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Preface

TCC 2008, the 5th Theory of Cryptography Conference, was held in New York,
New York, March 19–21, 2008, at New York University. TCC 2008 was spon-
sored by the International Association for Cryptologic Research (IACR) and was
organized in cooperation with the Department of Computer Science at New York
University and the Courant Institute for Mathematical Sciences. The General
Chairs of the conference were Yevgeniy Dodis and Victor Shoup.

The conference received 81 submissions, of which the Program Committee
selected 34 for presentation at the conference. The authors of two papers then de-
cided to merge their papers, resulting in a total of 33 presented papers. The Best
Student Paper Award was given to Paul Valiant for his paper “Incrementally
Verifiable Computation or Knowledge Implies Time/Space Efficiency.” These
proceedings consist of revised versions of the presented papers. The revisions
were not reviewed. The authors bear full responsibility for the contents of their
papers.

The conference program also included four special events: an invited talk en-
titled “Randomness Extractors and Their Cryptographic Applications” by Salil
Vadhan; a tutorial entitled “Bridging Cryptography and Game Theory: Recent
Results and Future Directions,” given by Jonathan Katz (with an accompa-
nying tutorial in the proceedings); a panel discussion on “Game Theory and
Cryptography: Towards a Joint Point of View?” with Tal Rabin as moderator
and Jonathan Katz, Silvio Micali, and Moni Naor as panelists; and a Rump
Session chaired by Anna Lysyanskaya.

In spite of the relatively small number of submissions, many of them were
of high quality. Consequently, the selection process was challenging and very
competitive. Indeed, a number of good papers were not accepted due to lack of
space in the program. The main considerations in selecting the program were
conceptual and technical innovation, quality of presentation, and relevance to the
theory of cryptography. An attempt was made to maintain the unique character
of the conference as a stage for presenting innovative work on the foundations
of cryptography.

I would like to thank the TCC Steering Committee for entrusting me with the
role of Program Committee Chair. In the few years since its inception, TCC has
been tremendously successful in attracting high-quality papers and in providing
a home and identity for the theory of cryptography community. I am honored
to have had the opportunity to contribute to the continuation of this success.

Special thanks are due to the Program Committee members, who have ded-
icated so much time and effort to provide a thorough and in-depth review of
the submissions, with high standards of professional integrity. I also thank the
many external reviewers who assisted the Program Committee in its work. Most



VI Preface

importantly, I thank the authors of submitted papers for their contributions;
these papers are, after all, the only reason for TCC to exist.

I am grateful to the General Chairs, Yevgeniy Dodis and Victor Shoup, and
their assistant Anna Mackay for their invaluable work in making the conference
happen. Another special thanks is due to Shai Halevi for writing the software that
greatly facilitated the committee work, and for his responsiveness in attending
to our whims.

I thank our corporate sponsors, the D. E. Shaw group, IBM, and Microsoft for
their generous sponsorship of the conference, and Cynthia Dwork, Rosario Gen-
naro, Jonah Kolb, Christine Mathias, and Tal Rabin for their help in obtaining
the sponsorships.

Finally, I appreciate the assistance provided by the Springer LNCS edito-
rial staff, including Alfred Hofmann, Frank Holzwarth, and Anna Kramer, in
assembling these proceedings.

January 2008 Ran Canetti
TCC’ 2008 Program Chair
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MPC vs. SFE: Perfect Security in a Unified Corruption Model . . . . . . . . . 231
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Incrementally Verifiable Computation

or
Proofs of Knowledge Imply Time/Space

Efficiency

Paul Valiant

Massachusetts Institute of Technology
pvaliant@mit.edu

Abstract. A probabilistically checkable proof (PCP) system enables
proofs to be verified in time polylogarithmic in the length of a classi-
cal proof. Computationally sound (CS) proofs improve upon PCPs by
additionally shortening the length of the transmitted proof to be poly-
logarithmic in the length of the classical proof.

In this paper we explore the ultimate limits of non-interactive proof
systems with respect to time and space efficiency. We present a proof
system where the prover uses space polynomial in the space of a classical
prover and time essentially linear in the time of a classical prover, while
the verifier uses time and space that are essentially constant. Further,
this proof system is composable: there is an algorithm for merging two
proofs of length k into a proof of the conjunction of the original two
theorems in time polynomial in k, yielding a proof of length exactly k.

We deduce the existence of our proposed proof system by way of
a natural new assumption about proofs of knowledge. In fact, a main
contribution of our result is showing that knowledge can be “traded” for
time and space efficiency in noninteractive proof systems. We motivate
this result with an explicit construction of noninteractive CS proofs of
knowledge in the random oracle model.

1 Introduction

Perhaps the simplest way to introduce the computational problem we address is
by means of the following.

Human motivation. Suppose humanity needs to conduct a very long computa-
tion which will span super-polynomially many generations. Each generation runs
the computation until their deaths when they pass on the computational config-
uration to the next generation. This computation is so important that they also
pass on a proof that the current configuration is correct, for fear that the fol-
lowing generations, without such a guarantee, might abandon the project. Can
this be done?

Computational setting. In a more computational context, this problem becomes:
How can we compile a machine M into a new machine M ′ that frequentlyoutputs

R. Canetti (Ed.): TCC 2008, LNCS 4948, pp. 1–18, 2008.
c© International Association for Cryptologic Research 2008



2 P. Valiant

pairs (ci, πi) where the ith output consists of the ith memory state ci of machine
M , and a proof πi of its correctness, while keeping the resources of M intact?1

1.1 A New Problem

We motivate our problem by way of a few examples of how current techniques
fail to achieve our goal. Suppose we are given a computation M that takes time
t and space k � t.

A natural approach is have the compiled machine M ′ keep a complete record
of all the memory states of M it has simulated so far; every time it simulates
a new state of M , it uses this record to output a proof that its simulation of
M is thus far correct. However, this approach has the clear drawbacks that the
compiled machine M ′ uses space tk to store the records, and the proofs it outputs
consist simply of this record of size tk; this requires the verifier of the proofs to
also use time tk and space tk to verify each proof. If t is polynomial in k, then all
these parameters are polynomial in k and this simple system is in fact “optimal
up to polynomial factors in k.” We concern ourselves here with the much more
interesting case where the running time t is much larger than k —exponentially
larger, even— in which case this naive system is not at all efficient. What we
need is a more efficient proof system.

We note that the problems of improving the efficiency of the construction,
transmission, and verification of proofs have been important themes in our field,
and have fueled a long line of research. One major milestone on this path was
the discovery of probabilistically checkable proofs (PCPs) (see [1,2,5,10] and the
references therein). Under a PCP proof system statements with classical proofs
of exponential length could now be verified in polynomial time, via randomized
sampling of an encoded version of the classical proof. A PCP system still uses
exponential resources to construct and transmit the proof, but verification is
now polynomial time.

The second milestone we note is the theory of computationally sound (CS)
proofs as formalized by Kilian and Micali [12,13]. This notion improves on the
PCP system by keeping verification polynomial time while shortening the length
of the transmitted proof from exponential to polynomial in k. If we instruct the
compiled machine M ′ to output (noninteractive) CS proofs, then the length of
the transmitted proofs, and the time and space required by the verifier are now
polynomial in k, but the compiler still requires memory at least t, and a time
interval of at least t between consecutive proofs.2

1 More generally one might consider a machine that, instead of outputting proofs πi,
engages in some interactive proof protocol.

2 A third major approach for improving the efficiency of proofs, arguably the
most historically successful, is that of adding interaction between the prover and
verifier[11,15,3]. Unfortunately, this approach does not help us here: our prover has
only k memory so he may transfer his entire knowledge to the verifier at the start
of their interaction; any further correspondence between the prover and verifier may
be simulated by the verifier with no loss of efficiency.
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1.2 Intuitive Idea of Our Solution

The ideal way to achieve incrementally verifiable computation consists of effi-
ciently merging two CS proofs of equal length into a single CS proof which is
as short and easy to verify as each of the original ones. Letting c0, c1, . . . be
the sequence of configurations of machine M , and for i < j, intuitively denote
by (M : ci

t→ cj) the assertion that configuration cj is correctly obtained from
configuration ci by running M for t steps. After running M for 1 step from the
initial configuration c0 so as to reach configuration c1 one could easily produce
a CS proof of (M : c0

1→ c1). Running M for another step from configuration c1,
one can easily produce a CS proof that (M : c1

1→ c2). At this point, if CS proofs
can be easily merged as hypothesized above, one could obtain a CS proof that
(M : c0

2→ c2). And so on, until a final configuration cf is obtained, together
with a CS proof that (M : c0

t→ cf )
Unfortunately, we have no idea of how to achieve such efficient and length

preserving merging of CS proofs. However, if a variant of CS proofs —which we
call CS proofs of knowledge— exist, we show a sufficient approximation of this
ideal strategy. The main idea is to construct recursively embedded CS proofs:
to merge proofs π1 and π2 I prove that “I have seen convincing π1 and π2.” In a
nutshell, the CS proof methodology enables us to work with very short proofs,
and proofs of knowledge enable the soundness of the proof system to persist
across many levels of recursion.

1.3 A New Role for a New Type of Proof of Knowledge

Proofs of knowledge may be seen as a restricted form of classical proofs. While
classically, proofs of a statement “There exists w such that R(x, w) = 1”3 can
take a wide variety of non-constructive forms, the proof of knowledge form as-
serts essentially “I have seen a w such that R(x, w) = 1.” We note here that the
inapplicability of classical proofs to our setting results from the combination of
two circumstances: we require our proofs to be embeddable in other proofs, and
we must work in merely computationally sound proof systems where deceptive
proofs— while almost impossible to find— exist in abundance. We see the prob-
lem, intuitively, if we try to embed two computationally sound proof systems.
The result would be a (computationally sound) proof that “There exists a com-
putationally sound proof π of x.” The problem is that of course there exists a
computationally sound proof of x, even when x is false. So a proof that there
exists a computationally sound proof of x implies nothing about the truth or
falsehood of x.

Significantly, however, proofs of knowledge can be combined in this way: the re-
sult is a (computationally sound) proof that “ProverA has seen a computationally
3 We remind the reader that since classical proofs are verifiable in polynomial time,

we may consider any classical theorem as being a statement of membership in an
NP -language of the form “There exists a proof w such that the verifier R accepts
the pair consisting of the theorem x and proof w.”
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sound proof that Prover B has seen a witness w of x.” Intuitively, this is the differ-
ence between saying “A is convinced that B is convinced ofx” and saying “A is con-
vincedthatBcouldbe convincedofx”—thefirst statement is reasonable evidenceof
xwhenbothAandBare reasonable, but the second statementholdsnoweight since
even a reasonable person could be mislead. In essence, the proof of knowledge prop-
erty lets “reasonableness” be transferred down a sequence of provers. The formal
statement of this assertion is that by sufficient repeated application of the knowl-
edge extractor E associated with the proof system one can extract a valid witness
w from any procedure that returns embedded proofs.

Remark 1: This simple intuition unfortunately translates into neither simple
definitions nor simple proofs. Because this work seeks to optimize both prover
and verifier time and space as well as the overall soundness of the proofs, we need
to keep track everywhere not only of who is proving who’s knowledge of what
to whom, but also the time and space bounds of all involved parties, along with
the security parameters. Nevertheless, it is our hope that the simple intuition
underlying the constructions here will make the technical details less opaque.

Remark 2: We note that embedding proof systems deprives us of another prin-
cipal tool: the use of random oracles. Specifically, suppose we have an oracle-
based prover-verifier system (PO, V O) that can prove statements about the re-
sults of computation like “Machine M accepts the following string within t time
steps. . . .” When we try to recursively embed this system the recursion breaks
down because, even at the first level of recursion, we are no longer trying to
prove statements about classical computation but rather statements of the form
“M with oracle access to O accepts the following string....” Thus standard ap-
plications of random oracles do not appear to help. It remains an interesting
question whether the goals of this paper may be attained in some other way
using random oracles.

The Noninteractive CS Knowledge Assumption. Random oracles are intricately
tied to CS proofs, in that the only known constructions of noninteractive CS
proofs make use of random oracles (see [13]). Nevertheless, as with most random
oracle constructions, the hope is that in practice the random oracle may be
replaced by a suitably strong hash function plus access to a common random
string.

In Section 4 we extend Micali’s construction of CS proofs to a construction
of CS proofs of knowledge: there exists an efficient extractor E that, given a
statement X , a CS proof π, and access to the CS prover that produced π, outputs
in quasilinear time a (classical) proof Π of X . We highlight this construction as
a motivation for our assumption that oracle-less CS proofs of knowledge exist.

In essence, our assumption states that, in a specific construction of non-
interactive CS proofs (Constructions 4 and 5), it is possible to replace the random
oracle with a random string and still preserve the strength of the proofs. (That
is, we do not invoke the random-oracle hypothesis in its general form. As shown
by Canetti, Goldreich, and Halevi [8] and others in different contexts, we expect
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that there may be other non-interactive CS proof constructions for which no way
to replace the oracle exists.)

We note that, while the Fiat-Shamir heuristic of replacing random oracle
calls with a deterministic hash function yields feasible proposals for how to
remove the oracle calls from the prover and verifier, it says nothing about how
to translate the knowledge extractor into this new setting. For this reason we
cannot explicitly conjecture a noninteractive CS proof of knowledge. However,
in the context of this paper, the knowledge extractor component of the CS
proof system serves only as a technique to argue security and is not invoked in
our construction of incrementally verifiable computation. Thus we may propose
the following much more explicit conjecture: our construction of incrementally
verifiable computation (Theorem 1) works when using the prover-verifier pair
(P, U) from Construction 4, modified by replacing the random oracle with a
suitably strong hash function plus access to a common random string.

Knowledge ⇒ Time/Space Efficiency. In this work we start with an unusual
and very strong assumption about (proofs of) knowledge and conclude with a
proof system of unprecedented time and space efficiency. In this paragraph we
wish to draw the reader’s attention not to the assumption or the conclusion,
but to the nature of the relationship between them. On the left we make an
assumption about knowledge in CS proofs: we take a restricted system that only
deals with witnesses of length 3k and compresses them to proofs of length k, the
security parameter, and assume that there is a linear-time knowledge extractor
that can extract the witness given access to the prover. On the right we conclude
with a proof system that compresses any proof to length poly(k), uses space
polynomial in the space needed to classically accept the language, and is time-
efficient in the tightest possible sense, using only poly(k) time to process each
step of the classical acceptance algorithm. We note that current constructions
of non-interactive CS proofs based on random oracles need time polynomial in
the time to classically accept, and space of the same order as their time[13]. Our
results constitute a new technique to leverage knowledge to gain time and space
efficiency, and is in a sense a completeness result for CS proof systems.

2 Definitions

2.1 Noninteractive Proofs and the Common Random String Model

It is a well-known aphorism in cryptography that “security requires random-
ness”. In many standard settings, a participant in a protocol injects randomness
into his responses to protect him from some pre-prepared deviousness on the
part of the other participant.

In the noninteractive proof setting such an approach is inadequate: the verifier
is unable to protect himself with randomized messages to the prover, since he
cannot even communicate with the prover. To address these issues, the common
random string (CRS) model was introduced [7,6].



6 P. Valiant

The CRS model —sometimes called the common reference string model—
assumes that all parties have access to the same random string, and further that
each can be confident that this string is truly random and not under the influence
of the other parties. Potential examples of such a string are measurements of
cosmic background radiation or, for a string that will appear in the future,
tomorrow’s weather.

In the analysis of the security of a CRS protocol leeway must be given for
“unlucky” choices of strings, since if every choice of string worked in the protocol
we would not need a random one. Thus even if a CRS protocol has a chance of
failing, we still consider it secure if this chance is negligible as a function of the
size of the random string.

2.2 Incremental Computation

Basic notation. We denote a Turing machine M with no inputs by M(), a
Turing machine with one input by M(·), a Turing machine with two inputs by
M(·, ·), etc. We assume a standard encoding, and denote by |M | the length of
the description of M . For a Turing machine M running on input s, we denote
by timeM (s) the time M takes on input s, and by spaceM(s) the space M takes
on input s; we denote the empty input by ε, so that spaceM (ε) is the space of
Turing machine M when run on no input.

Incremental outputs. Commonly, Turing machines make an output only once,
and making this output ends the computation. Instead, we interpret Turing
machines as being able to output their current memory state at certain times
in their operation: explicitly, consider a Turing machine with a special state
“Output” where whenever the machine is in state “Output” the entire contents
of its tape are outputted. 4 This captures our intuitive notion of an “incremental
computation,” namely one divided into “generations” where at the end of each
generation the entire memory configuration is output so that the next generation
may resume the computation from the current configuration.

2.3 Incrementally Verifiable Computation

We formally define incrementally verifiable computation here. We consider a
Turing machine M() that we wish to simulate for t time steps using k memory,
where k ≥ log t. We consider a fixed compiler C(·, ·) that produces from (M, k)
an incrementally verifiable version of M , namely a machine C(M, k) = T (·) that
takes as input the common random string, runs in time t · kO(1), uses memory
kO(1), and every kO(1) time steps outputs its memory configuration. The jth
4 We note that this is a slightly unusual model of output, as the machine would be

unable to output a string such as “Hello World” without first deleting all other
memory locations on the tape. In the context of this paper, we expect machines to
not delete this other information: since we consider only poly(k)-space machines, it
imposes no undue burden on the prover to output this information, and no undue
burden on the verifier to ignore it.
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memory configuration output should be interpreted as a pair consisting of a
claim about the memory configuration of M at time j, and a CS proof of its
correctness. There is a fixed machine V , the verifier, that will accept all pairs
of configurations and proofs generated in this way, and will reject other pairs,
subject to the usual condition of the CRS model that the verifier may be fooled
with negligible probability, and the computational soundness caveat that an
adversary with enormous computational resources may also fool the verifier.

Definition 1. An increasing sequence of integers {tj} is an α-incremental time-
line if for any j, tj − tj−1 ≤ α.

Definition 2. A Turing machine that makes outputs at every time on an α–
incremental timeline is called an α–incremental output Turing machine.

Definition 3 (Feasible Compiler). Let C(·, ·) be a polynomial time Turing
machine. We say that C is a feasible compiler if there exists a constant c such
that for all k > 0 and all M() such that |M | ≤ k, C(M, k) is a Turing machine
T (·) taking as input the common random string, such that

1. T is a kc-incremental output Turing machine.
2. spaceT (r) = kc for all inputs r.

In other words, properties 1 and 2 guarantee that each compiled machine T
outputs its internal configuration “efficiently often” while working in “efficient
space.”

Definition 4 (Incrementally Verifiable Computation). The pair (C, V )
is an incrementally verifiable computation scheme (in the CRS model) with
security K if C is a feasible compiler, V is a polynomial-time Turing machine
(“the verifier”) and K(k) : Z

+ → Z
+, such that the following properties hold:

For any Turing machine M with |M | ≤ k let the jth output of the compiled
machine C(M, k) be parsed as an ordered pair (mj , π

r
j ), representing a claim

about the jth memory configuration of M , and its proof; and let r denote the
common random string of length k2. We require:

1. (Correctness) The compiled machine accurately simulates M , in that mj is
indeed the jth memory configuration of M(ε) for all j, independent of r.

2. (Completeness) The verifier V accepts the proofs πr
j : ∀r, V (M, j, mj , π

r
j , r) =

1.
3. (Computational soundness) For any constant c and for any machine P ′ that

for any length k2 input r outputs a triple (j, m′rj , π′rj ) in time K, we have for
large enough k that

Probr[m′rj �= mj ∧ V (M, j, m′rj , π′rj , r) = 1] < k−c.

We note that for the incrementally verifiable computation scheme to be secure
against polynomial-time adversaries we must have K super-polynomial.
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2.4 Noninteractive CS Proofs of Knowledge

We now specify the assumption we make: the existence of noninteractive CS
proofs of knowledge.

We note that proofs of knowledge are typically studied in the form of zero
knowledge proofs of knowledge. In this setting, one party wants to convince an-
other party that he possesses certain knowledge without revealing this knowl-
edge. The reason why he does not simply transmit all his evidence to the other
party is that he wishes to maintain his privacy.

In our setting the reason one generation does not just transmit all its evidence
to the next generation is not a privacy concern, but rather the concern that the
following generation will not have the time to listen to all this evidence.

In both settings, the “knowledge” that must be proven may be considered to
be a witness for a member of an NP-complete language: one party proves to the
other that he knows, for example, a three-coloring of a certain graph.

In the zero-knowledge setting, our prover does not wish for the verifier to
learn a three-coloring of the graph. In the incremental computation setting, our
prover is worried that the verifier may not want to spare the resources to learn
a three-coloring of the graph.

Related issues were considered in a paper of Barak and Goldreich where they
investigated efficient (interactive) ways of providing proofs and proofs of knowl-
edge [4]. Our definition of a noninteractive CS proof of knowledge contains ele-
ments from their definition of a universal argument.

For the sake of concreteness, we work with a specific NP-complete language,
which has the property that for any k the strings in the language of length
4k have witnesses of length 3k. We will require of our CS proof system that
instead of returning proofs of length 3k (for example, the witnesses) the proofs
are shortened to be of length k.

Definition 5. Let c be a constant. The language Lc consists of the ordered pairs
(M, x) where M is a Turing machine and x is a string such that, letting k = |M |
we have:

1. |x| = 3k.
2. There exists a string w of length 3k such that M when run on the concate-

nation (x, w) accepts within time kc.

We note that the string w may be thought of as the NP witness for (M, x)’s
membership in the language. Further, since M may express any polynomial-time
computation (for large enough k), the language Lc is NP complete.5

Definition 6 (Noninteractive CS proof of knowledge). The pair (P, U)
is a noninteractive CS proof of knowledge (in the CRS model) with parameters
K ′(k) : Z

+ → Z
+, c, c1, c2 if P and U are Turing machines such that for all

machines M , defining k = |M |, and all strings x of length 3k the following
properties hold:
5 One can easily manipulate any NP language into one whose members and witnesses

have lengths in the 4:3 ratio by appropriate padding.
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1. (Efficient prover) For any (CRS) string r of length k, timeP (M, x, w, r) =
kO(1)

2. (Length shrinking) For any (CRS) string r of length k, |P (M, x, w, r)| = k.
3. (Efficient verification) For any (CRS) string r of length k,

timeU (P (M, x, w, r), M, x, r) ≤ kc−1

4. (Completeness) For any (CRS) string r of length k, U(P (M, x, w, r),
M, x, r) = 1

5. (Knowledge extraction) There exists a constant c2 such that for any Turing
machine P ′ there exists a randomized Turing machine EP ′ , the extractor,
such that for any input (M, x) of length 4k such that for all r of length k,
timeP ′(M, x, r) ≤ K ′(k) and Prr[U(P ′(M, x, r), M, x, r) = 1] = α > 1/K ′

we have
Prob[w ← EP ′(M, x) : M(x, w) = 1] > 1/2

and the running time of EP ′(M, x) is at most kc2/α times the expected run-
ning time (over choices of r) of P ′(M, x, r).

3 Constructing Incrementally Verifiable Computation

3.1 Merging Proofs

We aim here to reexpress claims of the form M : s1
t→ s2 as claims of membership

in the language Lc. The equivalence will not be exact but instead, in light of the
goals of this paper, computationally sound. We define this relation inductively,
for t that are powers of 2. The base case, when t = 1, is an exact relation.

Construction 1 (Base Case). Let T0 be the machine that interprets its input
as a pair of length 3k strings (x, w) where x is interpreted as a triple of length
k strings x = (M, s1, s2), and checks that M when simulated for one step on
configuration s1 ends up in configuration s2, ignoring the auxiliary input w.

We note that for strings M, s1, s2 of length k, the pair (T0, (M, s1, s2)) is in Lc

if and only if M : s1
1→ s2. The language Lc is crucial here, because this is the

language which (by assumption) we may find CS proofs for.
We extend this construction, defining machines Ti such that (Ti, (M, s1, s2)) ∈

Lc is equivalent ina computationally soundsense toM : s1
2i

→ s2. Inparticular,Ti is
suchthat, givenCSproofs of theclaims (Ti, (M, s1, s2)) ∈ Lc and(Ti, (M, s2, s3)) ∈
Lc we can construct a CS proof of the claim (Ti+1, (M, s1, s3)) ∈ Lc. Reexpressing

these three statements, we see that given aCS proof that “(M : s1
2i

→ s2)” and a CS

proof that “(M : s2
2i

→ s3)” we may construct a CS proof that “(M : s1
2i+1

→ s3).”
Since the lengths of each of these CS proofs is (by definition) k, this is our desired
notion of merging proofs.

Construction 2. Define Ti+1 as a machine that interprets its input as the pair
(x, w) where x is interpreted as (M, s1, s3) and w is interpreted as (p1, p2, s2),
and does the following:
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Check if p1, p2 are CS proofs of knowledge respectively that (Ti, (M, s1, s2)) ∈
Lc and (Ti, (M, s2, s3)) ∈ Lc.

Given x, w, i such that w witnesses the fact that (Ti+1, x) ∈ Lc, we can efficiently
construct a CS proof of this fact as P (Ti+1, x, w, ri+1) by assumption. (We note
that we take the common random string ri+1 to be dependent on i.) We prove
that this construction is computationally sound. In the following, we call a pair
(x = (M, s1, s2), p) deceptive if p proves to the verifier that (Ti, x) ∈ Lc but it is
not the case that running M for 2i steps from memory state s1 reaches memory
state s2. The proof is by induction; the base case of T0, as observed above, is
trivial.

Lemma 1. For α ∈ ( 1
K′ , 1) and b ∈ (2(2i + k), K ′), if T i has the property

that no machine running in time b, outputs a deceptive pair ((M, s1, s2), p) with
probability 1

2 over the random strings r0, . . . , ri, then no machine running in
time α

2 b/kc2 outputs a deceptive pair for the machine Ti+1 with probability α,
over the random strings r0, . . . , ri+1.

Proof. This result is a straightforward consequence of the knowledge extraction
property of the proofs in Definition 6. Assume we have a machine P ′ that outputs
deceptive pairs (x = (M, s1, s3), p′) for Ti+1 with probability α (over r) in time
α
2 b/kc2. We apply the extractor EP ′ , and have by definition that EP ′(Ti+1, x)
returns a classical witness w (relative to ri+1) with probability at least 1/2 in
time at most b/2. The witness w is a classical witness for (Ti+1, x) in the language
L, and thus (by the definition of Ti+1) w may be interpreted as w = (p1, p2, s2).
Further, since w is a classical witness, both the proofs p1 and p2 are accepted by
the verifier. However, since p′ is deceptive, at least one of p1, p2 must be deceptive
(with respect to T, ri). In time 2i + k ≤ b/2 we can classically check which one
of p1, p2 is deceptive, by simply simulating M for 2i steps on s1 comparing the
current state against s2, and reporting “p1” if they agree, “p2” if they do not.
Thus using b/2 + b/2 = b time we have recovered a deceptive pair for Ti with
probability at least 1/2, contradicting our assumption. �

Applying Lemma 1 inductively starting from b = K ′, letting α = 1
2 for the first

i − 1 iterations and α = ε for the last yields:

Lemma 2. No machine running in time 2εK ′/(4kc2)i outputs a deceptive pair
for the machine Ti with probability ε, over the random strings r0, . . . , ri.

3.2 The Main Result

Theorem 1. Given a noninteractive CS proof of knowledge (P, U, K ′, c, c1, c2),
there exists an incrementally verifiable computation scheme (C, V, K) provided
Kk2 log k+c2 log K ≤ K ′.

Proof. Making use of the CS proof of knowledge, Construction 2 describes a
recursive procedure for generating a proof for 2i steps of the computation using
i levels of a binary recursion. Consider the tree that such a recursion would
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induce. The leaves of the recursive tree are the memory configurations of M , and
the internal nodes j levels above the leaves are proofs of knowledge of recursive
depth j (by way of machine Tj) asserting the results of simulating M for 2j

steps. Each node is computable in time polynomial in k from its two children,
as this requires just one application of the polynomial-time prover P .

Let C(M) be a machine that performs a depth-first traversal of the binary
tree, starting at the leaf corresponding to time 0, visiting each leaf in order, and
computing the value of every node it visits. At any moment in such a traversal
the “stack” consists of the values of nodes on a path from a leaf to the root.
Every time a leaf is visited, let C(M) output the values of all the nodes along
this path as a proof of incremental correctness. We note that processing any
node takes time polynomial in k, and the depth of the recursion is less than k,
and so a leaf is visited every kO(1) time. Thus this procedure uses the desired
time and space.

We now show that these “stack dumps” in fact constitute computationally-
sound proofs.

Consider a subtree whose leaves consist of a range [t1, t2]. (If the subtree has
depth j then t1 and t2 will be consecutive multiples of 2j .) When the recursion
finishes processing this subtree, it will store in the parent node parameters x =
(M, s1, s2) and a proof of knowledge that M when starting in configuration s1
reaches configuration s2 in time t2 − t1.

We note that when the recursion processes leaf t′ it must have finished pro-
cessing all the leaves before t′, and thus the leaves spanned by those subtrees in
the “stack” must constitute all the leaves before t′. Thus these proofs of knowl-
edge, when considered together, assert the complete result of simulating M from
time 0 to time t′.

To check such a sequence of proofs, V verifies their individual correctness,
and checks that the start and end memory states for each of the corresponding
“theorems” match up.

We note, as above, that if such a sequence of proofs is deceptive, then we can
(classically) isolate the deceptive proof using O(t) additional time by simulating
M . From Lemma 2 with ε = k− log k, the probability that this incrementally
verifiable computation scheme fools the verifier is negligible in k provided the
time to execute of C(M) plus the additional O(t) classical verification time is
at most 2k− log kK ′/(4kc2)log t. We note that C(M) consists essentially of con-
structing t CS proofs, each of which takes time kO(1) < klog k. Thus (C, V, K)
is an incrementally verifiable computation scheme for computations of length
t ≤ K provided Kklog k ≤ k−(log k)−c2 log KK ′. Rearranging terms yields the de-
sired result. �

4 CS Proofs of Knowledge in the Random Oracle Model

To explicitly introduce CS proofs of knowledge, and support our hypothesis
that there exist noninteractive CS proofs of knowledge in the common reference
string model we provide details of such proofs in the random oracle model.



12 P. Valiant

Specifically, our construction will satisfy Definition 6 modified by replacing the
string r everywhere with access to an oracle R.

The construction of the proofs is based closely on the constructions of Kilian
and Micali[12,13]. The construction of the witness extractor is inspired by a
construction of Pass[14].

4.1 Witness-Extractable PCPs

One of the Principal tools in the construction of CS proofs is the probabilistically
checkable proof (PCP)[1,2]. The PCP theorem states that any witness w for a
string x in a language in NP can be encoded into a probabilistically checkable
witness, specifically, a witness of length n can be encoded into a PCP of length
n · (log n)O(1) with an induced probabilistic scheme (based on x) for testing O(1)
bits of the encoding such that:

– For any proof generated from a valid witness the test succeeds.
– For any x for which no witness exists the test fails with probability at

least 2
3 .

In practice, the test is run repeatedly to reduce the error probability from 1
3

to something negligible in n. In addition to the above properties of PCPs, we
require one additional property that is part of the folklore of PCPs but rarely
appears explicitly:

Definition 7 (Witness Extracting PCP). A PCP is witness-extracting with
radius γ if there exists a polynomial time algorithm W that, given any string s
on which the PCP test succeeds with probability at least 1 − γ, extracts an NP
witness w for x.

We sketch briefly how this additional property can be attained. Consider the
related notion of a PCP of proximity (PCPP)[5]:

Definition 8 (Probabilistically checkable proof of proximity). A pair of
machines (P, V ) are a PCPP for the NP relation L = {(x, w)} with proximity
parameter ε if

– When (x, w) ∈ L the verifier accepts the proof output by the prover:

Prob[V (P (x, w), (x, w)) = 1] = 1.

– If for some x, w is ε-far from any w′ such that (x, w′) ∈ L, then the verifier
will reject any proof π with high probability:

Prob[V (π, (x, w)) = 1] <
1
3
.

We note that this property is stronger than the standard PCP property since
in addition to rejecting if no witness exists, the verifier also rejects if the prover
tries to significantly deceive him about the witness. Ben-Sasson et al. showed
the existence of PCPPs with O(1) queries and length n · (log n)O(1)[5]. We use
these PCPPs to construct witness-extractable PCPs:
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Construction 3. Let R be an error-correcting code of constant rate that can
correct ε fraction of errors, with ε the PCPP parameter as above. Let L =
{(x, w)} be the NP relation for which we wish to find a witness-extractable PCP.
Modify L using the code R to obtain a relation

L′ = {(x, R(w)) : (x, w) ∈ L}.

Let P be a PCPP prover for this relation. The verifier for this proof
system is just the PCPP verifier for L′, which expects inputs of the form
(P (x, R(w)), (x, R(w))). Let the witness extractor W for the proof system run
the decoding algorithm on the portion of its input corresponding to R(w) and
report the result.

Claim. Construction 3 is a witness-extractable PCP with quasilinear expansion,
where the verifier reads only a constant number of bits from the proof.

Proof. We note that since R is a constant-rate code and P expands input lengths
quasilinearly, this scheme also has quasilinear expansion. Since the PCPP system
reads only O(1) bits of the proof, this new system does too.

For any pair (x, w) ∈ L the proof generated will be accepted by the verifier,
so this scheme satisfies the first property of PCPs. If x is such that no valid w
exists for the L relation, then no valid R(w) exists under the L′ relation and the
verifier will fail with probability at least 2

3 , as required by the second property
of PCPs.

Finally, to show the witness extractability property we note that by definition
of a PCPP, if the verifier succeeds with probability greater than 1

3 on (π, (x, s))
then s is within relative distance ε from the encoding of a valid witness R(w).
Since the code R can correct ε fraction errors, we apply the decoding algorithm
to s to recover a fully correct witness w. We have thus constructed a witness-
extractable PCP for γ = 2

3 . �

4.2 CS Proof Construction

We now outline the construction of noninteractive CS proofs of knowledge, which
is essentially the CS proof construction of Kilian and Micali[12,13]. We present
the knowledge extraction construction in the next section.

The main idea of this CS proof construction is for the prover to construct
a (witness-extractable) PCP, choose random queries, simulate the verifier on
this PCP and queries, and send only the results of these queries to the real
verifier, along with convincing evidence that the queries were chosen randomly
and independent of the chosen PCP. For security parameter k′ (we differentiate
from the parameter k used in the non-oracle-based definitions.) the prover sends
only data related to k′ runs of the PCP verifier, and thus the length of the proof
essentially depends only on the security parameter k′.
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The technical challenge in the construction is to convince the verifier that the
queries to the PCP are independent of the PCP. To accomplish this we use a
random oracle. Let � denote the set of functions

R : {0, 1}2k′
→ {0, 1}k′

.

By a random oracle we mean a function R drawn uniformly at random from the
set �. The machines in our construction will have oracle access to such an R.

We start by defining a Merkle hash:

Definition 9 (Merkle hash). Given a string s and a function R : {0, 1}2k′ →
{0, 1}k′

, do the following:

– Partition s into chunks of length k′, padding out the last chunk with zeros.
– Let each chunk be a leaf of a full binary tree of minimum depth.
– Filling up from the leaves, for each pair of siblings s0, s1, assign to their

parent the string R(s0, s1).

To aid in the notation we define a verification path in a tree:

Definition 10 (Verification path). For any leaf in a full binary tree, its ver-
ification path consists of all the nodes on the path from this node to the root,
along with each such node’s sibling.

The construction of CS proofs is as follows:

Construction 4. Given a security parameter k′, a polynomial-time relation L =
{(x, w)} with |w| < 2k′

and a corresponding witness-extractable PCP with prover
and verifier PP, PV respectively, we construct a CS prover P and verifier U .

P on input (x, w) and a function R : {0, 1}2k′ → {0, 1}k′
does the following:

1. Run the PCP prover to produce s = PP (x, w).
2. Compute the Merkle hash tree of s, letting sr denote the root.
3. Using R and sr as a seed, compute enough random bits to run the PCP

verifier PV k′ times.
4. Run PV k′ times with these random strings; let the CS proof PR(x, w) con-

sist of the k′ ·O(1) leaves accessed here, along with their complete verification
pathways.

U on input x, a purported proof π and a function R does the following:

1. Check for consistency of the verification pathways, i.e. for each pair of
claimed children (s0, s1) verify that R(s0, s1) equals the claimed parent.

2. From the claimed root sr run the procedure in steps 3 and 4 of the construc-
tion of P , failing if the procedure asks for a leaf from the tree that does not
have a verification pathway.

3. Accept if both steps succeed, otherwise reject.

These are essentially the CS proofs of Killian and Micali. In the next section
we exhibit the knowledge extraction property of these proofs, and thereby infer
their soundness; further properties and applications may be found in the original
papers.
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4.3 Knowledge Extraction

We now turn to new part of this construction, the knowledge extractor from
part 5 of Definition 6. We construct a black-box extractor, that is, a fixed E that
takes a description of the machine P ′ as an input argument, instead of depending
arbitrarily on P ′.

Recall that we want to construct a machine E that when given a (possibly
deceptive) prover P ′ will efficiently extract a witness w for any x on which

Pr[UR(P ′R(x), x) = 1] > 1/K ′.

In other words, if P ′ reliably constructs a proof for a given x, then there is
a witness “hidden” inside P ′, and E can extract one. The general idea of our
construction is to simulate P ′R(x) while noting each oracle call and response,
construct all possible Merkle trees that P ′ could have “in mind”, figure out based
on the output of P ′ which Merkle tree it finally chose, read off the PCP at the
leaves of the tree, and use the PCP’s witness extraction property to reveal a
witness.

We note that this extractor is slightly unusual in that it does not “rewind”
the computation at any stage, but merely examines the oracle calls P ′ makes;
such extractors have been recently brought to light in other contexts under the
names straight-line extractors [14] or online extractors[9]. The principal reason
we need such an extractor is that we require the extractor to run in time linear
in the time of P ′, up to multiplicative constant kc2 , and we cannot afford the
time needed to match up data from multiple runs.

We show that the following extractor fails with negligible probability on the
set of R where P ′R(x) is accepted by the verifier; to obtain an extractor that
never fails, we re-run the extractor until it succeeds.

Construction 5 (CS extractor). Simulate P ′R(x), and let q1, ..., qt be the
queries P ′ makes to R, in the order in which they are made, duplicates omitted.
Assemble {qi} and separately {R(qi)} into data structures that can be queried in
time logarithmic in their sizes, log t in this case. If for some i �= j R(qi) = R(qj),
or if for some i ≤ j qi = R(qj), then abort.

Consider {qi} as the nodes of a graph, initially with no edges. For any qi

whose first k′ bits equal some R(qj) and whose second k′ bits equal some R(ql),
draw the directed edges from qi to both qj and ql.

In the proof output by P ′R(x) find the string at the root, sr. If sr does not
equal R(qr) for some r, then abort. If the verification paths from the proof are
not embedded in the tree rooted at qr, abort.

Compute from x the depth of the Merkle tree one would obtain from a PCP
derived from a witness for x. (Recall that for the language Lc in Definition 5,
witnesses have length identical to that of x; in general we could pad witnesses to
a prescribed length.) Read off from the tree rooted at qr all strings of this depth
from the root; where strings are missing fill in 02k′

instead. Denote this string
by pcp.

Apply the PCP witness extractor to pcp, and output the result.
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Lemma 3. Construction 5 when given (P ′, x) such that P ′R(x) always
runs in time at most 2k′/4 and that convinces the verifier with probability
PrR[UR(P ′R(x), x) = 1] = α > 2−k′/8, will return a witness w for x on all
but a negligible fraction of those R on which P ′ convinces the verifier in time
O(k/α) times the expected running time of P ′.

Proof. We show that this construction fails with negligible probability. We begin
by showing that the probability of aborting is negligible.

Suppose P ′ has already made i − 1 queries to the oracle, and is just about to
query R(qi). This value is uniformly random and independent of the view of P ′

at this point, so thus the probability that R(qi) equals any of qj or R(qj) for
j < i is at most 2i · 2−k′

. The probability that this occurs for any i ≤ t is thus
at most t22−k′

, which bounds the probability that the extractor aborts in the
first half of the extractor.

We note that since no two qi’s hash to the same value, the trees will be
constructed without collisions, and since qi �= R(qj) for i ≤ j, the graph will be
acyclic and thus a valid binary tree. We may now bound the probability that
some node on a verification path (including possibly the root) does not lie in
the graph we have constructed. Let s0, s1 be a pair of siblings on a verification
pathway for which the concatenation (R(s0), R(s1)) is not in the graph. Thus P ′

does not ever query R(R(s0), R(s1)). Since the proof P ′ generates is accepted
by the verifier, the value of R(R(s0), R(s1)) must be on the verification path
output by P ′. Thus P ′ must have guessed this value without evaluating it, and
further, the guess must have been right. This occurs with probability at most
2−k′

. Thus the total probability of aborting is at most (t2 + 1)2−k′
.

We now show that if the extractor does not abort, it extracts a valid witness
on all but a negligible fraction of R’s. Recall that the CS verifier makes k′ calls
to the PCP verifier, each of which, if seeded randomly, fails with probability 2

3
whenever the string pcp does not encode a valid witness w.

Consider for some non-aborting R and some i ≤ t the distribution ρ on R
obtained by fixing those values of R that P ′R(x) learns in its first i oracle calls,
and letting the values of R on the remaining inputs be distributed independently
at random. Consider an R drawn from the distribution ρ. Construct a Merkle
tree from the values {(qj , R(qj)) : j ≤ i} rooted at qi, i.e., pretending that P ′,
when it finishes, will output R(qi) as the root, and let pcp be the string read off
from the leaves, as in the construction of the extractor. Compute from R and
R(qi) as in step 3 of the construction of the CS prover P the k′ sets of queries
to the PCP verifier. Unless the oracle calls generated here collide with the i
previous calls, the PCP queries will be independent and uniformly generated; if
witness extraction fails on pcp then by definition, these PCP tests will succeed
with probability at most 1

3
k′

. Adding in the at most t22−k′
chance that, under

this distribution, one of the new oracle calls will collide with one of the old calls,
the total probability that pcp is not witness-extractable, yet the tests succeed,
is at most (t2 + 1)2−k′

.
Consider all distributions ρ with i fixed values as above. We note that the dis-

tributions have disjoint support, since no fixed R could give rise to two different
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initial sequences of oracle calls. We note also that any R either aborts or induces
such a distribution ρ with i fixed values. We now vary i from 1 to t. Consider
the set of non-aborting R for which there is some i such that the string pcpRi is
not witness-extractable yet the PCP tests generated by R all succeed. By the
above arguments and the union bound this set has density at most

t(t2 + 1)2−k′
.

By assumption the set of R for which the verifier accepts P ′R(x) has density
at least 2−k′/8. Thus for all but a negligible fraction of these R, the string pcp
is witness-extractable, and we may recover a witness w as desired. �

We note that our extractor runs logarithmic factor slower than P ′. Since the
running time of P ′ is subexponential in k, the extractor takes time o(k) more
than P ′. As noted above, if P ′ returns an acceptable proof with probability α
we may have to run the extractor 1/α times (in expectation) before it returns
a witness. Since by the above construction α ∼ 1, our extractor runs k times
slower than P ′ and always returns acceptable proofs, as desired.
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Abstract. We investigate a new notion of security for “cryptographic
functions” that we term seed incompressibility (SI). We argue that this no-
tion captures some of the intuition for the alleged security of constructions
in the random-oracle model, and indeed we show that seed incompressibil-
ity suffices for some applications of the random oracle methodology. Very
roughly, a function family fs(·) with |s| = n is seed incompressible if given
(say) n/2 bits of advice (that can depend on the seed s) and an oracle ac-
cess to fs(·), an adversary cannot “break fs(·)” any better than given only
oracle access to fs(·) and no advice.

The strength of this notion depends on what we mean by “breaking
fs(·)”. We first show that for any family fs there exists an adversary that
can distinguish fs(·) from a random function using n/2 bits of advice, so
seed incompressible pseudo-random functions do not exist. Then we con-
sider the weaker notion of seed-incompressible correlation intractability.
We show that although the negative results can be partially extended
also to this weaker notion, they cannot rule it out altogether. More im-
portantly, the settings that we cannot rule out still suffice for many
applications. In particular, we show that they suffice for constructing
collision-resistant hash functions and for removing interaction from Σ-
protocols (3-round honest verifier zero-knowledge protocols).

1 Introduction

Identifying useful security notions of “cryptographic functions” was proposed
ten years ago by Canetti [4], as a plausible way of putting random-oracle-based
constructions on a firmer theoretical footing. The challenge is to find specific
“random-oracle-like” properties, such that functions with these properties (a)
can be realized in the standard model and (b) can be securely used in some
cryptographic applications in lieu of access to a truly random function. However,
very little progress along this line has been made since then, in fact the only non-
obvious notion along this line that we know of is the “perfect one-way hashing”
notion of Canetti [4,7].

In this work we study a very different security notion that we term seed in-
compressibility. On a very high level, this notion is meant to capture the intuition

R. Canetti (Ed.): TCC 2008, LNCS 4948, pp. 19–36, 2008.
c© International Association for Cryptologic Research 2008
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that a random function has no structure. At a first glance, it seems hopeless to
define an efficiently computable function that has no structure, since the fact
that the function is computed by a small circuit is itself some structure. However,
we may still hope that this small circuit is the only interesting “small property”
of the function. That is, no adversary can find a significantly smaller property
that differentiates it from your average random function. Roughly, if you do not
get enough bits to describe the entire function, then you get nothing.

Toward formalizing this intuition, let F = {fs}s be a family of functions with
n-bit seeds, and consider an adversary that works in two phases: In the first phase
the adversary gets the n-bit seed s, compresses it to (say) an n/2-bit string σ, and
keeps only σ in memory. Then the adversary gets an oracle access to the function
fs(·), and it tries to “break it” (according to some notion of security). We call
this the seed compression attack model. We say that the family F satisfies the
underlying notion of security under seed-compression attack (or that it is seed
incompressible with respect to the underlying notion of security), if breaking the
function knowing σ is not any easier than breaking it without knowing σ.1

The choice of n/2 as the compression threshold is quite arbitrary. The results
that we present in this paper remain unchanged whenever the threshold for
the length of the compressed seed is anywhere from nε to n − nε for any fixed
0 < ε < 1. Below we stick to the n/2 threshold for convenience.

Following the intuition from above, we would have liked a construction where
it is not possible to distinguish fs from a random function, even given σ. Some
care must be taken when defining this notion to avoid obvious pitfalls (such as
σ being the first n/2 bits of fs(0)), but this can be handled using ideas similar
to the ones of Coron et al. [9] (see details in Section 3). Unfortunately, even
with these ideas we show that the resulting notion cannot be realized, namely no
function family can be pseudo-random under seed-compression attacks. Roughly,
the reason is that the adversary can encode in σ a CS-proof [21] for the statement
that fs is computed by a small circuit. This impossibility result is somewhat
disheartening, as it does not really show the existence of some property of the
function that is smaller than its description; rather, it is simply a fact that
convincing someone that a function has a small circuit takes much fewer bits than
actually telling them what the circuit is. Further, from a security perspective the
fact that the function is being computed by a small circuit is clearly information
that the adversary knows.

Faced with this negative result, we investigate weaker notions of security. One
direction that seems promising is the notion of correlation-intractability under
seed-compression attacks. The notion of correlation-intractability was defined by
Canetti et al. [6] as the inability of the attacker to find any input x such that
the pair (x, fs(x)) satisfies any “non-trivial relation” (cf. Section 4). Canetti et
al. proved that correlation-intractability is not realizable when the adversary
sees the entire seed s, but we point out that it may be realizable when the
adversary is only given the “compressed seed” σ. We note that the negative

1 Of course, this is only meaningful if “breaking fs” is hard without any knowledge of
the seed s.
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results from [6] do not seem to extend to this model. On the other hand, our
negative results for PRFs can be partially extended also to this weaker notion.
However, it seems that these negative results hit an inherent limitation for some
parameter settings, and we show in Section 4 that the remaining parameter
settings are still useful. For example, we show that we can use them to construct
collision-resistant hash functions, and perhaps more interestingly that we can
use them to remove interaction from three-move public-coin honest-verifier zero-
knowledge proofs.

Briefly, the primitives that can be constructed from seed-incompressible func-
tions are those for which a “break” can be encoded with only a few bits. (For
example, one can encode a collision in a hash function using only two inputs
to the function.) When constructing such primitives from seed-incompressible
functions, we let the seed of the function be sufficiently longer than the number
of bits that are needed to encode a break, and then any adversary that breaks
the resulting primitive can be converted into a “compressor” (that given the
seed outputs a break), thus violating the seed-incompressibility of the underly-
ing function.

We unfortunately were not able to find a construction that provably achieves
seed-incompressible correlation intractability under a better-known computa-
tional hardness assumption. Still, one can conjecture that ad-hoc constructions
such as AES or HMAC-SHA1 have this property. Such a conjecture is theoret-
ically more appealing than using the random-oracle model since, at the very
least, we do not have a proof that it is false, while still providing a conjecture
open to disproof. We explain below our intuition for why one might conjecture
that AES and SHA type constructions satisfy our definitions.

1.1 Seed-Incompressibility and Contemporary Block-Ciphers

Here is one way to use the intuition behind DES and AES like block-cipher
constructions to possibly construct seed-incompressible functions. We will use
AES to denote any similar composition-of-round based block-cipher construc-
tion. Each AES function is expressed as the composition of r rounds of per-
mutations pk1 ◦ ... ◦ pkr , where each n-bit ki is determined by the key. For this
theoretical presentation, instead, we assume that all the “round keys” ki are
chosen randomly and independently. Consider now using not r rounds but nr
(independent) rounds. It seems unlikely that a key of this new construction can
be “compressed” to only (say) n/2 bits. The intuition (at least for the case where
the compressed seed consists of actual key bits), is that if the compressed seed
is so short then there must be r consecutive rounds for which the key is com-
pletely undetermined, which in some intuitive sense is as strong as a standard
r-round construction of an AES like construction. One issue for block-cipher like
constructions is their invertibility, but by choosing a compressed seed of only
n/2 bits, then it is not enough to help inverting the AES function. For example
giving n/2 bits from the pre-image of zero does not appear to help when the
AES permutation is mapping over an n-bit domain.
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1.2 Related Work

The Random-Oracle Model. Following the Fiat-Shamir heuristic for transform-
ing public-coin identification protocols into signature schemes [14] and several
other uses of random-oracles in the literature, although sometimes used in dif-
ferent contexts (e.g., [18]), Bellare and Rogaway formalized the random-oracle
heuristic as a “general-purpose” design methodology for cryptographic schemes
[2] and emphasized the need to develop formal proofs of security within it. The
methodology requires that one first design an ideal system in which all parties
(including the adversary) have oracle access to a truly random function and
prove the security of this ideal system. (The proof is called “a security proof in
the random-oracle model.”) Next, one replaces the random oracle by a “crypto-
graphic hash function” (such as SHA), where all parties (including the adversary)
have a succinct description of this function. Thus, one obtains an implementation
of the ideal system in a “real-world” where random oracles do not exist.

The random-oracle methodology has been used quite extensively since then,
often resulting in very efficient and seemingly secure schemes. A drawback of
this methodology, however, is that it is not at all clear what security properties
are needed from the cryptographic hash function in order for a specific scheme
to be secure. In fact, Canetti et al. demonstrated that this methodology is not
sound in general, in that there exist secure “ideal schemes” that have no secure
implementation in the “real world” [6]. A similar negative result was later proved
by Goldwasser and Kalai also for the original Fiat-Shamir heuristic [16].

Still, there are many cryptographic schemes whose only known security proof
is in the random-oracle model, some of which withstood substantial cryptanalysis
and are widely implemented and deployed. Seeking to provide some theoretical
footing to the security of such schemes, we would like to be able to describe
“random-oracle like” properties that are (a) well-defined, (b) realizable, and (c)
sufficient for the security of some instances of the random-oracle methodology.
As we mentioned above, a first step in this direction was taken a decade ago by
Canetti et al. with the notion of perfect one-way hashing [4,7].

With respect to the realizability of such notion, one thing that we could have
hoped for is to prove its existence based on a more standard cryptographic
assumption (e.g., the hardness of factoring). We point out, however, that at
least as important is that there will be some hope (or intuition) that typical
cryptographic functions such as SHA or AES actually fulfill this notion (as it
is these functions that are used in actual implementations of protocols proven
correct in the Random Oracle model).

Conditional Entropy Hash Functions. Barak et al. [1] conjectured the existence
of families of hash functions hs for which no attacker can generate an input that
has a predictable output. Specifically, a keyed function hs(x) is said to “ensure
conditional entropy e” if for every attacker A that takes as input the key s
and produces as output an input x to h, it holds that the conditional entropy
H(hs(A(s))|A(s)) ≥ e. This notion appears to be very close to the notion of
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correlation intractable functions of [6] (since if hs(x) has “high entropy” then it
is unlikely to hit any evasive relation).

Barak et al. show that such functions are sufficient to implement the
Fiat-Shamir heuristic to Σ-protocols, as is done herein with seed incompress-
ible functions. (This result from [1] casts doubt on the informal claim made in
[6] that correlation intractability was insufficient for such constructions.) Yet,
other than via the connection to correlation-intractability, their notion seems
unrelated to seed-incompressibility. For example, we do not see a obvious way
in which conditional entropy hashes imply collision-resistance, as we show seed-
incompressibility does in Section 5.1.

Exposure-Resilient Functions. The notion that we investigate in this work can
be seen as an enhancement of exposure-resilient functions (ERFs) as defined and
constructed by Canetti et al. [5]. Recall that an ERF is a function whose output
looks random even when some of the input bits are known. It is easy to see that
if we restrict the seed compression attack to only output some of the bits of the
seed, then a “seed incompressible PRF” can be constructed from an ERF and a
standard PRF (by first applying the exposure-resilient function to the seed).

The Bounded-Retrieval Model. Our seed-compression attack model can also be
seen as an instance of the “bounded-retrieval model” that was introduced by
Dziembowski and by Di Crescenzo et al. [13,11]. In this model, an adversary
installs a virus on a target machine; the virus can observe all the secrets on
the target machine, but only has a limited available bandwidth with which to
communicate these secrets back to its “home base”. The works of Dziembowski,
Di Crescenzo et al. and Cash et al. [13,11,8] investigate obtaining secure key-
exchange and authentication protocols in this model.

The current work can be thought of as trying to obtain primitives similar to
pseudo-randomness in the same setting. (However, our focus is quite different,
we view this model merely as a tool in order to establish primitives that can be
used in other more standard models.)

Compressibility of NP Languages. A different notion of “compressibility” with
applications to cryptography was recently proposed by Harnik and Naor [17]. In
their notion, we are given an NP language and a word that is potentially in that
language, and we try to produce a shorter word that is in the language if and
only if the original is. For example, we are given a CNF formula φ and we try to
compress it to a shorter φ′ such that φ′ is satisfiable if and only if φ is.2 Harnik
and Naor proved that if SAT is compressible then collision-resistant hashing can
be constructed from one-way functions.

Our notion of compression seems quite different from the one of Harnik and
Naor: roughly the difference is that they consider compressing the instance,
whereas we are interested in compression of the witness (i.e., the secret seed of
the function in our case).

2 The length of φ′ should be poly-logarithmic in the length of φ, but can be polynomial
in the number of variables of φ.
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2 Notations and CS Proofs

Notations. We define some notation used throughout the paper. Given a bit b,
we use b� to denote the bit-string of � bits b. Concatenation of bit strings is
denoted with ||. Given an � bit-string s = s1, ..., s� and c ≤ � we denote its first
c significant bits s1, ..., sc by �s�c. We use a ∈R S to denote choosing uniformly
at random an element a from a set S. We use negl(n) to denote some function
f , such that for all c and sufficiently large n f(n) ≤ 1/nc and poly(n) denotes
some polynomial function p ∈ O(nd) for some constant d.

CS Proofs. Our negative results use CS-proofs as constructed by Micali [20]
(using techniques from Kilian [19]), as well as a variant of them due to Naor and
Nissim [22]. Below, we briefly recall the definition. For our purposes, we view a
CS-proof system as consisting of a prover, Prv, that wants to convince a verifier,
Ver, of the validity of an assertion x ∈ L where L is some NP-language and
Prv is in possession of a witness w for x.3 In our context, we use non-interactive
CS-proofs that work in the Random Oracle Model; that is, both the prover and
verifier have access to a common random oracle. The prover generates an alleged
proof that is examined by the verifier.

Definition 1 (Non-interactive CS proofs in the Random Oracle Model).
A CS-proof system for a language L ∈ NP (with relation RL), consists of two
deterministic polynomial-time oracle machines, a prover Prv and a verifier Ver,
operating as follows:

– On input (1k, x, w) such that (x, w) ∈ RL and access to an oracle O, the
prover computes a proof π = Prv

O(1k, x, w) such that
|π| ≤ poly(k, log(|x| + |w|)).

– On input (1k, x, π) and access to O, the verifier decides whether to accept or
reject the proof π (i.e., Ver

O(1k, x, π) ∈ {accept, reject}).

The proof system satisfies the following conditions, where the probabilities are
taken over the random choice of the oracle O:

Perfect completeness: For any (x, w) ∈ RL and for any k,

Pr
O

[
π ← Prv

O(1k, x, w), Ver
O(1k, x, π) = accept

]
= 1.

Computational soundness: For any polynomial time oracle machine Bad

and any input x /∈ L it holds that

Pr
O

[
π ← Bad

O(1k, x), Ver
O(1k, x, π) = accept

]
≤ negl(k).

We sometimes also require a stronger soundness condition by replacing the neg-
ligible function negl(k) with an exponentially small function poly(k+|x|)

2k . (This
stronger condition can still be proven in the random-oracle model.)
3 Micali defined CS-proofs more generally, but we do not need this extra generality

for our purposes.
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3 Seed-Incompressible Pseudo-random Functions

Following the intuition as presented in the introduction, we would have liked
to have a construction F = {fs} such that fs looks random even when given
a “compressed version of s.” Formalizing this takes some care, since this “com-
pressed version of s” could be, for example, the first |s|/2 bits of fs(0) (which
would make it easy to distinguish fs from an unrelated random function). This
technicality can be solved by borrowing the technique used by Coron et al. (in
the context of domain extenders for random oracles) [9]. Namely, the second
phase of the adversary gets either the compressed seed σ and access to fs(·), or
access to a random function f(·) and a “simulated compressed seed” that was
generated by a simulator Sf (where S has access to the same random f).

In the formal definition below, we fix some polynomially-bounded length func-
tions �1, �2 and consider function families from �1(n) bits to �2(n) bits with n-bit
seeds. We denote by Fn the set of all functions f : {0, 1}�1(n) → {0, 1}�2(n).

Definition 2 (Seed-Incompressible PRFs). Let {Fn}n∈N be a family of
functions such that Fn : {0, 1}n × {0, 1}�1(n) → {0, 1}�2(n) can be efficiently
computed, and denote fs(·) ≡ F (s, ·).

The family {Fn} is pseudo-random under seed-compression attacks if for every
two-phase efficient adversary Adv = (A, B) there exists an efficient simulator S
and a negligible function negl such that

∣∣
∣
∣
∣
Pr

[
s ∈R {0, 1}n, σ ← A(s) : |σ| ≤ n/2 and Bfs(σ) = 1

]

− Pr
[
f ∈R Fn, σ ← Sf (1n) : |σ| ≤ n/2 and Bf (σ) = 1

]

∣∣
∣
∣
∣
≤ negl(n)

Seed-Incompressible PRFs would have been very useful, but unfortunately they
do not exist, as will be shown below. While we show that SI-PRFs do not exist,
a related concept will be introduced later, and therefore the discussion is useful
for this later topic.

Theorem 1. Seed-Incompressible PRFs as defined in Definition 2 do not exist.

Proof. Let {Fn}n∈N be a family of functions as in Definition 2. We show a two-
phase adversary Adv = (A, B) for which no simulator exists. Fix some n and let
�1 = �1(n) and �2 = �2(n). Let j = �2n/�2� (i.e., the output of fs on 1, 2, . . . , j
contains at least 2n bits).

The first phase of the adversary, A, gets as input a seed s ∈ {0, 1}n. It
computes yi = fs(0||i) for i = 1, 2, . . . , j, and then prepares a CS-proof π for the
true NP statement

“there exists a seed s′ such that yi = fs′(0||i) for i = 1, 2, . . . , j” (�)

The proof is prepared relative to the oracle O(·) = fs(1||·) and security parame-
ter k =

√
n. Then A outputs the proof π as the “compressed seed”, to be used by

the second phase B. (Notice that the length of this proof is k·polylog(n) < n/2.)
The second phase B, on input π, first uses its oracle f to compute yi = f(0||i)

for i = 1, 2, . . . , j, thereby recovering the statement that π is supposed to be a
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CS-proof for. Then B attempts to verify the proof π relative to f(1||·) (where f
is the provided oracle) and security parameter k =

√
n. It accepts if the proof is

valid and rejects otherwise. By the perfect completeness of CS-proofs, B accepts
with probability one when given the proof that A generated and access to the
same fs for which that proof was generated.

On the other hand, the soundness of CS-proofs implies that no simulator
can make B accept with non-negligible probability. Indeed, when f is a random
function in Fn then y1, . . . , yj consist of at least 2n random bits, hence the
probability that the statement (�) from above is true is at most 2−n. And if
the statement is not true, then no efficient simulator with access to a random f
can generate a valid proof for it with probability better than poly(n) · 2−Θ(k) =
negl(n).

4 Seed-Incompressible Correlation Intractability

Canetti et al. [6] introduced the concept of Correlation Intractability to capture
the intuition that the adversary cannot “hit” any rare input-output relation.
Roughly, an evasive relation R is one where it is hard to find an input x such that
(x, f(x)) ∈ R for a random function f , and a function family F is correlation
intractable if for any evasive relation R it is hard to find (x, f(x)) ∈ R for a
random member f ∈ F . These notions can be extended to 2p-ary relations in
the obvious way (see below).

Canetti et al. proved that correlation-intractable function families do not exist,
in that an adversary that knows the short description of f ∈ F can always find
some (x, f(x)) ∈ RF for a particular relation RF that depends on F . In our
case, however, we are interested in an adversary that does not see the entire
description of f ∈ F but only gets a “compressed description”. We provide
the formal definitions below, and then discuss the extent to which the negative
results from [6] and from Section 3 do or do not extend to this new notion. Below
we again fix some polynomially bounded length functions �1, �2, and denote by
Fn the set of all functions f : {0, 1}�1(n) → {0, 1}�2(n).

Definition 3 (Evasive Relations). A 2p-ary relation R is evasive if for any
efficient adversary A, there is a negligible function negl such that for all suffi-
ciently large n

Pr
f∈Fn

[〈x1, . . . , xp〉 ← Af (1n) : 〈x1, . . . , xp, f(x1), . . . , f(xp)〉 ∈ R] ≤ negl(n).

Sometimes we are interested only in efficient relations, namely relations R for

which the membership problem 〈x1, . . . , xp, y1, . . . , yp〉
?
∈ R can be efficiently

decided (i.e., in polynomial time).

Definition 4 (Seed-Incompressible Correlation Intractability)
Let {Fn}n∈N be a family of functions where Fn : {0, 1}n×{0, 1}�1(n) → {0, 1}�2(n)

can be efficiently computed, and denote fs(·) ≡ F (s, ·).
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For some polynomial p = p(n), we say that the family {Fn} is correlation
intractable under seed-compression attacks with respect to 2p-ary relations if
for every 2p-ary evasive relation R, and for every two-phase efficient adversary
Adv = (A, B), there is a negligible function negl such that for all sufficiently
large n

Pr
[
s ∈R {0, 1}n, σ ← A(s), 〈x1, . . . , xp〉 ← Bfs(σ) :
|σ| ≤ n/2 and 〈x1, . . . , xp, fs(x1), . . . , fs(xp)〉 ∈ R

]
≤ negl(n).

We also call such function families seed-incompressible correlation-intractable
(with respect to 2p-ary relations), or SI-CorInt(2p), for short.

In the case that we restrict the above quantification on all evasive relations
to only efficient evasive relations, we say that the family {Fn} is weakly seed-
incompressible correlation-intractable with respect to 2p-ary relations (wSI-
CorInt(2p)).

4.1 Do SI Correlation Intractable Functions Exist?

The first question to answer with respect to the seed-incompressible correlation
intractability as defined above is whether we can extend the impossibility result
from Theorem 1 (or from [6]) to show that it too cannot be realized.

One first observes that for some setting of parameters, an attacker in the
seed-compression model is just as powerful as an attacker that has the full un-
compressed seed. Specifically, if the seed is more than 2p times the length of the
input to h, then the first phase of an attacker in the seed-compression model can
output the vector that breaks the correlation intractability as the “compressed
seed”. However, the impossibility results from [6] do not extend to very long
seeds, so this simple observation does not appear to shed new light on the exis-
tence of SI-CorInt functions. Below we show, however, that the technique from
Theorem 1 can be extended for some settings of parameters:

As opposed to the case of Theorem 1, here the adversary needs not only to
distinguish fs from random (which can be done with CS-proofs), but also to
compute some “unpredictable relation”. The idea that we exploit here is that
the CS-proof itself can be thought of as an “unpredictable relation.” Roughly,
we have a relation of the form
⎧
⎨

⎩

〈(1, . . . , t, v1, . . . , vm), (x1, . . . , xt, y1, . . . , ym)〉 :
The CS-proof (v1, . . . , vm) is valid for the instance (x1 = f(1),
. . . , xt = f(t)) w.r.t. V receiving oracle answers (y1, . . . , ym).

⎫
⎬

⎭

Tracing through the various parameters we see that to use Micali’s construction
for CS-proofs with a relation such as above we need t = (n+ω(log n))/�2(n) and
m = polylog(n). Hence we get an impossibility result for 2p-ary relations where
p = n/�2(n) + polylog(n). Moreover, if we assume the existence of collision-
resistant hashing then we can use the variant of CS-proofs with few oracle calls
due to Naor and Nissim [22], and then we can get by with a relation that only
depends on m = O(n/�1(n)) of the vi’s. Hence for function families with n-bit
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seeds and input/output bit lengths of size �1(n), �2(n) = Ω(n) we also obtain an
impossibility result for 2p-ary relations where p = O(1) (we can get as low as
p = 3 when �1(n), �2(n) > n.)

Lemma 1. Anefficiently computable functions family{Fn :{0, 1}n×{0, 1}�1(n) →
{0, 1}�2(n)} cannot be weakly correlation intractable under seed-compression at-
tacks with respect to 2p-ary relations, for any p ≥ �(n + ω(log n))/�2(n)� +
�polylog(n)/�2(n)�.

Moreover, if collision resistant hash function family {Hn : {0, 1}n×{0, 1}�4(n)

→ {0, 1}�5(n)} exist, for polynomials �4(n) > �5(n), then no family as above
can be correlation intractable under seed-compression attacks with respect to
2p-ary relations where p ≥ �(n + ω(log n))/�2(n)� + �nε/�2(n)� + �nε/�1(n)�
(for any ε > 0).

A proof of this lemma will be in the full version of this paper.

Smaller relations. We speculate that current techniques cannot be used to rule
out relations with arity less than 6. This is because with the current technique of
using CS-proofs, you would need at least one oracle call to specify the function
instance, at least one oracle call for the CS-proof, and you would have to use at
least one more vi to describe the CS-proof itself. Thus it is still plausible that
seed-incompressible correlation intractable function families exist with respect
to such low-arity relations.

5 Implications of Seed-Incompressible Correlation
Intractability

We demonstrate the usefulness of seed-incompressible functions by showing how
they can be used to easily construct two primitives: specifically collision-resistant
hash functions and (single-theorem) NIZK systems via the Fiat-Shamir method-
ology. More generally, the primitives that can be constructed from seed-incom-
pressible functions are those for which a “break” can be encoded with only a few
bits. (For example, one can encode a collision in a hash function using only two
inputs to the function. Similarly, for a NIZK that was derived from a 3-move Σ-
protocol, one can encode a false proof using only the two messages that the prover
sends.) When constructing such primitives from seed-incompressible functions,
we let the seed of the function be sufficiently longer than the number of bits that
are needed to encode a break, and then any adversary that breaks the resulting
primitive can be converted into a “compressor” (that given the seed outputs a
break), thus violating the seed-incompressibility of the underlying function.

5.1 Collision Resistant Hashing

We show that seed-incompressible correlation-intractable function with respect
to quaternary relations must be “essentially collision-resistant.” We view this
feature as a minimal requirement for any primitive that one hopes to use in
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lieu of a random-oracle, since heuristic implementations of random-oracle-based
constructions always use collision-resistant hash functions such as SHA to replace
the oracle. Note that it is not true that any seed-incompressible function is also
collision-resistant (for example, seed-incompressible functions need not be length
decreasing). Rather, we show below that any seed-incompressible function must
have “embedded in it” a collision-resistant function.

Specifically, given a seed-incompressible correlation-intractable function fs(·),
we consider shortening the inputs and outputs of fs so that the inputs are shorter
than one quarter of the seed and the outputs are shorter than the inputs. We then
observe that an algorithm that finds collisions in the resulting (length-decreasing)
function can be (trivially) converted to a “compressor” that breaks the seed-
incompressibility of fs: the “compressor” only needs to output the collision.

We formally state the definition of collision-resistance for completeness and
then state the theorem with proof.

Definition 5 (Collision Resistant Hash Functions (CRHF))
Fix polynomially-bounded length functions �2(n) < �1(n). A function generator
{Hn : {0, 1}n × {0, 1}�1(n) → {0, 1}�2(n)}n∈N is collision resistant if for every
probabilistic polynomial time adversary A there is a negligible functions negl such
that for all sufficiently large n:

Pr[s ← {0, 1}n, (x1, x2) ← A(s) | x1 �= x2 ∧ hs(x1) = hs(x2)] ≤ negl(n).

Theorem 2. If there exists a function family {Fn : {0, 1}n × {0, 1}�1(n) →
{0, 1}�2(n)} with super-logarithmic length functions �1, �2 = ω(log n), which is
correlation intractable under seed-compression attacks with respect to quaternary
relations, then collision resistant hash functions exist.

Proof. Let �1, �2 be super-logarithmic length functions, �1, �2 = ω(log n), and
assume that a family F = {Fn : {0, 1}n × {0, 1}�1(n) → {0, 1}�2(n)}n∈N is cor-
relation intractable under seed-compression attacks with respect to quaternary
relations.

Consider a modification of the family F to operate on potentially shorter
inputs and outputs. Namely, let �′1 = min(�1, n/4) and �′2 = min(�2, �

′
1 − 1), and

consider the family H = {Hn : {0, 1}n × {0, 1}�′
1(n) → {0, 1}�′

2(n)}n∈N which if
defined as follows: on seed s of length n and input x′ of length �′1, first append
zeros to x′ up to length of �1 bits, then apply F (s, ·) to the result, and finally
take only the first �′2 bits of the outcome.

H(s, x′) def= �F (s, x)��′
2
, where x = x′||0�1(|s|)−�′

1(|s|).

We prove that if F is SI-CorInt with respect to quaternary relations then H is
collision-resistant. In particular, consider the relation R ⊂ {0, 1}�1 × {0, 1}�1 ×
{0, 1}�2 × {0, 1}�2:

R
def= {(x1, x2, y1, y2) | x1 �= x2 and �y1��′

2
= �y2��′

2
}.
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This relation is clearly evasive, as every polynomial-tie adversary has probability
at most poly(n) · 2−�′

2 = negl(n) of outputting x1, x2 for which (x1, x2, f(x1),
f(x2)) ∈ R where f is a random function (since �′2 is super-logarithmic).

Assume for contradiction that the family H from above is not collision resis-
tant, and let C be a collision finding adversary that given a random s ∈ {0, 1}n

outputs a pair of strings x1, x2 ∈ {0, 1}�′
1 such that H(s, x1) = H(s, x2) with

probability at least 1/nc. Then, define the adversary Adv = (A, B) for the
underlying SI-CorInt family as follows: The “compressor” A(s) simply out-
puts the collision (x1, x2) = C(s), and note that |A(s)| = n/2. The second
phase of the attack is just translate H-inputs into F -inputs by appending ze-
ros, namely B(x1, x2) outputs (x′1, x′2) where x′i = xi||0�1−�′

1 . By definition
if H(s, x1) = H(s, x2) (which happens with non-negligible probability) then
�F (s, x′1)��′

2
= �F (s, x′2)��′

2
, and therefore (x′1, x

′
2, F (s, x′1), F (s, x′2)) ∈ R, con-

tradicting the security of F .

5.2 From Σ-Protocols to NIZK Arguments

One of the “signature uses” of the random-oracle heuristic is to remove interac-
tion from zero-knowledge protocols using the Fiat-Shamir heuristic. Specifically,
given a public-coin honest verifier zero-knowledge proof system (known as Σ-
protocols in the case where the number of rounds is three), it is possible to
transform it into a non-interactive protocol by replacing the verifier’s messages
with the output of a “cryptographic hash function”, applied to the transcript
up to that point.

It is well known that if the original protocol has negligible soundness error,
then the resulting non-interactive protocol can be proven in the random-oracle
model to be a non-interactive zero-knowledge argument system, and can also be
used as a secure signature scheme. On the other hand, Goldwasser and Kalai
proved in [16] that there exist interactive Σ-protocols with negligible soundness
for which their resulting protocols are not secure signature schemes in the stan-
dard model, no matter what function family is used to replace their interaction.

However, that negative result still leaves the possibility of a function fam-
ily that will convert the interactive protocol into a NIZK argument system for
a single theorem. Indeed, below we show that the latter is possible if seed-
incompressible correlation-intractable functions exist.

We begin by recalling the definitions of Σ-protocols and NIZK argument
systems. Below let L be an NP-language and let RL be a binary relation that
defines L, namely L = {x : ∃w s.t. (x, w) ∈ RL} (where the witness w has
length polynomial in |x|).

Σ-Protocols. For a pair (P, V ) of interacting protocols, we denote by (P, V )
(x, w) a run in which P has input (x, w) ∈ RL, V has input x, and P attempts
to convince V of the validity of the assertion x ∈ L. For a three-move protocols
as above (with P going first), denote by α, β, and γ the three messages that are
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exchanged in the protocol, and let P1, and P2 be the randomized functions that
the prescribed prover uses to compute its two messages, namely we have

(α, state) ← P1(x, w), and γ ← P2(x, w, state, α, β).

We also denote by V ∗ the function that the verifier employs to decide whether
to accept or reject the proof,

V ∗(x, α, β, γ) ∈ {accept,reject}.

Typically, the first flow α is called a commitment, the second flow β is called a
challenge, and the third flow γ is called a response.

Definition 6. A 3-move protocol (P, V ) as above is a Σ protocol for a lan-
guage L if it satisfies the following properties:

Public-coin verifier. The message β sent by V is always a sequence of t(|x|)
uniformly chosen random bits (for some length function t).

Perfect completeness. For every (x, w) ∈ R:

Pr
[
(α, state)← P1(x, w); β ∈R {0, 1}t(|x|); γ ← P2(x, w, state, α, β) :

V ∗(x, α,β, γ)=accept

]
= 1,

where the probability is over the random choices of P1, P2 and β.
Soundness. There is a negligible function negl such that for every x /∈ LR, for

every pair of adversarial (computationally unlimited) prover circuits P ∗1 , P ∗2 :

Pr
[
α ← P ∗1 (x); β ∈R {0, 1}t(|x|); γ ← P ∗2 (x, β) : V ∗(x, α, β, γ)=acpt

]
=

1
2t(|x|) ,

where the probability is over the random choice of β. 4 We note a property of
Σ-protocols of interest to our later arguments: For every Σ-protocol, simple
parallel repetition and padding arguments allow the length t(|x|) of the veri-
fier’s challenge to be set to an arbitrary positive integer. 5 For the remainder
of the paper we therefore assume that t ∈ ω(log n), and that the adversaries
probability of success, as stated above, is negligible in |x|.

Zero-knowledge. There exists a polynomial-time simulator S that on input x
and β′ ∈ {0, 1}t(|x|) outputs (α′, β′, γ′) (we have S outputting its input β′ to
simplify the notations somewhat).
We require that for every (x, w) ∈ RL and every β′ ∈ {0, 1}t(|x|), the distrib-
ution on (α′, β′, γ′) = S(x, β′) is identical to the conditional distribution on
the transcript (α, β, γ) = (P, V )(x, w), when conditioned on β = β′.

4 Traditionally Σ-protocols are defined with a stronger soundness condition called
extractability that clearly implies the current soundness definition.

5 We refer the reader to [10] for a complete discussion on this and other properties of
Σ-protocols.
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NIZK Arguments. We remind the reader that the common reference string
(CRS) model is one in which all participants and the adversary have access to a
polynomial sized common reference string chosen by a trusted third party from
a pre-specified distribution (which we denote D).

Definition 7. A pair of efficient probabilistic algorithms (P, V ) are a single-
theorem NIZK argument system for a language L (specified by a binary relation
RL) in the CRS model, if it satisfies:

Completeness. ∀(x, w) ∈ R, Pr
crs,P,V

[σ ← P (crs, x, w) : V (crs, x, σ) = 1] = 1.

Computational Soundness. For every (possibly cheating) efficient probabilistic
prover P ∗ there is a negligible function negl such that for all x /∈ L:

Pr
crs,P ∗,V

[σ ← P ∗(crs, x) : V (crs, x, σ) = 1] ≤ negl(|x|).

Zero-Knowledge. There exists an efficient simulator S such that for every (x, w)
∈ R, the output of the following two experiments are (computationally, statisti-
cally, perfectly)-indistinguishable.

Exp1(x, w)
crs ← D
σ ← P (crs, x, w)
Output (crs, σ)

Exp2(x)
(crs′, σ′) ← S(x)

Output (crs′, σ′)

The Fiat-Shamir Transformation. Fiat-and Shamir described in [14] a trans-
formations that turns Σ-protocols into non-interactive argument systems. Specif-
ically, instead of having the verifier choose a random challenge β, one computes β
by applying a hash function to the input x and the commitment α, setting
β = f(x, α). The non-interactive proof σ then consists of the elements α, γ of
the Σ-protocol (i.e., the commitment and the response). Given the input x and
(α, γ), the verifier computes β = f(x, α) and checks that V ∗(x, α, β, γ) =accept.
It is easy to show that when the hash function f is modeled as a random oracle
then the resulting protocol is still computationally sound (since the challenge
β is still a string of random bits that the adversary cannot control, other than
attempting to select a polynomial number of them). Moreover, if the simulator
can program the random oracle then this protocol also remains zero-knowledge.

We next show that using SI-CorInt families (with respect to quaternary re-
lations), we can construct function families for which the Fiat-Shamir transfor-
mation yields a single-theorem NIZK argument system in the CRS model.

– Let (P, V ) be a Σ-protocol in which the commitment, challenge, and response
are of lengths |α| = t1(|x|), |β| = t2(|x|), and |γ| = t3(|x|), respectively.

– Also, let {F : {0, 1}n × {0, 1}�1(n) → {0, 1}�2(n)}n∈N be a function family,
where �1, �2 are polynomially bounded from above and below. (That is n1/c ≤
�1(n), �2(n) ≤ nc for some constant c > 1 and every sufficiently large n).
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For inputs of length |x| = m, we choose the security parameter n (which
defined the seed-length for F ) as n = max{ 2(m + t1(m) + t3(m)), �−1

1 (m +
t1(m)), �−1

2 (t2(m)) }. Namely, n is chosen large enough so that m + t1(m) +
t3(m) ≤ n/2 and also �1(n) ≥ m + t1(m) and �2(n) ≥ t2(m). Note that since
�1, �2 and the ti’s are polynomially-bounded, then n is polynomial in m. Below
we view n, �1, �2 as functions of the input length m. We then reset the input and
output length to be exactly �′1 = m + t1(m) and �′2 = t2(m) by setting

F ′(s, x′) def= �F (s, x)��′
2
, where x = x′||0�1−�′

1

Finally we define H : {0, 1}n+�′
2 × {0, 1}�′

1 → {0, 1}�′
2 as

H(〈s, z〉 , x′) def= z ⊕ F ′(s, x′) = z ⊕
⌊
F

(
s, x′||0�1−�′

1

)⌋

�′
2

(1)

We are now ready to describe the NIZK argument system. The CRS consists of
a pair (s, z) where s ∈ {0, 1}n is a seed for the underlying function F and z is
a random string of length �′2 = t2(m) (so together 〈s, z〉 are a seed for the func-
tion H from Eq. (1)). The NIZK argument system is obtained by applying the
Fiat-Shamir transformation to the original Σ-protocol (P, V ) using the function
Hs,z.

Namely, on input (x, w) ∈ RL with |x| = m and crs = (s, z), the prover sets
(α, state) = P1(x, w), β = Hs,z(x, α) and γ = P2(x, w, state, α, β). The proof is
the string σ = (α, γ). Given x, crs = (s, z), and the proof σ = (α, γ), the verifier
computes β = Hs,z(x, α) and checks that V ∗(x, α, β, γ) =accept.

Theorem 3. Let (P, V ) be a three round Σ-protocol for the language L, defined
by the NP relation RL, and let F = {F : {0, 1}n × {0, 1}�1(n) → {0, 1}�2(n)}n∈N
be a function family with polynomially-bounded length functions.

If (P, V ) has a negligible soundness error and F is correlation intractable
under seed-compression attacks with respect to quaternary relations, then apply-
ing the Fiat-Shamir transformation to (P, V ) using the function family H from
Eq. (1) yields a single theorem NIZK argument system for L in the CRS model.

Proof. The perfect completeness of the resulting NIZK system follows immedi-
ately from the perfect completeness of the Σ-protocol.

For the zero-knowledge property, the simulator S∗ for the NIZK system uses
the simulator S given by the Σ-protocol. It first chooses a random value β′ ∈
{0, 1}t2(|x|) and uses S to compute S(z) = (α′, β′, γ′). It then chooses a random
seed s ∈ {0, 1}n for the function F and computes

z = β′ ⊕ F ′(s, 〈x, α′〉) = β′ ⊕
⌊
F

(
s, 〈x, α′〉 ||0�1−�′

1

)⌋

�′
2

Note that by definition, we have H(〈s, z〉 , 〈x, α′〉) = β′. The simulator S∗

outputs the CRS 〈s, z〉 and proof 〈α′, γ′〉. Clearly, the distribution on the output
of S∗ is identical to the distribution on the real pairs of CRS and proof.
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It is left to prove computational soundness. Suppose for contradiction that
there existed an efficient cheating prover P̂ ′ such that for a constant c > 0 and
infinitely many x /∈ L it holds that:

Pr
s,z

[
σ ← P̂ ′((s, z), x) : V̂ ((s, z), x, σ) = accept

]
≥ |x|−c. (2)

We then show a non-uniform seed-compression adversary Adv = (A, B) that
breaks the correlation-intractability of the underlying family F .

For each x /∈ L, denote by z(x) the auxiliary string z that maximizes the
success probability of P̂ ′. That is,

z(x) = argmax
z

{
Pr
s

[
σ ← P̂ ′((s, z), x) : V̂ ((s, z), x, σ) = accept

]}
.

An easy averaging argument implies that whenever Eq. (2) holds:

Pr
s

[
σ ← P̂ ′((s, z(x)), x) : V̂ ((s, z(x)), x, σ) = accept

]
≥ |x|−c.

On the other hand, for any x /∈ L the relation

R̂x =

⎧
⎨

⎩
(x1, x2, y1, y2)

∣
∣
∣
∣∣
∣

x1 =
(
〈x, α〉 ||0�1−�′

1

)
and

V ∗
(
x, α,

(
z(x) ⊕ �y1��′

2

)
, x2

)
= accept

⎫
⎬

⎭

is evasive by the soundness of the original Σ-protocol. (Note, that z(x) is a
constant in this relation, so XOR-ing it to �y1��′

2
= �f(x1)��′

2
has no effect on

soundness when f is a random function.) It follows that for our evasive relations
Rx R̂ =

⋃
x/∈L R̂x is also an evasive relation.

Since our choices of parameters imply that |x| + |α| + |γ| ≤ n/2, then we can
use P̂ ′ to construct a seed-compression attacker Adv = (A, B). The first part A
gets as advice string the values x, z(x) for some x /∈ L for which Eq. (2) holds, as
well as the seed s for F . It uses P̂ ′ to compute α, γ, and outputs (x, α, γ) as the
“compressed seed”, and indeed the length of this “compressed seed” is at most
n/2. The second part B outputs 〈x, α〉 and γ, and indeed we have by definition
(〈x, α〉 , γ, F (s, 〈x, α〉), F (s, γ)) ∈ R̂.

5.3 Non-uniformity in the Proof of the Fiat-Shamir Transform

We comment that the proof of Theorem 3 seems inherently non-uniform. We
use non-uniformity in two places: one is to select x /∈ L for which P̂ ′ has good
success probability, and the other to select the auxiliary z(x). The first use can
be eliminated by switching to a uniform soundness condition on the underlying
Σ-protocol (i.e., when a uniform cheating prover needs to output some x /∈ L
together with a convincing proof for it). The latter use of non-uniformity seems
harder to eliminate, however. Maybe this can be done by switching to 6-ary
relations and setting z = F (s, 0), so we get

R̂′=

{

(x1, x2, x3, y1, y2, y3)

∣
∣
∣∣
∣

x1 = 0, x2 = 〈x, α〉 , x3 = γ,

x /∈ L and V ∗
(
x, α, �y1 ⊕ y2��′

2
, γ

)
=accept

}
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It is not hard to see that this R̂′ is evasive, but it is not clear how to translate
the success of P̂ ′ in breaking the soundness (when z is chosen at random) to
success against this R̂′ (when z is set as z = F (s, 0) for a random s).

6 Future Work and Open Problems

The most intriguing open question that results from this work is whether seed-
incompressible correlation-intractable functions can be constructed under more
traditional computational assumptions. Given that their existence implies the
existence of NIZK protocols without the aid of any apparent trapdoor feature,
such a construction will likely need substantial insight. Alternately, and just as
interesting, would be an argument showing that knowledge of small numbers of
key-bits really does allow one to say something meaningful about composition
based block-cipher and hash-function designs.

In a slightly orthogonal direction, the impossibility results presented in this
paper are derived through proving exactly the one property of the function gen-
erators that we know the adversary has direct knowledge of: the function is com-
puted by a small circuit. Any definition along the lines of seed-incompressibility
that also managed to circumvent this problem would be interesting.

Finally, it would be nice if one could show that the OAEP scheme proposed
by Bellare and Rogaway[3] (or a close relative of it) could be proven secure under
such an assumption, as it is this random-oracle protocol that is probably used
in practice on the most frequent basis (due to its inclusion in the TLS protocol
[12] for secure web transactions), and thus further evidence of its security would
be heartening.
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Abstract. We give a direct construction of digital signatures based on
the complexity of approximating the shortest vector in ideal (e.g., cyclic)
lattices. The construction is provably secure based on the worst-case
hardness of approximating the shortest vector in such lattices within a
polynomial factor, and it is also asymptotically efficient: the time com-
plexity of the signing and verification algorithms, as well as key and
signature size is almost linear (up to poly-logarithmic factors) in the
dimension n of the underlying lattice. Since no sub-exponential (in n)
time algorithm is known to solve lattice problems in the worst case, even
when restricted to cyclic lattices, our construction gives a digital signa-
ture scheme with an essentially optimal performance/security trade-off.

1 Introduction

Digital signature schemes, initially proposed in Diffie and Hellman’s seminal pa-
per [9] and later formalized by Goldwasser, Micali and Rivest, [15], are among
the most important and widely used cryptographic primitives. Still, our under-
standing of these intriguing objects is somehow limited.

The definition of digital signatures clearly fits within the public key cryp-
tography framework. However, efficiency considerations aside, the existence of
secure digital signatures schemes can be shown to be equivalent to the existence
of conventional (symmetric) cryptographic primitives like pseudorandom gen-
erators, one-way hash functions, private key encryption, or even just one-way
functions [23,27]. There is a big gap, both theoretical and practical, between the
efficiency of known constructions implementing public-key and private-key cryp-
tography. In the symmetric setting, functions are often expected to run in time
which is linear or almost linear in the security parameter k. However, essentially
all known public key encryption schemes with a supporting proof of security are
based on algebraic functions that take at least Ω(k2) time to compute, where 2k

is the conjectured hardness of the underlying problem. For example, all factoring
based schemes must use keys of size approximately O(k3) to achieve k bits of
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security to counter the best known sub-exponential time factoring algorithms,
and modular exponentiation raises the time complexity to over ω(k4) even when
restricted to small k-bit exponents and implemented with an asymptotically fast
integer multiplication algorithm.

When efficiency is taken into account, digital signatures seem much closer to
public key encryption schemes than to symmetric encryption primitives. Most
signature schemes known to date employ the same set of number theoretic tech-
niques commonly used in the construction of public key encryption schemes,
and result in similar complexity. Digital signatures based on arbitrary one-way
hash functions have also been considered, due to the much higher speed of con-
jectured one-way functions (e.g., instantiated with common block ciphers as
obtained from ad-hoc constructions) compared to the cost of modular squar-
ing or exponentiation operations typical of number theoretic schemes. Still, the
performance advantage of one-way function is often lost in the process of trans-
forming them into digital signature schemes: constructions of signature schemes
from non-algebraic one-way functions almost invariably rely on Lamport and
Diffie’s [9] one-time signature scheme (and variants thereof) which requires a
number of one-way function applications essentially proportional to the secu-
rity parameter. So, even if the one-way function can be computed in linear time
O(k), the complexity of the resulting signature scheme is again at least quadratic
Ω(k2).

Therefore, a question of great theoretical and practical interest, is whether dig-
ital signature schemes can be realized at essentially the same cost as symmetric
key cryptographic primitives. While a generic construction that transforms any
one-way function into a signature scheme with similar efficiency seems unlikely,
one may wonder if there are specific complexity assumptions that allow to build
more efficient digital signature schemes than currently known. Ideally, are there
digital signature schemes with O(k) complexity, which can be proved as hard
to break as solving a computational problem which is believed to require 2Ω(k)

time?

1.1 Results and Techniques

The main result in this paper is a construction of a provably secure digital
signature scheme with key size and computation time almost linear (up to poly-
logarithmic factors) in the security parameter. In other words, we give a new
digital signature scheme with complexity O(k logc k) which can be proved to be
as hard to break as a problem which is conjectured to require 2Ω(k) time to solve.

The problem underlying our signature scheme is that of approximating the
shortest vector in a lattice with “cyclic” or “ideal” structure, as already used in
[22] for the construction of efficient lattice based one-way functions, and subse-
quently extended to collision resistant functions in [25,18]. As in most previous
work on lattices, our scheme can be proven secure based on the worst case com-
plexity of the underlying lattice problems.

Since one-way functions are known to imply the existence of many other cryp-
tographic primitives (e.g., pseudorandom generators, digital signatures, private
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key encryption, etc.), the efficient lattice based one-way functions of [22] imme-
diately yield corresponding cryptographic primitives based on the complexity of
cyclic lattices. However, the known generic constructions of cryptographic prim-
itives from one-way functions are usually very inefficient. So, it was left as an
open problem in [22] to find direct constructions of other cryptographic prim-
itives from lattice problems with performance and security guarantees similar
to those of [22]. For the case of collision resistant hash functions, the problem
was resolved in [25,18], which showed that various variants of the one-way func-
tion proposed in [22] are indeed collision resistant. In this paper we build on
the results of [22,25,18] to build an asymptotically efficient lattice-based digital
signature scheme.

Theorem 1. There exists a signature scheme such that the signature of an n-
bit message is of length Õ(k) and both the signing and verification algorithms
take time Õ(n)+Õ(k). The scheme is strongly unforgeable in the chosen message
attack model, assuming the hardness of approximating the shortest vector problem
in all ideal lattices of dimension k to within a factor Õ(k2).

Our lattice based signature scheme is based on a standard transformation from
one-time signatures (i.e., signatures that allow to securely sign a single message)
to general signature schemes, together with a novel construction of a lattice
based one-time signature. We remark that the same transformation from one-
time signatures to unrestricted signature schemes was also employed by virtually
all previous constructions of digital signatures from arbitrary one-way functions
(e.g., [21,23,27]). This transformation, which combines one-time signatures to-
gether with a tree structure, is relatively efficient and allows one to sign messages
with only a logarithmic number of applications of a hash function and a one-
time signature scheme [28]. The bottleneck in one-way function based signature
schemes is the construction of one-time signatures from one-way functions. The
reason for the slowdown is that the one-way function is typically used to sign
a k-bit message one bit at a time, so that the entire signature requires k eval-
uations of the one-way function. In this paper we give a direct construction of
one-time signatures, where each signature just requires two applications of the
lattice based one-way function of [22,25,18]. The same lattice based hash func-
tion can then be used to efficiently transform the one-time signature into an
unrestricted signature scheme with only a logarithmic loss in performance.

The high level structure of our lattice based one-time signature scheme is
easily explained. The construction is based on the generalized compact knapsack
functions of [22,25,18]. These are keyed functions (indexed by a key (a1, . . . , ak))
of the form

h(x1, . . . , xm) =
∑

i

ai · xi,

where a1, . . . , am, x1, . . . , xm are elements of some large ring R, and the result
of the function is also in R. The domain of the function is restricted to xi ∈ D,
where D is a subset of R of small elements. For example, if R is the ring of
integers, and D = {0, 1}, then h is just the subset-sum function. Notice that if
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D is not restricted, then h is certainly not a one-way function: the function can be
easily inverted over the integers using the extended Euclid algorithm for greatest
common divisor computation. For efficiency reasons, here (as in [22,25,18]) we
use a different ring R and a much larger subset D ⊂ R, so that a single element
of D can be used to encode a k-bit message (see section 2.3). We now give very
high level overviews of our one-time signature and the proof of its security.

One-time signature. When the user wants to generate a key for the one-time sig-
nature scheme, he simply picks two “random” inputs x, y ∈ Dm, and computes
their images under the hash function (h(x), h(y)). (The key (a1, . . . , am) to the
hash function h can also be individually chosen by the user, or shared among all
the users of the signature scheme.) The secret key is the pair (x, y) while the
public key is given by their hashes (h(x), h(y)). Then, the signature of a message
z is simply obtained as a “linear combination” x ·z +y of the two secret vectors,
with coefficient being the message z to be signed. (The multiplication x · z is
defined as the ring multiplication of each coordinate of x by z.) Signatures can
be easily verified using the homomorphic properties of the lattice based hash
function h(x · z + y) = h(x) · z + h(y).

Security proof. If the domain Dm were closed under the ring addition and mul-
tiplication operations, then one could show that the public key (h(x), h(y)) and
signature x · z +y do not reveal enough information to obtain the signer’s secret
key (x, y), and a forgery relative to a different secret key will yield a collision
to the hash function. But because the domain is restricted, there is a possibility
that the signer’s secret key was the only one that could have produced h(x), h(y)
and signature x · z +y, and so an adversary who sees these values might be able
to deduce the secret key. This turns out to be the main difficulty in carrying
out our proof. We overcome this technical problem by choosing the secret key
elements x, y according to a carefully crafted (non-uniform) probability distribu-
tion, which can be intuitively thought as a “fuzzy” subset of the full domain Rm.
It turns out that if the appropriate distribution is used, then we can have the
domain Dm be closed under the ring operations in an approximate probabilistic
sense, and still have h be a function that’s hard to invert.

1.2 Related Work

Lamport showed the first construction of a one-time signature based on the exis-
tence of one-way functions. In that scheme, the public key consists of the values
f(x0), f(x1), where f is a one-way function and x0, x1 are randomly chosen el-
ements in its domain. The elements x0 and x1 are kept secret, and in order to
sign a bit i, the signer reveals xi. This construction requires one application of
the one-way function for every bit in the message. Since then, more efficient con-
structions have been proposed in (e.g. [20,7,6,11,4,5,16]), but there was always
an inherent limitation in the number of bits that could be signed efficiently with
one application of the one-way function [12].

Provably secure cryptography based on lattice problems was pioneered by
Ajtai in [2], and attracted considerable attention within the complexity theory
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community because of a remarkable worst-case/average-case connection: it is
possible to show that breaking the cryptographic function on the average is at
least as hard as solving the lattice problem in the worst-case. Unfortunately,
functions related to k-dimensional lattices typically involve an k-dimensional
matrix/vector multiplication, and therefore require k2 time to compute (as well
as k2 storage for keys). A fundamental step towards making lattice based cryp-
tography more attractive in practice, was taken by Micciancio [22] who proposed
a variant of Ajtai’s function which is much more efficient to compute (thanks
to the use of certain lattices with a special cyclic structure) and still admits a
worst-case/average-case proof of security. The performance improvement in [22]
(as well as in subsequent work [25,18],) comes at a cost: the resulting function
is as hard to break as solving the shortest vector problem in the worst case over
lattices with a cyclic structure. Still, since the best known algorithms do not
perform any better on these lattices than on general ones, it seems reasonable
to conjecture that the shortest vector problem is still exponentially hard. It was
later shown in [25,18] that, while the function constructed in [22] was only one-
way, it is possible to construct efficient collision-resistant hash functions based
on the hardness of problems in lattices with a similar algebraic structure.

1.3 Open Problems

Our work raises many interesting open problems. One such problem is construct-
ing a one-time signature with similar efficiency, but based on a weaker hardness
assumption. For instance, it would be great to provide a one-time signature with
security based on the hardness of approximating the shortest vector problem
(in ideal lattices) to within a factor of Õ(n). Also, with the recent results of
Peikert and Rosen [26], showing a possible way to build cryptographic functions
whose security is based on approximating the shortest vector in special lattices
to within a factor O(

√
log n), we believe that it is worthwhile exploring whether

one-time signatures can be built based on similar assumptions.
Another direction to try to build efficient signature schemes based directly on

the hardness of lattice problems without going through one-time signatures and
an authentication tree. The main advantage of such a scheme would be that the
signer would not have to “keep a state” and remember which verification keys
have already been used. Such constructions have been achieved based on prob-
lems from number theory [13,8] but they are not as efficient, in an asymptotic
sense, as the signature scheme presented here.

While the scheme presented here has almost optimal asymptotic efficiency,
it is not yet ready to be used for practical applications (see Section 4). The
main issue is that lattice reduction algorithms perform much better in practice
than in theory, and thus our signature scheme may be insecure for parameters
appropriate for practical schemes. Nevertheless, the recent advances in lattice-
based cryptography are a very encouraging sign that with some novel ideas, our
construction can be modified into a serviceable signature scheme.
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2 Preliminaries

2.1 Signatures

We recall the definitions of signature schemes and what it means for a signature
scheme to be secure.

Definition 2. A signature scheme consists of a triplet of polynomial-time (pos-
sibly probabilistic) algorithms (G, S, V ) such that for every pair of outputs (s, v)
of G(1n) and any n-bit message m,

Pr[V (v, m, S(s, m)) = 1] = 1

where the probability is taken over the randomness of algorithms S and V .

In the above definition, G is called the key-generation algorithm, S is the signing
algorithm, V is the verification algorithm, and s and v are, respectively, the
signing and verification keys.

A signature scheme is said to be secure if there is only a negligible probability
that any adversary, after seeing signatures of messages of his choosing, can sign
a message whose signature he has not already seen [15]. One-time security means
that an adversary, after seeing a signature of a single message of his choosing,
cannot produce a valid signature of a different message.

Definition 3. A signature scheme (G, S, V ) is said to be one-time secure if for
every polynomial-time (possibly randomized) adversary A, the probability that
after seeing (m, S(s, m)) for any message m of its choosing, A can produce (m′ �=
m, σ′) such that V (v, m′, σ′) = 1, is negligibly small. The probability is taken over
the randomness of G, S, V , and A.

In the standard security definition of a signature scheme, the adversary should
not be able to produce a signature of a message he hasn’t already seen. A stronger
notion of security, called strong unforgeability requires that in addition to the
above, an adversary shouldn’t even be able to come up with a different signature
for a message whose signature he has already seen. The scheme presented in this
paper satisfies this stronger notion of unforgeability.

Another feature of signatures that is sometimes desirable is the ability of the
legitimate signer to prove that a message was not actually signed by her. Of
course, it should be impossible for the signer to repudiate a message that she
actually signed. Signatures schemes that have this feature are called Fail-Stop
[24]. Our scheme has this property as well.

2.2 Notation

Let R = Zp[x]/〈f〉 be a ring where f is an irreducible monic polynomial of
degree n over Z[x] and p is some small prime. For the rest of the paper, the
variables n, p, and f will always be associated with the ring R. We will denote
elements in R by bold letters and elements of Rm, for some positive integer m,
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by a bold letter with a hat. That is, â = (a1, . . . ,am) ∈ Rm when all the ai’s
are in R. For an element â = (a1, . . . ,am) ∈ Rm and an element z ∈ R, we
define âz = (a1z, . . . ,amz). For two elements â, b̂ ∈ Rm, addition is defined as
â+b̂ = (a1+b1, . . . ,am+bm) and the dot product as â�b̂ = a1b1+. . .+ambm.

Notice that with the operations that we defined, the set Rm is an R-module.
That is, Rm is an abelian additive group such that for all â, b̂ ∈ Rm and r, s ∈ R,
we have

1. (â + b̂)r = âr + b̂r
2. (âr)s = â(rs)
3. â(r + s) = âr + âs

We will now give a definition for the “length” of elements in R. To do so, we
will first need to specify their representations in the ring. For our application, we
will represent elements in R by a polynomial of degree n − 1 having coefficients
in the range [− p−1

2 , p−1
2 ], and so when we talk about reduction modulo p, we

mean finding an equivalent element modulo p in the aforementioned range. For
an element a = a0 + a1x + . . . + an−1x

n−1 ∈ R, we define ‖a‖∞ = maxi(|ai|).
Similarly, for elements â = (a1, . . . ,am) ∈ Rm, we define ‖â‖∞ = maxi (‖ai‖∞).
Notice that ‖·‖∞ is not exactly a norm because ‖αa‖∞ �= α‖a‖∞ for all integers
α (because of the reduction modulo p), but it still holds true that ‖a + b‖∞ ≤
‖a‖∞ + ‖b‖∞ and ‖αa‖∞ ≤ α‖a‖∞.

While putting an upper-bound on ‖a + b‖∞ is straight-forward, it turns out
that upper-bounding ‖ab‖∞ is somewhat more involved. Suppose that we are
trying to determine the upper bound on ‖ab‖∞. For a moment, let’s pretend
that a and b are polynomials in Z[x]. Then, the product ab will have degree at
most 2n − 2 and the absolute value of the maximum coefficient of ab will be at
most n‖a‖∞‖b‖∞. Reducing ab modulo p will not increase the absolute value
of the maximum coefficient, but reducing modulo the polynomial f can (and
usually does). So if we want to upper bound ‖ab‖∞, we need to account for the
increase in the coefficient size when we reduce a polynomial in Z[x] of degree
2n − 2 modulo f .

For any ring R, we define a constant φ(R) as,

φ(R) = min {j : ∀a, b ∈ R, ‖ab‖∞ ≤ jn‖a‖∞‖b‖∞}.

The constant φ(R) is intimately tied to the concept of “expansion factor”
introduced in [18]. It is also somewhat related to the root discriminant of a
number field as described in [26]. We will not go into many details here, other
than to mention that there are many polynomials f which result in φ(R) being
small and it is not too hard to upper bound the value of φ(R). For example for
f = xn + 1, φ(R) = 1 and for f = xn + xn−1 + . . . + 1, φ(R) ≤ 2. In the rest of
the paper, we will omit the parameter R, and just write φ.

2.3 A Hash Function Family

We now define a function family HR,m that maps Rm to R. The functions
h ∈ HR,m are indexed by elements â ∈ Rm. The input to the function is an
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element ẑ ∈ Rm, and the output is â�ẑ. So the functions in HR,m map elements
from Rm to R. To summarize,

HR,m = {hâ : â ∈ Rm}, where hâ(ẑ) = â � ẑ

Throughout the paper, we will write h rather than hâ with the understanding
that there is an â associated with the function h. Notice that we can efficiently
generate random functions from the function family HR,m by simply generating
a random â ∈ Rm.

It was shown in [18] that finding two “small” elements ŝ, ŝ′ ∈ Rm such that
h(ŝ) = h(ŝ′) for randomly chosen h ∈ HR,m is at least as hard as solving the
approximate shortest vector problem for all lattices of a certain type (a problem
which is believed to be hard). The security of our signature scheme will be based
on the hardness of this collision problem. We now define the problem formally.

Definition 4. The collision problem, Cold,HR,m (h) takes as input a random
function h ∈ HR,m, and asks to find two distinct elements ŝ, ŝ′ ∈ Rm with
‖ŝ‖∞, ‖ŝ′‖∞ ≤ d such that h(ŝ) = h(ŝ′).

We now make some useful observations about the function family HR,m. The
first observation is that the functions in HR,m are module homomorphisms.

Claim. HR,m is a set of module homomorphisms. That is, for every k̂, l̂ ∈ Rm,
z ∈ R, and h ∈ HR,m, the following two conditions are satisfied:

1. h(k̂ + l̂) = h(k̂) + h(̂l)
2. h(k̂z) = h(k̂)z

Proof. By the definition of the hash function h, we have

1. h(k̂ + l̂) = â � (k̂ + l̂) = â � k̂ + â � l̂ = h(k̂) + h(̂l)
2. h(k̂z) = â � (k1z, . . . ,kmz) = a1k1z + . . . + amkmz

= (a1k1 + . . . + amkm)z = (â � k̂)z = h(k̂)z
�

The next observation is that the kernel of every h ∈ HR,m contains an exponen-
tial number of “small” elements.

Lemma 5. For every h ∈ HR,m, there exist at least 5mn elements ŷ ∈ Rm such
that ‖ŷ‖∞ ≤ 5p1/m and h(ŷ) = 0.

Proof. Let S be the set containing all elements in Rm with coefficients between 0
and 5p1/m. Since |S| = (5p1/m +1)mn > 5mnpn and |R| = pn, by the pigeonhole
principle, there exists a t ∈ R and a subset S′ ⊆ S such that |S′| ≥ 5mn and for
all ŝ′ ∈ S′, h(ŝ′) = t. If t = 0, then we’re done, otherwise let S′ = {ŝ′1, ŝ

′
2, . . . , ŝ

′
k}

and consider the set Y = {ŝ′1 − ŝ′1, ŝ
′
1 − ŝ′2, . . . , ŝ

′
1 − ŝ′k} of size |S′| . Note that for

each ŷ ∈ Y , ‖ŷ‖∞ ≤ 5p1/m and h(ŷ) = 0 because of the homomorphic property
of h. �
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2.4 Lattices

In this subsection, we explain the relationship between the collision problem
from Definition 4 and finding shortest vectors in certain types of lattices.

An n-dimensional integer lattice L is a subgroup of Z
n. A lattice L can be

represented by a set of linearly independent generating vectors, called a basis.
For any lattice vector y ∈ L, the infinity norm of y, ‖y‖∞, is the absolute value
of the largest coefficient of y. The minimum distance (in the infinity norm1) of
a lattice L, denoted by λ1(L), is defined as:

λ1(L) = min
y∈L\{0}

{‖y‖∞}

Computing the λ1(L) of a lattice was first shown to be NP-hard by van Emde
Boas [29], and it was shown hard to approximate to within a factor of n1/ log log n

by Dinur [10]. It is conjectured that approximating λ1(L) to within any poly-
nomial factor is a hard problem (though not NP-hard [14,1]) since the fastest
known algorithm takes time 2O(n) to accomplish this [17,3].

Micciancio [22] defined a cyclic lattice to be a lattice L such that if the vector
(a1, . . . , an−1, an) ∈ L, then the vector (an, a1, . . . , an−1) is also in the lattice L.
Such lattices correspond to ideals in Z[x]/〈xn − 1〉. In [22], Micciancio gave a
construction of an efficient family of one-way functions with security based on
the worst case hardness of approximating λ1(L) in cyclic lattices. Subsequently,
it was shown in [25,18] how to modify Micciancio’s function in order to make
it collision resistant. In addition, it was shown in [18] how to create efficient
collision resistant hash functions with security based on approximating λ1(L)
in lattices that correspond to ideals in rings Z[x]/〈f〉 for general f . A lattice
corresponding to an ideal means that the vector (a0, . . . , an−1) is in the lattice,
if and only if the polynomial a0 + a1x + . . . + an−1x

n−1 is in the ideal. Despite
the added structure of these algebraic lattices, the best algorithms to solve the
shortest vector problem are the same ones as for arbitrary lattices.

The following theorem is a weaker special case of the main result of [18] that
is most pertinent to this work:

Theorem 6. Let f be an irreducible polynomial in Z[x] of degree n and define
integers p = (φn)3 and m = �log n�. If there exists a polynomial-time algorithm
that solves Cold,HR,m (h) for R = Zp[x]/〈f〉 and d = 10φp1/mn log2 n, then there
exists a polynomial-time algorithm that approximates λ1(L) to within a factor of
Õ(φ5n2) for every lattice L corresponding to an ideal in the ring Z[x]/〈f〉.

We point out that in [18, Theorem 2] (which is the main result of [18]), it is shown
that solving the Cold,HR,m (h) problem for certain parameters p, d, and m implies
approximating the shortest vector to within a factor of Õ(n). Unfortunately, in
the current paper we cannot show that breaking the one-time signature implies
1 All the results in this paper can be adapted to any �p norm. For simplicity, we

concentrate on the �∞ case, since it is the most convenient one in cryptographic
applications.
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solving the Cold,HR,m (h) problem for such optimal parameters (mainly, we cannot
get the parameter d to be too small). And so Theorem 6 is a weaker version of
[18, Theorem 2] where the parameters p, m, and d are set in a way such that
breaking the one-time signature implies solving Cold,HR,m (h).

We also notice in the above theorem that the approximation factor heavily de-
pends on φ. Thus it’s prudent to choose a polynomial f that results in a small φ.
Choosing irreducible polynomials of the form xn +1 or xn +xn−1 + . . .+1 makes
φ a small constant (1 and 2 respectively). We also point out that the integer
p needs not be a prime for the proof of security to hold, but there are some
practical advantages to setting it to a prime when implementing functions that
involve multiplications of elements in Zp[x]/〈f〉 [19].

3 The One-Time Signature Scheme

In this section we present our one-time signature scheme. The security of the
scheme will be ultimately based on the worst-case hardness of approximating
the shortest vector in all lattices corresponding to ideals in the ring Z[x]/〈f〉 for
any irreducible polynomial f . The approximation factor is determined by the
polynomial f as in Theorem 6. The key-generation algorithm for the signature
scheme allows us to specify the polynomial f that we want to use for the hard-
ness assumption.

Key-Generation Algorithm:
Input: 1n, irreducible polynomial f ∈ Z[x] of degree n.
1: Set p ← (φn)3, m ← �log n�, R ← Zp[x]/〈f〉
2: For all positive i, let the sets DKi and DLi be defined as:

DKi = {ŷ ∈ Rm such that ‖ŷ‖∞ ≤ 5ip1/m}

DLi = {ŷ ∈ Rm such that ‖ŷ‖∞ ≤ 5inφp1/m}
3: Choose uniformly random h ∈ HR,m

4: Pick a uniformly random string r ∈ {0, 1}�log2 n�

5: if r = 0�log
2 n� then

6: set j = �log2 n�
7: else
8: set j to the position of the first 1 in the string r
9: end if

10: Pick k̂, l̂ independently and uniformly at random from DKj and DLj re-
spectively

11: Signing Key: (k̂, l̂). Verification Key: (h, h(k̂), h(̂l))

Signing Algorithm:
Input: Message z ∈ R such that ‖z‖∞ ≤ 1; signing key (k̂, l̂)
Output: ŝ ← k̂z + l̂
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Verification Algorithm:
Input: Message z; signature ŝ; verification key (h, h(k̂), h(̂l))
Output: “ACCEPT”, if ‖ŝ‖∞ ≤ 10φp1/mn log2 n and h(ŝ) = h(k̂)z + h(̂l)

“REJECT”, otherwise.

At this point we would like to draw the reader’s attention to the particulars of
how the key-generation algorithm generates the secret signing key (k̂, l̂). Because
of the way that the integer j is generated, the secret key k̂ (resp. l̂) gets chosen
uniformly at random from the set DKj (resp. DLj) with probability 2−j for
1 ≤ j < �log2 n� and with probability 2−j+1 for j = �log2 n�. Since DK1 ⊂
DK2 ⊂ . . . ⊂ DK�log2 n� and DL1 ⊂ DL2 ⊂ . . . ⊂ DL�log2 n�, the keys k̂ and l̂
end up being chosen from the sets DK�log2 n� and DL�log2 n�, but not uniformly
at random. Notice that keys with smaller coefficients are more likely to be chosen,
and it’s also extremely unlikely that we will ever end up with keys that are
not in DK�log2 n�−1 and DL�log2 n�−1. So with probability negligibly close to 1,
there will always be valid secret keys that are “larger” than the ones generated
by the key-generation algorithm. This will be crucial to the proof of security.

We will first show that the verification algorithm will always accept the sig-
nature generated by the signing algorithm of any message z ∈ R. Note that the
signing keys k̂, l̂ are contained in sets DKlog2 n and DLlog2 n respectively. Thus
‖k̂‖∞ ≤ 5p1/m log2 n and ‖̂l‖∞ ≤ 5φp1/mn log2 n. Therefore,

‖ŝ‖∞ = ‖k̂z + l̂‖∞ ≤ ‖k̂z‖∞+ ‖̂l‖∞ ≤ φn‖k̂‖∞‖z‖∞+ ‖̂l‖∞ ≤ 10φp1/mn log2 n

Also, by the homomorphic property of functions h ∈ HR,m,

h(ŝ) = h(k̂z + l̂) = h(k̂)z + h(̂l).

We next show that the above signature scheme is secure against forgery.
More precisely, we show that forging a signature implies being able to solve
the Cold,HR,m (h) problem for the parameters in Theorem 6, which in turn im-
plies being able to approximate λ1(L) for any lattice L that corresponds to an
ideal in the ring Z[x]/〈f〉.

Theorem 7. If there exists a polynomial-time adversary that, after seeing a sig-
nature ŝ = k̂z+l̂ of a message z, can output a valid signature of another message
z′ with probability 1/poly(n), then there exists a polynomial time algorithm that
can solve the Cold,HR,m (h) problem for d = 10φp1/mn log2 n.

Proof. Let A be an adversary who can break the one-time signature scheme.
This means that after seeing a signature for any message of his choice, A can
then successfully sign a different message of his choice.

Before proceeding any further, we point out that an adversary who succeeds
in forging a signature with non-negligible probability must succeed with non-
negligible probability in the case that j < �log2 n� in the key-generation step.
This is because j equals �log2 n� with probability only 2−�log

2 n�+1, and so an
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adversary must also be able to forge signatures for other values of j if he is to have
a non-negligible success probability. In the remainder of the proof, we will be
assuming that the j generated in the key-generation step was less than �log2 n�.
In other words, we’ll be assuming that k̂ ∈ DK�log2 n−1� and l̂ ∈ DL�log2 n−1�.

The algorithm below uses the message-forging adversary A to solve the
Cold,HR,m (h) problem for the parameters specified in Theorem 6.

Cold,HR,m (h)
1: Run the Key-Generation algorithm (but use the given h instead of generating

a random one).
2: Receive message z from A.
3: Send k̂z + l̂ to A.
4: Receive message z′ and its signature ŝ′ from A
5: Output ŝ′ and k̂z′ + l̂

We now need to show that the outputs of the above algorithm are a collision
for the function h with non-negligible probability. If A succeeds in forging a sig-
nature ŝ′ for z′ (which happens with non-negligible probability), then ‖ŝ′‖∞ ≤
10φp1/mn log2 n and h(ŝ′) = h(k̂)z′ + h(̂l) = h(k̂z′ + l̂). So if ŝ′ �= k̂z′ + l̂,
then our algorithm outputted two distinct elements that form a collision for the
function h.

On the other hand, if ŝ′ = k̂z′+ l̂, then we do not get a collision. To complete
the proof of Theorem 7, we will show that it’s extremely unlikely that an adver-
sary (even one with unlimited computational power) can produce an ŝ′ and a z′

such that ŝ′ = k̂z′ + l̂. This will be done in two steps. In the first step, we show
that being able to produce such an ŝ′ and z′ implies uniquely determining the
signing key (k̂, l̂). Then in the second step we show that given the public key
(h, h(k̂), h(̂l)) and a signature k̂z + l̂ of message z, it is information theoretically
impossible to determine the signing key (k̂, l̂). This means that if A is able to
forge a signature ŝ′ for some message z′, then almost certainly ŝ′ �= k̂z′ + l̂.

We now show that obtaining an ŝ′ and a z′ such that ŝ′ = k̂z′ + l̂ uniquely
determines k̂, l̂. Since we know that ŝ = k̂z + l̂ and ŝ′ = k̂z′ + l̂, it follows that
ŝ − ŝ′ = k̂(z − z′). Since ‖k̂‖∞ ≤ 5p1/m log2 n and ‖z − z′‖∞ ≤ 2, multiplying
k̂ by z − z′ in the ring Zp[x]/〈f〉 is the same as multiplying them in the ring
Z[x]/〈f〉 because the coefficients never get big enough to get reduced modulo p.
This is because

‖k̂(z − z′)‖∞ ≤ 10φp1/mn log2 n = 80φ1+ 3
log n n log2 n = φ1+o(1) · o(n2),

but in order to get reduced modulo p, the absolute value of the coefficients
would have to be at least p/2 = Θ(φ3n3), which is a much larger quantity. Now,
since the ring Z[x]/〈f〉 is an integral domain and z − z′ �= 0, there cannot exist
another key k̂

′
�= k̂ such that k̂

′
(z − z′) = k̂(z − z′). And so the key k̂ is

uniquely determined (and is equal to ŝ−ŝ′

z−z′ ), and similarly the key l̂ = ŝ − k̂z is
also unique.
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Now we move on to showing that by knowing only h, h(k̂), h(̂l), z, and k̂z + l̂,
it is information theoretically impossible to determine the signing key (k̂, l̂)
(and thus, information theoretically impossible to come up with ŝ′, z′ such that
ŝ′ = k̂z′ + l̂). The idea is to show that for every h, h(k̂), h(̂l), z, k̂z + l̂ there
is an exponential number of signing keys (k̂

′
, l̂
′
), other than (k̂, l̂), that satisfy

h(k̂) = h(k̂
′
), h(̂l) = h(̂l

′
), and k̂z + l̂ = k̂

′
z + l̂

′
. And in addition, the total

probability that one of these other keys was chosen in the key-generation step
(conditioned on h, h(k̂), h(̂l), z, k̂z + l̂) is almost one.

We point out that we are not proving witness-indistinguishability. It’s actually
quite possible that for every other key (k̂

′
, l̂
′
), the probability that it was the key

that was used to sign the message is exponentially smaller than the probability
that (k̂, l̂) was the key. What we will be showing is that the sum of probabilities
of all other possible keys combined being the secret key is exponentially larger
than the probability that (k̂, l̂) was the key.

Lemma 8. Let (h, K, L) be the verification key of the signature scheme and ŝ

is the signature of some message z. Then for any signing key (k̂, l̂) such that
k̂ ∈ DK�log2 n−1�, l̂ ∈ DL�log2 n−1�, h(k̂) = K, h(̂l) = L and ŝ = k̂z + l̂, the
probability that this was the actual signing key generated by the key-generation
algorithm is negligibly small.

Proof. We define the set Y to be the elements of the kernel of h that have “small
lengths”. In particular,

Y = {ŷ ∈ Rm such that ‖ŷ‖∞ ≤ 5p1/m and h(ŷ) = 0}.

For every ŷ ∈ Y , consider the elements k̂
′
= k̂ − ŷ and l̂

′
= l̂ + ŷz. Notice that

h(k̂
′
) = h(k̂ − ŷ) = h(k̂) − h(ŷ) = K − 0 = K,

h(̂l
′
) = h(̂l + ŷz) = h(̂l) + h(ŷ)z = L + 0 = L,

k̂
′
z + l̂

′
= (k̂ − ŷ)z + l̂ + ŷz = k̂z + l̂ = ŝ.

Thus, for every ŷ ∈ Y , if k̂
′
happens to be in DK�log2 n� and l̂

′
happens to be in

DL�log2 n�, then (k̂
′
, l̂
′
) is another valid signing key that could have been used

to sign the message z. Since ‖ŷ‖∞ ≤ 5p1/m and ‖ŷz‖∞ ≤ 5nφp1/m, we get the
following bounds on the norms of k̂

′
and l̂

′
:

‖k̂
′
‖∞ ≤ ‖k̂‖∞ + ‖ŷ‖∞ ≤ ‖k̂‖∞ + 5p1/m,

‖̂l
′
‖∞ ≤ ‖̂l‖∞ + ‖ŷz‖∞ ≤ ‖̂l‖∞ + 5nφp1/m.

For the remainder of the proof, let i be the smallest integer such that k̂

and l̂ are contained in DKi and DLi respectively. Then k̂
′
and l̂

′
are definitely
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contained in DKi+1 and DLi+1 for every ŷ ∈ Y . And since we assumed that k̂ ∈
DK�log2 n−1� and l̂ ∈ DL�log2 n−1�, it turns out that (k̂

′
, l̂
′
) is a perfectly valid

signing key. To prove the lemma, we will need to upper-bound the probability
that the generated secret keys were k̂, l̂ given that the public keys are K = h(k̂)
and L = h(̂l) and the signature of z is ŝ = k̂z + l̂. Let E be the event that the
verification key are K and L and the signature of z is ŝ.

Pr[signing key = (k̂, l̂)|E] =
Pr[key = (k̂, l̂)& E]

Pr[E]
=

Pr[key = (k̂, l̂)]
Pr[E]

We now calculate the probability that the keys were k̂, l̂. This is computed
by noting that k̂, l̂ were generated by selecting j ≥ i with probability 2−j and
then selecting k̂, l̂ from DKj and DLj . Since k̂ and l̂ are chosen uniformly and
independently at random from DKj and DLj , the probability that they are both
chosen is 1

|DKj |·|DLj| . So,

Pr[signing key = (k̂, l̂)] =
1

2i|DKi||DLi|
+

1
2i+1|DKi+1||DLi+1|

+ . . . (1)

To calculate the probability of event E, we need to figure out the probability
that the keys chosen will result in public keys K and L and when given the
message z, the signature will be ŝ. We have shown above that for every ŷ ∈ Y ,
choosing the keys k̂ − ŷ, l̂ + ŷz will produce public keys K, L and signature
ŝ. Since we know that k̂ − ŷ and l̂ + ŷz are contained in DKi+1 and DLi+1
respectively, we get

Pr[E] >
|Y |

2i+1|DKi+1||DLi+1|
+

|Y |
2i+2|DKi+2||DLi+2|

+ . . . (2)

If we let q = Pr[signing key = (k̂, l̂)], then combining (1) and (2) we get

Pr[E] > |Y |
(

q − 1
2i|DKi||DLi|

)

and so,

Pr[signing key = (k̂, l̂)]
Pr[E]

<
q

|Y |
(
q − 1

2i|DKi||DLi|
) =

q2i|DKi||DLi|
|Y |(q2i|DKi||DLi| − 1)

=
1

|Y |

(
1 +

1
q2i|DKi||DLi| − 1

)

Before proceeding, we will state the following inequality that will be used later,

|DKi+1||DLi+1|
|DKi||DLi|

=
(2 · 5(i + 1)p1/m)mn(2 · 5(i + 1)nφp1/m)mn

(2 · 5ip1/m)mn(2 · 5inφp1/m)mn

=
(

1 +
1
i

)2mn

≤ 22mn = 4mn
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Now we use the above inequality to lower bound the quantity q2i|DKi||DLi|.
Recall that q was defined to be the probability that the signing key is (k̂, l̂), and
so from Equation (1), we obtain

q2i|DKi||DLi| = 2i|DKi||DLi|
(

1
2i|DKi||DLi|

+
1

2i+1|DKi+1||DLi+1|
+ . . .

)

> 2i|DKi||DLi|
(

1
2i|DKi||DLi|

+
1

2i+1|DKi+1||DLi+1|

)

= 1 +
|DKi||DLi|

2|DKi+1||DLi+1|
≥ 1 +

1
2 · 4mn

Using the above inequality, we obtain

Pr[signing key = (k̂, l̂)]
Pr[E]

<
1

|Y |

(
1 +

1
q2i|DKi||DLi| − 1

)
≤ 1

|Y | (1 + 2 · 4mn)

and since by Lemma 5 we know that |Y | ≥ 5mn, we are done. �

This concludes the proof of the theorem. �

3.1 Strong Unforgeability

We now show that our one-time signature scheme also satisfies a stronger notion
of security, called strong unforgeability. In the previous section we showed that if
an adversary can produce a signature for an unseen message, then Cold,HR,m (h)
can be solved in polynomial time. Now we point out that Cold,HR,m (h) can be
solved in polynomial time even if the adversary is able to produce a different
signature of a message whose signature he has seen. Suppose that after seeing
the signature ŝ = k̂z + l̂ of a message z, the adversary A sends back another
valid signature ŝ′ �= ŝ of z. Then ŝ and ŝ′ form a collision for h. This is because

h(ŝ′) = h(k̂)z + h(̂l) = h(k̂z + l̂) = h(ŝ).

4 Practical Attacks

While our scheme is efficient and secure in an asymptotic sense, it is not yet
secure for parameters that one would want to use in practical applications. In
this section we demonstrate an attack against our one-time signature scheme by
showing how an adversary would go about forging a signature for the message
z = 0. We demonstrate the attack for this message because it is the simplest to
explain, but the attack can be easily adapted to any other message.

Knowing the public keys h(k̂) and h(̂l), we can forge a signature for the
message z = 0 by finding an element l̂

′
of length less than 10φp1/mn log2 n

such that h(̂l
′
) = h(̂l) and outputting it as the signature ŝ. Note that h(ŝ) =

h(k̂)0+h(̂l) = h(̂l) = h(̂l
′
) and also ‖ŝ‖∞ = ‖̂l

′
‖∞. So ŝ will be a valid signature
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of 0. The hard part is of course finding an l̂
′
such that h(̂l

′
) = h(̂l). But while this

problem is believed to be exponentially hard in n (the degree of the polynomial
h(̂l)),for small values of n, this problem is heuristically solvable. We will now
give an overview of how one would go about finding an l̂

′
with small coefficients

when given h(̂l
′
).

The idea is to use lattice reduction and so first we will need to view multipli-
cation in the ring Zp[x]/〈f〉 as matrix-vector multiplication. Every polynomial
in Zp[x]/〈f〉 can be associated with an n-dimensional vector in Zp in the obvious
way. Also, for any element a ∈ Zp[x]/〈f〉, define M(a) to be an n × n matrix
where the ith column (for 0 ≤ i ≤ n − 1) corresponds to the vector represen-
tation of the polynomial axi. Now we can see that the multiplication of two
polynomials a, b ∈ Zp[x]/〈f〉 can be written as the multiplication modulo p of
the matrix M(a) by the vector representation of b.

By the above observation, the evaluation of the function hâ(̂l
′
) can be inter-

preted as as a multiplication of an n × nm matrix A = (M(a1)| . . . |M(am)) by
the vector representation of l̂

′
modulo p. And so when we’re given the public

key h(̂l
′
), we can interpret it as a vector (call it y), and then try to find a vector

b with coefficients at most 10φp1/mn log2 n such that Ab = y(modp). We will
now explain how to use lattice reduction to find such a vector b.

We first define a matrix A′ = (A|y), and then try to find a vector b′ such
that A′b′ = 0(modp) where the last coordinate of b′ is −1. Notice that this
problem is equivalent to the previous one. We now observe that all the vectors
b′ ∈ Z

mn+1 that satisfy A′b′ = 0(modp) form an additive group, and thus an
integer lattice of dimension mn+1. And since we are trying to find a b′ with small
coordinates, this is akin to finding a short vector in the aforementioned lattice.
The basis of this lattice can be constructed in polynomial time (by viewing A′

as a linear transformation mapping Z
mn+1 to Z

n
p , and computing the kernel of

this transformation). And now all we need to do is find a vector in this mn + 1
dimensional lattice such that all its coordinates are less than 10φp1/mn log2 n,
and the last coordinate is −1.

Suppose that n is around 512, then p = n3 = 227, m = log n = 9, and
suppose that φ = 1. Thus we need to find a vector whose coordinates are less
that 80n log2 n ≈ 221 in a lattice of dimension 512 ∗ 9 + 1 = 4609. It’s important
to notice that this lattice has a vector all of whose coefficients have absolute
value at most 1, and all we need is a vector whose coefficients are less than 221.
Such a large vector (relative to the shortest vector) can easily be found by using
standard lattice reduction algorithms that find an approximate shortest vector
of the lattice. And heuristically, the algorithm can find such a short vector with
the added requirement that the last coordinate is −1.

At this point it is unclear exactly how large we would have to set n in order
to avoid the above attack, but it is certainly above any parameter that could
be useful in practical applications. Nevertheless, we believe that by using the
general structure of the scheme presented in this paper as a starting point, it
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may be possible to construct a practical and secure signature scheme, and this
could prove to be a fruitful direction for further research.
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1 Introduction

The fundamental cryptographic primitives and protocols can be roughly divided into
two categories: “private cryptography” which includes private key encryption, pseudo-
random generators, pseudo-random functions, bit commitment and digital signatures,
and “public cryptography” which includes public key encryption, key agreement, obliv-
ious transfer, and secure function evaluation. Since the existence of these primitives
implies that P �=NP, given the current state of complexity theory we need to base it on
unproven computational assumptions. These assumptions may turn out to be false; thus,
basing primitives on the minimal possible assumptions has been put forward as one of
the most important goals in cryptography.

The weakest assumption that is commonly used in cryptography is the existence
of one-way functions; it is weakest in the sense that if such functions do not exist,
none of the above primitives exist [15]. The existence of one-way functions implies the
existence of all of the private cryptography primitives (cf. [16,6] and references therein).
In contrast, it is not known how to base public cryptography primitives on one-way
functions. Obtaining such a construction is arguably one of the most intriguing open
questions in cryptography. In addition to its fundamental importance, this question is
also motivated by the big efficiency gap between the best current implementations of
public primitives and the (much more efficient) implementations of private primitives.
This gap is mostly due to the fact that current approaches for obtaining public primitives
rely on algebraic intractability assumptions. Since the underlying algebraic objects are
highly structured, there are sophisticated attacks that exploit this structure. Thus, the
underlying objects must be very large in order to defeat known attacks. An additional,
more recent, motivation for basing public cryptography on one-way functions is the
advent of efficient quantum algorithms that break most (but not all) of the concrete
algebraic intractability assumptions that currently underly public cryptography [22].

In light of the above, basing public-key cryptography on one-way functions can be
viewed as a “holy grail” both from a theoretical and from a practical point of view. In
fact, from the latter point of view even a heuristic construction based on a random oracle
might be considered satisfactory (as the random oracle can often be replaced in practice
by a sufficiently “structureless” function). However, a seminal result of Impagliazzo
and Rudich [16] suggests that standard methods cannot be used to realize such con-
structions. Specifically, this result rules out the possibility of a black-box construction
based on a one-way permutation (see also [20]). Furthermore, the result of [16] shows
that a provable construction of a public-key primitive based on a random permutation
oracle is unlikely to be found, as it would imply a proof that P �=NP.

Weak public-key cryptography. An implicit assumption in the last statements is that
the gap between the resources of the honest parties and those of the adversary must
be super-polynomial. It is natural to relax this assumption and consider a weaker vari-
ant of public-key cryptography, where the resource gap between the adversary and the
honest parties is bounded by some fixed polynomial. Such a weaker form of public-key
cryptography has a similar qualitative flavor as standard public-key cryptography, and
might be relevant to practice. Indeed, even with a quadratic resource gap, the ratio be-
tween the amount of time required by the adversary and that required by honest parties
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grows linearly with the computing power. Thus, security gets better with technology.
In this work, we study the possibility of basing such weak public-key cryptography on
one-way functions and related primitives.

Merkle’s puzzles. Our point of departure is the pioneering work of Merkle [19], who
proposed the following protocol for secret key agreement over public channels. Merkle’s
protocol involves two honest parties, Alice and Bob. It relies on the ability to efficiently
create “puzzles” which encapsulate a value chosen by the puzzle creator and require a
“moderate” amount of time T to be solved by another party. The protocol proceeds by
letting Alice pick a large number S of random pairs (ki, idi) and send to Bob S puz-
zles encapsulating these pairs. Bob picks a random puzzle r and, after spending time T
solving it, obtains a pair (kr, idr). It then sends idr to Alice. Now both parties have a
common key kr. The time spent by Alice in this protocol is roughly S (assuming that a
puzzle can be generated at a unit cost), and the time spent by Bob is roughly T . How-
ever, from the point of view of an external eavesdropper Eve, r remains secret. Thus, the
intuition is that Eve will need to solve S/2 puzzles on average, spending Ω(ST ) time,
before she can learn kr. Setting S = T , both Alice and Bob have a quadratic advantage
over Eve. Merkle suggested a heuristic implementation of the puzzles using a weak-
ened version of a private-key encryption scheme, where solving the puzzle amounts to
exhaustively searching over a (moderately sized) key space.

Trying to instantiate the puzzles in the above protocol using a standard (semanti-
cally secure) private-key encryption scheme is problematic for several reasons. First,
an implicit assumption that underlies the security of the protocol is that there is a sharp
bound T between the maximal time required by honest parties to completely solve a
puzzle and the minimal time required by an adversary to gain some information about
the solution. One might try to achieve this goal by requiring the encryption to have “ex-
ponential strength” in its key size. However, it is not clear how to realize such a strong
primitive based on (even strong versions of) low-level primitives such as a one-way
function. A second problem is that the security of the resulting protocol seems to rely
on the assumption that the adversary has no better strategy for recovering the key kr

than by trying to solve the puzzles one by one until finding the one that contains sr.
Again, this is an unsubstantiated assumption in a complexity-based cryptography.

1.1 Our Contribution

The question whether weak public key cryptography can be based on one-way func-
tions, or some variation of them, is largely unexplored. Our goal is to understand what
kinds of weak public key cryptography are possible and under what assumptions.

We start by suggesting a variant of Merkle’s protocol which admits a simple proof
of security in the random oracle model. In this protocol, each party (independently)
evaluates a random permutation on a random set of inputs whose size is roughly the
square root of the domain size, and the parties communicate the set of the outputs
of these evaluations. By the birthday paradox, the two sets of outputs intersect with
high probability, and the preimage of this intersection can be used to extract a common
key. (The above protocol can be viewed as based on a similar protocol of Cachin and
Maurer [2] in the bounded storage model – see below.)
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We then show that the random permutation oracle in this protocol can be instantiated
with an exponentially strong one-way permutation (OWP), or even an exponentially
strong 1-1 OWF, yielding a key agreement protocol with a polynomial gap between the
bounded parties and the adversary. Specifically, if the OWP is secure against adversaries
that run in time 2(1−δ)n, the protocol is secure as long as the running time of the ad-
versary is less than the running time of the honest parties to the power of 2 − 2δ. Thus,
we approach quadratic security as δ tends to 0. Towards obtaining a similar result under
any one-way function, we show a way for transforming an exponentially strong OWF
into a family of exponentially strong OWFs that are “almost” 1-1. (We stress that this
transformation inherently relies on the exponential strength of the underlying OWF; its
analysis gives a general method for redistributing the hardness of OWFs which may be
of independent interest.) Using this transformation we obtain a similar key agreement
protocol based on an exponentially strong OWF.

On the existence of strong one-way functions. Our protocols rely on one-way func-
tions whose strength goes beyond the birthday paradox bound of 2n/2. The existence
of such OWFs can be regarded as a very mild assumption from a cryptanalytic point of
view. For instance, an explicit attack against AES that runs in time 20.9n, where n is the
key size, would be considered as indicating a major vulnerability. Exponentially strong
OWFs were recently exploited in several cryptographic contexts. In the context of pro-
gram obfuscation, Wee [23] uses a OWF with a form of exponential strength which is
even stronger than ours in terms of the ratio between the adversary’s time bound and
its success probability. OWFs with milder forms of exponential strength were recently
employed for constructing pseudorandom generators [14,11,4]. It should be noted that
given generic time-space tradeoffs for inverting functions [12,5], one cannot expect a
fixed function (rather than a collection of functions) to be non-uniformly one-way with a
very good exponential strength (say, better than 22n/3). Thus, in the context of this work
one should either restrict adversaries to be uniform, or alternatively rely on a collection
of strong one-way functions.

On reducing the adversary’s advantage. The key agreement protocols described
above allow the adversary to gain an inverse polynomial advantage in guessing the
secret key. This type of insecurity may be viewed as reasonable in the context of weak
public-key cryptography, but it is still desirable to obtain the standard notion of secu-
rity with negligible advantage with respect to a weaker class of adversaries. Unfortu-
nately, known techniques for converting weak key agreement to strong one (e.g., those
of Holenstein [13]) do not seem sufficient for this purpose. We show that the security
of the protocol can be boosted to allow only a negligible advantage if one assumes the
underlying primitive to have a strong form of a hard-core predicate [8] which we call
a multi-source hardcore predicate (MSHCP). Roughly speaking, an MSHCP applies a
predicate to several inputs, such that an (exponentially strong) adversary can only pre-
dict the value of the predicate on independently chosen inputs with an advantage that
is negligible in the size of the input domain. (This should be contrasted with a standard
hard-core predicate in which the predicate is applied to a single input, and it is only
guaranteed that the advantage is negligible in the bit-length of the input.) We show that
the existence of an MSHCP follows from a conjectured “dream version” of Yao’s XOR
lemma (a close variant of a conjecture appearing in [9]). On the other hand, we show
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that in contrast to standard hard-core predicates, the existence of an MSHCP cannot be
based on (even exponentially strong) one-wayness by using a black-box construction.

