.



122 A. Pyka et al.

In experimenting with the model, we can choose between two different partner
search strategies, both of which compare the firm’s own capabilities as used in its
IH and the possible partner’s capabilities as seen in its advertisement. Applying the
conservative strategy, a firm will be attracted by a possible partner who has similar
capabilities; using a progressive strategy the attraction is based on the difference
between the capability sets.

Previously good experience with former contacts generally augurs well for
renewing a partnership. This is mirrored in the model: to find a partner, the firm
will look at previous partners first, then at its suppliers, customers and finally at all
others. If there is a firm sufficiently attractive according to the chosen search strategy
(i.e. with attractiveness above the ‘attractiveness threshold’), it will stop its search
and offer a partnership. If the possible partner wishes to return the partnership offer,
the partnership is set up.

The model assumes that partners learn only about the knowledge being actively
used by the other agent. Thus, to learn from a partner, a firm will add the triples of
the partner’s IH to its own kene. For capabilities that are new to it, the expertise
levels of the triples taken from the partner are reduced by 1 in order to mirror
the difficulty of integrating external knowledge (cf. Cohen and Levinthal, 1989).
For partner’s capabilities that are already known to it, if the partner has a higher
expertise level, the firm will drop its own triple in favour of the partner’s one; if the
expertise level of a similar triple is lower, the firm will stick to its own version. Once
the knowledge transfer has been completed, each firm continues to produce its own
product, possibly with greater expertise as a result of acquiring skills from its part-
ner. Accordingly, cooperative innovation processes are conceived a combinatorial
innovation, i.e. combing knowledge elements of the various partners.

Networks

If the firm’s last innovation was successful, i.e. the amount of its profit in the pre-
vious round was above a threshold, and the firm has some partners at hand, it can
initiate the formation of a network. This can increase its profits because the net-
work will try to create innovations as an autonomous agent in addition to those
created by its members and will distribute any rewards to its members who, in the
meantime, can continue with their own attempts, thus providing a double chance for
profits.

Networks are ‘normal’ agents, i.e. they get the same amount of initial capital as
other firms and can engage in all the activities available to other firms. The kene
of a network is the union of the triples from the innovation hypotheses of all its
participants. If a network is successful it will distribute any earnings above the
amount of the initial capital to its members; if it fails and becomes bankrupt, it
will be dissolved.

Entry

If a sector is successful, new firms will be attracted into it representing a Schum-
peterian competition by imitation. This is modelled by adding a new firm to the
population when any existing firm makes a substantial profit. The new firm is a clone
of the successful firm, but with its kene triples restricted to those in the successful
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firm’s advertisement, and an expertise level of 1. This models a new firm copying
the characteristics of those seen to be successful in the market. As with all firms,
the kene may also be restricted because the initial capital of a start-up is limited
and may not be sufficient to support the copying of the whole of the successful
firm’s IH.

The code for the NetLogo model on which this paper is based is available on a
request from the first author.

Appendix 2

The standard scenario uses the following parameter settings:

• Initial capital: 20,000 (big firms: 200,000)
• Initial population of firms: 500
• Number of large firms, with extra capital at the start: 50
• Range of product index numbers in the sector: ]0.0 to 100.0[
• Maximum difference between product and input index numbers for them to be

considered substitutable: 1.0
• All products with a product number below 5.0 are considered to be ‘raw-

materials’ and all those with numbers above 95 are ‘end-user’ products.
• Price of raw materials: 1
• Maximum price of end-user products: 1000
• Profit required attracting new start-ups: 1200
• Partnering search strategy: conservative
• Attractiveness threshold to allow two firms to partner: 0.3
• Capital cut-off below which firms do radical rather than incremental research:

1000
• Taxes: per time step: 200; per incremental research attempt: 100; per radical

research attempt: 100: per collaboration partner: 100

Appendix 3
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Fig. 5.16 The min–max-corridor of a Monte Carlo simulation
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Chapter 6
Structural Holes, Innovation and the
Distribution of Ideas

Robin Cowan and Nicolas Jonard

6.1 Introduction

This contribution examines the relationship between the architecture of an industrial
R&D network and efficiency in knowledge distribution, both from the point of view
of individual firm performance, and at the level of the system.

Recent technological changes have had the effect of creating multi-product firms:
the knowledge base on which both production and innovation are founded has, in
general, become much broader, covering more and different types of knowledge
(Grandstrand and Sjolander, 1990). As a consequence, firms increasingly discover
that their in-house knowledge is not sufficient for efficient production or innovation.
This had driven them to seek the knowledge they need outside, in other firms. How-
ever, and precisely due to the nature of knowledge, this task is difficult to achieve
through pure market interaction. Thus, firms are now forming relatively long-term
alliances, formal and informal, with other, often competing, firms. This has led to
the networked organization, a hybrid organizational form lying between the mar-
ket and a pure hierarchy (Powell, 1990), which takes advantage of both market
and non-market interactions. Networks supply firms with rapid, flexible access to
resources outside their core competencies. Strong, stable contacts with other firms
can provide a firm with the knowledge it needs for its immediate production or
innovation without navigating the difficulties of market transactions for knowledge.
In addition, contacts of this type can also provide a form of insurance – giving a firm
rapid access to information about developments taking place in other firms or related
industries. These observations are particularly relevant to knowledge-intensive and
science-based industries.
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There is now a large literature, much located in the management field, examining
the structural properties of innovation or R&D networks. Three properties recur.
Networks tend to be sparse. That is, of the total possible connections between
agents, the actual connections constitute a small proportion. Networks tend to be
locally dense. Local clusters of closely interconnected agents are common. In addi-
tion, the local clusters tend to be only sparsely connected to each other. Finally, the
distribution of links over agents tends to be highly skewed. It is probably too strong
to say that there is common evidence of power-law distributions, but relatively heavy
tails do exist. The discussion in the literature concerns how these properties arise,
and how firms’ performance is affected by them.

As to the relationship between network position and performance, there are
roughly speaking two competing views. On the one hand, following Coleman (1988),
it is possible to argue that dense sub-groups are a source of social capital.1 A group
of highly inter-connected agents generates trust, common languages and problem-
solving heuristics, social disapprobation for opportunistic behaviour and so on. If
firms i and j are linked, they can share information about a common partner k. This
reduces significantly the incentives for k to behave opportunistically against, j, even
if he will never see j again, since information about his behaviour will travel rapidly
to i and to all the other members of the clique. More positively, if i is working on
a problem, using information gathered from j and k, or in discussion with j and
k, an ability of j and k to discuss the problem with each other, or exchange infor-
mation about it, can only have a positive effect on i’s ability to solve his problem.
These considerations imply that structurally embedded partnerships will be impor-
tant sources of value for a firm, and redundant links are privately and probably
also socially valuable.2 Thus for a firm, a useful link formation strategy is to close
open triangles and create strong cliques. The value of this strategy is observed in
empirical studies by Dyer and Nobeoka (2000), on the automobile industry; Gulati
and Gargiulo (1999) in a study of alliance formation in several industries; Powell
et al. (1996) who study the impact of network position on innovation performance
in the biotechnology sector; and Rowley et al. (2000) in a study of strong and weak
ties in innovation networks in the steel and semiconductor industries.

On the other hand, Burt (1992) argues that dense local links are redundant in a
strong sense, that the existence of structural holes in a firm’s ego network is efficient,
and that locally dense networks can be a source of rigidity. A structural hole exists
if two of my neighbours are not linked to each other. Through these two neighbours
I am connected to different parts of the larger network, and thus have access to
different sources of dispersed information. Thus if a firm is to form a new link,
closing a structural hole is less valuable than finding a partner to whom none of
my current partners is currently connected. This is closely related to the argument
of Podolny (1993) that firms attempt to increase their betweenness centrality. If

1 See also Walker et al. (1997) on the same subject.
2 The third link that closes a triangle can be seen as redundant, since its effect is simply to create
a path of length one between two agents where a path of length 2 already existed. Notice here that
“redundant” is only strongly applicable if this reduction in path length serves no purpose, that is,
if in general path lengths are not (privately) important.
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many shortest paths between firms go through firm i, then i can exert considerable
control over knowledge flows. Particularly in the knowledge economy, control of
knowledge flows can be translated into rents. This is an argument that clique span-
ning ties are valuable. The value of structural holes has been examined empirically
by, for example, Ahuja (2000) in the context of the international chemical industry
(structural holes have a negative impact on industry performance, whereas indirect
and direct ties have a positive impact on firm innovative performance); Gargiulo
and Bennassi (2000) who find in a study of an Italian IT firm that dense local
networks do not respond well to change (they find a trade-off associated with the
safety conferred by cohesive ties (social capital) and the flexibility conferred by ties
that connect different parts of a network); Baum et al. (2003) studied the sources of
inter-clique link formation in the Canadian merchant banking industry.

This debate between social capital and structural holes is formalized through the
notion of clustering. An agent’s ego network is clustered if many of its partners are
partners of each other. The structural holes argument claims that a highly clustered
ego network is bad for performance; the social capital position argues the opposite.
At an aggregate level, individual clustering levels can be averaged to describe an
industry (or sector or economy) network. By extension, the structural holes argu-
ment implies that unclustered networks will perform well, whereas the social capital
position argues that locally dense networks, which by definition are highly clustered,
will perform well. One way in which these positions are sometimes reconciled (see
for example Rowley et al., 2000) is that they apply to different moments in an
industry life cycle. When an industry is young, technologies are being explored,
and many different avenues of advance are potentially fruitful. Here, it is important
to have rapid access to “distant” (both in geographical and technological space)
information. Thus redundant ties are less valuable than ties that connect to different
parts of the network. Structural holes are desirable. However, in a more mature
industry, there are fewer technological surprises, so exploitation is more common.
Here, a dense core of agents addressing similar issues creates the critical mass that
is necessary to make further progress along the chosen path. Social capital becomes
more valuable.

While clustering has received much attention in the literature, there is a second
aspect of structure that is now considered important. This is the distribution of edges
over nodes, and in particular the extent to which this distribution is skewed, with a
few nodes having many links and the majority having few. Though the skewness
of the degree distribution is relatively well established (see Powell et al., 2005 for
example), its implications for R&D networks are not well understood. The genesis
of a skewed distribution lies in some form of “preferential attachment”: firms with
many existing links are likely to be valuable partners, and so attract more links.
On the face of it, this is intuitively appealing, since a large number of partnerships
indicate that a firm both has useful knowledge and knows how to collaborate. But
a skewed distribution implies the presence of stars in the network – agents through
whom many (short) paths run. Consequently, while this structure is robust to random
failures (since the failure of a randomly selected node affects, most likely affects,
only a few other nodes), it is very fragile to specific failures (if a star fails, many
other nodes, and paths between many pairs of nodes, are affected). Stars in a network
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can serve as important centres of knowledge distribution, and so a highly skewed
network may be conducive to very rapid diffusion of knowledge. On the other hand,
though, if a star ceases to participate in the system for some reason, this can cause a
serious disruption in the distribution system, and if the situation is such that agents
withdraw from the system from time to time (for whatever reason) a flatter link
distribution may be preferable.

While network structure will clearly have an effect on the efficiency of diffu-
sion, structure may interact with the micro-specifics of exchange. The transmission
of knowledge, particularly among competing firms, is a challenge for economists,
especially if there is no market for knowledge. Two patterns of transmission have
been observed empirically. Allen (1983) describes “collective invention” in which
knowledge is given away as a (local) gift. In the steel industry in Cleveland, UK, in
the mid 19th century, for example, steel producers met regularly under the auspices
of societies like the Cleveland Institute of Engineers, the South Wales Institution
of Engineers or the national Iron and Steel Institute and disclosed their own recent
technological developments. As a producer made an advance in furnace height or
temperature, for example, that producer would document the change – how it was
accomplished, the technical effects and so on – and present this to other local firms.
Knowledge was essentially given away to competitors within the local cluster, and as
a consequence, the technology developed rapidly.3 Von Hippel (1987) on the other
hand documents a barter exchange. Technical managers of steel mini-mills in the
US exchange technical information and explicitly help each other solve problems.4

But here the transfer is not a gift: there is a quid pro quo. While the interaction is not
market-based, there are social sanctions if an agent routinely receives but does not
give knowledge. In essence, knowledge is bartered. In both of these cases, knowl-
edge transmission is local, taking place in face-to-face interactions. If this represents
the nature of knowledge diffusion, then the structure of local interactions will play
a central role in the process through which a “piece of knowledge” moves from
one geographic location to another, or more generally how it diffuses throughout an
economy.5

These are the issues we take up in this contribution. We are interested in how
the architecture of the communication network affects its performance in terms of
knowledge distribution. This relationship may change, however, depending on the
details of the transmission mechanism. The model we construct below permits us
to examine both architecture and transmission as variables controlling knowledge
diffusion.

3 McGaw (1987) finds a similar pattern in paper manufacturing in New England in the early 1880s,
and Lamoureaux (1999) cites other examples from the 18th and 19th centuries in the US.
4 Later work found the same phenomenon in aerospace and waferboard industries (von Hip-
pel, 1994). Powell et al. (1996) documented a similar phenomenon in biotech.
5 For models examining the relationship between network structure and knowledge diffusion, see
Cowan and Jonard (2003) on the gift economy, and Cowan and Jonard (2004) on a barter economy.
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6.2 The Model

In general, for any agent, more knowledge is better from the point of view of produc-
ing goods, and the communication network is the infrastructure over which agents
acquire the knowledge they need in order to produce.

To capture this, we model a world in which there is a fixed, finite population
of agents, and a fixed, finite number of ideas relevant to production. An agent is
characterized by two properties: the set of ideas he has and his production goal.
Production is controlled by a Leontieff production function for which only a small
number of ideas is necessary, different agents having different production functions.
Production is done in isolation, but demands that an agent possesses all the ideas that
are relevant to his productive activity, i.e. the ideas for which his production function
has non-zero coefficients. If one or more ideas are missing, they can be acquired
via an agent’s acquaintances. Thus the set of ideas held by any agent evolves over
time, and we shall assume this takes place through a simple process of one-to-one
exchange or gift.

Ideas have the feature that agents do not lose by giving. Thus, it might be argued
that agents could well give without asking for reciprocity. If agents have to compete
in a second step, however, even though an agent’s knowledge level does not decrease
by giving away ideas, his competitive position might. Different industrial contexts
will display different “terms of trade”. In the present contribution, we will consider
a world of knowledge traders, a world of knowledge givers and a mixed situation in
which both co-exist.

6.2.1 Network Structure

Let G(V,N) be the undirected graph representing the industry network, with
V = {1, . . . , n} the set of agents and N = {Ni , i ∈ S} the correspondence specify-
ing, for each i ∈ V , the neighbourhood Ni of i. The degree of firm i is the number
of direct ties of that firm ni = #Ni . Average degree in the network is then

n =
∑

i∈V

ni/n.

Any j ∈ Ni is at distance 1 from i. Indirect ties connect i to individuals at a
distance strictly more than 1. Define di j the distance between i and j, as the number
of edges in the shortest path, or geodesic, connecting i to j. The average distance to
i is then

di = 1

n − 1

∑

j 	=i

di j

and average distance (characteristic path length) is
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d =
∑

i∈V

di/n.

An additional measure of the structure of local links is clustering. The extent to
which i’s neighbourhood is clustered is measured by

ci = 2

ni (ni − 1)

∑

j,l∈Ni

ξ jl ,

where ξ jl = 1 if j ∈ Nl and ξ jl = 0 otherwise. This statistic measures the propor-
tion of existing triangles among those which could involve i, given ni . The clustering
coefficient for the network as a whole is

c =
∑

i∈V

ci/n.

Though more sophisticated measures of structural position can be designed, for
our purpose the distribution and organization of direct and direct ties as captured by
degree, clustering and distance are sufficient.

In order to examine the relationship between structure and performance, we cre-
ate an algorithm to construct a family of random graphs derived from an ordered
substrate. As a first step, consider the rewiring algorithm from Watts and Stro-
gatz (1998) that has as a control parameter the probability p that a link in a periodic
lattice is randomly rewired. Start from the periodic lattice with an even number m
of nearest neighbours (ni = m, for all i ∈ V ) and sequentially consider each edge,
making a decision of uniform random rewiring (with probability p) or preservation
(probability 1-p). As p increases, the regular periodic lattice (p = 0) is left and
through intermediate states (0 < p < 1) a random graph with uniform degree is
reached (p = 1). This procedure creates a small amount of variation in individual
degree ni and an average degree of m is preserved as the total number of edges
is kept constant (it is exactly equal to nm/2, half the degree sum). We know from
Watts and Strogatz (1998) that there is an interval (the small world region) over
which clustering remains high while path length has fallen close to the level of a
random graph of average degree m. Indeed, when the number of random links is
small the removal of a few of them has a strong effect on average path length while
it has only little effect on the clustering coefficient.

Besides clustering and path length, we are interested in the effect of asymmetry in
the degree distribution. There has been extensive debate (see for instance Barabási
and Albert, 1999) about scale-free networks (that is, networks with a power-law
degree distribution having exponent between 2 and 3) and the extent to which they
can be found in empirical data. Scale-free networks and power-law distribution in
general are not our interest here. Rather, we will simply explore the effect of having
stars in the system, in addition to the possibility of having more or less clustered
random structures. We do this the following way. Assume now there are two classes
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of agents: s stars with degree di = D for i ∈ S ⊆ V , and n-s non-stars with degree
d ≤ D. The problem is now to design a procedure analogous to the one above that
permits us to tune stardom (s) and randomness (p) independently, while having a
constant degree sum in the graph (s D + (n − s)d = nm). To that end, locate the n
individuals on the circle. Take an even d ≤ m − 2, and sequentially pick s nodes at
random to form S. First, the stars are taken care of: for each i ∈ S create an even
D = (nm− (n−s)d)/s links. With probability 1–p, each of the D links is connected
to one of the D/2 nearest nodes on each side of i on the circle. With probability p, it is
connected at random. That takes care of the stars and creates also some links for the
non-stars. Then run across all the non-stars and proceed analogously, checking that
the degree constraint for non-stars is also satisfied. Because only integer numbers
are handled, the procedure will in general not create exactly nm links. However, the
results will be reasonably close to that target. The three-panel Fig. 6.1 summarizes a
few statistics for an illustration with n = 500, d = 6 and m = 10, i.e. a degree sum
of 5000 which the algorithm roughly preserves. The sum is displayed in the insert in
the upper panel of Fig. 6.1. The concentration of links (upper panel) falls monoton-
ically with s, across all p values. The two lower panels of Fig. 6.1 show clustering
and path length versus p for s = 21, 107 and 500 stars. Clustering displays no
significant variation with s, while displaying its usual pattern with p. Distance also
behaves monotonically with degree, while the effect of s (owing to the assumption of
a constant degree sum) is monotonic and quite obvious. The algorithm thus behaves
well and will permit us to explore independently the effects of degree asymmetry
and local disorder.

6.2.2 The Dynamics of Ideas

Over time, as ideas are exchanged, knowledge evolves. An agent’s knowledge stock
never shrinks, as we assume that ideas display non-rivalry (i does not lose his idea
by letting j have it), thus one agent’s knowledge only increases or stays constant as
times passes.

6.2.2.1 Knowledge as Sets

Agents operate in a system (an industry) where there is a finite number of existing
ideas indexed by l = 1, . . . , L . Each agent is endowed with a subset of these ideas,
and we denote Hi ⊆ {1, . . . , L} the set of ideas held by i. Agents use ideas for the
sake of production, and in that respect agents are heterogeneous.

Production is done by agent i according to the Leontieff production function

φi =
{

1 if Pi ⊆ Hi ,

0 otherwise ,
(6.1)
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Fig. 6.1 Characteristics of the graph family: asymmetry in the degree distribution as measured
by the Herfindahl concentration index (upper panel, pooled data across p, the whiskers are the
minimum and maximum values), degree sum (insert in upper panel, pooled across p), cluster-
ing coefficient (lower left panel) and characteristic path length (lower right panel) for different
numbers of stars
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where Pi ⊆ {1, . . . , L} is the set of ideas agent i needs to produce. Production is
impossible if even one l ∈ Pi /∈ Hi . As initial endowments are random, it will
typically be the case that Pi ⊆ Hi , so there is room for exchange.

Consider now j ∈ Vi (equivalently i ∈ Vj , as the graph is non-directed). Denote
now Ni = {l ∈ Pi − Hi } the set of ideas that i uses in production but does not have,
that is, i’s needs. Then i is interested in j provided j has at least an idea that i uses
but does not have (that is, if Ni ∩ Hj 	= {∅}).

6.2.2.2 Exchange

As for the “terms of trade”, a number of possibilities can be simply explored in the
model presented above. Suppose the sequence of events is that each time period an
agent is selected and engages in knowledge exchange with one of his neighbours j.
In a gift transaction, upon request from i, j provides him with an element of Ni ∩ Hj

and asks nothing in return. This captures a situation in which agents tell each other
freely, creating knowledge spillovers. In a barter transaction, upon request from i,
and provided i has an idea that j needs (N j ∩ Hi 	= {∅}), an idea is exchanged for
another one. This is a trading situation, in which all ideas have a common price,
yielding a one-to-one exchange rate. In a mixed economy, some agents give while
some trade. This is controlled by 0 ≤ � ≤ 1 the share of knowledge givers. It is
important to note that agents are not interested in all the pieces of knowledge but
only in those relevant to their production activity. This implies that at some point
trading can stop without every agent holding every idea.

6.3 Numerical Experiment

A natural measure in the productive efficiency of the system is the average output

φ =
∑

i∈V

φi/n,

the proportion of individuals who actually produce. As in this simple environment
any agent either achieves production or does not, the φs consist of a collection of
0s and 1s and the variance in output is equal to φ(1 − φ), which is largest when
φ = 1/2 and smallest when φ is either 0 or 1.

The settings of the experiment are the following: a population of n = 600 agents
and m = 10 links per agents (hence a total of 6000 edges); each agent is endowed
with a set of ideas that is randomly initialized by making each idea l available to i
with probability Pr{l ∈ Hi } = q. The production function is a 200 category one,
with agents needing on average 20 ideas to produce. Which ideas an agent needs is
determined randomly, independently of all other agents: Pr{l ∈ Pi } = θ = 0.1. All
probabilities used to create initial knowledge endowments and production technolo-
gies are independent from each other. For each period in the simulation, one agent is
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selected, he activates a connection and they trade if possible. This process continues
until all possible trades have been made. To examine the space of graphs, using the
algorithm described in Sect. 6.2.1 above, we vary the rewiring probability p from
0.001 to 1. For each p-value, 10 different graphs are created and on each graph a
single history is run, until all exchange possibilities are exhausted.

The parameters are p, the degree of disorder; s, the number of stars (with lower
s-values corresponding to more asymmetry in the link distribution, see Fig. 6.1) and
� the share of agents who give rather than trade.

6.4 Results

In this section, we present the results of our experiment. As will be seen, they
connect well to some of the empirical results described in the introduction.6 We
start by examining performance at the aggregate level before turning to firm perfor-
mance. Results are presented under two initial conditions: one of scarcity, wherein
initially any agent holds only 15% (q = 0.15) of all possible knowledge; and one of
abundance, wherein an agent initially holds 85% (q = 0.85).

6.4.1 Effect of the Density of Traders

In the presentation of results, we suppress one parameter. The effect of the propor-
tion � of agents who give rather than trade is monotonic throughout. As the number
of givers increases, total knowledge levels, or equivalently the number of agents
producing, increases for all levels of asymmetry in the degree distribution and for
all values of randomness in the network. The cause is clear. The absence of a quid
pro quo in exchange when givers are involved implies that when there are many of
them more exchanges will take place, and so a larger proportion of firms will find
the knowledge they need. In some of the other results which we discuss below, the
number of traders changes the strength of the effects we observe, but in every case
the direction of the effects remains unchanged. We thus set the proportion, �, of
agents who give to 5%, which permits these agents to have a moderate influence on
the diffusion dynamics, without swamping other effects.

In the figures given below, we present shaded contour plots wherein darker
shades of grey indicate higher values of the variable being examined. The axes in
each plot are p, the degree of randomness in network structure, and the Herfindahl
concentration index, as a measure of asymmetry in the link distribution. In each fig-
ure there are two panels: the left panel shows data from the case of scarce knowledge
in the initial condition; the right panel corresponds to the case of abundance.

6 We do not explicitly test the results against empirical data. One possible route to confront the
model would be that described by Werker and Brenner (2004).
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6.4.2 Industry Production

A measure of industry performance is the proportion φ of firms that have been able
to acquire the knowledge they need to produce. We refer to these as producers, and
to those that have not acquired the requisite knowledge as non-producers. The rela-
tionship between aggregate efficiency, the degree of randomness p and asymmetry,
is shown in Fig. 6.2a, b.

The first effect, comparing the two panels, is that not surprisingly, when knowl-
edge is abundant more firms are able to produce. The second effect concerns the
number of stars or asymmetry of the link distribution. When knowledge is abun-
dant, as asymmetry increases (or the number of stars falls) efficiency decreases
monotonically in a very clear pattern. This is explained as follows. Increasing asym-
metry means that links become more concentrated on fewer individuals. If there is
a trading agent who has many links, his need for a quid pro quo can block many
trades, and close paths between many pairs of agents. At the same time, an agent
with many links can quickly find the knowledge he needs. At this point, needing
nothing, he has no reason to trade, and so withdraws, thereby closing many paths.
This possibility can result in many agents not finding the knowledge they need.
Clearly, this possibility recedes when there are fewer agents dominating the linked
distribution. When knowledge is scarce, the pattern is not monotonic: efficiency
increases and then decreases as asymmetry increases, with the peak at about 400
stars. When asymmetry is at its minimum, however (when every agent is a “star”),
efficiency is still much higher than when asymmetry is at its maximum (21 stars).
The overall decrease in efficiency has the same explanation as in the previous case.
The non-monotonicity of the relationship is explained, however, by a second effect,
namely path length. The possibility that knowledge transmission is blocked as
explained above increases with the path length between sender and ultimate receiver.
Thus, shorter paths reduce this effect, all else equal. Increasing asymmetry thus has

(a) (b)

Fig. 6.2 Proportion of firms producing, with scarce knowledge (left panel) and abundant knowl-
edge (right panel)
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two effects working in opposite directions: decreasing path lengths and concentrat-
ing links in a few agents. At an intermediate degree of asymmetry, efficiency is
maximized.

It is possible to observe an effect of p in Fig. 6.2, though it is of smaller magnitude
than the effect of s. Recall that increasing p increases the presence of structural
holes, and by the same mechanisms decreases both clustering and path length.
What we observe is that when knowledge is scarce, efficiency increases with p;
when knowledge is abundant, efficiency decreases with p. In the former case, at the
aggregate level social capital is less valuable than are structural holes. Rapid access
to distant parts of the network is highly valuable in acquiring knowledge, and at
the aggregate level, short path lengths imply complete diffusion of knowledge. In
the latter case, with relatively high probability the needed knowledge is close in
network space, so a clustered neighbourhood will imply many paths between agents
that hold reciprocally desirable knowledge.

6.4.3 Individual Performance

It is less straightforward to examine performance at the micro-level, as the per-
formance of a firm must be compared to that of other firms in the same context.
We are interested here in the effect of the structure of a firm’s ego network on its
performance.

At the end of each run in our simulation experiments, firms can be partitioned into
two groups: those who have accumulated the knowledge they need to produce, and
those who have not. The obvious question is whether these two groups are different
from each other along interesting network dimensions. We answer this by looking
at two structural parameters of each agent’s ego network: degree and clustering.

In Fig. 6.3 we show the difference in degree between producers and non-
producers, averaged over runs at each point in the parameter space. The figure shows
that in terms of acquiring useful knowledge, it is valuable to have many connections
– the difference in degree between producers and non-producers is always positive.
When knowledge is scarce, this difference is much larger than when knowledge is
abundant.7 In the former case, essentially only stars, having many connections, are
able to produce; in the latter, many non-stars are also able to produce. This explains
the magnitude of this difference. An agent with many connections rapidly acquires
the knowledge he needs, at which point he withdraws from the system (completely
if he is a trader, partially if he is a giver). In the worst case this disconnects the
network, and in the best case it makes path lengths longer. This can make it impos-
sible for other agents to acquire the knowledge they need. This effect is severe when
knowledge is scarce, much less so when knowledge is abundant since many agents
will be able to produce from the initial period, and those who cannot are likely to

7 In both cases all observed differences in means are statistically significant at the 5% level or
higher.
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(a) (b)

Fig. 6.3 Difference in degree between producers and non-producers

need only a few pieces, which are relatively easy to find. The two structural param-
eters, asymmetry of the link distribution and randomness of the network both have
visible effects when knowledge is common. The value of having many connections
increases both as the randomness of the network increases and as asymmetry in the
link distribution increases. The latter effect is driven largely by the fact that stars are
more likely to produce than non-stars, and as asymmetry increases, stars have more
neighbours. The effect of p is driven by clustering. In a barter economy, a clustered
graph can alleviate the double coincidence of wants problem, because a transitive
triple provides a short path over which two agents can make an indirect trade if
they cannot trade directly. Thus, agents with few connections can take advantage of
indirect connections to get the knowledge they need. When there are few transitive
triples, it is very difficult to overcome a failed double coincidence of wants, so there
is a large advantage to having many potential partners, since when trade becomes
impossible with one of my neighbours, I can simply turn to another.

Is having a clustered ego network valuable for an agent? Figure 6.4 shows the
difference in ego network clustering between those who produce and those who
do not, averaged over runs at each point in the parameter space. This difference is
always negative – a clustered ego network is bad for information gathering. How-
ever, the difference is roughly an order of magnitude larger when knowledge is rare
than when it is common.

This is consistent with the structural holes argument given above. Access to
knowledge is vital in this economy, and in a clustered neighbourhood, links increase
local density rather than connect to distant parts of the network. If an agent is part
of a cluster he will, in general, have long path lengths to other agents. If there
is a piece of knowledge in a distant part of the network that the agent needs, the
longer the path to it, the more likely that on that path is a trader who, because he
has all the knowledge he needs, has effectively stopped participating in knowledge
transactions. Second, as the networks become less clustered, the negative value to
an individual of being in a clustered neighbourhood also decreases, becoming sta-
tistically insignificant when there are no explicit stars. As the network itself is less
clustered, the average distance from a particular agent to others in the economy falls,
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Fig. 6.4 Difference in clustering between producers and non-producers

regardless of the extent of clustering in his ego network. This provides another route
by which the effect just described is attenuated. The effects seen in these figures are
largely driven by the probability that there is a failure in the path between a firm and
the knowledge it needs, but when knowledge is abundant in general, these failure
probabilities will be lower in general, and so the effects weaker.

6.4.4 Givers and Traders

Figure 6.5 shows the difference in performance between givers and traders, mea-
sured as the difference between the proportion of traders who produce and the
proportion of givers who produce. Traders always fare better, and the extent to
which this is the case decreases with the asymmetry of the link distribution when
knowledge is scarce, again explained by the dominance of stars among the produc-
ers. The explanation for the superior performance of traders generally lies in the
nature of knowledge interactions. If a trader is involved in an interaction, he always
receives desirable knowledge. If a giver is involved in a transaction, he only receives
information if he is the originator of the transaction. Thus, the knowledge of traders
grows faster than that of givers, so more of them will be able to produce in the
long run.

Fig. 6.5 Difference in performance between givers and traders
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6.4.5 Particular Neighbours

In the structure of the model there are two types of agents that might have a signifi-
cant impact on the performance of agents in their neighbourhoods: stars and givers.
The effect of having a direct link to a giver is shown in Fig. 6.6. An agent has in his
neighbourhood a proportion of givers. In these panels we display the data over the
same range. We take the average difference in these proportions between producers
and non-producers. In the left panel of Fig. 6.6, the data take values only in [−0.01,
+0.01], but are not statistically different from zero, whereas in the right panel all
values are above 0.02, and are statistically significant. When knowledge is scarce,
having a giving neighbour has no effect; when knowledge is abundant, being close
to a giver significantly improves performance.

The effect of having a direct link to a star is shown in Fig. 6.7, using the same
measure as above in Fig. 6.6. In both panels of Fig. 6.7, the data are significantly
negative. Having a star as a friend is never a good thing as it is almost always a star
who creates the hold-up problem by exiting from the trading process. When there
are few stars, each having high degree, the problem is strongest. The pattern in both
panels essentially tracks the asymmetry of the degree distribution.

Fig. 6.6 Difference between the proportion of givers in the ego network of producers and non-
producers

Fig. 6.7 Difference between the proportion of stars in the ego network of producers and non-
producers



142 R. Cowan and N. Jonard

6.5 Conclusions

We have observed from these results that the presence of “givers” in the economy is
generally a good thing. This is intuitively appealing in the first instance, as it seems
natural that if agents are giving knowledge away, knowledge flows will be facil-
itated. Traders function differently. In a networked economy, goods and services,
including knowledge flow from one agent to another through a path of intermediate
agents. At each step in the path some transaction is made. If it involves a trader, then
the transaction must benefit both parties. Thus, if one agent on a path is no longer
interested in exchange, in our case, because a trader has all the information he needs
and so no longer makes trades, this eliminates any paths which flow through that
agent. Thus, the model illustrates that a network with a skewed link distribution,
having a few stars, can be either good or bad. If the stars are givers, then their
knowledge can flow rapidly out to their many partners, and from there to the rest
of the economy. This will continue through the life of the economy. If the stars are
traders, because they have many partners, they will rapidly acquire all the knowledge
they need, and so stop trading. This blocks many paths between agents, and in the
most extreme case, can disconnect the network.

In the introduction, we discussed briefly the debate between the structural hole
position and the social capital view. On the former, a non-clustered ego network is
good for a firm; on the latter, a densely interconnected neighbourhood provides a
good knowledge environment. The model developed here permits some formaliza-
tion of the resolution suggested by Rowley et al. (2000). In Sect. 6.4.2 we showed
that when knowledge was scarce, aggregate production increased with p, whereas
when it was abundant, aggregate production decreased with p. Average clustering
decreases monotonically with p. Thus, when knowledge is scarce a network with
structural holes performs well; when knowledge is abundant a network with high
social capital performs well. A situation of scarce knowledge represents a young
industry, in which technologies are new, and firms are exploring the technological
space to find and create the best possible variant of their products and processes.
For any firm, the necessary knowledge is difficult to find, and may reside in distant
parts of the economy. Here, redundant links will be less valuable than links that
create short paths to other agents. A situation of abundant knowledge may represent
a more mature industry. A dominant design has emerged; most firms know what it
is and have most of the knowledge needed to execute it. What is happening is that
firms are exploiting their versions of the dominant design, and need details rather
than new principles. Here, distant parts of the economy will have similar knowledge
roughly speaking to local parts of the economy, and what is necessary is to extract
the final details. Here, non-redundant links lose their advantage and we see the force
of the social capital argument.

One thing that is striking in this regard is that the economy and individual firms
have different responses to clustering when knowledge is abundant. At the aggregate
level, to recall, when knowledge is abundant output rises as clustering increases,
particularly when there are many traders. But at the individual level, being part of a
cluster is almost always bad (those who produce have on average less clustered ego
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networks than those who do not).8 The explanation may lie in the fact that when
a network is highly clustered on average, a firm with low clustering can connect
different parts of the network. If it is the case that firms within a cluster develop
similarities, then a firm between two clusters can have access to two different types
of knowledge. This provides it with an advantage in terms of finding the knowledge
it requires. This appears to be so in our model even though there is no strategic
knowledge acquisition or control. It has been suggested by Burt (1992), and also
by Baum et al. (2003), that firms that fill structural holes in the network can control
information flows. In our model there is no notion of controlling flows, but we do see
the first necessary condition for such control, namely access to different knowledge
pools.

Efficient knowledge diffusion is the hallmark of a healthy modern economy.
What the model developed here shows is that the structures necessary to promote
knowledge diffusion depend to a very great extent on the details of the industry.
Industries or episodes dominated by collective invention, in which knowledge is
(locally) freely given, are very different from industries in which knowledge trading
is the norm. But further, how they differ depends on whether knowledge is scarce, as
in a newly emerging industry, or abundant, in a mature industry. When knowledge
is scarce, random networks always perform well. When knowledge is abundant, and
knowledge trading dominates, clustered networks perform best from the social point
of view.

Is there a role for policy here? When knowledge is scarce, socially, random,
unclustered networks perform well. This performance carries over to the individual
firm level: firms with non-clustered ego networks also perform well. So we observe
a coincidence between network structures that are socially and individually desir-
able. The coincidence disappears, though, when knowledge is abundant. Socially
clustered networks are efficient, but any firm would prefer a non-clustered ego net-
work – one abundant in structural holes. Here, this divergence between social and
private efficiency provides scope for intervention in network formation, at least in
principle. What this model has shown, though, is that policy-making in this area is
a very delicate business – one size definitely does not fit all. The details about the
state of knowledge and the social conventions regarding exchange matter a lot, and
so in this area policy must be built on a very strong empirical foundation.

Acknowledgments We thank an anonymous referee for useful comments, and participants in the
NEMO project (European Commission FP6, NEST-ADV 028875).

8 This is obviously a very rough generalization. Exceptions exist, particularly when there are many
givers in the economy, or when there are no stars.
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Chapter 7
Tools from Statistical Physics for the Analysis
of Social Networks

Jörg Reichardt and Stefan Bornholdt

7.1 Introduction

This article is to introduce the social scientist concerned with social network analy-
sis and an affinity to quantitative methods to parts of the research done by physicists
in the field of complex networks. In fact, much of the research done by physicists
has been inspired by examples and problems from sociology. We believe that the
methods developed by natural scientists will prove to be valuable tools that allow
new insights into data arising in the social sciences. We hope that these methods
find their way back into social sciences and find ample application on the problems
by which they were originally inspired.

After a brief revision of basic terminology, we will give a short history of physics
research in complex networks that we hope is of interest for a reader not only with a
social science background. The focus of this article lies on the analysis of cohesive
subgroups or communities in networks, and we will show the relation of this prob-
lem with assortative mixing and introduce a quantitative measure of how modular a
graph is. The community analysis which we would like to present is based on physi-
cal principles, and we introduce some basic concepts of statistical physics important
for understanding this approach. We then show how the problem of community
detection can be mapped onto known problems from statistical physics. It is equiv-
alent of finding a minimal energy state of a magnetic system. From this insight we
can derive a concise definition of communities and we can apply standard methods
to find them. We give benchmarks on how this approach performs for both finding
all communities in a network as well as finding the community a given node belongs
to. Then, we show how hierarchies and overlap of communities arise in networks
and how they can be discovered. We show an application of community detection in
a large network of scientific co-authorship and the relation of our approach to other
algorithms for community detection. Finally, we address the subject of statistical
significance and theoretical limits of community detection.
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7.2 Basic Notation

Before we go into the detail of our discussion, we shall introduce a number of
important terms and relations to be used throughout the text. The reader already
familiar with social network analysis and basic graph theory may skip this section.

Mathematically, a network is represented as a graph G(V, E), i.e., an object that
consists of a set of nodes or vertices V representing the agents in the network and
a set E of edges or links or connections representing the interactions or relations
between the agents. The cardinality of these sets, i.e., the number of nodes and edges
is generally denoted by N and M , respectively. We may assign different values wi j

to the links between nodes i and j in E , rendering an edge weighted or otherwise
non-weighted (wi j = 1 by convention), if we are only interested in the presence
or absence of the relation. The number of connections of node i is denoted by its
degree ki . We can represent the set of edges conveniently in an N × N matrix Ai j ,
called the adjacency matrix. Ai j = wi j if an edge between node i and j is present
and zero otherwise. Relations may be directed in which case Ai j is non-symmetric
or undirected in which case Ai j is symmetric (Ai j = A ji ∀i, j). We shall only be
concerned with networks in which self links are absent (Aii = 0 ∀i ∈ V ). In case
of a directed network, Ai j denotes an outgoing edge from i to j and A ji an incoming
link from j to i . Hence, the outgoing links of node i are found in column j of row
i , while the incoming links to i are found in row j of column i . For undirected
networks, it is clear that

∑N
j=1 Ai j = ki . For directed networks,

∑
j=1 Ai j = kout

i

is the out-degree and equivalently
∑

j=1 A ji = kin
i is the in-degree of node i . We

shall only be concerned with undirected and non-weighted networks, i.e., symmetric
adjacency matrices which only have 1 or 0 entries. However, appropriate hints will
be given on how to extend the analysis presented to weighted and directed networks.
It is understood that, in undirected networks, the sum of degrees of all nodes in the
network equals twice the number of edges

∑N
i=1 ki = 2M . The distribution of the

number of connections per node is called degree distribution P(k) and denotes as
the probability that a randomly chosen node from the network has degree k. The
average degree in the network is denoted 〈k〉 and we have N 〈k〉 = 2M . We can
define a probability p = 2M/N (N − 1) = 〈k〉/(N − 1) as the probability that an
edge exists between two randomly chosen nodes from the network.

An (induced) subgraph is a subset of nodes v ⊆ V with n nodes and edges e ⊆ E
connecting only the nodes in v. A path is a sequence of nodes, subsequent nodes in
the sequence being connected by edges from E . We say, a node i is reachable from
node j , if there exists a path from j to i . A subgraph is said to be connected if
every node in the subgraph is reachable from every other. A network is generally
not connected, but consists of several connected components. We shall restrict our
analysis to connected components only, since it can be repeated on every single one
of the connected components of a network.

Frequently, we will be concerned with models of random graphs, i.e., models of
how a graph arises from a random process. We will need these models for compari-
son with real world data. When analyzing the structure of real world networks, our
null hypothesis shall always be that the link structure is due to chance alone. We may
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only reject this null hypothesis, if the link structure we find differs significantly from
an expectation value obtained from a random model. Two such models shall be con-
sidered here. The first is due to Erdős and Rényi (ER) (1960). They consider random
graphs, in which every link between nodes i and j exists with equal probability p.
This leads to a Poissonian degree distribution P(k) = exp(−〈k〉)〈k〉k/k! with aver-
age degree 〈k〉 = p(N−1). The second model or “configuration model” is generally
attributed to Molloy and Reed (1995), who devised an algorithm for constructing
actual networks, but it was first introduced by Bender and Canfield (1978). The
configuration model assumes a given degree distribution P(k). This means, every
node i is assigned a number of stubs ki according to its degree and then the stubs
are connected randomly. For this model, the probability that two randomly chosen
nodes are connected by an edge is pi j = ki k j/2M and hence proportional to the
product of the degrees of the two nodes chosen. The two models make fundamen-
tally different assumptions on the nature of the agents represented by the nodes. In
the ER model, fluctuations in the number of connections of a node arise entirely due
to chance. In the configuration model, they represent a quality of the node which
may be interpreted as the “activity” of the agent represented by the node.

Last, we shall introduce the notion of a “scale free” degree distribution. A scale
free degree distribution is characterized by a power law form of P(k) ∝ k−α with
some positive exponent α. The probability of having k neighbors is inversely propor-
tional to kα . The reason why this special class of degree distributions is particularly
interesting for physicists is that in physics, many systems that have measurable
quantities which behave according to a power law fall into different “universality
classes” which are characterized entirely by the exponent α. From the same α for
two distinct systems, one can generally conclude the same underlying physical prin-
ciple. The name “scale free” comes from the fact that there is no characteristic value
of k. While in ER graphs, the characteristic k is the average degree 〈k〉, i.e., the
average is also a typical k, there is no typical degree in scale free networks.

With these notations and terms in mind, we can now turn to a brief history of
physicists research on networks.

7.3 A Physicist’s View on Networks

When physicists started to expand their fields of research to networks, naturally,
they took a very general approach, sometimes disregarding much of the detailed
work done in other more specialized disciplines but always in search of underlying
general principles. As more and more networked data became available, physicists
soon started to apply the tools and methods from their own discipline in the analysis
of the statistical properties of these networks. Sources for these empirical stud-
ies encompass networks from a wide scope of subjects and could be as diverse
as the web of human sexual contacts, the world wide web, networks of scientific
co-authorship, power grids, trophic webs or cellular and gene regulation networks.
From these diverse starting points, the term “complex networks” emerged to sub-
sume every system of interacting entities that can be represented as a network and
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where the specific pattern of all interactions and not necessarily the particularities
of the individual interactions themselves are thought to be crucial to the behavior of
the system as a whole.

One of the first landmark papers to spark the interest in network analysis was
of sociological origin. Stanley Milgram’s classic paper on six degrees of separation
(1967) showed that even though the agents in a personal acquaintance network had
only local knowledge of the topology of the network, they were able to navigate a
letter across the USA in this network, even though sender and receiver did not know
each other. Furthermore, it could be shown that two randomly chosen individuals
in this network of personal acquaintance are connected by a surprisingly short path
of only a hand full of intermediary individuals. After this discovery, it were Dun-
can Watts and Steve Strogatz (1998), who provided the first model of a network
that combines the high clustering characteristic for acquaintance networks (many
of my friends are friends among each other) and the short average path lengths
between randomly chosen individuals already known from the theory of random
graphs developed by Erdős and Rényi. At the same time, it retains the fact that there
is a typical number of connections or friends per node in the network. The Watts
and Strogatz model came to be known as the “small world model” for complex
networks.