Our results reveal some interesting and perhaps unexpected connections between the
problem under consideration and problems from other domains.

Relation with the Bounded Storage Model. In Maurer’s bounded storage model
(BSM) [18], it is assumed that a large random source is transmitted, out of which the
adversary can only store a limited amount of information. Viewing the random source
as an oracle, the transmission of the random source can be replaced by local compu-
tation. In terms of security, the resulting model is incomparable to the original BSM:
the adversary here is weaker in that it can only access “physical” bits of the source
by querying the oracle (rather than store an arbitrary function of the source), but it is
stronger in the sense that it is allowed access to the source even after the execution of
the protocol. To get around the latter problem, a natural approach is to code the source
in the image of the oracle. That is, the evaluation of the oracle f at point x gives a pair
(i, b) indicating that the ith bit of the source is b. When the honest parties in the BSM
protocol only need to access the source at random locations, the protocol can still be
efficiently implemented using the random oracle. Our main protocol can be viewed as
applying this conversion paradigm to the BSM protocol from [2]. A similar transfor-
mation can be applied to the oblivious transfer protocol from [3] to yield an oblivious
transfer protocol (with quadratic security) in the random oracle model.

Relation with quantum computing. Finally, we observe that a quantum adversary can
completely break the security of our protocol (as well as that of Merkle’s heuristic
protocol) by using the quadratic speedup of Grover’s quantum search algorithm [10].
Thus, the two most prominent examples for speedup by quantum algorithms – the strong
speedup of Shor’s algorithm and the weaker speedup of Grover’s algorithm – seem to be
“tailored” to break the two main types of public-key cryptosystems – strong ones based
on number-theoretic assumptions1 and weak ones based on Merkle’s technique. While
this can be dismissed as a pure coincidence, it also raises the interesting speculation
that there might be a closer relation between (classical) public-key cryptography and
quantum computing than is commonly believed. This speculation may be supported by
the relative scarcity of useful algorithms in the two domains.

It is important to stress that the quadratic speedup that can be achieved using Grover’s
algorithm is by no means universal, and applies only in scenarios that involve parallel
search. An interesting problem left open by our work is that of obtaining a weak key
agreement protocol, even in the random oracle model, that resists this kind of quan-
tum attack. A natural approach for achieving this is by obtaining efficient implementa-
tions of puzzles that resist parallel search attacks. A similar problem was considered by
Boneh and Naor [1] in the context of timed commitments. However, the only known im-
plementations of this primitive rely on number-theoretic assumptions that do not resist
a quantum attack. The possibility of implementing such “non-parallelizable” puzzles
using a one-way function, or even a random function, remains open.

1 One should note in this context that we do have candidates for strong public-key cryptosystems
that resist quantum attacks, mostly ones based on lattice problems and error-correcting codes.
However, because of the strong algebraic structure of the underlying computational problems,
the existence of efficient quantum algorithms for these problems does not seem unlikely.
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Organization. The remainder of this paper is organized as follows. Following some
preliminaries, in Section 3 we describe a key agreement protocol based on a random
function. The protocol resists adversaries whose running time is nearly quadratic in the
running time of the honest parties. In Section 4 we replace the random function with
an exponentially strong one-way permutation, and in Section 5 we show how to base a
variant of this protocol on an exponentially strong one-way function. Some details and
proofs that were omitted from this version can be found in the full version.

2 Definitions

In contrast to conventional cryptography, in this work we assume the resource gap be-
tween the honest parties and the adversary to be bounded by a fixed polynomial. This
requires us to introduce an “exact” variant for some common definitions and to set a
concrete model of computation which is sensitive to such gaps. We use a RAM model
(e.g., a “log-cost” RAM) as our default model of computation, for both honest parties
and adversaries. A T (n)-bounded algorithm is an algorithm whose running time on
input of length n is bounded by T (n).

Our results are stated for uniform adversaries, but are valid for non-uniform adver-
saries as well. In this case the bound on the running time serves also as a bound on the
size of the advice string given to the adversary. Specific differences between the results
for uniform and non-uniform adversaries will be discussed when relevant.

Notation. We write f(n) = Õ(g(n)) if there exists some constant c such that f(n) =
O(g(n) logc(g(n))). We say that a function ε(·) is negligible and denote such a function
by neg(·) if for any constant c, ε(n) < 1

nc for sufficiently large n. We say that ε(·) is
bounded away from c if ε(n) ≤ c − 1/p(n) for some polynomial p and all sufficiently
large n. We denote by Un the uniform distribution over {0, 1}n. By IP we denote the
modular inner product function defined by IP (x, r) =

∑n
i=1(xi · ri) mod 2.

2.1 Key Agreement Protocols

An l(·)-bit key agreement protocol is an interactive protocol in which Alice and Bob
receive a security parameter k, exchange messages over a public channel and each out-
put a key in {0, 1}l(k). Throughout the paper we deal only with 1-bit key agreement
as defined below. Our protocols can be extended to l(k)-bit key agreement for any
l(k) ≤ polylog(k) with similar asymptotic parameters by independent repetition. (A
longer key will reduce the polynomial advantage of the honest parties.) Such an l-bit
key can then be used to encrypt longer messages using a (conventional) symmetric en-
cryption scheme. We note that the key agreement protocols presented in this paper are
limited to two rounds. Hence what we achieve can be viewed as a (weak) public key
encryption scheme, where the first message serves as the public key.

Definition 1 (Key agreement). A protocol (Alice, Bob) is a (d, ε)-secure key agree-
ment protocol if the following conditions hold:

– Correctness: Alice and Bob are Õ(k)-bounded and they output the same bit except
for a failure probability δ(k) = neg(k).
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– Security: For any constant d′ < d and any O(kd′
)-bounded adversary, for suffi-

ciently large k the probability that the adversary guesses Bob’s output on a random
transcript of the protocol is bounded by 1

2 + ε(k).

We say that the protocol has quadratic security if it is (d, ε)-secure for d = 2 and some
negligible ε(·).

2.2 Strong One-Way Functions and Hard-Core Predicates

Definition 2 (One-way function). An efficiently computable function f : {0, 1}∗ →
{0, 1}∗ is a (T, ε) one-way function if for any T (n)-bounded adversary A and for all
sufficiently large n, Prx∈Un [f(A(1n, f(x))) = f(x)] < ε(n). If in addition f is a
permutation we say that it is a (T, ε) one-way permutation. If f is (T, ε) one-way with
ε(n) ≤ 1

16 , we say that it is a T (n) one-way function.

We note that a standard one-way function is (nc, 1
nc ) one-way for every constant c > 1.

Definition 3 (Hard-core predicate). An efficiently computable function h : {0, 1}∗ →
{0, 1} is a (T, ε) (randomized) hard-core predicate for f if for any T (n)-bounded ad-
versary A, for sufficiently large n,

Prx∈Un,r∈Un [A(f(x), r) = h(x, r)] < 1/2 + ε(n).

The following definition generalizes the concept of hard-core predicates to allow the
predicate to depend on several pre-images.

Definition 4 (Multi-source hard-core predicate). A polynomial time computable
function H : {0, 1}∗ → {0, 1} is a (T, ε) multi-source (randomized) hard-core pred-
icate (MSHCP) for f if there exist two polynomials t(·) and s(·) such that for any
T (n)-bounded adversary A and all sufficiently large n,

Prx1...xt(n)∈Un,r∈Us(n) [A(1n, f(x1) . . . f(xt(n)), r)=H(x1. . . xt(n), r)]< 1/2+ε(n).

If H is a (T, ε) MSHCP with ε(n) = neg(2n) we say that it is a strong MSHCP.

Note that a strong MSHCP can be guessed only with an advantage that is negligible
in the size of the input domain. This is not possible with standard hard-core predicates
since a single invocation of f is enough for finding a pre-image with probability which
is the inverse of the input domain size. We also note that it is easy to show that a random
function has a strong MSHCP; however, its security does not seem to follow from one-
wayness alone. A relevant black-box separation is given in the full version.

3 Key Agreement in the Random Oracle Model

We describe a variant of Merkle’s key agreement protocol in which all parties have
access to a random function oracle, and show that adversaries whose running time is
nearly quadratic in the running time of the honest parties can only have a negligible
advantage in guessing the agreed key. For simplicity of presentation we assume that
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the function which the oracle computes is chosen uniformly from some set of functions
after the adversary has been set, and in this scenario we bound the adversary’s advantage
in guessing the key. This result can be extended, using a standard argument [16], to
show that the protocol is secure against any uniform adversary when the oracle is set
to a specific function from the set, with probability 1 over the choice of functions.
Alternatively, the protocol is secure against non-uniform adversaries when the function
is chosen after the adversary is set (i.e. no single non-uniform adversary can break the
protocol for a significant fraction of the functions).

We start with a protocol which uses an oracle to a random permutation and a random
predicate and then extend the result for the case of a random function.

The ROM protocol: For a security parameter k we use an oracle to a random permu-
tation f : [k2] → [k2] and a random predicate h : [k2] → {0, 1}. We set a minimal
intersection size parameter l(k) to be l(k) = 1

2 log2(k).

– Alice chooses a random set A ⊂ [k2] of size k · log k, queries the oracle on these
inputs and sends f(A) = {f(a)|a ∈ A} to Bob.

– Bob chooses a random set B ⊂ [k2] of size k · log k and queries the oracle on
these inputs. If |f(A) ∩ f(B)| < l(k) Bob aborts and both parties output random
values. Otherwise, Bob randomly chooses l(k) common outputs c1, . . . , cl(k) ∈
f(A) ∩ f(B) and sends them to Alice.

– Alice and Bob find the common inputs s1, . . . , sl(k) ∈ A ∩ B such that f(si) = ci

and output
⊕l(k)

i=1 h(si).

In the full version we prove that the above protocol has quadratic security. We also
show a similar protocol which uses a random function instead of a permutations and a
predicate and prove the following theorem.

Theorem 1. Given an oracle to a random function f : {0, 1}∗ → {0, 1}, there exists a
key agreement protocol with quadratic security.

4 Key Agreement from One-Way Permutations

In order to construct key agreement from one-way permutations we replace the random
permutation and random predicate used in the ROM protocol with an exponentially
strong one-way permutation and a hard-core predicate. The analysis is divided into
two parts: first we show how to construct a key agreement protocol from a one-way
permutation with an MSHCP and then we show how to construct an MSHCP for any
one-way function. The maximal possible advantage in guessing the MSHCP determines
the advantage the protocol allows adversaries in guessing the key. Using a conjectured
dream XOR lemma we construct a strong MSHCP (in which the maximal advantage is
negligible in the size of the input domain) and hence key agreement protocols in which
the adversary’s advantage is negligible. Without this conjecture we do not know how to
construct strong MSHCPs, but can get a weaker MSHCP that suffices for limiting the
adversary’s advantage to 1/poly(k). In the full version we show that the limitation on
the strength of the MSHCP is inherent to black-box constructions.
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The results in this section hold in both uniform and non-uniform settings, depending
on the setting in which the permutations are assumed to be one-way. However, it follows
from generic time-space tradeoffs for inverting functions [12,5] that one cannot expect a
fixed function (rather than a collection of functions) to be non-uniformly one-way with
a very good exponential strength. In order to achieve meaningful results in the non-
uniform case, one may use a collection of one-way functions in the protocol described
in Section 5.4. Finally, we note that the results of this section can be generalized to any
1-1 one-way function.

4.1 Key Agreement from a One-Way Permutation with an MSHCP

We use a variant of the ROM protocol in which the random permutation is replaced by
a one-way permutation and the random predicate is replaced by an MSHCP.

The OWP protocol: For a security parameter k we set n = 2 · log k (i.e. k = 2n/2)
and use a one-way permutation f : {0, 1}n → {0, 1}n for which H is a (T, ε) MSHCP
with T = 2n(1−δ). We set the minimal size of the intersection to be l(k) = t(n) where
t(·) is the number of inputs for H as in Definition 4.

– Alice chooses a random set A ⊂ {0, 1}n of size k
√

2l(k), applies f to these inputs
and sends f(A) = {f(a)|a ∈ A} to Bob.

– Alice also sends Bob a random string r ∈ {0, 1}s(n), where s(·) is the size of the
random input for H as in Definition 4.

– Bob chooses a random set B ⊂ {0, 1}n of size k
√

2l(k) and applies f to these
inputs. If |f(A) ∩ f(B)| < l(k) Bob aborts and both parties output random values.
Otherwise, Bob randomly chooses l(k) common outputs c1, . . . , cl(k) ∈ f(A) ∩
f(B) and sends them to Alice.

– Alice and Bob find the common inputs s1, . . . , sl(k) ∈ A ∩ B such that f(si) = ci

and output H(s1, . . . , sl(k), r).

Theorem 2 (Key agreement from a one-way permutation with an MSHCP). For
any constant δ < 1

2 , if there exists a one-way permutation with a (T, ε) MSHCP such
thatT = 2n(1−δ) then there exists a (d, ε)-secure key agreement protocol with d = 2−2δ.

Proof. The proof of correctness is the same as in the ROM protocol. The proof of
security is by contradiction. Suppose that for some constant d′ < 2 − 2δ, an O(kd′

)-
bounded adversary A guesses the agreed bit with probability at least 1

2 +ε when given a
random transcript of the protocol. We show how to use A to guess H(x1, . . . , xl(k), r),
given f(x1), . . . , f(xl(k)) and r on random x1, . . . , xl(k) ∈ {0, 1}n and r ∈ {0, 1}s(n).
We create a random transcript of the protocol using the following procedure:

– Randomly choose a set A ⊂ {0, 1}n of size k
√

2l(k) − l(k), and apply f to these
inputs. Randomly interleave f(x1), . . . , f(xl(k)) within the set f(A) and use the
result as the first part of Alice’s message to Bob.

– Use the random string r as the second part of Alice’s message to Bob.
– Use f(x1), . . . , f(xl(k)) as Bob’s message to Alice.

It is easy to verify that the result is indeed distributed identically to a random transcript
created by Alice and Bob. We then apply A to the transcript and output the same bit as
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A does. By our assumption A’s output is equal to H(x1, . . . , xl(k), r) with probability

at least 1
2 + ε. The transcript can be created in time Õ(k) and since δ < 1

2 , for large
enough n the total running time is bounded by k2−2δ = 2n(1−δ), contradicting the
hardness of H . �	

4.2 Construction of an MSHCP for any One-Way Function

We first construct a (single-source) randomized hard-core predicate defined by h(x, r)=
IP (x, r) for a random r and prove its security using an exact version of the Goldreich-
Levin lemma. Then we use h to construct an MSHCP defined by H((x1, . . . , xt),
(r1, . . . , rt)) =

⊕t
i=1 h(xi, ri) and prove its security using an exact version of Yao’s

XOR lemma.

Lemma 1 (Goldreich-Levin). If f is a (T, ε) one-way function then h(x, r) =
IP (x, r) (where IP denotes inner product modulo 2) is a (T ′, ε′) randomized hard-
core predicate for f with T ′(n) = T (n) · ε4

n3 and ε′(n) = 4ε.

The lemma follows from the alternative version of Proposition 2.5.3 in [7]. A conse-
quence of this lemma is that every T (n) one-way function has a (T ′, ε′) (randomized)
hard-core predicate with T ′ = T (n)/poly(n) and ε′ = 1/4.

Definition 5 (Hard predicate). We say that P : {0, 1}∗ → {0, 1} is a (T, ε) hard pred-
icate if for any T (n)-bounded adversary A and all sufficiently large n, Prx∈Un [A(x) =
P (x)] < 1/2 + ε(n).

Lemma 2 (Yao’s XOR lemma). If P is a (T, ε) hard predicate and it is possible to ef-
ficiently sample from the distribution (Un, P (Un)), then for any μ(n) and t = poly(n),
P (t)(x1, . . . , xt) =

⊕t
i=1 P (xi) is a (T ′, ε′) hard predicate for T ′ = T · μ2

poly(n) −
poly(n) and ε′ = (2ε)t + μ.

The lemma can be derived by a careful analysis of Levin’s proof for Yao’s XOR lemma
given in [17,9]; see full version. Combining Lemma 1 with Lemma 2 allows us to
construct an MSHCP but there is an inherent limitation to the strength of the MSHCP
which we may construct in this way. A (T ′, ε′) hard predicate constructed using Lemma
2 has the property that ε′ > μ and T ′ < T · μ2. For any (T, ε) hard-core predicate for
an efficiently computable one-way function, T = Õ(2n) since it is possible to invert
the one-way function by an exhaustive search. For our key agreement protocol we need
a (T ′, ε′) MSHCP in which T ′ = 2(1−δ)n for some δ < 1

2 . Any (T ′, ε′) MSHCP
constructed under the above restrictions will have ε′ > μ >

√
T ′/T > 2−n/4. The

following conjecture allows us to construct a (T ′, ε′) hard predicate with ε′ = neg(2n)
while T ′ remains close to T , and thus can be used to construct a strong MSHCP.

Conjecture 1 (Dream XOR lemma). If P is a (T, ε) hard predicate for some ε that is
bounded away from 1

2 and it is possible to efficiently sample from the distribution
(Un, P (Un)), then there exists a constant c < 1, a negligible μ(·) and some η(·)
which is bounded away from 1 such that for any t = poly(n), P (t)(x1, . . . , xt) =⊕t

i=1 P (xi) is a (T ′, ε′) hard predicate for T ′ = T · 2−o(n) and ε′ = 2cn · ηt + μ(2n).
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A similar “dream version” of Yao’s XOR lemma was conjectured in [9] and it was
observed that it can not be proved using a black-box analysis. (The variant appearing
in [9] requires ε to be smaller but allows T to be smaller as well.) Theorem 3 states the
parameters of MSHCP that can be obtained with and without the dream XOR lemma
conjecture, while in the full version we show that a strong MSHCP cannot be obtained
from a OWF using a black-box construction.

We apply Lemma 2 and Conjecture 1 with t = poly(n) to the predicate defined in
Lemma 1 to get the following result (smaller values of t suffice for the first two cases,
but this does not improve the asymptotic result).

Theorem 3. For any δ < 1, every 2n(1−δ) one-way function has a (T, ε) MSHCP with
the following T and ε:

- T = 2n(1−δ)/poly(n) ε = 1
poly(n) using μ = O(ε)

- T = 2n(1−δ−τ)/poly(n) ε = 2−τn/2 using μ = O(2−τn/2)
- T = 2n(1−δ)/2o(n) ε = neg(2n) assuming the dream XOR lemma

It is easy to verify that Theorem 2 holds also when T = 2n(1−δ) is replaced with
2n(1−δ)/2o(n). Combining this with Theorem 3 we get the main result regarding the
construction of key agreement from one-way permutations. It relates the strength of the
underlying one-way permutation to the security of the key agreement protocol that can
be constructed from it.

Corollary 1. For any constant δ < 1
2 if there exists a 2n(1−δ) one-way permutation

then there exists a (d, ε) secure key agreement protocol for the following d and ε:
- d = 2 − 2δ ε = 1/ logc k for any constant c
- d = 2 − 2δ − 2τ ε = k−τ for any τ < 1 − δ
- d = 2 − 2δ ε = neg(k) assuming the dream XOR lemma

5 Key Agreement from One-Way Functions

We extend the result from the previous section to obtain weak key agreement from
exponentially strong one-way functions. The main technical result in this section is a
construction of a collection of one-way functions which is almost 1-1 from an exponen-
tially strong one-way function which is not necessarily 1-1. The construction applies a
restriction to the domain of the one-way function such that the restricted function usu-
ally remains one-way and is almost always 1-1. The resulting collection of one-way
functions is then used to construct a key agreement protocol. The results in this section
hold in both uniform and non-uniform settings, depending on the setting in which the
functions are assumed to be one-way. We refer to the uniform setting by default.

5.1 Definitions

A collection of one-way functions is defined by a pair of functions G and F such that
G(1n) generates a key i of length l(n) which defines a function fi : {0, 1}n → {0, 1}∗
and F (i, x) computes fi(x).

Definition 6 (Collection of one-way functions). Let F =
⋃

Fn be a collection of
functions where Fn = {fi : {0, 1}n → {0, 1}∗|i ∈ In}. We say that F is (T, ε)
one-way if there exist two PPT algorithms G and F such that the following holds:
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1. Easy to compute: There exists a polynomially bounded function l(·) such that the
output of G on input 1n is in the set In ⊆ {0, 1}l(n). On input i ∈ In and x ∈
{0, 1}n, F (i, x) = fi(x).

2. Hard to invert: For every T (n)-bounded adversary A, for all sufficiently large n’s,

Pri∈G(1n),x∈Un
[fi(A(1n, i, fi(x))) = fi(x)] < ε(n).

We say that F is T (n) one-way if it is (T, ε) one-way with ε ≤ 1/32. We say that F is
almost 1-1 if the probability that fi ∈ Fn is not 1-1 is bounded by 2−n.

We will be using a family of injective length-increasing, pairwise independent hash
functions in order to restrict the domain of a one-way function and increase the proba-
bility that it is 1-1. The function m(·) in the definition below determines the length of
the output of the hash functions relative to the input length.

Definition 7 (m(·) pairwise independent family of hash functions). Let H =
⋃

Hn

be a collection of functions where Hn = {hi : {0, 1}n → {0, 1}m(n)|i ∈ In}. We say
that H is a m(·) pairwise independent family of hash functions if there exist two PPT
algorithms G and H such that the following holds:

1. Easy to compute: There exists a polynomially bounded function l(·) such that the
output of G on input 1n is in the set In ⊆ {0, 1}l(n). On input i ∈ In and x ∈
{0, 1}n, H(i, x) = hi(x).

2. Pairwise independent: For every x1 �= x2 ∈ {0, 1}n and y1 �= y2 ∈ {0, 1}m,
Prh∈Hn [h(x1) = y1] = 1

2m and Prh∈Hn [h(x2) = y2 | h(x1) = y1] = 1
2m−1 .

Definition 7 can be instantiated with the collection of functions of the form ha,b(x) =
ax+ b where a, b ∈ GF(2m), a �= 0, both addition and multiplication are over GF(2m),
and every x is interpreted as a distinct element of the subfield GF(2n). Definition 7
implies that each function from the collection must injective. Moreover, it also implies
the following balance property that will be useful in our analysis: For every n and every
y ∈ {0, 1}m(n), Prh∈Hn [∃x such that y = h(x)] = 2n

2m .

5.2 Restricted Exponentially Strong One-Way Functions are 1-1

We show that strong one-way functions do not have many collisions to begin with
(Lemma 3), and that by restricting the domain of such a function we get a function
which is 1-1 with high probability (Theorem 4).

Definition 8 (Collision group of y relative to f ). [y]f = {y′|f(y′) = f(y)}

We denote the input length of the one-way function in the following lemma by m, as
we will use n for the input length of the family of one-way functions that we construct.

Lemma 3 (Exponentially strong one-way functions have few collisions). If f is a
(T, ε) one-way function then there exists a polynomial t(·) such that for sufficiently
large m and for every y ∈ {0, 1}m, |[y]f | ≤ 2m · max{2ε(m), t(m)/T (m)}.
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Proof. We give the proof for the uniform setting, for the non-uniform case a stronger
version of the lemma can be proved using the fact that a pre-image for y∗ defined
below can be given to the algorithm as advice. Let t(·) be the time required for evalu-
ation of f . Assume for contradiction that the statement does not hold for y∗. We first
show a T (m)-bounded algorithm that finds a pre-image for f(y∗) with probability 1

2 .
Randomly choose y1, . . . , yT/t ∈ {0, 1}m and apply f to them. By the assumption
|[y∗]f | > 2m · t/T , hence for each i, yi ∈ [y∗]f with probability at least t/T . Therefore
the probability that there is no i for which xi ∈ [y∗]f is at most (1 − t/T )T/t < 1

2 .
By the assumption |[y∗]f | > 2m · 2ε, therefore y ∈ [y∗]f with probability at least

2ε. If indeed y ∈ [y∗]f , finding a pre-image for f(y) is the same as finding a pre-image
for f(y∗) and the algorithm described above will find a pre-image with probability at
least 1

2 . The conclusion is that there exists a T (m)-bounded adversary which finds a
pre-image for f(x) on a random x with probability ε, contradicting the fact that f is a
(T, ε) one-way function. �	

Notation. From here on we let fh(·) def= f(h(·)).

Theorem 4 (Restricted exponentially strong one-way functions are 1-1). If H =⋃
Hn is an m(·) pairwise independent family of functions and f is a (T, ε) one-way

function with T (m) ≥ 2μ·m and ε(m) ≤ 2−μ·m for some μ > 0, then the probability
over h ∈ Hn that fh is not 1-1 is bounded by poly(m) · 22n−μm.

Proof. Fix x1 �= x2 ∈ {0, 1}n. We bound the probability that fh maps both inputs to
the same image for a random h ∈ Hn.
Prh∈Hn [fh(x1) = fh(x2)] = Prh∈Hn [h(x2) ∈ [h(x1)]f ]

=
∑

y1∈{0,1}m

Prh∈Hn [h(x1) = y1] · Prh∈Hn [h(x2) ∈ [y1]f | h(x1) = y1]

=
∑

y1∈{0,1}m

Prh∈Hn [h(x1) = y1] ·
∑

y2∈[y1]f

Prh∈Hn [h(x2) = y2 | h(x1) = y1]

≤ 2m · 2−m · 2m · max{2ε, poly(m)/T } · 1
2m − 1

(1)

≤ 2−μ·m · poly(m) (2)

where (1) follows from the pairwise independence of H and from Lemma 3, and (2)
follows from the hypothesis of the theorem about ε and T . As there are 22n pairs of
inputs in {0, 1}n, by a union bound the probability that hf maps any two inputs of
length n to the same output is bounded by poly(m) · 22n · 2−μ·m. �	

5.3 Restricted Exponentially Strong One-Way Functions are One-Way

We show that if f is a strong one-way function and H is a pairwise independent family
of hash functions, then F = {fh | h ∈ H} is a collection of strong one-way functions.
The idea is that if we have an algorithm that finds a pre-image for z = fh(x) given z
and h for a random h and x, we can use it to find a pre-image for z = f(y) for a random
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y in the following way. We randomly select sufficiently many functions h ∈ H so that
one of them will have y in its range, and apply the inversion algorithm to z and each
such h. If the algorithm succeeds, we get some x such that fh(x) = f(h(x)) = z and
h(x) is a pre-image of z under f . This approach gives the following theorem.

Theorem 5. Suppose f is (T, ε) one-way and H is a m(·) pairwise independent family
of functions. Then F = {fh | h ∈ H} is a (T ′, ε′) one-way collection of functions
for any T ′, ε′ such that for all sufficiently large n the following conditions hold with
m = m(n):

1. T ′(n) ≤ 1
2 · T (m)

2. ε′(n) ≥ 2 · ε(m)
3. T ′(n)

ε′(n) ≤ 1
4 · 2n

2m · T (m)
ε(m)

4. T ′(n) > m(n)c for every constant c

Proof. Throughout the proof we view T ′ and ε′ as functions of n and T and ε as func-
tions of m (where m is itself a function of n). We omit m and n in order to sim-
plify notation. Assume for contradiction that f is a (T, ε) one-way function, but F
is not a (T ′, ε′) one-way collection for T, T ′, ε, ε′ as stated in the theorem. By Def-
inition 6 there exists a T ′-bounded adversary A′ such that for infinitely many n’s
Prh∈Hn,x∈Un [fh(A′(1n, fh(x), h)) = fh(x)] ≥ ε′. We construct a T -bounded al-
gorithm A such that for infinitely many m’s Pry∈Um [f(A(1m, f(y))) = f(y)] ≥ ε, in
contradiction with the assumption that f is (T, ε) one-way.

The algorithm A, described below, finds a pre-image for z = f(y). On input (1m, z),
A repeats the following steps t = T

2T ′ times:

1. Choose a random h ∈ Hn.
2. Compute x = A′(1n, z, h)
3. If fh(x) = z stop and output h(x)

Assuming z = f(y), we define the random variables Ai(y) and Bi(y) for i = 1, . . . , t
as follows: Ai(y) = 1 if in the i’th iteration there exists a pre-image for y under h, and
Bi(y) = 1 if in the i’th iteration fh(x) = f(y). (Probabilities in these variables are
taken over the random coins of A.) The following two claims allow us to complete the
proof of Theorem 5.

Claim 1. Pry∈Um [∃i : Ai(y) = 1] ≥ ε
ε′

Claim 2. For every i, Pry∈Um [Bi(y) = 1 | Ai(y) = 1] ≥ ε′

By the above claims and the definitions of Ai and Bi, we can lower bound the proba-
bility that A finds a pre-image for f(y).

Pry∈Um [f(A(1m, f(y))) = f(y)] = Pry∈Um [∃i : Bi(y) = 1]
≥ Pr[∃i : Ai(y) = 1] · Pr[Bi(y) = 1 | Ai(y) = 1]

≥ ε

ε′
· ε′

= ε

A’s running time in every iteration is bounded by T ′+mc for some constant c. As there
are t = T

2T ′ iterations and T ′ > mc the total running time is bounded by T
2T ′ · (T ′ +

mc) < T , contradicting the assumption that f is (T, ε) one-way. �	
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Proof of Claim 1. We show that for any fixed y ∈ {0, 1}m, Pr[∃i : Ai(y) = 1] ≥ ε
ε′

and the claim follows. By the balance property we have Pr[Ai(y) = 1] = Prh∈Hn [∃x
such that y = h(x)] = 2n

2m for every i = 1, . . . , t. We view A1, . . . , At as t = T
2T ′

independent experiments, each with success probability δ = 2n

2m . The probability that
none of the experiments succeed can be bounded by (1−δ)t < 1

tδ+1 . Therefore Pr[∃i :
Ai(y) = 1] ≥ 1 − 1

tδ+1 = tδ
tδ+1 . If tδ > 1, Pr[∃i : Ai(y) = 1] ≥ 1

2 ≥ ε
ε′ , otherwise,

Pr[∃i : Ai(y) = 1] ≥ t·δ
2 = 1

4 · 2n

2m · T
T ′ ≥ ε

ε′ . In both cases the last inequality follows
from the assumptions in the hypothesis of the theorem. �	

Proof of Claim 2. We use the following notation:

p1 � Pry∈Um [Bi(y) = 1 | Ai(y) = 1]
p2 � Prh∈Hn,y∈Um [fh(A′(1n, f(y), h)) = f(y) | ∃x : y = h(x)]

p3 � Prh∈Hn,x∈Un [fh(A′(1n, fh(x), h)) = fh(x)]
By the definition of Ai and Bi we have p1 = p2 for every i, and by our assumption that
F is not (T ′, ε′) one-way, we have p3 ≥ ε′. Since Claim 2 is that p1 ≥ ε′ for every i,
it remains to show that p2 = p3. We show this by proving that the pair (y, h) under the
conditions in p2 is distributed identically to the pair (h(x), h) under the conditions in p3.
Fix some (y, h) such that y is in the range of h. We calculate the probability of getting
this pair under both distributions. Under the conditions in p2, y is chosen uniformly
from a set of size 2m and h is chosen uniformly from a set of size 2n

2m |Hn|, altogether
the probability is 1

|Hn|2n . Under the conditions in p3, h is chosen uniformly from a set
of size |Hn| and x is chosen from a set of size 2n. Since h is 1-1, the probability for
getting y = h(x) is 2−n, thus the overall probability is again 1

|Hn|2n . �	

The above construction allows us to ‘redistribute’ the hardness of a one-way function.
For example a (T, ε) one-way function which is strongly secure (small ε) against weak
adversaries (small T ) can be used to construct a (T ′, ε′) one-way function family F that
is weakly secure against strong adversaries. The conditions in the theorem give us the
boundaries of the possible redistribution. Condition 1 limits the maximal gap between
T ′ and T . Condition 2 does the same for ε. Both conditions are easy to satisfy when
m(·) is large. Condition 3 defines the loss in the time over success ratio caused by the
transformation. The loss is bigger when m(·) is large. For m = c · n, if T (n)

ε(n) = 2n(1−δ)

we will get T ′(n)
ε′(n) < 2n(1−cδ).

Corollary 2. If there exists a (T, ε) one-way function with T, ε−1 ≥ 2m/3 and T/ε ≥
2m(1−δ) then there exists a collection of 2n(1−10δ) one-way functions which is
almost 1-1.

Proof. By applying Theorem 4 to the family H of m(·) pairwise independent family of
hash functions with m = 9n and a one-way function f , we get a family F = {fh|h ∈
H} which is 1-1, except for probability at most 2−n. F is 2n(1−10δ) one-way if it is
(T ′, ε′) one-way with T ′ = 2n(1−10δ) and ε′ = 1/32 and it remains to verify that for
sufficiently large n, the conditions of Theorem 5 are fulfilled.

1. T ′(n) = 2n(1−10δ) < 1
2 · 23n = 1

2 · 2m/3 ≤ 1
2 · T (m)
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2. ε′(n) = 1
32 > 2 · 2−m/3 ≥ 2 · ε(m)

3. T ′(n)
ε′(n) = 32·2n(1−10δ) < 1

4 ·2n(1−9δ) = 1
4 ·2n−δm = 1

4 · 2n

2m ·2m(1−δ) ≤ 1
4 · 2n

2m · T (m)
ε(m)

4. T ′(n) = 2n(1−10δ) > (9n)c = mc �	

We note that in the non-uniform setting the parameters in the corollary can be improved
by using a stronger version of Lemma 3.

5.4 Key Agreement from a Collection of 1-1 One-Way Functions

We show a key agreement protocol which is based on a collection of one-way functions
F which is almost 1-1. The protocol is similar to the one described for constructing key
agreement from a one-way permutation. However, there are two obstacles which pre-
vent us from directly applying the previous protocol to a random fi ∈ F . First, unlike
one-way permutations, fi ∈ F is not always 1-1 and hence Alice and Bob may have
different outputs. Second, since F is hard to invert only on average, it is possible that
a specific function fi ∈ F is easy to invert. We use standard techniques for amplify-
ing both correctness and security. Specifically, we begin by describing a basic protocol
which in itself lacks in both security and in correctness. By combining several copies of
the basic protocol we create an intermediate protocol which is secure but has a big error
probability. By combining several copies of the intermediate protocol we get the final
protocol which is both secure and correct. We note that the copies of the basic protocol
can be run concurrently and hence the final protocol remains a two message protocol.

The basic protocol. Let F =
⋃

Fn, be a collection of 2n(1−δ) one-way functions
which is almost 1-1. For a security parameter 1k, we set n = 2 · log k. In each copy of
the protocol, Alice chooses a random r ∈ {0, 1}n, a random index i ∈ In which defines
a function fi ∈ Fn and a random set A ⊂ {0, 1}n of size k · logk. She applies fi to the
inputs in A, and sends the outputs i and r to Bob. Bob randomly chooses a similar set of
inputs B, and applies fi to them. If f(A) ∩ f(B) = ∅, he aborts and both parties output
random values; otherwise, he randomly chooses a common output c ∈ f(A)∩f(B) and
sends c to Alice. Alice and Bob each identify a source for the common input, xA ∈ A
and xB ∈ B, so that fi(xA) = fi(xB) = c. Their outputs are sA = IP (xA, r) and
sB = IP (xB, r) respectively.

The intermediate protocol. We denote Alice and Bob’s outputs in the i’th copy of the
basic protocol by si

A and si
B . The intermediate protocol consists of l = polylog(k)

copies of the basic protocol, where Alice and Bob’s outputs are SA =
⊕l

i=1 si
A and

SB =
⊕l

i=1 si
B respectively.

The final protocol. We denote Alice and Bob’s outputs in the i’th copy of the interme-
diate protocol by Si

A and Si
B . The final protocol consists of l = polylog(k) copies of

the intermediate protocol with the following addition to Bob’s messages. Bob chooses
a random S ∈ {0, 1} and for each copy of the intermediate protocol sends S

⊕
Si

B to
Alice. Bob’s output is S and Alice’s output is MAJ{S

⊕
Si

A

⊕
Si

B}l
i=1.

A straightforward analysis of the final protocol (appearing in the full version) gives
the following theorem:
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Theorem 6 (Key agreement from a collection of one-way functions which is almost
1-1). For any constant δ < 1/2, if there exists a collection of 2n(1−δ) one-way functions
which is almost 1-1, then there exists a (d, ε) secure key agreement protocol for the
following d and ε:

- d = 2 − 2δ ε = 1/ logc k for any constant c
- d = 2 − 2δ − 2τ ε = k−τ for any τ < 1 − δ
- d = 2 − 2δ ε = neg(k) assuming the dream XOR lemma

Combining Theorem 6 with Corollary 2, we get our main result on weak public-key
cryptography from strong one-way functions.

Corollary 3 (Key agreement from one-way functions). For any constant δ < 1/10,
if there exists a (T, ε) one-way function with T, ε−1 ≥ 2m/3 and T/ε ≥ 2m(1−δ) then
there exists a (d, ε) secure key agreement protocol for the following d and ε:

- d = 2 − 20δ ε = 1/ logc k for any constant c
- d = 2 − 20δ − 2τ ε = k−τ for any τ < 1 − 10δ
- d = 2 − 20δ ε = neg(k) assuming the dream XOR lemma

6 Conclusions and Open Problems

We established the feasibility of basing weak public-key cryptography on strong, but ar-
guably reasonable, forms of one-way functions. We leave open the possibility of basing
weak public-key cryptography on standard (polynomially strong) one-way functions,
as well as the possibility of amplifying the security of our protocols without relying
on a conjectured dream version of Yao’s XOR Lemma. Finally, an interesting open
question that was already discussed in the Introduction is the possibility of resisting
quantum attacks in our setting. The discussion in Section 1.1 referred to the case where
the honest parties are classical and the adversary is quantum. If the honest parties are
quantum (and can therefore also exploit the quadratic speedup of Grover’s algorithm),
it seems possible to retain some of the efficiency gap between the honest parties and
the adversary. Setting T = S2 in the description of Merkle’s protocol from Section 1,
honest quantum parties can run in time O(T ) whereas a quantum adversary needs to
run in time Ω(T 3/2). The optimality of this gap, as well as the possibility of basing it
on (quantum) one-way functions, remain to be further studied.

Acknowledgement. We thank the anonymous referees for helpful suggestions and
comments.
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Abstract. We show that if a language L has a 4-round, black-box, com-
putational zero-knowledge proof system with negligible soundness error,
then L̄ ∈ MA. Assuming the polynomial hierarchy does not collapse, this
means in particular that NP-complete languages do not have 4-round
zero-knowledge proofs (at least with respect to black-box simulation).

1 Introduction

A zero-knowledge proof system [23] for a language L is a protocol that enables
a prover P to convince a polynomial-time verifier V that a given instance x is
indeed a member of L. Roughly speaking, the guarantees provided are:

Completeness: If x ∈ L then the honest prover P will convince the honest
verifier V to accept, except possibly with some small probability. If P always
convinces V to accept when x ∈ L then we say the proof system has perfect
completeness.

Soundness: If x �∈ L a cheating prover P∗ will be unable to falsely convince
the honest verifier that x is in L, except with some small probability known
as the soundness error.

Zero knowledge: When x ∈ L and the prover is honest, even a malicious
verifier V∗ “learns nothing” beyond the fact that x ∈ L.

There are various ways of formalizing the above properties. In this paper, we are
interested in the case when the soundness property holds against all-powerful
provers — i.e., we focus on proofs rather than arguments [13] — and we are in-
terested in proof systems with negligible soundness error. For the proof system
to be non-trivial, the completeness error should not be too large; we will con-
sider both the case of perfect completeness as well as the case when, for x ∈ L,
the honest verifier accepts with some noticeable (i.e., inverse polynomial) prob-
ability. Finally, we focus on the case of computational zero knowledge (CZK)
where, informally, the requirement is that a non-uniform polynomial-time cheat-
ing verifier learns nothing from the interaction. (Formal definitions are provided
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in Section 2.) We let CZK denote the class of languages that admit a computa-
tional zero-knowledge proof system.

In this paper we study the round complexity of CZK proof systems, where
a round consists of a message sent from one party to the other and we assume
that the prover and the verifier speak in alternating rounds. We briefly survey
what is known in this regard:

Unconditional constructions. The only languages currently known to be
in CZK unconditionally are those that admit statistical zero-knowledge (SZK)
proofs [23] where, informally, even an all-powerful cheating verifier learns nothing
from its interaction with the prover; we denote the class of languages admitting
statistical zero-knowledge proofs by SZK. While it is not known1 whether all
languages in SZK have constant-round statistical zero-knowledge proof systems,
such proof systems are known for specific languages. In particular, graph non-
isomorphism [21] (cf. [21, Remark 12]) as well as languages related to various
number-theoretic problems [23,30,34,15,31,14] have 4-round SZK proof systems,
and graph isomorphism [7] has a 5-round SZK proof system.

Constructions based on one-way functions/permutations. Assuming the
existence of one-way functions, every language in NP has an ω(1)-round CZK
proof system where the honest prover runs in polynomial time given an NP-
witness for the statement being proved [21]. (Actually, this result holds for MA
as well.2) If no computational restrictions are placed on the honest prover, then
any language in AM has an ω(1)-round CZK proof system under the same as-
sumption, and any language in IP = PSPACE has a CZK proof system with
polynomially-many rounds [29,10].

Assuming the existence of one-way permutations, Feige and Shamir [17] show
a 4-round computational zero-knowledge argument for any language in NP. Their
techniques yield a 5-round CZK argument based on one-way functions, and this
was later improved to 4 rounds by Bellare et al. [6].

Constructions based on stronger assumptions. Assuming the existence
of a two-round statistically-hiding commitment scheme, there exists a 5-round
CZK proof system for any language in NP [19] (or even AM if the honest prover
can be unbounded. (More generally, given a constant-round statistically-hiding
commitment scheme, there exists a constant-round CZK proof system for any
language in AM.( Two-round statistically-hiding commitment schemes, in turn,
can be constructed based on a variety of number-theoretic assumptions [12,13,24]
or the existence of collision-resistant hash functions [16,28].

Although statistically-hiding commitment schemes can be constructed from
any one-way function [27], constructions of constant-round statistically-hiding
commitment schemes from one-way functions are unlikely to exist [26].

1 The constant-round proofs in [8], based on specific number-theoretic assumptions,
consider a weaker variant of SZK where the verifier is assumed to run in polynomial
time during its interaction with the prover. See also [35].

2 The class MA is defined in Section 2. AM denotes the class of languages having
constant-round Arthur-Merlin proofs.
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Lower bounds. Goldreich and Oren [22] show that 2-round CZK proofs exist
only for languages in BPP. (Their result applies to auxiliary-input zero knowledge
proofs, the type we will be concerned with here as well.) Extending this result,
Goldreich and Krawczyk [20] show that 3-round black-box CZK proofs exist only
for languages in BPP. (A definition of black-box CZK is given in Section 2.) Both
these results hold for arguments as well as proofs.

Pass [33] gives evidence of the difficulty of showing a black-box construction of
a constant-round CZK proof for NP based on any one-way function (even if non
black-box simulation is allowed). We refer to his paper for a precise statement
of this result.

1.1 Our Result

We show that 4-round black-box CZK proofs, even with imperfect completeness,
exist only for languages whose complement is in MA. This result is unconditional,
and holds independent of any cryptographic assumptions one might make. Other
than the fact that the bound holds only with respect to black-box simulation,
this result is essentially the best one could hope for:

– Under widely-believed number-theoretic assumptions, there exist 5-round
CZK proofs for all of NP [19]. Assuming the polynomial hierarchy does not
collapse [11], our result indicates that the round complexity in this case is
optimal.

– Our result applies only to proofs, but not arguments. Indeed, as noted ear-
lier, there exist 4-round CZK arguments for all of NP under relatively weak
assumptions [17,6].

– There exist unconditional constructions of 4-round CZK proofs for languages
believed to be outside of BPP, such as graph non-isomorphism [21].

We remark also that for the case of uniform zero-knowledge (i.e., protocols which
are zero knowledge for uniform polynomial-time verifiers), a 4-round protocol
for all of NP is possible [19] assuming the existence of 1-round statistically-
hiding commitment schemes (that are computationally binding for uniform ad-
versaries).

Besides shedding further light on the finer structure of the classCZK, our result
indicates that (black-box) 4-round CZK proofs for all of NP are impossible and
so the round complexity of the Goldreich-Kahan protocol [19] is optimal. Our
result also gives an “explanation” as to why the known SZK proof for graph
isomorphism requires five rounds [7] even though graph non-isomorphism has a
4-round SZK proof [21].

Limitations of black-box impossibility results. We prove our result only for
the case of black-box zero-knowledge protocols. The work of Barak [3], however,
shows that black-box impossibility results and lower bounds need not carry over
to the general case.3 Nevertheless, black-box bounds are useful insofar as they
3 Barak’s work gives a constant-round, public-coin, CZK argument for all of NP, some-

thing that was ruled out with respect to black-box simulation by Goldreich and
Krawczyk [20].
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rule out a particular approach for solving a problem. We remark further that
many of the known (natural) zero-knowledge proofs are in fact black-box zero
knowledge; in particular, the protocols of Barak [3] as well as those based on
“knowledge of exponent” assumptions [25,9] are zero-knowledge arguments. On
the other hand, non black-box zero-knowledge proofs using four or fewer rounds
are known to exist based on various non-standard assumptions [5,32].

Our current ability to prove general (as opposed to black-box) lower bounds
for zero-knowledge protocols is, unfortunately, relatively limited [22,5].

High-level overview of our technique. Our lower bound for 4-round proto-
cols is proved by extending the Goldreich-Krawczyk lower bound [20] for 3-round
protocols. (We assume familiarity with their proof in what follows.) To prove
their result, Goldreich and Krawczyk consider a cheating verifier V∗ who gener-
ates its message, in the second round of the protocol, using fresh random coins
that are determined as a function of the prover’s first message. On an intuitive
level this means that rewinding is useless because every time V ∗ is rewound, and
a different first message is sent by the simulator, it is as if the protocol execution
is being started again from scratch.

We use the same basic idea, now applied to the verifier’s message sent in the
third round of the protocol. A problem is that the verifier’s first-round mes-
sage may “commit” the verifier, in a computational sense, to only one possible
third-round message. (Roughly speaking, the verifier cannot be committed in an
information-theoretic sense because then an all-powerful prover could guess the
third-round message in advance based on the first-round message alone. This
is one reason why our result applies only to proofs, and not arguments.) For
this reason, we use some “all-powerful” entity to provide the verifier with col-
lisions, i.e., multiple third-round messages consistent with the same first-round
message. This idea was directly inspired by the recent work of Haitner et al. [26],
who use such collisions to prove lower bounds on the round complexity of black-
box constructions of interactive protocols in other settings. In their work, an
oracle provides collisions. Here, we do not have an oracle; instead, we have an
all-powerful prover that provides collisions as part of an interactive MA-proof
for some language. See Section 3 for further intuition, as well as the details of
the proof.

1.2 Outline of the Paper

Standard definitions, as well as some terminology specific to this paper, are
provided in Section 2. In Section 3 we prove our result for the case of CZK proof
systems with perfect completeness. Technical modifications necessary to deal
with the case of imperfect completeness are deferred to Section 4. We conclude
with some open questions in Section 5.

2 Definitions

Given interactive algorithms P and V , we let 〈P(x), V(y)〉 denote the interaction
of P , holding input x, with V , holding input y. We let 〈P(x), V(y)〉 = 1 denote
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the event that V outputs 1 in the indicated interaction, where an output of “1” is
interpreted as “accept” and an output of “0” is interpreted as “reject”. We now
give the standard definition of an interactive proof system [23] for a language L.

Definition 1. Interactive algorithms P , V form an interactive proof system for a
language L if V runs in probabilistic polynomial time and there exist non-negative
functions c, s such that:

– For all x ∈ L, it holds that Pr[〈P(x), V(x)〉 = 1] ≥ c(|x|). (Note that we do
not require P to run in polynomial time.)

– For all x �∈ L and any P∗ we have Pr[〈P∗, V(x)〉 = 1] ≤ s(|x|).
– There exists a polynomial p such that c(|x|) ≥ s(|x|) + 1/p(|x|).

We call c the acceptance probability, and s the soundness error. If c(|x|) = 1 for
all x, we say the proof system has perfect completeness. If s is negligible, we say
the proof system has negligible soundness error. ♦

We will only consider zero-knowledge proof systems having negligible soundness
error.

A round of an interactive proof system consists of a message sent from one
party to the other, and we assume that the prover and the verifier speak in
alternating rounds. Following [2], we let MA denote the class of languages having
a 1-round proof system and in this case refer to the prover as Merlin and the
verifier as Arthur ; that is:

Definition 2. L ∈ MA if there exists a probabilistic polynomial-time verifier V,
a non-negative function s, and a polynomial p such that the following hold for
all sufficiently-long x:

– If x ∈ L then there exists a string w (that can be sent by Merlin) such that

Pr[V(x, w) = 1] ≥ s(|x|) + 1/p(|x|).

– If x �∈ L then for all w (sent by a cheating Merlin) it holds that

Pr[V(x, w) = 1] ≤ s(|x|).
♦

In fact, it is known that an equivalent definition is obtained even if we require
perfect completeness and negligible soundness error.

2.1 Zero Knowledge Proof Systems

A distribution ensemble {X(a)}a∈{0,1}∗ is an infinite sequence of probability
distributions, where a distribution X(a) is associated with each value of a. Two
distribution ensembles X and Y are computationally indistinguishable if for all
polynomial-time algorithms D, there exists a negligible function μ such that for
every a we have

∣
∣Pr[D(X(a), a) = 1] − Pr[D(Y (a), a) = 1]

∣
∣ ≤ μ(|a|).
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(We do not need to consider non-uniform distinguishers here since non-uniformity
can be incorporated via the auxiliary input that we will provide to the cheating
verifier, below.)

Given interactive algorithms P , V∗, we let transV∗〈P(x), V∗(y)〉 denote the
transcript of the indicated interaction; for convenience, this includes both mes-
sages of the prover as well as those of the verifier. (We remark that we do not
need to consider the entire view of V∗ since we will restrict to deterministic
verifiers, as justified below, and the input y of V∗ will be provided to the distin-
guisher as per our definition of computational indistinguishability, above.) We
now review the standard definitions for computational zero-knowledge proofs.

Definition 3. An interactive proof system P , V for a language L is said to be
a computational zero-knowledge proof system if for any probabilistic polynomial-
time algorithm V∗, there exists an expected polynomial-time simulator S such
that the following distribution ensembles are computationally indistinguishable:

{transV∗〈P(x), V∗(x, z)〉}x∈L,z∈{0,1}∗ and {S(x, z)}x∈L,z∈{0,1}∗ .

♦

The above definition incorporates an auxiliary input z provided to V∗, and we
may therefore restrict our consideration to verifiers V∗ that are deterministic.
Note also that we allow simulation in expected polynomial time; this makes
our results stronger. (Also, constant-round, black-box CZK proofs with strict
polynomial-time simulation are already ruled out by Barak and Lindell [4].)

A computational zero-knowledge proof system (P , V) is black-box zero knowl-
edge if there exists a “universal” simulator that takes oracle access to the cheat-
ing verifier V∗. That is:

Definition 4. A computational zero-knowledge proof system P , V is black-box
zero-knowledge if there exists an expected polynomial-time oracle machine Sim
(the black-box simulator) such that for any probabilistic polynomial-time algo-
rithm V∗ the following distribution ensembles are computationally indistinguish-
able:

{transV∗〈P(x), V∗(x, z)〉}x∈L,z∈{0,1}∗ and
{
SimV

∗(x,z)(x)
}

x∈L,z∈{0,1}∗
.

♦

We denote by bbCZK(r) the class of languages that have r-round, black-box,
computational zero-knowledge proof systems with negligible soundness error.

Terminology and simplifying assumptions. We will be concerned with 4-
round CZK proof systems, where (without loss of generality) the verifier sends
the first message and the prover sends the final message. We use α, β, γ, δ to
denote the first, second, third, and fourth messages, respectively. We let Px

(resp., Vx) denote the honest prover (resp., honest verifier) algorithm when the
common input is x.
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We let α = Vx(r) denote the first message sent by Vx when its random coins
are fixed to r, and let γ = Vx(α, β; r) denote the third message sent by Vx in
this case. Finally, Vx(α, β, γ, δ; r) is a bit denoting whether the verifier accepts
(i.e., outputs 1) or rejects. We say that (α, β, γ, δ, r) is an accepting transcript
for a given x if Vx(α, β, γ, δ; r) = 1. Note that we do not require the verifier’s
decision to depend on the actual transcript alone, but allow its decision to also
possibly depend on its random coins.

Without loss of generality, we make a number of simplifying assumptions
about the behavior of black-box simulator Sim. The first query of Sim to V∗ will
simply be a “prompt” query to which V∗ responds with α. Subsequent queries
by Sim are all of the form (α, β) (for some β of Sim’s choice), to which V∗
will respond with some γ. (We can assume Sim makes no queries of the form
(α, β, γ, δ) since V∗ can simply refuse to respond to such queries.) We assume Sim
makes a given query only once. Finally, if the simulator outputs the transcript
(α′, β, γ, δ) we assume that α′ = α, and that the simulator previously queried
(α, β) to V∗ and received response γ.

3 CZK Proof Systems with Perfect Completeness

We now state our main result:

Theorem 1. bbCZK(4) ⊆ coMA.

In this section we prove this result in the easier case when the proof system in
question has perfect completeness; we handle the case of imperfect completeness
in the following section.

As intuition for the proof, consider first the case of a malicious verifier V̂ who
acts in the following way: it sends an initial message α, and then in response
to the prover’s second message β it chooses a random message γ consistent
with α. (For now, we do not worry about the fact that this does not necessarily
represent a feasible polynomial-time strategy.) Formally, if we let Rα denote
the set of random coins consistent with α (i.e., r ∈ Rα implies Vx(r) = α),
then in response to β the malicious verifier chooses a random r ∈ Rα and
computes γ = Vx(α, β; r). Intuitively, it will be difficult to simulate an accepting
transcript for such a verifier since each time the simulator “rewinds” V̂ it will
be given a message γ consistent with a different set of random coins. In fact,
we can prove that if x �∈ L then the simulator will not be able to simulate
an accepting transcript for such a verifier, since the ability to do so with non-
negligible probability could be translated into the ability to violate the soundness
condition of the proof system with non-negligible probability. (A proof of this
fact goes along similar lines as the proof in [20].)

On the other hand, consider the case when x ∈ L. From the perspective of
the honest prover, the behavior of V̂ is identical to that of the honest verifier,
and so the honest prover’s interaction with V̂ leads to an accepting transcript
with probability 1. We would like to claim that the zero-knowledge condition
implies that Sim simulates an accepting transcript for such a verifier with high
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probability. Unfortunately, V̂ as described above may not run in polynomial
time, whereas simulation is only guaranteed for polynomial-time verifiers.

It is possible, however, to obtain a polynomial-time cheating verifier with
the desired behavior by providing the verifier as auxiliary input a sequence of
sufficiently-many coins r1, . . . , rs that are all consistent with the same first mes-
sage α. Specifically, consider the verifier V∗ defined as follows: given auxiliary
input r1, . . . , rs (all consistent with the same first message α) and a poly-wise
independent hash function h, send α as the first message. In response to the
prover’s second message β, compute i = h(β) and use ri to compute the next
message γ = Vx(α, β; ri). Note that if r1, . . . , rs are chosen at random (subject
to the constraint that they are all mutually consistent) then the behavior of V∗
is identical to the behavior of V̂ as far as the honest prover is concerned. Since
V∗ runs in polynomial time, we are now able to argue that Sim simulates an
accepting transcript for V∗ with high probability when x ∈ L. Furthermore, it
is still possible to show (using a slightly more complicated argument) that, with
overwhelming probability, Sim fails to simulate an accepting transcript for this
verifier whenever x �∈ L.

Based on the above, we obtain an MA proof system for L̄: Merlin sends Arthur
a sequence r1, . . . , rs of random coins that are all consistent with the same first
message α, and Arthur simulates an execution of SimV

∗
(x). If this does not

result in an accepting transcript then Arthur accepts, while if it does lead to an
accepting transcript then Arthur rejects.

We now formalize the above intuition and show how to handle various techni-
calities that arise. Fix L ∈ bbCZK(4). This means that, for this language, there
exists a prover P , a verifier V , and a black-box simulator Sim satisfying Defini-
tions 1–4 (except that, in this section, we are assuming perfect completeness).
Assume without loss of generality that the second message of the protocol always
has length m(·), and let �(·) denote the number of random coins used by V . Let
T (·) denote an upper-bound on the expected running time of Sim.

Consider the following MA proof system for the language L̄, where Merlin
(i.e., the prover) and Arthur (i.e., the verifier) share in advance an input x of
length n:

Notation: Let � = �(n), m = m(n), and T = T (n). Set s = 50 · T 2; note that s
is polynomial in n.

Merlin’s message: Merlin sends a sequence of s coins r1, . . . , rs ∈ {0, 1}�. (For
the honest Merlin, these are all consistent with the same first message α.)

Arthur’s actions: Arthur proceeds as follows:

1. Set α = Vx(r1). Check that α = Vx(ri) for all 1 < i ≤ s, i.e., that all the
random coins are consistent with the same first message α. If not, reject;
otherwise, go to the next step.

2. Choose a random 5T -wise independent hash function h : {0, 1}m →{1, . . . , s}.
Construct the following deterministic verifier V∗:
(a) Send first message α to the prover.
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(b) Upon receiving message β from the prover, compute i = h(β) and send
the message γ = Vx(α, β; ri) to the prover.

3. Run SimV
∗
(x) for at most 5T steps using uniformly-chosen random coins

for Sim. If Sim does not output an accepting transcript within this time
bound, output “accept”. Otherwise, output “reject”. (Formally, output “re-
ject” iff Sim outputs (α, β, γ, δ), within the allotted time bound, such that
Vx(α, β, γ, δ; rh(β)) = 1.)

The following claims show that the above is a valid MA-protocol for L̄, thus
proving Theorem 1 for the case of protocols having perfect completeness.

Claim 1. For any x �∈ L̄ sufficiently long and for any message r1, . . . , rs sent
by Merlin, the probability that Arthur accepts is at most 2/5.

Proof. Fix some r1, . . . , rs sent by Merlin. Assume Vx(ri) = Vx(rj) for all 1 ≤
i, j ≤ s since, if not, Arthur rejects immediately. When x �∈ L̄ we have x ∈ L
and, by perfect completeness, the interaction of the honest prover Px with V∗
would result in an accepting transcript with probability 1. (To see this, note
that an execution of V∗ is equivalent to an execution of the honest verifier Vx

using random coins rh(β).) The zero-knowledge condition thus implies that, for x

sufficiently long, SimV
∗
(x) outputs an accepting conversation with probability at

least 4/5. It follows that even the truncated version of Sim, where its execution
is halted after 5T steps, outputs an accepting conversation with probability at
least 3/5. Arthur thus accepts with probability at most 2/5, as claimed.

Claim 2. For any x ∈ L̄ sufficiently long, there exists a message r1, . . . , rs such
that Arthur will accept with probability at least 1/2.

Proof. Fix x ∈ L̄. We show a randomized strategy that allows Merlin to convince
Arthur with probability at least 1/2; this implies the claim.

Merlin proceeds as follows: choose random r1 ∈ {0, 1}� and compute α =
Vx(r1). Define Rα

def= {r | Vx(r) = α}; i.e., Rα is the set of coins for the honest
verifier consistent with the first message α. Then choose r2, . . . , rs uniformly
from Rα. (These need not be distinct.) Send r1, . . . , rs to Arthur. Let p∗ denote
the probability that Arthur rejects. Note that this is exactly the probability that
SimV

∗
(x) outputs an accepting transcript within the allotted time bound.

We upper-bound p∗ by considering a slightly different experiment involving
an all-powerful cheating prover P∗ attempting to falsely convince the honest
verifier Vx that x ∈ L. The strategy of P∗ is defined as follows:

1. Receive message α from the verifier. Let Rα
def= {r | Vx(r) = α}.

2. Run Sim using uniformly-chosen random coins, for at most 5T steps. Sim
expects to be given oracle access to a (cheating) verifier, and P∗ simulates
the actions of such a verifier as follows:
(a) Choose a random index q ← {1, . . . , 5T }.
(b) Send α as the verifier’s first message.
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(c) In response to the ith simulator message (α, βi) for i �= q, choose a
random ri ← Rα, compute γi = Vx(α, βi; ri), and give γi to Sim. (Recall
we assume that Sim never makes the same query twice.)

(d) In response to the qth simulator message (α, βq), send βq to the (external)
honest verifier, and receive in return a message γq. Give γq to Sim.

3. If Sim outputs a conversation (α, β, γ, δ) with β = βq within the allotted
time bound, then send δ to the (external) honest verifier.

In the above experiment, each “query” βi of Sim is answered by using a random
element ri ← Rα to compute the response γi = Vx(α, βi; ri). This is immediate
for i �= q, but is true also for i = q since, from the perspective of P∗ and Sim,
the coins being used by the external, honest verifier are uniformly-distributed
in Rα. Let p̂ denote the probability that Sim outputs an accepting transcript in
this case, within the allotted time bound. Since Sim makes at most 5T queries
to its oracle in the above experiment, P∗ convinces the honest verifier to accept
with probability p̂/5T . Since the proof system has negligible soundness error we
have that, for x sufficiently long, p̂ ≤ 1/4.

We return now to consideration of p∗. When Arthur runs SimV
∗
(x), he does

so by first choosing a random h and then answering the simulator’s ith query
(α, βi) by using rh(βi) to compute the response γi = Vx(α, βi; rh(βi)). Since Mer-
lin chooses each of the ri uniformly from Rα, these responses are distributed
identically to the above experiment unless there is a collision in h; that is, unless
there exist some βi �= βj with h(βi) = h(βj). Because h is chosen in a 5T -wise
independent fashion and Sim is restricted to making only 5T queries, a stan-
dard birthday bound shows that the probability of such a collision is at most
(5T )2/2s = 1/4. Conditioned on a collision not occurring, the probability that
SimV

∗
(x) outputs an accepting conversation is exactly p̂ ≤ 1/4. We conclude

that p∗ ≤ 1/4 + 1/4 = 1/2, and so Arthur rejects with probability at most 1/2
(and accepts with probability at least 1/2).

4 Handling Imperfect Completeness

In the previous section we assumed perfect completeness, and in fact this is
essential for the MA proof system given there. To see the problem, assume P , V
is such that the honest verifier immediately rejects whenever its random coins
are all 0. Then a cheating Merlin can send r1 = · · · = rs = 0� and this will cause
Arthur to accept with probability 1 even when x �∈ L̄.

In the modified proof system, we have Arthur “verify” that Merlin sends “rep-
resentative” random coins r1, . . . , rs by checking that SimVx(ri)(x), for a random
element ri in the set sent by Merlin, outputs an accepting transcript with “high”
probability. Then Arthur checks whether SimV

∗(x;r1,...,rs,h)(x) fails to output an
accepting transcript, as in the previous section. Unfortunately, this may make
the honest Merlin’s job harder when x ∈ L̄ since in this case SimVx(ri)(x) might
(legitimately) never output an accepting transcript. But Arthur can easily check
for this by running SimVx(r)(x) using random coins r that it chooses itself.
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We remark that if we were content to show inclusion in AM (rather than MA),
the proof could be simplified somewhat.

Before presenting the modified proof system, we introduce some notation. For
a given randomized experiment Expt that can be run in polynomial time, we let
estimateε(Prr[Expt]) denote a procedure that outputs an estimate to the given
probability (taken over randomness r) to within an additive factor of ε, except
with probability at most ε. That is:

Pr
[ ∣
∣estimateε(Prr[Expt = 1]) − Prr[Expt = 1]

∣
∣ ≥ ε

]
≤ ε.

This can be done in the standard way using Θ(ε−2 log 1
ε ) independent executions

of Expt. The important thing to note is that when ε is noticeable, this estimation
can be done in polynomial time. In the experiments we will be considering, some
variables will be fixed as part of the experiment and others will be chosen at
random; we will always subscript those variables being chosen at random (as
done above with the subscripted r).

Below, we let V∗ denote the same malicious verifier as in the previous section.
Specifically, on input x and auxiliary input z = r1, . . . , rs, h, where each ri

represents coins for the honest verifier and h is a hash function, V∗ acts as
follows:

1. Send first message α = Vx(r1) to the prover.
2. Upon receiving message β from the prover, compute i = h(β) and send the

message γ = Vx(α, β; ri) to the prover.
3. Receive final message δ from the prover.

We say an interaction of Px with V∗(x, z) results in an accepting transcript if
(α, β, γ, δ, ri) is an accepting transcript.

Let L ∈ bbCZK(4), and assume L has a 4-round CZK proof system P , V
with acceptance probability c(·) where c is noticeable (i.e., c = Ω(1/p) for some
polynomial p). Let �, m, and T be as in the previous section. Once again, Merlin
and Arthur share in advance an input x of length n. The MA proof system for
the language L̄ follows:

Notation: Let c = c(n), � = �(n), m = m(n), and T = T (n). Assume n is large
enough so that c > 0. Set ε = c/20, and s = 4T 2ε−3. (Note that ε is noticeable,
and s is polynomial.) Let S̃im denote an execution of Sim for at most 2T/ε steps.

Merlin’s message: Merlin sends a sequence of s coins r1, . . . , rs ∈ {0, 1}�.

Arthur’s actions: Arthur proceeds as follows:

1. Compute

p1 = estimateε

(
Prr′,r

[
S̃im
Vx(r′)

(x; r) outputs an accepting transcript
])

.

If p1 < c − 2ε then accept; otherwise, continue to the next step.
2. Set α = Vx(r1). Check that α = Vx(ri) for all 1 < i ≤ s. If not, reject;

otherwise, continue to the next step.
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3. Choose i ← {1, . . . , s} and coins r and run S̃im
Vx(ri)

(x; r). If this does not
result in an accepting transcript, reject; otherwise, continue to the next step.

4. Let H denote a family of 2T/ε-wise independent hash functions h : {0, 1}m→
{1, . . . , s}. Compute

p2 =

estimateε

(
Prh←H,r

[
S̃im
V∗(x;r,h)

(x; r) outputs an accepting transcript
])

,

where r = (r1, . . . , rs). If p2 < c − 10ε accept; else reject.

(It should be clear that we have not attempted to optimize any of the param-
eters of the above proof system.) We now prove claims analogous to those in the
previous section.

Claim 3. For any x �∈ L̄ sufficiently long and for any message r1, . . . , rs sent
by Merlin, the probability that Arthur accepts is at most c − 6ε.

Proof. If x �∈ L̄ then x ∈ L and so the interaction of Px with Vx results in an
accepting transcript with probability at least c. The zero-knowledge condition
implies that, for x sufficiently long,

Prr′,r[S̃im
Vx(r′)

(x; r) outputs an accepting transcript] ≥ c − ε.

This means that, except with probability at most ε, the value p1 computed by
Arthur satisfies p1 ≥ c−2ε; thus, Arthur accepts in the first step with probability
at most ε.

Fix some r = (r1, . . . , rs) sent by Merlin. We may assume Vx(ri) = Vx(rj) for
all 1 ≤ i, j ≤ s since, if not, Arthur rejects in the second step. Define

p̂ = Pri←{1,...,s},r

[
S̃im
Vx(ri)

(x; r) outputs an accepting transcript
]
.

There are two cases to consider:

Case 1: If p̂ < c − 7ε, then the probability that Arthur does not reject in step 3
is at most c − 7ε.

Case 2: On the other hand, if p̂ ≥ c − 7ε then (again using the zero-knowledge
property)

Pri←{1,...,s},r [〈Px(r), Vx(ri)〉 = 1] ≥ c − 8ε.

By definition of V∗ it holds that

Prh←H,r [〈Px(r), V∗(x, r, h)〉 results in an accepting transcript]
= Pri←{1,...,s},r [〈Px(r), Vx(ri)〉 = 1].

Thus, relying on the zero-knowledge property once again,

Prh←H,r

[
S̃im
V∗(x;r1,...,rs,h)

(x; r) outputs an accepting transcript
]

≥ c − 9ε.
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So, except with probability at most ε, the value p2 computed by Arthur satisfies
p2 ≥ c − 10ε; thus, Arthur accepts in the last step with probability at most ε.

Combining the above, we see that Arthur accepts with probability at most
ε + max{c − 7ε, ε}, which is at most c − 6ε.

Claim 4. For any x ∈ L̄ sufficiently long, there exists a message r1, . . . , rs such
that Arthur will accept with probability at least c − 5ε.

Proof. Fix x ∈ L̄. Define

p̂ = Prr′,r

[
S̃im
Vx(r′)

(x; r) outputs an accepting transcript
]
.

There are two cases to consider:

Case 1: If p̂ < c − 3ε then, except with probability at most ε, the value p1
computed by Arthur satisfies p1 < c − 2ε; thus, Arthur accepts in the first step
with probability at least 1 − ε ≥ c − 5ε.

Case 2: On the other hand, say p̂ ≥ c − 3ε. As in the proof of Claim 2, Merlin
proceeds as follows: choose random r1 ∈ {0, 1}� and compute α = Vx(r1). Let
Rα

def= {r | Vx(r) = α}, and choose r2, . . . , rs uniformly from Rα. Send r =
(r1, . . . , rs) to Arthur. We show that Arthur will accept with high probability.

Arthur can reject in either step 3 or step 4. We upper-bound the probability
that Arthur rejects in either of these steps individually, and then apply a union
bound to upper-bound the total probability that Arthur rejects.

Each ri, taken individually, is uniformly distributed in {0, 1}�. Thus, in step 3,
choosing a random i ∈ {1, . . . , s} and using coins ri is equivalent to choosing
uniformly-random coins for Vx. It follows that the probability that Arthur rejects
in step 3 is exactly equal to 1 − p̂ ≤ 1 − c + 3ε.

We proceed to analyze step 4. As in the proof of Claim 2, say a collision occurs

in an execution of S̃im
V∗(x;r1,...,rs,h)

(x; r) if the simulator makes two distinct
queries (α, βi) and (α, βj) for which h(βi) = h(βj). Let coll denote such an
event. As before, we have

Pr
r,h,r

[
S̃im
V∗(x;r,h)

(x; r) outputs an accepting transcript
]

≤ (1)

Pr
r,h,r

[coll] + Pr
r,h,r

[
S̃im
V∗(x;r,h)

(x; r) outputs an accepting transcript | coll
]

,

where r = (r1, . . . , rs) are chosen by Merlin as described above (and not uni-
formly and independently at random). The probability of a collision is indepen-
dent of r1, . . . , rs, and is upper-bounded by Pr[coll] ≤ (2T/ε)2

2s = ε
2 . As in the

proof of Claim 2, for sufficiently-long x it holds that

Prr,h,r

[
S̃im
V∗(x;r,h)

(x; r) outputs an accepting transcript | coll
]

≤ ε2/2;
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this means that, except with probability at most ε, the r1, . . . , rs chosen by
Merlin satisfy

Prh,r

[
S̃im
V∗(x;r1,...,rs,h)

(x; r) outputs an accepting transcript | coll
]

≤ ε/2.

Using Equation (1), we see that except with probability at most ε, the r1, . . . , rs

chosen by Merlin satisfy

Prh,r

[
S̃im
V∗(x;r1,...,rs,h)

(x; r) outputs an accepting transcript
]

≤ ε < c − 11ε.

Assuming the above to be the case, Arthur will reject in step 4 with probability at
most ε. Taken together, this means that Arthur rejects in step 4 with probability
at most 2ε.

Summing the probabilities of rejection in steps 3 and 4, we see that, overall,
Arthur rejects with probability at most 1 − c + 5ε, or accepts with probability
at least c − 5ε.

5 Future Directions

Coupled with the obvious fact that bbCZK(4) ⊆ AM, this work shows that
bbCZK(4) ⊆ AM ∩ coMA. Due to the similarity with the fact that SZK ⊆
AM ∩ coAM [18,1], as well as the fact that the only languages known to be
in 4CZK (under any assumption) are also in SZK, it is natural to conjecture that
bbCZK(4) ⊆ SZK.

Another interesting direction would be to show any broad positive results for
4CZK: say, along the lines of proving that NP ∩ coNP ⊆ 4CZK.

In a slightly different direction, suggested by Hoeteck Wee: can a tighter bound
be shown for languages L having 4-round zero-knowledge proofs of knowledge
(beyond the fact that L ∈ NP)?

Finally, is it possible to apply the techniques from [26] to show that there are
no black-box constructions of constant-round (black-box) zero-knowledge proofs
for NP?
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Abstract. We study perfect zero-knowledge proofs (PZK). Unlike statistical
zero-knowledge, where many fundamental questions have been answered, vir-
tually nothing is known about these proofs.

We consider reductions that yield hard and complete problems in the statisti-
cal setting. The issue with these reductions is that they introduce errors into the
simulation, and therefore they do not yield analogous problems in the perfect set-
ting. We overcome this issue using an error shifting technique. This technique
allows us to remove the error from the simulation. Consequently, we obtain the
first complete problem for the class of problems possessing non-interactive per-
fect zero-knowledge proofs (NIPZK), and the first hard problem for the class of
problems possessing public-coin PZK proofs.

We get the following applications. Using the error shifting technique, we show
that the notion of zero-knowledge where the simulator is allowed to fail is equiv-
alent to the one where it is not allowed to fail. Using our complete problem,
we show that under certain restrictions NIPZK is closed under the OR opera-
tor. Using our hard problem, we show how a constant-round, perfectly hiding
instance-dependent commitment may be obtained (this would collapse the round
complexity of public-coin PZK proofs to a constant).

Keywords: cryptography, non-interactive, perfect zero-knowledge, perfect sim-
ulation, error shifting, complete problems.

1 Introduction

Zero-knowledge protocols allow one party (the prover) to prove an assertion to another
party (the verifier), yet without revealing anything beyond the validity of the asser-
tion [18,5]. These protocols protect the privacy of the prover, which makes them very
useful to cryptography. Zero-knowledge protocols can guarantee three levels of privacy:
perfect, statistical, and computational. This is formulated using the notion of simula-
tion. When the simulation error is zero, the protocol is perfect zero-knowledge. This
means that the verifier learns absolutely nothing from the prover. When the simulation
error is negligible, the protocol is either statistical zero-knowledge or computational
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zero-knowledge. This means that the prover leaks a little amount of information to the
verifier.

In this paper we focus on perfect zero-knowledge protocols. These protocols are in-
teresting from a cryptographic perspective because, unlike statistical or computational
zero-knowledge protocols, they provide the highest level of privacy to the prover. Such
protocols exist for a variety of well known languages, such as GRAPH-ISOMORPHISM,
DISCRETE-LOG, variants of QUADRATIC-RESIDUOUSITY, and more ([31,13,6,26,21]).
The fact that the complexity of these languages is an open question also makes perfect
zero-knowledge protocols interesting from a complexity theoretic perspective.

Unfortunately, working with perfect zero-knowledge protocols is difficult. This is
so because they do not allow any error in the simulation. In contrast, statistical zero-
knowledge protocols allow a small error in the simulation. This means that in the sta-
tistical setting we can use a variety of techniques, even if they introduce a small error
into the simulation. Indeed, such techniques were used to prove many fundamental re-
sults about statistical zero-knowledge proofs (SZK). These results include complete
problems, equivalence between private-coin and public-coin, equivalence between hon-
est and malicious verifier, and much more ([24,26,14,16,32,23]). These results do not
apply to the perfect setting because they use techniques that introduce error into the
simulation, and such techniques cannot be used in the perfect setting. Consequently,
virtually nothing is known about perfect zero-knowledge proofs (PZK).

1.1 Our Results

In this paper we consider reductions that yield hard and complete problems in the sta-
tistical setting. The issue with these reductions is that they introduce errors into the
simulation, and therefore they do not yield analogous problems in the perfect setting.

Our goal is to overcome this issue. This is important because if we understand
why techniques from the statistical setting introduce error into the simulation, then we
might be able to fix these techniques, and then apply them to the perfect setting. This
will enable us to translate the results from statistical zero-knowledge to perfect zero-
knowledge. In addition, results from the statistical setting are proved using the tool of
complete and hard problems. Thus, to be able to prove these results in the perfect setting
it is important that we obtain complete and hard problems for the perfect setting.

We remark that we are not the first to observe the fact that reductions from the sta-
tistical setting do not apply to the perfect setting. Specifically, in the case of hard prob-
lems, [26] showed that the reduction could eliminate the error using approximation
techniques. However, this solution does not yield a hard problem in the perfect setting
because it only applies in certain cases (for example, when the underlying problem has
perfect completeness).

In this paper we modify the reductions from the statistical setting so that they yield
hard and complete problems in the perfect setting. To do this we use what we call the
error shifting technique. What is new about this technique is that instead of dealing
with the error in the reduction itself, we shift it forward to the protocol. Intuitively, our
reduction isolates the error that the underlying problem incurs, and shifts it forward to
the protocol, where it is no longer a simulation error. Consequently, we obtain complete
and hard problems for the perfect setting. We remark that the error shifting technique
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is also useful in other contexts (e.g., in Section 4 we use it to show that the notion of
zero-knowledge where the simulator is allowed to fail is equivalent to the one where it
is not allowed to fail).

The error shifting technique applies to reductions in both the interactive and the non-
interactive models. In the non-interactive model we apply it to the reduction of [30,15],
thus obtaining the first complete problem for the class of problems possessing non-
interactive perfect zero-knowledge proofs (NIPZK).

Theorem 1. The problem UNIFORM (UN) is complete for NIPZK.

Informally, instances of UNIFORM are circuits that have an additional output bit. Ig-
noring this bit, we can think of YES instances of UN as circuits that represent the
uniform distribution, whereas NO instance are circuits that hit only a small fraction of
their range. This problem is identical to the NISZK-complete problem STATISTICAL

DISTANCE FROM UNIFORM (SDU) [15], except that YES instances of UNIFORM rep-
resent the uniform distribution, whereas YES instances of SDU represent a distribution
that is only “close” to uniform. This difference is natural because it reflects the differ-
ence between perfect and statistical simulation.

In the interactive model we obtain a similar result. That is, we apply the error shift-
ing technique to the reduction of [26], thus obtaining a hard problem for the class of
problems possessing public-coin HVPZK proofs. Instances of our hard problem are
triplets of circuits. Again, ignoring one of these circuits, our problem is a variant of
STATISTICAL-DISTANCE (SD) [26]. That is, we can think of YES instances of our
problem as pairs of circuits representing the same distribution, whereas instances of the
reduction of [26] are circuits representing “close” distributions.

Theorem 2 (informal). Essentially, SD1/2,0 is hard for public-coin-HVPZK.

To demonstrate the usefulness of our NIPZK-complete problem we prove that under
certain restrictions NIPZK is closed under the OR operator. What is special about this
result is that even in statistical setting, where we have more techniques to work with, it is
not clear how to prove (or disprove) it.1 Also, we show how our hard problem may lead
to a constant-round, perfectly hiding instance-dependent commitment-scheme. Notice
that except for [21], who used the techniques of [8] to construct such a scheme for V -bit
protocols, all the known instance-dependent commitment-schemes are only statistically
hiding [33,23,22]. Thus, using our hard problem it might be possible to collapse the
round complexity of public-coin PZK proofs to a constant. These applications can be
found in Section 4.

1.2 Related Work

As we mentioned, virtually nothing is known about perfect zero-knowledge proofs. The
only exception is the result of [9], who showed a transformation from constant-round,
public-coin HVPZK proofs to ones that are PZK. Also, a HVPZK-complete problem
was given by [26], but it is unnatural, and defined in terms of the class itself. We remark

1 [30] claimed that NISZK is closed under the OR operator, but this claim has been retracted.
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that perfect zero-knowledge arguments for NP languages have been constructed under
various unproven assumptions (e.g., [19,7]), but we are interested in the unconditional
study of perfect zero-knowledge proofs.

Variants of QUADRATIC-RESIDUOUSITY and QUADRATIC-NONRESIDUOUSITY

were shown to to be in NIPZK by [6,27]. Bellare and Rogaway [3] showed that a
variant of GRAPH-ISOMORPHISM is in NIPZK. They also showed basic results about
NIPZK, but their notion of zero-knowledge allows simulation in expected (as opposed
to strict) polynomial-time. This notion is disadvantageous, especially when non-
interactive protocols are executed as sub-protocols. Other aspects of NIPZK were stud-
ied in [27,28,29], but they apply to problems with special properties.

1.3 Organization

We use standard definitions, to be found in Appendix A. In Section 2 we present the
error shifting technique, and use it to obtain a NIPZK-complete problem. In Section 3
we apply this technique to the interactive setting, where we obtain a hard problem. In
Section 4 we show some applications of these results.

2 A Complete Problem for NIPZK

In this section we introduce the error shifting technique. Using this technique we mod-
ify the reduction of [15], hence obtaining a NIPZK-complete problem.

Starting with some background, we give the definition of STATISTICAL DISTANCE

FROM UNIFORM (SDU), the NISZK-complete problem of [15]. Instances of this prob-
lem are circuits. These circuits are treated as distributions, under the convention that
the input to the circuit is uniformly distributed. Specifically, YES instances are circuits
representing a distribution that is close to uniform, and NO instances are circuits repre-
senting a distribution that is far from uniform.

Definition 2.1. Define SDU def= 〈SDUY , SDUN 〉 as

SDUY = {X | Δ(X, Un) < 1/n} , and
SDUN = {X | Δ(X, Un) > 1 − 1/n} ,

where X is a circuit with n output bits, and Un is the uniform distribution on {0, 1}n.

We informally describe the reduction of [15] to SDU. This reduction originated from
the work of [30]. Given a NISZK problem Π, this reduction maps instances x of Π to
circuits X of SDU. The circuit uses the simulator S from the proof of Π. Specifically,
X executes S(x), and obtains a transcript. This transcript contains a simulated message
of the prover, and a simulated reference string. If the verifier accepts in this transcript,
then X outputs the simulated reference string. Otherwise, X outputs the all-zero string.
Intuitively, this reduction works because if x is a YES instance, then the simulated
reference string is almost uniformly distributed, and thus X is a YES instance of SDU.
Conversely, if x is a NO instance, then the verifier rejects on most reference strings, and
thus X is a NO instance of SDU.
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The issue with the reduction of [15]. When we apply the above reduction to NIPZK
problems, it is natural that we should get a NIPZK-complete problem whose instances
are circuits that represents the uniform distribution. This is so because the circuit X
outputs the simulated reference string, and when the simulation is perfect, this string is
uniformly distributed. Indeed, if we apply the above reduction to NIPZK problems that
have perfect completeness, then the verifier will accept, and thus we will get a circuit X
that represents the uniform distribution. However, if the underlying problem does not
have perfect completeness, then the distribution represented by X will be skewed. This
will cause problems later, when we try to construct a proof system and a simulator for
our complete problem. Hence, this reduction does not apply to NIPZK.

To overcome the above issue, instead of working only with the reduction to SDU,
our idea is to modify both the reduction and the proof system for SDU at the same time.

The Error Shifting Technique. In its most general form, the error shifting technique
shifts into the protocol errors that would otherwise become simulation errors. This de-
scription is a very loose, but we chose it because our technique can be applied in various
different contexts, and in each of these contexts it takes a different form. However, the
following application will clarify our technique.

� The first step of the error shifting technique is to identify where the simulation
error comes from, and then isolate it. In our case, the error comes from the reduction: if
the verifier rejects, then the circuit X does not represent the uniform distribution. Thus,
the error comes from the completeness error of the underlying problem. To separate
this error, we add an extra output bit to the circuit X . That is, X executes the simulator,
and it outputs the simulated reference string followed by an extra bit. This bit takes the
value 1 if the verifier accepts, and 0 if the verifier rejects.

� The second step of the error shifting technique is to shift the error forward, to
the completeness or the soundness error of the protocol. In our case, from the circuit X
to the protocol of our complete problem. This step is not trivial because we cannot just
use the protocol of [15] for SDU. Specifically, in this protocol the prover sends a string
r, and the verifier accepts if X(r) equals the reference string. If we use this idea in
our case, then we will get a simulation error. Thus, we modify this protocol by starting
with the simulator, and constructing the prover based on the simulator. Informally, the
simulator samples the circuit X , and the verifier accepts if the extra bit in this sample is
1. The prover simply mimics the simulator. This shows that the error was shifted from
X to the completeness error (of a new protocol).

The above reduction yields our NIPZK-complete problem UNIFORM. A formal de-
scription of the above reduction and our proof system is given in the next section.

2.1 A Complete Problem for NIPZK

In this section we formalize the intuition given in the previous section, thus proving our
first result.

Theorem 2.1. UNIFORM is NIPZK-complete.

We start with the definition of UNIFORM (UN). Recall that when we applied the error
shifting technique we got circuits X with an extra output bit. We use the convention
that n + 1 denotes the number of output bits of X . We need the following notation.
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– TX is the set of outputs of X that end with a 1. Formally, TX
def= {x|∃r X(r) = x,

and the suffix of x is 1}. As we shall see, the soundness and completeness properties
will imply that the size of TX is large for YES instances of UN, and small for NO
instances of UN.

– X ′ is the distribution on the first n bits that X outputs. That is, X ′ is obtained from
X by taking a random sample of X , and then outputting the first n bits. As we shall
see, the zero-knowledge property will imply that if X is a YES instance of UN,
then X ′ is the uniform distribution on {0, 1}n.

Now, letting X be a circuit with n + 1 output bit, we say that X is β-negative if
|TX | ≤ β · 2n. That is, TX is small, and contains at most β · 2n strings. We say that
X is α-positive if X ′ is the uniform distribution on {0, 1}n and Prx←X [x ∈ TX ] ≥ α.
This implies that TX is large, and contains at least α · 2n strings.

Definition 2.2. The problem UNIFORM is defined as UN def= 〈UNY, UNN〉, where

UNY = {X |X is 2/3 − positive} , and

UNN = {X |X is 1/3 − negative} .

To prove that UN is NIPZK-complete we first show that the reduction from the previous
section reduces every NIPZK problem to UN.

Lemma 2.1. UN is NIPZK-hard.

Proof. Let Π = 〈ΠY , ΠN〉 be a NIPZK problem. Fix a non-interactive protocol 〈P, V 〉
for Π with completeness and soundness errors 1/3. Let rI denote the common reference
string in 〈P, V 〉, and fix i such that |rI | = |x|i for any x ∈ ΠY ∪ ΠN. Fix a simulator S
for 〈P, V 〉. Since S is efficient, we can fix an efficient transformation t and an integer
� such that on input x ∈ ΠY ∪ ΠN the output of t(x) is a circuit S′ that executes S on
inputs x and randomness rS of length |x|�. That is, t(x) = S′, and on input a string rS

of length |x|� the output of S′(rS) is the output of S(x; rS).
We show that Π Karp reduces to UN. That is, we define a polynomial-time Turing

machine that on input x ∈ ΠY ∪ ΠN outputs a circuit X such that if x ∈ ΠY, then

X ∈ UNY, and if x ∈ ΠN, then X ∈ UNN. The circuit X : {0, 1}|x|
�

→ {0, 1}|x|
i+1

carries out the following computation.

– Let rS be the |x|�-bit input to X , and let S′ = t(x). Execute S′(rS), and obtain
S(x; rS) = 〈x, r′I , m

′〉.
– If V (x, r′I , m′) = accept, then output the string r′I1 (i.e., the concatenation of r′I

and 1). Otherwise, output r′I0.

Now we analyze our reduction. Let x ∈ ΠY , and let X be the output of the above
reduction on x. We show that X is 2/3-positive. Consider the distribution on the output
〈x, r′I , m

′〉 of S(x). Since S(x) and 〈P, V 〉(x) are identically distributed, r′I is uni-
formly distributed. Thus, X ′ (i.e., the distribution on the first |x|i output bits of X) is
uniformly distributed. It remains to show that Pr[X ∈ TX ] ≥ 2/3. This immediately
follows from the perfect zero-knowledge and completeness properties of 〈P, V 〉. That
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is, the output of S is identically distributed to 〈P, V 〉(x), and V accepts in 〈P, V 〉 with
probability at least 2/3.

Let x ∈ ΠN, and let X be the output of the above reduction on x. We show that X
is 1/3-negative. Assume towards contradiction that X is β-negative for some β > 1/3.
We define a prover P ∗ that behaves as follows on CRS rI . If rI1 ∈ TX , then there is an
input rS to X such that X(rS) = rI1. By the construction of X , there is randomness rS

for the simulator such that S(x; rS) = 〈x, rI , m
′〉, and V (x, rI , m

′) = 1. In this case
P ∗ sends rS to V . If rI1 /∈ TX , then P ∗ fails. Notice that P ∗ makes V accept on any rI

such that rI1 ∈ TX . Since |TX | > 2|x|
i

/3, and since rI is uniformly chosen in 〈P ∗, V 〉,
the probability that rI1 ∈ TX is strictly greater than 1/3. Thus, V accepts in 〈P ∗, V 〉(x)
with probability strictly greater than 1/3, and contradiction to the soundness error of
〈P, V 〉. Hence, X is 1/3-negative.

To prove Theorem 2.1 it remains to give a NIPZK proof for UN.

Lemma 2.2. UN has a NIPZK proof with a deterministic verifier.

Proof. We start with our non-interactive proof for UN. This proof is based on our sim-
ulator, which we describe later. On input X : {0, 1}� → {0, 1}n+1 and common ref-
erence string rI ∈ {0, 1}n the prover P picks z according to the distribution X such
that the n-bit prefix of z equals rI . Such a z exists because X ′ (i.e., the distribution on
the first n bits of X) is the uniform distribution when X ∈ UNY. The prover uniformly
picks r ∈ X−1(z), and sends r to the verifier V . The deterministic verifier accepts if
X(r) = rI1, and rejects otherwise. Our prover is based on the following simulator. Let
S be a probabilistic, polynomial-time Turing machine that on input X uniformly picks
r′ ∈ {0, 1}�, and computes z′ = X(r′). The simulator assigns the n bit prefix of z′ to
r′I (i.e., the simulated reference string), and outputs 〈X, r′I , r

′〉.
Let X ∈ ΠY. We show that S perfectly simulates 〈P, V 〉. Consider the distribution

S(X) on simulated transcripts 〈X, r′I , r
′〉, and the distribution 〈P, V 〉(X) on the view

〈X, rI , r〉 of V . Since X ′ is uniformly distributed over {0, 1}n, the string r′I obtained by
the simulator is uniformly distributed over {0, 1}n. Since rI is uniformly distributed,
r′I and rI are identically distributed. It remains to show that r and r′ are identically
distributed conditioned on rI = r′I . For each y ∈ {0, 1}n, we define By to be the set
of all strings r̂ for which the prefix of X(r̂) is y. Now, for any simulated reference
string r′I , the randomness r′ chosen by the simulator is uniformly distributed in Br′

I
.

Similarly, for any reference string rI the message of the prover is a string r chosen
uniformly from BrI . Hence, conditioned on rI = r′I , the strings r and r′ are identically
distributed. We conclude that S(X) and 〈P, V 〉(X) are identically distributed for any
X ∈ ΠY.

Turning our attention to the completeness property, we show that V accepts X
with probability at least 2/3. By the zero-knowledge property, the output 〈X, r′I , r

′〉
of S(X) is identically distributed to the view 〈X, rI , r〉 of V on X . Thus, it is enough
to show that when choosing a transcript 〈X, r′I , r

′〉 according to S(x) the probability
that V (X, r′I , r

′) = 1 is at least 2/3. Since S uniformly chooses r′, and since X is
2/3-positive, the probability that X(r) ∈ TX is at least 2/3. Thus, the probability that
the suffix of X(r) is 1 is at least 2/3. Hence, V accepts X with probability at least 2/3.
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The soundness property follows easily. Let X ∈ UNN. Since X is 1/3-negative,
|TX | ≤ 1/3 · 2n. Since rI is uniformly distributed, the probability that rI1 ∈ TX is at
most 1/3. Hence, if X ∈ UNN, then V accepts X with probability at most 1/3.

3 A Hard Problem for Public-Coin PZK Proofs

In this section we use the error shifting technique to modify the reduction of [26] for
public-coin HVSZK proofs. Hence, we obtain a hard problem for the class of problems
possessing public-coin HVPZK proofs (AM ∩ HVPZK). We start with motivation.

The reduction of [26] originated from the works of [11,1]. Informally, given a prob-
lem Π that has a public-coin HVSZK proof, this reduction maps instances x of Π to
pairs of circuits 〈X0, X1〉. The circuits X0 and X1 are statistically close when x is a
YES instance of Π, and statistically far when x is a NO instance of Π.

The issue with this reduction is that it does not apply to the perfect setting. Specifi-
cally, when we apply it to YES instances of a problem that has a public-coin HVPZK
proof, we get a pair of circuits 〈X0, X1〉 that are only statistically close, but not iden-
tically distributed. This is unnatural because the closeness between X0 and X1 reflects
the closeness of the simulation. Thus, in the perfect setting we expect X0 and X1 to be
identically distributed, as in the complement of SD1/2,0.

Definition 3.1. The problem SD1/2,0 [26] is the pair 〈SD1/2,0
Y, SD1/2,0

N〉, where

SD1/2,0
Y = {〈X0, X1〉| Δ(X0, X1) = 0} , and

SD1/2,0
N = {〈X0, X1〉| Δ(X0, X1) ≥ 1/2} .

Sahai and Vadhan [26] were aware of this issue, and they addressed it by directly cal-
culating the errors of the underlying problem. However, their technique applies only
in certain cases (for example, when the underlying problem has a proof with perfect
completeness). In the next section we will show how to overcome this issue by using
the error shifting technique. Essentially, we obtain a hard problem where YES instances
are pairs of circuits representing identical distributions, and NO instances are circuits
representing statistically far distributions. Formally, our hard problem is as follows.

Definition 3.2. The problem IDENTICAL DISTRIBUTIONS is ID def= 〈IDY, IDN〉, where

IDY = {〈X0, X1, Z〉| Δ(X0, X1) = 0 and Pr[Z = 1] ≥ 2/3} , and

IDN = {〈X0, X1, Z〉| Δ(X0, X1) ≥ 1/2 or Pr[Z = 1] ≤ 1/3} .

3.1 Modifying the Reductions for Public-Coin HVSZK Proofs

In this section we show that ID is hard for AM ∩ HVPZK, and then we conclude that,

essentially, SD1/2,0 is also hard for AM ∩ HVPZK. Starting with some background,
we describe the reduction of [26].
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Notation. Let 〈P, V 〉 be a public-coin HVPZK proof for a problem Π with a simulator
S. Given a string x we use v

def= v(|x|) to denote the number of rounds in the interaction
between P and V on input x. That is, in round i the prover P sends mi and V replies
with a random string ri, until P sends its last message mv , and V accepts or rejects.
We denote the output of S(x) by 〈x, m1, r1, . . . , mv〉.

The reduction of [26] maps instances x of Π to pairs of circuits 〈X ′0, X ′1〉. These
circuits are constructed from the circuits Xi and Yi, defined as follows. The circuit
Xi chooses randomness, executes S(x) using this randomness, and outputs the sim-
ulated transcript, truncated at the i-th round. That is, Xi obtains 〈x, m1, r1, . . . , mv〉,
and outputs 〈m1, r1, . . . , mi, ri〉. The circuit Yi is defined exactly the same, except that
it replaces ri with a truly random string r′i.

– Xi(r): execute S(x; r) to obtain 〈x, m1, r1, . . . , mv〉. Output 〈m1, r1, . . . , mi, ri〉.
– Yi(r, r′i): execute S(x; r) to obtain 〈x, m1, r1,. . . , mv〉. Output 〈m1, r1,. . . , mi, r

′
i〉.

Notice that Xi and Yi represent the same distribution when x is a YES instance.
This is so because S(x) perfectly simulates the view of the verifier, and therefore ri is
uniformly distributed, just like r′i. We define X = X1 ⊗ · · · ⊗ Xv. That is, X executes
all the circuits Xi and outputs the concatenation of their outputs. Similarly, we define
Y = Y1 ⊗ · · · ⊗ Yv. Again, X and Y are identically distributed when x is a YES
instance. Now, the pair 〈X ′0, X ′1〉 is defined from 〈X, Y 〉 as follows. The circuit X ′1
outputs 1 followed by the output of Y . The circuit X ′0 outputs the output of Z followed
by the output of X , where Z is the circuit that outputs 1 if with high probability S(x)
outputs accepting transcripts, and 0 otherwise.

The issue with the reduction of [26]. The above reduction does not apply to the perfect
setting (except for the case where 〈P, V 〉 have perfect completeness). This is so because
there is a non-zero probability that Z will output 0, in which case X ′0 and X ′1 will
not represent the same distribution. To overcome this issue we use the error shifting
technique in two steps, just like we did in the previous section. Our goal is to show that,

essentially, SD1/2,0 is hard for AM ∩ HVPZK
Our first step is to separate the error that the circuit Z incurs. Thus, instead of includ-

ing Z in the circuits X ′0 and X ′1, our reduction simply maps an instance x of Π to the
triplet 〈X, Y, Z〉. By the analysis from [26], if x is a YES instance, then X and Y are
identically distributed, and Z outputs 1 with high probability. Such a triplet is a YES
instance of or hard problem. Similarly, if x is a NO instance, then either X and Y are
statistically far, or Z outputs 0 with a high probability. Such a triplet is a NO instance of
our hard problem. The following lemma shows that IDENTICAL DISTRIBUTIONS (ID)
is hard for AM ∩ HVPZK.

Lemma 3.1 (Implicit in [26]). For any problem Π = 〈ΠY, ΠN〉 possessing a public-
coin HVPZK proof there is a Karp reduction mapping strings x to circuits 〈X, Y, Z〉
with the following properties.

– If x ∈ ΠY , then Δ(X, Y) = 0 and Pr[Z = 1] ≥ 2/3.
– If x ∈ ΠN , then Δ(X, Y) ≥ 1/2 or Pr[Z = 1] ≤ 1/3.
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Indeed, instances of ID are triplets of circuits 〈X, Y, Z〉, as opposed to pairs 〈X, Y 〉.
Thus, we are not done yet. We need to show that ID and SD1/2,0 are essentially the
same. Hence, we continue to our second step.

Recall that the second step of the error shifting technique is to shift the error forward

to the protocol. However, SD1/2,0 is not known to have a PZK proof. Thus, our sec-
ond step is to modify any PZK protocol 〈P, V 〉 for this problem into a PZK protocol

〈P, V ′〉 for ID. That is, we take an arbitrary protocol 〈P, V 〉 for SD1/2,0, and then we
show that even if the input to this protocol is an instance 〈X, Y, Z〉 of ID (instead of
a pair 〈X, Y 〉), then the behavior of P and the modified verifier V ′ on input 〈X, Y, Z〉
is identical to the behavior of 〈P, V 〉 on input 〈X, Y 〉. This will show that the two
problems are essentially the same, and therefore we will be done.

Our modification is as follows. On input 〈X, Y, Z〉 the first step of the modified
verifier V ′ is to estimate the value of Pr[Z = 1], and reject if this value is at most 1/3.
If V ′ did not reject, then P and V ′ execute 〈P, V 〉 on input 〈X, Y 〉. This modification
is a part of the error shifting technique because we shift the error from the circuit Z into

an arbitrary protocol 〈P, V 〉 for SD1/2,0.
We analyze the modified protocol 〈P, V ′〉 for our hard problem. We observe that V ′

is very unlikely to reject if Pr[Z = 1] ≥ 2/3. We also observe that if the protocol
continues, then either 〈X, Y, Z〉 is a YES instance of our hard problem and Δ(X, Y) =
0, or 〈X, Y, Z〉 is a NO instance of our hard problem and Δ(X, Y) ≥ 1/2. Thus, in
this case the behavior of P and V ′ on instances of our hard problem is identical to the

behavior of P and V on instances of SD1/2,0.
Our modification shows that although we did not prove that SD1/2,0 is hard for

AM ∩ HVPZK, it can be treated as such (because any protocol that we design for this
problem can be immediately modified to a protocol with the same properties for ID).

4 Applications

We show an application of the error shifting technique. We also show how our complete
and hard problems can facilitate the study of zero-knowledge in the perfect setting.

4.1 Obtaining Simulators That do Not Fail

We use the error shifting technique to show that the notion of zero-knowledge where the
simulator is allowed to fail is equivalent to the one where it is not allowed to fail. This
holds in both the interactive and the non-interactive models, and regardless of whether
the simulator runs in strict or expected polynomial-time.

Starting with background, we recall that the notion of perfect zero-knowledge re-
quires that the view of the verifier be identically distributed to the output of the simula-
tor [18]. Later, this notion was relaxed by allowing the simulator to output fail with
probability at most 1/2, and requiring that, conditioned on the output of the simulator
not being fail, it be identically distributed to the view of the verifier [9].

A known trick to remove the fail output is to execute the simulator for |x| times
(where x is the input to the simulator), and output the first transcript, or fail if the
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simulator failed in all |x| executions [12]. This works for statistical and computational
zero-knowledge, but not for perfect zero-knowledge. Notice that in all of these cases
we actually introduce an extra error into the simulation, and we do not understand why.
Furthermore, despite the fact that important problems have PZK proofs (e.g., GRAPH-
ISOMORPHISM, QUADRATIC-RESIDUOUSITY [18,13,31]), all of these proofs have a
simulator that outputs fail with probability 1/2. Now we fix this issue.

The transformation. Let 〈P, V 〉 be a PZK proof for a problem Π, and let S be a
simulator for 〈P, V 〉. Notice that S may fail with some probability. We use the error
shifting technique to obtain a simulator S′ that does not fail.

Recall that the error shifting technique is applied in two steps: we need to find where
the error is coming from, and then we shift it forward. For the first step, we observe that
when S outputsfail, the verifier V actually learns that S failed. This is something that
V does not learn from the prover P (because transcripts between P and V are never of
the form fail). Thus, the error comes from the fact that P is not teaching V that S(x)
may output fail with some probability. We are done with the first step. In the second
step we shift this error forward by letting P teach V that S(x) may output fail. That
is, on input x, the new prover P ′ executes S(x) for |x| times, and if S(x) = fail in
all of these executions, then P ′ outputs fail. Otherwise, P ′ behaves like P . In other
words, we shifted the error from the simulation to the protocol.

The new simulator S′ simply executes S, and if all executions failed, then it behaves
just like P ′. Namely, it outputs the transcript 〈x,fail; rV 〉, where rV is the random-
ness of V . Otherwise, S′ outputs a simulated transcript of S. Notice that we increased
the completeness error by 1/2n, but by executing S(x) polynomially many times, the
probability that P ′ will fail can be made extremely small. We conclude that 〈P ′, V 〉 is
a PZK proof for Π with a simulator S′ that never fails.

4.2 Under Certain Restrictions NIPZK Is Closed Under the OR Operator

We use our NIPZK-complete problem to show that under certain restrictions NIPZK
is closed under the OR operator. We remark that these restrictions are severe, but our
goal is to show the usefulness of our complete problem, rather than proving a closure
result (in fact, even with these restrictions it is hard to see how to prove this result).

Motivation. We want to construct a NIPZK proof where the prover and the verifier are
given two instances x and y of some problem Π ∈ NIPZK, and the verifier accepts
only if either x or y are YES instances of Π. Since we now have a NIPZK-complete
problem, we can construct a protocol where the prover and the verifier reduce x and y
to circuits X and Y , respectively, and then work with these circuits.

A natural approach to design our protocol is to ask what is the difference between
YES and NO instances of UN, and then, based on this difference, to design a protocol
and a simulator. As we saw, instances of UN differ in their number of output strings
that end with a 1. That is, |TX | + |TY | is large if either X or Y is a YES instance, and
small if both X and Y are NO instances. Thus, it seems that we should use lower bound
protocols [17]. However, we avoid using these protocols because they incur error into
the simulation, and we do not know how to remedy this problem.
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Thus, we take a different approach. Instead of focusing on the difference between
YES and NO instances, we focus on the simulation. That is, instead of starting with the
protocol, taking care of completeness and soundness, we start with the simulator, taking
care of perfect zero-knowledge. Indeed, this approach is implicit in Section 2, where we
first modified the simulator, and then modified the prover to mimic the simulator. This
approach has the advantage that we retain perfect simulation, but on the other hand we
are forced to make restrictions in order to guarantee completeness and soundness.

The protocol. Recall that the prover and the verifier are given instances X and Y of
UN, and the verifier should accept if X ∈ UNY or Y ∈ UNY. As usual, we use n+1 to
denote the number of output bits of X and Y . Since the main obstacle is how to achieve
perfect simulation, we start with the zero-knowledge property. That is, we start with the
simulator, and then we design the protocol based on the simulator.

Consider a simulator that uniformly picks rX and rY , and computes z = X(rX) ⊕
Y (rY ). The simulator may not know which of X or Y is a YES instance of UN. How-
ever, the n-bit prefix of z is uniformly distributed because either X ′ or Y ′ represent
the uniform distribution. This observation allows us to use the n-bit prefix of z as the
simulated reference string.

Our simulator informs the following protocol: on reference string rI the prover sends
rX and rY to the verifier such that the n-bit prefix X(rX)⊕Y (rY ) equals rI . The issue
with this protocol is that we need to make two restrictions in order to prove complete-
ness and soundness.

Achieving completeness. Suppose that the verifier accepts only if the last bit of both
X(rX) and Y (rY ) is 1. This works when both circuits X and Y are YES instances of
UN. However, if one of the circuits is a NO instance of UN, then it is possible that all
the strings outputted by this circuit end with a 0 (e.g, for any rX the suffix of X(rX) is
0), and this will make V reject.

Since we do not know how to overcome this issue without introducing error into the
simulation, we add the restriction that instances of PUY be 1-positive. That is, for any
circuit Z ∈ PUY, all the strings that Z outputs have 1 as the rightmost bit. Intuitively,
this restriction helps the simulator in identifying NO instances. For example, if a sample
of X ends with a 0, then X must be a NO instance. However, notice that X could be a
NO instance and still have outputs that end with a 1. Thus, this help is limited.

We redefine the simulator based on the above restriction. As before, the simulator
uniformly picks rX and rY , computes z = X(rX) ⊕ Y (rY ), and if both X(rX) and
Y (rY ) end with a 1, then the simulator uses the n-bit prefix of z to simulate the ref-
erence string. Otherwise, one of the samples ends with a 0. For example, suppose that
X(rX) ends with a 0. This implies that Y is a YES instance. Hence, the simulator uses
the n bit prefix of Y (rx) to simulate the reference string. Similarly, we redefine the
verifier. That is, when the verifier receives 〈rX , rY 〉 from the prover, it only checks that
the n-bit prefix of Y (rY ) equals to the reference string, and that Y (rY ) ends with a 1.

Achieving soundness. Notice that even when both X and Y are NO instances, there
could be many combinations for X(rX) ⊕ X(rY ). That is, for most reference strings
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rI a cheating prover may find rX and rY such that the n bit prefix of X(rX) ⊕ Y (rY )
equals rI , and both X(rX) and Y (rY ) end with a 1. This compromises the soundness
property. Since we do not know how to overcome this issue without introducing error
into the simulation, we restrict the number of such pairs.

Discussion. We used our NIPZK-complete problem to show that under certain re-
strictions NIPZK is closed under the OR operator (See Appendix B for the proof).
Indeed, we added severe restrictions to retain perfect simulation, but without our com-
plete problem it is not clear how to prove this result (even with these restrictions). Thus,
we interpret these restrictions as evidence that in the perfect setting there are few tech-
niques to work with. Recall that even in the statistical setting, where we have more
techniques to work with, such closure result is not known.

4.3 Applications of the AM ∩ HVPZK-Hard Problem

In this paper we showed that IDENTICAL DISTRIBUTIONS (ID) is hard for the class

of problems admitting public-coin HVPZK proofs, and that we can treat it as SD1/2,0.
Unfortunately, our result is restricted to public-coin. In contrast, the reduction of [26]
for HVSZK (which follows from the works of [11,1,25]) is not restricted to public-
coin, but it manipulates distributions in a way that skews the distributions, and we do
not know how to apply it to HVPZK.

However, what is special about ID, and what makes it different from SD, is that its
YES instances are pairs of circuits 〈X0, X1〉 representing identical (as opposed to sta-
tistically close) distributions. Thus, they can be used to obtain perfectly (as opposed
to statistically) hiding instant-dependent commitment-schemes. Using the observation
of [20], such schemes could then be plugged into the protocols for NP [4,13], thus
yielding a HVPZK proof for ID. We mention that, except for [21], who used the tech-
niques of [8] to construct a perfectly hiding scheme for V -bit protocols, all the known
instance-dependent commitment-schemes are only statistically hiding [33,23,22].

Notice that if we can use instances 〈X0, X1〉 of ID to construct a constant-round,
perfectly hiding, instance-dependent commitment-scheme, then we would collapse the
round complexity of public-coin HVPZK proofs. One idea for a commitment is to take
a sample of Xb. That is, given common input 〈X0, X1〉, a commitment to a bit b is
computed by uniformly choosing r and outputting Xb(r). Thus, on YES instances the
scheme is perfectly hiding. However, the scheme may not be binding on NO instances
because there could be r and r′ for which X0(r) = X1(r′). Thus, other techniques are
needed to make sure that the binding property is achieved.

5 Conclusion

We explained why reductions that apply to the statistical setting do not apply to the
perfect setting. Using the error shifting technique we modified these reductions. Thus,
we obtained complete and hard problems, and interesting applications. We believe that
insight provided here will be useful in the study of perfect zero-knowledge proofs.
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A Preliminaries

We use standard definitions [12]. We study promise-problems [10], which are a gener-
alization of languages. Formally, Π def= 〈ΠY, ΠN〉 is a problem if ΠY ∩ ΠN = ∅. The
set ΠY contains the YES instances of Π, and the set ΠN contains the NO instances of Π.
We define Π def= 〈ΠN, ΠY〉.

Let X : {0, 1}m → {0, 1}n be a circuit. We treat X both as a circuit and as a
distribution (under the convention that the input to the circuit is uniformly distributed).
For example, given a set T , the probability Prx←X [x ∈ T ] equals Prr←Um [X(r) ∈ T ],
where Um is the uniform distribution on {0, 1}m, and d ← D denotes choosing an
element d according to the distribution D. The statistical distance between two discrete
distributions X and Y is Δ(X, Y) def=

∑
α |Pr[X = α] − Pr[Y = α]|. We define

non-interactive protocols.

Definition A.1 (Non-interactive protocols). A non-interactive protocol 〈c, P, V 〉 is a
triplet (or simply a pair 〈P, V 〉, making c implicit), where P and V are functions, and
c ∈ N. We denote by rP the random inputs to P . The interaction between P and V on
common input x is the following random process.
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1. Uniformly choose rP , and choose a common random string rI ∈ {0, 1}|x|
c

.
2. Let π = P (x, rI ; rP ), and let m = V (x, rI , π).
3. Output 〈x, rI , π, m〉.

We call 〈P, V 〉(x) def= 〈x, rI , π〉 the view of V on x. We say that V accepts x (respec-
tively, rejects x) if m = accept (respectively, m = reject).

Definition A.1 considers a deterministic V , and is equivalent to a the definition that
considers a probabilistic V [2]. We define non-interactive proofs.

Definition A.2 (Non-interactive proofs). A non-interactive protocol 〈c, P, V 〉 is a
non-interactive proof for a problem Π if there is a ∈ N and c(n), s(n) : N → [0, 1]
such that 1 − c(n) ≥ s(n) + 1/na for any n, and the following conditions hold.

– Efficiency: V runs in time polynomial in |x|.
– Completeness: V accepts all x ∈ ΠY with probability at least 1 − c(|x|) over rI

and rP .
– Soundness: PrrI [V (x, rI , P ∗(x, rI)) = accept] ≤ s(|x|) for any function P ∗

and any x ∈ ΠN.

The function c is called the completeness error, and the function s is called the sound-
ness error. We say that 〈P, V 〉 has perfect completeness if c ≡ 0.

We proceed to zero-knowledge. Our definition considers simulators that do not fail,
which is justified by our result from Section 4.

Definition A.3 (Non-interactive, zero-knowledge protocols). A non-interactive pro-
tocol 〈P, V 〉 is perfect zero-knowledge (NIPZK) for a problem Π = 〈ΠY, ΠN〉 if there
is a probabilistic, polynomial-time Turing machine S, called the simulator, such that
the ensembles

{〈P, V 〉(x)}x∈ΠY
and {S(x)}x∈ΠY

are statistically identical.
If these ensembles are statistically indistinguishable, then 〈P, V 〉 is a non-interactive

statistical zero-knowledge (NISZK) protocol for Π. Similarly, if the ensembles are
computationally indistinguishable, then 〈P, V 〉 is non-interactive computational zero-
knowledge (NICZK) protocol for Π.

The class of problems possessing NIPZK (respectively, NISZK, NICZK) protocols
is also denoted NIPZK (respectively, NISZK, NICZK).

B Under Certain Restrictions NIPZK Is Closed Under OR

Lemma B.1. Let Π be a NIPZK problem with a proof 〈P ′, V ′〉, and let c ∈ N such that
on input of length n the reference string is of length nc. If 〈c, P ′, V ′〉 has perfect com-
pleteness and soundness error 21−nc/2, then Π ∨ Π has a NIPZK proof with perfect
completeness, and soundness error 1/3.
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Proof. Let 〈x0, x1〉 such that xi ∈ ΠY ∪ ΠN for each i ∈ {0, 1}, and let n = |x0|. We
start with the case where |x0| = |x1| because when we reduce x0 and x1 to UN we get
circuits whose output length is equal. As we will see, the general case follows easily
using the same proof.

We construct a NIPZK protocol 〈P, V 〉 for Π ∨ Π. Initially, P sets i = 0 if both x0
and x1 are in ΠY. Otherwise, there is a unique i such that xi ∈ ΠN, and P fixes this i.
In addition, for each i ∈ {0, 1} both P and V reduce xi to an instance Xi of UN.

Recall that 〈c, P ′, V ′〉 is a NIPZK proof for Π such that on input of length n the
reference string is of length nc. By the properties of the reduction to UN, for each
i ∈ {0, 1} the circuit Xi has nc + 1 output gates and the following properties hold. If
xi ∈ ΠY, then X ′i is the uniform distribution on {0, 1}nc

, and samples of Xi end with
a 1. If xi ∈ ΠN, then |TXi | ≤ 2−(nc/2+1) · 2nc

= 2nc/2−1.
The protocol proceeds as follows. Recall that P initially computes i. Thus, the first

step of P is to uniformly choose a string ri, and assign y the output of Xi(ri), excluding
the rightmost bit. On reference string rI , if Xi(ri) = y0, then P uniformly chooses
ri ∈ X−1

i
(rI1), and sends 〈r0, r1〉 to V . Otherwise, Xi(ri) = y1, in which case P

uniformly chooses ri ∈ X−1
i

(y1 ⊕ rI0), and sends 〈r0, r1〉 to V . The verifier accepts
if 〈r0, r1〉 are correctly computed. Namely, V computes X0(r0) and X1(r1), and if
there is i ∈ {0, 1} such that Xi(ri) ends with a 0 and Xi(ri) = rI1, then V accepts.
Otherwise, if X0(r0) ⊕ X1(r1) = rI0 (that is, both X0(r0) and X1(r1) end with a 1),
then V accepts. Otherwise, V rejects.

The completeness property of 〈P, V 〉 follows from its zero-knowledge property. Thus,
we start the simulator S for 〈P, V 〉. As in 〈P, V 〉, the simulator reduces 〈x0, x1〉 to
〈X0, X1〉. The simulator uniformly chooses r0 and r1, and computes X0(r0) and
X1(r1). If there is i ∈ {0, 1} such that Xi(ri) ends with a 0 (i.e., Xi ∈ PUN), then S
outputs 〈〈x0, x1〉, r′I , 〈r0, r1〉〉, where r′I equals the nc-bit prefix of Xi(ri). Otherwise,
S outputs 〈〈x0, x1〉, r′I , 〈r0, r1〉〉, where r′I equals the nc-bit prefix of X0(r0)⊕X1(r1).
In both cases r′I is uniformly distributed, and 〈r0, r1〉 are distributed as in 〈P, V 〉. Thus,
S perfectly simulates 〈P, V 〉. Since S always outputs accepting transcripts, 〈P, V 〉 has
perfect completeness.

We turn our attention to the soundness property. Let x0, x1 ∈ ΠN, and let 〈r0, r1〉
be the message received by V . We consider two cases in which V accepts. In the first
case there is i ∈ {0, 1} such that Xi(ri) ends with a 0, and Xi(ri) = rI1. Since
|TXi

| ≤ 2nc/2−1, and rI is uniformly distributed, it follows that in the first case V

accepts with probability at most 2 · PrrI [Xi(ri) = rI1] ≤ 2 · 2−(nc/2+1). The reason
we multiplied the probability by 2 is because a cheating P ∗ may use either X0 or X1. In
the second case the suffix of both X0(r0) and X1(r1) is 1, and X0(r0)⊕X1(r1) = rI0.
In this case the probability over rI that X0(r0) ⊕ X1(r1) = rI0 is at most 1/4 because
|TX0 |·|TX1 | ≤ 2nc/2−1·2nc/2−1 = 2nc

/4, and rI is uniformly distributed. We conclude
that in total V accepts with probability at most 1/4 + 2 · 2−(nc/2+1), which is 1/3 for
sufficiently large inputs.

Recall that in the beginning of this proof we considered the case where |x0| = |x1|.
In this case the length of the output of X0 equals that of X1. The general case can
be treated exactly the same, except that X0 and X1 are modified before the protocol
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begins. For example, if |x0| = n and |x1| = n + a (for some a ∈ N), then we simply
add (n+ a)c −nc input gates to X0. These gates are outputted as the prefix of X0. Call
this new circuit X ′0. Now both X ′0 and X1 have (n+a)c +1 output bits, and X ′0 inherits
the properties of X0 (that is, for any α and β, if X0 is α-positive, then X ′0 is α-positive,
and if X0 is β-negative, then X ′0 is β-negative). Thus, we can apply the proof as above.
The lemma follows.



General Properties of

Quantum Zero-Knowledge Proofs

Hirotada Kobayashi

Principles of Informatics Research Division, National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

hirotada@nii.ac.jp

Abstract. This paper studies general properties of quantum zero-
knowledge proof systems. Among others, the following properties are
proved on quantum computational zero-knowledge proofs:

– Honest-verifier quantum zero-knowledge equals general quantum
zero-knowledge.

– Public-coin quantum zero-knowledge equals general quantum zero-
knowledge.

– Quantum zero-knowledge with perfect completeness equals general
quantum zero-knowledge with imperfect completeness.

– Any quantum zero-knowledge proof system can be transformed into
a three-message public-coin quantum zero-knowledge proof system
of perfect completeness with polynomially small error in soundness
(hence with arbitrarily small constant error in soundness).

All the results proved in this paper are unconditional, i.e., they do not
rely any computational assumptions. The proofs for all the statements
are direct and do not use complete promise problems, and thus, essen-
tially the same method works well even for quantum statistical and per-
fect zero-knowledge proofs. In particular, all the four properties above
hold also for the statistical zero-knowledge case (the first two were shown
previously by Watrous), and the first two properties hold even for the
perfect zero-knowledge case. It is also proved that allowing a simulator
to output “FAIL” does not change the power of quantum perfect zero-
knowledge proofs. The corresponding properties are not known to hold
in the classical perfect zero-knowledge case.

1 Introduction

Background. Zero-knowledge proof systems were introduced by Goldwasser,
Micali, and Rackoff [13], and have played a central role in modern cryptogra-
phy since then. Intuitively, an interactive proof system is zero-knowledge if any
verifier who communicates with the honest prover learns nothing except for the
validity of the statement being proved in that system. By “learns nothing” we
mean that there exists a polynomial-time simulator whose output is indistin-
guishable from the output of the verifier after communicating with the honest
prover. Depending on the strength of this indistinguishability, several variants of
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zero-knowledge proofs have been investigated: perfect zero-knowledge in which
the output of the simulator is identical to that of the verifier, statistical zero-
knowledge in which the output of the simulator is statistically close to that of
the verifier, and computational zero-knowledge in which the output of the simu-
lator is indistinguishable from that of the verifier in polynomial time. The most
striking result on zero-knowledge proofs would be that every problem in NP
has a computational zero-knowledge proof system under certain intractability
assumptions [10]. It is also known that some problems have perfect or statistical
zero-knowledge proof systems. Among others, the Graph Isomorphism prob-
lem has a perfect zero-knowledge proof system [10], and some lattice problems
have statistical zero-knowledge proof systems [9].

Another direction of studies on zero-knowledge proofs has been to prove
their general properties. Sahai and Vadhan [22] were the first who took an
approach of characterizing zero-knowledge proofs by complete promise prob-
lems. They showed that the Statistical Difference problem is complete for
the class HVSZK of problems having honest-verifier statistical zero-knowledge
proof systems. Here, the honest-verifier zero-knowledge is a weaker notion of
zero-knowledge in which now zero-knowledge property holds only against the
honest verifier who follows the specified protocol. Using this complete promise
problem, they proved a number of general properties of HVSZK and simpli-
fied the proofs of several previously known results, including that HVSZK is
in AM [6,2], that HVSZK is closed under complement [21], and that any prob-
lem in HVSZK has a public-coin honest-verifier statistical zero-knowledge proof
system [21]. Goldreich and Vadhan [12] presented another complete promise
problem for HVSZK, called the Entropy Difference problem, and obtained
further properties of HVSZK. Since Goldreich, Sahai, and Vadhan [11] proved
that HVSZK = SZK, where SZK denotes the class of problems having statis-
tical zero-knowledge proof systems, all the properties proved for HVSZK are
inherited to SZK (except for those related to round complexity). More recently,
Vadhan [24] gave two characterizations, the Indistinguishability characteri-
zation and the Conditional Pseudo-Entropy characterization, for the class
ZK of problems having computational zero-knowledge proof systems. These are
not complete promise problems, but more or less analogous to complete promise
problems and play essentially same roles as complete promise problems in his
proofs. Using these characterizations, he proved a number of general proper-
ties of ZK unconditionally (i.e., not assuming any intractability assumptions),
such as that honest-verifier computational zero-knowledge equals general compu-
tational zero-knowledge, that public-coin computational zero-knowledge equals
general computational zero-knowledge, and that computational zero-knowledge
with perfect completeness equals that with imperfect completeness.

Quantum zero-knowledge proofs were first studied by Watrous [25] in a re-
stricted situation of honest-verifier quantum statistical zero-knowledge proofs.
He gave an analogous characterization to the classical case due to Sahai and Vad-
han [22] by showing that the Quantum State Distinguishability problem
is complete for the class HVQSZK of problems having honest-verifier quantum
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statistical zero-knowledge proof systems. Using this, he proved a number of gen-
eral properties of HVQSZK, such as that HVQSZK is closed under complement,
that any problem in HVQSZK has a public-coin honest-verifier quantum sta-
tistical zero-knowledge proof system, and that HVQSZK is in PSPACE. Very
recently, Ben-Aroya and Ta-Shma [3] presented another complete promise prob-
lem for HVQSZK, called the Quantum Entropy Difference problem, which
is a quantum analogue of the result by Goldreich and Vadhan [12]. It has been
a wide open problem if there are nontrivial problems that have quantum zero-
knowledge proofs secure even against any dishonest quantum verifiers, because
of the difficulties arising from the “rewinding” technique [14], which is commonly
used in classical zero-knowledge proofs. Damg̊ard, Fehr, and Salvail [4] studied
zero-knowledge proofs against dishonest quantum verifiers, but they assumed the
restricted setting of the common-reference-string model to avoid this rewinding
problem. Very recently, Watrous [27] settled this affirmatively. He established a
quantum “rewinding” technique by using a method that was originally devel-
oped in Ref. [19] for the purpose of amplifying the success probability of QMA,
a quantum version of NP, without increasing quantum witness sizes. With this
quantum rewinding technique, he proved that the classical proof system for
the Graph Isomorphism problem in Ref. [10] has a perfect zero-knowledge
property even against any dishonest quantum verifiers, and under some reason-
able intractability assumption, the classical proof system for NP in Ref. [10]
has a computational zero-knowledge property even against any dishonest quan-
tum verifiers. He also proved that HVQSZK = QSZK, where QSZK denotes the
class of problems having quantum statistical zero-knowledge proof systems. To-
gether with his proof construction, this implies that all the properties proved
for HVQSZK in Ref. [25] are inherited to QSZK (except for those related to
round complexity), in particular, that any problem in QSZK has a public-coin
quantum statistical zero-knowledge proof system.

Our contribution. This paper proves a number of general properties on quan-
tum zero-knowledge proofs, not restricted to the statistical zero-knowledge case.
Specifically, for quantum computational zero-knowledge proofs, letting QZK
and HVQZK denote the classes of problems having quantum computational
zero-knowledge proof systems and honest-verifier quantum computational zero-
knowledge proof systems, respectively, the following are proved among others:

Theorem 1. HVQZK = QZK.

Theorem 2. Any problem in QZK has a public-coin quantum computational
zero-knowledge proof system.

Theorem 3. Any problem in QZK has a quantum computational zero-knowledge
proof system of perfect completeness.

Theorem 4. Any problem in QZK has a three-message public-coin quantum
computational zero-knowledge proof system of perfect completeness with sound-
ness error at most 1

p for any polynomially bounded function p : Z
+ → N.
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All the properties proved in this paper on quantum computational zero-
knowledge proofs hold unconditionally, meaning that they hold without any
computational assumptions such as the existence of quantum one-way functions
or permutations. Some of these properties may be regarded as quantum versions
of the results by Vadhan [24]. It is stressed, however, that our approach to prove
these properties is completely different from those the existing studies took to
prove general properties of classical or quantum zero-knowledge proofs. No com-
plete promise problems nor characterizations are used in our proofs. Instead, we
directly prove these properties.

The idea is remarkably simple. We start from any proof system of honest-
verifier quantum zero-knowledge, and apply several transformations so that we
finally obtain another proof system of honest-verifier quantum zero-knowledge
that possesses a number of desirable properties. For instance, to prove that
HVQZK = QZK, we show that any proof system of honest-verifier quantum
computational zero-knowledge can be transformed into another proof system of
honest-verifier quantum computational zero-knowledge (with some smaller gap
between completeness and soundness accepting probabilities) such that (i) the
proof system consists of three messages and (ii) the proof system is public-coin in
which the message from the honest verifier consists of a single bit that is an out-
come of a classical fair coin-flipping. This can be done by first achieving negligi-
ble completeness error by sequential repetition, then applying the parallelization
method for usual quantum interactive proofs due to Kitaev and Watrous [16]
to obtain a three-message honest-verifier quantum zero-knowledge proof sys-
tem, and finally applying the Marriott-Watrous construction for usual quan-
tum interactive proofs [19] to obtain a three-message public-coin honest-verifier
quantum zero-knowledge proof system. It is proved that the Kitaev-Watrous
parallelization method preserves the honest-verifier zero-knowledge property if
completeness error is negligible, and that the Marriott-Watrous construction
also preserves the honest-verifier zero-knowledge property. Now, by applying the
quantum rewinding technique due to Watrous [27], this three-message public-
coin proof system is proved to be zero-knowledge even against any dishonest
quantum verifiers. The final piece is the sequential repetition, which makes com-
pleteness and soundness errors arbitrarily small. This simultaneously shows the
equivalence of public-coin quantum computational zero-knowledge and general
quantum computational zero-knowledge. To show that any quantum computa-
tional zero-knowledge proofs can be made perfectly complete, now we have only
to show that any honest-verifier quantum computational zero-knowledge proofs
can be made perfectly complete. Again we can use another construction for usual
quantum interactive proofs due to Kitaev and Watrous [16], but now we need to
carefully and explicitly design a protocol for the honest prover in their construc-
tion so that the honest-verifier zero-knowledge property is preserved. Using this
construction as a preprocessing, the previous argument shows the equivalence
of quantum computational zero-knowledge with perfect completeness and that
with imperfect completeness. Combining all the desirable properties of honest-
verifier quantum computational zero-knowledge proofs shown in this paper with
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a careful application of the quantum rewinding technique, we can show that any
problem in QZK has a three-message public-coin quantum computational zero-
knowledge proof system of perfect completeness with soundness error at most 1

p
for any polynomially bounded function p.

In fact, our approach above is very general and basically works well even for
quantum statistical and perfect zero-knowledge proofs. In the quantum statis-
tical zero-knowledge case, all the properties shown for the quantum computa-
tional zero-knowledge case also hold. This gives alternative proofs of the facts
that HVQSZK = QSZK and that public-coin quantum statistical zero-knowledge
equals general quantum statistical zero-knowledge, which were originally shown
by Watrous [27] using his previous results [25], and also shows the following new
properties of quantum statistical zero-knowledge proofs:

Theorem 5. Any problem in QSZK has a quantum statistical zero-knowledge
proof system of perfect completeness.

Theorem 6. Any problem in QSZK has a three-message public-coin quantum
statistical zero-knowledge proof system of perfect completeness with soundness
error at most 1

p for any polynomially bounded function p : Z
+ → N.

In the quantum perfect zero-knowledge case, however, not all the properties
above can be shown to hold, because very subtle points easily lose the perfect
zero-knowledge property. In particular, our method of making proof systems
perfectly complete no longer works well for quantum perfect zero-knowledge case.
Also, we need a careful modification of the protocol when parallelizing to three
messages. Still, we can show the following properties for the classes QPZK and
HVQPZK of problems having quantum perfect zero-knowledge proof systems
and honest-verifier quantum perfect zero-knowledge proof systems, respectively:

Theorem 7. HVQPZK = QPZK.

Theorem 8. Any problem in QPZK has a public-coin quantum perfect zero-
knowledge proof system.

Note that no such general properties are known for the classical perfect zero-
knowledge case. As a bonus property, it is also proved that quantum perfect
zero-knowledge with a worst-case polynomial-time simulator that is not allowed
to output “FAIL” is equivalent to the one in which a simulator is allowed to
output “FAIL” with small probability. Again, such equivalence is not known in
the classical case.

Due to space limitations, most of the technical proofs are relegated to the full
version of this paper [18].

2 Preliminaries

We assume the reader is familiar with classical zero-knowledge proof systems
and quantum interactive proof systems. Detailed discussions of classical zero-
knowledge proof systems can be found in Refs. [7,8], for instance, while quantum
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interactive proof systems are discussed in Refs. [26,16,19]. We also assume fa-
miliarity with the quantum formalism, including the quantum circuit model and
definitions of mixed quantum states, admissible transformations (completely-
positive trace-preserving mappings), trace norm, diamond norm, and fidelity
(all of which are discussed in detail in Refs. [20,15], for instance). Some of the
notions and notations that are used in this paper are summarized in this section.

Throughout this paper, let N and Z
+ denote the sets of positive and nonneg-

ative integers, respectively. Let poly denote the set of all functions p : Z
+ → N

such that there exists a polynomial-time deterministic Turing machine that out-
puts 1p(n) on input 1n. For every d ∈ N, let Id denote the identity operator of
dimension d. Also, for any Hilbert space H, let IH denote the identity operator
over H. In this paper, all Hilbert spaces are of dimension power of two.

For any Hilbert space H, let |0H〉 denote the quantum state in H of which all
the qubits are in state |0〉, and let D(H) and U(H) denote the sets of density
and unitary operators over H, respectively. For any Hilbert spaces H and K,
let T(H, K) be the set of admissible transformations from D(H) to D(K). An
admissible transformation Φ ∈ T(H, K) is qin-in qout-out if H and K consist
of qin and qout qubits, respectively. Let N , X , and Y be Hilbert spaces such
that H ⊗ X = K ⊗ Y = N . A unitary transformation UΦ ∈ U(N ) is a unitary
realization of Φ if trYUΦ

(
ρ ⊗ |0X 〉〈0X |

)
U †Φ = Φ(ρ) for any ρ ∈ D(H).

Quantum circuits. It is assumed that any quantum circuit Q in this paper
is unitary and is composed of gates in some reasonable, universal, finite set
of unitary quantum gates. For convenience, we may identify a circuit Q with
the unitary operator it induces. Since non-unitary and unitary quantum cir-
cuits are equivalent in computational power [1], it is sufficient to treat only
unitary quantum circuits, which justifies the above assumption. For avoiding
unnecessary complication, however, the descriptions of procedures often include
non-unitary operations in the subsequent sections. Even in such cases, it is al-
ways possible to construct unitary quantum circuits that essentially achieve the
same procedures described. When proving statements concerning quantum per-
fect zero-knowledge proofs or proofs having perfect completeness, we assume
that the Hadamard transformation and any classical reversible transformations
are exactly implementable in our gate set. This condition may not hold with an
arbitrary universal gate set, but is satisfied by most of the standard gate sets in-
cluding the Shor basis [23], and thus, the author believes that it is not restrictive.
These subtle issues regarding choices of the universal gate set is discussed in the
full version of this paper [18]. It is stressed, however, that all of our statements
not concerning quantum perfect zero-knowledge proofs nor proofs having perfect
completeness do hold with an arbitrary choice of the universal gate set (the com-
pleteness and soundness conditions may become worse by negligible amounts in
some of the claims, which does not matter for the final main statements).

A quantum circuit Q is qin-in qout-out if it exactly implements a unitary
realization UΦ of some qin-in qout-out admissible transformation Φ. For conve-
nience, we may identify a circuit Q with Φ in such a case. As a special case
of this, a quantum circuit Q is a generating circuit of a quantum state ρ of q
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qubits if it exactly implements a unitary realization of a zero-in q-out admissi-
ble transformation that always outputs ρ. A family {Qx} of quantum circuits
is polynomial-time uniformly generated if there exists a deterministic procedure
that, on every input x, outputs a description of Qx and runs in time polynomial
in |x|. It is assumed that the number of gates in any circuit is not more than the
length of the description of that circuit, which assures that Qx has size polyno-
mial in |x|. An ensemble {ρx} of quantum states is polynomial-time preparable
if there exists a polynomial-time uniformly generated family {Qx} of quantum
circuits such that each Qx is a generating circuit of ρx. In what follows, we may
use the notation {ρ(x)} instead of {ρx} for ensembles of quantum states simply
for descriptional convenience.

Quantum computational indistinguishability. We use the notions of quan-
tum computational indistinguishability introduced by Watrous [27]: polynomi-
ally quantum indistinguishable ensembles of quantum states and polynomially
quantum indistinguishable ensembles of admissible transformations.

Definition 9. Let S ⊆ {0, 1}∗ be an infinite set and let m ∈ poly. For each
x ∈ S, let ρx and σx be mixed states of m(|x|) qubits. The ensembles {ρx : x ∈ S}
and {σx : x ∈ S} are polynomially quantum indistinguishable if it holds for all
but finitely many x ∈ S that, for every choice of k, p, s ∈ poly, an ensemble
{ξx : x ∈ S} where ξx is a mixed state of k(|x|) qubits, and an (m(|x|) + k(|x|))-in
one-out quantum circuit Q of size at most s(|x|),

|〈1|Q(ρx ⊗ ξx)|1〉 − 〈1|Q(σx ⊗ ξx)|1〉| <
1

p(|x|) .

Definition 10. Let S ⊆ {0, 1}∗ be an infinite set and let l, m ∈ poly. For each
x ∈ S, let Φx and Ψx be l(|x|)-in m(|x|)-out admissible transformations. The
ensembles {Φx : x ∈ S} and {Ψx : x ∈ S} are polynomially quantum indistin-
guishable if it holds for all but finitely many x ∈ S that, for every choice of
k, p, s ∈ poly, an ensemble {ξx : x ∈ S} where ξx is a mixed state of l(|x|) + k(|x|)
qubits, and an (m(|x|) + k(|x|))-in one-out quantum circuit Q of size at most
s(|x|),

∣
∣〈1|Q

(
(Φx ⊗ I2k(|x|))(ξx)

)
|1〉 − 〈1|Q

(
(Ψx ⊗ I2k(|x|))(ξx)

)
|1〉

∣
∣ <

1
p(|x|) .

In what follows, we will often use the term “computationally indistinguishable”
instead of “polynomially quantum indistinguishable” for simplicity. Also, we will
often informally say that mixed states ρx and σx or admissible transformations
Φx and Ψx are computationally indistinguishable when x ∈ S to mean that the
ensembles {ρx : x ∈ S} and {σx : x ∈ S} or {Φx : x ∈ S} and {Ψx : x ∈ S} are
polynomially quantum indistinguishable.

Quantum zero-knowledge proofs. For readability, in what follows, the ar-
guments x and |x| are often dropped in various functions. It is assumed that
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operators acting on subsystems of a given system are extended to the entire sys-
tem by tensoring with the identity, as it will be clear from the context upon what
part of a system a given operator acts. Although all the statements in this paper
can be proved only in terms of languages without using promise problems [5], in
what follows we define models and prove statements in terms of promise prob-
lems, for generality and for the compatibility with some other studies on quan-
tum zero-knowledge proofs [25,17,27,3]. This paper follows a manner in Ref. [25]
when defining various honest-verifier quantum zero-knowledge proofs, and that
in Ref. [27] when defining various general quantum zero-knowledge proofs.

We start with formally defining quantum verifiers and quantum provers. An
m-message quantum verifier V is a mapping of the form V : {0, 1}∗ → {0, 1}∗.
For every input x ∈ {0, 1}∗, the string V (x) is interpreted as a �(m(|x|) +
1)/2	-tuple (V (x)1, . . . , V (x)�(m(|x|)+1)/2�), with each V (x)j a description of a
polynomial-size quantum circuit acting over the qubits in the verifier’s private
space and message qubits. A quantum verifier V is uniform if the corresponding
mapping V is polynomial-time computable, and is non-uniform if no restrictions
are placed on the complexity of the mapping V (but each circuit V (x)j must have
size polynomial in |x|). Similarly, an m-message quantum prover P is a mapping
of the form P : {0, 1}∗ → {0, 1}∗. For every input x ∈ {0, 1}∗, the string P (x) is
interpreted as a �m(|x|)/2	-tuple (P (x)1, . . . , P (x)�m(|x|)/2�), with each P (x)j a
description of a quantum circuit acting over the qubits in the prover’s private
space and message qubits. No restrictions are placed on the complexity of the
mapping P , and each P (x)j can be an arbitrary unitary transformation.