For years, ER random graphs had been the standard model for networks and a
large body of mathematical theory of random graphs had been developed (Bollobas,
2001). In a sense, this is understandable from the following mathematical observa-
tion: Drawing from an ensemble of graphs with N nodes and M links, where each
graph has the same probability of being drawn, one will draw an ER graph with
almost certainty. Or, stated differently, all graphs possible are already encompassed
in the ensemble of graphs modeled by ER. Those that have a different degree dis-
tribution than a Poissonian are simply very unlikely to be observed. The likelihood
of observation of a particular graph with N nodes and M edges is of course highly
dependent on the probability of connection between the nodes. With the increasing
use of the internet as a source of information and means of communication as well
as the increasing availability of large online databases and repositories, more and
more differences between real world networks and random graphs were discovered.
Most striking was certainly the observation that many real world networks have
degree distributions far from Poissonian which rather follow log-normal or power-
laws. From these observations, it became clear that the assumption of equal linking
probability for all pairs of nodes had to be dropped, and that specific mechanisms
had to be sought which explain the link pattern of complex networks from a set of
rules. Until now, many such models have been introduced which model networks
to an almost arbitrary degree of detail. The starting point for this development was
most likely the model by Albert-Lazlo Barabási and Réka Albert (1999). They real-
ized that for many real world networks, two key ingredients are crucial: growth
and preferential attachment. Nodes that already have a large number of links are
more likely to acquire new ones when nodes are added to the network. These two
simple assumptions lead to a network with a scale free degree distribution of expo-
nent α = 3 and provided the first model for the in-link distribution of web pages.
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Apart from these topological models mainly concerned with the link structure, a
large number of researchers is concerned with dynamical processes taking place
on networks and the influence the network structure has on them. Among the most
widely studied processes is epidemic spreading and one of the most salient results is
certainly that by Cohen et al. (2000; Pastor-Satorras and Vespignani, 2001), which
showed that for scale free topologies with low clustering, the epidemic threshold
(the infectiousness a pathogen needs to infect a significant portion of the network)
drops to zero. Liljeros showed that networks of sexual contacts have indeed such a
topology (Liljeros et al. 2001). At the same time, these results brought about sug-
gestions for new vaccination techniques such as the vaccination of acquaintances of
randomly selected people which allows to vaccinate people with higher numbers of
connections with higher efficiency (Pastor-Satorras and Vespignani, 2002). Conse-
quently, a number of researchers are also studying the interplay between topology
of the network and dynamic processes on networks in models that allow dynamic
rewiring of connections in accordance with, for instance, games being played on the
network to gain insights into the origin of cooperation.

The wealth of data from various different disciplines has triggered an enormous
amount of data driven research and modeling. All these studies have in common that
based on statistical observations on real world data, models are built to reproduce
these data. If successful, this approach may give some insight into the underlying
microscopic processes that tie, untie or rewire a network and drive the processes
taking place on the network. Three excellent and well readable review papers may
serve as a summary and starting point into the research of complex networks (Albert
and Barabàsi, 2002; Newman, 2003; Dorogovtsev and Mendes, 2005). A more
comprehensive overview can be found in (Bornholdt and Schuster, 2003).

In this article, we shall focus on one particular aspect of complex networks
research that is of special interest to social network analysis: homophily or the fact
that people generally have a tendency of interacting more with alike people than
with different ones. This leads to the formation of cohesive subgroups or communi-
ties in social networks. The rest of this article will be concerned with the detection
of such community structures in networks.

7.4 Community Detection

Experience in our own social environment tells us that often in social networks cohe-
sive subgroups or communities form. All of us have an implicit knowledge which
communities we are part of and which not. As a community, we experience groups
of actors in social networks that are more densely connected among themselves than
with the rest of the network. The reason for such inhomogeneity in the link density
is homophily, or the fact that people who are somehow similar, be it by interest, in
life style or by any other characteristic, have a greater chance to interact with alike
people than with very different people. This effect, however, is not limited to social
networks alone. If all the proteins a particular organism produces are tested to find
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whether they bind with one another, and a protein interaction network is constructed
in which two proteins are linked if they form a stable complex, then, finding groups
of densely interconnected proteins may give valuable hints on biologically active
protein complexes. The underlying assumption behind both of these examples is that
the nodes in the network can be characterized as belonging to different classes. The
probability of intra-class connections is believed to be higher than for inter-class
connections. The problem is then to assign the nodes into the a priori unknown
classes. Figure 7.1 illustrates the problem considering the adjacency matrix of a
network as example. The problem consists in making the differences in the link
density within and between classes visible in the adjacency matrix by reordering
rows and columns, such that rows and columns corresponding to nodes from the
same class are next to each other.

This presents us with an example of combinatorial data analysis (Arabie and
Hubert, 1992). Since the number of possible ways to group the N nodes of the
network into an unknown number of classes grows exponentially fast with N , it
is generally impossible to compare all possible groupings. One then has to find
a clever way to reduce the problem to make it computationally feasible. The first
paper from the physics community used again an example from sociology (Girvan
and Newman, 2002). Girvan and Newman (GN) took a recursive approach to com-
munity detection, dividing the network into two parts, each of which is divided into
two parts again. This repeats for all parts until no parts are left to be divided any-
more. The procedure results in a complete dendogram representation of the network.
The way GN find the partitions in two at each step of the algorithm is inspired by
the sociological notion of betweenness. GN defined an “edge betweenness” as the
number of shortest paths between all pairs of nodes in the network that run across
an edge. After calculating the edge betweenness for every edge in the network, they
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Fig. 7.1 The problem of community detection. Assume that the nodes in the network can be
grouped into different classes. The probability of intra-class links is higher than for inter-class
links. The left part of the figure represents the intra and inter-class link probabilities in the three
classes. Larger circles correspond to higher probabilities of interaction. The middle part represents
the adjacency matrix of a corresponding network in a random ordering of the rows and columns.
The right part shows the same adjacency matrix, but this time with the rows and columns ordered,
such that rows and columns corresponding to the nodes in the same class are next to each other.
Community detection is about how to find such an ordering



7 Tools from Statistical Physics for the Analysis of Social Networks 153

27

16

30
21

19

33

34

31

9

3

14

20

4

12

8

18
12

22

11

7

17

3 29 25 28 33 34 30 24 31 9 23 21 19 16 15 26 32 27 10 4 14 2 1 8 22 20 18 13 12 7 17 6 5 11

13

5

6

24
29

28

26

25

32

15
23

10

Fig. 7.2 The example network used by Girvan and Newman (GN) (2002). Left: The friendship
network of a karate club is due to Zachary (1977). Over the course of the observation by Zachary,
a dispute between the manager (33) and the instructor (1) of the club led to the break up of the
club. The members represented by circles sided with the manager, while those represented by
squares sided with the instructor. Right: The dendogram resulting from the application of GNs
community detection algorithm reproduces the split up of the club almost perfectly. Only node 3 is
misclassified. This apparent “predictive power” of the algorithm sparked the interest in community
detection among physicists. (From Girvan and Newman, 2002)

remove the edge of largest betweenness from the network. In the now modified
network, they repeat the process until the network is split into two disconnected
components. It should be noted that the resulting dendogram can also be interpreted
as an ordering of the rows and columns in the adjacency matrix corresponding to
the nodes at the ends of the dendogram. Figure 7.2 shows the example GN used to
demonstrate the power of their algorithm. The sociogram represents the friendship
network of the members of a karate club obtained by Zachary who observed the club
over a period of two years (Zachary, 1977). During the time, a dispute between the
manager and the instructor of the club lead to the break up of the club. A number of
members left with the instructor to form a new club. The merit of the GN algorithm
is that it reproduces the actual split up of the club almost perfectly given only the
sociogram and no further information. It seems as if the partition of the club was
pre-determined by the structure of the friendship network.

The anecdote around Zachary’s karate club is still a preferred example in intro-
ductory talks about community detection. The sociogram was also among the first
benchmarks for other algorithms. However, it soon became clear that a more objec-
tive criterion is needed for the performance of an algorithm than whether or not it
can reproduce the observed split of such a small network. An objective measure
by which different assignments of nodes into communities could be compared was
needed. The next section will introduce such a measure.

7.5 Assortative Mixing and Modularity

The algorithm of GN transforms the connections of the entire network into a more
readable dendogram. Nevertheless, the question remains where to cut this dendo-
gram and what exactly are the cohesive subgroups and communities. What is needed
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is an objective criterion at which level the dendogram should be cut or the recursive
partitioning stopped, such that all remaining connected components can be regarded
as communities. Before we introduce this measure called “modularity” as proposed
by GN, we shall first follow them on a small detour into assortative mixing that will
clarify the meaning of modularity (Newman and Girvan, 2004; Newman, 2002).

So far, we have interpreted the problem of community detection as that of assign-
ing nodes into previously unknown groups which represent previously unknown
classes. Let us step back and assume we already knew the classes each node belongs
to. We can then ask, whether our assumption does hold, that links between nodes
in the same class are indeed more frequent than links between nodes in different
classes. GN define the following quantities: ers as the fraction of edges that fall
between nodes in class r and s. Further, they define

∑
r ers = as , the fraction of

edges that are connected to at least one node in class s. The fraction as can also be
interpreted as the empirical probability, that a randomly chosen edges has at least
one end in class s. Hence, a2

s is the expected fraction of internal edges lying between
nodes in class s. Comparing this expectation value to the true value ess for all groups
s leads to the definition of the “assortativity coefficient” rA:

rA =
∑

s

(
ess − a2

s

)

1−∑
s a2

s

. (7.1)

This assortativity coefficient rA is one, if all links fall exclusively between nodes
of the same type. The network is then perfectly assortative, but the different classes
of nodes remain disconnected. It is zero if ess = a2

s for all classes s, i.e., no prefer-
ence in linkage for either the same or a different class is present. It takes negative
values, if edges lie preferably between nodes of different classes, in which case
the network is called disassortative. The denominator corresponds to a perfectly
assortative network. Hence, rA can be interpreted as the percentage to which the
network is perfectly assortative.

For the classes of the nodes, any measurable quantity may be used. Especially
interesting are investigations into assortative mixing by degree, i.e., do nodes pre-
dominantly connect to other nodes of similar degree (assortative, ra > 0) or is the
opposite the case (disassortative, ra < 0). Surprisingly, it was found that many social
networks are assortative, while technological or biological networks are generally
disassortative (Newman, 2003). Note that rA may also be generalized to the case,
where the class index s takes continuous values (Newman, 2003).

From the above considerations, it is now easy to define an objective quality mea-
sure for an assignment of nodes into communities. GN propose to simply calculate
the numerator of the assortativity coefficient for a given community assignment.
The higher its value, the better the assignment of nodes into communities. Formally,
they define the “modularity” (Newman and Girvan, 2004):

Q =
∑

s

(
ess − a2

s

)
, (7.2)
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where ess is the fraction of edges that fall within community s and as is the fraction
of edges connected to at least one node in community s, just as before. This mod-
ularity measure can be used to compare different community assignments for the
same network in an objective way. It also allows to compare the results of different
algorithms.

In the following sections, we will see that the ad hoc introduction of Q can be
based on and derived from a very general principle. We will show that the problem of
finding a maximally assortative assignment of nodes into communities is equivalent
to problems found in solid state physics and computer science, and we will see how
insights from these two fields can help to interpret the results of social network
analysis.

7.6 Spin Systems, Spin Glasses, and Combinatorial Optimization

In order to understand the approach for community detection developed in the fol-
lowing sections, it is helpful to take a little detour into Statistical Physics. Statistical
Physics deals with the behavior of many particle systems and tries to explain the
macroscopic behavior of a large ensemble of particles by their microscopic inter-
actions. According to classical Statistical Physics, in thermal equilibrium, i.e., at
temperature T , the probability that a system is observed to be in a particular (micro-
scopic) configuration is proportional to the negative exponential of the energy in this
configuration

p(configuration) ∝ exp (−βE(configuration)) . (7.3)

This distribution of probabilities for configurations is called the Boltzmann dis-
tribution and deserves some explanation. First, by “configuration” we mean the set
of variables that describe the system microscopically, e.g., for a gas this means
the position and momentum of every single gas particle. The parameter β only
simplifies the writing as it describes the inverse temperature β ∝ 1/T . Large
β correspond to small temperatures and small β to large temperatures. With E ,
we denote the energy of the system in a given configuration. It is important to
note how β affects the sensitivity of p(configuration) to changes in E . First, it is
clear that configurations with lower energies always have higher probabilities. The
ratio of probabilities for two configurations c1 and c2 with energies E1 and E2 is
p(c1)/p(c2) = exp(−β(E1− E2)). We see that for small enough β or high tempera-
tures, the ratio of probabilities tends to one, i.e., all configurations are approximately
equally probable. For large β or low temperatures, however, only those configura-
tions with the smallest energies will have an appreciable probability to be observed
in the system. For β tending to infinity or T tending to zero, the system is observed
in the configuration with lowest energy with probability one. This state of lowest
energy of a physical system is called the ground state.

In principle, we can understand nature as a minimizer from this theory. Physi-
cal systems are able to find configurations of minimal energy if they are cooled to
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almost zero temperature. Understanding how this is achieved in nature and being
able to check theoretical calculations against experiments has enabled physicists to
obtain insights into this optimization process and has allowed for the development
of methods to calculate, at least approximately, the configuration that minimizes
energy. The methods developed in the study of systems that have an actual physical
realization can of course also be used in the study of other combinatorial optimiza-
tion problems, that do not necessarily have an exact analogue in the world of many
particle physics. All that is necessary for this, is that we can reformulate the com-
binatorial optimization problem in a language amenable to methods from Statistical
Physics.

To conclude our brief detour into statistical physics, we shall give two examples
that illustrate the above. Especially, we will show how the energy of the systems is
calculated for a particular configuration. In honor of the irish physicist Sir Willian
Rowan Hamilton (1805–1865), the function that calculates the energy for a given
configuration is called “Hamiltonian” H and we shall use this word, whenever we
speak of the function and the word energy, whenever we speak of its value. The first
is the model of a ferromagnet due to Ernst Ising. Ferromagnets, such as iron, have
the property that they are magnetic below a certain critical temperature (the Curie
temperature) and non-magnetic above this temperature. Ising assumed that ferro-
magnetic materials consist of lattices of “elementary magnets.” Below the Curie
temperature, these can align with their next neighbors in the same direction to add
their magnetic fields, while above it, they are in a random orientation due to ther-
mal fluctuations, such that the total magnetic field they produce is zero. Quantum
mechanics shows that these “elementary magnets” are actually the manifestations of
a quantum mechanical property of elementary particles called “spin” and that they
can only have a finite number of orientations. In the Ising model, these spins have
only two orientations called spin-up and spin-down. As a configuration, we under-
stand the assignment of all spins (or elementary magnets) into one of the categories
spin-up or -down. The Hamiltonian of the Ising ferromagnet can be written as:

H({σ }) = −J
∑

<i, j>

δ(σi , σ j ). (7.4)

Here, σi denotes the spin of lattice site i . We simply adopt σi = 1 for spin-up
and σi = −1 as spin-down. The function δ(σi , σ j ) is one, whenever σi = σ j and
zero, whenever σi 	= σ j for the spins of lattice sites i and j . This function is called
Kronecker-Delta. The sum runs over all pairs of neighboring sites in the lattice,
denoted by the symbol < i, j >. We see that if two neighboring sites have the same
spin, they contribute a constant value of −J to the energy. The constant J , with
J > 0, is called (ferromagnetic) coupling strength, because it determines how two
neighboring spins are coupled to affect the total energy. The fact that the energy
depends on the values of each of the lattice sites is denoted by the symbol {σ },
which we understand as configuration or one particular assignments of spin values
to all lattice sites. From this simple model and the assumption of the Boltzmann
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distribution (7.3), one can already derive the qualitative behavior of an actual ferro-
magnet. From (7.4), it is clear that the minimum energy is reached when all spins
have the same value. The ground state is a homogeneous configuration. However,
there are two possibilities for the ground state – spins can either be all up or all down,
which gives the same energy. We say, the ground state is twofold degenerate. We can
immediately see this minimal configuration from the Hamiltonian as the configura-
tion that “satisfies” all couplings, i.e., all Kronecker-Deltas are one and the energy is
simply−J times the number of neighboring pairs of lattice sites. Figure 7.3a shows
an example of a particular configuration of Ising spins on a lattice.

The second model we would like to consider is called Ising spin glass. The
Hamiltonian is formally very similar to (7.4):

H({σ }) = −
∑

<i, j>

Ji jδ(σi , σ j ). (7.5)

However, now, the coupling between lattice sites i and j is not a constant any-
more. Rather, it is different for every pair i, j . As a simple example, we can assume
that Ji j = ±J with equal probability independent of sites i and j . Again, we assume
J > 0 to be some constant. Now, we can read off neither the ground state config-
uration nor the ground state energy directly from the Hamiltonian. The reason for
this is the appearance of what is called “frustration.” We cannot generally satisfy all
Kronecker-Deltas due to conflicting couplings. Figure 7.3b shows an example of a
part of a lattice with conflicting couplings. The calculation of ground state energies
and the finding of ground state configurations now becomes a very difficult problem.
However, established methods exist to find good approximative solutions to these
problems. In the language of combinatorial optimization problems, the couplings
represent local constraints on the variables, which are represented by the spins.

One obvious generalizations of the above models is their extension to more than
two spin states, i.e., allowing σi to take values from {0, 1, 2, 3, . . . ., q}. Then, we
speak of q-state Potts models instead of Ising models. Also, instead of a lattice
topology and interactions only among the next neighbors, we can have arbitrary
networks where the nodes carry a spin variable and we assign different couplings

+

+ +

–

(a) (b)

Fig. 7.3 (a) Example of an Ising model on a lattice with positive (ferromagnetic) couplings
between all neighbors. The spin configuration shown does not lead to a minimal energy through
(7.4), but it is clear that aligning all spins in the same direction leads to minimal energy. (b) The
situation is different if we allow negative (anti-ferromagnetic) couplings. Shown is a “frustrated”
plaquette, in which for all possible assignments of spins to lattice sites, at least one edge cannot be
satisfied
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to the edges. The problem of community detection, as we will show in Section 7.7,
is of this spin glass type. Fortunately, we will be able to reuse some known results
from general spin glass theory and apply them to the problem.

Now, with the very basics of combinatorial optimization by physical analogy
being introduced, we shall return to our main problem of community detection.

7.7 Community Detection using Spin Glasses

7.7.1 Writing a Quality Function as a Hamiltonian

So far, we have not given a definition of what a community actually is. We only
have an intuitive idea of a community as being a cohesive subgroup in a network, the
members of which are more densely interconnected among themselves than with the
rest of the network. We will start from a first principles ansatz that builds a quality
function of an assignment of nodes into communities. This quality function should
have the following properties: It should:

(a) reward internal links between nodes in the same group,
(b) penalize missing internal links,
(c) penalize external links between nodes in different groups, and
(d) reward missing external links.

These principles can be cast into a Hamiltonian similar to (7.5) which then acts
as quality function. It is convention to write the Hamiltonian in a way, such that
the “better” a particular configuration fulfills these four principles, the lower the
energy. This way, the ground state of the Hamiltonian corresponds to the optimal
configuration. This approach mapping combinatorial optimization problems to spin
systems has been suggested for the first time by Fu and Anderson (1986) in the
context of the problem of partitioning a graph into two equally sized parts. We write
the following Hamiltonian:

H ({σ }) = −
∑

i 	= j

ai j Ai jδ(σi , σ j )
︸ ︷︷ ︸
internal links

+
∑

i 	= j

bi j (1− Ai j )δ(σi , σ j )
︸ ︷︷ ︸
internal non-links

(7.6)

+
∑

i 	= j

ci j Ai j (1− δ(σi , σ j ))
︸ ︷︷ ︸

external links

−
∑

i 	= j

di j (1− Ai j )(1− δ(σi , σ j ))
︸ ︷︷ ︸

external non-links

.

We assign a spin or community index σi ∈ {1, 2, 3, . . . ., q} to every node i
in the network. The matrix Ai j denotes the adjacency matrix of the network and
ai j , bi j , ci j , and di j denote the weights of the individual contributions for internal
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and external links, respectively. The number of spin states q determines the maxi-
mum number of groups allowed and can, in principle, be as large as N , the number
of nodes in the network. Note that not all group indices have to be used necessar-
ily in the optimal assignment of nodes into communities, as some spin states may
remain unpopulated in the ground state. If links or non-links are weighted equally,
regardless whether they are external or internal, i.e., ai j = ci j and bi j = di j , then it
is enough to consider the internal links and non-links. It remains to find a sensible
choice of weights ai j and bi j , preferably such that the contribution of links and
non-links can be adjusted through a parameter. As we will see, a convenient choice
is ai j = 1−�pi j and bi j = �pi j , where pi j denotes the probability that a link exists
between node i and j . Note that pi j is normalized, such that

∑
i< j pi j = M . For

� = 1 this leads to the natural situation that the total amount of energy that can possi-
bly be contributed by links and non-links is equal:

∑
i< j Ai j ai j =

∑
i< j (1−Ai j )bi j .

The average ratio α of the coupling strengths of present and missing links can then
be expressed as:

α = 〈a〉〈b〉 =
1− �p

�p
, (7.7)

where p is the average connection probability in the network. For � = 1, α equals
the inverse ratio of the total number of links and non-links in the network. For any
desired α, the corresponding � is given by � = 1/p(1 + α). Our choice of the
weights allows us to further simplify the Hamiltonian (7.7):

H ({σ }) = −
∑

i 	= j

(
Ai j − �pi j

)
δ(σi , σ j ). (7.8)

This represents a Potts spin glass with couplings Ji j = Ai j − pi j between all
pairs of nodes: ferromagnetic (Ji j > 0) where links between nodes exist and anti-
ferromagnetic (Ji j < 0) where links are missing.

Depending on the graph under study, one can assume different expressions for
pi j . Effectively, the Hamiltonian (7.8) is comparing the true distribution of links in
the graph with the expected distribution given by a particular null model defined by
pi j . With this in mind, we can rewrite (7.8) in the following two ways:

H ({σ }) = −
∑

s

(
mss − �[mss]pi j

)
(7.9)

and

H ({σ }) =
∑

s<r

(
mrs − �[mrs]pi j

)
. (7.10)

Here, the sum runs over the q spin states and mrs denotes the number of edges
between spins in group r and s. Consequently, the number of internal edges of
group s is denoted by mss . The symbol [·]pi j denotes an expectation value under
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the assumption of a link distribution pi j , given the current assignment of spins. That
is, [mss]pi j is the expected number of internal edges in group s given the current
assignment of spins, i.e., taking into account the size of group s or the degrees of
the nodes in group s. Likewise, [mrs]pi j is the expected number of external edges
between groups r and s. Note also that

2
∑

s

mss +
∑

r 	=s

mrs = 2M,

2
∑

s

[mss]pi j +
∑

r 	=s

[mrs]pi j = 2M (7.11)

and that we can always use the number of internal and external edges equivalently.
The number of edges within and between non-overlapping groups is an extensive

quantity, i.e., m13 + m23 = m1+2,3 for all choices of non-overlapping groups 1,
2, and 3 and m33 = m11 + m22 + m12 for all groups 3 with proper subgroups
1 and 2 of empty intersection and union 3. We therefore require that the model
of connection probability ensures the same for the expectation values: [m13]pi j +
[m23]pi j = [m1+2,3]pi j and [m33]pi j = [m11]pi j + [m22]pi j + [m12]pi j .

Two exemplary choices of link distribution models pi j shall illustrate the above.
The simplest choice is to assume every link equally probable with probability pi j =
p which leads naturally to

[mss]p = p
ns(ns − 1)

2
and [mrs]p = pnr ns, (7.12)

with nr and ns denoting the number of spins in state r and s, respectively. This
choice of model leads to the Hamiltonian (Reichardt and Bornholdt, 2004):

H ({σ }) = −
∑

i, j∈E

δ(σi , σ j )+ �p
q∑

s

ns(ns − 1)

2
. (7.13)

Here, the first sum runs over all edges and only internal edges contribute.
Equivalently, we can write (7.13) in terms of external edges:

H({σ }) =
∑

i, j∈E

(1− δ(σi , σ j ))− �p
q∑

r<s

nr ns, (7.14)

where only edges between different groups contribute to the first sum. We see that
both, (7.13) and (7.14), compare the actual value of internal or external edges with
its respective expectation value under the assumption of equally probable links and
given community sizes.

A second choice for pi j may take into account that the network exhibits a partic-
ular degree distribution. Since links are in principle more probable between nodes
of high degree, links between these nodes should get a lower weight. Using
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pi j = ki k j

2M
(7.15)

takes this fact and the degree distribution into account. Note that it is possible to
also include degree–degree correlations or any other form of prior knowledge about
pi j at this point. With these expressions we can write:

[mss]pi j =
1

2M

K 2
s

2
and [mrs]pi j =

1

2M
Kr Ks . (7.16)

Here, Ks is the sum of degrees of nodes in spin state s and plays the role of the
occupation numbers in Eq. (7.13). Using these expressions, we can also write the
Hamiltonian (7.8) in a form similar to (7.13):

H ({σ }) = −
∑

i, j∈E

δ(σi , σ j )+ �

2M

q∑

s

K 2
s

2
. (7.17)

Again, we give an equivalent formulation in terms of external, rather than internal
edges, similar to (7.14):

H ({σ }) =
∑

i, j∈E

(1− δ(σi , σ j ))− �

2M

q∑

r<s

Kr Ks . (7.18)

We see that even though we are dealing with a so-called “infinite range” spin
glass, i.e., couplings between all pairs of nodes exist, it is only necessary to consider
the interactions Ji j along the links Ai j of the network and the occupation numbers or
the sum of node degrees of the individual spin states. This makes it easy to imple-
ment an efficient minimization routine for these Hamiltonians. It should be noted
that both the formulations (7.13), (7.14) and (7.17), (7.18) are equivalent in case of
a network with fixed connectivity, where all nodes have the same degree.

7.7.2 Equivalence with Newman Modularity

We have already introduced the modularity Q as an objective measure of how assor-
tative or disassortative the links are distributed within and in between groups of
nodes. It so happens that for our choice of weights ai j and bi j and � = 1, the
modularity Q is equivalent to our Hamiltonian. We can show this by writing the
modularity in a slightly different way in the following manner (Clauset et al., 2004):
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ess = 1

2M

∑

i 	= j

Ai jδ(σi , σ j )δ(σi , s)

a2
s =

1

4M2

(
∑

i

kiδ(σi , s)

)2

Q = 1

2M

∑

i 	= j

(

Ai j − ki k j

2M

)

δ(σi , σ j ). (7.19)

This already resembles (7.8) when pi j takes the form ki k j/2M and � = 1. It is
now clear that we can write:

Q = − 1

M
H({σ }) (7.20)

with the Hamiltonian (7.8) and � = 1. Therefore, maximum modularity is reached,
when the Hamiltonian (7.8) with pi j = ki k j/2M or equivalently (7.17) or (7.18)
with � = 1 are minimal. To maximize the modularity of a community structure
is hence equivalent to finding the spin configuration that minimizes these Hamil-
tonians. This reformulation makes the problem amenable to efficient optimization
routines.

7.7.3 Cohesion and Adhesion

From the above considerations and to simplify further developments, we will adopt
the concept of “cohesion” and “adhesion” to our network terminology. We define
the coefficient of cohesion:

css = mss − �[mss]pi j (7.21)

as the difference between the number of internal links between nodes in group s and
the respective expectation value. We see that css is positive for groups of nodes that
have more inner links than expected and negative for groups of nodes that have less
inner links than expected. Equivalently, we define the coefficient of adhesion:

ars = mrs − �[mrs]pi j (7.22)

between nodes in group r and s with r 	= s. Note that ars is negative, when there
are less links between group r and s than expected. Remember that both css and ars

depend on the global parameter � and the assumed connection probability pi j . For
� = 1 and the model pi j = ki k j/2M , we find from combining the Eq. (7.11)
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2css +
∑

r,r 	=s

asr = 0. (7.23)

For pi j = ki k j/2M the cohesion is negative (css < 0) if ns consists of only one
single node. We see that there must always exist a group of nodes nr , to which this
node has positive adhesion. We will see later that this means every node belongs to
some group. Groups of only one node do not exist. We stress that relation (7.23)
and the conclusions just drawn do not hold for � 	= 1 or pi j = p. Furthermore, we
give a relation for the coefficient of cohesion of a group of nodes ns and two proper
subsets ns1 and ns2 with empty intersection and union ns . It is easy to prove that

css = c11 + c22 + a12, (7.24)

where c11 and c22 are the coefficients of cohesion of the respective subsets ns1 and
ns2, and a12 is the coefficient of adhesion between ns1 and ns2. Equivalently, we can
write for the adhesion coefficients with n2 of two groups nr1 and nr2 with union nr

and empty intersection

ars = a1s + a2s . (7.25)

For the last time, we shall give a reformulation of the Hamiltonian (7.8) in terms
of the coefficients of cohesion and adhesion:

H({σ }) = −
∑

s

css =
∑

r<s

ars . (7.26)

So far, we have done nothing more than formulating the problem of community
detection in mathematical terms and have gained some insight by reformulating it.
All the different expressions we have given so far are nothing more and nothing
less than a mathematical formulation of the four principles we have stated at the
beginning of this section.

7.7.4 Extension to Weighted and Directed Networks

The above Hamiltonians and expressions for modularity can easily be extended
by using a weighted instead of the 0, 1 adjacency matrix Ai j . The degrees of the
nodes ki are then calculated as ki =

∑
j Ai j and the average connection probability

p = 〈k〉/(N − 1). The number of edges is then to be replaced by M = 1/2
∑

i ki ,
the total sum of link weights. Due to these simple relations, we will not differentiate
between weighted and unweighted. In the same way, we can deal with directed
networks by dropping the assumption of the symmetry of Ai j , pi j and ars . The
situation becomes more difficult when interpreting the results, since group r may
have a strong adhesion with s, such that ars > 0, but not vice versa, such that
asr < 0. The decision, whether to group r and s together then depends on whether
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it is globally better to group them together or apart, i.e., based on the comparison of
the absolute values of ars and asr . From this, we see that we can form a symmetric
adjacency matrix Ãi j from the adjacency matrix of the directed network Ai j by writ-
ing: Ãi j = 1/2(Ai j+ Ai j ) and a symmetric link probability p̃i j from the asymmetric
of the directed network by writing p̃i j = 1/2(pi j+ p ji ). After these transformations,
we can work with the network in the same way as with an undirected network.

7.7.5 Properties of the Hamiltonian and its Ground State

Thus far, we have seen that the ground state spin configuration of our Hamiltonians
can be interpreted as the community structure of a network. In other words, it is
the “best” assignment of nodes into communities according to the quality function
defined by the Hamiltonian. The lower the energy, the “better” the community struc-
ture. From the fact that the ground state is a configuration that is a minimum in the
configuration space, we can derive a number of properties of the communities that
apply to any local minimum of the Hamiltonian in the configuration space. If we
take these properties as defining properties of what a community is, we then find
valid alternative community structures also in the local minima of the Hamiltonian.
The energy of these local minima will then allow us to compare these community
structures. It may be that alternative but almost equally “good” community struc-
tures exist. Before we go on investigating the properties of spin configurations that
represent local minima of the Hamiltonian, we will discuss a few properties of the
Hamiltonians as such:

First, we note that for � = 1 the Hamiltonians evaluate to zero in case of assign-
ing all nodes into the same spin state due to the normalization constraint on pi j , i.e.,∑

i< j pi j = M , independent of the graph. Second, for a complete graph, any spin
configuration gives the same zero energy at � = 1. Third, for a graph without edges,
e.g., only a set of nodes, any spin configuration gives zero energy independent of �.
Fourth, the expectation value of the Hamiltonians for a random assignment of spins
at � = 1 is zero. These considerations give an intuitive feeling for the fact that the
lower the energy, the better the spin configuration is suited for a particular graph and
that the choice of � = 1 will result in what could be called a “natural partitioning”
of the graph.

Since the Hamiltonians are all additive with respect to the different communities,
i.e., the numbers of edges and the corresponding expectation values are extensive,
they can be seen as independent entities and we can treat a single community inde-
pendently from the rest of the network. The configuration space over which the
Hamiltonian is minimized is a discrete space. Once we have defined a move set that
is ergodic in this discrete space, a (local) minimum of the Hamiltonian (with respect
to this move set) is defined as a configuration for which none of the steps from the
move set leads to a lower energy. It is sufficient to consider only one move: change
a group of nodes n1 from spin state s to spin state r . The change in energy for this
move in configuration space is:

�H = a1,s\1 − a1r . (7.27)
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Here a1,s\1 is the adhesion of n1 with its complement in ns and a1r is the adhesion
of n1 with nr . It is clear that if we move n1 to a previously unpopulated spin state,
then �H = a1,s\1. This move corresponds to dividing group ns . Furthermore, if
n1 = ns , we have �H = −asr , which corresponds to joining groups ns and nr .
For a spin configuration to be a local minimum of the Hamiltonian, there must not
exist a move of this type that leads to a lower energy. It is clear that some moves
may not change the energy and are hence called neutral moves. In case of equality
a1,s\1 = a1,r and nr being a community itself, we say that communities ns and nr

have an overlap of the nodes in n1.
For a community defined as a group of nodes with the same spin state in a

spin configuration that makes the Hamiltonian minimal, we then have the following
properties:

1. Every proper subset of a community has a maximum coefficient of adhesion with
its complement in the community compared to the coefficient of adhesion with
any other community (a1,s\1 = max).

2. The coefficient of cohesion is non-negative for all communities (css ≥ 0).
3. The coefficient of adhesion between any two communities is non-positive

(ars ≤ 0).

The first property is proven by contradiction from the fact that we are dealing
with a spin configuration that makes the Hamiltonian minimal. We also see imme-
diately that every proper subset n1 of a community ns must have a non-negative
adhesion with its complement ns\1 in the community. This is especially true for
every single node l in ns (al,s\l ≥ 0). Then we can write

∑
l∈ns

al,s\l ≥ 0. Since∑
l∈ns

ml,s\l = 2mss and
∑

l∈ns
[ml,s\l]pi j = 2[mss]pi j , this implies css ≥ 0 for

all communities s and proves the second property. The third property is proven by
contradiction again. Again, we stress that for � = 1 and pi j = ki k j/2M , no com-
munity is formed of a single node due to condition (7.23). The last two properties
can be summarized in the following inequality which provides an intuition about the
significance of the parameter �:

css ≥ 0 ≥ ars ∀r, s. (7.28)

Assuming a constant link probability, we can rewrite this inequality in order to
relate the inner link density of a community and the outer link density between
communities with an average link density:

2mss

ns(ns − 1)
≥ �p ≥ mrs

nr ns
∀r, s. (7.29)

We see that �p can be interpreted as a threshold between inner and outer link
density under the assumption of a constant link probability.

Apart from giving an interpretation of the (local) minima of the Hamiltonian, the
above properties also give a definition of what a community is, alternative to that
of a set of nodes of equal spin value in a configuration that represents a minimum



166 J. Reichardt and S. Bornholdt

of the Hamiltonian. When speaking of the community structure of a network, we
generally refer to that obtained at lowest energy, i.e., in the ground state. We will
use the term “community” denoting a subset of nodes that has all of the above
properties. Note that this definition of community adapts itself naturally to different
classes of networks, since a model pi j is included in the definition of adhesion and
cohesion. Since the assignment of nodes into communities changes with the value of
�, we shall further adopt the notion “community at level �,” in order to characterize
possible hierarchies in the community structure.

7.7.6 Relation to Other Definitions of Communities

Let us put the above definition in perspective with other community definitions
from the sociology literature. Wasserman and Faust (1994) give a comprehensive
overview of possible definitions. Starting from the graph theoretical concepts of
cliques as maximal complete subgraph, they go on to definitions based in reachabil-
ity and diameter such as n-cliques, n-clans, or n-clubs. Other definitions given are
based on nodal degree such as that of k-plexes and k-cores. All of these definitions
have in common that they define a community or cohesive subgroup from the point
of view of a single node. In contrast, one may also define cohesive subgroups on
the level of the group as is done for lambda sets and LS-sets. Our definition of
community falls into the latter class. It is closest to that of an LS set, which shall be
repeated here: A set of nodes S in a network is an LS set, if each of its proper subsets
has more links to its complement within S than to the outside of S. In our case, we
have shown that for the communities we find every proper subset has a maximum
coefficient of adhesion with its complement in the community. In this respect, our
community definition is closest to that of an LS set.

7.7.7 Benchmarking Performance

With the above considerations, we have justified our approach theoretically to the
point that the ground state has a number of properties, which one would intuitively
associate with the notion of cohesive subgroup or community. Skipping the tech-
nical details of how to find the spin configuration that minimizes the energy, we
shall directly present the benchmark results for our method on computer generated
test networks with known community structure as suggested in (Newman, 2004).
Nodes are assigned to communities and are randomly connected to members of
the same community by an average of 〈kin〉 and to members of different com-
munities by an average of 〈kout 〉 links. Fixing the average degree of all nodes to
〈k〉 = 〈kin〉 + 〈kout 〉 = 16, it becomes more and more difficult for any algorithm to
detect the communities as 〈kout 〉 increases on the expense of 〈kin〉. When quantifying
the performance of the algorithm, we define two measures. Sensitivity measures the
percentage of all pairs of nodes that are correctly grouped together in the ground
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Fig. 7.4 Benchmark of the algorithm for networks with known community structure and compar-
ison with Girvan and Newman. Top row: four communities of 32 nodes each, bottom row: four
communities of 128, 96, 64, and 32 nodes, respectively. Symbol size corresponds to error bars

state. Specificity measures the percentage of all pairs of nodes that are correctly
grouped apart in the ground state. Hence, sensitivity (specificity) is a measure of
how good an algorithm performs in grouping nodes together (apart) that (do not)
belong together. We tested two sets of networks. The first is composed of four
equally sized communities of 32 nodes each and the second is composed of four
communities of 128, 96, 64, and 32 nodes, respectively. Performance of our algo-
rithm and, for comparison, the one by GN (Girvan and Newman, 2002) is shown
in Fig. 7.4. Note the high sensitivity and specificity of our algorithm for both types
of networks. We stress that the benchmarking performance does not depend on q,
the number of possible spin states as long as it is sufficiently large (Reichardt and
Bornholdt, 2007). The analysis was run with � = 1.

7.7.8 Finding the Community Around a Given Node

So far in our analysis, we have partitioned the network into communities, such that
every node belongs to exactly one community. Often, it is desirable not to find all
communities in a network, but to find only the community to which a particular node
belongs. This may be especially useful, if the network is very large and detecting
all communities may be time consuming. In the framework presented in this article,
we can do this using a fast, greedy algorithm. Starting from the node j we are
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interested in, we successively add nodes as long as the adhesion of the community
we are forming and the rest of the network decreases. Adding a node i from the rest
of the network r to the community s around the start node, the adhesion between s
and r changes by:

�asr (i → s) = air − ais . (7.30)

For pi j = p, this can be written as:

�asr (i → s) = kir − kis − �p(nr − 1− ns), (7.31)

where nr = N − ns is the number of nodes in the rest of the network, and ns the
number of nodes in the community. For pi j = ki k j/2M , the change in adhesion
reads:

�asr (i → s) = kir − kis − �

2M
ki (Kr − ki − Ks) . (7.32)

Here, Kr and Ks are the sums of degrees of the rest of the network and the
community under study, respectively, and ki is the degree of node i to be moved
from r to s, which has kis links connecting it with s and kir links connecting it with
the rest of the network. It is understood that only when the adhesion of i with s is
larger than with r , the total adhesion of s with r decreases. Equivalent expressions
can be found for removing a node i from the community s and rejoining it with r .

For � = 1 and pi j = ki k j/2M , we have ais + air + 2cii = 0, and cii < 0
by definition and close to zero for all practical cases. Then, ais and air are either
both positive and very small or have opposite sign. Choosing the node that gives the
smallest �ars will then result in adding a node with positive coefficient of adhesion
to s. It is easy to see that this ensures a positive coefficient of cohesion in the set of
nodes around j .

In order to benchmark the performance of this approach, we applied it again to
computer generated test networks as done in the last section. As before, we used
computer generated test networks of 128 nodes, which are grouped into four equal
sized communities of size 32 with average degree 〈k〉 = 〈kin〉+〈kout 〉 = 16. Starting
from a particular node, we are interested in the performance of the algorithm in
discovering the community around it. We measure the percentage of nodes that are
correctly identified as belonging to the community of the start node as sensitivity
and the percentage of nodes that are correctly identified as not belonging to the
community as specificity.

Figure 7.5 shows the results obtained for different values of 〈kin〉 at � = 1 and
using pi j = ki k j/2M . We note that this approach performs rather well for a large
range of 〈kin〉 with good sensitivity and specificity. In contrast to the benchmarks
for partitioning the entire network, we obtain a sensitivity that is generally larger
than the specificity. This shows that partitioning the entire network tends to mistak-
enly group things apart, that do not belong apart by design, while constructing the
community around a given node, tends to group things together, that do not belong
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Fig. 7.5 Benchmark of the algorithm for discovering the community around a given node in net-
works with known community structure. We used networks of 128 nodes and four equal sized
communities. The average degree of the nodes was fixed to 16, while the average number of intra-
community links 〈kin〉 was varied. Sensitivity measures the fraction of nodes correctly assigned
to the community around the start node, while specificity measures the fraction of nodes correctly
kept out of the community around the start node

together by design. This behavior is understandable, since working on the entire
network amounts to effectively implementing a divisive method, while starting from
a single node means implementing an agglomerative method.

7.7.9 Overlap, Stability, and Hierarchy of Community Assignments

Lastly, we turn to the problem of overlap of communities and alternative community
structures, which has briefly been touched upon in the last section. One cannot gen-
erally assume that a community structure of a network is uniquely defined. There
may exist several but very different partitions that all have a very high value of
modularity. Palla et al. (2005) have introduced an algorithm to detect overlapping
communities by clique percolation and Gfeller et al. have introduced the notion
of nodes lying “between clusters” (2005). This uncertainty in the definition of the
borders of a community is expected from the spin glass nature of the Hamiltonian,
where generally many energy minima may exist that are comparably deep corre-
sponding to comparably good assignments of nodes into communities. Additionally,
the (local) minima of the Hamiltonian may be degenerate. The overlap of communi-
ties is linked to degeneracy of the minima of the Hamiltonian. Since the degeneracy
can arise in several ways, we have to differentiate between two different types of
overlap: overlap of community structure and overlap of communities.

We have already seen that it is undecidable if a group of nodes nt should be
member of community ns or nr , if the coefficients of adhesion are equal for both
of these communities. Formally, we find at,s\t = atr . In this situation, we speak of
overlapping communities ns and nr with overlap nt , since the number of commu-
nities in the network is not affected by this type of degeneracy. Nodes that do not
form part of overlaps will always be grouped together and can be seen as the non-
overlapping cores of communities. An example of this can be found in Fig. 7.6(a),
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A B
x

(a)

(b)

(c)

(e)

H= –7+65/16

H = –6+51/16

H = –3+33/16

H = –5+45/16

(d) H = –4+39/16

(f) H = –2+27/16

Fig. 7.6 For different values of �, different spin configurations minimize the energy to form ground
states. For � < 16/63, the ground state is ferromagnetic. For 16/63 < � < 8/7, the twofold
degenerate configuration (a) is the ground state, with node x belonging either to community A or
B. For 8/7 < � < 8/3, configuration (b) shows the non-degenerate ground state. For � >= 8/3,
configurations (b), (c), (d), (e) and (f) all form ground states, but only (f) is ground state for
8/3 < � < 4

where communities A and B overlap in node x . The ground state at � = 1 is twofold
degenerate with node x belonging either to A or B.

On the other hand, it may be undecidable, if two groups of nodes should be
grouped together or apart, if the coefficient of adhesion between them is zero, i.e.,
there exist as many edges between them as expected from the model pi j . Similarly,
it may be undecidable, if a group of nodes should form its own community or be
divided and the parts joined with different communities, if this can be done without
increasing the energy. In these situations, the number of communities in the ground
state is not well defined and we cannot speak of overlapping communities, since
communities do not share nodes in the degenerate realizations. We will hence refer
to such a situation as overlapping community structures. An example of this can
be found in Fig. 7.6(d), where the three nodes in groups A and B form either one
community as in (a) or two distinct communities of 2 and 1 node each. In general,
however, both types of overlap may be present in a network.

Since the coefficients of adhesion and cohesion depend on the value of � cho-
sen, one can assess the stability of community structures under the change of this
parameter. The network shown in Fig. 7.6 illustrates this. It is made of seven nodes
and eight links. The sum of degrees of the nodes in A and B is 7, each. For � = 1,
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we find the maximum modularity Q = 47/128. For values of � < 16/63, we
find a ferromagnetic ground state with all edges satisfied. At � = 16/63, both the
ferromagnetic and the two community state depicted in (a) are ground states. The
twofold degenerate state of (a) will remain the ground state while � < 8/7. For
values of 8/7 < � < 8/3, we find the non-degenerate ground state shown in (b).
Node x now forms its own community, while the nodes in A and B are still grouped
together. This shows that node x is not as stably connected to the three remaining
nodes in A and B as those are among themselves. At � = 8/3, the ground state is
eightfold degenerate and the configurations of (b), (c), (d), (e) and (f) all have the
same minimal energy of HGS = −5/2. For 8/3 < � < 4, the configurations shown
in (f) show the non-degenerate ground state.

The Hamiltonian is always constructed as a sum of a reward and a penalty term.
The parameter � controls the influence of this penalty term. We note that in order
to go from a homogeneous configuration of high reward (many internal edges) to a
more diverse configuration of lower reward term (less internal edges) by increasing
�, the penalty term also has to decrease. Otherwise, we cannot find a positive � that
favors the more diverse configuration. As illustrated in Fig. 7.6, the penalty term
has to decrease as the number of satisfied edges decreases. A configuration that
has less satisfied edges and larger penalty at the same time can never be a minimal
configuration for any value of �.