First we define the notions of various honest-verifier quantum zero-knowledge
proofs. Given a quantum verifier V and a quantum prover P , let viewV,P (x, j)
be the quantum state that V possesses immediately after the jth transforma-
tion of P during an execution of the protocol between V and P . Now we define
the classes HVQPZK(m, c, s), HVQSZK(m, c, s), and HVQZK(m, c, s) of prob-
lems having m-message honest-verifier quantum perfect, statistical, and compu-
tational zero-knowledge proof systems, respectively, with completeness at least
c and soundness at most s.

Definition 11. Given functions m ∈ poly and c, s : Z
+ → [0, 1], a problem

A = {Ayes, Ano} is in HVQPZK(m, c, s) (HVQSZK(m, c, s)) [HVQZK(m, c, s)]
iff there exist an m-message uniform honest quantum verifier V and an m-
message honest quantum prover P such that

(Completeness and Soundness) (V, P ) forms an m-message quantum interactive
proof system with completeness at least c and soundness at most s,

(Honest-Verifier Zero-Knowledge) there exists a polynomial-time preparable
ensemble {SV (x, j)} of quantum states such that SV (x, j) = viewV,P (x, j) for
every x ∈ Ayes and j ∈ T (‖SV (x, j) − viewV,P (x, j)‖tr is negligible with re-
spect to |x| for all but finitely many (x, j) ∈ Ayes × T ) [the ensembles
{SV (x, j) : (x, j) ∈ Ayes × T } and {viewV,P (x, j) : (x, j) ∈ Ayes × T } are
polynomially quantum indistinguishable], where T =

{
1, . . . ,

⌈m(|x|)
2

⌉}
.
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Using these, we define the classes HVQPZK, HVQSZK, and HVQZK of prob-
lems having honest-verifier quantum perfect, statistical, and computational zero-
knowledge proof systems, respectively.

Definition 12. A problem A = {Ayes, Ano} is in HVQPZK (HVQSZK)
[HVQZK] if there exists a function m∈poly such that A is in HVQPZK

(
m, 2

3 , 1
3

)

(HVQSZK
(
m, 2

3 , 1
3

)
) [HVQZK

(
m, 2

3 , 1
3

)
].

Note that it is easy to see that we can amplify the success probability of honest-
verifier quantum perfect/statistical/computational zero-knowledge proof systems
by sequential repetition, which justifies Definition 12.

Next we define the notions of various quantum zero-knowledge proofs. Let V
be an arbitrary non-uniform quantum verifier. Suppose that V possesses some
auxiliary quantum state in D(A) at the beginning and possesses some quan-
tum state in D(Z) after having received the last message from the prover, for
some Hilbert spaces A and Z. For such V , for any quantum prover P , and for
every x ∈ {0, 1}∗, let 〈V, P 〉(x) denote the admissible transformation in T(A, Z)
induced by the interaction between V and P on input x. Note that the last
transformation of V is not considered as a part of the interaction, since we want
to focus on the state V would possess immediately after having received the
last message from P . We call this 〈V, P 〉(x) the induced admissible transforma-
tion from V , P , and x. We define the classes QPZK(m, c, s), QSZK(m, c, s), and
QZK(m, c, s) of problems having m-message quantum perfect, statistical, and
computational zero-knowledge proof systems, respectively, with completeness at
least c and soundness at most s, as follows.

Definition 13. Given functions m ∈ poly and c, s : Z
+ → [0, 1], a problem

A = {Ayes, Ano} is in QPZK(m, c, s) (QSZK(m, c, s)) [QZK(m, c, s)] iff there ex-
ist an m-message uniform honest quantum verifier V and an m-message honest
quantum prover P such that

(Completeness and Soundness) (V, P ) forms an m-message quantum interactive
proof system with completeness at least c and soundness at most s,

(Zero-Knowledge) there exists a polynomial-time uniformly generated family
{Qx,y} of quantum circuits such that, for any m-message non-uniform quan-
tum verifier V ′, the circuit Qx,V ′(x) exactly implements an admissible trans-
formation SV ′(x) such that SV ′(x)=〈V ′, P 〉(x) for every x∈Ayes (‖SV ′(x)−
〈V ′, P 〉(x)‖� is negligible with respect to |x| for all but finitely many x∈ Ayes)
[the ensembles {SV ′(x) : x∈ Ayes} and {〈V ′, P 〉(x) : x ∈ Ayes} are polynomi-
ally quantum indistinguishable], where 〈V ′, P 〉(x) is the induced admissible
transformation from V ′, P , and x.

Using these, we define the classes QPZK, QSZK, and QZK of problems having
quantum perfect, statistical, and computational zero-knowledge proof systems,
respectively.

Definition 14. A problem A = {Ayes, Ano} is in QPZK (QSZK) [QZK] if there
exists a function m ∈ poly such that A is in QPZK

(
m, 2

3 , 1
3

)
(QSZK

(
m, 2

3 , 1
3

)
)

[QZK
(
m, 2

3 , 1
3

)
].
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Again note that it is not hard to see that we can amplify the success probability
of quantum perfect/statistical/computational zero-knowledge proof systems by
sequential repetition, which justifies Definition 14.

In the classical case, the most common definition of perfect zero-knowledge
proofs would be the one that allows the simulator to output “FAIL” with small
probability, say, with probability at most 1

2 [7,22]. Adopting this convention
leads to alternative definitions of honest-verifier and general quantum perfect
zero-knowledge proof systems. At a glance, the two types of definitions seem
likely to form different complexity classes of quantum perfect zero-knowledge
proofs. Fortunately, it is proved in Section 6 that the two types of definitions
result in the same complexity class of quantum perfect zero-knowledge proofs.
Such equivalence is not known in the classical case.

3 Computational Zero-Knowledge Case

We start with showing that any honest-verifier quantum computational zero-
knowledge proof system with two-sided bounded error can be transformed into
one with perfect completeness (if the completeness error in the original proof
system is negligible, which may be assumed without loss of generality since
the success probability can be amplified by sequential repetition). This can be
basically proved by using a method for usual quantum interactive proofs due
to Kitaev and Watrous (Theorem 2 of Ref. [16]), but now it is necessary for
the honest-verifier zero-knowledge property to carefully and explicitly construct
a protocol for the honest prover. The proof is found in the full version of this
paper [18].

Lemma 15. Let m ∈ poly, let ε : Z
+ → [0, 1] be any negligible function such that

there exists a polynomial-time uniformly generated family {Qx} of quantum cir-
cuits such that Q1n exactly performs the unitary transformation
Uε(n) =

( �
ε(n)

�
1− ε(n)�

1− ε(n) −�ε(n)

)
, and let δ : Z

+ → [0, 1] be any function that satisfies

δ > ε. Then, HVQZK(m, 1 − ε, 1 − δ) ⊆ HVQZK(m + 2, 1, 1 − (δ − ε)2).

Next we show that any honest-verifier quantum computational zero-knowledge
proof system that involves polynomially many messages can be parallelized to
one that involves only three messages. This can be achieved again by apply-
ing a method in usual quantum interactive proofs due to Kitaev and Watrous
(Theorem 4 of Ref. [16]). The main idea in their parallelization protocol is that
the verifier receives each snapshot state of the underlying proof system as the
first message, and then checks if the following three properties are satisfied: (i)
the first snapshot state is a legal state in the underlying proof system after the
first message, (ii) the last snapshot state can make the original verifier accept,
and (iii) any two consecutive snapshot states are indeed transformable with each
other by one round of communication. The verifier first checks if the conditions
(i) and (ii) really hold for the received snapshot states. He then randomly chooses
a consecutive pair of the snapshot states and challenges the prover to show the
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transformability from one to the other. It is straightforward to show that their
construction preserves the honest-verifier zero-knowledge property.

Lemma 16. Let m ∈ poly and let δ : Z
+ → [0, 1] be any function. Then,

HVQZK(m, 1, 1 − δ) ⊆ HVQZK
(
3, 1, 1 − δ2

4m2

)
.

Finally we show that any three-message honest-verifier quantum computational
zero-knowledge proof system can be transformed into a three-message public-
coin one in which the message from the verifier consists of only one classical bit.
Marriott and Watrous (Theorem 5.4 of Ref. [19]) showed such a transformation
in the case of usual quantum interactive proofs. In their construction, the verifier
first receives a state that is supposed to be the reduced state in the verifier’s
private space after the second message in the original proof system, and then
challenges the prover to recover either the state the original verifier would have
after the first message or that after the third message, depending on the outcome
of the public coin-flip. It is easy to show that their construction preserves the
honest-verifier zero-knowledge property.

Lemma 17. Let c, s : Z
+ → [0, 1] be any functions that satisfy c2 > s. Then,

any problem in HVQZK(3, c, s) has a three-message public-coin honest-verifier
quantum computational zero-knowledge proof system with completeness at least
1+c
2 and soundness at most 1+

√
s

2 in which the message from the verifier consists
of only one classical bit.

Now we can use the quantum rewinding technique due to Watrous [27] to show
that any three-message public-coin honest-verifier quantum computational zero-
knowledge proof system in which the message from the verifier consists of only
one classical bit is computational zero-knowledge even against any dishonest
non-uniform quantum verifier.

Lemma 18. Any three-message public-coin honest-verifier quantum computa-
tional zero-knowledge proof system such that the message from the verifier con-
sists of only one classical bit is computational zero-knowledge against any non-
uniform quantum verifier.

Proof. Let A = {Ayes, Ano} be a problem having a three-message public-coin
honest-verifier quantum computational zero-knowledge proof system such that
the message from the verifier consists of only one classical bit. Let V and P be the
corresponding honest quantum verifier and honest quantum prover, respectively.
Let M and N be the quantum registers sent to V at the first message and at the
third message, respectively, and let R and S be the single-qubit registers that
are used to store the classical information representing the outcome b of a public
coin flipped by V , where R is inside the private space of V and S is sent to P .
Let SV be the simulator for V such that, if x is in Ayes, the states SV (x, 1) and
viewV,P (x, 1) consisting of qubits in M are computationally indistinguishable
and the states SV (x, 2) and viewV,P (x, 2) consisting of qubits in (M, N, R) are
also computationally indistinguishable.
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Simulator for General Verifier W

1. Store the auxiliary quantum state ρ in the quantum register X. Prepare the quan-
tum registers S, W, M, N, R, and A, and further prepare a single-qubit quantum
register F. Initialize all the qubits in F, S, W, M, N, R, and A to state |0〉.

2. Apply the generating circuit Q of the quantum state SV (x, 2) to the qubits in
(M, N, R,A).

3. Apply W1 to the qubits in (S, W, X, M), where W1 is the first transformation of the
simulated verifier W .

4. Compute the exclusive-or of the contents of R and S and write the result in F.
5. Measure the qubit in F in the {|0〉, |1〉} basis. If this results in |0〉, output the qubits

in (W, X, M, N, R), otherwise apply W †
1 to the qubits in (S, W, X, M) and then apply

Q† to the qubits in (M, N, R, A).
6. Apply the phase-flip if all the qubits in F, S, W, M, N, R, and A are in state |0〉,

apply Q to the qubits in (M, N, R, A), and apply W1 to the qubits in (S,W, X, M).
Output the qubits in (W, X, M, N, R).

Fig. 1. Simulator for a general verifier W

Consider a generating circuit Q of the quantum state SV (x, 2). Without loss
of generality, it is assumed that Q acts over the qubits in (M, N, R, A), where A
is the quantum register consisting of qA qubits for some qA ∈ poly. For any non-
uniform quantum verifier W and any auxiliary quantum state ρ for W stored in
the quantum register X inside the private space of W , we construct an efficiently
implementable admissible mapping Φ that corresponds to a simulator TW for W .
Without loss of generality it is assumed that the message from W consists of a
single classical bit, since the honest prover can easily enforce this constraint by
measuring the message from the verifier before responding to it. Let W be the
quantum register consisting of all the qubits in the private space of W except
for those in X and M after the second message having been sent. We consider
the procedure described in Fig. 1, which is the implementation of Φ.
Suppose that the input x is in Ayes. We shall show that (i) the gap between 1

2
and the probability of obtaining |0〉 as the measurement result in Step 5 must be
negligible regardless of the auxiliary quantum state ρ, and (ii) the output state
in Step 5 in the construction conditioned on the measurement result being |0〉
must be computationally indistinguishable from the state W would possess after
the third message. With these two properties, the quantum rewinding technique
due to Watrous [27] works well, by using the amplification lemma for the case
with negligible perturbations, which is also due to Watrous [27]. This ensures
the computational zero-knowledge property against W .

For the generating circuit Q′ of the quantum state viewV,P (x, 2) (here no
restrictions are placed on the size of Q′), consider the “ideal” construction of
the simulator such that Q′ is applied instead of Q in Step 2 of the “real” simulator
construction.

We first show the property (i).



General Properties of Quantum Zero-Knowledge Proofs 119

Since the state viewV,P (x, 2) can be written of the form viewV,P (x, 2) =
1
2 (σ0 ⊗ |0〉〈0| + σ1 ⊗ |1〉〈1|) for some quantum states σ0 and σ1 in (M, N), the
probability of obtaining |0〉 as the measurement result in Step 5 in the “ideal”
construction is exactly equal to 1

2 regardless of the auxiliary quantum state ρ,
because trNσ0 = trNσ1 necessarily holds in this case, where N is the Hilbert
space corresponding to N.

Now, from the honest-verifier computational zero-knowledge property, the
states SV (x, 2) and viewV,P (x, 2) in (M, N, R) are computationally indistinguish-
able. Since the circuit implementing W1 is of size polynomial with respect to
|x|, it follows that the gap between 1

2 and the probability of obtaining |0〉 as
the measurement result in Step 5 in the “real” construction must be negligible
regardless of the auxiliary quantum state ρ, which proves the property (i).

Now we show the property (ii).
Let ξi = ΠiW1(|0S⊗W〉〈0S⊗W | ⊗ ρ ⊗ σi ⊗ |i〉〈i|)W †

1 Πi be an unnormalized
state in (S, W, X, M, N, R) for each i ∈ {0, 1}, where Πi = |i〉〈i| is the projection
operator over the qubit in S, and S and W are the Hilbert spaces corresponding
to S and W, respectively. Then, in the “ideal” construction, conditioned on the
measurement result being |0〉 in Step 5, the output is the state trS(ξ0 + ξ1).

Noticing that trS ξi

trξi
is exactly the state the verifier W would possess after

the third message when the second message from W is i and that the probability
of the second message from W being i is exactly equal to trξi for each i ∈ {0, 1},
trS(ξ0 + ξ1) = trξ0 · trS ξ0

trξ0
+ trξ1 · trS ξ1

trξ1
is exactly the state W would possess

after the third message.
Towards a contradiction, suppose that the output state in Step 5 in the “real”

construction conditioned on the measurement result being |0〉 is computationally
distinguishable from trS(ξ0 + ξ1). Let D be the corresponding distinguisher that
uses the auxiliary quantum state ρ′. We construct a distinguisher D′ for SV (x, 2)
and viewV,P (x, 2) from D.

On input quantum state η that is either SV (x, 2) or viewV,P (x, 2), D′ uses
the auxiliary quantum state ρ ⊗ ρ′, where ρ is the auxiliary quantum state the
verifier W would use. D′ prepares the quantum registers S, W, M, N, R and
another quantum register Y. D′ stores ρ in the register X, η in the register
(M, N, R), and ρ′ in Y. All the qubits in S and W are initialized to state |0〉. Now
D′ applies W1 to the qubits in (S, W, X, M), and then applies D to the qubits in
(W, X, M, N, R, Y).

It is obvious from this construction that D′ with the auxiliary quantum state
ρ ⊗ ρ′ forms a distinguisher for SV (x, 2) and viewV,P (x, 2) if D with the auxiliary
quantum state ρ′ forms a distinguisher for the output state in Step 5 in the “real”
simulator construction conditioned on the measurement result being |0〉 and
the state trS(ξ0 + ξ1). This contradicts the computational indistinguishability
between SV (x, 2) and viewV,P (x, 2), and thus the property (ii) follows. ��

Now we are ready to show Theorem 1 that states HVQZK = QZK.

Proof (of Theorem 1). It is trivial that HVQZK ⊇ QZK, and we show that
HVQZK ⊆ QZK. From Lemma 15, we can start with an m-message
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honest-verifier quantum computational zero-knowledge proof system of perfect
completeness with soundness at most 1 − δ for some m ∈ poly and δ such that
1 − δ is polynomially bounded away from one. Now from Lemmas 16 and 17
together with Lemma 18, we have that HVQZK(m, 1, 1 − δ) ⊆ HVQZK(3, 1, 1−
δ′) ⊆ QZK

(
3, 1, 1+

√
1−δ′

2

)
, where δ′ = δ2

4m2 . Finally, the sequential repetition
establishes HVQZK ⊆ QZK. ��

This simultaneously shows Theorem 2, the equivalence of public-coin and general
quantum computational zero-knowledge proofs, and Theorem 3, the equivalence
of quantum computational zero-knowledge proofs of perfect completeness and
general ones.

To show Theorem 4, we need another two properties. First, it is trivial that
parallel repetition of honest-verifier quantum zero-knowledge proofs preserves
the honest-verifier zero-knowledge property. Together with the perfect paral-
lel repetition theorem for three-message quantum interactive proofs due to Ki-
taev and Watrous (Theorem 6 of Ref. [16]), this implies the following.

Lemma 19. Let c, s : Z
+ → [0, 1] be any functions such that c > s. Then, for

any k ∈ poly, HVQZK(3, c, s) ⊆ HVQZK(3, ck, sk).

Second, it is easy to extend Lemma 18 to the following more general statement.

Lemma 20. Any three-message public-coin honest-verifier quantum computa-
tional zero-knowledge proof system such that the message from the verifier con-
sists of O(log n) bits for every input of length n is computational zero-knowledge
against any non-uniform quantum verifier.

Now Theorem 4 can be proved as follows.

Proof (of Theorem 4). For any p ∈ poly, take q ∈ poly such that 2
q
2 ≥ log p + 2.

Then, from Lemmas 15, 16, and 19, we have that HVQZK ⊆ HVQZK(3, 1, 2−q).
With Lemma 17, this further implies that any problem in HVQZK has a three-
message public-coin honest-verifier quantum computational zero-knowledge
proof system of perfect completeness with soundness at most 1

2 + 2−
q
2−1 in which

the message from the verifier consists of only one classical bit. For every input
of length n, we run this proof system �log p(n)	 + 2 times in parallel. From
Lemma 19, this results in a three-message public-coin honest-verifier quantum
computational zero-knowledge proof system of perfect completeness with sound-
ness at most 1

4p(n)

(
1 + 2−

q(n)
2

)�log p(n)�+2 ≤ 1
p(n) in which the message from the

verifier consists of �log p(n)	 + 2 bits. Now Lemma 20 ensures that this proof
system is computational zero-knowledge even against any dishonest quantum
verifier. ��

4 Statistical Zero-Knowledge Case

All the properties shown for the computational zero-knowledge case also hold
for the statistical zero-knowledge case. The proofs are essentially same as in the



General Properties of Quantum Zero-Knowledge Proofs 121

computational zero-knowledge case. This proves Theorems 5 and 6, and also
gives alternative proofs of the facts that HVQSZK = QSZK and that public-
coin quantum statistical zero-knowledge equals general quantum statistical zero-
knowledge, which were first shown by Watrous [27] using his previous results [25].

5 Perfect Zero-Knowledge Case

Now we move to the perfect zero-knowledge case. Although our approach for the
computational and statistical zero-knowledge cases basically works well even for
the perfect zero-knowledge case, some of our transformations do not preserve the
perfect zero-knowledge property. In particular, our method of making proof sys-
tems perfectly complete no longer works well for quantum perfect zero-knowledge
case, and we need to use a slightly modified parallelization method.

As mentioned in Section 3, the verifier in the Kitaev-Watrous parallelization
protocol checks if the last snapshot state can make the original verifier accept
before proceeding to the test for consecutivity. The problem arises here, in the
check for the last snapshot state, when parallelizing an honest-verifier quantum
perfect zero-knowledge proof system with imperfect completeness. Because of
imperfect completeness, the verifier’s check can fail even if the honest prover
prepares every snapshot state honestly, which means that the verifier’s check
causes a small perturbation to the snapshot states. Now we have difficulty in
perfectly simulating the behavior of the honest prover with respect to these
perturbed states, which spoils the perfect zero-knowledge property.

To avoid this difficulty, we modify the parallelization protocol as follows. Our
basic idea is to postpone the verifier’s check for the last snapshot state until after
the third message. At the final verification of the verifier, with equal probability
he either carries out the postponed check for the last snapshot state or just car-
ries out the original final verification procedure. Now the honest-verifier perfect
zero-knowledge property becomes straightforward, since there is no perturbation
to all the snapshot states until after the last transformation of the verifier. The
completeness accepting probability cannot be worse than that in the original
protocol. However, the soundness condition now becomes a bit harder to prove,
because we can no longer assume that the last snapshot state prepared by a dis-
honest prover makes the original verifier accept, when analyzing the probability
to pass the transformability test for two consecutive snapshot states. Neverthe-
less, we can show that our modified parallelization protocol above indeed works
well, and we have the following lemma. The proof is found in the full version of
this paper [18].

Lemma 21. Let m ∈ poly be such that m ≥ 4 and let ε, δ : Z
+ → [0, 1] be any

functions such that ε < δ2

16(m+1)2 . Then,

HVQPZK(m, 1 − ε, 1 − δ) ⊆ HVQPZK
(
3, 1 − ε

2 , 1 − δ2

32(m+1)2
)
.

For Lemmas 17 and 18, exactly the same constructions can be used to show their
perfect zero-knowledge versions. Putting things together, we have Theorem 7
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that states HVQPZK = QPZK, and Theorem 8, the equivalence of public-coin
and general quantum perfect zero-knowledge proofs.

6 Equivalence of Two Definitions of Quantum Perfect
Zero-Knowledge

In the classical case, the most common definition of perfect zero-knowledge proofs
would be the one that allows the simulator to output “FAIL” with small probabil-
ity [7,22]. Adopting this convention leads to the following alternative definitions
of honest-verifier and general quantum perfect zero-knowledge proof systems.

Definition 22. Given functions m ∈ poly and c, s : Z
+ → [0, 1], a problem A =

{Ayes, Ano} is in HVQPZK′(m, c, s) iff there exist an m-message uniform honest
quantum verifier V and an m-message honest quantum prover P such that

(Completeness and Soundness) (V, P ) forms an m-message quantum interactive
proof system with completeness at least c and soundness at most s,

(Honest-Verifier Perfect Zero-Knowledge) there exists apolynomial-timeprepara-
ble ensemble {SV (x, j)} of quantum states such that SV (x, j) = px,j|0〉〈0| ⊗
|0Hj 〉〈0Hj |+(1− px,j)|1〉〈1|⊗ viewV,P (x, j) for some 0 ≤ px,j ≤ 1

2 , for every
x ∈ Ayes and for each 1 ≤ j ≤

⌈m(|x|)
2

⌉
, where Hj is the Hilbert space such

that viewV,P (x, j) is in D(Hj).

Definition 23. Given functions m ∈ poly and c, s : Z
+ → [0, 1], a problem A =

{Ayes, Ano} is in QPZK′(m, c, s) iff there exist an m-message uniform honest
quantum verifier V and an m-message honest quantum prover P such that

(Completeness and Soundness) (V, P ) forms an m-message quantum interactive
proof system with completeness at least c and soundness at most s,

(Perfect Zero-Knowledge) there exists a polynomial-time uniformly generated
family {Qx,y} of quantum circuits such that, for any m-message non-uniform
quantum verifier V ′, the circuit Qx,V ′(x) exactly implements an admissi-
ble transformation SV ′(x) such that, for every x ∈ Ayes, SV ′(x) = px(Φ0 ⊗
Ψfail) + (1 − px)(Φ1 ⊗ 〈V ′, P 〉(x)) for some 0 ≤ px ≤ 1

2 , where 〈V ′, P 〉(x) ∈
T(A, Z) is the induced admissible transformation from V ′, P , and x for
some Hilbert spaces A and Z, Ψfail ∈ T(A, Z) is the admissible transforma-
tion that always outputs |0Z〉〈0Z |, and Φb is the admissible transformation
that takes nothing as input and outputs |b〉〈b|, for each b ∈ {0, 1}.

In Definitions 22 and 23, the first qubit of the output of the simulator indicates
whether or not the simulation succeeds — |0〉〈0| is interpreted as failure and
|1〉〈1| as success.

Definition 24. A problem A={Ayes, Ano} is in HVQPZK′ (QPZK′) if there ex-
ists a function m ∈ poly such that A is in HVQPZK′

(
m, 2

3 , 1
3

)
(QPZK′

(
m, 2

3 , 1
3

)
).
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It is not obvious at a glance that HVQPZK = HVQPZK′ and QPZK = QPZK′,
i.e., that the definitions of honest-verifier and general quantum perfect zero-
knowledge proof systems using Definitions 11 and 13 are equivalent to those
using Definitions 22 and 23. Fortunately, with Theorem 7, we can show that
HVQPZK = HVQPZK′ and QPZK = QPZK′. It is stressed that such equiva-
lence is not known in the classical case.

Theorem 25. HVQPZK = HVQPZK′ and QPZK = QPZK′.

Note that QPZK ⊆ QPZK′ ⊆ HVQPZK′ is obvious. From Theorem 7, we have
HVQPZK = QPZK. Therefore, to show Theorem 25, it is sufficient to show that
HVQPZK′ ⊆ HVQPZK. Now, the idea is to modify the protocol of the honest
prover for the HVQPZK′ system so that the honest prover “adjusts” his behavior
to that of the simulator, i.e., he privately runs the simulator and intentionally
fails to return the correct response whenever the simulator fails. The detailed
proof is found in the full version of this paper [18].
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Abstract. The layered games framework provides a solid foundation to
the accepted methodology of building complex distributed systems, as a
‘stack’ of independently-developed protocols. Each protocol in the stack,
realizes a corresponding ‘layer’ model, over the ‘lower layer’. We define
layers, protocols and related concepts. We then prove the fundamental
lemma of layering. The lemma shows that given a stack of protocols
{πi}u

i=1, s.t. for every i ∈ {1, . . . u}, protocol πi realizes layer Li over
layer Li−1, then the entire stack can be composed to a single protocol
πu||...||1, which realizes layer Lu over layer L0.

The fundamental lemma of layering allows precise specification, design
and analysis of each layer independently, and combining the results to
ensure properties of the complete system. This is especially useful when
considering (computationally-bounded) adversarial environments, as for
security and cryptographic protocols.

Our specifications are based on games, following many works in ap-
plied cryptography. This differs from existing frameworks allowing com-
positions of cryptographic protocols, which are based on simulatability
of ideal functionality.

1 Introduction

The design and analysis of complex distributed systems, such as the Internet and
applications using it, is an important and challenging goal. Such systems are de-
signed in modular fashion, typically by decomposing the system into multiple
layers (or modules-). Some of the well known layered network architectures in-
clude the ‘OSI 7-layers reference model’ and the ‘IETF 5-layers reference model’
(also referred to as the Internet or TCP/IP model); see e.g. [30]. The present
work is part of an effort, described in [25], to extend such layered networking
architectures, to support secure e-commerce applications. Figure 1 shows the five
IETF layers, together with two optional security sub-layers, and the four secure
e-commerce layers of [25].

Layered (or modular) architectures allow to specify, design, analyze, imple-
ment and test protocols for each layer, independently of protocols for other layers.
This is based on the paradigm of lower layers abstraction: when discussing and

R. Canetti (Ed.): TCC 2008, LNCS 4948, pp. 125–141, 2008.
c© International Association for Cryptologic Research 2008
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Fig. 1. IETF and e-commerce layers; (optional) security sub-layers marked with dotted
contour

analyzing a protocol πi for layer i, running in multiple nodes, we abstract the
satisfactory behaviors of the lower layers by a single abstract layer model Li−1,
and the satisfactory behaviors of layer i into abstract layer model Li. Protocol
πi realizes layer model Li over layer model Li−1, if the behavior of (multiple
instances of) πi running over layer model Li−1, satisfies layer model Li (except

with negligible probability). We write this as: Li �
[

πi

Li−1

]
.

A pair of protocols πi and πi−1, of layers i, i + 1, can be composed into a
single protocol, which we denote as πi||i−1. Our main result is the fundamental
lemma of layering, showing that by composing protocols of multiple layers, we
can implement a high-layer model directly over a low-layer model. Given layer

models {Li}l
i=0, and protocols π1, . . . , πl, where Li �

[
πi

Li−1

]
for i = 1, . . . , l,

their layered composition π1||...||l implements Ll over L0, i.e. Ll �
[π1||...||l

L0

]
. This

provides firm foundations to the security of modular and layered architectures,
as in Figure 1.

For example, in [27] we define the delivery evidences layer model LDE, and the
lower communication layer model LComm; and we show a protocol πDE s.t. LDE �[

πDE

LComm

]
. Similarly, in [26] we define the orders layer model LOrders, and show

protocol πOrder s.t. LOrders �
[

πOrder

LDE

]
. Using the fundamental lemma of layering,

the composite protocol πDE||O realizes the orders layer directly over the com-

munication layer, i.e. LOrders �
[ πDE||O

LComm

]
. This is illustrated in Figure 2, where

we outline the games each of the protocols (πDE, πOrder and their composition
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∧

Fig. 2. Layering of realizations of the Order and Delivery Evidences (DE) layers

πDE||O, the two lower layers (Comm and DE), the two experiments protocols
(DE and Orders), and the adversary protocol.

The layered games framework provides solid foundations to the accepted
methodology, of using layered architectures (also called reference models), to
specify, design, analyze, implement and test each layer independently. In spite
of the extensive use of layered architectures, such foundations did exist prior
to this work. For example, the IP (Internet Protocol) layer is essentially only
required to provide a vaguely-described ‘best effort’ service. Existing propos-
als and standard of specifications of layers are only stated informally, often by
partial-specification for the operation of the protocols, rather than to the ser-
vice the higher layer can rely on. Composition of protocols is also used without
formal definition or proof.

A possible explanation for the fact that layering was not yet based on for-
mal foundations, in spite of its wide use, is the fact that similar compositions
work as expected for many models, often trivially. For example, the composi-
tion of two polynomial time algorithms is trivially also a polynomial time algo-
rithm. However, as [2] argue, composition properties require proof, and may not
hold for all (natural) models. For example, the composition of two polynomial
time interactive Turing machines (ITM), or of an (infinite) state machine with
polynomial-time transition function, may not be polynomial-time, in the natural
setting where the outputs of each machine is considered part of the inputs of
the other. Indeed, in developing the layered games framework, we found that
some definitional choices could have subtle but critical impact on composability.
Details within.

Precise specifications of models for network layers can be hard to write and
analyze, since they depend on many implementation and environment aspects.
However, such rigorous specifications, and analysis, are critical, at least for se-
curity and cryptographic protocols, which must resist adversarial attacks. The
layered games framework allows meaningful models, and analysis of implemen-
tations (protocols), using standard reduction techniques and composition of pro-
tocols (layers).
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Compositions and reductions are standard techniques in design and analysis
of cryptographic functions and protocols. As noted above, polynomial-time algo-
rithms trivially compose well. However, composition of cryptographic protocols is
more challenging. Several frameworks were shown to ensure secure composition,
including universal composability (UC) by [14], reactive simulatability by [5, 34],
observational equivalence by [32], and more. These frameworks all follow the
ideal functionality paradigm.

The ideal functionality paradigm is elegant and powerful, and resulted in many
significant results, including proofs that arbitrary functions and functionalities
can be computed securely, e.g. [21, 12, 14]. Grossly simplifying, an ‘ideal func-
tionality’ for layer i is a single program or ITM Fi, which has multiple copies
of the interfaces to layer i + 1. Protocol πi is considered secure, if executions of
multiple copies of it over Fi−1, are indistinguishable from executions of Fi.

However, it may not always be feasible to define an ideal functionality cap-
turing the possible behaviors of a realistic network layer. In fact, even defining
the behaviors of each layer is challenging; transforming this into a program,
would be impractical or impossible, and may result in over-specification. Note
that over-specification of layers (or protocols) is usually considered harmful by
practitioners, see e.g. [9].

This inability to use ideal functionalities as specifications for networking and
e-commerce layer models, is our motivation in developing the layered games
framework. The layered games framework allows protocol compositions with
realistic specifications for network and e-commerce layer models, and with
emphasis on simplicity and usability, even at some reduction in scope and
generality.

As the name implies, the layered games framework is based on the game
playing paradigm, instead of following the ideal functionality paradigm. The
game playing paradigm is central to the theory of cryptography, see e.g. [21, 20].
Game playing supports strong analytical tools, e.g. [8], and may facilitate the
use of (semi) automated proof-checking tools, see e.g. [24].

In the game-playing paradigm, one specifies an interactive game between a
component and an adversary, where security is defined by the probability of
the adversary winning in the game. With information-theoretic games the ad-
versarial entity is allowed unbounded computational resources, while concrete
and probabilistic polynomial time games assume certain limitations on adver-
sarial resources, e.g. available time. Game-based specifications are widely used,
and available for many cryptographic primitives such as digital signature and
encryption schemes, pseudo-random functions, and much more, e.g., [22, 23, 20].

Some primitives have secure implementations for game-based specifications,
where the corresponding ideal functionalities are not realizable, see [17, 11, 13].
This provides another motivation for investigating compositions of protocols
satisfying game-playing specifications. However, our focus is different: allow-
ing realistic models for network layers, without trying to define them as ‘ideal
functionality’.
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Further related works. Our execution model is closely related to the execution
models of I/O Automata of [33], especially the Probabilistic I/O Automata
model of Canetti et al. [15], and to the Reactive Simulatability framework
[5, 6, 35]. In an especially related work, Backes et al. [4] define a relaxed no-
tion of conditional reactive simulatability, where simulation is required only if
the environment fulfills some constraints; however, there are significant differ-
ences between the works, most notably their constraints are on the environment
and not on the lower layers.

The layered games framework follows the computational approach to cryptog-
raphy, which treats protocols and cryptographic schemes as programs/machines,
operating on arbitrary stings (bits). This is in contrast to the symbolic approach,
where cryptographic operations are seen as functions on a space of symbolic (for-
mal) expressions, and security properties are stated as symbolic expressions; see
[18, 10]. Several works investigate compositions of cryptographic protocols with
the symbolic approach, e.g. Datta et al. [16] and Backes at al. [3]. We believe
that it may be possible and beneficial, to extend the layered games framework
to support symbolic/formal analysis, possibly building on recent results on the
relationships between the two approaches, such as [1]. This may facilitate the
use of verification tools; notice also that we use state machines as the basic
computational model, which can also be helpful in applying verification tools.

Organization. In Section 2 we define protocols, configurations (of protocols),
and executions (of configurations). In Section 3 we define layer games, models
and realizations. In Section 4 we present and prove the fundamental lemma of
layering. We conclude and discuss future work in Section 5.

For space limitations, the proof and detailed examples of applications of the
framework are deferred to the full version of this paper [28]; see also [27, 26].

2 Protocols, Configurations and Executions

2.1 Protocols

Our basic element of computation is a protocol. We use protocols to model all
the entities compromising the systems we investigate, including even adversarial
entities (‘the adversary’). Protocols are state machines1 that accept input on one
of few input interfaces, and produce output on one or more output interfaces.
The transition function δ maps the input (interface and value), current state and
random bits, to a new state and to outputs on the different output interfaces.
We use ⊥ to denote a special value which is not a binary string (⊥ �∈ {0, 1}∗); a
protocol outputs ⊥ on some output interface to signal ‘no output’.
1 We use state machines, rather than e.g. ITM as in Universal Composability [14],

since we found it simpler, and easier to ensure that an execution involving multi-
ple protocols, some of which are adversarial, will have well-defined scheduling and
distribution of events. Also, in many cases protocols may be represented by finite
state machines, which may have advantages including possible use of automated
verification tools.
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The transition function δ can depend on two additional inputs: random bits
and a security parameter. The random bits may be ignored to define determin-
istic protocols, including analysis of protocols using pseudo-random bits. The
(unary) security parameter, allows to define computational properties of the pro-
tocol and of specifications, such as security against computationally-bounded
adversary. Specifically, we use the security parameter to define a polynomial
protocol.

Definition 1 (Protocol). A protocol π is a tuple 〈S, IIN , IOUT , δ〉 where:

1. S is a set of states, where ⊥ ∈ S is the initial state,
2. IIN is a set of input interface identifiers,
3. IOUT is a set of output interface identifiers,
4. δ : IN → OUT is a transition function, with:

– Domain IN = 1∗×S×IIN ×{0, 1}∗×{0, 1}∗ (security parameter, current
state, input interface, input value, random bits).

– Range OUT = S ×
∏

i∈IOUT
({0, 1}∗ ∪ {⊥}). The outputs consist of a

new state, denoted δ.S ∈ S, and output values δ.ov[ι] ∈ {0, 1}∗∪ {⊥} for
each interface ι ∈ IOUT .

The protocol is polynomial if δ is polynomial-time computable, and if the length
of the outputs is the same as the length of the inputs2, plus a polynomial in
the security parameter, i.e. ∃c ∈ N s.t. ∀(1k, s, ιi, x, r) ∈ IN, ιo ∈ IOUT :
|δ.ov[ιo](k, s, ιi, x, r)| ≤ |x| + |k|c.

Notations

Π, Πpoly: Let Π denote the set of all protocols, and Πpoly denote the set of
polynomial protocols.

Dot notation: the range of δ is a set of pairs (s, ov[ι]), where s ∈ S is the
new state and ov[ι] ∈ {0, 1}∗ ∪ {⊥} is the output on each output interface
ι ∈ IOUT . To refer directly to the state or the outputs, we use dot notation
as in δ.s(·) and δ.ov[ι](·) respectively. We similarly use dot notation in other
places, i.e. α.β refers to element β of a record or tuple α.

We can connect protocols, via their interfaces, in different configurations, as
we define next. We can also connect from an output interface of a protocol, to
an input interface of the same protocol; this makes it trivial to compose several
protocols into a single protocol, which is useful (see Section 4). Note that if we
2 This restriction of the output length to be the same as input length, plus some ‘over-

head’ which depends only on the security parameter, is a simple method to prevent
exponential blow-up in input and output lengths, as outputs of one protocol become
inputs to another protocol during execution. This restriction is reasonable in prac-
tice, and sufficient for our needs; for example, it allows a protocol to ‘duplicate’ input
from one interface, to multiple output interfaces, but maintains a polynomial bound
on the length of the inputs and outputs on each interface during the execution. More
elaborate ways to to prevent exponential blow-up were presented by [31] describing
a general model for systems which satisfy certain acyclic conditions, [14] and [29] for
UC, and [6] for reactive simulatability.
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compose several polynomial protocols in this manner, then the resulting protocol
is also polynomial.

2.2 Configuration

We study interactions of multiple protocols, connected via their interfaces; we
call the set of interconnected protocols a configuration. Configuration are a di-
rected graph, whose nodes P are identifiers for protocols, and whose edges are
defined by mappings p′ = nP(p, ι) (for ‘next protocol’) and ι′ = nI(p, ι) (for
‘next interface’), mapping output interface ι ∈ oI(p) of node p, to input interface
ι′ ∈ iI(p) of node p′. Identification of the input and output interfaces, corre-
sponds to the awareness of the network-layer, e.g. of router or firewall, to the
identification of the network interface card on which a packet was received. For
example, Figure 2, shows three (homomorphic) configurations. The definition
follows.

Definition 2 (Configuration). A configuration is a tuple C =〈P, iI, oI, nP, nI〉,
where:

P is a set of protocol instance identifiers,
iI, oI map identifiers in P to input and output interfaces, respectively,
nP maps from instance identifier p ∈ P and an output interface ι ∈ oI(p), to

p′ = nP(p, ι), where either p′ = ⊥ or p′ ∈ P (another instance),
nI maps from instance identifier p ∈ P and an output interface ι ∈ oI(p), to

input interface ι′, where if nP(p, ι) ∈ P then ι′ ∈ iI(nP(p, ι)),

Above, we defined configurations without any ‘size’ parameter, as required e.g.
to analyze protocols and distributed algorithms designed for networks with a
variable number of parties (and where complexities may depend on the number
of parties). This is for simplicity and to avoid clutter; the extensions to (uniform
or non-uniform) ‘configuration families’ seem quite obvious. Notice that for many
applications, e.g. in [27, 26], it may be sufficient to consider a small fixed set of
parties.

Still, configurations as defined above, are quite general. In particular, we inten-
tionally avoided assuming any specific communication or synchronization mecha-
nisms. This allows use of the framework in diverse scenarios, e.g. with or without
assumptions on synchronization, communication and failures.

2.3 Executions

An execution is a sequence of events, each event corresponding to one transi-
tion of a protocol π running in one node p ∈ P inside a configuration C =
〈P, iI, oI, nP, nI〉; to define the execution, we use a mapping π = Γ (p) from the
protocol identifiers P to the protocols realizing each node.

An important design goal, is that the set of executions of a given configura-
tion C, with a specific mapping to protocols Γ , would be a well-defined random
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variable. This makes it easier to use an execution as a ‘subroutine’, to facilitate
reduction-based reasoning and proofs. To further simplify such reductions, we
require that executions be a deterministic function of explicit random-tape in-
puts. Specifically, the ith event in the execution, denoted ξi, is defined by the
(deterministic) transition function of the protocol Γ (pi) invoked at this event
(where pi is the identifier of that node). We allow the protocol to make random
choices, but only using uniformly-selected random bits Ri ∈R {0, 1}∗, provided
as input to the transition function. Let R = {Ri ≡ {0, 1}∗}i=1,2,... be the se-
quence whose elements are the sets of all binary strings {0, 1}∗; each execution
is a deterministic function of the specific sequence R ∈ R used in that execution
(i.e. R = {Ri}i=1,2,... s.t. (∀i)Ri = {0, 1}∗).

Each protocol instance has its own state, and in each round may decide to
invoke interfaces of multiple other protocol instances; see for example the configu-
rations in Figure 2. Therefore, some scheduling mechanism for events is required.
To ensure well-defined executions, without any non-deterministic choice (except
for the explicit use of the random input strings R ∈ R), we use a deterministic
schedule S (cf. [15]).

A schedule S of configuration C = 〈P, iI, oI, nP, nI〉, is a sequence of pairs
S = {〈pi, ιi〉}i∈N where pi ∈ P. We (later) require protocols to perform cor-
rectly for any schedule, therefore, the schedule can be considered as adversar-
ial (and not even limited by computational assumptions). On the other hand,
the schedule, is defined in advance and cannot depend on the execution (or on
the random bits R ∈ R); in a sense, we separated the adversarial mechanisms
into a non-adaptive, computationally-unlimited element (the schedule), and an
adaptive, usually computationally-limited element (modeled as a protocol, or
multiple protocols, in the configuration, and aware of only inputs on its inter-
faces). A schedule could, of course, prevent events from happening; to prevent
this from being a trivial method to cause executions where the adversary wins,
our definitions of games (later) consider the adversary as winning only if some
event happens, rather than by the absence of some event.

A similar issue, where we tried to avoid non-determinism, involves how we
handle multiple pending inputs, submitted on the same input interface. Our def-
inition delivers inputs on an interface, in the order in which they were submitted.
We do this by keeping a FIFO queue Q[p, ι], for protocol instance p and input
interface ι, with regular semantics for the enqueue, dequeue, and is non empty
operations. Other choices may be possible.

Definition 3 (Execution). Let C = 〈P, iI, oI, nP, nI〉 be a configuration. Let
S = {〈pi ∈ P, ιi ∈ iI(pi)〉}i∈N be a schedule of C. Let Γ : P → Π be a mapping
of the protocol identifiers P to specific protocols.

The execution Xk(C, Γ, S; R) of security parameter k ∈ 1∗, configuration C,
protocol mapping Γ , schedule S and sequence (of random bits) R = {Ri} ∈ R, is
the sequence of execution events {ξi} = {〈pi ∈ P, ιi ∈ iI(pi), ivi, ovi[·]〉 resulting
from the following process:
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For all p ∈ P: s[p] := ⊥;

Q[p1,ι1].enqueue(0); X := {}
For i := 1 to ∞ do:

if (pi ∈ P, ιi ∈ IIN (pi) and Q[pi, ιi].is non empty()) then:

1. ivi := Q[pi, ιi].dequeue();

2. 〈S, IIN , IOUT , δ〉 := Γ (pi).
3. 〈s[pi], ovi[ι ∈ IOUT ]〉 := δ(k, s[pi], ιi, ivi; Ri);
4. ∀ ι ∈ IOUT : if ovi[ι] �= ⊥

then: Q[nP(pi, ι), nI(pi, ι].enqueue(ovi[ι]);

Let Xk(C, Γ, S) be the random variable Xk(C, Γ, S; R) for R ∈R R.
If all protocols in the range of Γ are polynomial, we say that Γ is polyno-

mial. If Γ is polynomial, then Xk(C, Γ, S)[l] is sampleable in time polynomial
in k and l, where Xk(C, Γ, S)[l] denotes the l first events of Xk(C, Γ, S). This
allows a polynomial protocol to run polynomial number of steps of an execution
containing polynomial protocols, as part of its computational process (e.g. for
reduction proofs). We restate this observation in the following proposition.

Proposition 1 (Executions of polynomial protocols are efficiently sam-
pleable). Let C = 〈P, iI, oI, nP, nI〉 be a configuration and Γ : P → Πpoly be a map-
ping of the protocol identifiers P to specific polynomial protocols. Then Xk(C, Γ,
S)[l] is sampleable in probabilistic polynomial time (as a function of k and l).

3 Layer Games, Models and Realizations

From this section, our discussion is focused, for simplicity, on layered architec-
tures, as in Figure 1. We believe that it is not too difficult to generalize our
concepts and results, but that this will cause (mostly technical) complexities,
that may make the resulting definitions less easy to understand and use.

The basic idea of layered architectures, is abstraction. Namely, the designer
of protocol πi for layer i, is oblivious to details of lower layers, and only cares
about the layer model of layer i − 1, denoted Li−1. The layer model Li−1 defines
all possible behaviors observable to layer i, resulting from the operation of layer
i − 1 protocols and of all lower layers. The goal of the designer of protocol πi,
for layer i, is to ensure that when instances of πi operate over any instantiation
of Γi−1 of layer model Li−1, the resulting operation satisfies layer model Li.

In the first subsection below, we give a game-based definition of a layer model,
with conditions on the outcomes of the game, defining when a protocol ΓL is
considered to satisfy layer model L; we denote this by L |= ΓL. In the second

subsection, we define the realization relation, denoted LU �
[

πU

LL

]
, indicating that

protocol πU , when running over lower layer LL, realizes layer model LU .
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3.1 Layer Models

We define the layer model L, by a simple zero-sum (win-lose) game between
an adversary protocol, with identifier A, and a layer protocol, with identifier IL.
These protocols interact only via a third protocol, the experiment protocol, with
identifier Exp, as shown in Figure 3. The experiment protocol defines the ‘rules
of the game’, and in particular the outcome, which Exp produces on a designated
output interface outcome. Specifically, in every execution, Exp outputs a value
on outcome (at most) once, and this value is a single bit: 1 if the adversary wins
(protocol failed the game), and 0 if the adversary losses (protocol passed the
game). The game includes an expected winning rate α ∈ [0, 1] (typically α = 0
or α = 1

2 ), defining the expected (or permitted) probability that the adversary
will win, i.e. eventually have 1 on outcome.

Fig. 3. Layer Model Configuration. If for every ΓA holds Pr(outcome = 1) ≤ α +
+negl(k), then the layer protocol ΓL satisfies L = (ΓExp, α), or: L |= ΓL.

We later implement layer i over layer i − 1, by multiple instances of protocol
πi, one in each processor in the network. For simplicity, we assume a constant
number of instances n; it seems straightforward to extend the results to allow
n to be a parameter. It is convenient to define a separate input and output
interfaces between the experiment and each instance. Namely, for j ∈ {1, . . . , n},
the configuration includes interface E2Lj from Exp to IL, and interface L2Ej from
IL to Exp. Finally, we use a single interface E2A from Exp to A, and a single
interface A2E from A to Exp. This completes the definition of the layer modeling
game configuration CLM (for some constant number n of instances).

For φ ∈ {Exp, A}, let Γ (φ) = Γφ be the protocol instantiating node φ;
similarly, let Γ (IL) = ΓL be a protocol realizing IL. Given schedule S, let
ExpΓExp

ΓA,ΓL,S(k, l; R) denote the output of outcome after l events in the execution
Xk(CLM , Γ, S; R), for R ∈ R, or ⊥ if there was no such output.

Definition 4 (Layer model). A (polynomial) layer model is a pair L=(ΓExp,α),
where ΓExp is a (polynomial) protocol and α ∈ [0, 1]. We say that protocol ΓL ∈
Πpoly computationally satisfies layer model L, and write L |=poly ΓL, if for every
ΓA ∈ Πpoly, schedule S, polynomial l and large enough k, holds:

Pr
R∈R

(
ExpΓExp

ΓA,ΓL,S(k, l(k); R) = 1
)

≤ α + negl(k)
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where negl is some negligible function (asymptotically smaller than any strictly
positive polynomial), and ExpΓExp

ΓA,ΓL,S(k, l; R) is defined as above.
Protocol ΓL statistically satisfies L, if the above holds when protocols are not

required to be polynomial, and perfectly satisfies L if this holds even when we
remove the negl(k) term. These notions are denoted L |=stat ΓL and L |=perf ΓL,
respectively.

We observe the trivial relation among the three notions of satisfaction.

Proposition 2. For any layer model L and any protocol ΓL holds:

L |=perf ΓL ⇒ L |=stat ΓL ⇒ L |=poly ΓL

Notation: we may write L |= ΓL, when it is obvious that we refer to |=poly.

3.2 Layer Realization Indistinguishability Game

We now define and investigate another game, which we call indistinguishable
layer realization games, which is similar to indistinguishability games used in
many cryptographic definitions, e.g. pseudo-random functions [19], and espe-
cially to the ‘left-or-right indistinguishability’ (LOR) of [7]. Layer realization
games are convenient for the common layered and modular (‘top-down’) design
methodologies. As in previous sections, we had to tradeoff generality for simplic-
ity and ease-of-use.

The configuration of layer realization indistinguishability games is illustrated
in Figure 4. Like in layer model games, the configuration contains nodes A, Exp
and IL, where A and IL are connected only via Exp. There are n + 1 additional
nodes, where n is the (constant) number of instances: n realization nodes (in-
stances) {Rj}j=1,...,n, and one lower layer node ILL.

As in the layer model games, without loss of generality, we use a single input
and output interface from the experiment (or ‘higher layer’) to each instance
in IL, and therefore we will have the interfaces E2Lj , L2Ej , E2A and A2E as
before. The configuration also includes interfaces E2Rj , R2Ej , R2Lj and L2Rj ,
connecting between Exp and R, and between R and ILL. This completes the
definition of the layer realization configuration CLR (for a fixed number n of
instances).

All the realization nodes are instantiated by (mapped to) the same protocol
π, which is tested for realization of layer L over lower layer LL. Namely, (∀j ∈
{1, . . . , n})Γ (Rj) = π, where Γ is the mapping we will use in the execution of
the game (with n instances).

In layer realization indistinguishability games, we use a specific experiment
protocol ExpIND, which we define below, i.e. Γ (Exp) = ExpIND. Here are some ba-
sic details about ExpIND. Upon initialization, ExpINDflips a fair coin b ∈R {L, R},
where L stands for either Layer or Left, and R stands for either Realization or
Right. The game ends when ExpIND receives a guess b′ of either L or R from the
adversary A, which arrives on a dedicated Guess input interface. Upon receiving
the guess b′, ExpINDoutputs on its outcome output interface 1 if b = b′, and 0
otherwise.
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Given adversary protocol Γ (A) = ΓA, protocols for the two layers Γ (IL) = ΓL,
Γ (ILL) = ΓLL, sequence of random bit sequences R ∈ R and schedule S, let
ExpIND

ΓA,ΓL,ΓLL,π,S(k, l; R) denote the output of outcome after l events in the
execution Xk(CLR, Γ, S; R), or ⊥ if there was no such output.

Definition 5 (Layer realization). Let L, LL be two polynomial layer models.
Protocol π computationally realizes layer model L over layer model LL, which we

denote by L �poly

[
π

LL
]
, if for every polynomial algorithm ΓLL s.t. LL |= ΓLL, there

exists a polynomial algorithm ΓL s.t. L |= ΓL, s.t. every polynomial algorithm ΓA

and for every schedule S and every polynomial l, for sufficiently large k holds

Pr
R∈R

(
ExpIND

ΓA,ΓL,ΓLL,π,S(k, l(k); R) = 1
)

≤ 1
2

+ negl(k)

Protocol π statistically realizes layer model L over layer model LL, which we

denote by L �stat

[
π

LL
]
, if the above holds when protocols are not required to be

polynomial, and perfectly realizes L over LL, which we denote by L �perf

[
π

LL
]

if

this holds even when we remove the negl(k) term.

Fig. 4. The Layer Realization Indistinguishability game. Protocol π realizes layer L over
layer LL, if for every adversary ΓA and every lower-layer protocol ΓLL, there is some
protocol ΓL satisfying layer model L, s.t. the adversary cannot distinguish between ΓL

and between the composition of n instances of π over ΓLL.

In summary, protocol π realizes layer model Lover layer model LL, if for every
adversary protocol ΓA and every lower-layer protocol ΓLL, there is some protocol
ΓL satisfying layer L, s.t. the ΓA cannot distinguish between interacting with ΓL

and interacting with π operating over ΓLL, where ΓA interacts only via ExpIND.

Intuitively,
[

π

ΓLL

]
is a good implementation of L, if the adversary A cannot
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distinguish between it and between some protocol ΓL which satisfies L, when
interacting via ExpIND, better than the trivial winning rate of 1

2 . To complete
the description, we now present the indistinguishability experiment ExpIND.

Definition 6 (Layer realization indistinguishability experiment). Let
ExpIND= 〈S, IIN , IOUT , δ〉 be the following protocol:

S = {⊥, testing, done}
IIN = {Init, Guess} ∪ {A2Ej}j=1,...,n ∪ {L2Ej}j=1,...,n ∪ {R2Ej}j=1,...,n

IOUT = {outcome} ∪ {E2Aj}j=1,...,n ∪ {E2Lj}j=1,...,n ∪ {E2Rj}j=1,...,n

δ:
1. In initialization state ⊥, upon any input, select randomly b ∈R {L, R}, and
move to testing state.
2. In testing state, pass all input events on interface A2Ei, for i ∈ {1, . . . , n},
to corresponding output event on output interface E2Li (if b = L) or E2Ri (if
b = R), and all input events on interfaces L2Ei (if b = L) or R2Ei (if b = R),
to corresponding output events on interface E2Ai.
3. When, in testing state, the guess input interface Guess is invoked with
input (guess) b′ ∈ {L, R}, output on outcome the value 1 if b = b′, and 0
otherwise (b �= b′). Move to the done state (and ignores all further inputs).

4 The Fundamental Lemma of Layering

We now show the fundamental lemma of layering, allowing compositions of
protocols of multiple layers. This provides firm foundations to the accepted
methodology of designing, implementing, analyzing and testing of each layer
independently, yet relying on their composition to ensure expected properties.

We first need to define layering of protocols. We actually consider two different
variants of protocol layering:

– Layering of two realization protocols πL, πLL. As discussed, we assumed (for
simplicity) that there are n instantiations of the realization protocol of each
layer; each of these has two input interfaces and two output interfaces, one
for the higher layer and one for the lower layer. We define πLL||L =

[
πL
πLL

]
in

the obvious way.
– Layering of the n instances of the realization protocol πL, on top of a protocol

realizing the lower-layer model ΓLL. We define ΓLL||L =
[

πL

ΓLL

]
in the obvious

way.

Note our convention of using πx for protocols instantiating realizations (of n
instances), and Λx for instantiations of a (lower) layer model. Also, note that if
πL and πLL (or ΓLL) are polynomial, then ΓLL||L is also polynomial.

We first present the ‘composition preserves satisfaction’ lemma, which justifies
considering abstraction of all lower layers, into a single ‘virtual protocol’. For
both this and the fundamental lemma of layering (below), we present only the
computational version (the statistical and perfect versions are similar).
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Lemma 1 (Composition preserves satisfaction). Let L, LL be two polyno-
mial layer models, and πL, ΓLL be polynomial protocols, such that πL computa-

tionally realizes L over LL, namely L �poly

[
πL

LL
]
, and and ΓLL computationally

satisfies LL, namely LL |=poly ΓLL. Then the composite protocol ΓLL||L satisfies L,
namely L |=poly ΓLL||L. Or, as a formula:

(
L �poly

[
πL

LL
]) ∧

(LL |=poly ΓLL) ⇒
(
L |=poly ΓLL||L

)

The composite realization lemma shows that we can prove realization of each
layer separately, and the composition of the realizations will be a realization of
the highest layer over the lowest layer. We state the lemma for only three layers
- generalization for an arbitrary stack is immediate.

Lemma 2 (The Fundamental Lemma of Layering). Let L3, L2, L1 be three
polynomial layer models, and π2, π3 be polynomial protocols, such that π3 compu-
tationally realizes L3 over L2, and π2 computationally realizes L2 over L1. Then
π2||3 =

[
π3
π2

]
computationally realizes L3 over L1.

Furthermore, let ΓL1 be a polynomial protocol that computationally satisfies

L1, namely L1 |=poly ΓL1 . Then Γ1||2||3 =
[

π2||3

Γ1

]
satisfies L3, i.e. L3 |=poly Γ1||2||3.

5 Conclusions and Research Directions

In this work, we try to lay solid, rigorous foundations, to the important method-
ology of layered decomposition of distributed systems and network protocols,
particularly concerning security in adversarial settings. The framework is built
on previous works on modeling and analysis of (secure) distributed systems, as
described in the introduction, but it is clearly a very ambitious goal, possibly
overambitious, and certainly beyond the reach of a single publication. There are
many directions that require further research. Here are some:

– The best way to test and improve such a framework, is simply by using
it to analyze different problems and protocols; there are many interesting
and important problems, that can benefit from such analysis. As one impor-
tant example, consider the secure channel layer problem. Many protocols
and applications assume they operate over ‘secure, reliable connections’. In
practice, this is often done using the standard layers in Figure 1, in one of
two methods. In the first method, we use TLS (for security) over TCP (for
reliability) over the ‘best effort’ service of IP. In the second method, we use
TCP (for reliability) over IP-Sec (for security), again over ‘best effort’ (IP).
It would be interesting to define a ‘secure, reliable connection’ layer, and to
analyze these two methods with respect to it.

– There are many desirable extensions to the framework, including: support for
corruptions of nodes, including adaptive and/or mobile corruptions (proac-
tive security and forward security); adaptive control of the number of nodes;
support for side channels such as timing and power.
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– In this work, we focused on layered configurations. These are sufficient for
many scenarios. However, there are other scenarios. It would be interesting
to identify important non-layered scenarios, and find appropriate games,
specifications and composition properties, which will support them, possibly
as generalizations of our definitions and results.

– It would be interested to explore the relationships between the layered games
framework, and other formal frameworks for study of distributed algorithms
and protocols (see introdcution).

– The framework is based on the computational approach to security, where
attackers can compute arbitrary functions on information available to it
(e.g. ciphertext). Many results and tools are based on symbolic analysis, see
introduction (and [18, 10, 1]). It can be very useful to find how to apply such
techniques and tools, within the framework.
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Abstract. Universally composable (UC) multi-party computation has
been studied in two settings. When a majority of parties are honest, UC
multi-party computation is possible without any assumptions. Without
a majority of honest parties, UC multi-party computation is impossible
in the plain model, but feasibility results have been obtained in vari-
ous augmented models. The most popular such model posits a common
reference string (CRS) available to parties executing the protocol.

In either of the above settings, some assumption regarding the pro-
tocol execution is made: i.e., that many parties are honest in the first
case, or that a legitimately-chosen string is available in the second. If
this assumption is incorrect then all security is lost.

A natural question is whether it is possible to design protocols secure
if either one of these assumptions holds, i.e., a protocol which is secure
if either at most s players are dishonest or if up to t > s players are
dishonest but the CRS is chosen in the prescribed manner. We show
that such protocols exist if and only if s + t < n.

1 Introduction

Protocols proven to satisfy the definition of universal composability [5] offer
strong and desirable security guarantees. Informally speaking, such protocols
remain secure even when executed concurrently with arbitrary other protocols
running in some larger network, and can be used as sub-routines of larger pro-
tocols in a modular fashion.

Universally composable (UC) multi-party computation of arbitrary function-
alities has been investigated in two settings. When a majority of the parties
running a protocol are assumed to be honest, UC computation of arbitrary func-
tionalities is possible without any cryptographic assumptions. (This is claimed

� This work was done in part while the authors were visiting IPAM.
�� Research supported in part by NSF ITR and Cybertrust programs (including grants

#0430254, #0627781, #0456717, and #0205594).
��� Research supported in part by the U.S. Army Research Laboratory, NSF CAREER

award #0447075, and US-Israel Binational Science Foundation grant #2004240.

R. Canetti (Ed.): TCC 2008, LNCS 4948, pp. 142–154, 2008.
c© International Association for Cryptologic Research 2008



Universally Composable Multi-party Computation 143

in [5], building on [3,17].) This result holds in the so-called “plain model” which
assumes only pairwise private and authenticated channels between each pair of
parties. (A broadcast channel or a PKI are not needed [10], since fairness and
output delivery are not guaranteed in the UC framework.)

In contrast, when the honest players cannot be assumed to be in the majority,
it is known that UC computation of general functions is not possible in the
plain model regardless of any cryptographic assumptions made. Canetti and
Fischlin [7] showed the impossibility of two-party protocols for commitment and
zero knowledge, and Canetti, Kushilevitz, and Lindell [8] ruled out UC two-party
computation of a wide class of functionalities.

To circumvent these far-reaching impossibility results, researchers have in-
vestigated various augmented models in which UC computation without honest
majority might be realizable [5,7,9,1,12,6,15]. The most widely-used of these
augmented models is the one originally suggested by Canetti and Fischlin [7], in
which a common reference string (CRS) is assumed to be available to all parties
running a given execution of a protocol. (The use of a common reference string
in cryptographic protocols has a long history that can be traced back to [4].)
Canetti and Fischlin show that UC commitments and zero knowledge are possi-
ble in the two-party setting when a CRS is available, and later work of Canetti
et al. [9] shows that (under suitable cryptographic assumptions) a CRS suffices
for UC multi-party computation of arbitrary functionalities.

In summary, there are two types of what we might term “assumptions about
the world” under which UC multi-party computation is known to be possible:

– When a strict minority of players are dishonest.
– When an arbitrary number of players may be dishonest, but a trusted CRS

(or some other setup assumption) is available.

Our contribution. Known protocols designed under one of the assumptions
listed above are completely insecure in case the assumption turns out to be
false. For example, the BGW protocol [3] — which is secure when a majority
of the parties are honest — is completely insecure in case half or more of the
parties are dishonest. Similarly, the CLOS protocol [9] — which is secure for
an arbitrary number of corrupted parties when a trusted CRS is available —
is completely insecure in the presence of even a single corrupted party if the
protocol is run using a CRS σ that is taken from the wrong distribution or, even
worse, adversarially generated. Given this state of affairs, a natural question is
whether it is possible to design a single protocol Π that uses a common reference
string σ and simultaneously guarantees the following:

– Regardless of how σ is generated (and, in particular, even if σ is generated
adversarially), Π is secure as long as at most s parties are corrupted.

– If σ is generated “honestly” (i.e., by a trusted third party according to the
specification), then Π is secure as long as at most t parties are corrupted.

In this case, we will call the protocol Π an “(s, t)-secure protocol”. It follows from
[7,8] that (s, t)-security for general functionalities is only potentially achievable if
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s < n/2, where n is the total number of parties running the protocol. A priori, we
might hope to achieve the “best possible” result that (�(n − 1)/2�, n − 1)-secure
protocols exist for arbitrary functionalities.

Here, we show tight positive and negative answers to the above question.
First, we show that for any s + t < n (and s < n/2) there exists an (s, t)-secure
protocol realizing any functionality. We complement this by showing that this
is, unfortunately, the best possible: if s + t = n then there is a large class of
functionalities (inherited, in some sense, from [8]) for which no (s, t)-secure pro-
tocol exists. We prove security under adaptive corruptions for our positive result,
while our negative result holds even for the case of non-adaptive corruptions.

For n odd, the extremes of our positive result (i.e., s = t = �(n − 1)/2�,
or s = 0, t = n − 1) correspond to, respectively, a protocol secure for honest
majority (but relying on cryptographic assumptions) or one secure against an
arbitrary number of malicious parties but requiring a CRS. (For n even we obtain
a protocol that tolerates s = �(n − 1)/2� corruptions regardless of how the CRS
is constructed, and t = s + 1 corruptions if the CRS is honestly-generated.) Our
results also exhibit new protocols in between these extremes. Choice of which
protocol to use reflects a tradeoff between the level of confidence in the CRS and
the number of corruptions that can be tolerated: e.g., choosing s = 0 represents
full confidence in the CRS, while setting s = t = �(n − 1)/2� means that there
is effectively no confidence in the CRS at all.

Related work. Another suggestion for circumventing the impossibility results
of [7,8] has been to use a definition of security where the ideal-model simulator
is allowed to run in super-polynomial time [16,2]. This relaxation is sufficient to
bypass the known impossibility results and leads to constructions of protocols
for any functionality without setup assumptions. While these constructions seem
to supply adequate security for certain applications, they require stronger (sub-
exponential time) complexity assumptions and can be problematic when used as
sub-routines within larger protocols.

Some other recent work has also considered the construction of protocols
having “two tiers” of security. Barak, Canetti, Nielsen, and Pass [1] show a
protocol relying on a key-registration authority: if the key-registration authority
acts honestly the protocol is universally composable, while if this assumption is
violated the protocol still remains secure in the stand-alone sense. Ishai et al. [13]
and Katz [14], in the stand-alone setting, studied the question of whether there
exist protocols that are “fully-secure” (i.e., guaranteeing privacy, correctness,
and fairness) in the presence of a dishonest minority, yet still “secure-with-abort”
otherwise. While the motivation in all these cases is similar, the problems are
different and, in particular, a solution to our problem does not follow from (or
rely on) any of these prior results.

Groth and Ostrovsky [11] recently introduced the multi-CRS model for uni-
versally composable multi-party computation. In this model, roughly speaking,
the parties have access to a set of k common reference strings, some k′ of which
are “good” (i.e., guaranteed to have been chosen honestly). The remaining k−k′

strings are “bad”, and can be chosen in an arbitrary manner. (Of course, it is
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not known which strings are “good” and which are “bad”.) Groth and Ostro-
vsky explore conditions on k, k′ under which UC multi-party computation is still
possible. Although in both their case and our own the question boils down to
what security guarantees can be achieved in the presence of a “bad” CRS, our
end results are very different. In the work of Groth and Ostrovsky the number
of corruptions to be tolerated is fixed and there are assumed to be some minimal
number k′ of “good” strings among the k available ones. In our work, in contrast,
it is possible that no “good” CRS is available at all; even in this case, though,
we would still like to ensure security against some (necessarily) smaller set of
corrupted parties. On the other hand, we do rely on the Groth-Ostrovsky result
as a building block for our positive result.

2 Preliminaries

2.1 Review of the UC Framework

We give a brief overview of the UC framework, referring the reader to [5] for
further details. The UC framework allows for defining the security properties
of cryptographic tasks so that security is maintained under general composition
with an unbounded number of instances of arbitrary protocols running con-
currently. In the UC framework, the security requirements of a given task are
captured by specifying an ideal functionality run by a “trusted party” that ob-
tains the inputs of the participants and provides them with the desired outputs.
Informally, then, a protocol securely carries out a given task if running the proto-
col in the presence of a real-world adversary amounts to “emulating” the desired
ideal functionality.

The notion of emulation in the UC framework is considerably stronger than
that considered in previous models. As usual, the real-world model includes the
parties running the protocol and an adversary A who controls their communica-
tion and potentially corrupts parties, while the ideal-world includes a simulator
S who interacts with an ideal functionality F and dummy players who simply
send input to/receive output from F . In the UC framework, there is also an
additional entity called the environment Z. This environment generates the in-
puts to all parties, observes all their outputs, and interacts with the adversary in
an arbitrary way throughout the computation. A protocol Π is said to securely
realize an ideal functionality F if for any real-world adversary A that interacts
with Z and real players running Π , there exists an ideal-world simulator S that
interacts with Z, the ideal functionality F , and the “dummy” players communi-
cating with F , such that no poly-time environment Z can distinguish whether it
is interacting with A (in the real world) or S (in the ideal world). Z thus serves
as an “interactive distinguisher” between a real-world execution of the proto-
col Π and an ideal execution of functionality F . A key point is that Z cannot
be re-wound by S; in other words, S must provide a so-called “straight-line”
simulation.

The following universal composition theorem is proven in [5]. Consider a pro-
tocol Π that operates in the F -hybrid model, where parties can communicate as
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usual and in addition have ideal access to an unbounded number of copies of the
functionality F . Let ρ be a protocol that securely realizes F as sketched above,
and let Πρ be identical to Π with the exception that the interaction with each
copy of F is replaced with an interaction with a separate instance of ρ. Then
Π and Πρ have essentially the same input/output behavior. In particular, if Π
securely realizes some functionality G in the F -hybrid model then Πρ securely
realizes G in the standard model (i.e., without access to any functionality).

2.2 Definitions Specific to Our Setting

We would like to model a single protocol Π that uses a CRS σ, where σ either
comes from a trusted functionality FCRS (defined as in [7] and all subsequent
work on UC computation in the CRS model) or is chosen in an arbitrary manner
by the environment Z. A technical detail is that parties running Π can trivially
“tell” where σ comes from depending on which incoming communication tape
σ is written on (since an ideal functionality would write inputs to a different
tape than Z would). Because this does not correspond to what we are attempt-
ing to model in the real world, we need to effectively “rule out” protocols that
utilize this additional knowledge. The simplest way to do this is to define a “mali-
cious CRS” functionality FmCRS that we now informally describe. Functionality
FmCRS takes input σ from the adversary A and then, when activated by any
party Pi, sends σ to that party. The overall effect of this is that A (and hence
Z) can set the CRS to any value of its choice; however, it is forced to provide
the same value to all parties running protocol Π . When the parties interact with
FCRS , this (intuitively) means that the CRS is “good”; when they interact with
FmCRS the CRS is “bad”. We refer to this setting, where parties interact with
either FCRS or FmCRS but do not know which, as the mixed CRS model. We
can now define an (s, t)-secure protocol.

Definition 1. We say a protocol Π (s, t)-securely realizes a functionality F in the
mixed CRS model if

(a) Π securely realizes F in the FmCRS-hybrid model when at most s parties are
corrupted.

(b) Π securely realizes F in the FCRS-hybrid model when at most t parties are
corrupted.

We stress that Π itself does not “know” in which of the two hybrid models it is
being run. S, however, may have this information hard-wired in. More concretely:
although Π is a fixed protocol, two different ideal-world adversaries S, S′ may
be used in proving each part of the definition above.

3 Positive Result for s + t < n

We begin by showing our positive result: if s+ t < n and s < n/2 (where n is the
total number of parties running the protocol), then essentially any functionality
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F can be (s, t)-securely realized in the mixed CRS model. This is subject to two
minor technical conditions [9] we discuss briefly now.

Non-trivial protocols. The ideal process does not require the ideal-process
adversary to deliver the messages that are sent between the ideal functionality
and the parties. A corollary of the above fact is that a protocol that “hangs”
(i.e., never sends any messages and never generates output) securely realizes any
ideal functionality. However, such a protocol is uninteresting. Following [9], we
therefore let a non-trivial protocol be one for which all parties generate output if
the real-life adversary delivers all messages and all parties are honest.

Well-formed functionalities. A well-formed functionality is oblivious of the
corruptions of parties, runs in polynomial time, and reveals the internal random-
ness used by the functionality to the ideal-process adversary in case all parties
are corrupted [9]. This class contains all functionalities we can hope to securely
realize from a non-trivial protocol in the presence of adaptive corruptions, as
discussed in [9].

We can now formally state the result of this section:

Theorem 1 Fix s, t, n with s+ t < n and s < n/2. Assume that enhanced trap-
door permutations, augmented non-committing encryption schemes, and dense
cryptosystems exist. Then for every well-formed n-party functionality F , there
exists a non-trivial protocol Π which (s, t)-securely realizes F against adaptive
adversaries in the mixed CRS model.

The cryptographic assumptions of the theorem are inherited directly from [9],
and we refer the reader there for formal definitions of each of these. Weaker
assumptions suffice to achieve security against static corruptions; see [9].

To prove the above theorem, we rely on the results of Groth and Ostrovsky
regarding the multi-CRS model [11]. Informally, they show the following result:
Assume parties P1, . . . , Pn having access to k ≥ 1 strings σ1, . . . , σk. As long
as k′ > k/2 of these strings are honestly generated according to some specified
distribution D (and assuming the same cryptographic assumptions of the the-
orem stated above), then for every well-formed functionality F there exists a
non-trivial protocol Π securely realizing F . We stress that the remaining k − k′

strings can be generated arbitrarily (i.e., adversarially), even possibly depending
on the k′ honestly-generated strings.

Building on the above result, we now describe our construction. We assume
there are n parties P1, . . . , Pn who wish to run a protocol to realize a (well-
formed) functionality F . Construct a protocol Π as follows:

1. All parties begin with the same string σ∗ provided as input. (Recall the par-
ties do not know whether this is a “good” CRS or a “bad” CRS.) P1, . . . , Pn

first “amplify” the given string σ∗ to m CRSs σ∗1 , . . . , σ∗m, where m is a pa-
rameter which is defined later on. The requirements here are simply that if
σ∗ is “good”, then each of σ∗1 , . . . , σ∗m should be “good” also. (If σ∗ is “bad”
then we impose no requirements on σ∗1 , . . . , σ∗m.)
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The above can be accomplished by using the CLOS protocol [9] as follows.
Define an ideal functionality Fm new CRS which generates m new CRSs from
the appropriate distribution D (where D refers to the the distribution used
in the Groth-Ostrovsky result mentioned above) and outputs these to all
parties. We use the CLOS protocol to realize the functionality Fm new CRS .
When running the CLOS protocol, use the given string σ∗ as the CRS.

Note that when σ∗ was produced by FCRS , security of the CLOS protocol
guarantees that the m resulting CRSs are all chosen appropriately. On the
other hand, there are no guarantees in case σ∗ was produced by FmCRS, but
recall that we do not require anything in that case anyway.

2. Following the above, each party Pi chooses a string σi according to distri-
bution D (where, again, D is the distribution used in the Groth-Ostrovsky
result mentioned above), and broadcasts σi to all other parties.1

3. Each party receives σ1, . . . , σn, and sets σ∗m+i = σi for i = 1 to n.
4. All parties now have n + m strings σ∗1 , . . . , σ∗n+m. These strings are used to

run the Groth-Ostrovsky protocol for F .

We claim that for any s, t satisfying the conditions of Theorem 1, it is pos-
sible to set m so as to obtain a protocol Π that (s, t)-securely realizes F . The
conditions we need to satisfy are as follows:

– When Π is run in the FCRS-hybrid model, σ∗ is a “good” CRS and so
the strings σ∗1 , . . . , σ∗m are also “good”. The n − t honest parties contribute
another n− t “good” strings in step 2, above, for a total of m+n− t “good”
strings in the set of strings σ∗1 , . . . , σ∗n+m. At most t of the strings in this set
(namely, those contributed by the t malicious parties) can be “bad”. For the
Groth-Ostrovsky result to apply, we need m + n − t > t or

m > 2t − n. (1)

– When Π is run in the FmCRS-hybrid model, σ∗ is adversarially-chosen and
so we must assume that the strings σ∗1 , . . . , σ∗m are also “bad”. In step 2, the
malicious parties contribute another s “bad” strings (for a total of m + s
“bad” strings), while the n−s honest parties contribute n−s “good” strings.
For the Groth-Ostrovsky result to apply, we now need n − s > m + s or

m < n − 2s. (2)

Since m, t, n are all integers, Equations (1) and (2) imply

2t − n ≤ n − 2s − 2

or s+ t ≤ n−1. When this condition holds, the equations can be simultaneously
satisfied by setting m = n − 2s − 1, which gives a positive solution if s < n/2.

The security of the above construction follows from the security of the Groth-
Ostrovsky protocol [11] (the details are omitted).
1 The “broadcast” used here is the UC broadcast protocol from [10] (which achieves a

weaker definition than “standard” broadcast, but suffices for constructing protocols
in the UC framework).
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4 Impossibility Result for s + t ≥ n

In this section, we state and prove our main impossibility result which shows
that the results of the previous section are tight.

Theorem 2 Let n, t, s be such that s + t ≥ n. Then there exists a well-formed
deterministic functionality for which no non-trivial n-party protocol exists that
(s, t)-securely realizes F in the mixed CRS model.

We in fact show that the above theorem holds for a large class of functionalities.
That is, there exists a large class of functionalities for which no such non-trivial
protocol exists.

The proof of Theorem 2 relies on ideas from the impossibility result of Canetti,
Kushilevitz, and Lindell [8] that applies to 2-party protocols in the plain model.
Since ours is inherently a multi-party scenario, our proof proceeds in two stages.
In the first stage of our proof, we transform any n-party protocol Π that securely
computes a function f in the mixed CRS model, into a two-party protocol Σ
in the mixed CRS model that computes a related function g (derived from f).
Protocol Σ guarantees security in the FCRS-hybrid model when either party is
corrupted, and security in the FmCRS-hybrid model when the second party is
corrupted. In the second stage of our proof, we show that one of the parties
running Σ can run a successful split simulator strategy [8] against the other. As
in [8], the existence of a split simulator strategy means that the class of func-
tionalities that can be securely realized by the two-party protocol Σ is severely
restricted. This also restricts the class of functionalities f which can be realized
using the original n-party protocol.

We now give the details. Let x‖y denote the concatenation of x and y. We
first define the t-division of a function f .

Definition 2. Let f = (f1, . . . , fn) be a function taking n inputs x1, . . . , xn

and returning n (possibly different) outputs. Define the two-input/two-output
function g = (g1, g2), the t-division of f via:

g1

( I1︷ ︸︸ ︷
(x1‖ · · · ‖xt),

I2︷ ︸︸ ︷
(xt+1‖ · · · ‖xn)

)
= f1(x1, . . . , xn)‖ · · · ‖ft(x1, . . . , xn)

g2

(
(x1‖ · · · ‖xt), (xt+1‖ · · · ‖xn)

)
= ft+1(x1, . . . , xn)‖ · · · ‖fn(x1, . . . , xn).

Lemma 1. Let n, t, s be such that s + t = n and s < n/2. Say Π is an (s, t)-
secure protocol by which parties P1, . . . , Pn holding inputs x1, . . . , xn can evaluate
a function f(x1, . . . , xn). Then there exists a two-party protocol Σ by which par-
ties p1, p2 holding inputs I1 = x1‖ . . . ‖xt and I2 = xt+1‖ . . . ‖xn can evaluate
the t-division function g(I1, I2). Furthermore, Σ is secure when either parties is
corrupted in the FCRS-hybrid model, and secure against a dishonest p2 in the
FmCRS-hybrid model.

Proof. We construct the protocol Σ using the protocol Π . The basic idea is as
follows. The parties p1 and p2 break their input I1, I2 into several parts and start
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emulating n parties running the protocol Π to compute f on those inputs. Some
of these parties in Π are controlled and emulated by p1 and others by p2. Finally
when Π finishes, p1 and p2 get several outputs fi meant for parties controlled
by them. Using these outputs, p1 and p2 then individually reconstruct their final
output g1 and g2. More details follow.

The parties p1, p2 hold inputs I1 = x1‖ . . . ‖xt and I2 = xt+1‖ . . . ‖xn and wish
to compute the function g. Party p1 internally starts emulating parties P1, . . . , Pt

on inputs x1, . . . , xt, respectively, to compute the function f . Similarly, p2 starts
emulating parties Pt+1, . . . , Pn on inputs xt+1, . . . , xn. Whenever Π requires
party Pi to send a message M to party Pj , this is handled in the natural way:
If i, j ≤ t (resp., i, j > t), then p1 (resp., p2) internally delivers M from Pi

to Pj . If i ≤ t and j > t, then p1 sends the message (i, j, M) to p2 who then
internally delivers M to Pj as if it were received from Pi. The case i > t and
j ≤ t is handled similarly. After Π finishes, P1, . . . , Pt halt outputting f1, . . . , ft

and hence p1 obtains g1 = f1‖ . . . ‖ft. Similarly, p2 obtains g2 = ft+1‖ . . . ‖fn.
As for the security claims regarding Σ, recall that Π is t-secure in the FCRS-

hybrid model. This means that Π securely computes f in the presence of any
coalition of up to t corrupted parties. This in particular means that Π remains
secure if all of P1, . . . , Pt are corrupted. Thus, Σ remains secure against a dis-
honest p1 (who controls P1, . . . , Pt) in the FCRS-hybrid model. Also since s ≤ t
(because s < n/2), protocol Π is secure even if Pt+1, . . . , Pn are corrupted and
hence Σ is secure against a dishonest p2 in the FCRS-hybrid model. Furthermore,
Π is s-secure in the FmCRS-hybrid model. This means that Π remains secure
even if Pt+1, . . . , Pn are corrupted. Hence Σ is secure against a dishonest p2 (but
not necessarily against a dishonest p1) in the FmCRS-hybrid model.

We now show that a malicious p2 can run a successful split simulator strategy [8]
against an honest p1 in protocol Σ when run in the FmCRS-hybrid model. This
shows that even if p1 remains honest, there is a large class of functionalities that
cannot be securely realized by Σ.2 Using the previous lemma, this in turn shows
the existence of a class of functionalities which cannot be (s, t)-securely realized
by Π (when t + s ≥ n).

Showing the existence of a successful split simulator strategy for p2 amounts to
reproving the main technical lemma of [8] in our setting. We start by recalling
a few definitions and notations from [9,8]. Part of our proof is taken almost
verbatim from [8].

Notation. Let g : D1 × D2 → {0, 1}∗ × {0, 1}∗ be a deterministic, polynomial-
time computable function, where D1, D2 ⊆ {0, 1}∗ are arbitrary (possibly in-
finite) domains of inputs. Function g is denoted by g = (g1, g2) where g1 and
g2 denote the outputs of p1 and p2, respectively. The following definition corre-
sponds to [8, Def. 3.1].

2 In [8], it was shown that either party p1 or p2 could run a split simulator strategy
against the other. In our case, we only show that p2 can do so against p1. Hence, the
class of functionalities which we prove are impossible to realize is smaller than that
in [8].
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Definition 3. Let Σ be a protocol securely computing g. Let Dκ ⊆ D2 be a
polynomial-size subset of inputs (i.e., |Dκ| = poly(κ), where κ is a security
parameter). Then a corrupted party p2 is said to run a split adversarial strategy
if it consists of machines pa

2 and pb
2 such that:

1. On input (1κ, Dκ, I2), with I2 ∈ Dκ, party p2 internally gives machine pb
2

the input (1κ, Dκ, I2).
2. An execution between (an honest) p1 running Σ and p2 = (pa

2 , p
b
2) works as

follows:
(a) pa

2 interacts with p1 according to some specified strategy.
(b) At some stage of the execution pa

2 hands pb
2 a value I ′1.

(c) When pb
2 receives I ′1 from pa

2, it computes J ′1 = g1(I ′1, I
′
2) for some

I ′2 ∈ Dκ of its choice.
(d) pb

2 hands pa
2 the value J ′1, and pa

2 continues interacting with p1.

We define a successful strategy as in [8, Def. 3.2].

Definition 4. Let Σ, g, κ be as in Definition 3. Let Z be an environment who
hands input I1 to p1 and a pair (Dκ, I2) to p2 where Dκ ⊆ D2, |Dκ| = poly(κ),
and I2 is chosen uniformly in Dκ. Then a split adversarial strategy for p2 is said
to be successful if for every Z as above and every input z to Z, the following
conditions hold in a real execution of p2 with Z and honest p1:

1. The value I ′1 output by pa
2 in step 2b of Definition 3 is such that for every

I2 ∈ Dκ, it holds that g2(I ′1, I2) = g2(I1, I2).
2. The honest party p1 outputs g1(I1, I

′
2), where I ′2 is the value chosen by pb

2 in
step 2c of Definition 3.

We now prove a lemma akin to [8, Lem. 3.3].

Lemma 2. Let Σ be a non-trivial, two-party protocol computing g, which is
secure in the FCRS-hybrid model when either party is corrupted, and secure in
the FmCRS-hybrid model when p2 is corrupted. Then there exists a machine
pa
2 such that for every machine pb

2 of the form described in Definition 3, the
split adversarial strategy p2 = (pa

2 , p
b
2) is successful in the FmCRS-hybrid model,

except with negligible probability.

Proof. The proof in our setting is very similar to the proof of the main technical
lemma in [8]. Here we only sketch a proof, highlighting the main differences. We
refer the reader to [8] for complete details.

In the proof of [8], they first consider the real-world execution where party p1
is controlled by the environment Z through a dummy adversary AD who simply
forwards messages received from the environment to party p2 and vice versa.
Parties p1 and p2 have inputs I1 and I2, respectively, and execute Σ; we assume
that Σ securely computes g. Thus, there exists a simulator S that interacts with
the ideal process and such that Z cannot distinguish an execution of a real-world
process from an execution of the ideal process. Notice that in the ideal world,
S must send an input I ′1 to the ideal functionality computing g, and receives an
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output J ′1 from this functionality such that I ′1 and J ′1 are functionally equivalent
to I1 and g1(I1, I

′
2) respectively. (Here, I ′2 is chosen by p2.) This implies that if

Z simply runs the code of an honest p1, the ideal-world simulator S is able to
extract the inputs of the honest player p1 and also force its output to be J ′1.

In our setting, in the FCRS-hybrid model (i.e., if the string σ is an honestly-
generated CRS), protocol Σ is secure regardless of which party is corrupted.
This means that there exists a simulator S who generates a CRS σ and is then
able to extract the input of the honest player p1.

Now consider the case of the FmCRS-hybrid model, i.e., when Σ is run with
an adversarially-generated string σ. In this case, a malicious p2 can just run S
to generate a CRS and interact with p1. At a high level, the machine pa

2 just
consists of running S with the honest p1. Machine pa

2 forwards every message
that it receives from p1 to S as if it came from Z. Similarly, every message that
S sends to Z is forwarded by pa

2 to p1 in the real execution. When S outputs a
value I ′1 that it intends to send to the ideal functionality computing g, then pa

2
gives this value to pb

2. Later, when pb
2 gives a value J ′1 to pa

2 , then pa
2 gives it to

S as if it came from the ideal functionality computing g. Hence, a malicious p2
is able to use the simulator S to do whatever the simulator S was doing in the
FCRS-hybrid model. This in particular means that p2 is able to extract the input
of the honest p1 and run a successful split simulator strategy. This completes
our proof sketch.

Completing the proof of Theorem 2. As shown by [8], the existence of
a successful split simulator strategy for p2 against an honest p1 rules out the
realization of several interesting well-formed functionalities. This, in turn, rules
out several n-input functionalities f whose secure computation implies secure
computation of g by Lemma 1. We give a concrete example in what follows.

We consider single-input functions which are not efficiently invertible [8]. The
definition of an efficiently-invertible function is given as in [8]:

Definition 5. A polynomial-time function g : D → {0, 1}∗ is efficiently invertible
if there exists a ppt machine M such that for every distribution D̂ = {D̂κ} over
D that is sampleable by a non-uniform, ppt Turing machine, the following is
negligible:

Pr
x←D̂κ

[
M(1κ, g(x)) 
∈ g−1(g(x))

]
.

Let t, s, n be such that t + s = n and s < n/2. We consider the following
functionality F : Let parties P1, . . . , Pt hold inputs x1, . . . , xt, while Pt+1, . . . , Pn

have no inputs. The output of P1, . . . , Pt is ⊥ while the output of Pt+1, . . . , Pn

is f(x1‖ · · · ‖xt) for an function f which is not efficiently invertible.
If there exists an n-party protocol Π that (s, t)-securely realizes F , then there

exists a 2-party protocol Σ computing the function g(I1, ⊥) = (⊥, f(I1)), which
is secure against corruption of either party in the FCRS-hybrid model and secure
against corruption of the second party in the FmCRS-hybrid model. Lemma 2,
however, implies that p2 can run a successful split simulator strategy and extract
an input I ′1 such that g(I1, ⊥) = g(I ′1, ⊥), or equivalently f(I1) = f(I ′1). Since
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all the information computable by p2 during an execution of Σ should follow
from its output f(I1) alone, it follows that I ′1 is computable given f(I1). This
contradicts the assumption that f is not efficiently invertible.

Hence, we conclude that there does not exist such a protocol Π to evaluate
the functionality F . This impossibility result can be extended to include a large
class of functionalities as in [8].
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Abstract. In this paper we construct efficient secure protocols for set
intersection and pattern matching. Our protocols for securely comput-
ing the set intersection functionality are based on secure pseudorandom
function evaluations, in contrast to previous protocols that used secure
polynomial evaluation. In addition to the above, we also use secure
pseudorandom function evaluation in order to achieve secure pattern
matching. In this case, we utilize specific properties of the Naor-Reingold
pseudorandom function in order to achieve high efficiency.

Our results are presented in two adversary models. Our protocol for
secure pattern matching and one of our protocols for set intersection
achieve security against malicious adversaries under a relaxed definition
where one corruption case is simulatable and for the other only privacy
(formalized through indistinguishability) is guaranteed. We also present
a protocol for set intersection that is fully simulatable in the model of
covert adversaries. Loosely speaking, this means that a malicious adver-
sary can cheat, but will then be caught with good probability.

1 Introduction

In the setting of secure two-party computation, two parties wish to jointly com-
pute some function of their private inputs while preserving a number of security
properties. In particular, the parties wish to ensure that nothing is revealed be-
yond the output (privacy), that the output is computed according to the specified
function (correctness) and more. The standard definition today (cf. [5] following
[13,4,17]) formalizes security by comparing a real protocol execution to an “ideal
execution” where an incorruptible trusted party helps the parties compute the
function. Specifically, in the ideal world the parties just send their inputs (over
perfectly secure communication lines) to the trusted party, who computes the
function honestly and sends the output to the parties. A real protocol (in which
parties interact arbitrarily) is said to be secure if any adversarial attack on a
real protocol can essentially be carried out also in the ideal world (of course,
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in the ideal world the adversary can do almost nothing and this guarantees
that the same is true also in the real world). This definition of security is often
called simulation-based because security is demonstrated by showing that a real
protocol execution can be “simulated” in the ideal world.

This setting has been widely studied, and it has been shown that any efficient
two-party functionality can be securely computed [24,12,11]. These feasibility
results demonstrate the wide applicability of secure computation, in principle.
However, they fall short of what is needed in implementations because they are
far from efficient enough to be used in practice (with a few exceptions). This
is not surprising because the results are general and do not utilize any special
properties of the specific problem being solved. The focus of this paper is the
development of efficient protocols for specific problems of interest.

Relaxed notions of security. Recently, the field of data mining has shown
great interest in secure computation, for the purpose of “privacy-preserving data
mining”. However, most of the protocols that have been constructed with this
aim in mind are only secure in the presence of semi-honest adversaries who follow
the protocol specification (but may try to examine the messages they receive to
learn more than they should). Unfortunately, in many cases, this level of security
is not sufficient. Rather, adversarial parties are willing to behave maliciously –
meaning that they may divert arbitrarily from the protocol specification – in
their aim to cheat. It seems that it is hard to obtain highly efficient protocols
that are secure in the presence of malicious adversaries (under the standard
simulation-based definitions), and two decades after the foundational feasibility
results of [12] we only know of very few non-trivial secure computation problems
that can be solved with high efficiency in this model. In this paper, we consider
two different relaxations in order to achieve higher efficiency:

– One-sided simulatability: According to this notion of security, full simulation
is provided for one of the corruption cases, while only privacy (via computa-
tional indistinguishability) is guaranteed for the other corruption case. This
notion of security is useful when considering functionalities for which only
one party receives output. In this case, privacy is guaranteed when the party
not receiving output is corrupted (and this is formalized by saying that the
party cannot distinguish between different inputs used by the other party),
whereas full simulation via the ideal/real paradigm is guaranteed when the
party receiving output is corrupted. This notion of security has been consid-
ered in the past; see [19,8] for example.

– Security in the presence of covert adversaries: This notion of security pro-
vides the following guarantee. A malicious adversary may be able to cheat
(e.g., learn the other party’s private input). However, if it follows such a
strategy, it is guaranteed to be caught with probability at least ε, where ε is
called the “deterrence factor” (in this paper, we use ε = 1/2). This definition
is formalized within the ideal/real simulation paradigm and so has all the
advantages offered by it. This definition was recently introduced in [2].

We stress that both notions are relaxations and are not necessarily sufficient
for all applications. For example, security in the presence of covert adversaries
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would not suffice when the computation relates to highly sensitive data or when
there are no repercussions to a party being caught cheating. Likewise, the guar-
antee of privacy alone (as in one-sided simulatability for one of the corruption
cases) is sometimes not sufficient. For example, the properties of independence of
inputs and correctness are not achieved, and they are sometimes needed. Never-
theless, in many cases, such relaxations are acceptable. Furthermore, using these
relaxations, we are able to construct protocols that are much more efficient than
anything known that achieves full security in the presence of malicious adver-
saries (where security is formalized via the ideal/real simulation paradigm).

Secure set intersection. The bulk of this paper is focused on solving the set
intersection problem. In this problem, two parties with private sets wish to learn
the intersection of their sets and nothing more. There are many cases where such
a computation is useful. For example, two health insurance companies may wish
to ensure that no one has taken out the same insurance with both of them (if
this is forbidden), or the government may wish to ensure that no one receiving
social welfare is currently employed and paying income tax. By running secure
protocols for these tasks, sensitive information about law-abiding citizens is not
unnecessarily compromised.

We present two protocols for this task. The first achieves security in the pres-
ence of malicious adversaries with one-sided simulatability while the second is
secure in the presence of covert adversaries. Both protocols take a novel ap-
proach. Specifically, instead of using protocols for secure polynomial evaluation
[18], our protocols are based on running secure subprotocols for pseudorandom
function evaluation. In addition, we use only standard assumptions (e.g., the
decisional Diffie-Hellman assumption) and do not resort to random oracles.

In order to get a feel of how our protocol works we sketch the general idea un-
derlying it. The parties run many executions of a protocol for securely computing
a pseudorandom function, where one party inputs the key to the pseudorandom
function and the other inputs the elements of its set. Denoting the pseudorandom
function by F , the input of party P1 by X and the input of party P2 by Y , we
have that at the end of this stage party P2 holds the set {Fk(y)}y∈Y while P1 has
learned nothing. Then, P1 just needs to locally compute the set {Fk(x)}x∈X and
send it to P2. By comparing which elements appear in both sets, P2 can learn the
intersection (but nothing more). This is a completely different approach to that
taken until now that has defined polynomials based on the sets and used secure
polynomial evaluations to learn the intersection. We stress that the “polynomial
approach” has only been used successfully to achieve security in the presence of
semi-honest adversaries [14,9], or together with random oracles when malicious
adversaries are considered [9]. (We exclude the use of techniques that use general
zero-knowledge proofs because these are not efficient.)

Secure pattern matching. We present an efficient secure protocol for solving
the basic problem of pattern matching [3,15]. In this problem, one party holds a
text T and the other a pattern p. The aim is for the party holding the pattern
to learn all the locations of the pattern in the text (and there may be many)
while the other learns nothing about the pattern. As with our protocols for
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secure set intersection, the use of secure pseudorandom function evaluation lies
at the heart of our solution. However, here we also utilize specific properties of
the Naor-Reingold pseudorandom function [20], enabling us to obtain a simple
protocol that is significantly more efficient than that obtained by running known
general protocols. Our protocol is secure in the presence of malicious adversaries
with one-sided simulatability, and is the first to address this specific problem.

Related work. The problem of secure set intersection was studied in [9] who
presented protocols for both the semi-honest and malicious cases. However, their
protocol for the case of malicious adversaries assumes a random oracle. This
problem was also studied in [14] whose main focus was the semi-honest model;
their protocols for the malicious case use multiple zero-knowledge proofs for
proving correct behavior and as such are not very efficient. As we have mentioned,
both of the above works use oblivious polynomial evaluation as the basic building
block in their solutions.

2 Definitions and Tools

2.1 Definitions

We denote the security parameter by n and computational indistinguishability
of ensembles X and Y by X

c≡ Y ; see [11] for formal definitions. We adopt the
convention whereby a machine is said to run in polynomial-time if its number of
steps is polynomial in its security parameter alone. We use the shorthand ppt to
denote probabilistic polynomial-time. Two basic building blocks that we utilize
in our constructions are ensembles of pseudorandom functions, denoted by FPRF,
and ensembles of pseudorandom permutations, denoted by FPRP, as defined in
[10]. We also denote the ensemble of truly random functions by HFunc and the
ensemble of truly random permutations by HPerm.

One sided simulation for two-party protocols. Two of our protocols achieve
a level of security that we call one-sided simulation. In these protocols, P2 receives
output while P1 should learn nothing. In one-sided simulation, full simulation is
possible when P2 is corrupted. However, when P1 is corrupted we only guaran-
tee privacy, meaning that it learns nothing whatsoever about P2’s input (this is
straightforward to formalize because P1 receives no output). This is a relaxed level
of security and does not achieve everything we want; for example, independence
of inputs and correctness are not guaranteed. Nevertheless, for this level of secu-
rity we are able to construct highly efficient protocols that are secure in the pres-
ence of malicious adversaries. The formal definition appears in the full version;
we present it very briefly here. Let REALπ,A(z),i(x, y, n) denote the output of the
honest party and the adversary A (controlling party Pi) after a real execution of
protocol π, where P1 has input x, P2 has input y, A has auxiliary input z, and the
security parameter is n. Let IDEALf,S(z),i(x, y, n) be the analogous distribution in
an ideal execution with a trusted party who computes f for the parties. Finally,
let VIEWAπ,A(z),i(x, y, n) denote the view of the adversary after a real execution of
π as above. Then, we have the following definition:
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Definition 1. Let f be a two-party functionality where only P2 receives output.
We say that a protocol π securely computes f with one-sided simulation if the
following holds:

1. For every non-uniform ppt adversary A in the real model, there exists a non-
uniform ppt adversary S for the ideal model, such that for every x, y, z ∈
{0, 1}∗ {

REALπ,A(z),2(x, y, n)
}

n∈N

c≡
{

IDEALf,S(z),2(x, y, n)
}

n∈N

2. For every non-uniform ppt adversary A, all pairs of inputs y, y′ ∈ {0, 1}∗
with |y| = |y′|, and all inputs x, z ∈ {0, 1}∗,

{
VIEWAπ,A(z),1(x, y, n)

}

n∈N

c≡
{

VIEWAπ,A(z),1(x, y′, n)
}

n∈N

Security in the presence of covert adversaries. In this setting, the adver-
sary may deviate from the protocol specification in an attempt to cheat, and as
such is malicious. However, if it follows a strategy which enables it to achieve
something that is not possible in the ideal model (like learning the honest party’s
input), then its cheating is guaranteed to be detected by the honest party with
probability at least ε, where ε is a deterrent parameter. This definition is for-
malized in three ways in [2]; we consider their strongest definition here. In this
definition, the ideal model is modified so that the adversary may send a special
cheat message to the trusted party. In such a case, the trusted party tosses coins
so that with probability ε the adversary is caught and a message corrupted is
sent to the honest party (indicating that the other party attempted to cheat).
However, with probability 1 − ε, the ideal-model adversary is allowed to cheat
and so the trusted party sends it the honest party’s full input and also allows
it to set the output of the honest party. We refer the reader to [2] and the full
version of this paper for further details. The output distribution of an execution
of this modified ideal model for a given ε and parameters as above is denoted
IDEALSCε

f,S(z),i(x, y, n). We have the following:

Definition 2. Let f , π and ε be as above. Protocol π is said to securely compute
f in the presence of covert adversaries with ε-deterrent if for every non-uniform
ppt adversary A for the real model, there exists a non-uniform probabilistic
polynomial-time adversary S for the ideal model such that for every i ∈ {1, 2},
every x, y ∈ {0, 1}∗ with |x| = |y|, and every auxiliary input z ∈ {0, 1}∗:

{
IDEALSCε

f,S(z),i(x, y, n)
}

n∈IN

c≡
{

REALπ,A(z),i(x, y, n)
}

n∈IN

The two notions of security. We remark that one-sided simulatability and
security in the presence of covert adversaries are incomparable notions. On the
one hand, the guarantees provided by security under one-sided simulation cannot
be breached, even by a malicious adversary. This is not the case for security in
the presence of covert adversaries where it is possible for a malicious adversary
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to successfully cheat. On the other hand, the formalization of security for covert
adversaries is such that any deviation from what can be achieved in the ideal
model is considered cheating (and so will result in the adversary being caught
with probability ε). This is not the case for one-sided simulatability where one
of the parties can make its input depend on the other, or cause the result to not
be correctly computed, without ever being caught.

2.2 Tools

In this section, we describe the basic tools used in our constructions. Full de-
scriptions and proofs are provided in the full version of this paper.

Oblivious transfer. We use oblivious transfer in order to achieve secure pseu-
dorandom function evaluation (see below), which in turn is used for our set
intersection protocols. For our protocols that achieve one-sided simulatability,
we need an oblivious transfer protocol that achieves one-sided simulatability.
Such a protocol can be constructed using homomorphic encryption, based on
the protocol of [1]. The protocol needs some modifications in order to obtain
simulatability in the case that the receiver is corrupted. We can instantiate our
protocol with either the El-Gamal [6] or Paillier [21] homomorphic encryptions
schemes. However, our instantiation using El-Gamal is considerably more effi-
cient; see the full version. We remark that our protocols actually need to run
multiple oblivious transfers in parallel. For the sake of this, we define the multi-
oblivious transfer functionality with m executions, denoted Fm

OT as follows:

((x0
1, x

1
1), . . . , (x

0
m, x1

m), (σ1, . . . , σm)) → (λ, (xσ1
1 , . . . , xσm

m ))

Our protocol for computing this functionality works by running the basic pro-
tocol in parallel, using the same homomorphic encryption key in each execu-
tion. This yields higher efficiency and the number of asymmetric operations per
transfer is essentially two. We denote a protocol that securely realizes Fm

OT with
one-sided simulation by πm

OT.
Our protocol that achieves security for covert adversaries needs an oblivi-

ous transfer protocol that is secure for covert adversaries. Such a protocol was
presented in [2] and essentially requires 4 exponentiations only per execution.

Oblivious pseudorandom function evaluation. Let (IPRF, FPRF) be an en-
semble of pseudorandom functions, where IPRF is a probabilistic polynomial-time
algorithm that generates keys (or more exactly, that samples a function from the
ensemble). The task of oblivious pseudorandom function evaluation with FPRF

is that of securely computing the functionality FPRF defined by

(k, x) �→ (λ, FPRF(k, x)) (1)

where k ← IPRF(1n) and x ∈ {0, 1}n.1 We will use the Naor-Reingold [20] pseu-
dorandom function ensemble FPRF (with some minor modifications). For every n,
1 If k is not a “valid” key in the range of IPRF(1n), then we allow the function to take

any arbitrary value. This simplifies our presentation.
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the function’s key is the tuple k = (p, q, ga0 , a1, . . . , an), where p is a prime, q is
an n-bit prime divisor of p − 1, g ∈ Z∗p is of order q, and a0, a1, . . . , an ∈R Z∗q .
(This is slightly different from the description in [20] but makes no difference to
the pseudorandomness of the ensemble.) The function itself is defined by

FPRF(k, x) = ga0·
∏n

i=1 a
xi
i mod p

We remark that this function is not pseudorandom in the classic sense of it being
indistinguishable from a random function whose range is composed of all strings
of a given length. Rather, it is indistinguishable from a random function whose
range is the group generated by g as defined above. This suffices for our purposes.
A protocol for oblivious pseudorandom function evaluation of this function was
presented in [8] and involves the parties running an oblivious transfer execution
for every bit of the input x. In the full version we prove that the protocol of [8]
preserves the security level of the oblivious transfer used (whether it be full secu-
rity, one-sided simulatability, or security in the presence of covert adversaries).
Using the oblivious transfer of [2] we therefore have that for x ∈ {0, 1}�, the cost
of securely computing FPRF in the presence of covert adversaries is essentially 4�
exponentiations. We remark that by using a multi-oblivious transfer protocol,
we can run many executions of πPRF simultaneously. This is of great importance
for efficiency.

3 Secure Set-Intersection

In this section we present our main result. We show how to securely compute
the two-party set-intersection functionality F∩, where each party enters a set
of values from some predetermined domain. If the input sets are legal, i.e. they
are made up of distinct values, then the functionality sends the intersection of
these inputs to P2 and nothing to P1. Otherwise P2 is given ⊥. Let X and Y
denote the respective input sets of P1 and P2, and let the domain of elements
be {0, 1}p(n) for some known polynomial p(n). We assume that p(n) = ω(log n);
this is needed for proving security and can always be achieved by padding the
elements if necessary. Functionality F∩ is defined by:

(X, Y ) �→
{

(λ, X ∩ Y ), if X, Y ⊆ {0, 1}p(n) and are legal sets
(λ, ⊥), otherwise

We present two protocols in this section: the first achieves one-sided simulata-
bility in the presence of malicious adversaries, and the second achieves security
in the presence of covert adversaries with deterrent ε = 1/2.

3.1 Secure Set Intersection with One-Sided Simulatability

The basic idea behind this protocol was described in the introduction. We there-
fore proceed directly to the protocol, which uses a subprotocol πPRF that securely
computes FPRF with one-sided simulatability (functionality FPRF was defined in
Eq. (1) above).
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Protocol πINT

– Inputs: The input of P1 is X where X ⊆ {0, 1}p(n) contains m1 items, and the
input of P2 is Y where Y ⊆ {0, 1}p(n) contains m2 items.

– Auxiliary inputs: Both parties have the security parameter 1n and the polyno-
mial p bounding the lengths of all elements in X and Y . In addition, P1 is given
m2 (the size of Y ) and P2 is given m1 (the size of X).

– The protocol:
1. Party P1 chooses a key k ← IPRF(1p(n)) for the pseudorandom function. Then,

the parties run m2 parallel executions of πPRF. P1 enters the key k chosen
above in all of the executions, whereas P2 enters a different value y ∈ Y
in each execution. The output of P2 from these executions is the set U =
{(FPRF(k, y))}y∈Y .

2. P1 sends P2 the set V = {FPRF(k, x)}x∈X in a randomly permuted order,
where k is the same key P1 used in Protocol πPRF in the previous step.

3. P2 outputs all y’s for which FPRF(k, y) ∈ V . I.e., for every y let fy be the output
of P2 from πPRF when it used input y. Then, P2 outputs the set {y | fy ∈ V }.

Theorem 3. Assume that πPRF securely computes FPRF with one-sided simula-
tion. Then πINT securely computes F∩ with one-sided simulation.

Proof Sketch: In the case that P1 is corrupted we need only show that P1 learns
nothing about P2’s inputs. This follows from the fact that the only messages that
P1 receives are in the executions of πPRF which also reveals nothing about P2’s
input to P1. The formal proof of this follows from a standard hybrid argument.

We now proceed to the case that P2 is corrupted; here we must present a
simulator but can also rely on the fact that the πPRF subprotocol is simulatable.
Thus, we can analyze the security of πINT in a hybrid model where a trusted party
computes FPRF for the parties. In this model, P1 and P2 just send their inputs to
πPRF to the trusted party. Thus, the simulator S for A who controls P2 receives
A’s inputs y1, . . . , ym2 to the pseudorandom function evaluations. S chooses a
unique random value zi for each distinct yi and hands it to A as its output in
the ith evaluation. S then sends y1, . . . , ym2 to the trusted party computing F∩
and receives back a subset of the values (this is the output X ∩ Y ); let t be the
number of values in the subset. S completes X ∩ Y with a set of m1 − t random
values of length p(n) each, computes the set V from this set as an honest P1
would and hands it to A.2 Finally, S outputs whatever A outputs. The proof is
completed by proving that the ability to distinguish the simulation from a real
execution can be converted into the ability to distinguish the pseudorandom
function from random.

Efficiency. Note first that since πPRF can be run in parallel and has only a con-
stant number of rounds, protocol πINT also has only a constant number of rounds.
Next, the number of exponentiations is O(m2 ·p(n)+m1). This is due to the fact
that each local computation of the Naor-Reingold pseudorandom function can be
carried out with just one modular exponentiation and n modular multiplications
2 Since p(n) is superlogarithmic, the probability that any of the random values sent

by S are in P1’s input set is negligible.
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(which are equivalent to another exponentiation). Thus, computing the set V
requires O(m1) exponentiations. In addition, for inputs of length p(n), Protocol
πPRF consists of running p(n) oblivious transfers (each requiring O(1) exponen-
tiations). Thus m2 such executions require O(m2 · p(n)) exponentiations. We
remark that since p(n) is the size of the input elements it is typically quite small
(e.g., the size of an SSN). If this is not the case, then the input can be hashed
to a fixed size using a collision-resistant hash function. Thus, m2 · p(n) + m1
will typically be much smaller than m1 · m2. (Recall that we do need to assume
that p(n) is large enough so that a randomly chosen string does not intersect
with any of the sets except with very small probability. However, this can still
be quite small.)

We remark that our protocol is much more efficient than that of [14] (although
they achieve full simulatability). This is due to the fact that in their protocol
every party Pi is required to execute O(m1 ·m2) zero-knowledge proofs of knowl-
edge, and a similar number of asymmetric computations. (Many of these proofs
can be made efficient but not all. In particular, their protocol is only secure as
long as the players prove that they do not send the all-zero polynomial. However,
no efficient protocols for proving this are known.)

3.2 Secure Set Intersection in the Presence of Covert Adversaries

In this section we present a protocol for securely computing set-intersection
in the presence of covert adversaries. Our protocol is based on the high-level
idea demonstrated in protocol πINT (achieving one-sided simulation for malicious
adversaries). In order to motivate this protocol, we explain why πINT cannot be
simulated in the case that P1 is corrupted. The problem arises from the fact
that P1 may use different keys in the different evaluations of πPRF and in the
computation of V . In such a case, the simulator cannot construct a set of values
X that corresponds with P1’s behavior. Another problem that arises is that if P1
can choose the key k by itself, then it can make it so that for some distinct values
y and y′ it holds that FPRF(k, y) = FPRF(k, y′). This enables P2 to effectively
make its set X larger, affecting the size of the intersection. Needless to say, this
strategy cannot be carried out in the ideal model. Thus, the main objective of
the additional steps in our protocol below is to ensure that P1 uses the same
randomly chosen k in all of the πPRF evaluations as well as in the construction
V . This is achieved in the following ways. First, the parties run two series of
executions of the πPRF protocol where in one execution real values are used and
in the other dummy values are used. Party P2 then checks that P1 used the
same key in all of dummy executions. This check is carried out by having P1
and P2 generate the randomness that P1 should use in these subprotocols by
coin tossing (where P1 receives coins and P2 receives a commitment to those
coins). Then, P1 simply reveals the coins used in the dummy series and P2
can fully verify its behavior. Second, P1 and P2 first apply a pseudorandom
permutation to their inputs and then a pseudorandom function. Then, P1 sends
two sets V0 and V1, and opens one of them to P2 in order to prove that it was
constructed by applying the pseudorandom function with the same key as used in
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P1(X) P2(Y )

(s0, s1) −→ Oblivious transfer ←− α
−→ sα

For β ∈ {0, 1}:

CPRPβ ={com(FPRP
sβ

(xi))}m1
i=1

CPRP0 , CPRP1 �

1n −→ Coin tossing ←− 1n

(ρ0, r0), (ρ1, r1) ←− −→ com(ρ0; r0), com(ρ1; r1)

Using coins ρ0: k0 −→ FPRF evaluations T0 =

{
{FPRP

s0 (yi)}, if α = 0
{random}, if α = 1

−→ {FPRF
k0 (t)}t∈T0

Using coins ρ1: k1 −→ FPRF evaluations T1 =

{
{random}, if α = 0
{FPRP

s1 (yi)}, if α = 1
−→ {FPRF

k1 (t)}t∈T1

fσ
i =FPRF

kσ
(FPRP

sσ
(xi))

∀ 1 ≤ i ≤ m1, σ ∈ {0, 1}
V0 = {f0

i }, V1 = {f1
i }�

� sα

d1 = decommit(CPRP1−α)
d2 = decommit(com(ρ1−α))

{FPRP
s1−α

(xi)}, k1−α, d1, d2� verify CPRP1−α and that
P1 used coins ρ1−α

Fig. 1. A high-level diagram of our protocol

the dummy evaluations. The reason that the pseudorandom permutation is first
applied is to hide P1’s values from P2 when one of the sets V0, V1 is “opened”. The
difficulty in implementing this idea is to devise a way that P2 can compute the
intersection and check all of the above, without revealing more about P1’s input
than allowed. Technically, this is achieved by having V0 equal the set of values
FPRF(k0, FPRP(s0, x)) and having V1 equal the values FPRF(k1, FPRP(s1, x)). Then,
P2 learns either (k0, s1) or (k1, s0). In this way, it cannot derive any information
from the sets (it only knows one of the keys). However, it is enough to check
P1’s behavior. A high-level overview of the protocol appears in Figure 1 and the
full description (starting with the tools that we use) follows below.

Tools: Our protocol uses the following primitives and subprotocols:
– A pseudorandom permutation with sampling algorithm IPRP. We denote a

sampled key by s and the computation of the permutation with key s and
input x by FPRP(s, x).

– A pseudorandom function with sampling algorithm IPRF. We denote a sam-
pled key by k and the computation of the permutation with key k and input
x by FPRF(k, x).
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– A perfectly-binding commitment scheme com; we denote by com(x; r) the
commitment to a string x using random coins r.

– An oblivious transfer protocol that is secure in the presence of covert adver-
saries with deterrent ε = 1/2 and can be run in parallel. An efficient protocol
that achieves this was presented in [2]. We denote this protocol by πOT.

– An efficient coin-tossing protocol that is secure in the presence of covert
adversaries with deterrent ε = 1/2. Such a protocol can be constructed by
using the protocol of [16], with commitments based on El-Gamal encryp-
tion [6] (this enables highly efficient zero-knowledge proofs; see the full ver-
sion). The exact functionality we need is not plain coin-tossing but rather
(1n, 1n) �→ ((ρ, r), com(ρ; r)) where ρ ∈R {0, 1}n and r is random and of
sufficient length for committing to ρ. We denote this protocol by πCT.

– A protocol πPRF for computing FPRF as defined in Eq. (1), that is secure in
the presence of covert adversaries with ε = 1/2; see Section 2.2.

We are now ready to present our protocol.

Protocol π∩
– Inputs: The input of P1 is X where X ⊆ {0, 1}p(n) contains m1 items, and

the input of P2 is Y where Y ⊆ {0, 1}p(n) contains m2 items.
– Auxiliary inputs: Both parties have the security parameter 1n and the

polynomial p bounding the lengths of all elements in X and Y . In addition,
P1 is given m2 (the size of Y ) and P2 is given m1 (the size of X).

– The protocol:
1. Oblivious transfer (secure in the presence of covert adversaries):

(a) Party P1 chooses a pair of keys s0, s1 ← IPRP(1p(n)) for a prp.
(b) Party P2 chooses a random bit α ∈R {0, 1}.
(c) P1 and P2 execute the oblivious transfer protocol πOT. P1 inputs the

keys s0 and s1 and plays the sender, and P2 inputs α and plays the
receiver. If one of the parties receives corrupti or aborti as output, it
outputs it and halts. Otherwise P2 receives sα.

2. P1 computes CPRP0 = {com(FPRP(s0, x))}x∈X , CPRP1 = {com(FPRP(s1,
x))}x∈X and sends CPRP0 and CPRP1 to P2.

3. The parties run the coin-tossing protocol πCT computing (1q(n), 1q(n)) →
((ρ, r), com(ρ; r)) twice, where q(n) is the number of random bits needed
to both choose a key k ← IPRF(1p(n)) and run m2 executions of the prf

protocol (see below). Party P1 receives for output (ρ0, r0) and (ρ1, r1),
and P2 receives cρ0 = com(ρ0; r0) and cρ1 = com(ρ1; r1), where ρ0, ρ1 are
each of length q(n).

4. Run oblivious prf evaluations:
(a) The parties run m2 executions of the oblivious prf evaluation proto-

col πPRF in parallel, in which P1 inputs the same randomly chosen key
k0 ← IPRF(1p(n)) in each execution, and P2 enters the elements of the
set
T0 = {FPRP(s0, y)}y∈Y (if α = 0), and m2 random values of size
p(n) (if α = 1). Let U0 be the set of outputs received by P2 in these
executions. The randomness used by P1 in all of the executions (and
for choosing the key k0) is the string ρ0 from the coin-tossing above.
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(b) The parties run another m2 executions of πPRF in parallel, in which P1
inputs the same randomly chosen key k1 ← IPRF(1p(n)) each time,
and P2 enters m2 random values of size p(n) (if α = 0), and the
elements of the set T1 = {FPRP(s1, y)}y∈Y (if α = 1). Let U1 be the
set of outputs received by P2 in these executions. The randomness
used by P1 in all of the executions (and for choosing the key k1) is
the string ρ1 from the coin-tossing above.

5. P1 computes and sends P2 the sets of values V0 = {FPRF(k0, FPRP(s0,
x))}x∈X and V1 = {FPRF(k1, FPRP(s1, x))}x∈X , in randomly permuted
order.

6. Run checks:
(a) If either |V0| or |V1| are smaller than m1 or not distinct, P2 outputs

corrupted1, otherwise it sends P1 the key sα.
(b) If P2 sends s such that s /∈ {s0, s1}, then P1 halts. Otherwise, P1

sets α such that s = sα. Then, P1 sends P2 the decommitments for
all values in the set CPRP1−α

, and the decommitment of cρ1−α .
(c) Let W1−α denote the opening of CPRP1−α

and ρ1−α the opening of
cρ1−α . First, P2 checks that the responses of P1 to its messages in
the m2 executions of the prf evaluations in which it input random
strings are exactly the responses of an honest P1 using random coins
ρ1−α to generate k1−α and run the subprotocols. Furthermore, P2
checks that V1−α = {FPRF(k1−α, w)}w∈W1−α using k1−α as above. In
case the above does not hold, P2 outputs corrupted1. Otherwise, let
fy be the output received by P2 from the prf evaluation in which it
input FPRP(sα, y). Party P2 outputs the set {y | fy ∈ Vα}.

We now prove the security of the protocol:

Theorem 4. Assume that πOT, πCT, πPRF are secure in the presence of covert
adversaries with deterrent ε = 1

2 , and assume that com is a perfectly-binding
commitment scheme and that FPRF and FPRP are pseudorandom function and
permutation families, respectively. Then Protocol π∩ securely computes the set-
intersection functionality F∩ in the presence of covert adversaries with ε = 1

2 .

Proof: We will separately consider the case that P1 is corrupted and the case
that P2 is corrupted. The case where both parties are honest is straightforward
and therefore omitted. We present the proof in a hybrid model in which a trusted
party is used to compute the oblivious transfer and coin-tossing computations.
We denote these functionalities by FOT and FCT. (Unfortunately, we cannot do
the same for πPRF because P1 needs to use the coins ρ0, ρ1 in the protocol.)

Party P1 is corrupted. Let A be an adversary controlling the party P1; we
construct a simulator S as follows:

1. S receives X and z, and invokes A on this input.
2. S plays the trusted party for the oblivious transfer execution with A as the

sender, and receives the input that A sends to the trusted party:
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(a) If this input is abort1 or corrupted1, then S sends abort1 or corrupted1
(respectively) to the trusted party computing F∩, simulates P2 aborting
and halts (outputting whatever A outputs).

(b) If the input is cheat1, then S sends cheat1 to the trusted party. If it
receives back corrupted1, then it hands A the message corrupted1 as if
it received it from the trusted party, simulates P2 aborting and halts
(outputting whatever A outputs). If it receives back undetected (and the
input set Y of the honest P2) then S proceeds as follows. First, it hands
A the message undetected together with a random α that A expects to
receive (as P2’s input to πOT). Next, it uses the input Y of P2 that it
obtained in order to perfectly emulate P2 in the rest of the execution.
That is, it runs P2’s honest strategy with input Y while interacting with
A playing P1 for the rest of the execution. Let Z be the output for P2
that it receives. S sends Z to the trusted party (for P2’s output) and
outputs whatever A outputs. The simulation ends here in this case.

(c) If the input is a pair of keys s0, s1, S proceeds with the simulation below.3
3. S receives from A two sets of commitments CPRP0 and CPRP1 .
4. S receives from A its input for FCT. In case it equals abort1, corrupted1, or

cheat1, then S behaves exactly as above in the ot execution. Otherwise S
chooses random (ρ0, r0) and (ρ1, r1) of the appropriate length and hands
them to A.

5. S runs the simulator SPRF guaranteed to exist for the protocol πPRF (by
the assumption that it is secure) on the residual A at this point (i.e., S
defines an adversary A′ that is just A with the messages sent until now
hardwired into it). If SPRF wishes to send abort1, corrupted1 or cheat1 in any
of the executions, then S acts exactly as above. Otherwise, S proceeds. Let
t be the transcript of messages sent by A in the simulated view of πPRF as
generated by SPRF (we define the residual A so that it outputs this transcript
and so this is also what is output by SPRF).

6. S receives from A two sets of computed values V0 and V1. If they are not
of size m1 or not distinct, S sends corrupted1 to the trusted party, simulates
P2 aborting and halts (outputting whatever A outputs).

7. Otherwise, S hands A the key s0 and receives back A’s decommitments of
CPRP1 and cρ1 . S then rewinds A, hands it s1 and receives back its decom-
mitments of CPRP0 and cρ0 . Simulator S runs the same checks as an honest
P2 would run (it uses the transcript t to check that A acted honestly using
the randomness ρ0, ρ1). We have two cases:
(a) Case 1 – all of the checks carried by S in both rewindings pass: Let k0

and k1 denote the keys that an honest P1 would have used in the prf

evaluations when its coins are ρ0 and ρ1, respectively (where ρb is value
committed to in cρb

). Then, S chooses a random bit α ∈R {0, 1} and
sends the trusted party the set {F−1

PRP(sα, w)}w∈Wα .
(b) Case 2 – there exists a bit α ∈ {0, 1} so that the checks when S sent

s1−α failed: Simulator S sends cheat1 to the trusted party. If it receives
3 We assume a mapping from any string to a valid key for the pseudorandom

permutation.
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back corrupted1 then it rewinds A and sends it s1−α again. If it receives
back undetected then it rewinds A and sends it sα. Then, it runs the last
step of the protocol exactly as P2 would, using P2’s real input. S then
sends the trusted party whatever P2 would output in the ideal model.

8. S outputs whatever A outputs and halts.

Let ε = 1
2 . We prove that for every X ⊆ {0, 1}p(n) of size m1 and Y ⊆

{0, 1}p(n) of size m2, and every z ∈ {0, 1}∗
{

IDEALSCε
F∩,S(z),1(X, Y, n)

}

n∈N

c≡
{

HYBRID
OT,CT

π∩,A(z),1(X, Y, n)
}

n∈N

Recall that in the above {FOT, FCT}-hybrid model, the view of P1 includes its
output from FCT, the messages sent during the πPRF executions, and the value
sα that P2 sends after receiving V0 and V1. Thus the only difference between
the hybrid and ideal executions is within the πPRF executions. This is due to the
fact that S invokes SPRF whereas in a hybrid execution a real πPRF execution
is run between P1 and P2. Clearly, the views of A in these executions are com-
putationally indistinguishable. The more interesting challenge is thus to prove
that the joint output distributions of P2 and these views are computationally
indistinguishable.

We consider three different cases. In the first case A’s input to FOT or FCT is
either corrupted1, abort1 or cheat1. Let bad1 denote this event. In this case, the
execution is either aborted (with P2 receiving abort1 or corrupted1) or S receives
the honest P2’s full input with which to perfectly complete the simulation. Thus,

{IDEALSCε
F∩,S(z),1(X, Y, n) | bad1} ≡ {HYBRID

OT,CT

π,A(z),1(X, Y, n) | bad1}

In the second case, A provides valid inputs for FOT and FCT, yet there exists an
α ∈ {0, 1} value for which A does not provide a valid response in Step 6 of the
protocol; denote this event by bad2. Now, if P2 sent α to FOT then A cannot
deviate from the protocol within the πPRF executions on T1−α without definitely
getting caught by P2 (and the simulator). Thus, in both the hybrid and ideal
executions, P2 outputs corrupted1 with the same probability. Furthermore, when
it does not output corrupted1, simulator S concludes the simulation with P2’s
real input (note that although these inputs are already used earlier in πPRF, since
S knows the values k0, k1 it can conclude the simulation even when receiving
P2’s inputs later). Thus, the only difference is that in the real protocol, the πPRF

executions are run with P2’s inputs whereas in the simulation SPRF is used. By
the security of SPRF we have:

{IDEALSCε
F∩,S(z),1(X, Y, n) | bad2}

c≡ {HYBRID
OT,CT

π,A(z),1(X, Y, n) | bad2}

The last case we need to consider is when neither bad1 nor bad2 occur; denote
this event by ¬bad. Let k0 and k1 be the keys that A used in all of the πPRF

executions, and let s0 and s1 be the values that A input to the oblivious transfer.
Then we have the following claim:
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Claim 5. Let Xα = {F−1
PRP(sα, w)}w∈Wα and consider the event ¬bad where

neither bad1 nor bad2 occur. Then, for every α ∈ {0, 1} and set Y ⊆ {0, 1}p(n),
it holds that z ∈ Xα ∩ Y if and only if FPRF(kα, FPRP(sα, z)) ∈ Vα ∩ Uα, except
with negligible probability.

Proof Sketch: If z ∈ Xα ∩Y , then FPRF(kα, FPRP(sα, z)) ∈ Vα ∩Uα because A
uses the same key kα for the prf evaluation that defines Uα and for computing
Vα. If this were not the case, then A would be caught cheating with probability
at least 1/2 (whereas here we are dealing with the case that A provides answers
that never result in it being caught cheating).

As for the other direction, assume that FPRF(kα, FPRP(sα, z)) ∈ Vα ∩Uα. Then
a problem can arise if there exist y ∈ Y and x ∈ X such that x 
= y and yet
FPRF(kα, FPRP(sα, x)) = FPRF(kα, FPRP(sα, y)). If A could choose X after kα is
known, then it could indeed cause such an event to happen. However, notice
that A is committed to its inputs (in CPRP0 and CPRP1) before kα is chosen in
the coin tossing. Thus, the probability that such a “collision” occurs, where the
probability is taken over the choice of kα and the sets X and Y are already fixed,
is negligible (or else FPRF can be distinguished from random).

This implies that the output received by P2 in the hybrid and ideal executions
is the same (except with negligible probability). Combining this with the fact
that the view of A is clearly indistinguishable in both executions, we have:

{IDEALSCε
F∩,S(z),1(X, Y, n) | ¬bad} c≡ {HYBRID

OT,CT

π,A(z),1(X, Y, n) | ¬bad}

Combining the above three cases, and noting that the events bad1 and bad2 hap-
pen with probability that is negligibly close in the hybrid and ideal executions,
we have that the output distributions are computationally indistinguishable, as
required.

Party P2 is corrupted. Let A be an adversary controlling party P2. We con-
struct a simulator S as follows:

1. S receives Y and z, and invokes A on this input.
2. S plays the trusted party for the oblivious transfer execution with A as the

receiver. S receives the input that A sends to the trusted party. If this input
is abort2, corrupted2 or cheat2, then S works in an analogous way as when
this occurs in the simulation when P1 is corrupted.
If the input equals a bit α, then S samples a key sα ← IPRP(1p(n)) as the
honest P1 does, and hands it to A emulating FOT’s answer. S samples a
second key s1−α ← IPRP(1p(n)) as above, and keeps it for later.

3. S sends A two sets of m2 commitments CPRP0 and CPRP1 to distinct random
values of length p(n).

4. S receives from A its input for FCT. In case it equals abort2, corrupted2, or
cheat2, then S behaves exactly as above in the ot execution. Otherwise S
chooses random (ρ0, r0) and (ρ1, r1) of the appropriate length and hands
cρ0 = com(ρ0; r0) and cρ1 = com(ρ1; r1) to A.
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5. S simulates the prf evaluations as follows. If α = 0 (where α is A’s input to
the oblivious transfer), then S runs the simulator SPRF on the residual A for
the first m2 executions, and follows the honest P1’s instructions using random
coins ρ1 for the second m2 executions (where the “first” and “second” set
is as in the order described in the protocol). In contrast, if α = 1, then S
follows the honest P1’s instructions using random coins ρ0 for the first m2
executions and runs the simulator SPRF on the residual A for the second m2
executions.

In the m2 executions simulated by SPRF, simulator S receives the in-
put that SPRF wishes to send to the trusted party as its input in the prf

executions:
(a) If any of these inputs is abort2, corrupted2, or cheat2, then S behaves

exactly as above in the ot execution.
(b) Else, let T ′ denote the set of m2 elements (with length bounded by p(n))

that SPRF wishes to send as A’s inputs to πPRF. Then S hands SPRF

the set {FPRF(kα, t)}t∈T ′ as its output from the trusted party, where
kα ← IPRF(1p(n)) is a randomly generated key. In addition, S defines the
set Y ′ = {F−1

PRP(sα, t)}t∈T ′ . (If Y ′ is not exactly of size m2, then S adds
m2 − |Y ′| random elements of size p(n); recall that p(n) = ω(log n) and
so random values are in the intersection with only negligible probability.)

6. S sends the trusted party computing F∩ the set Y ′ that it recorded and
receives back for output the set Z (note Z = X ∩ Y ′). Then it chooses
m2 − |Z| distinct random elements and adds them to Z. Finally, S com-
putes and sends A the sets Vα = {FPRF(kα, FPRP(sα, z))}z∈Z and V1−α =
{FPRF(k1−α, w)}com(w)∈CPRP1−α

. We remark that the elements of Vα are ran-
domly permuted before being sent.

7. S receives from A the value sα and responds with the decommitments of
CPRP1−α

and the decommitment of cρ1−α . If A did not send sα, then S halts.
8. S outputs whatever A outputs.

Let ε = 1
2 . We prove that for every X ⊆ {0, 1}p(n) of size m1 and Y ⊆

{0, 1}p(n) of size m2, and every z ∈ {0, 1}∗
{

IDEALSCε
F∩,S(z),2(X, Y, n)

}

n∈N

c≡
{

HYBRID
OT,CT

π∩,A(z),2(X, Y, n)
}

n∈N

Note first that the simulation differs from a real execution with respect to
how the sets CPRFα

and Vα are generated, and with respect to the decommit-
ments of CPRF1−α

(recall that in the real execution P1 uses its input X for these
computations whereas the simulator does not know X). Nevertheless, the views
cannot be distinguished due to the hiding property of FPRF, FPRP and com. As
in the previous analysis, we begin with the case where A sends abort2, cheat2
or corrupted2 to FOT or FCT. Due to the similarity to the case were P1 is cor-
rupted we omit the details here. Let bad denote the event where A sends abort2,
corrupted2 or cheat2. Then relying on the above discussion it holds that,

{IDEALSCε
F∩,S(z),2(X, Y, n) | bad} ≡ {HYBRID

OT,CT

π,A(z),2(X, Y, n) | bad}
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Next we analyze the security of P1 in case A provides valid inputs to FOT and
FCT, and prove through the following series of games that the output distribu-
tions are computationally indistinguishable. For lack of space in this abstract,
we only sketch this part of the proof.
Game H1: In the first game the simulator has access to an oracle OFPRP for
computing FPRP such that instead of computing FPRP using s1−α, it queries the
oracle. Clearly the output distribution of the current and original simulation is
identical.
Game H2: In this game we replace OFPRP with an oracle OHPerm computing a
truly random permutation while the rest of the execution is as above. Indistin-
guishability holds using a standard reduction.
Game H3: The next game is identical to the previous one except that the simu-
lator knows the real input X of P1 but uses it only for the computation of V1−α

and CPRP1−α
. Since the oracle is a truly random permutation, the distribution

here is identical (note that X is a set and thus all items are distinct).
Game H4: In this game the simulator is given an oracle OFPRF for computing
FPRF (with a random key) which it uses instead of computing FPRF using kα.
The only difference is that in H3, the coins used to generate kα are committed to
in cρα whereas in H4 the oracle uses a random key that is independent of those
coins. The fact that these games are indistinguishable therefore follows from the
hiding property of the commitment scheme. Note that the executions using k1−α

remain the same.
Game H5: Next we replace OFPRF with a truly random function OHFunc ; indis-
tinguishability here follows from the pseudorandomness of FPRF.
Game H6: In this game we let the simulator query its prf oracle on the real
input set X of P1. That is, the simulator uses X for the entire computation as
the real party P1. Now, since OHFunc is a truly random function, we have the
same output distribution in both games.
Game H7: Here we modify OHPerm back into OFPRP . This replacement affects
the prp computation for the (1 − α)th set of prp evaluations.
Game H8: In this game we modify OHFunc back into OFPRF .
Game H10: Finally, we let the simulator conduct the prf and prp computations
by itself. This does not affect the outputs of these functions, but as above a
reduction to the hiding property of the commitment cρα is needed because now
the coins used to generate the key kα are committed to in cρα . In addition we let
S compute CPRPα

as the honest P1 would. Since S is not required to decommit
these commitments, it is again easy to reduce indistinguishability here to the
hiding property of these commitments.

We therefore conclude that H10 is computationally indistinguishable from the
(original) ideal simulation by S. However, H10 is identical to the real execution
in the hybrid model, completing the proof.

Efficiency. We analyze the complexity of protocol π∩. We first count the number
of asymmetric operations; in particular, modular exponentiations. Note that each
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invocation of πPRF with inputs of length p(n) requires 4p(n)+1 exponentiations,
because every invocation of the covert oblivious transfer requires at most 4 such
computations, and πPRF runs an oblivious transfer for every bit of P2’s input
(one additional exponentiation is used for obtaining the final result). Given that
there are 2m2 executions of πPRF, we have that the number of exponentiations
is approximately 8m2 · (p(n) + 1) + m1. As we have already mentioned, p(n) is
expected to be quite small in most cases (and a collision-resistant hash function
can be used when not). We note that our protocol is completely modular meaning
that any protocol πPRF for any pseudorandom function FPRF can be used. Thus,
the development of a more efficient protocol πPRF will automatically result in our
protocol also being more efficient. In terms of round efficiency, π∩ has a constant
number of rounds due to the round efficiency of πOT in the covert model, and
the fact that all these executions are run in parallel.

4 Secure Pattern Matching

The basic problem of pattern matching is the following one: given a text T of
length N and a pattern p of length m, find all the locations in the text where
pattern p appears in the text. Stated differently, for every i = 1, . . . , N − m + 1,
let Ti be the substring of length m that begins at the ith position in T . Then,
the basic problem of pattern matching is to return the set {i | Ti = p}. This
problem has been intensively studied and can be solved optimally in time that
is linear in size of the text [3,15].

In this section, we address the question of how to securely compute the above
basic pattern matching functionality. The functionality, denoted FPM, is defined
by

((T, m), p) �→
{

(λ, {i | Ti = p}) if |p| ≤ m
(λ, {i | Ti = p1 . . . pm}) otherwise

where Ti is defined as above, T and p are binary strings and pi is the ith bit
in p. Note that P1 who holds the text learns nothing about the pattern held by
P2, and the only thing that P2 learns about the text held by P1 is the locations
where its pattern appears.

Although similar questions have been considered in the past (e.g., keyword
search [8]), to the best of our knowledge, this is the first work considering the
basic problem of pattern matching as described above. The main difference be-
tween keyword search and the problem that we consider here is that in keyword
search, each keyword is assumed to appear only once. However, here the text
is viewed as a stream and a pattern can appear multiple times. Furthermore,
the strings Ti, Ti+1, ... are dependent on each other (adjacent Ti’s only differ in
their first and last characters). Thus, it is not possible to apply a pseudorandom
function to each Ti and use a protocol to securely compute FPRP on p as in
the case of keyword search. Thus it seems that finding a secure solution for this
problem is harder.