In order to study these questions more generally, we need to find a convenient
way to characterize and compare different community structures. Different struc-
tures are best represented in a symmetric N × N co-appearance matrix, in which
the entry i, j denotes in what fraction of all structures analyzed nodes i and j were
grouped together. This allows the combined representation of the overlap of many
different community structures necessary for the investigation of degenerate ground
states. In addition, this type of representation allows the comparison of community
structures obtained from a parameter variation of � also for large networks and
hence to study possible hierarchies and the stability of community structures for
different values of � when possible degenerate ground states can only be sampled
in a stochastic manner.

We have already stressed that properties 1 through 3 are also valid for any local
minimum of the energy landscape defined by the Hamiltonian and the graph. It
may therefore be interesting to study also the local minima and compare them to
the ground state. Local minima may be sampled by running greedy optimization
algorithms using random initial conditions. For correlated energy landscapes, it is
known that deeper local minima have larger basins of attraction in the configura-
tion space. The Hamiltonian (7.8) induces such a correlated energy landscape on
the graph, since the total energy is not affected drastically by single spin changes.
We therefore expect that the deep local minima will be sampled with higher fre-
quency and that pairs of nodes that are grouped together in deep minima will have
larger entries in the co-appearance matrix. A number of examples of co-appearance
matrices sampling local energy minima at different values of � have been given in
(Reichardt and Bornholdt, 2004).
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Here, we shall instead investigate the possible hierarchies of the community
structures directly from the adjacency matrix. The assignment of nodes into spin
states can be interpreted as an ordering of the rows and columns corresponding to
nodes of the network. The ordering is such rows and columns corresponding to
nodes in the same spin state (community) are next to each other. The internal order
among the nodes of the same spin state is random. The choice of the ordering of
the communities is arbitrary, but some orderings may be more intuitive than others.
The link density in the adjacency matrix is directly transformed into grey levels. We
can distinguish communities as square blocks of darker grey. Different orderings
may be combined into a consensus ordering. That is, starting from a super ordering
given, we re-order the nodes within each community according to a second given
sub-ordering, i.e., we only change the internal order of the nodes within communi-
ties of the super ordering. This leads to the formation of new communities of those
nodes that are assigned together in one community in both orderings. We can then
repeat the procedure to obtain further consensus orderings.

First, we give an example of a completely hierarchical network. By hierarchical,
we mean that all communities found at a value of �2 > �1 are proper sub-
communities of the communities found at �1. In our example, we have constructed
a network made of four large communities of 128 nodes each. Each of these nodes
have an average of 7.5 links to the 127 other members of their community and 5
links to the remaining 384 nodes in the network. Each of these four communities is
composed of four sub-communities of 32 nodes each. Each node has an additional
10 links to the 31 other nodes in its sub-community. Figure 7.7 shows the adjacency
matrix of this network in different orderings. At � = 1, the ground state is composed
of four large communities as shown in the left part of Fig. 7.7. Increasing � above
a certain threshold makes assigning different spin states to the 16 sub-communities
of the ground state configuration. The middle part of Fig. 7.7 shows an ordering
obtained with a value of � = 2.2. We can see that some of these sub-communities

Fig. 7.7 Example of an adjacency matrix for a perfectly hierarchical network. The network consists
of four communities, each of which is composed of four sub-communities. Using � = 1, we find
the four main communities (left). With � = 2.2, we find the 16 sub-communities (middle). Link
density variations in the off diagonal parts of the adjacency matrix already hint at a hierarchy. The
consensus ordering (right) shows that each of the larger communities is indeed composed of four
sub-communities each
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Fig. 7.8 Example of an adjacency matrix for an only partially hierarchical network with overlap-
ping community structure. The network consists of two large communities A and B, each of which
contains a sub-community a and b, which are densely linked with each other. Using � = 0.5, we
find the two large communities (left). With a larger � = 1, we find the two small sub-communities
a and b grouped together. The consensus ordering (right) shows that most of the links that join A
and B lie in fact between a and b

are more densely connected among each other. Imposing the latter ordering on top
of the ordering obtained at � = 1 then allows to display the full community structure
and hierarchy of the network as shown in the right part of Fig. 7.7. Note that we have
explicitly not used a recursive approach that applies the community detection algo-
rithm to separate subgroups. Rather, we have obtained two independent orderings
which are only compatible with each other, because the network has a hierarchical
structure of dense communities composed of denser sub-communities.

In contrast to this situation, Fig. 7.8 shows an example of a network that is only
partially hierarchical. The network consists of two large communities A and B con-
taining 512 nodes, which have on average 12 internal links per node. Within A
and B, a subgroup of 128 nodes exists, which we denote by a and b, respectively.
Every node within this subgroup has 6 of its 12 intra-community links with the
127 other members of this subgroup. The two subgroups a and b have on average
three links per node with each other. Additionally, every node has two links with
randomly chosen nodes from the network. From Fig. 7.8, we see that we find the
two large communities using � = 0.5. Maximum modularity, however, is reached
at � = 1 when a and b are joined into a separate community. Only when using the
consensus of the ordering obtained at � = 0.5 and � = 1, we can understand the
full community structure with a and b being subgroups that are responsible for the
majority of links between A and B. It is understood that this situation cannot be
interpreted as a hierarchy, even though a and b are cohesive subgroups in A and
B, respectively. We shall now turn to a real world example to see whether these
situations can be found outside of artificially constructed examples.

7.7.10 A Real World Example

As a real world example, we study the co-authorship network (Warner, 2003) of
the Los Alamos condensed matter preprint archive, considering articles published
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between April 1998 and February 2004. This network has also been analyzed by
Palla et al. in (2005). Every article induces a complete subgraph between the authors
in this network. Since articles with a large number of authors induce very large
cliques, every link induced by a single paper of n authors is only given a weight of
1/(n − 1). After summing the weights for all papers, only links with a weight of
0.1 and greater were kept, transforming the network into a non-weighted one. The
network consists of 30, 561 nodes connected by 125, 959 links. There are 668 con-
nected components, the largest of which has 28, 502 nodes and 123, 604 links. We
only work with the largest connected component. The average degree is 〈k〉 = 8.7.
We then minimize the Hamiltonian (7.8) using pi j = ki k j/2M and q = 500. Three
different values of � were used. For each of the values of �, some of the 500 spin
states remained unpopulated, which makes us confident that we provided enough
spin states. Figure 7.9 shows the adjacency matrix of the co-authorship network
with rows and columns ordered according to the ground state at � = 0.5. We can
distinguish three major communities along the diagonal of the matrix and a large
number of smaller communities. Off-diagonal entries in the matrix show where
communities are connected with each other. Figure 7.10 shows the same adjacency
matrix, but ordered according to the ground state obtained at � = 1, while Fig. 7.11
was obtained ordering the adjacency matrix according to the ground state obtained
at � = 2. We see how the increase of � leads to a higher number of smaller com-
munities and a reduction in size of the major communities as expected. In Fig. 7.12,
we show the adjacency matrix in a consensus ordering of the three single orderings.
If the network was hierarchical with respect to �, i.e., the communities found for
larger values of � are all complete sub-communities of those found at smaller �, we
should be able to distinguish this from the adjacency matrix in the same manner as
in Fig. 7.7.

From the consensus ordering, we can see that community A from the � = 0.5
ordering is composed of a number of smaller communities in a somewhat hier-
archical manner, while community B seems to consist of a dense core and many
adjacent nodes that are gradually removed as � increases. Community C again is

Fig. 7.9 Adjacency matrix of
the co-author network
ordered according to the
ground state with � = 0.5
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Fig. 7.10 Adjacency matrix
of the co-author network
ordered according to the
ground state with � = 1

Fig. 7.11 Adjacency matrix
of the co-author network
ordered according to the
ground state with � = 2

Fig. 7.12 Adjacency matrix
of the co-author network
ordered first according to the
ground state with � = 0.5.
Within the clusters, the nodes
were then ordered again
according to the ground state
with � = 1 and within these
clusters, the nodes were
ordered according to the
ground state with � = 2
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decomposed into several smaller subgroups by the consensus ordering that seems to
show two levels of hierarchy.

The interpretation of the community structure and its hierarchy is beyond the
scope of this article and shall not be attempted here. Rather, we intend to show that
such structure exists in the link patterns of real world networks and how it can be
uncovered. Furthermore, we’d like to stress that the cohesive subgroups or com-
munities studied here are only a special case of general block models in networks
(Doreian et al., 2005). The very same methods described here can be extended eas-
ily and used to discover general block structures in networks, too (Reichardt and
White, 2007).

7.8 Relation of Other Algorithms to Spin Glasses

From our earlier considerations about adhesion and cohesion and the reformulations
of the Hamiltonian as (7.26), it may be tempting to construct a heuristic algorithm
that initially assigns different spin state to every node and then proceeds by group-
ing those nodes together, which have the highest coefficient of adhesion using as a
model of connection probability pi j = ki k j/2M . This corresponds to a conventional
agglomerative clustering procedure. As Fig. 7.13 shows, this approach fails, if the
links between two communities connect nodes of low degree. The network consists
of 14 nodes and 37 links. It is clearly seen that in the ground state, the network
consists of two communities and edge x lies between them. However, when ini-
tially assigning different spin states to all nodes, the adhesion between the nodes
connected by x is largest: a = 1 − 16/2M , since the product of degrees at this
edge is lowest. Therefore, the agglomerative procedure described is misleading into
grouping together the nodes connected by x already in the very first step. Further-
more, it is clear that in a network, where all nodes have the same degree initially,
all edges connect nodes of the same coefficient of adhesion. In this case, it cannot
be decided, which nodes to group together in the first step of the algorithm at all.
This approach corresponds exactly to the fast community detection algorithm pre-
sented by Newman (2004). It was shown by Newman that the approach does deliver

x

Fig. 7.13 Example network for which an agglomerative approach of grouping together nodes of
maximal adhesion will fail. Starting from an assignment of different spin states to every node, the
largest adhesion is found for the nodes connected by edge x and the nodes connected by x are
grouped together first by the agglomerative procedure. However, it is clearly seen that x should lie
between different groups
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good results in benchmarks using computer generated test networks. The success of
this approach depends of course on whether or not the misleading situations have
a strong effect on the final outcome of the clustering. In the example shown, after
grouping together the nodes at the end points of x , the algorithm will then proceed
to further add nodes from only one of the two communities linked by x . Hence, the
initial mistake persists, but does not completely destroy the result of the clustering.

Alternatively, it might be tempting to construct the ground state of the q-state
Potts model by a recursive partitioning of the network into only two parts according
to the ground state of a two-state Potts or Ising system. This procedure would be
computationally simpler and result directly in a hierarchy of clusters due to repeti-
tion of the procedure on the parts until the total energy cannot be lowered anymore.
Such a procedure would be justified, if the ground state of the q-state Potts Hamil-
tonian and the repeated application of the Ising system cut the network along the
same edges. We will derive a condition under which this can be ensured.

In order for this recursive approach to work, we must ensure that the ground
state of the two-state Hamiltonian never cuts through a community as defined by
the q-state Hamiltonian. Assume a network made of three communities n1, n2, and
n3 as defined by the ground state of the q-state Hamiltonian. For the bi-partitioning,
we now have two possible scenarios. Without loss of generality, the cut is made
either between n2 and n1 + n3 or between n1, n2, and n3 = na + nb, parting the
network into n1+na and n2+nb. Since the former situation should be energetically
lower for the algorithm to work, we arrive at the condition that

mab − [mab]pi j + m1b − [m1b]pi j > m2b − [m2b]pi j , (7.33)

which must be valid for all subgroups na and nb of community n3. Since n3

is a community, we further know that mab − [mab]pi j > m1b − [m1b]pi j and
mab − [mab]pi j > m2b − [m2b]pi j . Though mab − [mab]pi j > 0, since n3 is a com-
munity, m1b − [m1b]pi j < 0 and m2b − [m2b]pi j < 0 for the same reason and hence
condition (7.33) is not generally satisfied. Figure 7.14 illustrates a counter example.
Assuming pi j = p, the average link probability in the network, the upper part (a)
of the figure shows the ground state of the system when using only two spin states.
Part (b) of the figure shows the ground state of the system without constraints on the

(a)

(b)

Fig. 7.14 Illustration of the problem of recursive bi-partitioning. The ground state of the Hamilto-
nian with only two possible spin states, as shown in (a), would cut through one of the communities
that are found when allowing three spin states as shown in (b)
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number of spin states, resulting in a configuration of three communities. We see that
the bi-partitioning approach would have cut through one of the communities in the
network. Recursive bi-partitioning cannot generally lead to an optimal assignment
of spins that maximizes the modularity.

7.9 Statistical Significance and Theoretical Limits
of Community Detection

In the previous sections, we have presented an approach to find possible cohesive
subgroups in networks. The analysis, however, would not be complete, if we did not
include some remarks about the statistical significance of the community structure
we find. We will try to do so by comparison with community structures found in
random networks. We will show that random networks may show surprisingly high
modularities. If the modularity we find in a real world network is significantly larger
than the modularity we find for an equivalent random network, then we may call the
network truly modular.

The comparison with a random network is of course always possible by random-
izing the original network by rewiring, keeping the degree distribution invariant
(Maslov and Sneppen, 2002). One can then run a community detection algorithm in
the randomized network, comparing the result to that of the original network. This
method, however, can only give an answer to what a particular community detection
algorithm may find in a random network and hence depends on the very method
of community detection used. However, this approach always uses the correct null
model of a random network for comparison, since it works on a randomized version
of the original data. General results and insights, however, cannot be obtained by
this method. Therefore, we intend to compare the results of a community detection
algorithm with a theoretical result, obtained independently of any algorithm.

The results we present in this section allow us to compare the values of modu-
larity obtained for a particular graph with an ER random graph that has the same
number of nodes and edges. We admit that this is a very crude null model and may
not be the best for comparison in many cases where the networks under study have
a degree distribution very different from Poissonian. Nevertheless, it gives some
general insights into the problem and one is able to give a number of very simple
expressions for the expected modularity in a random graph. A more elaborate treat-
ment can be found in (Reichardt and Bornholdt, 2007; Reichardt and Leone, 2008).
The general conclusions, however, remain unaltered.

7.9.1 Statistical Significance

We have already seen that the problem of community detection can be mapped
onto finding the ground state of an infinite range spin glass. For these models, in
fact, a number of well-known results exist in the literature. Fu and Anderson (1986)
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have calculated an expression for the number of edges to cut, when bi-partitioning
a random graph into two equally sized parts using an Ising model. Kanter and
Sompolinsky have done the same for partitioning a random graph into q equally
sized parts (Kanter and Sompolinsky, 1987) using a Potts model. From these expres-
sions, we can calculate expectation values for the modularity and the expected
number of communities in random graphs. The approximations they use are valid
for large, dense graphs. In this limit, the results depend only on the variance of
the distribution of couplings. The couplings used in the study of modularity are
Ji j = Ai j − �pi j which have a mean independent of the particular form of pi j :

J0 = (1− �)p (7.34)

which is zero in the case of the “natural partition” at � = 1. If the mean of
the couplings is zero, then it can be shown that the ground state is composed of
equally sized communities. It is this fact that justifies the use of the results from
(Fu and Anderson, 1986) and (Kanter and Sompolinsky, 1987), which are valid for
equipartitions. The variance amounts to:

J 2 = p − (2�− �2)〈p2〉. (7.35)

Now we can write immediately for the modularity at � = 1 using the results of
the q-partitioning problem:

Q = − 1

M
HGS = N 3/2

M
J

U (q)

q
, (7.36)

where U (q) is the ground state energy of a q-state Potts model with Gaussian dis-
tributed couplings of zero mean and variance J . For large q, we can approximate
U (q) = √q ln q . The exact formula for calculating U (q) is given in (Kanter and
Sompolinsky, 1987) and can be evaluated numerically. Table 7.1 gives the results
for a few values of q. We see that maximum modularity is obtained at q = 5,
though the value of U (q)/q for q = 4 is not much different from it. This qualitative
behavior that dense random graphs tend to cluster into only a few large communities
is confirmed by our numerical experiments. By rewriting M = pN 2/2 and under
the assumption of pi j = p as in the case of ER random graphs, we can further
simplify Eq. (7.36) and write for the maximum value of the modularity of an ER
random graph with connection probability p and N nodes:

Table 7.1 Values of U (q)/q for various values of q which can be used to approximate the expected
modularity with Eq. (7.36)

q 2 3 4 5 6 7 8 9 10
U (q)

q 0.384 0.464 0.484 0.485 0.479 0.471 0.461 0.452 0.442
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Fig. 7.15 Modularity of
Erdős Rényi random graphs
with average connectivity
pN = 〈k〉 compared with the
estimation from Eqs. (7.37)
(dashed line) and (7.42)
(solid line). For the
experiment, random graphs
with N = 10, 000 were used
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Q = 0.95

√
1− p

pN
(7.37)

where we have already made use of the fact that q = 5 makes the modularity max-
imal. Figure 7.15 shows the comparison of Eq. (7.37) and experiments where we
have numerically maximized the modularity. We see that the prediction fits the data
well for dense graphs and that modularity decays as a function of (pN )−1/2.

Even though the estimations of the value of modularity for random graphs from
the Potts spin glass are rather close to the actual situation for sparse random graphs,
the number of communities, at which maximum modularity is achieved is not. In
(Guimera et al., 2004), it is shown that the number of communities for which the
modularity reaches a maximum is

√
N for treelike networks with 〈k〉 = 2. There-

fore, one would expect the number of communities for which Q is maximal to
rise for sparse graphs. Our numerical experiments on large Erdős Rényi random
graphs also show that the number of communities found in sparse networks tends to
increase as 〈k〉 decreases.

Even though we have seen that in general, recursive bi-partitioning will not lead
to an optimal community assignment, we shall still use this approach for random
graphs. We have seen that maximum modularity for random graphs is achieved
for equipartitions. Hence, we should be able to partition the network recursively
and at least find the number of communities in a random graph, for which further
partitioning does not result in an improvement of the modularity. The number of cut
edges C = C(N , M) in any partition, will be a function of the number of nodes in
the remaining part and the number of connections within this remaining part and
their distribution. We note that the M connections will be distributed into internal
and external links per node kin + kout = k. This allows us to write C = N 〈kout 〉/2
for a bi-partition. After each partition, the number of internal connections a node
has decreases due to the previous cut. We use these results in order to approximate
the number of cut edges after b recursive bi-partitions which lead to 2b parts:
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C =
b∑

t=1

2t−1 N

2t
〈kout,t 〉 =

b∑

t=1

N

2
〈kout,t 〉 (7.38)

where 〈kout,t 〉 is the average number of external edges a node gains after cut t . In
order to find 〈kout,t 〉, we go back to the results from Fu and Anderson (1986) again
who find for a bi-partition:

Cbi-part =
M

2

[

1− c

√
1− p

pN

]

. (7.39)

with a constant of c = 1.5266± 0.0002. We can write

〈kout 〉 = pN − c
√

pN (1− p)

2
(7.40)

〈kin〉 = pN + c
√

pN (1− p)

2
(7.41)

from which we can calculate (7.38) substituting pN with the appropriate 〈kin〉 in
every step of the recursion. The modularity can then be written as:

Q = 2b − 1

2b
− 1

k

b∑

t=1

〈kout,t 〉. (7.42)

Now we need to find only the number of recursions b that maximizes Q. Since the
optimal number of recursions will depend on pN = 〈k〉, we also find an estimation
of the number of communities in the network. Figure 7.15 shows a comparison
between the theoretical prediction of the maximum modularity that can be obtained
from Eq. (7.42). The improvement of (7.42) over (7.37) for sparse graphs must be
due to the possibility of having larger numbers of communities, since otherwise
the assumptions made are the same. Again, we find that the modularity behaves
asymptotically like (pN )−1/2 as already predicted from the Potts spin glass. Note
that different expressions for the scaling of the modularity are necessary when the
degree distribution is not Poissonian (Reichardt and Bornholdt, 2007; Reichardt and
Leone, 2008).

Figure 7.16 shows the comparison of the number of communities estimated
from (7.42) and the numerical experiments on random graphs. The good agreement
between experiment and prediction is interesting, given the fact that (7.42) allows
only powers of two as the number of communities. For dense graphs, the Potts limit
of only a few communities is recovered. We see that sparse random graphs cluster
into a large number of communities, while dense random graphs cluster in only
a hand full of large communities. Most importantly, sparse random graphs exhibit
very large values of modularity. These large values are only due to their sparseness
and not due to small size. We also stress that statistically significant modularity must
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Fig. 7.16 Number of
communities found in Erdős
Rényi random graphs with
average connectivity
pN = 〈k〉 compared with the
estimation from Eq. 7.42. For
the experiment, random
graphs with N = 10, 000
were used

10 100
pN=<k>

0

20

40

60

80

nu
m

be
r 

of
 c

om
m

un
iti

es

ER-Graphs
Ising Prediction

exceed the expectation values of modularity obtained from a suitable null model of
the graph. If this null model is an Erdős Rényi random graph, then there is very little
improvement possible over the values of modularity obtained for the null model for
sparse graphs.

7.9.2 Theoretical Limits

In Fig. 7.4, we have seen that we are unable to recover completely the known com-
munity structure of the test networks with four equal sized communities for values of
〈kin〉 < 8. This is somewhat surprising, since the probability for an intra-community
link is pin = kin/31 and for an inter-community link, it is pout = kout/96. This
means, the two probabilities are equal pin = pout only at kin = 4 and we could
hope that better algorithms exist that are able to detect the built-in community struc-
ture down to this limit. From the last section, we have seen how to calculate the
modularity in a random network. Assuming that the test network with N = 128
and p = 16/127 was indeed random with pin = pout , we find an expectation value
for the modularity of Q = 0.24. The modularity we have built into the network
by design can be calculated as Q = 3/4 − 〈kout 〉/〈k〉. From this, we see that for
〈kout 〉 > 〈k〉/2, the modularity we built into the system is smaller than what we find
in a random graph. It is important to understand that we can understand “random
graph” here as “any graph,” i.e., the modularity we find for a random graph is that,
which we can find almost surely in any graph with the same number of nodes and
links. We can only recover a particular community structure, if its modularity is
larger than that of the equivalent random graph. Otherwise, alternative configura-
tions to the one built-in will be found that give higher values of modularity and
hence are and should be preferred by any algorithm.

Looking back now at Fig. 7.15, we see that for sparse graphs, there is little room
for improvement over random graphs, since any sparse graph already shows very
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high values of modularity. For dense graphs, it is much easier to detect built-in
community structures. For networks of four communities and 〈k〉 = 100, 〈kout 〉
may increase up to 65 until the built-in modularity reaches that of an equivalent
random graph. It can also be shown that it is easier to detect modules in networks
which have a broad degree distribution (Reichardt and Leone 2008).

From these results, we can decide whether one can recover a built-in community
structure from a network using any algorithm that finds a partition of the network
that is maximally modular. We need to calculate the modularity of the built-in com-
munity structure and compare it to the expectation value of a random graph. The
larger Q for the built-in community structure compared to the expectation value, the
easier it will be to find this community structure for any algorithm. If it is smaller
than the value for an equivalent random graph, no algorithm can exist that may
recover the built-in community structure.

These considerations tell us that we are not able to find communities that arise
from only a small difference in the connection probability of intra- and inter-
community links. Due to the enormously huge number of possible groupings, highly
modular or assortative assignments of nodes into classes exist also for completely
uncorrelated random graphs. There exists a hard theoretical limit to the kind of
community structures we may detect (Reichardt and Leone 2008).

7.10 Conclusion

We hope that this article, more than providing a brief introduction to the field of
complex networks from a physics perspective, may serve as an appetizer for further
reading to the social scientist. We could only cite a few papers and mention a few
results, that we believe to be important. There are many more and we apologize
for everything we had to leave out. Nevertheless, we hope to have given a flavor of
the type of methods and results that can be provided from physics. The approach
of mapping problems from social science onto problems from solid state physics
is certainly unusual. We do not claim that it is superior to what has been done
in decades of social science research. We do believe, however, that it offers an
alternative perspective and maybe sheds some new light on certain problems. If
the methods and results we provide may make a humble contribution to the cross-
fertilization and interdisciplinary research of social and natural sciences, we would
be most happy.
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Chapter 8
Modeling Evolving Innovation Networks

Michael D. König, Stefano Battiston and Frank Schweitzer

8.1 Introduction

8.1.1 The Importance of Innovation Networks

Economists widely agree on technological change and innovation being the main
components of economic growth (Aghion and Howitt, 1998; Tirole, 1988). In the
absence of ongoing technological improvements, economic growth can hardly be
maintained (Barro and Sala-i Martin, 2004). The close link between innovation and
economic performance has become generally accepted. Following this insight, in
recent years of economic growth, OECD countries have fostered investments in
science, technology, and innovation (OECD, 2006).

Moreover, technologies are becoming increasingly complex. This increasing
complexity of technologies can make an agent’s “in-house” innovative effort insuf-
ficient to compete in an R&D intensive economy. Thus, agents have to become more
specialized on specific domains of a technology and they tend to rely on knowledge
transfers from other agents, which are specialized in different domains, in order
to combine complementary domains of knowledge for production (“recombinant
growth” (Weitzman, 1998)).

When one agent benefits from knowledge created elsewhere we speak of knowl-
edge spillovers. Knowledge spillovers define “any original, valuable knowledge
generated somewhere that becomes accessible to external agents . . . other than the
originator”1 (Foray, 2004, p. 95).

The knowledge-based economy is developing towards a state in which the costs
for acquiring, reproducing, and transmitting knowledge are constantly decreasing,

M.D. König (B)
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1 “Involuntary spillovers are a feature of market competition. Competition not only creates
incentives to produce new knowledge but it also forces the other agents to increase their own
performance through imitation, adoption and absorption of the new knowledge created elsewhere”
(Foray, 2004, p. 91).
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spatial and geographical limitations on knowledge exchange are becoming less
important, and attitudes change towards more open behavior of sharing knowledge
instead of hiding it from others. In this state, knowledge externalities will play an
increasingly important role.

When agents are using knowledge that is created elsewhere, they must have
access to other agents across a network whose links represent the exchange or
transfer of knowledge between agents. The importance of networks in innovative
economies has been widely recognized, e.g., it has been observed that “the develop-
ment of knowledge within industries is strongly influenced by the network structure
of relations among agents” (Antonelli, 1996, p. 1). Subsequently, an ample body of
empirical research has documented the steady growth of R&D partnerships among
firms (Hagedoorn et al., 2006).

8.1.2 Markets for Knowledge Exchange

The exchange of knowledge is not unproblematic. Markets for knowledge exchange
can exhibit serious market failures (Arora et al., 2004; Gerosky, 1995), which make
it difficult for innovators to realize a reasonable return from trading the results of
their R&D activities (the problem of appropriability (Gerosky, 1995)). This is due
to the public good character of knowledge, which makes it different from products
or services. Knowledge is non-rival, meaning its use by one agent does not diminish
its usability by another agent, and sometimes (when knowledge spillovers cannot be
avoided) non-excludable, meaning that the creator of new knowledge cannot prevent
non-payers from using it. The problems associated with trading of knowledge can
prevent agents from exchanging knowledge at all.

There are three generic reasons for failures of markets for technology (Arora
et al., 2004; Arrow, 1962; Gerosky, 1995): (1) economies of scale/scope, (2)
uncertainty and (3) externalities.

(1) R&D projects often require huge initial investments and they can exhibit
economies of scale since the cost for useful technological information per unit
of output declines as the level of output increases (Wilson, 1975). Besides, Nel-
son (1959) has shown that economies of scope can apply to innovative agents.
The broader an agents’ “technological base,” the more likely it is that any out-
come of its R&D activities will be useful for her. The result is that markets for
knowledge exchange are often dominated by monopolies.

(2) Almost all economic investments bear a risk of how the market will respond to
the new product (commercial success). Innovators face additional risks. First,
their investment into R&D does not necessarily lead to a new technology. Sec-
ond, if such a new technology is discovered, it has to be put into practice in a
new and better product than the already existing ones. This inherent uncertainty
of R&D projects often causes agents to invest “too little.”

(3) Externalities are important when the action of one agent influences the profits
of another agent without compensation through the market. Public goods are a
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typical example of creating externalities. Knowledge is a public good and the
returns innovators can realize often are far below their investments into R&D.
This can seriously diminish an agent’s incentive to do R&D.

In order to overcome the above mentioned problems associated with the returns
on investment into R&D, appropriate incentive mechanisms have to be created that
encourage agents to invest into R&D. In general, Von Hippel and Von Krogh (2003)
suggest three basic models of encouraging agents to invest into R&D:

(1) The private investment model assumes that innovation is undertaken by private
agents investing their resources to create an innovation. Society then provides
agents with limited rights to exclusively use the results of their innovation
through patents or other intellectual property rights (by creating a temporarily
monopoly).2

(2) The so-called collective action model (Allen, 1983) assumes that agents are
creating knowledge as a public good. Knowledge is made public and uncon-
ditionally supplied to a public pool accessible to everybody. The problem is
that potential beneficiaries could wait until others provide the public good and
thereby could free-ride. One solution to this problem is to provide contributors
(in this case innovators) with some form of subsidy. Scientific research is such
an example where reputation-based rewards are granted to scientists for their
good performance.

(3) In the private-collective innovation model participants use their private resources
in creating new knowledge and then make it publicly available. This is typ-
ically observed in open-source projects. There are several incentives (Lerner
and Tirole, 2002; Von Hippel and Von Krogh, 2003) for agents to participants
in open-source projects. These range from elevated reputations, the desire of
building a community to the expectation of reciprocity from the community
members for their efforts.

The collective action approach (2) gives a possible explanation for the willing-
ness of agents to share knowledge if there are no costs associated with it. One can
think of a pool of technologies that is accessible to everybody (“broadcasting” of
technologies) (Allen, 1983). This can be the case where agents are non-rivals and
shared information may have no competitive cost. Additionally, knowledge must
be easily understandable and transferable. This assumes that knowledge is highly
codified3 such that the transfer of knowledge from one agent to the other is cost-
less. But, if these assumptions do not hold, the costs for transferring knowledge can

2 For a more detailed treatment of this issue we recommend Scotchmer (2004).
3 The opposite case of codified knowledge is tacit knowledge. “Tacit knowledge is difficult to
make explicit for transfer and reproduction. The exchange, diffusion, and learning of tacit knowl-
edge require those who have it to take deliberate action to share it. This is difficult and costly to
implement . . . Knowledge can, however, be codified. It can be expressed in a particular language
and recorded on a particular medium. As such, it is detached from the individual. When knowledge
is codified, it becomes easily transferable” (Foray, 2004, p. 73).
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often be considerable, and agents become more selective about whom to share their
knowledge with. We study this situation in the next sections.

8.1.3 Economies as Evolving Networks

As we have already outlined above, modern economies are becoming increasingly
networked, and this also affects the innovation process where information and
knowledge are exchanged by interactions between agents (Gallegati and Kirman,
1999; Kirman, 1997). In the agent-based view, the aggregate behavior of the econ-
omy (macro-economics) cannot be investigated in terms of the behavior of isolated
individuals. Not only there are different ways in which firms interact, learning over
time, based on their previous experience; also interactions between them take place
within a network and not in a all-to-all fashion.

The standard neoclassical model4 of the economy assumes that anonymous and
autonomous individuals take decisions independently and interact only through
the price system, which they cannot influence at all. However, competition easily
becomes imperfect because, if agents have only a minimal market power, they will
anticipate the consequences of their actions and anticipate the actions of others.

Game theorists have tried to integrate the idea of strategically interacting agents
into a neoclassical5 framework. But still they leave two questions unanswered.
First, it is assumed that the behavior is fully optimizing. This leads to agents with
extremely sophisticated information processing capabilities. Such ability of pass-
ing these enormous amounts of information in short times cannot be found in any
realistic setting of human interaction. Advances in weakening that assumption are
referred to as “boundedly rationality” (Gigerenzer and Selten, 2002). Second, the
problem of coordination of activities is not addressed in the standard equilibrium
model of the economy. Instead it is assumed that every agent can interact and trade
with every other agent, which becomes quite unrealistic for large systems.

One has to specify the framework within the individual agents take price deci-
sions, and thus limit the environment within which they operate and reason. An obvi-
ous way is to view the economy as a network in which agents interact only with their
neighbors. In the case of technological innovation, neighbors might be similar firms
within the same industry, but these firms will then be linked either through customers
or suppliers with firms in other industries. Through these connections innovations

4 A standard neoclassical model includes the following assumptions (Gabszewicz, 2000): (1)
perfect competition, (2) perfect information, (3) rational behavior, (4) all prices are flexible (all
markets are in equilibrium). The resulting market equilibrium (allocation of goods) is then efficient.
See Hausman (2003) for a discussion of these assumptions.
5 The individual decision making process is represented as maximizing a utility function. A utility
function is a way of assigning a number to every possible choice such that more-preferred choices
have a higher number than less-preferred ones (Varian, 1996). The gradients of the utility function
are imagined to be like forces driving people to trade, and from which economic equilibria emerge
as a kind of force balance (Farmer et al., 2005).
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will diffuse through the network. The rate and extent of this diffusion then depends
on the structure and connectivity of the network. The evolution of the network itself
should be made endogenous where the evolution of the link structure is dependent
on the agents’ experience from using the links available to them. In this framework
the individuals learn and adapt their behavior and this in turns leads to an evolution
of the network structure. The economy then becomes a complex evolving network.

8.1.4 Complex Networks

Although no precise mathematical definition exists for a complex network, it is
worth to elaborate the notion associated with it. In general, a network is a set of
items some of which are linked together by pairwise relationships. The structure
of the relationships can be represented mathematically as a graph in which nodes
are connected by links (possibly with varying strength). However, a network is usu-
ally also associated with some dynamic process on the nodes which in turn affects
the structure of the relationships to other nodes. A wide variety of systems can
be described as a network, ranging from cells (a set of chemicals connected by
chemical reactions), to the Internet (a set of routers linked by physical informa-
tion channels). It is clear that the structure of the relationships co-evolves with the
function of the items involved.

As a first step, a network can be described simply in terms of its associated
graph.6 There are two extreme cases of relatively simple graphs: regular lattices on
one side and random graphs7 on the other side. During the last century, graph theory
and statistical physics have developed a body of theories and tools to describe the
behavior of systems represented by lattices and random graphs. However, it turns
out that, at least for physical scales larger than biomolecules, most systems are not
structured as lattices or as random graphs. Moreover, such a structure is not the result
of a design, but it emerges from self-organization. In some cases self-organization
results from the attempt to optimize a global function. In other cases, as it is typical
in economics, it results from nodes locally trying to optimize their goals, e.g., an
individual utility function.

Large networks are collectively designated as complex networks if their structure
(1) is coupled to the functionality, (2) emerges from self-organization, and (3) devi-
ates from trivial graphs. This definition includes many large systems of enormous
technological, intellectual, social, and economical impact (Frenken, 2006).

6 In general, a graph represents pairwise relations between objects from a certain collection. A
graph then consists of a collection of nodes and a collection of links that connect pairs of nodes.
7 The classical Erdös-Reny random graph is defined by the following rules (Bollobas, 1985):

(1) The total number of nodes is fixed.

(2) Randomly chosen pairs of nodes are connected by links with probability p.

The construction procedure of such a graph may be thought of as the subsequent addition of new
links between nodes chosen at random, while the total number of nodes is fixed.
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8.1.5 The Statistical Physics Approach

As we will discuss later, many of the theoretical tools developed in economics and
specifically in game theory to characterize the stability of small networks of firms
cannot be used for large networks. Asking which is the optimal set of connections
that a firm should establish with other firms has little meaning in a large network if
strategic interaction is taken into account (with more than say, 100 nodes it is simply
not feasible to compute). On the other hand, it makes sense to ask what are connec-
tivity properties of the nodes a firm should try to target in order to improve its utility
with a certain probability. It is then necessary to turn towards a statistical description
of these systems, where one is no longer interested in individual quantities but only
in averaged quantities.

There exists an arsenal of such tools developed within statistical physics in the
last century that allow to predict the macroscopic behavior of a system from the
local properties of its constituents (Durlauf, 1999; Amaral et al., 1999). Such tools
work very well for systems of identical particles embedded in regular or random
network structures in which interactions depend on physical distance. Both a regular
and a random structure have a lot of symmetries, which one can exploit to sim-
plify the description of the system. However, in complex networks many of those
symmetries are broken: individuals and interactions are heterogeneous. Moreover
the physical distance is often irrelevant (think for instance of knowledge exchange
via the Internet). Therefore, a satisfactory description of such systems represents a
major challenge for statistical physics (Amaral et al., 2001).

In the last few years, we have thus witnessed an increasing interest and effort
within the field of statistical physics in studying complex networks that traditionally
were object of investigation by other disciplines, ranging from biology to com-
puter science, linguistics, politics, anthropology, and many others. One of the major
contributions of statistical physics to the field of complex networks has been to
demonstrate that several dynamic processes taking place on networks that devi-
ate from random graphs, exhibit a behavior dramatically different from the ones
observed on random graphs.

An example for all is the case of virus spreading: it has been shown that while
for random networks a local infection spreads to the whole network only if the
spreading rate is larger than a critical value, for scale-free networks8 any spreading
rate leads to the infection of the whole network. Now, technological as well as social
networks are much better described as scale-free graphs than as random graphs.
Therefore all vaccination strategies for both computer and human viruses, which
have been so far designed based on the assumption that such networks were random
graphs, need to be revised. This highly unexpected result goes against volumes pre-
viously written on this topic and is due to the presence of a few nodes with very

8 A scale-free network is characterized by a degree distribution which follows a power-law, f (d) =
αd�. The degree distribution gives the number of agents with a certain number, d, of in- or outgoing
links (in- or out-degree), see the next section for a definition of degree of a node.



8 Modeling Evolving Innovation Networks 193

large connectivity. In this case, the rare events (infection of highly connected nodes)
and not the most frequent ones matter.

Explaining the macroscopic behavior of a system in terms of the properties of
the constituents has been a major success of the physicist’s reductionist approach.
But, while in physical systems the forces acting on single constituents can be
measured precisely, this is not the case in a socio-economic system where, more-
over, each agent is endowed with high internal complexity. Today, the physicist’s
approach to socio-economic systems differs from the nineteenth century positivist
approach in so far as it does not aim at predicting, for instance, the behavior of
individual agents. Instead, taking into account the major driving forces in the inter-
actions among agents at the local level we try to infer, at a system level, some
general trends or behavior that can be confirmed looking at the data. This is also
very different from taking aggregate quantities and infer a macroscopic behavior
from a “representative” agent9 as it is done in several approaches in mainstream
economics.

8.1.6 Dynamics Versus Evolution in a Network

After discussing the notion of a complex network which has been strongly influ-
enced by physics, we now try to classify different complex networks.

The nodes in an economic network are associated with a state variable, repre-
senting the agents’ wealth, a firm’s output or, in the case of innovation networks,
knowledge. There is an important difference between the evolution of the network
and the dynamics taking place on the state variables. In the first, nodes or links
are added to/removed from the network by a specific mechanism and in the latter,
the state variables are changed as a result of the interactions among connected nodes
(see also Gross and Blasius, 2007 for a review). Consequently, there are four aspects
that can be investigated in complex economic networks (Battiston, 2003).

1. Statistical characterization of the static network topology without dynamics of
state variables,

2. network evolution without dynamics of the state variables,
3. dynamics of state variables in a static network and
4. dynamics of state variables and evolution of the network at the same time.

This can be incorporated in the following Table 8.1.

9 The concept of the representative agent assumes an economy which consists of a sufficiently
homogeneous population of agents. Because all the agents are equivalent, the aggregate quantities
of the system can be calculated by multiplying the average agent, or the representative agent, by the
number of agents (the system size). For example, the total production of an economy is obtained by
summing up the production levels of the individual firms that constitute the economy. To determine
the behavior of the system, it is therefore sufficient to know the characteristics of the representative
agent.
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Table 8.1 Overview of the different ways in which a network and the state variables of the nodes
can be related

Case State variables Network

1. Static Static
2. Dynamic Static
3. Static Dynamic
4. Dynamic Dynamic

In socio-economic systems as well as in biological systems, dynamics and evolu-
tion are often coupled, but do not necessarily have the same time scale. In Sect. 8.3.9,
we will show how the coupling of fast knowledge growth (dynamics) and slow net-
work evolution can lead to the emergence of self-sustaining cycles in a network of
knowledge sharing (cooperating) agents.

8.1.7 Outline of This Chapter

In this chapter, we focus on (i) the emergence and (ii) the performance of differ-
ent structures in an evolving network. The different scenarios we develop shall be
applied to firms exchanging knowledge in a competitive, R&D intensive economy.
In the existing literature reviewed in the following section, there are two different
lines of research addressing these problems: (i) Models of network formation were
developed based on individual utility functions, e.g., by Jackson (2003), in which
simple architectures emerge in the equilibrium. (ii) In another group of models, e.g.,
Padgett et al. (2003), firms have specific skills and take actions based on goals or
learning, and innovation is associated with the emergence of self-sustaining cycles
of knowledge production. Although both lines of work address the problem of net-
work emergence and performance, they differ significantly in terms of methods and
results. We try to bridge them by introducing a novel model of evolving innovation
networks that combines the topological evolution of the network with dynamics
associated with the network nodes.10

We start our approach by giving a short introduction to graph theory in Sect. 8.2.1.
Here we restrict ourselves only to the most important terms and definitions that are
necessary in the following sections.11

We then proceed by giving an overview of the existing literature on economic
networks. In the first part of our literature review, we explore some basic models
of innovation networks. The selection of these models is by no means unique nor
exhaustive, but points to important contributions to the growing literature on eco-
nomic and innovation networks.12 Similar to our own approach, these models make
considerably simple assumptions and thus allow for analytical insights. This holds

10 The approach of combining a dynamics of the network with a dynamics in the nodes is discussed
in Gross and Blasius (2007).
11 The reader interested in a good introduction in graph theory can consult West (2001).
12 For an excellent introduction, see Jackson (2008), Vega-Redondo (2007), and Goyal (2007).
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in particular for the connections model in Sect. 8.2.2. The model in Sect. 8.2.3
can be considered as an extension of the basic connections model where “small-
world” networks emerge. In the subsequent Sect. 8.2.4, we discuss a model that
takes heterogeneous knowledge into account, as a further extension. In the sec-
ond part of the literature review, we briefly sketch models in which we observe
cyclic network topologies. We show that in certain cases the stability of a network
and its performance depends critically on its cyclic structure. The critical role of
cycles in a networked economy has already been identified by Rosenblatt (1957)
and many succeeding authors, e.g., Bala and Goyal (2000), Kim and Wong (2007),
Maxfield (1994). In this chapter, we review some recent models in which cyclic
networks emerge: in Sect. 8.2.5, we first introduce a model of production networks
with closed loops and next we discuss a model of cycles of differently skilled
agents.

Finally, in Sect. 8.3 we develop a novel framework, which we call Evolving
Innovation Networks, to study the evolution of innovation networks. We show
how different modalities of interactions between firms and cost functions related
to these interactions can give rise to completely different equilibrium networks.
We have studied the case of linear cost and bilateral interactions in König et al.
(2008a,b). There we find that, depending on the cost, the range of possible equilib-
rium networks contains complete, intermediate graphs with heterogeneous degree
distributions as well as empty graphs. Here, we focus on a type of non-linear cost
and both, on unilateral and bilateral interactions. In the unilateral case, we find that,
in a broad range of parameter values, networks can break down completely or the
equilibrium network is very sparse and consists of few pairwise interactions and
many isolated agents. Equilibrium networks with a higher density can be reached if
(i) the utility function of the agents accounts for a positive externality resulting from
being part of a technological feedback loop or if (ii) all interactions are bidirectional
(direct reciprocal). Otherwise, the network collapses and only few, if any, agents can
beneficially exchange knowledge.

The results found in our novel approach to evolving innovation networks are
summarized in Sect. 8.4.1. The appendices shall be useful for the reader interested
in more numerical results and the parameters and explanation of the algorithms
used.

8.2 Basic Models of Innovation Networks

8.2.1 Graph Theoretic Network Characterization

Before we start to describe specific models of economic networks, we give a brief
introduction to the most important graph theoretic terms used throughout this chap-
ter to characterize networks. For a broader introduction to graph theory see West
(2001). In this chapter, we will use the terms graph and network interchangeably,
i.e., both refer to the same object.
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A graph G is a pair, G = (V, E), consisting of a set of node V (G) and a set of
links E(G). Kn is the complete graph on n nodes. Cn the cycle on n nodes. Nodes i
and j are the endpoints of the link ei j ∈ E(G).

The degree, di , of a node i is the number of links incident to it. A graph can either
be undirected or directed, where in the latter case one has to distinguish between
in-degree, d−i , and out-degree, d+i , of node i . In the case of an undirected graph, the
neighborhood of a node i in G is Ni = {w ∈ V (G) : ewi ∈ E(G)}. The degree of
a node i is then di = |Ni |. The first-order neighborhood is just the neighborhood,
Ni , of node i . The second-order neighborhood is, Ni ∪ {Nv : v ∈ Ni }. Similarly,
higher order neighborhoods are defined. In the case of a directed graph, we denote
the out-neighborhood of node i by N+i and the in-neighborhood by N−i . A graph G
is regular if all nodes have the same degree. A graph G is k-regular if every node
has degree k.

A walk is an alternating list, {v0, e01, v1, ..., vk−1, ek−1k, vk}, of nodes and links.
A trail is a walk with no repeated link. A path is a walk with no repeated node.
The shortest path between two nodes is also known as the geodesic distance. If the
endpoints of a trail are the same (a closed trail) then we refer to it as a circuit. A
circuit with no repeated node is called a cycle.

A subgraph, G ′, of G is the graph of subsets of the nodes, V (G ′) ⊆ V (G), and
links, E(G ′) ⊆ E(G). A graph G is connected, if there is a path connecting every
pair of nodes. Otherwise, G is disconnected. The components of a graph G are the
maximal connected subgraphs.

The adjacency matrix, A(G), of G, is the n-by-n matrix in which the entry ai j

is 1 if the link ei j ∈ E(G), otherwise ai j is 0. For an undirected graph, A is sym-
metric, i.e., ai j = a ji ∀i, j ∈ V (G). An example of a graph and its associated
adjacency matrix is given in Fig. 8.1. For example, in the first row with elements,
a11 = 0, a12 = 1, a13 = 0, a14 = 0, the element a12 = 1 indicates that there exists a
link from node 1 to node 2.

In a bipartite graph G, V (G) is the union of two disjoint independent sets V1 and
V2. In a bipartite graph, if e12 ∈ E(G) then v1 ∈ V1 and v2 ∈ V2. In other words, the
two endpoints of any link must be in different sets. The complete bipartite graph
with partitions of size |V1| = n and |V2| = m is denoted Kn,m . A special case is the
star which is a complete bipartite graph with one partition having size n = 1, K1,m .

There exists an important class of graphs, random graphs, which are determined
by their number of nodes, n, and the (independent) probability p of each link being
present in the graph (Bollobas, 1985).

Fig. 8.1 (Right) A directed
graph consisting of four
nodes and five links. (Left)
The corresponding adjacency
matrix A

A =
⎛
⎜⎜⎝

⎛
⎜⎜⎝

0 1 0 0
0 0 1 1
0 0 0 1
1 0 0 0

1

2

4

3
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We now introduce two topological measures of a graph, the clustering coefficient
and the average path length. For further details see, e.g., Newman (2003) and Costa
et al. (2007). The following definitions assume undirected graphs.

For each node, the local clustering coefficient, Ci , is simply defined as the frac-
tion of pairs of neighbors of i that are themselves neighbors. The number of possible
neighbors of node i is simply di (di − 1)/2, where di is the degree of node i . Thus
we get

Ci = |{e jk ∈ E(G) : ei j ∈ E(G) ∧ eik ∈ E(G)}|
di (di − 1)/2

. (8.1)

The global clustering coefficient C is then given by

C = 1

n

n∑

i=1

Ci . (8.2)

A high clustering coefficient C means (in the language of social networks), that
the friend of your friend is also likely to be your friend. It also indicates a high
redundancy of the network.

The average path length, l, is the mean geodesic (i.e., shortest) distance between
node pairs in a graph:

l = 1
1
2 n(n − 1)

n∑

i≥ j

di j , (8.3)

where di j is the geodesic distance from node i to node j .
In Sect. 8.2.3, we will show a model of innovation networks that produces “small-

worlds” which combine the two properties of a high clustering coefficient and a
small average path length.

In the following sections, we will describe some basic models of economic
network theory, where we shall use the definitions and notations introduced above.

8.2.2 The Connections Model

The connections model introduced by Jackson and Wolinsky (1996) is of specific
interest, since it allows us to compute equilibrium networks analytically. The suc-
ceeding models can then be considered as extension of the connections model. Since
these models are more complicated than the basic connections model they can, to
a large extent, only be studied via computer simulations.13 Nevertheless, they are
of interest because they show a wider range of possible network configurations and
associated performance of the agents in the economy.

13 For the use of computer simulations in economics, see Axelrod and Tesfatsion (2006).
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In the following, we discuss the (symmetric) connections model proposed by
Jackson and Wolinsky (1996).14 In this model, agents pass information to other
agents to whom they are connected to. Through these links they also receive infor-
mation from those agents that they are indirectly connected to, that is, through the
neighbors of their neighbors, their neighbors, and so on.

The individual incentives to form or severe links determine the addition or dele-
tion of links. Incentives are defined in terms of the utility of the agents which
depends on the interactions among agents, i.e., the network. The utility functions
assigns a payoff to each agent and this payoff depends on the network the agents are
embedded in.

The utility, ui (G), agent i receives from network G15 with n agents is a function
ui : {G ∈ Gn} → R with

ui (G) =
∑

j 	=i

δdi j −
∑

j∈Ni

c, (8.4)

where di j is the number of links in the shortest path between agent i and agent j .
di j = ∞ if there is no path between i and j . 0 ≤ δ < 1 is a parameter that takes into
account the decrease of the utility as the path between agent i and agent j increases.
N (i) is the set of nodes in the neighborhood of agent i . c is a positive parameter
capturing the fact that direct links are costly. This implies that agents want to have
short paths to other agents while maintaining as few links as possible.

A measure of the global performance of the network is introduced by its effi-
ciency. The total utility of a network is defined by

U (G) =
n∑

i=1

ui (G). (8.5)

A network is considered efficient if it maximizes the total utility of the network
U (G) among all possible networks, G(n) with n nodes.

Definition 1 A network G is strongly efficient if U (G) = ∑n
i=1 ui (G) ≥ U (G ′) =∑n

i=1 ui (G ′) for all G ′ ∈ G(n)

Under certain conditions no new links are accepted or old ones deleted. This
leads to the term pairwise stability.

Definition 2 A network G is pairwise stable if and only if

1. for all ei j ∈ E(G), ui (G) ≥ ui (E\ei j ) and u j (G) ≥ u j (E\ei j )
2. for all ei j /∈ E(G), if ui (G) < ui (E ∪ ei j ) then u j (G) > u j (E ∪ ei j )

14 For a good introduction and discussion of related works, we recommend the lecture notes of
Zenou (2006). There one can find the proofs given here and related material in more detail. For a
general introduction to economic networks, see also Jackson (2006).
15 In this model the network is undirected.
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In words, a network is pairwise stable if and only if (i) removing any link does
not increase the utility of any agent, and (ii) adding a link between any two agents,
either does not increase the utility of any of the two agents, or if it does increase one
of the two agents’ utility then it decreases the other agent’s utility.

The point here is that establishing a new link with an agent requires the consensus
(i.e., a simultaneous increase of utility) of both of them. The notion of pairwise sta-
bility can be distinguished from the one of Nash equilibrium,16 which is appropriate
when each agent can establish or remove unilaterally a connection with another
agent.

There exists a tension between stability and efficiency in the connections model.
This will become clear, after we derive the following two propositions.

Proposition 3 The unique strongly efficient network in the symmetric connections
model is

1. the complete graph Kn if c < δ − δ2,
2. a star encompassing everyone if δ − δ2 < c < δ + n−2

2 δ2,
3. the empty graph (no links) if δ + n−2

2 δ2 < c.

Proof 1. We assume that δ2 < δ − c. Any pair of agents that is not directly
connected can increase its utility (the net benefit for creating a link is at least
δ − c − δ2 > 0) and thus the total utility, by forming a link. Since every pair
of agents has an incentive to form a link, we will end up in the complete graph,
where all possible links have been created and no additional links can be created
any more.

2. Consider a component of the graph G containing m agents, say G ′. The number
of links in the component G ′ is denoted by k, where k ≥ m − 1, otherwise the
component would not be connected. For example, a path containing all agents
would have m − 1 edges. The total utility of the direct links in the component is
given by k(2δ−2c). There are at most m(m−1)

2 −k left over links in the component
that are not created yet. The utility of each of these left over links is at most 2δ2

(it has the highest utility if it is in the second-order neighborhood). Therefore,
the total utility of the component is at most

k2(δ − c)+
(

m(m − 1)

2
− k

)

2δ2. (8.6)

Consider a star with m agents. See as an example a star containing four agents
in Fig. 8.2. The star has m − 1 agents which are not in the center of the star.
The utility of any direct link is 2δ − 2c and of any indirect link (m − 2)δ2, since
any agent is two links away from any other agent (except the center of the star).
Thus, the total utility of the star is

16 Considering two agents playing a game (e.g., trading of knowledge) and each adopting a certain
strategy. A Nash equilibrium is characterized by a set of strategies where each strategy is the
optimal response to all the others.
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Fig. 8.2 A star encompassing
4 agents

1 2

3

4

(m − 1)(2δ − 2c)
︸ ︷︷ ︸

direct connections

+ (m − 1)(m − 2)δ2

︸ ︷︷ ︸
indirect connections

. (8.7)

The difference in total utility of the (general) component and the star is just
2(k− (m−1))(δ−c−δ2). This is at most 0, since k ≥ m−1 and c > δ−δ2, and
less than 0 if k > m − 1. Thus, the value of the component can equal the value
of the star only if k = m − 1. Any graph with k = m − 1 edges, which is not a
star, must have an indirect connection with a distance longer than 2, and getting
a total utility from indirect connections less than 2δ2. Therefore, the total utility
of the indirect links will be below (m − 1)(m − 2)δ2 (which is the total utility
from indirect connections of the star).
If c < δ− δ2, then any component of a strongly efficient network must be a star.
In a similar fashion, it can be shown (Jackson and Wolinsky, 1996) that a single
star of m + n agents has a higher total utility than two separate stars with m and
n agents. Accordingly, the star is a strongly efficient network.

3. A star encompassing every agent has a positive value only if δ + n−2
2 δ2 > c.

This is an upper bound for the total achievable utility of any component of the
network. Thus, if δ+ n−2

2 δ2 < c the empty graph is the unique strongly efficient
network.

Proposition 4 In the connections model in which the utility of each agent is given
by (8.4), we have

1. A pairwise stable network has at most one (non-empty) component.
2. For c < δ − δ2, the unique pairwise stable network is the complete graph Kn.
3. For δ − δ2 < c < δ, a star encompassing every agent is pairwise stable, but not

necessarily the unique pairwise stable graph.
4. For δ < c, any pairwise stable network that is non-empty is such that each agent

has at least two links (and thus is efficient).

Proof 1. Let us assume, for the sake of contradiction, that G is pairwise stable and
has more than one non-empty component. Let ui j denotes the utility of agent
i having a link with agent j . Then, ui j = ui (G + ei j ) − ui (G) if ei j /∈ E(G)
and ui j = ui (G) − ui (G − ei j ) if ei j ∈ E(G). We consider now ei j ∈ E(G).
Then ui j ≥ 0. Let ekl belong to a different component. Since i is already in a
component with j , but k is not, it follows that u jk > ui j ≥ 0, because agent k
will receive an additional utility of δ2 from being indirectly connected to agent
i . For similar reasons u jk > ulk ≥ 0. This means that both agents in the separate
component would have an incentive to form a link. This is a contradiction to the
assumption of pairwise stability.
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2. The net change in utility from creating a link is δ − δ2 − c. Before creating the
link, the geodesic distance between agent i and agent j is at least 2. When they
create a link, they gain δ but they lose the previous utility from being indirectly
connected by some path whose length is at least 2. So if c < δ − δ2, the net
gain from creating a link is always positive. Since any link creation is beneficial
(increases the agents’ utility), the only pairwise stable network is the complete
graph, Kn .

3. We assume that δ−δ2 < c−δ and show that the star is pairwise stable. The agent
in the center of the star has a distance of 1 to all other agents and all other agents
are separated by two links from each other. The center agent of the star cannot
create a link, since she has already maximum degree. She has no incentive to
delete a link either. If she deletes a link, the net gain is c − δ, since there is no
path leading to the then disconnected agent. By assumption, δ − δ2 < c < δ,
c−δ < 0 and the gain is negative, and the link will not be removed. We consider
now an agent that is not the center of the star. She cannot create a link with the
center, since they are both already connected. The net gain of creating a link to
another agent is δ− δ2− c, which is strictly negative by assumption. So she will
not create a link either. The star is pairwise stable.

The star encompasses all agents. Suppose an agent would not be connected
to the star. If the center of the star would create a link to this agent, the net gain
would be δ − c > 0 and the benefit of the non-star agent is again δ − c > 0. So
both will create the link.

The star is not the unique pairwise stable network. We will show that for four
agents, the cycle, C4 is also a pairwise stable network. Consider Fig. 8.3.

If agent 3 removes a link to agent 4, then her net gain is c − δ − δ3. For the
range of costs of δ − δ2 < c < δ − δ3 < δ, she will never do it. If agent 3
adds a link to agent 1, Fig. 8.4, the net gain is δ − δ2 < 0. Thus, for n = 4 and
δ− δ2 < c < δ− δ3, then there are at least two pairwise stable networks: the star
and the cycle.

4. For δ < c, the star is not a pairwise stable network because the agent in the
center of the star would gain c − δ from deleting a link. Moreover, it can be

Fig. 8.3 A cycle of four
agents (left) and the resulting
graph (right) after the
deletion of a link from agent
3 to agent 4

1 2

34

1 2

34

Fig. 8.4 A cycle of four
agents (left) and the resulting
graph (right) after the
creation of a link from agent
3 to agent 1 1 2

34

1 2

34
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shown (Jackson and Wolinsky, 1996) that any connected agent has at least two
links.

One can see, from the two propositions described above, that a pairwise stable
network is not necessarily efficient. For high cost, i.e., c > δ there are non-empty
pairwise stable networks but they are not efficient.

We now come to the evolution of the network as described in Jackson and Watts
(2002). The network changes when agents create or delete a link. At every time step
an agent is chosen at random and tries to establish a new link or delete an already
existing one. If a link is added, then the two agents involved must both agree to its
addition, with at least one of them strictly benefiting (in terms of a higher utility) of
the new link. Similarly, a deletion of a link can only be in a mutual agreement. This
adding and deleting of links creates a sequence of networks. A sequence of networks
created by agents myopically adding and deleting links is called an improving path17

(Jackson and Watts, 2002).
There is a small probability, ε, that a mistake occurs (trembling hand) and the link

is deleted if present or added if absent. ε goes to zero in the long run, limt→∞ ε(t) =
0. By introducing this decreasing error ε in the agent’s decisions, the evolution of the
network becomes a Markov process18 with a unique limiting stationary distribution
of networks visited (Jackson and Watts, 2002).

The following definition is important to describe the stochastic evolution of the
network.

Definition 5 A network is evolutionary stable if it is in the limiting stationary
distribution of networks of the above mentioned Markov process.

We have already investigated the structure and stability of the star, Fig. 8.2, and
the cycle, Fig. 8.3. In Jackson and Watts (2002) it is shown that for the case of
four agents, the evolutionary stable networks indeed are the stars and cycles. So the
network of agents evolves into a quite simple equilibrium configuration.

8.2.3 The Connections Model and Small-World Networks

Carayol and Roux (2005, 2003) propose a model of innovation networks in which
networks emerge that show the properties of a “small world.”19 This model is an

17 Each network in the sequence of network updates differs in one link from the previous one. An
improving path is a finite set of networks G1, ..., Gk in which one agents is better off by deleting
a link (Gk+1 has one link less than Gk ) or two agents are better off by adding a link (Gk+1 has one
link more than Gk ).
18 A Markov process is a random process whose future states are determined by its present state
and not on the past states, i.e., it is conditionally independent on the past states given the present
state.
19 A small-world network combines high clustering (high probability that your acquaintances are
also acquaintances to each other) with a short characteristic path length (small average distance
between two nodes) (Watts and Strogatz, 1998).
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extension of the above described connections model, Sect. 8.2.2, and it uses the
same notion of pairwise stability and efficiency.

We now give a sketch of the model. Agents are localized on a cycle and benefit
from knowledge flows from their direct and indirect neighbors. Knowledge transfer
decays along paths longer than one link. This means that less knowledge is received,
the longer the path between the not directly connected agents is. The transfer rate is
controlled by an exogenous parameter, δ. Each agent has a probability to innovate
that is dependent on her amount of knowledge. The knowledge level of an agent is
dependent on two factors. (i) the in-house innovative capabilities of the agent and
(ii) the knowledge flows coming directly from the neighbors or indirectly (with a
certain attenuation factor) from those agents that are connected to the neighbors.

Agent i supports costs, for direct connections which are linearly increasing with
geographic distance, that is the distance on the cycle on which they recede. Agent
i’s utility ui at a time t is given by the following expression:

ui (G(t)) =
∑

j 	=i

δdi j − c
∑

j∈Ni

d ′i j , (8.8)

where di j is the geodesic distance between agent i and agent j . δ ∈ (0, 1) is a knowl-
edge decay parameter and δdi j gives the payoffs resulting from the direct or indirect
connection between agent i and agent j . c is a positive constant. d ′i j describes the
geographic distance between agent i and agent j , that is the distance on the cycle.
This is the main difference in the assumptions compared to the connections model
discussed in Sect. 8.2.2.

Agents are able to modify their connections. This is where the network becomes
dynamic. Pairs of agents are randomly selected. If the two selected agents are
directly connected they can jointly decide to maintain a link or unilaterally decide
to sever the link. If they are not connected, they can jointly decide to form a link.
The decision is guided by the selfishness of the agents, which means that they only
accept links from which they get a higher utility.

The stochastic process of adding links to the network can be seen as a Markov
process where each state is the graph structure at a certain time step. The evolution
of the system is a discrete time stochastic process with the state space of all possible
graphs. A small random perturbation where the agents make mistakes in taking the
optimal decision to form a link or not is introduced. Agents are making errors with
a probability ε(t). This error term decreases with time, limt→∞ ε(t) = 0.

The introduction of ε enables us to find long-run stationary distributions that
are independent of initial conditions (the ergodicity of the system) (Jackson and
Watts, 2002). Simulations are used in order to find these stationary distributions.
Agents are forming and severing links until the network reaches a pairwise stable
configuration, where the agents have no incentive to create or delete links any more.
The set of stochastically stable networks selected in the long run is affected by the
rate of knowledge transfer, δ. The authors find critical values of this parameter for
which stable “small-world” networks are dynamically selected (Carayol and Roux,
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2005). This is the main difference in the resulting equilibrium network structure to
the connections model, in which simpler network configurations are obtained.

8.2.4 Introducing Heterogeneous Knowledge

Ricottilli (2005, 2006) studies the evolution of a network of agents that improve
their technological capabilities through interaction while knowledge is heteroge-
neously distributed among agents. In addition to the sharing of knowledge, each
agent is assumed to have an “in-house” innovative capability. Considerable effort is
necessary for this “in-house” research and as research is not always successful, it is
assumed to change stochastically.

An agent i’s innovation capability, Vi , is given by

Vi (t) =
n∑

j=1

ai j bi j (t)Vj (t)+ Ci (t) (8.9)

with an economy consisting of n agents. ai j =const. is the broadcasting capacity
of agent j to agent i and aii = 0 since no agent can broadcast information to
herself. The matrix A with elements ai j indicates the total technological information
broadcasting capability of this economy. The proximity matrix elements bi j (t) are
either 0 or 1 according to whether agent j is identified from agent i as an information
supplier. This is the neighborhood of agent i . Ci (t) ∈ (0, 1) is the in-house capability
of agent i . This is a stochastic variable.

Each agent i assesses the value of knowledge of its neighbors (where bi j 	=
0), which are the addends of the first term in (8.9). From this function the least
contributing one, denoted by �i (t), is selected.

�i (t) = min1≤ j≤N {ai j bi j (t − 1)Vj (t − 1)}. (8.10)

In a random replacement procedure (search routine) an agent selects either its
neighbors and second neighbors (local, weak bounded rationality) or the entire econ-
omy excluding its first and second neighbors (global, strong bounded rationality).
By doing so, agent i assigns a new member j to the set of information suppliers,
setting bi j from 0 to 1. This selection is only accepted if

Vi (t) > Vi (t − 1). (8.11)

The population of agents is classified according to the size of the set of other
agents by which they are observed. Global paradigm setters are agents that are
observed by almost all agents in the economy. Local paradigm setters are observed
by almost all agents belonging to the same component.

Simulations of the evolution of the network show that stable patterns emerge.
When the knowledge-heterogeneity of the economy is not very high, global paradigm
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setters emerge. For high levels of heterogeneity the economy becomes partitioned
into two separate halves. In each homogeneous one, local paradigm setters emerge.
Ricottilli (2006, 2005) shows that the highest technological capabilities are achieved
neither with a local search routine in which only the second neighbors are included
nor in global search routines that span the whole economy. Rather, a combination
of both improves the system’s innovative efficiency the most.

8.2.5 Emerging Cyclic Network Topologies

When studying multi-sector trading economies and input–output systems,
Rosenblatt (1957) already identified the importance of circular flows and “feedback”
input dependencies between industries (realized by subgraphs called “cyclic nets”).
A sufficient condition for a strongly connected network (in which there exits a path
from every agent to every other agent and that has an irreducible adjacency matrix)
is the existence of a cycle. Subsequent works (Baldry and Ghosal, 2005; Maxfield,
1994) have further incorporated cyclic network topologies (or strong connectivity
which implies the existence of a cycle in the network) for the existence of a compet-
itive economy. More recently, Kim and Wong (2007) studied a generalized model
of Bala and Goyal (2000) and found that the equilibrium networks consist of cycles
(so-called “sub-wheel partitions”).

In the following sections, we will focus on some recent network models of
knowledge transaction and innovation (the creation of new knowledge) in which
cyclic interactions of agents emerge. In Sect. 8.3, we will study a new model of
evolving innovation networks. Similarly to the above mentioned authors, we find
that the existence of equilibrium networks with a positive knowledge production
depends critically on the existence of cycles in the network.

8.2.5.1 Production Recipes and Artifacts

We start by reviewing a model by Lane (2005) in which agents try to produce and
sell artifacts. These artifacts can be manufactured according to a production recipe.
Such a recipe can either be found independently or through the sharing of knowledge
with other agents, which in turn can lead to an innovation, that is the discovery of a
new recipe.

Let us denote with rik the kth recipe of agent i . There is an external environment
which consists of external agents (customers) and artifacts which are not produced
in the model. At each time period t one agent i is randomly chosen. Then the
following steps are taken:

1. The agent tries to get the input required for each recipe rik . If it is in the agent’s
own stock then she can produce immediately. If it is not, she buys it from another
agent and if it cannot be bought she moves to another recipe.
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2. The agent chooses a goal, i.e., the product she wants to produce (one that gives
high sales). Therefore she has to find the right recipe for the goal. She produces
the product if a successful recipe is found. This can be achieved in two ways.
The agent either can try to innovate by herself or she can try to innovate together
with another agent.

3. The wealth of agent i at time t + 1, wi (t), is calculated according to

wi (t + 1) = wi (t)+
Nk∑

k=1

nik(t)− wi (t)
Nl∑

l=1

pilcil − λwi (t), (8.12)

where Nk is the number of products sold, nik(t) is the number of units sold of
product k belonging to agent i , pil is the number of products produced with
recipe ril , and cil is the production cost.
The last term −λwi (t) guarantees that the wealth of an agent that has not sold
any products and does not have any active recipes vanishes.

4. The recipes that could not be successfully used to produce products are canceled.
5. The set of acquaintances of an agent is enlarged. This is possible when two or

more agents that have goals which are close in artifact space (i.e., they require
similar inputs) cooperate to produce that artifact.

6. With a certain probability dead agents are substituted.

The basic dynamics, absent innovation, is one of production and sales, where the
supply of raw materials is external as well as final product demand. There are two
main differences to most agent-based innovation models. First, here the agents try
to develop new recipes in order to produce products with high sales, as opposed
to many agent-based models where the generation of novelty is driven by some
stochastic process. Second, in simulations Lane (2005) shows that the network of
customers and suppliers often forms closed, self-sustaining cycles.

8.2.5.2 An Autocatalytic Model with Hypercycles

Padgett (1996) and Padgett et al. (2003) introduces an autocatalytic model, based on
a hypercycle20 model. Here agents are represented as skills and these skills are com-
bined in order to produce. Skills, like chemical reactions, are rules that transform
products into other products.

In the following, we will give a short overview of the model.21 There are two
main aspects in the dynamic interactions between the agents: The process of produc-
tion and the process of learning. The process of production includes three entities:
skills, products, and agents. Skills transform products into other products. The skills
are features of the agents. On a spatial grid the agents are arrayed with periodic

20 A hypercycle is a system which connects self-replicative units through a cycle linkage (Eigen
and Schuster, 1979).
21 This agent-based model is publicly available on the website http://repast.sourceforge.net/
examples/index.html under the application module hypercycle.
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boundaries. Each agent has eight possible neighbors. At each asynchronous iteration
a random skill is chosen. An agent with that skill randomly chooses an input prod-
uct. If this product fits to the skill then the product is transformed. The transformed
product is passed randomly to the neighbors of the agent. If the trading partner has
the necessary skill it transforms the product further and passes it on. If the agent
doesn’t have the compatible skill, the product is ejected into the output environment
and a new input product is selected.

One can look at the production process from a wider perspective. An input prod-
uct comes from the environment, then passes through production chains of skills
until it is passed back as output to the environment. These chains self-organize
because of a feedback mechanism of the agents. This mechanism is learning through
the trade of products.

The process of learning is modeled as learning by doing. If a skill transforms a
product and then passes it on to another transforming skill, then the skill is repro-
duced (learned). Whenever one skill is reproduced anywhere in the system then
another one is deleted at random to keep the overall number of skills constant. The
agents are able to learn new skills by practicing them and they can forget skills they
did not use for a certain period of time. This procedure of learning introduces a
feedback mechanism. When an agent loses all its skills, then it is assumed to never
recover.

In Padgett (1996) and Padgett et al. (2003) the emergence of self-reinforcing
hypercycle production chains is shown. In these hypercycles agents reproduce each
other through continuous learning. Such cycles generate a positive growth effect on
the reproduction of skills. Thus, even in a competitive environment the sharing of
knowledge is crucial to the long-run performance of the system.

8.3 A New Model of Evolving Innovation Networks

8.3.1 Outline of the Modeling Framework

In this section, we study the evolution of networks of agents exchanging knowl-
edge22 in a novel framework. The network can evolve over time either, by an
external selection mechanism that replaces the worst performing agent with a
new one or, by a local mechanism, in which agents take decisions on forming or
removing a link. In the latter case, we investigate different modalities of interac-
tion between agents, namely bilateral interactions, representing R&D collaborations
(Hagedoorn et al., 2006, 2000) or informal knowledge trading (Von Hippel, 1987),
versus unilateral interactions (similar to Bala and Goyal (2000) agents decide uni-
laterally whom to connect to), representing a generalization of informal knowledge
trading. We further study the impact of varying costs for maintaining links and the

22 See also the chapter of Robin Cowan and Nicolas Jonard in this book as well as Cowan and
Jonard (2004), Cowan et al. (2004).
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impact of augmenting or diminishing effects on the value of knowledge with the
number of users associated with different types of knowledge. Our model exhibits
equilibrium networks and we compare their structure and performance. Similar to
the models discussed in the last section we will show that cyclic patterns in the
interactions between agents play an important role for the stability (permanence)
and performance of the system.

We study different assumptions on the behavior of agents. In the most simple
case, denoted by Extremal Dynamics, agents form links at random and, through an
external market selection mechanism, the worst performing agent (this is where
the denotation extremal stems from) is replaced with a new one. In this set-
ting, agents are completely passive and they are exposed to a least-fit selection
mechanism.

In a more realistic setting, called Utility Driven Dynamics, agents choose with
whom to interact, but their behavior is still boundedly rational and does not con-
sider strategic interaction. The way in which agents create or delete links to other
agents is a trial and error process for finding the right partner. Here we study two
different modes of interaction. In the first interaction mode, agents are creating
bilateral links. Bilateral links represent formal R&D collaborations among agents
(Hagedoorn et al., 2000), or informal knowledge trading (Von Hippel, 1987). In
the second interaction mode, agents are transferring knowledge unilaterally, which
means that one agent may transfer her knowledge to another but the reverse is
not mandatory. In this setting, the transfer of knowledge may be reciprocated, but
knowledge can also be returned from a third party. In the latter case, we speak of
indirect reciprocity. If knowledge is transferred unilaterally, the innovation network
can be represented as a directed graph comprising unilateral links, while if all inter-
actions are bilateral, the innovation network can be represented as an undirected
graph.

In the setting of unilateral links, we also investigate the impact of additional
benefits from network externalities. These benefits consider specific structural prop-
erties of networks which have an augmenting effect on the value of knowledge. We
study two different types of network properties which increase the value of knowl-
edge. We call these types Positive Network Externalities. The first Positive Network
Externality considers the factor that the more the centrality of an agent rises with
the creation of a link, the higher is the benefit from that link. A high centrality
indicates that an agent is connected to other agents through short paths. This means
that, when knowledge travels along short distances between agents, it has a higher
value than knowledge that has to be passed on between many agents. This effect can
be captured by introducing an attenuation of knowledge with the distance it has to
travel (by getting passed on from one agent to the next) until reaching an agent. The
second Positive Network Externality captures an opposite effect when knowledge is
passed on from one agent to the next. Here the value of knowledge increases with
the number of transmitters (who are also user) of that knowledge. More precisely,
we assume that feedback loops create an increase in the value of knowledge of the
agents that are part of the loop. The more the agents absorb and pass on knowledge
the higher is the value of that knowledge. This means that a link that is part of a long
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feedback loop increases the value of the knowledge passed on from one agent to the
next.23

We can summarize the different settings that are studied in this section as fol-
lows. We investigate the performance and evolution under the two aforementioned
assumptions on the behavior of agents, namely Extremal Dynamics and Utility
Driven Dynamics. In the latter setting, we further study the effect of different modes
of interaction, i.e., bilateral and unilateral knowledge transactions among agents.
When studying unilateral interaction among agents, we introduce different augment-
ing processes on the value of knowledge depending on the structure of the network,
called Positive Network Externality. We study the impact of an attenuation of the
value of knowledge by the distance from the giver to the receiver as well as the
contrary effect of an increase of the value of knowledge with the number of users
of that knowledge depending on the type of knowledge under investigation. Finally,
we discuss the networks obtained under these different settings with respect to their
topologies and performance.

8.3.2 Bilateral Versus Unilateral Knowledge Exchange

We interpret bilateral interactions as R&D collaborations on a formal or informal
basis (Hagedoorn et al., 2000). Both parties involved share their knowledge in a
reciprocal way, that means one agent is giving knowledge to another if and only if
the other agent is doing this as well and both agents benefit from this transaction.

We then compare bilateral interaction with the case of agents sharing knowledge
in a unidirectional way with other agents. They then maintain only those interactions
that are in some form reciprocated (and this way lead to an increase in their knowl-
edge levels after a certain time) but not necessarily from the agent they initially
gave their knowledge to (indirect reciprocity). The latter is referred to unilateral
knowledge exchange which can be seen as a generalization of informal knowledge
trading.

In the case of informal knowledge trading, agents exchange knowledge if both
strictly benefit. Instead, in the case of generalized informal knowledge trading, one
agent transfers knowledge to another one without immediately getting something
back. After a certain time (time horizon T ) an agent evaluates its investment by
assessing its total net increase in knowledge. By introducing unilateral knowledge
exchange we relax two requirements: (i) we do not require that the investment in
sharing ones knowledge has to be reciprocated instantaneously and in a mutually
concerted way. And (ii) the reciprocation does not necessarily have to come from
the same agent. With this generalization we introduce that (i) agents have only
limited information on the value of knowledge of others and on the network of
interactions. (ii) Agents proceed in a trial and error fashion to find the right partners

23 We study closed loops, because we assume that knowledge issued from one agent has to return
to that agent in order for her to take advantage of this added value of knowledge (created by the
multiplicity of other users).
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for exchanging their knowledge. In this setting reciprocity emerges either directly
or indirectly.

If the total knowledge level of an agent at the time horizon T is higher than it was
when the agent started to share her knowledge with another agent, this interaction
is evaluated beneficial, otherwise it is not. Only if the interaction is evaluated ben-
eficial, the agent continues sharing its knowledge with the other agent, otherwise it
stops the interaction. This procedure requires only limited information on the other
agents, since the agent cares for its own total increase in knowledge and does not
need to evaluate the individual knowledge levels of others. We describe this link
formation mechanism in more detail in Sect. 8.3.9.3.

8.3.3 Unilateral Knowledge Exchange and Reciprocity

If the interaction of agents are unilateral then agents invest into innovation by shar-
ing knowledge with other agents. An investment is an advance payment with the
expectation to earn future profits. When one agent transfers knowledge to another
one without immediately getting something back, this can be regarded as an invest-
ment. There are usually two ways in which an investment can be expected to bring
in reasonable returns.

One way is the creation of contracts. As a precondition for contracts technologies
must be protectable by intellectual property rights (IPR). Otherwise agents cannot
trade them (once the technology is offered, i.e., made public, everybody can simply
copy it and there is no more need to pay for it). Contracts must be binding and com-
plete (Dickhaut and Rustichini, 2001). The contract has to be binding or agents may
not meet their agreement after the payment has been made. It has to be complete, or
uncertain agreements may lead agents to interpret it in a way most favorable to their
position and this can cause agents to retreat from the contract.

The requirements for contracts can be difficult to realize. Another way is to
expect reciprocative behavior to the investment. The beneficiary can either directly
or indirectly reciprocate the benefit. Direct reciprocity means to respond in kind
to the investor, and indirect reciprocity to reward someone else than the original
investor.

One of the possible explanations for reciprocal behavior (Bolton and Ockenfels,
2000; Fehr and Fischbacher, 2003; Fehr and Schmidt, 1999; Nowak and Sigmund,
1998, 2005) (see, e.g., Dieckmann, 2004, for a survey) is to assume the existence
of reputation. Agents believe that if they invest into another agent they will increase
their reputation and then realize a reasonable return coming back to them directly
or indirectly (“strategic reputation building”).

In reality, only partial information about reputation is available and experimen-
tal works show that, even in the absence of reputation, there is a non-negligible
amount of reciprocal cooperative behavior among humans (Bolton et al., 2005). As
Dickhaut and Rustichini (2001) put it, “. . .investment occurs even though agents
cannot create binding contracts nor create reputation.” Thus, agents invest into each
other by transferring their knowledge even if they cannot immediately evaluate the
benefit from this investment.
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We assume that agents are not a priori reciprocating if they receive knowledge
from others. But they perceive that interactions that are reciprocated in some way
are beneficial (increasing their own knowledge) and these are the interactions that
they maintain in the long run.

The problems associated with bilateral exchange of knowledge (direct reci-
procity) and experimental evidence suggest that unilateral knowledge exchange, in
which indirect reciprocity can emerge, is a relevant mode of interaction between
agents. Moreover, the fact that interactions between anonymous partners become
increasingly frequent in global markets and tend to replace the traditional long-
lasting mutual business relationships poses a challenge to economic theory and is
one of the reason for the growing interest about indirect reciprocity in the economic
literature.

8.3.4 Indirect Reciprocity, Directed Graphs, and Cycles

An R&D network can be described as a graph in which agents are represented
by nodes, and their interactions by directed links. Indeed, as mentioned above, if
agent i transfers knowledge to agent j (e.g., by providing a new technology), the
reverse process, i.e., that agent j in turn transfers knowledge to i , is in principle
not mandatory. This means that the links representing the transfer of knowledge are
directed. The underlying graph can be represented by an adjacency matrix, A with
elements ai j ∈ [0, 1], which is not symmetric, ai j 	= a ji . In other words, directed
means that we distinguish the pairs (i, j) and ( j, i) representing the links from i
to j and from j to i , respectively. On the other hand, if the adjacency matrix is
symmetric, it means that any two agents are connected both by a link from i to
j and by a link from j to i . We say, in this case, that they are connected by a
bidirectional link. Notice that the symmetry also implies that the two links have
identical weights.

Reciprocity requires the presence of cycles. In particular, direct reciprocity cor-
responds to a cycle of order k = 2, while indirect reciprocity corresponds to a cycle
of order k ≥ 3 (see Figs. 8.5 and 8.6). Therefore, the emergence and permanence of

Fig. 8.5 A cycle of length 2
represents an interaction
between agents that is direct
reciprocal

1 2

Fig. 8.6 A cycle of length 3
(or longer) represents an
interaction between agents
that is indirect reciprocal

1 2

3
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direct/indirect reciprocity is deeply connected to the existence of cycles and in the
graph of interactions.

8.3.5 Formal Modeling Framework

In this section, we formalize the general framework for the investigation of evolv-
ing networks of selfish agents engaged in knowledge production via the sharing of
knowledge. In such a framework, it is possible to investigate how the emergence
and permanence of different structures in the network is affected by (1) the form
of the growth function of the value of knowledge, (2) the length of time horizon
after which interactions are evaluated and (3) the link formation/deletion rules.
At a first glance, this problem includes a multitude of dimensions, as the space of
utility functions and link formation/deletion rules is infinite. However, some natural
constraints limit considerably the number of possibilities and make a systematic
study possible. In the following, we present the general framework. We then focus
on a subset of the space of utility functions and link formation rules. For these, we
present briefly some analytical results, but since the value of knowledge of an agent
is assumed to be a non-linear function of the neighboring agents, we illustrate them
in terms of computer simulations. We finally summarize the results and discuss them
in relation to the context of innovation.

We consider a set of agents, N = {1, ..., n}, represented as nodes of a network
G, with an associated variable xi representing the value of knowledge of agent i .
The value of knowledge is measured in the units of profits an agent can make in a
knowledge-intensive market. It has been shown that the growth of such knowledge-
intensive industries is highly dependent on the number and intensity of strategic
alliances in R&D networks (Powell and Grodal, 2006). In our model we bring the
value of knowledge of an agent, denoted by xi (t), at time t in relation with the
values of knowledge of the other agents x j (t) at time t in the economy, that are
connected to the current agent i . A link from i to j , ei j , takes into account that
agent i transfers knowledge to agent j . The idea is, that through interaction, agents
transfer knowledge to each other which in turn increases their values of knowledge.

We focus here only on the network effects on the value of knowledge of an agent.
We therefore neglect the efforts of agents made to innovate on their own, without
the interaction with others.24 In particular, we assume that the growth of the value of
knowledge of agent i depends only on the value of knowledge of the agents, j , with
outgoing links pointing to him (those who transfer knowledge to her), j ∈ V (G)
such that e ji ∈ E(G).

24 The “in-house” R&D capabilities of an agent could be introduced by an additional (stochastic)
term Si (xi ). Similar to Ricottilli (2006) in Sect. 8.2.5, Si (xi ) captures the innovation activities of
agent i without the interaction with other agents. We assume that the “in-house” capabilities of
agents are negligible compared to network effects. Thus, we concentrate only on network effects
on the increase or decrease in the value of knowledge.
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In a recent study on the dynamics of R&D collaboration networks in the US
IT industry, Hanaki et al. (2007) have shown that firms form R&D collabora-
tions in order to maximize their net knowledge (information) flow. Cassiman and
Veugelers (2002) suggested that this knowledge flow can be decomposed into
incoming and outgoing spillovers capturing the positive and negative effects of R&D
collaborations.

We try to incorporate these positive and negative effects into a differential equa-
tion that describes the change (increase or decrease) in the value of knowledge of an
agent through R&D collaborations with other agents. We assume that the knowledge
growth function can be decomposed into a decay term, a benefit term, and a cost
term depending on the interactions of an agent. The equation for knowledge growth
reads

dxi

dt
= −Di (xi )+ Bi (A, x)− Ci (A, x), (8.13)

where

ẋi . . . growth of the value of knowledge of agent i
A . . . adjacency matrix (representing the network)
x . . . vector of agents’ values of knowledge
Di (ẋi ) . . . knowledge decay (obsolescence of knowledge)
Bi (A, x) . . . interaction benefits of agent i
Ci (A, x) . . . interaction costs of agent i

B ≥ 0 and C ≥ 0 are benefit and cost terms, respectively, while D ≥ 0 is a decay
term which includes the fact that a technology loses its value over time (obsoles-
cence). In our setting, only through R&D collaborations with other agents, an agent
can overcome the obsolescence of knowledge. This ensures that agents who do not
interact with others have necessarily vanishing value of knowledge in our model
(since Bi = Ci = 0⇔ ai j = 0 ∀ j and thus ẋi < 0). In other words, we investigate
an R&D intensive economy in which an agent’s performance is critically depending
on its R&D collaborations.

Interaction is described by the adjacency matrix A that contains the elements ai j

in terms of 0 and 1. This dynamics can be interpreted as a catalytic network of R&D
interactions (passing a technology to another agent, R&D collaborations), where
the different agents are represented by nodes, and their interaction by links between
these nodes, cf. Fig. 8.1. More precisely,

ai j =
{

1 if agents i transfers knowledge to agent j

0 otherwise
(8.14)

We noted already that the network of interactions is modeled on a directed graph,
which means that the adjacency matrix is not generally symmetric: ai j 	= a ji .
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The benefit term, Bi (x, A), accounts for the fact that an agent’s value of knowl-
edge increases by receiving knowledge from other agents. The cost term, Ci (x, A),
accounts for the fact that transferring knowledge to other agents is costly. Such a
cost can vary in magnitude depending on the technological domain, but, in general,
to make someone else proficient in whatever new technology requires a non-null
effort.

In the following, we will further specify the growth of the value of knowledge in
(8.13). We will make simple assumptions on benefits, Bi (x, A), and costs, Ci (x, A),
which allow us to derive some analytical results and thus gain some insight on the
behavior of the system.

8.3.6 Pairwise Decomposition

Networks are sets of pairwise relationships. In systems of interacting units in
physics, a superposition principle holds, such that the force perceived by a unit is
due to the sum of pairwise interactions with other units. Similarly, one could think
of decomposing both benefits and costs of each agent i in a sum of terms related
to the agents j interacting with i . However, this would imply to ignore network
externalities25 (it is very important to note this fact). We will see in the following
that externality does play an important role. So far, in the literature on complex
networks one has considered only the pairwise interaction term, while the literature
on economic networks has focused on some simple externalities such as the network
size, or the distance from other agents, see Sect. 8.2.5.

Our approach is to assume that benefit and cost are each decomposable in two
terms: one term related to the direct interaction, further decomposable in pair-
wise terms, and another term related to externality (corresponding to positive and
negative externality):

Bi (A, x) =
∑

j

b ji (x j , a ji )+ be
ji (x j , A), (8.15)

Ci (A, x) =
∑

j

ci j (xi , ai j )+ ce
i j (xi , A, x), (8.16)

where b stands for benefit, c for cost, e for externality. The effect of network exter-
nalities will be explained in Sect. 8.3.9.9. Benefit, b ji (x j , a ji ), and cost, ci j (xi , ai j ),
terms are monotonically increasing with the value of knowledge, xi . They have the
following properties:

25 In our model we define a network externality as a function of the network that affects the utility
of an agent.
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b ji (x j , a ji ) =
{

0 if a ji = 0 ∨ x j = 0

> 0 if a ji = 1 ∧ x j > 0
, (8.17)

ci j (xi , ai j ) =
{

0 if ai j = 0 ∨ xi = 0

> 0 if ai j = 1 ∧ xi > 0.
(8.18)

We assume that benefits are linear functions of the value of knowledge of agent
i which shares its knowledge with agent j . We introduce the linear assumption
b ji (x j , a ji ) = a ji x j .

In the most simple case costs for transferring knowledge can be neglected,
ci j (xi , ai j ) = 0. This means that knowledge is fully codified (Foray, 2004) and it
can be transferred to another agent without any losses. Further, null costs imply that
knowledge is non-rivalrous, meaning that the value of knowledge is not reduced by
the use of that knowledge by another agent. When costs are neglected, the growth
in the value of knowledge of agent i is given by the following equation (the case of
Null Interaction Costs, further analyzed in Sect. 8.3.8).

dxi

dt
= −dxi + b

n∑

j=1

a ji x j . (8.19)

In more realistic setting, costs cannot be neglected. In order to come up with
a reasonable expression for these costs, we make some further assumptions. We
assume that the higher the value of knowledge of an agent is, the more complex it
is. Moreover, the more the complex knowledge is, the more difficult it is to transfer
it (Rivkin, 2000; Sorenson et al., 2006). The coordination and processing capabili-
ties of agents are constrained (“managerial breakdown”). Thus, the more complex
knowledge gets the higher are the costs for transferring it. The cost, ci j (xi , ai j ), for
transferring knowledge from agent i to agent j is an increasing function of the value
of the knowledge that is to be transferred, xi . We assume that costs increase by more
than a proportional change in the value of knowledge that is being transferred.

ci j (αxi ) > αci j (xi ). (8.20)

This characteristic is closely related to decreasing returns to scale and convex
cost functions.26 The most simple setting for such a function is a quadratic term of
the form ci j (xi , ai j ) = cai j x2

i . The growth in the value of knowledge of agent i is
then governed by the following equation (the case of Increasing Interaction Costs,
further analyzed in Sect. 8.3.8):

26 In the standard economic theory of the agent the extent to which a given input can increase out-
put is usually assumed to be a decreasing function of the input. The output increases at a decreasing
rate when the input in production increases (Hausman, 2003).
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dxi

dt
= −dxi + b

n∑

j=1

a ji x j − c
n∑

j=1

ai j x
2
i . (8.21)

This is an ordinary differential equation with a linear decay, a linear benefit, and
quadratic costs.

Equation (8.21) can be interpreted as an extension of a logistic equation. In a
complete graph every agent shares her knowledge with every other agent. Starting
with the same initial values, this symmetry implies that all knowledge values are
identical, i.e., xi = x , equation (8.21) then becomes

dx

dt
= −dx + b(n − 1)x − c(n − 1)x2

d
b�n−−→ b(n − 1)x

(
1− c

b x
)

. (8.22)

Equation (8.22) is similar to the logistic function ẋ = αx(1 − x
β

) with parameters
α = b(n − 1) and β = b/c.