We present a protocol for securely computing FPM in the presence of malicious
adversaries with one-sided simulatability. The basic idea behind our protocol is
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for P1 and P2 to run a single execution of πPRF for securely computing a pseudo-
random function with one-sided simulatability; let f = FPRF(k, p) be the output
received by P2. Then, P1 locally computes the pseudorandom function on Ti for
every i and sends the results {FPRF(k, Ti)} to P2. Party P2 can then find all
the matches by just seeing where f appears in the series sent by P1. Unfortu-
nately, within itself, this is insufficient because P2 can then detect repetitions
within T . That is, if Ti = Tj then P2 will learn this because this implies that
FPRF(k, Ti) = FPRF(k, Tj). However, if Ti 
= p, this should not be revealed. We
therefore include the index i of the subtext Ti in the computation and have P1
send the values FPRF(k, Ti‖〈i〉) where 〈i〉 denotes the binary representation of
i. This in turns generates another problem because now it is not possible for
P2 to see where p appears given only FPRF(k, p); this is solved by having P2
obtain FPRF(k, p‖〈i〉) for every i. Although this means that P2 obtains n differ-
ent outputs of FPRF (because there are n different indices i), we utilize specific
properties of the Naor-Reingold pseudorandom function, and the protocol πPRF

for computing it, in order to have P2 obtain all of these values while running
only a single execution of πPRF. Due to lack of space, we defer the description of
how this is achieved to the full version.

Protocol πPM

– Inputs: The input of P1 is a binary string T of size N , and the input of P2
is a binary pattern p of size m.

– Auxiliary Inputs: the security parameter 1n, and the input sizes N and
m.

– The protocol:
1. Party P1 chooses a key for computing the Naor-Reingold function on in-

puts of length m+log N ; denote the key k = (p, q, ga0 , a1, . . . , am+log N ).
2. The parties execute a modified version of πPRF for computing the Naor-

Reingold function, where P1 enters the key k and P2 enters its pat-
tern p of length m. The modification is such that P2’s output is the set
{fi = FPRF(k, p‖〈i〉)}N−m+1

i=1 , rather than just a single value.
3. For every i, let ti = FPRF(k, Ti‖〈i〉). Then, P1 sends P2 the set

{(i, ti)}N−m+1
i=1 .

4. P2 outputs the set of indices {i} for which fi = ti.

Theorem 6. Let FPRF denote the Naor-Reingold function and assume that it
is pseudorandom. Furthermore, assume that protocol πPRF securely computes the
functionality (k, p) �→ (λ, {FPRF(k, p‖〈i〉)}N−m+1

i=1 ) in the presence of malicious
adversaries with one-sided simulatability. Then protocol πPM securely computes
FPM in the presences of malicious adversaries with one-sided simulatability.

Proof Sketch: For the case that P1 is corrupted, we need to show that P1
learns nothing about P2’s input. This follows immediately from the fact that
πPRF is secure with one-sided simulatability and P1 receives no other messages.
For the case that party P2 is corrupted we need to present a simulator. Very
briefly, the simulator S works by obtaining the pattern p that A inputs to πPRF
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and generating values ti that are completely random when p 
= Ti and that equal
fi when p = Ti (S knows when p 
= Ti and when p = Ti because this is given by
the output received from the trusted party). The security is thus reduced to the
pseudorandomness of the Naor-Reingold function.

Efficiency. πPM has a constant number of rounds, and each parties carries out
approximately 2N exponentiations where N is the length of the text.
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Abstract. We consider the problems of computing the Euclidean norm
of the difference of two vectors and, as an application, computing the
large components (Heavy Hitters) in the difference. We provide protocols
that are approximate but private in the semi-honest model and efficient
in terms of time and communication in the vector length N . We provide
the following, which can serve as building blocks to other protocols:

– Euclidean norm problem: we give a protocol with quasi-linear local
computation and polylogarithmic communication in N leaking only
the true value of the norm. For processing massive datasets, the
intended application, where N is typically huge, our improvement
over a recent result with quadratic runtime is significant.

– Heavy Hitters problem: suppose, for a prescribed B, we want the
B largest components in the difference vector. We give a protocol
with quasi-linear local computation and polylogarithmic communi-
cation leaking only the set of true B largest components and the
Euclidean norm of the difference vector. We justify the leakage as
(1) desirable, since it gives a measure of goodness of approximation;
or (2) inevitable, since we show that there are contexts where linear
communication is required for approximating the Heavy Hitters.

1 Introduction

Secure Multiparty Computation (SMC) has been studied for decades since [6,22].
Any protocol for computing a function can be converted, gate-by-gate, to a
private protocol, in which no party learns anything from the protocol messages
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other than what can be inferred from the function’s input/output relation. The
computational overhead is at most polynomial in the size of the inputs.

In recent years, however, input sizes in many problems have grown to the
point where “polynomial computational overhead” is too coarse a measure; both
computation and communication should be minimized. For example, absent pri-
vacy concerns, applications may require that a protocol use at most polylog-
arithmic communication—this occurs in processing distributed internet traffic
at line speeds or in performing data mining algorithms in very large datasets.
General-purpose SMC may blow up communication exponentially, so additional
techniques are needed. In one theoretical approach, individual protocols are de-
signed for functions of interest such as database lookup [9,18,7] and building
decision trees [19]. Another important approach [21], converts any protocol into
a private one with little communication blowup, but imposes a computational
blowup that may be exponential in the communication complexity.

The approach we follow, which was introduced in [11], is to substitute an
approximate function for the desired exact function. Many functions of interest
have good approximations that can be computed efficiently both in terms of
computation and communication. A caveat is that the traditional definition of
privacy is no longer appropriate. Instead, a protocol π computing an approxi-
mation g to a function f is a private approximation protocol [11] for f if

– π is a private protocol for g in the traditional sense that the messages of π
leak nothing beyond what is implied by inputs and g; and,

– the output g leaks nothing beyond what is implied by the inputs and f .

Several examples were given in [11]. Another important example was given
in [15], where the authors provided an estimate ‖a − b‖∼ (for integer-valued vec-
tors a and b held by Alice and Bob respectively) as the first non-trivial example
of polylogarithmic communication and polynomial computation. We will analyze
and make use of this protocol for our results.

1.1 Our Results

Consider the general problem where Alice and Bob hold vectors, a and b, of
dimension N , and they want an efficient summary for the vector sum c = a + b.
We analyze two problems in this setting.

First, we consider the Euclidean norm estimation problem, in which we wish to
output a tight approximation to ‖c‖2 =

(∑
i c2

i

)1/2, the l2 norm of vector c. The
problem is a well-known building block for other protocols in the non-private
setting, since it is used to estimate the skew of the data. A private protocol
approximating ‖c‖2 using polylogarithmic communication in the vector length
first appeared in [15]. Our results are based on their protocol; we strengthen its
privacy guarantees and decrease its local computational costs. Specifically, we
obtain a O(N log N) local computational cost versus the implied Ω(N2), while
keeping equivalent communication and round complexity costs.

Second, we consider the Euclidean approximate Heavy Hitters problem, in
which there is a parameter, B, and the players ideally want copt, the B largest
terms in c; i.e., the B biggest values together with the corresponding indices.
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Unfortunately, finding copt exactly requires linear communication. Instead, the
players use polylogarithmic communication (and polynomial work and O(1)
rounds) to output a vector c̃ with ‖c̃ − c‖2 ≤ (1 + ε)‖copt − c‖2. In our pro-
tocol, the players learn nothing more than what can be deduced from copt and
‖c‖2. (We discuss below the significance of leaking ‖c‖2.) We can immediately
use this result as a black box for taxicab approximate heavy hitters, i.e., find-
ing c̃ with ‖c̃ − c‖1 ≤ (1 + ε)‖copt − c‖1, leaking copt and ‖c‖2. We omit the
development of this extension in the interest of space.

In the basic result, we give an at-most-B-term representation that is nearly
as good (in the Euclidean sense) as the best B-term representation and leaks
no more than the best B-term representation and the exact Euclidean norm.
Although leaking the Euclidean norm represents a weaker result than not leak-
ing it, actually (i) leaking ‖c‖2 is necessary and (ii) computing or approximat-
ing ‖c‖2 is desirable in some circumstances. First, we sketch a straightforward
lower bound showing that, for some (reasonable) values of parameters M, N, . . .,
computing c̃ leaking only copt requires Ω(N) communication. In fact, for some
(artificial) classes of inputs, Ω(N) communication is needed unless ‖c‖2 itself is
not only potentially leaked, but also actually computed exactly. On the other
hand, one can regard the Euclidean norm as semantically interesting, so that we
can regard the top B terms together with the Euclidean norm as a compound,
extended summary. In particular, since c̃ is computed, leaking ‖c‖2 is equivalent
to leaking ‖c‖2

2 −‖c̃‖2
2 = ‖c̃ − c‖2

2, i.e., the error in our representation, which is a
useful and common desired result. Our protocol indeed can be modified to out-
put an approximation ‖c̃ − c‖∼ with ‖c̃ − c‖2 ≤ ‖c̃ − c‖∼ ≤ (1 + ε)‖c̃ − c‖2, so
we can regard the protocol as solving two cascaded approximation problems: find
a near-best representation c̃, then find an approximation ‖c̃ − c‖∼ to ‖c̃ − c‖2.
It is natural to expect a protocol for c̃ to leak copt and a protocol for ‖c̃ − c‖∼ to
leak ‖c̃ − c‖2; while lower bounds prevent that, we can compute c̃ and ‖c̃ − c‖∼
simultaneously and guarantee that, overall, we leak only copt and ‖c̃ − c‖2.

1.2 Related Work

Other works in private communication-efficient protocols include the Private
Information Retrieval problem [9,18,7], building decision trees [19], the set inter-
section and matching problem [12], and computing the kth-ranked element [2].
The breakthrough work of [21] gives a general technique for converting any
protocol into a private protocol with little communication overhead. However,
this comes at the expense of local computational costs, which may increase ex-
ponentially. Thus, other general or application-specific techniques are needed.

The seminal work of [11] introduced the notion of private approximations and
gave several protocols. Some negative results followed in [14] for approximations
to NP-hard functions and more on NP-hard search problems appears in [5].
Recently, [15] gave a private approximation to the Euclidean norm that is central
to our paper. Statistical work such as [8] also addresses approximate summaries
over large databases, but differs from our work in many parameters, such as the
number of players and the allowable communication.



Fast Private Norm Estimation and Heavy Hitters 179

Several papers address the Heavy Hitters problem, in a variety of contexts.
Many of the needed ideas can be seen in [16] as well as in [3,4,10,13]. However,
none are directly suitable when privacy is a concern.

Road Map

This paper is organized as follows. In Section 2, we present some necessary
definitions used throughout the paper. We review private approximations in
Section 3. In Section 4 we present our results for the private Euclidean norm
estimation. Finally, in Section 5, we present our private approximate Euclidean
Heavy Hitters protocol and some suitable lower bounds that motivate our results.

2 Preliminaries

Fix parameters N, M, B, k, and a distortion parameter ε. In this paper, we con-
sider only two players, Alice and Bob, holding input vectors a and b respectively,
each of dimension N , and taking integer values in the range [−M, +M ]. Let k
be a security and failure probability parameter and neg(k, N) be an arbitrary
negligible function of k and N , i.e. a function that shrinks faster than any in-
verse polynomial in k and N . We guarantee summaries whose error is at most
the factor (1 + ε) times the error of the best possible summary; and we will be
interested in protocols that use communication poly(B, log(N), k, log(M), 1/ε),
local computation poly(B, N, k, log(M), 1/ε), and O(1) of rounds.

The Euclidean norm of a vector c is ‖c‖2 =
(∑

i c2
i

)1/2. For the Heavy Hitters
protocol, we are interested in summaries of size B for the combined vector c =
a + b. For example, we are interested ideally in the largest B terms of c. A
vector c is written c = (c0, c1, c2, . . . , cN−1) =

∑
j cjδj , where j is an index, cj

is a value, δj is the vector that is 1 at index j and 0 elsewhere, and cjδj , which
can be implemented compactly and equivalently written as the pair (j, cj), is a
term, in which cj is the coefficient. We compare terms by the magnitudes of their
coefficients, breaking ties by the indices. That is, we will say that (j, cj) < (k, ck)
if |cj | < |ck| or both |cj | = |ck| and j < k. Thus all terms are strictly comparable.
A heavy hitter summary is an expression of the form

∑
i∈Λ ηiδi. If |Λ| must be

at most B, then the best heavy hitter summary copt for a vector c occurs where
{(i, ηi) : i ∈ Λ} consists of the B largest terms.

2.1 Approximate Data Summaries

A function g is said to be an 〈ε, δ〉-approximation of f if, for all inputs x, Pr[(1−
ε)f(x) ≤ g(x) ≤ (1 + ε)f(x)] ≥ 1 − δ holds for an approximation error ε ∈ (0, 1)
and confidence parameter δ ∈ (0, 1). The probabilistic guarantee is over the
randomness of g.

In the exact Heavy Hitters problem, we are given parameters B and N and the
goal is to find the B largest terms in a vector of dimension N . In the approximate
Heavy Hitters problem, however, we want a summary c̃ =

∑
i∈Λ ηiδi such that

‖c̃ − c‖ ≤ (1 + ε)‖copt − c‖, where the norms are all Euclidean norms.
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In order to describe previous relevant algorithms, we first need some def-
initions. Fix a vector c = (c0, c1, c2, . . . , cN−1) =

∑
0≤i<N ciδi, whose terms

are t0 = (0, c0), t1 = (1, c1), . . . , tN−1 = (N − 1, cN−1). Suppose the sequence
i′0, i
′
1, . . . is a decreasing rearrangement of c, i.e., ti′

0
> ti′

1
> · · · > ti′

N−1
.

Definition 1 (Significant index). Let I ⊆ [0, N) be a set of indices. Then i
is a (I, θ)-significant index for c if and only if c2

i ≥ θ
∑

j∈I |cj |2.

That is, an index is significant if the corresponding value is large compared with
all the other values. In some of the algorithms below, we will find the largest
term (if it is sufficiently large), subtract it off, then recurse on the residual signal.
This motivates the following definitions.

Definition 2 (Qualified index set). Fix parameters 	 and θ. The set Q =
{i′0, i

′
1, . . . , i

′
m−1} is a (	, θ)-qualified index set for c if and only if (a) m ≤ 	; (b)

∀j ∈ [0, m − 1], i′j is a ({i′j, i
′
j+1, . . . , i

′
N−1}, θ)-significant index; and (c) i′m is

NOT a ({i′m, i′m+1, . . . , i
′
N−1}, θ)-significant index.

That is, a qualified index set consists of the largest possible dimension m for a
prefix of i′0, i

′
1, . . . , i

′
m−1 such that, for each j < m, we have c2

i′
j

≥ θ(c2
i′
j
+ c2

i′
j+1

+

c2
i′
j+2

+ · · ·+c2
i′
N−1

). In particular, if the terms happen to be in decreasing order to
begin with, i.e., if |c0| > |c1| > · · · , then a qualified index set is {0, 1, 2, . . . , m−1}
for the largest m such that, for each j < m, we have c2

j ≥ θ(c2
j + c2

j+1 + c2
j+2 +

· · · c2
N−1). Note that for each 	, θ, and vector c, there is only one (	, θ)-qualified

index set for c. We use Qc,�,θ to denote it and sometimes write Q�,θ when c is
understood. The following Proposition is then straightforward.

Proposition 3. For any θ1 < θ2, Q�,θ2 set is a subset of Q�,θ1.

Proposition 4. Fix parameters N, M, B, k, ε and the vector c as above. If c̃ =∑
i∈Qc,B, ε

B(1+ε)
ciδi, then ‖c̃ − c‖2

2 ≤ (1 + ε)‖copt − c‖2
2.

Proof. Assume without loss of generality that |c0| > |c1| > · · · and let q =
|Qc,B, ε

B(1+ε)
|. If q = B, then c̃ = copt and we are done. Otherwise we have ‖c̃ − c‖2

2

=
∑

q≤i<B |ci|2 +‖copt − c‖2
2 ≤ B|cq|2 +‖copt − c‖2

2 ≤ ε
1+ε‖c̃ − c‖2

2 +‖copt − c‖2
2,

whence (1 − ε/(1 + ε)) ‖c̃ − c‖2
2 ≤ ‖copt − c‖2

2. The result follows. 
�

The algorithms below work from a linear sketch of a vector.

Definition 5 (Sketch of a vector). Given a vector c, a linear sketch of c is
Rc, where R is a random matrix, called the measurement matrix, generated from
a prescribed distribution

In our case, as is typical, the matrix R is a pseudorandom matrix that can be
generated from a short pseudorandom seed. We use sketching for the
norm estimation protocol (Protocol 1 in Section 4), in which the generator
needs to be secure against small space, and a different measurement matrix in
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the non-private Euclidean Heavy Hitters protocol, where, e.g., pairwise indepen-
dence suffices for the pseudorandom number generator.

An algorithm in connection with the approximate Euclidean Heavy Hitters
problem satisfying the following is known [13]:

Theorem 6. Fix N, M, B, k, ε as above, and θ ≥ poly(log(N), log(M),
B, k, 1/ε)−1. There is a distribution on sketch matrices R and a correspond-
ing algorithm that, from R and sketch Rc of a vector c, outputs a superset of
Qc,B,θ, in time poly(log(N), log(M), B, k, 1/ε).

In particular, the number or rows in R and the size of the output is bounded by
the expression poly(log(N), log(M), B, k, 1/ε) in accordance with the time bound
on the algorithm. The algorithm admits efficient Secure Function Evaluation
protocols, and can be modified to run privately in poly(log(N), log(M), B, k, 1/ε)
time. Note that the algorithm returns a superset of Qc,B,θ but that even Qc,B,θ

itself suffices for a good approximation.

2.2 Private Two-Player Protocol

SMC allows two or more parties to evaluate a previously-agreed-upon function
of their inputs, while hiding their inputs from each other. Here, we assume that
all parties are computationally bounded and semi-honest, meaning they follow
the protocol but may keep message histories in an attempt to learn more than
is prescribed. The adversary is thus passive and can’t modify the behavior of
corrupted parties. In [21], the authors have shown how to transform a semi-
honest protocol into a protocol secure in the malicious model, where parties
deviate from the protocol arbitrarily using a different input or outputing the
wrong answer, or even exiting from the protocol prematurely. Therefore, we
assume parties are semi-honest for the remainder of the paper.

Formally, a two-party computation is specified by a (possibly randomized)
mapping g from a pair of inputs (a, b) ∈ {0, 1}∗ × {0, 1}∗ to a pair of outputs
(c, d) ∈ {0, 1}∗ × {0, 1}∗. Let π = (πA, πB) be a two-party protocol comput-
ing g. Consider the probability space induced by the execution of π on input
x = (a, b) (induced by the independent choices of random inputs rA, rB). Let
viewπ

A(x) (resp., viewπ
B(x)) denote the entire view of Alice (resp., Bob) in this

execution, including her input, random input, and all messages she has received.
Let outputπA(x) (resp., outputπB(x)) denote Alice’s (resp., Bob’s) output. Note
that the above four random variables are defined over the same probability
space. Two distributions (or ensembles) D1 and D2 are said to be computation-
ally indistinguishable with security parameter k, D1

c≡ D2, if, for any X1 ∼ D1
and X2 ∼ D2 and, for any family of polynomial-size circuits {Ck}, we have
| Pr(Ck(X1) = 1) − Pr(Ck(X2) = 1)| ≤ neg(k).

Definition 7 (Private two-party protocol). Let X be the set of all valid
inputs x = (a, b). A protocol π is a private protocol computing g if the following
properties hold:
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Correctness. The joint outputs are distributed according to g(a, b). Formally,

{(outputπA(x), outputπB(x))}x∈X ≡ {(gA(x), gB(x))}x∈X ,

where (gA(x), gB(x)) is the joint distribution of the outputs of g(x).
Privacy. There exist probabilistic polynomial-time algorithms SA, SB, also

known as simulators, such that:

{(SA(a, gA(x)), gB(x))}x=(a,b)∈X
c≡ {(viewπ

A(x), outputπB(x))}x∈X

{(gA(x), SB(b, gB(x))}x=(a,b)∈X
c≡ {(outputπA(x), viewπ

B(x))}x∈X

Yao, in its seminal work [22], provided a general technique:

Proposition 8 (General-Purpose SMC [22]). Two parties holding inputs x
and y can privately compute any circuit C with communication and computation
O(k(|C| + |x| + |y|)), where k is a security parameter, in O(1) rounds.

We also require the following notion of evaluating a circuit with ROM securely.
In this context, the ith party has a table Ri ∈ ({0, 1}r)s, a function of its inputs.
Then, the circuit has lookup gates, which on inputs (i, j) returns Ri[j].

Proposition 9 (Secure Circuit with ROM [21]). If C is a circuit with
ROM, then it can be securely evaluated with O(k|C|T (r, s)) communication in
O(1) rounds, where T (r, s) is the communication of 1-out-of-s Oblivious Transfer
(OT) protocol on words of size r.

We will need the following standard definitions for our results in Section 5.

Definition 10 (Additive Secret Sharing). An intermediate value x of a joint
computation is said to be secret shared between Alice and Bob if Alice holds r
and Bob holds x − r, modulo some large prime, where r is a random number
independent of all inputs and outputs.

Definition 11 (Private Sample Sum). At the start, Alice holds a vector a of
dimension N and Bob holds a vector b. Alice and Bob also hold a secret sharing
of an index i. At the end, Alice and Bob hold a secret sharing of ai + bi.

That is, neither the index i nor the value ai + bi becomes known to the par-
ties. Efficient protocols for this problem can be found (or can be constructed
immediately from related results) in [21,11], under various assumptions about
the existence of Private Information Retrieval, such as in [7].

Proposition 12. There is a protocol private-sample-sum for the Private
Sample Sum problem that requires poly(N, k) computation, poly(log(N), k) com-
munication, and O(1) rounds.

3 Private Approximations

In this Section, we review the notion of private approximations introduced in [11].
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Definition 13 (Private Approximation Protocol (strict sense) [11]). A
two-party private approximation protocol for a deterministic, common-output
function g on inputs a and b is strict if it computes an approximation g̃ to g
such that: (a) g̃ is a good approximation to g (in the appropriate sense); (b) π is a
private protocol for g̃ in the traditional sense (Definition 7); and (c) (Functional
Privacy) there exists a probabilistic polynomial-time (PPT) simulator S s.t.:

{S(g(x))}x=(a,b)∈X
c≡ g̃(x).

In the case the output to both parties is a deterministic function, a (weakly)
equivalent definition is as follows, known as the “liberal” definition in [11]:

Definition 14 (Private Approximation Protocol (liberal sense) [11]).
A two-party private approximation protocol for a deterministic, common-output
function g on inputs a and b is liberal if it computes an approximation ĝ to g
such that: (a) ĝ is a good approximation to g (in the appropriate sense); (b) π
is a private protocol for ĝ, with correctness as in Definition 7 and privacy as in
existing PPT simulators SA and SB such that:

{SA(a, g(x))}x=(a,b)∈X
c≡ {viewπ

A(x)}x∈X

{SB(b, g(x))}x=(a,b)∈X
c≡ {viewπ

B(x)}x∈X ;

and (c) (Functional Privacy) there exists a PPT simulator S such that:

{S(g(x))}x=(a,b)∈X
c≡ ĝ(x).

We elaborate on a general technique, originally sketched in [11], to construct a
private protocol in the strict sense given a private protocol in the liberal sense.
We also show the intuitive fact that the converse always holds.

Proposition 15 (equivalency between liberal and strict definitions).
Any private approximation protocol in the liberal sense requiring only polylogarith-
mic communication complexity can be transformed into a private approximation
protocol in the strict sense with the same asymptotic communication complexity,
local computational costs, and rounds. The converse holds true as well.

Proof. Let ĝ and g̃ be 〈ε, δ〉-approximations of g; and π̂ and π̃ be private protocols
computing ĝ and g̃ in the liberal and strict sense respectively. Now, suppose there
are simulators in the strict sense. Then, putting ĝ = g̃, a simulator for the liberal
definition can be constructed by simulating ĝ(a, b) = g̃(a, b) from g(a, b) using
the hypothesized simulator for functional privacy, then simulating Alice’s (or
Bob’s) view from ĝ(a, b) and a (or b) using the hypothesized strict simulator.

In the other direction, suppose there is a simulator in the liberal definition.
Let τ be a transcript of Alice’s view except for input a. Define g̃ = ĝ.τ to be ĝ
with τ encoded into its low-order bits. We assume that this kind of encoding into
approximations can be accomplished without significantly affecting the goodness
of approximation; in fact, we will assume that the value represented does not
change at all, even if the “approximate” value is zero—that is, τ is auxiliary data
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rather than an actual part of the value of g̃. Furthermore, since τ is polyloga-
rithmically bounded in the input size, the communication overhead of g̃ over ĝ
is at most the size of τ , since a protocol for ĝ also serves as a protocol for g̃. It
is trivial to simulate the protocol messages given a and g̃. Use the hypothesized
simulator in the liberal definition to show functional privacy of g̃. 
�

In Section 4, we apply the technique above of encoding the transcript into the
low-order bits to the norm estimation protocol from [15], originally presented
in the liberal definition, to achieve a more secure version abiding by the strict
definition. Furthermore, our Heavy Hitters result in Section 5 is formally proven
in the strict sense using the same idea.

4 Private Euclidean Norm Estimation

We consider the setting in which Alice and Bob hold integer-valued vectors a
and b respectively, each of dimension N . In [15], the authors provided a protocol
for privately approximating the Euclidean norm of the vector difference ‖c‖ =
‖a − b‖ as well as the similar vector sum. Before we present our enhancements,
it is instructive to review the inner workings of their protocol and its guarantees,
given in Protocol 1 and Proposition 16 respectively.

norm estimation

Inputs: N-dimensional vectors a and b with integer values in the range [−M, M ].

Output: An 〈ε, δ〉-approximation of ‖c‖2, where c = a − b.

1. Alice and Bob exchange a seed of a pseudorandom generator G and generate a
pseudorandom orthonormal matrix A.

2. Set T = Tmax = NM2

3. Repeat ({Assertion: ‖c‖2 ≤ T})
(a) ∀j ∈ [l], a secure circuit with ROM (with lookup tables on Aa and Ab)

independently generates random coordinates ij , computes (Ax)2ij
, and inde-

pendently generates zj from a Bernoulli(N(Ax)2ij
/(TB)) distribution.

(b) T = T/2
4. Until

�
i zi ≥ l/(4B) or T < 1

5. Output E = (2TB)/l ·
�

i zi as an estimate of ‖c‖2.

Protocol 1. Private approximation protocol of the square l2 difference [15]

Proposition 16. (Private l2 approximation [15]) Suppose Alice and Bob have
integer-valued vectors a and b in [−M, M ]N and let c = a − b. Fix distortion ε
and security parameter k. There is a protocol norm estimation that computes
an approximation ‖c‖∼ to the Euclidean norm of the vector difference, ‖c‖2,
such that it (a) outputs 1

1+ε‖c‖2 ≤ ‖c‖∼ ≤ ‖c‖2; (b) requires poly(k log(M)N/ε)
local computation, poly(k log(M) log(N)/ε) communication, and O(1) rounds;
and (c) is a private approximation protocol for ‖c‖2 in the liberal sense.

Furthermore, the protocol’s only access to a and b is through the matrix-vector
products Aa and Ab, where A is a pseudorandom matrix known to both players.
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The access is possible through evaluating a circuit with ROM securely; i.e. a
circuit with lookup gates on inputs Aa and Ab (see Proposition 9).

Observe that although the communication complexity of this protocol is low, the
computational complexity of their protocol is quadratic in the vector dimension
N . The protocol multiplies the matrix A, which has Θ(N2) degrees of freedom
by the input vectors a and b, thus requiring Ω(N2) computations. Before we
present our enhancements to Protocol 1, we first sketch the intuition behind its
construction, correctness and privacy guarantees.

In [20], the authors have shown that picking a random N × N orthonormal
matrix A from a distribution defined by the Haar measure ensures that each
component of Ax, for any vector x, is tightly concentrated around its root mean
square, ‖x‖/

√
N . Formally, there exists a c > 0 such that

Pr
[
|(Ax)i| ≥ t‖x‖/

√
N

]
≤ e−ct2 (1)

holds for any i = 1, . . . , N , any t > 1 and any x ∈ R
N . This transformation

ensures that the “mass” of vector x is uniformly spread among the N coor-
dinates while preserving the vector norm, i.e. ‖x‖ = ‖Ax‖. Protocol 1 uses
this fact and constructs A using pseudorandom generators instead, guaranteeing
nonetheless that (1 − 2−Θ(k))‖x‖2 ≤ ‖Ax‖2 ≤ ‖x‖2 holds except with neg(k, N)
probability. Note that with each component tightly concentrated around the root
mean square, one can construct an unbiased sample estimator which is an 〈ε, δ〉-
approximation by straightforward application of Chernoff bounds. However, to
achieve privacy, the protocol must sample the coordinates (Ax)i obliviously as to
prevent either party from learning the sampled values (it does so by using a se-
cure circuit with ROM; see Section 2.2). Furthermore, the protocol ensures that
the final estimate E depends only on ‖x‖ by using Bernoulli trials to squash the
higher moments of E, thus preventing non-simulatable information from leaking.
In particular, this also achieves Functional Privacy as needed in Definition 14.
For its correctness argument, the protocol guarantees that each zj has enough
information to approximate l2(x) tightly by scaling the Bernoulli trials by a loop
variable T and exiting the loop when the sum of the trials is large enough for
tight estimation. We refer the reader to [15] for complete analysis of Protocol 1.

4.1 Faster Approximation

As argued in the last Section, the computation bottleneck of Protocol 1 is the
multiplication of the pseudorandom matrix A by the input vectors a and b.
Computing Aa (and Ab) requires Ω(N2) due to the Θ(N2) degrees of freedom
of matrix A. We recall that this multiplication step is crucial for both the cor-
rectness and privacy guarantees. The matrix transformation ensures that the
“mass” of the vector is uniformly spread among all coordinates while preserving
the norm. Such process allows a circuit to sample logarithmic many coordinates
for a tight estimation of the same norm. Preserving the norm ensures that the
Bernouilli trials can be simulated for the privacy proof.
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We perform a similar but faster matrix transformation on Alice and Bob’s in-
put vectors. The transformation also spreads the “mass” of the vector uniformily
and preserves the vector norms as required by the correctness and privacy argu-
ments of Protocol 1. However, our matrix multiplication takes only O(N log N)
time as opposed to Ω(N2).

Our approach, based on the technique of Ailon and Chazelle [1], is to randomly
choose from a “sufficiently random” family of easily computable orthonormal
transformations, as follows. Given a vector x = (x1, x2, . . . , xN ), we flip the
sign of each xi independently with probability 1/2 and then apply a Hadamard
transform to it, yielding a new vector x∗. Thus we choose uniformly from a
family of 2N linear transformations, each corresponding to a choice of which
variables to sign-flip. Since the Hadamard transform is orthonormal and can be
computed in O(N log N) time, it follows that each transformation in our family
is orthonormal and computable in O(N log N) time, as flipping the sign of a
variable is an orthonormal transformation with trivial computational overhead.

Next, we observe that each x∗j , viewed in isolation, is a random linear combi-
nation of signed and unsigned xi’s, scaled by 1/

√
N . We prove that each x∗i is not

larger than the root mean square of x, or ‖x‖/
√

N , with high probability. Thus,
we achieve a similar bound for each coordinate (Ax)i as in equation Eq. (1),
which suffices for the correctness and privacy proofs of the original protocol.

The following lemma summarizes the above discussion and claims.

Lemma 1. Let x and x′ be vectors of dimension N , with each x′i being the result
of flipping the signal of the corresponding xi with probability 1/2. Then, for any
λ > 0, applying a Hadamard transform to vector x′, yielding x∗ = 1√

N
HNx′,

where HN is the N × N Hadamard matrix, we have that

Pr
[
|x∗i | ≥ λ

|x|√
N

]
≤ 2e−λ2/2. (2)

Proof. We analyze the case for a particular x∗j , for j ∈ [1, N ]. Let Z1, . . . , ZN

be independent variables such that Zi = (ζixi)/
√

N , where ζi ∈R {+1, −1}.
Here, ∈R denotes drawing each ζi independently and uniformily at random.
Note that E[Zi] = 0. Now, let S =

∑N
i Zi. We then define a martingale

sequence X0, X1, . . . , XN by setting X0 = E[S] and, for i ∈ [1, N ], Xi =
E[S|Z1, . . . , Zi]. We now apply Azuma’s inequality as follows. Recall that for a
martingale sequence X0, X1, . . . , XN s.t. |Xk −Xk−1| ≤ ck, Pr [|Xt − X0| ≥ λ] ≤
2 exp

(
− λ2

2
�t

k=1 c2
k

)
for any t ≥ 0 and any λ > 0. For our martingale difference

sequence let ck = |Xk − Xk−1| and thus we get

Pr
[
|XN − X0| ≥ λ

|x|√
N

]
≤ 2 exp

(

−λ2

2
|x|2
N

1
∑N

k=1 c2
k

)

. (3)

Thus, to prove Eq. (2) it suffices to show that
∑N

k=1 c2
k ≤ |x|2/N . Note that

Xk − Xk−1 = Zk = (ζkxk)/
√

N , and thus
∑N

k=1 c2
k =

∑N
k=1(Xk − Xk−1)2 =

∑N
k=1

(
ζkxk√

N

)2
= |x|2

N . Therefore, applying it to Eq. (3) guarantees Eq. (2). 
�



Fast Private Norm Estimation and Heavy Hitters 187

4.2 More Secure Approximation

In [15], the authors have shown that Protocol 1 is secure in the liberal sense.
They provided the norm estimation simulator that guarantees both functional
privacy and private computation of protocol π̂ (Protocol 1) computing an ap-
proximation ĝ of g = ‖x‖2. Their simulator receives the exact output ‖x‖2 for
generating the protocol transcripts. To be secure in the strict sense, besides
showing functional privacy, one must provide a simulator that is able to produce
computationally indistingishable views from Alice’s and Bob’s without access to
the exact output, but only to the approximation output ĝ (see Definition 13).
The original norm estimation simulator from [15] is shown next.

norm estimation simulator

Input: ‖x‖2

Output: a computationally indistinguishable distribution from Protocol 1

1. Generate a random seed of G
2. Set T = Tmax = nM2

3. Repeat:
(a) ∀j ∈ [l], independently generate zj from a Bernoulli(‖x‖2/(TB)) distribution
(b) T = T/2

4. Until
�

i zi ≥ l/(4B) or T < 1
5. Output E = (2TB)/l ·

�
i zi

Simulator 1. The norm estimation simulator from [15]

Simulator 1 above guarantees that the probabilities of the Bernoulli trials
from the real and simulated views differ only by neg(k, N). Thus, given access
to the exact and approximate outputs, g(x) and ĝ(x) respectively, all messages
exchanged —the seed, the oblivious transfer (OT) invocations by the secure
circuit, and the output—are simulatable. Specifically, the final value of T is also
simulatable. Note that simulating the final value of T is crucial to the privacy
argument. If the number of invocations made by the secure circuit differ between
the real and simulated views, the distribution on the resulting transcripts will
no longer be indistinguishable. Furthermore, observe that the exact output g(x)
is necessary for simulating such number of steps since its magnitude dictates the
loop exit condition. Clearly, using ĝ(x) = (1 ± ε)‖x‖2 to replace g(x) = ‖x‖2 in
the Bernoulli trials would make the probabilities differ by a factor in the order
of O(ε), a non-negligible factor in our security setting; i.e. we expect O(2−Θ(k)).

Nonetheless, we show how can we transform this liberal protocol into a strict
one, by using the general technique outlined in Section 3. We define a new
approximation function g̃ based on ĝ. Let τ̂ denote the transcript of protocol π̂
and let g̃ = ĝ.τ̂ , meaning that the output of the new approximation function is
the output of the original approximation function ĝ concatenated to the entire
transcript of protocol π̂ (one can view τ̂ as encoded into the low-order bits of
the approximation—in which case we assume the goodness of approximation is
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not substantially changed—or, alternatively, as auxiliary data and not part of
the output itself). The transcript τ̂ in this case is just a concatenation of the
seed used for the pseudorandom generator, all OT invocations by the secure
circuit, and the final approximate output. Thus, the communication costs at
most doubled; and thus still remain asymptotically poly(k log(M) log(N)/ε).

Let the new protocol π̃ computing g̃ be identical to π̂ with the additional
output of τ̂ along with ĝ. It remains to show that π̃ can be privately computed.
We thus create Simulator 2, which clearly generates indistinguishable views for
Alice and Bob, since all messages exchanged in protocol π̃ are simulated properly:
the random seed messages, a matching number of OT calls as well as the final
output. Finally, it is clear that g̃ is functionally private to g since one can use the
norm estimation simulator to output τ̂ along with ĝ(x) given only g(x) = ‖x‖.

�π simulator

Input: �g(x) = �g(x).�τ
Output: a computationally indistinguishable transcript from �π(x)

1. Extract �g(x) and �τ from the input �g(x) = �g(x).�τ
2. Extract the random seed for the pseudorandom generator from �τ and send it to

the other party.
3. Simulate the OT calls from Step 3 in Protocol 1 by playing back the messages

exchanged in �τ .
4. Output �g(x)

Simulator 2. Simulator for π̃

5 Private Euclidean Heavy Hitters

Consider the same input setting from the previous Section. Here, both par-
ties want to learn a representation c̃ =

∑
t∈Tout

t such that ‖c − c̃‖2
2 ≤ (1 +

ε)‖c − copt‖2
2 and such that at most copt and ‖c‖2 is revealed. Unless otherwise

stated, we consider the private Euclidean Heavy Hitters problem as simply the
private Heavy Hitters problem. A protocol is given in Figure 2.

5.1 Analysis

First, to gain intuition, we consider some easy special cases of the protocol’s
operation. For our analysis, assume that the terms in c are already positive
and in decreasing order, c0 > c1 > · · · > cN−1 > 0. We will be able to find
the coefficient value of any desired term, so we focus on the set of indices. Let
Iopt = {0, 1, 2, . . . , B − 1} denote the set of indices for the optimal B terms.
The set I of indices is defined in Figure 2. Thus Qc,B,θ ⊆ Qc,B, θ

1+ε
⊆ Iopt and

Qc,B, θ
1+ε

⊆ I.
The ideal output is Iopt, though any superset of Qc,B,θ suffices to get an

approximation with error at most (1 + ε) times optimal. This includes the set



Fast Private Norm Estimation and Heavy Hitters 189

I ⊇ Qc,B,θ that the non-private algorithm has recovered. The set IB of the
largest B terms indexed by I contains Qc,B,θ, so IB is a set of at most B terms
with error at most (1+ε) times optimal. If |Qc,B,θ| = B, then IB = Qc,B,θ = Iopt,
and IB is a private and correct output.

private heavy hitters

– Known parameters: N, M, B, ε, k, which determine θ = ε
B(1+ε) and B′.

– Inputs: N-dimensional vectors a and b with integer values in the range [−M, M ].
– Output: With probability at least 1 − 2−k, a set Tout of at most B terms, such

that
���c −

�
t∈Tout

t
���

2

2
≤ (1 + ε)

���c −
�

t∈Topt
t
���

2

2
.

1. Exchange pseudorandom seeds (in the clear). Generate measurement matrices R1

and R2. Alice locally constructs sketches R1a and R2a = (R0
2a, R1

2a, . . . RB−1
2 a),

where the matrix R1 is used for a non-private Euclidean Heavy Hitters and
the matrix R2 = (R0

2, R
1
2, . . . , R

B−1
2 ) is used for B independent repetitions of

norm estimation. Bob similarly constructs R1b and R2b.
2. Using general-purpose SMC, do

– Use an existing (non-private) Euclidean Heavy Hitters protocol to get, from
R1a and R1b, a secret-sharing of a superset I of Qc,B, θ

1+ε
, in which I has

exactly B′ ≤ poly(log(N), log(M), B, k, 1/ε) indices. (Pad, if necessary.)
3. Use private-sample-sum to compute, from I, a, and b, secret-shared values for

each index in I . Let T denote the corresponding set of secret-shared terms. (Both
the index and value of each term in T is secret shared.) Enumerate I as I =
{i0, i1, . . .} with ti0 > ti1 > · · · .

4. Using SMC, do
– for j = 0 to B − 1

(a) From Rj
2, R

j
2a, Rj

2b, t0, t1, . . . , tij−1 , sketch rj = c− (ti0 + ti1 + · · ·+ tij−1)

as Rj
2rj = (Rj

2a + Rj
2b − Rj

2(ti0 + ti1 + · · · + tij−1 )).

(b) use norm estimation to estimate ‖rj‖2
2 as ‖rj‖ 2

∼, satisfying 1
1+ε

‖rj‖2
2 ≤

‖rj‖ 2
∼ ≤ ‖rj‖2

2.
(c) If |cij |2 < θ‖rj‖ 2

∼, break (out of for-loop)
(d) Output tj

5. Encode the pseudorandom seeds for R1 and R2 into the low-order bits of the
output or (as we assume here) provide R1 and R2 as auxiliary output.

Protocol 2. Protocol for the Euclidean Heavy Hitters problem

The difficulty arises when |Qc,B,θ| < B, in which case some of IB may be
arbitrary and should not be allowed to leak. So the algorithm needs to find
a private subset Iout with Qc,B,θ ⊆ Iout ⊆ IB . The challenge is subtle. Let
s denote |Qc,B,θ|. If the algorithm knew s, the algorithm could easily output
Qc,B,θ, which is the indices of the top s terms, a correct and private output.
Unfortunately, determining Qc,B,θ or s = |Qc,B,θ| requires Ω(N) communication
(see Section 5.2), so we cannot hope to find Qc,B,θ exactly. Non-private norm
estimation can be used to find a subset Iout with Qc,B,θ ⊆ Iout ⊆ Qc,B, θ

1+ε
⊆ Iopt,
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which is correct, but not quite private. Given |Iout|, the contents of Iout ⊆ Iopt
are indeed private, but the size of Iout is, generally, non-private. Fortunately, if
we use a private protocol for norm estimation, |Iout| remains private. We now
proceed to a formal analysis.

Theorem 17. Protocol private heavy hitters requires poly(N, log(M),
B, k, 1/ε) local computation, poly(log(N), log(M), B, k, 1/ε) communication, and
O(1) rounds.

Proof. By existing work, all costs of Steps 1 to 3 are as claimed. Now consider
Step 4. Observe that the function being computed there has inputs and outputs
of size bounded by poly(log(N), log(M), B, k, 1/ε) and takes time polynomial in
the size of its inputs. In particular, the instances of norm estimation do not
start from scratch with respect to a or b; rather, they pick up from the precom-
puted short sketches R2a and R2b. It follows that this function can be wrapped
with SMC, preserving the computation and communication up to polynomial
blowup in the size of the input and keeping the round complexity to O(1). 
�

We now turn to correctness and privacy. Let Iout denote the set of indices cor-
responding to the set Tout of output terms.

Theorem 18. Protocol private heavy hitters is correct.

Proof. The correctness of Steps 2 and 3 follows from previous work. In Step 4,
we first show that QB, ε

B(1+ε)
⊆ Iout. We assume that 1

1+ε‖rj‖2
2 ≤ ‖rj‖ 2

∼ ≤ ‖rj‖2
2

always holds; by Proposition 16, this happens with high probability. Thus, if
|cij |2 ≥ ε

B(1+ε)‖rj‖2
2, then |cij |2 ≥ ε

B(1+ε)‖rj‖2
2 ≥ ε

B(1+ε)‖ri‖ 2
∼. By construction,

QB, ε
B(1+ε)

⊆ I. A straightforward induction shows that, if j ∈ QB, ε
B(1+ε)

, then
iteration j outputs tij and the previous iterations output exactly the set of the
j larger terms in I. By Proposition 4, since Iout is a superset of QB, ε

B(1+ε)
, if

c̃ =
∑

j∈Iout
cij δij , then ‖c̃ − c‖2

2 ≤ (1 + ε)‖copt − c‖2
2, as desired. 
�

Before giving the complete privacy argument, we give a lemma, similar to the
above. Suppose a set P of indices is a subset of another set Q of indices. We will
say that P is a prefix of Q if i ∈ P, tj > ti, and j ∈ Q imply j ∈ P .

Lemma 2. Output set Iout is a prefix of QB, ε
B(1+ε)2

except with probability 2−k.

Proof. Note that QB, ε
B(1+ε)2

is a subset of I and QB, ε
B(1+ε)2

is a prefix of the
universe, so QB, ε

B(1+ε)2
is a prefix of I. The set Iout is also a prefix of I. Thus,

of the sets Iout and QB, ε
B(1+ε)2

, one is a prefix of the other (or they are equal).
So suppose, toward a contradiction, that QB, ε

B(1+ε)2
is a proper prefix of Iout.

Let q =
∣
∣
∣QB, ε

B(1+ε)2

∣
∣
∣, so q is the least number such that iq is not in QB, ε

B(1+ε)2
. If

the protocol halts before considering q, then Iout ⊆ QB, ε
B(1+ε)2

, a contradiction.
So we may assume that q < B (so the for-loop doesn’t terminate). Then, by
definition of QB, ε

B(1+ε)2
, we have |ciq |2 < ε

B(1+ε)2
∑

j≥q |cij |2. It follows that
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|ciq |2 < ε
B(1+ε)2

∑
i≥q |ci|2 = ε

B(1+ε)2 ‖rq‖2
2 ≤ ε

B(1+ε)‖rq‖ 2
∼. Thus the protocol

halts without outputting tq, after outputting exactly QB, ε
B(1+ε)2

. 
�

Finally, Theorem 19 ensures privacy and Theorem 20 summarizes our results.

Theorem 19. Protocol private heavy hitters leaks only ‖c‖2
2 and copt.

Proof. With the random inputs R1 and R2 encoded into the output, it is straight-
forward to show that Protocol private heavy hitters is a private protocol in
the traditional sense that the protocol messages leak no more than the inputs
and outputs. This is done by composing simulators for private-sample-sum

and SMC. It remains only to show only that we can simulate the joint distribu-
tion on (c̃, R1, R2) given as simulator-input copt and ‖c‖. We will show that R1
is indistinguishable from independent of the joint distribution of (c̃, R2), which
we will simulate directly.

First, we show that R1 is independent. Except with probability 2−Ω(k), the
intermediate set I is a superset of QB, ε

B(1+ε)2
and the norm estimation is correct.

In that case, the protocol outputs a prefix of QB, ε
B(1+ε)2

and we get identical
output if I is replaced by QB, ε

B(1+ε)2
. Also, QB, ε

B(1+ε)2
can be constructed from

copt and ‖c‖2. Since the protocol proceeds without further reference to R1, we
have shown that the pair (c̃, R2) is indistinguishable from being independent of
R1. It remains only to simulate (c̃, R2).

Note that the output c̃ does depend non-negligibly on R2. If |cij |2 is very
close to θ‖rj‖2

2, then the test |cij |2 < θ‖rj‖ 2
∼ in the protocol may succeed with

probability non-negligibly far from 0 and from 1, depending on R2, since the
distortion guarantee on ‖rj‖ 2

∼ is only the factor (1 ± ε).
The simulator is as follows. Assume that the terms in copt are t0, t1, . . . , tB−1

with decreasing order, t0 > t1 > · · · > tB−1. For each j ≤ B, compute
Ej = ‖c − (t0 + t1 + · · · + tj−1)‖2

2 = ‖c‖2
2 − ‖t0 + t1 + · · · + tj−1‖2

2 and then run
the norm estimation simulator on input Ej and ε to get a sample from the
joint distribution (Ẽj , R2), where Ẽj is a good estimate to Ej . Our simulator
then outputs tij if |cij |2 ≥ ε

B(1+ε)Ẽj , and halts, otherwise, following the final
for-loop of the protocol. Call the output of the simulator s̃ =

∑
j tij δij .

Again using the fact that a prefix of QB, ε
B(1+ε)2

is output, if j ∈ QB, ε
B(1+ε)2

,

then ij = j; i.e., the jth largest output term is the jth largest overall, so that,
if j is output, Ej = ‖rj‖2

2. Thus (Ẽj , R2) is distributed indistinguishably from
(‖rj‖ 2

∼, R2). The protocol finishes deterministically using I and ‖rj‖ 2
∼ and the

simulator finishes deterministically using QB, ε
B(1+ε)2

and Ẽj , but, since the pro-
tocol output is identical if I is replaced by QB, ε

B(1+ε)2
, the distributions on output

(c̃, R2) of the protocol and (s̃, R2) of the simulator are indistinguishable. 
�

Theorem 20. Suppose Alice and Bob hold integer-valued vectors a and b in
[−M, M ]N , respectively. Let B, k and ε be user-defined parameters. Let c =
a + b. Let Topt be the set of the largest B terms in c. There is a protocol, tak-
ing a, b, B k and ε as input, that computes a representation c̃ of at most B
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terms such that it: (a) outputs c̃ with ‖c̃ − c‖2 ≤ (1 + ε)‖copt − c‖2; (b) uses
poly(N, log(M), B, k, 1/ε) time, poly(log(N), log(M), B, k, 1/ε) communication,
and O(1) rounds; and (c) succeeds with probability 1 − 2−k and leaks only copt
and ‖c‖2 on security parameter k.

Corollary 21. With the same hyptotheses and resource bounds, there is a pro-
tocol that computes c̃ and an approximation ‖c̃ − c‖∼ to ‖c̃ − c‖2 such that

1
1+ε‖c̃ − c‖2 ≤ ‖c̃ − c‖∼ ≤ ‖c̃ − c‖2 and the protocol leaks only copt and ‖c̃ − c‖2.

Proof. Run the main protocol and output also ‖c̃ − c‖∼, computed in the course
of the main protocol. Note that ‖c̃ − c‖2

2 = ‖c‖2
2 − ‖c̃‖2

2 and both ‖c‖2 and c̃ are
available to the main simulator (as input and output, resp.), so we can modify
the main simulator to compute ‖c̃ − c‖2

2 as well. 
�

5.2 Lower Bounds

In this Section, we state some lower bounds for problems related to our main
problem in this Section, such as computing an approximation to copt without
leaking ‖c‖2. The results are straightforward, but we include Theorem 22 to mo-
tivate the approximation and Theorem 23 to motivate leakage of the Euclidean
norm in protocols we present. The proofs, based on the set disjointness problem,
will appear in the journal version of this article.

Theorem 22. There is an infinite family of settings of parameters M, N, B, k
such that any protocol that computes the Euclidean norm exactly on the sum c
of individually-held inputs a and b, uses communication Ω(N). Similarly, any
protocol that computes the exact Heavy Hitters or computes the qualified set
Qc,1,1 exactly uses communication Ω(N).

Theorem 23. There is an infinite family of settings of parameters M, N, B, k, ε
such that any protocol that solves the Euclidean Heavy Hitters problem on the
sum c of individually-held inputs a and b, leaking only copt, uses communication
Ω(N). Furthermore, for an infinite class of inputs in which ‖c‖2 is not constant,
any such protocol either computes ‖c‖2 or uses communication Ω(N).
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Abstract. In a secret-sharing scheme, a secret value is distributed
among a set of parties by giving each party a share. The requirement is
that only predefined subsets of parties can recover the secret from their
shares. The family of the predefined authorized subsets is called the ac-
cess structure. An access structure is ideal if there exists a secret-sharing
scheme realizing it in which the shares have optimal length, that is, in
which the shares are taken from the same domain as the secrets. Brickell
and Davenport (J. of Cryptology, 1991) proved that ideal access struc-
tures are induced by matroids. Subsequently, ideal access structures and
access structures induced by matroids have received a lot of attention.
Seymour (J. of Combinatorial Theory, 1992) gave the first example of an
access structure induced by a matroid, namely the Vamos matroid, that
is non-ideal. Beimel and Livne (TCC 2006) presented the first non-trivial
lower bounds on the size of the domain of the shares for secret-sharing
schemes realizing an access structure induced by the Vamos matroid.

In this work, we substantially improve those bounds by proving that
the size of the domain of the shares in every secret-sharing scheme for
those access structures is at least k1.1, where k is the size of the domain
of the secrets (compared to k + Ω(

√
k) in previous works). Our bounds

are obtained by using non-Shannon inequalities for the entropy function.
The importance of our results are: (1) we present the first proof that
there exists an access structure induced by a matroid which is not nearly
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schemes realizing the access structures induced by the Vamos matroid.
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1 Introduction

1.1 Ideal Secret-Sharing Schemes and Matroids

Secret-sharing schemes, which were introduced by Shamir [31] and Blakley [5]
nearly 30 years ago, are nowadays used in many cryptographic protocols. In
these schemes there is a finite set of parties, and a collection A of subsets of the
parties (called the access structure). A secret-sharing scheme for A is a method
by which a dealer distributes shares of a secret value to the parties such that (1)
any subset in A can reconstruct the secret from its shares, and (2) any subset not
in A cannot reveal any partial information about the secret in the information-
theoretic sense. Clearly, the access structure A must be monotone, that is, all
supersets of a set in A are also in A.

Ito, Saito, and Nishizeki [18] proved that there exists a secret-sharing scheme
for every monotone access structure. Their proof is constructive, but the obtained
schemes are very inefficient: the ratio between the length in bits of the shares
and that of the secret is exponential in the number of parties. Nevertheless,
some access structures admit secret-sharing schemes with much shorter shares.
A secret-sharing scheme is called ideal if the shares of every participant are taken
from the same domain as the secret. As proved in [20], this is the optimal size for
the domain of the shares. The access structures which can be realized by ideal
secret-sharing schemes are called ideal access structures.

The exact characterization of ideal access structures is a longstanding open
problem, which has interesting connections to combinatorics and information
theory. The most important result towards giving such characterization is by
Brickell and Davenport [8], who proved that every ideal access structure is in-
duced by a matroid, providing a necessary condition for an access structure to
be ideal. A sufficient condition is obtained as a consequence of the linear con-
struction of ideal secret-sharing schemes due to Brickell [7]. Namely, an access
structure is ideal if it is induced by a matroid that is representable over some
finite field. However, there is a gap between the necessary condition and the
sufficient condition. Seymour [30] proved that the access structures induced by
the Vamos matroid are not ideal. Other examples of non-ideal access structures
induced by matroids have been presented by Matúš [26]. Hence, the necessary
condition above is not sufficient. Moreover, Simonis and Ashikmin [33] con-
structed ideal secret-sharing schemes for the access structures induced by the
non-Pappus matroid, which is not representable over any field. This means that
the sufficient condition is not necessary. Therefore, the study of the access struc-
tures that are induced by matroids is useful in the search of new results about
the characterization of ideal access structures.

Another motivation in studying access structures induced by matroids arises
from the separation result of Mart́ı-Farré and Padró [24]. Namely, by using an old
result by Seymour [29], they generalized the result by Brickell and Davenport [8],
proving that in every secret-sharing scheme whose access structure is not induced
by a matroid there is at least one participant whose domain of shares has size
at least k1.5, where k is the size of the domain of secrets. In other words, by
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proving that an access structure is not induced by a matroid, we prove a lower
bound of k1.5 for the size of the shares’ domain. Therefore, the access structures
that are not induced by matroids are clearly far from being ideal.

We rephrase the above result using the notion of information rate of [9].
The information rate of a secret-sharing scheme is log k/ log s, where k is the
size of the domain of the secrets and s is the maximum size of the domains
of shares. That is, the information rate is the relation between the length in
bits of the secret and the maximum length of the shares. Ideal secret-sharing
schemes are those having information rate equal to 1. The information rate of
an access structure A is the supermum of the information rates of all secret-
sharing schemes realizing the access structure with a finite domain of shares.
Stating the aforementioned result in the new notation, if A is not induced by
a matroid, the information rate of every secret-sharing scheme for A is at most
2/3, hence the information rate of A is at most 2/3. This is not the case for the
non-ideal access structures induced by matroids, which can be very close to ideal.
An access structure A is nearly ideal if its information rate is 1. A non-ideal but
nearly-ideal access structure is presented in [22,27].

At this point, two natural open questions arise. First, which matroids induce
ideal access structures? And second, what can be said about the optimal size of
the shares’ domain for access structures induced by matroids?

Even though several interesting results have been given in [33,26,27], the first
question is far from being solved. Since an ideal secret-sharing scheme can be seen
as a representation of the corresponding matroid, this question can be thought
of as a representability problem. Very little is known about the second question.
For instance, the only known non-trivial lower bound on the optimal size of the
shares’ domain for access structures induced by matroids has been presented by
Beimel and Livne [2]. Specifically, for an access structure induced by the Vamos
matroid, they prove a lower bound of k + Ω(

√
k), where k is the size of the

domain of the secrets.
The best constructions of secret-sharing realizing access structures induced by

matroids are the constructions for general access structures, e.g., in [4,32,7,19];
in these constructions most access structures induced by matroids require shares
of exponential length. However, prior to this work, even the following question
was open.

Question 1. Does there exist a matroid such that its induced access structures
are not nearly ideal?

Observe that the lower bound given in [2] for an access structure induced by the
Vamos matroid does not imply that it is not nearly ideal. For comparison, for
general access structures the best known lower bound is given by Csirmaz [13]
who proves that for every n there is an access structure An with n participants
such that for every secret-sharing scheme realizing An there is at least one par-
ticipant whose share has length at least (n/ log n) log k.

Moreover, the following open problem, which was posed by Mart́ı-Farré and
Padró [23], was unsolved.
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Question 2. Does there exist an access structure whose optimal share size is
Θ(kα) for some constant 1 < α < 3/2?

That is, Mart́ı-Farré and Padró ask if there is an access structure whose infor-
mation rate is strictly between 2/3 and 1. As a consequence of the result of [24],
if such an access structure exists, it must be induced by a matroid.

1.2 Our Results

In this paper we answer the above two questions about access structures induced
by matroids. Specifically, we prove new lower bounds on the size of the domains of
shares in secret-sharing schemes for the access structures induced by the Vamos
matroid, substantially improving the bound given in [2]. The Vamos matroid
induces two non-isomorphic access structures. We prove for them lower bounds
on the size of the domains of shares of, respectively, k10/9 and k11/10, where k
is the size of the domain of the secrets (compared to k + Ω(

√
k) in [2]).

Therefore, we present here the first examples of access structures induced by
matroids that are not nearly ideal, resolving Question 1. Moreover, we solve
Question 2 in the affirmative: As a consequence of our lower bound and the
upper bound of k4/3 that was proved in [25], the access structures induced by
the Vamos matroid are the required examples.

The interest of our result is increased by the use of the so called non-Shannon
inequalities in our proof. By using the basic properties of the entropy function,
namely, the so-called Shannon inequalities, Csirmaz [13] proved the best known
lower bounds for secret-sharing schemes mentioned above. On the negative side,
Csirmaz proved that using only Shannon inequalities one cannot improve his
lower bounds by a factor larger than log n. More relevant to this work, several
bounds on the joint entropy of the shares of subsets of parties for access struc-
tures induced by matroids were proved in [2] using Shannon inequalities (see
Theorem 14 and Theorem 15 in Section 2 below). However, these bounds are
only on the joint entropy of the shares and the authors of [2] could not use them
to prove lower bounds for access structures induced by matroids. This is not a
coincidence as in [24] it is proved that it is not possible to obtain bounds for
access structures induced by matroids by using only this technique (since the
rank function of the matroid satisfies the Shannon inequalities).

Nevertheless, there exist several inequalities for the entropies of a set of ran-
dom variables that cannot be deduced from the Shannon inequalities. These are
the so-called non-Shannon inequalities. The first examples of such inequalities
were given by Zhang and Yeung [36], and other examples have been found sub-
sequently [15]. In this paper, we combine the entropy inequalities of [2] and the
non-Shannon inequality of Zhang and Yeung [36] to obtain a simple and elegant
proof of our result. The inequality of [36] was previously used related to the Va-
mos matroid in [16] for proving lower bounds for network coding and in [27] for
proving that this matroid is not asymptotically entropic (the latter result gives
an alternative proof that the access structures induced by the Vamos matroid
are not ideal). We believe that non-Shannon inequalities will be used for proving
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new lower bounds for secret-sharing schemes, possibly improving the best known
lower bound given by Csirmaz [13].

In addition, by applying a similar technique to the Ingleton’s inequality
[17,28], which applies only to linear random variables, we obtain a lower bound
of k5/4 for the size of the shares’ domains for linear secret-sharing schemes whose
access structures are induced by the Vamos matroid.

2 Preliminaries

In this section we define secret-sharing schemes, review some background on
matroids, and discuss the connection between secret-sharing schemes and ma-
troids. The definition of secret-sharing presented in this paper uses the entropy
function; in the appendix we review the relevant definitions from information
theory.

2.1 Secret Sharing

Definition 1 (Access Structure). Let P be a finite set of parties. A collection
A ⊆ 2P is monotone if B ∈ A and B ⊆ C imply that C ∈ A. An access structure
is a monotone collection A ⊆ 2P of non-empty subsets of P . Sets in A are called
authorized, and sets not in A are called unauthorized.

Definition 2 (Distribution Scheme). Let P = {p1, . . . , pn} be a set of par-
ties, and p0 /∈ P be a special party called the dealer. An n-party distribution
scheme Σ = 〈Π, μ〉 with domain of secrets K is a pair where μ is a probabil-
ity distribution on some finite set R (the set of random strings) and Π is a
mapping from K × R to a set of n-tuples K1 × K2 × . . . × Kn, where Ki is
called the share-domain of pi. A dealer distributes a secret s ∈ K according to
Σ by first sampling a string r ∈ R according to μ, computing a vector of shares
Π(s, r) = (s1, . . . , sn), and then privately communicating each share si to the
party pi.

We next give a definition of secret-sharing scheme using the entropy function.
This definition is the same as that of [20,10] and is equivalent to the definition
of [11,1,3]. Before stating the definition, we present some notations. Let A be
an access structure on the set of parties P . We defined a distribution scheme Σ
as a probabilistic mapping that given a secret s generates a vector of shares. It
will be convenient to view the secret as the share of the dealer, and for every
T ⊆ P ∪ {p0} to consider the vector of shares of T . Any probability distribution
on the domain of secrets, together with the distribution scheme Σ, induces, for
any T ⊆ P ∪{p0}, a probability distribution on the vector of shares of the parties
in T . We denote the random variable taking values according to this probability
distribution on the vector of shares of T by ST , and by S the random variable
denoting the secret (i.e., S = S{p0}). Note that for disjoint subsets T1, T2, the
random variable denoting the vector of shares of T1 ∪ T2 can be written either
as ST1∪T2 or as ST1ST2 . For a singleton {b}, we will write Sb instead of S{b}.
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Definition 3 (Secret-Sharing Scheme). We say that a distribution scheme
is a secret-sharing scheme realizing an access structure A with respect to a given
probability distribution on the secrets, denoted by a random variable S, if the
following conditions hold.

Correctness. For every authorized set T ∈ A, the shares of the parties in T
determine the secret, that is,

H(S|ST ) = 0. (1)

Privacy. For every unauthorized set T /∈ A, the shares of the parties in T do
not disclose any information on the secret, that is,

H(S|ST ) = H(S). (2)

Remark 4. Although the above definition considers a specific distribution on
the secrets, Blundo et al. [6] proved that its correctness and privacy are actually
independent of this distribution: If a scheme realizes an access structure with
respect to one distribution on the secrets, then it realizes the access structure
with respect to any distribution with the same support.

Karnin et al. [20] have showed that the size of the domain of shares of each non-
redundant party (that is, a party that appears in at least one minimal authorized
set) is at least the size of the domain of secrets. This motivates the definition of
ideal secret sharing.

Definition 5 (Ideal Secret-Sharing Scheme and Ideal Access Struc-
ture). A secret-sharing scheme with domain of secrets K is ideal if the domain
of shares of each party is K. An access structure A is ideal if there exists an
ideal secret-sharing scheme realizing it over some finite domain of secrets.

2.2 Matroids

A matroid is an axiomatic abstraction of linear independence. There are sev-
eral equivalent axiomatic systems to describe matroids: by independent sets, by
bases, by the rank function, or, as done here, by circuits. For more background
on matroid theory the reader is referred to [35,28].

Definition 6 (Matroid). A matroid M = 〈V, C〉 is a finite set V and a collec-
tion C of subsets of V that satisfy the following three axioms:

(C0) ∅ /∈ C.
(C1) If X 	= Y and X, Y ∈ C, then X � Y .
(C2) If C1, C2 are distinct members of C and x ∈ C1 ∩ C2, then there exists

C3 ∈ C such that C3 ⊆ (C1 ∪ C2) \ {x}.

The elements of V are called points, or simply elements, and the subsets in C
are called circuits.

For example, let G = (V, E) be an undirected simple graph and C be the collec-
tion of simple cycles in G. Then, (E, C) is a matroid.
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Definition 7 (Rank, Independent and Dependent Sets). A subset of V is
dependent in a matroid M if it contains a circuit. If a subset is not dependent,
it is independent. The rank of a subset T ⊆ V , denoted rank(T ), is the size of
the largest independent subset of T .

Definition 8 (Connected Matroid). A matroid is connected if for every pair
of distinct elements x and y there is a circuit containing x and y.

2.3 Matroids and Secret Sharing

In this section we describe the results relating ideal secret-sharing schemes and
matroids. We first define access structures induced by matroids.

Definition 9. Let M = 〈V, C〉 be a connected matroid and p0 ∈ V . The induced
access structure of M with respect to p0 is the access structure A on P = V \{p0}
defined by

A def= {T : there exists C0 ∈ C such that p0 ∈ C0 and C0 \ {p0} ⊆ T } .

That is, a set T is a minimal authorized set of A if by adding p0 to it, it becomes
a circuit of M. We think of p0 as the dealer. We say that an access structure is
induced by M, if it is obtained by setting some arbitrary element of M as the
dealer. In this case, we say that M is the appropriate matroid of A, and that A
is induced by M with respect to p0.

Remark 10. The term the appropriate matroid is justified, as if some access struc-
ture is induced by a matroid, this matroid is unique.

The following fundamental result, proved by Brickell and Davenport [8], gives
a necessary condition for an access structure to have an ideal secret-sharing
scheme.

Theorem 11 ([8]). If an access structure is ideal, then it has an appropriate
matroid.

The following result of [21] shows a connection between the rank function of the
appropriate matroid and the joint entropy of the collections of shares.

Lemma 12 ([21]). Assume that the access structure A ⊆ 2P is ideal, and let
〈P ∪ {p0} , C〉 be its appropriate matroid where p0 /∈ P . Let Σ be an ideal secret-
sharing scheme realizing A where S is the random variable denoting the secret.
Then H(ST ) = rank(T ) · H(S) for any T ⊆ P ∪{p0}, where rank(T ) is the rank
of T in the matroid.

Example 13. Consider the threshold access structure At, which consists of all
subsets of participants of size at least t, and Shamir’s scheme [31] which is
an ideal secret-sharing scheme realizing it. In this scheme, to share a secret s,
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the dealer randomly chooses a random polynomial p(x) of degree t−1 such that
p(0) = s, and the the share of the ith participant is p(i). The appropriate matroid
of At is the uniform matroid with n + 1 points, whose circuits are the sets of
size t + 1 and rank(T ) = min {|T |, t}. Since every t points determine a unique
polynomial of degree t − 1, in Shamir’s scheme H(ST ) = min {|T |, t}H(S), as
implied by Lemma 12.

We next quote results from [2] proving lower and upper bounds on the size of
shares’ domains of subsets of parties in matroid-induced access structures. These
results generalize the results of [21] on ideal secret-sharing schemes to non-ideal
secret-sharing schemes for matroid-induced access structures.

Theorem 14 ([2]). Let M = 〈V, C〉 be a connected matroid where |V | = n + 1,
and p0 ∈ V . Furthermore, let A be the induced access structure of M with respect
to p0, and let Σ be any secret-sharing scheme realizing A. For every T ⊆ V ,

H(ST ) ≥ rank(T ) · H(S).

Theorem 15 ([2]). Let M = 〈V, C〉 be a connected matroid where |V | = n + 1,
p0 ∈ V and let A be the induced access structure of M with respect to p0.
Furthermore, let Σ be any secret-sharing scheme realizing A, and let λ ≥ 0 be
such that H(Sv) ≤ (1 + λ)H(S) for every v ∈ V \ {p0}. Then, for every T ⊆ V

H(ST ) ≤ rank(T )(1 + λ)H(S) + (|T | − rank(T ))λnH(S). (3)

2.4 The Vamos Matroid

In this paper we prove lower bounds on the size of shares in secret-sharing
schemes realizing the access structures induced by the Vamos matroid. The Va-
mos matroid [34] is the smallest known matroid that is non-representable over
any field, and is also non-algebraic (for more details on these notions see [35,28];
we will not need these notions in this paper).

Definition 16 (The Vamos Matroid). The Vamos matroid V is defined on
the set V = {v1, v2, . . . , v8}. Its independent sets are all the sets of cardinality
≤ 4 except for five: {v1, v2, v3, v4}, {v1, v2, v5, v6}, {v3, v4, v5, v6}, {v3, v4, v7, v8},
and {v5, v6, v7, v8}.

Note that these 5 sets are all the unions of two pairs from {v1, v2}, {v3, v4},
{v5, v6}, and {v7, v8}, excluding {v1, v2, v7, v8}. The five sets listed in Defini-
tion 16 are circuits in V while the set {v1, v2, v7, v8} is independent; these facts
will be used later.

There are two non-isomorphic access structures induced by the Vamos ma-
troid. First, the access structures obtained by setting v1, v2, v7, or v8 as the dealer
are isomorphic. The other access structure is obtained by setting v3, v4, v5, or v6
as the dealer.
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Definition 17 (The Access Structures V6 and V8). The access structure
V8 is the access structure induced by the Vamos matroid with respect to v8. That
is, in this access structure the parties are {v1, . . . , v7} and a set of parties is a
minimal authorized set if this set together with v8 is a circuit in V. The access
structure V6 is the access structure induced by the Vamos matroid with respect
to v6. That is, in this access structure the parties are {v1, . . . , v5, v7, v8} and a
set of parties is a minimal authorized set if this set together with v6 is a circuit
in V.

Example 18. We next give examples of authorized and non-authorized sets in V6.

1. The set {v5, v7, v8} is authorized, since {v5, v6, v7, v8} is a circuit.
2. The circuit {v1, v2, v3, v4} is unauthorized, since the set {v1, v2, v3, v4, v6} does

not contain a circuit that contains v6. To check this, we first note that this 5-set
itself cannot be a circuit, since it contains the circuit {v1, v2, v3, v4}. Second,
the only circuit it contains is {v1, v2, v3, v4}, which does not contain v6.

3. The set {v1, v2, v7, v8} is a minimal authorized set, since {v1, v2, v6, v7, v8} is
a circuit (as it is dependent, and no circuit of size 4 is contained in it).

3 Lower Bounds for the Vamos Access Structure

In this section we prove our main result, stating that the access structures in-
duced by the Vamos matroid cannot be close to ideal. That is, their information
rate is bounded away from 1.

We will use a non-Shannon information inequality proved by Zhang and Ye-
ung [36]. This inequality was used related to the Vamos matroid in [16] for
proving lower bounds for network coding and in [27] for proving that a function
is not asymptotically entropic.

Theorem 19 ([36, Theorem 3]). For every four discrete random variables
A, B, C, and D the following inequality holds:

3[H(CD) + H(BD) + H(BC)] + H(AC) + H(AB)
≥ H(D) + 2[H(C) + H(B)] + H(AD) + 4H(BCD) + H(ABC). (4)

Seymour [30] proved that V6 and V8 are not ideal. Inequality (4) was used in [27]
to give an alternative proof of this fact. We next present the proof of [27]. Assume
there is an ideal secret-sharing scheme realizing the Vamos access structure V6.
Define the following random variables

A
def= S{v1,v2},

B
def= S{v3,v4},

C
def= S{v5,v6},

D
def= S{v7,v8}. (5)
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By Lemma 12 H(ST ) = rank(T )H(S) for every set T ⊆ {v1, . . . , v8}. Since all
sets of size 2 are independent in the Vamos matroid, H(A) = H(B) = H(C) =
H(D) = 2H(S). Furthermore, by the definition of the circuits of size 4 in the
Vamos matroid H(AB) = H(AC) = H(BC) = H(BD) = H(CD) = 3H(S)
while H(AD) = 4H(S). Finally, H(BCD) = H(ABC) = 4H(S). Under the
above definition of A, B, C, and D we notice that the l.h.s. of (4) is 33H(S)
while the r.h.s. of (4) is 34H(S), a contradiction. Note that this proof strongly
exploits the fact that the random variable AD, which corresponds to the shares of
the independent set {v1, v2, v7, v8}, appears in the r.h.s. of (4), while the random
variables appearing in the l.h.s. of (4) correspond to the shares of circuits in the
matroid.

Applying Theorem 14 and Theorem 15, we can generalize the above proof
and prove that V6 cannot be close to ideal. That is, we can prove that in every
secret-sharing scheme realizing V6, the size of the entropy of the share of at least
one party is at least (1+1/110)H(S). Using direct arguments, we prove that the
size of the entropy of the share of at least one party is at least (1 + 1/9)H(S).
Before we formally state our result, we prove two lemmas. First, to aid us in
proving the better lower bound, we rearrange Inequality (4):

Lemma 20. For every four discrete random variables A, B, C, and D the fol-
lowing inequality holds:

3H(C|D) + 2H(C|B) + H(B|C) + H(A|C)
≥ H(A|D) + 3H(C|BD) + H(BC|D) + H(C|AB). (6)

Proof. The claim is proved by a simple manipulation of (4). By (28), 3H(BCD)=
3H(C|BD) + 3H(BD) and H(ABC) = H(C|AB) + H(AB). Substituting these
expressions in (4) and rearranging the terms, we get

3H(CD) + 3H(BC) + H(AC)
≥ H(D) + 2[H(C) + H(B)]

+H(AD) + 3H(C|BD) + H(BCD) + H(C|AB). (7)

By (28), 2H(BC) = 2H(B) + 2H(C|B), H(BC) = H(C) + H(B|C), and
H(AC) = H(C)+H(A|C). Substituting these expressions in (7) and rearranging
the terms, we get

3H(CD) + 2H(C|B) + H(B|C) + H(A|C)
≥ H(D) + H(AD) + 3H(C|BD) + H(BCD) + H(C|AB). (8)

By (28), 3H(CD) = 3H(D) + 3H(C|D), H(AD) = H(D) + H(A|D), and
H(BCD) = H(D) + H(BC|D). Substituting these expressions in (8) and re-
arranging the terms, we get (6). �

To prove our lower bounds, we need the following simple lemma whose proof
can be found in [2]. For completeness we present its proof here. Informally, this
lemma states that if a set T is unauthorized and T ∪ {b} is authorized for some



204 A. Beimel, N. Livne, and C. Padró

participant b, then guessing b’s share given the shares of T is at least as hard
as guessing the secret. Otherwise, the unauthorized set T can guess the share of
b, and via the share compute the secret. Since, by the privacy requirement, the
unauthorized set T cannot have any information on the secret, the entropy of
the share must be at least H(S).

Lemma 21. Let T ⊆ V \ {p0} and b /∈ T such that T ∪ {b} ∈ A and T /∈ A.
Then, H(Sb|ST ) ≥ H(S).

Proof. By applying (33) twice,

H(S, Sb|ST ) = H(Sb|ST ) + H(S|Sb, ST ) = H(S|ST ) + H(Sb|S, ST ).

The proof is straightforward from the second equality by taking into account that
H(S|ST ) = H(S), H(S|Sb, ST ) = 0, and that the conditional entropy function
is nonnegative. �

3.1 Proving the Lower Bound for V6

We next state and prove our main result.

Theorem 22. In any secret-sharing scheme realizing V6 with respect to a distri-
bution on the secrets denoted by a random variable S, the entropy of the shares
of at least one party is at least (1 + 1/9)H(S).

Proof. We fix any scheme realizing V6 and define λ as

λ
def=

max1≤i≤8(H(Svi))
H(S)

− 1.

In particular, for 1 ≤ i ≤ 8:

H(Svi) ≤ (1 + λ)H(S). (9)

Recall that H(Sv6) = H(S) as v6 is the dealer. We use the same random variables
A, B, C, and D as defined in (5). We will show that Lemma 20 implies that
λ ≥ 1/9.

We start with giving upper-bounds on the terms on the left hand side of (6).
Recall that v6 is the dealer, C = S{v5,v6}, and D = S{v7,v8}. Thus, since
{v5, v7, v8} is authorized,

H(C|D) = H(Sv5 |Sv7 , Sv8) + H(Sv6 |Sv5 , Sv7 , Sv8) (from (33))
≤ H(Sv5) ≤ (1 + λ)H(S). (10)

Similarly,

H(C|B) ≤ (1 + λ)H(S). (11)
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Next, recall that B = S{v3,v4}. By applying (29) and (33),

H(B|C) = H(Sv4 |C) + H(Sv3 |Sv4 , Sv5 , Sv6)
≤ H(Sv4) + H(Sv3 , Sv6 |Sv4 , Sv5) − H(Sv6 |Sv4 , Sv5)
= H(Sv4) + H(Sv3 |Sv4 , Sv5) + H(Sv6 |Sv3 , Sv4 , Sv5) − H(Sv6 |Sv4 , Sv5).

Therefore, since {v3, v4, v5} is authorized and {v4, v5} is unauthorized,

H(B|C) ≤ H(Sv4) + H(Sv3) − H(S) ≤ (1 + 2λ)H(S).

Similarly,

H(A|C) ≤ (1 + 2λ)H(S). (12)

So, the l.h.s. of (6) is at most (7 + 9λ)H(S).
We continue by giving lower-bounds on the terms in the right hand side of (6).

First, by using (32) and (33),

H(A|D) = H(Sv1 |D) + H(Sv2 |D, Sv1)
≥ H(Sv1 |D, Sv2) + H(Sv2 |D, Sv1)
≥ 2H(S), (13)

where the last inequality is obtained from Lemma 21 as {v1, v2, v7, v8} is a min-
imal authorized set. Second, from (33) and (2) as BD is unauthorized

H(C|BD) ≥ H(Sv6 |BD) ≥ H(S). (14)

Third, by (33), (32), and Lemma 21,

H(BC|D) = H(B|D) + H(C|BD)
≥ H(Sv3 |D) + H(S)
≥ H(Sv3 |D, Sv1) + H(S).

From Lemma 21 and the fact that {v1, v3, v7, v8} is a minimal authorized set,

H(BC|D) ≥ 2H(S).

Fourth, from (33) and (2) as AB is unauthorized,

H(C|AB) ≥ H(Sv6 |AB) ≥ H(S). (15)

So, the r.h.s. of (6) is at least 8H(S).
To conclude, we have proved that the l.h.s. of (6) is at most (7+9λ)H(S) and

the r.h.s. of (6) is at least 8H(S). As the l.h.s. of (6) should be at least the r.h.s.
of (6), we deduce that (7 + 9λ)H(S) ≥ 8H(S), which implies that λ ≥ 1/9. �
By Remark 4, we can assume without loss of generality that the distribution on
the secrets is uniform, that is, if the domain of secrets is K, then H(S) = log |K|.
Furthermore, by (27), if the domain of shares of vi is Ki, then H(Svi) ≤ log |Ki|.
Thus, we can reformulate Theorem 22 as follows.

Corollary 23. In any secret-sharing scheme realizing V6 with respect to a dis-
tribution on the secrets with support K, the size of the domain of shares of at
least one party is at least |K|1+1/9.
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3.2 Proving the Lower Bound for V8

In a similar manner to the proof of the lower bound for V6, we prove a slightly
weaker lower-bound for V8. As before, we begin by rearranging Inequality (4).
The next lemma is proved similarly to Lemma 20.

Lemma 24. For every four discrete random variables A, B, C, and D the fol-
lowing inequality holds:

3H(D|C) + 2H(D|B) + H(BD) + H(B|A)
≥ H(D) + H(D|A) + H(B|C) + 4H(D|BC) + H(B|AC). (16)

Theorem 25. In any secret-sharing scheme realizing V8 with respect to a distri-
bution on the secrets denoted by a random variable S, the entropy of the shares
of at least one party is at least (1 + 1/10)H(S).

Proof. We fix any scheme realizing V8 and we define λ as in the proof of The-
orem 22. Then H(Svi) ≤ (1 + λ)H(S) for every i = 1, . . . , 8. Recall that
H(Sv8) = H(S) as v8 is the dealer. We use the same random variables A, B, C,
and D as defined in (5). In a similar way as in Theorem 22, we find bounds on
the terms of (16) to obtain a bound on λ.

Claim. H(B|A) ≤ (1 + 3λ)H(S).

To prove this claim, we first observe that

H(B|A) = H(Sv3 , Sv4 |Sv1 , Sv2)
≤ H(Sv3) + H(Sv4 |Sv1 , Sv2 , Sv3)
≤ (1 + λ)H(S) + H(Sv4 |Sv1 , Sv2 , Sv3). (17)

We now bound H(Sv4 |S{v1,v2,v3}). By applying (33) twice,

H(Sv4 , Sv5 |S{v1,v2,v3}) = H(Sv4 |S{v1,v2,v3}, Sv5) + H(Sv5 |S{v1,v2,v3})
= H(Sv5 |S{v1,v2,v3}, Sv4) + H(Sv4 |S{v1,v2,v3}). (18)

Thus, by (18)

H(Sv4 |S{v1,v2,v3}) = H(Sv4 |S{v1,v2,v3,v5}) + H(Sv5 |S{v1.v2,v3})
−H(Sv5 |S{v1.v2,v3,v4}). (19)

We next bound each of the elements of the above sum, and get the desired result.
First,

H(Sv5 |S{v1,v2,v3,v4}) ≤ H(Sv5) ≤ (1 + λ)H(S).

Second, from Lemma 21 we have

H(Sv5 |S{v1,v2,v3,v4}) ≥ H(S).
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Next observe that {v1, v2, v3, v5} is authorized in V8, and hence H(Sv8 |
S{v1,v2,v3,v5}) = 0, thus,

H(Sv4 |S{v1,v2,v3,v5}) = H(S{v1,v2,v3,v5}, Sv4) − H(S{v1,v2,v3,v5})
= H(S{v1,v2,v3,v4,v5})

−[H(Sv8 |S{v1,v2,v3,v5}) + H(S{v1,v2,v3,v5})]
= H(S{v1,v2,v3,v4,v5}) − H(S{v1,v2,v3,v5,v8})
≤ H(S{v1,v2,v3,v4,v5,v8}) − H(S{v1,v2,v3,v5,v8})
= H(Sv4 |S{v1,v2,v3,v5,v8})
≤ H(Sv4 |S{v1,v2,v5,v8})
= H(Sv4Sv8 |S{v1,v2,v5}) − H(Sv8 |S{v1,v2,v5})
= [H(Sv4 |S{v1,v2,v5}) + H(Sv8 |S{v1,v2,v4,v5})]

−H(Sv8 |S{v1,v2,v5})
≤ H(Sv4) + 0 − H(S)
≤ λH(S). (20)

In the last steps we used that {v1, v2, v4, v5} is a minimal authorized subset.
Now, by summing up the bounds,

H(Sv4 |S{v1,v2,v3}) ≤ λH(S) + (1 + λ)H(S) − H(S) = 2λH(S). (21)

Thus, by (17) and (21), H(B|A) ≤ (1 + 3λ)H(S), which concludes the proof of
our claim.

Since {v5, v6, v7} is an authorized set,

H(D) − H(D|C) = (H(Sv7) + H(Sv8 |Sv7))
−(H(Sv7 |S{v5,v6}) + H(Sv8 |S{v5,v6,v7}))

= H(Sv7) + H(S) − H(Sv7 |S{v5,v6}) − 0
≥ H(S). (22)

Thus, by (16) and (22),

2H(D|C) + 2H(D|B) + H(BD) + H(B|A)
≥ H(D|A) + H(B|C) + 4H(D|BC) + H(B|AC) + H(S). (23)

We next give upper bounds for the terms in the l.h.s. of (23). We proved
before that H(B|A) ≤ (1 + 3λ)H(S). For the rest of the terms in the l.h.s. we
use straightforward bounds. First,

H(D|C) = H(Sv7Sv8 |C) ≤ H(Sv8 |Sv7C) + H(Sv7) ≤ (1 + λ)H(S)

because {v5, v6, v7} is authorized, and similarly H(D|B) ≤ (1 + λ)H(S). Sec-
ond, H(BD) = H(S{v3,v4,v7,v8}) = H(Sv8 |S{v3,v4,v7}) + H(S{v3,v4,v7}) ≤ 3(1 +
λ)H(S), since {v3, v4, v7} is authorized. Thus, the l.h.s. of (23) is less than
(8 + 10λ)H(S).
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We continue by giving lower bounds for the terms in the r.h.s. of (23). First,
by Lemma 21,

H(D|A) = H(Sv8 |S{v1,v2,v7}) + H(Sv7 |S{v1,v2}) ≥ 2H(S),

since {v1, v2, v7} is unauthorized and {v1, v2, v5, v7} is authorized. Second,

H(B|C) ≥ H(B|AC) ≥ H(S) (24)

since {v1, v2, v5, v6} is unauthorized and {v1, v2, v3, v4, v5, v6} is authorized. Next,
H(D|BC) ≥ H(S) since the set {v3, v4, v5, v6} is unauthorized, while {v7, v8}
contains the dealer v8. Finally, H(B|AC) ≥ H(S) by (24). Thus, we conclude
that the r.h.s. of (23) is at least 9H(S).

Finally, the bounds we obtained for both sides of Inequality (23) imply that
λ ≥ 1/10. �

Corollary 26. In any secret-sharing scheme realizing V8 with respect to a dis-
tribution on the secret with support K, the size of the domain of shares of at
least one party is at least |K|1+1/10.

3.3 Lower Bounds for Linear Secret-Sharing Schemes

In the following, we present a lower bound for the size of the shares’ domain
that applies only to linear secret-sharing schemes with access structure V6 or
V8. Nearly all known secret-sharing schemes are linear. A secret-sharing scheme
is linear if the distribution scheme is such that the domain of secrets K, the
domain of random strings R, and the domains of shares of the i-th party Ki, for
every i, are vector spaces over some finite field, Π is a linear mapping, and the
distribution on random strings μ is uniform. This bound is obtained in a very
similar way as the previous ones by using an inequality due to Ingleton [17],
which applies only to linear random variables, that is, random variables defined
by linear mappings.

Theorem 27 ([17,28]). For every four linear discrete random variables A, B,
C, and D the following inequality holds:

H(CD) + H(BD) + H(BC) + H(AC) + H(AB)
≥ H(C) + H(B) + H(AD) + H(BCD) + H(ABC). (25)

The proof of the next lemma is very similar to the one of Lemma 20.

Lemma 28. For every four linear discrete random variables A, B, C, and D the
following inequality holds:

H(C|D) + H(C|B) + H(A|C)
≥ H(A|D) + H(C|BD) + H(C|AB). (26)

The following result is proved in a similar way to the proof of Theorem 22.
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Theorem 29. In any linear secret-sharing scheme realizing V6 with respect to
a distribution on the secrets denoted by a random variable S, the entropy of the
shares of at least one party is at least (1 + 1/4)H(S).

Proof. We fix any linear scheme realizing V6 and define

λ
def= max

1≤i≤8
(H(Svi))/H(S) − 1.

We use the same random variables A, B, C, and D as defined in (5). Note that
all bounds proved in Section 3.1 apply, in particular, to linear secret-sharing
realizing V6. Thus, by (10), (11), and (12), the l.h.s. of (26) is at most (3 +
4λ)H(S). By (13), (14), and (15), the r.h.s. of (26) is at least 4H(S). This
implies that (3 + 4λ)H(S) ≥ 4H(S), which implies that λ ≥ 1/4.

Corollary 30. In any linear secret-sharing scheme realizing V6 with respect to
a distribution on the secrets with support K, the size of the domain of shares of
at least one party is at least |K|1+1/4.

Finally, the same bound applies to the linear secret-sharing schemes with access
structure V8 by duality. The dual of an access structure A is the access structure

A∗ def= {T ⊆ P : P \ T /∈ A}.

It is well known that, for every linear secret-sharing scheme Σ with access struc-
ture A, there exists a linear secret sharing scheme Σ∗ for A∗ such that the
domain of the shares of every participant is the same for Σ and for Σ∗ (see [14],
for instance). Therefore, since V∗8 is isomorphic to V6, the bounds in Theorem 29
and Corollary 30 apply also to the access structure V8.
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A Basic Definitions from Information Theory

In this appendix, we review the basic concepts of information theory used in this
paper. For a complete treatment of this subject see, e.g., [12]. All the logarithms
here are of base 2.

Given a finite random variable X , we define the entropy of X , denoted H(X), as

H(X) def= −
∑

x,Pr[X=x]>0

Pr[X = x] log Pr[X = x].

It can be proved that

0 ≤ H(X) ≤ log | supp(X)|, (27)

where | supp(X)| is the size of the support of X (the number of values with
probability greater than zero). The upper bound is obtained if and only if the
distribution of X is uniform.

Given two finite random variables X and Y (possibly dependent), we define
the conditioned entropy of X given Y as

H(X |Y ) def= H(XY ) − H(Y ). (28)

For convenience, when dealing with the entropy function, XY will denote X ∪Y .
From the definition of the conditional entropy, the following properties can be
proved:

0 ≤ H(X |Y ) ≤ H(X), (29)

H(Y ) ≤ H(XY ), (30)

and
H(XY ) ≤ H(X) + H(Y ). (31)
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Given three finite random variable X , Y and Z (possibly dependent), the
following properties hold:

H(X |Y ) ≥ H(X |Y Z), (32)

H(XY |Z) = H(X |Y Z) + H(Y |Z) ≥ H(Y |Z), (33)

and
H(XY |Z) ≤ H(X |Z) + H(Y |Z). (34)



Perfectly-Secure MPC

with Linear Communication Complexity�
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Abstract. Secure multi-party computation (MPC) allows a set of n
players to securely compute an agreed function, even when up to t players
are under the control of an adversary. Known perfectly secure MPC proto-
cols require communication of at least Ω(n3) field elements per multipli-
cation, whereas cryptographic or unconditional security is possible with
communication linear in the number of players. We present a perfectly
secure MPC protocol communicating O(n) field elements per multiplica-
tion. Our protocol provides perfect security against an active, adaptive
adversary corrupting t < n/3 players, which is optimal. Thus our proto-
col improves the security of the most efficient information-theoretically
secure protocol at no extra costs, respectively improves the efficiency of
perfectly secure MPC protocols by a factor of Ω(n2). To achieve this,
we introduce a novel technique – constructing detectable protocols with
the help of so-called hyper-invertible matrices, which we believe to be
of independent interest. Hyper-invertible matrices allow (among other
things) to perform efficient correctness checks of many instances in par-
allel, which was until now possible only if error-probability was allowed.

Keywords: Multi-party computation, efficiency, perfect security, hyper-
invertible matrix.

1 Introduction

1.1 Secure Multi-party Computation

Secure multi-party computation (MPC) enables a set of n players to securely
evaluate an agreed function even when t of the players are corrupted by a cen-
tral adversary. A passive adversary can read the internal state of the corrupted
players, trying to obtain some information he is not entitled to. An active ad-
versary can additionally make the corrupted players deviate from the protocol,
trying to falsify the outcome of the computation. In this work, we consider active
adversaries.

The MPC problem dates back to Yao [Yao82]. The first generic solutions pre-
sented in [GMW87, CDvdG87, GHY87] (based on cryptographic intractability
assumptions) and later [BGW88, CCD88, RB89, Bea91b] (with information-
theoretic security) are rather inefficient and thus of theoretical interest mainly.
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1.2 Efficiency of MPC Protocols

In the recent years lots of research concentrated on designing protocols with
lower communication complexity. In this paper we concentrate on bit-complexity,
measured in bits sent by honest players. The following table gives an overview
on the currently most efficient MPC protocols (in the respective security model),
where κ denotes the bit-length of a field element (resp. the security parameter).

Thresh. Security Bits/Mult. Reference
t < n/3 perfect O(n3κ) [HMP00]
t < n/2 unconditional O(n2κ) [BH06]
t < n/2 cryptographic O(nκ) [HN06]
t < n/3 unconditional O(nκ) [DN07]

All above protocols use “player elimination” (or its generalization “dispute
control”) – a technique that enables converting non-robust (but detectable) pro-
tocols into robust protocols, essentially without any efficiency loss. Furthermore,
all but the perfectly secure protocol use circuit randomization [Bea91a], which
reduces the multiplication of two shared values to two reconstructions, given a
precomputed sharing of a random multiplication triple (a, b, c) with c = ab. Such
triples can be non-robustly generated and checked in advance – making use of
parallelization. Checking the correctness of many instances in parallel can be
done very efficiently when negligible error-probability is allowed, however until
now no perfectly secure efficient parallel correctness-checks are known.

1.3 Contributions

In this paper, we present a novel technique which, at the same time, allows to
perfectly and very efficiently verify a bunch of sharings and (if the check says
that they are correct) to extract a set of (new) correct random sharings given
that a sub-set of the original sharings is random.

More precisely, given n supposedly random sharings, up to t of them distrib-
uted by corrupted players (and thus possibly of a wrong degree, non-random,
etc), we can check whether they are all correct and if so (locally) compute n−2t
correct and uniform random sharings. The check is (despite of being perfectly
secure) highly efficient; it only requires the reconstruction of 2t sharings, each
towards a single player.

In other words, we can non-robustly but detectably generate Ω(n) uniform
random sharings, unknown to the adversary, with perfect security and commu-
nicating O(n2) field elements. By now, similarly efficient protocols to generate
random sharings are known only with probabilistic checks, which provides a
lower level of security and is less elegant.

The novel technique is based on so-called hyper-invertible matrices, i.e., ma-
trices whose every square sub-matrix is invertible. Applying n sharings to such
a matrix results in n sharings with the property that (i) if any (up to t) of the
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inputs sharings are broken, then this can be seen in every subset of t output
sharings, and (ii) if any n − t input sharings are uniform random, then every
subset of size n − t of output sharings is uniform random.

Using hyper-invertible matrices and some techniques from [Bea91a, HMP00,
DN07], we construct a perfectly secure multi-party protocol with optimal re-
silience and linear communication complexity. This can be seen as an efficiency
improvement (the most efficient known MPC protocol with perfect security com-
municates O(n3) field elements per multiplication [HMP00]), or alternatively as
a security improvement (the most secure known MPC protocol with linear com-
munication provides error probability [DN07]). In either case, we consider the
new protocol to be more elegant, as it employs neither two-dimensional sharings
(like all previous perfectly-secure MPC protocols) nor probabilistic checks (like
all previous MPC protocols with linear communication complexity).

2 Preliminaries

2.1 Model

We consider a set U of users, who can give input and receive output, and a set
P of n players, P = {P1, . . . , Pn}, who perform the computation. The players
and users are connected by a complete network of secure (private and authentic)
synchronous channels.

The function to be computed is specified as an arithmetic circuit over a finite
field F (with |F| > 2n), with input, addition, multiplication, random, and output
gates. We denote the number of gates of each type by cI , cA, cM , cR, and cO,
respectively.

The faultiness of players or users is modeled in terms of a central adver-
sary corrupting players and users. The adversary can corrupt up to t players
for any fixed t with t < n/3 and any number of users, and make them deviate
from the protocol in any desired manner. The adversary is computationally un-
bounded, active, adaptive, and rushing. The security of our protocols is perfect,
i.e., information-theoretic without any error probability.

To every player Pi ∈ P a unique, non-zero element αi ∈ F \ {0} is assigned.
For the ease of presentation, we always assume that the messages sent through

the channels are from the right domain — if a player receives a message which is
not in the right domain (e.g., no message at all), he replaces it with an arbitrary
message from the specified domain.

2.2 Byzantine Agreement

In our multi-party protocol we use Byzantine agreement in both its shapes,
broadcast and consensus. Broadcast allows a sender to distribute a value x,
such that all players receive the same value x′ (even if the sender is faulty), and
x = x′ if the sender is honest. Consensus allows the players, each holding an
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input xi, to reach agreement on a value x′, where x = x′ if every honest players
holds xi = x. For t < n/3, both broadcast and consensus can be simulated with
perfect security by a sub-protocol communicating O(n2) bits [BGP92, CW92].
We denote the communication complexity needed for agreeing on a k bit message
as BA(k) = n2k.

2.3 Player-Elimination Framework

Player Elimination [HMP00] is a general technique, used for constructing effi-
cient MPC protocols. It allows to transform (typically very efficient) non-robust
protocols into robust protocols at essentially no additional costs.

The basic idea is to divide the computation into segments and repeat the non-
robust evaluation of each segment until it succeeds, whereby limiting the total
number of times the adversary can cause a segment to fail. Each evaluation of a
segment proceeds in three steps: (1.) detectable computation (2.) fault detection
and (3.) fault localization.

Definition 1. A detectable protocol is a passively secure protocol that can (in
the presence of an active adversary) produce incorrect output, however this will
be detected by at least one honest player. We say that after detecting a fault the
player gets unhappy (sets his happy-bit to unhappy).

In the detectable computation, the actual non-robust (but detectable) protocol
is invoked to compute the segment. In the fault detection the players agree
on whether or not there are some unhappy players. If all players are happy
the computation of the segment was successful, the players keep the output
and proceed to the next segment. Otherwise the segment failed, the output is
discarded and a pair of players E = {Pi, Pj} containing at least one corrupted
player is localized in the fault localization, eliminated from the actual player set
and the segment is repeated with the new player set.1 We denote the original
player set as P (containing n players, up to t of them faulty), and the actual
(reduced) player set as P ′ (containing n′ players, up to t′ of them faulty).

By selecting the size of a segment such that there are t segments, the overall
costs of the resulting robust protocol are at most twice the costs of the non-
robust protocol (plus the overhead costs for the fault detection and the player
elimination).

Special care needs to be taken such that the computation after a (sequence of)
player elimination is “compatible” with the outputs of previous segments. We
ensure this compatibility be fixing the degree of all sharings to t, independent
of the actual threshold t′. Note that a sharing (among P ′) of degree t can be
reconstructed as long as t + 2t′ < n′, what is clearly satisfied when t < n/3.

Technically, a player-elimination protocol proceeds as follows:

1 Note that we eliminate players and not users. If a party playing the role of a player
as well as the role of a user is eliminated from the player set, it still keeps its user
role – can give input and receive output.
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Protocol with Player-Elimination
Let P ′ ← P , n′ ← n, t′ ← t. Divide computation into t segments of similar size,
and do the following for each segment:
0. Every Pi ∈ P ′ sets his happy-bit to happy (i.e., Pi did not observe a fault).
1. Detectable Computation: Compute the actual segment in detectable

manner, such that (i) if all players in P ′ follow their protocol, then the
computation succeeds and all players remain happy, and (ii) if the output is
incorrect, then at least one honest player in P ′ detects so and gets unhappy.

2. Fault Detection: Reach agreement on whether or not all players in P ′
are happy (involves Byzantine Agreement). If all players are happy, proceed
with the next segment. If at least one player is unhappy, proceed with the
following fault-localization procedure.

3. Fault Localization: Find E ⊆ P ′ with |E| = 2, containing at least one
corrupted player.

4. Player Elimination: Set P ′ ← P ′ \E, n′ ← n′− 2, t′ ← t′− 1, and repeat
the segment.

2.4 Circuit Randomization

Circuit randomization [Bea91a] allows to compute a sharing [z] of the product z
of two factors x and y, shared as [x] and [y], at the costs of two public reconstruc-
tions, when a pre-shared random triple

(
[a], [b], [c]

)
with c = ab is available. This

technique allows to first prepare cM shared multiplication triples
(
[a], [b], [c]

)
,

and then to evaluate a circuit with cM multiplication by a sequence of public
reconstructions.

The trick of circuit randomization is that z = xy can be expressed as z =(
(x−a)+a

)(
(y−b)+b

)
, hence z = de+db+ae+c, where (a, b, c) is a multiplication

triple and d = x − a and e = y − b. For a random multiplication triple, d and e
are random values independent of x and y, hence a sharing [z] can be linearly
computed as [z] = [de] + d[b] + e[a] + [c], by reconstructing [d] = [x] − [a] and
[e] = [y] − [b].

3 Hyper-invertible Matrices

3.1 Definition

A hyper-invertible matrix is a matrix of which every (non-trivial) square sub-
matrix is invertible.

Definition 2. An r-by-c matrix M is hyper-invertible if for any index sets R ⊆
{1, . . . , r} and C ⊆ {1, . . . , c} with |R| = |C| > 0, the matrix MC

R is invertible,
where MR denotes the matrix consisting of the rows i ∈ R of M , MC denotes
the matrix consisting of the columns j ∈ C of M , and MC

R =
(
MR

)C .
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3.2 Construction

We present a construction of a hyper-invertible n-by-n matrix M over a finite
field F with |F| ≥ 2n. A hyper-invertible r-by-c matrix can be extracted as a
sub-matrix of such a matrix with n = max(r, c).

Construction 1. Let α1, . . . , αn, β1, . . . , βn denote fixed distinct elements in F ,
and consider the function f : Fn → Fn, mapping (x1, . . . , xn) to (y1, . . . , yn)
such that the points (β1, y1), . . . , (βn, yn) lie on the polynomial g(·) of degree
n−1 defined by the points (α1, x1), . . . , (αn, xn). Due to the linearity of Lagrange
interpolation, f is linear and can be expressed as a matrix M = {λi,j}j=1,...n

i=1,...,n,
where λi,j =

∏n
k=1
k �=j

βi−αk

αj−αk
.

Lemma 1. Construction 1 yields a hyper-invertible n-by-n matrix M .

Proof. We have to show that for any index sets R, C ⊆ {1, . . . , n} with |R| =
|C| > 0, MC

R is invertible. As |R| = |C|, it is sufficient to show that the mapping
defined by MC

R is surjective, i.e., for every �yR there exists an �xC such that �yR =
MC

R �xC . Equivalently, we show that for every �yR there exists an �x such that �yR =
MR�x and �xC = �0, where C = {1, . . . , n} \ C. Remember that M is defined such
that the points (α1, x1), . . . , (αn, xn), (β1, y1), . . . , (βn, yn) lie on a polynomial
g(·) of degree n − 1. Given the n points

{
(αj , 0)

}
j /∈C

and
{
(βi, yi)

}
i∈R

, the
polynomial g(·) can be determined by Lagrange interpolation, and �xC can be
computed linearly from �yR. Hence, MC

R is invertible. ��

3.3 Properties

The mappings defined by hyper-invertible matrices have a very nice symmetry
property: Any subset of n input/output values can be expressed as a linear
function of the remaining n input/output values:

Lemma 2. Let M be a hyper-invertible n-by-n matrix and (y1, . . . , yn) =
M(x1, . . . , xn). Then for any index sets A, B ⊆ {1, . . . , n} with |A| + |B| = n,
there exists an invertible linear function f : Fn → Fn, mapping the values
{xi}i∈A, {yi}i∈B onto the values {xi}i/∈A, {yi}i/∈B.

Proof. We have �y = M�x and �yB = MB�x = MA
B�xA + MA

B �xA. Due to hyper-
invertibility, MA

B is invertible, and �xA =
(
MA

B

)−1(
�yB − MA

B �xA

)
. �yB can be

computed similarly. ��

4 Protocol Overview

The new MPC protocol proceeds in two phases: the preparation phase and the
computation phase.

In the preparation phase, degree-t sharings of random (a, b, c)-triples are gen-
erated (in parallel), one for every multiplication gate. Furthermore, for every
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random gate as well as for every input gate, a t-sharing of a random r is gener-
ated. For the sake of simplicity, we generate cM + cR + cI random triples, where
for random and input gates, only the first component is used. The preparation
phase makes use of the player-elimination technique.

In the computation phase, the actual circuit is computed. Input gates are
evaluated with help of a pre-shared random value r. Due to the linearity of the
used secret-sharing, the linear gates can be computed locally – without commu-
nication. Random gates are evaluated simply by picking an unused pre-shared
random value r. Multiplication gates are evaluated with help of one prepared
(a, b, c)-triple, using Beaver’s circuit randomization technique [Bea91a]. Output
gates involve a (robust) secret reconstruction.

5 Secret Sharing

5.1 Definitions and Notation

As secret-sharing scheme, we use the standard Shamir sharing scheme [Sha79].

Definition 3. We say that a value s is (correctly) d-shared (among the players
in P ′) if every honest player Pi ∈ P ′ is holding a share si of s, such that there
exists a degree-d polynomial p(·) with p(0) = s and p(αi) = si for every Pi ∈ P ′.2
The vector (s1, . . . , sn′) of shares is called a d-sharing of s, and is denoted by
[s]d. A (possibly incomplete) set of shares is called d-consistent if these shares
lie on a degree d polynomial.

Most of the sharings used in our protocol are t-sharings – denoted as [·]t. In the
preparation phase we also temporarily use t′- and 2t′-sharings (denoted by [·]t′

and [·]2t′ , respectively).
By saying that the players in P ′ compute (locally) ([y(1)]d′ , . . . , [y(m′)]d′) =

f([x(1)]d, . . . , [x(m)]d) (for any function f : Fm → Fm′
) we mean that every

player Pi applies this function to his shares, i.e. computes (y(1)
i , . . . , y

(m′)
i ) =

f(x(1)
i , . . . , x

(m)
i ). Note that by applying any linear function to correct d-sharings

we get a correct d-sharing of the output. However, by multiplying two correct
d-sharings we get a correct 2d-sharing of the product, i.e. [a]d[b]d = [ab]2d.

5.2 The Share Protocol

The following (trivial) Share protocol allows an honest dealer PD to correctly
d-share a secret s among the players in P ′, while communicating O(nκ) bits. We
stress that this protocol does not ensure that the resulting sharing is consistent;
a corrupted dealer might distribute totally inconsistent shares. The consistency
of sharings must be verified separately.

Protocol Share(PD ∈ (P ∪ U), s, d)
1. PD chooses a random degree-d polynomial p(·) with s = p(0) and sends

si = p(αi) to every Pi ∈ P ′.

2 Where αi denotes the unique fixed value assigned to Pi.
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5.3 The Reconstruct Protocols

We use two reconstruction protocols: one for private and one for public recon-
struction. Both can be either robust or only detectable – depending on the degree
of the sharings to be reconstructed.

In the private reconstruction protocol the players simply send their shares to
the receiver PR (a player or a user) who interpolates the secret (if possible).

Protocol ReconsPriv(PR ∈ (P ∪ U), d, [s]d)
1. Every player Pi ∈ P ′ sends his share si of s to PR.
2. If there exists a degree-d polynomial p(·) such that at least d + t′ + 1 of the

received shares lie on it, then PR computes the secret s = p(0). Otherwise
PR gets unhappy.

Lemma 3. For d < n′ − 2t′, the protocol ReconsPriv robustly reconstructs [s]d
towards PR. For d < n′ − t′, ReconsPriv detectably reconstructs [s]d towards PR

(i.e., PR either outputs s or gets unhappy, where the latter only happens when
some players are faulty). ReconsPriv communicates O(nκ) bits.

The public reconstruction protocol ReconsPubl takes T = n′−2t′ = n−2t = Ω(n)
correct d-sharings [s1]d, . . . , [sT ]d and publicly (to all players in P ′) outputs
the (correct) values s1, . . . , sT or fails (with at least one honest player be-
ing unhappy). In ReconsPubl we use the idea of [DN07]: first the T sharings
[s1]d, . . . , [sT ]d are expanded (using a linear error-correcting code) to n′ sharings
[u1]d, . . . , [un′ ]d,3 each of which is reconstructed towards one player in P ′ (using
ReconsPriv). Then every Pi ∈ P ′ sends his reconstructed value ui to every other
player in P ′, who tries to decode (with error correction) the received code word
(u1, . . . , un′) to s1, . . . , sT . ReconsPubl communicates O(n2κ) bits to reconstruct
T = Ω(n) sharings.

Protocol ReconsPubl(d, [s1]d, . . . , [sT ]d)
1. For every j = 1, . . . , n′ the players in P ′ (locally) compute [uj]d as:

[uj]d = [s1]d + [s2]dβj + [s3]dβ2
j + . . . + [sT ]dβT−1

j

2. For every Pi ∈ P ′, ReconsPriv is invoked to reconstruct [ui]d towards Pi.
3. Every Pi ∈ P ′ sends ui (or ⊥ if unhappy) to every Pj ∈ P ′.
4. ∀Pi ∈ P ′: If Pi received at least T + t′ (T − 1)-consistent values (in the

previous step), he computes s1, . . . , sT from any T of them. Otherwise he
gets unhappy.

Lemma 4. For d < n′ − 2t′, the protocol ReconsPubl robustly reconstructs
[s1]d, . . . , [sT ]d towards all players in P ′. For d < n′− t′, ReconsPubl detectably
reconstructs [s1]d, . . . , [sT ]d towards all players in P ′ (i.e., every Pi ∈ P ′ either
outputs s1, . . . , sT or gets unhappy, where the latter only happens when some
players are faulty). ReconsPubl communicates O(n2κ) bits.
3 For this we interpret s1, . . . , sT as coefficients of a degree T − 1 polynomial and

u1, . . . , un′ as evaluations of this polynomial at n′ fixed positions β1, . . . , βn′ .
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6 Preparation Phase

6.1 Overview

The goal of the preparation phase is to generate correct t-sharings of cM +cR+cI

secret random triples
(
ak, bk, ck

)
, such that ck = akbk for k = 1, . . . , cM +cR+cI .

We stress that all resulting sharings must be t-sharings (rather than t′-sharings)
among the player set P ′.4

The preparation phase uses player elimination, i.e. the generation of the triples
is divided into t segments of length � = � cM+cR+cI

t . In every segment the non-
robust protocol GenerateTriples is invoked, which either generates correct triples,
or fails with at least one honest player being unhappy.

The generation of the triples follows the approach of [DN07]: First, the players
generate random a and b values, both simultaneously shared with degree t (for
outputting) and degree t′ (for multiplication). Additionally, the players generate
random value r, simultaneously shared with degree t and degree 2t′. Then, they
locally compute the 2t′-sharing [ab]2t′ (by every player multiplying his respective
shares), publicly reconstruct the difference [ab]2t′ − [r]2t′ and add it (locally) to
[r]t, resulting in [ab]t. Finally, the players output the triple

(
[a]t, [b]t, [ab]t

)
.

Definition 4. A value x is (d, d′)-shared among the players P ′, denoted as
[x]d,d′ , if x is both d-shared and d′-shared. We denote such a sharing as a double-
sharing, and the pair of shares held by each player as his double-share.

We (trivially) observe that the sum of correct (d, d′)-sharings is a correct (d, d′)-
sharing of the sum.

6.2 Generating Random Double-Sharings

The following non-robust protocol DoubleShareRandom(d, d′) either generates T
independent secret random values r1, . . . , rT , each independently (d, d′)-shared
among P ′, or fails with at least one honest player being unhappy.

The generation of the random double-sharings employs hyper-invertible ma-
trices: First, every player Pi ∈ P ′ selects and double-shares a random value
si. Then, the players compute double-sharings of the values ri, defined as
(r1, . . . , rn′) = M(s1, . . . , sn′), where M is a hyper-invertible n′-by-n′ matrix.
2t′ of the resulting double-sharings are reconstructed, each towards a different
player, who verify the correctness of the double-sharings (and gets unhappy in
case of a fault). The remaining n′ − 2t′ = T double-sharings are outputted.
This procedure guarantees that if all honest players are happy, then at least n′

double-sharings are correct (the n′− t′ double-sharings inputted by honest play-
ers, as well as the t′ double-sharings verified by honest players), and due to the
hyper-invertibility of M , all 2n′ double-sharings must be correct (the remain-
ing double-sharings can be computed linearly from the good double-sharings).

4 Remember that as t ≤ n′ − 2t′ (according to Lemma 3 and 4), such sharings can be
robustly reconstructed (regardless of the actual player set P ′).
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Furthermore, the outputted double-sharings are random and unknown to the
adversary, as there is a bijective mapping from any T double-sharings inputted
by honest players to the outputted double-sharings.

Protocol DoubleShareRandom(d, d′)
1. Secret Share: Every Pi ∈ P ′ chooses a random si and acts (twice in

parallel) as a dealer in Share to distribute the shares among the players in
P ′, resulting in [si]d,d′.

2. Apply M : The players in P ′ (locally) compute
(
[r1]d,d′, . . . , [rn′ ]d,d′

)
=

M
(
[s1]d,d′, . . . , [sn′ ]d,d′

)
. In order to do so, every Pi computes his double-

share of each rj as linear combination of his double-shares of the sk-values.
3. Check: For i = T +1, . . . , n′, every Pj ∈ P ′ sends his double-share of [si]d,d′

to Pi, who checks that all n′ double-shares define a correct double-sharing
of some value si. More precisely, Pi checks that all d-shares indeed lie on a
polynomial g(·) of degree d, and that all d′-shares indeed lie on a polynomial
g′(·) of degree d′, and that g(0) = g′(0). If any of the checks fails, Pi gets
unhappy.

4. Output: The remainingT double-sharings [r1]d,d′ , . . . , [rT ]d,d′ are outputted.

Lemma 5. If DoubleShareRandom(d, d′) succeeds (i.e., all honest players are
happy), it outputs T = n′ − 2t′ correct and random (d, d′)-sharings (among P ′),
unknown to the adversary. DoubleShareRandom communicates O(n2κ) bits to
generate Ω(n) double-sharings.

Proof. Correctness: Assume that all honest players remain happy during the
protocol. Then for all honest Pi with i ∈ {T +1, . . . , n′}, the sharing of ri checked
by Pi in Step 3 is a correct (d, d′)-sharing. As T = n′ − 2t′, there are at least t′

correct sharings of the values rk. Furthermore, every sharing of an si distributed
by an honest Pi in Step 1 is a correct (d, d′)-sharing. Thus there are at least
n′ − t′ correct sharings of the values sk. Given these (at least) n′ correct (d, d′)-
sharings, the sharings of all other values sk and rk can be computed linearly.
As a linear combination of a correct (d, d′)-sharing is again a (d, d′)-sharing, it
follows that all values s1, . . . , sn′ , r1, . . . , rn′ are correctly (d, d′)-shared.

Privacy: The adversary knows (at most) t′ of the input sharings sk (those
provided by corrupted players), and t′ of the output sharings rk (with k > T ,
those reconstructed towards corrupted players). When fixing these 2t′ shar-
ings, then there exists a bijective mapping between any other (honest) T in-
put sharings and the first T output sharings (Lemma 2), hence the sharings
[r1]d,d′, . . . , [rT ]d,d′ are uniformly at random, unknown to the adversary.

Communication: The stated communication can easily be verified by in-
specting the protocol. ��

6.3 Generating Random Triples

Now we present the non-robust protocol GenerateTriples that either generates
T = n′ − 2t′ correctly t-shared (a, b, c)-triples, or fails (with at least one honest
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player being unhappy). The idea of the protocol GenerateTriples is the following:
First DoubleShareRandom is invoked 3 times to generated the random double-
sharings [a1]t,t′ , . . . , [aT ]t,t′ , [b1]t,t′ , . . . , [bT ]t,t′ , and [r1]t,2t′ , . . . , [rT ]t,2t′ , respec-
tively. Then for every pair ak, bk, a t-sharing of the product ck = akbk is com-
puted by reducing the locally computed 2t′-sharing [ck]2t′ = [ak]t′ [bk]t′ to a
t-sharing [ck]t using the t-sharing [rk]t and the 2t′-sharing [rk]2t′ of the random
value rk.

Protocol GenerateTriples
1. Generate Double-Sharings: Invoke DoubleShareRandom three

times in parallel to generate the double-sharings [a1]t,t′ , . . . , [aT ]t,t′ ,
[b1]t,t′ , . . . , [bT ]t,t′ , and [r1]t,2t′ , . . . , [rT ]t,2t′ .

2. Multiply:

2.1 For k = 1, . . . , T , the players in P ′ compute (locally) the 2t′-sharing
[ck]2t′ of ck = akbk as [ck]2t′ = [ak]t′ [bk]t′ (by every player computing
the product of his shares).

2.2 For k = 1, . . . , T , the players in P ′ compute (locally) a 2t′-sharing of
the difference [dk]2t′ = [ck]2t′ − [rk]2t′

2.3 Invoke ReconsPubl (R = P ′, d = 2t′, [d1]2t′ , . . . , [dT ]2t′) to reconstruct
d1, . . . , dT towards every player in P ′.

2.4 For k = 1, . . . , T , the players in P ′ compute (locally) the t-sharing
[ck]t = [rk]t + [dk]0, where [dk]0 denotes the constant sharing [dk]0 =
(dk, . . . , dk).

3. Output: The t-shared triples
(
[a1]t, [b1]t, [c1]t

)
, . . . ,

(
[aT ]t, [bT ]t, [cT ]t

)
are

outputted.

Lemma 6. If GenerateTriples succeeds (i.e., all honest players are happy),
it outputs independent random t-sharings of T = Ω(n) random triples(
a1, b1, c1

)
, . . . ,

(
aT , bT , cT ) with ak, bk independent uniform random values and

ck = akbk for k = 1, . . . , T . GenerateTriples communicates O(n2κ) bits.

Proof. The security of GenerateTriples follows directly from the security of
DoubleShareRandom. ��

6.4 Preparation Phase — Main Protocol

The following protocol PreparationPhase divides the generation of the cM +cR+cI

triples into t segments of length � = � cM+cR+cI

t . In each segment the triples
are generated invoking the non-robust protocol GenerateTriples (as often as nec-
essary), then the players reach agreement on whether or not all players are
happy. If yes, they proceed to the next segment. Otherwise, a pair of players is
identified in FaultLocalization, excluded from the actual player set P ′ and the
segment is repeated (with the new P ′ and all players setting their happy-bit to
happy).
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Protocol PreparationPhase
For each segment k = 1, . . . , t do:
0. Every Pi ∈ P ′ sets his happy-bit to happy.
1. Triple Generation: Invoke GenerateTriples � �

T  times in parallel.
2. Fault Detection: Reach agreement whether or not at least one player is

unhappy:
2.1 Every Pi ∈ P ′ sends his happy-bit to every Pj ∈ P ′, who gets unhappy

if at least one Pi claims to be unhappy.
2.2 The players in P ′ run a consensus protocol on their respective happy-

bits. If the consensus outputs “happy”, then the generated triples are
outputted and the segment is finished. Otherwise, the following Fault-
Localization step is executed.

3. Fault Localization: Localize E ⊆ P ′ with |E| = 2 and at least one player
in E being corrupted:
3.0 Denote the player Pr ∈ P ′ with the smallest index r as the referee.5

3.1 Every Pi ∈ P ′ sends everything he received and all random values he
chose during the computation of the actual segment (including fault
detection) to Pr.

3.2 Given the values received in Step 3.1, Pr can reproduce every message
that should have been sent (by applying the respective protocol instruc-
tions of the sender), and compare it with the value that the recipient
claims to have received. Then Pr broadcasts (l, i, j, x, x′), where l is the
index of a message where Pi should have sent x to Pj , but Pj claims to
have received x′ �= x.

3.3 The accused players broadcast whether they agree with Pr. If Pi dis-
agrees, set E = {Pr, Pi}, if Pj disagrees, set E = {Pr, Pj}, otherwise set
E = {Pi, Pj}.

4. Player Elimination: Set P ′ ← P ′ \E, n′ ← n′− 2, t′ ← t′− 1, and repeat
the segment.

Lemma 7. The protocol PreparationPhase generates independent random t-
sharings of cM + cR + cI secret triples (ak, bk, ck) with ak, bk independent uni-
form random values and ck = akbk for k = 1, . . . , cM +cR +cI . PreparationPhase
communicates O

(
(cM + cR + cI)nκ + n2κ + t BA(κ)

)
bits, which amounts to

O
(
(cM + cR + cI)nκ + n3κ

)
bits overall.

7 Computation Phase

In the computation phase, the circuit is robustly evaluated, whereby all inter-
mediate values are t-shared among the players in P ′.

Input gates are realized by reconstructing a pre-shared random value r towards
the input-providing user, who then broadcasts the difference of this r and his input.
5 The communication can be balanced by selecting a player who has not yet been

referee in a previous segment.
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Due to the linearity of the secret-sharing scheme, linear gates can be computed
locally simply by applying the linear function to the shares, i.e. for any linear
function f(·, ·), a sharing [c] = [f(a, b)] is computed by letting every player Pi

compute ci = f(ai, bi).
With every random gate, one random sharing [r] (from the preparation phase)

is associated and [r]t is directly used as outcome of the random gate.
With every multiplication gate, one ([a], [b], [c])-triple (from the preparation

phase) is associated, which is used to compute a sharing of the product at the
cost of two public reconstruction. For the sake of efficiency, we evaluate T/2
multiplication gates at once (such that we can publicly reconstruct T sharings
at once). This of course requires that these multiplication gates do not depend on
each other, i.e., that they all have the same multiplicative depth in the circuit.6

Output gates involve a (robust) secret reconstruction.

Protocol ComputationPhase
Evaluate the gates of the circuit as follows:
• Input Gate (User U inputs s):

1. Reconstruct the associated sharing [r]t towards U with
ReconsPriv(U, t, [r]). This is robust because t < n′ − 2t′.

2. User U computes and broadcasts the difference d = s − r.
3. Every Pi ∈ P ′ computes his share si of s locally as si = d + ri.

• Addition/Linear Gate: Every Pi ∈ P ′ applies the linear function on his
respective shares.

• Random Gate: Pick the sharing [r]t associated with the gate.
• Multiplication Gate: Up to �T/2� (where T = n − 2t) multi-

plication gates are processed simultaneously. Denote the factor shar-
ings as

(
[x1], [y1]

)
, . . . ,

(
[xT/2], [yT/2]

)
, and the associated triples as

([a1], [b1], [c1]), . . . , ([aT/2], [bT/2], [cT/2]). The products [z1], . . . , [zT/2] are
computed as follows:
1. For k = 1, . . . , T/2, the players compute [dk] = [xk] − [ak] and [ek] =

[yk] − [bk].
2. Invoke ReconsPubl to publicly reconstruct the T t-sharings

(d1, e1), . . . , (dT/2, eT/2). Note that this is robust, as t < n′ − 2t′.
3. For k = 1, . . . , T/2, the players compute the product sharings [zk]t =

[de]0 + d[b]t + e[a]t + [c]t, where [de]0 denotes the (implicitly defined)
0-sharing of de.

• Output Gate (output [s] to User U): Invoke ReconsPriv(U, t, [s]t).

Lemma 8. The protocol ComputationPhase perfectly securely evaluates a cir-
cuit with cI input, cR random, cM multiplication, and cO output gates, given
cI + cR + cM pre-shared random multiplication triples, with communicating

6 The multiplicative depth of a gate is the maximum number of multiplication gates
on any path from input/random gates to this gate.
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O
(
(cIn + cMn + cOn + DMn2)κ + cI BA(κ)

)
bits, where DM denotes the multi-

plicative depth of the circuit.

Theorem 1. The MPC protocol consisting of PreparationPhase and
ComputationPhase evaluates a circuit with cI input, cR random, cM multiplica-
tion, and cO output gates, with communicating O

(
(cIn + cRn + cMn + cOn +

DMn2)κ + (cI + n)BA(κ)
)

bits, which amounts to O
(
(cIn

2 + cRn + cMn +
cOn + DMn2)κ + n3κ

)
bits, where DM denotes the multiplicative depth of the

circuit. The protocol is perfectly secure against an active adversary corrupting
t < n/3 players.

The communication complexity for giving input can be improved from O(n2κ)
per input to O(nκ). Details can be found in Appendix A.

Theorem 2. The MPC protocol given in Appendix A evaluates a circuit with cI

input, cR random, cM multiplication, and cO output gates, with communicating
O

(
(cIn+cRn+cMn+cOn+DMn2)κ+n BA(κ)

)
bits, which amounts to O

(
(cIn+

cRn + cMn + cOn + DMn2)κ + n3κ
)

bits, where DM denotes the multiplicative
depth of the circuit. The protocol is perfectly secure against an active adversary
corrupting t < /n/3 players.

8 Conclusions

We have presented a perfectly secure multi-party computation protocol with
optimal security (t < n/3), which communicates only O(n) field elements per
multiplication.

Compared with the previously most efficient perfectly-secure MPC proto-
col [HMP00], this is a speedup of θ(n2) with the same level of security.

Compared with the previously “most secure” MPC protocol with linear com-
munication complexity [DN07], this improves the security from unconditional
to perfect, and at the same time slightly improves the communication overhead
(from O(n4κ) in [DN07] to O(n3κ) here).

This speed-up was possible due to a new technique, so-called hyper-invertible
matrices. Suchmatrices allow todetectably generateΩ(n) randomsharingsat costs
O(n2), with perfect security (i.e., without any probabilistic checks as used in all
previous highly-efficient MPC protocols). We believe that this approach is much
more natural than the previous approach with probabilistic checks (for example,
[DN07] needs to work in an extension field to keep the error-probability small).
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Appendix

A Totally Linear Protocol

To construct a totally linear MPC protocol we propose a more efficient input
protocol. For the sake of simpler presentation we assume that all inputs are given
at the beginning of the computation stage.

We first present the input protocol LinearInput that allows a set of dealers
D ⊂ P ∪ U each having T inputs to (robustly) share these inputs among the
players in P ′ (using pre-computed t-sharings of random values). If there is a user
with more than T inputs, he plays a role of more dealers.

Protocol LinearInput (every Dk ∈ D having inputs s
(1)
k , . . . , s

(T )
k with as-

sociated random
t-sharings [r(1)

k ]t, . . . , [r
(T )
k ]t)

1. Reconstruct: For every Dk ∈ D and every l = 1, . . . , T invoke
ReconsPriv(Dk, [r(l)

k ]t) to reconstruct the secret random value r
(l)
k towards

Dk.
2. Compute Difference: Every Dk ∈ D computes for every l = 1, . . . , T the

difference d
(l)
k = s

(l)
k − r

(l)
k .

3. Broadcast: Invoke Broadcast to let every dealer Dk ∈ D broadcast (towards
the players in P ′) the T computed differences d

(1)
k , . . . , d

(T )
k .

4. Compute Locally and Output: For every Dk ∈ D and every l = 1, . . . , T

the players in P ′ (locally) compute the sharing of the input s
(l)
k as [s(l)

k ]t =
[d(l)

k ]0 + [r(l)
k ]t.

The robust protocol Broadcast is constructed in three steps.
We first present a non-robust broadcast protocol for P ′ PE − Broadcast.
Note, that broadcasting a value can be interpreted as sharing this value with

degree zero, thus checking whether every player distributed his value consistently
is the same as checking the correctness of sharings with degree zero, which we
can easily do applying HIM.

Protocol PE − Broadcast(every Pi ∈ P ′ has input xi)
1. Distribute Values: Every Pi shares his input with Share (Pi, xi, d = 0),

i.e. sends xi to every Pj ∈ P ′. Resulting in n′ (supposed) 0-sharings

[x1]0, . . . , [xn′ ]0

2. Apply HIM M : The players in P ′ compute locally the 0-sharings
[x̂1]0, . . . , [x̂n′ ]0 as

([x̂1]0, . . . , [x̂n′ ]0) = M([x1]0, . . . , [xn′ ]0)

3. Check: Every Pi ∈ P ′ checks the correctness of [x̂i]0. For this every Pj ∈ P ′
sends his share of x̂i to Pi. If the values received by Pi are not 0-consistent
(equal), Pi gets unhappy.
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4. Output: Every Pj ∈ P ′ outputs the values received in Step 1.)

Now we construct a robust broadcast protocol for P ′ BroadcastForP ′ using
PE − Broadcast, player elimination and segmentation. BroadcastForP ′ allows the
players in P ′, each holding � values x

(1)
i , . . . , x

(�)
i to broadcast this values among

the players in P ′.

Protocol BroadcastForP ′
For each segment k = 1, . . . , t (of length �′ = � �

t  ) do:
0. Every Pi ∈ P ′ sets his happy-bit to happy.
1. PE-Broadcast: Invoke PE − Broadcast �′ = � �

t times in parallel, i.e. for
l = 1, . . . , �′ invoke PE − Broadcast to let every Pi ∈ P ′ broadcast his input
xi = x

(l+(k−1)�′)
i .

2. Fault Detection: Reach agreement whether or not at least one player is
unhappy:
2.1 Every Pi ∈ P ′ sends his happy-bit to every Pj ∈ P ′, who gets unhappy

if at least one Pi claims to be unhappy.
2.2 The players in P ′ run a consensus protocol on their respective happy-

bits. If the consensus outputs “happy”, then the generated triples are
outputted and the segment is finished. Otherwise, the following Fault-
Localization step is executed.

3. Fault Localization: Localize E ⊆ P ′ with |E| = 2 and at least one player
in E being corrupted:
3.0 Denote the player Pr ∈ P ′ with the smallest index r as the referee.7

3.1 Every Pi ∈ P ′ sends everything he received and all random values he
chose during the computation of the actual segment (including fault
detection) to Pr.

3.2 Given the values received in Step 3.1, Pr can reproduce every message
that should have been sent (by applying the respective protocol instruc-
tions of the sender), and compare it with the value that the recipient
claims to have received. Then Pr broadcasts (l, i, j, x, x′), where l is the
index of a message where Pi should have sent x to Pj , but Pj claims to
have received x′ �= x.

3.3 The accused players broadcast whether they agree with Pr. If Pi dis-
agrees, set E = {Pr, Pi}, if Pj disagrees, set E = {Pr, Pj}, otherwise set
E = {Pi, Pj}.

4. Player Elimination: Set P ′ ← P ′ \E, n′ ← n′− 2, t′ ← t′− 1, and repeat
the segment.

Finally we present the protocol Broadcast that enables a set of dealers D
(players or users), each holding T values to robustly broadcast this values, among
the players in P ′.
7 The communication can be balanced by selecting a player who has not yet been

referee in a previous segment.
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The idea of the protocol is to let every dealer expand his T values to n′

values (using an error-correcting code tolerating t′ errors) and to send each of
these values to one player in P ′. Then the players in P ′ invoke BroadcastForP ′
to broadcast the received values and final (locally) compute the original values
from the broadcasted values using error-correction.

Protocol Broadcast(every dealer Dk holding a
(0)
k , . . . , a

(T−1)
k )

1. Expand and Distribute: For every dealer Dk denote the polynomial de-
fined by the values a

(0)
k , . . . , a

(T−1)
k as pk(x), i.e.

pk(x) = a
(0)
k + a

(1)
k x + . . . + a

(T−1)
k xT−1

. The dealer Dk computes for every player Pi ∈ P ′ the point pk(αi) and
sends it to Pi.

2. Broadcast: The players in P ′ invoke BroadcastForP ′ with Pi having input
p1(αi), . . . , p|D|(αi).

3. Compute and Output: For every dealer Dk every Pi ∈ P ′ locally computes
the values a

(0)
k , . . . , a

(T−1)
k from the broadcasted values pk(α1), . . . , pk(αn′)

(using error-correction).
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Abstract. Secure function evaluation (SFE) allows a set of players to compute
an arbitrary agreed function of their private inputs, even if an adversary may
corrupt some of the players. Secure multi-party computation (MPC) is a general-
ization allowing to perform an arbitrary on-going (also called reactive or stateful)
computation during which players can receive outputs and provide new inputs at
intermediate stages.

At Crypto 2006, Ishai et al. considered mixed threshold adversaries that either
passively corrupt some fixed number of players, or, alternatively, actively corrupt
some (smaller) fixed number of players, and showed that for certain thresholds,
cryptographic SFE is possible, whereas cryptographic MPC is not.

However, this separation does not occur when one considers perfect security.
Actually, past work suggests that no such separation exists, as all known gen-
eral protocols for perfectly secure SFE can also be used for MPC. Also, such a
separation does not show up with general adversaries, characterized by a collec-
tion of corruptible subsets of the players, when considering passive and active
corruption.

In this paper, we study the most general corruption model where the adversary
is characterized by a collection of adversary classes, each specifying the subset
of players that can be actively, passively, or fail-corrupted, respectively, and show
that in this model, perfectly secure MPC separates from perfectly secure SFE.
Furthermore, we derive the exact conditions on the adversary structure for the
existence of perfectly secure SFE resp. MPC, and provide efficient protocols for
both cases.

1 Introduction

1.1 Secure Function Evaluation and Secure Multi-party Computation

Secure function evaluation (SFE) allows a set P = {p1, . . . , pn} of n players to com-
pute an arbitrary agreed function f of their inputs x1, . . . , xn in a secure way. Security
means that dishonest players can neither falsify the output of the computation, nor ob-
tain information about the honest players’ inputs (except what they can derive from their
own inputs and outputs). (Reactive) secure multi-party computation (MPC) is a gener-
alization of SFE. Here, the function to be computed is reactive, meaning that players
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can give inputs and get outputs several times during the course of the computation, and
every output can depend on all inputs given so far.

A bit more formally, SFE and MPC can be best described by considering a hypothet-
ical trusted party which performs the specified task on behalf of the players. In SFE,
the trusted party is non-reactive: it takes inputs from the players, evaluates the function,
and announces the outputs (and disappears). In MPC, the trusted party is reactive: it
continuously interacts with the players, taking inputs and sending outputs. It maintains
an internal state which is updated with every input, and every output is computed based
on this state. The goal of SFE and MPC is to simulate this trusted party among the
set P of players. The potential dishonesty of players is modeled by a central adver-
sary corrupting players, where players can be actively corrupted (the adversary takes
full control over them), passively corrupted (the adversary can read their internal state),
or fail-corrupted (the adversary can make them crash at any suitable time). A crashed
player stops sending any messages, but the adversary cannot read the internal state of
the player (unless he is actively or passively corrupted at the same time).

Typical examples of SFE include e-voting, i.e., the computation of the sum of the
players’ secret votes, or the double-agent problem, i.e., the identification of identical
entries in several confidential databases. An example of MPC is the simulation of a fair
stock market, where inputs (e.g. new trading orders) are given and outputs (e.g. current
stock prices) are provided while the computation proceeds.

SFE (and MPC) was introduced by Yao [Yao82]. The first general solutions were
given by Goldreich, Micali, and Wigderson [GMW87]; these protocols are secure un-
der some intractability assumptions. Later solutions [BGW88, CCD88, RB89, Bea91b]
provide information-theoretic security.

1.2 Summary of Known Results

In the seminal papers solving the general SFE and MPC problems, the adversary is
specified by a single corruption type (active or passive) and a threshold t on the toler-
ated number of corrupted players. Goldreich, Micali, and Wigderson [GMW87] proved
that, based on cryptographic intractability assumptions, general secure MPC is pos-
sible if and only if t < n/2 players are actively corrupted, or, alternatively, if and
only if t < n players are passively corrupted. In the information-theoretic model, Ben-
Or, Goldwasser, and Wigderson [BGW88] and independently Chaum, Crépeau, and
Damgård [CCD88] proved that unconditional security is possible if and only if t < n/3
for active corruption, and for passive corruption if and only if t < n/2.

These results were unified and extended by fail-corruption in [FHM98] by proving
that perfectly secure MPC is achievable if and only if 3ta + 2tp + tf < n, where ta, tp,
and tf denote the upper bounds on the number of actively, passively, and fail-corrupted
players, respectively.

Another line of generalization is concerned with so-called general adversaries: Here,
the adversary is not characterized by a threshold, but rather by an enumeration of the
possible subsets of players that the adversary can corrupt.1 In [HM97] (see also [HM00])

1 This allows to model non-symmetric settings where not every player’s potential dishonesty is
modeled in exactly the same way. Some coalitions of colluding players might be more likely
than others, and some players might have a higher level of dishonesty than others.
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it was proved that perfect security is possible if and only if no two corruptible subsets
cover the full players set (passive adversary), respectively no three corruptible sub-
sets cover the full player set (active adversary). These results naturally generalize the
threshold results of 2t < n, respectively 3t < n. These results were unified to a mixed
general adversary in [FHM99], where the adversary is characterized by an enumeration
of classes, each class consisting of an actively corruptible subset of players and of a
passively corruptible subset of players. Fail-corruption was not considered. The bounds
on the existence of perfectly secure MPC are a natural combination of the bounds in the
threshold model.

A similar development of generalizations (from threshold to general adversaries) can
be observed in the area of Byzantine agreement protocols [LSP82, DS82, LF82, MP91,
GP92, FM98, AFM99].

Recently, Ishai et al. [IKLP06] considered a mixed model in which the adversary
can either corrupt ta players actively, or, alternatively, tp players passively (in contrast
to previous work [FHM98], where the adversary could corrupt ta players actively, and,
simultaneously, tp players passively). They showed that for tp < n and ta < n/2
cryptographically secure SFE is possible, whereas, for tp = n − 1 and ta ≥ 1, crypto-
graphically secure (reactive) MPC is not possible.

1.3 Contributions of This Paper

The original motivation for this paper was to determine the exact conditions for SFE
and MPC in the natural and most general adversary model where all corruption types
can occur. We characterize the adversary’s corruption capability by an adversary struc-
ture Z = {(A1, E1, F1), . . . , (Am, Em, Fm)}, where Ak, Ek, Fk ⊆ P and Ak ⊆ Ek

and Ak ⊆ Fk. The adversary can (secretly) choose an arbitrary adversary class Zk =
(Ak, Ek, Fk) ∈ Z and actively corrupt the players in Ak, passively corrupt the players
in Ek, and fail-corrupt the players in Fk. In the technical sections of this paper, we
present and prove exact conditions on the adversary structure to allow perfectly secure
MPC and perfectly secure SFE. This unifies all previously considered models, where
either not all three types of corruption were considered, or where the corruption capa-
bility was specified in terms of thresholds.

Interestingly, the conditions for SFE and MPC are different. This is surprising since
all known results on perfectly secure protocols suggest no such separation. In fact, a
first separating example was observed by Almann [Alt99]. In particular, when consid-
ering active, passive, and fail-corruption (but only threshold type), then no such sepa-
ration has been observed [FHM98]. When considering general adversaries (with active
and passive corruption, but without fail-corruption), no separation can be observed nei-
ther [FHM99]. However, in the combination of both these models, the separation shows
up. This indicates that the most general adversary model considered here is both natural
and appropriate, since all restricted models hide the fact that SFE and MPC separate.