In the following section, we relate the topology (cyclic topologies in particular)
of the network with the long-run values of knowledge of the agents.

8.3.7 Non-permanence of Directed Acyclic Graphs

The study of the relation between the performance of an economy and the underly-
ing network of interactions has already a long tradition, see, e.g., Rosenblatt (1957)
(“cyclic nets”). More recently Maxfield (1994) has shown that the existence of a
competitive equilibrium is related to the strong connectedness of the network of
relations between users and producers in a market economy. Strong connectedness
means that there exists a closed walk or a cycle in the network. On the other hand,
if there does not exist such a cycle, then the network is not strongly connected.
In a similar way in our model strong connectedness is critically influencing the
performance of the agents. In the main result of this Sect. 8.11, we show that in our
model all values of knowledge vanish if the underlying network of interactions does
not contain a cycle.

For the general equation (8.13) we can identify the topology of the network
in which agents cannot be permanent. Hofbauer and Sigmund (1998) give the
following definition of permanence:

Definition 6 A dynamical system is said to be permanent if there exists a δ > 0
such that xi (0) > 0 for i = 1, ..., n implies limt→∞ inf xi (t) > δ.

We generalize the above notion of permanence to networks in which the nodes
have a state variable attached (that depends on the state variable of their neighbors).
If the state variables are non-zero the network is said to be permanent, otherwise it is
not. This is justified, since nodes with vanishing state variables have no interactions
at all.
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First, we have to introduce the definition of graphs which do not contain any
closed walks or cycles.

Definition 7 A directed acyclic graph is a directed graph with no directed cycles.

More general, if a graph is a directed acyclic graph then it does not contain a
closed walk.

For several proofs in this section we need the following lemma (denoted by the
comparison principle (Khalil, 1995)).

Lemma 8 If we consider two time-dependent variables, x(t) and y(t) with different
growth functions g(x) and f (x) (continuous, differentiable)

ẋ = f (x) (8.23)

ẏ = g(x) (8.24)

x(0) = y(0) (8.25)

and g(x) ≥ f (x) then it follows that y(t) ≥ x(t). Similarly, if g(x) ≤ f (x) then
y(t) ≤ x(t).

Proof Using Cauchy’s mean value theorem for the two continuous, differentiable
functions, x(t) and y(t), we have

x ′(τ )

y′(τ )
= x(t)− x0

y(t)− y0
≥ 1 (8.26)

with τ ∈ (0, t). The inequality holds since x ′(τ ) = f (x(τ )) ≥ y′(τ ) = g(y(τ ))
∀τ ∈ (0, t). It follows that

x(t)− x0 ≥ y(t)− y0 (8.27)

x0 = y0 (8.28)

and thus x(t) ≥ y(t). �
If a network is a directed acyclic graph then it does not contain a closed walk.

For a directed acyclic graph we can make the following observation.

Proposition 9 In every directed acyclic graph, there is at least one node v with no
incoming links, i.e., a source.

Proof (Godsil and Royle, 2001) We give a proof by contradiction. We assume that
every node has an incoming link. We start with some node u and find an incoming
link (x, u) – by assumption every node has at least one incoming link. We go to
the destination of the link, x . Again, we can find an incoming link (y, x). We then
proceed to node y. There is an incoming link (z, y). We consider node z. After at
most n+ 1 steps, we will visit some node in the graph twice. This is a contradiction
to the assumption that the graph is acyclic. �
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We can partition the nodes in the network into specific sets which take into
account from which other nodes there exists an incoming path to these nodes. We
will show that this is important to obtain a result on the permanence of the values of
knowledge of the agents.

Definition 10 We denote the set of sources of a directed acyclic graph G by S0. We
say that S0 is the 0-th order sources of G. The nodes that have only incoming links
from S0 are denoted by S1, the 1-st order sources of G. We consider the graph G\S0.
The nodes that have only incoming links from S1 in G\S0 (obtained by removing
the nodes in S0 and their incident links from G) are denoted by S2. Accordingly, the
nodes having only incoming links from Sk−1 in the graph G\(Sk−2 ∪ . . . ∪ S0) are
denoted by Sk , the k-th order sources of G, where k ≤ n.

We can have at most n such sets in the graph G with n nodes. In this case G is a
directed path Pk . Moreover, we have that

Proposition 11 The nodes in a directed acyclic graph G can be partitioned in the
sets S0, S1, ..., Sk, k ≤ n defined in (8.10).

Proof From Proposition (9) we know that the directed acyclic graph G has at least
one source node. All the sources form the set S0. If we remove the nodes in S0

(as well as their incident links) from G then we obtain again a directed acyclic
graph G1 := G\S0 (since the removal of links cannot create cycles). Therefore,
Proposition (9) also holds for G1. We consider the source nodes in G1. These nodes
have not been sources in G and they have become sources by removing the incident
links of the sources in G. Thus, the source nodes in G1 have only incoming links
from nodes in S0. Further on, the sources in G1 form the set S1. We can now remove
the nodes S1 from G1 and obtain the graph G2 with new sources S2. We can consider
the k-th removal of source nodes. We make the induction hypothesis that the sources
of Gk−1 form the set Sk−1. Removing the sources from Gk−1 gives a directed acyclic
graph Gk which contains the sources Sk . One can continue this procedure until all
nodes have been put into sets S0, S1, . . . , Sk with at most k = n sets. �

There exists a relationship between the set (defined in (8.8)) a node belongs to
and the nodes from which there exists an incoming path to that node.

Corollary 12 Consider a node i ∈ Sj . Then there does not exist a path from nodes
k ∈ Sm, m ≥ j , to node i . Conversely, node i has only incoming path from nodes in
the sets S0, ..., Sj−1.

Proof Assume for contradiction that there exists such a path from a node k ∈ Sm ,
m ≥ j to a node i ∈ Sj . By the construction of the sets Sj (8.8), node i must be
a source with no incoming links after the removal of the sets S0, . . . , Sj−1 from G.
But this is a contradiction to the assumption that node j has an incoming link from
a node k ∈ Sm , m ≥ j . �

From the above definition and observations we can derive an upper bound on the
values of knowledge of the nodes in a directed acyclic graph.
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Proposition 13 Consider (8.13) with a linear decay Di (xi ) = dxi , a linear benefit
Bi (A(G), x) = b

∑
j∈N−i

x j and a non-negative cost Ci (A(G), x) ≥ 0 where d ≥ 0,
b ≥ 0. Then for every node i in G there exists a k ≤ n such that

xi (t) ≤ (aktk + ak−1t k−1 + ...+ a0)e−dt . (8.29)

Proof From Proposition (11) we know that the directed acyclic graph G has a parti-
tion of nodes into sources S0, . . . , Sk , k ≤ n. Consider a node x0 ∈ S0. With (8.13)
the time evolution of her value of knowledge is given by

ẋ0 = −dx0 − C0 ≤ −dx0. (8.30)

Here we use the fact that C0 ≥ 0. The function solving the equation ẋ = −dx is an
upper bound for x0(t) (with identical initial conditions), see (8.1).

From Proposition (9) we know that there are first-order sources S1 in G that have
only incoming links from nodes in S0. The evolution of the value of knowledge for
a node x1 ∈ S1 is given by

ẋ1 = −dx1 +
∑

j∈S0

x j − C1. (8.31)

The second term on the right-hand side of the above equation contains the sum
of all values of knowledge of all nodes in S0. We know that they are bounded from
above by x(t) ≤ x(0)e−dt . Thus, (8.31) has an upper bound

ẋ1 ≤ −dx1 + a1e−dt (8.32)

with an appropriate constant a1. The solution of the equation ẋ = −dx + a1e−dt is
given by x(t) = (a1 + a0t)e−dt . It follows that

x1 ≤ (a1 + a0t)e−dt . (8.33)

In the following, we make a strong induction. We have the induction hypothesis
that for the (k − 1)-th order sources there exists an upper bound

ẋk−1 ≤ (ak−1t k−1 + ak−2t k−2 + . . .+ a0)e−dt (8.34)

and this holds also for all nodes in the sets of sources with order less than k− 1. We
consider the nodes in Sk with l ∈ Sk . We have that

ẋl (t) = −dxl + b
∑

j∈N−l

x j − Cl , (8.35)
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where the in-neighborhood N−l contains only nodes in the sets S0, . . . , Sk−1. For
these nodes an upper bound is given by (8.34), and thus we get an upper bound for
(8.35)

ẋl (t) ≤ −dxl + (ak−1t k−1 + ak−2t k−2 + . . .+ a0)e−dt . (8.36)

We can now use the following lemma:

Lemma 14 For an ordinary differential equation of the form

ẏ + dy = (aktk + ak−1t k−1 + ...+ a2t + a1)e−dt (8.37)

there exists a solution of the form

y(t) =
(

ak

k + 1
t k+1 + ...+ a0

)

e−dt (8.38)

with the limit limt→∞ y(t) = 0

Solving for the upper bound from above gives the desired result.

xl (t) ≤ (aktk + ak−1t k−1 + ...+ a0)e−dt . (8.39)

�
With the last Proposition (13) it is straightforward to obtain the following

proposition, which is the main result of this section.

Proposition 15 Consider (8.13) with a linear decay Di (xi ) = dxi , a linear benefit
Bi (A(G), x) = b

∑
j∈N−i

x j , and a non-negative cost Ci (A(G), x) ≥ 0 where d ≥ 0,
b ≥ 0. If the network G is a directed acyclic graph then the values of knowledge
vanish. This means that G is not permanent.27

Proof From Proposition (13) we know that each node k in the graph G has a value
of knowledge which is bounded by xk(t) ≤ (aktk+ak−1t k−1+· · ·+a0)e−dt for some
finite k ≤ n. Since any finite polynomial grows less than an exponential function we
have that limt→∞ xk(t) = 0. This holds for all nodes in G. This completes the proof
that for all i = 1, . . . , n in a directed acyclic graph G we have that limt→∞ xi (t) = 0
and therefore G is not permanent. �

Thus, if agents are permanent, the graph contains a closed walk (or a cycle). If
agents get their links attached at random, only those survive, who are part of a cycle.
If agents can chose, whom to transfer their knowledge to, then they have to form

27 Remember that the definition of permanence in (8.6) requires that all nodes have non-vanishing
state variables. On the other hand, vanishing state variables would imply that nodes do not interact
with each other and the network would not be permanent.
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cycles in order to survive. Others (Bala and Goyal, 2000; Kim and Wong, 2007)
have found similar results in which the equilibrium network consists of cycles.

There exist a convenient way to identify if a network contains a cycle without
actually looking at the permanence of the network which would require to compute
the long-run values of knowledge (usually by numerical integration). Instead, from
the eigenvalues of the adjacency matrix, A(G), of a graph, G, one can determine
if G contains a cycle. The Perron-Frobenius eigenvalue of a graph G, denoted by
λPF(G), is the largest real eigenvalue of A(G). The following properties hold (Godsil
and Royle, 2001)

Proposition 16 If a graph G

1. has no closed walk, then λPF(G) = 0,
2. has a closed walk, then λPF(G) > 1.

Thus, if the graph contains permanent agents, then λPF(G) > 1. Hofbauer and
Sigmund (1998), Stadler and Schuster (1996) have found similar conditions under
which populations are permanent in a network of replicators.28

Finally, we can compute the probability of a network to contain a cycle if links
were attached at random.

Proposition 17 The probability of a random graph G(n, p) with n nodes containing
a cycle is given by (Jain and Krishna, 2002)

P = (
1− (1− p)n−1

)n
(8.40)

which is 0 if p = 0 and 1 if p = 1.

Proof We can compute the probability of having a closed walk in a random graph
G(n, p). Each link is created with probability p. Thus we have a Bernoulli pro-
cess for the adjacency matrix elements ai j (which indicate if a link exists or
not).

ai j =
{

1 with probability p

0 with probability 1− p
. (8.41)

For every node we have n − 1 events to create a link and we are asking for the
probability of having at least one of them being created (every node should have
at least one incoming link). This is a binomial cumulative function of the form
(Durrett, 2004; Casella and Berger, 2001):

P =
n−1∑

k=1

(
n

k

)

pk(1− p)n−k (8.42)

28 The replicator equation (in continuous form) is given by: ẋi = xi ( fi (x)− φ(x)), where φ(x) =∑
i xi fi (x) and fi (x) is the fitness of species i .
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which is equivalent to (8.40), if we use the Binomial theorem

(x + y)n =
n∑

i=1

(
n

i

)

xi yn−i . (8.43)

�
A similar result to (8.11) has been found by Kim and Wong (2007). The authors

study a generalized version of the network formation model introduced by Bala and
Goyal (2000).29 The equilibrium networks in their model are so-called “minimal”
graphs, which are graphs that maximize the number of agents that are connected
while maintaining only as few links as possible. It is intuitively clear that the most
sparse connected graph is a cycle. Thus, the authors find stable equilibrium networks
that consist of cycles. However, in Sect. 8.3.9.8 we will show that the network evo-
lution can reduce the set of possible cycles in the equilibrium network such that only
the smallest cycles survive.

Thus, cycles play an important role in the evolution of the network and the ability
of agents to have non-vanishing knowledge levels. Before we define the evolution
of the network in Sect. 8.3.9, we study the dynamics of the values of knowledge
for a static network in the next Sect. 8.3.8. There we will further specify the
cost functions under investigation: null costs and non-linear costs for maintaining
links.

8.3.8 Static Network Analysis

In the following, we analyze the growth functions for the value of knowledge and
study two cases separately. In the first, costs are set to zero while in the second costs
are a quadratic function of the values of knowledge of the agents.

8.3.8.1 Null Interaction Costs

The most simple case of our general framework is the one of linear benefit and null
costs.30

29 For a further study of Bala and Goyal (2000) applied to information networks see Haller et al.
(2007), Haller and Sarangi (2005).
30 This model has been studied by Jain and Krishna (1998b), Krishna (2003) to explain the origin
of life from the perspective of interacting agents. The model of Jain and Krishna intends to describe
the catalytic processes in a network of molecular species (which we will denote in the following by
agents). However, it was very soon suggested to be applicable to an economic innovation context
of interacting agents. In the next sections we will present a more general framework encompassing
some of the limitation of the present one. In their model the x were interpreted as concentrations
of chemical species. The ai j are the kinetic coefficients that describe the replication of agents i
resulting from binary interactions with other agents j .
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dxi

dt
= −dxi +

n∑

i=1

a ji x j . (8.44)

In vector notation (8.44) reads:

ẋ = (AT − dI)x, (8.45)

where AT is the transposed of the adjacency matrix and I is the identity matrix. The
solution of the set of equations (8.45) depends on the properties of the matrix A and
has the general form (matrix exponential):

x(t) = e−dt eATt x(0) (8.46)

representing an exponential increase in time of the vector of knowledge values. The
relative values of knowledge (shares) are given by

yi = xi
∑

j x j
;

∑

j

y j = 1. (8.47)

Rewriting (8.44) by means of (8.47) gives us the dynamics of the shares:

ẏi =
n∑

j

a ji y j − yi

n∑

k, j

a jk y j . (8.48)

Equation (8.48) has the property of preserving the normalization of y. Note that the
decay term does not appear in this equation for the relative values. It can be shown
(Horn and Johnson, 1990; Boyd, 2006; Krishna, 2003) that the eigenvector to the
largest real eigenvalue of AT (A respectively) is the stable fixed point of (8.48).31

If we consider an eigenvector y(λ) associated with the largest real eigenvalue λ of
matrix AT (identical to the largest real eigenvalue of A) we have

n∑

j=1

a ji y(λ)
j = λy(λ)

i . (8.49)

Inserting y(λ) into (8.48) yields

ẏ(λ)
i =

n∑

j

a ji y(λ)
j − y(λ)

i

n∑

k, j=1

a jk y(λ)
j (8.50)

31 If the largest real eigenvalue has multiplicity more than one then the stable fixed point can be
written as a linear combination of the associated eigenvector and generalized eigenvectors (Braun,
1993).
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= λy(λ)
i − y(λ)

i

n∑

k, j=1

a jk y(λ)
j

︸ ︷︷ ︸
λ
∑n

k y(λ)
k =λ

(8.51)

= λy(λ)
i − λy(λ)

i = 0. (8.52)

Thus, y(λ)
i is a stationary solution of (8.48). For the proof of stability see, e.g.,

Krishna (2003).

8.3.8.2 Increasing Interaction Costs

In the following, we study the evolution of the values of knowledge under a given
network structure and we try to compute the fixed points wherever possible. We
first show that the values of knowledge are non-negative and bounded. For graphs
with two nodes, for regular graphs (including the complete graph), cycles, and
stars with an arbitrary number of nodes, we can compute the equilibrium points
analytically. For generic graphs with n ≥ 3 nodes, we have to rely on numerical
integrations.

The non-linear (quadratic) dynamical system is given by

ẋi = −dxi + b
n∑

j=1

a ji x j − c
n∑

j=1

ai j x
2
i (8.53)

with initial conditions, xi (0) > 0. ai j are the elements of the adjacency matrix, A,
of a graph G. This can be written as

ẋi = −dxi + b
n∑

j=1

a ji x j − cd+i x2
i (8.54)

where d+i =
∑n

j=1 ai j is the out-degree of node i . In the case of increasing costs we
know that the values of knowledge are bounded. We have that

Proposition 18 For the dynamical system (8.53) the values of knowledge are non-
negative and finite, i.e., 0 ≤ xi <∞, i = 1, . . . , n.

Proof For the lower bound xi ≥ 0, we observe that

ẋi ≥ −dxi − c(n − 1)x2
i . (8.55)

The lower bound is the solution of the equation ẋ = −dx − c(n − 1)x2. The
solution of this equation can be found by solving the corresponding equation for the
transformed variable z = 1

x . We get x(t) = deda

edt−c(n−1)eda with an appropriate constant

a = 1
d ln x(0)

d+(n−1)c . Starting from non-negative initial values x(0) ≥ 0 this lower
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bound is non-negative as well and approaches null for large t , i.e., limt→∞ x(t) = 0.
We conclude that xi (t) ≥ 0.

In order to compute an upper bound, xi ≤ const.<∞we first make the following
observation. The nodes of a graph, G = (V, E), can be partitioned into nodes with-
out outgoing links, V f ⊆ V (“free-riders”), and nodes with at least one outgoing
link, Vs ⊆ V (sources).

Since the “free-riders” in V f have no outgoing links, the benefit terms of
the sources in Vs are independent of the values of knowledge of the free-riders.
Accordingly, a source node i ∈ Vs has the following knowledge dynamics.

ẋi = −dxi + b
∑

j∈Vs\i
a ji x j − cx2

i d+i , (8.56)

where d+i is the out-degree of node i . We can give an upper bound of

ẋi ≤ −dxi + b
∑

j∈Vs

x j − cx2
i . (8.57)

This upper bound has a (finite) fixed point and so does xi (t). The fixed point is
given by

dxi + cx2
i = b

∑

j∈Vs

x j . (8.58)

This is a symmetric equation and therefore all xi are identical, xi = x . For
contradiction assume that there would be xi 	= x j . Then we have that

dxi + cx2
i︸ ︷︷ ︸

b
∑n

k=1 xk

	= dx j + cx2
j

︸ ︷︷ ︸
b
∑n

k=1 xk

(8.59)

But the left and right side of the equation are identical and so two different xi , x j

cannot exist.
When all solutions are identical we get xi = x = bn−d

c ∀i . Thus, we have shown
that there exists an upper bound with a finite fixed point for the source nodes, that is
xi (t) ≤ ∞, i ∈ Vs .

We now consider the nodes with no outgoing links (“free-riders”). A node i ∈ V f

follows the dynamics

ẋi = −dxi + b
∑

j∈Vs

a ji x j . (8.60)

We have shown already that the source nodes are bounded by some constant,∑
j∈Vs

x j ≤ const. Thus, we have that
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ẋi ≤ −dxi + const. (8.61)

We have an upper bound of the xi , i ∈ V f , given by

xi (t) ≤ x0e−dt + const.

d
(8.62)

with limt→∞ xi (t) = const.
d . We have shown that for all nodes (sources Vs as well as

“free-riders” V f ) 0 ≤ xi <∞, i ∈ V (G). �
For special types of graphs we can deduce further results on the values of knowl-

edge of the agents. First, we can compute the fixed points (given by ẋi = 0) for
regular graphs.

Proposition 19 For any k-regular graph G the fixed point of the values of knowl-
edge is given by x∗ = kb−d

kc . In particular, the complete graph Kn has the highest

total value of knowledge among all regular graphs with x∗ = (n−1)b−d
(n−1)c .

Proof The dynamics of the values of knowledge of the nodes in a regular graph with
degree d+i = d−i = k is given by

ẋi = −dxi + b
∑

j∈Ni

x j − ckx2
i . (8.63)

Starting with homogeneous initial conditions we make the Ansatz xi = x i =
1, ..., n. We get the positive stable fixed points x∗ = kb−d

kc . �
Second, we can compute the fixed points for cycles.

Proposition 20 For any cycle Cn the fixed point of the values of knowledge is given
by x∗ = b−d

c .

Proof The dynamics of the values of knowledge of a cycle Ck of length k is given
by

ẋi = −dxi + bxi−1 − ckx2
i . (8.64)

Starting with homogeneous conditions we make the Ansatz xi = x , i = 1, . . . , n.
We get the positive stable fixed points x∗ = b−d

c . �
Third, the fixed points for a star can be computed (the proof can be found in the

Appendix (A)).

Proposition 21 For a star Kn,n−1 there exists a fixed point which increases with the
number of nodes. For d = 0 the star has a fixed point of x∗ = b

c .

Proof The dynamics of the values of knowledge of a star K1,n−1 is given by
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ẋ1 = +b
n∑

i=2

xi − c(n − 1)x2
i , (8.65)

(ẋi )i>1 = −dxi + bx1 − cx2
i , (8.66)

where we assume that all links are bidirectional. Starting with homogeneous initial
conditions we make the Ansatz xi = x2, i = 2, ..., n. Then x2 is determined by the
root of the polynomial

x3
2 +

2d

c
x2

2 +
d(cb + (n − 1)cd)

(n − 1)c3
x2 + b(d2 − (n − 1)b2)

(n − 1)c3
= 0. (8.67)

And x1 = d
b x2 + c

b x2
2 . For d = 0, we obtain x∗1 = x∗2 = b

c . �
The fixed point increases with the benefit b and decreases with the decay d and the
cost c.

We observe that, for vanishing decay, d = 0, the fixed point of the system is
identical for the regular graph, the cycle, and the star and given by b

c . As expected,
this fixed point is increasing with the benefit and decreasing with the cost. In a
regular graph the fixed point is increasing with the degree k and the asymptotic
value (for large k) is b

c . Thus, in a regular graph the fixed point ranges for increasing
k from b−d

c to b
c . Similarly, for the star the fixed point also increases with the number

of nodes (i.e., the degree of the central node) but we cannot provide an analytical
expression here. On the other hand, the fixed point of the cycle is independent of
the length of the cycle. This means that there is no incentive for nodes to be part of
larger cycles. And, as we will see in the next section, this limits the growth of the
network.

Example 22 We numerically integrate (8.53) for n = 2 nodes. We set d = 0.5,
c = 0.5, and b = 1. Fixed points are denoted x∗i for i = 1, 2. x∗i = 0 is a fixed point
for all graphs.

(1)

1 2

A1 =
0 1
1 0

0 5 10 15 20
0.5

0.6

0.7

0.8

0.9

1
x1
x2

x
i

t
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The fixed points are given by

x∗i =
b − d

c
, i = 1, 2, 3. (8.68)

(2)

1 2

A2 = 0
0 0

0 5 10 15 20
0

0.2

0.4

0.6

0.8
x1
x2

x
i

t

1

The fixed points are given by

x∗i = 0, i = 1, 2, 3. (8.69)

(3)

1 2

A3 =
0 0
0 0

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5
x1
x2

x
i

t

The fixed points are given by

x∗i = 0, i = 1, 2, 3. (8.70)

In general, the fixed points of (8.53) can only be computed numerically. As an
example, we compute the fixed points for all graphs with n = 3 nodes for a specific
choice of parameters. The results can be found in Appendix (A). In our model we
numerically integrate (8.53) for a large time T (and we find that in our simulations
the system always reaches a stable fixed point).
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8.3.9 Dynamics of Network Evolution

8.3.9.1 Network Evolution as an Iterative Process

After providing the static equilibrium analysis, in this section we turn now to the
dynamics of the network evolution by investigating different assumptions for the
creation and deletion of links in the network. In particular, we compare two differ-
ent scenarios, namely the so-called extremal dynamics, where agents do not decide
themselves about the link creation and deletion, and the utility driven dynamics,
where agents make this decision themselves based on different rules discussed
below.

We first define the utility of the agents in our model for a given network G.

Definition 23 Consider a (static) network G. The utility of agent i is given by

ui =
{

yi (T ), for Null Interaction Costs

xi (T ), for Increasing Interaction Costs
, (8.71)

where the value of knowledge xi (t) is given by (8.53) and A(G), the relative value
of knowledge yi (t) by (8.48) and A(G). T is called the time horizon.

We assume that the accumulation of knowledge is faster than the frequency of the
agents creating or deleting links.32 With this assumption, we can introduce a time-
scale separation between the accumulation of knowledge and the evolution of the
network.

The evolution of the system is then defined by an alternating sequence of
knowledge accumulation, where we keep the network fixed for a given time T ,
A(G) =const., and changes in the links (asynchronous updating of the nodes) (see
Fig. 8.7). When the knowledge accumulation has reached time T , the network struc-
ture is changed. A change in the network takes place by either link addition between
two agents i and j , ai j = 0 → ai j = 1, or by link removal, ai j = 1 → ai j = 0.
When the network has changed, the new utility, determined by (8.18), can be com-
puted for time 2T . This iterative procedure of knowledge accumulation and link

Fig. 8.7 Schematic
representation of the network
evolution as an iterative
process

initialization

xi reach
quasi-equilibrium

perturbation
of aij

32 This means that the value of knowledge on the market (which is not explicitly modeled here)
reaches a stationary state determined by the R&D collaborations of each agent (and her neighbors).
Only after this adaptation of the evaluation of the stocks of knowledge is finished, i.e., it has reached
a stationary state, agents asynchronously change their links.
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changes continues for 3T, 4T, ... and so on until the network reaches an equilibrium.
One can schematically represent this iteration by the following algorithm:

1. initialization: Random graph G(n, p).
2. quasi-equilibrium: fast knowledge growth/decline

With A fixed, agents evolve according to (8.13) for a given (large) time T .
3. perturbation: slow network evolution

After time T , the network evolves according to two alternative selection pro-
cesses:

1. Extremal Dynamics.33

The agent with the minimum utility is chosen (if there are more than one agent
with the same minimum value, then one of them is chosen at random). The
utility of that agent is set to its initial value and all its outgoing and ingoing
links are replaced with new random links drawn with probability p from and
to all other agents in the system.

2. Utility Driven Dynamics
An agent is randomly chosen to create or delete one link (unidirectional or
bidirectional link formation mechanisms, see Sect. 8.3.9.3). More specifically:

(i) Either a pair or a single agent is randomly chosen to create or remove a
link.

(ii) The effect of this link decision (creation or deletion) is evaluated at time T .
The evaluation can have the following consequences on the link decision.

• If the utility has increased, then sustain the link decision.
• If the utility has decreased, then undo the link decision.

4. Stop the evolution, if the network is stable (stability is defined in Sect. 8.3.9.3,
otherwise go to 2

8.3.9.2 Extremal Dynamics Versus Utility Driven Dynamics

Extremal dynamics intends to mimic natural selection (the extinction of the weakest)
and the introduction of novelty, which is a global selection mechanism. In contrast,
utility driven dynamics is a local selection mechanism that mimics the process by
which selfish agents improve their utility through a trial and error process.

The decision upon to add or to remove a link implies a certain level of informa-
tion processing capabilities (IPC) of the agents. IPC is usually bounded in a complex
environment consisting of many other agents and a complex structure of interactions
between these agents. In our approach we assume that the agents have no infor-
mation on the knowledge values of the other agents and only limited information
on their links (alliances). They only know with whom they interact directly (their
neighborhood). In Table 8.2 we give a short overview of levels of increasing IPC.

33 See Bak and Sneppen (1993).
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Table 8.2 Increasing levels of agents’ information processing capabilities (IPC)

0 Least fit addition/removal of links, e.g Jain and Krishna
(1998b)

1 Reactive (passive) acceptance/refusal of link changes.
2 Deliberate decision upon to add/remove a link based on an

individual utility function depending on the network, without
considering the possible decision of others. An example
would be the Connections model discussed in Sect. 8.2.2
with a utility function given by (8.4).

3 Strategic interaction, e.g., Bala and Goyal (2000),
considering the possible actions of others

Extremal dynamics refers to a situation in which agents are exposed to link
changes that they cannot influence and thus to level 0 in Table 8.2. Utility driven
dynamics instead requires a higher level of IPC than a mere acceptance or refusal of
link changes. But it requires less IPC than an approach assuming strategic interac-
tions of agents. This follows from the fact that in our model, agents do not estimate
how other agents could react on their decisions to change their links. This situation
refers to level 2 in Table 8.2. In this chapter, we compare two different settings, level
0 and level 2. In the following paragraphs, we describe them in more detail.

0 Extremal Dynamics: At time T the agent with the smallest utility is removed
from the system and replaced with a new one (market entry). The new agent is
randomly connected to the already existing agents and a small initial value of
knowledge is assigned to it. This process is a least fit replacement (extinction
of the weakest) and the new agent introduces a kind of novelty in the system
(innovation).

2 Utility Driven Dynamics: The main difference between local link formation
(utility driven dynamics) compared to global link formation (extremal dynam-
ics) is that agents are now individually taking decisions upon their interactions
and they do that on the basis of a utility function (their values of knowledge at
time T ). Agents are bounded rational since they explore their possible interaction
partners in a trial and error process. At every period, that is after time T , an
agent is selected at random to create and delete links (asynchronous update). We
distinguish two possible link formation mechanisms which we study separately,
namely unilateral and bilateral link formation. In the former, unilateral link for-
mation (i), the agent optimally deletes an old link and randomly creates a new
link. Optimal means that either for creation or deletion of links the action is taken
only if it increases the value of knowledge of the agent at time T in the range of all
possible actions. In the latter, bilateral formation (ii), the selected agent optimally
deletes a bilateral connection that she currently has or she randomly creates a new
bilateral connection. Here optimal (in the range of all possible actions) means,
that links are deleted if the initiator of the deletion, i.e., the selected agent, can
increase its value of knowledge at time T with the deletion of the link, while
for the bilateral creation both agents involved have to strictly benefit from the
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creation of the mutual connection.34 In the following two sections, we give a
description of mechanisms (i) and (ii).

To compare the two levels, for utility driven dynamics the evolution of the net-
work follows from local, utility driven, actions, as opposed to extremal dynamics,
where the evolution follows from a global stochastic process (least fit selection plus
random link formation). To be more specific about the latter, the rules for the net-
work evolution, i.e., the creation and deletion of links under extremal dynamics, are
the following:

Step 1 After a given time T the least fit agent, i.e., the one with the smallest ui =
yi (T ), is determined. This agent is removed from the network along with all
its incoming and outgoing links.

Step 2 A new agent is added to the network with some small initial value of knowl-
edge y0. The new agent will take the place of the old one (it gets the same
label), and randomly links itself to the other nodes in the network with the
same probability p. Each of the other nodes can in turn link itself to the
newcomer node with a probability p.

These rules for the network evolution are intended to capture two key features:
natural selection, in this case, the extinction of the weakest; and the introduction
of novelty. Both of these can be seen as lying at the heart of natural evolution. The
particular form of selection used in this model has been inspired by what Bak and
Sneppen have called “extremal dynamics” (Bak and Sneppen, 1993).

8.3.9.3 Rules for Link Creation and Deletion Using Utility Driven Dynamics

In this section, we introduce the process of the formation and deletion of links by
agents that maximize a local utility function (depending on the agent and its neigh-
bors). After time T , long enough such that the system reaches a quasi-equilibrium
in the values of knowledge, an agent is randomly chosen to create or delete a link,
either unidirectional or bidirectional.

Unilateral Link Formation

If agents unilaterally delete or create links, it is possible that the interactions they
form create a feedback loop, i.e., a closed cycle of knowledge sharing agents, that
involves more than two agents. This introduces the concept of indirect reciprocity
(see Sect. 8.3.3). Unilateral formation of links (we then have a directed network) is
necessary for indirect reciprocity to emerge, since if all interactions were bilateral
they would be direct reciprocal by definition. We now describe the procedure of
unilateral link creation and deletion.

34 This behavior is individually optimal and thus may also be called rational.
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1. Random Unilateral Creation
An agent creates a link to another one to which it is not already connected at
random and evaluates the creation of the link by comparing the change in their
values of knowledge before and after the creation. Only if the change is positive,
the link is maintained, otherwise the agent does not create the link. In this way
agents explore possible partners for sharing their knowledge in a trial and error
procedure (Fig. 8.8).

Step 1 An agent i is selected at random.
Step 2 Another agent j is selected at random which is not already an out-

neighbor of i .
Step 3 Agent i creates an outgoing link to agent j .
Step 4 The new utility (for the old network plus the new link ei j ) of agent i is

computed and compared with the utility before the creation.
Step 5 Only if agent i’s utility strictly increases compared to her old utility, then

the link is created.

2. Optimal Unilateral Deletion
An agent deletes one outgoing link if this increases her utility (Fig. 8.9).

Step 1 Agent i is selected at random s.t. it has at least one outgoing link.
Step 2 Agent i deletes separately each of its outgoing links to its neighbors v j ∈

N+i and records the change in her utility, Δui . Before the next link is
deleted, the previous one is recreated.

Step 3 Agent i computes the maximum change Δui and if it is positive, deletes
the referring link. This means that only one link is finally deleted. The
deletion only takes place if the current agent strictly increases her utility.

To characterize the equilibrium networks under this link formation and deletion
mechanism, we introduce the following characterization of stability.35

Definition 24 A network is unilaterally stable if and only if (i) no agent can create
a link to (strictly) increase her utility and (ii) no agent can remove a link to (strictly)
increase her utility.

Fig. 8.8 Random unilateral
creation 1 2

create

Fig. 8.9 Optimal unilateral
deletion

1

23

4 5

delete

35 Compare this to the definition of bilateral stability (8.20)
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Bilateral Link Formation

If agents form links bilaterally then all interactions are direct reciprocal by defini-
tion. We describe the process of bilateral link creation and deletion in the following
paragraphs:

1. Random Bilateral Creation
In this link creation process, a pair of agents is selected at random and given the
possibility to form a bilateral connection (Fig. 8.10).

Step 1 Two agents are uniformly selected at random such that they are not
connected already.

Step 2 Both agents create an outgoing link to each other and therewith create a
2-cycle.

Step 3 The new utilities (for the old network plus the new 2-cycle) of both agents
are computed and compared with the utilities before the creation.

Step 4 Only if both agents strictly benefit in terms of their utilities compared to
their old utilities, then the bilateral connection is created.

2. Optimal Bilateral Deletion
An agent deletes one of its outgoing links to another agent from which the agent
also has an incoming link if this deletion increases her utility (Fig. 8.11).

Step 1 Agent i is selected at random such that it has at least one mutual link to
another agent.

Step 2 From all bilaterally connected neighbors agent i deletes separately each
of its outgoing links to its neighbors (and so does each neighbor j to
agent i). For each, the change in the utility, Δui is recorded. Before new
links are deleted, the old ones are recreated.

Step 3 Agent i computes the maximum change Δui and, if it is positive, the
referring bilateral connection is deleted. The deletion only takes place if
agent i strictly increases her utility.

In order to characterize the equilibrium outcomes of our simulations, we will
introduce a characterization of network stability. This definition has been introduced
already in Sect. 8.2.2 and we repeat it here for expository reasons.

Definition 25 A network G is pairwise stable if (i) removing any link does not
increase the utility of any agent and (ii) adding a link between any two agents,
either doesn’t increase the utility of any of the two agents, or if it does increase one
of the two agents’ utility then it decreases the other agent’s utility.

Fig. 8.10 Random bilateral
creation

1 2

create

create
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Fig. 8.11 Optimal bilateral
deletion
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delete
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8.3.9.4 The Role of the Time Horizon for Unilateral Link Formation

So far, we have assumed that the time horizon T (after which agents evaluate their
decisions to create or delete links) is long enough such that the values of knowledge
reach a stationary state and the utilities of the agents are given by the fixed points
of the values of knowledge. In this section, we discuss the effect of a time horizon
that is smaller than the time to convergence to the stationary state of the values of
knowledge. For related works that incorporate a finite time horizon in the evaluation
of the actions of agents see, e.g., Huberman and Glance (1994) or Lane and Maxfield
(1997).

If we consider utility driven dynamics, we will show that permanent networks
with positive values of knowledge emerge if agents wait long enough (with respect
to the time the values of knowledge need in order to reach a stationary state) in
evaluating their decisions. This is a necessary condition. Otherwise networks are not
able to emerge or, if a network with positive knowledge values is existing already, it
gets destroyed over time (network breakdown). This effect is important in the case
of null as well as increasing costs.

To illustrate this point, we consider a 5-cycle of agents and the deletion of one
link in this cycle which creates a linear chain of five nodes, Fig. 8.12. The evolution
of value of knowledge for null costs and for costs c = 0.5 can be seen in Fig. 8.13.

More formally we can give the following proposition:

Proposition 26 Consider the dynamical system (8.21). For a directed path Pk of
length k the value of knowledge of node k is larger than ε for t ≤ τ (ε), i.e., xk(t ≤
τ (ε)) ≥ ε while limt→∞ xk(t) = 0.

Proof Consider a directed path Pk of length k (Fig. 8.14).
For node 1 (the source has no incoming links) in (8.21) we get

ẋ1(t) = −dx1 − cx2
1 . (8.72)

By introducing the variable z = 1
x1

and solving for z, one can find the solution
for x1

Fig. 8.12 A 5-cycle and a
linear chain of five nodes
(obtained from the cycle by
removing one link)
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Fig. 8.13 Numerical integration of the value of knowledge for d = 0.5, b = 1.0, null cost c = 0.0
(left) and cost c = 0.5 (right): evolution of knowledge values for a linear chain of five nodes
(obtained from the C5 by removing a link). The agent that removes the link (black upper curve)
initially experiences an increase in the value of knowledge. After an initial increase she experiences
a decline and at a certain time her value of knowledge reaches her initial value (1/n in the case of
null cost and (b − d)/c in the case of increasing cost) and then it further decreases. After a time
long enough her value of knowledge vanishes completely

1 2 k − 1 k· · ·
Fig. 8.14 A directed path Pk of length k

x1(t) = deda

edt − ceda
(8.73)

with a constant a = 1
d ln x1(0)

d+c and the limit limt→∞ x1(t) = 0. Accordingly, for the
k-th node we have that

ẋk = −dxk + bxk−1 − cx2
k . (8.74)

Since xk ≥ 0, from Proposition (18), the following inequality holds

ẋk ≥ −dxk − cx2
k (8.75)

and

xk(t) ≥ deda′

edt − ceda′ (8.76)

with a proper constant a′ = 1
d ln xk (0)

d+c . Equating with ε(t) at t = τ we get

ε = d

edt−da′ − c
(8.77)
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which yields

τ (ε) = ln
(

d
ε
+ c

)+ a′d
d

. (8.78)

Thus, we have found an ε(τ ) such that for t ≤ τ (ε) xk(t) ≥ ε. The limit
limt→∞ xk(t) = 0 follows directly from the fact that the directed path Pk is a directed
acyclic graph and we can apply Proposition (15). �

With Proposition (26) one can readily infer the following. If an agent in a cycle
Ck of length k removes a link unilaterally then a path Pk is created. If the time
horizon after which the agent evaluates this link removal is smaller then τ (ε)) the
agent’s value of knowledge satisfies xk(t ≤ τ (ε)) ≥ ε (this gives the utility of the
agent, see (23)). From Proposition (20) we know that the value of knowledge of
the agent in the cycle is given by xk(0) = b−d

c . Choosing τ (ε) such that ε > b−d
c

gives xk(t ≤ τ (ε)) ≥ xk(0) and the agent experiences an increase in her utility by
removing the link. The agent removes the link in order to increase her utility. This
destroys the cycle. The time horizon of the agent in this case is too short in order
to anticipate the vanishing long-run values of knowledge of all the agents in the
resulting path, limt→∞ x(t) = 0.

From this observation we conclude that if the time horizon is too short, then
all cycles would get destroyed and no network would ever be able to emerge nor
sustain, since only cyclic networks can be permanent. Agents who remove their
links because, in the short run, their utility increases therewith, can be considered as
free-riders. The value of knowledge is maintained by their predecessors in the cycle
while they refuse themselves to contribute to knowledge sharing and production in
the network since they do not have any outgoing links. In the short run they benefit
from the knowledge shared and produced in the network without contributing to it.
However, as we have seen from the discussion above, in the long run this causes the
total value of knowledge of the network to vanish. Therefore, we can say that the
free-riding behavior of agents leads to the breakdown of the economy.

8.3.9.5 Simple Equilibrium Networks for Unilateral Link Formation

In this section, we identify the most simple equilibrium networks for unilateral link
formation. There exists a multitude of other equilibrium networks which usually
cannot be computed analytically and which depend on the parameter values for
decay, benefit, and cost.

The most simple equilibrium network is the empty network.

Proposition 27 The empty graph is unilaterally stable.

Proof In an empty graph all nodes have vanishing values of knowledge. Creating a
link does not create a cycle (which would be the case however if links were formed
bilaterally) and thus the empty graph plus a link is a directed acyclic graph with
vanishing values of knowledge, see Proposition (15). The creation of a link does not
increase the utility of an agent. Thus, the agents do not form any links. �
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Moreover, if all agents form disconnected cycles then we have an equilibrium
network.

Proposition 28 The set of disconnected cycles {C1, ..., Ck}, and possibly isolated
nodes is unilaterally stable.

Proof We give a proof for 2-cycles. The proof can easily be extended to cycles of
any length. Consider the two cycles C1

2 and C2
2 in Fig. 8.15.

From Proposition (20) we know that the fixed points are given by xi = b−d
c ,

i = 1, ..., 4. In order to show that we have a unilaterally stable equilibrium, we (i)
first show that no link is created and in the following (ii) that no link is deleted.

(i) If a link is created (w.l.o.g.) from node 2 to 4 we get from the dynamics on the
value of knowledge in the case of increasing interaction costs given by (8.21)

ẋ1 = −dx1 + bx2 − cx2
1

!= 0

ẋ2 = −dx1 + bx1 − cx2
2

!= 0
. (8.79)

From the first order conditions for the fixed points we get for node 1

x1 = bx2 − c

d
. (8.80)

And inserting this into the fixed point of node 2 gives

x2 = b2 − d2 +√b4 − 8bc3d − 2b2d2 + d4

4cd
(8.81)

If the last inequality is fulfilled, then the creation of the link would decrease the
utility of agent 2. The inequality holds if c3 ≥ (d−b)3

b which is certainly true for
b > d and c > 0. Thus, no link is created between the cycles.

(ii) If a link is deleted in a C2 then we get vanishing steady-state values of knowl-
edge. Since b−d

c ≥ 0 this would reduce the utility of the agent. Therefore, the
link is not removed.

If there are k ≤ � n
2 � 2-cycles in G then the above argument holds for any pair of

cycles. Similarly, no isolated node can create a link in order to increase her utility
nor can a node in a cycle create a link to an isolated node. Neither link creation

Fig. 8.15 Two cycles C1
2 and

C2
2 and the cases of link

creation (i) and deletion (ii)

1

2

3

4

(ii)

(i)
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nor removal increases the utility of the initiating agent and so the set of 2-cycles is
unilaterally stable. �

We further conjecture that a set of disconnected autocatalytic sets, where an auto-
catalytic set is defined as a set of nodes each having an incoming link from a node of
that set (Jain and Krishna, 2001), stays disconnected under unilateral link formation.
Thus, the size (in terms of nodes) is stable.

With (28) we know that a cycle is unilaterally stable. In Sect. 8.3.9.4, however,
we have shown that this result is critically depending on the time horizon T after
which the action of an agent is evaluated (and it is true for cycles of any length only
if T →∞).

For parameter values d = 0.5, b = 0.5, and c = 0.1 also, the complete graph
with three nodes K3 and the path P3 is unilaterally stable. We observe this in simula-
tions in Fig. 8.22. However, by computing the fixed points numerically for d = 0.5,
b = 0.5, and c = 0.1 in Appendix (A) one can see that K3 is no longer unilaterally
stable (because removing a link increases the utility of an agent).

In the next section, we investigate if the dynamic processes of link formation and
deletion lead to the simple equilibrium structures suggested above (and indeed we
show that they are not obtained).

8.3.9.6 Simulation Studies Using Different Growth Functions

In the remainder of this chapter, we study simulations with different growth func-
tions (for the value of knowledge) and different link formation mechanisms. We
assume that the time horizon T is long enough such that the values of knowledge
reach their stationary state. The dynamics of the value of knowledge is given by
(8.19) with null costs or by (8.21) with increasing costs. The different link formation
mechanisms are described in Sect. 8.3.9.2. We compare the equilibrium networks
obtained from different costs and link formation rules in terms of their structure and
performance. Finally, we study the effect of different positive network externalities
on the equilibrium networks.

Table 8.3 gives an overview of the simulations that we study in the following.
We set d = 0.5, b = 0.5, and c = 0.1. The complete set of parameter values used
throughout this section can be found in Table 8.5 in the Appendix (C).

8.3.9.7 Null Interaction Costs

In the following, we briefly discuss the evolution of the network with least fit link
formation and null link costs. This model has been studied in detail by Seufert and
Schweitzer (2007); Jain and Krishna (2001). Later Saurabh and Cowan (2004) have
applied it to an innovation model where new ideas are created and destroyed in a
network of ideas.

In this model agents do not have to pay costs for maintaining interactions.
Accordingly, the dynamics on the values of knowledge is given by (8.19)
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Table 8.3 Overview of the simulation studies in the following sections with different knowledge
growth functions and different link formation mechanisms

Knowledge Dynamics Network Dynamics Section

Null costs, ci j = 0: Least fit replacement (8.3.9.7)
dxi
dt = −dxi + b

∑n
j=1 a ji x j

Quadratic cost, ci j ∝ x2
i : Least fit replacement (8.3.9.8)

unilateral link formation
dxi
dt = −dxi + b

∑n
j=1 a ji x j − c

∑n
j=1 ai j x2

i bilateral link formation

Quadratic cost, ci j ∝ x2
i , and Unilateral link formation (8.3.9.9)

externality, w j i :
dxi
dt = −dxi +

∑n
j=1(ba ji + bew j i )x j − c

∑n
j=1 ai j x2

i

dxi

dt
= −dxi + b

n∑

j=1

a ji x j

and the dynamics in the shares of the values of knowledge yi = xi/
∑n

j=1 x j is
given by (8.48).

ẏi =
n∑

j

a ji y j − yi

n∑

k, j

a jk y j .

The utility is given by ui = yi (T ). We have described in Sect. 8.3.8 that the fixed
point (stationary solution) of the relative values of knowledge in (8.48) exists and
is given by the eigenvector to the largest real eigenvalue of the adjacency matrix.
We assume that the time horizon T (after which links get created or deleted) is
large enough such that the system has reached this stationary state before links are
changed.

Extremal Dynamics: Least Fit Replacement

After time T the worst performing agent (in terms of her share of value of knowledge
yi (T )) is replaced with a new one. We have described this global link formation
mechanism in Sect. 8.3.9.2. Jain and Krishna (1998a, 2001), Seufert and Schweitzer
(2007) have extensively studied the behavior of the dynamics on y and the network
G represented by A(G). They showed that strongly connected sets of nodes with
free-riders (that are receiving knowledge from the strong component but are not
contributing knowledge back to the strong component) attached36 appear and get
destroyed in the process of repeatedly removing the worst performing node (with
minimum yi ) and replacing it with a new one.

36 Jain and Krishna (2001) denote this set of nodes the autocatalytic set (ACS): it is a subgraph of
nodes in which every node has at least one incoming link from that subgraph.
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Fig. 8.16 Least fit replacement: (a) Average utility. (b) Average degree. (c) Initial random graph.
(d) Graph after 5000 iterations

In computer simulations we can reproduce the results of Jain and Krishna (2001),
Seufert and Schweitzer (2007). We observe crashes and recoveries in the average
utility and degrees of the agents over time as can be seen in Fig. 8.16. Thus, no
stable equilibrium network can be realized with this type of network dynamics.

In the model of Jain and Krishna (2001) links are costless. In the next Sect. 8.3.9.8
we assume that links have a cost attached, that is an increasing function of the value
of knowledge that is being transferred (Sect. 8.3.9.8).

Moreover, the least fit network dynamics treats agents as completely passive units
that are exposed to an external selection mechanism. In a more realistic approach
one should take into account that agents are deliberately deciding upon with whom
to engage in an R&D collaboration or to share their knowledge with. These deci-
sions are taken on the basis of increasing a utility function, that is their value
of knowledge.37 We introduce local link formation rules in Sect. 8.3.9.3. More-
over, as a further extension we study the effect of positive network externalities in
Sect. 8.3.9.9.

37 A model in which the eigenvector associated with the largest real eigenvalue is used as a utility
function is studied in Ballester et al. (2006).
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8.3.9.8 Increasing Interaction Costs

In this section we study the effect of increasing costs for maintaining interactions
with other agents on the resulting equilibrium networks. The evolution of the value
of knowledge is given by (8.53) and the utility of the agents by (8.18). The cost of
a link depends quadratically on the value of knowledge of the agent that initiates
the interaction. We study three different link formation mechanisms. The first is a
least fit replacement. We will compare the results of the simulation with the preced-
ing section where links were costless. In the following two sections link formation
mechanisms are studied in which agents decide locally upon to create or delete
links either unilaterally or bilaterally based on their utility (8.18). We assume that
the time horizon is long enough such that the utility of the agents is given by the
fixed points of the value of knowledge. We will show that least fit replacement of
agents leads to a total network breakdown eventually from which the system cannot
recover. Moreover, we show that bilateral link formation leads to a complete graph
while with unilateral link formation this is not the case. For unilateral link formation
only a small number of agents have non-vanishing knowledge values in the resulting
equilibrium network and these cluster together in bilateral connections. Depending
on the link formation mechanism and the parameter values (for decay, benefit, and
cost) the equilibrium networks can vary considerably.

The evolution of the value of knowledge of agent i (8.53)

dxi

dt
= −dxi + b

n∑

i=1

a ji x j − c
n∑

i=1

ai j x
2
i

and her utility is given by ui = xi (T ).

Extremal Dynamics: Least Fit Replacement

Similarly to the preceding section, links are formed and removed by a least-fit selec-
tion mechanism (introduced in Sect. 8.3.9.2). The agent with the smallest utility
(8.18) is replaced with a new agent. But in this section costs for maintaining links
are an increasing function of the knowledge value of the transmitting agent.

In this setting, it is possible that the system breaks down completely. A simulation
run exhibiting such a crash can be seen in Fig. 8.17. If the network is sparse enough
the link removal mechanism can destroy the cycles in the network and thus creates
a directed acyclic graph. As soon as the network evolution hits a directed acyclic
graph, all value of knowledge vanish (and accordingly the utilities of the agents)
and the network entirely breaks down.

We do not experience a breakdown of the network in the case of null costs in the
last section since there we were considering relative values of knowledge only. The
normalization of the relative values,

∑n
i=1 yi = 1 prevents all the shares to become 0

at the same time, yi = 0 ∀i . Thus, we do not get a total breakdown of the network in
which all values of knowledge vanish. Instead, there the system can always recover
from a crash of the network.



8 Modeling Evolving Innovation Networks 243

0 2000 4000 6000
0

0.5

1

1.5

2
u

×T
a

0 2000 4000 6000
0

0.5

1

1.5

2

d

×T
b

15

20

1
2

13

4

21

3

24

26

7

8
11

29

17
19

9 27

18

12

14

23

22

6

25

5

28

10

0
16

15

20

1
2

13

4

21

3

24

26

7

8
11

29

17
19

9 27

18

12

14

23

22

6

25

5

28

10

0
16

c

6

17

3

5

1

22

9

7

16

29

0

19

12

23

14

13

18

28

20

25

21

27

24

4

11

26

10

8

2

15
6

17

3

5

1

22

9

7

16

29

0

19

12

23

14

13

18

28

20

25

21

27

24

4

11

26

10

8

2

15

d

Fig. 8.17 Extremal dynamics: (a) Average utility. (b) Average degree. (c) Initial random graph.
(d) Graph after 5000 iterations (in the equilibrium). The network experiences a total breakdown
eventually

Utility Driven Dynamics: Bilateral Link Formation

In this section, agents are creating or deleting links bilaterally. All interactions are
therefore direct reciprocal. In simulations we observe the following effect. Bilat-
eral creation and deletion results in a complete subgraph (the average degree is
1/n

∑
di = 1/20× 8× 7 = 2.8, see Fig. 8.20) of the agents that were part of a per-

manent set in the initial graph38 (the stability criterion which defines an equilibrium
network is given in (25)).

Utility Driven Dynamics: Unilateral Link Formation

The mechanisms of unilateral creation and deletion of links has been introduced in
Sect. 8.3.9.3. In our simulations we observe the following effect. When we allow for
unilateral link formation, large cycles get reduced to a small set of 2-cycles. In the
equilibrium network (the stability criterion which defines an equilibrium network is

38 The creation of the initial random graph with a given link creation probability has been chosen
rather small such that only a few nodes are permanent.
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Fig. 8.18 Bilateral link formation: (a) Average value of knowledge. (b) Average degree. (c) Initial
random graph (for reasons of visualization we have chosen a rather sparse random graph). (d)
Graph after 1000 iterations (in the equilibrium)

given in (8.19)) most of the agents are isolated nodes and thus have vanishing values
of knowledge. Only a few of them are organized in 2-cycles and small subgraphs
consisting of multiple 2-cycles. As we will show, the reason for this is that as soon
as there exists a shortcut (a smaller cycle) in a larger cycle agents try to free-ride
and, after the other agents have realized that and sopped sharing their knowledge
with them, they get isolated and experience vanishing values of knowledge. One
can interpret this result as follows: Even though agents could in principal form
indirect reciprocal interactions the resulting equilibrium network consists only of
direct reciprocal interactions (2-cycles and clusters of 2-cycles).

We can give an example of the process of the reduction of cycles in a graph
G with three nodes for parameter values d = 0.5, b = 1, and c ∈ (0, 1). By
numerically comparing utilities (the fixed points of the value of knowledge) before
and after a link is created or deleted, we show that there exists a sequence of link
deletions and creations which transform a 3-cycle into a 2-cycle while every link
change is associated with an increase in the utility (the fixed point in the value of
knowledge) of the initiating agent (Jackson (2003) calls this sequence of graphs an
“improving path”).

In Fig. 8.19 (left) agent 3 creates a link to agent 1 because in this range of
parameters this increases her value of knowledge. This can be seen in Fig. 8.19
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Fig. 8.19 Agent 3 forms a link to agent 1, e31, and thus a 2-cycle is created inside a 3-cycle. The
situation is illustrated on the left hand side. On the right, the evolution of the values of knowledge
for different values of cost is shown
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Fig. 8.20 Deletion of the link e21. Agent 2 is not sharing any knowledge with others but only
receiving knowledge from agent 3. Thus, agent 2 is free-riding. The situation is illustrated on the
left hand side. On the right, the evolution of the values of knowledge for different values of cost
are shown

(right), where the increase Δx3 different costs c ∈ (0, 1) are plotted and Δu3 =
limt→∞Δx3 > 0.

In Fig. 8.20 (left) agent 2 removes her link to agent 1 and thus she stops con-
tributing knowledge but instead is only receiving knowledge from agent 3. We say
that agent 2 is free-riding. This increases her utility, since Δu2 = limt→∞Δx2 > 0,
as can be seen in Fig. 8.20 (right) for different costs c.

Finally, in Fig. 8.21 (left) agent 3 removes her link to agent 2 because she is
better off, as illustrated in Fig. 8.21 (right), when she stops contributing knowledge
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Fig. 8.21 Deletion of the link e32 by agent 3. Agent 3 realizes that she is better off by not sharing
her knowledge with agent 2. Agent 2, who was free-riding before now gets isolated and experiences
a vanishing value of knowledge in the long run. The situation is illustrated in the figure to the left.
On the right, the evolution of the values of knowledge for different values of cost are shown
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Fig. 8.22 Unilateral link formation: (a) Average utility. (b) Average degree. (c) Initial random
graph. (d) Graph after 2000 iterations (in the equilibrium). For the parameter values d = 0.5,
b = 0.5, c = 0.1, used in this simulation, the complete graph K3 is an equilibrium. Note from
Appendix (A) one can see that for parameter values d = 0.5, b = 1, c = 0.5 this is no longer the
case and K3 would be reduced to a 2-cycle C2

Agent 2 therefore gets isolated and experiences a vanishing value of knowledge in
the long run, limt→∞ x2 = 0. Her utility is null.

We end up in a setting where out of a cooperation of many (the sharing of knowl-
edge) only a small set of cooperators remains and all the remaining agents vanish,
i.e., have vanishing values of knowledge and utility. We can see this in a simulation
starting from an initial random graph with 30 agents and the resulting equilibrium
network in Fig. 8.22 (bottom right).

Since the performance of the system in terms of the total value of knowledge
is very low, we investigate in the next section the conditions under which the per-
formance can be increased (with more agents being permanent in the equilibrium).
We find that the existence of a positive network externality (explained in the next
section) can enhance the performance of the system.

to an agent that is nothing contributing in return. This is actually true for agent 2.
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8.3.9.9 Introducing Positive Network Externalities

In this section, we study the growth of the value of knowledge which includes an
additional benefit term contributing to an increase in the value of knowledge. This
additional benefit depends on the network structure itself. In the economic literature
(Mas-Colell et al., 1995; Tirole, 1988), “positive network externalities arise when a
good is more valuable to a user the more users adopt the same good or compatible
goods.” In our model we define a network externality simply as a function of the
network structure that affects the utility of an agent. Including the externality in
the benefit can yield more complex structures with non-vanishing knowledge values
as equilibrium networks. More precisely, we introduce weights for the connections
between the agents that depend on a measure of network externalities that we will
introduce in the following sections. This means that, if we have strong network
externalities between agent i and agent j , then the weight wi j will represent this
effect and attain a high value. Taking into account the existence of such network
externalities, the growth of the value of knowledge of agent i is given by the
following equation:

dxi

dt
= −dxi + b

n∑

i=1

a ji x j + be

n∑

i=1

w j i x j

︸ ︷︷ ︸
positive network externality

−c
n∑

i=1

ai j x
2
i (8.82)

and the utility is again given by ui = limt→∞ xi (t). Link changes are based on
the increase in utility. The network benefit incorporates the fact that the value of
knowledge can change with the number of users of that knowledge, (8.82). But
the number of users can either enhance or diminish the value of knowledge that
is being transferred between agents, depending on the type of knowledge under
investigation. On one hand, the value can decrease with the number of agents that
pass on that knowledge. Knowledge is attenuated with the distance from the creator
to the receiver. We study this type of knowledge with a link weight defined in (8.82)
and denoted by wc

j i . In the next section, we study the opposite effect: the value of
knowledge increases with the number of users. This holds for example for general
purpose technologies that get more valuable the more they are applied and used
in different contexts (and users). The link weights used for this type of knowledge
in (8.82) are denoted by wccn

j i , wcce
j i , where the first measures the number of agents

using that knowledge and the second the number of interactions.
We introduce different link weights, denoted by wc

j i , w
ccn
j i , wcce

j i . Moreover, agents
are creating and deleting links unilaterally (utility driven dynamics). We then study
the effect of different weights on the equilibrium networks obtained.

Shortest-Path Centrality

The growth function of the value of agent i is given by
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dxi

dt
= −dxi +

n∑

j=1

(ba ji + bew
c
j i )x j − c

n∑

j=1

ai j x
2
i . (8.83)

The utility is given by ui = limt→∞ xi (t) (large T ). Link changes are accepted on
the basis of an increase in utility. The shortest-path centrality measure computes the
sum of the inverse lengths of all the shortest paths containing the link for which the
centrality is computed. If two agents are not connected then the length of the path is
assumed to be infinity and thus its weight is zero. Instead, if two agents are directly
connected via a link, then the weight is one. The weight values links more that bring
agents closer to each other. This is a similar approach to the Connections Model
introduced in Sect. 8.2.2 with a utility given by (8.4). The centrality link weight,
wc

i j , is then computed as follows:

wc
i j =

∑

v∈V

1

(d jv + 1)
, wc

i j ∈ [0, 1], (8.84)

d jv is the shortest path between node j and node v. If there exists no path between
two nodes, then the distance between them is infinity.39

In simulations, Fig. 8.23, we observe that in the equilibrium network only a few
agents have non-vanishing utilities (the asymptotic knowledge values) and most of
them are isolated nodes with zero utilities. This result does not differ too much
from the studies in Sect. 8.3.9.8 where no externality is considered. Apparently, if
more agents should have non-vanishing utilities induced by an additional benefit
depending on the network structure, this cannot be realized with the centrality link
weight.

Circuit-Centrality

The circuit-centrality measure puts a weight on the links that depends on the number
of distinct nodes that are contained in all the circuits going through the link under
consideration. The motivation is that, if many agents are involved in the transfer
of knowledge and this knowledge then comes back to the agent (thus creating a
feedback on the technology issued by the agent), it gets an added value (e.g., for
general purpose technologies (GPT) (Bresnahan and Trajtenberg, 1995; Karshenas
and Stoneman, 1995; Cohen, 1995)). The more agents use a technology the more
it is improved and so the more agents are involved in such a feedback loop the
higher is the value of the technology. We can either count the number of different
agents involved in this feedback loop or the number of interactions (links). Either
possibility is explored in the next sections. This is an alternative way to study the

39 We use a standard depth-first-search algorithm to compute the shortest paths. More details on
this algorithm and further discussion is given in Ahuja et al. (1993), Cormen et al. (2001), Steger
(2001), Steger and Schickinger (2001).
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Fig. 8.23 Shortest-path Centrality: (a) Average utility. (b) Average degree. (c) Initial random
graph. (d) Graph after 500 iterations (in the equilibrium)

emergence of indirect reciprocity where others Nowak and Sigmund (2005) have
studied it by introducing a (global) reputation mechanism.

We then define the weight of a link wi j as (i) the number mn of distinct nodes
that are in the circuits from node i to j ,

wccn
i j =

mn

n
, wccn

i j ∈ [0, 1] (8.85)

and (ii) the number me of distinct links that are in the circuits from node i to j ,

wcce
i j =

me

n(n − 1)
, wcce

i j ∈ [0, 1]. (8.86)

An example of the different link weights can be seen in Fig. 8.23.
In order to compute all circuits in a directed graph G, one needs to compute

the trails in G. The closed trails then are the circuits in G. We use an algorithm to
compute all trails in G from a given source node s. An explanation of the algorithm
is given in Appendix (B).
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Fig. 8.24 The link e12 is
contained in two circuits with
nodes 1, 2, 4 and 1, 2, 3, 4.
The number of distinct nodes
in these circuits is 4 and the
number of distinct links is 5.
Accordingly, wccn

i j = 4
4 = 1

and wcce
i j = 5

12 = 0.42

1

2

4

3

By introducing the circuit-centrality externality, we will show that more agents
are permanent in the equilibrium network. The performance of the system is
increased compared to the equilibrium networks that emerge with unilateral link
formation without this externality.

Using circuit-centrality measure with the number of nodes (8.85), the growth of
the value of knowledge is given by

dxi

dt
= −dxi +

n∑

j=1

(ba ji + bew
ccn
j i )x j − c

n∑

j=1

ai j x
2
i . (8.87)
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Fig. 8.25 Circuit centrality as a function of the number of nodes: (a) Average utility. (b) Average
degree. (c) Initial random graph. (d) Graph after 500 iterations (in the equilibrium)
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The utility is given by ui = limt→∞ xi (t) (large T ). Link changes are accepted on
the basis of an increase in utility. Different to the centrality externality (Sect. 8.3.9.9)
we observe larger cycles as the equilibrium networks. This can be seen in the
simulation run in Fig. 8.25. This positive externality allows for more agents to
be permanent in the equilibrium network than without an externality or with the
centrality-externality. We thus obtain a higher performance of the system.

Using the circuit-centrality measure with the number of links (8.86), the growth
of the value of knowledge is given by

dxi

dt
= −dxi +

n∑

j=1

(ba ji + bew
cce
j i )x j − c

n∑

j=1

ai j x
2
i . (8.88)

The utility is given by ui = limt→∞ xi (t) (large T ). Link changes are accepted on
the basis of an increase in utility. The circuit-centrality with the number of links
values the number of interactions instead the number of agents, that take part in
the transfer of knowledge. We still observe (Fig. 8.26) the emergence of circuits as
equilibrium networks and a similar level of performance (in terms of the total value
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Fig. 8.26 Circuit centrality as a function of the number of links: (a) Average utility. (b) Average
degree. (c) Initial random graph. (d) Graph after 500 iterations (in the equilibrium)
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of knowledge of the system). But now there are more circuits (more links) in the
subgraph containing the set of permanent agents. The equilibrium network has a
higher level of redundancy (since its has more circuits and links) and is therefore
more robust against the destruction of a single circuit (induced by a node or link
failure).

8.4 Discussion and Conclusion

8.4.1 Results from the Novel Modeling Approach

In the following, we summarize the results found by studying our model of inno-
vation dynamics, as described in Sects. 8.3. Let us start by looking at the dynamics
of the value of knowledge in a static network, in Sect. (8.3.8). If we assume that
growth occurs only through interaction among agents (thus neglecting “in-house”
R&D capabilities), then the network sustains itself only through cycles (more pre-
cisely through closed walks or strongly connected components). Agents survive and
grow only if they are part of a cycle (strongly connected component) or if they are
connected to such a cycle through an incoming path.40 We have shown that an inno-
vation network which is acyclic will have vanishing knowledge values for all agents
in the network. However, if agents form cycles they have permanent knowledge
values.

Considering the evolution of the network we have studied two different settings,
Extremal Dynamics and Utility Driven Dynamics. If the network evolves according
to a least fit selection mechanism (extremal dynamics) then we observe crashes and
recoveries of the knowledge values of the agents and the network itself. Thus, an
extremal market selection mechanism which replaces the worst performing agent
with a new agent cannot generate equilibrium networks nor does it sustain a high
performance in the value of knowledge of the individual agents or the economy as a
whole. Notice also that extremal dynamics means that agents are completely passive
and have no control on whom they interact with.

In a more realistic setting (utility driven dynamics), agents decide with whom
they interact and they do so in order to increase their utility. In the context of inno-
vation, this corresponds to their value of knowledge. The information processing
capabilities of agents may be limited, especially if there is a large number of agents
in the economy. Thus, we allow agents to decide themselves to create or delete
links on a trial and error basis. Those interactions that prove to be beneficial are
maintained while detrimental ones are severed. We find that, under these conditions,
the evolution of the network depends on the cost, ci j , of an interaction between the
agents, the type of link formation (unilateral versus bilateral), and the time horizon
T after which interactions are evaluated.

40 Jain and Krishna (2001) have denoted this set of nodes the autocatalytic set (ACS).
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In the case of null cost, agents always form new links and thus the complete
graph is eventually realized.

We have shown in Sect. 8.3.7 that the knowledge values of agents vanish if the
underlying network does not contain a cycle (similar to the results obtained by
Maxfield (1994), Rosenblatt (1957). Equilibrium networks contain cycles, a result
which is similar to the findings of Bala and Goyal (2000), Kim and Wong (2007)).
However, the evolution of the network driven by the selfish linking process of agents
can lead to the destruction of these vital cycles. For a short time horizon T , and
unilateral link formation, cycles get destroyed because agents free-ride and delete
their outgoing links as it is beneficial in the short run to save the costs of supporting
other agents. As a result, the whole innovation network is destroyed. On the other
hand, if the time horizon is long enough, agents do not delete the cycles they are
part of.

However, even when the time horizon is long, large cycles get destroyed in favor
of smaller ones when agents unilaterally form or delete links. The network, starting
from an initial state of high density, evolves into an absorbing state in which most of
the nodes are isolated and few pairs of nodes are connected by bilateral links. These
pairs are trivial cycles of length k = 2.41

Recall that pairwise connections are direct reciprocal interactions. This means
that even though agents are unilaterally forming links and therefore indirect recip-
rocal interactions would be possible in principle (this is equivalent to interaction
taking place on a cycle of length k ≥ 3) no relation of indirect reciprocity is able
to emerge nor to survive. From the point of view of the global performance of the
innovation network, this is a very unsatisfactory situation.

In Sect. 8.3.9, we have studied situations in which even unilateral knowledge
exchange can have a higher performance in terms of the number of permanent agents
and their total value of knowledge. We introduce an externality in the knowledge
growth function which increases the value of knowledge of the agent depending
on their position in the network. We study a type of technology where the value
of knowledge decreases with the number of agents transferring the knowledge.
Here unilateral knowledge exchange still leads to equilibrium networks with a low
performance and only a few permanent agents.

However, for a type of knowledge where its value increases with the number of
agents that transfer and use it, more agents can be permanent in the equilibrium
network and the system performance is increased. Moreover, if the number of inter-
actions instead of the number of users determines the added value of the knowledge
that is being transferred, then the equilibrium has not only a higher performance
than in the setting, where knowledge is attenuated with the number of users or
where no externalities are considered, but it is also more robust against node or
connection failures. We observe that, in our framework, indirect reciprocity emerges

41 This is different to the results obtained by Kim and Wong (2007) since there the benefit term in
the utility of the agents depends on the size of the connected component but not on its structure.
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Table 8.4 Overview of the equilibrium networks that are realized under different assumptions on
the network evolution and a quadratic cost function

Network evolution

Extremal
dynamics

Utility driven dynamics

Unilateral

Cost function Bilateral
Without
externality

With
externality

ci j = cx2
i Network

breakdown
Kn Set of C2 Set of Ck≥2

if it is associated with a positive externality, taking into account the structure of the
network.

If agents form or delete links bidirectionally, that means, every exchange of
knowledge is direct reciprocal, the network evolves into a complete graph. This
equilibrium network has a high performance and all agents are permanent. In our
study, we find that unilateral knowledge exchange is always inferior to bilateral
knowledge exchange. But the above discussion has shown that, when bilateral
knowledge exchange is not possible and agents are sharing their knowledge uni-
laterally, innovation networks are still able to emerge.

The different cases studied in this section have shown that the equilibrium inno-
vation network that is realized in the evolution of the system depends critically on
the assumptions made on the behavior of agents (extremal dynamics versus utility
driven dynamics), on their time horizon for evaluating their decisions and on the
cost associated with the sharing of knowledge. These results are summarized in
Table 8.4

8.4.2 General Conclusions

In this chapter, we studied a variety of different models for innovation networks.
We started by discussing the importance of networks in economics and emphasized
that these networks are intrinsically dynamic and composed of heterogeneous units.
The notion of a complex network was used in the beginning to briefly explain how
statistical physics can be involved to study them. We tried to classify different
approaches to modeling economic networks, in particular we considered the con-
nection between the state variables associated with the nodes of a network, e.g.,
the productivity level of a firm, and the dynamics of the network itself, i.e., the
interactions between firms.

Before developing our own modeling framework, we discussed some basic mod-
els of economic networks with agents engaged in knowledge production. These
models show that the economy can evolve into equilibrium networks which are
not necessarily efficient. Moreover, the equilibrium networks that emerge in these
models are rather simple. We briefly introduced some models in which more com-
plicated network structures emerge, which may be closer to real-world innovation
networks. We then discussed models in which cycles, i.e., closed feedback loops,
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play an important role in the network formation and the performance of the system
(similar to Rosenblatt, 1957).

The major part of the chapter was devoted to the development of our own
modeling framework, which is based on catalytic knowledge interactions. In this
setting, there are permanent agents (with non-vanishing knowledge values) only if
the underlying network contains a cycle. We investigated the evolution and perfor-
mance of the system under different selection mechanisms, i.e., a least fit selection
mechanism, denoted by Extremal Dynamics, versus Utility Driven Dynamics in
which agents decide upon their interaction partners in a trial and error procedure.
We observe that a least fit mechanism cannot generate stable networks nor sustain
high performance in knowledge production. Moreover, such a mechanism assumes
that agents are completely passive entities. In the case of Utility Driven Dynamics,
agents choose their actions in order to increase their utility but their information
processing capabilities are limited. If agents are evaluating their interactions after a
time long enough, we obtain equilibrium networks with non-vanishing (permanent)
knowledge production.

In our framework, we investigated different assumptions about the behavior of
agents, that is, we either assume that agents share knowledge bilaterally or unilat-
erally. If all interactions are bilateral, the equilibrium network is a complete graph
and it has the highest performance. However, if direct reciprocal interactions cannot
be enforced (which means that links are not necessarily bilateral), we still observe
the emergence of networks of knowledge sharing agents. But in the equilibrium
network only bilateral interactions remain. Moreover, only a few agents are perma-
nent and the system has a low performance compared to the case of purely bilateral
interactions. However, for unilateral interactions, the number of permanent agents
can be significantly increased, for a type of technology where the number of users
increases its value.

Our studies show that the range of innovation networks that can emerge in this
general framework is affected by various parameters. Amongst these are information
processing capabilities of agents, their time horizon, their behavior in interaction
with others, the cost associated with the sharing of knowledge, and the type of
technology which agents produce and transfer.

The variety of possible networks is quite large and the network model appropri-
ate for a given application should be determined based on the specificities of the
problem under investigation.

Appendix A: Stationary Solutions for Three Agents

Example 29 We compute the fixed points for all graphs (auto-morphisms) with n =
3 nodes and initial values x(0) = ( 1

3 , 1
3 , 1

3 )T . For the numerical integration we set
d = 0.5, c = 0.5, and b = 1. The fixed points (stationary solutions) are denoted
x∗i for i = 1, 2, 3. Where possible, we give the analytical solutions for the positive
fixed points. x∗i = 0 is a fixed point for all graphs.
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Appendix B: All-Trails-Single-Source Algorithm

With algorithm All-Trails-Single-Source we want to compute all trails from a given
node s ∈ V to all other nodes in a directed graph G = (V, E). From these trails we
can extract the trails which end in node s and thus form circuits. The pseudo-code
for the All-Trails-Single-Source algorithm is given in Algorithm 1. N+(v) denotes
the out-neighborhood of node v. In the following, we will give a short description
of the algorithm.

Algorithm 1 All-Trails-Single-Source
S ← newStack();
v← s;
W ← {}; {initialization of empty list of trails}
loop

if ∃u ∈ N+(v)\{s} s.t. the link evu cannot be appended to W to create a new trail then
S.push(v);
W [u].add Edge((v, u));
v← u;

else if S.is Empty() == false then
v← s.pop();

else
break;

end if
end loop
return W ;
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Similar to a depth-first-search algorithm, links are explored out of the most recent
discovered node v that still has unexplored links leaving it. This procedure of explor-
ing links can be represented by a search tree T . The tree T explored by Algorithm 1
contains all trails starting at the source s to every node in G.

At every node i , a list W [i] of trails leading from the source s to i is assigned.
When the next link ei j from i to j is processed, to all trails in W [i] the link ei j is
appended (if this is possible, meaning that no link repetition is allowed), denoted by
W [i]+ei j . At node j these trails are added, that is W ′[ j] = W [ j]∪{W [i]+ei j }. This
procedure is continued until the algorithm terminates. The algorithm terminates, if
there are no further links available for exploration. The progress of Algorithm 1 on
a directed graph with four nodes and two circuits containing the nodes (2, 3, 4, 1)
and (2, 4, 1), respectively, is shown in Fig. 8.27.

step 1 1 W [1] = {}

2W [2] = {}

3 W [3] = {}

4
W [4] = {}

step 2 1 W [1] = {}

2
W [2] = {}

3 W [3] = {(e23)}

4 W [4] = {}

step 3 1 W [1] = {}

2W [2] = {}

3 W [3] = {(e23)}

4
W [4] = {(e23, e34)}

step 4 1 W [1] = {(e23, e34, e41)}

2W [2] = {}

3 W [3] = {(e23)}

4 W [4] = {(e23, e34)}

step 5 1 W [1] = {(e23, e34, e41)}

2W [2] =
{(e23, e34, e41, e12)}

3 W [3] = {(e23)}

4
W [4] = {(e2,3, e3,4)}

step 6 1 W [1] = {(e23, e34, e41)}

2
W [2] =

{(e23, e34, e41, e12)}

3 W [3] = {(e23)}

4 W [4] = {(e24), (e23, e34),
(e23, e34, e41, e12, e24)}

Fig. 8.27 The progress of Algorithm 1 on a directed graph with node 2 as the source node. The
node indicated in red is visited in the succeeding steps. After step 6 no further trails are added to
the list of trails
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Appendix C: Simulation Parameters

The parameters shown in Table 8.5 have been used for the simulation runs presented
in Sect. 8.3.9.6.

Table 8.5 Simulation parameters

Description Variable Value

Initial link creation probability p 0.1
Initial value of knowledge x(0) 1.0
Number of agents (without externality) n 30
Number of agents (with externality) n 20
Max. numerical integration time (time horizon) T 100
Numerical integration time step Δt 0.05
Max. number of network updates N [100, 5000]
Benefit b 0.5
Decay d 0.5
Cost c 0.1
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Chapter 9
Propagation of Innovations in Complex Patterns
of Interaction

Albert Diaz-Guilera, Sergio Lozano and Alex Arenas

9.1 Introduction

In recent times the possibility of using the tools of statistical physics to analyze the
rich dynamical behaviors observed in social, technological, and economical systems
has attracted a lot of attention from the physics community (Arthur et al. 1997,
Mantegna and Stanley 1999, Bouchaud and Potters 2000). So far, one of the main
contributions to these fields has been the analysis of simple models that capture the
basic features of the investigated phenomena. The goal is to identify the relevant
parameters as well as the essential mechanisms governing their dynamics with the
hope that this information will help us to understand the physical behavior of real
complex systems. A real part of this effort has been devoted to the characterization
of real networks, identifying their main features, and understanding how they arise
(Watts and Strogatz 1998, Barabasi and Albert 1999, Strogatz 2001, Dorogovtsev
and Mendes 2002, Albert and Barabasi 2002).

In particular, we tackle the problem of diffusion of innovations in a social net-
work, and we try to understand how the stimulus for change spreads by gradual
local interaction between the individual nodes (agents) forming the network. Most
of the times these ‘waves’ of change come in terms of intermittent bursts separating
relatively long periods of quiescence (Krugman 1996, Arenas et al. 2000).

There are two mechanisms involved in the diffusion of innovations that a mathe-
matical model should take into account. On the one hand, there is a pressure for
adopting a new technology coming from marketing campaigns and mass media
(Guardiola 2001). These external processes are essentially independent of the social
network structure and one can view their effects as a random independent process
on the agents. On the other hand, one should take into account the effect of the
surrounding agents who define the social network. Once an agent has decided to
adopt a new technology, those who are in contact with him can evaluate the new
payoff the agent has got by acquiring the new technology and compare it with the
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current benefits. This propagating mechanism stands for inter-agent communication
processes. By balancing the payoff increment with the associated upgrading cost,
they may decide to adopt, or not, the new technology.

In the first part of this contribution, we review some of the results obtained by
our group in the last years concerning models of propagation of innovations within
different frameworks. Most of this work was initiated in regular lattices, but the
last attempts have taken into account that social environments are not well modeled
by regular patterns of interactions but by heterogeneous ones. This has led us to
investigate a practical case reported in the social sciences literature (Saxenian 1994),
where not only the resistance of the agents to innovate is important, but also the
structure of the social network plays a crucial role in the development of a more or
less innovative society. To the description of this analysis, we devote the final part
of the contribution.

9.2 The Model

Our starting point is a model of diffusion of innovations by imitation proposed in
Guardiola et al. (2002) and also studied in Llas et al. (2003a). Although it is simple
it displays a very rich collective behavior that can be related to well-known theories
of self-organized criticality and its avalanche dynamics (Jensen 1998).

The dynamics of the model are implemented such that each site in the network
(agent) is characterized by a real and continuous variable ai . In a general way, we
can consider this quantity as a characteristic of an agent that other agents might
want to imitate. When an agent has adopted a new characteristic, her neighbors
become aware of the change and balance their interest (quantified as ai –a j ) with
their resistance to change C to decide if they would like to imitate this change. In
this way, C controls the mechanism of imitation and it is constant in time and the
same for all the agents in the current scenario.

The dynamics can be summarized as follows:

• The system is asynchronously updated. At each time step a randomly selected
agent updates her state ai

ai → ai + �i , (9.1)

where �i is a random variable with mean λ.
• All agents j ∈ �(i), where �(i) is the set of neighbors of agent i, decide whether

they want to upgrade or not, according to the following rule:

ai − a j > C ⇒ a j = ai . (9.2)

• If any j ∈ �(i) has decided to imitate, we also let her neighbors decide whether
they want to imitate this behavior or not. In this way, the information of an
update may spread beyond the first neighbors of the originally perturbed site.
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Fig. 9.1 Schematic representation of the dynamical rules in a one-dimensional system with a cost
C = 1. Initially, the state of the system corresponds to the white area. The agent where the vertical
arrow points receives an external update. The agent at its right now is two units below it and decides
to imitate. This generates an avalanche that involves most of the neighbors at the right, since any
agent has at its given time a level that is below its left neighbor, corresponding to the darker area

This procedure is repeated until no more agents want to change, concluding an
avalanche of imitation events. In this way, we have assumed that the time scale
of the imitation process is much shorter than that corresponding to the external
updates. In Fig. 9.1 we present schematically these dynamical rules.

9.3 Dynamical Regimes

According to the cost value C it is possible to distinguish several regimes. In Fig. 9.2,
we can see the technology profile (the interface defined by technology of all the
agents) of two extreme cases. For C < 1, once there is an external update, a sys-
tem size avalanche is immediately triggered and all agents end up in a very close
technological level, and the profile is hence very planar. For C >> 1, upgrading
is so expensive that agents never care about their neighbors technology, and most
avalanches are of size just 1. In this regime the profile, as seen in Fig. 9.2 (right), is
quite rough.

In between these two regimes (see Fig. 9.3, left), there is a region showing a rich
dynamics where one finds technological avalanches of all possible sizes. Actually,
for some values of C the probability density of having an avalanche of size s shows
a power-law behavior

P(s) ≈ s−τ . (9.3)
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Fig. 9.2 Technological profile of a one-dimensional system in two extreme cases. Left: supercriti-
cal that corresponds to a dynamical state where avalanches are always very large. Right: subcritical,
which corresponds to avalanches of unit size

Fig. 9.3 Left: technological profile for the critical region. Right: probability density of having a
technological avalanche of size s for C = 3 in a log–log scale

Figure 9.3 right shows P(s) for several system sizes and C = 3 in a log–log scale.
We can observe there a power-law distribution over four decades for the largest
system size.

9.4 The Observables

9.4.1 Mean Rate of Progress

In the model introduced so far, we have considered that each individual adjustment
elicits a certain cost. This cost is fixed and does not depend on the advanced tech-
nological level. In economic terms, an optimal situation would be one in which the
system reaches a certain average global technological level with the minimum cost,
that is, the minimum number of adjustments. According to such social perspective,
the problem is to find the most advantageous regime of advance, leading to the
largest global advance given a fixed cost.
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For these reasons, it is convenient to define a macroscopic observable measur-
ing the advance rate of the system. A useful magnitude for such purposes is the
following:

ρ ≡ lim
T→∞

ρ(T ) = lim
T→∞

T∑

t=1
H (t)

T∑

t=1
s(t)

, (9.4)

where s(t) is the size of the avalanche occurring at time t, i.e., the number of agents
whose technological level has been updated, and H (t)

H (t) =
N∑

i=1

[ai (t)− ai (t − 1)] (9.5)

is the total advance achieved during the same event (the interface area increment
caused by an avalanche). According to the definition of the mean rate of progress,
it is easy to see that for the two extreme cases its value is very small. For low
cost C, any external update is followed by a large avalanche in which all agents
advance the same amount, since the profile is extremely smooth, and hence ρ is
equal to the mean value of the external update λ. On the other hand, for large
C, all the avalanches are very small (most of them of size one) and hence the
advance of the avalanche is equal to the mean value of the external update again.
It is interesting to realize that for intermediate values of the cost, the system is
optimal since it reaches a maximum for the mean rate of progress. In Fig. 9.4, we
show several plots of ρ versus the cost, for several system sizes (Guardiola et al.
2002).

In previous works in similar models, it was shown that the system reaches its
maximum mean rate of progress in a self-organized way (Arenas et al. 2000, 2000a).
It is the result of the aggregated dynamics that the system reaches by itself its opti-
mal outcome, for a constant and uniform value of the cost. In any case, we can say
that there exists a certain value of the cost which, following the usual terminology
in statistical physics (Stanley 1971), we will call the critical value, for which the
technology profile grows more efficiently. This leads to the following paradoxical
result: upgrading costs should be neither cheap nor expensive in order to have an
optimal technological growth (Arenas et al. 2002). Obviously, our concept of effi-
ciency is related to the number of times cost is paid, that is, from the point of view
of the population, but not of the companies who sell the product. Sellers will always
look for a scenario where agents acquire as many new products as often as possible
(Guardiola 2001).
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9.4.2 Profile Roughness

In the previous section, we showed several snapshots of the population technological
profile. This profile corresponds to the continuous interface defined by the techno-
logical level ai of all agents. We have also analyzed the technological profile from
the point of view of the statistical mechanics of non-equilibrium growing interfaces
(Barabasi and Stanley 1995).

The most straightforward way of giving a quantitative measure of the roughening
of the interface is to look at the interface height fluctuations around its mean value.
The interface width is defined by the variance of the technological profile

w(N , t) ≡
√
√
√
√ 1

N

N∑

i=1

[ai (t)− a(t)]2, (9.6)

where a(t) is the spatially averaged technological profile. From this definition
one can define many different properties, as for instance how this interface width
scales with time and with the system size, showing different scaling properties
(Guardiola 2001). In terms of this scaling some anomalous properties have been
found (Llas et al. 2003b, Llas et al. 2007).
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9.5 Interplay Between Dynamics and Structure

Let us now put some attention to the influence of the connectivity pattern on the
collective properties of the system and, in particular, in macroscopic observables
such as ρ. There are two simple cases that have been systematically analyzed: a
fully connected network and a regular lattice. In the globally coupled case, the
information referent to any change elicited in an arbitrary position of the network
is immediately available to every other agent. As a consequence, the state of all
agents ai is bound in gaps of width C. This limits the advance of any agent to a
maximum of C. On the other hand, when the system is defined on a 1D ring this
limitation only applies to the nearest neighbors. If the information spreads beyond
these neighbors, the advance achieved can exceed C. In this extreme cases differ-
ent qualitative behaviors are observed, which can be quantified by the exponent by
which the maximum value of the mean advance rate scales with the system size

ρmax ≈ Nα. (9.7)

When one considers the dynamics of the model on a ring α = 0.20, while mean-field
calculations and numerical simulations of the dynamics of the model on a fully
connected network show that α = 0.50 (Guardiola et al. 2002).

The two particular cases considered so far are usually chosen either for their
numerical simplicity, as in the ring, or because they allow for simple mean-field
calculations as in the fully connected network. Clearly, the structure of both cases
is far from the much more complex pattern of interactions observed in realistic sys-
tems (Strogatz 2001). However, they appear as paradigms of two opposite generic
situations either a scenario where the propagation of information can be constrained
to a local neighborhood, or one where it may reach the whole population in just one
step. One wonders which will be the dominant features in a more general situation.
In this section, we will consider this issue. In particular, we will study the relation
between the salient features present in a more general structure and the dynamical
properties of the system.

It is well known that, starting from a ring, the random addition of a few links pro-
duces changes in the properties of the network, such as a rapid drop in the average
distance between nodes, maintaining the local structure (Watts and Strogatz 1998). It
has been shown that this feature can be related to significant changes in the dynam-
ical properties in some systems. In order to study what effects may be present in
our model, we will consider the dynamics on a ring lattice with N vertices and k
= 2 edges per vertex, adding a new link at random with probability p per edge.
In general, when one modifies the underlying structure, a quantitative variation of
the numerical values of the dynamical magnitudes that characterize the system is
observed. However, we will focus our attention on whether the scaling properties
are modified, since they are an indication of qualitative changes in these properties.
In order to quantify the changes in the scaling behavior of the system, we have
computed the exponent for different values of p, as shown in Fig. 9.5.



276 A. Diaz-Guilera et al.

0 0.2
0.1

0.2

0.3

0.4

Fully connected model

0.5

0.4

P

α

0.6 0.8

103

3

4

ρ m
ax

ρmax ∼ Nα

N

1
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The main conclusion that can be extracted from the figure is that the addition
of new links does not modify substantially the scaling properties of the system.
For small p we observe a small decrease in the value of α, an effect that seems
to be correlated with the rapid drop in the average distance between agents. As p
increases to p = 1 a slight growth of α is reported. It is important to understand
why the qualitative behavior of the system is similar to the one characteristic of
the ring. In this case, an avalanche propagates through steps in which the infor-
mation reaches the nearest neighbors of a modified site. To generate a large event
or simply to reach agents far away from the initial updated unit, a large number
of steps are required. In this sense, the information propagates by a local pro-
cess. The addition of new links allows the information to reach agents through
shortcuts, but it does not change the mean mechanism of diffusion, i.e., in order
to proceed further, an avalanche still requires a large number of steps, which is
still dominated by a local process. One cannot under-stress the fact that for the
imitation strategy described in this contribution, in contrast to what is observed
in other models, the characteristic behavior of the ring is dominant even when a
more general structure, such as a small world network, is considered (Llas et al.
2003a).