We describe a simple example of an adversary structure which separates, i.e., for
which SFE with perfect security is possible but MPC is not. Let P = {p1, p2, p3, p4}
and Z = {Z1, Z2, Z3}, where Z1 = (∅, {p1}, ∅), Z2 = ({p2}, {p2}, {p2, p4}), and



234 Z. Beerliová-Trubı́niová et al.

Z3 =({p3}, {p3}, {p3, p4}). In other words, the adversary can either corrupt p1 pas-
sively, or corruptp2actively and fail-corruptp4, or corruptp3 actively and fail-corruptp4.2

A protocol for SFE works as follows: First use p4 as trusted party with the constraint
that p4 sends the output of the function first to p1 and then to p2 and p3. If p4 crashes,
then restart the protocol using p1 as trusted party (the crashing of p4 guarantees that the
adversary did not choose Z1 ∈ Z and hence that p1 is uncorrupted). If p1 has received the
output from p4 before p4 crashed, then he forwards it to p2 and p3, otherwise he evaluates
the function on the inputs received by p2 and p3 and sends them the output. The security
of this protocol is trivial to verify. The impossibility of MPC for this example follows
from the observation that if some intermediate value v — part of the state of an MPC
protocol — is not known to p1, then there is no protocol that always reveals it to him.
Indeed, if in such a protocol the adversary crashes p4 and forces p2 or p3 to send random
messages whenever he is instructed to send something (she can do so by choosing Z2
or Z3), then with non-zero probability, p1 will not be able to decide whether p2 or p3 is
misbehaving and will accept a value different than v, contradicting perfect security.

2 The Model

We consider the standard secure-channels model introduced in [BGW88,CCD88]: The
players p1, . . . , pn are connected by a complete network of bilateral synchronous secure
channels. The computation is described as an arithmetic circuit over some finite field F,
consisting of addition (or linear) gates and multiplication gates.

The security of our protocols is information-theoretic without error probability,
which is called perfect security and is the strongest possible security notion. A pro-
tocol is defined to be secure if it realizes a trusted functionality (computing the function
f ), where the term “realize” is defined via the simulation paradigm [Can00, MR91,
Bea91a,DM00,PW01] which, in a nutshell, guarantees that whatever the adversary can
achieve in the real world where the protocol is executed, she could also achieve in the
ideal setting with the trusted functionality.3 This security notion implies in particular
that the adversary cannot obtain any information about the players’ inputs beyond what
is implied by the outputs (secrecy), and that she cannot influence the outputs other than
by choosing the inputs of the corrupted players (correctness).

The adversary’s corruption capability is characterized by an adversary structure Z =
{(A1, E1, F1), . . ., (Am, Em, Fm)} (for some m). The adversary chooses a triple in
Z non-adaptively,4 i.e., before the beginning of the protocol; this triple is denoted as

2 Additionally, Z4 = ({p4}, {p4}, {p4}) could be tolerated, but this would unnecessarily com-
plicate the example.

3 While our protocols can be proven secure in any of these simulation-based frameworks, with
perfect indistinguishability of the real and the ideal world, we will in this paper not give full-
fledged simulation-based security proofs; this is consistent with the previous literature on se-
cure SFE and MPC.

4 In contrast, an adaptive adversary can corrupt more and more players during the protocol
execution, subject only to the constraint that the corrupted sets are within one of the triples
in Z. We do not consider the adaptive setting in this paper, but our results could be generalized
to it.
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Z� = (A�, E�, F �) and is called the actual adversary class or simply the actual ad-
versary. The players in A�, E�, and F � are actively, passively, and fail-corrupted, re-
spectively. Note that Z� is not known to the honest players and appears only in the
security analysis. A protocol is called Z-secure if it is secure against an adversary with
corruption power characterized by Z .

For notational simplicity we assume that A ⊆ E and A ⊆ F for any (A, E, F ) ∈ Z
(anyway, an actively corrupted player can behave as being passively or fail-corrupted).
Furthermore, as most constructions only need to consider the maximal classes of a
structure, we define the maximal structure Z =

{
(A, E, F ) ∈ Z : � ∃(A′, E′, F ′) ∈ Z

with (A, E, F ) �= (A′, E′, F ′) and A ⊆ A′, E ⊆ E′, F ⊆ F ′
}

.
To simplify the description, we adopt the following convention: Whenever a player

does not receive a message (when expecting one), or receives a message outside of the
expected range, then the special symbol ⊥�∈ F is taken for this message. Note that after
a player has crashed, he only sends ⊥. If a player has followed the protocol instruc-
tions correctly up to a certain point, he is called correct at that point, independently of
whether he is actually corrupted. A player who has deviated from the protocol (e.g., has
crashed or has sent inconsistent messages) is called incorrect.

3 Tools (Sub-protocols)

In this section we present some protocols that are used as building blocks in the main
sections. Several of these protocols are non-robust, i.e., they might abort when faults
occur. In case of abortion, all (correct) players agree on a non-empty set B ⊆ P of
incorrect players; we say then that the protocol aborts with B.

3.1 Broadcast and Consensus

A broadcast protocol allows a sender p with input value v to distribute v among a set
P of players, where it is guaranteed that all correct players in P output the same value
v′ (consistency), and that v′ = v when the sender is correct during the execution of
the protocol (correctness). Similarly, a consensus protocol allows a set P of players,
each holding an input value vi, to reach agreement, such that every correct player in P
outputs the same value v′ (consistency), and that v′ = v if all (correct) players hold as
input v (correctness).

In [AFM99] a tight condition for the existence of perfectly-secure broadcast and
consensus is given for the model with active and fail-corruption. Those protocols as-
sume pairwise authenticated (but not necessarily private) channels, hence they remain
secure even when the adversary is allowed to passively corrupt any number of players.
Therefore these conditions immediately translate to our model:

Lemma 1. In the secure channels model, perfectly Z-secure broadcast and consensus
among a set P of players is possible if and only if CBC(P , Z) holds, where

CBC(P , Z) ⇐⇒
{

∀(A1, E1, F1), (A2, E2, F2), (A3, E3, F3) ∈ Z :
A1 ∪ A2 ∪ A3 ∪ (F1 ∩ F2 ∩ F3) �= P .
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We denote the broadcast and the consensus protocol of [AFM99] by Broadcast and
Consensus, respectively.

3.2 Crash Detection

We present a protocol which allows the players in P to commonly detect whether a
specific player p ∈ P is alive or has crashed. Such a decision cannot be sharp, as
an actively corrupted player can always behave as having crashed, i.e., not send any
messages during the execution of the protocol. However, we require that correct players
are always identified as “alive”, and crashed players are always identified as “crashed”.

Protocol CDP(P, Z, p)
1. p sends a 1-bit to every pj ∈ P .
2. Every pj ∈ P sets bj := 1 if he received a 1-bit, and bj := 0 otherwise.
3. The players in P invoke Consensus on inputs b1, . . . , bn.
4. Every pj ∈ P outputs “alive” when the output of the consensus protocol is 1, and

“crashed” otherwise.

Lemma 2. If CBC(P , Z) holds, then the protocol CDP(P , Z, p) has the following
properties: Consistency: The (correct) players agree on the output. Correctness: If p
is correct until the end of CDP, then every (correct) player outputs “alive” and if p has
crashed before the invocation of CDP, then every (correct) player outputs “crashed”.5

Proof. Correctness: When p is correct, then every (correct) pj ∈ P sets bj := 1 and,
by definition of consensus, all correct players decide on 1 and output “alive”. When p
has crashed before CDP is invoked, then every correct pj ∈ P sets bj := 0, and hence
all correct players output “crashed”. Consistency: As the output is decided by using
consensus, the output of all correct players is identical. ��

3.3 Strong Broadcast

Intuitively, a fail-corrupted player never sends a “wrong” message; in the worst case,
he sends no message at all. This intuition does not apply to broadcast (according to the
standard definition): When the sender of a broadcast protocol crashes, only consistency
of the output is guaranteed. But the output value can be arbitrary.6

We lift the intuition that fail-corrupted players never send “wrong” messages to
broadcast by introducing the notion of strong broadcast: A protocol with sender p,
holding input v, achieves strong broadcast when it achieves broadcast and additionally
ensures that the output is in {v, ⊥} when the sender is not actively corrupted. We show
how to construct a protocol for p to strongly broadcast v, given a protocol for broadcast
(e.g., Broadcast) and CDP.

5 Note that in any case the adversary learns the output of CDP.
6 In [AFM99], the output of broadcast can even be chosen by the adversary, when the sender

crashes.



MPC vs. SFE: Perfect Security in a Unified Corruption Model 237

Protocol StrongBroadcast(P, Z, p, v)
1. Invoke Broadcast to have p broadcast his input v. For each pj ∈ P , let vj denote

pj’s output in Broadcast.
2. Invoke CDP to detect whether p is alive or has crashed.
3. Every pj ∈ P outputs vj when p is alive, and ⊥ when p has crashed.

Lemma 3. If CBC(P , Z) holds, then the protocol StrongBroadcast(P , Z, p, v) has the
following properties: Consistency: All (correct) players output the same value v′. Cor-
rectness: If the sender p is correct, then v′ = v; if p crashed before the invocation of
the protocol, then v′ =⊥; if p crashes during the protocol, then v′ ∈ {v, ⊥}.

Proof. Consistency follows immediately from the consistency property of Broadcast
and the consistency property of CDP. For correctness we consider 3 cases: (a) If the
sender p is correct through the whole protocol, then the consistency property of
Broadcast implies that for all correct pj’s, vj = v and the correctness property of CDP
implies that all correct players will output “alive” in CDP, hence they will all output v in
StrongBroadcast. (b) If p has already crashed before the invocation of StrongBroadcast,
then this is detected in Step 2 (by CDP) and the protocol outputs⊥. (c) If p crashes during
the protocol but is correct up to that point, then either this is detected in Step 2 and the
protocol outputs ⊥, or p is still alive at the beginning of Step 2 and has correctly broad-
cast his input v. Since, when p is not actively-corrupted one of the above 3 cases must
hold, the output of StrongBroadcast for such a p is always in {v, ⊥}. ��

3.4 Secret Sharing

A secret-sharing scheme allows a player (called the dealer) to distribute a secret, in such
a way that only qualified sets of players can reconstruct it. As secret-sharing scheme,
we employ a sum sharing (i.e., the secret is split into summands that add up to the
secret), folded with a replication sharing (i.e., every summand is given to a subset of
the players): Such a sharing is characterized by a sharing specification S , which is
a vector of subsets of the player set P . A value s is shared with respect to a sharing
specification S = (S1, . . . , Sm), when there exist summands s1, . . . , sm with s =∑

sk, and sk is given to every pi ∈ Sk. For a player pi ∈ P , we consider the vector
(si1 , . . . , si�

) of summands held by pi to be pi’s share of s, denoted as 〈s〉i. The vector
of all shares, denoted as 〈s〉 =

(
〈s〉1, 〈s〉2, . . . , 〈s〉n

)
, is a sharing of s. We say that

〈s〉 is a (consistent) sharing of s according to (P , S), if for each Sk ∈ S all (correct)
players in Sk have the same view on sk and s =

∑m
k=1 sk.

For an adversary structure Z , we say that a sharing specification S is Z-private if
for any sharing 〈s〉 according to S and for any adversary in Z , there exists a sum-
mand sk which this adversary does not know. Formally, S is Z-private if ∀(A, E, F) ∈
Z ∃S ∈ S : S ∩ E = ∅. For an adversary structure Z with maximal classes
Z =

{
(·, E1, ·), . . . , (·, Em, ·)

}
, we denote the natural Z-private sharing specification

by SZ =
(
P\E1, . . . ,P\Em

)
.
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In the following, we describe the protocol Share which allows a dealer p to share a
value s among the players in P according to a sharing specification S. The protocol is
a modification to tolerate fail-corruption of the sharing protocol from [Mau02]. It may
abort when p is incorrect.

Protocol Share(P, Z, S, p, s)
1. Dealer p chooses the summands s2, . . . , s|S| randomly and sets

s1 := s −
∑|S|

k=2 sk.
2. Execute the following steps for k = 1, . . . , |S|:

(a) p sends sk to every pi ∈ Sk, who denotes the received value as s
(i)
k (⊥ when

no value is received).
(b) Every pi ∈ Sk sends s

(i)
k to every pj ∈ Sk, who denotes the received value

as s
(i,j)
k .

(c) For each pj ∈ Sk StrongBroadcast is invoked to have pj broadcast a com-

plaint bit bk,j , where bk,j = 1 when s
(j)
k =⊥ or s

(i,j)
k /∈ {s

(j)
k , ⊥} for some

i, and bk,j = 0 otherwise.
(d) If a complaint was reported (i.e., bk,j = 1 for some j), then StrongBroadcast

is invoked to have p broadcast sk, and every pj ∈ Sk sets s
(j)
k to the broad-

casted value.
3. If p broadcasts ⊥ in Step 2d, then Share aborts with B = {p}.

Lemma 4. If CBC(P , Z) holds and S is a Z-private sharing specification, then the
protocol Share (P , Z, S, p, s) has the following properties. Correctness: Share either
outputs a consistent sharing of some s′, where s′ = s unless the dealer is actively
corrupted, or it aborts with B = {p}; it does not abort if p is correct. Secrecy: No
information on s leaks to the adversary.

Proof. Correctness: The consistency of the sharing is guaranteed because correct play-
ers either hold the same value for a common summand, or they complain and get a
consistent value for the summand by strong broadcast. Because all sent and broad-
casted summands are sk such that s =

∑
sk it is clear that the shared value is s when

the dealer is correct. Lastly, the protocol only aborts when the dealer is incorrect in
an invocation of StrongBroadcast. Secrecy: Because S is Z-private we know that the
summands of corrupted players do not reveal information on s. On the other hand, the
dealer only broadcasts summands for which a complaint is broadcast, i.e., two players
(claim to) have different values for that summand. This only happens when the dealer
or one of the disputing players is actively corrupted, or when the dealer has crashed. In
the first case, the adversary is entitled to know the summand, and in the second case,
the summand will not be broadcasted (the dealer has crashed). ��

Reconstructing a shared value towards a player is straight-forward: All players send the
summands they know (i.e., their share) to the output player, who tries to find the correct
value for each summand and computes the secret as the sum of the summands. However,
finding the correct value of a summand is not always possible when corrupted players
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send wrong values or no value to the output player. So we need an extra condition on
the adversary structure to ensure that the output player can always decide on the value
of every summand. We can slightly relax this condition when a sharing is reconstructed
publicly (rather than towards a dedicated output player): In this case, the players can
decide, depending on the published values, whether a summand is uniquely defined or
not, and if not, agree on a set B ⊆ P of incorrect players.

In the sequel, we present the protocols Announce and Reconstruct to announce
a summand, respectively reconstruct a sharing, towards a dedicated player, and the
protocols PublicAnnounce and PublicReconstruct to announce a summand, respec-
tively to reconstruct a sharing, towards all players. The latter protocols are non-robust;
they might abort with a non-empty set B ⊆ P of incorrect players. The abortion of
the protocol PublicAnnounce will allow to derive information on the actual adversary
class, which will be helpful in the output protocol of SFE.

Protocol Announce(P, Z, Sk, sk, p)
1. Every pi ∈ Sk sends sk to p, who denotes the received value as s

(i)
k (⊥ when no

value is received).
2. Let V ⊆ F denote the set of values v that are “explainable” with some adversary

in Z , i.e., for which there is an adversary class (A, E, F ) ∈ Z , such that {pi ∈
Sk : s

(i)
k =⊥} ⊆ F and {pi ∈ Sk : s

(i)
k /∈ {v, ⊥}} ⊆ A.

3. p sets sk to be the smallest element in V .

Lemma 5. If ∀(A1, E1, F1), (A2, E2, F2) ∈ Z: Sk �⊆ A1 ∪ A2 ∪ (F1 ∩ F2), then the
protocol Announce robustly announces sk to p.

Proof. We have to prove that (i) the set V contains the correct summand sk and (ii)
the set V contains no other values. (i) Observe that the summands s

(i)
k received by p

satisfy that {pi ∈ Sk : s
(i)
k =⊥} ⊆ F � and {pi ∈ Sk : s

(i)
k /∈ {sk, ⊥}} ⊆ A�, where

(A�, E�, F �) denotes the actual adversary class. As (A�, E�, F �) ∈ Z , it follows that
sk ∈ V . (ii) Consider any value v ∈ V . There exists an adversary class (A, E, F ) ∈ Z
such that {pi ∈ Sk : s

(i)
k =⊥} ⊆ F and {pi ∈ Sk : s

(i)
k /∈ {v, ⊥}} ⊆ A. By

assumption we know that Sk �⊆ A∪A� ∪ (F ∩F �), hence there exists a player pi ∈ Sk

with s
(i)
k �=⊥, pi /∈ A and pi /∈ A�. This implies that v = s

(i)
k = sk. ��

Protocol Reconstruct(P, Z, S, 〈s〉, p)
1. For every Sk ∈ S, Announce is invoked to have the correct summand sk an-

nounced towards p.
2. p computes s :=

∑|S|
k=1 sk and outputs s.

Lemma 6. If ∀k = 1, . . . , |S|, ∀(A1, E1, F1), (A2, E2, F2) ∈ Z: Sk �⊆ A1 ∪ A2 ∪
(F1 ∩ F2), then the protocol Reconstruct robustly reconstructs s towards p.

The proof follows immediately from Lemma 5.
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Protocol PublicAnnounce(P, Z, Sk, sk)
1. Every pi ∈ Sk publishes his value for sk (denoted as s

(i)
k ) using StrongBroadcast.

2. Every pj ∈ P : determine the set V ⊆ F of values that are “explainable” with
some adversary in Z (see protocol Announce).

3. Every pj ∈ P : output sk ∈ V if |V | = 1, otherwise abort with B = {pi ⊆ Sk :
s
(i)
k =⊥}.

Lemma 7. If CBC(P , Z) holds and ∀(A1, ·, ·), (A2, ·, ·) ∈ Z: Sk �⊆ A1 ∪ A2, then
the protocol PublicAnnounce either publicly announces sk, or aborts with a non-empty
set B ⊆ P of incorrect players. When it aborts, then there exists an adversary class
(A, E, F ) ∈ Z such that Sk ⊆ A� ∪ A ∪ (F � ∩ F ).

Proof. As V contains at least the correct summand sk (see proof of Lemma 5), it is clear
that PublicAnnounce either outputs sk or aborts. It remains to be shown that when it
aborts with B, then |B| > 0 and there exists an adversary class (A, E, F ) ∈ Z such that
Sk ⊆ A� ∪ A ∪ (F � ∩ F ). Note that sk ∈ V , hence PublicAnnounce aborts only when
there exists a value v �= sk with v ∈ V . This implies that there is an adversary class
(A, E, F ) ∈ Z with {pi ∈ Sk : s

(i)
k =⊥} ⊆ F and {pi ∈ Sk : s

(i)
k /∈ {v, ⊥}} ⊆ A.

Because v �= sk, we need {pi ∈ Sk : s
(i)
k �=⊥} ⊆ A ∪ A�, which implies that

Sk ⊆ A� ∪ A ∪ (F � ∩ F ). Furthermore, B must be non-empty, because otherwise
Sk ⊆ (A� ∪ A) would hold, contradicting the assumption in the lemma. ��

Protocol PublicReconstruct(P, Z, S, 〈s〉)
1. For every Sk ∈ S, PublicAnnounce is invoked to have the correct summand

sk announced. If an invocation of PublicAnnounce aborts with B, then also
PublicReconstruct aborts with B.

2. Every pj ∈ P computes s :=
∑|S|

k=1 sk and outputs s.

Lemma 8. If CBC(P , Z) holds and ∀k = 1, . . . , |S|, ∀(A1, ·, ·), (A2, ·, ·) ∈ Z: Sk �⊆
A1 ∪ A2, then the protocol PublicReconstruct either publicly reconstructs s, or aborts
with a non-empty set B of incorrect players.

The proof follows immediately from Lemma 7.

3.5 Multiplication

We present a protocol for securely computing a sharing of the product of two shared
values. The protocol is a variation of the multiplication protocol of [Mau02], capturing
fail-corruptions. The multiplication protocol may abort when faults occur, with out-
putting a set B ⊆ P of incorrect players.

The idea of the protocol is the following: As s and t are shared according to S,
we can use the summands s1, . . . , s|S| and t1, . . . , t|S| to compute the product st as

st :=
∑|S|

k,�=1 skt�. To do so, each term xk,� = skt� of this sum is shared by every
player knowing both sk and t�. Then the players perform consistency checks on the
shared summands and compute the sum of the shared terms xk,�, which results in a
sharing of st.
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Protocol Mult(P, Z, S, 〈s〉, 〈t〉)
1. For every (Sk, S�) ∈ S × S, the following steps are executed:

(a) Every pi ∈ (Sk ∩ S�) computes the products xk,� := skt� and invokes

Share(P , Z, S, pi, xk,�); denote the resulting sharing as 〈x(i)
k,�〉.

(b) Let pi denote the player with the smallest index in (Sk ∩ S�). For every

pj ∈ (Sk ∩ S�), the difference 〈x(j)
k,�〉 − 〈x(i)

k,�〉 is computed and, by invoking
PublicReconstruct, reconstructed.

(c) If all differences are 0, then the sharing 〈x(i)
k,�〉 of pi is adopted as sharing

of xk,�, i.e., 〈xk,�〉 := 〈x(i)
k,�〉. Otherwise (i.e., some difference is non-zero),

PublicAnnounce is invoked to have both sk and t� announced, and a default
sharing 〈xk,�〉 of xk,� = skt� is created (e.g., the first summand is set to xk,�

and the other summands are set to 0).
2. Each player in P (locally) computes his share of the product st as the sum of his

shares of all terms xk,�.
3. If any of the invoked sub-protocols aborts with B, then also Mult aborts with B.

Lemma 9. Assume that S is a Z-private sharing specification, 〈s〉 and 〈t〉 are consis-
tent sharings according to S, CBC(P , Z) holds, and the following two conditions hold:
∀Sk, S� ∈ S, ∀(A, ·, ·) ∈ Z : Sk ∩ S� �⊆ A and ∀Sk ∈ S, ∀(A1, ·, ·), (A2, ·, ·) ∈ Z :
Sk �⊆ A1 ∪ A2. Then the protocol Mult(P , Z, S, 〈s〉, 〈t〉) has the following properties.
Correctness: It either outputs a sharing of st according to (P , S) or it aborts with a
non-empty set B ⊆ P of incorrect players. Secrecy: No information on the inputs (i.e.,
on 〈s〉 and 〈t〉) leaks to the adversary.

Proof. Correctness: The conditions in the lemma are sufficient for all the invoked sub-
protocols (Share, PublicReconstruct, PublicAnnounce). The condition ∀Sk, S� ∈ S,
∀(A, ·, ·) ∈ Z : Sk ∩ S� �⊆ A ensures that every xk,� is known to at least one player
pi who is not actively corrupted; hence if no invocation of Share aborts and all dif-
ferences are zero, then the shared values are correct. Privacy: Due to the security of
Share, the invocations of Share do not leak information to the adversary. Furthermore,
PublicAnnounce is only invoked on summands sk, t� when two players in Sk ∩S� con-
tradict each other; at least one of these players is actively corrupted, hence the adversary
already knows sk, t� before PublicAnnounce is invoked. ��

3.6 Resharing

In the context of MPC, we will need to reshare shared values according to a different
sharing specification. The key idea is to have every summand sk in the original sharing
being reshared according to the new sharing specification, and then distributively add
the sharings of the summand, resulting in a new sharing of the original value.

In the following we describe the protocol Reshare(P , Z, S, S′, 〈s〉).

Lemma 10. Assume that S′ is a Z-private sharing specification, 〈s〉 is a consistent
sharing according to S, CBC(P , Z) holds, and for all (A1, ·, ·), (A2, ·, ·) ∈ Z the fol-
lowing two conditions hold: ∀Sk ∈ S : Sk �⊆ A1 ∪A2 and ∀S′k ∈ S′ : S′k �⊆ A1 ∪A2.
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Protocol Reshare(P, Z, S, S′, 〈s〉)
1. For every Sk ∈ S, the following steps are executed:

(a) Every pi ∈ Sk invokes Share(P , Z, S′, pi, sk); denote the resulting sharing

as 〈s(i)
k 〉.

(b) Let pi denote the player with the smallest index in Sk. For every pj ∈ Sk, the

difference 〈s(j)
k 〉 − 〈s(i)

k 〉 is computed and, by invoking PublicReconstruct,
reconstructed.

(c) If all differences are 0, then the sharing 〈s(i)
k 〉 of pi is adopted as sharing

of sk, i.e., 〈sk〉 := 〈s(i)
k 〉. Otherwise (i.e., some difference is non-zero),

PublicAnnounce is invoked to have sk announced, and a default sharing 〈sk〉
of sk according to S′ is created.

2. Every pi ∈ P (locally) computes the sum of his shares of all summands sk.
3. If any of the invoked sub-protocols aborts with B, then also Reshare aborts

with B.

Then the protocol Reshare(P , Z, S, S′, 〈s〉) has the following properties. Correctness:
It either outputs a sharing of s according to (P , S ′) or it aborts with a non-empty set
B ⊆ P of incorrect players. Secrecy: No information on the inputs (i.e., on 〈s〉) leaks
to the adversary.

Proof. Correctness: The conditions in the lemma are sufficient for all the invoked
sub-protocols (Share, PublicReconstruct, PublicAnnounce). The condition ∀Sk ∈ S,
∀(A1, ·, ·), (A2, ·, ·) ∈ Z : Sk �⊆ A1 ∪ A2 implies that ∀Sk ∈ S, ∀(A, ·, ·) ∈ Z :
Sk �⊆ A, which ensures that every sk is known to at least one player pi who is not
actively corrupted; hence if no invocation of Share aborts and all differences are zero,
then the shared values are correct. Privacy: Due to the security of Share, the invoca-
tions of Share do not leak information to the adversary. Furthermore, PublicAnnounce
is only invoked on the summand sk when two players in Sk contradict each other; at
least one of these players is actively corrupted, hence the adversary already knows sk

before PublicAnnounce is invoked. ��

4 (Reactive) Multi-party Computation

In this section we prove the necessary and sufficient condition on the adversary struc-
ture Z for the existence of perfectly Z-secure multi-party computation protocols. The
sufficiency of the condition is proved by constructing an MPC protocol.

Theorem 1. A set P of players can perfectly Z-securely compute any (reactive) com-
putation when CMULT(P , Z) and CREC(P , Z) hold, where

CMULT(P , Z) ⇐⇒
{

∀(A1, E1, F1), (A2, E2, F2), (A3, E3, F3) ∈ Z :
E1 ∪ E2 ∪ A3 ∪ (F1 ∩ F2 ∩ F3) �= P

CREC(P , Z) ⇐⇒
{

∀(A1, E1, F1), (A2, E2, F2), (A3, E3, F3) ∈ Z :
E1 ∪ A2 ∪ A3 ∪ (F2 ∩ F3) �= P
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The condition CMULT is needed for (non-robust) multiplication. The condition CREC
is needed for robust reconstruction.

4.1 The MPC Protocol

The circuit C to be computed consists of input, addition, multiplication, and output
gates.7 The reactiveness of the computation is modeled by assigning to each gate a
point in time when it should be evaluated.

The circuit is evaluated in a gate-by-gate fashion, where for input, multiplication,
and output gates, the corresponding sub-protocol Share, Mult, and Reconstruct, re-
spectively, is invoked. Due to the linearity of the sharing, addition (or linear) gates can
be evaluated locally by the players.

The non-robustness of the used sub-protocols is addressed differently depending on
the type of the gate: When in an input gate the input player does not share his input,
the players just pick a default sharing of some pre-agreed default value. The reconstruc-
tion protocol of the output gate is robust under the necessary condition for MPC. The
multiplication of shared values can abort (with a set B ⊆ P of incorrect players). If
this happens, the multiplication is retried in a smaller setting, namely with the player
set P ′ = P \ B and the adversary structure Z ′ which contains only those adversary
classes which are compatible with the fact that the players in B are incorrect. More
precisely, first both factors are re-shared to the new setting with P ′ and Z ′, then the
multiplication sub-protocol is invoked within this setting, and upon success, the result-
ing sharing of the product is re-shared to the original setting with P and Z . This process
is repeated until the multiplication succeeds, and with each repetition, the active player
set P ′ becomes smaller.

For the sake of clarity, we introduce two operators on adversary structures: For a
set B ⊆ P , we denote by Z|B⊆F the sub-structure of Z that contains only adversaries
who can fail-corrupt all the players in B, i.e., Z|B⊆F = {(A, E, F ) ∈ Z : B ⊆ F}.
Furthermore, for a set P ′ ⊆ P , we denote by Z|P′ the adversary structure with all
classes in Z restricted to the player set P ′, i.e., Z|P′ = {(A ∩ P ′, E ∩ P ′, F ∩ P ′) :
(A, E, F ) ∈ Z}. As syntactic sugar, we write Z|B⊆F

P′ for (Z|B⊆F ) |P′ .
It immediately follows from the above definitions that when the players in B have

been detected to be incorrect, then the actual adversary Z� is in Z|B⊆F . Furthermore,
we exclude the players in B from the multiplication protocol, and the new setting is
P ′ = P \ B and Z ′ = Z|B⊆F

P\B . One can easily verify that the conditions CBC, CMULT,
and CREC hold in (P \ B, Z|B⊆F

P\B ) when they hold in (P , Z), for an arbitrary B ⊆ P .
This results in the MPC protocol described below.

Lemma 11. The protocol MPC is perfectly Z-secure if CMULT(P ,Z) and CREC(P ,Z)
hold.

Proof (sketch). One can easily verify that the conditions in the lemma imply all con-
ditions required in the sub-protocols, hence the security of the MPC protocol follows
from the security of the sub-protocols. ��

7 This does not exclude probabilistic circuits, as a random gate can be simulated by having each
player input a random value and take the sum of those values as the output.
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Protocol MPC(P, Z, C)
1. Initialize the set of players detected as incorrect to P⊥ := ∅. Set the default

sharing specification S := SZ .
2. For every gate to be evaluated, do the following:

– Input gate for p: Invoke Share to have p share his input according to (P , S). If
Share aborts, then a default sharing of some pre-agreed default value is taken.

– Addition gate: Every pi ∈ P locally computes the sum of his respective
shares.

– Multiplication gate: Denote the sharings of the factors as 〈s〉 and 〈t〉, re-
spectively, and denote the set of active players as P ′ = P \ P⊥, the adver-
sary structure compatible with P⊥ being incorrect as Z ′ = Z|P⊥⊆F

P\P⊥
, and

the corresponding (Z ′-private) sharing specification as S′ = SZ′ . Invoke
Reshare(P ′, Z ′, S, S′, 〈s〉) and Reshare(P ′, Z ′, S, S′, 〈t〉) to obtain the shar-
ings 〈s〉′ and 〈t〉′ for (P ′, S′), respectively. Invoke Mult(P ′, Z ′, 〈s〉′, 〈t〉′)
to obtain a sharing 〈st〉′ of the product, according to (P ′, S′). Invoke
Reshare(P ′, Z ′, S′, S, 〈st〉′) to reshare this product according to (P , S).a If
any of the sub-protocols aborts with set B then set P⊥ := P⊥ ∪B and repeat
the gate.

– Output gate for p: Invoke Reconstruct to have the output reconstructed to-
wards p.

a Reshare outputs a sharing according to (P ′, S), which is trivially also a sharing according
to (P , S) since all players in P \ P ′ are incorrect.

4.2 Impossibility of MPC

In this section we prove that perfectly secure (reactive) MPC is not possible for some
circuits when CMULT(P , Z) or CREC(P , Z) is violated. We first prove that when
CMULT(P , Z) is violated, then even non-reactive computations cannot be securely
evaluated (Lemma 12). Secondly, we prove that when CREC(P , Z) is violated, then
the players in P cannot hold a secret joint state, which excludes the evaluation of (non-
trivial) reactive circuit (Lemma 13).

Lemma 12. If CMULT(P , Z) is violated, then there exist (even non-reactive) circuits
which cannot be evaluated perfectly Z-securely.

Proof. Consider P and Z with CMULT(P , Z) violated, and assume, to arrive at a con-
tradiction, that for every circuit C a perfectly Z-secure protocol exists. There exist
(A1, E1, F1), (A2, E2, F2), (A3, E3, F3) ∈ Z with E1 ∪ E2 ∪ A3 ∪ (F1 ∩ F2 ∩ F3) =
P . Let F = F1 ∩ F2 ∩ F3, P ′ = P \ F , and for i = 1, 2, 3, let A′i = Ai \ F
and E′i = Ei \ F . The alleged protocol must also be perfectly secure for the player
set P ′ and the adversary structure (with only active and passive corruption) Z ′ =
{(A′1, E′1), (A′2, E′2), (A′3, E′3)}, because one particular strategy of the adversary is to
fail-corrupt the players in F and make them crash at the very beginning of the protocol.
However, for (P ′, Z ′) perfectly secure (non-reactive) MPC protocols do not exist for
all circuits, as proven in [FHM99, Thm. 1]. ��
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Lemma 13. If CREC(P , Z) is violated, then the players cannot hold a secret joint state
with perfect security.

Proof. Consider P and Z with CREC(P , Z) violated, hence there exist (A1, E1, F1),
(A2, E2, F2), (A3, E3, F3) ∈ Z with E1 ∪ A2 ∪ A3 ∪ (F2 ∩ F3) = P . Without loss
of generality assume that E1 = {p1}, A2 = {p2}, A3 = {p3}, and F2 = F3 = {p4}.
We denote the view of pi as vi. To arrive at a contradiction, assume that these views
define a secret joint state v. Privacy requires that v1 does not determine v, hence there
exists a different state v′ �= v which could be represented by the views (v1, v

′
2, v
′
3, v
′
4).

Now consider the following two cases: (i) The secret state is v, and the adversary cor-
rupts (A2, E2, F2) and makes p4 crash and p2 take a random view, which (with perhaps
negligible probability) could be v′2. (ii) The secret state is v′, and the adversary corrupts
(A3, E3, F3) and makes p4 crash and p3 take a random view, which (with perhaps negli-
gible probability) could be v3. In both cases, the views of the players are (v1, v

′
2, v3, ⊥),

but the joint state is once v and once v′ �= v, contradicting perfect security. ��

5 Secure Function Evaluation

In this section we prove the sufficient and necessary condition on the adversary structure
Z for the existence of perfectly Z-secure function evaluation protocols. The sufficiency
of the condition is proved by constructing an SFE protocol. Note that the condition for
SFE is weaker than the condition for MPC.

Theorem 2. A set P of players can perfectly Z-securely compute any function if and
only if CMULT(P , Z) and CNREC(P , Z) hold, where

CMULT(P , Z) ⇐⇒
{

∀(A1, E1, F1), (A2, E2, F2), (A3, E3, F3) ∈ Z :
E1 ∪ E2 ∪ A3 ∪ (F1 ∩ F2 ∩ F3) �= P

CNREC(P , Z) ⇐⇒
{

∃ an ordering
(
(A1, E1, F1), . . . , (Am, Em, Fm)) of Z s.t.8

∀i, j, k ∈ {1, . . . , m}, i ≤ k : Ek ∪ Ai ∪ Aj ∪ (Fi ∩ Fj) �= P

The condition CMULT is needed for (non-robust) multiplication. The condition
CNREC is needed for non-robust reconstruction. Essentially, the latter condition al-
lows for a reconstruction protocol in which the actual adversary gets information on
the output only once it cannot disturb the protocol anymore.

5.1 The SFE Protocol

Our SFE protocol follows the standard approach of SFE protocols, namely to first
secret-share all inputs, then to evaluate the circuit gate by gate, and then to recon-
struct the output. However, the protocol employs sharings which are not robustly re-
constructible. This means that the adversary can break down the computation in such a

8 Remember that Z denotes the maximum classes in Z. One can verify that such an ordering
exists for Z exactly if it exists for Z.
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way that all sharings are lost. As the circuit is non-reactive, we can handle such an abor-
tion by repeating the whole protocol, including the input stage. The correct players will
give the same inputs in every iteration, but the adversary might give different inputs.
However, in a failed iteration, the adversary does not get any information about any
secrets (more precisely, the adversary could perfectly simulate all messages received
within a failed iteration already beforehand), so the inputs chosen by the adversary in
the successful iteration are independent of the other players’ inputs.

Termination is guaranteed by the fact that whenever an iteration aborts, then a non-
empty set B ⊆ P of incorrect players is identified, and the next iteration will proceed
without these players. Hence the number of iterations is bounded by n.

The delicate task is the output protocol. For simplicity, we describe the protocol only
for a single public output s; however, it naturally extends to a vector s of several public
outputs, which then can be extended to capture private outputs with standard techniques
(the output player inputs a one-time pad used for perfectly blinding the private element
of the output vector).

The intuition of the output protocol is as follows: First observe that in our sharing, the
privacy against each adversary is protected by a particular summand. More precisely,
for every adversary class (Ak, Ek, Fk) ∈ Z there exists a summand sk which is given
only to the players in Sk ∈ S with Sk ∩ Ek = ∅ (we even have Sk = P \ Ek). As long
as this summand is not published, an adversary of class (Ak, Ek, Fk) does not obtain
information about the output (from the point of view of the adversary, sk is a perfect
blinding of the output, and all other summands si are either known to the adversary
or are distributed uniformly). Second, observe that whenever the publishing of some
summand sk fails (i.e. the protocol PublicAnnounce aborts), then a set B ⊆ P of
incorrect players is identified. The information that the players in B are incorrect leaks
information about the actual adversary (A�, E�, F �), namely that B ⊆ F �. The key
idea of the output protocol is to publish the summands in such an order that whenever
PublicAnnounce aborts with B, then the information that the players in B are incorrect
excludes the possibility that the actual adversary is from a class whose summand has
already being published. In other words: If an adversary of class (Ai, Ei, Fi) could
potentially abort the announcing of the summand sk associated with the adversary class
(Ak, Ek, Fk), then the summand sk must be announced strictly before the summand si

is announced.
Let

(
(A1, E1, F1), . . . , (Am, Em, Fm)) denote an ordering of the maximum struc-

ture Z satisfying

∀1 ≤ i, j, k ≤ m, i ≤ k : Ek ∪ Ai ∪ Aj ∪ (Fi ∩ Fj) �= P ,

and let S denote the induced sharing specification S = (S1, . . . , Sm) with Sk = P\Ek.
Then the following protocol perfectly Z-securely publicly reconstructs a sharing 〈s〉
according to S, or aborts with a non-empty set B ⊆ P of incorrect players. Privacy
of the protocol is guaranteed under the assumption that those summands of 〈s〉 that are
unknown to the adversary are uniformly distributed. This is the case for all sharings in
our protocols.
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Protocol OutputGeneration(P, Z, S = (S1, . . . , Sm), 〈s〉)
1. For k = 1, . . . , m, the following steps are executed sequentially:

(a) PublicAnnounce(P , Z, Sk, sk) is invoked to have the correct summand sk

published.
(b) If PublicAnnounce aborts with B, then OutputGeneration immediately

aborts with B.
2. Every pj ∈ P (locally) computes s :=

∑m
k=1 sk and outputs s.

Lemma 14. Assume that S is a Z-private sharing specification constructed as ex-
plained, CBC(P , Z) holds, the condition ∀Sk ∈ S, (A1, ·, ·), (A2, ·, ·) ∈ Z : Sk �⊆
A1 ∪ A2 holds, and 〈s〉 is a consistent sharing according to S with the property that
those summands that are unknown to the adversary are randomly chosen. Then the pro-
tocol OutputGeneration either publicly reconstructs s, or it aborts with a non-empty
set B ⊆ P of incorrect players. If OutputGeneration aborts, then the protocol does not
leak any information on s to the actual adversary.

Proof. First observe that the pre-conditions of PublicAnnounce are satisfied. Second,
observe that by construction of S, we have ∀i, j, k ∈ {1, . . . , m}, i ≤ k : (P\Sk)∪Ai∪
Aj ∪(Fi ∩Fj) �= P . Now assume that the invocation of PublicAnnounce(P , Z, Sk, sk)
aborts with B ⊆ P . It follows from Lemma 7 that the actual adversary (A�, E�, F �)
satisfies the property that there exists (Aj , Ej , Fj) ∈ Z such that Sk ⊆ A� ∪ Aj ∪
(F � ∩ Fj). By the construction of S, no adversary class (Ai, Ei, Fi) ∈ Z with i ≤ k
satisfies this condition, hence the summand associated with the actual adversary has not
yet been announced. ��

In the following we describe the SFE protocol.

Protocol SFE(P, Z, C)
0. Let S = (P \ E1, . . . ,P \ Em) for the assumed ordering(

(A1, E1, F1), . . . , (Am, Em, Fm)
)

of Z .
1. Input stage: For every input gate in C, Share is invoked to have the input player

pi share his input xi according to S.a

2. Computation stage: The gates in C are evaluated as follows:
– Addition gate: Every pi ∈ P locally computes the sum of his respective

shares.
– Multiplication gate: Invoke Mult to compute a sharing of the product accord-

ing to S.
3. Output stage: Invoke OutputGeneration(P,Z,S, 〈s〉) for the sharing 〈s〉 of the

public output.
4. If any of the subprotocols aborts with B, then set P := P \ B, and set Z to

the adversary structure which is compatible with B being incorrect, i.e., Z :=
Z|B⊆F

P′ , and go to Step 1.

a If in a later iteration a player pi /∈ P should give input, then the players in P pick the default
sharing of a default value.
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Lemma 15. The above SFE protocol is perfectly Z-secure if CMULT(P , Z) and
CNREC(P , Z) hold.

Proof (sketch). One can easily verify that the conditions in the lemma imply all condi-
tions required in the sub-protocols, hence the security of the SFE protocol follows from
the security of the sub-protocols.

Special care needs to be taken for the fact that the adversary can abort the protocol and
provoke repetitions. Termination of this process is obvious, as in every repetition the
player set shrinks. Also correctness is straight-forward. Privacy is argued as follows:
The adversary can perfectly simulate his view in every iteration which aborts (even
without knowing the public output), hence his capability to abort an iteration does not
give him any additional power. ��

5.2 Impossibility of SFE

In this section we prove that perfectly Z-secure SFE is not possible for some circuits
when CMULT(P , Z) or CNREC(P , Z) is violated. The necessity of CMULT(P , Z) fol-
lows immediately from Lemma 12. It remains to show that CNREC(P , Z) is necessary:

Lemma 16. If CNREC(P , Z) is violated, then there exist functions which cannot be
evaluated perfectly Z-securely.

Proof. Consider P and Z with CNREC(P , Z) violated, i.e., for every ordering(
(A1, E1, F1), . . . , (Am, Em, Fm)) of Z there exists i, j, k ∈ {1, . . . , m} such that

i ≤ k and Ek ∪ Ai ∪ Aj ∪ (Fi ∩ Fj) = P . Consider the identity function, where every
player pi ∈ P inputs some value xi, and the public output is the vector (x1, . . . , xn). To
arrive at a contradiction, assume that there exists a perfectly Z-secure SFE protocol for
this function. This protocol implicitly defines for every set L ⊆ P the protocol round in
which the players in L obtain full joint information about the output. We denote the in-
dex of this round as φ(L), i.e., the joint view of the players in L in round φ(L) gives full
information on (x1, . . . , xn), but their joint view in round φ(L) − 1 does not give full
information. The function φ implies an ordering

(
(A1, E1, F1), . . . , (Am, Em, Fm)

)

on the adversary classes in Z such that for every 1 ≤ i ≤ k ≤ m : φ(Ei) ≤ φ(Ek).
Denote by i, j, k those indices that satisfy i ≤ k and Ek ∪ Ai ∪ Aj ∪ (Fi ∩ Fj) = P
(which are assumed to exist for contradiction). The adversary corrupts (Ai, Ei, Fi) and
behaves as follows: Up to round φ(Ei) − 1, the adversary lets the corrupted players
behave correctly. In round φ(Ei), the adversary crashes the players in Fi ∩ Fj , and has
the players in Ai \ (Fi ∩ Fj) send random values (also in all subsequent rounds). Still,
the adversary obtains full information on the output in round φ(Ei) (she knows all cor-
rect messages that were sent, respectively should have been sent to the players in Ei).
However, the players in Ek do not have full information before round φ(Ek) ≥ φ(Ei).
Hence these players cannot with certainty distinguish the current situation from the situ-
ation when the output vector would be different, the players in class (Aj , Ej , Fj) would
be corrupted, those in Fj ∩Fi would be crashed, and those in Aj \(Fj ∩Fi) would send
random messages. Hence the adversary has obtained full information about the output
vector, but some uncorrupted players do not, contradicting perfect security. ��
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6 Conclusions and Open Problems

We have considered an adversary whose corruption capability is described by a collec-
tion Z of adversary classes (A, E, F ), where the adversary may actively corrupt the
players in A, passively corrupt the players in E, and fail-corrupt the players in F . This
model unifies all corruption models considered in the literature. Indeed, all these models
are special cases of our model, in the sense that they consider either not all corruption
types, or only threshold corruption.

For this general adversary model, we have derived exact conditions for the exis-
tence of perfectly secure multi-party computation (MPC) and secure function evalua-
tion (SFE). It turned out that the condition for SFE is strictly weaker than the condition
for MPC. In fact, there are simple adversary structures for which perfectly secure SFE
is possible, but perfectly secure MPC and verifiable secret sharing are not possible. This
separation does not show up in the restricted models considered so far. The following
theorem states this separation. It follows immediately from the separating example in
the introduction with P ={p1, p2, p3, p4} and Z =

{
(∅, {p1}, ∅), ({p2}, {p2}, {p2, p4}),

({p3}, {p3}, {p3, p4})
}

.

Theorem 3. Perfectly secure MPC and SFE separate, i.e., there exist P and Z such
that perfectly Z-secure SFE among the players in P is possible, whereas perfectly Z-
secure MPC is not.

This paper considers only protocols with perfect security, and does not handle the cases
of unconditional (i.e., information theoretic with error probability) or cryptographic
security. In particular, the proofs of Lemmata 13 and 16 exploit the fact that not even
small error probability is allowed. Hence, the proof of separation does not carry over to
unconditional or cryptographic security. Moreover, the exact bounds for Z-secure MPC
and SFE in these models are not known yet.
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Abstract. Motivated by the desire to develop more realistic models
of, and protocols for, interactions between mutually distrusting parties,
there has recently been significant interest in combining the approaches
and techniques of game theory with those of cryptographic protocol de-
sign. Broadly speaking, two directions are currently being pursued:

Applying cryptography to game theory: Certain game-theoretic
equilibria are achievable if a trusted mediator is available. The question
here is: to what extent can this mediator be replaced by a distributed
cryptographic protocol run by the parties themselves?

Applying game-theory to cryptography: Traditional cryptographic
models assume some honest parties who faithfully follow the protocol,
and some arbitrarily malicious players against whom the honest play-
ers must be protected. Game-theoretic models propose instead that all
players are simply self-interested (i.e., rational), and the question then
is: how can we model and design meaningful protocols for such a setting?

In addition to surveying known results in each of the above areas, I
suggest some new definitions along with avenues for future research.

1 Introduction

The fields of game theory and cryptographic protocol design are both concerned
with the study of “interactions” among mutually distrusting parties. These two
subjects have, historically, developed almost entirely independently within differ-
ent research communities and, indeed, they tend to have a very different flavor.
Recently, however, motivated by the desire to develop more realistic models of
(and protocols for) such interactions, there has been significant interest in com-
bining the techniques and approaches of both fields.

Current research at the intersection of game theory and cryptography can be
classified into two broad categories: applying cryptographic protocols to game-
theoretic problems, and applying game-theoretic models and definitions to the
general area of cryptographic protocol design. In a bit more detail:
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– Certain game-theoretic equilibria are possible if parties rely on the existence
of an external trusted party called a mediator. (All the relevant definitions
are given in Section 2.) This naturally motivates a cryptographer1 to ask:
can the trusted mediator be replaced by a protocol that is run by the parties
themselves? Research aimed at understanding the conditions under which
the answer is positive, and developing appropriate protocols in such cases,
is described in Section 3.

– Traditionally, cryptographic protocols are designed under the assumption
that some parties are honest and faithfully follow the protocol, while some
parties are malicious and behave in an arbitrary fashion. The game-theoretic
perspective, however, is that all parties are simply rational and behave in
their own best interests. This viewpoint is incomparable to the cryptographic
one: although no one can be trusted to follow the protocol (unless it is in their
own best interests), the protocol need not prevent “irrational” behavior. The
general question here is: what models and protocols are appropriate for this
setting? This work is discussed in Section 4.

This paper surveys recent work in both the directions listed above, with a cryp-
tographic audience in mind. This survey focuses more on the problems being
addressed than on the solutions that have been proposed, and will thus em-
phasize definitions rather than concrete results. I also propose new definitional
approaches to some of the problems under discussion, and have made a particular
effort to highlight promising directions for future research.

Dodis and Rabin have recently written an excellent survey [16] that covers
very similar ground as the present work. The present survey is perhaps a bit more
technical, and somewhat more opinionated. Surveys more tangentially related to
the topics considered here include those by Linial [33] and Halpern [25].

It is fascinating to observe that the recent growth of interest in blending
game theory and cryptography has paralleled a surge of attention focused on
game theory by computer scientists in general, most notably (for the purposes
of this work) in the fields of computational complexity (see, e.g., [38, Chap. 2]),
networking and distributed algorithms (see, e.g., [38, Chap. 14]), network secu-
rity (see, e.g., [10] and [38, Chaps. 23, 27]), information security economics [38,
Chap. 25], and more. These are all well beyond the scope of the present work.

Note: Due to space limitations, this survey has been shortened somewhat. A full
version will be posted and maintained at http://eprint.iacr.org. Comments
and corrections are very much appreciated.

2 A Crash Course in Game Theory

This section reviews some central game-theoretic concepts. I have tried to sim-
plify things when, in my view, nothing of essence is lost (vis-a-vis the results
presented here). For extensive further details, the reader is referred to [39,19].

1 Although, interestingly, the question was first asked in the economics community.
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We begin by introducing the notion of normal form games. A n-player game
Γ = ({Ai}n

i=1, {ui}n
i=1), presented in normal form, is determined by specifying,

for each player Pi, a set of possible actions Ai and a utility function ui : A1 ×
· · · × An �→ R. Letting A

def= A1 × · · · × An, we refer to a tuple of actions
a = (a1, . . . , an) ∈ A as an outcome. The utility function ui of party Pi expresses
this player’s preferences over outcomes: Pi prefers outcome a to outcome a′ iff
ui(a) > ui(a′). (We also say that Pi weakly prefers a to a′ if ui(a) ≥ ui(a′).) We
assume that the {Ai}, {ui} are common knowledge among the players, although
the assumption of known utilities seems rather strong and it is preferable to
avoid it (or assume only limited knowledge).

The game is played by having each party Pi select an action ai ∈ Ai, and
then having all parties play their actions simultaneously. The “payoff” to Pi is
given by ui(a1, . . . , an) and, as noted above, Pi is trying to maximize this value.

Two-player games (for reasonably sized A1, A2) can be represented conve-
niently in matrix form by labeling the rows (resp., columns) of the matrix with
the actions in A1 (resp., A2). The entry in the cell at row a1 ∈ A1 and column
a2 ∈ A2 contains a tuple (u1, u2) indicating the payoffs to P1 and P2, respectively,
given the outcome a = (a1, a2). For example, the following represents a game
where A1 = {C, D}, A2 = {C′, D′}, and, e.g., u1(C, D′) = 1 and u2(C, D′) = 3:

Table 1. A two-player game

C′ D′

C (2, 2) (1, 3)

D (3, 1) (0, 0)

Types, and games of incomplete information. The above definition cor-
responds to so-called games of perfect (or complete) information. One can also
consider extensions that model different features of “real-world” interactions,
such as inputs provided to the parties at the beginning of the game whose val-
ues affect players’ utilities. (In the game theory literature these inputs are said
to determine the type of each party.) We now provide a simplified definition
incorporating this situation; see [39,19] for the general case.

Let Γ = ({Ai}, {ui}) be as above, where the {ui} are now functions from
({0, 1}∗)n×A to the reals. Let D be a distribution over vectors (t1, . . . , tn), where
each ti is a binary string. A game is now played as follows: first, (t1, . . . , tn) is
sampled according to D, and Pi is given ti. Next, each player Pi plays an action
ai ∈ Ai as before; once again, these are all assumed to played simultaneously.
Then, each player Pi receives payoff ui(t1, . . . , tn, a1, . . . , an).

2.1 Nash Equilibria

If parties play a game (of perfect information), what can we expect to hap-
pen? Say P1 knows the actions a2, . . . , an that the other parties are going to
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take. Then it will choose the action a1 ∈ A1 that maximizes u1(a1, . . . , an);
we call this a1 a best response of P1 to the actions of the other players. (A
best response need not be unique.) Given this action chosen by the first player,
P2 will then choose a best response a′2 ∈ A2, and so on. We see that a tuple
a = (a1, . . . , an) is “self-enforcing” only if each ai represents Pi’s best response
to a−i

def= (a1, . . . , ai−1, ai+1, . . . , an). A tuple with this property is called a Nash
equilibrium, and this serves as the starting point for all further analysis of the
game. Formally, if we let (a′i, ai) denote (a1, . . . , ai−1, a

′
i, ai+1, . . . , an), we have:

Definition 1. Let Γ = ({Ai}n
i=1, {ui}n

i=1) be a game presented in normal form,
and let A = A1 × · · · × An. A tuple a = (a1, . . . , an) ∈ A is a (pure-strategy)
Nash equilibrium if for all i and any a′i ∈ Ai it holds that ui(a′i, a−i) ≤ ui(a).

Another way of expressing this is to say that ai ∈ Ai weakly dominates a′i ∈ Ai

relative to a−i if ui(ai, a−i) ≥ ui(a′i, a−i). Then a is a Nash equilibrium if, for
all i, the action ai weakly dominates all actions in Ai relative to a−i.

In the example of Table 1, (C, D′) is a pure-strategy Nash equilibrium: given
that P1 plays C, the second player prefers to play D′; given that P2 plays D′,
the first player prefers to play C. A second Nash equilibrium is given by (D, C′).

In the above definition of a pure-strategy Nash equilibrium, the “strategy”
of Pi was to deterministically play ai (hence the name pure strategy). If we
limit players to such strategies, a Nash equilibrium may not exist in a given
game. To remedy this, we allow players to follow randomized strategies as well.
Specifically, if σi is a probability distribution over Ai then we also let σi represent
the strategy in which Pi samples ai ∈ Ai according to σi and then plays this
action. (We recover deterministic strategies by letting σi assign probability 1 to
some action.) Given a strategy vector σ = (σ1, . . . , σn), we overload notation and
let ui(σ) denote the expected utility of Pi given that all parties play according
to σ. (We remark that although this is the standard way to assign utilities to
distributions over outcomes, doing so makes the generally unrealistic assumption
that players are risk neutral in that they care only about their expected utility.)
The strategy σi is a best response to σ−i if it maximizes ui(σi, σ−i). Then:

Definition 2. Let Γ = ({Ai}n
i=1, {ui}n

i=1) be as above, and let σi be a distribu-
tion over Ai. Then σ = (σ1, . . . , σn) is a (mixed-strategy) Nash equilibrium if for
all i and any distribution σ′i over Ai it holds that ui(σ′i, σ−i) ≤ ui(σ).

One can verify that in the two-party game of Table 1, the strategy vector in which
P1 plays C with probability 1/2, and in which P2 plays C′ with probability 1/2
is a (mixed-strategy) Nash equilibrium.

The celebrated theorem of Nash [37] is that any game of perfect information
where the {Ai} are finite has a (mixed-strategy) Nash equilibrium. The finite-
ness assumption is necessary, as there are examples of two-player games with
countably-infinite action sets where no mixed-strategy Nash equilibrium exists.

Nash equilibria for games of incomplete information can be defined in the
natural way based on the above. Here the strategy of player Pi corresponds to
a function mapping its received input ti to an action ai ∈ Ai; pure strategies
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correspond to deterministic functions. Note that here we must take into account
parties’ expected utilities even when considering pure-strategy Nash equilibria,
since the utility of Pi may depend on the types of the other players, and these
are unknown at the time Pi chooses its action.

2.2 Other Equilibrium Concepts

Nash equilibria are considered by many to be the fundamental equilibrium no-
tion for games. Nevertheless, it is of interest to explore various refinements and
strengthenings of this concept.

Dominated strategies and iterated deletion. GivenagameΓ =({Ai}, {ui}),
we say that action ai ∈ Ai is strictly dominated with respect to A−i if there exists a
randomized strategy σi ∈ Δ(Ai) such that ui(σi, a−i) > ui(ai, a−i) for all a−i ∈
A−i (where A−i

def= ×j �=iAj). I.e., ai is strictly dominated if Pi can always improve
its situation by not playing ai. An action ai ∈ Ai is weakly dominated with respect
to A−i if there exists a randomized strategy σi ∈ Δ(Ai) such that (1) ui(σi, a−i) ≥
ui(ai, a−i) for alla−i ∈ A−i, and (2) there existsa−i ∈ A−i such thatui(σi, a−i) >
ui(ai, a−i). I.e.,Pi cannever improve its situationbyplaying ai, and can sometimes
improve its situation by not playing ai.

It seems that a rational player will never choose a strictly dominated action.
In fact, it is not hard to show that in any Nash equilibrium, no player assigns
positive probability to any strictly dominated action. Arguably, a rational player
should also never choose a weakly dominated action (although the argument in
this case is less clear). If we accept this assumption, then a Nash equilibrium in
which some party plays a weakly dominated action with positive probability is
not expected to occur in practice. For example, consider the following game:

C′ D′

C (10, 10) (1, 1)
D (10, 0) (2, 2)

(C, C′) is a Nash equilibrium. However, action C of player P1 is weakly dom-
inated by action D. Thus, we may expect that P1 plays D — but this forces
us to the Nash equilibrium (D, D′). Note that both players now end up doing
worse! Intuitively, both players prefer the Nash equilibrium (C, C′), but this is
not “stable” in a sense we will define below.

Say we are given a game Γ 0, and we have eliminated the weakly dominated
actions of each player from consideration. This leaves us with “effective” action
sets {A1

i } for each player. We may now iterate the process, and remove any
actions that are weakly dominated in the “reduced game” Γ 1 =

(
{A1

i }, {ui}
)
,

etc. This leads to the following definition.

Definition 3. Given Γ = ({Ai}, {ui}) and Â ⊆ A, let DOMi(Â) denote the set
of strategies in Âi that are weakly dominated with respect to Â−i. For k ≥ 1,
set Ak

i
def= Ak−1

i \ DOMi(Ak−1). Set A∞i
def= ∩kAk

i . A Nash equilibrium σ of Γ
survives iterated deletion of weakly dominated strategies if σi ∈ Δ(A∞i ) for all i.
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Stability with respect to trembles. Another means to distinguish among a
set of Nash equilibria is to ask how stable each such equilibrium is to “mistakes”
(or trembles) of the other players. Such mistakes might correspond to a real
mistake on the part of some player (e.g., a player chooses an irrational strategy
by accident), some “out-of-band” event (e..g, a network failure), or the fact that
a player’s utility is slightly different than originally thought.

To define stability with respect to trembles, we must first define a metric d on
the strategy space Δ(A) of the players. Assuming A is finite, a natural candidate
is statistical difference and we assume this in the definition that follows. Various
notions of stability with respect to trembles have been considered in the game
theory literature, although some of them seem problematic in a cryptographic
setting. The following seems best for our context:

Definition 4. Let Γ = ({Ai}, {ui}), and let σ be a Nash equilibrium in Γ . Then
σ is stable with respect to trembles if there exists an ε > 0 such that for all i and
every σ′−i ∈ Δ(A−i) with d(σ−i, σ

′
−i) < ε, the strategy σi is a best response to

σ′−i. I.e., for every σ′i ∈ Δ(Ai) it holds that ui(σ′i, σ
′
−i) ≤ ui(σi, σ

′
−i).

That is, even if Pi believes there is some small probability that the other players
will make a mistake (and not play according to σ−i), it is still in Pi’s best
interests to play according to σi.

As an example, consider the following two-player game:

A′ B′ C′

A (10, 2) (1, 0) (0, 1)
B (10, 0) (0, 0) (100, 100)

(A, A′) is a Nash equilibrium, but it is not stable with respect to trembles: if P1
believes that P2 might play C′ with any positive probability ε (but still plays B′

with probability 0), then P1 will prefer to play B rather than A. On the other
hand, (C, C′) is a Nash equilibrium that is stable with respect to trembles: for
small enough ε > 0, even if P1 believes that P2 might play something other
than C′ with probability ε, it is still in P1’s best interest to play C.

I am not aware of any results stating conditions under which stable equilibria
are guaranteed to exist.

Coalitions. Thus far, we have only been considering single-player deviations,
i.e., whether it is in any single player’s best interests to deviate from some pre-
scribed strategy. Cryptographers generally prefer to think in terms of coalitions
of players acting together. In general, a Nash equilibrium provides no “protec-
tion” against such coalitions.

What does it mean for a coalition C to prefer one outcome to another? There
are at least four natural possibilities:

– C prefers σ to σ′ only if every player in C weakly prefers σ to σ′, and some
player in C strictly prefers σ to σ′.

– C prefers σ to σ′ only if the sum of the utilities of the parties in C improves;
i.e., if

∑
i∈C ui(σ) >

∑
i∈C ui(σ′). (Note that for this to make sense, we must
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assume that the utility functions of all players in C are measured in the same
units.) This definition can be viewed as capturing the ability of players in C
to make “side payments” to each other before or after the game.

– C prefers σ to σ′ if any player in C prefers σ to σ′, i.e., if ui(σ) > ui(σ′)
for some i ∈ C. The definition makes sense if we think of one adversarial
party corrupting other parties and taking complete control over their actions.
Note also that preference of σ to σ′ with respect to this definition implies
preference with respect to the previous two definitions.

– Another possibility is to simply assume utility functions uC for each possible
coalition C, and then define preference in the obvious way. This is the most
general approach (it subsumes the previous three), but requires additional
assumptions about players’ utilities.

We adopt the third definition here.
Given a set C = {i1, . . . , it} ⊂ [n] and a vector σ = (σ1, . . . , σn), we let

AC
def= ×i∈CAi, σC

def= (σi1 , . . . , σit), and σ−C
def= σ[n]\C . Then:

Definition 5. Let Γ = ({Ai}n
i=1, {ui}n

i=1). Then for 1 ≤ t < n the strategy
vector σ = (σ1, . . . , σn) is a t-resilient equilibrium if for all C ⊂ [n] with |C| ≤ t,
all i ∈ C, and any σ′C ∈ Δ(AC), it holds that ui(σ′C , σ−C) ≤ ui(σ).

That is, for every coalition C of size at most t, no member of the coalition
improves its situation no matter how the members of C coordinate their actions.

Observe that a 1-resilient equilibrium is a Nash equilibrium. Extending other
equilibrium concepts to the case of coalitions seems not to have been explored
significantly.

Mixed models. It is standard in game theory to assume that all players are
rational. Recent work [1,35,2] has explored models where most parties are ratio-
nal, but some players are malicious and behave arbitrarily. Treating players as
malicious can be viewed (to some extent) as treating their utilities as completely
unknown. It is also possible to assume that some players honestly follow the pro-
scribed protocol — perhaps out of altruism or laziness — rather than seeking
to improve their utility (although it should be in these players’ interests to run
the protocol altogether). These are interesting directions that are not discussed
any further in this survey.

2.3 Correlated Equilibria

Correlated equilibria [3] offer another solution concept with some advantages
relative to Nash equilibria. In some games, there may exist a correlated equi-
librium that, for every party Pi, gives a better payoff to Pi than any Nash
equilibrium (see [36] for an example). More generally, correlated equilibria have
payoffs outside the convex hull of all Nash equilibria, and therefore give more op-
tions to the players. Finally, correlated equilibria of any game can be computed
in polynomial time, something not believed to be the case for Nash equilibria.
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Given a game Γ = ({Ai}, {ui}), we define a mediated version of Γ which
relies on a trusted, external party M called the mediator. The game is now
played in two stages: first, the mediator chooses a vector of actions a ∈ A
according to some known distribution M, and then hands the recommendation
ai to player Pi. The players then play Γ as before by choosing any action in their
respective action sets. Players are “supposed” to follow the recommendation of
the mediator, and a correlated equilibrium is one in which it is in each player’s
best interests to do so. To formally define this notion, let ui(a′i, a−i | ai) denote
the expected utility of Pi, given that it plays action a′i after having received
recommendation ai and all other parties play their recommended actions a−i.
(The expectation here is over a sampled according to M.)

Definition 6. Let Γ = ({Ai}, {ui}). A distribution M ∈ Δ(A) is a correlated
equilibrium if for all a = (a1, . . . , an) in the support of M, all i, and all a′i ∈ Ai,
it holds that ui(a′i, a−i | ai) ≤ ui(a | ai).

Any Nash equilibrium is a correlated equilibrium, but Nash equilibria correspond
to the special case where M is a product distribution over the Ai.

Let ui(M) denote the expected utility of Pi when all parties follow their actions
as recommended by M. A definition equivalent to the previous one, but better
suited for extensions to coalitions as well as the computational setting, is:

Definition 7. Let Γ = ({Ai}, {ui}). A distribution M ∈ Δ(A) is a correlated
equilibrium if for all i and any fi : Ai → Ai it holds that

ui(fi(ai), a−i) ≤ ui(M),

where a is sampled according to M.

As an example of a game with a correlated equilibrium that is not a Nash
equilibrium, consider the two-party game of Table 1 and the distribution that
assigns probability 1/3 to each of (C, D′), (D, C′), and (C, C′). One can check
that neither party has any incentive to deviate from their recommended action,
and each player has expected utility 2 (an improvement on the mixed-strategy
Nash equilibrium described in Section 2.1).

In games of incomplete information (as we have defined them in Section 2), a
mediated game is played as follows: first, a vector (t1, . . . , tn) is sampled accord-
ing to a distribution D, and ti is given to Pi. Then, each party Pi sends some
t′i to the mediator. Based on the vector t′ = (t′1, . . . , t′n) received, the mediator
samples a vector a ∈ A according to a distribution M(t′), and recommends
action ai to player Pi. The parties then play as before, choosing whether or
not to follow the mediator’s recommendation. Correlated equilibria in this situ-
ation are defined as the natural extension of the above, through we stress that
a player’s strategy now determines both what value t′i it sends to the mediator
(as a function of the received input ti) as well as what action it plays in the
game. A correlated equilibrium is said to be truthful if it is in each party’s best
interest to send t′i = ti to the mediator. The revelation principle characterizes
when truthful correlated equilibria exist.
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Correlated equilibria in the presence of coalitions. The basic approach
used to handle coalitions in Definition 5 can be extended in the natural way to the
case of correlated equilibria. Two variants of the definition are obtained, however,
depending on the details of how the mediated game is played. If ex ante collusion
is allowed, the parties in a coalition C may coordinate their strategies in advance,
but are assumed unable to communicate after the mediator provides them with
their recommended actions. If ex post collusion is allowed, the parties in C can
communicate even after receiving their recommendations from the mediator.

Definition 8. Let Γ = ({Ai}, {ui}) be an n-party game, and let 1 ≤ k < n. A
distribution M ∈ Δ(A) is an ex ante t-resilient correlated equilibrium if for all
C ⊂ [n] with |C| ≤ k, any functions {fi : Ai → Ai}i∈C, and all i ∈ C it holds that
ui ({fi(ai)}i∈C , a−C) ≤ ui(M), where a is sampled according to M.

M is an ex post t-resilient correlated equilibrium if for all C as above, any
function fC : AC → AC, and any i ∈ C it holds that ui(fC(aC), a−C) ≤ ui(M),
where a is sampled according to M.

2.4 Extensive Form Games

Extensive form games remove the assumption that players act simultaneously.
Such games are best described as occurring in a sequence of rounds, where in
any given round the game might specify that all parties play simultaneously (as
in a normal form game) or that some subset of designated parties plays. Play of
the game thus defines a history of the actions taken by the players thus far, and
a player Pi’s strategy σi now specifies, for each round in which it is Pi’s turn
to move, a (randomized) function mapping possible histories to actions. Players’
utilities are now functions of terminal histories (i.e., histories that occur at the
end of the game), rather than functions of the strategy vector of the players. We
rely on the above intuitive description rather than present a formal definition.

We provide a simple example of an extensive form game, which also demon-
strates how introducing alternation can affect the outcome of a game. Consider
a seller P1 and a buyer P2, where P1 can either sell high (H) or low (L), and P2
can choose either to buy (B) or not (N). Payoffs are given by the matrix on the
left, but we will assume that the seller announces its action first. This gives an
extensive form game in which the buyer can follow any of four (pure) strategies;
we let XY denote the strategy where P2 chooses X if the seller chooses H , and
P2 chooses Y if the seller chooses L. This extensive form game is represented in
normal form in the matrix on the right.

Table 2. An extensive form game presented in normal form

B N

H (10, 1) (0, 0)

L (5, 6) (0, 0)

BB BN NB NN

H (10, 1) (10, 1) (0, 0) (0, 0)

L (5, 6) (0, 0) (5, 6) (0, 0)
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Looking at the game on the right, we see that (L, NB) is a Nash equilibrium.
The strategy being followed by P2 is to refuse to buy if the buyer charges the
higher price, and if the seller knows that P2 will follow this strategy then it is in
the seller’s best interest to charge a low price. In contrast, the game on the left
(where parties move simultaneously) has the unique Nash equilibrium (H, B).

Something odd about the Nash equilibrium (L, NB) of the extensive form
game is that P2 is, in essence, threatening to play irrationally if P1 plays H
(since, conditioned on P1 playing H , the buyer is better off playing B than N).
Another way to say this is that P2 plays rationally given any realizable history
(where history h is realizable with respect to σ if this history occurs with positive
probability when all parties play according to σ), but P2 threatens to play irra-
tionally at some non-realizable history. In the following section, we will discuss
a refinement of Nash equilibria that eliminates such “empty threat” strategies.

2.5 Equilibrium Concepts in Extensive Form Games

Any game in extensive form can be viewed as a normal form game by letting
the set of allowable actions correspond to the players’ strategies. Thus, all the
equilibrium concepts we have discussed previously can be applied to extensive
form games as well. However, it is often more natural to view certain games in
extensive form, and thinking of games in this way motivates new equilibrium con-
cepts. In particular, a question that arises with regard to extensive form games
is whether we need to “pay attention” to players’ strategies at non-realizable his-
tories. In some cases paying attention to such strategies makes intuitive sense,
while in other cases the situation is less clear.

Subgame perfect equilibria. As noticed in the previous section, certain strat-
egy vectors may be Nash equilibria but contain “empty threats” by one or more
of the players. Subgame perfect Nash equilibria eliminate this possibility. To de-
fine this concept, we introduce (informally) the notion of the reduced game Γ h

of an extensive form game Γ . Basically, Γ h corresponds to Γ where some initial
history h is fixed; we may view Γ h as the continuation of Γ conditioned on the
fact that history h has been observed thus far. A strategy σi in Γ naturally
induces a strategy σh

i in Γ h by setting σh
i (h′) = σi(h‖h′).

Definition 9. Let Γ be an extensive form game, and let σ be a Nash equilibrium
in Γ . Then σ is subgame perfect if for all possible histories h of Γ , the strategy
vector σh is a Nash equilibrium of the reduced game Γ h.

Recall that a history h is realizable (with respect to σ) if it occurs with positive
probability when all parties follow σ. If the definition above only quantified over
realizable histories, then every Nash equilibrium would satisfy the definition.

In the game of Table 2 the Nash equilibrium (L, NB) is not subgame perfect
because, conditioned on the (non-realizable) history in which P1 plays H , player
P2 prefers to play B instead of N . Equilibrium (H, BB) is subgame perfect.
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Stability with respect to trembles. There are two possible ways to extend
the definition of stability with respect to trembles to extensive form games,
depending on whether or not subgame perfection is also required. The following
definition does not take subgame perfection into account. Say two strategies
σi, σ

′
i of Pi yield equivalent play with respect to σ if for every history h realizable

with respect to σ it holds that σi(h) = σ′i(h). (This just means that, assuming
all other parties play σ−i, play proceeds identically whether Pi plays σi or σ′i.)

Definition 10. Let Γ be an extensive form game, and let σ be a Nash equilib-
rium in Γ . Then σ is stable with respect to trembles (for realizable histories) if
there exists an ε > 0 such that for all i and every σ′−i with d(σ−i, σ

′
−i) < ε there

exists a σ′i that is a best response to σ′−i and such that σi and σ′i yield equivalent
play with respect to σ.

2.6 Cryptographic Considerations

In a cryptographic setting, it is natural to modify the way games are treated
and the way various equilibrium notions are defined. We give an example of
how this might be done for the specific case of parties running a protocol in the
standard cryptographic sense, though it can be easily extended for more general
scenarios (for examples, parties running a protocol and then taking some action
as in Section 3, or parties who receive some initial input as in Section 4).

As usual in the cryptographic setting, we introduce a security parameter k
provided to all parties at the beginning of the game. The action of a player Pi now
corresponds to running an interactive Turing machine (ITM) Mi. This ITM Mi

takes as input some current state and incoming messages from the other parties,
and outputs the next message of player Pi along with updated state. The message
mi is then sent to all other parties (we are assuming here that communication
is over a broadcast channel). We require Mi to run in probabilistic polynomial-
time, which we take to mean that the next message function is computed in time
polynomial in k. This definition allows Mi to run for an unbounded number of
rounds and, if desired, we can additionally require that the expected number of
rounds for which Mi runs is also polynomial.

Utility functions take the security parameter k as input, and are functions
mapping transcripts of a protocol execution to the reals that can be computed
in time polynomial in k. We stress that, as in extensive form games, utilities
depend only on the “observable outcome” of the game play.

For the purposes of this section, we define a computational game Γ to be
one in which the actions of each player correspond to the set of probabilistic
polynomial-time ITMs, and where the utilities of each player are polynomial-
time computable. We remark that we no longer need to consider mixed strategies,
since a mixed strategy that can be implemented in polynomial time corresponds
to a pure strategy (since pure strategies correspond to randomized ITMs).

An important difference between the cryptographic setting and the setting we
have considered until now is that now parties are assumed to be indifferent to
negligible changes in their utilities. For example:
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Definition 11. Let Γ = ({Ai}, {ui}) be a computational game. A strategy vec-
tor M = (M1, . . . , Mn) is a computational Nash equilibrium if for all i and any
probabilistic polynomial-time ITM M ′

i there is a negligible function ε such that

ui(k, M ′
i , M−i) − ui(k, M ) ≤ ε(k).

I am unaware of any result characterizing conditions under which Nash equilibria
exist in computational games.

Subgame perfection and related notions. Execution of a protocol can nat-
urally be regarded as an extensive form game. Extending equilibrium notions for
extensive form games to the computational setting is, however, less obvious. For
example, a first approach to extending the notion of subgame perfection to the
computational setting would be to say that the strategy vector σ of the game Γ
is subgame perfect if for all possible histories h of Γ , the strategy vector σh is a
computational Nash equilibrium of the reduced game Γ h. However, this ignores
the probability with which history h is reached! On the other hand, it is unclear
how to assign a probability to a non-realizable history. We are not aware of any
definition of computational subgame perfection that deals with these issues.

A recent definition suggested by Kol and Naor [29] explicitly rejects the idea
of “weighting” the utility of strategies according to the probability with which
a given history is reached. Instead, informally, they require that conditioned on
reaching any history that occurs with positive probability, players’ strategies
should remain in equilibrium. In their definition of a computational game, they
allow players to use ITMs which run in time polynomial in k + r, where r is the
number of rounds that have been played thus far. (Thus, the next-message func-
tion in their case may be viewed as a function from the entire history/transcript
thus far to a next message, rather than from some internal state and a set of
incoming messages to a next message, as defined above.) For lack of any better
name, we refer to ITMs of this sort as running in liberal polynomial time and
refer to the notion of t-resilient∗ equilibria for strategy vectors that remain in
equilibrium even with respect to this stronger class of machines. Finally, we let
ui(· | h) denote the expected utility of Pi conditioned on history h. We now give
the definition of Kol and Naor:2

Definition 12. Let Γ be a computational game. A strategy vector M = (M1,
. . ., Mn) is computationally t-immune3 if for every history h realizable with respect
to M and every i, the strategy vector Mh is a t-resilient∗ Nash equilibrium in
the reduced game Γ h. I.e., for every C ⊂ [n] with |C| ≤ t and every liberal
polynomial-time ITM M ′

C there is a negligible function ε such that

ui(k, M ′
C, M−C | h) − ui(k, M | h) ≤ ε(k).

2 One change we introduce is to condition on observable histories rather than on
players’ random coins (which may be private).

3 Note that immunity refers to an entirely different concept in [1].
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2.7 Critiques of Game Theory

Without going into much detail here, I will simply say that it is not at all clear
whether game theory provides the “best” way of modeling interactions, both in
general as well as specifically in a cryptographic setting. (All of the critiques
I mention here are well-known, and not in any way novel.) For starters, it is
unclear the extent to which the behavior of most people can be modeled as
rational. (Social economists study exactly this issue.) Even if we are willing to
believe that people act rationally, it is not always clear when a protocol designer
can assume any knowledge of their utilities.

Irrespective of the above, many of the solution concepts are unsatisfying. The
notion of a Nash equilibrium is perhaps the most intuitively appealing one, but
in cases where multiple Nash equilibria exist it is unclear which one the parties
will settle on or even if they can agree to settle on one at all. Other notions have
been introduced in an effort to distinguish among various Nash equilibria, but
it seems that for every such notion there exists a game in which applying the
notion goes against one’s intuition. (See, e.g., [19, pp. 462–463] for an example
in the context of iterated deletion of weakly dominated strategies where it is to
one party’s advantage to publicly burn their money.)

3 Implementing Mediators Using Cryptography

As we have seen in Section 2.3, if parties are willing to assume the existence of
a trusted mediator then they can potentially achieve certain equilibria that may
be “preferable” to any of the available Nash equilibria. If a trusted mediator is
not available, the question becomes: to what extent can the parties themselves
run a protocol in place of the mediator?

This question was first explored in the economics community [14,6,18,9,42,43,4]
(see [2] for a summary of these results), where researchers suggested “cheap talk”
protocols by which parties could communicate amongst themselves to implement
a correlated equilibrium. (As the terminology suggests, communication among the
players is “cheap” in the sense that it costs nothing; it is also “worthnothing” in the
sense that players are not “bound” to any statements they make; e.g., there is no
legal recourse if someone lies). In the cryptography community, the question was
first addressed by Dodis, Halevi, and Rabin [15].

3.1 Defining the Problem

Let us begin by defining the basic problem. (Other variants and extensions will
be explored below.) We are given some n-party game Γ = ({Ai}, {ui}) in normal
form, along with a correlated equilibrium M. We then define the extensive form
game ΓCT in which all parties hold a common security parameter k and first
communicate in a “cheap talk” phase. The parties then play Γ , making their
moves simultaneously (as always). Following the game-theoretic convention, all
parties must play some action in Γ . (I.e., we do not allow player Pi to “abort” in
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Γ unless this is an action in Ai.) On the other hand, following the cryptographic
convention we do allow players to abort (and refuse to send any more messages)
during the cheap talk phase.

We make no assumptions regarding the exact communication model during
the cheap talk phase. For now, however, we assume that colluding parties can
communicate “out of band” throughout the entire game. (This assumption is
removed in Section 3.4.) Thus, for now we focus on ex post correlated equilibria
which are resilient to coalitions even when such communication is allowed.

A player’s strategy in ΓCT determines both the protocol it runs in the cheap
talk phase as well as the action it plays in Γ . We may now define the basic goal:

Definition 13. Let Γ be a game, and let M be an ex post t-resilient correlated
equilibrium in Γ . Let ΓCT be the cheap talk extension of Γ , and let σ be an
efficient strategy vector in ΓCT . Then σ is a t-resilient implementation of M if
(1) σ is a t-resilient computational equilibrium in ΓCT , and (2) for all i, it holds
that ui(k, σ) = ui(k, M).

One might strengthen the definition to require that the distribution of payoffs in
ΓCT (both for each party as well as when considering joint distributions among
multiple parties) is close to the distribution of payoffs in the original mediated
game. A stronger requirement of a different flavor is given by Lepinski et al. [30],
who require (informally) that any vector of expected payoffs achievable by C in
ΓCT (i.e., even ones that are sub-optimal for C) can also be achieved by C in the
original mediated game. We do not impose such requirements here.

3.2 A Simple Observation

It is instructive to begin with a relatively simple observation: if t, n, and the
communication model are such that completely fair secure multi-party compu-
tation [20, Def. 7.5.4] is possible, then any correlated equilibrium M of any
game Γ has a t-resilient implementation: During the cheap talk phase the par-
ties run a completely fair protocol Π computing a ← M, where Pi receives ai as
output. Following the cheap talk phase, each party plays the action it received
as output in Π . It is not hard to see that the strategy vector thus specified (i.e.,
“run Π and then play the result”) is a t-resilient (computational) equilibrium
with expected payoffs identical to those in the original mediated game.

Applying the above observation to the standard communication model, we see
that if parties are connected by pairwise point-to-point channels then a t-resilient
implementation of any correlated equilibrium exists when t < n/3. If a broad-
cast channel or a PKI is additionally assumed, then t-resilient implementations
exist whenever t < n/2. The above all follow from standard results in secure
multi-party computation [11,8,40,7]. Lepinski et al. [30] show how to achieve
completely fair secure computation for any t < n — and hence show t-resilient
implementations of any correlated equilibrium for t < n — in a non-standard
communication model where “secure envelopes” are assumed. (Completely fair
secure multi-party computation using point-to-point channels and broadcast is,
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in general, impossible for t ≥ n/2 [13].) Assuming secure envelopes may be rea-
sonable in some settings, but such envelopes seem impossible to realize (without
assuming trusted parties) in a distributed setting such as the Internet.

3.3 Implementing Mediators without Completely Fair MPC

The natural next question is: when can a correlated equilibrium be implemented
even though completely fair secure computation is ruled out? The initial result
in this direction is due to Dodis, Halevi, and Rabin [15], who examine the case
t = 1, n = 2. Before explaining their solution, we first introduce some termi-
nology. Let Γ be a game in normal form. Then the minimax profile against
player Pi is an action a−i ∈ A−i (or, more generally, in the product distribution
×j �=iΔ(Ai)) minimizing maxai∈Ai{ui(ai, a−i)}. In other words, a minimax pro-
file a−i “punishes” Pi by giving Pi its lowest possible utility, assuming Pi plays
a best response to the strategy of the other parties.

The basic idea of Dodis, Halevi, and Rabin is as follows: Let M be a cor-
related equilibrium in some two-party game Γ . In ΓCT , the two parties run a
protocol Π for computing (a1, a2) ← M, where party Pi receives ai as output.
This protocol Π is “secure-with-abort” (cf. [20, Def. 7.2.6]), which informally
means that privacy and correctness hold but fairness does not; in particular, we
assume it is possible for P1 to receive its output even though P2 does not. After
running Π , each party plays the action it received as output in Π ; if P2 does
not receive output from Π then it plays the minimax profile against P1.

It is not hard to see that this is a 1-resilient implementation of M. First, it
is immediate that if both parties play the indicated strategy, then the payoffs
of both parties in ΓCT are exactly the payoffs they would receive by playing
M in Γ . Let us now argue that this is a computational Nash equilibrium in
ΓCT . We first observe that P2 has no incentive to deviate: no matter how P2
plays when running Π , party P1 receives correctly-distributed output and plays
according to the correlated equilibrium. Given this, P2’s best action to play in
Γ is given by its own output from Π . We remark that here we are relying on
the assumption that P2 can only run polynomial-time strategies, and that P2
is indifferent to negligible differences in its expected utility, exactly as we have
defined things in Definition 11.

As for P1, the only way it can (effectively) deviate during the cheap talk
phase is by running Π until it receives its own output a1 and then possibly
aborting the protocol so that P2 does not receive any output. We claim that
it is never to P1’s advantage to abort. (Note that the analysis in [15] seems
to assume that P1 either never aborts or always aborts, but of course P1 can
determine whether to abort based on its output.) If P1 allows P2 to receive its
output, this induces some mixed strategy σ2 that will be played by P2. (I.e.,
σ2 represents the marginal distribution on P2’s recommended action according
to M, conditioned on the fact that P1’s recommended action is a1.) Since M is
a correlated equilibrium, a1 is a best response to σ2. If P1 aborts, then P2 will
play a minimax profile σ′2 against P1. By definition of a minimax profile, P1’s
best response to σ′2 cannot give P1 better utility than its best response to σ2.
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We conclude that P1 always does worse by aborting the execution of Π . Given
that both parties receive output in Π , it is obviously to P1’s advantage to play
its recommended action. This completes the proof.

Extensions. The above ideas do not extend easily to a more general setting.
For example, consider the case t = 1, n = 3 (with point-to-point communica-
tion). If these parties run a protocol Π in which a single deviating party can
abort the computation without being identified, then the remaining parties do
not know which player to “punish”. In fact, essentially this situation is inherent
in general [2, Theorem 4]. On the other hand, specific correlated equilibria may
be implementable using the general approach discussed below.

Next look at the case t = 2, n < 5. Observe that even if one party, say P1, is
identified as cheating, the naive approach of having the remaining parties play a
minimax profile against P1 may not work. For one thing, although such a profile
might result in a worse payoff for P1, it may actually lead to a better payoff for a
second player, say P2, colluding with P1. (And recall that 2-resilience only holds
if deviations help no one in the coalition.) Moreover, if players play a minimax
profile against P1, it may be possible for P2 (who, recall, is colluding with P1)
to deviate from the minimax profile and thus benefit P1.

We are thus motivated to define a stronger notion of “punishment”. Follow-
ing [1, Def. 5], though differing in some respects, we define:

Definition 14. Let Γ be an n-party game with correlated equilibrium M. A
strategy vector σ is a t-punishment strategy with respect to M if for all C ⊂ [n]
with |C| ≤ t, all σ′C, and all i ∈ C it holds that ui(σ′C , σ−C) ≤ ui(M).

That is, any coalition would be better off following the recommendations of M
rather than playing against σ−C .

If a t-punishment strategy is available for a given correlated equilibrium M,
then this gives hope that a variant of the Dodis-Halevi-Rabin approach can be
used to give a t-resilient implementation of M. See [1,2] for work along these
lines. Also relevant is the work of [31,27,28], discussed in more detail in the
following section. As we have mentioned earlier, a partial converse [2] of the
positive result just mentioned shows that, in general, if a t-punishment strategy is
not available for a given correlated equilibrium M, then this equilibrium cannot
be implemented. Further work is need to better characterize the exact conditions
under which a given correlated equilibrium can or cannot be implemented.

3.4 Implementing ex ante Equilibria (and More)

This section provides a brief discussion of work aimed at a slightly different as-
pect of the problem. Assume now that colluding parties cannot communicate
“out of band” once ΓCT begins; i.e., during the cheap talk phase of ΓCT all
communication is done over a public channel, and after the cheap talk phase —
when it is time for the parties to play Γ — there is no inter-party communica-
tion at all. (Colluding parties can try to communicate over the broadcast channel,
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but if they are obvious about it then this will be detected by the other parties
and punished.) It is then meaningful to ask whether it is possible to implement
an ex ante correlated equilibrium of Γ in the cheap talk extension ΓCT .

This problem is not immediately solved even if completely fair secure compu-
tation is possible. The problem is that covert channels may exist in the protocol
itself. If such covert communication is possible, an ex ante correlated equilibrium
may no longer remain an equilibrium. Informally, say a protocol is collusion free
if covert communication is impossible. (We remark, however, that it seems suf-
ficient here to prevent covert communication only after the parties have learned
their output, since communication between the colluding parties before they
learn their recommended actions will not affect an ex ante equilibrium.) Lep-
inski et al. [31] show how to construct a collusion-free protocol assuming the
existence of “secure envelopes”; their work is further developed in [27,28]. Some
impossibility results for collusion-free protocols are shown in [31], though it is
not clear what are the implications of these results for the specific problem of
implementing ex ante correlated equilibria.

Collusion freeness may also be interesting in other contexts; see [31,27,28] for
further discussion. Recent work [27,28] has looked at stronger notions of collusion
freeness, with the aim of achieving game-theoretic guarantees such as strategic
equivalence between a mediated game and the cheap talk implementation of it.
In that work, it is assumed that parties cannot communicate “out of band” even
before the protocol begins ; furthermore, a protocol should not only prevent covert
communication between parties but should also prevent parties from agreeing
on a common bit. We do not give further discussion here.

3.5 Future Directions

The immediate open question is to further characterize when a given ex post
correlated equilibrium of a game is implementable (in, say, the standard com-
munication model, either with or without broadcast). One direction to explore
is when using a partially fair protocol [34,17,13,12,21] might suffice. Also, recent
results [22] show that complete fairness for t ≥ n/2 is achievable for certain
functions in the standard communication model, thus giving hope that for cer-
tain restricted classes of correlated equilibria a cheap talk implementation might
be possible even when general fair computation is not. Yet another direction
is to explore other communication models, e.g., when a simultaneous broadcast
channel is available. Or, taking a cue from the work on collusion-free protocols,
we may ask what can be achieved under the assumption that colluding parties
cannot communicate once the protocol begins. (Cleve’s impossibility proof [13]
fails in both the aforementioned settings.) These questions are interesting both
in the current context as well as in a purely cryptographic sense.

In another direction, we can strengthen Definition 13 to require cheap talk
protocols to satisfy stronger game-theoretic notions such as subgame perfection.
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(See also the following section.) The Dodis-Halevi-Rabin approach, in particular,
will usually not yield a subgame perfect equilibrium.

4 Rational Multi-party Computation

We now briefly discuss the second research direction mentioned in the Introduc-
tion. Here, there is no underlying game; rather, the protocol itself is the game, in
the sense that parties’ utilities are now functions of the inputs and outputs of the
parties running the protocol. The difference between this setting and the stan-
dard setting of secure computation is that, in contrast to the standard setting
where some parties are assumed to follow the protocol and other may behave
arbitrarily, in the current setting we only guarantee that all players are rational.
(Thus, the models are incomparable.) The questions here are: how can we con-
struct “meaningful” protocols in this setting? and (more tantalizingly) does this
setting enable us to circumvent impossibility results that hold under the standard
definition of secure computation?

Let us jump right in with a “straw man” definition that, as far as I know, is
new. Assume a set of parties P1, . . . , Pn where party Pi begins holding input xi.
We assume the vector of inputs x = (x1, . . . , xn) is chosen according to some
known distribution D. The parties want to compute a possibly probabilistic
function f , where f(x) outputs a vector y = (y1, . . . , yn) and Pi receives yi. The
parties run some protocol Π = (Π1, . . . , Πn), and we assume this protocol is
correct in the sense that it yields the correct output if run honestly. (However, we
do not assume the parties use their given inputs; see below.) The utility function
of Pi is now a polynomial-time function of its view during the execution of Π ,
the initial inputs x, and the outputs y−i of all other parties. (Note that inputs
may be viewed as types in the sense defined in Section 2.) For treating coalitions,
it seems best to define, for each possible coalition C, a utility function uC that
is a function of the coalition’s view, the inputs x, and the outputs y−C of the
other parties. We let Γreal denote the real-world game thus defined.

In an ideal world computation of f (see [20]), a party Pi receiving input xi can
replace its input with some other value x′i = δi(xi); we allow δi to be probabilistic
and allow x′i =⊥, which is treated as an abort. After parties hand their inputs
to the ideal functionality, the functionality computes y = f(x′) and gives yi

to Pi. Each party then outputs an arbitrary (polynomial-time) function πi(·) of
its view; this is left implicit in what follows, and we thus let δi stand for the
entire strategy of Pi in the ideal world game Γf . The utility functions ui are as
above, except that these are now applied to the output of Pi, the inputs x, and
the outputs y−i of the other parties (and analogously for coalitions).

Shoham and Tennenholtz [41] define the class of NCC functions for which,
roughly speaking, setting δi to the identity function is a Nash equilibrium for
all D. Focusing on NCC functions appears to be a mistake that unnecessarily
limits the class of functions under study.

Let Πi ◦ δi denote the real-world strategy where Pi changes its input xi to
x′i = δi(xi), and then runs Πi using input x′i. Then:
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Definition 15. Let δ = (δ1, . . . , δn) be a Nash equilibrium of Γf with respect to
utilities {ui} and input distribution D. Then Π is a Nash protocol for f (with
respect to δ, {ui}, and D) if (1) Π ◦δ = (Π1 ◦δ1, . . . , Πn ◦δn) is a computational
Nash equilibrium in Γreal, and (2) for all i, it holds that ui(k, Π ◦ δ) = ui(k, δ).

A definition of t-resilience may be derived from the above. Note that privacy, etc.
are not explicitly required; it is our belief that questions of rationality should be
separated from questions of security against malicious behavior.

An easy observation is that any protocol for completely fair secure computa-
tion tolerating t malicious parties is a t-resilient protocol for any δ, {ui}, and D.
We also conjecture that if a protocol Π is resilient for all δ, {ui}, and D, then it
is completely fair. Thus, things only become interesting if (1) we are in a setting
where completely fair secure computation is impossible; and/or (2) we look at
equilibrium concepts stronger than a Nash equilibrium. We briefly discuss these
issues now. More extensive discussion will appear in the full version of this paper.

Constructing Nash protocols without completely fair MPC. This relates
to the question, raised earlier, as to when relying on rationality of the parties
might enable circumvention of impossibility results. As one example, depending
on the utilities assumed it is possible to achieve complete fairness (which, note,
is attained in the ideal model used in Definition 15) even in the presence of
coalitions consisting of half or more of the parties [1,35,24,29]. Similarly, it is
possible to implement Byzantine agreement over point-to-point channels even in
the presence of coalitions controlling 1/3 or more of the parties [23].

Rational secret sharing and stronger notions of equilibrium. Halpern
and Teague [26] were the first to suggest that Nash protocols do not suffice but,
instead, stronger notions are needed. As a motivating example [26], consider
t-out-of-n secret sharing (here, t < n) under the assumption that each party
(1) prefers to learn the secret above all else; and (2) otherwise, prefers other
parties not learn the secret. Consider the naive protocol in which each party
simply broadcasts their share. (We assume authenticated shares, so each party
can choose either to broadcast the correct value or nothing.) This is clearly a
Nash protocol, since no matter what any particular party does at least t par-
ties broadcast their share and everyone reconstructs the secret. Nevertheless, it
appears that each Pi would prefer not to broadcast: if at least t other parties
broadcast, then everyone (including Pi) gets the secret as before; however, if
fewer than t parties broadcast then only Pi recovers the secret. That is, fol-
lowing the protocol is weakly dominated by not following the protocol, and we
might expect that no one follows the protocol. (and hence the protocol is not
very useful).

To address this, Halpern and Teague suggest to look for Nash protocols where
players’ strategies survive iterated deletion of weakly dominated strategies. Such
protocols were constructed in [26,1,35,24].

Kol and Naor [29] argue that the requirement of surviving iterated deletion
does not suffice to rule out protocols that are, intuitively, irrational. The notion
is also difficult to work with and does not seem to capture intuition very well;
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moreover, it leads to other undesirable consequences such as the fact that, if we
do not assume simultaneous channels (and thus allow rushing), then protocols
in which two parties are supposed to speak in the same round are inherently
problematic. (Since each party will simply wait for the other to go first.) Kol
and Naor thus suggest another notion that we have given as Definition 12. Their
definition rules out protocols that, intuitively, seem rational to follow.

We suggest to explore using the notion of resistance to trembles. (cf. Defi-
nition 10). This requirement rules out the naive protocol mentioned above as
well as the counterexample of Kol-Naor; on the other hand, the protocols of
[26,1,35,24] appear to satisfy it.

The work of [27,28] offers other definitions of rational MPC.

4.1 Future Directions

The community has not yet settled on a definition for rational MPC, and finding
the “right” definition seems important for further progress in this area. Look-
ing at constructions, we note that almost all positive results for rational MPC
thus far assume the utility functions inherited from [26] (an exception is [23]); a
natural step is to characterize when rational MPC is possible for other classes
of utilities. One can also look for closer connections between the questions con-
sidered in Sections 3 and 4.

More broadly, one might explore applications of the ideas described here to
scenarios that are more complicated than function evaluation; trust inference
in distributed systems serves as one compelling example. Another direction is
to realize that secure computation does not happen in a vacuum, but instead
may occur within an existing legal framework; given this, game theory might be
profitably applied to analyze protocols satisfying the definitions of [5,32].
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Abstract. We put forward the notion of a verifiably secure device, in
essence a stronger notion of secure computation, and achieve it in the
ballot-box model. Verifiably secure devices

1. Provide a perfect solution to the problem of achieving correlated
equilibrium, an important and extensively investigated problem at
the intersection of game theory, cryptography and efficient algo-
rithms; and

2. Enable the secure evaluation of multiple interdependent functions.

1 Introduction

From GMW to ILM1 Security. As put forward by Goldreich, Micali and
Wigderson [11] (improving on two-party results of Yao [17]), secure computation
consists of capturing crucial aspects of an abstract computation aided by a
trusted party, by means of a concrete implementation that does not trust
anyone. However, what is deemed crucial to capture and what constitutes an
implementation have been changing over time. In order to achieve fundamental
desiderata in a game theoretic setting, where incentives are added to the mixture
and players are assumed to behave rationally, in [13] we put forward a stronger
notion of secure computation, and achieved it in the ballot-box model. In essence,
this is a physical model using ballots and a ballot randomizer, that is, the same
“hardware” utilized from time immemorial for running a lottery and tallying
secret votes. We refer to our 2005 notion as ILM1 security. Our main reason for
introducing ILM1 security was implementing normal-form mechanisms in the
stand-alone setting.

ILM2 Security. In this paper, we put forward a yet stronger notion of secure
computation, herein referred to as ILM2 security, and achieve it in a variant of
the ballot-box model. ILM2 security enables us to attain even more sophisticated
applications. In particular, it enables us to (1) perfectly achieve correlated equi-
librium, a crucial desideratum at the intersection of cryptography, game theory,
and efficient algorithms; and (2) securely implement interdependent functions
and mechanisms.
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Setting Up A Comparison. In an fairer world, we could have come up with
our present security notion in 2005. But the world is not fair, and we could not
even conceive ILM2’s security requirements back then. To ease their comparison,
we sketch both approaches in the next two subsections, initially focussing on the
secure evaluation of a single, probabilistic, finite function f from n inputs to
n + 1 outputs. Without loss of generality, f : ({0, 1}a)n → ({0, 1}b)n+1.

We break each approach into the following components: (1) The Ideal Evalu-
ation, describing the “target computation”, that is, an evaluation of f with the
help of a trusted party; (2) The Concrete Model, highlighting the “mechanics”
of an evaluation of f without a trusted party; and (3) The Security Notion,
describing the extent to which the concrete model captures the ideal evaluation.

Traditionally, in summarizing secure computation, the second and third com-
ponents are merged. In the original GMW definition, there was certainly no
compelling need to treat the concrete model as a “variable.” Subsequently, their
concrete model (i.e., a communication protocol among all players) persisted in all
variants of secure computation, thus possibly generating a sense of “inevitabil-
ity.” We instead highlight the concrete model as an independent component
because one of our contributions is indeed a change of scenery of this aspect of
secure computation.

1.1 The ILM1 Approach

The Ideal Evaluation. In the ILM1 approach, an ideal evaluation of f pro-
ceeds in three stages.

1. In the input stage, each player i either (1.1) publicly aborts, in which case
the entire evaluation ends, or (1.2) privately and independently chooses an
a-bit string xi and privately sends it to T .

2. In the computation stage, T publicizes a random string σ, and then pri-
vately evaluates f on all xi’s so as to obtain the b-bit values y, y1, . . . , yn.

3. In the output stage, T publicizes y and privately hands back yi to each
player i.

(Note that the players do not communicate in an ILM1 ideal evaluation. By
contrast, in the GMW approach, the ideal evaluation of f cannot be precisely
matched by a GMW-secure protocol unless it offers the players the option of
communicating to each other prior to aborting or sending T their inputs.)

The Concrete Model. In the ILM1 approach, the concrete model for mimick-
ing an ideal evaluation of f continues to be that of the original GMW approach:
namely, a multi-round communication protocol Pf executed by all players, where
each player secretly holds and updates a share of the global state of the evalu-
ation. The only difference is in the communication model. That is, rather than
relying on broadcasting and/or private channels (as traditional GMW-secure
protocols do), ILM1 protocols rely on ballots and a ballot randomizer.

The Security Notion. At the highest level, for Pf to be an ILM1-secure
protocol for a function f , there must be an “output-preserving” bijection between
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the players’non-aborting strategies in Pf and the players’non-aborting strategies
in an ideal evaluation of f .1

Furthermore, to match the privacy of f ’s ideal evaluation, it is required that

1. During the input-commitment stage the only information collectively avail-
able to any set of the players about the inputs of the other players consists
of a fixed string —which is no information at all, and strictly less than
observing a random string;2

2. During the computation stage the only information collectively available
to any set of the players about the inputs of the other players consists of a
common random string; and

3. During the output stage, the only information collectively available to any
set of the players about the inputs of the other players consists of the
desired outcome —in a pre-specified, deterministic encoding.

(Note that our use of the term “collectively available information” in relation to
a set of the players does not refer to information known to at least a member of
the set. Rather, it refers to the information that one would obtain were he able
to join together the information available to each member of the set. Barring
the existence of external and undetected means of communication, an individual
member of the set can only get such “collective” information by querying the
other members after the protocol Pf terminates. As deducible by the above
sketchy description, an ILM1-secure protocol does not enable any inter-player
communication, as demanded in the ideal evaluation.)

Main Properties of ILM1 Security
• Perfect implementation of Normal-Form Mechanisms in the Stand-Alone

Setting. Our original reason for introducing the ILM1 notion of security
was to be able to perfectly implement normal form mechanisms in the
stand-alone setting, something that was not implied by GMW-secure com-
putation. We refer the reader to [13] for the definition of such a perfect
implementation (and actually to MIT-CSAIL-TR-2007-040 for a more pre-
cise explanation). Here we are happy to quickly recall what a normal-form
mechanism and the stand-alone setting are.

1 By contrast, a player has “much more to do” in a GMW-secure protocol Pf than
in an ideal evaluation of f . In the latter setting, in fact, there are exactly 2a + 1
“strategies” for a player i, one for each possible i-input to f plus aborting. Accordinly,
if f operates on 10-bit inputs, the total number of strategies is roughly one thousand.
By contrast, letting for concreteness Pf be the original protocol of [11], player i
not only has to decide between 2a inputs or aborting, but can also decide which
encryptions to broadcast, which query bits to use in a zero-knowledge proof and so
on. Thus, while each player has roughly 1000 strategies in an ideal evaluation of h, he
may easily have more than 21000 strategies in Pf . Such richness of strategies severely
limits the relevance of GMW-secure protocols to game-theoretic applications.

2 Quite differently, in a GMW-secure protocol for f , the players —by broadcasting
and/or privately exchanging all kinds of strings— can make available plenty of ad-
ditional information.
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Very informally, a (finite) normal-form mechanism is a function f :
({0, 1}a)n → ({0, 1}a)n+1. The mechanism play coincides with an ideal
evaluation of f as in the ILM1 approach. However, such play is analyzed
as a game in a context specifying players’ preferences and thus the players
get different utilities (think of “dollars prizes”) for different outputs of f .

Very informally too, by a normal-form mechanism in the stand-alone
setting we mean that “nothing else happens after a single play of the mech-
anism.”

• Fairness and Perfect Security without Honest Majority. Informally fairness
means that either all (honest) players receive their right outputs, or nobody
does. It is a notable property of ILM1 security that it simultaneously guar-
antees fairness and perfect information-theoretic security without relying
on the majority of the players to be honest. Here by a “honest” player we
mean one sticking to his protocol instructions no matter what.

(GMW-secure protocols —relying on broadcasting and/or private
channels— do not guarantee fairness unless the majority of the players are
honest. Indeed, Cleve [7] shows that not even the the probabilistic func-
tion that, on no input, outputs a random bit can be fairly and efficiently
computed when half of the players can abort the protocol —let alone ma-
liciously deviate from their instructions. Remarkably, in 2004, Lepinski,
Micali, Peikert and Shelat [15] put forward a protocol guaranteeing fair-
ness without any honest majority in a mixed model involving broadcasting
and regular ballots.3 The security of their protocol, however, was only com-
putational.)

• Perfect Security and Universal Composibility Without Honest Majority.
ILM1-secure protocols satisfy “composibility” as defined in 2000 by Dodis
and Micali [9]. It is by now recognized that their notion actually coincides,
in the perfect information-theoretic setting, with universal composibility as
defined in 2001 by Canetti [6]. Indeed, Halevi and Rabin show that per-
fect simulatability via straight-line simulators (as demanded in [9]) implies
universal composibility.

The universal composibility of ILM1-secure protocols is remarkable be-
cause it is achieved together with perfect information-theoretic security and
without relying on any honest majority, something that was not known to
be possible in the past.

1.2 The ILM2 Approach

In the ILM2 approach, an ideal evaluation of f continues to proceed in three
stages. There are two possibilities for the first stage: one with aborts and one
without. We refer to the first one as weak ideal evaluation, and the second one
as strong ideal evaluation. With start by presenting the latter, simpler and more
provocative notion.

3 I.e., their ballots needed not to be identical, nor was a ballot randomizer needed for
their construction.
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Strong Ideal Evaluation

1. In the input stage, each player i —independently from all others— secretly
chooses an input xi and gives it to T in an envelope,

2. In the computation stage, T privately opens all received envelopes and then
privately computes y, y1, . . . , yn = f(x1, . . . , xn).

3. In the output stage, T publicizes y and publicly hands back to each player
i an envelope containing yi.

The Concrete Model. In the ILM2 approach, the concrete model continues
to rely on the same hardware of the ILM1 approach (i.e., identical ballots and
a ballot randomizer), but no longer coincides with a communication protocol
among the players. Instead, the encoding of the global state is now fully contained
in a sequence of envelopes publicly manipulated by a verifiable entity T ′. Let us
explain.

In the ILM2 ideal evaluation of a function f , T is trusted. Indeed, he could
change the outputs and/or reveal undue information about the players’ inputs
(e.g., via the envelopes he hands back to the players or after the evaluation)
without any fear of being “caught.” By contrast, to securely evaluate f , T ′ is
called to perform a unique sequence of ballot operations such that the players can
verify that the right operations have been performed. For instance, if privacy did
not matter, upon receiving the envelopes containing the players’ inputs, T ′ could
be required to open all of them. In which case it would be trivial to check whether
he has done what was required of him. (To be sure, such a verifiable T ′ would
still be trusted not to —say— publicly open half of the envelopes and destroy the
other half. But such trust is much milder: because any deviation from opening
all envelopes would become of public record, T ′ can be kept accountable.)

Because the actions required from T ′ are uniquely determined and verifiable,
human or not, we think of T ′ as a verifiable device.

The Security Notion. The ILM2 security notion is the most stringent we
can (currently) conceive. Before sketching it, it should be realized that, in what-
ever model used (encrypt-and-broadcast, private-channel, ballot-box, etc.) each
“action” essentially has a public and a private informational component.4 For
instance, in the ballot-box model, the action of “publicly opening envelope j”
generates only a public component: namely, “(publiclyopen,j,c)” where c is
the now exposed content of (former) envelope j. As for another example, “party
i privately opens envelope j” generates a public component “(privatelyopen,
i,j)” together with the private component c for party i, where c is the content
of the (former) envelope j. The correctness requirements of an ILM2 concrete
evaluation of f are not surprising (and are formally presented later on). The
privacy requirements are instead surprising. Namely, in a verified computation,

4 In the encrypt-and-broadcast model, when player i sends a message m to player j
encrypted with j’s key, the public component is “ciphertext C from i to j” while the
private component to j is “m”.
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1. In a correct execution of the verifiable device, the public history generated
(i.e., the concatenation of all public informational components) is a fixed
string R (depending only on f) and vice versa whenever the public history
of an execution of the verifiable device is R, then f has been evaluated
correctly and privately on the actual inputs, no matter what they may be;

2. The private history of each player i consists only of his own input xi; and
3. The private history of the verifiable device consists only of a random string.

Remarks
• Perfect Security and Universal Composibility without Honest Majority. As

for the ILM1 case, this is due to the fact that ILM2 security satisfies the
Dodis-Micali conditions.

• Perfect Determinism, and Perfect Independence. ILM2 security is the only
notion of secure computation that is totally deterministic to the players.
They do not observe any common randomness and do not even generate
any local randomness. The situation is not too different for the verifiable
device. Namely, he does not generate any local randomness, but individually
observes a random string ρ. Such string however cannot be communicated
by the device to the players by means of the operations available to him
(which are verifiable anyway). And should the device reveal ρ to some
players afterwards, it would be “too late.” During the executions the players
have been absolutely isolated from one another.

• Hidden Aborts. Let us now explain in what sense it is meaningful to consider
ideal executions in which players cannot abort. In a typical secure protocol,
it makes no sense to worry about player i learning j’s input by pointing a
gun at j’s head. The analysis of any protocol should be relative only to the
actions available within the protocol’s model. Nonetheless, aborting is quite
possible within the confines of a protocol’s actions. For instance, a player
who is required to broadcast the decryption of a given cipher-text might
be able to cause an abort by broadcasting a different string. That is, one
ability of aborting arises when the set of available actions is richer than that
“handleable” by the protocol. This source of aborts, however, may not be
always present, and is not be present in the ILM2 case. Nonetheless, there
is one more source of aborts: namely, taking “no action.” That is, aborts
may also occur in models for which “doing nothing” is distinguishable from
“the prescribed actions”. In the broadcast model, if a player is envisaged
to broadcast a bit, broadcasting nothing is quite a different thing. Doing
nothing is also distinguishable from all possible actions in the version of the
ballot-box model envisaged in ILM1-secure protocols, and easily enables a
player to halt the joint computation. Indeed, in the ILM1 approach, the
global state of the concrete computation is shared in n pieces, each known to
a different player, and each necessary for the progress of the computation.
Thus, if a player suicides carrying his own piece to the other world, the
computation cannot be continued in any meaningful way.

By contrast, in an ILM2-secure protocol, after the verifiable device starts
taking public actions on the envelopes encoding the players’ inputs, all
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envelopes are in the hands of the device, and the global state of the com-
putation is contained fully in those envelopes. Thus, from that point on,
in a properly verified execution the computation goes on (correctly and
privately) independently of what the players may or may not do. Device
abort is not an issue either. Because our devices are called to do a single
verifiable action at every point of their executions, only device no-action
is meaningful to analyze, and it is a notable property of our construction
that, if needed, the verifiable device can be substituted at any moment with
another verifiable device without any loss.

In an ILM2-secure protocol, therefore, the only stage in which the is-
sue of abort might possibly arise is the input stage; because there the
players’ participation is crucial to ensure that envelopes properly encoding
their inputs are handed to the device. There, however, we have engineered
players’ input commitment so as to “hide aborts.” Conceptually, a player
contributes an input bit to the evaluation of f as follows. First, he pub-
licly receives from the device two envelopes, both publicly generated with
different prescribed contents. Then the player is asked to secretly permute
them: leaving them in the same order corresponds to secretly inputting 0,
flipping their order corresponds to secretly inputting 1. Formally speaking,
therefore, aborting is indistinguishable from secretly inputting 0.

• Public Aborts. Practically speaking, however, enforcing “abort indistin-
guishability” requires building and analyzing some ad hoc simple gadget
with an associated protocol. (If you fail in designing them, just ask us!)
Such a gadget, of course, would be a physical assumption not only addi-
tional to ballots and ballot-boxes, but also quite new, while ballots and
ballot-randomizers have been around for time immemorial and are thus
easy to accept as “physical axioms.”5 Altogether, most readers would pre-
fer to stick with the more intuitive operation of “player i secretly permutes
two envelopes, or publicly aborts.” In this case, we can only achieve the
following type of ideal evaluation.

Weak Ideal Evaluation

1′. In the input stage, each player i —independently from all others—
either secretly chooses an input xi and gives it to T in an envelope, or
publicly gives T the input xi = 0a —i.e., the concatenation of a 0s.

2. In the computation stage, T privately opens all received envelopes
and then privately computes y, y1, . . . , yn = f(x1, . . . , xn).

3. In the output stage, T publicizes y and publicly hands back to each
player i an envelope containing yi.

Definitionally, it is clear that that the strong and weak versions of ILM2 security
are both stronger than ILM1 security. Let us now present two specific concrete

5 Put it this way: if you think that it is not possible to randomize identical ballots, you
should also explain (1) why people have been shuffling decks of cards for ever and
for real money; and (2) why electoral precincts do not simplify voting procedures by
always adopting roll-call voting.
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settings requiring ILM2 security. The first one actually involves the implemen-
tation of function with no inputs. Therefore it is does not matter whether the
players can or cannot abort! Thus, weak or strong, ILM2 security wins anyway.

1.3 Perfect Achievement of Correlated Equilibrium

Consider the following trivial probabilistic function f that, on no inputs, outputs
a pair of strings:

f() = (C, G), (C, G), or (D, G) —each with probability 1/3.
Obviously, using proper binary encodings, an ILM1-secure protocol Pf for f
exists. Ideally, such a Pf should successfully replace an ideal evaluation for f in
any setting. However, this is not true for the following setting.

E F G H
A 100, 0 −∞, −∞ −∞, −∞ −∞, −∞
B −∞, −∞ 0, 100 −∞, −∞ −∞, −∞
C −∞, −∞ −∞, −∞ 4, 4 1, 5
D −∞, −∞ −∞, −∞ 5, 1 0, 0

Let Row and Column be the two players of the normal-form game G described
by the above pay-off matrix. Accordingly, Row and Column are confined to two
separate rooms: the first facing a keyboard with 4 buttons A,B,C and D; and the
second with a keyboard whose buttons are E,F,G, and H. Without any external
help, only the following (reasonable) Nash equilibria exist in G: (A,E), which
is very good for Row, (B,F), which is very good for Column, (C, H), (D, G),
and the mixed equilibrium (1

2C + 1
2D, 1

2G + 1
2H), which yields payoff 2.5 to

each player. Mankind’s interest, however, is that the outcome of G is either
(C, G), (C, H), or (D, G), each with probability 1

3 . Accordingly, an angel in all
his splendor descends from the sky, privately evaluates the above function f()
to obtain a pair (X, Y ), tells Row and Column that he has done so, and then
provides Row with an envelope containing X , and Column with an envelope
containing Y . Technically, this angelic intervention puts Row and Column in a
correlated equilibrium A, for “angelic”. (Correlated equilibria were proposed by
Aumann [1].) In essence, each player is better off playing the recommendation
received from the angel if he believes the other will do so. It is evident that the
expected utility of each player in A is 10/3. Clearly, however, Row and Column
would prefer to play a different correlated equilibrium: namely E, the correlated
equilibrium corresponding to selecting (A,E) or (B,F), each with probability
1/2. Unfortunately, they cannot reach such equilibrium without external help.
Nor can they use the X and Y they respectively received by the angel (which is
external help indeed!) in order to “translate” their angelic recommendations into
their preferable ones. The point is that if X=C, then Row has no idea whether
Y=G or Y=H. Each is equally probable to him. (Symmetrically, if Y=G, then
Column has no idea whether X=C or X=D, both are equally probable to him.)
If X=D, then Row knows that Y=G, but he also know that Column has no idea
whether X=C or X=D. Accordingly, the expected payoff provided to the players
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by any “translation strategy” is −∞. This must be very frustrating, since (1)
Row and Column receive an expected utility of 50 each in E, and (2) Row and
Column only need a single random bit to coordinate their actions to achieve E!

Consider now replacing the angel for f with the ILM1-secure protocol Pf .
(This is indeed possible because ILM1 security does not require any honest ma-
jority.) Then, after correctly and privately computing their Pf -recommendations,
Row and Column can simply ignore them and use instead the first common ran-
dom bit generated by Pf to coordinate and play equilibrium E instead. (Indeed,
at some point of any execution of Pf , 5 envelopes previously randomized by the
ballot-box are publicly opened, thus publicly revealing a random permutation of
5 elements, which can be trivially translated into a single random bit.)

How is this possible in view of the claim that ILM1 successfully evaluates any
finite function in the stand-alone setting? The answer is that the above setting is
not stand alone. Indeed, Row and Column are not just asked to play Pf and get
immediately rewarded. They are asked to play first Pf and then G, and they
ultimately get G’s rewards. Thus, even a minimal deviation from the stand-
alone model, together with the minimal presence of common random bit, sets
apart what can happen with the help of an angel and what can happen with
traditional secure computation. In other words, so far in secure computation we
have been conditioned to think (and the last author agrees to take some blame)
that “randomness and efficient computation are for free.” Unfortunately, this is
not true in game-theoretic settings. In general,

Common randomness as a side product of secure computation is akin to
pollution as a side product of energy transformation.

A Perfect Solution to a Beautiful Problem. As introduced by Aumann [1],
a correlated equilibrium for a normal-form game G is a probability distribution
f over the actions available to the players such that if —somehow!— a profile of
“recommended actions” (a1, . . . , an) is chosen according to f , and each player i
learns ai without gaining any other information about a−i, then no single player
can deviate from his recommendation in a play of G and improve his expected
utility. Given the description of any equilibrium E, the obvious problem con-
sists of finding a concrete way that precisely simulates a trusted party correctly
sampling and privately handing out to the players E’s recommendations.

Despite much work [2,5,10,8,16,15,12], all prior solutions to this problem were
imperfect. Specific deficiencies included limited rationality, strategic-option al-
teration, limitations on the numbers of players, infeasible computation and re-
sources, and imposing a pre-specified beliefs to yet-to-be-determined players.

By contrast ILM2 security provides a perfect solution to the achieving corre-
lated equilibrium. (Details will be given in the final paper.) Note that the main
concerns here is orthogonal to composibility, that does not care about preserving
strategic opportunities. Indeed, generating a common random bit is OK vis à
vis composibility, but alters the achievement of correlated equilibrium.
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1.4 Interdependent Secure Computations and Mechanisms

More generally, we now consider evaluating multiple interdependent functions,
each not only receiving fresh inputs from the players and producing public and
private outputs, but also receiving an additional secret input consisting of state
information from the evaluation of another function, and passing some state
information of its own evaluation as an additional secret input to another func-
tion. For simplicity sake, below we formalize just the case of a pre-defined linear
sequence of such functions. (In particular, we could handle trusted parties can
operate more than once, each time passing their state to different trusted parties,
operate simultaneously, recursively, et cetera. Of course, the more complex the
setting, the richer are the strategic opportunities of the players. We are not inter-
ested in analyzing them, but rather to match them exactly, whatever they may
be —without envisaging concurrently executing extraneous secure protocols.)

(Weak) Ideal Evaluation of Interdependent Functions. Let F be a
sequence of functions, F = f1, . . . , fk, where fi : ({0, 1}a)n+1 → ({0, 1}a)n+2.
Letting s0 and sk+1 be empty strings, an ideal evaluation of F proceeds in k
phases, with the help of k separate trusted parties: T1, . . . , Tk. The jth phase
consists of 3 stages.

1. In the input stage, Tj secretly receives state information sj−1 and publicly
receives the identities of all aborting players. Further, each non-aborting
player i independently and secretly chooses an input xj

i and gives it to T
in an envelope, or publicly aborts. Each aborting player i publicly gives Tj

the input xj
i = 0a —i.e., the concatenation of a 0s.

2. In the computation stage, Tj privately opens all received envelopes and
then privately computes

sj , y
j , yj

1, . . . , y
j
n = fj(sj−1, x

j
1, . . . , x

j
n).

3. In the output stage, Tj publicizes yj , privately hands to each player i an
envelope containing yj

i , and privately hands sj to Tj+1.
Note that this weak evaluation can be changed in several ways if desired or nec-
essary to model the situation at hand. For instance, rather than forcing aborting
players to always contribute the input 0a in the future, one may envisage a player
aborting in the input stage of phase j as contributing the input 0a in just that
phase, but give him an opportunity to fully participate in future phases. This
may be a natural choice, but of course it enlarges the players’ signalling abilities.
As for another possible change, one may demand that no envelope containing
the private output of an aborting player be ever given to him. A third alterna-
tive may consist of banning the aborting players from future participation, thus
changing the functions of future phases so as to have fewer inputs (although this
technically is already beyond the simpler setting envisaged above). And so on.
It all depends on the setting we wish to model.

The “strong” version of the above definition can be obtained by removing the
possibility of aborting altogether.

To go from sequences of functions to the analysis of sequences of normal-form
mechanisms one needs only to specify the players’ preferences over the outcomes.
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The Inachievability of Secure Interdependency with Prior Notions.
ILM1 security does not suffice for meaningfully implementing a sequence of inter-
dependent functions/mechanisms. (GMW security would be even less meaning-
ful, particularly if relying on private channels.) The main problem is as follows.
Assume that player i aborts in the jth phase. In the ideal setting, i necessarily
aborts in the input stage. Accordingly, Tj uses 0a as i’s input for the function
fj, completes the computation of fj, returns all public and private outputs to
the right players, and finally provides Tj+1 with the correct state information
sj . This is the case because in the ideal setting Tj has already received from
Tj−1 the state information sj−1. By contrast, when i aborts the execution of an
ILM1-secure protocol Pfj for fj , he makes his own share of the global compu-
tation disappear with him, causing the entire sequence of evaluations to grind
to a halt. (In fact, any way of continuing would proceed with an incorrect state:
the other players do have their own shares of the current global state, but their
shares alone are consistent with any feasible global state at that point.) If the
whole evaluation were just a mental game, endowing a player with the ability of
halting the entire sequence of future evaluations by his aborting in specific phase
might not matter. But causing the entire sequence of evaluations to abort may be
disastrous in other settings, where “real incentives” are associated to the whole
enterprize. For instance, assume that the government of a major country is pri-
vatizing its national resources (it has happened before!) by means of a complex
sequence of inter-dependent normal-form mechanisms, so as to achieve complex
social objectives. Gas has been allocated first, oil second, and so on, with the
players paying real money for these resources (and possibly selling off assets they
previously owned in order to raise the necessary cash). And then, suddenly, one
of players commits suicide. What should the government do? Sending every one
home, as if nothing ever happened, and demanding that the allocated resources
be returned is not an option: who is going to return the assets some players
had to sell (possibly in different countries) in order to win some of the present
resources? Nor is it an option to recognize all allocations already made and stop
the future ones. In fact, due to the interdependency of the mechanisms in the
sequence, a player may have chosen to acquire a given resource in one of the early
phases (by strategically choosing his secret inputs to the first functions in the
sequence) only in order to improve his chance to win resources more attractive to
him in the future phases. Nor is it an option to allocate the remaining resources
by means of a different sequence of mechanisms. The players’ past strategies
depended on that very evaluation to continue with the right state.6

6 Notice that although exogenous incentives, such as fines, may discourage abortions,
they are incapable of perfectly solving the problem. On one hand, fining players will
not resurrect the right computation state. On the other, finding the right fine to
impose is not an easy theoretical problem. Assume that a player i aborts because,
based on his received private information, he realizes that the rest of the mechanisms
—if continued— would cause him immense financial harm. Then, to induce him not
to do so, a mechanism designer must impose a fine greater than i’s expected loss.
But, in general, the designer may be unaware of the players’ preferences.
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In essence, not every thing in life is a mental game without incentives, and
to properly deal with these incentives one needs to preserve the originally en-
visaged strategic opportunities. It should be clear that weak ILM2 security is
instead capable of matching the above ideal scenario. Indeed, in ILM2-secure
computation, the global state continues to remain available to each verifiable
device Dj (corresponding to trusted party Tj) whether the players abort or not.
Moreover, the players do not have the ability to signal in any additional way
from one mechanism to the next. Not even random strings will enable to al-
ter the strategic opportunities available to the players in a weak-ILM2-secure
protocol.

Finally, note that one may also consider strong ideal evaluations of interde-
pendent functions, and that strong-ILM2-secure protocols will be able to match
these more stringent requirements.

2 Notation

Basics. We denote by R
+ the set of non-negative reals; by Σ the alphabet con-

sisting of English letters, arabic numerals, and punctuation marks; by Σ∗ the
set of all finite strings over Σ; by ⊥ a symbol not in Σ; by SYMk the group of
permutations of k elements; by x := y the operation that assigns value y to
variable x; by ∅ the empty set, and by φ the empty string/sequence/vector.

If x is a sequence, by either xi or xi we denote x’s ith element,7 and by
{x} the set {z : xi = z for some i}. If x is a sequence of k integers, and
m is an integer, by x + m we denote the sequence x1 + m, . . . , xk + m. If
x and y are sequences, respectively of length j and k, by x ◦ y we denote
their concatenation (i.e., the sequence of j + k elements whose ith element is
xi if i ≤ j, and yi−j otherwise). If x and y are strings (i.e., sequences with
elements in Σ), we denote their concatenation by xy.

Players and profiles. We always denote by N the (finite) set of players, and by n
its cardinality. If i is a player, −i denotes the set of the other n − 1 players,
that is, −i = N \ {i}. Similarly, if C ⊂ N , then −C denotes N \ C. A profile
is a vector indexed by N . If x is a profile, then, for all i ∈ N and C ⊂ N ,
xi is i’s component of x and xC is the sub-profile of x indexed by C; thus:
x = (xi, x−i) = (xC , x−C).

Probability distributions. All distributions considered in this paper are over finite
sets. If X : S → R

+ is a distribution over a set S, we denote its support by
[X ], that is, [X ] = {s ∈ S : X(s) > 0}. We denote by rand(S) the uniform
distribution over S.

If A is a probabilistic algorithm, the distribution over A’s outputs on input
x is denoted by A(x). A probabilistic function f : X → Y is finite if X and
Y are both finite sets and, for every x ∈ X and y ∈ Y , the probability that
f(x) = y has a finite binary representation.

7 For any given sequence, we shall solely use superscripts, or solely subscripts, to
denote all of its elements.
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3 The Ballot-Box Model

The ballot-box model ultimately is an abstract model of communication, but
possesses a quite natural physical interpretation. The physical setting is that
of a group of players, 1 through n, and a distinguished “player” 0, the device,
seated around a table together and acting on a set of ballots with the help
of a randomizing device, the ballot-box. Within this physical setting, one has
considerable latitude in choosing reasonable actions. Indeed, in this paper, we
envisage more actions than in [13].

3.1 Intuition

Ballots. There are two kinds of ballots: envelopes and super-envelopes. Exter-
nally, all ballots of the same kind are identical, but super-envelopes are slightly
larger than envelopes. An envelope may contain a symbol from a finite alphabet,
and a super-envelope may contain a sequence of envelopes. (Our constructions
actually needs only envelopes containing an integer between 1 and 5, and super-
envelopes capable of containing at most 5 envelopes.) An envelope perfectly
hides and guarantees the integrity of the symbol it contains until it is opened. A
super-envelope tightly packs the envelopes it contains, and thus keeps them in
the same order in which they were inserted. Initially, all ballots are empty and
in sufficient supply.

Ballot-Box Actions. There are 10 classes of ballot-box actions. Each action
in the first 7 classes is referred to as a public action, because it is performed in
plain view, so that all players know exactly which action has been performed,
and its consequences are the same no matter who performs it. These 7 classes
are: (1) publicly write a symbol on a piece of paper and seal it into a new, empty
envelope; (2) publicly open an envelope to reveal its content to all players; (3)
publicly seal a sequence of envelopes into a new super-envelope; (4) publicly open
a super-envelope to expose its inner envelopes; (5) publicly reorder a sequence
of envelopes; (6) publicly destroy a ballot; and (7) do nothing. The last three
classes just simplify the description of our construction.

An action in the eighth class is referred to as an action of Nature. Such an
action consists of “ballot boxing” a publicly chosen sequence of ballots, that is,
reordering the chosen ballots according to a permutation randomly chosen by
—and solely known to— Nature.

Each action of 9th and 10th classes is referred to as a private action, because
some details about either its inputs or outputs are known solely to the player (or
device) performing it. These two classes are: (9) privately open, read the content,
and reseal an envelope; and (10) secretly reorder a sequence of envelopes. We
imagine that the players observe what ballots these actions are performed upon,
but the actions themselves are performed outside of public view. For instance,
to perform an action of class 10, a player can shuffle the envelopes behind his
back or within a box, so that only he knows in what order the envelopes are
returned on the table.
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Public Information. Conceptually, the players observe which actions have
been performed on which ballots. Formally, (1) we associate to each ballot a
unique identifier, a positive integer that is common information to all players
(these identifiers correspond to the order in which the ballots are placed on
the table for the first time or returned to the table —e.g., after being ballot-
boxed); and (2) we have each action generate, when executed, a public string of
the form “A, i, j, k, l, ...”; where A is a string identifying the action, i is the
number corresponding to the player performing the action, and j, k, l, ... are the
identifiers of the ballots involved. If the action is public, for convenience, the
identity of the player performing it is not recorded, since the effect of the action
is the same no matter by whom the action is performed. The public history is the
concatenation of the public strings generated by all actions executed thus far.
Similarly, the private history of each player is the concatenation of the private
strings generated by the private actions performed by, respectively, the player.
The private string is the content of the opened envelope for a “private read”
action and the actual permutation for a “secret permute” action.

3.2 Formalization

An envelope is a triple (j, c, 0), where j is a positive integer, and c a symbol of
Σ. A super-envelope is a triple (j, c, L), where both j and L are positive integers,
and c ∈ ΣL. A ballot is either an envelope or a super-envelope. If (j, c, L) is a
ballot, we refer to j as its identifier, to c as its content, and to L as its level. (As
we shall see, L represents the number of inner envelopes contained in a ballot.)

A set of ballots B is well-defined if distinct ballots have distinct identifiers. If B
is a well-defined set of ballots, then IB denotes the set of identifiers of B’s ballots.
For j ∈ IB , Bj (or the expression ballot j) denotes the unique ballot of B whose
identifier is j. For J ⊂ IB , BJ denotes the set of ballots of B whose identifiers
belong to J . To emphasize that ballot j actually is an envelope (super-envelope)
we may use the expression envelope j (super-envelope j).

Relative to a well-defined set of ballots B: if j is an envelope in B, then
contB(j) denotes the content of j; if x = j1, . . . , jk is a sequence of envelope
identifiers in IB , then contB(x) denotes the concatenation of the contents of
these envelopes, that is, the string contB(j1) · · · contB(jk).

A global memory for a set of players N consists of a triple (B, R, H), where
• B is a well defined set of ballots;
• R is a sequence of strings in Σ∗, R = R1, R2, . . .; and
• H a tuple of sequences of strings in Σ∗, H = H0, H1, . . . , Hn.

We refer to B as the ballot set; to R as the public history; to each element of R as
a record; to H as the private history; to H0 as the private history of the device;
and to each Hi as the private history of player i. The empty global memory is the
global memory for which the ballot set, the public history, and all the private
histories are all empty. We denote the set of all possible global memories by GM .

Ballot-box actions are functions from GM to GM . The subset of ballot-box
actions available at a given global memory gm is denoted by Agm. The actions in
Agm are described below, grouped in 10 classes. For each a ∈ Agm we provide a
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formal identifier; an informal reference (to facilitate the high-level description of
our constructions); and a functional specification. If gm = (B, R, H), we actually
specify a(gm) as a program acting on variables B, R, and H . For convenience,
we include in R the auxiliary variable ub, the identifier upper-bound: a value
equal to 0 for an empty global memory, and always greater than or equal to any
identifier in IB .

1. (NewEn, c) —where c ∈ Σ.
“Make a new envelope with public content c.”
ub := ub + 1; B := B ∪ {(ub, c, 0)}; and R := R ◦ (NewEn, c, ub).

2. (OpenEn, j) —where j is an envelope identifier in IB .
“Publicly open envelope j to reveal content contB(j).”
B := B \ {Bj} and R := R ◦ (OpenEn, j, contB(j), ub).

3. (NewSup, j1, . . . , jL) —where L ≤ 5, and j1, . . . , jL ∈ IB are distinct
envelope identifiers.
“Make a new super-envelope containing the envelopes j1, . . . , jL.”
ub := ub + 1; B := B ∪ {(ub, (contB(j1), . . . , (contB(jL)), L)};
B := B \ {Bj1 , . . . , BjL}; and R := R ◦ (NewSup, j1, . . . , jL, ub).

4. (OpenSup, j) —where j ∈ IB is the identifier of a level-L super-envelope.8

“Open super-envelope j.”
letting contB(j) = (c1, . . . , cL), B := B ∪{(ub+1, c1, 0), . . . , (ub+L, cL, 0)};
B := B \ {Bj}; ub := ub + L; and R := R ◦ (OpenSup, j, ub).

5. (PublicPermute, j1, . . . , jk, p) —where k ≤ 5, j1, . . . jk ∈ IB are distinct
identifiers of ballots of the same level L, and p ∈ SYMk.
“Publicly permute j1, . . . , jk according to p.”
B := B∪{(ub+1, contB(jp(1)), L), . . . , (ub+k, contB(jp(K)), L)}; ub := ub+
k; B := B\{Bj1 , . . . , Bjk

}; and R := R◦(PublicPermute, j1, . . . , jk, p, ub).
6. (Destroy, j) —where j is a ballot identifier in IB .

“Destroy ballot j”
B := B \ {Bj} and R := R ◦ (Destroy, j, ub).

7. (DoNothing).
“Do nothing”
B := B and R := R ◦ (DoNothing, ub).

8. (BallotBox, j1, . . . , jk) — where k ≤ 5 and j1, . . . jk ∈ IB are distinct
identifiers of ballots of the same level L.
“Ballotbox j1, . . . , jk”
p ← rand(SYMk); B := B ∪{(ub+ p(1), contB(j1), L), . . . , (ub+ p(k), contB
(jk), L)}; B := B \{Bj1 , . . . , Bjk

}; ub := ub+k; and R := R◦ (BallotBox,
j1, . . . , jk, ub).

9. (PrivRead, i, j) —where i ∈ [0, n] and j is an envelope identifier in IB .
“i privately reads and reseals envelope j.”
R := R ◦ (PrivRead, i, j, ub) and Hi := Hi ◦ contB(j).

8 All the ballot-box actions involving multiple super-envelopes require as inputs and
produce as outputs the ballots of the same level (see below). Thus, the level of any
ballot can be deduced from the public history.
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10. (SecretPermute, i, j1, . . . , jk, p) —where i ∈ [0, n], k ≤ 5, p ∈ SYMk,
and j1, . . . jk ∈ IB are distinct identifiers of ballots with the same level L.
“i secretly permutes j1, . . . , jk (according to p).”
B := B ∪ {(ub + 1, contB(jp(1)), L), . . . , (ub + k, contB(jp(K)), L)}; B :=
B\{Bj1 , . . . , Bjk

}; ub := ub+k; R := R◦(SecretPermute, i, j1 . . . , jk, ub),
and Hi := Hi ◦ p.

Remarks

• All ballot-box actions are deterministic functions, except for the actions of
Nature.

• The variable ub never decreases and coincides with the maximum of all
identifiers “ever in existence.” Notice that we never re-use the identifier of
a ballot that has left, temporarily or for ever, the table. This ensures that
different ballots get different identifiers.

• Even though we could define the operations NewSup, PublicPermute,
BallotBox, and SecretPermute to handle an arbitrary number of bal-
lots, it is a strength of our construction that we never need to operate on
more than 5 ballots at a time. We thus find it convenient to define such
bounded operations to highlight the practical implementability of our con-
struction.

Definition 1. A global memory gm is feasible if there exists a sequence of global
memories gm0, gm1, . . . , gmk, such that gm0 is the empty global memory; gmk =
gm; and, for all i ∈ [1, k], gmi = ai(gmi−1) for some ai ∈ Agmi−1 .

If (B, R, H) is a feasible memory, we refer to R as a feasible public history.

Remark. If gm = (B, R, H) is feasible, then Agm is easily computable from R
alone (and so is ub). Indeed, what ballots are in play, which ballots are envelopes
and which are super-envelopes, et cetera, are all deducible from R. Therefore,
different feasible global memories that have the same public history also have
the same set of available actions. This motivates the following definition.

Definition 2. If R is a feasible public history, by AR we denote the set of
available actions for any feasible global memory with public history R.

4 The Notion of a (Not Necessarily Verifiable) Device

Definition 3. Let D be a sequence of K functions. We say that D is a ballot-
box device (of length K) if, for all k ∈ [1, K], public histories R and private
histories H0, Dk(R, H0) specifies a single action. If a private action is specified,
then it has i = 0.

An execution of D on an initial feasible global memory (B0, R0, H0) is a
sequence of global memories (B0, R0, H0), . . . , (BK , RK , HK) such that (Bk, Rk,
Hk) = ak(Bk−1, Rk−1, Hk−1) for all k ∈ [1, K], where ak = Dk(Rk−1, Hk−1

0 ).
If e is an execution of D, by Bk(e), Rk(e), and Hk(e) we denote, respectively,

the ballot set, the public history, and the private history of e at round k.
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By Rk
D(e) and Hk

0,D(e) we denote, respectively, the last k records of Rk(e) and
Hk

0 (e) \ H0
0 (i.e., “the records appended to R0 and H0

0 by executing D”).

The executions of D on initial memory gm0 constitute a distribution,9 which we
denote by EXD(gm0).

Remarks

• Note that if D = D1, . . . ,DK and T = T 1, . . . , T L are ballot-box devices,
then their concatenation, that is, D1, . . . ,DK , T 1, . . . , T L is a ballot-box
device too.

5 The Notion of a Verifiably Secure Computer

Definition 4. An address is a finite sequence x of distinct positive integers. An
address vector x is a vector of mutually disjoint addresses, that is, {xi}∩{xj} =
φ whenever i = j. The identifier set of an address vector x = (x1, . . . , xk) is
denoted by Ix and defined to be the set

⋃k
i=1{xi}. If B is a set of ballots, then

we define contB(x) to be the vector (contB(x1), . . . , contB(xk)). If i is a positive
integer, then x+ i is the address vector whose jth component is xj + i (i.e., each
element of sequence xj is increased by i).

As usual, an address profile is an address vector indexed by the set of players.
A computer D for a function f is a special ballot-box device. Executed on

an initial global memory in which specific envelopes (the “input envelopes”)
contain an input x for f , D replaces such envelopes with new ones (the “out-
put envelopes”) that will contain the corresponding output f(x). Of course, no
property is required from D if the initial memory is not of the proper form.

Definition 5. Let f : Xa → Y b be a finite function, where X, Y ⊂ Σ∗; and
let x = x1, . . . , xa be an address vector. We say that a feasible global memory
gm = (B, R, H) is proper for f and x if Ix ⊂ IB and contB(x) ∈ Xa.

With modularity in mind, we actually envision that an execution of a computer
D may be preceded and/or followed by the execution of other computers. We
thus insist that D does not “touch” any ballots of the initial memory besides its
input envelopes. This way, partial results already computed, if any, will remain
intact.

Definition 6. Let f : Xa → Y b be a finite function, where X, Y ⊂ Σ∗; let x and
y be two address vectors. We say that a ballot-box device D is a verifiably secure
computer for f , with input address vector x and output address vector y, if there
exist a constant sequence U and a straight-line no-input simulator SIM such
that, for any execution e of D on an initial memory gm0 = (B0, R0, H0), proper

9 Indeed, although each function Dk is deterministic, Dk(R) may return an action of
nature.
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for f and x and with identifier upper-bound ub0, the following three properties
hold:

1. Correctness: contBK(e)(y + ub) = f(contB0(x)).

2. Privacy: RK
D (e) = U and HK

0,D(e) = SIM().

3. Clean Operation: BK(e) = B{y+ub} ∪ B0 \ B{x}.

We refer to SIM as D’s simulator; to B{x} as the input envelopes; and to
B{y+ub} as the output envelopes. For short, when no confusion may arise, we
refer to D as a computer.

Remarks

• Correctness. Semantically, Correctness states that the output envelopes will
contain f evaluated on the contents of the input envelopes. Syntactically,
Correctness implies that each integer of each address yj +ub is the identifier
of an envelope in BK(e).

• Privacy. By running a computer D for f , the only additional information
about f ’s inputs or outputs gained by the players consists of RK

D , the por-
tion of the public history generated by D’s execution. Privacy guarantees
that this additional information is constant, thus the players neither learn
anything about each other inputs or outputs nor receive any residual in-
formation. At the same time, in any execution the internal information of
the device is the random string that can be generated with the same odds
by a straight-line no-input simulator. Thus, the device also does not learn
anything about the players’ inputs or outputs.

• Clean Operation. Clean Operation guarantees that D
1. Never touches an initial ballot that is not an input envelope (in fact,

if a ballot is acted upon, then it is either removed from the ballot set,
or receives a new identifier), and

2. Eventually replaces all input envelopes with the output envelopes (i.e.,
other ballots generated by D are temporary, and will not exist in the
final ballot set).

• Simplicity. Note that, since the public history generated by computer D is
fixed, D’s functions do not depend on public history R. Also, as we shall
see, the private actions of the devices we construct depend only on at most
5 last records of H0. Thus, one can interpret D as a simple automaton,
that keeps in its internal memory last 5 private records, and reads the
fixed string U record-by-record to find actions it has to perform.

• Straight-line Simulators. Our simulators are straight-line in the strictest
possible sense. In essence, SIM is run independently many times, and
each time outputs a random permutation in SYM5 and its inverse. (The
simulator is in fact called only after the device “privately opens a sequence
of 5 envelopes” whose content is guaranteed —by construction— to be a
random permutation of the integers 1 through 5.)
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6 Three Elementary Ballot-Box Computers

In this section we first provide verifiably secure computers for three elementary
functions. (These computers will later on be used as building blocks for con-
structing computers for arbitrary finite functions.) Our three elementary func-
tions are:

1. Permutation Inverse, mapping a permutation p ∈ SYM5 to p−1.
2. Permutation Product, mapping a pair of permutations (p, q) ∈ (SYM5)2 to

pq —i.e., the permutation of SYM5 so defined: pq(i) = p(q(i)).
3. Permutation Clone, mapping a permutation p ∈ SYM5 to the pair of per-

mutations (p, p).

Encodings. Note that the notion of a verifiably secure computer D for f applies
to functions f from strings to strings. (Indeed, f ’s inputs and outputs must be
represented as the concatenation of, respectively, the symbols contained in D’s
input and output envelopes.) Thus we need to encode the inputs and outputs of
Permutation Inverse, Product and Clone as strings of symbols. This is naturally
done as follows.

Definition 7. We identify a permutation s in SYM5 with the 5-long string
s1s2s3s4s5, such that sj = s(j). Relative to a well-defined set of ballots B,
we say that a sequence σ of 5 envelope identifiers is an envelope encoding of
a permutation if contB(σ) ∈ SYM5.

If σ is an envelope encoding of a permutation in SYM5, we refer to this per-
mutation by σ̂. We consistently use lower-case Greek letters to denote envelope
encodings.

Device Conventions. To simplify our description of a device D we adopt the
following conventions.

• Rather than describing D as a sequence of K functions that, on input
a public history R and a private history H0, output a ballot-box action
feasible for any global memory with public history R, we present D as a
list of K actions a1, . . . , aK (to be performed no matter what the public
history may be). Should any such ak be infeasible for a particular global
memory, we interpret it as the “do nothing” action, which is always feasible.

• We describe each action ak via its informal reference (as per Definition 3.2),
using an explicit and convenient reference to the identifiers it generates. For
instance, when we say “Make a new envelope x with public content c”, we
mean (1) “Make a new envelope with public content c” and (2) “refer to
the identifier of the newly created envelope as x” —rather than ub+ 1.

• We (often) collapse the actions of several rounds into a single conceptual
round, providing convenient names for the ballot identifiers generated in
the process. For instance, if p is a permutation in SYM5, the conceptual
round “Create an envelope encoding σ of p” stands for the following 5
actions:
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Make a new envelope σ1 with public content p1.
Make a new envelope σ2 with public content p2.
Make a new envelope σ3 with public content p3.
Make a new envelope σ4 with public content p4.
Make a new envelope σ5 with public content p5.

6.1 A Verifiably Secure Computer for Permutation Inverse

Device INVσ

Input address: σ —an envelope encoding of a permutation in SYM5.
(1) Create an envelope encoding α of the identity permutation I = 12345.
(2) For � = 1 to 5: make a new super-envelope A� containing the pair of en-

velopes (σ�, α�).
(3) Ballotbox A1, . . . , A5 to obtain A′1, . . . , A′5.
(4) For � = 1 to 5: open super-envelope A′� to expose envelope pair (ν�, μ�).
(5) For � = 1 to 5: privately read and reseal ν�, and denote its content by ν̂�.

Set ν̂ = ν̂1 ◦ · · · ◦ ν̂5.
(6) For � = 1 to 5: make a new super-envelope B� containing the pair of en-

velopes (ν�, μ�).
(7) Secretly permute B1, . . . , B5 according to ν̂−1 to obtain B′1, . . . , B

′
5.

(8) For � = 1 to 5: open super-envelope B′� to expose envelope pair (β�, ρ�). Set
ρ = ρ1, . . . , ρ5.

(9) For � = 1 to 5: open envelope β′� and denote its content by β̂�.

Output address: 37, 39, 41, 43, 45.

Lemma 1. For any 5-long address σ, INVσ is a verifiably secure computer for
permutation inverse, with input address σ and output address 37, 39, 41, 43, 45.

Proof. As per Definition 6, let us establish Correctness, Privacy and Clean Op-
eration for INVσ. Consider an execution of INVσ on any initial memory gm0

proper for permutation inverse and σ, and let ub0 be the identifier upper-bound
of gm0.

Correctness. Step 1 generates 5 new identifiers (increasing ub0 by 5). Step
2 binds together, in the same super-envelope A�, the �th envelope of σ and α.
It generates 5 new identifiers, and all of its actions are feasible since σ ∈ IB .
Step 3 applies the same, random and secret, permutation to both σ̂ and α̂,
generating 5 new identifiers. Letting x be this secret permutation, Step 4 “puts
on the table” the envelope encodings ν = ν1, . . . , ν5 and μ = μ1, . . . , μ5, where
ν̂ = xσ̂ and μ̂ = xI = x, and generates 10 new identifiers. At the end of Step
4, both ν̂ and μ̂ are totally secret. In Step 5, however, the device learns ν̂ and
reseals envelope encoding ν. Step 6 puts ν and μ back into super-envelopes
B1, . . . , B5, generating 5 new identifiers. In Step 7, the device secretly applies
permutation ν̂−1 to both ν̂ and μ̂, generating 5 new identifiers. The action of
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Step 7 is feasible because σ̂ ∈ SYM5, thus ν̂ ∈ SYM5. Step 8 “puts on the table”
the envelope encodings β and ρ, where β̂ = ν̂−1ν̂ = Id and ρ̂ = ν̂−1x, and
generates 10 new identifiers. Step 9 reveals contents of β, which are β̂ = 12345.
Thus, ρ = ub0 + 37, ub0 + 39 . . . , ub0 + 45; and ρ̂ = σ̂−1x−1x = σ̂−1 as desired.

Privacy. It is clear that the public history generated by D is a fixed constant.
And the very fact that the contents of β revealed in Step 9 are 1, 2, . . . , 5 in the
fixed order serves as a proof that the device had used the correct permutation to
invert the contents of ν̂ and μ̂. Constructing the required simulator is also trivial,
as the contents of H0,D are a random permutation ν̂ and its inverse. Thus, SIM
consists of: (1) generating a random permutation r = r1 . . . r5 ∈ SYM5; (2) for
� = 1 to 5: writing a string r�; and (3) writing a string r−1.

Clean Operation. Trivially follows by construction.

6.2 A Verifiably Secure Computer for Permutation Product

Device MULT σ,τ

Input addresses: σ and τ —each an envelope encoding of a permutation in SYM5.
(1) Execute computer INVσ to obtain the envelope encoding α.
(2) For � = 1 to 5: make a new super-envelope A� containing the pair of en-

velopes (α�, τ�).
(3) Ballotbox A1, . . . , A5 to obtain A′1, . . . , A

′
5.

(4) For � = 1 to 5: open super-envelope A′� to expose envelope pair (ν�, μ�).
(5) For � = 1 to 5: privately read and reseal ν�, and denote its content by ν̂�.

Set ν̂ = ν̂1 ◦ · · · ◦ ν̂5.
(6) For � = 1 to 5: make a new super-envelope B� containing the pair of en-

velopes (ν�, μ�).
(7) Secretly permute B1, . . . , B5 according to ν̂−1 to obtain B′1, . . . , B

′
5.

(8) For � = 1 to 5: open super-envelope B′� to expose envelope pair (β�, ρ�). Set
ρ = ρ1, . . . , ρ5.

(9) For � = 1 to 5: open envelope β′� and denote its content by β̂�.

Output address: 77, 79, 81, 83, 85.

Lemma 2. For any two, disjoint, 5-long addresses σ and τ , MULT σ,τ is a
verifiably secure computer for permutation product, with input addresses σ and
τ and output address 77, 79, 81, 83, 85.

Proof. To establish Correctness, note that envelopes α generated in Step 1 con-
tain α̂ = σ̂−1; contents of ν and μ in Step 4 are ν̂ = xσ̂−1 and μ̂ = xτ̂ for
a random x ∈ SYM5; and contents of β and ρ in Step 8 are ν̂−1ν̂ = I and
ρ̂ = (xσ̂−1)−1xτ̂ = σ̂τ̂ . Privacy and Clean Operation trivially follow. By con-
struction, the public history generated by MULT σ,τ is fixed, and the SIM has
to generate a random permutation and its inverse twice (for INV in Step 1 and
for Steps 5 and 7.)
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6.3 A Verifiably Secure Computer for Permutation Clone

Device CLONEσ

Input address: σ —an envelope encoding of a permutation in SYM5.

(1) Execute computer INVσ to obtain the envelope encoding α.

(2) Create two envelope encodings, β and γ, of the identity permutation I.

(3) For � = 1 to 5: make a new super-envelope A� containing the triple of
envelopes (α�, β�, γ�).

(4) Ballotbox A1, . . . , A5 to obtain A′1, . . . , A
′
5.

(5) For � = 1 to 5: open super-envelope A′� to expose envelope triple (ν�, μ�, η�).

(6) For � = 1 to 5: privately read and reseal ν�, and denote its content by ν̂�.
Set ν̂ = ν̂1 ◦ · · · ◦ ν̂5.

(7) For � = 1 to 5: make a new super-envelope B� containing the pair of en-
velopes (ν�, μ�, η�).

(8) Secretly permute B1, . . . , B5 according to ν̂−1 to obtain B′1, . . . , B′5.

(9) For � = 1 to 5: open super-envelope B′� to expose envelope triple (δ�, ψ�, ρ�).

(10) For � = 1 to 5: open envelope δ�.10

Output addresses: 92, 95, 98, 101, 104 and 93, 96, 99, 102, 105.

Lemma 3. For any 5-long address σ, CLONEσ is a verifiably secure computer
for permutation clone, with input address σ and output addresses 92, 95, 98, 101,
104 and 93, 96, 99, 102, 105.

7 General Verifiably Secure Computers

Recall that any finite function f : {0, 1}a → {0, 1}b can be easily (and quite
efficiently) represented as a combinatorial circuit, and thus as a fixed sequence
of the following basic functions:

• COIN , the probabilistic function that, on no input, returns a random bit;
• DUPLICATE, the function that, on input a bit b, returns a pair of bits

(b, b);
• AND, the function that, on input a pair of bits (b1, b2), returns 1 if and

only if b1 = b2 = 1; and
• NOT , the function that, on input a bit b, returns the bit 1 − b.

We thus intend to prove that each of these basic functions has a ballot-box
computer, and then obtain a ballot-box computer for any desired f : {0, 1}a →
{0, 1}b by utilizing these 4 basic computers. To this end, we must first decide
how to encode binary strings and binary functions.

10 Note that Steps 2–10, in essence, correspond to a protocol for permutation inverse
that on input α produces two identical envelope encodings, each encoding α̂−1.
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Definition 8. We define the SYM5 encoding of a k-bit binary string x = b1, . . . ,
bk, denoted by x̄, to be b̄1 · · · b̄k, where

0̄ = 12345; 1̄ = 12453.

The SYM5 encoding is immediately extended to binary functions as follows:
f̄(x̄) = f(x) for all x.

One of our basic computer has already been constructed: namely,

Lemma 4. For any envelope encoding σ, CLONE is a ballot-box computer for
DUPLICATE with input address σ.

Proof. Because CLONE duplicates any permutation in SYM5, in particular it
duplicates 12345 and 12453.

We thus proceed to build the other 3 basic computers

7.1 A Verifiably Secure Computer for COIN

Device COIN

(1) Create an envelope encoding α of I and an envelope encoding β of a.

(2) Make new super-envelopes A and B containing envelopes α1, . . . , α5 and
β1, . . . , β5, respectively.

(3) Ballotbox A and B to obtain super-envelopes C and D.

(4) Open C to expose an envelope encoding γ. Destroy D.

Output address: 15, 16, 17, 18, 19.

Lemma 5. COIN is a verifiably secure computer for COIN , with no input
address and output address 15, . . . , 19.

Proof. The only non-trivial part to prove Correctness is to demonstrate that
contents of γ are random and belong to {I, a}. Indeed, at the end of Step 2, A
contains a sequence of 5 envelopes encoding I, and B contains a sequence of 5
envelopes encoding permutation a. At the end of Step 3, the contents of C are
either those of A or of B with equal probabilities. Thus, at the end of Step 4,
the content of address γ is random and is either I or a.

Clean Operation is trivial, and Privacy straightforwardly follows by noting
that the public history is fixed and there is no private history of the device
generated by COIN .
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7.2 Verifiably Secure Computers for NOT and AND

In proving the existence of ballot-box computers for NOT and AND we rely on
the result of [3] that the Boolean functions NOT and AND can be realized as
sequences of group operations in SYM5.11 Here is our rendition of it.

Let I = 12345, a = 12453, b = 25341, c1 = 34125, c2 = 12354, and c3 = 42153;
and let x̃, x′ and x∗ be the operators defined to act on a permutation x ∈ SYM5
as follows:

x̃ = c−1
1 xc1, x′ = c−1

2 xc2, and x∗ = c−1
3 xc3.

Then, recalling that 0̄ = I and 1̄ = a, the following lemma can be verified by
direct inspection.

Barrington’s Lemma. If x1 = b1 and x2 = b2, where b1 and b2 are bits, then

¬b1 = (x1a
−1)∗, and b1 ∧ b2 = (x1x̃2x

−1
1 x̃−1

2 )′.

Lemma 6. There exist ballot-box computers NOT and AND for, respectively,
NOT and AND.

Proof. The lemma follows by combining Barrington’s lemma and our Lemmas
1,2 and 3. That is, each of NOT and AND is obtained in four steps. First, by
expanding the operators of the formulas of Lemma 6 so as to show all relevant
constants a, c1, c2 and c3. Second, by generating envelope encodings for each
occurrence of each constant. Third, in the case of AND, by using our elemen-
tary computer CLONE so as to duplicate x1 and x2. Forth, by replacing each
occurrence of permutation inverse and permutation product in the formulas of
Lemma 6 with, respectively, our elementary computers INV and MULT . Ac-
cordingly, the simulators for NOT and AND can be obtained by running the
simulators of their individual elementary computers in the proper order.

7.3 Verifiably Secure Computers for Arbitrary Finite Functions

Theorem 1. Every finite function has a verifiably secure computer.

Proof. Let f : {0, 1}a → {0, 1}b be a finite function. Then (by properly ordering
the “gates” of a combinatorial circuit for f) there exists a fixed sequence Cf =
F1, F2, . . . , FK such that:
11 Note that neither DUPLICATE nor COIN can be realized in SYM5, and thus one

cannot compute arbitrary functions in SYM5. Indeed, the result of [3] was solely
concerned with implementing a restricted class of finite functions called NC1. At
high level, we bypass this limitation by (1) representing permutations in SYM5 as
sequences of 5 envelopes and (2) using these physical representations and our ballot-
box operations for implementing DUPLICATE and COIN (in addition to NOT
and AND). That is, rather than viewing a permutation in SYM5 as a single, 5-
symbol string, we view it a sequence of 5 distinct symbols, and put each one of them
into its own envelope, which can then be manipulated separately by our ballot-box
operations. Such “segregation” of permutations of SYM5 into separate envelopes is
crucial to our ability of performing general computation, and in a private way too.
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• Each Fi is either COIN , DUPLICATE, NOT or AND;
• Each input bit of Fi is either one of the original input bits or one of the

output bits of Fj for j < i; and
• For each a-bit input x, the b-bit output f(x) can be computed by evaluating

(in order) all functions Fi on their proper inputs, and then concatenating
(in order) all their output bits not used as inputs by some Fj . (Such bits
are guaranteed to be exactly b in total.)

Define now Di as follows:
Di = COIN if Fi = COIN ;
Di = CLONE if Fi = DUPLICATE;
Di = NOT if Fi = NOT ;
Di = AND if Fi = AND.

Let D be the concatenation of D1, . . . ,DK , with appropriately chosen input
addresses, so that the lth input address of Di matches the mth output address
of Dj whenever the lth input bit of Fi is the mth output bit of Fj . Then, D is a
ballot-box computer for f . In fact, D’s correctness follows from the correctness
of each computer Di. Furthermore, D’s privacy follows from the fact that each
Di has a simulator SIMi, and thus a simulator SIM for D can be obtained by
executing (in order) SIM1, SIM2, . . . , SIMK . Finally, the clean operation of D
follows from the clean operation of each Di.

Remarks

• Note that our ballot-box computer Df is “as efficient as” f itself. Indeed,
the description of Df is linear in the description of Cf . This is so because,
letting Cf = F1, F2, · · · , Df replaces each Fi with a ballot-box computer for
Fi that has constant number of actions and generates a constant number of
identifiers. Moreover, assuming each function Fi is executable in constant
time (since it operates on at most two bits) and assuming that each ballot-
box action is executable in constant time (since it operates on at most 5
ballots), the time needed to run Df is also linear in the time needed to run
Cf .

• If D is executed on an initial global memory whose ballot set coincides with
just the input envelopes, then the ballot set of D’s final global memory of
coincides with just the output envelopes.

8 The Input Stage (and the Output Stage)

Having described the concrete computation stage of ILM2 security, we just need
to describe its input and output stages. The output stage is trivial implemented.
In essence, the device publicly opens the sequence of envelopes containing the
public output y, and hands over to each player i the sequence of envelopes
containing yi. For the latter, one must formally enrich the ballot-box model
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with the basic public action “Hand over envelope j to player i.” We omit to do
so formally in this extended abstract.12

In this section we thus limit ourselves to defining and implementing the input
stage.

8.1 Verifiably Secure Input Committers

Intuitively, a verifiably secure input committer IC is a protocol that enables each
player i to give to the verifiably secure device D a separate sequence of envelopes
Si whose contents encode i’s chosen input mi so that: (1) in any execution of
IC the contents of the envelopes in Si properly encode mi; and (2) only player
i knows mi, while the other players and the device learn only a fixed public
history.

Since in the input stage the players must interact with the device, we start
with formalizing the notion of a protocol (restricted to our needs) and then the
notion of a committer. Afterwards, we proceed to construct a committer.

Definition 9. A (tight) protocol P is a triple (K, PS, AF ), where
• K, the length of the protocol, is a positive integer;
• PS, the player sequence, is a sequence of K integers each from 0 to n; and
• AF , the action function, is a mapping from K × R —where R is the set

of all feasible public histories— to sets of ballot-box actions such that, for
all k ∈ [1, K] and R ∈ R, AF (k, R) specifies for player i = PSk either a
single action or a pair of actions as follows:

* a single action ak if i = 0;
* a pair of SecretPermute actions {ak

0 , a
k
1}, where ak

0 and ak
1 permute

the same ballots j0, j1 ∈ IB with, respectively, permutations 12 and
21.13

If a = ak
b , we refer to b as a’s hidden bit and refer to a as the 0-action (of the

pair) if b = 0, and as the 1-action otherwise.
For a given P , let �i be the number of times player i is asked to act by P ,

that is �i = #{k ∈ [1, K] : PSk = i}. Let zP be a profile of strings, such that
zi is an �i-bit string.

12 If we want to capture additional security desiderata, such as deniability, then we
should ensure that the players privately read and destroy the envelopes they finally
receive. To this effect, it may be advantageous to enrich the ballot-box model with
the operation “flash the content to envelope j to just player i.” (In essence this is the
operation corresponding to raising a card facing down just in the direction of player
i.) The device will then destroy the envelope flushed to i. Again, the destroy action
is not essential, and can be simulated by a verifiable device by means of a fixed
sequence of the other ballot-box actions. Additional desiderata can also demand the
“simultaneous execution” of some of the actions.

13 Note that the set of the current ballot identifiers IB can be fully obtained from R.
For more general protocols, the actions of player i are allowed to depend on Hi too.
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An execution of P with associated profile zP on an initial feasible global memory
(B0, R0, H0) is a sequence of global memories (B0, R0, H0), . . . , (BK , RK , HK)
such that (Bk, Rk, Hk) = ak(Bk−1, Rk−1, Hk−1) for all k ∈ [1, K], where:

• ak = AF (k, PS, gmk−1), if PSk = 0; and
• ak = ak

b ∈ AF (k, PS, gmk−1), where b is the mth bit of zi, where m =
#{j ∈ [1, k] : PSk = i}, if PSk = i.

Since the execution of P in all respects is similar to the execution of a device,
we will retain all the notation defined for executions of devices.

Definition 10. Let IC be a ballot-box protocol, (0̄, 1̄) a bit-by-bit encoding, and
x an address profile, x = x1, . . . , xn. We say that IC is a L-bit verifiably secure
input committer for (0̄, 1̄) with output address profile x if there exists a unique
sequence U such that, for every execution e of IC with associated profile z, whose
initial global memory is empty, the following three properties hold:

1. Correctness: ∀i ∈ [1, n], HK
i (e)=zi ∈ {0, 1}L and contBK(e)(xi)=zi.

2. Privacy: RK(e) = U and HK
0 (e)=∅.

3. Clean Termination: IBK(e) = Ix.

Remarks

• Correctness. Correctness requires that, once IC is executed, the private his-
tory string of each player is of length L, and that the ballots corresponding
to the output address profile x1, . . . , xn contain the bit-by-bit encoding of
the players’ intended inputs. This requirement has both syntactic and se-
mantic implications. Syntactically, Correctness implies that each xi is of
length 5L and each element of xi is the identifier of an envelope in BK(e).
Further, it requires that the number of times each player acts in IC is equal
to 5L and that the length of his private history is also 5L. Semantically,
Correctness implies that the envelopes of address xi encode a message zi

freely chosen by player i alone. (I.e., the other players have no control over
the value of zi.) This is so because the envelopes in xi are guaranteed to
contain the bit-by-bit encoding of the final private record of player i. Re-
call that i’s private history, Hi, grows, by a bit at a time, in only one case:
when i himself secretely chooses one of two complementary actions (in our
physical interpretation, when i temporarily holds two envelopes behind his
back, and then returns them in the order he chooses). This is an “atomic”
(in the sense of “indivisible”) choice of i, and therefore the other players
have no control over it.

• Privacy. Privacy requires that, at each round k of IC, the public infor-
mation available to the acting player always consists of the fixed sequence
Uk−1, no matter what are the intended inputs. Thus, while Correctness
implies that any control over the choice of a player’s message solely rests
with that player, Privacy implies that all messages are independently cho-
sen, as demanded in the ideal normal-form mechanism, and totally secret
at the end of the committer’s execution.
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Privacy thus rules out any possibility of signaling among players during
the execution of a committer.

Note that the information available to a player i consists of both his
private history Hi and the public history R. In principle, therefore, the pri-
vacy condition should guarantee that no information about other players’
strategies is deducible from Hi and R jointly. As argued above, however,
HK

i depends on i’s strategy alone. Thus, formulating Privacy in terms of
the public history alone is sufficient.

• Clean Termination. Clean termination ensures that only the envelopes con-
taining the desired encoding of the players’ private messages remain on the
table.

8.2 Our Verifiably Secure Committer

Protocol CommitL

For player i = 1 to n DO: For t = 1 to L and bit bit Do:

(1) Create an envelope encoding α(i,t) of permutation I = 12345.
(2) Create an envelope encoding β(i,t) of permutation a = 12453.

(3) Make a new super-envelope A(i,t) containing envelopes α
(i,t)
1 , . . . , α

(i,t)
5 .

(4) Make a new super envelope B(i,t) containing envelopes β
(i,t)
1 , . . . , β

(i,t)
5 .

(5) Player i secretly permutes A(i,t) and B(i,t) according to 12, if bit = 0, and
to 21, otherwise, to obtain the super-envelopes C(i,t) and D(i,t).

(6) Open C(i,t) to expose envelopes γ
(i,t)
1 , . . . , γ

(i,t)
5 . Set γ(i,t) = γ

(i,t)
1 , . . . , γ

(i,t)
5 .

(7) Destroy D(i,t).

Output Addresses: For each i ∈ N , the sequence xi = γ(i,1), . . . , γ(i,L).

Lemma 7. Protocol CommitL is an L-bit verifiably secure committer for the
SYM5 encoding.

Proof. At the end of Step 3, A(i,t) contains a sequence of 5 envelopes encoding
the identity permutation I, and, at the end of Step 4, B(i,t) contains a sequence of
5 envelopes encoding permutation a. Thus, recalling that in the SYM5 encoding
I = 0̄ and a = 1̄, at the end of Step 5, C(i,t) contains an envelope encoding of b̄
if player i “chooses the bit b”. Thus, at the end of Step 6, the content of address
xi is zi, where Hi is a binary string of length L, as demanded by Definition 10.
All other properties are trivially established.
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Abstract. We provide new and tight lower bounds on the ability of
players to implement equilibria using cheap talk, that is, just allowing
communication among the players. One of our main results is that, in
general, it is impossible to implement three-player Nash equilibria in a
bounded number of rounds. We also give the first rigorous connection
between Byzantine agreement lower bounds and lower bounds on imple-
mentation. To this end we consider a number of variants of Byzantine
agreement and introduce reduction arguments. We also give lower bounds
on the running time of two player implementations. All our results ex-
tended to lower bounds on (k, t)-robust equilibria, a solution concept
that tolerates deviations by coalitions of size up to k and deviations by
up to t players with unknown utilities (who may be malicious).

1 Introduction

The question of whether a problem in a multiagent system that can be solved
with a trusted mediator can be solved by just the agents in the system, without
the mediator, has attracted a great deal of attention in both computer science
(particularly in the cryptography community) and game theory. In cryptography,
the focus on the problem has been on secure multiparty computation. Here it
is assumed that each agent i has some private information xi. Fix functions
f1, . . . , fn. The goal is have agent i learn fi(x1, . . . , xn) without learning anything
about xj for j �= i beyond what is revealed by the value of fi(x1, . . . , xn). With
a trusted mediator, this is trivial: each agent i just gives the mediator its private
value xi; the mediator then sends each agent i the value fi(x1, . . . , xn). Work on
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multiparty computation (see [18] for a survey) provides conditions under which
this can be done. In game theory, the focus has been on whether an equilibrium
in a game with a mediator can be implemented using what is called cheap talk—
that is, just by players communicating among themselves (see [28] for a survey).

There is a great deal of overlap between the problems studied in computer
science and game theory. But there are some significant differences. Perhaps
the most significant difference is that, in the computer science literature, the
interest has been in doing multiparty computation in the presence of possibly
malicious adversaries, who do everything they can to subvert the computation.
On the other hand, in the game theory literature, the assumption is that players
have preference and seek to maximize their utility; thus, they will subvert the
computation iff it is in their best interests to do so. Following [1], we consider
here both rational adversaries, who try to maximize their utility, and possibly
malicious adversaries (who can also be considered rational adversaries whose
utilities we do not understand).

1.1 Our Results

In this paper we provide new and optimal lower bounds on the ability to im-
plement mediators with cheap talk. Recall that a Nash equilibrium σ is a tuple
of strategies such that given that all other players play their corresponding part
of σ then the best response is also to play σ. Given a Nash equilibrium σ we
say that a strategy profile ρ is a k-punishment strategy for σ if, when all but k
players play their component of ρ, then no matter what the remaining k players
do, their payoff is strictly less than what it is with σ. We now describe some
highlights of our results in the two simplest settings: (1) where rational players
cannot form coalitions and there are no malicious players (this gives us the solu-
tion concept of Nash equilibrium) and (2) where there is at most one malicious
player. We describe our results in a more general setting in Section 1.2.

No bounded implementations: In [1] it was shown that any Nash equilibrium
with a mediator for three-player games with a 1-punishment strategy can be im-
plemented using cheap talk. The expected running time of the implementation
is constant. It is natural to ask if implementations with a bounded number of
rounds exist for all three-player games. Theorem 2 shows this is not the case,
implementations must have infinite executions and cannot be bounded for all
three-player games. This lower bound highlights the importance of using ran-
domization. An earlier attempt to provide a three-player cheap talk implementa-
tion [8] uses a bounded implementation, and hence cannot work in general. The
key insight of the lower bound is that when the implementation is bounded, then
at some point the punishment strategy must become ineffective. The details turn
out to be quite subtle. The only other lower bound that we are aware of that
has the same flavor is the celebrated FLP result [15] for reaching agreement in
asynchronous systems, which also shows that no bounded implementation exists.
However, we use quite different proof techniques than FLP.
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Byzantine Agreement and Game Theory: We give the first rigorous connection
between Byzantine agreement lower bounds and lower bounds on implemen-
tation. To get the lower bounds, we need to consider a number of variants of
Byzantine agreement, some novel. The novel variants require new impossibility
results. We have four results of this flavor:

1. Barany [6] gives an example to show that, in general, to implement an equi-
librium with a mediator in a three-player game, it is necessary to have a
1-punishment strategy. Using the power of randomized Byzantine agreement
lower bounds we strengthen his result and show in Theorem 4 that we cannot
even get an ε-implementation in this setting.

2. Using the techniques of [7] or [17], it is easy to show that any four-player
game Nash equilibrium with a mediator can be implemented using cheap talk
even if no 1-punishment strategy exists. Moreover, these implementations
are universal ; they do not depend on the players’ utilities. In Theorem 3
we prove that universal implementations do not exist in general for three-
player games. Our proof uses a nontrivial reduction to the weak Byzantine
agreement (WBA) problem [24]. To obtain our lower bound, we need to
prove a new impossibility result for WBA, namely, that no protocol with a
finite expected running time can solve WBA.

3. In [1] we show that for six-player games with a 2-punishment strategy,
any Nash equilibrium can be implemented even in the presence of at most
one malicious player. In Theorem 5 we show that for five players even ε–-
implementation is impossible. The proof uses a variant of Byzantine agree-
ment; this is related to the problem of broadcast with extended consistency
introduced by Fitzi et al. [16]. Our reduction maps the rational player to a
Byzantine process that is afraid of being detected and the malicious player
to a standard Byzantine process.

4. In Theorem 8, we show that for four-player games with at most one malicious
player, to implement the mediator, we must have a PKI setup in place, even
if the players are all computationally bounded and even if we are willing to
settle for ε–implementations. Our lower bound is based on a reduction to a
novel relaxation of the Byzantine agreement problem.

Bounds on running time: We provide bounds on the number of rounds needed
to implement two-player games. In Theorem 9(a) we prove that the expected
running time of any implementation of a two-player mediator equilibrium must
depend on the utilities of the game, even if there is a 1-punishment strategy.
This is in contrast to the three-player case, where the expected running time
is constant. In Theorem 9(b) we prove that the expected running time of any
ε–implementation of a two-player mediator equilibrium for which there is no 1-
punishment strategy must depend on ε. Both results are obtained using a new
two-player variant of the secret-sharing game. The only result that we are aware
of that has a similar spirit is that of Boneh and Naor [9], where it is shown that
two-party protocols with “bounded unfairness” of ε must have running time that
depends on the value of ε. The implementations given by Urbano and Vila [31,32]
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in the two-player case are independent of the utilities; the above results show
that their implementation cannot be correct in general.

1.2 Our Results for Implementing Robust and Resistant Mediators

In [1] (ADGH from now on), we argued that it is important to consider devia-
tions by both rational players, who have preferences and try to maximize them,
and players that can be viewed as malicious, although it is perhaps better to
think of them as rational players whose utilities are not known by the other
players or mechanism designer. We considered equilibria that are (k, t)-robust ;
roughly speaking, this means that the equilibrium tolerates deviations by up to
k rational players, whose utilities are presumed known, and up to t players with
unknown utilities (i.e., possibly malicious players). We showed how (k, t)-robust
equilibria with mediators could be implemented using cheap talk, by first show-
ing that, under appropriate assumptions, we could implement secret sharing in a
(k, t)-robust way using cheap talk. These assumptions involve standard consider-
ations in the game theory and distributed systems literature, specifically, (a) the
relationship between k, t and n, the total number of players in the system; (b)
whether players know the exact utilities of other players; (c) whether there are
broadcast channels or just point-to-point channels; (d) whether cryptography is
available; and (e) whether the game has a (k + t)-punishment strategy; that is,
a strategy that, if used by all but at most k + t players, guarantees that every
player gets a worse outcome than they do with the equilibrium strategy. Here we
provide a complete picture of when implementation is possible, providing lower
bounds that match the known upper bounds (or improvements of them that we
have obtained). The following is a high-level picture of the results. (The results
discussed in Section 1.1 are special cases of the results stated below. Note that
all the upper bounds mentioned here are either in ADGH, slight improvements
of results in ADGH, or are known in the literature; see Section 3 for the de-
tails. The new results claimed in the current submission are the matching lower
bounds.)

– If n > 3k + 3t, then mediators can be implemented using cheap talk; no
punishment strategy is required, no knowledge of other agents’ utilities is
required, and the cheap-talk strategy has bounded running time that does
not depend on the utilities (Theorem 1(a) in Section 3).

– If n ≤ 3k+3t, then we cannot, in general, implement a mediator using cheap
talk without knowledge of other agents’ utilities (Theorem 3). Moreover,
even if other agents’ utilities are known, we cannot, in general, implement
a mediator without having a punishment strategy (Theorem 4) nor with
bounded running time (Theorem 2).

– If n > 2k + 3t, then mediators can be implemented using cheap talk if there
is a punishment strategy (and utilities are known) in finite expected running
time that does not depend on the utilities (Theorem 1(b) in Section 3).

– If n ≤ 2k + 3t, then we cannot, in general, ε-implement a mediator using
cheap talk, even if there is a punishment strategy and utilities are known
(Theorem 5).
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– If n > 2k + 2t and we can simulate broadcast then, for all ε, we can ε-
implement a mediator using cheap talk, with bounded expected running time
that does not depend on the utilities in the game or on ε (Theorem 1(c) in
Section 3). (Intuitively, an ε-implementation is an implementation where a
player can gain at most ε by deviating.)

– If n ≤ 2k+2t, we cannot, in general, ε-implement a mediator using cheap talk
even if we have broadcast channels (Theorem 7). Moreover, even if we assume
cryptography and broadcast channels, we cannot, in general, ε-implement a
mediator using cheap talk with expected running time that does not depend
on ε (Theorem 9(b)); even if there is a punishment strategy, then we still
cannot, in general, ε-implement a mediator using cheap talk with expected
running time independent of the utilities in the game (Theorem 9(a)).

– If n > k + 3t then, assuming cryptography, we can ε-implement a mediator
using cheap talk; moreover, if there is a punishment strategy, the expected
running time does not depend on ε (Theorem 1(e) in Section 3).

– If n ≤ k + 3t, then even assuming cryptography, we cannot, in general,
ε-implement a mediator using cheap talk (Theorem 8).

– If n > k + t, then assuming cryptography and that a PKI (Public Key
Infrastructure) is in place, 1 we can ε-implement a mediator (Theorem 1(d) in
Section 3); moreover, if there is a punishment strategy, the expected running
time does not depend on ε (Theorem 1(e) in Section 3).

The lower bounds are existential results; they show that if certain conditions
do not hold, then there exists an equilibrium that can be implemented by a medi-
ator that cannot be implemented using cheap talk. There are other games where
these conditions do not hold but we can nevertheless implement a mediator.

1.3 Related Work

There has been a great deal of work on implementing mediators, both in com-
puter science and game theory. The results above generalize a number of results
that appear in the literature. We briefly discuss the most relevant work on im-
plementing mediators here. Other work related to this paper is discussed where
it is relevant.

In game theory, the study of implementing mediators using cheap talk goes
back to Crawford and Sobel [11]. Barany [6] shows that if n ≥ 4, k = 1, and t = 0
(i.e., the setting for Nash equilibrium), a mediator can be implemented in a game
where players do not have private information. Forges [17] provides what she calls
a universal mechanism for implementing mediators; essentially, when combining
her results with those of Barany, we get the special case of Theorem 1(a) where
k = 1 and t = 0. Ben-Porath [8] considers implementing a mediator with cheap
talk in the case that k = 1 if n ≥ 3 and there is a 1-punishment strategy.
He seems to have been the first to consider punishment strategies (although
his notion is different from ours: he requires that there be an equilibrium that
1 We can replace the assumption of a PKI here and elsewhere by the assumption that

there is a trusted preprocessing phase where players may broadcast.
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is dominated by the equilibrium that we are trying to implement). Heller [22]
extends Ben-Porath’s result to allow arbitrary k. Theorem 1(b) generalizes Ben-
Porath and Heller’s results. Although Theorem 1(b) shows that the statement
of Ben-Porath’s result is correct, Ben-Porath’s implementation takes a bounded
number of rounds; Theorem 2 shows it cannot be correct. 2 Heller proves a
matching lower bound; Theorem 5 generalizes Heller’s lower bound to the case
that t > 0. (This turns out to require a much more complicated game than that
considered by Heller.) Urbano and Vila [31,32] use cryptography to deal with the
case that n = 2 and k = 1; 3 Theorem 1(e)) generalizes their result to arbitrary
k and t. However, just as with Ben-Porath, Urbano and Vila’s implementation
takes a bounded number of rounds; As we said in Section 1.1, Theorem 9(a)
shows that it cannot be correct.

In the cryptography community, results on implementing mediators go back
to 1982 (although this terminology was not used), in the context of (secure)
multiparty computation. Since there are no utilities in this problem, the focus
has been on essentially what we call here t-immunity: no group of t players can
prevent the remaining players from learning the function value, nor can they
learn the other players’ private values. Results of Yao [33] can be viewed as
showing that if n = 2 and appropriate computational hardness assumptions are
made, then, for all ε, we can obtain 1-immunity with probability greater than
1−ε if appropriate computational hardness assumptions hold. Goldreich, Micali,
and Wigderson [19] extend Yao’s result to the case that t > 0 and n > t. Ben-Or,
Goldwasser, and Wigderson [7] and Chaum, Crépeau, and Damgard [10] show
that, without computational hardness assumptions, we can get t-immunity if
n > 3t; moreover, the protocol of Ben-Or, Goldwasser, and Wigderson does not
need an ε “error” term. Although they did not consider utilities, their protocol
actually gives a (k, t)-robust implementation of a mediator using cheap talk if
n > 3k + 3t; that is, they essentially prove Theorem 1(a). (Thus, although these
results predate those of Barany and Forges, they are actually stronger.) Rabin
and Ben-Or [29] provide a t-immune implementation of a mediator with “error”
ε if broadcast can be simulated. Again, when we add utilities, their protocol
actually gives an ε–(k, t)-robust implementation. Thus, they essentially prove
Theorem 1(c). Dodis, Halevi, and Rabin [12] seem to have been the first to apply
cryptographic techniques to game-theoretic solution concepts; they consider the
case that n = 2 and k = 1 and there is no private information (in which case the
equilibrium in the mediator game is a correlated equilibrium [5]); their result is
essentially that of Urbano and Vila [32] (although their protocol does not suffer
form the problems of that of Urbano and Vila).

Halpern and Teague [21] were perhaps the first to consider the general problem
of multiparty computation with rational players. In this setting, they essentially
prove Theorem 1(d) for the case that t = 0 and n ≥ 3. However, their focus is on

2 Although Heller’s implementation does not take a bounded number of rounds, it
suffers from problems similar to those of Ben-Porath.

3 However, they make somewhat vague and nonstandard assumptions about the cryp-
tographic tools they use.
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the solution concept of iterated deletion. They show that there is no Nash equi-
librium for rational multiparty computation with rational agents that survives
iterated deletion and give a protocol with finite expected running time that does
survive iterated deletion. If n ≤ 3(k + t), it follows easily from Theorem 2: that
there is no multiparty computation protocol that is a Nash equilibrium, we do
not have to require that the protocol survive iterated deletion to get the result
if n ≤ 3(k + t). Various generalizations of the Halpern and Teague results have
been proved. We have already mentioned the work of ADGH. Lysanskaya and
Triandopoulos [27] independently proved the special case of Theorem 1(c) where
k = 1 and t + 1 < n/2 (they also consider survival of iterated deletion); Gordon
and Katz [20] independently proved a special case of Theorem 1(d) where k = 1,
t = 0, and n ≥ 2.

In this paper we are interested in implementing equilibrium by using standard
communication channels. An alternate option is to consider the possibility of
simulating equilibrium by using much stronger primitives. Izmalkov, Micali, and
Lepinski [23] show that, if there is a punishment strategy and we have available
strong primitives that they call envelopes and ballot boxes, we can implement
arbitrary mediators perfectly (without an ε error) in the case that k = 1, in the
sense that every equilibrium of the game with the mediator corresponds to an
equilibrium of the cheap-talk game, and vice versa. In [26,25], these primitives are
also used to obtain implementation that is perfectly collusion proof in the model
where, in the game with the mediator, coalitions cannot communicate. (By way
of contrast, we allow coalitions to communicate.) Unfortunately, envelopes and
ballot boxes cannot be implemented under standard computational and systems
assumptions [25].

The rest of this paper is organized as follows. In Section 2, we review the rele-
vant definitions. In Section 3, we briefly discuss the upper bounds, and compare
them to the results of ADGH. In Section 4, we prove the lower bounds.

2 Definitions

We give a brief description of the definitions needed for our results here. More
detailed definitions and further discussion can be found in [3].

We are interested in implementing mediators. Formally, this means we need
to consider three games: an underlying game Γ , an extension Γd of Γ with a me-
diator, and a cheap-talk extension Γct of Γ . Our underlying games are (normal-
form) Bayesian games. These are games of incomplete information, where players
make only one move, and these moves are made simultaneously. The “incom-
plete information” is captured by assuming that nature makes the first move and
chooses for each player i a type in some set Ti, according to some distribution
that is commonly known. Formally, a Bayesian game Γ is defined by a tuple
(N, T , A, u, μ), where N is the set of players, T = ×i∈NTi is the set of possible
types, μ is the distribution on types, A = ×i∈NAi is the set of action profiles,
and ui : T × A is the utility of player i as a function of the types prescribed by
nature and the actions taken by all players.
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Given an underlying Bayesian game Γ as above, a game Γd with a mediator d
that extends Γ is, informally, a game where players can communicate with the
mediator and then perform an action from Γ . The utility of player i in Γd depends
just on its type and the actions performed by all the players. Although we think
of a cheap-talk game as a game where players can communicate with each other
(using point-to-point communication and possibly broadcast), formally, it is a
game with a special kind of mediator that basically forwards all the messages it
receives to their intended recipients. We assume that mediators and players are
just interacting Turing machines with access to an unbiased coin (which thus
allows them to choose uniformly at random from a finite set of any size). Γct

denotes the cheap-talk extension of Γ .
When considering a deviation by a coalition K, one may want to allow the

players in K to communicate with each other. If Γ ′ is an extension of an under-
lying game Γ (including Γ itself) and K ⊆ N , let Γ ′+ CT (K) be the extension
of Γ where the mediator provides private cheap-talk channels for the players in
K in addition to whatever communication there is in Γ ′. Note that Γct+CT (K)
is just Γct; players in K can already talk to each other in Γct.

A strategy for player i in a Bayesian game Γ is a function from i’s type to an
action in Ai; in a game with a mediator, a strategy is a function from i’s type
and message history to an action. We allow behavior strategies (i.e., randomized
strategies); such a strategy gets an extra argument, which is a sequence of coin
flips (intuitively, what a player does can depend on its type, the messages it has
sent and received if we are considering games with mediators, and the outcome
of some coin flips). We use lower-case Greek letters such as σ, τ , and ρ to denote
a strategy profile; σi denotes the strategy of player i in strategy profile σ; if
K ⊆ N , then σK denotes the strategies of the players in K and σ−K denotes the
strategies of the players not in K. Given a strategy profile σ a player i ∈ N and a
type ti ∈ Ti let ui(ti, σ) be the expected utility of player i given that his type is ti
and each player j ∈ N is playing the strategy σj . Note that a strategy profile—
whether it is in the underlying game, or in a game with a mediator extending
the underlying game (including a cheap-talk game)—induces a mapping from
type profiles to distributions over action profiles. If Γ1 and Γ2 are extension of
some underlying game Γ , then strategy σ1 in Γ1 implements a strategy σ2 in
Γ2 if both σ and σ′ induce the same function from types to distributions over
actions. Note that although our informal discussion in the introduction talked
about implementing mediators, the formal definitions (and our theorems) talk
about implementing strategies. Our upper bounds show that, under appropriate
assumptions, for every (k, t)-robust equilibrium σ in a game Γ1 with a mediator,
there exists an equilibrium σ′ in the cheap-talk game Γ2 corresponding to Γ1 that
implements σ; the lower bounds in this paper show that, if these conditions are
not met, there exists a game with a mediator and an equilibrium in that game
that cannot be implemented in the cheap-talk game. Since our definition of games
with a mediator also allow arbitrary communication among the agents, it can
also be shown that every equilibrium in a cheap-talk game can be implemented
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in the mediator game: the players simply ignore the mediator and communicate
with each other.

The utility function in the games we consider is defined on type and action
profiles. Note that we use the same utility function both for an underlying game
Γ and all extensions of it. As usual, we want to talk about the expected utility of
a strategy profile, or of a strategy profile conditional on a type profile. We abuse
notation and continue to use ui for this, writing for example, ui(tK , σ) to denote
the expected utility to player i if the strategy profile σ is used, conditional on
the players in K having the types tK . Since the strategy σ here can come from
the underlying game or some extension of it, the function ui is rather badly
overloaded. We sometimes include the relevant game as an argument to ui to
emphasize which game the strategy profile σ is taken from, writing, for example,
ui(tK , Γ ′, σ).

We now define the main solution concept used in this paper: (k, t)-robust
equilibrium. The k indicates the size of coalition we are willing to tolerate, and
the t indicates the number of players with unknown utilities. These t players are
analogues of faulty players or adversaries in the distributed computing literature,
but we can think of them as being perfectly rational. Since we do not know
what actions these t players will perform, nor do we know their identities, we
are interested in strategies for which the payoffs of the remaining players are
immune to what the t players do.

Definition 1. A strategy profile σ in a game Γ is t-immune if, for all T ⊆ N
with |T | ≤ t, all strategy profiles τ , all i /∈ T , and all types ti ∈ Ti that occur
with positive probability, we have ui(ti, Γ + CT (T ), σ−T , τT ) ≥ ui(ti, Γ, σ).

Intuitively, σ is t-immune if there is nothing that players in a set T of size at
most t can do to give the remaining players a worse payoff, even if the players
in T can communicate.

Our notion of (k, t)-robustness requires both t-immunity and the fact that,
no matter what t players do, no subset of size at most k can all do better by
deviating, even with the help of the t players, and even if all k + t players share
their type information.

Definition 2. Given ε ≥ 0, σ is an ε–(k, t)-robust equilibrium in game Γ if σ
is t-immune and, for all K, T ⊆ N such that |K| ≤ k, |T | ≤ t, and K ∩ T = ∅,
and all types tK∪T ∈ TK∪T that occur with positive probability, it is not the case
that there exists a strategy profile τ such that

ui(tK∪T , Γ + CT (K ∪ T ), τK∪T , σ−(K∪T )) > ui(ti, Γ + CT (T ), τT , σ−T ) + ε

for all i ∈ K. A (k, t)-robust equilibrium is just a 0–(k, t)-robust equilibrium.

Note that a (1, 0)-robust equilibrium is just a Nash equilibrium, and an ε–(1, 0)-
robust equilibrium is what has been called an ε-Nash equilibrium in the litera-
ture. The notion (k, 0)-robust equilibrium is essentially Aumann’s [4] notion of
resilience to coalitions, except that we allow communication by coalition mem-
bers (see [3] for a discussion of the need for such communication). Heller [22] used
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essentially this notion. The notion (0, t)-robustness is somewhat in the spirit of
Eliaz’s [13] notion of t fault-tolerant implementation. Both our notion of (0, t)-
robustness and Eliaz’s notion of t-fault tolerance require that what the players
not in T do is a best response to whatever the players in T do (given that all
the players not in T follow the recommended strategy); however, Eliaz does not
require an analogue of t-immunity.

In [1] we considered a stronger version of robust equilibrium. Roughly speak-
ing, in this stronger version, we require that, if a coalition deviates, only one
coalition member need be better off, rather than all coalition members. In [3]
we formally define this stronger notion and discuss its motivation. We note that
all our lower and upper bounds works for both notions; we focus on Definition 1
here because it is more standard in the game theory literature. (Other notions
of equilibrium have been considered in the literature; see the appendix for dis-
cussion.)

In this paper, we are interested in the question of when a (k, t)-robust equi-
librium σ in a game Γd with a mediator extending an underlying game Γ can
be implemented by an ε–(k, t)-robust equilibrium σ′ in the cheap-talk extension
Γct of Γ . If this is the case, we say that σ′ is an ε–(k, t)-robust implementation
of σ. (We sometimes say that (Γct, σ′) is an ε–(k, t)-robust implementation of
(Γd, σ) if we wish to emphasize the games.)

3 The Possibility Results

Definition 3. If Γd is an extension of an underlying game Γ with a mediator
d, a strategy profile ρ in Γ is a k-punishment strategy with respect to a strategy
profile σ in Γd if for all subsets K ⊆ N with |K| ≤ k, all strategies φ in Γ +
CT (K), all types tK ∈ TK, and all players i ∈ K:

ui(tK , Γd, σ) > ui(tK , Γ + CT (K), φK , ρ−K).

If the inequality holds with ≥ replacing >, ρ is a weak k-punishment strategy
with respect to σ.

Intuitively, ρ is k-punishment strategy with respect to σ if, for any coalition K
of at most k players, even if the players in K share their type information, as
long as all players not in K use the punishment strategy in the underlying game,
there is nothing that the players in K can do in the underlying game that will
give them a better expected payoff than playing σ in Γd.

The notion of utility variant is used to make precise that certain results do
not depend on knowing the players’ utilities (see [3] for details).

Theorem 1. Suppose that Γ is Bayesian game with n players and utilities u, d
is a mediator that can be described by a circuit of depth c, and σ is a (k, t)-robust
equilibrium of a game Γd with a mediator d.

(a) If 3(k + t) < n, then there exists a strategy σct in Γct(u) such that for
all utility variants Γ (u′), if σ is a (k, t)-robust equilibrium of Γd(u′), then
(Γct(u′), σct) implements (Γd(u′), σ). The running time of σct is O(c).
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(b) If 2k + 3t < n and there exists a (k + t)-punishment strategy with respect to
σ, then there exists a strategy σct in Γct such that σct implements σ. The
expected running time of σct is O(c).

(c) If 2(k + t) < n and broadcast channels can be simulated, then, for all ε > 0,
there exists a strategy σε

ct
in Γct such that σε

ct
ε-implements σ. The running

time of σε
ct

is O(c).
(d) If k + t < n then, assuming cryptography and that a PKI is in place, there

exists a strategy σε
ct

in Γct such that σε
ct

ε-implements σ. The expected
running time of σε

ct
is O(c) · f(u) · O(1/ε) where f(u) is a function of the

utilities.
(e) If k +3t < n or if k + t < n and a trusted PKI is in place, and there exists a

(k + t)-punishment strategy with respect to σ, then, assuming cryptography,
there exists a strategy σε

ct
in Γct such that σε

ct
ε-implementers σ. The

expected running time of σε
ct

is O(c) · f(u) where f(u) is a function of the
utilities but is independent of ε.

We briefly comment on the differences between Theorem 1 and the correspond-
ing Theorem 4 of ADGH. In ADGH, we were interested in finding strategies
that were not only (k, t)-robust, but also survived iterated deletion of weakly
dominated strategies. For part (a), in ADGH, a behavioral strategy was used
that had no upper bound on running time. This was done in order to obtain a
strategy that survived iterated deletion. However, it is observed in ADGH that,
without this concern, a strategy with a known upper bound can be used. As we
observed in the introduction, part (a), as stated, actually follows from [7]. Part
(b) here is the same as in ADGH. In part (c), we assume here the ability to
simulate broadcast; ADGH assumes cryptography. As we have observed, in the
presence of cryptography, we can simulate broadcast, so the assumption here
is weaker. In any case, as observed in the introduction, part (c) follows from
known results [29]. Parts (d) and (e) are new, and will be proved in [2]. The
proof uses ideas from [19] on multiparty computation. For part (d), where there
is no punishment strategy, ideas from [14] on getting ε-fair protocols are also
required. Our proof of part (e) shows that if n > k + 3t, then we can essentially
set up a PKI on the fly. These results strengthen Theorem 4(d) in ADGH, where
punishment was required and n was required to be greater than k + 2t.

4 The Impossibility Results

No Bounded Implementations

We prove that it is impossible to get an implementation with bounded running
time in general if 2k + 3t < n ≤ 3k + 3t. This is true even if there is a pun-
ishment strategy. This result is optimal. If 3k + 3t < n, then there does exist a
bounded implementation; if 2k + 3t < n ≤ 3k + 3t there exists an unbounded
implementation that has constant expected running time.
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Theorem 2. If 2k + 3t < n ≤ 3k + 3t, there is a game Γ and a strong (k, t)-
robust equilibrium σ of a game Γd with a mediator d that extends Γ such that
there exists a (k+t)-punishment strategy with respect to σ for which there do not
exist a natural number c and a strategy σct in the cheap talk game extending Γ
such that the running time of σct on the equilibrium path is at most c and σct

is a (k, t)-robust implementation of σ.

Proof. We first assume that n = 3, k = 1, and t = 0. We consider a family of
3-player games Γ n,k+t

3 , where 2k+3t < n ≤ 3k+3t, defined as follows. Partition
{1, . . . , n} into three sets B1, B2, and B3, such that B1 consists of the first 
n/3�
elements in {1, . . . , n}, B3 consists of the last �n/3 elements, and B2 consists
of the remaining elements.

Let p be a prime such that p > n. Nature chooses a polynomial f of degree
k + t over the p-element field GF (p) uniformly at random. For i ∈ {1, 2, 3},
player i’s type consists of the set of pairs {(h, f(h)) | h ∈ Bi}. Each player wants
to learn f(0) (the secret), but would prefer that other players do not learn the
secret. Formally, each player must play either 0 or 1. The utilities are defined as
follows:

– if all players output f(0) then all players get 1;
– if player i does not output f(0) then he gets −3;
– otherwise players i gets 2.

Consider the mediator game where each player is supposed to tell the mediator
his type. The mediator records all the pairs (h, vh) it receives. If at least n−t pairs
are received and there exists a unique degree k + t polynomial that agrees with
at least n − t of the pairs then the mediator interpolates this unique polynomial
f ′ and sends f ′(0) to each player; otherwise, the mediator sends 0 to each player.

Let σi be the strategy where player i truthfully tells the mediator his type and
follows the mediator’s recommendation. It is easy to see that σ is a (1, 0)-robust
equilibrium (i.e., a Nash equilibrium). If a player i deviates by misrepresenting
or not telling the mediator up to t of his shares, then everyone still learns; if
the player misrepresents or does not tell the mediator about more of his shares,
then the mediator sends the default value 0. In this case i is worse off. For if 0
is indeed the secret, which it is with probability 1/2, i gets 1 if he plays 0, and
−3 if he plays 1. On the other hand, if 1 is the secret, then i gets 2 if he plays 1
and −3 otherwise. Thus, no matter what i does, his expected utility is at most
−1/2. This argument also shows that if ρi is the strategy where i decides 0 no
matter what, then ρ is a 1-punishment strategy with respect to σ.

Suppose, by way of contradiction, that there is a cheap-talk strategy σ′ in
the game Γct that implements σ such that any execution of σ′ takes at most
c rounds. We say that a player i learns the secret by round b of σ′ if, for all
executions (i.e., plays) r and r′ of σ′ such that i has the same type and the
same message history up to round b, the secret is the same in r and r′. Since we
have assumed that all plays of σ′ terminate in at most c rounds, it must be the
case that all players learn the secret by round c of σ′. For if not, there are two
executions r and r′ of σ′ that i cannot distinguish by round c, where the secret
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is different in r and r′. Since i must play the same move in r and r′, in one case
he is not playing the secret, contradicting the assumption that σ′ implements
σ. Thus, there must exist a round b ≤ c such that all three players learn the
secret at round b of σ′ and, with nonzero probability, some player, which we can
assume without loss of generality is player 1, does not learn the secret at round
b − 1 of σ′. This means that there exists a type t1 and message history h1 for
player 1 of length b − 1 that occurs with positive probability when player 1 has
type t1 such that, after b−1 rounds, if player 1 has type t1 and history h1, player
1 considers it possible that the secret could be either 0 or 1. Thus, there must
exist type profiles t and t′ that correspond to polynomials f and f ′ such that
t1 = t′1, f(0) �= f ′(0) and, with positive probability, player 1 can have history h1
with both t and t′, given that all three players play σ′.

Let h2 be a history for player 2 of length b − 1 compatible with t and h1 (i.e.,
when the players play σ′, with positive probability, player 1 has h1, player 2 has
h2, and the true type profile is t); similarly, let h3 be a history of length b−1 for
player 3 compatible with t′ and h1. Note that player i’s action according to σi is
completely determined by his type, his message history, and the outcome of his
coin tosses. Let σ′2[t2, h2] be the strategy for player 2 according to which player
2 uses σ′2 for the first b − 1 rounds, and then from round b on, player 2 does
what it would have done according to σ′2 if its type had been t2 and its message
history for the first b−1 rounds had been h2 (that is, player 2 modifies his actual
message history by replacing the prefix of length b−1 by h2, and leaving the rest
of the message history unchanged). We can similarly define σ′3[t

′
3, h3]. Consider

the strategy profile (σ′1, σ′2[t2, h2], σ′3[t′3, h3]). Since σ′i[ti, hi] is identical to σ′i for
the first b − 1 steps, for i = 2, 3, there is a positive probability that player 1
will have history h1 and type t1 when this strategy profile is played. It should
be clear that, conditional on this happening, the probability that player 1 plays
0 or 1 is independent of the actual types and histories of players 2 and 3. This
is because players 2 and 3’s messages from time b depend only on i’s messages,
and not on their actual type and history. Thus, for at least one of 0 and 1, it
must be the case that the probability that player 1 plays this value is strictly
less than 1. Suppose without loss of generality that the probability of playing
f(0) is less than 1.

We now claim that σ′3[t
′
3, h3] is a profitable deviation for player 3. Notice

that player 3 receives the same messages for the first b rounds of σ′ and (σ′1, σ′2,
σ′3[t

′
3, h3]). Thus, player 3 correctly plays the secret no matter what the type

profile is, and gets payoff of at least 1. Moreover, if the type profile is t, then, by
construction, with positive probability, after b−1 steps, player 1’s history will be
h1 and player 2’s history will be h2. In this case, σ′2 is identical to σ′2[t2, h2], so the
play will be identical to (σ′1, σ

′
2[t2, h2], σ′3[t

′
3, h3]). Thus, with positive probability,

player 1 will not output f(0), and player 3 will get payoff 2. This means player
3’s expected utility is greater than 1.

For the general case, suppose that 2k+3t < n ≤ 3k+3t. Consider the n-player
game Γ n,k,t, defined as follows. Partition the players into three groups, B0, B1,
and B2, as above. As in the 3-player game, nature chooses a polynomial f of
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degree k + t over the field GF (p) with a prime p > n uniformly at random, but
now player i’s type is just the pair (i, f(i)). Again, the players want to learn f(0),
but would prefer that other players do not learn the secret, and must output a
value in F . The payoffs are similar in spirit to the 3-player game:

– if at least n − t players output f(0) then all players that output f(0) get 1;
– if player i does not output f(0) then he gets −3;
– otherwise player i gets 2.

The mediator’s strategy is essentially identical to that in the 3-player game
(even though now it is getting one pair (h, vh) from each player rather than a set
of such pairs from a single player). Similarly, each player i’s strategy in Γ n,k,t

d ,
which we denote σn

i , is essentially identical to the strategy in the 3-player game
with the mediator. Again, if ρn

i is the strategy in the n-player game where i plays
0 no matter what his type, then it is easy to check that ρn is a (k+t)-punishment
strategy with respect to σn.

Now suppose, by way of contradiction, that there exists a strategy σ′ in the
cheap-talk extension Γ n,k,t

ct
of Γ n,k,t that is a (k, t)-robust implementation of σn

such that all executions of σ′ take at most c rounds. We show in [3] that we
can use σ′ to get a (1, 0)-robust implementation in the 3-player mediator game
Γ n,k+t

3,d , contradicting the argument above. ��

Byzantine Agreement and Game Theory

In [1] it is shown that if n > 3k+3t, we can implement a mediator in a way that
does not depend on utilities and does not need a punishment strategy. Using
novel connections to randomized Byzantine agreement lower bounds, we show
that neither of these properties hold in general if n ≤ 3k + 3t.

We start by showing that we cannot handle all utilities variants if n ≤ 3k+3t.
Our proof exposes a new connection between utility variants and the problem
of Weak Byzantine Agreement [24]. Lamport [24] showed that there is no de-
terministic protocol with bounded running time for weak Byzantine agreement
if t ≥ n/3. We prove a stronger lower bound for any randomized protocol that
only assumes that the running time has finite expectation.

Proposition 1. If max{2, k + t} < n ≤ 3k + 3t, all 2n input values are equally
likely, and P is a (possibly randomized) protocol with finite expected running
time (that is, for all protocols P ′′ and sets |T | ≤ k+ t, the expected running time
of processes PN−T given (PN−T , P ′′T ) is finite), then there exists a protocol P ′

and a set T of players with |T | ≤ k + t such that an execution of (PN−T , P ′T ) is
unsuccessful for the weak Byzantine agreement problem with nonzero probability.

The idea of our impossibility result is to construct a game that captures weak
Byzantine agreement. The challenge in the proof is that, while in the Byzantine
agreement problem, nature chooses which processes are faulty, in the game, the
players decide whether or not to behave in a faulty way. Thus, we must set up the
incentives so that players gain by choosing to be faulty iff Byzantine agreement
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cannot be attained, while ensuring that a (k, t)-robust cheap-talk implementation
of the mediator’s strategy in the game will solve Byzantine agreement.

Theorem 3. If 2k + 2t < n ≤ 3k + 3t, there is a game Γ (u) and a strong
(k, t)-robust equilibrium σ of a game Γd with a mediator d that extends Γ such
that there exists a (k + t)-punishment strategy with respect to σ and there does
not exist a strategy σct such that for all utility variants Γ (u ′) of Γ (u), if σ
is a (k, t)-robust equilibrium of Γd(u ′), then (Γct(u ′), σct) is a (k, t)-robust
implementation of (Γd(u ′), σ).

Theorem 3 shows that we cannot, in general, get a uniform implementation if
n ≤ 3k + 3t. As shown in Theorem 1(b)–(e), we can implement mediators if
n ≤ 3k + 3t by taking advantage of knowing the players’ utilities.

We next prove that if 2k + 3t < n ≤ 3k + 3t, although mediators can be
implemented, they cannot be implemented without a punishment strategy. In
fact we prove that they cannot even be ε–implemented without a punishment
strategy. Barany [6] proves a weaker version of a special case of this result, where
n = 3, k = 1, and t = 0. It is not clear how to extend Barany’s argument to the
general case, or to ε–implementation. We use the power of randomized Byzantine
agreement lower bounds for this result.

Theorem 4. If 2k+2t < n ≤ 3k+3t, then there exists a game Γ , an ε > 0, and
a strong (k, t)-robust equilibrium σ of a game Γd with a mediator d that extends
Γ , for which there does not exist a strategy σct in the CT game that extends Γ
such that σct is an ε–(k, t)-robust implementation of σ.

We now show that the assumption that n > 2k + 3t in Theorem 1 is necessary.
More precisely, we show that if n ≤ 2k+3t, then there is a game with a mediator
that has a (k, t)-robust equilibrium that does not have a (k, t)-robust implemen-
tation in a cheap-talk game. We actually prove a stronger result: we show that
there cannot even be an ε–(k, t)-robust implementation, for sufficiently small ε.

Theorem 5. If k+2t < n ≤ 2k+3t, there exists a game Γ , a strong (k, t)-robust
equilibrium σ of a game Γd with a mediator d that extends Γ , a (k+t)-punishment
strategy with respect to σ, and an ε > 0, such that there does not exist a strategy
σct in the CT extension of Γ such that σct is an ε–(k, t)-robust implementation
of σ.

The proof of Theorem 5 splits into two cases: (1) 2k + 2t < n ≤ 2k + 3t and
t ≥ 1 and (2) k + 2t < n ≤ 2k + 2t. For the first case, we use a reduction to a
generalization of the Byzantine agreement problem called the (k, t)-Detect/Agree
problem. This problem is closely related to the problem of broadcast with extended
consistency introduced by Fitzi et al. [16].

Theorem 6. If 2k + 2t < n ≤ 2k + 3t and t ≥ 1, there exists a game Γ , an
ε > 0, a strong (k, t)-robust equilibrium σ of a game Γd with a mediator d that
extends Γ , and a (k + t)-punishment strategy with respect to σ, such that there
does not exist a strategy σct in the CT extension of Γ which is an ε–(k, t)-robust
implementation of σ.
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We then consider the second case of Theorem 5, where k + 2t < n ≤ 2k + 2t.
Since we do not assume players know when other players have decided in the
underlying game, our proof is a strengthening of the lower bounds of [30,22].

Theorem 7. If k+2t < n ≤ 2k+2t, there exist a game Γ , an ε > 0, a mediator
game Γd extending Γ , a strong (k, t)-robust equilibrium σ of Γd, and a (k + t)-
punishment strategy ρ with respect to σ, such that there is no strategy σct that
is an ε–(k, t)-robust implementation of σ in the cheap-talk extension of Γ , even
with broadcast channels.

Our last lower bound using Byzantine agreement impossibility results gives a
lower bound that matches the upper bound of Theorem 1(e) for the case that
n > k + 3t. We show that a PKI cannot be set up on the fly if n ≤ k + 3t. Our
proof is based on a reduction to a lower bound for the (k, t)-partial broadcast
problem, a novel variant of Byzantine agreement that can be viewed as capturing
minimal conditions that still allow us to prove strong randomized lower bounds.

Theorem 8. If max(2, k + t) < n ≤ k + 3t, then there is a game Γ , a strong
(k, t)-robust equilibrium σ of a game Γd with a mediator d that extends Γ for
which there does not exist a strategy σct in the CT game that extends Γ such that
σct is an ε–(k, t)-robust implementation of σ even if players are computationally
bounded and we assume cryptography.

Tight Bounds on Running Time

We now turn our attention to running times. We provide tight bounds on the
number of rounds needed to ε–implement equilibrium when k+ t < n ≤ 2(k+ t).
When 2(k + t) < n then the expected running time is independent of the game
utilities and independent of ε. We show that for k + t < n ≤ 2(k + t) this is
not the case. The expected running time must depend on the utilities, and if
punishment does not exist then the running time must also depend on ε.

Theorem 9. If k + t < n ≤ 2(k + t) and k ≥ 1, then there exists a game Γ , a
mediator game Γd that extends Γ , a strategy σ in Γd, and a strategy ρ in Γ such
that

(a) for all ε and b, there exists a utility function u b,ε such that σ is a (k, t)-robust
equilibrium in Γd(u b,ε) for all b and ε, ρ is a (k, t)-punishment strategy with
respect to σ in Γ (u b,ε) if n > k + 2t, and there does not exist an ε–(k, t)-
robust implementation of σ that runs in expected time b in the cheap-talk
extension Γct(ub,ε) of Γ (ub,ε);

(b) there exists a utility function u such that σ is a (k, t)-robust equilibrium in
Γd(u) and, for all b, there exists ε such that there does not exist an ε–(k, t)-
robust implementation of σi that runs in expected time b in the cheap-talk
extension Γct(u) of Γ (u).

This is true even if players are computationally bounded, we assume cryptography
and there are broadcast channels.
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Note that, in part (b), it is not assumed that there is a (k, t)-punishment strategy
with respect to σ in Γ (u). With a punishment strategy, for a fixed family of utility
functions, we can implement an ε–(k, t)-robust strategy in the mediator game
using cheap talk with running time that is independent of ε; with no punishment
strategy, the running time depends on ε in general.
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Abstract. The goal of this paper is finding fair protocols for the se-
cret sharing and secure multiparty computation (SMPC) problems, when
players are assumed to be rational.

It was observed by Halpern and Teague (STOC 2004) that protocols
with bounded number of iterations are susceptible to backward induction
and cannot be considered rational. Previously suggested cryptographic
solutions all share the property of having an essential exponential up-
per bound on their running time, and hence they are also susceptible to
backward induction.

Although it seems that this bound is an inherent property of every
cryptography based solution, we show that this is not the case. We sug-
gest coalition-resilient secret sharing and SMPC protocols with the prop-
erty that after any sequence of iterations it is still a computational best
response to follow them. Therefore, the protocols can be run any number
of iterations, and are immune to backward induction.

The mean of communication assumed is a broadcast channel, and we
consider both the simultaneous and non-simultaneous cases.

1 Introduction

1.1 Background and Related Work

The issue of fairness in multiparty computation has been actively investigated
since the inception of the field. In fact, the goal of Yao’s 1986 famous paper
[33] (where Garbled Circuits were introduced) was to address this problem. In
this work we consider the rational, game-theoretic version of the secure function
evaluation problem, that is when the players are assumed to have utility functions
they try to maximize.

Realizing the advantages of simulating an equilibrium without depending on
an honest mediator, the Game Theory community began pursuing a similar goal
to that of Yao’s in Game Theoretic settings. The works [2,5,4,30,10,16] tried to
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remove the mediator by allowing the players to have free communication (so-
called “cheap talk”) prior to playing the game. In [7] this problem was addressed
using cryptographic tools.

Recently, the Cryptography community started exploring cryptographic infor-
mation exchange problems, such as secret sharing and secure multiparty computa-
tion (SMPC), in Game Theoretic settings. Recall that in the classical problem of
m-out-of-n secret sharing a dealer issues shares of a secret and privately assigns
them to n players, such that any subset of m or more players can reconstruct
the secret, but a subset of less than m players cannot learn anything about the
secret. An SMPC protocol enables a group of players to evaluate a function on
private inputs, but does not reveal any additional information about the players’
inputs, over what is already disclosed by the function.

Since rational players will only participate in information exchange protocols
when having an initial incentive to collaborate, we need to assume that players
prefer getting the designated value (the secret or the function’s value) to not
getting it. In some papers it was further assumed that players prefer that as
few as possible of the other players get the value. Although our protocols work
without this last assumption, in the following discussions we always use this
extreme case as an example.

The main difficulty in designing such fair protocols in rational settings is the
players’ desire to keep silent in the last round, if they can identify it (e.g., if
the protocol is bounded), since they do no longer fear future punishment. Then,
using a backward induction argument it can be shown that players prefer to keep
silent in every round (see discussion in Section 1.3).

Several protocols overcoming this hurdle were offered by Halpern and Teague
[15], Gordon and Katz [14], Abraham et al. [1], and Lysyanskaya and Trian-
dopoulos [23]. All protocols require simultaneous channels (either a broadcast
channel, or secure private channels) and use the key idea that in any given round
players do not know whether the current round is going to be the last round, or
whether this is a just a test round designed to catch cheaters. To prevent players
from finding out the type of the round before it is carried out, the protocols in
[1,23] used computational based cryptography.

We claim that those protocols have a weak point: they are still essentially
bounded, since the cryptographic primitives used in the beginning of the proto-
cols can surely be broken after an exponential number of rounds. Hence, they are
also susceptible to backward induction. In a previous paper [19] we have offered
a non-cryptographic protocol for rational secret sharing that is immune to back-
ward induction. The protocol uses special formed shares taken from unbounded
domains (we have shown that unbounded domains are necessary in this setting),
and cannot be generalized to the case of rational SMPC.

In this work we show that new cryptographic tools can be used to get the
best of all worlds. We start off by considering the case of a simultaneous broad-
cast channel (SBC), where all player broadcast messages at the same time (no
rushing). We offer a fair, coalition-resilient rational secret sharing scheme that
may use any set of shares (provided that they can be authenticated), and
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generalize our protocol to the case of rational SMPC. We then consider the
case of a non-simultaneous broadcast channel (NSBC), where there is only a single
sender per round. We show how to run the previous protocols using only an
NSBC, at least when the function’s range is small.1 Unlike previously suggested
cryptographic solutions, our protocols are immune to backward induction.

Another line of work was pursued by Lepinski et al. [20,21] and Izmalkov et
al. [17] in their recent sequence of papers. Roughly speaking, they were able to
obtain fair, rational SMPC protocols, prevent coalitions, and eliminate sublimi-
nal channels. However, the hardware requirements needed for these operations,
including ideal envelopes and ballot boxes, are very strict; it is not clear how
they can be implemented for distant participants, if at all.

1.2 Rationality Concepts

In Game Theoretic settings players are assumed to be rational. A great deal of
effort was invested in trying to capture the nature of rational behavior, resulting
in a long line of stability concepts. The best known concept is that of a Nash
equilibrium: a vector of players strategies is a Nash equilibrium if given that all
the other players are following their prescribed strategy, no player can gain from
deviating from his strategy. In a Nash equilibrium, each player’s strategy is a
best response to the strategies of the others.

A natural generalization of a Nash equilibrium is a C-resilient equilibrium,
where C is a collection of subsets of players (coalitions). In a C-resilient equilib-
rium, for any C ∈ C, no member of the coalition C can do better, even if the
whole coalition C defects. A Nash equilibrium is a C-resilient equilibrium, where
C is the set of all coalitions of size 1.

A cryptographic protocol cannot be expected to be the best response for
all possible situations, since a relatively benign player may be very lucky and
discover how to break a cryptographic primitive. Therefore, the previously sug-
gested cryptographic protocols, as well the protocols suggested in this paper, are
not exact Nash equilibria. However, they are computational Nash equilibria, i.e.,
they are “close” to being Nash in the sense that no player has an efficient (poly-
nomial) deviating strategy that yields a non-negligibly greater payoff than the
equilibrium strategy. A computational C-resilient equilibrium is defined similarly.

As pointed out by Halpern and Teague [15], when considering information
exchange tasks, requiring protocols to induce a Nash equilibrium is not enough
to ensure stability. For example, the famous m-out-of-n scheme due to Shamir
[28], requiring players to broadcast their given shares, is a Nash equilibrium
when m < n and more than m players participate in the reconstruction, but
is unstable since players prefer to keep silent rather than reveal their shares.

1 Quite a lot of effort was invested into approximating an SBC via an NSBC and ob-
taining fair protocols using cryptographic techniques of gradual release (see [6,9,25]
for recent work). Note, however, that such results do not take into account the
rationality consideration that we use in this paper. Incorporating rationality con-
siderations into such protocols is an interesting challenge.
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This is due to the fact that silence strategy is never worse than the strategy of
revealing the share, but it is sometimes strictly better. For example, if exactly
m − 1 other players choose to reveal their shares.

To rule out such behaviors, two different strengthenings of the notion of Nash
equilibrium were used in [15,14,23,1,19]: equilibrium surviving iterated deletion
of weakly dominated strategies and strict equilibrium. Such notions are not dis-
cussed in this paper: we find the notion of surviving iterated dominance prob-
lematic (see [19] for discussion), and the notion of strict equilibrium unsuitable
for the computational case since it demands a unique best response.

1.3 The Backward Induction Process

As observed by Halpern and Teague, no information exchange protocol with
bounded number of rounds can be regarded as stable in the rational setting:
suppose that the protocol is bounded by b rounds. When round b is reached
players no longer fear future punishment and prefer to keep silent. As mentioned
before, the silence strategy is always at least as good as cooperation strategy,
but is sometimes strictly better. Consequently, round b−1 is now essentially the
last round, and players deviate from the same reason. The process continues in
this way backwards in time, thus it is called backward induction, showing that
players are better off keeping silent in rounds b − 2, b − 3, ..., 1 as well.

We sketch a basic version of the secret sharing schemes suggested in [23,1],
and show that a similar problem arises. We start by describing a version of
the scheme that requires an “on-line dealer” (i.e., the dealer is involved in the
reconstruction process), and then show how the on-line dealer was removed.

The scheme with an on-line dealer proceeds in a sequence of iterations. At
the beginning of each iteration the dealer distributes new (Shamir) shares: with
probability β (whose value is discussed later) the distributed shares are of the
original secret, and with probability 1 − β the shares are of a fictitious secret.
Every player should then broadcast the last share given to him, as long as no
player has deviated. If a deviation was detected, players abort the protocol.

When β is chosen to be small enough, as a function of the utility functions
(the greater the ratio between the payoff for learning alone and learning with the
others, the smaller β is), no player can improve his payoff by cheating. That is,
the risk of deviating in a fake round and causing the others to abort overcomes
the desire of getting a possibly higher payoff for deviating in a real round.

In order to remove the on-line dealer, players simulate the dealer using a (non-
rational) SMPC protocol: the dealer only distributes initial shares of the secret,
and in every iteration players run an SMPC protocol to compute the function
that gets as input their initial shares and distributes new shares. It was shown
in [1] that the described protocol is a computation C-resilient equilibrium where
C is the set of all coalitions of size smaller than the threshold.

We argue that a similar backward induction argument can be used to show
the instability of the protocol without the on-line dealer, even in computational
settings. To show our claim we first investigate the meaning of the phrase “fol-
lowing a strategy”. We usually think of a strategy as a code of a program and say
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that player i follows the strategy σi if i runs the program σi line-by-line. How-
ever, the assumption that i runs the program σi, and not some other program
σ′i with the exact same “external functionality” (i.e., σ′i broadcasts the same
messages as σi), is not always realistic. Therefore, we consider a strategy as sat-
isfying the property X only if all possible implementations of it satisfy X.2 This
approach of checking all possible “undetectable” deviating strategies resembles
the “honest-but-curious” cryptographic approach.

Now suppose that players seem to be the running the protocol without the
on-line dealer, but actually run an implementation of it for which each player
works a polynomial “over time” in every iteration trying to crack information
hidden about the shares from the SMPC used in the first iteration. This is
done by checking one key in every iteration and storing the right key. Recall
that in general an SMPC protocol only gives a computational protection, not
information-theoretic one (this is certainly true when we want to be immune to
arbitrary coalitions, or if we do not assume private lines). Therefore, after expo-
nentially many iterations in the key size, even this new non-ambitious strategy
will surely find the right key. This shows that there is an essential upper bound to
the number of iterations this protocol can be run: if the Kth iteration is reached
(where K is the number of possible keys), each player may be better off quitting
and using his stored key to retrieve the secret and get a (non-negligible) extra
payoff. From this point on, the same backward induction process can be applied.

The above example shows that the backward induction process in compu-
tational settings, where presumably we are not concerned with the protocol’s
stability in rare events, is as problematic as in the standard Game Theoretic
settings, since it causes exponential events to be amplified: the instability of the
protocol without the on-line dealer in the rare case that it runs for exponential
number of iterations causes it to be unstable from round 1.

Although it seems that susceptibility to backward induction is an inherent
property of every computational based cryptographic solution, this paper shows
that this is not the case. Our protocols are not only computational C-resilient
equilibria, but satisfy the additional property that after any sequence of itera-
tions, they still induce such equilibria. Thus, players will never have an incentive
to deviate, and the backward induction argument cannot be used. We call such
protocols computational C-immune. Clearly, C-immunity implies C-resilience.3

2 In classical Game Theory, where there are no computational limitations, the distinc-
tion between running σi and running σ′

i is insignificant: in both cases i’s knowledge
consists of his initial information and all previously selected actions. However, in
settings such as ours, where resources are limited, the results of the calculations
made by a player when running a specific program should also be considered as
part of his knowledge, since it is not always possible for him to repeat them.

3 We do not regard the C-immunity property as a sufficient condition, ensuring the
stability of information exchange protocols, as some unstable protocols satisfy it.
For example, Shamir’s m-out-of-n secret sharing scheme is C-immune for the max-
imal possible set C (the set of all coalitions of size smaller than m), when m < n
and more than m players participate in the reconstruction, since its reconstruction
protocol consists of a single communication round.
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1.4 Organization and Summary

The main idea of our protocols is ensuring that no iteration until the last one
contains any information, in the information-theoretic sense, about the players’
private values. In order to so, we construct in Section 3 a new cryptographic
tool called meaningful/meaningless encryption that has a special property: some
public keys yield ciphertexts that cannot be decrypted (even with unbounded
computational power). Such keys are called meaningless, while the other keys are
called meaningful and provide semantic security. One can efficiently distinguish
meaningful keys from meaningless ones only when given the private key.

In Section 4 we offer a rational secret sharing scheme for the SBC model that
works for any kind of shares, provided that they can be authenticated. In every
iteration of the scheme new private and public keys are created using a random
seed via a (non-rational) SMPC. The public key is published and the seed is
shared between the players. Players use the public key to encrypt their shares,
and the ciphertexts are broadcasted. Then, the validity of the ciphertexts is
verified by another SMPC. A key point is that the verification does not require
knowledge of the original shares, thus leaks no information about the secret.
After a successful verification the seed’s shares are exchanged, allowing players
regenerate the private key and check whether the public key is meaningful. If it
is, the shares of the secret are retrieved from the ciphertexts, and the secret is
regenerated. Otherwise, the protocol proceeds to the next iteration.

No information about the secret can be retrieved from the ciphertexts sent in
iterations with meaningless keys, hence no coalition can benefit from deviating
before the last iteration. Since players cannot efficiently identify this iteration
before sending their encrypted share, they cannot prevent others from learning.

In Section 5 we offer a rational SMPC protocol, based on the secret sharing
scheme. We first note that in a secret sharing scheme players are required to
evaluate a “reconstruction function” on their shares in order to retrieve the se-
cret. Since our secret sharing scheme works for any type of shares, it can be used
to compute any reconstruction function. The main problem is that the compu-
tation is not secure, as players’ shares are revealed during the last iteration. To
protect players’ inputs, the new rational SMPC protocol additionally creates a
Garbled Circuit in each iteration, and requests players to encrypt their garbled
strings instead of their original inputs.

Finally, in Section 6 we show how to get rid of the simultaneity assumption,
at the price of causing the expected length of the protocol to depend (linearly)
on the size of the function’s range.

Our protocols are C-immune for the maximal possible set of coalitions C: the
secret sharing scheme considers all coalitions of size smaller than the threshold.
The SMPC protocols do not pose any new constraints on C, over the ones already
posed by the players ability to learn the function’s value by colluding before the
game starts. In general, we give no guarantee about the composability of our
protocols with any other protocol.

Further details, as well as omitted proofs and definitions, can be found in the
full version of this paper [18].
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2 Definitions and Settings

2.1 Computing Games and Protocols

As discussed in Section 1.4, both rational secret sharing and rational SMPC
require rational protocols allowing players to evaluate a function on their private
values. Hence, we start off by describing a model for rational joint computation.
This model is the computational analog of the one suggested in [19].

In rational joint computation a set of players N = {1, ..., n} each holding an
input are interested in evaluating an n-ary function f : X → Y (X ⊆ ×i∈NXi for
some sets Xi) with finite domain and range. Players are assumed to be rational,
and try to maximize their utility function. Recall that utility functions associate
numeric values to outcomes of the game, the value ui(o) is player i’s payoff if
outcome o was reached. In our case, an outcome consists of the players’ inputs,
and the sequence of actions taken by them.

Our input as protocol designers is the function f , the distribution over inputs
D, and players’ utilities (ui)i∈N

4. Actually, as discussed later, we only require
partial information about the utilities and the distribution. We should then
output a game and “rational” strategies allowing all players to “learn” f(x).

We suggest a computing game for f (with respect to (ui)i∈N and D) that
proceeds in a sequence of iterations, where each iteration may consist of multiple
communication rounds. In every round players are allowed to broadcast any finite
binary string of their choice and update their state (a private binary string). If
an SBC is assumed, the broadcasts in every round are simultaneous. Otherwise,
an NSBC is assumed, and only a single player may broadcast in every round. We
make no assumptions regarding the NSBC’s behavior when two or more players
try to broadcast at the same time. In such cases, some players may get partial
information about the messages. A player can leave the game in any round by
broadcasting a quit sequence and outputting his guess of f(x). Players observe
the actions taken by the others in previous rounds, but do not view their guesses.

Throughout the paper we assume that players are computationally bounded
and can only run efficient strategies to evaluate polynomial time computable
functions. To define the computational power of the players, we introduce an
external initial security parameter k into the game. The security parameter used
in round t is k + t, and we require that the players’ strategies can be computed
in probabilistic polynomial time in the security parameter of the corresponding
round. We assume that the parameters of the original game (like the payoff
functions, the initial distribution over inputs, etc.) are all independent of the
security parameter, and thus can always be computed “in constant time”.

We say that strategy σ′ implements strategy σ if they both choose the same
action after witnessing the same transcript (sequence of messages broadcasted

4 We regard the players’ utility functions as given, and do not attempt to change
them. Simpler solutions can be obtained by introducing a discounting factor to
the utilities, causing them to decline over time. However, in such solutions when
an advanced round is reached, the utilities assumed are very far from the original
ones, thus do not properly reflect players preferences.
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in previous rounds) when given the same input and random tape. Note that
“implements” is a symmetric relation. A vector of strategies σ = (σ1, ..., σn) is
called a protocol, and we say that σ computes the function f if it almost always
ends, and in every finite run of it all players output f(x).

2.2 The C-Immunity Property

In Game Theory, to show that an equilibrium σ is immune to backward in-
duction, one needs to prove that it satisfies the following property: if players
are running σ, then after any history, following σ is still an equilibrium. Such
equilibria are called subgame perfect or sequential equilibria. Note that if this
property holds, then no player will ever have an incentive to deviate from σi,
and thus no backward induction process can be applied.

However, since our protocols involve cryptographic tools, there may be histo-
ries for which the cryptographic primitives are broken, and we cannot expect the
protocol to induce an equilibrium in such cases. In particular, since we deal with
protocols that proceed in a sequence of iterations, executing cryptographic prim-
itives in each, we can only hope to satisfy a slightly weaker property. Namely,
that following the protocols is still a (computational C-resilient) equilibrium after
any sequence of iterations; i.e., after all histories that can be reached by σ, after
which a new iteration begins. As discussed in Section 1.3, we need to require this
property to also hold when players are running an implementation of σ, instead
of σ. We call protocols satisfying this demand computational C-immune.

Definition 1 (computational C-immune). Let σ be an efficient protocol for
a computing game, and C be a set of coalitions (subsets of players). Let Rt be
the set of sequences of random tapes for the first t iterations that do not cause σ
to end. A sequence r ∈ Rt is of the form r = (r1, ..., rt) where rs = (rs

1, ..., r
s
n)

and rs
j is the random tape used by player j in iteration s.

The protocol σ is computational C-immune if for every coalition C ∈ C, and
every sequence of tapes r0 = (r1

0, ..., r
t
0) ∈ Rt used by the players in the first t

rounds, there exists a negligible function ε(k) such that for every player i ∈ C,
every efficient (deviating) joint strategy σ′C for players in C, and every efficient
joint strategy τ−C for players in N �C implementing σ−C , it hold that:

E [ui(τ−C(k), σC(k))] + ε(k) ≥ E [ui(τ−C(k), σ′C(k))]

The expectation is taken over all sets of random tapes for the players assigning
them the tapes r1

0, ..., r
t
0 for the first t iterations.

2.3 Settings for Rational Secret Sharing and Rational SMPC

We review the models for rational secret sharing and rational SMPC assumed
in this paper.

Definition 2 (computational rational secret sharing scheme). A com-
putational rational m-out-of-n secret sharing scheme for a set of secrets Y , with
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respect to the distribution over secrets D and the utilities (ui)i∈N , consists of
a dealer’s algorithm for issuing shares, and a protocol allowing the players to
reconstruct the secret. We require that:

– No subset Cof less than m players can reveal any partial information about
the secret before the game begins. I.e., the distribution over inputs given any
shares of players in C is identical to the original distribution D.

– The reconstruction protocol run by any group of at least m players is a com-
putational C-immune protocol for C = {C | |C| ≤ m − 1} that computes the
reconstruction function induced by the dealer’s algorithm in the correspond-
ing computing game.

Definition 3 (computational C-rational SMPC protocol). Let C be a set
of coalitions. A computational C-rational SMPC protocol for f , with respect to a
distribution over inputs D and utilities (ui)i∈N , is:

– A secure protocol in the cryptographic sense for the one shot case (see [11],
Definition 7.5.3).

– A computational C-immune protocol that computes f in the corresponding
computing game.

2.4 Assumptions on the Utilities and the Distribution over Inputs

As mentioned in the Introduction, we must assume that players have initial
motivation to participate in the computing games. As was done in previous
papers, we assume that players prefer to learn the designated value. Formally,
we say that a player learns the value when outcome o is reached, if according to
o the player quits and outputs the right value. Our assumption is that for two
possible outcomes o and o′ it holds that ui(o) > ui(o′) whenever player i learns
the value when o is reached, but does not learn when o′ is reached.

In order to achieve C-immune protocols, we additionally need to require that
no coalition can guess the designated value or the last iteration of our protocol
with a high enough probability. We denote by α an upper bound to the probabil-
ity that a coalition C ∈ C can guesses the right value in advance, and by β′ the
probability (upto a negligible factor) that a coalition C ∈ C is able to identify the
last iteration of the protocol before it is carried out. Note that in the protocol
described in Section 1.3, as well as in our protocols, a value β determines the
probability of proceeding to the next iteration and satisfies β = β′.

In the next sections we require α < α0 and β < β0, where α0 and β0 are
functions of the utilities and of the set C. The calculation of the functions is
deferred to the full version of this paper [18]. As before, the greater the ratio
between the payoff for learning the secret alone and learning with the others,
the smaller α0 and β0 should be. Note that since players can always guess the
value y with the highest probability according to D, it holds that α ≥ D(y), and
thus the requirement α < α0 poses a condition on D.
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3 Cryptographic Tools

3.1 Standard Cryptographic Tools

Our protocols use several standard cryptographic tools:

A Commitment Scheme. We assume that Commit(x, r) = com generates a
commitment for the value x using randomness r, and that the commitment is
perfectly binding. We call (r, x) the opening of com.

A (Non-Rational) SMPC Protocol. We assume that the protocol allows the
evaluation of randomized functions (in particular, we use it to select a random
seed, and assume that the players cannot bias the result). In addition, we require
that the SMPC protocol enables its participants to detect deviations with high
probability. The protocol should work for an active adversary statically corrupt-
ing any number of parties (≤ n − 1). We do not consider premature suspension
of execution a violation of security, and do not assume fairness. Our application
of the SMPC ensures that players have an incentive to carry it out, allowing
everybody to get the output.

A 1-Out-Of-2 OT Protocol. We assume that the OT protocol works for the
active adversary model and provides computational security to the sender, and
information-theoretic protection to the receiver. That is: (i) if the sender’s val-
ues are (s0, s1) and the receiver’s input is b ∈ {0, 1}, then the OT protocol
is an SMPC (again, in the sense of Definition 7.5.3 in [11]) of the function
f((s0, s1), b) = sb, (ii) for every behavior of the sender, he witnesses the same
distribution over transcripts when the receiver’s input is 1 and when it is 0.

Such protection is possible under standard assumptions such as enhanced
trapdoor permutations [8,11] and Computational Diffie-Hellman [3] for honest-
but-curious players (the recent work [32] shows that OT is symmetric, thus a
protocol that protects the sender information theoretically can be transformed
to one that protects the receiver). In order to handle malicious behaviors, we use
the compiler described in [11], with one change: the receiver uses a ZK argument
with a perfectly hiding commitment ensuring information-theoretic security for
its value in order to prove to the sender that he followed the protocol properly.

We assume that all the cryptographic primitives (the standard tools and the
meaningful/meaningless encryption described next) are immune to non-uniform
attacks. This assumption is needed in order to show that our protocols are stable
after any number of iterations.

3.2 Meaningful/Meaningless Encryptions

In additional to the standard tools, we use a non-standard encryption scheme E
called a meaningful/meaningless encryption. E has a special property: some pub-
lic keys of it yield ciphertexts that cannot be decrypted (even with unbounded
computational power). Such keys are called meaningless, while the other keys
are called meaningful.
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Definition 4 (meaningful/meaningless encryption). An encryption
scheme E(pub key, random, plain) = cipher is a β-Meaningful/Meaningless En-
cryption if it satisfies the following properties:

Key Generation: Polynomial time generation of a private key, priv key, and
a public key, pub key, on a given seed.

Encryption: Computing c = E(pub key, r, m) can be done in polynomial time,
given a public key pub key, randomness r, and plaintext m.

Meaningful and Meaningless Keys: The public keys are partitioned into
meaningful and meaningless sets. The probability, over the seeds, that the gener-
ated public key is ’meaningful’ is β, and the probability of it being ’meaningless’
is 1 − β.

If pub key is meaningful, then given c = E(pub key, r, m) and priv key, the
message m can be uniquely retrieved in polynomial time. Furthermore, for every
ciphertext c there is only one plaintext m for which there exists a randomness
r satisfying c = E(pub key, r, m). The encryptions are computationally indistin-
guishable: for any two messages m and m′, the distributions of E(pub key, r, m)
and E(pub key, r, m′) are computationally indistinguishable.

If pub key is meaningless, then knowing c and priv key yields no informa-
tion about m. That is, for any two messages m and m′, the distributions of
E(pub key, r, m) and E(pub key, r, m′) are identical.

Distinguishing Meaningful from Meaningless: Given two public keys, one
meaningful and one meaningless, guessing which is which cannot be done with a
non-negligible advantage over 1

2 by a probabilistic polynomial time tester. How-
ever, when supplied with the corresponding private key, the test is polynomial.

Meaningful/meaningless encryption schemes can be constructed based on Deci-
sional Diffie Hellman, using the construction in [24], on Quadratic Residousity
[13], and on any homomorphic encryption5.6 For completeness we describe a con-
struction of E that assumes the intractability of Quadratic Residousity, based
on the scheme of Goldwasser and Micali [13].

Recall that in Goldwasser and Micali’s scheme two distinct large prime num-
bers p and q are generated, and (p, q) is used as a private key. The public
key generated is (N, x) where N = pq and x is a quadratic non-residue of N
(x �= z2 mod N) that has a Jacobi Symbol of +1. Each bit bi of the message m
is encrypted separately by choosing yi ∈R Z

∗
n and calculating ci = y2

i xbi mod N .

5 Homomorphic encryption is an encryption scheme with the additional special prop-
erty: given two ciphertexts it is possible to generate a ciphertext for the sum (or
multiplication) of the corresponding plaintexts.

6 An interesting open problem is finding the minimal assumptions under which such a
meaningful/meaningless encryption scheme can be constructed. The task requires
non-trivial SZK: given a public key pub key and two messages m and m′ play-
ers should not be able to tell whether the two efficiently generated distributions
E(pub key, r,m) and E(pub key, r, m′) are identical or far apart. This problem was
shown to be in SZK [27], and hence we must assume that there is a problem in SZK
that is not in BPP.
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The ciphertext is (c1, ..., cn), and it can be decrypted using the private key (p, q):
bi = 0 iff ci is a quadratic residue.

To construct a meaningful/meaningless encryption E we modify this scheme
such that x is a random quadratic residue with probability 1− β, and a random
quadratic non-residue with Jacobi Symbol of +1 with probability β. Note that
if x is a quadratic residue, ci is always a quadratic residue, and nothing can be
learned about bi, even when p and q are known.

Claim. The scheme E described above is a meaningful/meaningless encryption.

4 The Rational Secret Sharing Scheme

4.1 The Scheme

We describe an m-out-of-n rational secret sharing scheme for the SBC model.

The Dealer’s Protocol. The scheme works for any kind of m-out-of-n shares
the dealer may distribute (e.g. Shamir shares), provided that he additionally
issues information-theoretic authentications for each share. For concreteness, it
is assumed that the authentication information given to each player consists of a
tag and a hash function. The hash function should allow the player to verify the
authenticity of shares broadcasted by the others in probabilistic polynomial time
and with error probability negligible in the security parameter. The tag should
allow the player to prove the authenticity of the share he uses. The authentication
information held by a group of players must not disclose any information about
the other players’ shares.7

The Players’ Protocol. The reconstruction protocol is called clean-slate
and it proceeds in a sequence of iterations. The protocol, like the one described
in Section 1.3, uses a parameter β and has the property that after any sequence
of iterations, the probability that the next iteration is the last one, revealing the
secret, is β. Every iteration of the protocol consists of the following steps:

The Key Generation step. In each iteration new private and public keys for
a β - meaningful/meaningless encryption are generated. This is done via a (non-
rational) SMPC that takes no inputs, and generates the keys using a randomly
chosen seed. The seed is shared between the players, and the public key, as well
as a perfectly binding commitment to each of the seed’s shares, are published.

If the public key generated is meaningful (which happens with probability
β), we call the iteration meaningful, otherwise the iteration is meaningless. The
protocol is designed not to reveal any information about the secret in meaning-
less iterations, and to allow the players to uncover the secret during the first
meaningful iteration.

7 For example, this can be done using the following method (see [31,26]): if player
i’s true information is x ∈ F, then si, bi ∈ F, bi �= 0, are chosen at random and we
set ci = bi · x + si ∈ F. The value si (the tag) is given to i. The other players each
get bi and ci (the hash function). Player i is required to broadcast si in order to
prove that x is his true information. The other players can then verify with high
probability by checking that ci = bi · x + si.
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The Encryption and Verification steps. Players encrypt their share of the
secret and authentication information (i.e., the tag and the hash function) using
the meaningful/meaningless encryption with the public key generated in the last
step. The ciphertexts are broadcasted and then validated by another SMPC.

The verification process takes as inputs the shares of the seed used to generate
the keys, and additionally uses the broadcasted ciphertexts and the commitments
published during the Key Generation step. It authenticates the seed’s shares
using the commitments, and uses them to regenerate the private key. Since the
commitments are binding, the original private key is always the one generated,
allowing the process to correctly determine whether the iteration is meaningful. If
it is, the ciphertexts are decrypted and the retrieved authentication information
is used to authenticate the retrieved shares of the secret, by verifying that all
the tags and hash functions match.

The verification is considered to be successful if: (i) each seed share is a valid
opening of the corresponding commitment, (ii) in case of a meaningful iteration,
each ciphertext is valid encryption of a share of secret and a corresponding
authentication.

A key point is that the verification process does not take the players’ shares
or authentication information as inputs, and when the public key is meaningless
the ciphertexts it uses convey no information about the shares of the secret.

The Exchange step. If the verification process was successful, players simul-
taneously broadcast their shares of the seed. Each player then authenticates all
seed’s shares, regenerates the seed and determines by himself whether the iter-
ation is meaningful. If it is, he decrypts the ciphertexts and uses the extracted
shares of the secret to reconstruct the secret. Otherwise, the protocol proceeds
to the next iteration.

Recall that players have only a small chance of discovering whether the key is
meaningful before the seed’s shares are revealed, since there is no efficient way of
checking it. Thus, they are motivated to participate in the Exchange step. The
complete protocol is described in Figure 1.

4.2 Scheme Analysis

We next argue that the suggested scheme is a computational rational secret
sharing scheme. We first claim that clean-slate satisfies the following property,
leading to its name: assuming that all players except (maybe) players in the
coalition C are following the protocol, then no information about the secret
is revealed before the last iteration (that is, every iteration “starts off with a
clean slate”). The reason is that players’ shares and authentications are only
used by the protocol to create the encrypted messages. However, all iterations
before the last one are meaningless, thus previous ciphertexts were created using
meaningless keys and are simply random.

To show that no coalition C of size at most m − 1 has an incentive to deviate
after any sequence of iterations, we note that for any joint strategy players in
C may follow, they cannot be worse-off (up to an exponentially small factor) by
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clean-slatei(share, authen)

Let P be the set of players participating in the reconstruction, and denote p = |P |.

Repeat

If one of the following tests fail, or if a deviation was detected in one of the cryptographic
schemes, quit.

Key Generation: Players run an SMPC of the function GenarateKey:

GenarateKey

– Choose p random strings, (ri)i∈P , of length k + t where t is the iteration number
and k is the initial security parameter.

– Generate public and private keys pub key, priv key, for E using ⊕i∈P ri as a seed.

– Choose p random strings, (rand ri)i∈P , of length k + t and set com ri =
Commit(ri, rand ri).

– Public Output : The public key pub key, and the commitments (com ri)i∈P .

– Private Output : The values ri and rand ri are given to player i.

Encryption: Encrypt share and authen using E with parameter β and with the public
key pub key, and broadcast the encrypted message Ci.

Verification: Players run an SMPC of the function V erify that takes (ri, rand ri)i∈P

as inputs:

V erify

– Check that each input pair is a valid opening of the corresponding commitment.
That is, verify com ri = Commit(ri, rand ri).

– Regenerate priv key using ⊕i∈P ri as a seed, and use it to check whether pub key
is meaningful.

– If so, decrypt each Ci using priv key, and get the shares of the secret and authen-
tication information of each player. Check that the shares are consistent with the
authentications by verifying that all the tags and hash functions match.

Exchange:

– Broadcast ri and rand ri.
– Evaluate the first two stages of V erify by yourself.
– If the pub key is meaningful, reconstruct the secret using the retrieved shares (as

done in the last step of V erify). Quit and Output the reconstructed secret.

Fig. 1. The rational secret sharing reconstruction protocol

always following the Key Generation, Encryption, and Verification steps: Key
Generation and Verification are done via an SMPC, and therefore cannot be bro-
ken with a non-negligible probability. As to broadcasting a valid ciphertext - in a
meaningless iteration no information can be gained anyway, and in a meaningful
iteration the verification step detects invalid ciphertexts with high probability.
Thus, we may assume that players only deviate during the Exchange step by
broadcasting a seed share that does not open the commitment published in the
Key Generation step. Such deviations are always detected, since the commit-
ments to the shares are perfectly binding.
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We argue that a coalition can only gain from deviating in the Exchange step
of a meaningful iteration: if it deviates in a meaningless iteration, then no infor-
mation about the secret is revealed due to the clean slate property, and thus the
players are forced to guess the secret. Recall that a coalition cannot efficiently
distinguish between meaningful and meaningless iterations before the Exchange
step, if all its players have broadcasted valid encryptions (which is what we as-
sume). Therefore, if the coalition deviates in meaningful iterations with a certain
probability, it must deviate in meaningless ones with almost the same probabil-
ity. As before, for a sufficiently small β, the risk of deviating in a meaningless
iteration and causing the game to end is too great.

Theorem 1. Let 2 ≤ m ≤ n, Y be a finite set of secrets, and dealer be an algo-
rithm assigning m-out-of-n information-theoretic authenticatable shares. Assume
that α < α0 and β < β0. The scheme (dealer, clean-slate) is a computa-
tional rational m-out-of-n secret sharing scheme for Y with expected number of
iterations O(1/β).

5 The Rational SMPC Protocol

5.1 The Protocol

We present the protocol secure-clean-slate, a rational SMPC protocol for the
SBC model, based on protocol suggested in Section 4. The new protocol, like the
previous one, ensures that no information is leaked until the final iteration (in
an information theoretical sense). However, it additionally protects the inputs
(in a computational sense) during the last iteration. This is done by composing
the meaningful/meaningless technique with Yao’s Circuit Garbling method.8

Recall that a Garbled Circuit is an encrypted form of an original circuit. It
allows the circuit to be evaluated, but reveals no information except the result
of the evaluation. A Garbled Circuit consists of: two random (garbled) strings
assigned to each input wire (the first corresponds to a 0 value, and the other to
a 1), gates tables, and translation tables for outputs. To evaluate the original
circuit on a specific input, the Garbled Circuit is evaluated for the corresponding
garbled strings using the gates tables. Then, the output is translated using the
outputs translation tables. For a detailed description of Garbled Circuits see
[22]. The clean-slate protocol in changed in the following way:

Adding the step of Creating Garbled Circuit . In every iteration the proto-
col constructs a new Garbled Circuit from the circuit representing f . The gates
tables and translation tables are made public, and commitments to both garbled
strings corresponding to each input wire are published in an arbitrary order (the
reason for the arbitrary order will be made clear later). However, players are not

8 General techniques for (non-rational) SMPC do not offer information-theoretic pro-
tection for both sides, thus cannot be used directly. In models in which such proto-
cols can be constructed, we can use the secret sharing scheme from the last section
in order to allow players to fairly exchange the last messages sent by the protocols.
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given both garbled strings assigned to each of their input wires, since this will
allow player i to learn f(x−i, x

′
i) for every x′i. Instead, a share of an n-out-of-n

secret sharing of each garbled string assigned to an input wire is given to every
player, and commitments to all shares are published.

Adding the step of Obtaining Garbled Inputs. Each player obtains one
of the garbled strings chosen for each of his input wires according to the value
assigned to the wire by his input. Player i gets all the shares of each such garbled
string by engaging in a 1-out-of-2 OT protocol with every player j. When running
the OT protocol, player j is the sender and his values are the shares of the two
garbled strings chosen for i’s input wire. Player i is the receiver, and his goal is
to learn the value corresponding to his input bit. As discussed in Section 3, the
OTs give information-theoretic protection to the receiver regarding the value he
received, and computational security to the sender about the other value. This
kind of protection is crucial, since we want to ensure that no information about
i’s input is leaked during meaningless iterations.

For ease of exposition we say that the sender (player j) sends encryptions
of his two values to the receiver (player i) when the OT protocol is carried
out. We require j to supply an additional ZK proof to convince i that both
encryptions are valid. That is, after sending the encryptions, j must prove to i
that each encryption contains a value that opens the corresponding commitment
published during the Creating Garbled Circuit step.

Revising the steps of Encryption and Verification . Players encrypt their
garbled strings, instead of their original inputs, using the β - meaningful/ mean-
ingless encryption with the public key generated in the Key Generation step.

The verification process is changed: in a meaningful iteration it decrypts the
ciphertexts and retrieves the garbled strings for each input bit. It then verifies
that each extracted garbled string indeed opens one of the corresponding com-
mitments. Note that since the commitments to the garbled strings corresponding
to the same input wire were published in an arbitrary order when the Garbled
Circuit was created, no information about the real value of this input wire is
revealed to the other players.

During the Exchange step of a meaningful iteration the garbled strings are
retrieved from the ciphertexts, allowing all players to learn the function’s value,
but protecting the original inputs. In a meaningless iteration, no information
about the garbled strings encoding the real inputs is revealed, and hence no
information about the real inputs is disclosed either. The complete protocol is
described in Figure 2.

5.2 Protocol Analysis

We next argue that secure-clean-slate is a computational rational SMPC
protocol. As discussed before, the protocol is secure (in the cryptographic sense),
since no information about the inputs is revealed before the last iteration, and
due to the fact that the Garbled Circuit created in the last iteration protects
players’ inputs computationally. To show that the protocol is also C-immune, we
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secure-clean-slatei(input)

Repeat

If one of the following tests fail, or if a deviation was detected in one of the cryptographic
schemes, quit.

Key Generation: As in clean-slatei (with P = N).

Creating Garbled Circuit: Players run an SMPC of the function:

CreateGarbledCiruit

– Create a Garbled Circuit of the evaluated function f . The garbled string assigned
to wire q and bit b is denoted W b

q .

– Choose random strings rand W b
q of length k + t where t is the iteration number

and k is the initial security parameter. Denote V b
q = (W b

q , rand W b
q ).

– Randomly select shares V b,1
q , ..., V b,n

q such that V b
q = ⊕V b,i

q , and strings rand V b,i
q

of length k + t.

– Public Output : (i) Tables for the garbled gates and translation tables for the
outputs. (ii) The commitments com W b

q = Commit(W b
q , rand W b

q ). For every input
wire q, the commitments com W 0

q , com W 1
q are output in an arbitrary order. (iii)

The commitments com V b,i
q = Commit(V b,i

q , rand V b,i
q ).

– Private Output : The values V b,i
q and rand V b,i

q are given to player i.

Obtaining Garbled Inputs: If player i holds the qth input bit of f and its value is
b, he engages in a 1-of-2 OTs (perfectly protecting player i) with every other player
j, in order to get V b,j

q and rand V b,j
q . When running an OT protocol, after player j

sends encryptions of his two pair of values, (V 0,j
q , rand V 0,j

q ) and (V 1,j
q , rand V 1,j

q ), to
player i, he supplies a ZK proof to convince i that each encryption contains a pair that
is a valid opening the corresponding commitment (comm V 0,j

q or comm V 1,j
q ). Player

i then reconstructs V b
q using the received shares.

Encryption: Player i encrypts all V b
q acquired during the previous step using E with

parameter β and public key pub key, and broadcasts the ciphertext Ci.

Verification: As in done in clean-slatei, a V erify procedure is run via an SMPC.
The previous procedure is changed: if the key is meaningful, it decodes every Ci and
checks that for every input bit q, the retrieved value V b

q = (W b
q , rand W b

q ) is an opening
of one of the commitments com W 0

q or com W 1
q .

Exchange: As in clean-slatei with the exception that if the public key is meaningful,
the function’s value is obtained by evaluating the garbled circuit using the gates tables
on the garbled strings extracted from the ciphertexts, and then translating the output
using the outputs translation tables.

Fig. 2. The rational SMPC protocol

must first assume that players in every coalition C ∈ C have an initial incentive
to use their true inputs when running a protocol that computes f . Note that
although non-rational SMPC protocols allow players to change their inputs, we
must rule out such behaviors since our utility functions only reward players for
learning the value of f evaluated on the original inputs.

One way of ensuring such incentives is to assume that players in C would have
reported their true inputs had a trusted mediator been running the computation.
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That is, by using fictitious inputs, players in C are unlikely to be able to change
the output of the calculation and still deduce the designated value (see discussion
in [29]).9 An alternative way is to assume the presence of an authenticator that
produces authentication information for the inputs (as was done in the secret
sharing scheme of Section 4). If one of the above options holds, we say that
players in C have an initial incentive to use their true shares. When such an
incentive is assumed, the described protocol can be shown to be C-immune using
the arguments made for the clean-slate protocol.

Theorem 2. Let f be a polynomial time computable function, and let C be a
set of coalitions. Assume that players in every coalition C ∈ C have an initial
incentive to use their true shares, and that α < α0 and β < β0. The proto-
col secure-clean-slate is a computational rational SMPC protocol for f with
expected number of iterations O(1/β).

6 The Rational SMPC Protocol for the NSBC Model

We describe the protocol NSBC-secure-clean-slate, a rational SMPC protocol
for the NSBC model, based on the protocol suggested in Section 5. We first note
that the trivial way of dividing every simultaneous round of the previous protocol
into n non-simultaneous rounds fails: the last player to broadcast his share of
the seed in the Exchange step of the meaningful iteration has already learned
the value, and thus has no incentive to cooperate. We construct a new protocol
in which players can retrieve the value even if the last player deviated, since the
needed information is revealed by the number of the round he deviated in. The
previous protocol is changed in the following way:

Revising the step of Key Generation . The new Key Generation step gen-
erates |Y | pairs of keys, instead of just one. The set of public keys generated in
every iteration has the property that at most one is meaningful. An iteration
containing a meaningful key is called meaningful, and the others are called mean-
ingless. As before, no information about the inputs is revealed in meaningless
iterations, and players uncover the value during the first meaningful iteration.

Revising the steps of Encryption and Verification . In the Encryption
step, players are required to encrypt their inputs |Y | times using each of the
public keys, and broadcast the ciphertexts one-by-one.

The verifications process is changed: in addition to validating the ciphertexts,
it also outputs a permutation of the public keys. In a meaningless iteration the
published permutation is completely random. But, in a meaningful iteration the
permutation places the (only) meaningful key in position y, where y is the desig-
nated value, and randomly orders the rest of the keys. Note that the verification

9 For example, suppose that the players’ inputs are bit strings and they wish to
calculate the strings’ XOR. A player benefits from using a fictitious input string,
even if the computation is done by a trusted mediator: the other players will get a
false value, but the deviating player will be able retrieve the real value by XORing
the result with both his fictitious and real strings.
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process can obtain y by evaluating the Garbled Circuit on the garbled strings
retrieved from the ciphertexts, and then translating the output.

Revising the step of Exchange. The Exchange step is partitioned to |Y | · n
non-simultaneous communication rounds in which shares of the seeds used to
generate the keys are revealed one by one. First the shares of seed 1 are revealed
in the first n rounds (call it cohort 1) with player j sending his share in round j,
and so on for each of the |Y | seeds. If a player deviates (e.g. refuses to reveal his
share of the seed), and this is the last round of the yth cohort, the other players
conclude that he already learned f ’s value, and hence it must be y.

Note 1. The described protocol is susceptible to existence of a malicious player:
such a player can cause the others to output a wrong value by simply aborting
prematurely. However, the deviating player will not be able to learn the secret
himself. Since we assume that all players are rational individuals that prefer to
learn above all else, there will never be an incentive to such behavior.

Theorem 3. Let f be a polynomial time computable function, and let C be a
set of coalitions. Assume that players in every coalition C ∈ C have an initial
incentive to use their true shares, and that α < α0 and β < β0. The protocol
NSBC-secure-clean-slate is a computational rational SMPC protocol for f

with expected number of communication rounds O
(
|Y |n

β

)
.
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Abstract. We study the design of adaptively secure blind signatures
in the universal composability (UC) setting. First, we introduce a new
property for blind signature schemes that is suitable for arguing security
against adaptive adversaries: an equivocal blind signature is a blind signa-
ture where there exists a simulator that has the power of making signing
transcripts correspond to any message signature pair. Second, we present
a general construction methodology for building adaptively secure blind
signatures: the starting point is a 2-move “equivocal lite blind signa-
ture”, a lightweight 2-party signature protocol that we formalize and
implement both generically as well as concretely; formalizing a primitive
as “lite” means that the adversary is required to show all private tapes of
adversarially controlled parties; this enables us to conveniently separate
zero-knowledge (ZK) related security requirements from the remaining
security properties in the blind signature design methodology. Next, we
focus on the suitable ZK protocols for blind signatures. We formalize two
special ZK ideal functionalities, single-verifier-ZK (SVZK) and single-
prover-ZK (SPZK), both special cases of multi-session ZK that may be
of independent interest, and we investigate the requirements for realiz-
ing them in a commit-and-prove fashion as building blocks for adaptively
secure UC blind signatures. Regarding SPZK we find the rather surpris-
ing result that realizing it only against static adversaries is sufficient to
obtain adaptive security for UC blind signatures.

We instantiate all the building blocks of our design methodology both
generically based on the blind signature construction of Fischlin as well as
concretely based on the 2SDH assumption of Okamoto, thus demonstrat-
ing the feasibility and practicality of our approach. The latter construc-
tion yields the first practical UC blind signature that is secure against
adaptive adversaries. We also present a new more general modeling of
the ideal blind signature functionality.

1 Introduction

A blind signature is a cryptographic primitive that was proposed by Chaum [12];
it is a digital signature scheme where the signing algorithm is split into a two-
party protocol between a user (or client) and a signer (or server). The signing
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protocol’s functionality is that the user can obtain a signature on a message that
she selects in a blind fashion, i.e., without the signer being able to extract some
useful information about the message from the protocol interaction. At the same
time the existential unforgeability property of digital signatures should hold, i.e.,
after the successful termination of a number of n corrupted user instantiations,
an adversary should be incapable of generating signatures for (n + 1) distinct
messages.

A blind signature is a very useful privacy primitive that has many applica-
tions in the design of electronic-cash schemes, the design of electronic voting
schemes as well as in the design of anonymous credential systems. Since the ini-
tial introduction of the primitive, a number of constructions have been proposed
[13,32,30,35,23,36,34,37,3,1,2,5,6,7,24,31,17,21,8]. The first formal treatment of
the primitive in a stand-alone model and assuming random oracles (RO) was
given by Pointcheval and Stern in [35].

Blind signatures is in fact one of the few complex cryptographic primitives
(beyond digital signatures, public-key encryption, and key-exchange) that have
been implemented in real world Internet settings (e.g., in the Votopia [27] vot-
ing system) and thus the investigation of more realistic attack models for blind
signatures is of pressing importance. Juels, Luby and Ostrovsky [23] presented a
formal treatment of blind signatures that included the possibility for an adver-
sary to launch attacks that use arbitrary concurrent interleaving of either user or
signer protocols. Still, the design of schemes that satisfied such stronger modeling
proved somewhat elusive. In fact, Lindell [28] showed that unbounded concur-
rent security for blind signatures is impossible under a simulation-based security
definition without any setup assumption; more recently in [21], the generic fea-
sibility of blind signatures without setup assumptions was shown but using a
game-based security formulation.

With respect to practical provably secure schemes, assuming random oracles
or some setup assumption, various efficient constructions were proposed: for ex-
ample, [5,6] presented efficient two-move constructions in the RO model, while
[24,31] presented efficient constant-round constructions without random oracles
employing a common reference string (CRS) model (i.e., when a trusted setup
function initializes all parties’ inputs) that withstand concurrent attacks. While
achieving security under concurrent attacks is an important property for the
design of useful blind signatures, a blind signature scheme may still be insecure
for a certain deployment. Game-based security definitions [35,23,7,24,31,21,8]
capture properties that are intuitively desirable. Nevertheless, the successive
amendments of definitions in the literature and the differences between the var-
ious models exemplify the following: on the one hand capturing all desirable
properties of a complex cryptographic primitive such as a blind signature is a
difficult task, while on the other, even if such properties are attained, a “provably
secure” blind signature may still be insecure if deployed within a larger system.
For this reason, it is important to consider the realization of blind signatures
under a general simulation-based security formulation such as the one provided
in the Universal Composability (UC) framework of Canetti [9] that enables us to
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formulate cryptographic primitives so that they remain secure under arbitrary
deployments and interleavings of protocol instantiations.

In the UC setting, against static adversaries, it was shown how to construct
blind signatures in the CRS model [17] with two moves of interaction. Though
the construction in [17] is round-optimal, it is unknown whether it can admit
concrete practical instantiations. In addition, security is argued only against sta-
tic adversaries; and while it should be feasible to extend the construction of [17]
in the adaptive setting this can only exacerbate the difficulty of concretely realiz-
ing the basic design. Note that using the secure two party computation compiler
of [11] one can derive adaptively secure blind signatures but this approach is
also generic and does not suggest any concrete design.

1.1 Our Results

In this work we study the design of blind signatures in the UC framework against
adaptive adversaries. Our approach is “practice-oriented” in the sense of mini-
mizing communication complexity as well as entailing the following points: (i)
a constant number of rounds, (ii) a choice of session scope that is consistent
with how a blind signature would be implemented in practice, in particular a
multitude of clients and one signer should be supported within a single session,
(iii) a trusted setup string that is of constant length in the number of parties
within a session, (iv) the avoidance, if possible, of cryptographic primitives that
are “per-bit”, such as bit-commitment, where one has to spend a communica-
tion length of Ω(l) where l is a security parameter per bit of private input. Our
results are as follows:

Equivocal blind signatures. We introduce a new property for blind signa-
tures, called equivocality that is suitable for arguing security against adaptive
adversaries. In an equivocal blind signature there exists a simulator that has the
power to construct the internal state of a client including all random tapes so
that any simulated communication transcript can be mapped to any given valid
message-signature pair. This capability should hold true even after a signature
corresponding to the simulated transcript has been released to the adversary.
Equivocality can be seen as a strengthening of the notion of blindness as typically
defined in game-based security formulations of blind signatures: in an equivocal
blind signature, signing transcripts can be simulated in an independent fashion
to the message-signature pair they correspond to.

General methodology for building UC blind signatures. We present a
general methodology for designing adaptively secure UC blind signatures. Our
starting point is the notion of an equivocal lite blind signature: The idea behind
“lite” blind signatures is that security properties should hold under the con-
dition that the adversary deposits the private tapes of the parties he controls.
This “open-all-private-tapes” approach simplifies the blind signature definitions
substantially and allows one to separate security properties that relate to zero-
knowledge compared to other necessary properties for blind signatures. Note that
this is not an honest-but-curious type of adversarial formulation as the adversary
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is not required to be honestly simulating corrupted parties; in particular, the ad-
versary may deviate from honest protocol specification (e.g., bias the random
tapes) as long as he can present private tapes that match the communication
transcripts.

We then demonstrate two instantiations of an equivocal lite blind signature,
one that is based on generic cryptographic primitives that is inspired by the
blind signature construction of [17] and one based on the design and the 2SDH
assumption of [31].

Study of the ZK requirements for UC blind signatures. Having demon-
strated equivocal lite blind-signatures as a feasible starting building block, we
then focus on the formulation of the appropriate ZK-functionalities that are
required for building blind signatures in the adaptive adversary setting. Inter-
estingly, the user and the signer have different ZK “needs” in a blind signature. In
particular the corresponding ZK-functionalities turn out to be simplifications of
the standard multi-session ZK functionality FMZK that restrict the multi-sessions
to occur either from many provers to a single verifier (we call this FSVZK) or from
a single prover to many verifiers (we call this FSPZK). Note that this stems from
our blind signature session scope that involves a multitude of users interacting
with a single signer: this is consistent with the notion that a blind-signature
signer is a server within a larger system and is expected that the number of such
servers would be very small compared to a much larger population of users and
verifiers.

First, regarding FSVZK, the ZK protocol that users need to execute as provers,
we show that it can be realized in a commit-and-prove fashion using a com-
mitment scheme that, as it is restricted to the single-verifier setting, it does
not require built-in non-malleability (while such property would be essential for
general multi-session UC commitments). We thus proceed to realize FSVZK us-
ing mixed commitments [16,29] with only a constant length common reference
string (as opposed to linear in the number of parties that is required in the multi-
session setting). Second, regarding FSPZK, the ZK protocol the signer needs to
execute as a prover, we find the rather surprising result that it needs only be
realized against static adversaries for the resulting blind signature scheme to
satisfy adaptive security. This enables a much more efficient realization design
for FSPZK as we can implement it using merely an extractable commitment and
a Sigma protocol (alternatively, using an Ω-protocol [18]). The intuition behind
this result is that in a blind signature the signer is not interested in hiding his
input in the same way that the user is: this can be seen by the fact that the
verification-key itself leaks a lot of information about the signing-key to the
adversary/environment, thus, using a full-fledged zero-knowledge instantiation
is an overkill from the signer’s point of view; this phenomenon was studied in
the context of zero-knowledge in [26]. We note that our FSPZK functionality
can be seen as a special instance of client-server computation as considered in
[38] (where the relaxed non-malleability requirement of such protocols was also
noted); interestingly FSVZK falls outside that framework (despite its client-server
nature).
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Notations: a
r← RND denotes randomly selecting a in its domain; negl() denotes

negligible function; poly() denotes polynomial function.

2 Equivocal Lite Blind Signatures

2.1 Building Block: Equivocal Lite Blind Signatures

A signature generation protocol is a tuple 〈CRSgen, gen, lbs1, lbs2, lbs3, verify〉
where CRSgen is a common reference string generation algorithm, gen is a key-
pair generation algorithm, lbsi, i = 1, 2, 3, comprise a two-move signature gener-
ation protocol between the user U and the signer S as described in Figure 1 and
verify is a signature verification algorithm. A lite blind signature is a signature
generation protocol that satisfies completeness (see definition 1) as well as two
security properties, lite-unforgeability and lite-blindness, defined below (consis-
tency is another property [10] for signatures that will be trivially satisfied in our
design and thus we omit it in this version).

U S

CRS = 〈crs〉 CRS = 〈crs〉
VerificationKey = 〈vk〉 VerificationKey = 〈vk〉
Plaintext = 〈m〉 SigningKey = 〈sk〉
ρ1

r← RND

u ← lbs1(crs , vk, m; ρ1)
u

−−−−−−−−−−−−−−−−→ ρ2
r← RND

s ← lbs2(crs , vk,u, sk; ρ2)

ρ3
r← RND

s
←−−−−−−−−−−−−−−−−

σ ← lbs3(crs, vk, m, ρ1,u, s; ρ3)

Fig. 1. Outline of a two-move signature generation protocol

Definition 1 (Completeness). A signature generation protocol as in Figure 1
is complete if for all (crs , τ) ← CRSgen(1λ), for all (vk, sk) ← gen(crs), for all
ρ1, ρ2, ρ3

r← RND, whenever u ← lbs1(crs , vk, m; ρ1), s ← lbs2(crs , vk,u, sk; ρ2),
and σ ← lbs3(crs , vk, m, ρ1,u, s; ρ3), then verify(crs , vk, m, σ) = 1.

Lite-unforgeability that we define below suggests informally that if we “collapse”
the lbs1, lbs2 procedures into a single algorithm this will result to a procedure that
combined with lbs3 will be equivalent to the signing algorithm of an unforgeable
digital signature sign in the sense of [19]. We note that lite-unforgeability is much
weaker compared to regular unforgeability of blind signatures (as defined e.g., in
[31,21]) since it requires from the adversary to open the internal tapes of each user
instance (as opposed to hiding such internals in the usual unforgeability definition
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for blind signatures); note that this is not an honest-but-curious modeling as the
adversary is not restricted to flip coins honestly.

Definition 2 (Lite-unforgeability). A signature generation protocol as in
Figure 1 is lite-unforgeable if for all PPT A = (A1, A2) and for any L = poly(λ),
we have AdvA,L

luf (λ) ≤ negl(λ), where AdvA,L
luf (λ) def= Pr[ExpLUF

A,L (λ) = 1] and the
experiment ExpLUF

A,L (λ) is defined below:

Experiment ExpLUF
A,L (λ)

(crs , τ ) ← CRSgen(1λ); (vk, sk) ← gen(crs); state := ∅; k := 0;
while k < L

(mk, ρ1,k, state) ← A1(state, crs , vk);
sk ← lbs2(crs , vk, lbs1(crs , vk, mk; ρ1,k), sk; ρ2,k); ρ2,k

r← RND;
state ← state||sk; k ← k + 1;

(m1, σ1, . . . , m�, σ�) ← A2(state);
if � > L, and verify(crs , vk, mi, σi) = 1 for all 1 ≤ i ≤ �,

and mi �= mj for all 1 ≤ i �= j ≤ �
then return 1 else return 0.

Similarly we can formulate blindness (as defined, e.g. in [8]) in the “lite”
setting by requiring the adversary to open the private tape of the signer for each
user interaction. Given that blindness is subsumed by our equivocality property
(defined below), we will not explore this direction further here (the reader may
refer to the full version [25] for more details). For simplicity we define equivocality
only for two-move protocols following the skeleton of Figure 1. Informally an
equivocal blind signature scheme is accompanied by a simulator procedure I
which can produce signature generation transcripts without using the user input
m and furthermore it can “explain” the transcripts to any adversarially selected
m even after the signature σ for m has been generated. The property of equivocal
blind signatures parallels the property of equivocal commitments [4] or zero-
knowledge with state reconstruction, cf. [20]. We define the property formally
below (cf. Figure 2). In the definition, we use the relation KeyPair defined as
(vk, sk) ∈ KeyPair if and only if (vk, sk) ← gen(crs) (omitting crs to avoid
cluttering the notation). Note that we require (vk, sk), (vk, sk′) ∈ KeyPair to
imply sk = sk′ (otherwise a blind signature may be susceptible to an attack due
to [22]).

Definition 3 (Equivocality). We say that a signature generation protocol is
equivocal if there exists an interactive machine I = (I1, I2), such that for all
PPT A, we have AdvAeq(λ) ≤ negl(λ),

AdvAeq(λ) def=
∣
∣
∣
∣
Pr[(crs , τ) ← CRSgen(1λ) : AUsers(crs,·)(crs) = 1]

− Pr[(crs , τ) ← CRSgen(1λ) : AI(crs,τ,·)(crs) = 1]

∣
∣
∣
∣ ,

where oracle Users(crs , ·) operates as:
- Upon receiving message (i, m, vk) from A, select ρ1

r← RND and compute
u ← lbs1(crs , vk, m; ρ1), record 〈i, m, vk,u, ρ1〉 into historyi, and return
message (i,u) to A.
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- Upon receiving message (i, s, ρ2, sk) from A, if there exists a record
〈i, m, vk,u, ρ1〉 in historyi and both (vk, sk) ∈ KeyPair and s =
lbs2(crs , vk,u, sk; ρ2) hold, then select ρ3

r← RND, compute σ ←
lbs3(crs , vk, m, ρ1,u, s; ρ3), update 〈i, m, vk,u, ρ1〉 in historyi into
〈i, m, vk,u, σ, ρ1, ρ3〉, and return to A the pair (i, σ); otherwise return
to A the pair (i, ⊥).

- Upon receiving message (i, open), return to A the pair (i, historyi).

and oracle I(crs , τ, ·) operates as:
- Upon receiving message (i, m, vk) from A, run (u, aux) ← I1(crs , τ, vk),
record 〈i, m, vk, u, aux〉 into temp, and return message (i,u) to A.

- Upon receiving message (i, s, ρ2, sk) from A, if there exists a record
〈i, m, vk,u, aux〉 in temp and both (vk, sk) ∈ KeyPair and s =
lbs2(crs , vk,u, sk; ρ2) hold, then select γ

r← RND, compute σ ←
sign(crs , vk, sk, m, γ) (where sign is the “collapse” of lbsi for i = 1, 2, 3),
update 〈i, m, vk,u〉 in temp into 〈i, m, vk,u, aux; s, sk, ρ2; σ, γ〉, and re-
turn the pair (i, σ) to A; otherwise return to A the pair (i, ⊥).

- Upon receiving message (i, open), if there exists a record 〈i, m, vk,u, aux〉
in temp then run ρ1 ← I2(i, temp), record 〈i, m, vk,u, ρ1〉 into
historyi, and return to A the pair (i, historyi); if there exists a
record 〈i, m, vk,u, aux; s, sk, ρ2; σ, γ〉 in temp, then run (ρ1, ρ3) ←
I2(i, temp), record 〈i, m, vk,u, σ, ρ1, ρ3〉 into historyi, and return mes-
sage (i, historyi) to A.

We call a signature generation protocol that satisfies completeness, lite-
unforgeability as well as the equivocality property an equivocal lite blind sig-
nature scheme.

Fig. 2. The two worlds an equivocality adversary is asked to distinguish in Definition 3.
In the left-hand the adversary is interacting with a set of users whereas in the right-
hand side the users are interacting with an honest signer instantiation whereas the
adversary is interacting with the simulator I.

2.2 Constructions

In this subsection, we present two equivocal lite-blind signature constructions.
The first construction is generic and is based on the blind signature design of
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[17] whereas the second is a concrete construction that is based on [31]. In the
full version of this work [25] we present additional constructions.
Generic equivocal lite blind signature. Our first construction is based on
[17]; the main difference here is that we need the equivocality property (the orig-
inal design employed two encryption steps for the user that are non-equivocal);
in our setting, it is sufficient to have just one equivocal commitment (that is
not extractable) in the first stage and then employ an extractable commitment
in the second (that is not equivocal). Refer to the signature generation pro-
tocol in Figure 3: the CRSgen algorithm produces crs = 〈pkeqc, pkexc, crsnizk〉;
EQC is a commitment scheme with committing key pkeqc and EQCcom is its com-
mitting algorithm; EXC is a commitment scheme with committing key pkexc and
EXCcom is its committing algorithm; NIZK is an NIZK argument scheme with CRS
crsnizk where NIZKprove is the proof generation algorithm and NIZKverify is
the proof verification algorithm. The gen algorithm produces a key-pair 〈vk, sk〉
for a signature scheme SIG where SIGsign is the signature generation algo-
rithm and SIGverify is the corresponding verification algorithm. The lan-
guage LR

def= {x|(x, w) ∈ R} where R
def= {(crs , vk, E, m), (u, s, ρ1, ρ3) |u =

EQCcom(pkeqc, m; ρ1) ∧ SIGverify(vk,u, s) = 1 ∧ E = EXCcom(pkexc,u, s; ρ3)}.
The verify algorithm given a message m and signature σ operates as follows:
parse σ into E and �, and check that NIZKverify((crs , vk, E, m), �) =? 1.

crs = 〈pkeqc, pkexc, crsnizk〉
U S

VerificationKey = 〈vk〉 VerificationKey = 〈vk〉
Plaintext = 〈m〉 SigningKey = 〈sk〉
ρ1

r← RND; u ← EQCcom(pkeqc, m;ρ1)
u

−−−→ ρ2
r← RND

SIGverify(vk, u, s) =? 1
s

←−−− s ← SIGsign(vk, sk,u; ρ2)

ρ3, ρ4
r← RND; E ← EXCcom(pkexc, u, s; ρ3)

� ← NIZKprove((crs, vk, E, m), (u, s, ρ1, ρ3); ρ4

: u = EQCcom(pkeqc, m;ρ1)
∧ SIGverify(vk,u, s) = 1
∧ E = EXCcom(pkexc,u, s; ρ3))

σ ← E||�
verify(crs , vk, m, σ) =? 1

output (m; σ)

Fig. 3. A generic signature generation protocol

Theorem 1. The two-move signature generation protocol in Figure 3 is an
equivocal lite blind signature as follows: it satisfies lite-unforgeability provided
that (i) SIG is EU-CMA secure, (ii) EQC is binding, (iii) EXC is extractable, and
(iv) NIZK satisfies soundness; and it satisfies equivocality provided that (i) EQC
is equivocal, (ii) EXC is hiding, and (iii) NIZK is non-erasure zero-knowledge.
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Concrete equivocal lite blind signature. In Figure 4 we present a lite blind
signature 〈CRSgen, gen, lbs1, lbs2, lbs3, verify〉 that uses the 2SDH assumption
and is based on Okamoto’s blind signature scheme [31]; the main contribution
here is Theorem 2 that shows that the design is in fact equivocal (instead of
merely blind as shown in [31]). In this scheme the CRSgen algorithm produces
crs = 〈p, g1, g2, G1, G2, GT , ê, ψ, u2, v2〉, where ê : G1 × G2 → GT is a bilinear
map, G1, G2 are groups of order p, the gen algorithm produces a key-pair vk =
〈X〉, sk = 〈x〉 such that X = gx

2 , and the verify algorithm given a message m
and signature σ = 〈ς, α, β, V1, V2〉, responds as follows: check that m, β ∈ Zp,
ς, V1 ∈ G1, α, V2 ∈ G2, ς 
= 1, α 
= 1 and ê(ς, α) = ê(g1, g

m
2 u2v

β
2 ), ê(V1, α) =

ê(ψ(X), X) · ê(g1, V2).

crs = 〈p, g1, g2, G1, G2, GT , ê, ψ, u2, v2〉
U S

vk = 〈X = gx
2 〉 vk = 〈X = gx

2 〉
msg = 〈m〉, m ∈ Zp sk = 〈x〉

t, s
r← Zp; W ← gmt

1 ut
1v

st
1

W
−−−−−−−−−−−→

r, l
r← Zp s.t. x + r �= 0

f, h
r← Zp; ς ← Y

1
ft

mod p
Y,l,r

←−−−−−−−−−−− Y ← (Wvl
1)

1
x+r

α ← Xfgfr
2 ; β ← s + l

t
mod p

V1 ← ψ(X)
1
f gh

1 ; V2 ← Xfh+rgfrh
2

σ ← 〈ς, α, β, V1, V2〉
verify(crs , vk, m, σ) =? 1

output (m; σ)

Fig. 4. Signature generation protocol based on Okamoto digital signature [31]

Theorem 2. The two-move protocol of Figure 4 is an equivocal lite blind signa-
ture as follows: it satisfies lite-unforgeability under the 2SDH assumption; and
it satisfies equivocality unconditionally.