The local character of the diffusion process typical of low connectivity networks
is lost when considering densely connected networks. In this situation, the infor-
mation about the state of a given agent is available to any other agent in just a few
steps. The small world construction is far away from this limit, even when p = 1
the mean number of links per site, i.e., the connectivity of the system, has increased
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very slightly. In order to reach a highly connected state, we added links randomly
to the ring up to a fraction f of the total possible links in the system. This means
adding f[N(N–1)/2]–N connections to the ring. This recipe allows us to interpolate
between the ring (f = 0) and the fully connected model (f = 1). For finite values
of f, the system corresponds to a ring with a superimposed random graph. For this
construction the connectivity of the system will be fN, and thus, for a fixed value
of f, the connectivity will increase as N grows. If this plays a significant role in the
dynamical behavior of the system, we expect that it will be reflected in an important
quantitative change in α. In Fig. 9.6, we present the behavior of the peak of the mean
rate of advance ρmax as a function of system size N when f = 0.005. For low values
of N, the behavior resembles the one observed in the small world case. As N grows
there is a crossover to the fully connected behavior and ρmax � N 0.5 (Llas et al.
2003a).
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Fig. 9.6 The peak of the mean rate of advance in terms of the system size for a fixed value of the
fraction of added links. A clear crossover is observed for a sufficiently large system size

9.5.1 Identification of an Optimal Behavior

Up to now, we have analyzed different mechanisms for the spreading of the infor-
mation. On one hand, C appears as a parameter that can be tuned in order to reach an
optimal regime for a fixed underlying network. On the other hand, we have also seen
that diverse structures lead to different ways in which the information spreads. This
line of reasoning naturally leads to the question of which is the structure that gives
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the optimal regime for a fixed value of C. For small C there is almost no resistance
to change and the information easily spreads. In fact, we expect that if C → 0 then
ρ will also decrease independently of the underlying network. On the other extreme,
for C →∞ the behavior of the system will resemble a random deposition process,
and again the behavior of ρ is expected to decrease when considering any general
structure. To analyze what happens for intermediate values of C, we should proceed
with care, as we will see immediately.

In order to do this, we consider a system with a certain distribution of couplings
between agents and a fixed C. In general, the value of ρ will be smaller than ρmax.
Now, supposing that we can modify the connectivity pattern, it is natural to ask
which structure leads to the optimal behavior. The question cannot be answered
properly without looking at the parameter that control the dynamics, i.e., the strategy
to follow depends precisely on C. To optimize the behavior of the system, one cannot
split the problem into two independent parts; dynamics and the underlying structure
must be considered as a whole (Llas et al. 2003a).

Let us analyze some features associated to the mechanism of imitation and
consider the difference between the highest (amax) and the lowest (amin) charac-
teristic values in the system. For sufficiently high connectivity C will bound this
gap and, as a consequence, for these systems, the value of ρ cannot exceed this
value. On the other hand, when the propagation of the information is constrained
to advance through local processes, a more heterogeneous profile of characteristic
values can be formed, allowing for a larger gap between amax and amin. In this case,
avalanche events consisting of a large number of steps will produce a large advance,
allowing the value of ρ to exceed C. In fact, by using the probability distribution
of avalanches P(s) and advances P(H) obtained using numerical simulations in
Guardiola et al. (2002) this can be easily verified analytically. In this situation, a
sparsely connected network will necessarily have a greater ρ than a highly con-
nected one. For increasing values of C, avalanche events will easily get blocked in
a few steps. In this context, large advances in a sparsely connected network will
become very rare. More frequent advances will be observed in a highly connected
network since many agents are permitted to find out about an update in any step.
This situation offers the possibility for a higher ρ to be observed in highly connected
structures.

Following this analysis, we have considered a general system of fixed size N. The
evolution of the mean rate of advance ρ versus C has been studied for two different
situations: the ring and another structure where the number of links (measured in
terms of f ) is large enough to observe fully connected behavior. The results are
illustrated in Fig. 9.7. Note that as f is varied the qualitative shape of the ρ curve is
similar. However, the position of the peak corresponds to different values of C. For
increasing values of f the peak corresponds to larger values of C, eventually reaching
the curve corresponding to the globally coupled case. It is important to stress that, as
C is varied, the optimal network may change from a highly connected to a sparsely
connected one. This behavior is clearly reflected in the inset, where we present the
behavior of ρ versus f for two different values of C. For C= 2 a decrease in ρ is
observed as f grows. The addition of links is harmful to the system. On the other
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hand, for C= 4.0 the opposite behavior is observed, and ρ increases its value as f
grows. Clearly, in this case, the addition of links is beneficial.

These results show that in order to optimize the behavior of the system a
non-trivial combination of dynamical rules and underlying structure should be con-
sidered. When the interplay between both allows for ρC > 1, a sparsely connected
structure performs better than a highly connected one. On the other hand, when
ρC < 1 the opposite is true. Note that when ρ/C ∼ 1 the behavior should be
independent of the underlying network. In fact, Fig. 9.7 shows that when ρ/C ∼ 1
both curves intersect. Numerical simulations for different N and f also show these
qualitative behaviors.

9.6 Practical Case

It is a common claim of scholars from social disciplines that computational models,
like the one we have presented above, are too simple to represent the richness of
real scenarios. In order to deepen on this matter, the aim of the second part of this
contribution is to present an example of how this sort of models can be used as a
quantitative tool to support a previous research made by social scientists.
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9.6.1 Anna Lee Saxenian’s Network Perspective

About a decade ago, Anna Lee Saxenian authored a book which pointed out the
key role of relational aspects as success factors of regional economic development
(Saxenian 1994). Her theories were supported by historical data from two North
American hi-tech industrial poles (Silicon Valley and Boston’s Route 128), which
had presented significantly divergent behaviors during the late 1980s. In her opinion,
certain cultural features could perfectly justify that divergent evolution.

On the one side, she observed that Silicon Valley presented a densely networked
and flexible organization; within this community information was shared quite
freely between companies (even competitors) and with research institutes and local
government institutions. Moreover, the extremal high values of job mobility and
business creation rates, was interpreted by Saxenian as an indicator of individual
initiative and independence.

On the other hand, she found that Boston Route 128 was dominated by large
and autarkic corporations with a very rigid hierarchy, where people involved in
research and development were expected to be strictly loyal to the company and
behave synchronized as a block.

After publication of Saxenian’s book, many scholars have positioned either
close to her position or clearly opposite to it, following a viewpoint presented in
Florida and Kenney (1990), which minimizes those cultural traits compared with
technological ones. This situation has grown up a debate that is still alive.

Here, we would like to contribute to this discussion from a completely different
point of view. Using a variation of the model presented before, we simulate char-
acteristics of both technological sites and obtain numerical results that agree with
Saxenian’s hypothesis.

9.6.2 The Experiment

More concretely, we have modified some characteristics of the model of diffusion
of innovations presented in order to make it realistic enough to capture two con-
crete cultural features, that summarize the differences pointed out by Saxenian to be
determinant. These characteristics are the topology of the social substrate of each
pole and the diversity of individual behavior.

About the social topology, our model should reflect that people in Silicon Valley
used their formal and informal links to share information with other people beyond
their organizational boundaries, while in Boston, because of the autarky and secrecy
imposed, information exchange was mainly restricted to the same group (company,
division, department, or team).

In relation to individual behavior of actors in our model, individual initiative and
independence observed in Silicon Valley should be represented as a wide diversity of
individual behaviors (to highlight the idea that each actor had its own perspective).
On the contrary, rigid hierarchy and employee obedience in Boston would corre-
spond to a configuration with low diversity, where decisions are taken centrally and
actors act as synchronized as possible.
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After ‘translating’ observations made by Saxenian into concrete constraints, the
next step consists on adapting the original model to them.

In order to obtain social topologies that agree with the first constraint, we have
used an algorithm proposed in Boguñá et al. (2004) that is able to build up social-
like network topologies from the homophile characteristic, which is everyone’s
preference to establish and maintain relations with people that have any common
characteristic with (profession, hobbies, age, or political feelings, for example). In
our study case, network of Boston 128 is considered to have a large homophile,
because actors tend to exchange information only with people in closed homoge-
neous groups. On the contrary, Silicon Valley is supposed to have a small one, due
to people’s inter-organizational interactions.

Since, as it was explained above, in our model the resistance to change value of
an actor defines its role as innovation adopter, the incorporation of the other feature
to be treated (diversity on individual behavior) has been solved by introducing dif-
ferences on the resistance value of actors. To explain this second adaptation more
detailed, we need to introduce a new concept called ‘resistance profile.’

The resistance profile of a system is the representation as a histogram of the
frequency of occurrence in the system of each possible value of resistance to change.
In the original model, where all agents had the same resistance to change value C,
the resistance profile would be 0 for all values except C. This particular performance
of the resistance profile is far from reality. If we calculated the resistance profile of
a real scenario, we would find some kind of distribution of resistance values around
a central or average one. Consequently, if we want to reproduce artificially a real
resistance profile we can assign resistance values to actors following a statistical
distribution. Moreover, if we want to reproduce a situation with a wide diversity
of behaviors (a wide resistance profile) we need a distribution with a high standard
deviation. On the contrary, a low standard deviation leads us to a narrow resistance
profile simulating a homogeneous scenario.

In our particular case, we have used a Gaussian distribution to generate actor’s
resistance with a high deviation to simulate Silicon Valley heterogeneity and a low
one for Boston Route 128.

Figure 9.8 shows, graphically, particularities introduced to the original model in
order to simulate Silicon Valley and Boston Route 128 scenarios, respectively.

9.6.3 Results

Once both technological poles have been simulated as two configurations of the
original model, we can obtain some results and analyze them. Before this, however,
we have to define the variables we will play with. Our intention is to have a quantita-
tive measure of the fitness of each technological pole to different values of economic
dynamism.

First, we need an observable that indicates how well an innovation system (an
industrial district) works in a certain situation. In this case, we have chosen the
mean rate of progress (ρ), an observable defined and explained in the first part of
this contribution.
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Fig. 9.8 Modifications made to the original model to introduce Silicon Valley (left) and Boston
Route 128 (right) particularities. For each configuration, the topology (top) and the resistance to
change profile (bottom) are shown

We also have to define an independent variable to quantify economical dynamism.
The idea of using resistance to change to represent the behavior of actors is also
useful here. In a dynamic situation, people tend to adopt novelties easily (their
resistance to change is low) and, on the contrary, become more conservative in a
more quiet situation (their resistance to change increases). Taking this into account,
we can express the dynamism of the environment as the inverse of the average of
the resistance to change values of all actors in the system.

The evolution of ρ as a function of the economical dynamism for both configura-
tions is shown in Fig. 9.9. We can see that the maximum value of each model’s
ρ corresponds to different values of dynamism. This means that each configu-
ration works better with a particular economical environment. Route 128 model
gains its peak for a medium value and, if environment conditions change to a
more dynamic scenario, its ρ value drops down. This agrees strictly with Saxe-
nian (1994): ‘. . .Route 128 system flourishes in an environment of market stability
and slowly-changing technologies.’

On the other hand, plot for Silicon Valley’s model presents a stronger peak at
a dynamism value a half upper. Once again, this behavior has its correspondence
in Saxenian (1994): ‘The region, if not all the firms in the region, is organized to
innovate continuously. . ..’
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situation

Finally, if environment moves to an extremely quiet economical situation, both
values fall down. This should be read as a consequence of the loss of dynamism
of regional economy, that affects in a similar way all industrial complexes indepen-
dently from their particular characteristics.

9.7 Conclusions

We have presented results obtained in different scenarios about propagation of inno-
vations, in regular as well as in heterogeneous patterns of connectivity. On the one
hand, we have defined relevant observables and reviewed some aspects. On the
other hand, we have shown that, in a particular case of study in the social science
literature, structural features play a fundamental role in explaining the success of
innovation systems. In order to tackle this second topic, we have adapted a compu-
tational model and obtained quantitative results that supports the conclusions of the
previous qualitative analysis of the real raw data. We feel that this sort of two-step
approach (from raw data to qualitative conclusions and from these conclusions to
simple modeling) could be very useful in the study of different social and econom-
ical issues, not only innovation diffusion but also other kind of phenomena with a
dependence on the underlying social structure.
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Chapter 10
Sensitive Networks – Modelling
Self-Organization and Innovation Processes
in Networks

Ingrid Hartmann-Sonntag, Andrea Scharnhorst and Werner Ebeling

10.1 Introduction

This contribution is devoted to the interdisciplinary theory of self-organization pro-
cesses, paying particular attention to stochastic effects connected with innovations
in network systems. On our understanding “self-organization” is the spontaneous
formation of structures (Ebeling and Feistel, 1982, 1994; Feistel and Ebeling, 1989).
An “innovation”, on a general system-theoretical understanding, is the appearance
of, for example, a new species, a new mode of behaviour, a new technology, a new
product or a new idea (Ebeling and Sonntag, 1986; Bruckner et al., 1989, 1990,
1996; Ebeling et al., 1999).

Technological innovation is considered to be the basic driving force for economic
evolution and growth. In economics, innovation networks (Frenken, 2000; Kowol
and Küppers, 2005) and networks economies (Nagurney, 2003) have been widely
discussed in recent decades. At the beginning of the 21st century, it was noted that an
unified understanding of socio-economic networks is still missing (Saviotti, 2001).
Kirman remarked: “For many economists the study of networks is limited to the
analysis of the functioning of physical networks such as the railway, the telephone
system or the internet for example” (Kirman, 2003). In the meantime, as shown
in the present volume, networks of innovative economic activities have gained more
attention. Although networks are thought to be constituted by sets of actors and links
(Saviotti, 2001), the very nature of these actors and the links between them vary
according to different authors and approaches. Nations, institutions, firms, products
or individuals, for instance, may represent the actors. The links can be defined quite
differently as well, for example, as exchange of knowledge between firms or as
exchange of goods between nations. Innovation in such contexts is usually seen as
an outcome of complex networks with heterogeneous actors.

In this contribution, we define innovation neither as a product of network activ-
ity nor as a process of knowledge diffusion, but rather as a specific process in the
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formation of a complex network. Thus, innovation is conceptualized as a process
in the structure formation of complex networks. We describe innovation as a pro-
cess which dramatically and decisively changes the composition of a network. The
network we have in mind is a network of interaction possibilities, which serves
as the structural backbone for various activities of actors. Accordingly, a network
will behave differently depending on which innovation has been introduced. More
specifically, we propose a network description for dynamic processes in a system.
On this system-theoretical perspective, the appearance of innovations is related to
certain mechanisms in the growth and change of networks. So, we create a network
picture for dynamic processes including the emergence, survival or extinction of
innovations. This is the same approach which has also been taken in the mathemati-
cal theory of biological evolution, population biology and other fields of complexity
theory.

In this contribution, we rely on a special approach to describe innovations in evo-
lutionary systems. We start in Sect. 10.2 with an abstract definition of an innovation.
We will show in Sect. 10.3 that our approach is related to recent developments in sta-
tistical physics, an area which best can be described as an emerging field of complex
networks theory (Scharnhorst, 2003). Thus, we will first give a survey of net-
work approaches ranging from chemical networks (Temkin et al., 1996; Fell, 1997)
over biochemical webs (Fell, 1997; Fell and Wagner, 2000), protein webs (Jeong
et al., 2000) and food webs (Drossel and McKane, 2003), to the structure of the
internet (Faloutsos et al., 1999) and the world wide web (Albert et al., 1999) up
to general approaches from statistical mechanics (Albert and Barabási, 2000, 2002;
Bianconi and Barabási, 2001a).

In the second part of the contribution (Sect. 10.4) and in connection with our
special interest in innovation processes, we develop a dynamic network theory – in
particular the theory of “sensitive networks” – in more detail. The term “sensitive
networks” denotes networks that are sensitive to the introduction or removal of one
or a few nodes or edges, or in a more general context, to the occupation of a node.
Specifically, sensitivity is linked to the question of whether a node (a species, mode
of behaviour, an idea or a technology) is occupied by at least one individual or
not. We will show that this problem is relevant for the modelling of innovation
processes. The dynamics of innovation processes may be described by stochastic
equations which can be formally treated within the framework of statistical physics.
Some generalizations are possible.

10.2 Innovation and Sensitive Networks

In economics, innovation is mainly understood as technological innovation, describ-
ing the introduction of new technologies, products and production processes. The
differentiation between invention and innovation relates innovation to the economic
exploitation of new ideas. However, it is also possible to look at innovations from
a more general, evolutionary point of view. Ziman gives one example for such an
approach when he writes “Go to a technological museum and look at the bicycles.
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Then go to a museum of archaeology and look at the prehistoric stone axes. Finally,
go to a natural history museum and look at fossil horses. In each case, you will
see a sequence, ordered in time of changing but somewhat similar objects.” (Ziman,
2000, p. 3).

Figure 10.1 illustrates our approach. The system is composed of a large set of
enumerable types which are represented as nodes in a network. At a certain point
in time, only a small part of these nodes are populated, that is, they are active. A
populated node is represented by a grey node and a non-occupied node by an empty
circle. This way our network consists of grey/occupied and empty/non-occupied
nodes with certain links. The whole picture changes over time. The occupation
of nodes changes due to the interaction, and occupied nodes can vanish. The pat-
tern of interaction between them (including processes of self-influence) determines
the dynamic composition of the system. It is visualized in terms of (active) links
between the nodes. This active network will produce a dynamics which has a cer-
tain set of stable stationary states. We assume that the activated part of the network
is embedded in a much larger network of inactive nodes and links. The inactive
nodes represent future possibilities in the evolution of the system. An innovation
appears when an unoccupied node becomes occupied for the first time. With this

Fig. 10.1 Illustration of a
sensitive network. Embedded
in a larger network of inactive
nodes and links; the activated
part of the network (upper
part of the figure) changes its
composition when an
innovation emerges (lower
part of the figure)

Inactive link

INNOVATION

Inactive nodes
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initial occupation, the set of links connecting the “new” node with already occupied
nodes also becomes activated. It is readily apparent that such an event changes the
whole composition of the system. Accordingly, the stable state that the system might
have already reached becomes instable, and the system searches for a new stable
state. If we assume that the interaction between the nodes (types) is a competitive
one, the stable state of a certain activated network can also include the deactivation
of certain nodes. Types (nodes) which are selected out will transit to a non-occupied
inactive status. However, not every change is an innovation.

In this contribution, we follow a system-theoretical approach to innovation. In
this framework, innovation is something new to the system and most importantly
the emergence of an innovation changes the state of the system dramatically. In
other words, the actual state of the system becomes unstable and a transition to a
new state occurs. To define an innovation, we first have to define the state of the
system. Here, we again choose a very specific approach. We represent the state of
the system as a point in the high-dimensional occupation number space (Ebeling
and Feistel, 1982; Ebeling and Sonntag, 1986). In this space, a coordinate axis is
attached to a certain type i of elements (with i = 1, 2, . . . , s, natural numbers). The
occupation numbers are represented on this axis.

To describe technological innovation we have to ask for a re-specification of
this abstract concept. For socio-economic systems, the axes of the state space refer
to different possible taxonomies. For instance, an axis i can represent a certain
technology from a set s, of different technologies present in the system. With
such a technological taxonomy, competition processes between technologies can
be described (Saviotti and Mani, 1995; Bruckner et al., 1996). The carriers of this
competition process are firms using different technologies and competing with their
products on a market. This way, we link back to an economic understanding of
an innovation process that “requires insight into system dynamics grounded in a
variety of firm competencies and behaviour and a variety of demand” (Saviotti and
Nooteboom, 2000, p. 5). Let us note that the state space concept can be applied to
quite different processes. The type i might also stand for the size class that a certain
firm belongs to. Then, growth processes of firms are in the focus of the descrip-
tion. Moreover, the type i may represent a certain group in society. Formation of
political opinions (Weidlich, 2000) or emergence of norms and violence in groups
(Nachtigall, 1998) are then considered. Innovation in these cases covers new forms
of collective behaviour.

We can find each type i in Ni elements in the system. The elements may be
individuals, but they may also be organizational and institutional units like firms
and groups. Ni , the occupation numbers, are functions of time. They are positive
or zero. A complete set of occupation numbers N1, N2, . . . , Ns at a fixed time,
characterizes the occupation state of this system. The time dependent change of
the occupation numbers is described by the movement of this point in the space.
The whole motion takes place on the non-negative cone K of the space. In this
picture, we can describe the case that a type i is not present in the system at time
t . That means the type i is occupied with the number zero (Ni = 0). We call a
system an under-occupied system if we can make the assumption that the sum of the
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occupation numbers is essentially smaller than the total number of possible elements
(Ebeling and Sonntag, 1986).

According to this picture, an innovation is an occupation of a non-occupied type.
In deterministic systems, zero occupation can only be achieved in the limit of infinite
time t →∞, if a sort died out (zero can be a stable stationary state). For finite times
t > 0 types cannot arise, if they are not in the system at time t = 0, and present types
cannot die out. The situation is different if we use the stochastic picture. In stochastic
systems the zero state can be reached in finite times t . A stochastic description
offers the advantage that at finite times new sorts (innovations) can arise or die out.
Therefore, the stochastic description is especially suited for evolutionary processes
and in particular for innovation processes.

Let us note here that any innovation will change the taxonomy of types in the
system (Allen, 1994). Innovation has to do with uncertainty and its prediction is
impossible. With the notion of an under-occupied system, we escape the problem
of determining a priori the place or kind of an innovation. Instead, we equip the
system with a reservoir of possible innovations. Which of these possibilities will
eventually become reality remains uncertain. In some respects this is a trick to avoid
the problem with a changing taxonomy. There are other possibilities to escape this
problem, e.g. so-called continuous models operating on a characteristic space as we
discussed elsewhere (Ebeling et al., 1999; Ebeling and Scharnhorst, 2000; Ebeling
et al., 2001). However, in our view the discrete approach we are using has certain
advantages; these we will discuss later.

In an under-occupied system most elements have, at a given time t , the occu-
pation number zero. So we can pass from the high-dimensional cone K to a
low-dimensional cone K+. Accordingly, the time-dependent variation of the system
can be described as a switching of the state point on the edges of the cone K . If K+

is an element of the set of all possible cones, we observe a switch from one sub-cone
to another. Because the process is discrete, it will appear as hopping on the edges of
different positive cones.

In Fig. 10.2, we visualize such a process for three dimensions. At any point in
time, the state of the system is represented by a certain vector N(t). In a stationary

Fig. 10.2 The occupation number space: the distribution of individuals over different types is
represented by a vector in the positive cone. The appearance or extinction of a type can be described
as approaching or leaving one of the edges of the positive cone
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state, the endpoint of this vector defines a positive cone. In our example, the vector
moves in the plane spanned by N1 and N2. An innovation opens up a new dimension
of the system. In our example, a new third type is introduced into the system. After
the innovation, the vector moves in the space defined by N1, N2 and N3. In general,
we can assume that the system operates in a multidimensional space where the cone
can have a very complicated shape, and the vector N(t) jumps between the edges of
this cone.

The hopping process visualizes the transition between one stable stationary state
and another stable stationary state. In this sense, innovation is the outcome of a
process of destabilization. Within the framework we propose in this contribution,
innovations are seen as stochastic instabilities. The changes occurring in the occu-
pation number space result from interactions of the different types present in the
system. These interactions can be visualized as graphs or networks where the nodes
represent the types, and the links between them represent different forms of inter-
actions. In the network picture, an innovation corresponds to the appearance of a
new node and the activation of a link to this node. The models that we present
in Sect. 10.3 allow us to differentiate between different processes which finally
introduce such a new node.

The conceptualization of types as elements (nodes) of a network represents a
graph-theoretical approach to the dynamics of the system. Therefore, other network
approaches are of particular relevance in order for us to develop our theoretical
approach further (Hartmann-Sonntag et al., 2004; Ebeling et al., 2006). Section 10.3
will introduce the newly emerging specialty of complex network theory and position
our approach within this field.

10.3 Sensitive Networks and the Emergence of the Field
of Complex Networks

In recent years, complex systems in nature and society have been carefully inves-
tigated. In the 1970s, already theories of self-organization were used to build a
bridge between social and natural systems investigations (Ebeling and Feistel, 1982;
Prigogine and Sanglier, 1987). As part of this development, complex networks were
examined. Recently, as a new branch in complexity theory (Schweitzer, 1997) com-
plex networks have been reconsidered and extensively studied (Scharnhorst, 2003).
They seem to be particularly relevant for the study of innovation processes.

In the context of complexity theory, the concept of networks has been employed
as an easy-to-use metaphor. As Bornholdt and Schuster note: “Recent advances in
the theory of complex networks indicate that this notion may be more than just
a philosophical term. Triggered by recently available data on large real world net-
works (e.g. on the structure of the internet or on the molecular networks in the living
cell) combined with fast computer power on the scientist’s desktop, an avalanche
of quantitative research on network structure and dynamics currently stimulates
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diverse scientific fields” (Bornholdt and Schuster, 2003, p. V). Social networks form
one important area of application of complex network theory (Harary et al., 1965;
Scott, 2000). The structures found cover networks of collaboration (Newman, 2000;
Barabási et al., 2002), networks of recognition (citation networks) (Vazquez, 2001)
and networks of corporate directors (Strogatz, 2001). In economic theories, innova-
tion is increasingly understood as the outcome of the interaction between scientific,
economic and political systems (Pyka and Küppers, 2002). Instead of consider-
ing an innovation as a singular event, the network character of innovations is
stressed. Innovation networks seem to be a new organizational form of knowledge
production.

The structural analysis of systems is of great interest. Albert and Barabási (2002)
give a very good presentation of this subject and its development. In the very begin-
ning, investigations of large complex systems were done by using random graph
theory. To a growing extent it became possible to analyse real complex systems
and large systems as well. With the development of computer capacity, the amount
of available digital data and the possibilities to analyse and visualize this data also
increase (Scharnhorst, 2003). It becomes possible to compare the theoretical results
generated by random graph theory with those of the real data analysis. Obviously
more than pure randomness exists. Organizational principles and the rules of sys-
tem evolution play a decisive role, leading to small-world behaviour and scale-free
networks. Our world is not a random world. Other evolutionary principles are of
great interest. In addition, it is evident that a theory of evolving networks may give
a more realistic approach to real systems. This is why we give special consideration
to evolving networks here.

From the analysis of empirical data we learn that many real networks have a
small-world character. The small-world concept describes the fact that despite their
often large size, in most networks there is a relatively short path between any two
nodes. The small-world property characterizes most complex networks (Hartmann-
Sonntag et al., 2004). For example, the chemicals in a cell are typically separated by
only three reactions, or in a more exotic case, the actors in Hollywood are on average
within three co-stars from each one another. The small-world concept corresponds
to our observations; it is a structural, not an organizing, principle (Watts, 1999;
Buchanan, 2002).

Not all nodes in a network have the same number of edges (the same node
degree). The spread in node degrees is characterized by a distribution function
P(k), which gives the probability that a randomly selected node has exactly k edges.
Since in a random graph the edges are placed randomly, the majority of nodes have
approximately the same degree, close to the average degree of the network. The
degree distribution of a random graph is a Poisson distribution with the peak over
the average degree (Albert and Barabási, 2002). In real networks the distributions
of the edges are more complicated. Important results were obtained by the analysis
of large, real systems: the degree distribution deviates significantly from a Poisson
distribution and follows general structural rules in many cases. Many large networks
are scale-free, that is, their degree distribution follows a power law. In addition,
even for those networks for which P(k) has an exponential character, the degree
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distribution significantly deviates from a Poisson distribution achieved by random
graph theory for such systems (Albert and Barabási, 2002; Barabási, 2002).

Scale-free networks express a hierarchy between the nodes. Not every node is
important at the same level. Accordingly, not every link between the types has the
same importance. There are very sensitive relations or elements too. As mentioned
previously, we consider networks as “sensitive” if their properties depend strongly
on the introduction or removal of one or a few nodes or edges, or changes to the
occupation of nodes. We will show that for the evolutionary character, the descrip-
tion of time behaviour by master equations on occupation number spaces is an
appropriate tool. The discrete character of occupation number description allows for
an appropriate description of the introduction or, respectively, the removal of rela-
tions, edges, etc. We will analyse not only the steady states of our stochastic systems,
but also the time evolution. Albert and Barabási (2002) also refer to approaches with
master and rate equations. In addition, they claim that these methods, without using
a continuum assumption, appear more suitable for obtaining exact results in more
challenging network models. Further, the authors mentioned that the functional form
of the degree distribution, P(k), cannot be guessed until the microscopic details of
the network evolution are fully understood. According to our point of view, the
method of master equations is an excellent tool to use in the investigation of many
open questions; it is able to bring much more light to bear on this subject. For exam-
ple, by using the discrete approach, we have a chance to obtain statements about the
nature of fluctuations – one of the most important issues.

Let us come back now to the question of the distribution of the graph. Again, ran-
dom graph theory leads to a Poisson degree distribution. Albert and Barabási (2002)
give a near exhaustive survey of empirical data sets for real complex networks and
show that the real degree distributions are not Poisson distributions, but scale-free
distributions, or exponential distributions. These authors write: “The high interest in
scale-free networks might give the impression that all complex networks in nature
have power-law degree distributions. . . . It is true that several complex networks of
high interest for scientific community, such as the world wide web, cell networks,
the internet, some social networks, and the citation network are scale-free. However,
others, such as the power grid or the neural networks of c. elegans, appear to be
exponential. . . . Evolving networks can develop both power-law and exponential
degree distributions. While the power-law regime appears to be robust, sub-linear
preferential attachment, aging effects, and growth constraints lead to crossovers to
exponential decay. . . . If all processes shaping the topology of a certain network are
properly incorporated, the resulting P(k) often has a rather complex form, described
by a combination of power laws and exponentials”.

In this respect, our aim here is to calculate the role of fluctuations by using
the master equation approach. In this way, we can make statements about how
the systems differ from linear systems which obey a Poisson distribution. In prin-
ciple, by investigating the fluctuations, correlations and spectral densities, we are
able to study several microscopic events. One of the questions to answer is which
fluctuation effects produce power-law distributions. We find a deep connection of
these network systems to systems which produce 1/ f -noise. Again, 1/ f -noise is
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a stochastic process with a specific power-law spectrum (Klimontovich, 1995).
A characteristic property of processes which produce 1/ f -noise are long range-
correlations. We suppose that the scale-free networks and small-world behaviour
may have some relation to this. We reiterate that in small-world networks the degree
function obeys a power-law; there exists a small pathway between each two of the
elements.

In investigating self-organization and evolutionary processes in networks, our
basic approach is to understand the corresponding networks as dynamic, or more
precisely, as evolutionary systems. This dynamic and evolutionary approach allows
us to make statements about innovation processes, special competition effects,
the sensitivity of networks, the constraints of growth and the fitness of network
systems.

Socio-economic systems are complex systems, which consist of many connec-
tions between the elements. Therefore, complexity is a further concept to be defined.
Ebeling et al. (1998) write:

As complex we describe holistic structures consisting of many components, which are con-
nected by many (hierarchically ordered) relations respectively operations. The complexity
of a structure can be seen in the number of equal respectively distinct elements, in the
number of equal respectively distinct relations and operations, as well as in the number of
hierarchical levels. In the stricter sense, complexity requires that the number of elements
becomes very large (practically infinite).

We are especially interested here in the origin of complex structures, and in the
development of order (information). In the end, we have to answer the question of
which parameter relations (order parameters) determine the qualitative behaviour of
the system (Hartmann-Sonntag et al., 2004). Prigogine (1955) in collaboration with
his coworkers, did pioneering work in the investigation of self-organizing systems
(Nicolis and Prigogine, 1977). Further important work has been done in this field by
Eigen (1971) on the self-organization of macromolecules and by Eigen (1971) and
Eigen and Schuster (1977, 1978) on the hypercycle model. The mechanisms of self-
organization are clearly worked out by Nicolis and Prigogine (1977). These authors
give a stringent physical and mathematical formulation of these processes, in partic-
ular with respect to the energetic and entropic aspects. A somewhat different view
on this was developed in the formulation of synergetics by Haken (1978). The inves-
tigation of such systems shows that the formation of order in complex systems can
be allocated to physical processes, which play a role far from equilibrium (Ebeling
and Feistel, 1982). We underline the fact that biological, just as socio-economic pro-
cesses, can be investigated with the help of the theory of self-organization because
they obey valid physical and chemical laws. However, processes which include real-
life (biological and socio-economic) systems also obey other rules and laws that are
not solely determined by physics. This is already evident from the very general
character of the structures we consider here. As stated above, we formulate the idea
of structure mathematically and discuss the meaning of structure in the context of
technological evolution.
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10.4 Stochastic Models of Innovation Processes

10.4.1 Overview of Stochastic Effects in Networks

10.4.1.1 Birth and Death Processes

A special stochastic process called “birth and death process” is of particular impor-
tance to our study of stochastic effects in economic processes, and especially in
innovation processes. A birth process is a random appearance of a new element in a
system. A death process is the disappearance of an element. Processes of this kind
play a big role in biology, ecology and sociology.

Processes of this type are also relevant in economy (Kaniovski, 2000). Eco-
nomic growth is characterized by structural changes based on the introduction of
new technologies in the economic world. To describe technological evolution, we
must determine the system, its elements and their interactions. Here we consider
production plants and technologies. We consider firms composed of different man-
ufacturing plants. The plants are introduced as elementary units which function as
decision carriers according to market conditions (choosing a new technology or
not). Plants also play the role of users of a particular technology. The technolo-
gies are understood as the different types present in the system. The production
plants are the elements or representatives of these technologies. On this perspec-
tive, technologies eventually compete for the plants using them. This perspective
differs from the way one usually thinks about technological change, where the
firm is central (Hartmann-Sonntag et al., 2004). The underlying process is still
a decision made by plants or firms. However, the model approach constructs an
inverse perspective on it. Let us note here that this perspective is quite normal
for any population dynamic approach which deals with types (groups or species)
and elements (individuals). However, in contrast to biological processes, human
beings, organizations and firms are not bound to a certain type or group to which
they belong initially. In contrast to individuals of biological species, they have the
opportunity to change the group they belong to. It is this kind of transition behaviour
that makes the model particularly relevant for socio-economic applications. Further,
we deliberately use the notion of a plant or production unit as the simplest element
in the system. By assuming that firms consist of several plants or production units,
growth processes of firms are also covered by the model approach. Technological
change is usually considered as a macro-economic change process. However, in
order to describe it as an evolutionary process, one must consider this process at
the microscopic level. This means we have to consider the micro-economic carriers
of technological change. In the framework we present here, these are the plants
(Bruckner et al., 1996).

The basic ideas for the modelling of these processes go back to so-called urn
models. In 1907, the physicists, Paul and Tatyana Ehrenfest, developed a simple
model for the diffusion of N molecules (Ehrenfest and Ehrenfest, 1907). The Ehren-
fests studied two urns, A and B, which were isolated with respect to exchange with
their surroundings. With respect to exchange between urns, the Ehrenfests assumed
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permeable connections between A and B. Because of the isolation of the two urns,
the total number of molecules in A and B remains constant. At regular time intervals,
a molecule is randomly (that means with the probability (1/N )) chosen and changes
from one urn to the other.

In 1926, Kohlrausch and Schrödinger (1926) gave a continuous diffusion approx-
imation for such processes. Feller (1951) formulated a realistic variant of this model.
He used a discrete Markovian process with continuous time. The time between the
molecule crossings was exponentially distributed.

Originally developed for molecular processes, the model soon found many appli-
cations to biological processes. Surveys of biological applications of birth and death
processes were given by Bartholomay (1958a,b, 1959) and Eigen (1971).

The Ehrenfest model represents the prototype for the investigation of decision
processes in a group between the possibilities A and B, respectively, between yes
and no (Ebeling et al., 2000). For example, we may consider the decision of whether
to accept a new technology or not. Applications to social and economic processes
were surveyed by Weidlich (2000).

10.4.1.2 Stochastic Effects in Small and Sensitive Networks

Many complex systems display a surprising degree of tolerance to errors. The results
indicate a strong correlation between robustness and network topology. In particular,
scale-free networks are more robust than random networks against random node
failures (Hartmann-Sonntag et al., 2004), but are more vulnerable when the most
connected nodes are targeted (Albert et al., 2000).

In small networks any nodes or edges play a specific role. Their addition or
removal drastically changes the properties of the whole system. Another problem
where stochastic effects play a big role is the question of how a single new mutant
can win the selection process. If one considers, as an example, networks of web
sites and competition processes between them about attracting visitors one would
ask how can a new web site become a giant cluster among other already important
web sites (clusters)? Once a dominant regime or design is in place one can further
ask: Is it possible to overcome the “once-forever” selection behaviour by stochastic
effects?

The addition or removal of sensitive nodes or edges is a subject of investigation
also in big networks. With sensitive we mean here elements which play a special
role in the network. Let us consider some examples.

Cellular networks can be subject to random errors as a result of mutations
or protein misfolding, as well as harsh external conditions eliminating essential
metabolites. Jeong et al. (2000) studied the responses of the metabolic networks
of several organisms to random and preferential node removal. Removing up to 8%
of the substrates, they found that the average path length did not increase when
nodes were removed randomly. However, it increases rapidly after the removal of
the most connected nodes and up to 500% when only 8% of the nodes are removed.
Similar results have been obtained for the protein network of yeast as well (Jeong
and Mason, 2001; Vogelstein et al., 2000).
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Solé and Montoya (2001) studied the response of the food webs to the removal
of species (nodes) (see also Montoya and Solé, 2002). The results indicate that
random species removal causes the fraction of species contained in the largest clus-
ter to decrease linearly. However, when the most connected (keystone) species are
successively removed, the relative size of the largest cluster quickly decays.

The error and attack tolerance of the internet and the world wide web was inves-
tigated by Albert et al. (2000). The internet is occasionally subject to hacker attacks
targeting some of the most connected nodes. They show that the average path length
on the internet is unaffected by the random removal of as many as 60% of the
nodes, while if the most connected nodes are eliminated (attack), the average path
length peaks at a very small fraction of removed nodes. Albert, Jeong and Barabási
investigated the world wide web (Albert et al., 1999) and showed that the network
survives as a large cluster under high rates of failure, but under attack, the system
abruptly crashes. These authors write: “The result is that scale-free networks display
a high degree of robustness against random errors, coupled with a susceptibility to
attacks”.

Wagner and Fell (2000) studied the clustering coefficient, focusing on the energy
and biosynthesis metabolism of the Escherichia coli bacterium. They found that in
addition to the power-law degree distribution, the undirected version of this substrate
graph has a small average path length and a large clustering coefficient.

Hartmann-Sonntag et al. (2004) investigated in detail the structure and the
dynamic behaviour of networks. In particular, they considered fundamental prop-
erties of graphs as, for instance, the probability distribution for their components.
They introduced a stochastic model by which the role of fluctuations for the survival
of innovations in such non-linear systems can be explained.

Bianconi and Barabási (2001b) showed the existence of a closed link between
evolving networks and an equilibrium Bose gas. According to them, the mapping
onto a Bose gas predicts the existence of two distinct phases as a function of the
energy distribution. In the fit-get-rich-phase, the fitter nodes acquire edges at a
higher rate than older but less fit nodes. In the end, the fittest node will have the
most edges, but the richest node is not an absolute winner, because its share of the
edges decays to zero for large system size.

Maurer and Huberman (2000) present a dynamic model of web site growth in
order to explore the effects of competition among web sites. They show that under
general conditions, as the competition between sites increases, the model exhibits
a sudden transition from a regime in which many sites thrive simultaneously, to a
“winner takes all market” in which a few sites grab almost all of the users, and most
of the other sites become nearly extinct. This prediction is in accord with empirical
data measurements on the nature of electronic markets.

Dorogovtsev et al. (2003) developed a statistical mechanical approach for ran-
dom networks. They summarize as follows: “Using the traditional formalism of
statistical mechanics, we have constructed a set of equilibrium statistical ensem-
bles of random networks without correlation and have found their partition function
and main characteristics. We have shown that a ‘scale-free’ state in equilibrium
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networks without condensate may exist only in a single marginal point, so that in
such an event this state is an exhibition”. They underline the important fact that this
differs crucially from the situation for growing networks. The latter, in the process
of growing, self-organize into scale-free structures in a wide range of parameters
without condensation.

10.4.2 Stochastic Analysis of Innovation Processes

10.4.2.1 A General Formulation of the Model

The stochastic approach given here is based on a model, which was developed in the
context of general models of evolutionary processes, and in particular biochemical
processes (Ebeling et al., 1981; Schimansky-Geier, 1981; Ebeling and Feistel, 1982;
Ebeling and Sonntag, 1986). Later, the model found numerous applications in mod-
elling scientific evolution (Ebeling and Scharnhorst, 1986; Bruckner et al., 1990)
and technological evolution (Bruckner et al., 1994, 1996). In this contribution, we
first introduce the model framework in a general form and later concentrate on its
application to economic innovation and competition processes.

In the stochastic picture we use the ideas developed in Sect. 10.2 and in
Sect. 10.4.1.1 about the occupation number space. Contrary to deterministic models,
the stochastic description offers the advantage that at finite times new types (sorts,
fields, species, technologies) can arise or “die out”.

Let us introduce a set of types numbered by i = 1, 2, . . . , s. We denote by Ni (t)
the number of elements belonging to a certain type. For an economic application
Ni (t) represents the number of production plants using the technology i (Note
that a type corresponds to an urn in the Ehrenfest problem formulation. For more
details see Hartmann-Sonntag et al., 2004). These numbers are called occupation
numbers. They are a function of time. The occupation numbers are positive or
zero.

Ni (t) = {0, 1, 2, . . .} . (10.1)

Now, the state of the system at time t can be described by the probability
distribution of the occupation numbers

P(N1, N2, . . . , Ns ; t) = P(N ; t). (10.2)

We consider as elementary processes, processes during which only one occu-
pation number can change, and processes during which at most two occupation
numbers can change (transition processes):
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(Ni ) −→ (Ni + 1)

(Ni ) −→ (Ni − 1)
(

Ni

N j

)

−→
(

Ni − 1
N j + 1

)

.

(10.3)

For the time being, we also assume that growth and decline processes of the total
number of elements in the system are possible. Noteworthy, however, here is that
the original formulation of the Ehrenfest model only contains transition processes.
This is due to the fact that in the Ehrenfest model the total number of elements
remains constant and exchanges occur only between the urns. Decision processes in
the model occur as transitions of elements between types.

If we assume that all decisions which lead to a change in the set of occupation
numbers depend mostly on the present state, we can apply the concept of Markov
processes. We can thus describe the dynamics of the system with the help of the
master equation. This equation is a balance equation between building and reduction
processes:

	P(N ; t)

	t
= W (N |N ′) P(N ′)−W (N ′|N ) P(N ) (10.4)

with

N = {N1, N2, . . . , Ns} . (10.5)

The transition probabilities per time unit that the system turns from the state N ′ to
the state N or vice versa are expressed by W (N |N ′) and W (N ′|N ), respectively.

The transition probabilities are supposed as follows (Feistel and Ebeling, 1978;
Ebeling and Feistel, 1982; Jiménez-Montaño and Ebeling, 1980; Ebeling and
Sonntag, 1986; Heinrich and Sonntag, 1981; Ebeling et al., 1990a,b; Hartmann-
Sonntag et al., 2004; Ebeling et al., 2006):

1. Spontaneous generation

W (. . . , Ni + 1, . . . , N j , . . . , Nk, . . . | . . . , Ni , . . . , N j , . . . , Nk, . . .)

= A(0)
i . (10.6)

2. Self-reproduction

W (. . . , Ni + 1, . . . , N j , . . . , Nk, . . . | . . . , Ni , . . . , N j , . . . , Nk, . . .)

= A(1)
i j N j + E (1)

i Ni (10.7)

E (1)
i = A(1)

i + B(1)
i j N j + C (1)

i jk N j Nk . (10.8)
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3. Decay

W (. . . , Ni − 1, . . . , N j , . . . , Nk, . . . | . . . , Ni , . . . , N j , . . . , Nk, . . .)

= E (2)
i Ni (10.9)

E (2)
i = A(2)

i + B(2)
i j N j . (10.10)

4. Conversion/Transition/Exchange/Mutation

W (. . . , Ni + 1, . . . , N j − 1, . . . , Nk, . . . | . . . , Ni , . . . , N j , . . . , Nk, . . .)

= E (3)
j N j (10.11)

E (3)
j = A(3)

i j + B(3)
i j Ni + B̄(3)

ik Nk + C (3)
i jk Ni Nk (10.12)

with j 	= i ; k 	= i ; j .

The coefficients can be introduced differently for special cases. For instance,
they can be considered as constant or as functions of the total number of elements
and other the system parameters; this latter approach introduces an additional non-
linearity to the system.

The content of the four elementary processes introduced above will be quite
different according to the nature of the system under consideration. For instance,
for catalytic networks, self-reproduction may appear as a result of a process of
spontaneous self-reproduction (term related to A(1)

i ), error reproduction (B(1)
i j ) or

catalytic self-reproduction (C (1)
i jk). The decay can appear in the form of spontaneous

decay (A(2)
i ) and decay related to catalytic help (B(2)

i j ). Transition or conversion pro-
cesses in catalytic networks correspond to mutation processes with reproduction
and ternary reproduction processes; these in turn are important for processes with a
constant overall particle number.

In the case of technological evolution, self-reproduction appears as a growth pro-
cess of firms expanding their number of production units and plants using the same
technology. Synergetic effects from the surrounding network of firms are supposed
to occur when the transition rate also depends on the number of firms using another
technology. Spontaneous generation stands for startups. Decay processes refer to
both a decrease in firm size (closing of production units) and a decrease in the total
number of firms (complete closing down of whole enterprises) (Hartmann-Sonntag
et al., 2004). The most interesting process is related to conversion or transition.
Here, the use of another technology by a production unit is described. The use of
a technology may be new for an individual firm only (firm-specific innovation) or
for the whole system of firms (system-specific innovation). Triggered by R&D, both
invention of a technology and imitation behaviour are covered by this process. Also,
in this case, other technologies can influence a firm’s decision to adopt a certain
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technology. The advantage of this type of model is that technological change is
considered as the outcome of the development of a network of technologies and
firms influencing one another.

The transition probabilities are formulated generally. As a special case, we can
obtain from this Ansatz the stochastic equations, which correspond to the deter-
ministic Eigen-model (Eigen and Schuster, 1978) with the condition of constant
overall particle number (Jiménez-Montaño and Ebeling, 1980; Ebeling et al., 1981;
Heinrich and Sonntag, 1981).