3 Designing Adaptively Secure UC Blind Signatures

In this section we present our design methodology for constructing UC-blind
signatures secure against adaptive adversaries, i.e., the protocol obtained by our
method can UC-realize the blind signature functionality FBSIG (defined in Fig-
ure 5). A previous formalization of the blind signature primitive in the UC setting
was given by [17]. In the full version, we include in the ideal functionality an
explicit description of how corruptions are handled, and we justify our definition.
Note that our FBSIG does not require strong unforgeability from the underlying
signing mechanism; this makes the presentation more general as strong unforge-
ability is not necessary for many applications of the blind signature primitive.
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Functionality FBSIG

Key generation: Upon receiving (KeyGen, sid) from party S, verify that sid =
(S, sid ′) for some sid ′. If not, ignore the input. Else, forward (KeyGen, sid)
to the adversary S .
Upon receiving (Algorithms, sid , sig, ver) from the adversary S , record
〈♠, sig, ver〉 in history(S), and output (VerificationAlg, sid , ver) to party
S, where sig is a signing algorithm, and ver is a verification algorithm.

Signature generation: Upon receiving (Sign, sid , m, ver′) from party U �=
S, where sid = (S, sid ′), record 〈m, ver′〉 in history(U), and send
(Sign, sid , U, ver′) to the adversary S .
Upon receiving (SignStatus, sid , U, SignerComplete) from the adversary S ,
where U is a user that has requested a signature, output (SignStatus, sid ,
U, complete) to party S, and record 〈U, complete〉 in history(S).
Upon receiving (SignStatus, sid , U, SignerError) from the adversary S ,
where U is a user that has requested a signature, output (SignStatus,
sid , U, incomplete) to party S, and record 〈U, ⊥〉 in history(S).
Upon receiving (Signature, sid , U, UserComplete) from the adversary S ,
where U is a user that has requested a signature,

– if S is not corrupted and 〈U, complete〉 is not recorded in history(S), then
halt.

– if S is not corrupted and 〈U, complete〉 has been recorded in history(S)
that also contains 〈♠, sig, ver〉, then compute σ ← sig(m, rnd) flipping the
required random coins rnd , and do the following: if ver′(m,σ) �= 1, then
halt; else if ver′(m,σ) = 1 but ver(m,σ) �= 1, output (Signature, sid , σ)
to party U , and update history(U) into 〈m, σ, rnd〉; else if ver′(m,σ) =
ver(m, σ) = 1, output (Signature, sid , σ) to party U , and update
history(U) into 〈m, σ, rnd , done〉.

– else if S is corrupted, then compute σ ← sig′(m, rnd) flipping the re-
quired random coins rnd , where sig′ is an algorithm that the adversary
S has provided specifically for U (subject to the restriction that any sig′

corresponds to a single ver′), and do the following: if ver′(m,σ) = 1, out-
put (Signature, sid , σ) to party U , update history(U) into 〈m,σ, rnd〉;
else if ver′(m,σ) �= 1, halt.

Upon receiving (Signature, sid , U, UserError) from the adversary S , where U
is a user that has requested a signature, output (Signature, sid , ⊥) to party
U and update history(U) into 〈m〉.

Signature verification: Upon receiving (Verify, sid , m, σ, ver′) from party V ,
where sid = (S, sid ′), do: if, (i) the signer S is not corrupted, (ii) history(S)
contains 〈♠, sig, ver〉, (iii) ver′ = ver, (iv) ver(m,σ) = 1, and (v) there is no
U such that m is recorded with done in history(U), then halt. Else, output
(Verified, sid , ver′(m,σ)) to party V .

Fig. 5. Blind signature functionality FBSIG. Each session contains a signer and unlim-
ited number of users. Each user U obtains at most one signature.
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Further, protocols realizing the functionality of [17] require a single “global trap-
door” that enables the functionality to produce a signature for a given message
that will be valid for any given public-key; while this can be handy in the security
proof, it is not a mandatory requirement for a UC-blind signature (which may
allow for a different trapdoor to be used by the functionality in each signature
generation); we reflect this in our ideal functionality by allowing the adversary
in the corrupted signer setting to “patch” the ideal functionality with a different
signing key for each user. In a blind signature session we allow for a single signer
(whose identity is hard-coded into the session identifier sid) and a multitude of
users. Our signer is active throughout the session and, after key-generation, is
responsive to any user communicating with it via the network without waiting
authorization by the environment.

Our design for UC-realizing FBSIG is modular and delineates the components
required for designing UC blind signatures in the adaptive security setting. We
present our methodology in two steps. First, we employ an equivocal lite blind
signature scheme and we operate in a hybrid world where the following ideal
functionalities exist: FCRS, FRU

SVZK, FRS

SPZK. Here FCRS will be an appropriate
common reference string functionality; on the other hand, FRU

SVZK, FRS

SPZK will be
two different zero-knowledge functionalities that are variations of the standard
multi-session ZK functionality. This reflects the fact that the ZK “needs” of the
user and the signer are different in a blind signature. (1) FRU

SVZK is the “single-
verifier zero-knowledge functionality for the relation RU” where the user will
be the prover and, (2) FRS

SPZK is the “single-prover zero-knowledge functionality
for the relation RS” where the signer will be the prover. They differ from the
multi-session ZK ideal functionality FMZK (e.g., see F̂ZK in figure 7, page 49,
in [11]) in the following manner: FSVZK assumes that there is only a single
verifier that many provers wish to prove to it a certain type of statements; on
the other hand, FSPZK assumes that only a single prover exists that wishes to
convince many verifiers regarding a certain type of statement. Our setting is
different from previous UC-formulations of ZK where multiple provers wish to
convince multiple verifiers at the same time; while we could use such stronger
primitives in our design, recall that we are interested in the simplest possible
primitives that can instantiate our methodology as these highlight minimum
sufficient requirements for blind signature design in the UC setting.

3.1 Construction in the (FCRS, FSVZK, FSPZK)-Hybrid World

In this section we describe our blind signature construction in the hy-
brid world. In Figure 6, we describe a UC blind signature protocol in the
(FCRS, FRU

SVZK, FRS

SPZK)-hybrid world that is based on an equivocal lite blind
signature protocol. The relations parameterized with the ZK functionali-
ties are RU = {((crs , vk,u), (m, ρ1)) | u = lbs1(crs , vk, m; ρ1)} and RS =
{((crs , vk,u, s), (sk, ρ2)) | s = lbs2(crs , vk,u, sk; ρ2) ∧ (vk, sk) ∈ KeyPair}. We
prove the following theorem:
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Theorem 3. Given a signature generation protocol that is an equivocal lite
blind signature, the protocol πΣ(BSIG) in Figure 6 securely realizes FBSIG in the
(FCRS, FRU

SVZK, FRS

SPZK)-hybrid model.

Protocol πΣ(BSIG) in the (FCRS, FRU
SVZK, FRS

SPZK)-Hybrid Model

CRS generation: crs ← CRSgen(1λ) where λ is the security parameter.
Key generation: When party S is invoked with input (KeyGen, sid) by Z,

it verifies that sid = (S, sid ′) for some sid ′; If not, it ignores the input;

Otherwise, it runs (vk, sk) ← gen(crs), lets the verification algorithm ver def
=

verify(crs , vk, ·, ·), and sends output (VerificationAlg, sid , ver) to Z.
Signature generation: On input (Sign, sid , m, ver′) by Z where sid = (S, sid ′),

party U obtains vk′ by parsing ver′, selects random ρ1, computes u ←
lbs1(crs , vk′, m; ρ1) and sends (ProveSVZK, sid , U, (crs, vk′,u), (m, ρ1)) to
FRU

SVZK.

Upon receiving (VerifiedSVZK, sid , U, (crs ′, vk′,u)) from FRU
SVZK, party

S verifies crs ′ = crs and vk′ = vk. If not, then party
S outputs (SignStatus, sid , U, incomplete) to Z. Else party S se-
lects random ρ2 and computes s ← lbs2(crs , vk,u, sk; ρ2) and
sends (ProveSPZK, sid , U, (crs , vk, u, s), (sk, ρ2)) to FRS

SPZK, and outputs
(SignStatus, sid , U, complete) to Z.
Upon receiving (VerifiedSVZK, sid , U, ⊥) from FRU

SVZK, party S outputs
(SignStatus, sid , U, incomplete) to Z.
Upon receiving (VerifiedSPZK, sid , U, (crs ′, vk′′,u′, s)) from FRS

SPZK, party
U verifies that crs ′ = crs and vk′′ = vk′ and u′ = u. If not, then party
U outputs (Signature, sid , ⊥) to Z. Else, party U selects random ρ3 and
computes σ ← lbs3(crs , vk′, m, ρ1,u, s; ρ3), and outputs (Signature, sid , σ)
to Z.
Upon receiving (VerifiedSPZK, sid , U, ⊥) from FRS

SPZK, party U outputs
(Signature, sid , ⊥) to Z.

Signature verification: When party V is invoked with input
(Verify, sid , m, σ, ver′) by Z where sid = (S, sid ′), it outputs
(Verified, sid , ver′(m,σ)) to Z.

Fig. 6. Blind signature protocol πΣ(BSIG) in the (FCRS, FRU
SVZK, FRS

SPZK)-hybrid
model based on a lite-blind signature scheme 〈CRSgen, gen, lbs1, lbs2, lbs3, verify〉.
Here functionalities FRU

SVZK and FRS
SPZK are parameterized with relations RU =

{((crs , vk,u), (m,ρ1)) | u = lbs1(crs , m; ρ1)} and RS = {((crs , vk,u, s), (sk, ρ2))
| s = lbs2(crs , vk,u, sk; ρ2) ∧ (vk, sk) ∈ KeyPair}, respectively.

3.2 Realizing FSVZK and FSPZK

In this subsection we focus on the requirements for the UC-realization of the
two ZK functionalities FSVZK and FSPZK. We note that they can be instanti-
ated generically based on non-interactive zero-knowledge as in [11] or [20]. Nev-
ertheless, by focusing on the exact requirements needed for the blind signature
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setting we manage to get more simplified concrete constructions; note that we
will opt for minimizing the overall communication length as opposed to round
complexity.

Realizing FRU

SVZK. The functionality FRU

SVZK will be realized against adaptive ad-
versaries. We proceed as follows: first given (x, w) ∈ RU , we will have the prover
commit the witness w into a value C; in order to obtain an efficient construction,
we employ the mixed commitment primitive of [16,29]; a critical observation in our
setting is that due to the fact that we have a single verifier (the signer) it is possible
to maintain a constant size common reference string (independent in the number
of committers). In contrast we note that in [16,29] it was necessary to rely on a
linear length common reference string in the number of protocol participants; this
was to suppress man-in-the-middle attacks that could be launched within their
session scope (while such attacks are not possible within our session scope). Our
construction also employs a non-erasure Sigma protocol based on which we show
the consistency of the witness between the commitment C and the statement x by
performing a proof of language membership; finally to defend against a dishonest
verifier, our Sigma protocol will have to be strengthened so that it can be simulated
without knowing the witness; this e.g., can be based on Damg̊ard’s trick [14].

Based on the above we obtain an efficient number-theoretic instantiation of the
functionality that is secure under the Decisional Composite Residuosity assump-
tion ofPaillier [33].The underlyingmixed-commitment is based onDamg̊ard-Jurik
encryption [15]; it could be also based on other encryption schemes as well.

Realizing FRS

SPZK. Regarding FRS

SPZK we find that, rather surprisingly, our task
for attaining an adaptive secure UC blind signature is simpler since security
against a static adversary suffices. The reason is that in the UC blind signature
security proof, the simulator knows the signing secret which means the witness
for FRS

SPZK is known by the simulator, and thus no equivocation of dishonestly
simulated transcripts is ever necessary! This behavior was explored by the au-
thors in the context of zero-knowledge in [26]; in the framework of that paper, we
can say a blind signature protocol falls into the class of protocols where a leaking
version of FRS

SPZK is sufficient for security and thus FRS

SPZK need be realized only
against static adversaries.

Similarly to the realization of FRU

SVZK, for (x, w) ∈ RS , we have the prover
commit to the witness w into the value C, but here we only need employ an
extractable commitment considering we only need to realize FRS

SPZK against static
adversaries; then we develop a Sigma protocol to show the consistency between
the commitment C and the statement x by performing a proof of language
membership; the first two steps together can be viewed as an Ω-protocol in [18];
further we need to wrap up such Ω-protocol by applying e.g., Damg̊ard’s trick
to defend against dishonest verifiers.

3.3 Concrete Construction

In this section, we demonstrate how it is possible to derive an efficient UC
blind signature instantiation based on Theorem 3 and the realization of its
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hybrid world with the related ZK-functionalities. Note that we opt for min-
imizing the overall communication complexity as opposed to round complex-
ity. We need three ingredients: (1) an equivocal lite blind signature scheme,
(2) a UC-realization of the ideal functionality FRU

SVZK, (3) a UC-realization of
the ideal functionality FRS

SPZK. Regarding (1) we will employ the equivocal lite
blind signature scheme of Figure 4. Regarding the two ZK functionalities we
will follow the design strategy outlined in the previous subsection. Recall that
in Figure 6, RU = {((crs , vk,u), (m, ρ1)) | u = lbs1(crs , m; ρ1)} and RS =
{((crs , vk,u, s), (sk, ρ2)) | s = lbs2(crs , vk,u, sk; ρ2) ∧ (vk, sk) ∈ KeyPair}.
Instantiating these relations for the protocol of Figure 4 we have that RU =
{((crs , X, W ), (m, t, s)) | W = gmt

1 ut
1v

st
1 } and RS = {((crs , X, W, Y, l, r), x)

| Y = (Wvl
1)

1
x+r ∧ X = gx

2}. Please refer to the full version for all the details
[25] as well as the full description of the blind signature protocol.

Finally, we can obtain the corollary below:

Corollary 1. Under the DCR assumption, the DLOG assumption, and the
2SDH assumption, and assuming existence of collision resistant hash function,
there exists a blind signature protocol that securely realizes FBSIG in the FCRS-
hybrid model.
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Abstract. In this paper, we introduce P-signatures. A P-signature scheme con-
sists of a signature scheme, a commitment scheme, and (1) an interactive proto-
col for obtaining a signature on a committed value; (2) a non-interactive proof
system for proving that the contents of a commitment has been signed; (3) a non-
interactive proof system for proving that a pair of commitments are commitments
to the same value. We give a definition of security for P-signatures and show how
they can be realized under appropriate assumptions about groups with a bilinear
map. We make extensive use of the powerful suite of non-interactive proof tech-
niques due to Groth and Sahai. Our P-signatures enable, for the first time, the
design of a practical non-interactive anonymous credential system whose secu-
rity does not rely on the random oracle model. In addition, they may serve as a
useful building block for other privacy-preserving authentication mechanisms.

1 Introduction

Anonymous credentials [Cha85, Dam90, Bra99, LRSW99, CL01, CL02, CL04] let Al-
ice prove to Bob that Carol has given her a certificate. Anonymity means that Bob and
Carol cannot link Alice’s request for a certificate to Alice’s proof that she possesses a
certificate. In addition, if Alice proves possession of a certificate multiple times, these
proofs cannot be linked to each other. Anonymous credentials are an example of a
privacy-preserving authentication mechanism, which is an important theme in mod-
ern cryptographic research. Other examples are electronic cash [CFN90, CP93, Bra93,
CHL05] and group signatures [CvH91, CS97, ACJT00, BBS04, BW06, BW07]. In a
series of papers, Camenisch and Lysyanskaya [CL01, CL02, CL04] identified a key
building block commonly called “a CL-signature” that is frequently used in these con-
structions. A CL-signature is a signature scheme with a pair of useful protocols.

The first protocol, called Issue, lets a user obtain a signature on a committed message
without revealing the message. The user wishes to obtain a signature on a value x from
a signer with public key pk . The user forms a commitment comm to value x and gives
comm to the signer. After running the protocol, the user obtains a signature on x, and
the signer learns no information about x other than the fact that he has signed the value
that the user has committed to.

The second protocol, called Prove, is a zero-knowledge proof of knowledge of a
signature on a committed value. The prover has a message-signature pair (x, σpk (x)).

R. Canetti (Ed.): TCC 2008, LNCS 4948, pp. 356–374, 2008.
c© International Association for Cryptologic Research 2008
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The prover has obtained it by either running the Issue protocol, or by querying the signer
on x. The prover also has a commitment comm to x. The verifier only knows comm .
The prover proves in zero-knowledge that he knows a pair (x, σ) and a value open such
that VerifySig(pk , x, σ) = accept and comm = Commit(x, open).

It is clear that using general secure two-party computation [Yao86] and zero-knowl-
edge proofs of knowledge of a witness for any NP statement [GMW86], we can
construct the Issue and Prove protocols from any signature scheme and commitment
scheme. Camenisch and Lysyanskaya’s contribution was to construct specially designed
signature schemes that, combined with Pedersen [Ped92] and Fujisaki-Okamoto [FO98]
commitments, allowed them to construct Issue and Prove protocols that are efficient
enough for use in practice. In turn, CL-signatures have been implemented and stan-
dardized [CVH02, BCC04]. They have also been used as a building block in many
other constructions [JS04, BCL04, CHL05, DDP06, CHK+06, TS06].

A shortcoming of the CL signature schemes is that the Prove protocol is interactive.
Rounds of interaction are a valuable resource. In certain contexts, proofs need to be
verified by third parties who are not present during the interaction. For example, in off-
line e-cash, a merchant accepts an e-coin from a buyer and later deposits the e-coin to
the bank. The bank must be able to verify that the e-coin is valid.

There are two known techniques for making the CL Prove protocols non-interactive.
We can use the Fiat-Shamir heuristic [FS87], which requires the random-oracle model.
A series of papers [CGH04, DNRS03, GK03] show that proofs of security in the random-
oracle model do not imply security. The other option is to use general techniques:
[BFM88, DSMP88, BDMP91] show how any statement in NP can be proven in non-
interactive zero-knowledge. This option is prohibitively expensive.

We give the first practical non-interactive zero-knowledge proof of knowledge of
a signature on a committed message. We have two constructions using two different
practical siganture schemes and a special class of commitments due to Groth and Sa-
hai [GS07]. Our constructions are secure in the common reference string model.

Due to the fact that these protocols are so useful for a variety of applications, it is im-
portant to give a careful treatment of the security guarantees they should provide. In this
paper, we introduce the concept of P-signatures — signatures with efficient Protocols,
and give a definition of security. The main difference between P-signatures and CL-
signatures is that P-signatures have non-interactive proof protocols. (Our definition can
be extended to encompass CL signatures as well.)

OUR CONTRIBUTIONS. Our main contribution is the formal definition of a P-signature
scheme and two efficient constructions.

Anonymous credentials are an immediate consequence of P-signatures (and of CL-
signatures [Lys02]). Let us explain why (see full paper for an in-depth treatment).
Suppose there is a public-key infrastructure that lets each user register a public key.
Alice registers unlinkable pseudonyms AB and AC with Bob and Carol. AB and AC

are commitments to her secret key, and so they are unlinkable by the security prop-
erties of the commitment scheme. Suppose Alice wishes to obtain a certificate from
Carol and show it to Bob. Alice goes to Carol and identifies herself as the owner of
pseudonym AC . They run the P-signature Issue protocol as a result of which Alice gets
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Carol’s signature on her secret key. Now Alice uses the P-signature Prove protocol to
construct a non-interactive proof that she has Carol’s signature on the opening of AB .

Our techniques may be of independent interest. Typically, a proof of knowledge π
of a witness x to a statement s implies that there exists an efficient algorithm that can
extract a value x′ from π such that x′ satisfies the statement s. Our work uses Groth-
Sahai non-interactive proofs of knowledge [GS07] from which we can only extract f(x)
where f is a one-way function. We formalize the notion of an f -extractable proof of
knowledge and develop useful notation for describing f -extractable proofs that com-
mitted values have certain properties. Our notation has helped us understand how to
work with the GS proof system and it may encourage others to use the wealth of this
powerful building block.

TECHNICAL ROADMAP. We use Groth and Sahai’s f -extractable non-interactive proofs
of knowledge [GS07] to build P-signatures. Groth and Sahai give three instantiations
for their proof system, using SXDH, DLIN, and SDA assumptions. We can use either of
the first two instantiations. The SDA-based instantiation does not give us the necessary
extraction properties.

Another issue we confront is that Groth-Sahai proofs are f -extractable and not fully
extractable. Suppose we construct a proof whose witness x contains a ∈ Zp and the
opening of a commitment to a. For this commitment, we can only extract ba ∈ f(x)
from the proof, for some base b. Note that the proof can be about multiple committed
values. Thus, if we construct a proof of knowledge of (m, σ) where m ∈ Zp and
VerifySig(pk ,m, σ) = accept, we can only extract some function F (m) from the proof.
However, even if it is impossible to forge (m, σ) pairs, it might be possible to forge
(F (m), σ) pairs. Therefore, for our proof system to be meaningful, we need to define
F -unforgeable signature schemes, i.e. schemes where it is impossible for an adversary
to compute a (F (m), σ) pair on his own.

Our first construction uses the Weak Boneh-Boyen (WBB) signature scheme [BB04].
Using a rather strong assumption, we prove that WBB is F -unforgeable and our P-
signature construction is secure. Our second construction uses a better assumption (be-
cause it is falsfiable [Nao03]) and Our construction is based on the Full Boneh-Boyen
signature scheme [BB04]. We had to modify the Boneh-Boyen construction, however,
because the GS proof system would not allow the knowledge extraction of the entire
signature. Our first construction is much simpler, but, as it’s security relies on an inter-
active and thus much stronger assumption, we have decided to focus here on our second
construction. For details on the first construction, see the full version.

ORGANIZATION. Sections 2 and 3 define P-signatures and introduce complexity as-
sumptions. Section 4 explains non-interactive proofs of knowledge, introduces our new
notation, and reviews GS proofs. Finally, Section 5 contains our second construction.

2 Definition of a Secure P-signature Scheme

We say that a function ν : Z → R is negligible if for all integers c there exists an integer
K such that ∀k > K , |ν(k)| < 1/kc. We use the standard GMR [GMR88] notation to
describe probability spaces.
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Here we introduce P-signatures a primitive which lets a user (1) obtain a signature
on a committed message without revealing the message, (2) construct a non-interactive
zero-knowledge proof of knowledge of (F (m), σ) such that VerifySig(pk,m, σ) =
accept and m is committed to in a commitment comm , and (3) a non-interactive method
for proving that a pair of commitments are to the same value. In this section, we give the
first formal definition of a non-interactive P-signature scheme. We begin by reviewing
digital signatures and introducing the concept of F -unforgeability.

2.1 Digital Signatures

A signature scheme consists of four algorithms: SigSetup, Keygen, Sign, and VerifySig.
SigSetup(1k) generates public parameters paramsSig . Keygen(paramsSig ) generates
signing keys (pk , sk). Sign(paramsSig , sk ,m) computes a signature σ on m. VerifySig
(paramsSig , pk ,m, σ) outputs accept if σ is a valid signature on m, reject if not.

The standard definition of a secure signature scheme [GMR88] states that no adver-
sary can output (m, σ), where σ is a signature on m, without first previously obtaining
a signature on m . This is insufficient for our purposes. Our P-Signature constructions
prove that we know some value y = F (m) (for an efficiently computable bijection F )
and a signature σ such that VerifySig(paramsSig , pk ,m, σ) = accept. However, even
if an adversary cannot output (m, σ) without first obtaining a signature on m, he might
be able to output (F (m), σ). Therefore, we introduce the notion of F -Unforgeability:

Definition 1 (F -Secure Signature Scheme). We say that a signature scheme is F -
secure (against adaptive chosen message attacks) if it is Correct and F -Unforgeable.

Correct. VerifySig always accepts a signature obtained using the Sign algorithm.

F -Unforgeable. Let F be an efficiently computable bijection. No adversary should be
able to output (F (m), σ) unless he has previously obtained a signature on m. For-
mally, for every PPTM adversary A, there exists a negligible function ν such that

Pr[paramsSig ← SigSetup(1k); (pk , sk) ← Keygen(paramsSig );

(QSign, y, σ) ← A(paramsSig , pk )OSign(paramsSig ,sk ,·) :

VerifySig(paramsSig , pk , F−1(y), σ) = 1 ∧ y �∈ F (QSign)] < ν(k).

OSign(paramsSig , sk ,m) records m-queries on QSign and returns Sign(paramsSig ,
sk ,m). F (QSign) evaluates F on all values on QSign.

Lemma 1. F -unforgeable signatures are secure in the standard [GMR88] sense.

Proof sketch. Suppose an adversary can compute a forgery (m, σ). Now the reduction
can use it to compute (F (m), σ).

2.2 Commitment Schemes

Recall the standard definition of a non-interactive commitment scheme. It consists of
algorithms ComSetup, Commit. ComSetup(1k) outputs public parameters paramsCom
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for the commitment scheme. Commit(paramsCom , x, open) is a deterministic function
that outputs comm , a commitment to x using auxiliary information open . We need
commitment schemes that are perfectly binding and strongly computationally hiding:

Perfectly Binding. For every bitstring comm , there exists at most one value x such that
there exists opening information open so that comm = Commit(params, x, open).
We also require that it be easy to identify the bitstrings comm for which there exists
such an x.

Strongly Computationally Hiding. There exists an alternate setup HidingSetup(1k)
that outputs parameters (computationally indistinguishable from the output of
ComSetup(1k)) so that the commitments become information-theoretically hiding.

2.3 Non-interactive P-signatures

A non-interactive P-signature scheme extends a signature scheme (Setup, Keygen, Sign,
VerifySig) and a non-interactive commitment scheme (Setup, Commit). It consists of the
following algorithms (Setup, Keygen, Sign, VerifySig, Commit, ObtainSig, IssueSig,
Prove, VerifyProof, EqCommProve, VerEqComm).

Setup(1k). Outputs public parameters params . These parameters include parameters
for the signature scheme and the commitment scheme.

ObtainSig(params , pk ,m, comm , open) ↔ IssueSig(params , sk , comm). These two
interactive algorithms execute a signature issuing protocol between a user and the
issuer. The user takes as input (params , pk ,m, comm, open) such that the value
comm = Commit(params ,m, open) and gets a signature σ as output. If this signa-
ture does not verify, the user sends “reject” to the issuer. The issuer gets (params , sk ,
comm) as input and gets nothing as output.

Prove(params , pk ,m, σ). Outputs the values (comm , π, open), such that comm =
Commit(params ,m, open) and π is a proof of knowledge of a signature σ on m.

VerifyProof(params , pk , comm , π). Takes as input a commitment to a message m and
a proof π that the message has been signed by owner of public key pk . Outputs
accept if π is a valid proof of knowledge of F (m) and a signature on m, and outputs
reject otherwise.

EqCommProve(params ,m, open , open ′). Takes as input a message and two commit-
ment opening values. It outputs a proof π that comm = Commit(m, open) is a
commitment to the same value as comm ′ = Commit(m, open ′). This proof is used
to bind the commitment of a P-signature proof to a more permanent commitment.

VerEqComm(params , comm, comm ′, π) . Takes as input two commitments and a proof
and accepts if π is a proof that comm, comm ′ are commitments to the same value.

Definition 2 (Secure P-Signature Scheme). Let F be a efficiently computable bi-
jection (possibly parameterized by public parameters). A P-signature scheme is se-
cure if (Setup, Keygen, Sign, VerifySig) form an F -unforgeable signature scheme, if
(Setup, Commit) is a perfectly binding, strongly computationally hiding commitment
scheme, if (Setup, EqCommProve, VerEqComm) is a non-interactive proof system, and
if the Signer privacy, User privacy, Correctness, Unforgeability, and Zero-knowledge
properties hold:
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Correctness. An honest user who obtains a P-signature from an honest issuer will be
able to prove to an honest verifier that he has a valid signature.

Signer privacy. No PPTM adversary can tell if it is running IssueSig with an honest
issuer or with a simulator who merely has access to a signing oracle. Formally, there
exists a simulator SimIssue such that for all PPTM adversaries (A1, A2), there exists
a negligible function ν so that:∣

∣ Pr[params ← Setup(1k); (sk , pk) ← Keygen(params);
(m, open , state) ← A1(params , sk);
comm ← Commit(params ,m, open);
b ← A2(state) ↔ IssueSig(params , sk , comm) : b = 1]

− Pr[params ← Setup(1k); (sk , pk) ← Keygen(params);
(m, open , state) ← A1(params , sk);
comm ← Commit(params ,m, open); σ ← Sign(params, sk ,m);

b ← A2(state) ↔ SimIssue(params , comm , σ) : b = 1]
∣
∣ < ν(k)

Note that we ensure that IssueSig and SimIssue gets an honest commitment to what-
ever m, open the adversary chooses.
Since the goal of signer privacy is to prevent the adversary from learning anything
except a signature on the opening of the commitment, this is sufficient for our pur-
poses. Note that our SimIssue will be allowed to rewind A. to Also, we have defined
Signer Privacy in terms of a single interaction between the adversary and the issuer.
A simple hybrid argument can be used to show that this definition implies privacy
over many sequential instances of the issue protocol.

User privacy. No PPTM adversary (A1, A2) can tell if it is running ObtainSig with an
honest user or with a simulator. Formally, there exists a simulator Sim = SimObtain
such that for all PPTM adversaries A1, A2, there exists negligible function ν so that:

∣
∣ Pr[params ← Setup(1k); (pk ,m, open , state) ← A1(params);

comm = Commit(params ,m, open);
b ← A2(state) ↔ ObtainSig(params , pk ,m, comm , open) : b = 1]

− Pr[(params , sim) ← Setup(1k); (pk ,m, open , state) ← A1(params);
comm = Commit(params ,m, open);

b ← A2(state) ↔ SimObtain(params , pk , comm) : b = 1]
∣
∣ < ν(k)

Here again SimObtain is allowed to rewind the adversary.
Note that we require that only the user’s input m is hidden from the issuer, but not
necessarily the user’s output σ. The reason that this is sufficient is that in actual
applications (for example, in anonymous credentials), a user would never show σ in
the clear; instead, he would just prove that he knows σ. An alternative, stronger way
to define signer privacy and user privacy together, would be to require that the pair of
algorithms ObtainSig and IssueSig carry out a secure two-party computation. This
alternative definition would ensure that σ is hidden from the issuer as well. However,
as explained above, this feature is not necessary for our application, so we preferred
to give a special definition which captures the minimum properties required.
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Unforgeability. We require that no PPTM adversary can create a proof for any message
m for which he has not previously obtained a signature or proof from the oracle.
A P-signature scheme is unforgeable if an extractor (ExtractSetup, Extract) and a
bijection F exist such that (1) the output of ExtractSetup(1k) is indistinguishable
from the output of Setup(1k), and (2) no PPTM adversary can output a proof π that
VerifyProof accepts, but from which we extract F (m), σ such that either (a) σ is not
valid signature on m, or (b) comm is not a commitment to m or (c) the adversary has
never previously queried the signing oracle on m. Formally, for all PPTM adversaries
A, there exists a negligible function ν such that:

Pr[params0 ← Setup(1k); (params1, td) ← ExtractSetup(1k) : b ← {0, 1} :
A(paramsb) = b] < 1/2 + ν(k), and

Pr[(params , td) ← ExtractSetup(1k); (pk , sk) ← Keygen(params);

(QSign, comm, π) ← A(params , pk )OSign(params,sk ,·);
(y, σ) ← Extract(params , td , π, comm) :
VerifyProof(params , pk , comm, π) = accept

∧ (VerifySig(params , pk , F−1(y), σ) = reject

∨ (∀open , comm �= Commit(params , F−1(y), open))

∨ (VerifySig(params , pk , F−1(y), σ) = accept ∧ y /∈ F (QSign)))] < ν(k).
Oracle OSign(params , sk ,m) runs the function Sign(params , sk ,m) and returns the

resulting signature σ to the adversary. It records the queried message on query tape
QSign. By F (QSign) we mean F applied to every message in QSign.

Zero-knowledge. There exists a simulator Sim=(SimSetup, SimProve, SimEqComm),
such that for all PPTM adversaries A1, A2, there exists a negligible function ν such
that under parameters output by SimSetup, Commit is perfectly hiding and (1) the
parameters output by SimSetup are indistinguishable from those output by Setup, but
SimSetup also outputs a special auxiliary string sim ; (2) when params are generated
by SimSetup, the output of SimProve(params, sim , pk) is indistinguishable from
that of Prove(params, pk ,m, σ) for all (pk ,m, σ) where σ ∈ σpk (m); and (3) when
params are generated by SimSetup, the output of
SimEqComm(params, sim , comm, comm ′) is indistinguishable from that of
EqCommProve(params,m, open , open ′) for all (m, open , open ′) where
comm = Commit(params,m, open) and comm ′ = Commit(params,m, open ′).
In GMR notation, this is formally defined as follows:

| Pr[params ← Setup(1k); b ← A(params) : b = 1]

− Pr[(params , sim) ← SimSetup(1k); b ← A(params) : b = 1]|< ν(k), and

| Pr[(params , sim) ← SimSetup(1k); (pk ,m, σ, state) ← A1(params , sim);
(comm , π, open) ← Prove(params , pk ,m, σ); b ← A2(state, comm, π) : b = 1]

−Pr[(params , sim) ← SimSetup(1k); (pk ,m, σ, state) ← A1(params , sim);
(comm , π) ← SimProve(params , sim , pk); b ← A2(state, comm , π)
: b = 1]| < ν(k), and
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| Pr[(params , sim) ← SimSetup(1k); (m, open , open ′) ← A1(params , sim);
π ← EqCommProve(params ,m, open , open ′); b ← A2(state, π) : b = 1]

− Pr[(params , sim) ← SimSetup(1k); (m, open , open ′) ← A1(params , sim);
π ← SimEqComm(params , sim, Commit(params ,m, open),

Commit(params ,m, open ′));
b ← A2(state, π) : b = 1]| < ν(k).

3 Preliminaries

Let G1, G2, and GT be groups. A function e : G1×G2 → GT is called a cryptographic
bilinear map if it has the following properties: Bilinear. ∀a ∈ G1, ∀b ∈ G2, ∀x, y ∈ Z

the following equation holds: e(ax, by) = e(a, b)xy. Non-Degenerate. If a and b are
generators of their respective groups, then e(a, b) generates GT . Let BilinearSetup(1k)
be an algorithm that generates the groups G1, G2 and GT , together with algorithms for
sampling from these groups, and the algorithm for computing the function e.

The function BilinearSetup(1k) outputs paramsBM = (p, G1, G2, GT , e, g, h),
where p is a prime (of length k), G1, G2, GT are groups of order p, g is a generator
of G1, h is a generator of G2, and e : G1 × G2 → GT is a bilinear map.

We introduce a new assumption which we call TDH and review the HSDH as-
sumption introduced by Boyen and Waters [BW07]. Groth-Sahai proofs use either
the DLIN [BBS04] or SXDH [Sco02] assumption. For formal definitions, see the full
version.

Definition 3 (Triple DH (TDH)). On input g, gx, gy, h, hx, {ci, g
1/(x+ci)}i=1...q, it is

computationally infeasible to output a tuple (hμx, gμy, gμxy) for μ �= 0.

Definition 4 (Hidden SDH [BW07]). On input g, gx, u ∈ G1, h, hx ∈ G2 and
{g1/(x+c�), hc� , uc�}�=1...q, it is computationally infeasible to output a new tuple
(g1/(x+c), hc, uc).

Definition 5 (Decisional Linear Assumption (DLIN)). On input u, v, w, ur, vs ←
G1 it is computationally infeasible to distinguish z0 ← wr+s from z1 ← G1. The
assumption is analogously defined for G2.

Definition 6 (Symmetric External Diffie-Hellman Assumption (SXDH)). SXDH
states that the Decisional Diffie Hellman problem is hard in both G1 and G2. This
precludes efficient isomorphisms between these two groups.

4 Non-interactive Proofs of Knowledge

Our P-signature constructions use the Groth and Sahai [GS07] non-interactive proof
of knowledge (NIPK) system. De Santis et al. [DDP00] give the standard definition of
NIPK systems. Their definition does not fully cover the Groth and Sahai proof system.
In this section, we review the standard notion of NIPK. Then we give a useful gen-
eralization, which we call an f -extractable NIPK, where the extractor only extracts a
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function of the witness. We develop useful notation for expressing f -extractable NIPK
systems, and explain how this notation applies to the Groth-Sahai construction. We
then review Groth-Sahai commitments and pairing product equation proofs. Finally, we
show how they can be used to prove statments about committed exponents, as this will
be necessary later for our constructions.

4.1 Proofs of Knowledge: Notation and Definitions

In this subsection, we review the definition of NIPK, introduce the notion of f -extrac-
tability, and develop some useful notation. We review the De Santis et al. [DDP00] de-
finition of NIPK. Let L = {s : ∃x s.t. ML(s, x) = accept} be a language in NP and
ML a polynomial-time Turing Machine that verifies that x is a valid witness for the
statement s ∈ L. A NIPK system consists of three algorithms: (1) PKSetup(1k) sets up
the common parameters paramsPK ; (2) PKProve(paramsPK , s, x) computes a proof
π of the statement s ∈ L using witness x; (3) PKVerify(paramsPK , s, π) verifies cor-
rectness of π. The system must be complete and extractable. Completeness means that
for all values of paramsPK and for all s, x such that ML(s, x) = accept, a proof π gen-
erated by PKProve(paramsPK , s, x) must be accepted by PKVerify(paramsPK , s, π).
Extractability means that there exists a polynomial-time extractor (PKExtractSetup,
PKExtract). PKExtractSetup(1k) outputs (td , paramsPK ) where paramsPK is dis-
tributed identically to the output of PKSetup(1k). For all PPT adversaries A, the prob-
ability that A(1k, paramsPK ) outputs (s, π) such that PKVerify(paramsPK , s, π) =
accept and PKExtract(td , s, π) fails to extract a witness x such that ML(s, x) = accept
is negligible in k. We have perfect extractability if this probability is 0.

We first generalize the notion of NIPK for a language L to languages parameterized
by paramsPK – we allow the Turing machine ML to receive paramsPK as a separate
input. Next, we generalize extractability to f -extractability. We say that a NIPK system
is f -extractable if PKExtract outputs y, such that there ∃x : ML(paramsPK , s, x) =
accept ∧ y = f(paramsPK , x). If f(paramsPK , ·) is the identity function, we get the
usual notion of extractability. We denote an f -extractable proof π obtained by running
PKProve(paramsPK , s, x) as

π ← NIPK{paramsPK , s, f(paramsPK , x) : ML(paramsPK , s, x) = accept}.

We omit the paramsPK where they are obvious. In our applications, s is a conditional
statement about the witness x, so ML(s, x) = accept if Condition(x) = accept. Thus
the statement π ← NIPK{f(x) : Condition(x)} is well defined. Suppose s includes
a list of commitments cn = Commit(xn, openn) . The witness is x = (x1, . . . , xN ,
open1, . . . , openN ), however, we typically can only extract x1, . . . , xN . We write

π ← NIPK{(x1, . . . , xn) :Condition(x)
∧ ∀� ∃open� : c� = Commit(paramsCom , x�, open�)}.

We introduce shorthand notation for the above expression: π ← NIPK{((c1 : x1), . . . ,
(cn : xn)) : Condition(x)}. For simplicity, we assume the proof π includes s.
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4.2 Groth-Sahai Commitments [GS07]

We review the Groth-Sahai [GS07] commitment scheme. We use their scheme to com-
mit to elements of a group G of prime order p. Technically, their constructions commit
to elements of certain modules, but we can apply them to certain bilinear groups ele-
ments. Groth and Sahai also have a construction for composite order groups using the
Subgroup Decision assumption; however it lacks the necessary extraction properties.

GSComSetup(p, G, g). Outputs a common reference string paramsCom .

GSCommit(paramsCom , x, open). Takes as input x ∈ G and some value open and out-
puts a commitment comm . The extension GSExpCommit(paramsCom , b, θ, open)
takes as input θ ∈ Zp and a base b ∈ G and outputs (b, comm), where comm =
GSCommit(paramsCom , bθ, open). (Groth and Sahai compute commitments to ele-
ments in Zp slightly differently;

VerifyOpening(paramsCom , comm , x, open). Takes x ∈ G and open as input and out-
puts accept if comm is a commitment to x. To verify that (b, comm) is a commitment
to exponent θ check VerifyOpening(paramsCom , comm , bθ, open).

For brevity, we write GSCommit(x) to indicate committing to x ∈ G when the para-
meters are obvious and the value of open is chosen appropriately at random. Similarly,
GSExpCommit(b, θ) indicates committing to θ using b ∈ G as the base.

GS commitments are perfectly binding, strongly computationally hiding, and ex-
tractable. Groth and Sahai [GS07] show how to instantiate commitments that meet
these requirements using either the SXDH or DLIN assumptions. Commitments based
on SXDH consist of 2 elements in G, while those based on DLIN setting require 3 ele-
ments in G. Note that in the Groth-Sahai proof system below, G = G1 or G = G2 for
SXDH and G = G1 = G2 for DLIN.

4.3 Groth-Sahai Pairing Product Equation Proofs [GS07]

Groth and Sahai [GS07] construct an f -extractable NIPK system that lets us prove
statements in the context of groups with bilinear maps.

GSSetup(1k) outputs (p, G1, G2, GT , e, g, h), where G1, G2, GT are groups of
prime order p, with g a generator of G1, h a generator of G2, and e : G1 × G2 → GT

a cryptographic bilinear map. GSSetup(1k) also outputs params1 and params2 for
constructing GS commitments in G1 and G2, respectively. (If the pairing is symmet-
ric, G1 = G2 and params1 = params2.) The statement s to be proven consists
of the following list of values: {aq}q=1...Q ∈ G1, {bq}q=1...Q ∈ G2, t ∈ GT , and
{αq,m}m=1...M,q=1...Q, {βq,n}n=1...N,q=1...Q ∈ Zp, as well as a list of commitments
{cm}m=1...M to values in G1 and {dn}n=1...N to values in G2. Groth and Sahai show
how to construct the following proof:

NIPK{((c1 : x1), . . . , (cM : xM ),(d1 : y1), . . . , (dN : yN)) :
Q∏

q=1

e(aq

M∏

m=1

xαq,m
m , bq

N∏

n=1

yβq,n
n ) = t}
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The proof π includes the statement being proven; this includes the commitments c1, . . . ,
cM and d1, . . . , dN . Groth and Sahai provide an efficient extractor that opens these com-
mitments to values x1, . . . , xM , y1, . . . , yN that satisfy the pairing product equation.

Recall the function GSExpCommit(params1, b, θ, open) = (b, GSCommit
(params1, b

θ, open)). We can replace any of the clauses (cm : xm) with the clause
(cm : bθ), and add b to the list of values included in the statement s (and therefore in the
proof π). The same holds for commitments dn. Groth-Sahai proofs also allow us to prove
that the openings of (c1, . . . , cn, d1, . . . , dn) satisfy several equations simultaneously.

We formally define the Groth-Sahai proof system. Let paramsBM ← BilinearSetup(1k).

GSSetup(paramsBM ). Calls GSComSetup to generate params1 and params2 for
constructing commitments in G1 and G2 respectively, and optional auxiliary values
paramsπ. Outputs paramsGS = (paramsBM , params1, params2, paramsπ).

GSProve(paramsGS , s, ({xm}1...M , {yn}1...N , openings)). Takes as input the parame-
ters, the statement s = {(c1, . . . , cM , d1, . . . , dN ), equations} to be proven, (the
statement s includes the commitments and the parameters of the pairing product
equations), the witness consisting of the values {xm}1...M , {yn}1...N and opening
information openings . Outputs a proof π.

GSVerify(paramsGS , π). Returns accept if π is valid, reject otherwise. (Note that it
does not take the statement s as input because we have assumed that the statement is
always included in the proof π.)

GSExtractSetup(paramsBM ). Outputs paramsGS and auxiliary information (td1,
td2). paramsGS are distributed identically to the output of GSSetup(paramsBM ).
(td1, td2) allow an extractor to discover the contents of all commitments.

GSExtract(paramsGS , td1, td2, π). Outputs x1, . . . , xM ∈ G1 and y1, . . . , yN ∈ G2
that satisfy the equations and that correspond to the commitments (note that the
commitments and the equations are included with the proof π).

Groth-Sahai proofs satisfy correctness, extractability, and strong witness indis-
tinguishability. We explain these requirements in a manner compatible with our no-
tation.

Correctness. An honest verifier always accepts a proof generated by an honest prover.

Extractability. If an honest verifier outputs accept, then the statement is true. This
means that, given td1, td2 corresponding to paramsGS , GSExtract extracts values
from the commitments that satisfy the pairing product equations with probability 1.

Strong Witness Indistinguishability. A simulator Sim = (SimSetup, SimProve) with
the following two properties exists: (1) SimSetup(paramsBM ) outputs paramsGS

′

such that they are computationally indistinguishable from the output of GSSetup(
paramsBM ). Let params′1 ∈ paramsGS

′ be the parameters for the commitment
scheme in G1. Using params′1, commitments are perfectly hiding – this means that
for all commitments comm , ∀x ∈ G1, ∃open : VerifyOpening(params′1, comm, x,
open) = accept (analogous for G2). (2) Using the paramsGS

′ generated by the
challenger, GS proofs become perfectly witness indistinguishable. Suppose an un-
bounded adversary A generates a statement s consisting of the pairing product
equations and a set of commitments (c1, . . . , cM , d1, . . . , dN ). The adversary opens
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the commitments in two different ways W0 = (x(0)
1 , . . . , x

(0)
M , y

(0)
1 , . . . , y

(0)
N ,

openings0) and W1 = (x(1)
1 , . . . , x

(1)
M , y

(1)
1 , . . . , y

(1)
N , openings1) (under the req-

uirement that these witnesses must both satisfy s). The values openingsb show how

to open the commitments to {x
(b)
m , y

(b)
n }. (The adversary can do this because it is un-

bounded.) The challenger gets the statement s and the two witnesses W0 and W1. He
chooses a bit b ← {0, 1} and computes π = GSProve(paramsGS

′, s, Wb). Strong
witness indistinguishability means that π is distributed independently of b.

Composable Zero-Knowledge. Note that Groth and Sahai show that if in a given pair-
ing product equation the constant t can be written as t = e(t1, t2) for known t1, t2,
then these proofs can be done in zero knowledge. However, their zero knowldge proof
construction is significantly less efficient than the WI proofs. Thus, we choose to use
only the WI construction as a building block. Then we can take advantage of special
features of our P-signature construction to create much more efficient proofs that still
have the desired zero knowledge properties. The only exception is our construction for
EqCommProve, which does use the zero knowledge technique suggested by Groth and
Sahai.

4.4 Proofs About Committed Exponents

We use the Groth-Sahai proof system to prove equality of committed exponents.

Equality of Committed Exponents in Different Groups. We want to prove the state-
ment NIPK{((c : gα), (d : hβ)) : α = β}. We perform a Groth-Sahai pairing product
equation proof NIPK{((c : x), (d : y)) : e(x, h)e(1/g, y) = 1}. Security is straightfor-
ward due to the f -extractability property of the GS proof system.

Equality of Committed Exponents in the Same Group. We want to prove the state-
ment NIPK{((c1 : gα), (c2 : uβ)) : α = β}, where g, u ∈ G1. This is equivalent to
proving NIPK{((c1 : gα), (c2 : uβ), (d : hγ) : α = γ ∧ β = γ}.

Zero-Knowledge Proof of Equality of Committed Exponents. We want to prove the
statement NIZKPK{((c1 : gα), (c2 : gβ) : α = β} in zero-knowledge. We perform
the Groth-Sahai zero-knowledge pairing product equation proof NIPK{((c1 : gα), (c2 :
gβ), (d : hθ) : e(a/b, hθ) = 1∧e(g, hθ)e(1/g, h) = 1}. Proof of equality of committed
exponents in group G2 is done analogously. See full version for details.

Remark 1. We cannot directly use Groth-Sahai general arithmetic gates [GS07] to con-
struct the above proofs because they assume that the commitments use the same base.

5 Efficient Construction of P-signature Scheme

In this section, we present a new signature scheme and then build a P-signature scheme
from it. The new signature scheme is inspired by the full Boneh-Boyen signature scheme,
and is as follows:

New-SigSetup(1k) runs BilinearSetup(1k) to get the pairing parameters
(p, G1, G2, GT , e, g, h). In the sequel, by z we denote z = e(g, h).
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New-Keygen(params) picks a random α, β ← Zp. The signer calculates v = hα,
w = hβ , ṽ = gα, w̃ = gβ . The secret-key is sk = (α, β). The public-key is
pk = (v, w, ṽ, w̃). The public key can be verified by checking that e(g, v) = e(ṽ, h)
and e(g, w) = e(w̃, h).

New-Sign(params, (α, β),m) chooses r ← Zp − {α−m
β } and calculates C1 =

g1/(α+m+βr), C2 = wr, C3 = ur. The signature is (C1, C2, C3).
New-VerifySig(params, (v, w, ṽ, w̃),m, (C1, C2, C3)) outputs accept if

e(C1, vhmC2) = z, e(u, C2) = e(C3, w), and if the public key is correctly
formed, i.e., e(g, v) = e(ṽ, h), and e(g, w) = e(w̃, h).1

Theorem 1. Let F (x) = (hx, ux), where u ∈ G1 and h ∈ G2 as in the HSDH and
TDH assumptions. Our new signature scheme is F -secure given HSDH and TDH. (See
full version for proof.)

We extend the above signature scheme to obtain our second P-signature scheme
(Setup, Keygen, Sign, VerifySig, Commit, ObtainSig, IssueSig, Prove, VerifyProof,
EqCommProve, VerEqComm). The algorithms are as follows:

Setup(1k) First, obtain paramsBM = (p, G1, G2, GT , e, g, h) ← BilinearSetup(1k).
Next, obtain paramsGS = (paramsBM , params1, params2, paramsπ) ←
GSSetup(paramsBM ). Pick u ← G1. Let params = (paramsGS , u). As before, z
is defined as z = e(g, h).

Keygen(params) Run the New-Keygen(paramsBM ) and output sk = (α, β), pk =
(hα, hβ, gα, gβ) = (v, w, ṽ, w̃).

Sign(params, sk ,m) Run New-Sign(paramsBM , sk ,m) to obtain σ = (C1, C2, C3)
where C1 = g1/(α+m+βr), C2 = wr , C3 = ur, and sk = (α, β)

VerifySig(params, pk ,m, σ) Run New-VerifySig(paramsBM , pk ,m, σ).
Commit(params,m, open) To commit to m, compute C =

GSExpCommit(params2, h,m, open). (Recall that GSExpCommit(params2, h,
m, open) = GSCommit(params2, h

m , open), and params2 is part of paramsGS .)

ObtainSig(params , pk ,m, comm , open) ↔ IssueSig(params , sk , comm). The user
and the issuer run the following protocol:

1. The user chooses ρ1, ρ2 ← Zp.
2. The issuer chooses r′ ← Zp.
3. The user and the issuer run a secure two-party computation protocol where the

user’s private inputs are (ρ1, ρ2,m, open), and the issuer’s private inputs are
sk = (α, β) and r′.
The issuer’s private output is x = (α + m + βρ1r

′)ρ2 if comm =
Commit(params,m, open), and x = ⊥ otherwise.

4. If x �= ⊥, the issuer calculates C ′1 = g1/x, C′2 = wr′
and C′3 = ur′

, and sends
(C′1, C′2, C′3) to the user.

5. The user computes C1 = C′ρ2
1 , C2 = C′ρ1

2 , and C3 = C′ρ1
3 and then verifies that

the signature (C1, C2, C3) is valid.

1 The latter is needed only once per public key, and is meaningless in a symmetric pairing setting.
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Prove(params , pk ,m, σ) Check if pk and σ are valid, and if they are not, output
⊥. Then the user computes commitments Σ = GSCommit(params1, C1, open1),
Rw = GSCommit(params1, C2, open2), Ru = GSCommit(params1, C3, open3),
Mh = GSExpCommit(params2, h,m, open4) = GSCommit(params2, h

m ,
open4) and Mu = GSExpCommit(params1, u,m, open5) = GSCommit
(params1, u

m , open5).
The user outputs the commitment comm = Mh and the proof

π = NIPK{((Σ : C1), (Rw : C2), (Ru : C3)(Mh : hα), (Mu : uβ)) :
e(C1, vhαC2) = z ∧ e(u, C2) = e(C3, w) ∧ α = β}.

VerifyProof(params , pk , comm , π) Outputs accept if the proof π is a valid proof of the
statement described above for Mh = comm and for properly formed pk .

EqCommProve(params,m, open , open ′) Let commitment comm = Commit
(params,m, open) = GSCommit(params2, h

m , open) and comm ′ =
Commit(params,m, open ′) = GSCommit(params2, h

m , open ′). Use the
GS proof system as described in Section 4.4 to compute π ← NIZKPK{((comm :
hα), (comm ′ : hβ) : α = β}.

VerEqComm(params, comm , comm ′, π) Verify the proof π using the GS proof system
as described in Section 4.4.

Theorem 2 (Efficiency). Using SXDH GS proofs, each P-signature proof for our new
signature scheme consists of 18 elements in G1 and 16 elements in G2. The prover
performs 34 multi-exponentiation and the verifier 68 pairings. Using DLIN, each P-
signature proof consists of 42 elements in G1 = G2. The prover has to do 42 multi-
exponentiations and the verifier 84 pairings.

Theorem 3 (Security). Our second P-signature construction is secure given HSDH
and TDH and the security of the GS commitments and proofs.

Proof. Correctness. VerifyProof will always accept properly formed proofs.

Signer Privacy. We must construct the SimIssue algorithm that is given as input
params, a commitment comm and a signature σ = (C1, C2, C3) and must simulate
the adversary’s view. SimIssue will invoke the simulator for the two-party computation
protocol. Recall that in two-party computation, the simulator can first extract the in-
put of the adversary: in this case, some (ρ1, ρ2,m, open). Then SimIssue checks that
comm = Commit(params,m, open); if it isn’t, it terminates. Otherwise, it sends to

the adversary the values (C′1 = C
1/ρ2
1 , C′2 = C

1/ρ1
2 , C′3 = C

1/ρ1
3 ). Suppose the adver-

sary can determine that it is talking with a simulator. Then it must be the case that the
adversary’s input to the protocol was incorrect which breaks the security properties of
the two-party computation.

User Privacy. The simulator will invoke the simulator for the two-party computation
protocol. Recall that in two-party computation, the simulator can first extract the input
of the adversary (in this case, some (α′, β′), not necessarily the valid secret key). Then
the simulator is given the target output of the computation (in this case, the value x
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which is just a random value that the simulator can pick itself), and proceeds to interact
with the adversary such that if the adversary completes the protocol, its output is x.
Suppose the adversary can determine that it is talking with a simulator. Then it breaks
the security of the two-party computation protocol.

Zero knowledge. Consider the following algorithms. SimSetup runs BilinearSetup to
get paramsBM = (p, G1, G2, GT , e, g, h). It then picks t ← Zp and sets up u =
ga. Next it calls GSSimSetup(paramsBM ) to obtain paramsGS and sim. The final
parameters are params = (paramsGS , u, z = e(g, h)) and sim = (a, sim). Note that
the distribution of params is indistinguishable from the distribution output by Setup.
SimProve receives params , sim , and public key (v, ṽ, w, w̃) and can use trapdoor sim
to create a random P-signature forgery in SimProve as follows. Pick s, r ← Zp and
compute σ = g1/s. We implicitly set m = s − α − rβ. Note that the simulator does
not know m and α. However, he can compute hm = hs/(vwr) and um = us/(ṽaw̃ar).
Now he can use σ, hm , um , wr , ur as a witness and construct the proof π in the same
way as the real Prove protocol. By the witness indistinguishability of the GS proof
system, a proof using the faked witnesses is indistinguishable from a proof using a real
witness, thus SimProve is indistinguishable from Prove.

Finally, we need to show that we can simulate proofs of EqCommProve given the
trapdoor simGS. This follows directly from composable zero knowledge of
EqCommProve. See full version for details.

Unforgeability. Consider the following algorithms: ExtractSetup(1k) outputs the usual
params , except that it invokes GSExtractSetup to get alternative paramsGS and the
trapdoor td = (td1, td2) for extracting GS commitments in G1 and G2. The parameters
generated by GSSetup are indistinguishable from those generated by
GSExtractSetup, so we know that the parameters generated by ExtractSetup will be
indistinguishable from those genrated by Setup.

Extract(params, td , comm , π) extracts the values from commitment comm and the
commitments Mh, Mu contained in the proof π using the GS commitment extractor. If
VerifyProof accepts then comm = Mh. Let F (m) = (hm , um).

Now suppose we have an adversary that can break the unforgeability of our P-
signature scheme for this extractor and this bijection.

A P-signature forger outputs a proof from which we extract (F (m), σ) such that
either (1) VerifySig(params , pk , m, σ) = reject, or (2) comm is not a commitment
to m, or (3) the adversary never queried us on m. Since VerifyProof checks a set of
pairing product equations, f -extractability of the GS proof system trivially ensures that
(1) never happens. Since VerifyProof checks that Mh = comm , this ensures that (2)
never happens. Therefore, we consider the third possibility. The extractor calcualtes
F (m) = (hm, um) where m is fresh. Due to the randomness element r in the signature
scheme, we have two types of forgeries. In a Type 1 forgery, the extractor can extract
from the proof a tuple of the form (g1/(α+m+βr), wr , ur, hm, um), where m + rβ �=
m� + r�β for any (m�, r�) used in answering the adversary’s signing or proof queries.
The second type of forgery is one where m + rβ = m� + r�β for (m�, r�) used in one
of these previous queries. We show that a Type 1 forger can be used to break the HSDH
assumption, and a Type 2 forger can be used to break the TDH assumption.
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Type 1 forgeries: βr + m �= βr� + m� for any r�,m� from a previous query.
The reduction gets an instance of the HSDH problem (p, G1, G2, GT , e, g, X, X̃, h, u,
{C�, H�, U�}�=1...q), such that X = hx and X̃ = gx for some unknown x, and for all �,
C� = g1/(x+c�), H� = hc� , and U� = uc� for some unknown c�. The reduction sets up
the parameters of the new signature scheme as (p, G1, G2, e, g, h, u, z = e(g, h)). Next,
the reduction chooses β ← Zp, sets v = X, ṽ = X̃ and calculates w = hβ , w̃ = gβ .
The reduction gives the adversary the public parameters, the trapdoor, and the public-
key (v, w, ṽ, w̃).

Suppose the adversary’s �th query is to Sign message m�. The reduction will im-
plicitly set r� to be such that c� = m� + βr�. This is an equation with two un-
knowns, so we do not know r� and c�. The reduction sets C1 = C�. It computes
C2 = H�/hm� = hc�/hm� = wr� . Then it computes C3 = (U�)1/β/um�/β =
(uc�)1/β/um�/β = u(c�−m�)/β = ur� The reduction returns the signature (C1, C2, C3).

Eventually, the adversary returns a proof π. Since π is f -extractable and perfectly
sound, we extract σ = g1/(x+m+βr), a = wr, b = ur, c = hm, and d = um. Since this
is a P-signature forgery, (c, d) = (hm, um) �∈ F (QSign). Since this is a Type 1 forger,
we also have that m + βr �= m� + βr� for any of the adversary’s previous queries.
Therefore, (σ, ca, dbβ) = (g1/(x+m+βr), hm+βr, um+βr) is a new HSDH tuple.

Type 2 forgeries: βr + m = βr� + m� for some r�,m� from a previous query. The
reduction receives (p, G1, G2, GT , e, g, h, X, Z, Y, {σ�, c�}), where X = hx, Z = gx,
Y = gy, and for all �, σ� = g1/(x+c�). The reduction chooses γ ← Zp and sets
u = Y γ . The reduction sets up the parameters of the new signature scheme as
(p, G1, G2, e, g, h, u, z = e(g, h)). Next the reduction chooses α ← Zp, and calcu-
lates v = hα, w = Xγ , ṽ = gα, w̃ = Zγ . It gives the adversary the parameters,
the trapdoor, and the public-key (v, w, ṽ, w̃). Note that we set up our parameters and
public-key so that β is implicitly defined as β = xγ, and u = gγy.

Suppose the adversary’s �th query is to Sign message m�. The reduction sets r� =
(α + m�)/(c�γ) (which it can compute). The reduction computes C1 = σ

1/(γr�)
� =

(g1/(x+c�))1/(γr�) = g1/(γr�(x+c�)) = g1/(α+m�+βr�). Since the reduction knows r�, it
computes C2 = wr� , C3 = ur� and send (C1, C2, C3) to A.

Eventually, the adversary returns a proof π. The proof π is f -extractable and per-
ficetly sound, the reduction can extract σ = g1/(x+m+βr), a = wr, b = ur, c = hm,
and d = um. Therefore, VerifySig will always accept m = F−1(c, d), σ, a, b. We also
know that if this is a forgery, then VerifyProof accepts, which means that comm = Mh,
which is a commitment to m. Thus, since this is a P-signature forgery, it must be the
case that (c, d) = (hm, um) �∈ F (QSign). However, since this is a Type 2 forger, we
also have that ∃� : m + βr = m� + βr�, where m� is one of the adversary’s previous
Sign or Prove queries. We implicitly define δ = m − m�. Since m + βr = m� + βr�,
we also get that δ = β(r� − r). Using β = xγ, we get that δ = xγ(r� − r). We
compute: A = c/hm� = hm−m� = hδ, B = ur�/b = ur�−r = uδ/(γx) = gyδ/x

and C = (d/um�)1/γ = u(m−m�)/γ = uδ/γ = gδy . We implicitly set μ = δ/x, thus
(A, B, C) = (hμx, gμy, gμxy) is a valid TDH tuple.
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Abstract. A robust combiner for hash functions takes two candidate
implementations and constructs a hash function which is secure as long
as at least one of the candidates is secure. So far, hash function combiners
only aim at preserving a single property such as collision-resistance or
pseudorandomness. However, when hash functions are used in protocols
like TLS they are often required to provide several properties simul-
taneously. We therefore put forward the notion of multi-property pre-
serving combiners, clarify some aspects on different definitions for such
combiners, and propose a construction that provably preserves collision
resistance, pseudorandomness, “random-oracle-ness”, target collision re-
sistance and message authentication according to our strongest notion.

1 Introduction

Recent attacks on collision-resistant hash functions [17,19,18] have raised the
question how to achieve constructions that are more tolerant to cryptanalytic
results. One approach has been suggested by Herzberg in [11], where robust
combiners have been proposed as a viable strategy for designing less vulnerable
hash functions. The classical hash combiner takes two hash functions H0, H1 and
combines them into a failure-tolerant function by concatenating the outputs of
both functions, such that the combiner is collision resistant as long as at least
one of the two functions H0 or H1 obeys this property.

However, hash functions are currently used for various tasks that require nu-
merous properties beyond collision resistance, e.g., the HMAC construction [2]
based on a keyed hash function is used (amongst others) in the IPSec and TLS
protocols as a pseudorandom function and as a MAC. In the standardized pro-
tocols RSA-OAEP [5] and RSA-PSS [6] even stronger properties are required for
the hash functions (cf. [3,4]), prompting Coron et al. [9] to give constructions
which propagate the random-oracle property from the compression function to
the hash function. A further example for the need of multiple properties is given
by Katz and Shin [13], where collision-resistant pseudorandom functions are re-
quired in order to protect authenticated group key exchange protocols against
insider attacks.1

1 Technically, they require statistical collision-resistance for the keys of the pseudo-
random function.
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Adhering to the usage of hash functions as “swiss army knives” Bellare and
Ristenpart [7,8] have shown how to preserve multiple properties in the design of
hash functions. In contrast to their approach, which starts with a compression
function and aims at constructing a single multi-property preserving (MPP) hash
function, a combiner takes two full-grown hash functions and tries to build a hash
function which should preserve the properties, even if one of the underlying hash
functions is already broken.

The Problem with Multiple Properties. Combiners which preserve a single prop-
erty such as collision-resistance or pseudorandomness are quite well understood.
Multi-property preserving combiners, on the other hand, are not covered by
these strategies and require new techniques instead. As an example we discuss
this issue for the case of collision-resistance and pseudorandomness.

Recall that the classical combiner for collision-resistance simply concatenates
the outputs of both hash functions Comb(M) = H0(M)||H1(M). Obviously,
the combiner is collision-resistant as long es either H0 or H1 has this prop-
erty. Yet, it does not guarantee for example pseudorandomness (assuming that
the hash functions are keyed) if only one of the underlying hash functions is
pseudorandom. An adversary can immediatly distinguish the concatenated out-
put from a truly random value by simply examining the part of the insecure hash
function.

An obvious approach to obtain a hash combiner that preserves pseudoran-
domness is to set Comb(M) = H0(M) ⊕ H1(M). However, this combiner is not
known to preserve collision-resistance anymore, since a collision for the com-
biner does not necessarily require collisions on both hash functions. In fact, this
combiner also violates the conditions of [1,16] and [10], who have shown that
the output of a (black-box) collision-resistant combiner cannot be significantly
shorter than the concatenation of the outputs from all employed hash func-
tions. Thus, already the attempt of combining only two properties in a robust
manner indicates that finding a multi-property preserving combiner is far from
trivial.

Our Construction. In this work we show how to build a combiner that prov-
ably preserves multiple properties, where we concentrate on the most common
properties as proposed in [8], namely, collision resistance (CR), pseudorandom-
ness (PRF), pseudorandom oracle (PRO), target collision resistance (TCR) and
message authentication (MAC).

To explain the underlying idea of our construction it is instructive to recall
the bit commitment scheme introduced by Naor [15]. There, the receiver sends
a random 3n-bit string t to the committing party who applies a pseudorandom
generator to a random n-bit seed r and returns G(r) ⊕ t to commit to 1, or
G(r) to commit to 0. Due to the pseudorandomness of the generator’s output,
the receiver does not learn anything about the committed bit. An ambiguous
opening of the commitment by the sender requires to find some r′ �= r such that
G(r) = G(r′)⊕t. Yet, since there are only 22n pairs of seeds for the pseudorandom
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generator but 23n random strings t, the probability that such a seed pair exists
is at most 2−n.

Adopting the approach of Naor we proceed as follows for each hash function
Hb. First we hash the large message M with Hb into a short n-bit “seed” xb.
Then we expand this value into a 5n-bit string (similar to the pseudorandom
generator). Next, we xor the result with a subset of n random strings tbi ∈
{0, 1}5n, where the subset is determined by the bits xb[i] = 1. We denote this
output by Hprsrv

b (M). Only in the final step we combine the two resulting values
for each function Hb into one output Comb(M) = Hprsrv

0 (M) ⊕ Hprsrv
1 (M) by

xor-ing them.
Due to the internal expansion of the short string xb into five hash values, one

can use a similar argumentation as in [15] together with the collision-resistance
of one of the hash functions to prove that collision-resistance is preserved. At the
same time, pseudorandomness is preserved by the final xor-combination of the
results of the two hash functions. Moreover, we also show that this construction
propagates several other properties, including PRO, TCR and MAC.

Weak vs. Strong Preservation. We prove our construction to be a strongly multi-
property preserving combiner for {CR, PRF, PRO, TCR, MAC}. That is, it suffices
that each property is provided by at least one hash function, e.g., if H0 or H1 has
property MAC, then so does the combiner, independently of the other proper-
ties. We also introduce further relaxations of MPP, denoted by weakly MPP and
mildly MPP. In the weak case the combiner only inherits a set of multiple proper-
ties if they are all provided by at least one hash function (i.e., if there is a strong
candidate which has all properties at the same time). Mildly MPP combiners
are between strongly MPP and weakly MPP combiners, where all properties are
granted, but different hash functions may cover different properties.

Our work then adresses several questions related to the different notions of
multi-property preservation. Namely, we show that strongly MPP is indeed
strictly stronger than mildly MPP which, in turn, implies weakly MPP (but
not vice versa). We finally discuss the case of general tree-based combiners for
more than two hash functions built out of combiners for two hash functions, as
suggested in a more general setting by Harnik et al. [12]. As part of this result
we show that such tree-combiners inherit the weakly and strongly MPP prop-
erty of two-function combiners, whereas mildly MPP two-function combiners
suprisingly do not propagate their security to trees.

Organization. We start by defining the three notions of multi-property pre-
serving combiners and giving definitions of the desired properties in Section 2.
In Section 3 we give the construction of our MPP combiner and prove that
it achieves the strongest MPP notion. A brief discussion about variations of
our construction, e.g., to reduce the key size, conclude this section. Section 4
deals again with the different notions of property preservation by showing the
correlations between strongly, mildly and weakly MPP combiners. The issue of
composing combiners resp. multi-hash combiners is then addressed in Section 5.
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2 Preliminaries

2.1 Hash Function Properties

A hash function H = (HKGen, H) is a pair of efficient algorithms such that HKGen
for input 1n returns (the description of) a hash function H , and H for input H
and M ∈ {0, 1}∗ deterministically outputs a digest H(M) ∈ {0, 1}n. Often,
the hash function is also based on a public initial value IV and we therefore
occassionally write H(IV, M) instead of H(M). Similarly, we often identify the
hash function with its digest values H(·) if the key generation algorithm is clear
from the context.

A hash function may be attributed different properties P1, P2, . . . , among
which five important ones stand out (cf. [8]):

collision resistance (CR): The hash function is called collision-resistant if for
any efficient algorithm A the probability that for H ← HKGen(1n) and
(M, M ′) ← A(H) we have M �= M ′ but H(H, M) = H(H, M ′), is negligible
(as a function of n).

pseudorandomness (PRF): A hash function can be used as a pseudorandom
function if the inital value IV is replaced by a randomly chosen key K
of the same size (i.e., the key generation algorithm outputs a public part
(H, IV) and IV is replaced by a secret key K). Such a keyed hash function
H(K, ·) is called pseudorandom if for any efficient adversary D the advantage
Prob

[
DH(K,·)(H) = 1

]
− Prob

[
Df (H) = 1

]
is negligible, where the proba-

bility in the first case is over D’s coin tosses, the choice of H ← HKGen(1n)
and the key K, and in the second case over D’s coin tosses, the choice of H ←
HKGen(1n), and the choice of the random function f : {0, 1}∗ → {0, 1}n.

pseudorandom oracle (PRO): A hash function Hf based on a random or-
acle f is called a pseudorandom oracle if for any efficient adversary the
construction Hf is indifferentiable from a random oracle F , where indiffer-
entiability [?] is a generalization of indistinguishability allowing to consider
random oracles that are used as a public component. More formally, a hash
function Hf is indifferentiable from a random oracle F if for any efficient
adversary D there exists an efficient algorithm S such that the advantage
Prob

[
DHf ,f (H) = 1

]
− Prob

[
DF ,SF (H)(H) = 1

]
is negligible in n, where

the probability in the first case is over D’s coin tosses, H ← HKGen(1n) and
the choice of the random function f , and in the second case over the coin
tosses of D and S, and H ← HKGen(1n) and over the choice of F .

target collision-resistance (TCR): Target collision-resistance is a weaker se-
curity notion than collision-resistancewhich obliges the adversary to first com-
mit to a target message M before getting the description H ← HKGen(1n) of
the hash function. For the given H the adversary must then find a second mes-
sage M ′ �= M such that H(M) = H(M ′). More formally, an adversary A
consists of two efficient algorithms (A1, A2) where A1(1n) first generates the
target message M and possibly some additional state information st. Then,
a hash function H ← HKGen(1n) is chosen and A2 has to compute on in-
put (H, M, st) a colliding message M ′ �= M . A hash function is called target
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collision-resistant if or any efficient adversary A = (A1, A2) the probability
that for (M, st) ← A1(1n), H ← HKGen(1n) and M ′ ← A2(H, M, st) we have
M �= M ′ but H(M) = H(M ′), is negligible.

message authentication (MAC): We assume again that the intial value is
replaced by a secret random key K. We say that the hash function is a
secure MAC if for any efficient adversary A the probability that for H ←
HKGen(1n) and random K and (M, τ) ← AH(K,·)(H) we have τ = H(K, M)
and M has never been queried to oracle H(K, ·), is negligible.

For a set prop = {P1, P2, . . . , PN} of properties we write prop(H) ⊆ prop for
the properties which hash function H has.

2.2 Multi-property Preserving Combiners

A hash function combiner C = (CKGen, Comb) for hash functions H0, H1 itself
is also a hash function which combines the two functions H0, H1 such that, if at
least one of the hash functions obeys property P, then so does the combiner. For
multiple properties prop = {P1, P2, . . . , PN} one can either demand that the
combiner inherits the properties if one of the candidate hash functions is strong
and has all the properties (weakly preserving), or that for each property at least
one of the two hash functions has the property (strongly preserving). We also
consider a notion in between but somewhat closer to the weak case, called mildly
preserving, in which case all properties from prop must hold, albeit different
functions may cover different properties (instead of one function as in the case
of weakly preserving combiners).2 More formally,

Definition 1 (Multi-Property Preservation). For a set prop =
{P1, P2, . . . , PN} of properties a hash function combiner C = (CKGen, Comb)
for hash functions H0, H1 is called weakly multi-property preserving (wMPP)
for prop iff

prop = prop(H0) or prop = prop(H1) =⇒ prop = prop(C),

mildly multi-property preserving (mMPP) for prop iff

prop = prop(H0) ∪ prop(H1) =⇒ prop = prop(C),

and strongly multi-property preserving (sMPP) for prop iff for all Pi ∈ prop,

Pi ∈ prop(H0) ∪ prop(H1) =⇒ Pi ∈ prop(C).

We remark that for weak and mild preservation all individual properties P1, P2,
. . . , PN from prop are guaranteed to hold, either by a single function as in
weak preservation, or possibly by different functions as in mild preservation.
The combiner may therefore depend on some strong property Pi ∈ prop which
2 One may also refine these notions further. We focus on these three “natural” cases.



380 M. Fischlin and A. Lehmann

one of the hash functions has, and which helps to implement some other property
Pj in the combined hash function. But then, for a subset prop

′ ⊆ prop which,
for instance, misses this strong property Pi, the combiner may no longer preserve
the properties prop

′. This is in contrast to strongly preserving combiners which
support such subsets of properties by definition.

Note that for a singleton prop = {P} all notions coincide and we simply
say that C is P-preserving in this case. However, for two or more properties the
notions become strictly stronger from weak to mild to strong, as we show in
Section 4. Finally, we note that our definition allows the case H0 = H1, which
may require some care when designing combiners, especially if the hash functions
are based on random oracles (see also the remark after Lemma 3).

3 Constructing Multi-property Preserving Combiners

In this section we propose our combiner for the properties CR, PRF, PRO, TCR
and MAC. We then show it to be strongly multi-property preserving for these
properties.

3.1 Our Construction

Our combiner for functions H0, H1 is a

M

CombH0,H1,T
sMPP (M) =

Hprsrv
0 (M) ⊕ Hprsrv

1 (M)

0||M0||M

Hprsrv
0 (M) Hprsrv

1 (M)
G0 T0 G1 T1

Fig. 1. Combiner CombH0,H1,T
sMPP

pair of efficient algorithms CsMPP =
(CKGensMPP, CombsMPP). The key gener-
ation algorithm CKGensMPP(1n) generates
a triple (H0, H1, T ) consisting of two hash
functions H0 ← HKGen0(1n),
H1 ← HKGen1(1n) and a public string
T = (T0, T1) where Tb = (tb1, . . . , tbn) con-
sists of n uniformly chosen values tbi ∈
{0, 1}5n.

The evaluation algorithm CombH0,H1,T
sMPP

for parameters H0, H1, T and message M
first computes two hash values prsrv

b (M) for b = 0, 1, each value based on hash
function Hb and string Tb. For this it proceeds in three stages (see Figure 2):

– First hash the large message M into a short string xb ∈ {0, 1}n via the hash
function Hb. For this step we prepend a 0-bit to M in order to make the
hash function evaluation here somewhat independent from the subsequent
stages.

– Then expand the short string xb into five hash values hb
i = Hb(1||xb|| 〈i〉3)

for i = 0, 1, . . . , 4, where 〈i〉3 denotes the number i represented in binary
with 3 bits. Concatenate these strings and denote the resulting 5n-bit string
by Gb(xb) = hb

0||hb
1|| . . . ||hb

4.
– Compute Tb(xb) = ⊕xb[i]=1t

b
i and add this value to Gb(xb). Denote the out-

put by Hprsrv
b (M) = Gb(xb) ⊕ Tb(xb).
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HbHb

Hb

HbHbHb

0||M

Hprsrv
b (M) = Gb(xb) ⊕ Tb(xb)

xb

1||xb|| 〈0〉3 1||xb|| 〈1〉3 1||xb|| 〈2〉3 1||xb|| 〈3〉3 1||xb|| 〈4〉3

hb
0 hb

1 hb
2 hb

3 hb
4

Gb(xb) = hb
0||hb

1||hb
2||hb

3||hb
4 Tb(xb) = ⊕xb[i]=1t

b
i

Fig. 2. Construction of Hprsrv
b based on hash function Hb

Our combiner now sets CombH0,H1,T
sMPP (M) = Hprsrv

0 (M) ⊕ Hprsrv
1 (M) as the

final output.

3.2 Multi-property Preservation

We next show that the construction satisfies our strongest notion for combiners:

Theorem 1. The combiner CsMPP in Section 3.1 is a strongly multi-property
preserving combiner for prop = {CR, PRF, PRO, TCR, MAC}.

The theorem is proven in five lemmas, each lemma showing that the combiner
preserves one of the properties (as long as at least one hash functions guarantees
this property). Since each lemma holds independently of further assumptions,
the strong multi-property preservation follows.

Lemma 1. The combiner CsMPP is CR-preserving.

Proof. The proof is by contradiction. Assume that an adversary AComb on input
H0, H1, T , with noticeable probability, outputs M �= M ′ with CombH0,H1,T

sMPP (M) =
CombH0,H1,T

sMPP (M ′). Then a collision

Hprsrv
0 (M) ⊕ Hprsrv

1 (M) = Hprsrv
0 (M ′) ⊕ Hprsrv

1 (M ′)
(G0(x0) ⊕ T0(x0)) ⊕ (G1(x1) ⊕ T1(x1)) = (G0(x′0) ⊕ T0(x′0)) ⊕ (G1(x′1) ⊕ T1(x′1))

implies

G0(x0) ⊕ G0(x′0) ⊕ G1(x1) ⊕ G1(x′1) = T0(x0) ⊕ T0(x′0) ⊕ T1(x1) ⊕ T1(x′1), (1)

where xb denotes the hash value Hb(0||M) of the first hash function evaluation
and Gb(xb) the subsequent computation hb

0||hb
1||hb

2||hb
3||hb

4 of the the hash values
hb

i = Hb(1||xb|| 〈i〉3) for i = 0, 1, . . . , 4.
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The short inputs x0, x
′
0, x1, x

′
1 of n bits only give 24n possible values on the left

side of equation (1), while the probability (over the random choice of the ti’s) that
for such a fixed tuple with x0 �= x′0 or x1 �= x′1 a collision with T0(x0)⊕T0(x′0)⊕
T1(x1)⊕T1(x′1) occurs, is 2−5n. This follows since for x0 �= x′0 or x1 �= x′1 at least
one of the sums T0(x0)⊕ T0(x′0) = T0(x0 ⊕ x′0) or T1(x1)⊕ T1(x′1) = T1(x1 ⊕ x′1)
on the right hand side cannot cancel out. Hence the possibility that there exists
some tuple x0, x

′
0, x1, x

′
1 with x0 �= x′0 or x1 �= x′1 such that equation (1) is

statisfied, is at most 24n · 2−5n = 2−n and therefore negligible.
Thus, with overwhelming probability a collision on the combiner only occurs

if already the hash values xb, x
′
b at the first stage of the construction collide, i.e.,

H0(0||M) = H0(0||M ′) and H1(0||M) = H1(0||M ′) for M �= M ′. This, however,
contradicts the assumption that at least one of the underlying hash functions
is collision-resistant. This can be easily formalized through an adversary Ab

for b ∈ {0, 1} which, on input Hb ← HKGenb(1n), samples the other public
values Hb ← HKGenb(1

n) and T and runs the adversary AComb against the
combiner on these data. Whenever AComb outputs (M, M ′) adversary Ab returns
(0||M, 0||M ′). By assumption, both adversaries A0, A1 find collisions for H0 and
H1, respectively, with noticeable probability then. �
Lemma 2. The combiner CsMPP is PRF-preserving.

Proof. The combiner CombH0,H1,T
sMPP is pseudorandom if the distribution of the

combiner’s output cannot be distinguished from a truly random function by any
polynomial-time adversary. Assume that one of the hash functions H0 or H1 is
pseudorandom, yet the combiner is not pseudorandom, i.e., there is an adversary
DComb that can distinguish the function CombH0,H1,T

sMPP (K0, K1, ·) from a random
function F with non-negligible probability. We show that this allows to construct
a successful distinguisher Db for each underlying hash function Hb, which will
contradict our initial assumption.

Recall that adversary DComb has oracle access to a function that is either a
random function F : {0, 1}∗ → {0, 1}5n or the keyed version of our construction
CombH0,H1,T

sMPP (K0, K1, ·) , where the initial values IV1, IV2 in the applications of
H0 and H1 are replaced by random strings K0, K1 of the same size. Then any
efficient adversary DComb can be transformed into an adversary Db (for some
b ∈ {0, 1}) that distinguishes a random function f : {0, 1}∗ → {0, 1}n and a
keyed hash function Hb(Kb, ·) : {0, 1}∗ → {0, 1}n for a randomly chosen key Kb

with the same advantage.
First, the adversary Db on input Hb samples Hb ← HKGenb(1

n) and a key Kb

and chooses random strings T . It then simulates DComb on input (H0, H1, T ).
For each oracle query M of DComb, the adversary Db computes a response by
simulating the hash construction with the previously chosen key T , the function
Hb(Kb, ·) and its own oracle, i.e., each evaluation of the underlying hash function
Hb in the computation of Hprsrv

b (Kb, M) is replaced by the response of Db’s
oracle for the corresponding query. When DComb eventually stops with output
bit d algorithm Db, too, stops and returns d.

For the analysis recall that the underlying oracle of Db is either a random func-
tion f or the hash function Hb(Kb, ·). In the latter case, Db perfectly simulates
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applications of our combiner and therefore generates outputs that are identically
distributed to the hash values of the combiner. Hence, the output distribution
of Db in this case equals the one of DComb with access to CombH0,H1,T

sMPP , i.e.,

Prob
[
DHb(Kb,·)

b (Hb) = 1
]

= Prob
[
DCombH0,H1,T

sMPP (K0,K1,·)
Comb (H0, H1, T ) = 1

]
.

If the oracle of Db returns random values using a truly random function f , then
the simulated response originates from a structured computation involving f .
Yet we claim that the output still looks like a truly random function as long
as no collision on the first stage of the construction occurs. With probability
at most 2−n any pair of queries M �= M ′ of DComb yields a collision under
f , i.e., such that f(0||M) = f(0||M ′) which implies a collision on the final
output of the simulation of Hprsrv

b . The probability that any collision among
q = q(n) = poly(n) queries of DComb occurs, is therefore at most

(
q
2

)
· 2−n. Given

that this does not happen, each value hb
i = Hb(1||xb|| 〈i〉3) for i = 0, . . . , 4 for

the second stage is unique and the corresponding images under f are therefore
independently and uniformly distributed. Hence (hb

0||hb
1||hb

2||hb
3||hb

4) ⊕ Tb(xb) is
an independent random string, even when adding the value Hprsrv

b
(Kb, M). This

shows our claim.
Overall, the output distribution of Df

b satisfies

Prob
[
Df

b (Hb) = 1
]

≤ Prob
[
Df

b (Hb) = 1
∣∣
∣ no Collision

]
+ Prob[Collision]

= Prob
[
DF

Comb(H0, H1, T ) = 1
]
+

(
q

2

)
· 2−n.

Hence, the probability that Db distinguishes Hb from f is

Prob
[
DHb(Kb,·)

b (Hb) = 1
]

− Prob
[
Df

b (Hb) = 1
]

≥ Prob
[
DCombH0,H1,T

sMPP (K0,K1,·)
Comb (H0, H1, T ) = 1

]

− Prob
[
DF

Comb(H0, H1, T ) = 1
]
−

(
q

2

)
· 2−n

and thereby not negligible. This contradicts the assumption that either hash
function H0 or H1 is a pseudorandom function. �

Lemma 3. The combiner CsMPP is PRO-preserving.

There is a small caveat here. Our definition of combiners allows to use the same
hash function H0 = H1, albeit our combiner samples independent instances of
the hash functions then. In this sense, it is understood that, if hash function
H0 is given by a random oracle (as required for property PRO), then in case
H0 = H1 the other hash function instance uses an independent random oracle.

Proof. We show that CombH0,H1,T
sMPP is indifferentiable from a random oracle F :

{0, 1}∗ → {0, 1}5n, when at least one underlying hash function H0 or H1 is
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a random oracle. By symmetry we can assume without loss of generality that
H0 : {0, 1}∗ → {0, 1}n is a random oracle. The (efficient) function H1 can
be arbitrary (but H1 is sampled independently). It suffices that combiner and
the simulator only have black-box access to H1. The value T , required for the
final output of the combiner, is chosen at random and given as input to all
participating parties.

The adversary D has now oracle access either to the combiner CombH0,H1,T
sMPP

and the random oracle H0 or to F and a simulator SF . Our CombH0,H1,T
sMPP is indif-

ferentiable to F if there exists a simulator SF , such that adversary D cannot have
a significant advantage on deciding whether its interacting with CombH0,H1,T

sMPP and
H0, or with F and SF . We will use the simulator described below:

Simulator SF
H0,H1,T (X): //use setEntry(), getEntry() to maintain list of queries/answers

on query X check if some entry Y ← getEntry(X) already exists
if Y = ⊥ //no entry so far

if X = 0||M for some M
setEntry(X) = x0 where x0 is randomly chosen from {0, 1}n

get U ← F(M) for query M
get x1 ← H1(0||M) and subsequently h1

i ← H1(1||x1|| 〈i〉3) for i = 0, . . . , 4
calculate (h0

0||h0
1||h0

2||h0
3||h0

4) = U ⊕ (h1
0||h1

1||h1
2||h1

3||h1
4) ⊕ T1(x1) ⊕ T0(x0)

save values h0
0, . . . , h

0
4 of potential queries 1||x0|| 〈0〉3 , . . . , 1||x0|| 〈4〉3:

setEntry(1||x0|| 〈i〉3) = h0
i for i = 0, 1, . . . , 4

if X �= 0||M , choose a random Y ∈ {0, 1}n

and save the value by setEntry(X) = Y
output Y ← getEntry(X)

The simulator’s goal is to mimic H0, i.e., to produce an output that looks consis-
tent to what the distinguisher can obtain from F . To simulate H0, the simulator
S creates a database, where in addition to the previously processed queries and
answers also answers to potential subsequent queries of D are stored. Those ad-
ditional entries are generated if S receives a new query X = 0||M , that might
be an attempt of D to simulate the construction of our combiner with the an-
swers of S. In this case, the simulator first chooses a random answer x0. Then
S invokes the random oracle F on input M and the black-box function H1 on
input X , where the answer x1 ← H1(X) is used for further queries 1||x1|| 〈i〉3
to H1. The responses to those queries correspond to the values h1

0, . . . , h
1
4 at the

second stage of the Hprsrv
1 evaluation. With the help of those values and the out-

put F(M) of the random oracle, the simulator is able to compute the “missing”
answers h0

0, . . . , h
0
4 that it has to return. Each h0

i for i = 0, . . . , 4 is stored for the
corresponding query 1||x0|| 〈i〉3 which D might submit later. For any new query
X that is not of type 0||M the simulator responds with a random value from
{0, 1}n and stores the value.

Except for two events E1, E2 (defined below), the simulator will provide
outputs that are consistent with F , such that D cannot distinguish between
(CombH0,H1,T

sMPP , H0) and (F , SF). The first event E1 is a collision for S with
S(0||M) = S(0||M ′), M �= M ′ but F(M) �= F(M ′), that occurs with probabil-
ity at most

(
q
2

)
· 2−n where q denotes the number of queries by D.



Multi-property Preserving Combiners for Hash Functions 385

The second event E2 occurs if D makes queries to S of the form 1||x0|| 〈i〉3
where x0 has not been an answer of the simulator before, but on a subsequent
query X = 0||M the simulator picks x0 as its answer. In this case S has already
fixed at least one value h0

i for i = 0, . . . , 4 and cannot later define this value
after learning F(M). In particular, S is then unable to provide a consistent
output. But, since S returns random values from {0, 1}n on new queries X , the
probability for S(X) = x0 for any previous query x0 is at most q · 2−n, where q
is the maximal number of queries of type 1||x0|| 〈i〉3 in D’s execution. Overall,
event E2 happens with probability at most q2 · 2−n.

Given that neither event occurs all replies by S are random (but consistent
with the values provided by F). Comparing the two games we note that, for a
consistent run, the simulator’s random choices and the replies of F to the sim-
ulator’s queries implicitly define a random function f , where the only difference
to the original construction of Hprsrv

0 and the “forward” usage of f is that f in
the simulation here is defined “backwards” through F . Still, the two experiments
look identical from D’s viewpoint.

The advantage of the adversary D is thus at most the probability that one of
the events E1 or E2 happens, i.e., Prob [E2 ∨ E2] ≤

((
q
2

)
+ q2

)
· 2−n.

Hence, the probability that D can distinguish whether it is communicating with
(CombH0,H1,T

sMPP , H0) or with (F , SF), is negligible. �

Lemma 4. The combiner CsMPP is TCR-preserving.

The proof that our combiner is target collision-resistant follows the argument
for collision-resistance closely and appears in the full version.

Lemma 5. The combiner CsMPP is MAC-preserving.

Proof. Assume towards contradiction that our combiner is not a secure MAC.
Then there exists an adversary AComb which, after learning several values τi =
CombH0,H1,T

sMPP (K0, K1, Mi) for adaptively chosen Mi’s, outputs M �=
M1, M2, . . . , Mq and τ such that τ = CombH0,H1,T

sMPP (K0, K1, M) with noticeable
probability.

Given AComb we construct a MAC-adversary Ab against hash function Hb

for b ∈ {0, 1}. This adversary Ab is given Hb as input and oracle access to a
function Hb(Kb, ·) and uses the attacker AComb in a black-box way to produce
a forgery. To this end, Ab first samples T and Hb ← HKGenb(1

n) and Kb as
specified by the combiner, and then invokes AComb for input (H0, H1, T ). For
each query Mi of AComb our adversary computes the combiner’s output with
the help of its oracle Hb(Kb, ·) and knowledge of the other parameters. In par-
ticular, for each query adversary Ab calls its oracle six times about 0||Mi and
1||xb,i|| 〈0〉3 , . . . , 1||xb,i|| 〈4〉3.

If, at the end, AComb returns M and τ such that M is not among the previous
q queries Mi, then adversary Ab flips a coin c ← {0, 1} and proceeds as follows:

– If c = 0 then Ab chooses an index i at random between 1 and q and looks
up the answer xb,i it received in response to its query 0||Mi. It stops with
output (0||M, xb,i).
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– If c = 1 then Ab queries its oracle about 0||M to receive an answer xb. It
then uses its knowledge about the other parameters to compute Hprsrv

b
(M)

and calculates y = τ ⊕Hprsrv
b

(M)⊕Tb(xb). It outputs the message 1||xb||000
and the first n bits of y and stops.

If AComb fails to output a pair (M, τ) or returns a previously queried message
M = Mi, then Ab reports failure and terminates.

For the analysis we consider the two exclusive cases of an successful AComb.
First, the adversary AComb manages to find a new M and a valid τ such that
Hb(Kb, 0||M) collides with some value Hb(Kb, 0||Mi) for some query 0||Mi. Given
this, adversary Ab outputs 0||M and Hb(Kb, 0||M) with probability 1

2q , namely,
if c = 0 and the guess for i is correct. But then 0||M is distinct from all of Ab’s
previous queries (because all 0||Mi’s are distinct from 0||M and all other queries
of Ab are prepended by a 1-bit). Hence, if AComb successfully forges such a MAC
with noticeable probability, then so does Ab. Put differently, the probability that
AComb succeeds for such cases is negligible by the security of Hb.

The second case occurs if AComb outputs a fresh M and a valid tag τ such
that xb = Hb(Kb, 0||M) is distinct from all values xb,i = Hb(Kb, 0||Mi) for
the queries 0||Mi. In this case, if c = 1, adversary Ab “unmasks” τ to recover
y = Hb(Kb, 1||xb|| 〈0〉3)|| . . . ||Hb(Kb, 1||xb|| 〈4〉3). Note that this requires Ab to
make a further oracle query about value 0||M . But this value (in addition to all
other queries) is different from 1||xb||000, and Ab therefore returns a valid forgery
with noticeable probability (if AComb would succeed with noticeable probability
for this case).

In summary, it follows that any successful adversary on the combiner MAC
immediately yields successful attacks on both hash functions, proving the claim.

�

3.3 Variations

In this section we briefly deal with some variations of our previous construction.

Reducing the Key Size. To reduce the key size in our construction we may assume
that one of the hash functions is a random oracle and has property PRO, and
move from strongly preserving combiners to mildly preserving ones. This also
shows that such weaker combiners may come with a gain in efficiency.

If we assume that one hash function behaves like a random function then,
instead of picking the ti’s at random and putting them into the key, we define
tbi := H0(‡||b||i) ⊕ H1(‡||b||i) for a special symbol ‡ different from 0 and 1 (e.g.,
in practice encode 0 and 1 as 00 and 01, respectively, and set ‡ = 11). The prefix
‡ makes the values independent of the intermediate values in the computation,
and the values tbi can now be computed “on the fly” instead of storing them in
the key.

Given that either hash function has property PRO the values tbi are pseudoran-
dom and the proofs in the previous section carry over and we get a mildly multi-
property preserving combiner for prop = {CR, TCR, MAC, PRF, PRO}. The key
size now equals the one for the two underlying hash functions.
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Hash Functions with Different Output Sizes. Our construction utilizes the fact
that both hash functions have the same output length n. This implies that the
concatenation of 5 hash function values Hb(1||xb|| 〈i〉3) for each function Hprsrv

b

has the same length.
If we consider two hash functions with distinct output sizes n0 and n1, then we

need to concatenate 5·max{n0, n1} bits of output. For this we simply concatenate
enough hash values Hb(1||xb|| 〈i〉�b

) (with increasing counter values i) for �b =
�log2(5 · max{n0, n1}/nb)�, and truncate longer outputs to 5 · max{n0, n1} bits.
At the same time the tbi ’s are also chosen to be of length 5 · max{n0, n1}. With
these modifications all the proofs carry over straightforwardly.

Combining More Hash Functions. To combine h ≥ 3 hash functions, each with
output size n0, n1, . . . , nh−1, we set again n := max{n0, n1, . . . , nh−1} and, this
time, produce (2h + 1) · n output bits for each function Hprsrv

b . Accordingly, we
let the tbi ’s be of length (2h + 1) · n. As long as h is polynomial the proofs can
be easily transferred to this case.

Alternatively, one can apply our general method to combine three or more
hash functions as discussed in Section 5. Yet, this general construction yields a
less efficient solution than the tailor-made solution above.

4 Weak vs. Mild vs. Strong Preservation

The first proposition shows that strong preservation implies mild preservation
which, in turn, implies weak preservation. The proof is straightforward and given
only for sake of completeness:

Proposition 1. Let prop be a set of properties. Then any strongly multi-property
preserving combiner for prop is also mildly preserving for prop, and any mildly
preserving combiner for prop is also weakly preserving for prop.

Proof. Assume that the combiner is sMPP for prop. Suppose further that
prop(C) �⊆ prop such that there is some property Pi ∈ prop − prop(C). Then,
since the combiner is sMPP, we must also have Pi /∈ prop(H0) ∪ prop(H1),
else we derive a contradiction to the strong preservation. We therefore have
prop �⊆ prop(H0) ∪ prop(H1), implying mild preservation via the contraposi-
tive statement.

Now consider an mMPP combiner and assume prop = prop(H0) or prop =
prop(H1). Then, in particular, prop = prop(H0) ∪ prop(H1) and the mMPP
property says that also prop = prop(C). This proves sMPP. �

To separate the notions we consider the collision-resistance property CR and
the property NZ (non-zero output) that the hash function should return 0 · · · 0
with small probability only. This may be for example required if the hash value
should be inverted in a field:

non-zero output (NZ): A hash function H has property NZ if for any efficient
adversary A the probability that for H ← HKGen(1n) and M ← A(H) we
have H(M) = 0 · · · 0, is negligible.
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Lemma 6. Let prop = {CR, NZ} and assume that collision-intractable hash
functions exist. Then there is a hash function combiner which is weakly multi-
property perserving for prop, but not mildly multi-property preserving for prop.

Proof. Consider the following combiner (with standard key generation, (H0, H1)
← CKGen(1n) for H0 ← HKGen0(1n) and H1 ← HKGen1(1n)):

The combiner for input M first checks that the length of M is even, and
if so, divides M = L||R into halves L and R, and
– checks that H0(L) �= H0(R) if L �= R, and that H0(M) �= 0 · · · 0,
– verifies that H1(L) �= H1(R) if L �= R, and that H1(M) �= 0 · · · 0.

If the length of M is odd or any of the two properties above holds, then
the combiner outputs H0(M)||H1(M). In any other case, it returns 02n.

We first show that the combiner is weakly preserving. For this assume that the
hash function Hb for b ∈ {0, 1} has both properties. Then the combiner returns
the exceptional output 02n only with negligible probability, namely, if one finds
an input with a non-trivial collision under Hb and which also refutes property NZ.
In any other case, the combiner’s output H0(M)||H1(M) inherits the properties
CR and NZ from hash function Hb.

Next we show that the combiner is not mMPP. Let H ′1 be a collision-resistant
hash function with n − 1 bits output (and let H1 include a description of H ′1).
Define the following hash functions:

H0(M) = 1n, H1(M) =

{
0n if M = 0n1n

1||H ′1(M) else
.

Clearly, H0 has property NZ but is not collision-resistant. On the other hand,
H1 obeys CR but not NZ, as 0n1n is mapped to zeros. But then we have prop =
{CR, NZ} = prop(H0)∪prop(H1) and mild preservation now demands that the
combiner, too, has these two properties. Yet, for input M = 0n1n the combiner
returns 02n since the length of M is even, but L = 0n and R = 1n collide under
H0, and M is thrown to 0n under H1. This means that the combiner does not
obey property NZ. �

Lemma 7. Let prop = {CR, NZ}. Then there exists a hash function com-
biner which is mildly multi-property perserving for prop, but not strongly multi-
property preserving for prop.

Proof. Consider the following combiner (again with standard key generation):

The combiner for input M first checks that the length of M is even,
and if so, divides M = L||R into halves L and R and then verifies that
H0(L) �= H1(R) or H1(L) �= H1(R) or L = R. If any of the latter
conditions holds, or the length of M is odd, then the combiner outputs
H0(M)||H1(M). In any other case it returns 02n.
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We first prove that the combiner above is mMPP. Given that prop ⊆ prop(H0)∪
prop(H1) at least one of the two hash functions is collision-resistant. Hence, even
for M = L||R with even length and L �= R, the hash values only collide with neg-
ligible probability. In other words, the combiner outputs H0(M)||H1(M) with
overwhelming probability, implying that the combiner too has properties CR
and NZ.

Now consider the constant hash functions H0(M) = H1(M) = 1n for all M .
Clearly, both hash functions obey property NZ ∈ prop(H0) ∪ prop(H1). Yet,
for input 0n1n the combiner returns 02n such that NZ /∈ prop(C), implying that
the combiner is not strongly preserving. �

The proof indicates how mildly (or weakly) preserving combiners may take ad-
vantage of further properties to implement other properties. It remains open if
one can find similar separations for the popular properties like CR and PRF, or
for CR and PRO.

5 Multiple Hash Functions and Tree-Based Composition
of Combiners

So far we have considered combiners for two hash functions. The multi-property
preservation definition extends to the case of more hash functions as follows:

Definition 2. For a set prop = {P1, P2, . . . , PN} of properties an m-function
combiner C = (CKGen, Comb) for hash functions H0, H1, . . . ,Hm−1 is called
weakly multi-property preserving (wMPP) for prop iff

∃j ∈ {0, 1, . . . , m − 1} s.t. prop = prop(Hj) =⇒ prop = prop(C),

mildly multi-property preserving (mMPP) for prop iff

prop =
m−1⋃

j=0

prop(Hj) =⇒ prop = prop(C),

and strongly multi-property preserving (sMPP) for prop iff for all Pi ∈ prop,

Pi ∈
m−1⋃

j=0

prop(Hj) =⇒ Pi ∈ prop(C).

For the above definitions we still have that sMPP implies mMPP and mMPP
implies wMPP. The proof is a straightforward adaption of the case of two hash
functions.

Given a combiner for two hash functions one can build a combiner for three
or more hash functions by considering the two-function combiner itself as a hash
function and applying it recursively. For instance, to combine three hash func-
tions H0, H1, H2 one may define the “cascaded” combiner by C2(C2(H0, H1), H2),
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where we assume that the output of C2 allows to be used again as input to the
combiner on the next level.

More generally, given m hash functions and a two-function combiner C2 we
define an m-function combiner Cmulti as a binary tree, as suggested for general
combiners by [12]. Each leaf is labeled by one of the m hash functions (different
leaves may be labeled by the same hash function). Each inner node, including
the root, with two descendants labeled by F0 and F1, is labeled by C2(F0, F1).

The key generation algorithm for this tree-based combiner now runs the key
generation algorithm for the label at each node (each run independent of the
others, even if two nodes contain the same label). To evaluate the multi-hash
function combiner one inputs M into each leaf and computes the functions out-
puts recursively up to the root. The output of the root node is then the output
of Cmulti. We call this a combiner tree for C2 and H0, H1, . . . ,Hm−1.

For efficiency reasons we assume that there are at most polynomially many
combiner evaluations in a combiner tree. Also, to make the output dependent on
all hash functions we assume that each hash function appears in (at least) one
of the leaves. If a combiner tree obeys these properties, we call it an admissible
combiner tree for C2 and H0, H1, . . . ,Hm−1.

We first show that weak MPP and strong MPP preserve their properties for
admissible combiner trees:

Proposition 2. Let C2 be a weakly (resp. strongly) multi-property preserving
two-function combiner for prop. Then any admissible combiner tree for C2 and
functions H0, H1, . . . ,Hm−1 for m ≥ 2 is also weakly (resp. strongly) multi-
property preserving for prop.

Proof. We give the proof by induction for the depth of the tree. For depth d = 1
we have m = 2 and Cmulti(H0, H1) = C2(H0, H1) or Cmulti(H0, H1) = C2(H1, H0)
and the claim follows straightforwardly for both cases.

Now assume d > 1 and that combiner Comb2 is wMPP. Then the root node
applies C2 to two nodes N0 and N1, labeled by F0 and F1. Note that by the
wMPP prerequisite we assume that there exists one hash function Hj which has
all properties in prop. Since this hash functions appears in at least one of the
subtrees under N0 or N1, it follows by induction that at least one of the functions
F0 and F1, too, has properties prop. But then the combiner application in the
root node also inherits these properties from its descendants.

Now consider d > 1 and the case of strong MPP. It follows analogoulsy to
the previous case that for each property Pi ∈ prop, one of the hash functions
in the subtrees rooted at N0 and N1 must have property Pi as well. This carries
over to the combiners at nodes N0 or N1 by induction, and therefore to the root
combiner. �

Somewhat surprisingly, mild MPP in general does not propagate security for tree
combiners, as we show by a counter-example described in the full version. Note
that we still obtain, via the previous proposition, that the mMPP combiner is
also wMPP and that the resulting tree combiner is thus also wMPP. Yet, it loses
its mMPP property.
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Proposition 3. Let prop = {CR, NZ} and assume that there are collision-
intractable hash functions. Then there exists a two-function weakly multi-property
preserving combiner C2 for prop, and an admissible tree combiner for C2 and hash
functions H0, H1, H2 which is not mildly multi-property preserving for prop.

Note that the cascading combiner can also be applied to our combiner in Sec-
tion 3 to compose three or more hash functions (with the adaption for hash
functions with different output lengths discussed in Section 3.3). The derived
combiner, however, is less efficient than the direct construction sketched there.
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Abstract. An OT-combiner implements a secure oblivious transfer (OT)
protocol using oracle access to n OT-candidates of which at most t may be
faulty. We introduce a new general approach for combining OTs by making
a simple and modular use of protocols for secure computation. Specifically,
we obtain an OT-combiner from any instantiation of the following two in-
gredients: (1) a t-secure n-party protocol for the OT functionality, in a
network consisting of secure point-to-point channels and a broadcast
primitive; and (2) a secure two-party protocol for a functionality deter-
mined by the former multiparty protocol, in a network consisting of a sin-
gle OT-channel. Our approach applies both to the “semi-honest” and the
“malicious” models of secure computation, yielding the corresponding
types of OT-combiners.

Instantiating our general approach with secure computation protocols
from the literature, we conceptually simplify, strengthen the security, and
improve the efficiency of previous OT-combiners. In particular, we obtain
the first constant-rate OT-combiners in which the number of secure OTs
being produced is a constant fraction of the total number of calls to
the OT-candidates, while still tolerating a constant fraction of faulty
candidates (t = Ω(n)). Previous OT-combiners required either ω(n) or
poly(k) calls to the n candidates, where k is a security parameter, and
produced only a single secure OT.

We demonstrate the usefulness of the latter result by presenting sev-
eral applications that are of independent interest. These include:

Constant-rate OTs from a noisy channel. We implement n in-
stances of a standard

�2
1

�
-OT by communicating just O(n) bits over

a noisy channel (binary symmetric channel). Our reduction provides
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unconditional security in the semi-honest model. Previous reductions of
this type required the use of Ω(kn) noisy bits.

Better amortized generation of OTs. We show that, following an
initial “seed” of O(k) OTs, each additional OT can be generated by
only computing and communicating a constant number of outputs of a
cryptographic hash function. This improves over a protocol of Ishai et
al. (Crypto 2003), which obtained similar efficiency in the semi-honest
model but required Ω(k) applications of the hash function for generating
each OT in the malicious model.

1 Introduction

Secure Multiparty Computation (MPC) protocols allow a number of mutually
distrusting parties to jointly evaluate functions over their local inputs without
compromising the privacy of these inputs or the correctness of the output. (In the
following we will also refer to functions over distributed inputs as “functionali-
ties”, capturing the general case where different parties may obtain distinct, and
possibly randomized, outputs.) If a majority of the parties involved are honest,
then there are “information-theoretic” solutions for this general task, requiring
no computational assumptions [3,7]. On the other hand, if an honest majority
is not guaranteed then, by [10,32], secure computation protocols for most func-
tionalities imply the existence of oblivious transfer (OT) [37,19,39] — a secure
two-party protocol for a simple functionality which allows a receiver to select
one of two strings held by a sender. In an OT protocol the receiver learns the
chosen string but no information about the other string, while the sender learns
nothing about the receiver’s selection. (By default, we use the term OT to refer
to the basic bit OT primitive, where each string held by the sender consists of
a single bit. OT of �-bit strings can be implemented by making O(�) calls to
the basic OT primitive [4,5].) OT has proved to be a very useful building block
in cryptographic protocols. Most notably, OT can serve as a building block for
general secure two-party and multi-party protocols that tolerate an arbitrary
number of corrupted parties [41,23,22,31,21,33].

1.1 Combiners and OT-Combiners

Often in cryptography there is uncertainty regarding the security of a construc-
tion (e.g., because of the reliance on unproven assumptions or placing too much
trust in third parties). In such cases, it is handy to use a combiner for the un-
derlying cryptographic task. An (m, n)-combiner (sometimes called a robust or
tolerant combiner) is a method of taking n candidates for a cryptographic prim-
itive and combining them into a single primitive that is secure as long as at least
m of the n candidates were indeed secure. Combiners have been used implicitly
in many cryptographic constructions as means of enhancing security and have
recently been studied explicitly (initially in [26,25]).

In this paper, we focus on OT-combiners and their applications. The possibil-
ity of realizing combiners for OT or equivalent primitives has been investigated
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in [25,35,36,40]. Constructions of OT-combiners were given for the case that a
majority of the OT-candidates are good [25,40]. These combiners are based on
a technique of Damg̊ard et al. [18] for reducing errors in weak versions of OT.
On the other hand, there is a strong indication that there are no (black-box)
OT-combiners if half of the candidates may be faulty [25]. We refer to n−m

n as
the tolerance ratio of the combiner. Thus, the results indicate that the tolerance
ratio of an OT-combiner should be smaller than 1

2 .
A problem with OT-combiners as above is that, by definition, they are quite

wasteful. One needs to invoke n OT-candidates (at least m > n
2 of which are

good) in order to produce just a single instance of secure OT. Even worse, the
known OT-combiners make a large number of calls to each candidate in order to
produce this single secure OT. Thus, a desirable goal is to reduce the number of
candidate calls made in order to produce each good OT. We refer to the latter
quantity as the production rate of a combiner (or simply its rate).

The OT-combiners based on the technique of [18] have a production rate
of Θ(k2n4) (where k is a security parameter) for a majority of good candi-
dates (see [40]). This rate can be improved to Θ(k2) when assuming a constant
tolerance ratio; i.e. m > (1

2 + δ)n, for a constant δ > 0. Another downside
of this construction is that it does not provide security when the identity of
the faulty OTs can be determined adaptively.1 A different approach to OT-
combiners was taken by [36] (see also [2]) and requires Ω(n log n) calls to the
OT-candidates.

1.2 Our Results

We introduce a new general approach for constructing OT-combiners by making
use of protocols for secure multiparty computation. Our approach follows a recent
paradigm suggested by Ishai et al. [30] of employing secure multiparty protocols
for the construction of secure two-party protocols. This allows us to benefit from
the wide range of techniques that have been developed in the study of secure
multiparty computation, obtaining conceptually simpler and more efficient OT-
combiners.

More concretely, we show how to obtain an OT-combiner from any instanti-
ation of the following two ingredients:

1. A t-secure n-party protocol for the OT functionality, in a network consisting
of secure point-to-point channels and a broadcast primitive.2 For instance,
one could use here the (unconditionally secure) general-purpose protocols
of [3,7,38,12].

1 Adaptive security is not always required for combiners, however, at times it is
crucial. For example, consider a setting where the OT-candidates are carried out
simply by using third parties. A candidate is insecure if the corresponding third
party is corrupted. In such a setting, an adversary can potentially corrupt a third
party adaptively, during the execution of the combiner.

2 This refers to a model in which the sender and the receiver are not considered to be
among the n parties, but may each be corrupted by the adversary. Alternatively,
one can use any (t + 1)-secure (n + 2)-party protocol in the standard MPC model.
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2. A secure two-party protocol for a functionality determined by the former
multiparty protocol, in a network consisting of a single OT-channel. For in-
stance, one can use here the general-purpose unconditionally secure protocols
of [23,31,22,21] or the computationally secure protocols of [41,33].

Our approach applies both to the “semi-honest” and to the “malicious” mod-
els of secure computation, yielding the corresponding types of OT-combiners.
(In the semi-honest model the sender and the receiver follow the protocol as
prescribed, while in the malicious model they may deviate from it.) In contrast
to previous OT-combiners in the malicious model, the OT instances produced
by our combiners are provably secure (in the malicious model) under standard
simulation-based definitions, and can resist adaptive corruptions of candidates
and parties.

By instantiating our general approach with efficient MPC protocols from the
literature and by giving up just a constant fraction in the tolerance threshold,
we get combiners with a constant production rate. In particular:

– There exists an OT-combiner in the semi-honest model with constant pro-
duction rate and constant tolerance ratio. The combiner makes O(1) calls to
each of the n OT-candidates.

– There exists an OT-combiner in the malicious model with constant produc-
tion rate and constant tolerance ratio. The combiner makes s ≤ poly(k) calls
to each of the n OT-candidates (and generates Ω(ns) good OT calls). This
combiner applies to string OT (rather than bit-OT) and requires additional
calls to a one-way function.

Both results hold even if the bad candidates are chosen adaptively. Recall that
previous OT-combiners required either ω(n) (with adaptive security) or poly(k)
(without adaptive security) calls to the OT-candidates in order to produce just
a single instance of secure OT.

Techniques. The high-level idea behind our approach is to let the sender S and
receiver R invoke the given MPC protocol between themselves and n additional
“imaginary” parties called servers, where each server is jointly simulated by S
and R using the given two-party protocol applied on top of a corresponding OT-
candidate. Different instantiations of the underlying multiparty and two-party
protocols yield different OT-combiners.

Our constant-rate combiners rely on MPC protocols in which the (amortized)
communication complexity per gate of the circuit being evaluated is bounded
by a constant, independently of the number of parties. For the type of function-
alities we consider in this work, such protocols can be obtained by combining
a protocol from [16] with secret-sharing schemes based on algebraic geometric
codes or random linear codes [8,9] (see [30]). The protocol from [16], in turn,
uses techniques from [3,20,27]. We also rely on OT-based secure two-party com-
putation protocols in which the number of OT calls is a constant multiple of
the input length. Such a protocol with a simulation-based proof of security was
recently given in [33].
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1.3 Applications

We demonstrate the usefulness of our constant-rate combiners by presenting
several applications that are of independent interest.
Constant-rate OTs from a noisy channel. Crépeau and Kilian [14] demon-
strated that two parties can implement an unconditionally secure OT by commu-
nicating over a binary symmetric channel (BSC) with some constant crossover
probability 0 < p < 1

2 . One can view such a channel as a secure implementa-
tion of a randomized functionality in which the receiver gets the sender’s input
bit with probability 1 − p and its negation with probability p. Thus, the re-
sult from [14] shows that this functionality is equivalent to OT. Unfortunately,
the reduction from [14] is quite inefficient; its efficiency was later improved by
Crépeau [13], but even this reduction requires Ω(k) noisy bits for producing a
single OT, even in the semi-honest model.

Using our constant-rate combiners in the semi-honest model, we get n in-
stances of

(2
1

)
-OT by communicating just O(n) bits over the noisy channel.

Thus, the amortized cost of generating each OT call is just a constant number of
calls to the noisy channel. Our reduction provides unconditional security in the
semi-honest model and has error probability that vanishes exponentially with
n. Combined with the OT-based secure computation protocol of [23,22,21], it
implies that two parties can securely evaluate an arbitrary circuit of size s (with
statistical security in the semi-honest model) by communicating only O(s) bits
over a noisy channel. It seems likely that our approach can be extended to yield
similar results for the malicious model as well as for more general noise models
and other probabilistic functionalities. We leave such extensions to future work.
Extending OTs efficiently in the malicious model. Current implementa-
tions of OT are quite expensive in practice, and thus form the efficiency bottle-
neck in protocols that make a heavy use of OTs. This state of affairs is backed
up by the result of Impagliazzo and Rudich [28], which implies that there is no
black-box construction of OT from one-way functions. As a next to best solution,
Beaver [1] demonstrated how one can use just k OT calls (k being the security
parameter) and extend them to polynomially many OT calls solely by adding
calls to a one-way function. Beaver’s protocol makes a non-black-box use of the
underlying one-way function and is therefore considered inefficient in practice.
Ishai et al. [29] gave an alternative construction that extends k OT calls to an
essentially unbounded number of OT calls by making an additional black-box
use of a cryptographic hash function. This protocol is highly efficient and has
an amortized cost of computing and communicating just two outputs of the
hash function for each produced OT. This approach can be viewed as the OT
analogue of hybrid encryption, where an expensive asymmetric cryptosystem is
used to encrypt a short secret key, allowing the bulk of the data to be encrypted
efficiently using a symmetric encryption scheme.

Unfortunately, the efficient protocol of [29] applies only in the semi-honest
model. In order to achieve security in the malicious model, a modified protocol
is proposed based on a “cut-and-choose” approach. However, this approach in-
creases the complexity of OT generation by a multiplicative factor of at least
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Ω(k). In this paper, we utilize our constant-rate combiners to get OT extension
in the malicious model that requires only a constant number of outputs of the
hash function to be computed and communicated for each generated OT.

A first solution to this is by using a cut-and-choose approach similar to the one
used in [29]. Namely, the semi-honest protocol of [29] is invoked O(k) independent
times on random inputs, and half of these invocations are “opened” to allow each
party to verify that the other party followed the protocol’s instructions. The
unopened invocations have the guarantee that with overwhelming probability, a
big majority of them generated secure OTs. This is exactly the setting required
to apply our combiners. However, in this solution the seed of OT calls used grows
substantially, which is undesirable.

Next, we develop a new solution that is not based on cut-and-choose. Instead,
just a single instance of the semi-honest protocol is run, and a simple test is
added communicating a constant number of hash values per produced OT. This
test guarantees that with overwhelming probability, all but k of the produced
OTs were secure. This allows to generate (1 + δ)k OT-candidates of which at
most k are insecure, which again gives a big majority of secure OTs. As in [29],
the reduction only makes a black-box use of the cryptographic hash function.

Reducing the number of OT channels in MPC. Consider an MPC pro-
tocol with security against a dishonest majority in a network of n parties. How
many OT channels are required to allow such a non-trivial computation? An OT
channel is a line over which two parties can carry out an unbounded number of
OT calls. Do all pairs of parties require their own separate OT-channel? Harnik
et al. [24] show that the answer is negative – if the number of corrupted parties
is bounded by t < (1 − δ)n (for a constant δ) then O(n) channels are sufficient.
Namely, OT calls can be executed between every two parties using just OT calls
on the existing O(n) channels. However, in order to generate one OT call be-
tween a pair with no channel, the construction of [24] makes many OT calls over
the existing channels: it first generates n candidates for OT (using just O(1)
OT calls to generate each candidate) and then it runs an OT-combiner on the n
candidates. Using our new constant-rate combiners, we get the following result:
the amortized cost of generating an OT call between two parties with no OT
channel is O(1) OT calls over the existing O(n) channels.

Organization. In Section 2, we define OT-combiners. Section 3 describes our
general approach for obtaining OT-combiners via secure computation and its
instantiation for obtaining constant-rate combiners in the semi-honest model.
Section 4 deals with the malicious model. The applications are described in
Sections 5 (OT from noisy channels) and 6 (extending OTs efficiently). Due to
space limitations, some of the details are deferred to the full version.

2 Definition of OT-Combiners

A combiner (see [26,25]) is given n implementation candidates for a crypto-
graphic primitive and combines them into a single implementation that is secure
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if at least m of the original n candidates were indeed secure. Our study of com-
biners for OT follows this goal with an additional feature: we want the combiner
to output many secure instances of OT rather than just one. This is desirable
for efficiency reasons; indeed, invoking n OT-candidates and receiving just a
single OT call in return seems quite wasteful. To accommodate this, we define
the multi-OT functionality OT � in a straightforward manner (the sender holds �
pairs of secrets, the receiver holds � choice bits and the receiver learns the secrets
of his choice).

Our OT-combiners thus take several candidates for a secure OT protocol and
produce a protocol for the OT � functionality. In general, the OT-candidates
can be given in any representation, such as a code, or via a black-box access
to a next message oracle. Our combiners work using such black-box access to
the candidates. Accordingly, the definition we provide is that of a black-box
combiner. For more comprehensive definitions of combiners, see [25].

We assume that the candidates are efficient (polynomial-time) algorithms.
This guarantees that an efficient black-box combiner (counting each oracle call
to a candidate as a single running step) remains efficient for any instantiation
of the candidate.

When considering the functionality of the OT-candidates being combined, one
should distinguish between two cases: (1) bad OT-candidates can compromise
the privacy of the inputs but are guaranteed to have the correct functionality
when executed honestly (namely, the receiver always ends up with the correct
output); and (2) bad OT-candidates may produce arbitrary outputs. Combiners
for the latter case are called error-tolerant combiners [36]. In the semi-honest
model, we assume by default that bad candidates have the correct functionality,
but our solutions can be easily extended to achieve error-tolerance with almost
no loss of efficiency. In the malicious model, error-tolerance is always required;
moreover, the functionality of each call to a bad candidate can be adaptively
determined by the adversary during the execution of the combiner.

Definition 1 (OT-Combiner) Let OT1, . . . , OTn be candidates for implement-
ing OT. An (m, n; �, s)-OT-Combiner is an efficient two-party protocol with oracle
access to the candidates such that: (1) If at least m of the n candidates securely
compute the OT 1 functionality then the combiner securely computes the OT � func-
tionality (where security is defined using a simulation-based definition, as in [6,21]);
and (2) The combiner runs in polynomial time and makes a total of s calls to the
candidates.

The tolerance ratio of the combiner is defined as μ = m−n
n . The production

rate (or simply the rate) of the combiner is defined as ρ = �
s . At times we omit

the parameters s and � and write “(m, n)-OT-combiner”.

The above definition views the number of candidates n as a constant. However, it
is often useful to view the parameters of a combiner as functions of the security
parameter k. (This is the case for the applications described in Sections 5,6.)
The above definition can be naturally extended to this more general case.
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We will sometimes refer to combiners that have unconditional (perfect or
statistical) security. In such cases the above definition needs to be modified, since
the candidates cannot be unconditionally secure. To this end, it is convenient to
use the stronger notion of third party black-box combiners [25]. Such combiners
are defined by viewing each candidate as a distinct external party that receives
OT inputs from the sender and the receiver and sends the OT output to the
receiver. A bad candidate is modelled by an external party that reveals both
inputs to the adversary and (in the error-tolerant case) allows the adversary
to control its output. All of our combiners satisfy this stronger definition with
either perfect, statistical, or computational security.

3 OT-Combiners in the Semi-honest Model

In this section, we introduce our basic technique for obtaining combiners from
protocols for secure computation. We begin by considering the semi-honest model
and later (in Section 4) extend our results to the malicious model.

In the course of describing the OT-combiner, we define two intermediate mod-
els. The first is a tweak on the standard multiparty model which divides the
parties into clients and servers, where the clients are the only parties to hold
inputs and to receive outputs and the servers just assist in the computation.
Such a variant of secure MPC setting was considered, e.g. in [11,16]. In our set-
ting, there are only two clients, sender S and receiver R. In addition, there are
n servers Pi that may aid the clients in the computation. However, up to t of
the servers may be corrupted. Formally:

Definition 2 (Clients-Servers Model) The network consists of n+2 parties:
two clients, S and R, and n servers P1, . . . , Pn. There are secure channels between
every two parties in the network. In the malicious model, we will also allow
broadcast as an atomic primitive.
Functionality: f takes inputs from S and R and gives output to R.3

Adversarial corruptions: The adversary may corrupt at most one of the
clients S and R and at most t of the n servers. We refer to a protocol that is se-
cure against such an adversary as a t-secure protocol in the clients-servers model.
We consider adaptive adversaries by default; namely, we allow the adversary to
decide which parties to corrupt during the execution of the protocol.

The above model can be viewed as a refinement of the standard model for secure
computation: every (t + 1)-secure (n + 2)-party protocol for f in the standard
model is also a t-secure protocol for f in the clients-servers model.

In the second intermediate model we use, each server Pi is replaced by a pair
of parties (Si, Ri) that are connected by an OT channel. We call this the split-
servers model. The intuition is that, at the end, we will have a two-party protocol
where one party controls all R parties and the other controls all S parties.

3 Our approach can be easily generalized to the case where f gives outputs to both
S and R. However, in the malicious model it is impossible to guarantee fairness in
this case.
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Definition 3 (Split-Servers Model) The network consists of 2n + 2 parties:
two clients, S and R, and n pairs of parties (S1, R1), . . . , (Sn, Rn). There is a
secure channel between every two parties in the network (as well as a broadcast
channel in the malicious model). In addition, there is a distinct OT channel
between each pair (Si, Ri).
Functionality: f takes inputs from S and R and gives output to R.
Adversarial corruptions: The adversary has two possible corruption pat-
terns: either (i) it corrupts the parties S, S1, ..., Sn and at most t of the Ri’s; or
(ii) it corrupts the parties R, R1, ..., Rn and at most t of the Si’s. We refer to
a protocol that is secure against such an adversary as a t-secure protocol in the
split-servers model. Again, we allow for adaptive adversaries.

Our general construction employs two types of secure computation protocols: (1)
ΠMPC is a t-secure multiparty protocol in the clients-servers model. For t < n/2,
every f admits such a protocol with perfect (resp., statistical) security against
semi-honest (resp., malicious) adversaries [3,38]. (2) Π2party is a secure 2-party
protocol in the OT-hybrid model (i.e., using an ideal OT channel). Every f
admits such a protocol with perfect (resp., statistical) security against semi-
honest (resp., malicious) adversaries [22,31].

In our combiners, ΠMPC will always compute the functionality OT �.4 On
the other hand, we will need to employ protocols of type Π2party for different
functionalities. To simplify notation, we always use the notation Π2party and
make the actual functionality clear from the context.

Lemma 1. Let f be a functionality taking inputs from S and R and returning
output to R. There is a compiler that transforms any t-secure protocol ΠMPC for
f in the semi-honest clients-servers model into a t-secure protocol Πsplit for f
in the semi-honest split-servers model. As a building block, the compiler requires
a secure two-party protocol Π2party for general functionalities in the semi-honest
OT-hybrid model. If both ΠMPC and Π2party are perfectly or statistically secure
then so is Πsplit.

Proof: The idea is to distribute the local view of each server Pi in ΠMPC between
the corresponding pair of parties Si, Ri in Πsplit using additive secret sharing.
Thus, only an adversary corrupting both Si and Ri can learn the view of Pi.

In the initialization stage of ΠMPC, the view of each client (S or R) contains its
private input and its local randomness, while the view of each server Pi contains
only its local randomness. To initialize the corresponding state in Πsplit, let S
and R remain as before and split the view of each Pi between Si and Ri, by
having each hold local random bits which together form an additive sharing of
the randomness of Pi.

A typical intermediate step in the protocol ΠMPC is of the following form:
Server Pi with local view vPi computes a function m = πi,j(vPi) and sends the

4 One can also consider cross-primitive combiners (see [34]), where the combiner
implements a different functionality than the candidates. In such a case, the com-
biner’s functionality will be computed by ΠMPC.
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message m to server Pj . This step is simulated in Πsplit by an interactive two-
party protocol between Si and Ri. Using the OT channel between them, Si and
Ri execute protocol Π2party on the randomized functionality whose inputs are
shares vSi and vRi of a view vPi , and whose outputs are random values mSi and
mRi under the restriction that mSi ⊕ mRi = πi,j(vSi ⊕ vRi). After the secure
two-party protocol is executed, Si sends mSi to Sj and Ri sends mRi to Rj . The
recipients Sj and Rj append the new message to their share of the view vPj .

Another possible step in ΠMPC involves one or two of the clients, either as the
party generating a new message m or as the receiving party. In case the recipient
is one of the clients S or R, then both mSi and mRi are sent to this party. If
a client (S or R) is generating the message m, then it computes m as in ΠMPC
(no two-party protocol is needed in this case) and sends a random sharing of m
to Sj and Rj , respectively. If both the sender and receiver of m are the clients
then m is sent unchanged.

The new protocol produces a correct output since at each step the sum of
the shares held by Si and Ri is exactly the view of Pi, and thus the execution
follows the protocol ΠMPC accurately. The proof of security hinges on the fact
that if the ith pair is not corrupted (i.e., either Si or Ri is uncorrupted), then the
view of the simulated server Pi remains hidden from the adversary. Therefore,
this view may be simulated in the same manner as in the original clients-servers
model protocol ΠMPC (in the case that server Pi was not corrupted). On the
other hand, if the ith pair is corrupted, then this corresponds to a corruption of
Pi by the adversary. Further details are deferred to the full version.

Lemma 2. Given any protocol Πsplit for the functionality OT� which is t-secure
in the semi-honest split-servers model, one can construct (in a black-box way)
an (n − t, n)-OT-combiner in the semi-honest model.

Proof: We describe a two-party combiner with sender S′ and receiver R′ based
on the split-server protocol Πsplit with clients S and R and parties S1, . . . , Sn,
R1, . . . , Rn. The combiner protocol is a straightforward simulation of Πsplit where
S′ simulates the S-parties (i.e., S, S1, . . . , Sn) and R′ simulates the R-parties
(R, R1, . . . , Rn). The simulation follows the protocol Πsplit with the exception
that, for every i ∈ [n], all OT-calls between Si and Ri are implemented using
the candidate OTi. Naturally, messages between the S-parties do not have to
actually be sent as they are all simulated by S′ (and similarly for the R-parties).
Clearly, in a semi-honest environment, the combiner described is an execution
of protocol Πsplit and therefore it indeed implements the OT � functionality.
Intuitively, security follows from the fact that for every bad candidate, the worst-
case scenario is that the full view of the opposite party is revealed. But, as long
as the adversary sees no more than t such views, security follows from the t-
security of Πsplit. A formal proof, deferred to the full version, uses a simulator
for Πsplit to obtain a simulator for the combiner.

A first corollary of the above strategy is the existence of OT-combiners with a
majority of good candidates. Such a result was already known (see [25,35,40]),
based on a different approach stemming from the techniques of [18].
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Corollary 4. For any m and n such that m > n/2, there exists an (m, n)-
OT-combiner in the semi-honest model. Furthermore, such a combiner can be
perfectly secure.

Proof: Use, for example, the protocol of [3] to implement ΠMPC with t = n−m
and the protocol of [23,21] to implement Π2party in the semi-honest model. By
Lemmas 1 and 2, this implies the desired OT-combiner.

3.1 Constant-Rate OT-Combiners in the Semi-honest Model

We turn to optimizing the efficiency of the combiner described above. Its effi-
ciency is inherited from the underlying protocols ΠMPC and Π2party. For different
purposes, one may choose different protocols ΠMPC and Π2party with suitable
properties. The key parameter that we investigate is the total number of calls
to the OT-candidates. In our framework, calls to the candidates happen as part
of executions of the protocol Π2party, where each step of a server in the pro-
tocol ΠMPC requires an invocation of Π2party. Therefore, the total number of
calls is a function of the number of steps in ΠMPC, the complexity of the local
computation in each such step, and the OT complexity of Π2party.

A natural implementation of our combiner, using [3,23], has a polynomial rate
and threshold m = �n+1

2 �. More precisely, in order to compute � OTs, the clients
should compute a simple constant-size circuit on � independent pairs of inputs.
Using the BGW technique [3], the local computation required by each server for
each OT is dominated by multiplying two elements from a field of size at least n.
Simulating this action by a split server, requires a secure 2-party computation of
such a functionality in the OT-hybrid model, which involves Ω(log n) OT-calls.
The overall OT complexity is therefore s = Ω(n� log n).

In the following we show that, by a careful instantiation of ΠMPC, we can
obtain a constant rate at the price of a slightly sub-optimal (yet still constant)
tolerance ratio. The following two techniques allow this improvement:

– Using a generalization of Shamir’s secret sharing scheme [20], which packs
� secrets into a single polynomial, one can run a joint computation for all �
inputs by sending just a constant number of field elements to each server. As
a result of packing � secrets into a single polynomial, the security threshold
decreases from t = �n−1

2 � to t′ = t − � + 1. Thus, letting � be a sufficiently
small constant fraction of n, the tolerance ratio remains constant.

– Using the techniques of [8,9], one can run all operations over a constant
size field. This technique further deteriorates the security threshold to t′′ =
t′ − δn, for some constant δ > 0 that tends to 0 as the field size grows.

Combining the above two techniques, one gets a protocol ΠMPC in which
each server performs a constant amount of work and �, the number of OTs being
computed, is a constant fraction of the number of servers. When compiling such
a protocol to the split-servers model (and subsequently to the combiner) we
get a constant number of OT-calls per split server. An appropriate choice of
parameters (say, � = 0.2n and δ = 0.2) thus yields the following:
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Theorem 5. There is an OT-combiner with constant production rate and con-
stant tolerance ratio in the semi-honest model. The combiner makes a constant
number of calls to each OT-candidate.

We end this section by noting that one can get an error-tolerant version of
Theorem 5 by letting the clients in ΠMPC apply error-correction to the final n-
tuple of field elements received from the n servers. This requires the underlying
secret sharing scheme to be based on efficiently decodable codes (such as AG
codes [8]). Furthermore, the (constant) fractional security threshold of ΠMPC
should be further decreased in order to provide the redundancy required for
error-correction. This yields the following:

Theorem 6. There is an error-tolerant OT-combiner with constant production
rate and constant tolerance ratio in the semi-honest model. The combiner makes
a constant number of calls to each OT-candidate.

4 OT-Combiners in the Malicious Model

Our constructions of combiners in the malicious model follow the same outline
as in the semi-honest model. Namely, the combiner is a composition of two types
of secure protocols, one in the two-party setting (with an OT channel) and one
in the multiparty setting. Naturally, this time the components must be secure
against malicious adversaries (and thus are inherently more complex). In addi-
tion, we must incorporate a mechanism to assure authenticity of intermediate
shares supplied by the split servers.

Lemma 3. Let f be a functionality taking inputs from S and R and returning
output to R. There is a compiler that transforms any t-secure protocol ΠMPC
for f in the malicious clients-servers model into a t-secure protocol Πsplit for f
in the malicious split-servers model. As a building block, the compiler requires a
two-party protocol Π2party for general functionalities in the malicious OT-hybrid
model. If both ΠMPC and Π2party are statistically secure then so is Πsplit.

The same general idea as in the semi-honest model applies here as well with
one notable addition. Recall that in the general framework each server Pi in the
protocol ΠMPC is simulated by two parties Si, Ri that hold an additive secret
sharing of Pi’s view. The problem is that, in the split-servers model, the adver-
sary may corrupt all of the parties on one side (either all of the Ri’s or all of
the Si’s). While the adversary has no information about the view of a server
Pi unless both Si and Ri are corrupted, it can still change the outgoing mes-
sages from this server. Namely, the adversary needs only to change the outgoing
message of one side (say Si) in order to change the effective outgoing message
of server Pi in ΠMPC (recall that two messages in Πsplit correspond to a single
message in ΠMPC). To overcome this problem, we replace the use of standard
additive secret sharing by authenticated secret sharing. Namely, each Si gets,
in addition to its additive share vSi , a signature on this share using a private
key known to Ri (and vice versa). For the signature primitive it suffices to use



OT-Combiners Via Secure Computation 405

a one-time MAC, which can be implemented with unconditional security using
pairwise independent hash functions.

The two-party functionality realized by Π2party takes the additive shares of
the view together with the signatures and the keys as inputs. It then verifies that
the signatures are valid; if this verification fails it sends an “abort” message to
both parties. (Any party receiving an abort message broadcasts it to all parties
and aborts; this cannot violate the fairness of Πsplit, since there is only one
party receiving an output.) The functionality returns a similar authenticated
secret sharing of the next message sent from Pi to Pj in ΠMPC.

Note that, in the malicious model, Π2party cannot achieve fairness. As before,
if some honest party aborts it causes all honest parties to abort. Finally, if
ΠMPC employs a broadcast primitive, then each message broadcasted by Pi

can be naturally emulated in Πsplit as follows. First, Si and Ri broadcast their
authenticated shares of the message. Then, each of them uses its secret key
to verify the shares broadcasted by the other party, and broadcasts an abort
message if the verification fails.

Lemma 4. Given any protocol Πsplit for the functionality OT� which is t-secure
in the malicious split-servers model, one can construct (in a black-box way) an
(n − t, n)-OT-combiner in the malicious model.

The construction is essentially the same as in the semi-honest model. The only
changes that need to be made involve broadcast messages and handling aborting
parties. A broadcast message by S or Si is emulated by simply having the sender
S′ of the combiner send this message to R′ (and vice versa). In case some party
S or Si (resp., R or Ri) in Πsplit aborts, then S′ (resp., R′) in the combiner
aborts as well. A simulation-based security proof is deferred to the full version.

Corollary 7. For any m and n such that m > n/2, there exists an (m, n)-OT-
combiner in the malicious model. Furthermore, such a combiner can be statisti-
cally secure.

Proof: For ΠMPC, we rely on the protocol of [38], which is statistically t-secure if
t < n/2 (and employs a broadcast channel). For Π2party, we can use the protocol
of [31], which provides statistical security in the malicious OT-hybrid model.

4.1 Constant-Rate OT-Combiners in the Malicious Model

The OT complexity of the combiner in the malicious model is higher than in the
semi-honest model. This is because of the inherent complexity of the underlying
protocols ΠMPC and Π2party and because of the employment of authentication,
which requires secure two-party computation of functionalities involving MACs.
The underlying principles that allow for constant-rate combiners in the malicious
model are the following:

– Use a (constant-round) protocol ΠMPC in which the overall communication
of the servers is O(�). This, in turn, translates to the size of inputs that the
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split-servers can run Π2party on. Such a protocol for arbitrary NC0 function-
alities (including OT � as a special case) is described in [30], building on [16].
In contrast to the semi-honest model, where each server can receive just a
constant number of field elements, here we need � to be sufficiently larger
than n, say � = nk for a security parameter k. In such a case, each server
will receive O(k) field elements. This, in turn, will translate into a larger
(non-constant) number of invocations of each candidate.