With the help of the s-dimensional generation function

F(s1, s2, . . . , ss ; t) =
∑

N

s N1
1 s N2

2 . . . s Ns
s P(Ni , t) with |si | < 1 (10.13)

we can write the master equation with the transition probabilities as follows:

Ḟ(s; t) =
∑

i 	= j

{

A(0)
i (si − 1) F + A(1)

i si (ss − 1)
	F

	si

+A(1)
i j s j (si − 1)

	F

	s j
+ B(1)

i j si s j (si − 1)
	2 F

	si 	s j

+C (1)
i jk si s j sk(si − 1)

	3 F

	si 	s j 	sk
+ A(2)

i (1− si )
	F

	si

+B(2)
i j s j (1− si )

	2 F

	si 	s j
+ A(3)

i j (si − s j )
	F

	s j

+B(3)
i j si (si − s j )

	2 F

	si 	s j
+ B̄(3)

ik sk(si − s j )
	2 F

	sk	s j

+C (3)
i jk si sk(si − s j )

	3 F

	si 	s j 	sk

}

. (10.14)

10.4.2.2 A Network Representation of the Model

In order to relate the model to the idea of sensitive networks we now introduce
a network, representation of transition probabilities given in (10.6), (10.7), (10.8),
(10.9), (10.10), (10.11), and (10.12). We consider a system with s interacting types
(sorts, fields, plants). This system can be described by a graph in which each element
i corresponds to a vertex of the number i (Hartmann-Sonntag et al., 2004). We mark
the transition probabilities for different processes by edges of different types in order
to distinguish these probabilities:
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1. Spontaneous generation (simple
innovation)

A(0)
i

�

i
�

2. Self-reproduction A(1)
i Ni

�

i
��

��

�

Error reproduction A(1)
i j N j

�

j
�

i
�

Catalytic self-reproduction
(sponsored self-reproduction)

⎧
⎪⎪⎨

⎪⎪⎩

B(1)
i j Ni N j

C (1)
i jk Ni N j Nk

�

i
�

j
��

��

�

�

i
� j��

��

�

� k

3. Spontaneous decay A(2)
i Ni

�

i
�

Catalytic decay B(2)
i j Ni N j

�

j

�
i

�

4. Mutation (innovation) A(3)
i j N j

�

j
�

i
�

Mutation (innovation) with repro-
duction

⎧
⎪⎪⎨

⎪⎪⎩

B(3)
i j Ni N j

C (3)
i jk Ni N j Nk

�

i

� j�
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�

�

i
� k��

��

�

� j�

Mutation without reproduction B̄(3)
ik Nk N j

�

k
�

i

�

j

� �

For under-occupied systems, the transition from a non-occupied (Ni = 0) state
to an occupied (Ni > 0) state is of special interest. We will call such a transition
an innovation. To describe this in the network picture, we distinguish two states for
one vertex. The states are marked as follows:

�

i
non-occupied Ni = 0

�

i
occupied Ni > 0
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We also distinguish two states for the edges of the graph. Edges emanating out
from unoccupied vertices (Ni = 0) are omitted because they are inactive (they
cannot work). Active (working) edges are characterized by the graphic representa-
tion shown above. For socio-economic networks, non-occupied vertices stand for
new technologies which have not yet been discovered. These can be understood as
hidden possibilities. The model does not allow for the prediction of any specific new
technology. But, it can make statements about favourable or unfavourable conditions
for the emergence of new technologies. One can also ask how the system handles
the appearance of new technologies in general.

Eventually, we obtain a graph that describes the whole system at a fixed time t .
If the colour of a vertex is changed, new connections (elementary processes) can
flare up or former connections discontinue. Processes can spread the elements over
the non-occupied vertices or they can select them from the occupied vertices. The
basic structure of the network is the “maximal” graph (all vertices i are occupied,
all interactions can occur).

In a network with a small overall number of elements (individuals, organiza-
tions, plants) (N � s), many vertices are not occupied. Let us consider a graph
with (N  s) and reduce the overall number of elements to a state (N � s).
In general, vertices such as i and j become non-occupied by the following pro-
cesses: A(2)

i Ni , B(2)
i j Ni N j , A(3)

i j N j , B(3)
i j Ni N j , B̄(3)

ik Nk N j , C (3)
i jk Ni N j Nk . These are

the processes of decay and the processes of conversion. If only a certain part of
the processes work because of the small overall number, we obtain a graph with
many components. With a decreasing number of elements (individuals, organi-
zations, plants) the maximal graph with few components develops into a graph
with a large number of components (Ebeling and Feistel, 1982). The “minimal”
graph we obtain (maximally decomposed) consists of self-reproduction processes,
spontaneous generation (simple innovations), sponsored innovation processes and
sponsored innovation processes with self-reproduction (self-reproducing process).
Conversely, vertices can be occupied by the following processes: spontaneous
generation (simple innovation) A(0)

i , error reproduction A(1)
i j N j , mutation without

reproduction (innovation without self-reproduction) A(3)
i j N j and mutation without

reproduction but with catalytic help (sponsored innovation without self-reproduc-
tion) B̄(3)

ik Nk N j .
We assume that the processes through which the vertices can be occupied

are very rare. This means spontaneous generations (simple innovations) and
mutations have a small probability. After a relatively short time, the components
are in a local equilibrium (first process). Then, sponsored innovation processes
begin to become significant starting from an occupied component which is in
equilibrium (Hartmann-Sonntag et al., 2004). New components (non-occupied)
can be occupied (second process). This is a hopping process between compo-
nents. Certain components die out under selection pressure, others survive
and grow.
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10.4.3 Application to Technological Innovations

10.4.3.1 Technologies with Linear Growth Rates

In the following, we consider a system in which the total number of elements is
constant. As mentioned above, a useful instrument to model such processes is the
theory of stochastic transitions between urns, established by Ehrenfest. Compared
with the general model introduced so far, in the case of a closed system, all ele-
mentary processes appear as transition processes. Further, let us restrict ourselves to
the case of technological evolution. Then, the urns stand for different technologies.
Symbolic spheres travelling between the urns stand for production plants looking
for technologies.

Ni is the number of plants, which uses the technology i , this means they belong
to the urn i . These numbers are called occupation numbers:

Ni (t) = {0, 1, 2, . . .} . (10.15)

First, we formulate a simple model for the binary decision process:

N = N1 + N2 . (10.16)

We assume that during elementary processes the occupation number only changes
by ±1. This is the so-called one-step process. During transition processes, at most
two occupation numbers can change in this way:

(
N1

N2

)

−→
(

N1 − 1

N2 + 1

)

. (10.17)

For instance, we assume that E1 is the growth rate of plants using technology 1.
For a new technology 2 the growth rate is E2. We assume:

E2 > E1 . (10.18)

In this case, technology 2 has a greater growth potential or will grow faster than
technology 1. We will assume that this is an expression of technology 2 being “bet-
ter” or more suitable for production plants. In the stochastic picture, the transition
from urn 1 to urn 2 will simply have a higher probability than the reverse transi-
tion. So, plants will change their technology more often to technology 2. They will
replace the old technology by a better (new) one.

We write the transition probability for this process as follows (Hartmann-Sonntag
et al., 2004):

W+(N2 + 1|N2) = E2 N1

(
N2

N

)

+ E21 = W+
N2

. (10.19)
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In particular, we assume that the transition probability is proportional to the
number of plants that use the old technology:

W+(N2) ∼ N1. (10.20)

Furthermore, the probability is also proportional to the relative number of plants
that use the new technology

W+(N2) ∼ N2

N
. (10.21)

We introduce an additional process of spontaneous change from technology 1 to
technology 2, which is described by the coefficient E21. The opposite spontaneous
transition appears with the coefficient E12. In total, the opposite transition process
has the probability:

W−(N2 − 1|N2) = E1 N2

(
N1

N

)

+ E12 = W−
N2

. (10.22)

We can formulate the master equation for this discrete process. This equa-
tion describes the time–behaviour of the probability distribution of the occupation
numbers.

P(N1, N2; t). (10.23)

With the mentioned transition probabilities follows:

	

	t
P(N1, N2; t) = W+

N2−1(N2|N2 − 1) P(N2 − 1; t)

+W−
N2+1(N2|N2 + 1) P(N2 + 1; t)

−W+
N2

(N2 + 1|N2) P(N2; t)

−W−
N2

(N2 − 1|N2) P(N2; t) (10.24)

and (Hartmann-Sonntag et al., 2004; Ebeling et al., 2006)

	

	t
P(N1, N2; t)

=
[

E21 + E2

N
(N2 − 1)(N1 + 1)

]

P(N1 + 1, N2 − 1; t)

+
[

E12 + E1

N
(N2 + 1)(N1 − 1)

]

P(N1 − 1, N2 + 1; t)

− [E21 + E12 + (E1 + E2)N2(N − N2)] P(N1, N2; t). (10.25)
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If we use the relation N1 + N2 = N (i.e. N1 = N − N2), we can write:

	

	t
P(N2; t)

=
[

E21 + E2

N
(N2 − 1)(N − N2 + 1)

]

P(N2 − 1; t)

+
[

E12 + E1

N
(N2 + 1)(N − N2 − 1)

]

P(N2 + 1; t)

−
[

E21 + E12 + (E1 + E2)

N
N2(N − N2)

]

P(N2; t). (10.26)

To obtain statements for the deterministic case, we define the mean value:

〈N2(t)〉 =
∞∑

N2=0

N2 P(N2; t). (10.27)

By multiplying the master equation with N2 and a following summation, we
obtain:

d

dt
〈N2(t)〉 = E2 − E1

N
〈N2(N − N2)〉 + (E21 − E12). (10.28)

Using the approximation 〈(N2)2〉 ≈ 〈N2〉2 and the abbreviations

x2 = 〈N2〉
N

; α = E2 − E1 ; β = E21 − E12

N
(10.29)

we achieve the corresponding deterministic equations:

dx2

dt
= α x2 (1− x2)+ β. (10.30)

Let us compare the stationary behaviour of both the stochastic and the determin-
istic models. In the case of two technologies, we can explicitly derive the stationary
solution of the master equation:

P0(N2) = W+(N2) W+(N2 − 1) · · · W+(N − 1)

W−(N2 + 1) W−(N2 + 2) · · · W−(N )
P0(N ). (10.31)

In the deterministic case, the stationary solution for E2 > E1 is:

x2 = 1, that is N2 = N . (10.32)

The new (better) technology will replace the old one. If a final stable stationary
solution is reached by the system, all of the plants will use the new technology.
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For the stochastic case, we get quite a different picture. In particular, the proba-
bility distribution P(N2) 	= 0 for N2 	= N . This means that in the stochastic case,
the old and new technologies will coexist, if the difference between E1 and E2 is
not too large. Otherwise, the old technology would only survive in a small niche.

An interesting case occurs, if the spontaneous rates are E21 = E12 = 0. In this
case the states N1 = 0, N2 = 0 are called absorber states. This means that the
system cannot leave these states. For the stationary solution of the master equation,
we get:

P0(N2) = σ1 δ0N2 + σ2 δN N2 ; σ1 + σ2 = 1 (10.33)

σi is a real number between zero and one. From the absorber states N2 = 0 and
N1 = 0 (N2 = N ) the other states cannot be reached.

The initial state determines which stationary solution is occupied by the system.
After some calculations we can give for σ2 in the limit N  1 and N2(t = 0) the
following equation:

σ2 =
⎧
⎨

⎩

0 for E2 < E1

1−
(

E1
E2

)N2(0)
for E2 > E1

(10.34)

with N2(0) = N2(t = 0) being the initial state of the system. If N2(0) is the number
of users at time t = 0 of technology 2, then σ2 is the probability that for t → ∞
N2 = N users change to technology 2. σ1 is the probability that for t →∞ N2 = 0
(i.e. N1 = N ) users changes to technology 2, that is, that the new technology has
not survived. In general, σi is the survival probability of technology i .

If a small number of plants N2(0) use a new technology, this technology will
disappear if its growth rate E2 is smaller than that of the old technology. If the
growth rate E2 of the new technology is considerably larger, the new technology
will succeed with a probability of

1−
(

E1

E2

)N2(0)

. (10.35)

With a small probability of

(
E1

E2

)N2(0)

(10.36)

the old technology will still be used within the system.
In the deterministic case a new technology with higher growth rates is always

successful. This is the case of pure Darwinian selection where the fittest and only
the fittest survives at the end of the process.

What we observe in socio-economic systems is usually a variety of technologies
(Saviotti, 1996). This can be either explained by the action of mutation processes



10 Sensitive Networks 307

and error reproduction or the presence of stochastic processes. As we showed above
in the stochastic situation, the new better technology will only survive with a cer-
tain probability. Empirical studies of growth processes in ensembles of technologies
might shed light on which growth mechanism is present in a certain system.

10.4.3.2 Technologies with Quadratic Growth Rates

In the following we consider, again, the case with absorber states; this means we
neglect the terms E21, E12. As an extension to the model introduced above, instead
of the linear terms (E1, E2), we now introduce non-linear components (b1, b2, V ).
V is a parameter which stands for the spatial volume of the system in biochemical
applications. In general terms it is related to the size of the system. In principle, we
could use it as an additional tuning parameter for density effects, but we can also set
it to 1, which leaves us with N as the only size parameter.

Remember that we still have a system with a constant total number of elements
(plants), so all processes appear as transition processes. The non-linearities might
stand for processes of catalytic self-reproduction as well as for transition or muta-
tion processes influenced by other types (technologies). We can write the transition
probabilities as:

W+(N1) = b1

N V
N2 N 2

1 (10.37)

W−(N1) = b2

N V
N 2

2 N1 (10.38)

(compare Ebeling et al. (1981) in detail for an application to biochemical systems).
We assume that the sum of the occupation numbers remains constant:

N1 + N2 = N = const. (10.39)

The probability distribution of the occupation numbers is:

P(N1, N2; t). (10.40)

Analogous to our formulation in the previous section, we can formulate the
master equation as follows:

	

	t
P(N1; t) = W+(N1 − 1) P(N1 − 1; t)+W−(N1 + 1) P(N1 + 1; t)

− [
W+(N1)+W−(N1)

]
P(N1; t). (10.41)

By multiplying the master equation with Nk/V and summing over all occupa-
tion numbers, we obtain, after factorization of the mean values, the deterministic
equation:
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〈Nk〉/V = xk with x1 + x2 = N

V
= C = const.

ẋi = bi x2
i − ϕ xi ; i = 1, 2 (10.42)

with

ϕ = b1x2
1 + b2x2

2

C
. (10.43)

Equations of the same form have been derived for so-called hypercyclic sys-
tems to describe the evolution of macromolecules (Eigen and Schuster, 1978). Their
behaviour is well understood. As a result of the quadratic terms in the growth rates,
the phase space is split into two regions separated by a separatrix Si (Fig. 10.3):

Fig. 10.3 Phase space in the
deterministic case

Of note here is that, because of the N = const. condition, the dimensionality
of the system decreases. Due to the nature of the transition process, the occupation
numbers in the system change along a diagonal of the two-dimensional phase space.
In the deterministic picture, the selection behaviour depends on the initial conditions
xi (t = 0) of the system. A certain technology i can only succeed (xi = C for
t →∞), if the initial condition places the system beyond the point of the separatrix:

xi (0) > Si ; Si = C b j

bi + b j
. (10.44)

Thus it is possible that a new technology i , even if it has a greater growth rate, will
not succeed because from the outset the number of users (plants) is too small.

xi (t = 0) < Si . (10.45)

Such a situation has been called once-forever selection or hyperselection. In the
case of macromolecular evolution, this feature was used to explain the uniqueness
of the genetic code. For technological evolution we have argued elsewhere that
hyperselection is an alternative explanation for so-called lock-in phenomena of tech-
nologies (Bruckner et al., 1994, 1996). The situation changes again if we look at the
stochastic picture. Here the phase space appears as follows (Fig. 10.4):

The two absorber states for the stochastic case are again:

N2 = 0 , N1 = N , (10.46)

N2 = N , N1 = 0 . (10.47)

Fig. 10.4 Phase space in the
stochastic case
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The initial state is N2(t) = N2(t = 0):

P(N2; 0) = δN2 N2(t=0) . (10.48)

The final state is:

P(N2; t = ∞) = σ1 δ0N2 + σ2 δN N2 . (10.49)

After some calculations we obtain for the case N2(0) = 1 (one user of technology
2 occurs at t = 0):

σ2 = 1
(

1+ b1

b2

)N−1 (10.50)

σ2 is the probability that the new technology wins the competition process.
In the stochastic case, the separatrix S is penetrated with a certain probability.

The once-forever behaviour disappears. The better technology can win the selection
process with a certain probability even if it starts with only one user. This probability
increases rapidly for small overall numbers of users, as follows from the equation
and as can be seen in Fig. 10.5 (Ebeling and Sonntag, 1986). In the stochastic
description, the presence of fluctuations is responsible for helping the technology
to cross the barrier to entry in the market.

This effect is size-dependent. In smaller systems the probability for survival of
new technologies – even in a hyperselection situation – increases. This can also
be interpreted in economic terms. Small system size then refers to the size of the
market in which the competition between the old and the new technology takes
place. If a new technology is protected by certain mechanisms it can win in a market
of limited competition. Thus, it can gain a significant number of early adopters and

20 40 60 80 100

0.2

0.4

0.6

0.8

1

Fig. 10.5 Survival probability of a new technology in systems of different size (fat line N = 10,
dashed line N = 40, dotted line N = 70, fine line N = 100)
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move on to a more open, bigger market where it would then have an improved
chance of survival. In other words, in small niches, even in a lock-in situation, a
new technology can replace an old one. By travelling from one niche to another,
or in growing niches (dynamic niches), the new technology would even be able to
gain control of the whole market. There is some empirical evidence indicating that
such processes take place in technological change (for a discussion see Bruckner
et al. (1998) and Aigle et al. (2008)).

10.4.3.3 Technologies with Mixed Growth Rates

In the following, we consider the general case where the growth rates of a cer-
tain technology contain both linear as well as non-linear terms. The transition
probabilities for this case are:

W+(N1) = E1

N
N1 N2 + b1

N V
N2 N 2

1 , (10.51)

W−(N1) = E2

N
N1 N2 + b2

N V
N1 N 2

2 . (10.52)

Again, we assume here that E12 = E21 = 0, so we have absorber states. Further,
the number of elements (plants) in the system is constant: N1 + N2 = N = const.
Analogously to the case studies above, the master equation reads:

	

	t
P(N1; t) = W+(N1 − 1) P(N1 − 1; t)+W−(N1 + 1) P(N1 + 1; t)

− [
W+(N1)+W−(N1)

]
P(N1; t). (10.53)

In the same way as described above, we can also derive the deterministic counterpart
to the stochastic dynamics (Hartmann-Sonntag et al., 2004).

For the general case, the survival probability of a new technology σN2(0),N can be
calculated as:

σN2(0),N =

1+
N2(0)−1∑

j=1

j∏

i=1

E1 + b1
N − i

V

E2 + b2
i

V

1+
N−1∑

j=1

j∏

i=1

E1 + b1
N − i

V

E2 + b2
i

V

. (10.54)

This result was first obtained in Ebeling et al. (1981) and extensively applied to
socio-economic problems in Bruckner et al. (1996). As can be seen from the above
formula, the survival probability for a new technology σ not only depends on the
selection advantage (the relation of the parameters Ei , bi ), but also depends on the
size of the system N (the overall user number) and the initial number of users.
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10.4.3.4 Summary – General Aspects of the Survival Probability
of a New Technology

The stochastic analysis of competition processes of technologies in a market where
the number of overall users is restricted shows remarkable differences to the results
based on a deterministic description. Let us note here that by restricting ourselves to
markets with a fixed number of economic agents, we also restrict ourselves to tech-
nological substitution processes. However, using the approach of under-occupied
systems, this restriction does not represent a limitation for the innovation pro-
cess. A variety of future possible innovative types is included in the system all
times. The population of agents (fixed in size) can travel unlimited over the field
of innovations. Even with this restriction to substitution processes, the stochastic
analysis compared with the deterministic one represents an increase in mathematical
complexity at the descriptive level. For the multidimensional general case, an ana-
lytical solution of the master equation is not available. Some results can be obtained
using computer simulations (Schimansky-Geier, 1981; Heinrich and Sonntag, 1981;
Bruckner et al., 1990). However, what we have shown so far is how statements
about the survival probability in the long run can be derived. Results are avail-
able for certain special cases as we presented above. Let us summarize the results
for the special case of two-dimensional systems with N1 + N2 = N = const.
and with the two absorber states N2 = 0, N2 = N . Absorber states means here
that once the states N2 = 0 or N2 = N have been reached, they cannot be left
anymore.

As mentioned above, this case can be treated exactly (Schimansky-Geier, 1981;
Ebeling et al., 1981; Ebeling and Feistel, 1982; Ebeling et al., 1986). In accordance
with the absorber character, we can assume that the stationary probability which is
the target of evolution has a delta character and can be written as:

P(N2; t = ∞) = σ δN N2 + (1− σ ) δ0N2 . (10.55)

Here, σ is the survival probability of the second technology which is supposed to be
the new one entering the market. An expression for the survival probability σ can
be calculated with the help of one constant of motion for the general case (Ebeling
et al., 1981):

σN2(0),N =
1+

N2(0)−1∑

j=1

j∏

i=1

W−
i

W+
i

1+
N−1∑

j=1

j∏

i=1

W−
i

W+
i

for 0 < N2(0) < N (10.56)

and

σN2(0),N = 1 for N2(0) = N . (10.57)
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As described in Sect. 10.4.2.1, the transition probabilities W+ and W− represent
quite a variety of different processes all of which are linked to certain parameters.
Further, the initial conditions and the system size N are important for the survival
of a new technology (for details see Bruckner et al., 1996).

In particular, we considered the following representations of transition probabil-
ities:

1. For technologies with linear growth rates (linear case)

W+
N2
= E2

N − N2

N
N2 ; W−

N2
= E1

N − N2

N
N2. (10.58)

2. For technologies with quadratic growth rates (quadratic case)

W+
N2
= b2

N − N2

N V
N 2

2 ; W−
N2
= b1

(N − N2)2

N V
N2. (10.59)

3. For technologies with certain mixed growth rates (general case)

W+
N2
= E2

N − N2

N
N2 + b2

N − N2

N V
N 2

2 , (10.60)

W−
N2
= E1

N − N2

N
N2 + b1

(N − N2)2

N V
N2. (10.61)

We derived certain expressions for the survival probabilities by solving the
absorber problem. These expressions can be treated further, and certain special cases
discussed.

1. For the linear case the survival probability has been defined as

σN2(0),N =
1−

(
E1

E2

)N2(0)

1−
(

E1

E2

)N1) . (10.62)

We now consider the special case of very large systems (many possible users).
In this case, σ can be simplified to:

σN2(0),N→∞ = 0 for E2 < E1 (10.63)

and

σN2(0),N→∞ = 1−
(

E1

E2

)N2(0)

for E2 > E1 . (10.64)
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If we then consider a certain initial condition, the case that a technology starts
with just one user (plant) N2(0) = 1, we can reduce the expression for the
survival probability one step further

σN2(0)=1,N→∞ = 0 for E2 < E1 (10.65)

σN2(0)=1,N→∞ = 1− E1

E2
for E2 > E1 . (10.66)

2. For the quadratic case, the survival probability has been defined as

σN2(0),N =
1+

N2(0)−1∑

j=1

(
b1

b2

) j (
N − 1

j

)

(

1+ b1

b2

)N−1 . (10.67)

This equation can be written down in a more specified manner if we consider
a new technology starting with just one user N2(0):

σN2(0),N = 1
(

1+ b1

b2

)N−1 . (10.68)

3. For the general case the survival probability has the following form:

σN2(0),N =

1+
N2(0)−1∑

j=1

j∏

i=1

E1 + b1
N − i

V

E2 + b2
i

V

1+
N−1∑

j=1

j∏

i=1

E1 + b1
N − i

V

E2 + b2
i

V

. (10.69)

In the special case of a technology starting with just one user N2(0) = 1, we
obtain:

σN2(0),N = 1

1+
N−1∑

j=1

j∏

i=1

E1 + b1
N − i

V

E2 + b2
i

V

. (10.70)

In general, the transition probabilities depend on the system size, the system
parameters and the initial conditions. In the stochastic case, we obviously find a
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niche effect. In the niche, the sharpness of selection is diminished. In the linear
case, good and bad technologies can temporally co-exist. In the quadratic case, the
once-forever effect of a competition and selection process is countered by the niche
effect. The niche represents a possibility for a better technology to win the compe-
tition even when a lock-in effect is present. Locally developed niches may play a
constructive role in technological evolution; these can be observed in large complex
systems, such as economic systems. The description, with the help of the master
equation, includes processes which are important in these small domains (niches).
In a niche, the new technology is protected from extinction for a limited time. After
winning the competition in this small area, the new technology can “infect” the
whole system, and may be established at the end.

10.4.4 Stochastic Analysis of Multiple Decision
Processes – The Modelling of Technological Networks

10.4.4.1 Ehrenfest’s Urn-Models with Higher Correlations

In Sect. 10.4.1.1, we introduced the urn model of Ehrenfest. The idea of this
model was extended to processes which also change the total number of elements
in a system. In subsequent sections, we then restricted ourselves to the Ehrenfest
approach by considering transition probabilities only, and derived analytical results
for the survival probability in the special case of two competing technologies. In
this section, we again use the idea of a system with constant size, but extend the
dimensionality of the system. Here, we have in mind under-occupied systems where
the number of possible different technologies is large. Only the number of plants
searching for a new technologies is restricted. Now we will consider the competition
between s different technologies. This corresponds to the existence of s urns, which
are filled with N1, N2, . . . , Ns spheres. We start a stochastic game where, at random
times, spheres are taken out of one urn and put into another. Here, we consider a
game with binary decisions, where the transition from one urn j to another urn i is
given by the following transition probabilities:

W (N1 . . . , Ni + 1, . . . , N j − 1, . . . , Ns |N1, . . . , Ni , . . . , N j , . . . , Ns)

= Ai j N j + Bi j Ni N j +
∑

k

Ci jk Ni N j Nk . (10.71)

This is a generalization of the transition rates introduced so far in the case of
two technologies. In particular, we have in mind the mutual support or hindering
of technologies. As indicated in the economic literature, innovations are often the
outcome of an innovation network with different actors involved. We can assume
that the decision of a certain plant or firm to implement a particular technology
depends both on other firms using the same technology as well as on other firms
using different but somehow related technologies. The stochastic game we propose
here is a hopping process of plants between technologies.
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The mean values of the occupation numbers in the thermodynamic limit fol-
lows approximately a differential equation. In the sections above, we showed such
approximation for the case of two technologies with linear, quadratic and specific
non-linear growth rates. The deterministic equations we obtained correspond to
Fisher–Eigen–Schuster equations. For the generalization proposed above a set of
Lotka-Volterra equation follows in the deterministic limit:

d

dt
xi =

∑

j

(

Ai j x j + Bi j N xi x j +
∑

k

Ci jk N 2xi x j xk

)

(10.72)

with
〈Ni 〉

N
= xi .

The general case can only be handled by computer simulations. The equation
above comprises the case of two technologies with non-linear growth rates if we
introduce the following correspondence between parameters (Ebeling et al., 2000):

A21 = 0 ; B12 = E1

N
; C12k = b1

N
δ1k ; k = {1; 2}, (10.73)

A12 = 0 ; B21 = E2

N
; C21k = b2

N
δ2k, (10.74)

W (N2 + 1, N1 − 1|N1, N2) = E2
N1 N2

N
+ b2

N 2
2 N1

N
. (10.75)

10.4.4.2 Decision Processes and the Dynamics of a Network of Technologies

In this section, we return to the general dynamics of interacting technologies. In
Sect. 10.4.2.1, we gave a short economic interpretation of processes like sponta-
neous generation, self-reproduction, decay and conversion or transition. All of these
processes can be interpreted in terms of decision processes by firms or plants related
to expansion or shrinking, and the choice of different technologies from a set of
technologies available. The case of innovation interpreted as first occupation of a
technological possibility unoccupied so far is just one process in a whole set of
decision processes made by firms. The substitution case between old and new tech-
nologies, which we examined earlier in detail, represents a very specific decision.
In the following, we will give a detailed interpretation of different possible deci-
sion processes (for further economic interpretations please also consult Bruckner
et al. (1996)).

We start again with the set of occupation numbers. Ni is the number of plants
using a certain technology i . We consider a network of s different technologies
competing with one another i = 1, . . . , s. We will no longer stick to the assumption
that the total number of plants in the system will remain constant. This way, we also
consider growth and decline processes, not only of certain used technologies in the
system, but also of the system itself – the market as a whole.
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We can differentiate between changes which occur for just one type of user
(where the type or the group that the users belong to is characterized by the technol-
ogy they use). For instance, the number of users of the technology i may increase
or decrease. This is a stepwise process which only changes the occupation number
by one:

(Ni ) −→ (Ni + 1)
(Ni ) −→ (Ni − 1).

(10.76)

Furthermore, changes can occur between different types of users. Mathemati-
cally, this is expressed by the simultaneous change of two occupation numbers:

(
Ni

N j

)

−→
(

Ni − 1

N j + 1

)

. (10.77)

Plants can take decisions to a certain technology which they have used before;
they can develop a new technology, or they can use a technology already established
on the market; they can also further develop a technology which they have already
used and in this way create a new type of technology. Not only technologies can
enter a market; firms can also do so. The creation of a new firm might be connected
to an established technology or related to the introduction of a new technology. The
problems that technologies face when entering a market are comparable to those
faced by firms doing the same thing. Concerning technologies, barriers for entry
could hinder the introduction of a specific technology. On the other side, a network
of firms might create support for a new firm, or also for a new technology, to enter
the market (the system). Coalitions, cooperation and collaboration are examples of
synergetic effects in the introduction of new technologies.

We will now formulate some possible changes in the language of transition
probabilities:

1. The number of plants using a certain technology i increases:

Ni −→ Ni + 1. (10.78)

This change can be the result of different processes which are further differen-
tiable.

• A0
i Ni – linear self-reproduction: the number of plants will grow according to

the existing number of plants. If these plants belong to one firm, firm growth
is modelled. If they belong to different firms, the growth of an industrial sec-
tor is considered. The growth rate of this process is linear. Let us remember
here that, if only this process takes place in the system, the technology would
increase exponentially.

• A1
i N 2

i – self-amplification (second order self-reproduction): here, the number
of plants already using the technology creates a network effect of higher order
which accelerates the growth momentum for this specific technology.
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• Bi j Ni N j – sponsoring or supporting from other plants: in this case, plants
using a different technology j are relevant for the growth of the technology i .
One can think of systems of coupled technologies, one supporting the other,
or of production chains where one technology relies on others.

For this case, the transition probabilities can be written as:

W (Ni + 1, N j |Ni , N j ) = A0
i Ni + A1

i N 2
i + Bi j Ni N j . (10.79)

The different coefficients or parameters describe the strength of a certain effect
which acts on the system.

2. Spontaneous formation of a new plant with a certain technology

Ni −→ Ni + 1. (10.80)

• 
0 – spontaneous formation: here the entry of plants is not connected to the
number of those already existing. One can think of a startup. The startup can
either begin with an already existing technology or be linked to the devel-
opment of a new technology. In the latter case, Ni would be zero at the
beginning. One would usually assume that the number of new plants created
spontaneously is relatively low.

W (Ni + 1, N j |Ni , N j ) = 
0. (10.81)

3. Decrease of the number of plants using technology i

Ni −→ Ni − 1. (10.82)

• D0
i Ni – linear decrease: Given that each technology in the market occupies a

certain niche in the market, one can assume that the number of plants using a
technology which cannot survive will depend on the size of the population of
all plants using that technology.

• D1
i N 2

i – non-linear decrease or restricted capacity: this process stands for a
network effect related to the number of plants using a certain technology. If
too many plants use a particular technology they inhibit each other by occu-
pying market shares. This phenomenon drives plants out of the market. This
process is responsible for the existence of a restricted capacity in markets
with linearly growing technologies. Without the presence of decreasing terms
of higher order, one would be confronted with infinite, exploding markets,
which stands in contradiction to empirical observations (Hartmann-Sonntag
et al., 2004).

W (Ni − 1, N j |Ni , N j ) = D0
i Ni + D1

i N 2
i . (10.83)
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4. Origin of a new technology connected to the formation of a new plant (induced
innovation)

(
0

N j

)

−→
(

Ni = 1

N j

)

. (10.84)

• Mi j N j – Here we assume that the creation of a startup with a new tech-
nology is not a purely spontaneous process, but rather it is related to the
number of plants using another technology relevant, in any case, for the
new one.

W (Ni = 1, N j |Ni = 0, N j ) = Mi j N j . (10.85)

5. Change in the use of a technology (conversion, transition)

(
Ni

N j

)

−→
(

Ni + 1

N j − 1

)

. (10.86)

• Ai j N j – simple transition from j to i : in this case the decision to take over
a new technology is only influenced by the number of plants using a cer-
tain technology. One can interpret this process in the following way. If the
number of plants using the same technology increases, then the competition
between these plants also increases, and thus plants might be motivated to
look for another technology in order to increase their chances on the mar-
ket. In the case where the technology is not yet occupied (has not yet been
invented), the transition will also create an innovation for the system. Let
us note here that, besides spontaneous generation and induced innovation,
this process is important for the exploration of new areas in the technological
space.

• Bi j Ni N j – transition from j to i , in addition, is promoted by i : in general
one can assume that plants do not act in isolation. Conversely, the information
flows between firms and plants about market conditions and technological
change are an important part of economic processes. Important in the process
we discuss here is the decision to use a certain new technology j (here we use
new in the sense that the technology is new for the plant); this is related to the
number of firms already using the technology. We can further assume that the
number of firms using a specific technology can be interpreted as a measure of
attractiveness of that particular technology. In this case, the process represents
one form in which imitation can be modelled.

• Ci jk Ni N j Nk – transition from j to i , that, in addition, is promoted (sponsored)
by j and k: this process represents one possibility to introduce a network
effect in the decision process of one firm to use a certain technology. One
can imagine that the technologies j and k are related in sense of a production
chain or that they complement each other (Hartmann-Sonntag et al., 2004).
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W (Ni + 1, N j − 1|Ni , N j )

= Ai j N j + Bi j Ni N j +
∑

k

Ci jk Ni N j Nk . (10.87)

The model presented is composed in a modular way. Different processes related
to the change in the occupation number space were introduced. We have referred
to these processes elsewhere as elementary processes. In the presentation above
we tried to give examples of processes relevant in the decision behaviour of firms
using different technologies. However, alternative definitions and the introduction
of further processes are possible within the model framework. The task consists
of the definition of processes which can be observed empirically in the economy.
The model represents a specific way to operationalize processes of decision making
inside firms, the information flows between firms and the interactive pattern between
technologies. By relating all of these processes to the occupation number space, a
certain reduction of information occurs. On the other hand, the different parameters
allow for the possibility of including further economic information. The advantage
of the modular structure of the model is that it puts different processes together and
places them in an evolutionary framework. Growth of firms, substitution processes,
invention and imitation, and startups and firm closings are all part of one model. If
we link the model to its deterministic counterpart, the instrumentarium of dynamic
systems becomes available. In this way, at least, we can hope to gain some insights
into the analytic structure of the model and possible stationary states as well as their
stability behaviour. Using the stochastic model for simulations we can obtain a lot
of statements about a system’s behaviour. Interesting investigations can be made by
varying the parameters; different kinds of connections can be analysed.

Beyond the economic interpretation chosen for the model, the framework can
be also applied in quite different contexts. In any of these new application areas
types, elements and the network of connections have to be completely reinterpreted.
Some authors applied the model, for example, to biochemical processes (Ebeling
and Sonntag, 1986), or to growth, competition and the evolution of scientific spe-
cialties (Bruckner et al., 1990), or to the dynamics of values and competences
(Scharnhorst, 1999).

10.4.4.3 Further Analysis of the Probability Distribution

Whether we obtain the probability distribution P(N1, . . . , Ns ; t) analytically or by
computer simulation, it is possible to derive the time–behaviour of the moments
(mean values, correlation functions), in dependence on the parameters of the system
using the generation function (Heinrich and Sonntag, 1981; Ebeling and Sonntag,
1986). For the partial differential equation given in Sect. 10.4.2.1, we can obtain
an approximate solution by introducing the transformation (Nicolis and Prigogine,
1977)

F = exp [Ψ (ηi )N ] ; ηi = si − 1 (10.88)
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whereby the function ψ(ηi ) is expanded in a Taylor series

Ψ =
∑

i

ai ηi + 1

2!

∑

i, j

bi j ηiη j + 1

3!

∑

i, j,k

ci jk ηiη jηk + . . . . (10.89)

The coefficients ai and bi j in terms of the moments of the probability distribution
are as follows:

ai = 〈Ni 〉
N

, (10.90)

bii = 1

N

[〈
N 2

i

〉− 〈Ni 〉
]
, (10.91)

bi j =
[〈Ni N j 〉

]
. (10.92)

These equations give us information about the deviation from the Poisson distri-
bution (Poisson distribution means that the coefficients bi j = 0, ∀ i, j and all
exponential coefficients of higher order are also zero). From the equations we can
get a closed set of differential equations for the mean values ai and the variances
bi j . Provided that we can neglect the coefficients of higher than second order, we
can achieve an approximate solution of the set of differential equations. Especially
for processes which satisfy a multi-Poisson distribution, the coefficients higher than
first order are zero in the Taylor expansion. This is the case if we obtain for F or
Ψ , respectively, a partial differential equation linear in si and at most of first order.
If we know the mean values ai = 〈Ni 〉/N in this case and start at t = 0 with
a multi-Poisson distribution, we can obtain an exact solution for the probability
distribution. The solution is a multi-Poisson distribution for all times

P(N ; t) =
∏

i

〈Ni (t)〉Ni

Ni !
exp [−〈Ni 〉] . (10.93)

Now we answer the question: Which processes (transition probabilities from
Sect. 10.4.2.1) lead to a multi-Poisson distribution, i.e. which processes have in
the generating function at most terms with a first-order derivative with respect to si

and are linear in si ? Then, the generating function looks as follows:

Ḟ(s; t) =
∑

j

A(2)
i (1− si )

	F

	si
+ A(3)

i j (si − s j )
	F

	s j
. (10.94)

So we can get (Hartmann-Sonntag et al., 2004)

Ψ̇ (η; t) =
∑

i

∑

j

{
−A(2)

i ηi ai + A(3)
i j (ηi − η j )

}
, (10.95)

ȧi = −A(2)
i ai +

∑

i 	= j

A(3)
i j a j − ai

∑

i 	= j

A(3)
i j . (10.96)
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If we start at t = 0 with a multi-Poisson distribution, the probability distribution
remains a multi-Poisson distribution for all times

P(N ; t) = exp [−〈N (t)〉C ]
∏

i

〈Ni (t)〉Ni

Ni !
. (10.97)

The extinction probability of the whole component is

P(0; t) = exp [−〈NC (t)〉] . (10.98)

This extinction probability depends on the overall number of individuals NC of the
component and decreases exponentially with 〈NC (t)〉.

A detailed description for the calculation of the moments of the probability
distribution P(N1, . . . , Ns ; t) and the probability distribution was given in the
work of Heinrich and Sonntag (1981). The time–behaviour of the moments could
be achieved with the help of generating function. Deviations from the Poisson
behaviour were investigated. Fluctuations and their influence on the system struc-
ture and behaviour could be analysed. The analysis of time-dependent correlation
functions could also be interesting for the description of socio-economic systems.

10.5 Summary

This contribution is devoted to the study of innovation processes in socio-economic
contexts. In particular, we investigate the influence of stochastic effects on processes
of self-organization and evolution. We take a special network perspective. Starting
with the newly emergent field of complex networks theory, we develop our own
approach of sensitive networks relevant to the description of an innovation.

Innovation is first introduced on a general level as a specific process that changes
the composition and dynamic constitution of a system. We use a discrete represen-
tation of the system in terms of space of occupation numbers; then innovation can
be described as a hopping process between positive cones. Further, we introduce the
notion of an under-occupied system. In doing so, we implement a set of possible
future paths of developments in our modelling. We relate this abstract notion of an
innovation to the discussion of innovation processes in economics.

In the economic literature, innovation has been understood as the outcome of
processes running on networks of different actors. We concentrate on firms and
technologies in this contribution. We present a network theory of innovation by
mapping the dynamic interactions related to the emergence of an innovation to a
graph (Hartmann-Sonntag et al., 2004).

Figure 10.1 illustrated our approach. The system is composed of a large set of
enumerable types. Each of these types is represented by a node. At a certain point in
time, only a small part of these nodes are active. The pattern of interaction between
them (including processes of self-influence) determines the dynamic composition
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of the system, which is visualized in terms of (active) links between the nodes. We
assume that the activated part of the network is embedded in a much larger network
of inactive nodes and links. The inactive nodes represent future possibilities in the
evolution of the system. An innovation appears when an unoccupied node becomes
occupied for the first time. With this initial occupation, the set of links connecting
the “new” node with already occupied nodes also becomes activated. It is readily
apparent that such an event changes the whole composition of the system.

In another contribution (Hartmann-Sonntag et al., 2004) we have discussed struc-
tural (static) properties of such a relational network. In this way, instruments from
random graph theory and percolation theory become relevant (see also
Sonntag, 1984a,b; Sonntag et al., 1981). In particular, formulae for the probabilities
of the occurrence and the distribution of components and cycles in large networks
have been obtained by combinatorial considerations. We have shown that connec-
tivity is a central measure in the structure of these kinds of networks. Evolving,
dynamic networks reveal different phenomena compared to those derived from
random graphs. The results correspond better to findings in real data of empirical
networks such as the appearance of power-law distributions of the degree function.

In this contribution, we turn our attention to the discussion of the dynamic proper-
ties or the evolution of networks. In particular, we derive descriptions for a network
of interacting technologies and interacting firms. We call these networks sensitive
because innovation processes described in terms of the removal or appearance of
a node might change the dynamic behaviour of the system dramatically. We use
a stochastic description of such an evolving network and base this on the theory of
birth and death processes. We introduce different forms of transition probabilities for
closed systems, as well as for open, growing and declining systems. We define mas-
ter equations and non-linear differential equations as their deterministic equivalents.
Contrary to deterministic models, the stochastic description offers the advantage
that, at finite times, new technologies (types) can arise or “die out”. Further, the
emergence of an innovation can be treated as a singular stepwise event implying the
transition from an under-occupied to an occupied state.

In some special cases the master equation can be solved analytically and a
stationary survival probability for an innovation can be derived. We show
(Hartmann-Sonntag et al., 2004) that the stochastic dynamics differ essentially from
the deterministic. Separatrices, which decompose the phase space, cannot be inter-
sected in the deterministic case. In the stochastic case they can be crossed. This
way, a “once-forever” selection or hyperselection of technologies that is known in
economics as lock-in phenomenon, can be avoided.

The stochastic model of networked dynamic interactions of technologies is
further generalized in a multi-dimensional case. Processes representing different
non-linearities are discussed in the context of technological change. Although we
use technological evolution as the main reference point, we also point to the fact that
the modular structure of the model also allows for its application in rather different
fields. Applications in fields like biology, population theory and science of science
were presented as examples (Feistel and Ebeling, 1989; Bruckner et al., 1990).
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Bruckner, E., Ebeling, W., Jiménez-Montaño, M. A., Scharnhorst, A. (1996) Nonlinear Stochastic
Effects of Substitution: An Evolutionary Approach. Journal of Evolutionary Economics 6:1–30

Bruckner, E., Ebeling, W., Scharnhorst, A. (1989) Stochastic Dynamics of Instabilities in Evolu-
tionary Systems. System Dynamics Review 5:176–191

Bruckner, E., Ebeling, W., Scharnhorst, A. (1990) The Application of Evolution Models in
Scientometrics. Scientometrics 18:21–41

Bruckner, E., Ebeling, W., Scharnhorst, A. (1998) Technologischer Wandel and Innovation –
Stochastische Modelle für innovative Veränderungen in der Ökonomie [Technological Change
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Deutschland auf dem Weg ins nächste Jahrhundert. Springer-Verlag, Berlin, Heidelberg, New
York, pp. 446–473 [in German]

Ebeling, W., Sonntag, I. (1986) A stochastic description of evolutionary processes in underoccu-
pied systems. BioSystems 19:91–100

Ebeling, W., Feistel, R., Hartmann-Sonntag, I., Schimansky-Geier, L., Scharnhorst, A. (1986) New
species in evolutionary networks – stochastic theory and applications on the metaphoric level.
BioSystems 85:65–71

Ebeling, W., Sonntag, I., Schimansky-Geier, L. (1981) On the evolution of biological macro-
molecules II: Catalytic networks. Studia Biophysica 84:87–88 and microfiche 1/37.54
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Berlin, Heidelberg, New York [in German]

Maurer, S. M., Huberman, B. A. (2000) Competitive Dynamics of Web Sites. Journal of Eco-
nomic Dynamics and Control 27:2195–2206 [arXiv:nlin.CD/0003041]. This article is part
of the special issue: Juillard, M., Marcet, A. (Guest Eds.) Computing in Economics and
Finance. Proceedings of the Sixth International Conference of the Society for Computational
Economics, Barcelona, Spain, July 6-8, 2000. Journal of Economic Dynamics and Control
27(11-12):1939–2265
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