– Use Π2party whose (amortized) OT complexity is a constant multiple of the
input length I. Such a protocol was recently given in [33]. This protocol
provides computational security and invokes O(I +k) instances of string-OT
with strings of length k (rather than bit-OT) along with a one-way function.

The above properties assure that the total number of calls to the (string-)OT-
candidates is O(�), provided that the MAC does not add a substantial overhead.
The latter is guaranteed by the fact that the messages sent in the underlying
protocol ΠMPC are long enough. Thus, the use of MACs does not increase the
asymptotic length of the inputs.

A remaining caveat is that even though each of our candidates is a string-
OT, the O(�) calls to the candidates produce � instances of bit-OT. Indeed, in
the protocol Πsplit obtained by our general compiler the length of the views of
both Si and Ri will be proportional to the total length of all strings (rather
than the number of OTs). Thus, implementing � good string-OTs would require
O(k�) calls to the candidates. To reduce the number of calls to O(�), we observe
that it is possible to modify our generic implementation of Πsplit so that in all
invocations of Π2party the inputs of the Ri’s are short, namely of total size O(�)
(assuming � = kn), whereas the inputs of the Si’s are of total size O(k�). Since
the number of string OTs required by [33] is determined only by the length of
the receiver’s input, we will end up using O(�) calls to string-OT candidates to
produce � good string-OTs. Overall we get:

Theorem 8. There is a computationally secure combiner for string-OT with
constant production rate and constant tolerance ratio in the malicious model.
The combiner makes O(k) calls to each OT-candidate, as well as black-box use
of a one-way function.

5 Application: Constant-Rate OTs from a Noisy Channel

In this section, we apply our constant-rate combiners for the semi-honest model
in order to efficiently produce a reliable stream of bit-OTs from a noisy channel,
namely a binary symmetric channel which flips each bit with probability p. (We
will refer to the latter channel as a BSC with crossover probability p.) Known
constructions for this task [14,13,17] require sending Ω(k) bits over the channel
in order to generate just a single OT call, even in the semi-honest model. We
show that, using our constant-rate combiners, one can achieve a number of OT
calls that is a constant multiple of the number of bits sent over the channel.
Formally:
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Theorem 9 (Constant-rate OTs from a noisy channel). For any constant
0 < p < 1/2, there exists a two-party protocol that securely implements the OT�

functionality in the semi-honest model by having the parties communicate O(�)
bits over a BSC with crossover probability p. The protocol has perfect privacy
and statistical correctness, where the error probability is 2−Ω(�).

Proof: The idea is that, instead of using a constant number of noisy bits to
produce a single secure OT, we produce an instance of OT that has perfect
privacy but a small constant error probability. Each such OT can in turn be
viewed as an OT-candidate. These candidates are then combined, using our
constant-rate error-tolerant combiner, to give a linear number of good OT calls
(this time with exponentially small error). We use the combiner from Theorem 6,
that has constant rate and constant tolerance ratio and makes just O(1) calls
to each candidate. Note that we can view each call to a candidate as a distinct
candidate, at the cost of further reducing the tolerance ratio to some small
constant ε > 0.

We now present a variant of a protocol from [14] that can implement OT with
perfect privacy and an arbitrarily small constant error ε > 0 by communicating
a constant number of bits over the BSC. By known reductions, it suffices to
implement such OT on random inputs. Let w, z be sufficiently large constants.
The sender, S, picks z random bits r1, . . . , rz and sends each one 2w times to R
(we call each corresponding sequence of 2w bits received by R a “block”). A block
is of “type I” if it has an equal number of 0’s and 1’s and is of “type II” if it has
only 0’s or only 1’s. Since w is a constant, we expect a constant fraction of blocks
of each type (this fraction is a function of w and the noise level p) and hence
by increasing z we can guarantee that both types exist with high probability.
Now the receiver assigns a block of type I to the sender’s bit it should not learn
and a block of type II to the sender’s bit it should learn. As required, this gives
perfect privacy (namely, R does not learn any information on the bit it should
not learn), but has a small (2−Ω(w)) probability of error in the bits R should
learn. We finally note that all the additional (reliable) communication required
by the combiner can be implemented via standard error-correcting codes by
communicating O(�) bits over the noisy channel.

6 Application: Extending OTs Efficiently

In this section, we present efficient black-box reductions of OTp(k) to OTq(k)

in the malicious model, where q(k) is a fixed polynomial and p(k) is any poly-
nomial. (Throughout this section, OT refers to string-OT of k-bit strings.) The
reductions make an additional black-box use of a cryptographic hash function
and build on a protocol from [29] for the semi-honest model.

We give two distinct reductions, each making just a constant number of calls
to the hash function per each OT call generated. The first follows by applying
our combiners after running a cut-and-choose procedure over the protocol of
[29]. As in [29], the protocol uses a so-called correlation-robust hash function
(CorRH): an explicit function h such that for random strings s, t1, . . . , tm the



408 D. Harnik et al.

distribution (h(s ⊕ t1), . . . , h(s ⊕ tm), t1, . . . , tm) is pseudorandom (see [29] for
further discussion). Alternatively, a non-programmable, non-extractable random
oracle suffices to instantiate the CorRH. This solution requires a seed of k3 OTs
(more precisely, O(kσ2) OTs, where σ is a statistical security parameter) rather
than the k OTs required in the semi-honest model.

Theorem 10 (Informal). Let k be a security parameter. For any polynomial
p(k), there exists a black-box reduction of OTp(k) to OTk3

in the malicious model,
under the CorRH assumption. The construction requires only a constant number
of calls to the hash function per each OT produced.

Proof sketch: Consider the following ideal functionality, denoted IKNP� (as it
captures a core idea of [29]): the sender S has input a = (a1, . . . , ak) ∈ {0, 1}k.
For each j ∈ [�], the receiver R has inputs bj = (bj

1, . . . , b
j
k) ∈ {0, 1}k and

mj = (mj
1, . . . , m

j
k) ∈ {0, 1}k. For j ∈ [�], the sender has output dj = a∧bj⊕mj ,

where ∧ and ⊕ denote bitwise operations. We also consider a committed version,
called CIKNP�, where parties are also committed to their inputs (if a party
inputs a special symbol reveal!, its inputs will be leaked to the other party).
Another stepping stone is a special version of OT�, called SOT�. It works as
OT�, except that a malicious R may give a special input cheat! before inputs
are provided by S. In response to this, R will receive all inputs of S. Later, R
can give another special input open! in response to which S is told whether R
at some point input cheat!. As a side effect, open! leaks the choice bits of R.

The proof follows a series of reductions. First, CIKNP� is constructed from
OTk2

(using just a single call to OTk2
). This step follows the reduction from [29]

of IKPN� to OTk while the commitment property is achieved in the natural way
by using k committed OTs [15] as the underlying primitive. As shown in [15], a
committed OT can be implemented, in a black-box way, using O(k) OTs and
thus the overall O(k2) OTs. The second step, which is detailed below, builds
SOT� from CIKNP�. Finally, one constructs OTp(k) by making k calls to an
instance of SOT�. The last step calls k instances of SOT� and, using a simple
cut-and-choose technique, one can produce O(k) instances of SOT� of which a
sufficiently small constant fraction is insecure. Then, one applies our constant-
rate combiner to get an implementation of OTO(k�).

It remains to reduce SOT� to CIKNP� with an amortized constant number of
hash function applications per produced OT. The protocol uses hash functions
Hj : {0, 1}k → {0, 1}k, for j ∈ [�], where we let Hj(x) = H(j‖x), for some fixed
hash function H . Recall that SOT� takes as inputs secrets (s1

0, s
1
1), . . . , (s

�
0, s

�
1)

from the sender, and � choice bits c1, . . . , c� from the receiver.

1. First, CIKNP� is called with S inputting a random a and R inputting a
random mj and bj = (bj , . . . , bj), where bj = cj is the choice bit of R.

2. For j ∈ [�], the sender S computes dj
0 ← dj , dj

1 ← dj ⊕ a, rj
0 = Hj(dj

0) and
rj
1 = Hj(dj

1), and R computes dj
bj ← mj and rj

bj = Hj(dj
bj ).
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3. For j ∈ [�], the sender S sends ej
0 = rj

0 ⊕ sj
0 and ej

1 = rj
1 ⊕ sj

1 to R, and R

outputs sj
bj = ej

bj ⊕ rj
bj .

To implement the open! command, the receiver will input reveal! to CIKNP�

to show the values mj and bj to S. Sender S considers it a cheat if any bj is
not one of the monochromatic vectors 0k or 1k.

Correctness and security against a malicious sender are straightforward. The
security against a malicious R is shown by a simulator with access to SOT�. At a
high level, if any of the bj input by R is polychromatic, then the simulator inputs
cheat! to SOT�, learns the inputs of S and uses these to run the rest of the
simulation as in the protocol. If, on the other hand, all bj are monochromatic,
then the simulator is reminiscent of that of [29] (including the use of the CorRH
assumption). A complete proof appears in the full version.

The second result manages to work with a seed of just k OTs (rather than the
k3 OTs used in Theorem 10). For this result, we use a natural generalization
of the CorRH assumption, called the generalized correlation-robust hash func-
tion (GCorRH) assumption and a more specialized variant called the special xor
correlation-robust hash function (S⊕CorRH) assumption. As with the CorRH
assumption, it holds that a random function satisfies the new assumption with
overwhelming probability. This, in particular, implies the security of our proto-
col in the non-programmable, non-extractable random oracle model. We stress,
however, that all assumptions are concrete computational assumptions, and our
proofs are in the standard model.

Theorem 11. Let k be a computational security parameter. For any polynomial
p(k), there exists a black-box reduction of OTp(k) to OTk in the malicious model
under the GCorRH and S⊕CorRH assumptions. The construction requires only
a constant number of calls to the hash function per each OT produced.

At a high level, we notice from the proof of the previous theorem that in order to
gain an advantage, a cheating R must pick some bj to be polychromatic. Note
that dj

0 = a ∧ bj ⊕ mj and dj
1 = a ∧ b̄j ⊕ mj, where b̄j = 1k ⊕ bj . This means

that, when bj is polychromatic, both dj
0 and dj

1 depend on some bits of a. The
honest R will always know dj

bj = mj. We exploit this difference by introducing a
test where R, for each j, shows that it knows dj

0 or dj
1 without revealing which.

Essentially, we let S send the first k bits of each Hj(dj
0)⊕Hj(dj

1) to R (suppose
Hj has 2k-bit outputs). R must then return the first k bits of Hj(dj

0). This is
easy for an honest R, which knows Hj(dj

bj ), but will catch a cheating R with
some probability related to how many bits of a the receiver needs to guess one
of dj

0 and dj
1. This test, however, introduces an opening for S to cheat, which

requires an extra fix. After these tests, we have (with overwhelming probability)
at most k bad OTs out of the � OTs being produced, and we remove the bad
OTs by using our combiner. The details and proof appear in the full version.
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Abstract. Until recently, all known constructions of oblivious transfer
protocols based on general hardness assumptions had the following form.
First, the hardness assumption is used in a black-box manner (i.e., the
construction uses only the input/output behavior of the primitive guar-
anteed by the assumption) to construct a semi-honest oblivious transfer,
a protocol whose security is guaranteed to hold only against adversaries
that follow the prescribed protocol. Then, the latter protocol is “com-
piled” into a (malicious) oblivious transfer using non-black techniques
(a Karp reduction is carried in order to prove an NP statement in zero-
knowledge).

In their recent breakthrough result, Ishai, Kushilevitz, Lindel and
Petrank (STOC ’06) deviated from the above paradigm, presenting a
black-box reduction from oblivious transfer to enhanced trapdoor permu-
tations and to homomorphic encryption. Here we generalize their result,
presenting a black-box reduction from oblivious transfer to semi-honest
oblivious transfer. Consequently, oblivious transfer can be black-box re-
duced to each of the hardness assumptions known to imply a semi-honest
oblivious transfer in a black-box manner. This list currently includes be-
side the hardness assumptions used by Ishai et al., also the existence of
families of dense trapdoor permutations and of non trivial single-server
private information retrieval.

1 Introduction

Since most cryptographic tasks are impossible to achieve with absolute,
information-theoretic security, modern cryptography tries to design protocols
that are infeasible to break. Namely, their security is based on computational
hardness assumptions. These assumptions typically come in two flavors: spe-
cific hardness assumptions like discrete log, factoring and RSA, and gen-
eral hardness assumptions like the existence of one-way functions. In this
paper we refer to general hardness assumptions and how they are used. Prim-
itives assumed to carry some hardness assumption can be used to construct a
provably secure cryptographic tasks in two possible ways: “black-box usage”,
where the construction uses only the input/output behavior of the primitive,
and “non-black-box usage”, where the construction uses the internal structure
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of the primitive, e.g., its code. The above is formalized via the notion of black-
box reductions. A black-box reduction from a primitive P to a primitive Q, is
an efficient construction of P out of Q that ignores the internal structure of the
implementation of Q and merely uses it as a “subroutine” (i.e., as a black-box).
Such a reduction is fully-black-box [25] if the proof of security (showing that
an adversary that breaks the implementation of P implies an efficient adversary
that breaks the implementation of Q), is black-box as well. That is, the internal
structure of the adversary that breaks the implementation of P is ignored. See
Section 2.2 for more details.

Staring from the seminal paper of Impagliazzo and Rudich [16], a rich line of
works tries to draw the border between possibility and impossibility for black-box
reductions in cryptography. Currently, for most cryptographic tasks we either
have a black-box reduction to a commonly believed hardness assumption, or
have shown the impossibility of such a reduction. There are several important
tasks, however, for which we have failed to apply the above black-box classifica-
tion. Very interestingly, for most of those tasks we do have non-black-box reduc-
tions (typical examples are the reductions from oblivious transfer to semi-honest
oblivious transfer [12], and from public-key encryption schemes secure against
chosen cipher-text attack to semantically-secure encryption schemes [8,20,26]).
In their recent breakthrough result, Ishai et al. [17] presented the first black-
box reduction from oblivious transfer to “low-level” primitives (to homomorphic
encryption and to enhanced trapdoor permutations). Yet, the question whether
there exists a black-box reduction from oblivious transfer to semi-honest oblivi-
ous transfer, remained open.

A better understanding of the above might help up to resolve the intrigu-
ing question whether non-black-box techniques are superior to black-box ones
also in the setting of reductions between cryptographic primitives. 1 On a more
practical level, we mention that the non-black-box reductions of the above tasks
are using Karp reductions for the purpose of using a (general) zero-knowledge
proof/argument. Such reductions are highly inefficient and unlikely to be used in
practice. Furthermore, in most cases the communication complexity in the result-
ing protocols depends on the complexity of computing the underlying primitive
(i.e., of the trapdoor permutations), where black-box reductions, unaware of the
inner structure of the underlying primitive, do not suffer from this phenomenon
(see [17] for more details).

In this paper, we study the above issues w.r.t. oblivious transfer. Oblivious
transfer, introduced by Rabin [24], is a fundamental primitive in cryptography
and has several equivalent formulations [3,5,4,6,9,24]. The version we study here,
defined by Even, Goldreich and Lempel [9], is that of one-out-of-two oblivi-
ous transfer. This version is an interactive protocol between a sender and a
receiver. The sender gets as an input two secret bits: σ0 and σ1 and the receiver
gets an index i ∈ {0, 1}. At the end of the protocol, R learns σi. Informally, the

1 The superiority of non-black-box techniques was demonstrated by Barak [1] in the
settings of zero-knowledge arguments for NP. In these settings, however, the black-
box access is to the, possibly cheating, verifier and not to any underlying primitive.
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security of the oblivious transfer states that the receiver does not learn σ1−i and
the sender does not learn i. Oblivious transfer is known to imply key-agreement
signing contracts protocols [2,9,24] and, more generally, secure multiparty com-
putation in the presence of malicious majority [12,18,28]. We sometimes add the
term malicious to the above definition, to differentiate it from definitions that
guarantee weaker security.

1.1 Defensible Privacy

The notion of defensible privacy, introduced by Ishai et al. [17], is a natural
bridging step between semi-honest privacy and fully-fledged one. Informally, a
two-party protocol (A, B) is defensibly private w.r.t. A and a function f defined
over the parties’ inputs (denoted as (A, f)-defensibly-private), if at the end of
the interaction even a cheating A∗ cannot simultaneously prove that it has acted
honestly (i.e., as the honest party would) and learn the value of f . 2 [17] showed
how to use enhanced trapdoor permutation (or homomorphic encryption) to
construct defensible oblivious transfer. Where the latter is a protocol with
the oblivious transfer functionally, which is defensibly-private w.r.t. to the sender
and the input bit of the receiver, and w.r.t. to the receiver and the other secret
of the sender. That is, it is (S, fS) and (R, fR) defensibly-private, where S and R

stand for sender and the receiver respectively, fS(σ0, σ1, i)
def= i and fR(σ0, σ1, i)

def=
σ1−i. [17] then show how to use such a defensible oblivious transfer to derive
their main result.

1.2 Our Result

A two-party protocol (A, B) is (A, f)-semi-honest-private, if at the end of the
interaction the semi-honest A does not learn the value of f . Our main technical
contribution is the following theorem.

Theorem 1. Let π = (A, B) be a two-party protocol and let fA, fB : {0, 1}k ×
{0, 1}k �→ {0, 1}∗ be two functions defined over the parties’ inputs. Assume that
π is (A, fA) and (B, fB) semi-honest private. Then there exists a fully-black-box
reduction from a protocol π′ = (A, B) that has the same functionality as π and
is (A, fA) and (B, fB) defensibly-private, to π and one-way functions.

Since one-way functions can be black-box reduced to semi-honest oblivious trans-
fer (see Theorem 4), we obtain the following corollary.

Corollary 1. There exists a fully-black-box reduction from defensible oblivious
transfer to semi-honest oblivious transfer.

Combining the above with the reduction of [17] from malicious oblivious transfer
to derisible one, we derive our main result.

2 The above generalizes the definition of [17], which was only stated w.r.t. oblivious
transfer protocols.
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Theorem 2. There exists a fully-black-box reduction from oblivious transfer to
semi-honest oblivious transfer.

As a corollary of Theorem 2, we have that there exists a fully-black-box reduc-
tion from oblivious transfer to each of the assumptions that known to imply
semi-honest oblivious transfer in a fully-black-box manner. This list currently
includes families of dense/enhanced trapdoor permutations [9,13], homomorphic
encryption [19,27] and non-trivial single-server private-information retrieval [7].
In addition, Kilian [18] tells us that secure multiparty computation can be black-
box reduced to oblivious transfer. Hence, we also have the following corollary.

Corollary 2. There exist fully-black-box reductions from protocols for securely
computing any multiparty functionality with an honest-minority and in the pres-
ence of static malicious adversaries, to semi-honest oblivious transfer.

1.3 Our Technique - From Semi-Honest to Defensible Privacy

Given a protocol π = (A, B) that is (A, fA) and (B, fB) semi-honest-private, and
assuming that one-way functions exist, we create the protocol π′ = (A, B) that is
(A, fA) and (B, fB) defensibly-private. Our reduction is carried out in two steps.
First, we create a protocol (A, B) with the same functionality as (A, B), which is
(A, fA)-defensibly-private and (B, fB)-semi-honest-private. Then, we apply the
same transformation on (A, B), to strengthen also the privacy w.r.t. fB. In what
follows we describe how to obtain the first step (the second step is analogous), but
first let us describe what a commitment scheme is. In a commitment scheme the
sender interacts with the receiver to commit to a private value; informally
the commitment is binding if the sender cannot open the commitment into
a different value than the one it had committed to, where the commitment
is hiding if before the decommitment stage the receiver does not learn the
committed value. Fully-black-box reductions from commitment schemes to one-
way functions were given by [15,21] and [14,23].

In the new protocol (A, B), we embed an execution of (A, B) while using a
commitment scheme in order to enforce the “defensible behavior” of A. Let
iA, iB and rA, rB be the inputs and random-coins of A and B respectively. We
define (A(iA, rA), B(iB, r1

B
, r2

B
)) as follows. First, A commits to (iA, rA) using a

commitment scheme, followed by B sending r1
B

over to A. Then the two parties
execute (A(iA, rA ⊕ r1

B
), B(iB, r2

B
)), where A and B act as A and B respectively.

The hiding property of the commitment scheme yields that before the embedded
execution of (A, B) starts, B does not learn any information about the input and
random-coins that A uses in this execution. Thus, the semi-honest privacy of
(A, B) w.r.t. B and fB, follows by the semi-honest privacy of (A, B) w.r.t. B and
fB. In order to prove that (A, B) is (A, fA)-defensibly-private, we first note that
a valid defense of A must include a valid opening of the commitment. Thus, the
binding property of the commitment scheme yields that even a dishonest A

∗ can
only provide a valid defense if it has acted in the embedded execution of (A, B)
as A whose input and random-coins are set to iA and rA ⊕ r1

B
would. Namely, if
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it has acted as A whose input was decided before the execution has started, and
its random-coins are chosen at random would. Hence, the defensible privacy of
the protocol w.r.t. A and fA, follows by the semi-honest privacy of (A, B) w.r.t.
A and fA. 3

1.4 Paper Organization

Section 2 contains the notations and definitions used in this paper. In Section 3
we present our general transformation from semi-honest privacy to defensible
one (Theorem 1) and in Section 4 we use this transformation to derive our main
result (Theorem 2).

2 Preliminaries

2.1 Notation

We denote by Un the random variable uniformly chosen in {0, 1}n. Given a
distribution D, we denote its support by Supp(D). We adopt the convention
that when the same random variable occurs several times in an expression, all
occurrences refer to a single sample. For example, Pr[f(Un) = Un] is defined
to be the probability that when x ← Un, we have f(x) = x. Given a vector
v of dimension n, we denote by v[i1, ..., ik], where i1, . . . , ik ∈ [n], the vector
(v[i1], . . . , v[ik]). A function μ : N → [0, 1] is negligible, denoted μ = neg, if
for every polynomial p we have that μ(n) < 1/p(n) for large enough n. Two
distribution ensembles Dn and ξn are computationally-indistinguishable (denoted
Dn ≈c ξn), if no efficient algorithm distinguishes between them with more then
negligible probability. Given a two-party protocol π = (A, B), we denote the
inputs and random-coins of A and B by iA and iB, and by rA and rB respec-
tively. We denote by Viewπ

A((iA, rA), (iB, rB)) the view of A after the execution
of π on ((iA, rA), (iB, rB)). This view consists on iA, rA and the messages A re-
ceived thought the protocol. We denote by Viewπ

A(iA, iB), the random variable
Viewπ

A((iA, RA), (iB, RB)), where RA and RB are uniformly chosen among all
strings of the right length.

2.2 Black-Box Reductions

A reduction from a primitive P to a primitive Q consists of showing that if there
exists an implementation C of Q, then there exists an implementation MC of
P . This is equivalent to showing that for every adversary that breaks MC , there
exists an adversary that breaks C. Such a reduction is semi-black-box if it

3 In their construction of defensible oblivious transfer from enhanced families of trap-
door permutations, [17] are using (perfectly-binding) commitment schemes for a
similar purpose. More specifically, they employ the semi-honest oblivious transfer of
[9] and use a commitment scheme for forcing the receiver to sample one of the two
random elements it has to choose in the permutation domain honestly, i.e., choosing
it as a random output of the domain sampler.
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ignores the internal structure of Q’s implementation, and it is fully-black-box
if the proof of correctness is black-box as well, i.e., the adversary for breaking Q
ignores the internal structure of both Q’s implementation and of the (alleged)
adversary breaking P . A taxonomy of black-box reductions was provided by [25],
and the reader is referred to their paper for a more complete and formal view
of these notions. All the reduction considered in this paper are fully-black-box
ones.

2.3 Different Notions of Privacy

In the following we present the two privacy measures we use in this paper.

Semi-Honest Privacy
In the standard definitions of semi-honest privacy (c.f, [11]), it is required that the
semi-honest party does not learn any information about the other party’s input,
save but the part it suppose to get according to the prescribed functionality. Here
we present a natural relaxation to the above, defining the notion of semi-honest
privacy w.r.t. a function. Namely, we only require that the semi-honest party
does not learn a predefined function of the parties’ inputs. 4

Definition 1 (semi-honest privacy w.r.t. a function). Let π = (A, B) be a
two-party protocol getting security parameter 1n and let f : {0, 1}k × {0, 1}k �→
{0, 1}∗ be a function defined over the parties’ inputs. We say that π is (A, f)-
semi-honest-private, if for every efficiently samplable input iA ∈ {0, 1}k it holds
that

(Viewπ
A(iA, Uk), f(iA, Uk)) ≈c (Viewπ

A(iA, Uk), f(iA, U ′k))

Defensible Privacy

Definition 2 (defense). Let π = (A, B) be a two-party protocol and let t be a
transcript of an interaction between some party A∗ and B. We say that d is a
good defense for t (w.r.t. A’s role in π), if A whose input, including its random-
coins, is set to d would have sent the same messages that A∗ does in t. We use
the following notations: given v = View(A∗,B)

A∗ (·), we let Defense(v) be the defense
that A∗ locally output in the end of the interaction (set to ⊥ is no such defense
is given) and let the predicate IsGoodDefπ,A(v) to be one if Defense(v) is a good
defense for (the transcript embedded in) v.

Definition 3 (defensible privacy w.r.t. a function). Let π and f be as in
Definition 1. We say that π is (A, f)-defensibly-private, if the following holds for
every ppt A∗:

Γ (View(A∗,B)
A∗ (Uk), f(idA, Uk)) ≈c Γ (View(A∗,B)

A∗ (Uk), f(idA, U ′k)) ,

4 We have chosen to work with this weaker form of semi-honest privacy, since we have
found it simpler to handle and yet strong enough when considering semi-honest
oblivious transfer protocols.
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where Γ (x, y) equals (x, y) if IsGoodDefπ,A(x) = 1 and equals ⊥ otherwise, and
idA is the value of A’s input in Defense(View(A∗,B)

A∗ (Uk)). 5

Remark 1. It seems natural to extend the above definition to a simulation based
one. Namely, a protocol is defensibly private if a party that gives a valid
defense learns nothing (in the simulation sense) other than the prescribed func-
tionality. It is then seems tempting to try to reduce the above defensible privacy
to semi-honest privacy (according to [11]). Namely, to prove that any semi-honest
private protocol implies a defensibly private version of this protocol. We hope
to address this issue in the full version.

2.4 Oblivious Transfer

Oblivious transfer is an interactive protocol between a sender, S, and a receiver,
R. The sender gets as an input two secret bits: σ0 and σ1 and the receiver gets
an index i ∈ {0, 1}, in the end of the protocol R locally outputs a single bit. We
make the following correctness requirement: for all n and all valid values of σ0,
σ1 and i, with save but negligible probability the output of R in the interaction
(S(σ0, σ1), R(i)) is σi.

Let (S, R) be a protocol that computes the oblivious transfer functionality, let
fS(σ0, σ1, i)

def= i and let fR(σ0, σ1, i)
def= σ1−i. We say that (S, R) is a semi-honest

[resp. defensible] oblivious transfer if it is (S, fS) and (R, fR) semi-honest pri-
vate [resp. defensibly private]. The protocol (S, R) is (malicious) oblivious
transfer if its computation is secure according to the real/ideal simulation
paradigm (see [11, Chapter 7] for formal definition). The following is implicit
in [17].

Theorem 3 ([17]). There exists a fully-black-box reduction from oblivious
transfer to defensible oblivious transfer.

2.5 Commitment Schemes

A commitment scheme is a two-stage protocol between a sender and a receiver.
In the first stage, called the commit stage, the sender commits to a private
string σ. In the second stage, called the reveal stage, the sender reveals σ
and proves that it was the value to which she committed in the first stage. We
require two properties of commitment schemes. The hiding property says that
the receiver learns nothing about σ in the commit stage. The binding property
says that after the commit stage, the sender is bound to a particular value
of σ; that is, she cannot successfully open the commitment to two different
values in the reveal stage. See [10] for a more formal definition. Fully-black-box
reductions from commitment schemes to one-way functions were given by [15,21]
and [14,23].

5 It immediately follows that being (A, f)-defensibly-private implies being (A, f)-semi-
honest-private. In Section 3, we show that the other direction is also true.
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2.6 One-Way Functions

Definition 4. Let f : {0, 1}∗ �→ {0, 1}∗ be a polynomial-time computable func-
tion. f is one-way if the following is negligible for every ppt A,

Pr[A(1n, Un) ∈ f−1(f(Un))].

3 Reducing Semi-honest Protocols to Defensible Ones

Our transformation from semi-honest privacy to defensible privacy (Theorem 1)
immediately follows by applying the next lemma twice. The lemma informally
states that it is possible to “upgrade” the security of a protocol w.r.t. one of its
parties while maintaining the initial security w.r.t. the other party.

Lemma 1. Let π = (A, B) be a two-party protocol and let fA, fB : {0, 1}k ×
{0, 1}k �→ {0, 1}∗ be two functions defined over the parties’ inputs. Assume that
π is (A, fA)-semi-honest-private and (B, fB)-x-private, where x stands for ‘semi-
honest’ or ‘defensibly’. Then there exists a fully-black-box reduction from a pro-
tocol π′ = (A, B) that has the same functionality as π and is (A, fA)-defensibly-
private and (B, fB)-x-private, to π and one-way functions.

Proof. In the following definition of π′ we are using a commitment scheme, Com.
Recall that by [15,22] and by [14,23], there exists a fully-black-box reduction from
Com to one-way functions.

Protocol 1 [The defensible protocol π′ = (A, B)]

Common input: 1n.
A’s inputs: iA ∈ {0, 1}k and rA = (r1

A
, r2

A
).

B’s inputs: iB ∈ {0, 1}k and rB = (r1
B
, r2

B
, r3

B
).

1. A commits using Com to (iA, r2
A
), where the security parameter of the com-

mitment is set to 1n and A and B are using the random-coins r1
A

and r1
B

respectively.
2. B sends r3

B
to A.

3. The two parties execute the protocol (A(1n, iA, r2
A

⊕ r3
B
), B(1n, iB, r2

B
)), with A

and B acting as A and B respectively.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Clearly π′ has the same functionality as π. Lemma 2 states that π′ maintains
the same privacy w.r.t. B and fB. The heart of our proof is in Lemma 3, where
we show that π′ has defensible privacy w.r.t. A and fA.

Lemma 2. Assume that π is (B, fB)-x-private, then π′ is (B, fB)-x-private.

Proof. We assume that π is (B, fB)-semi-honest-private and prove that π′ is
(B, fB)-semi-honest-private (the proof for the defensibly-private case is analo-
gous). We first note that the hiding property of Com yields that for every iB ∈
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{0, 1}k, the distribution (Viewπ′

B (Uk, iB), fB(Uk, iB)) is computationally indistin-
guishable from (ViewCom

B
(0�), Viewπ

B(Uk, iB), fB(Uk, iB)). By the semi-honest pri-
vacy of π w.r.t. B and fB, we have that (Viewπ′

B (Uk, iB), fB(Uk, iB)) is computa-
tionally indistinguishable from (ViewCom

B
(0�), Viewπ

B(Uk, iB), fB(U ′k, iB))). Using
the hiding property of Com once more, we have that (Viewπ′

B (Uk, iB), fB(Uk, iB))
is computationally indistinguishable from (Viewπ′

B (Uk, iB), fB(U ′k, iB)). Namely,
we have proved that π′ is (B, fB)-semi-honest-private.

Lemma 3. Assume that π is (A, fA)-semi-honest-private, then π′ is (A, fA)-
defensibly-private.

Proof. Assume toward a contradiction the existence of an efficient adver-
sary A

∗ and a distinguisher D that violate the defensible privacy of π
w.r.t. A and fA. Namely, there exists a polynomial p such that for in-
finitely many n’s D distinguishes with advantage at least 1

p(n) between

Γ (View(A∗,B)
A∗ (Uk), fA(id

A
, Uk)) and Γ (View(A∗,B)

A∗ (Uk), fA(id
A
, U ′k)), where Γ (x, y)

equals (x, y) if IsGoodDefπ′,A(x) = 1 and equals ⊥ otherwise, and id
A

is the value
of A’s input in Defense(View(A∗,B)

A∗ (Uk)). In the following we use A
∗ and D to

present an efficient distinguisher D with oracle access to A
∗ and D that violates

the semi-honest privacy of (A, B) w.r.t. A and fA. Recall that in order to violate
the semi-honest privacy of (A, B), algorithm D should first sample an input ele-
ment iA for A. Then upon getting A’s view from the execution of (A(iA), B(Uk)),
algorithm D has to distinguish between fA(iA, Uk) and fA(iA, U ′k). In order to
make the dependencies between its two stages explicit, D uses the variable z to
transfer information from its first stage to its second stage.

Algorithm 1 [The distinguisher D]

Sampling stage:
Input: 1n

1. Choose uniformly at random rA∗ and r1
B

and fix A
∗’s random-coins to rA∗ .

2. Simulate the first line of (A∗, B) (i.e., the execution of Com), where B uses
r1

B
as its random coins.

3. Do the following np(n) times:
(a) Simulate the last two lines of (A∗, B), choosing B’s input and random-

coins (i.e., iB, r2
B

and r3
B
) uniformly at random.

(b) If A
∗ outputs a valid defense d, set iA = iA and z = (rA∗ , r1

B
, r2

A
), where

iA and r2
A

are the values of these inputs variables in d, and return.
4. Set z =⊥ and an arbitrary value for iA.

Predicting stage:
Input: z, vπ

A - randomly chosen from Viewπ
A(iA, Uk), and c ∈ Im(fA)

1. If z =⊥, output a random coin and return.
2. Fix the random-coins of A

∗ to z[rA∗ ].
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3. Simulate the first line of (A∗, B) (i.e., the execution of Com), where B uses
z[r1

B
] as its random coins.

4. Simulate the second line of (A∗, B), where B sends r3
B

= vπ
A[rA]⊕z[r2

A
] to A

∗.
5. Simulate the last line of (A∗, B), where B sends the same messages that B

sends in vπ
A.

6. Let vA∗ be the view of A
∗ at the end of above simulation,

if IsGoodDefπ′,A(vA∗) = 1 output D(vA∗ , c),
otherwise output a random coin.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It is easy to verify that D is efficient given oracle access to A
∗ and D, in the

following we prove that D violates the semi-honest privacy of π w.r.t. A and fA.
We consider a random execution of (A, B, D) with security parameter 1n and
define the random variable Simn = (iA, iB, rA∗ , rB, trans) as A and B’s inputs in
the real execution of π, concatenated with A

∗ and B’s views in the simulation
of π′ done in D’s predicting stage. More precisely, iA = vπ

A[iA], iB = vπ
A [iB],

rA∗ = z[rA∗ ], rB = (z[r1
B
], vπ

A[rB], vπ
A[rA] ⊕ z[r2

A
]) (set to ⊥ if z =⊥) and finally

trans is the transcript of the simulation of π′ done in the D’s predicting stage
(set to ⊥ if no such simulation occurs).

Let Defense(x) and IsGoodDef (x) be Defense(x[rA∗ , trans]) and
IsGoodDefπ′,A(x[rA∗ , trans]) respectively. For c ∈ Im(fA) let OutD(x, c)
be the output bit of D given x and c, note that OutD(x, c) is a random
variable that depends on the random-coins used by D to invoke D. Fi-
nally, let AdvD(x) be the advantage of D in predicting fA given x. That is,
AdvD(x) def= Pr[OutD(x, fA(x[iA], x[iB])) = 1] − Pr[OutD(x, fA(x[iA], Uk)) = 1].
It is easy to verify that |Exx←Simn [AdvD(x)]| is exactly the advantage of D in
breaking the semi-honest privacy of π w.r.t. A and fA.

We would like the relate the above success probability to that of D in pre-
dicting fA after a random execution of π′. We define the distribution Realn =(
id
A
, iB, rA∗ , rB, trans

)
induced by a random execution of (A∗, B) with security

parameter 1n, where id
A

is the value of this variable in the defense of A
∗ (set to

⊥ is no good defense is given). Let OutD(x, c) be the output bit of D given x
and c, and let AdvD(x) be the advantage of D in predicting fA given x. It is easy
to verify that |Exx←Realn [AdvD(x)]| is exactly the advantage of D in breaking
the defensible privacy of π′ w.r.t. A and fA. The following claim helps up to
relate the advantage of D in breaking the semi-honest privacy of π to that of D

in breaking the defensible privacy of π′.

Claim. The following hold:

1. For every n ∈ N and x ∈ Supp(Realn), it holds that Simn(x) ≤ Realn(x)
2. For large enough n there exists a set

Ln ⊆ {x ∈ Supp(Realn) : IsGoodDef (x) = 1} for which the following hold:
(a) Prx←Realn [IsGoodDef (x) ∧ x /∈ Ln] ≤ 1

4p(n)

(b) For every x ∈ Ln it holds that Simn(x) ≥ (1 − 1
4p(n) ) · Realn(x)
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Proof. When drawing a random XR = (id
A
, iB, rA∗ , rB, trans) from Realn, its value

is fully determined by the value of XR[iB, rA∗ , rB], where the latter value is
uniformly distributed over all strings of the right length. On the other hand,
when drawing a random XS from Simn, the value of XS [iB, rA∗ , rB] is uniformly
distributed over all strings, only when conditioning that IsGoodDef (XS) = 1.
Where otherwise, XS [iB, rA∗ , rB] = (∗, ∗, ⊥), a value that is never obtained by
an element in Supp(Realn). In particular, for every x ∈ Supp(Realn) it holds
that

Simn(x) = Pr
[
XS [iA, iB, rA∗ , rB, trans] = x[id

A
, iB, rA∗ , rB, trans]

]

≤ Pr
[
XS [rA∗ , iB, rB] = x[rA∗ , iB, rB]

]

≤ Pr
[
XR[rA∗ , iB, rB] = x[rA∗ , iB, rB]

]
= Realn(x) ,

proving the first part of the claim. For x ∈ Supp(Realn), let Decom(x) be
the decommitment of Com given in Defense(x) (we set it to ⊥ if no valid
defense is given). For S ⊆ {0, 1}∗, we let Wx(S) be the probability that
the commitment embedded in x is decommitted to a value in S, conditioned
only on the random-coins in x used for the commitment (and not on all x).
That is, Wx(S) = Pr

[
Decom(XR) ∈ S | XR[r1

B
, rA∗ ] = x[r1

B
, rA∗ ]]. Finally, let

Heaviest(x) = argmaxσ∈{0,1}∗ Wx(α), breaking ties arbitrarily (say, by choos-
ing the lexicographic smallest α) and let Others(x) = {0, 1}∗\ {Heaviest(x)}.
We define Ln = {x ∈ Supp(Realn) : IsGoodDef (x) = 1 ∧ Wx(Others(x)) <

1
8np(n)2 ∧ Wx(Heaviest(x)) > 1

8p(n) ∧ Decom(x) = Heaviest(x)}. In the following
we prove the two properties of Ln.

Proving 2(a). We first observe that for every polynomial q, it holds that
Pr[WXR(Others(XR)) > 1

q(n) ] < 1
q(n) . Assume otherwise, then we can design

an adversary for breaking the binding Com. In the commit stage, the adversary
acts as A

∗ does in the first line of Protocol 1. Then it simulates the rest of the
protocol twice (with the same prefix) and outputs the two decommitments im-
plied by A

∗’s defenses. Thus, whenever Pr[WXR(Others(XR)) > 1
q(n) ] > 1

q(n) ,
our adversary breaks the binding of Com with probability Ω( 1

q(n)3 ).
Since Decom(x) �=⊥ only if x yields a good defense, it follows that

Pr[IsGoodDef (XR) ∧ (Wx(Heaviest(x)) + Wx(Others(x))) < 1
q(n) ] < 1

q(n) for
every polynomial q. We conclude that

Pr [IsGoodDef (XR) ∧ XR /∈ Ln]

≤ Pr
[
WXR(Others(XR)) >

1
8np(n)2

]
+ Pr

[
IsGoodDef (XR)

∧ (Wx(Heaviest(x)) + Wx(Others(x))) <

(
1

8p(n)
+

1
8np(n)2

)]

+ Pr
[

Decom(x) �= Heaviest(x) | IsGoodDef (XR) ∧ Wx(Heaviest(x)) >
1

8p(n)
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∧ WXR(Others(XR)) ≤ 1
8np(n)2

]

<
1

8np(n)2
+

1
7p(n)

+
8p(n)

8np(n)2
<

1
4p(n)

Proving 2(b). Let x ∈ Ln, and let X be a random variable drawn from Simn con-
ditioned that X [rA∗ , r1

B
] = x[rA∗ , r1

B
]. Recall that in order to sample X , algorithm

D keeps sampling (up to np(n) times) a random element x′ in Realn conditioned
that x′[rA∗ , r1

B
] = x[rA∗ , r1

B
], until Decom(x′) �=⊥. It then set (X [iA], z[r2

A
]) to

Decom(x′), where z is the “state” that D transfers from its sampling stage to
its predicting stage (the stage where the other parts of X are chosen). In order
to keep notations simple, we define X [r2

A
] as z[r2

A
]. By the above description it

follows that

Pr[X [iA, r2
A] �= Decom(x)] (1)

≤ Pr[Decom(X) =⊥] + Pr[Decom(X) /∈ {Decom(x)∪ ⊥}]

≤ neg(n) +
np(n)

8np(n)2
<

1
4p(n)

,

where the second inequality holds since x ∈ Ln. Since the value of X [iB, r2
B
, r3

B
] is

induced by a the parties’ inputs and random-coins in a random execution of π,
it follows that X [iB, r2

B
, r3

B
] is uniformly distributed conditioned on X [iA, r2

A
] �=⊥

and every value of X [iA, rA∗ , r1
B
, r2

A
]. Recall that the value of XR is fully deter-

mined by the value of XR[iB, rA∗ , rB] and that the latter is uniformly distributed
over all possible strings. Hence,

Pr[XS [iB, rA∗ , rB] = x[iB, rA∗ , rB] ∧ XS [iA, r2
A
] = Decom(x)] (2)

≥ (1 − 1
4p(n)

) · Pr [XR[iB, rA∗ , rB] = x[iB, rA∗ , rB]]

= (1 − 1
4p(n)

) · Realn(x)

Let X [rA] be the value of rA in vπ
A as chosen in the sampling process of X

and let x[r2
A
] be the value of r2

A
in Defense(x). Since IsGoodDef (x) = 1, A

∗

acts in the embedded execution of π in x, as A(x[id
A
], x[r2

A
] ⊕ x[r3

B
]) would.

Thus, XS [rA∗ , iB, rB] = x[rA∗ , iB, rB] and XS [iA, r2
A
] = Decom(x) implies that A

∗

acts in the embedded execution of π as A(XS [iA], XS [r2
A
] ⊕ XS[r3

B
]) would, that

is as A(XS [iA], XS [rA]). Hence, XS[rA∗ , iB, rB] = x[rA∗ , iB, rB] and X [iA, r2
A
] =

Decom(x) implies that XS [trans] = x[trans], and we conclude that

Pr[XS = x]
= Pr[XS [rA∗ , iB, rB] = x[rA∗ , iB, rB] ∧ XS[iA, r2

A
] = Decom(x)]

≥ (1 − 1
4p(n)

) · Realn(x)

�
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Back to the proof the lemma. Let n be large enough be large enough so
that Claim 3 holds and assume w.l.o.g. that Ex[AdvD(XR)] > 1

p(n) . Since D

gains no advantage when IsGoodDef (XR) = 0, it follows that Ex[AdvD(XR) ·
IsGoodDef (XR)] > 1

p(n) as well. We first observe that

Ex[AdvD(XS)] = Ex[AdvD(XS) · IsGoodDef (XS)]
≥ Ex[AdvD(XS) · 1XS∈Ln ] − Pr[IsGoodDef (XS) ∧ XS /∈ Ln]
= Pr

[
OutD(XS , fA(XS [iA, iB])) = 1) ∧ XS ∈ Ln

]

− Pr
[
OutD(XS , fA(XS [iA], Uk)) = 1) ∧ XS ∈ Ln

]

− Pr[IsGoodDef (XS) ∧ XS /∈ Ln] ,

where 1x∈Ln is one if x ∈ Ln and zero otherwise, and the first equality holds
since OutD(x, c) is a random coin if IsGoodDef (x) = 0. By Claim 3 we have that

Pr[IsGoodDef (x) ∧ XS /∈ Ln] (3)

≤ Pr[IsGoodDef (XR) ∧ XR /∈ Ln] ≤ 1
4p(n)

Since OutD(x, c) = OutD(x, c) for every x ∈ Supp(Realn) such that
IsGoodDef (x) = 1, Claim 3 also yields that

Pr[OutD(XS , fA(XS [iA], Uk)) = 1 ∧ XS ∈ Ln] (4)
≤ Pr[OutD(XR, fA(XR[idA], Uk)) = 1 ∧ XR ∈ Ln]

and that

Pr[OutD(XS , fA(XS [iA, iB])) = 1 ∧ XS ∈ Ln] (5)

≥ (1 − 1
4p(n)

) · Pr[OutD(XR, fA(XR[id
A
, iB])) = 1 ∧ XR ∈ Ln]

We conclude that

Ex[AdvD(XS)]

≥ (1 − 1
4p(n)

) · Pr[OutD(XR, fA(XR[idA, iB])) = 1 ∧ XR ∈ Ln]

− Pr[OutD(XR, fA(XR[id
A
], Uk)) = 1 ∧ XR ∈ Ln] − 1

4p(n)

≥ (1 − 1
4p(n)

) · Ex[AdvD(XR) · IsGoodDef(XR)] − 1
4p(n)

− 1
4p(n)

≥ (1 − 1
4p(n)

) · 1
p(n)

− 1
2p(n)

>
1

4p(n)

Since the above holds for infinitely many n’s, it concludes the proof of Lemma 3
and thus the proof of Theorem 1.
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4 Achieving the Main Result

In the following we prove Theorem 2, the main result of this paper. As corollary
of Theorem 1, we have that there exists a fully-black-box reduction from defen-
sible oblivious transfer to semi-honest oblivious transfer and one-way functions.
This corollary together with Theorem 3, yields the existence of a fully-black-box
reduction from malicious oblivious transfer to semi-honest oblivious transfer and
one-way functions. Thus, the proof of the Theorem 2 is concluded by the follow-
ing folklore theorem (proof given in the full version).

Theorem 4. There exists a fully-black-box reduction from one-way functions to
semi-honest oblivious transfer.
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Black-Box Construction of a Non-malleable Encryption
Scheme from Any Semantically Secure One
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Abstract. We show how to transform any semantically secure encryption
scheme into a non-malleable one, with a black-box construction that achieves
a quasi-linear blow-up in the size of the ciphertext. This improves upon the
previous non-black-box construction of Pass, Shelat and Vaikuntanathan (Crypto
’06). Our construction also extends readily to guarantee non-malleability under a
bounded-CCA2 attack, thereby simultaneously improving on both results in the
work of Cramer et al. (Asiacrypt ’07).

Our construction departs from the oft-used paradigm of re-encrypting the
same message with different keys and then proving consistency of encryptions;
instead, we encrypt an encoding of the message with certain locally testable and
self-correcting properties. We exploit the fact that low-degree polynomials are
simultaneously good error-correcting codes and a secret-sharing scheme.

Keywords: Public-key encryption, semantic security, non-malleability, black-
box constructions.

1 Introduction

The most basic security guarantee we require of a public key encryption scheme is that
of semantic security [GM84]: it is infeasible to learn anything about the plaintext from
the ciphertext. In many cryptographic applications such as auctions, we would like an
encryption scheme that satisfies the stronger guarantee of non-malleability [DDN00],
namely that given some ciphertext c, it is also infeasible to generate ciphertexts of some
message that is related to the decryption of c. Motivated by the importance of non-
malleability, Pass, Shelat and Vaikuntanathan raised the following question [PSV06]:

It is possible to immunize any semantically secure encryption scheme against
malleability attacks?

Pass et al. gave a beautiful construction of a non-malleable encryption scheme from any
semantically secure one (building on [DDN00]), thereby addressing the question in the
affirmative. However, the PSV construction – as with previous constructions achieving
non-malleability from general assumptions [DDN00, S99, L06] – suffers from the curse
of inefficiency arising from the use of general NP-reductions. In this work, we show
that we can in fact immunize any semantically secure encryption schemes against
malleability attacks without paying the price of general NP-reductions:
� The work was partially supported by NSF grants CNS-0716245, CCF-0347839, and SBE-

0245014.

R. Canetti (Ed.): TCC 2008, LNCS 4948, pp. 427–444, 2008.
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Main theorem (informal). There exists a (fully) black-box construction of a
non-malleable encryption scheme from any semantically secure one.

That is, we provide a wrapper program (from programming language lingo) that given
any subroutines for computing a semantically secure encryption scheme, computes a
non-malleable encryption scheme, with a multiplicative overhead in the running time
that is quasi-linear in the security parameter. Before providing further details, let us first
provide some background and context for our result.

1.1 Relationships Amongst Cryptographic Primitives

Much of the modern work in foundations of cryptography rests on general crypto-
graphic assumptions like the existence of one-way functions and trapdoor permutations.
General assumptions provide an abstraction of the functionalities and hardness we
exploit in specific assumptions such as hardness of factoring and discrete log without
referring to any specific underlying algebraic structure. Constructions based on general
assumptions may use the primitive guaranteed by the assumption in one of two ways:

Black-box usage: A construction is black-box if it refers only to the input/output
behavior of the underlying primitive; we would typically also require that in the
proof of security, we can use an adversary breaking the security of the construction
as an oracle to break the underlying primitive. (See [RTV04] and references within
for more details.). As emphasized earlier, our construction is black-box, using only
oracle access to the key generation, encryption and decryption functionality of the
underlying encryption scheme.

Non-black-box usage: A construction is non-black-box if it uses the code computing
the functionality of the primitive. The PSV construction along with the work it
builds on fall into this category: they use an NP reduction applied to the circuit
computing the encryption functionality of the underlying encryption scheme in
order to provide a non-interactive zero-knowledge proof of consistency.

Motivated by the fact that the vast majority of constructions in cryptography are black-
box, a rich and fruitful body of work initiated in [IR89] seeks to understand the
power and limitations of black-box constructions in cryptography, resulting in a fairly
complete picture of the relations amongst most cryptographic primitives with respect
to black-box constructions (we summarize several of the known relations pertaining
to encryption in Figure 1). More recent work has turned to tasks for which the only
constructions we have are non-black-box, yet the existence of a black-box construction
is not ruled out. Two notable examples are general secure multi-party computation
against a dishonest majority and encryption schemes secure against adaptive chosen-
ciphertext (CCA2) attacks1 (c.f. [GMW87, DDN00]).

1 These are encryption schemes that remain semantically secure even under a CCA2 attack,
wherein the adversary is allowed to query the decryption oracle except on the given challenge.
A CCA1 attack is one wherein the adversary is allowed to query the decryption oracle before
(but not after) seeing the challenge.
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The general question of whether we can securely realize these tasks via black-box
access to a general primitive is not merely of theoretical interest. A practical reason
is related to efficiency, as non-black-box constructions tend to be less efficient due
to the use of general NP reductions to order to prove statements in zero knowledge;
this impacts both computational complexity as well as communication complexity
(which we interpret broadly to mean message lengths for protocols and key size
and ciphertext size for encryption schemes). Moreover, if resolved in the affirmative,
we expect the solution to provide new insights and techniques for circumventing
the use of NP reductions and zero knowledge in the known constructions. Finally,
given that there has been no formal model that captures non-black-box constructions
in a satisfactory manner, the pursuit of a positive result becomes all the more
interesting.

Indeed, Ishai et al. [IKLP06] recently provided an affirmative answer for secure
multi-party computation by exhibiting black-box constructions from some low-level
primitive. Their techniques have since been used to yield secure multi-party compu-
tation via black-box access to an oblivious transfer protocol for semi-honest parties,
which is complete (and thus necessary) for secure multi-party computation [H08]. This
leaves the following open problem:

Is it possible to realize CCA2-secure encryption via black-box access to a
low-level primitive, e.g. enhanced trapdoor permutations or homomorphic
encryption schemes?

Previous work pertaining to this problem is limited to non-black-box constructions of
CCA2-secure encryption from enhanced trapdoor permutations [DDN00, S99, L06];
nothing is known assuming homomorphic encryption schemes. In work concurrent
with ours, Peikert and Waters [PW07] made substantial progress towards the open
problem – they constructed CCA2-secure encryption schemes via black-box access
to a new primitive they introduced called lossy trapdoor functions, and in addition,
gave constructions of this primitive from number-theoretic and worst-case lattice
assumptions. Unfortunately, they do not provide a black-box construction of CCA2-
secure encryption from enhanced trapdoor permutations.

Our work may also be viewed as a step towards closing this remaining gap (and a
small step in the more general research agenda of understanding the power of black-
box constructions). Specifically, the security guarantee provided by non-malleability
lies between semantic security and CCA2 security, and we show how to derive non-
malleability in a black-box manner from the minimal assumption possible, i.e., semantic
security. In the process, we show how to enforce consistency of ciphertexts in a black-
box manner. This issue arises in black-box constructions of both CCA2-secure and
non-malleable encryptions. However, our consistency checks only satisfy a weaker
notion of non-adaptive soundness, which is sufficient for non-malleability but not for
CCA2-security (c.f. [PSV06]). As a special case of our result, we obtain a black-box
construction of non-malleable encryptions from any (poly-to-1) trapdoor function. Our
results are incomparable with those of Peikert and Waters since we start from weaker
assumptions but derive a weaker security guarantee.
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IND-CPA

NM-CPAIND-CCA1

IND-CCA2

NM-q-CCA2

IND-q-CCA2

eTDP lossy TDF

(poly-to-1) TDF

Fig. 1. Known relations among generic encryption primitives, and our results. Solid lines indicate
black box constructions, and dotted lines indicate non-black-box constructions (c.f. [BHSV98,
DDN00, PSV06, CHH+07, PW07]). The separations are with respect to black-box reductions, or
black box shielding reductions (c.f. [GMR01, GMM07]). Our contributions are indicated with the
thick arrows.

Related positive results. A different line of work focuses on (very) efficient con-
structions of CCA2-secure encryptions under specific number-theoretic assumptions
[CS98, CS04, CHK04]. Apart from those based on identity-based encryption, these
constructions together with previous ones based on general assumptions can be
described under the following framework (c.f. [BFM88, NY90, RS91, ES02]). Start
with some cryptographic hardness assumption that allows us to build a semantically
secure encryption scheme, and then prove/verify that several ciphertexts satisfy certain
relations in one of two ways:

– exploiting algebraic relations from the underlying assumption to deduce additional
structure in the encryption scheme (e.g. homomorphic, reusing randomness) [CS98,
CS04];

– apply a general NP reduction to prove in non-interactive zero knowledge (NIZK)
statements that relate to the primitive [DDN00, S99, L06].

None of the previous approaches seems to yield black-box constructions under general
assumptions. Indeed, our work (also [PW07]) does not use the above framework.

1.2 Our Results

As mentioned earlier, we exhibit a black-box construction of a non-malleable en-
cryption scheme from any semantically secure one, the main novelty being that our
construction is black-box. While this is interesting in and of itself, our construction also
compares favorably with previous work in several regards:

– Improved parameters. We improve on the computational complexity of previous
constructions based on general assumptions. In particular, we do not have to do an
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NP-reduction in either encryption or decryption, although we do have to pay the
price of the running time of Berlekamp-Welch for decryption. The running time
incurs a multiplicative overhead that is quasi-linear in the security parameter, over
the running time of the underlying CPA secure scheme. Moreover, the sizes of
public keys and ciphertext are independent of the computational complexity of the
underlying scheme.

– Conceptual simplicity/clarity. Our scheme (and the analysis) is arguably much
simpler than many of the previous constructions, and like [PSV06], entirely
self-contained (apart from the Berlekamp-Welch algorithm). We do not need to
appeal to notions of zero-knowledge, nor do we touch upon subtle technicalities
like adaptive vs non-adaptive NIZK. Our construction may be covered in an
introductory graduate course on cryptography without requiring zero knowledge
as a pre-requisite.

– Ease of implementation. Our scheme is easy to describe and can be easily
implemented in a modular fashion.

We may also derive from our construction additional positive and negative results.

Bounded CCA2 non-malleability. Cramer et al. [CHH+07] introduced the bounded
CCA2 attack, a relaxation of the CCA2 attack wherein the adversary is only allowed
make an a-priori bounded number of queries q to the decryption oracle, where q is fixed
prior to choosing the parameters of the encryption scheme. In addition, starting from
any semantically secure encryption, they obtained2:

– an encryption scheme that is semantically secure under a bounded-CCA2 attack
via a black-box construction, wherein the size of the public key and ciphertext are
quadratic in q; and

– an encryption scheme that is non-malleable under a bounded-CCA2 attack via a
non-black-box construction, wherein the size of the public key and ciphertext are
linear in q.

Combining their approach for the latter construction with our main result, we obtain an
encryption scheme that is non-malleable under a bounded-CCA2 attack via a black-box
construction, wherein the size of the public key and ciphertext are linear in q.

Separation between CCA2 security and non-malleability. Our main construction
has the additional property that the decryption algorithm does not query the encryption
functionality of the underlying scheme. Gertner, Malkin and Myers [GMM07] referred
to such constructions as shielding and they showed that there is no shielding black-box
construction of CCA1-secure encryption schemes from semantically secure encryption.
Combined with the fact that any shielding construction when composed with our
construction is again shielding, this immediately yields the following:

Corollary (informal) There exists no shielding black-box construction of
CCA1-secure encryption schemes from non-malleable encryption schemes.

2 While semantic security and non-malleability are equivalent under a CCA2 attack [DDN00],
they are not equivalent under a bounded-CCA2 attack, as shown in [CHH+07].
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Note that a CCA2-secure encryption scheme is trivially also CCA1-secure, so this also
implies a separation between non-malleability and CCA2-security for shielding black-
box constructions.

Our techniques. At a high level, we follow the cut-and-choose approach for con-
sistency checks from [PSV06], wherein the randomness used for cut-and-choose is
specified in the secret key. A crucial component of our construction is a message
encoding scheme with certain locally testable and self-correcting properties, based on
the fact that low-degree polynomials are simultaneously good error-correcting codes
and a secret-sharing scheme; this has been exploited in the early work on secure multi-
party computation with malicious adversaries [BGW88]. We think this technique may
be useful in eliminating general NP-reductions in other constructions in cryptography
(outside of public-key encryption).

Towards CCA2 Security? The main obstacle towards achieving full CCA2 security
from either semantically secure encryptions or enhanced trapdoor permutations using
our approach (and also the [PSV06] approach) lies in guaranteeing soundness of the
consistency checks against an adversary that can adaptively determine its queries
depending on the outcome of previous consistency checks. It seems conceivable that
using a non-shielding construction that uses re-encryption may help overcome this
obstacle.

1.3 Overview of Our Construction

Recall the DDN [DDN00] and PSV [PSV06] constructions: to encrypt a message, one
(a) generates k encryptions of the same message under independent keys, (b) gives a
non-interactive zero-knowledge proof that all resulting ciphertexts are encryptions of
the same message, and (c) signs the entire bundle with a one-time signature. It is in step
(b) that we use a general NP-reduction, which in return makes the construction non-
black-box. In the proof of security, we exploit that fact that for a well-formed ciphertext,
we can recover the message if we know the secret key for any of the k encryptions.

How do we guarantee that a tuple of k ciphertexts are encryptions of the same
plaintext without using a zero-knowledge proof and without revealing any information
about the underlying plaintext? Naively, one would like to use a cut-and-choose
approach (as has been previously used in [LP07] to eliminate zero-knowledge proofs
in the context of secure two-party computation), namely decrypt and verify that some
constant fraction, say k/2 of the ciphertexts are indeed consistent. There are two issues
with this approach:

– First, if only a constant number of ciphertexts are inconsistent, then we are unlikely
to detect the inconsistency. To circumvent this problem, we could decrypt by
outputting the majority of the remaining k/2 ciphertexts.

– The second issue is more fundamental: decrypting any of the ciphertexts will
immediately reveal the underlying message, whereas it is crucial that we can
enforce consistency while learning nothing about the underlying message.
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We circumvent both issues by using a more sophisticated encoding of the message m
based on low-degree polynomials instead of merely making k copies of the message as
in the above schemes. Specifically, we pick a random degree k polynomial p such that
p(0) = m and we construct a k × 10k matrix such that the i’th column of the matrix
comprises entirely of the value p(i). To verify consistency, we will decrypt a random
subset of k columns, and check that all the entries in each of these columns are the
same.

– The issue that only a tiny number of ciphertexts are inconsistent is handled using
the error-correcting properties of low-degree polynomials; specifically, each row of
a valid encoding is a codeword for the Reed-Solomon code (and we output ⊥ if it’s
far from any codeword).

– Low-degree polynomials are also good secret-sharing schemes, and learning a
random subset of k columns in a valid encoding reveals nothing about the
underlying message m. Encoding m using a secret-sharing scheme appears in the
earlier work of Cramer et al. [CHH+07], but they do not consider redundancy or
error-correction.

As before, we encrypt all the entries of the matrix using independent keys and then
sign the entire bundle with a one-time signature. It is important that the encoding also
provides a robustness guarantee similar to that of repeating the message k times: we
are able to recover the message for a valid encryption if we can decrypt any row in the
matrix. Indeed, this is essentially our entire scheme with two technical caveats:

– As with previous schemes, we will associate one pair of public/secret key pairs with
each entry of the matrix, and we will select the public key for encryption based on
the verification key of the one-time signature scheme.

– To enforce consistency, we will need a codeword check in addition to the column
check outlined above. The reason for this is fairly subtle and we will highlight the
issue in the formal exposition of our construction.

Decreasing ciphertext size. To encrypt an n-bit message with security parameter k, our
construction yields O(k2) encryptions of n-bit messages in the underlying scheme. It is
easy to see that this may be reduced to O(k log2 k) encryptions by reducing the number
of columns to O(log2 k).

2 Preliminaries and Definitions

Notation. We adopt the notation used in [PSV06]. We use [n] to denote {1, 2, . . . , n}.
If A is a probabilistic polynomial time (hereafter, ppt) algorithm that runs on input
x, A(x) denotes the random variable according to the distribution of the output of A
on input x. We denote by A(x; r) the output of A on input x and random coins r.
Computational indistinguishability between two distributions A and B is denoted by

A
c≈ B and statistical indistinguishability by A

s≈ B.
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2.1 Semantically Secure Encryption

Definition 1 (Encryption Scheme). A triple (Gen, Enc, Dec) is an encryption scheme,
if Gen and Enc are ppt algorithms and Dec is a deterministic polynomial-time algorithm
which satisfies the following property:

Correctness. There exists a negligible function μ(·) such that for all sufficiently
large k, we have that with probability 1 − μ(k) over (PK, SK) ← Gen(1k): for
all m, Pr[DecSK(EncPK(m)) = m] = 1.

Definition 2 (Semantic Security). Let Π = (Gen, Enc, Dec) be an encryption scheme
and let the random variable INDb(Π, A, k), where b ∈ {0, 1}, A = (A1, A2) are ppt
algorithms and k ∈ N, denote the result of the following probabilistic experiment:

INDb(Π, A, k) :
(PK, SK) ← Gen(1k)
(m0, m1, STATEA) ← A1(PK) s.t. |m0| = |m1|
y ← EncPK(mb)
D ← A2(y, STATEA)
Output D

(Gen, Enc, Dec) is indistinguishable under a chosen-plaintext (CPA) attack, or seman-
tically secure, if for any ppt algorithms A = (A1, A2) the following two ensembles are
computationally indistinguishable:

{
IND0(Π, A, k)

}

k∈N

c≈
{
IND1(Π, A, k)

}

k∈N

It follows from a straight-forward hybrid argument that semantic security implies
indistinguishability of multiple encryptions under independently chosen keys:

Proposition 1. Let Π = (Gen, Enc, Dec) be a semantically secure encryption scheme
and let the random variable mINDb(Π, A, k, �), where b ∈ {0, 1}, A = (A1, A2) are
ppt algorithms and k ∈ N, denote the result of the following probabilistic experiment:

mINDb(Π, A, k, �) :
For i = 1, . . . , �: (PKi, SKi) ← Gen(1k)
(〈m1

0, . . . , m
�
0〉, 〈m1

1, . . . , m
�
1〉, STATEA) ← A1(〈PK1, . . . , PK�〉)

s.t. |m1
0| = |m1

1| = · · · = |m�
0| = |m�

1|
For i = 1, . . . , �: yi ← EncPKi

(mi
b)

D ← A2(y1, . . . , y�, STATEA)
Output D

then for any ppt algorithms A = (A1, A2) and for any polynomial p(k) the following
two ensembles are computationally indistinguishable:

{
mIND0(Π, A, k, p(k))

}

k∈N

c≈
{
mIND1(Π, A, k, p(k))

}

k∈N
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2.2 Non-malleable Encryption

Definition 3 (Non-malleable Encryption [PSV06]). Let Π = (Gen, Enc, Dec) be an
encryption scheme and let the random variable NMEb(Π, A, k, �) where b ∈ {0, 1},
A = (A1, A2) are ppt algorithms and k, � ∈ N denote the result of the following
probabilistic experiment:

NMEb(Π, A, k, �) :
(PK, SK) ← Gen(1k)
(m0, m1, STATEA) ← A1(PK) s.t. |m0| = |m1|
y ← EncPK(mb)
(ψ1, . . . , ψ�) ← A2(y, STATEA)

Output (d1, . . . , d�) where di =

{
⊥ if ψi = y

DecSK(ψi) otherwise

(Gen, Enc, Dec) is non-malleable under a chosen plaintext (CPA) attack if for any ppt
algorithms A = (A1, A2) and for any polynomial p(k), the following two ensembles
are computationally indistinguishable:

{
NME0(Π, A, k, p(k))

}

k∈N

c≈
{
NME1(Π, A, k, p(k))

}

k∈N

It was shown in [PSV06] that an encryption that is non-malleable (under Definition 3)
remains non-malleable even if the adversary A2 receives several encryptions under
many different public keys (the formal experiment is the analogue of mIND for non-
malleability).

2.3 (Strong) One-Time Signature Schemes

Informally, a (strong) one-time signature scheme (GenSig, Sign, VerSig) is an existen-
tially unforgeable signature scheme, with the restriction that the signer signs at most one
message with any key. This means that an efficient adversary, upon seeing a signature
on a message m of his choice, cannot generate a valid signature on a different message,
or a different valid signature on the same message m. Such schemes can be constructed
in a black-box way from one-way functions [R90, L79], and thus from any semantically
secure encryption scheme (Gen, Enc, Dec) using black-box access only to Gen.

3 Construction

Given an encryption scheme E = (Gen, Enc, Dec), we construct a new encryption
scheme Π = (NMGenGen, NMEncGen,Enc, NMDecGen,Dec), summarized in Figure 2,
and described as follows.

Polynomial encoding. We identify {0, 1}n with the field GF(2n). To encode a message
m ∈ {0, 1}n, we pick a random degree k polynomial p over GF(2n) such that p(0) =
m and construct a k × 10k matrix such that the i’th column of the matrix comprise
entirely of the value si = p(i) (where 0, 1, . . . , 10k are the lexicographically first
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10k + 1 elements in GF(2n) according to some canonical encoding). Note that
(s1, . . . , s10k) is both a (k + 1)-out-of-10k secret-sharing of m using Shamir’s secret-
sharing scheme and a codeword of the Reed-Solomon code W , where

W = { (p(1), . . . , p(10k) | p is a degree k polynomial }.

Note that W is a code over the alphabet {0, 1}n with minimum relative distance 0.9,
which means we may efficiently correct up to 0.45 fraction errors using the Berlekamp-
Welch algorithm. [tm: add reference]

Encryption. The public key for Π comprises 20k2 public keys E indexed by a triplet
(i, j, b) ∈ [k] × [10k] × {0, 1}; there are two keys corresponding to each entry of a
k×10k matrix. To encrypt a message m, we (a) compute (s1, . . . , s10k

) as in the above-
mentioned polynomial encoding, (b) generate (SKSIG, VKSIG) for a one-time signature,
(c) compute a k × 10k matrix c = (ci,j) of ciphertexts where ci,j = EncPK

vi
i,j

(sj), and
(d) sign c using SKSIG.

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

EncPK
v1
1,1

(s1) EncPK
v1
1,2

(s2) · · · EncPK
v1
1,10k

(s10k)

EncPK
v2
2,1

(s1) EncPK
v2
2,2

(s2) · · · EncPK
v2
2,10k

(s10k)
...

...
. . .

...

EncPK
vk
k,1

(s1) EncPK
vk
k,2

(s2) · · · EncPK
vk
k,10k

(s10k)

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

Consistency Checks. A valid ciphertext in Π satisfies two properties: (1) the first row
is an encryption of a codeword in W and (2) every column comprises k encryptions
of the same plaintext. We want to design consistency checks that reject ciphertexts
that are “far” from being valid ciphertexts under Π. For simplicity, we will describe the
consistency checks as applied to the underlying matrix of plaintexts. The checks depend
on a random subset S of k columns chosen during key generation.

COLUMN CHECK (column-check): We check that each of the k columns in
S comprises entirely of the same value.

CODEWORD CHECK (codeword-check): We find a codeword w that agrees
with the first row of the matrix in at least 9k positions; the check fails if no
such w exists. Then we check that the first row of the matrix agrees with
w at the k positions indexed by S.

The codeword check ensures that with high probability, the first row of the matrix agrees
with w in at least 10k − o(k) positions. We explain its significance after describing the
alternative decryption algorithm in the analysis.

Decryption. To decrypt, we (a) verify the signature and run both consistency checks,
and (b) if all three checks accept, decode the codeword w and output the result, other-
wise output ⊥. Note that to decrypt we only need the 20k secret keys corresponding to
the first row of the matrix and 2k secret keys corresponding to each of the k columns
in S.
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NMGen(1k):
1. For i ∈ [k], j ∈ [10k], b ∈ {0, 1}, run Gen(1k) to generate key-pairs

(PKb
i,j , SKb

i,j).
2. Pick a random subset S ⊂ [10k] of size k.

Set PK =
{
(PK0

i,j , PK1
i,j) | i ∈ [k], j ∈ [10k]

}
and SK =

{
S, (SK0

i,j , SK1
i,j) | i ∈

[k], j ∈ [10k]
}

.

NMEncPK(m):
1. Pick random α1, . . . , αk ∈ GF(2n) and set sj = p(j), j ∈ [10k] where

p(x) = m0 + α1x + . . . + αkxk.
2. Run GenSig(1k) to generate (SKSIG, VKSIG). Let (v1, . . . , vk) be the binary

representation of VKSIG.
3. Compute the ciphertext ci,j ← EncPK

vi
i,j

(sj), for i ∈ [k], j ∈ [10k].
4. Compute the signature σ ← SignSKSIG(c) where c = (ci,j).

Output the tuple [c, VKSIG, σ].

NMDecSK([c, VKSIG, σ]):
1. (sig-check) Verify the signature with VerSigVKSIG [c, σ].
2. Let c = (ci,j) and VKSIG = (v1, . . . , vk). Compute sj = DecSK

v1
1,j

(c1,j),
j = 1, . . . , 10k and the codeword w = (w1, . . . , w10k) ∈ W that agrees with
(s1, . . . , s10k) in at least 9k positions. If no such codeword exists, output ⊥.

3. (column-check) For all j ∈ S, check that DecSK
v1
1,j

(c1,j) =
DecSK

v2
2,j

(c2,j) = · · · = DecSK
vk
k,j

(ck,j).
4. (codeword-check) For all j ∈ S, check that sj = wj .

If all three checks accept, output the message m corresponding to the codeword
w; else, output ⊥.

Fig. 2. THE NON-MALLEABLE ENCRYPTION SCHEME Π

Note that the decryption algorithm may be stream-lined, for instance, by running the
codeword check only if the column check succeeds. We choose to present the algorithm
as is in order to keep the analysis simple; in particular, we will run both consistency
checks independent of the outcome of the other.

4 Analysis

Having presented our construction, we now formally state and prove our main result:

Theorem 1. (Main Theorem, restated).
Assume there exists an encryption scheme E = (Gen, Enc, Dec) that is seman-
tically secure under a CPA attack. Then there exists an encryption scheme Π =
(NMGenGen, NMEncGen,Enc, NMDecGen,Dec) that is non-malleable under a CPA attack.
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We establish the theorem (as in [DDN00, PSV06], etc) via a series of hybrid
arguments and deduce indistinguishability of the intermediate hybrid experiments
from the semantic security of the underlying scheme E under some set of public
keys Γ . To do so, we will need to implement an alternative decryption algorithm
NMDec∗ that is used in the intermediate experiments to simulate the actual decryption
algorithm NMDec in the non-malleability experiment. We need NMDec∗ to achieve
two conflicting requirements:

– NMDec∗ and NMDec must agree on essentially all inputs, including possibly
malformed ciphertexts;

– We can implement NMDec∗ without having to know the secret keys corresponding
to the public keys in Γ .

Of course, designing NMDec∗ is difficult precisely because NMDec uses the secret keys
corresponding to the public keys in Γ .

Here is a high-level (but extremely inaccurate) description of how NMDec∗ works:
Γ is the set of public keys corresponding to the first row of the k × 10k matrix. To
implement NMDec∗, we will decrypt the i’th row of the matrix of ciphertexts, for some
i > 1, which the column check (if successful) guarantees to agree with the first row in
most positions; error correction takes care of the tiny fraction of disagreements.

4.1 Alternative Decryption Algorithm NMDec∗

Let VKSIG∗ = (v∗1 , . . . , v∗k) denote the verification key in the challenge ciphertext given
to the adversary in the non-malleability experiment, and let VKSIG = (v1, . . . , vk)
denote the verification key in (one of) the ciphertext(s) generated by the adversary.
First, we modify the signature check to also output ⊥ if there is a forgery, namely
VKSIG = VKSIG∗. Next, we modify the consistency checks (again, as applied to the
underlying matrix of plaintexts) as follows:

COLUMN CHECK (column-check∗): This is exactly as before, we check that
the each of the k columns in S comprises entirely of the same value.

CODEWORD CHECK (codeword-check∗): Let i be the smallest value such
that vi 	= v∗i (which exists because VKSIG 	= VKSIG∗). We find a codeword
w that agrees with the i’th row of the matrix in at least 8k positions (note
agreement threshold is smaller than before); the check fails if so such w
exists. Then we check that the first row of the matrix agrees with w at the
k positions indexed by S.

To decrypt, run the modified signature and consistency checks, and if all three checks
accept, decode the codeword w and output the result, otherwise output ⊥. To implement
the modified consistency checks and decryption algorithm, we only need the 10k secret
keys indexed by VKSIG∗ for each row of the matrix, and as before, the 2k secret keys
corresponding to each of the k columns in S.



Black-Box Construction of a Non-malleable Encryption 439

Remark on the Codeword Check. At first, the codeword check may seem superfluous.
Suppose we omit the codeword check, and as before, define w to be a codeword that
agrees with the first row in 9k positions and with the i’th row in 8k positions in the re-
spective decryption algorithms; the gap is necessary to take into account inconsistencies
not detected by the column check. Now, consider a malformed ciphertext ψ for Π where
in the underlying matrix of plaintexts, each row is the same corrupted codeword that
agrees with a valid codeword in exactly 8.5k positions. Without the codeword checks,
ψ will be an invalid ciphertext according to NMDec and a valid ciphertext according
to NMDec∗ and can be used to distinguish the intermediate hybrid distributions in the
analysis; with the codeword checks, ψ is an invalid ciphertext according to both. It
is also easy to construct a problematic malformed ciphertext for the case where both
agreement thresholds are set to the same value (say 9k).

4.2 A Promise Problem

Recall the guarantees we would like from NMDec and NMDec∗:

– On input a ciphertext that is an encryption of a message m under Π, both NMDec
and NMDec∗ will output m with probability 1.

– On input a ciphertext that is “close” to an encryption of a message m under Π,
both NMDec and NMDec∗ will output m with the same probability (the exact
probability is immaterial) and ⊥ otherwise.

– On input a ciphertext that is “far” from any encryption, then both NMDec and
NMDec∗ output ⊥ with high probability.

To quantify and establish these guarantees, we consider the following promise problem
(ΠY , ΠN ) that again refers to the underlying matrix of plaintexts. An instance is a
matrix of k by 10k values in {0, 1}n ∪ ⊥.

ΠY (YES instances) — for some w ∈ W , every row equals w.

ΠN (NO instances) — either there exist two rows that are 0.1-far (i.e. disagree in at
least k positions), or the first row is 0.1-far from every codeword in W (i.e. disagree
with every codeword in at least k positions).

Valid encryptions correspond to the YES instances, while NO instances will correspond
to “far” ciphertexts. To analyze the success probability of an adversary, we examine
each ciphertext ψ it outputs with some underlying matrix M of plaintexts (which may
be a YES or a NO instance or neither) and show that both NMDec and NMDec∗ agree
on ψ with high probability. To facilitate the analysis, we consider two cases:

– If M ∈ ΠN , then it fails the column/codeword checks in both decryption
algorithms with high probability, in which case both decryption algorithms output
⊥. Specifically, if there are two rows that are 0.1-far, then column check rejects
M with probability 1 − 0.9k. On the other hand, if the first row is 0.1-far from
every codeword, then the codeword check in NMDec rejects M with probability
1 and that in NMDec∗ rejects M with probability at least 1 − 0.9k; that is, with
probability 1 − 0.9k, both codeword checks in NMDec and NMDec∗ rejects M .
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– If M /∈ ΠN , then both decryption algorithms always output the same answer for all
choices of the set S, provided there is no forgery. Fix M /∈ ΠN and a set S. The first
row is 0.9-close to codeword w ∈ W and we know in addition that every other row
is 0.9-close to the first row and thus 0.8-close to w. Therefore, we will recover the
same codeword w and message m whether we decode the first row within distance
0.1, or any other row within distance 0.2. This means that the codeword checks in
both decryption algorithms compare the first row with the same codeword w. As
such, both decryption algorithms output ⊥ with exactly the same probability, and
whenever they do not output ⊥, they output the same message m.

4.3 Proof of Main Theorem

In the hybrid argument, we consider the following variants of NMEb as applied to Π,
where VKSIG∗ denotes the verification key in the ciphertext y = NMEncPK(mb):

Experiment NME(1)
b — NME(1)

b proceeds exactly like NMEb, except we replace
sig-check in NMDec with sig-check∗:

(sig-check∗) Verify the signature with VerSigVKSIG [c, σ]. Output ⊥ if the
signature fails to verify or if VKSIG = VKSIG∗.

Experiment NME(2)
b — NME(2)

b proceeds exactly like NMEb except we replace
NMDec with NMDec∗:

NMDec∗SK([c, VKSIG, σ]):
1. (sig-check∗) Verify the signature with VerSigVKSIG [c, σ]. Output ⊥ if the

signature fails to verify or if VKSIG = VKSIG∗.
2. Let c = (ci,j) and VKSIG = (v1, . . . , vk). Let i be the smallest value

such that vi 	= v∗i . Compute sj = DecSK
vi
i,j

(ci,j), j = 1, . . . , 10k and

w = (w1, . . . , w10k) ∈ W that agrees with (s1, . . . , s10k) in at least 8k
positions. If no such codeword exists, output ⊥.

3. (column-check∗) For all j ∈ S, check that DecSK
v1
1,j

(c1,j) = DecSK
v2
2,j

(c2,j)
= · · · = DecSK

vk
k,j

(ck,j).
4. (codeword-check∗) For all j ∈ S, check that DecSK

v1
1,j

(c1,j) = wj .
If all three checks accept, output the message m corresponding to the codeword
w; else, output ⊥.

Claim. For b ∈ {0, 1}, we have
{
NMEb(Π, A, k, p(k))

}
c≈

{
NME(1)

b (Π, A, k, p(k))
}

Proof. This follows readily from the security of the signature scheme. ��

Claim. For b ∈ {0, 1}, we have
{
NME(1)

b (Π, A, k, p(k))
}

s≈
{
NME(2)

b (Π, A, k, p(k))
}
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Proof. We will show that both distributions are statistically close for all possible coin
tosses in both experiments (specifically, those of NMGen, A and NMEnc) except for
the choice of S in NMGen. Once we fix all the coin tosses apart from the choice of
S, the output (ψ1, . . . , ψp(k)) of A2 are completely determined and identical in both
experiments. We claim that with probability 1 − 2p(k) · 0.9k = 1 − neg(k) over the
choice of S, the decryptions of (ψ1, . . . , ψp(k)) agree in both experiments. This follows
from the analysis of the promise problem in Section 4.2. ��

Claim. For every ppt machine A, there exists a ppt machine B such that for b ∈ {0, 1},
{
NME(2)

b (Π, A, k, p(k))
}

≡
{
mINDb(E, B, k, 9k2)

}

Proof. The machine B is constructed as follows: B participates in the experiment
mINDb (the “outside”) while internally simulating A = (A1, A2) in the experiment

NME(2)
b .

– (pre-processing) Pick a random subset S = {u1, . . . , uj} of [10k] and run
GenSig(1k) to generate (SKSIG∗, VKSIG∗) and set (v∗1 , . . . , v∗k) = VKSIG∗. Let
φ be a bijection identifying {(i, j) | i ∈ [k], j ∈ [10k] \ S} with [9k2].

– (key generation) B receives 〈PK1, . . . , PK9k2 〉 from the outside and simulates
NMGen as follows: for all i ∈ [k], j ∈ [10k], β ∈ {0, 1},

(PK
β
i,j , SK

β
i,j) =

{
(PKφ(i,j), ⊥) if β = v∗i and j /∈ S

Gen(1k) otherwise

– (message selection) Let (m0, m1) be the pair of messages A1 returns. B then
chooses k random values (γu1 , . . . , γuk

) ∈ {0, 1}n and computes two degree
k polynomials p0, p1 where pβ interpolates the k + 1 points (0, mβ), (u1, γu1),
. . . , (uk, γuk

) for β ∈ {0, 1}. B sets m
φ(i,j)
β = pβ(j), for i ∈ [k], j ∈ [10k] \ S

and forwards (〈m1
0, . . . , m

9k2

0 〉, 〈m1
1, . . . , m

9k2

1 〉) to the outside.

– (ciphertext generation) B receives 〈y1, . . . , y9k2〉 from the outside (according
to the distribution EncPK1(m

1
b), . . . , EncPK9k2 (m9k2

b )) and generates a ciphertext
[c, VKSIG∗, σ] as follows:

ci,j =

⎧
⎨

⎩

yφ(i,j) if j /∈ S

Enc
PK

v∗
i

i,j

(γj) otherwise

B then computes the signature σ ← SignSKSIG∗(c) and forwards [c, VKSIG∗, σ] to
A2. It is straight-forward to verify that [c, VKSIG∗, σ] is indeed a random encryption
of mb under Π.

– (decryption) Upon receiving a sequence of ciphertexts (ψ1, . . . , ψp(k)) from A2,

B decrypts these ciphertexts using NMDec∗ as in NME(2)
b . Note that to simulate

NMDec∗, it suffices for B to possess the secret keys {SK
β
i,j | β = 1−v∗i or j ∈ S},

which B generated by itself. ��
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Combining the three claims, we conclude that for every ppt adversary A, there is a ppt
adversary B such that for b ∈ {0, 1},

{
NMEb(Π, A, k, p(k))

}
c≈

{
NME(1)

b (Π, A, k, p(k))
}

s≈
{

NME(2)
b (Π, A, k, p(k))

}
≡

{
mINDb(E, B, k, 9k2)

}

By Prop 1, mIND0(E, B, k, 9k2)
c≈ mIND1(E, B, k, 9k2), which concludes the proof

of Theorem 1.

5 Achieving Bounded-CCA2 Non-malleability

We sketch how our scheme may be modified to achieve non-malleability under a
bounded-CCA2 attack. Here, we allow the adversary to query Dec at most q times
in the non-malleability experiment (but it must not query Dec on y). The modification
is the straight-forward analogue of the [CHH+07] modification of the [PSV06] scheme:
we increase the number of columns in the matrix from 10k to 80(k + q), and the degree
of the polynomial p and the size of S from k to 8(k + q), and propagate the changes
accordingly. The analysis is basically as before, except for the following claim (where
NME-q-CCA(1)

b , NME-q-CCA(2)
b are the respective analogues of NME(1)

b , NME(1)
b ):

Claim. For b ∈ {0, 1}, we have
{

NME-q-CCA(1)
b (Π, A, k, p(k))

}
s≈

{
NME-q-CCA(2)

b (Π, A, k, p(k))
}

Proof (sketch). As before, we will show that both distributions are statistically close
for all possible coin tosses in both experiments (specifically, those of NMGen, A and
NMEnc) except for the choice of S in NMGen. However, we cannot immediately
deduce that the output of A2 are completely determined and identical in both exper-
iments, since they depend on the adaptively chosen queries to NMDec, and the answers
depend on S. Instead, we will consider all 2q possible computation paths of A which
are determined based on the q query/answer pairs from NMDec. For each query, we
consider the underlying matrix of plaintexts M :

– If M ∈ ΠN , then we assume NMDec returns ⊥.
– If M /∈ ΠN , then we consider two branches depending on the two possible

outcomes of the consistency checks.

We claim that with probability 1−2q ·p(k) ·0.98(k+q) > 1−neg(k) over the choice of
S, the decryptions of (ψ1, . . . , ψp(k)) agree in both experiments in all 2q computation
paths. ��

Remark on achieving (full) CCA2 security. It should be clear from the preceding
analysis that the barrier to obtaining full CCA2 security lies in handling queries outside
ΠN . Specifically, with even just a (full) CCA1 attack, an adversary could query NMDec
on a series of adaptively chosen ciphertexts corresponding to matrices outside ΠN to
learn the set S upon which it could readily break the security of our construction.



Black-Box Construction of a Non-malleable Encryption 443

Acknowledgments. This work was initiated while the third and fourth authors were
visiting IPAM. We would like to thank Vinod Vaikuntanathan for sharing his insights
on non-malleability over the last two summers.

References

[BFM88] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its
applications. In: STOC, pp. 103–112 (1988)

[BGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC, pp. 1–10 (1988)

[BHSV98] Bellare, M., Halevi, S., Sahai, A., Vadhan, S.P.: Many-to-one trapdoor functions
and their relation to public-key cryptosystems. In: Goldwasser, S. (ed.) CRYPTO
1988. LNCS, vol. 403, pp. 283–298. Springer, Heidelberg (1990)

[CHH+07] Cramer, R., Hanaoka, G., Hofheinz, D., Imai, H., Kiltz, E., Pass, R., Shelat, A.,
Vaikuntanathan, V.: Bounded CCA2-secure encryption. In: Kurosawa, K. (ed.)
ASIACRYPT 2007. LNCS, vol. 4833, Springer, Heidelberg (2007)

[CHK04] Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

[CS98] Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

[CS04] Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 45–64. Springer, Heidelberg (2004)

[DDN00] Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J.
Comput. 30(2), 391–437 (2000)

[ES02] Elkind, E., Sahai, A.: A unified methodology for constructing public-key
encryption schemes secure against adaptive chosen-ciphertext attack. Cryptology
ePrint Archive, Report, /024, 2002. (2002), http://eprint.iacr.org/

[GM84] Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

[GMM07] Gertner, Y., Malkin, T., Myers, S.: Towards a separation of semantic and CCA
security for public key encryption. In: TCC, pp. 434–455 (2007)

[GMR01] Gertner, Y., Malkin, T., Reingold, O.: On the impossibility of basing trapdoor
functions on trapdoor predicates. In: FOCS, pp. 126–135 (2001)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: STOC, pp. 218–229
(1987)

[H08] Haitner, I.: Semi-Honest to Malicious Oblivious Transfer - The Black-Box Way.
In: These proceedings (2008)

[IKLP06] Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for
secure computation. In: STOC, pp. 99–108 (2006)

[IR89] Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way
permutations. In: STOC, pp. 44–61 (1989)

[L79] Lamport, L.: Constructing digital signatures from a one-way function. Technical
Report SRI-CSL-98, SRI International Computer Science Laboratory (1979)

[L06] Lindell, Y.: A simpler construction of CCA2-secure public-key encryption under
general assumptions. J. Cryptology 19(3), 359–377 (2006)

http://eprint.iacr.org/


444 S.G. Choi et al.

[LP07] Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)

[NY90] Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: STOC, pp. 427–437 (1990)

[PSV06] Pass, R., Shelat, A., Vaikuntanathan, V.: Construction of a non-malleable
encryption scheme from any semantically secure one. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 271–289. Springer, Heidelberg (2006)

[PW07] Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. Cryptol-
ogy ePrint Archive, Report 2007/279 (2007), http://eprint.iacr.org/

[R90] Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: STOC, pp. 387–394 (1990)

[RS91] Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS,
vol. 576, pp. 433–444. Springer, Heidelberg (1992)

[RTV04] Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between
cryptographic primitives. In: TCC, pp. 1–20 (2004)

[S99] Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: FOCS, pp. 543–553 (1999)

http://eprint.iacr.org/


A Linear Lower Bound on the

Communication Complexity of Single-Server
Private Information Retrieval�

Iftach Haitner, Jonathan J. Hoch, and Gil Segev

Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot 76100, Israel

{iftach.haitner,yaakov.hoch,gil.segev}@weizmann.ac.il

Abstract. We study the communication complexity of single-server Pri-
vate Information Retrieval (PIR) protocols that are based on fundamen-
tal cryptographic primitives in a black-box manner. In this setting, we
establish a tight lower bound on the number of bits communicated by the
server in any polynomially-preserving construction that relies on trap-
door permutations. More specifically, our main result states that in such
constructions Ω(n) bits must be communicated by the server, where n is
the size of the server’s database, and this improves the Ω(n/ log n) lower
bound due to Haitner, Hoch, Reingold and Segev (FOCS ’07). There-
fore, in the setting under consideration, the naive solution in which the
user downloads the entire database turns out to be optimal up to con-
stant multiplicative factors. We note that the lower bound we establish
holds for the most generic form of trapdoor permutations, including in
particular enhanced trapdoor permutations.

Technically speaking, this paper consists of two main contributions
from which our lower bound is obtained. First, we derive a tight lower
bound on the number of bits communicated by the sender during the
commit stage of any black-box construction of a statistically-hiding bit-
commitment scheme from a family of trapdoor permutations. This lower
bound asymptotically matches the upper bound provided by the scheme
of Naor, Ostrovsky, Venkatesan and Yung (CRYPTO ’92). Second, we
improve the efficiency of the reduction of statistically-hiding commit-
ment schemes to low-communication single-server PIR, due to Beimel,
Ishai, Kushilevitz and Malkin (STOC ’99). In particular, we present a
reduction that essentially preserves the communication complexity of the
underlying single-server PIR protocol.

1 Introduction

A single-server Private Information Retrieval (PIR) scheme is a protocol between
a server and a user. The server holds a database x ∈ {0, 1}n and the user holds an
index i ∈ [n] to an entry of the database. Informally, the user wishes to retrieve
the ith entry of the database, without revealing the index i to the server. The
� Due to space limitations a more complete version is available as [19].
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notion of PIR was introduced by Chor, Goldreich, Kushilevitz and Sudan [4] to
model applications that enable users to query public databases without revealing
any information on the specific data that the users wish to retrieve. Chor et al.
showed that in the information-theoretic setting any single-server PIR protocol
has the server communicating at least n bits. Therefore in this setting the naive
solution in which the user downloads the entire database is optimal.

Kushilevitz and Ostrovsky [26] were the first to construct a non-trivial single-
server PIR protocol relying on computational assumptions. Their result initiated
a sequence of papers showing that there exist single-server PIR protocols with
poly-logarithmic communication complexity based on specific number-theoretic
assumptions (see, for example, [2,3,12,26,28,40], and a recent survey by Ostro-
vsky and Skeith [35]). The only non-trivial construction based on general com-
putational assumptions is due to Kushilevitz and Ostrovsky [27], and is based
on enhanced trapdoor permutations. In their construction, however, the server
is required to communicate n − o(n) bits to the user.

Motivated by this ever-growing line of work, we study the communication
complexity of single-server PIR protocols that are based on fundamental prim-
itives. We establish a linear lower bound on the number of bits communicated
by the server in constructions that rely on enhanced trapdoor permutations in
a black-box manner. Therefore, in the setting under consideration in this paper,
the naive solution in which the user downloads the entire database turns out to
be optimal up to constant multiplicative factors. In the following paragraphs, we
briefly describe the setting in which our lower bound is proved (a more formal
description is provided in Section 2).

Black-box reductions. As previously mentioned, under widely believed spe-
cific number-theoretic assumptions, there are very efficient single-server PIR
protocols. Therefore, if any of these assumptions holds, the existence of trap-
door permutations implies the existence of efficient single-server PIR protocols
in a trivial sense. Faced with similar difficulties, Impagliazzo and Rudich [22]
presented a paradigm for proving impossibility results under a restricted, yet
very natural and important, subclass of reductions called black-box reductions.
Informally, a black-box reduction of a primitive P to a primitive Q is a construc-
tion of P out of Q that ignores the internal structure of the implementation of
Q and uses it as a “subroutine” (i.e., as a black-box). In addition, in the case of
fully-black-box reductions (see, for example, [36]), the proof of security (show-
ing that an adversary that breaks the implementation of P implies an adversary
that breaks the implementation of Q), is black-box as well, that is, the internal
structure of the adversary that breaks the implementation of P is ignored.

The strength of cryptographic reductions. Luby [30] provides a classifi-
cation of the strength of cryptographic reductions into three classes: linearly-
preserving, polynomially-preserving and weakly-preserving. In our setting, this
classification comes into play when comparing the size of the server’s database
and the domain of the trapdoor permutations. Very informally, a reduction of
single-server PIR for an n-bit database to a family of trapdoor permutations is
linearly-preserving or polynomially-preserving if it uses trapdoor permutations
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over Ω(n) bits. Such a reduction is weakly-preserving if it uses trapdoor permu-
tations over Ω(nε) bits for some constant 0 < ε ≤ 1. In linearly-preserving and
polynomially-preserving reductions we are guaranteed that breaking the con-
structed primitive is essentially as hard as breaking the underlying primitive.
However, in weakly-preserving reductions, we are only guaranteed that breaking
the constructed primitive is as hard as breaking the underlying primitive for
polynomially smaller security parameters. We refer the reader to [30] for a more
comprehensive and complete discussion.

1.1 Related Work

Single-server PIR is one of the fundamental primitives in the foundations of cryp-
tography. For example, non-trivial single-server PIR was shown to imply the
existence of Oblivious Transfer protocols [5], and 2-move low-communication
single-server PIR was shown to imply collision-resistant hash functions [23].
Single-server PIR was also shown to be tightly related to several other aspects of
cryptography and complexity theory (see, for example, [6,20,24]). We note that
it is far beyond the scope of this paper to present an exhaustive overview of the
ever-growing line of work on single-server PIR, and we refer the reader to the
recent survey of Ostrovsky and Skeith [35] for a more comprehensive discussion.

In the context of black-box reductions, Impagliazzo and Rudich [22] showed
that there are no black-box reductions of key-agrement protocols to one-way per-
mutations, and substantial additional work in this line followed (see, for example,
[7,13,14,37,38]). Kim, Simon and Tetali [25] initiated a new line of impossibil-
ity results, by providing a lower bound on the efficiency of black-box reductions
(rather than on their feasibility). They proved a lower bound on the efficiency, in
terms of the number of calls to the underlying primitive, of any black-box reduc-
tion of universal one-way hash functions to one-way permutations. This result
was later improved, to match the known upper bound, by Gennaro and Trevisan
[11], which together with Gennaro et al. [8,9] provided tight lower bounds on
the efficiency of several other black-box reductions. Building upon the technique
developed by [11], Horvitz and Katz [21] provided lower bounds on the efficiency
of black-box reductions of statistically-hiding and computationally-binding com-
mitment schemes to one-way permutations. In the above results the measure of
efficiency under consideration is the number of calls to the underlying primitives.

Di Crescenzo, Malkin and Ostrovsky [5] showed that any single-server PIR
protocol in which the server communicates at most n−1 bits (where n is the size
of the server’s database) can be transformed in a fully-black-box manner to an
Oblivious Transfer protocol. Gennaro, Lindell and Malkin [10] (refining Gertner
et al. [13]) ruled out any black-box reduction of Oblivious Transfer to plain (i.e.,
non-enhanced) trapdoor permutations. The combination of these two results
yields that there are no non-trivial black-box constructions of single-server PIR
from non-enhanced trapdoor permutations. We note that although in this paper
we rule out a more restricted class of constructions (that is, the class of fully-
black-box constructions), our result holds for the most generic form of trapdoor
permutations, including in particular enhanced trapdoor permutations.
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Very recently, Haitner et al. [18], improving upon the work of Wee [41], proved
that any polynomially-preserving fully-black-box reduction of a statistically-
hiding bit-commitment scheme to trapdoor permutations has Ω(n/ log n) com-
munication rounds (where n is the security parameter). As a corollary, they
showed that any polynomially-preserving fully-black-box reduction of single-
server PIR to trapdoor permutations has Ω(n/ logn) communication rounds,
where n is the size of the server’s database. In particular, the server is required
to communicate Ω(n/ log n) bits to the user. Haitner et al. also established sim-
ilar lower bounds on the communication complexity of Oblivious Transfer that
guarantees statistical security for one of the parties and for Interactive Hashing.

In a slightly different setting, Ostrovsky and Skeith [34] proved a lower bound
on the communication complexity of single-server PIR protocols with certain
algebraic properties. For a class of PIR protocols, referred to as abelian group al-
gebraic PIR protocols, with user-side communication complexity g(n) and server-
side communication complexity h(n) they proved that g(n)h(n) = Ω(n).

1.2 Our Results

We study the class of black-box constructions of single-server PIR from trapdoor
permutations, and establish a tight lower bound on the number of bits commu-
nicated by the server in such constructions. Our main result is the following:

Main Theorem (Informal). In any polynomially-preserving fully-black-box
construction of a single-server PIR protocol from trapdoor permutations the
server communicates Ω(n) bits, where n is the size of the server’s database.

As mentioned above, the combination of the results of Di Crescenzo et al. [5] and
of Gennaro et al. [10] rules out the more general class of black-box reductions of
single-server PIR with n − 1 bits of communication to trapdoor permutations.
This result, however, does not apply to enhanced trapdoor permutations. We
note that our lower bound holds for the most generic form of trapdoor permu-
tations, and in particular for enhanced trapdoor permutations.1

In addition, we note that our lower bound holds only for constructions which
are polynomially-preserving. The construction of Kushilevitz and Ostrovsky [27],
which is based on enhanced trapdoor permutations in a fully-black-box manner
and in which the server communicates n − o(n) bits, is only weakly-preserving
(i.e., it is significantly easier to break their protocol than to break the security of
the underlying family of trapdoor permutations 2). Thus, the question of whether
a tight linear lower bound can be established for weakly-preserving constructions
as well remains open.
1 Note that enhanced trapdoor permutations are, seemingly, stronger than plain trap-

door permutations. Therefore, although our result is weaker in terms of the class
of reductions and the bound on the communication complexity, it provides the first
evidence that enhanced trapdoor permutations are not sufficient to construct single-
server PIR with sublinear communication (at least from a black-box perspective).

2 Though the security guarantees of the two primitives are still polynomially-related.
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The main technical contributions. This paper consists of two main contri-
butions from which our lower bound is immediately obtained. First, we derive
a tight lower bound on the communication complexity of black-box construc-
tions of statistically-hiding bit-commitment schemes from trapdoor permuta-
tions. Very recently, Haitner et al. [18] proved that any polynomially-preserving
fully-black-box construction of statistically-hiding bit-commitment scheme from
a family of trapdoor permutations has Ω(n/ logn) communication rounds, where
n is the security parameter of the scheme. In particular, this implies a lower
bound on the number of bits communicated by the sender. In this paper we
manage to improve their lower bound and prove the following theorem:

Theorem (Informal) 1.1. In any polynomially-preserving fully-black-box con-
struction of a statistically-hiding bit-commitment scheme from a family of trap-
door permutations the sender communicates Ω(n) bits during the commit stage,
where n is the security parameter of the scheme.

This lower bound asymptotically matches the upper bound given by the statis-
tically-hiding commitment scheme of Naor et al. [31]. In addition, we improve the
efficiency of the reduction of statistically-hiding commitment schemes to single-
server PIR, presented by Beimel et al. [1]. Our reduction essentially uses the
reduction of Beimel et al. instantiated with a better extractor, which enables us
to preserve the communication complexity of the underlying single-server PIR
protocol. As stating this result turns out to involve subtle technical details, here
we only state a very informal statement:

Theorem (Informal) 1.2. There is a linearly-preserving fully-black-box reduc-
tion of statistically-hiding commitment schemes to low-communication single-
server PIR, which essentially preserves the communication complexity of the
underlying single-server PIR protocol.

Paper organization. In Section 2 we briefly present the notations and formal
definitions used in this paper. In Section 3 we prove a tight lower bound on
the number of bits communicated by the sender during the commit stage of
statistically-hiding commitment schemes. In Section 4 we describe an improved
reduction of statistically-hiding commitment schemes to single-server PIR. Fi-
nally, in Section 5 we provide some concluding remarks.

2 Preliminaries

We denote by Πn the set of all permutations over {0, 1}n. For an integer n, we
denote by Un the uniform distribution over the set {0, 1}n. For a finite set X , we
denote by x ← X the experiment of choosing an element of X according to the
uniform distribution. Similarly, for a distribution D over a set X , we denote by
x ← D the experiment of choosing an element of X according to the distribution
D. The min-entropy of D is defined as H∞(D) = − log (maxx PrD [x]). The
statistical distance between two distributions X and Y over Ω is defined as
SD(X, Y ) = 1

2

∑
ω∈Ω |PrX [ω] − PrY [ω]|.
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Definition 2.1. A function E : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-extractor
if for every distribution X over {0, 1}n with H∞(X) ≥ k, it holds that the dis-
tribution E(X, Ud) is ε-close to uniform. Such a function E is a strong (k, ε)-
extractor if the function E′(x, y) = y ◦ E(x, y) is a (k, ε)-extractor (where ◦
denotes concatenation).

In our construction of a statistically-hiding commitment scheme from single-
server PIR we will be using the following explicit construction of strong extrac-
tors, which is obtained as a corollary of [39, Corollary 3.4].

Proposition 2.1. For any k ∈ ω(log(n)), there exists an explicit construction
of a strong (k, 21−k)-extractor EXT : {0, 1}n × {0, 1}3k → {0, 1}k/2.

Trapdoor permutations. We briefly present the notion of trapdoor permu-
tations, and refer the reader to [15] for a more comprehensive discussion. A
collection of trapdoor permutations is represented by a triplet of the form τ =(
G, F, F−1

)
. Informally, G corresponds to a key generation procedure, which is

queried on a string td (intended as the “trapdoor”) and produces a correspond-
ing public key pk. The procedure F is the actual collection of permutations,
which is queried on a public key pk and an input x. Finally, the procedure F−1

is the inverse of F : If G(td) = pk and F (pk, x) = y, then F−1(td, y) = x. In this
paper, since we are concerned with providing a lower bound, we do not consider
the most general definition of a collection of trapdoor permutations. Instead, we
denote by Tn the set of all triplets τn =

(
Gn, Fn, F−1

n

)
of the following form:

1. Gn ∈ Πn.
2. Fn : {0, 1}n × {0, 1}n → {0, 1}n is a function such that Fn(pk, ·) ∈ Πn for

every pk ∈ {0, 1}n.
3. F−1

n : {0, 1}n × {0, 1}n → {0, 1}n is a function such that F−1
n (td, y) returns

the unique x ∈ {0, 1}n for which Fn(Gn(td), x) = y.

Our lower bound proof is based on analyzing random instances of such col-
lections. A uniformly distributed τn ∈ Tn can be chosen as follows: Gn is chosen
uniformly at random from Πn, and for each pk ∈ {0, 1}n a permutation Fn(pk, ·)
is chosen uniformly and independently at random from Πn.

Definition 2.2. A family τ =
{
τn =

(
Gn, Fn, F−1

n

)}∞
n=1 of trapdoor permuta-

tions is s(n)-hard if for every probabilistic Turing-machine A that runs in time
s(n), and for all sufficiently large n,

Pr
[
Aτ (1n, Gn(td), y) = F−1

n (td, y)
]

≤ 1
s(n)

,

where the probability is taken uniformly over all the possible choices of td ∈
{0, 1}n and y ∈ {0, 1}n, and over all the possible outcomes of the internal coin
tosses of A.

Definition 2.2 refers to the difficulty of inverting a random permutation
F (pk, ·) on a uniformly distributed image y, when given only pk = G(td) and y.
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Some applications, however, require enhanced hardness conditions. For example,
it may be required (cf. [16, Appendix C]) that it is hard to invert F (pk, ·) on y
even given the random coins used in the generation of y. Note that our formu-
lation captures such hardness condition as well and therefore the impossibility
results proved in this paper hold also for enhanced trapdoor permutations.3

Single-server Private Information Retrieval. A single-server Private Infor-
mation Retrieval (PIR) scheme is a protocol between a server and a user. The
server holds a database x ∈ {0, 1}n and the user holds an index i ∈ [n] to an
entry of the database. Very informally, the user wishes to retrieve the ith entry
of the database, without revealing the index i to the server. More formally, a
single-server PIR scheme is defined via a pair of probabilistic polynomial-time
Turing-machines (S, U) such that:

– S receives as input a string x ∈ {0, 1}n. Following its interaction it does not
have any output.

– U receives as input an index i ∈ [n]. Following its interaction it outputs a
value b ∈ {0, 1, ⊥}.

Denote by b ← 〈S(x), U(i)〉 the experiment in which S and U interact (using
the given inputs and uniformly chosen random coins), and then U outputs the
value b. It is required that there exists a negligible function ν(n), such that for
all sufficiently large n, and for every string x = x1 ◦ · · · ◦ xn ∈ {0, 1}n, it holds
that xi ← 〈S(x), U(i)〉 with probability at least 1 − ν(n) over the random coins
of both S and R.

In order to define the security properties of such schemes, we first introduce
the following notation. Given a single-server PIR scheme (S, U) and a Turing-
machine S∗ (a malicious server), we denote by view〈S∗,U(i)〉(n) the distribution
on the view of S∗ when interacting with U(i) where i ∈ [n]. This view consists
of its random coins and of the sequence of messages it receives from U , where
the distribution is taken over the random coins of both S∗ and U .

Definition 2.3. A single-server PIR scheme (S, U) is secure if for every proba-
bilistic polynomial-time Turing-machines S∗ and D, and for every two sequences
of indices {in}∞i=1 and {jn}∞i=1 where in, jn ∈ [n] for every n, it holds that

∣
∣Pr

[
v ← view〈S∗,U(in)〉(n) : D(v) = 1

]

−Pr
[
v ← view〈S∗,U(jn)〉(n) : D(v) = 1

]∣∣ ≤ ν(n) ,

for some negligible function ν(n) and for all sufficiently large n.

Commitment schemes. A commitment scheme is a two-stage interactive pro-
tocol between a sender and a receiver. Informally, after the first stage of the
protocol, which is referred to as the commit stage, the sender is bound to at

3 A different enhancement, used by [17], requires the permutations’ domain to be
polynomially dense in {0, 1}n. Clearly, our impossibility result holds for such an
enhancement as well.
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most one value, not yet revealed to the receiver. In the second stage, which is
referred to as the reveal stage, the sender reveals its committed value to the
receiver. More formally, a commitment scheme is defined via a triplet of proba-
bilistic polynomial-time Turing-machines (S, R, V) such that:

– S receives as input the security parameter 1n and a string x ∈ {0, 1}k.
Following its interaction, it outputs some information decom (the decom-
mitment).

– R receives as input the security parameter 1n. Following its interaction, it
outputs a state information com (the commitment).

– V (acting as the receiver in the reveal stage4) receives as input the security
parameter 1n, a commitment com and a decommitment decom. It outputs
either a string x′ ∈ {0, 1}k or ⊥.

Denote by (decom|com) ← 〈S(1n, x), R(1n)〉 the experiment in which S and R
interact (using the given inputs and uniformly chosen random coins), and then S
outputs decom while R outputs com. It is required that for all n, every string x ∈
{0, 1}k, and every pair (decom|com) that may be output by 〈S(1n, x), R(1n)〉, it
holds that V(com, decom) = x.5 In the remainder of the paper, it will often be
convenient for us to identify V with R, and refer to a commitment scheme as a
pair (S, R).

The security of a commitment scheme can be defined in two complemen-
tary ways, protecting against either an all-powerful sender or an all-powerful
receiver. In this paper, we deal with commitment schemes of the latter type,
which are referred to as statistically-hiding commitment schemes. In order to
define the security properties of such schemes, we first introduce the following
notation. Given a commitment scheme (S, R) and a Turing-machine R∗, we de-
note by view〈S(x),R∗〉(n) the distribution on the view of R∗ when interacting
with S(1n, x). This view consists of R∗’s random coins and of the sequence of
messages it receives from S. The distribution is taken over the random coins of
both S and R∗. Note that whenever no computational restrictions are assumed
on R∗, without loss of generality we can assume that R∗ is deterministic.

Definition 2.4. A commitment scheme (S, R) is ρ(n)-hiding if for every deter-
ministic Turing-machine R∗, and for every two sequences of strings {xn}∞i=1 and
{x′n}∞i=1 where xn, x′n ∈ {0, 1}k(n) for every n the ensembles {view〈S(xn),R∗〉(n)}
and {view〈S(x′

n),R∗〉(n)} have statistical difference at most ρ(n) for all sufficiently
large n. Such a scheme is statistically-hiding if it is ρ(n)-hiding for some negli-
gible function ρ(n).

Our lower bound for commitment schemes holds in fact under a weaker hiding
requirement. We derive our results even for commitment schemes in which the
4 Note that there is no loss of generality in assuming that the reveal stage is non-

interactive. This is since any such interactive stage can be replaced with a non-
interactive one as follows: The sender sends its internal state to the receiver, who
then simulates the sender in the interactive stage.

5 Although we assume perfect completeness, it is not essential for our results.
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sender is statistically protected only against an honest receiver. Such schemes
are referred to as statistically-hiding honest-receiver commitment schemes. For-
mally, it is only required that the statistical difference between the ensembles
{view〈S(xn),R〉(n)} and {view〈S(x′

n),R〉(n)} is some negligible function of n.

Definition 2.5. A commitment scheme (S, R, V) is μ(n)-binding if for every
probabilistic polynomial-time Turing-machine S∗ it holds that the probability that
((decom, decom′)|com) ← 〈S∗(1n), R(1n)〉 (where the probability is over the ran-
dom coins of both S∗ and R) such that V(com, decom) �= V(com, decom′) and
V(com, decom), V(com, decom′) �= ⊥ is negligible in n for all sufficiently large n.
Such a scheme is computationally-binding if it is μ(n)-binding for some negli-
gible function μ(n), and is weakly-binding if it is (1 − 1/p(n))-binding for some
polynomial p(n).

Black-box reductions. A reduction of a primitive P to a primitive Q is a
construction of P out of Q. Such a construction consists of showing that if
there exists an implementation C of Q, then there exists an implementation
MC of P . This is equivalent to showing that for every adversary that breaks
MC , there exists an adversary that breaks C. Such a reduction is semi-black-
box if it ignores the internal structure of Q’s implementation, and it is fully-
black-box if the proof of correctness is black-box as well, i.e., the adversary for
breaking Q ignores the internal structure of both Q’s implementation and of the
(alleged) adversary breaking P . Semi-black-box reductions are less restricted and
thus more powerful than fully-black-box reductions. A taxonomy of black-box
reductions was provided by Reingold, Trevisan and Vadhan [36], and the reader
is referred to their paper for a more complete and formal view of these notions.

We now formally define the class of constructions considered in this paper. Our
results in the current paper are concerned with the particular setting of fully-
black-box constructions of single-server PIR and of statistically-hiding commit-
ment schemes from trapdoor permutations. We focus here on specific definitions
for these particular primitives and we refer the reader to [36] for a more general
definition.

When examining efficiency measures of fully-black-box constructions, an es-
sential parameter for such characterizations, as introduced by Haitner et al. [18],
is the security-parameter-expansion of the construction. Consider, for example, a
fully-black-construction of a commitment scheme from a family of trapdoor per-
mutations. One ingredient of such a construction is a machine A that attempts
to break the security of the trapdoor permutation family given oracle access to
any malicious sender S∗ that breaks the security of the commitment scheme.
Then, A receives a security parameter 1n (and possibly some additional inputs)
and invokes S∗ in a black-box manner. The standard definition does not restrict
the range of security parameters that A is allowed to invoke S∗ on. For exam-
ple, A may invoke S∗ on security parameter 1n2

, or even on security parameter
1Θ(s(n)), where s(n) is the running time of A. In this paper, we will use the notion
	(n)-expanding for short, and note that according to Luby’s classification [30],
any polynomially-preserving reduction is O(n)-expanding in our terminology.
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Definition 2.6. A fully-black-box 	(n)-expanding construction of a single-server
PIR scheme from an s(n)-hard family of trapdoor permutations is a triplet of
probabilistic oracle Turing-machines (S, U , A) for which the following hold:

1. Correctness: For every family τ of trapdoor permutations, (Sτ , Uτ ) is a
single-server PIR scheme.

2. Black-box proof of security: For every family of trapdoor permutations
τ =

{
τn =

(
Gn, Fn, F−1

n

)}∞
n=1 and for every probabilistic polynomial-time

Turing-machine S∗, if S∗ with oracle access to τ breaks the security of
(Sτ , Uτ ), then

Pr
[
Aτ,S∗

(1n, Gn(td), y) = F−1
n (td, y)

]
>

1
s(n)

,

for infinitely many values of n, where A runs in time s(n) and invokes S∗
on security parameters which are at most 1�(n). The probability is taken
uniformly over all the possible choices of td ∈ {0, 1}n and y ∈ {0, 1}n, and
over all the possible outcomes of the internal coin tosses of A.

Definition 2.7. A fully-black-box 	(n)-expanding construction of a statistically-
hiding (against an honest-receiver) and weakly-binding commitment scheme from
an s(n)-hard family of trapdoor permutations is a triplet of probabilistic oracle
Turing-machines (S, R, A) for which the following hold:

1. Correctness: For every family τ of trapdoor permutations, (Sτ , Rτ ) is a
statistically-hiding honest-receiver commitment scheme.

2. Black-box proof of binding: For every family of trapdoor permutations
τ =

{
τn =

(
Gn, Fn, F−1

n

)}∞
n=1 and for every probabilistic polynomial-time

Turing-machine S∗, if S∗ with oracle access to τ breaks the binding of
(Sτ , Rτ ), then

Pr
[
Aτ,S∗

(1n, Gn(td), y) = F−1
n (td, y)

]
>

1
s(n)

,

for infinitely many values of n, where A runs in time s(n) and invokes S∗
on security parameters which are at most 1�(n). The probability is taken
uniformly over all the possible choices of td ∈ {0, 1}n and y ∈ {0, 1}n, and
over all the possible outcomes of the internal coin tosses of A.

3 Communication Lower Bound for Statistically-Hiding
Commitment Schemes

In this section we prove a lower bound on the communication complexity of
fully-black-box constructions of statistically-hiding commitment schemes from
trapdoor permutations. We establish a lower bound on the number of bits com-
municated by the sender during the commit stage of any such scheme. Since we
are interested in proving an impossibility result for commitment schemes, it will
be sufficient for us to deal with bit-commitment schemes. We prove the following
theorem:
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Theorem 3.1. In any fully-black-box O(n)-expanding construction of a weakly-
binding statistically-hiding honest-receiver bit-commitment scheme from a family
of trapdoor permutations, the sender communicates Ω(n) bits during the commit
stage.

The proof of Theorem 3.1 follows the approach and technique of Haitner at
el. [18] who constructed a “collision-finding” oracle in order to derive a lower
bound on the round complexity of statistically-hiding commitment schemes.
Given any fully-black-box O(n)-expanding construction (S, R, A) of a weakly-
binding statistically-hiding honest-receiver bit-commitment scheme from a fam-
ily of trapdoor permutations τ , we show that relative to their oracle the
following holds: (1) there exists a malicious sender S∗ that breaks the bind-
ing of the scheme (Sτ , Rτ ), and (2) if the sender communicates o(n) bits during
the commit stage of (Sτ , Rτ ), then the machine A (with oracle access to S∗)
fails to break the security of τ .

3.1 The Oracle

We briefly describe the oracle constructed by Haitner et al. [18] and state its
main property. The oracle is of the form O = (τ, Samτ ), where τ is a family of
trapdoor permutations (i.e., τ = {τn}∞n=1, where τn ∈ Tn for every n), and Samτ

is an oracle that, very informally, receives as input a description of a circuit C
(which may contain τ -gates) and a string z, and outputs a uniformly distributed
preimage of z under the mapping defined by C. As discussed in [18], several
essential restrictions are imposed on the querying of Sam that prevent it from
assisting in inverting τ .
Description of Sam. The oracle Sam receives as input a query of the form
Q = (Cτ

next, C
τ , z), and outputs a pair (w′, z′) where w′ is a uniformly distributed

preimage of z under the mapping defined by the circuit Cτ , and z′ = Cτ
next(w

′).
We impose the following restrictions:

1. z was the result of a previous query with Cτ as the next-query circuit (note
that this imposes a forest-like structure on the queries).

2. The circuit Cτ
next is a refinement of the circuit Cτ , where by a refinement

we mean that Cτ
next(w) = (Cτ (w), C̃τ (w)) for some circuit C̃τ and for every

w. In particular, this implies that Cτ and Cτ
next have the same input length.

Given a query Q, we denote this input length by m(Q), and when the query
Q is clear from the context we will write only m.

3. Each query contains a security parameter 1n, and Sam answers queries only
up to depth depth(n), for some “depth restriction” function depth : N → N

which is a part of the description of Sam. The security parameter is set such
that a query with security parameter 1n is allowed to contain circuits with
queries to permutations on up to n bits. Note that although different queries
may have different security parameters, we ask that in the same “query-
tree”, all queries will have the same security parameter (hence the depth of
the tree is already determined by the root query).
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In order to impose these restrictions, Sam is equipped with a family sign =
{signk}∞k=1 of (random) functions signk : {0, 1}k → {0, 1}2k that will be used
as “signatures” for identifying legal queries as follows: in addition to outputting
(w′, z′), Sam will also output the value sign(1n, Cτ

next, z
′, dep + 1), where dep is

the depth of the query, 1n is the security parameter of the query, and by applying
the “function” sign we actually mean that we apply the function signk for the
correct input length. Each query of the form Q = (1n, Cτ

next, C
τ , z, dep, sig) is

answered by Sam if and only if Cτ
next is a refinement of Cτ , dep ≤ depth(n) and

sig = sign(1n, Cτ , z, dep).
Finally, Sam is provided with a family of (random) permutations F = {fQ},

where for every possible query Q a permutation fQ is chosen uniformly at random
from Πm(Q). Given a query Q = (1n, Cτ

next, C
τ , z, dep, sig), the oracle Sam uses

the permutation fQ ∈ F in order to sample w′ as follows: it outputs w′ = fQ(t)
for the lexicographically smallest t ∈ {0, 1}m such that Cτ (fQ(t)) = z. Note
that whenever the permutation fQ is chosen from Πm uniformly at random,
and independently of all other permutations in F , then w′ is indeed a uniformly
distributed preimage of z. In this paper, whenever we consider the probability
of an event over the choice of the family F , we mean that for each query Q a
permutation fQ is chosen uniformly at random from Πm(Q) and independently
of all other permutations. A complete and formal description of the oracle is
provided in Figure 3.1.

On input Q = (1n , Cτ
next, Cτ , z, dep, sig), Samτ,F ,sign

depth acts as follows:
1. If Cτ = ⊥, then output (w′, z′, sig′) where w′ = fQ(0m), z′ = Cτ

next(w
′), and

sig′ = sign(1n, Cτ
next, z

′, 1).
2. Else, if Cτ

next is a refinement of Cτ , dep ≤ depth(n) and sig = sign(1n, Cτ , z, dep),
then
(a) Find the lexicographically smallest t ∈ {0, 1}m such that Cτ (fQ(t)) = z.
(b) Output (w′, z′, sig′) where w′ = fQ(t), z′ = Cτ

next(w
′), and sig′ =

sign(1n, Cτ
next, z

′, dep + 1).
3. Else, output ⊥.

Fig. 1. The oracle Sam

Definition 3.1. We say that a circuit A queries the oracle Samτ,F ,sign
depth up to

depth d, if for every Sam-query Q = (1n, Cπ
next, C

π, z, dep, sig) that A makes, it
holds that dep ≤ d.

One of the main properties of the oracle Sam, as proved in [18], is the following:
any circuit with oracle access to Sam that tries to invert a random trapdoor per-
mutation, fails with high probability. More specifically, Haitner et al. managed
to relate this success probability to the maximal depth of the Sam-queries made
by the circuit, and to the size of the circuit. They proved the following theorem:
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Theorem 3.2 ([18]). For every circuit A of size s(n) that queries Sam up to
depth d(n) such that s(n)3d(n)+2 < 2n/8, for every depth restriction function
depth and for all sufficiently large n, it holds that

Pr td←{0,1}n,τ,F
y←{0,1}n,sign

[
Aτ,Samτ,F,sign

depth (Gn(td), y) = F−1
n (td, y)

]
≤ 2

s(n)
.

3.2 Breaking Low-Communication Statistically-Hiding
Commitment Schemes

We show that a random instance of the oracle Sam can be used to break the bind-
ing of any statistically-hiding commitment scheme. Specifically, for every bit-
commitment scheme (S, R) which is (1) weakly-biding, (2) statistically-hiding
against an honest-receiver, and (3) has oracle access to a family τ of trapdoor
permutations, we construct a malicious sender S∗ which has oracle access to
Samτ,F ,sign

depth , and breaks the binding of (Sτ , Rτ ) with sufficiently high probability
over the choices of τ , F and sign. Formally, the following theorem is proved:

Theorem 3.3. For any statistically-hiding bit-commitment scheme (S, R, V)
with oracle access to a family of trapdoor permutations in which the sender com-
municates at most c(n) bits during the commit stage, and for any polynomial
p(n), there exists a polynomial-time malicious sender S∗ such that

Prτ,F
sign,rR

⎡

⎣
((decom, decom′)|com) ←

〈
S∗ Samτ,F,sign

depth (1n), Rτ (1n, rR)
〉

:

Vτ (com, decom) = 0, Vτ (com, decom′) = 1

⎤

⎦ > 1 − 1
p(n)

for all sufficiently large n, where depth(n) =
⌈

c(n)
log n

⌉
+ 1.

We note that the above theorem holds even if the commitment scheme is statis-
tically-hiding only against an honest receiver. In what follows we introduce the
notation used in this section. We proceed with a brief presentation of the main
ideas underlying the proof of Theorem 3.3, which is then followed by a formal
description of the malicious sender S∗.
Notations. Let (S, R) be a bit-commitment scheme with oracle access to a
family of trapdoor permutations. We denote by b ∈ {0, 1} and rS , rR ∈ {0, 1}∗
the input bit of the sender and the random coins of the sender and the receiver,
respectively. We denote by c(n) the maximal number of bits communicated from
the sender to the receiver in the commit stage with security parameter 1n. In
addition we denote by d(n) the number of communication rounds in the scheme
with security parameter 1n, and without loss of generality we assume that the
receiver makes the first move. Each communication round consists of a message
sent from the receiver to the sender followed by a message sent from the sender
to the receiver. We denote by qi and ai the messages sent by the receiver and the
sender in the i-th round, respectively, and denote by ad+1 the message sent by the
sender in the reveal stage. Finally, we let āi = (a1, . . . , ai) and q̄i = (q1, . . . , qi).
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Although the sender is a probabilistic polynomial-time Turing-machine, in
order to interact with the oracle Sam we need to identify the sender with a
sequence of polynomial-size circuits S1, . . . , Sd+1 as follows. In the first round,
S sends a1 by computing a1 = S1(b, rS , q1). Similarly, in the following rounds,
S sends ai by computing ai = Si(b, rS , q̄i).

Finally, in order to simplify the notation regarding the input and output
of the oracle Sam, in this section we ignore parts of the input and output of
Sam: we ignore the security parameter and the “signatures” (since our malicious
sender S∗ will only ask legal queries), and consider queries of a simplified form
Q = (Cτ

next, C
τ , z), and answers that consist only of w′ (i.e., an answer consists

only of a uniformly distributed preimage of z under the mapping defined by Cτ ).
In addition, in what follows it will be more intuitive to replace z in the queries
by its preimage w, but this is clearly not essential.

A brief overview. Informally, recall that the oracle Sam described in Section
3.1 acts as follows: Sam is given as input a query Q = (Cnext, C, z), and outputs
a pair (w′, z′) where w′ is a uniformly distributed preimage of z under the map-
ping defined by the circuit C, and z′ = Cnext(w′). In addition, we imposed the
restriction that there was a previous query (C, ·, ·) that was answered by (w, z)
(note that this imposes a forest-like structure on the queries), and we only allow
querying Sam up to depth O(n/ log n).

Given a statistically-hiding bit-commitment scheme in which the sender com-
municates c(n) bits during the commit stage, we assume without loss of general-
ity that the commit stage of the scheme has c(n) communication rounds, where
in each round the sender communicates a single bit to the receiver. The malicious
sender S∗ operates as follows: it chooses a random input w (consisting of random
coins and a random committed bit), and during the first log n rounds it simulates
the honest sender. In these log n rounds, it receives log n messages q1, . . . , qlog n

from the receiver. Then, S∗ constructs the circuit Cq1,...,qlog n
that receives as in-

put the sender’s input w and outputs the log n sender’s messages corresponding
to the receiver’s messages q1, . . . , qlog n. This circuit is used to query Sam for a
random input w1. It may be the case, however, that w1 is not consistent with
the actual messages a1, . . . , alog n that S∗ sent in the first log n rounds. In this
case, S∗ “rewinds” Sam for a polynomial number of times, and since the total
length of the sender’s messages in these log n rounds is only log n bits, then with
sufficiently high probability S∗ will obtain a consistent w1. Now, in the next
log n rounds the malicious sender S∗ simulates the honest sender with input w1,
and at the end of these log n rounds it will query (and rewind) Sam again for
another consistent input wlog n+1, and so on. Finally, after completing the com-
mit stage, S∗ queries Sam to obtain two random inputs wc(n) and w′c(n) which
are consistent with the transcript of the commit stage. Since the commitment
scheme is statistically-hiding, with probability roughly half they can be used to
break the binding of the protocol. A crucial point in this description, is that
S∗ queries Sam only up to depth c(n)/ logn (S∗ used Sam to obtain c(n)/ log n
values w1, wlog n+1, . . . , wc(n)). Therefore, if c(n) = o(n), then an oracle Sam that
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answers queries only up to depth c(n)/ log n cannot be used to invert a random
trapdoor permutation, according to Theorem 3.2.
A formal description of S∗. Given a bit-commitment scheme (S, R) in which
the sender communicates c(n) bits during the commit stage, we assume without
loss of generality (and for simplicity of the presentation) that the scheme has
c(n) communication rounds (i.e., d(n) = c(n)) where in each round during the
commit stage the sender communicates a single bit to the receiver (i.e., each of
a1, . . . , ad(n) is one bit). Furthermore, in order to simplify the description of S∗,
we assume that log n is an integral value (where 1n is the security parameter
given as input to S∗) and that c(n) = M · log n + 1 for some integer M = M(n).
We stress that these assumptions are not at all essential, but avoiding them will
result in a more complicated description. On input 1n, the malicious sender S∗
with oracle access to Samτ,F ,sign

depth interacts with the honest receiver R as follows.

1. The commit stage:
(a) In the first round S∗ receives R’s message q1, and computes the de-

scription of the circuit C1 = S1(·, ·, q1) obtained from the circuit S1 by
fixing q1 as its third input. Then, S∗ queries Samτ,F ,sign

depth with (C1, ⊥, ⊥),
receives an answer w1 = (b1, r1) and sends a1 = S1(b1, r1, q1) to R.

(b) In every round i ∈ {2, . . . , log n}, S∗ simulates the honest sender S
with input w1. That is, S∗ receives R’s message qi and replies with
ai = Si(b1, r1, q̄i).

(c) In round log n + 1, S∗ receives R’s message qlog n+1, and computes
the description of the circuit Clog n+1 = Slog n+1(·, ·, q̄log n+1) obtained
from the circuit Slog n+1 by fixing q̄log n+1 as its third input. Then, S∗
queries Samτ,F ,sign

depth with (Clog n+1, C1, w1) for t = 2n5c(n)p(n) times
and receives t answers. If one of these answers is consistent with the
transcript of the protocol so far, then denote the first such answer by
wlog n+1 = (blog n+1, rlog n+1), and in this case S∗ sends the message
alog n+1 = Slog n+1(blog n+1, rlog n+1, q̄log n+1) to R. Otherwise, S∗ aborts
the execution of the protocol.

(d) In the remainder of the commit stage S∗ acts as follows:
i. For every k and in every round i ∈ {(k − 1) logn + 2, . . . , k log n},

the malicious sender S∗ simulates the honest sender S with input
w(k−1) log n+1.

ii. For every integer k and in every round k log n + 1 the malicious
sender S∗ receives R’s message qk log n+1, and computes the descrip-
tion of the circuit Ck log n+1 = Sk log n+1(·, ·, q̄k log n+1) obtained from
the circuit Sk log n+1 by fixing q̄k log n+1 as its third input. Then, S∗
queries Samτ,F ,sign

depth with (Ck log n+1, C(k−1) log n+1, w(k−1) log n+1) for
t = 2n5c(n)p(n) times and receives t answers. If one of these answers
is consistent with the transcript of the protocol so far, then denote
the first such answer by wk log n+1 = (bk log n+1, rk log n+1), and in this
case S∗ sends ak log n+1 = Sk log n+1(bk log n+1, rk log n+1, q̄k log n+1) to
R. Otherwise, S∗ aborts the execution of the protocol.
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2. The reveal stage:
(a) S∗ queries Samτ,F ,sign

depth with (⊥, Cd(n), wd(n)) for n times, and receives

n pairs
{(

b
(j)
d(n)+1, r

(j)
d(n)+1

)}n

j=1
. If there exist j0, j1 ∈ [n] such that

b
(j0)
d(n)+1 = 0 and b

(j1)
d(n)+1 = 1, then S∗ outputs the two values

decom = Sd(n)+1

(
b
(j0)
d(n)+1, r

(j0)
d(n)+1, q̄d(n)

)

decom′ = Sd(n)+1

(
b
(j1)
d(n)+1, r

(j1)
d(n)+1, q̄d(n)

)
.

Otherwise, S∗ aborts the execution of the protocol.

Two minor technical details were omitted from the description. First, accord-
ing to the description of Sam (Section 3.1), whenever Sam is queried multiple
times with the same input, it returns the exact same answer. Thus, whenever S∗
queries Sam more than once with the same input, S∗ has to make sure that the
queries are all different (for example, by artificially embedding the query number
to one of the circuits in the query). Second, in order for S∗’s queries to be legal, it
should hold that the circuit Ck log n+1 is a refinement of the circuit C(k−1) log n+1
for every integer k (as discussed in Section 3.1). This can be done very easily by
embedding the description of each C(k−1) log n+1 inside each Ck log n+1 (i.e., the
output of Ci is the sequence of bits āi instead of only the bit ai).

The formal proof proceeds by arguing that S∗ successfully completes the com-
mit stage with high probability. Then, given that S∗ has successfully completed
the commit stage, we prove that the transcript of the commit stage is distrib-
uted identically to the transcript of the commit stage in an honest execution
of the protocol. This enables us to use the fact that the commitment scheme
is statistically-hiding, and therefore a random transcript can be revealed both
as a commitment to b = 0 and as a commitment to b = 1, with almost equal
probabilities. Due to space limitations we refer the reader to [19] for a formal
proof, which then immediately implies the correctness of Theorem 3.1.

4 Refining the Relation Between Single-Server PIR and
Commitment Schemes

The relation between single-server PIR and commitment schemes was first ex-
plored by Beimel et al. [1], who showed that any single-server PIR protocol in
which the server communicates at most n/2 bits to the user (where n is the size
of the server’s database), can be used to construct a weakly-binding statistically-
hiding bit-commitment scheme. In particular, this served as the first indication
that the existence of low-communication PIR protocols implies the existence
of one-way functions. In this section, we refine the relation between these two
fundamental primitives by improving their reduction. Informally speaking, our
reduction essentially uses the reduction of Beimel et al. instantiated with a bet-
ter extractor. This enables the following improvements: (1) the communication
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complexity of the PIR protocol is essentially preserved, (2) given a single-server
PIR protocol in which the server communicates n − k bits, it is possible to com-
mit to Ω(k) bits while executing the underlying single-server PIR protocol only
once, and (3) whereas the construction of Beimel et al. was presented for single-
server PIR protocols in which the server communicates at most n/2 bits, our
construction can rely on single-server PIR in which the server communicates up
to n − ω(log n) bits.

In what follows we state our main theorem in the current section, and then
turn to formally describe the construction and to provide intuition for its proof.
Due to space limitations we refer the reader to [19] for the formal proof.

Theorem 4.1. Let d(n) ∈ ω(log n), k(n) ≥ 2d(n), and let P be a single-server
PIR protocol in which the server communicates n−k(n) bits, where n is the size
of the server’s database. Then, there exists a weakly-binding statistically-hiding
commitment scheme COMP for d(n)/6 bits, in which the sender communicates
less than n−k(n)+2d(n) bits during the commit stage. Moreover, the construc-
tion is fully-black-box and linearly-preserving.

The construction. Fix d(n), k(n) and P as in Theorem 4.1. In the construc-
tion we use a strong

(
d(n)/3, 21−d(n)/3

)
-extractor EXT : {0, 1}n × {0, 1}d(n) →

{0, 1}d(n)/6 whose existence is guaranteed by Proposition 2.1. Figure 4 describes
our construction of the commitment scheme COMP = (S, R). The correctness
of COMP follows directly from the correctness of P . In addition, notice that
the total number of bits communicated by the sender in the commit stage is the
total number of bits that the server communicates in P plus the seed length and
the output length of the extractor EXT. Thus, the sender communicates less
than n − k(n) + 2d(n) bits during the commit stage.
Proof intuition. The commit stage consists of the sender and the receiver
choosing random inputs x ∈ {0, 1}n and i ∈ [n], respectively, and executing the
PIR protocol P on these inputs. As a consequence, the receiver obtains a bit xi,
which by the correctness of P is the ith bit of x. Now, notice that since the sender
communicated only n − ω(log n) bits, then the random variable corresponding
to x still has ω(log n) min-entropy from the receiver’s point of view (with high
probability). We take advantage of this fact, and exploit the remaining min-
entropy of x in order to hide the committed string s in a statistical manner (note
that since it is required to reveal the seed of the extractor during the commit
stage, we need a strong extractor). The formal proof of the hiding property is
similar to that of Lu [29] in the bounded storage model, which is in turn based
on ideas that were used for constructing pseudorandom generators for space
bounded computations [33]. We note that the proof of hiding does not rely on
any computational properties of the underlying PIR protocol P , but only on the
assumed bound on the number of bits communicated by the server in P . The
binding property follows from the security of the PIR protocol: in the reveal
stage, the sender must send a value x whose ith bit is consistent with the bit
obtained by the receiver during the commit stage – but this bit is not known to
the sender.
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Protocol COMP = (S, R)

Joint input: security parameter 1n.
Sender’s input: s ∈ {0, 1}d(n)/6.

Commit stage:
1. S chooses a uniformly distributed x ∈ {0, 1}n.
2. R chooses a uniformly distributed index i ∈ [n].
3. S and R execute the single-server PIR protocol P for database of length n, where

S acts as the server with input x and R acts as the user with input i. As a result,
R obtains a bit xi ∈ {0, 1}.

4. S chooses a uniformly distributed seed t ∈ {0, 1}d(n), computes y = EXT(x, t)⊕ s,
and sends (t, y) to R.

Reveal stage:
1. S sends (s, x) to R.
2. If the ith bit of x equals xi and y = EXT(x, t) ⊕ s, then R outputs s. Otherwise,

R outputs ⊥.

Fig. 2. A construction of a commitment scheme from any low-communication single-
server PIR protocol

5 Concluding Remarks

Our result does not rule out weakly-preserving (fully-black-box) constructions of
single-server PIR from trapdoor permutations in which the sender communicates
o(n) bits to the user. We note that although weakly-preserving reductions guar-
antee much weaker security than polynomially-preserving reductions, investigat-
ing lower bounds for such reductions is still a very interesting research topic. Even
more so as the sole construction to date of a single-server PIR protocol from trap-
door permutations uses such a reduction. A possible step towards tightening our
bound is to first provide an improved lower bound on the communication complex-
ity of statistically-hiding commitment schemes that allow the sender to commit to
more thana single bit.Whereas inSection4weproved thatany low-communication
single-serverPIR implies a statistically-hiding commitment scheme that allows the
sender to commit to a relatively long string, our lower bound on the communica-
tion complexity of statistically-hiding commitment schemes in Section 3 serves as
a bottleneck: it does not take into consideration the number of committed bits (the
lower bound is only in terms of the security parameter).

It is quite possible that a much tighter lower bound can be proved for string-
commitment schemes. Such a lower bound may extend the result of the current
paper to the setting of weakly-preserving reductions, and prove the optimality of
the single-server PIR protocol of Kushilevitz and Ostrovsky [27]. We note that the
statistically-hiding commitment scheme of Naor et al. [31] (which is constructed
from one-way permutations in a fully-black-box manner) can be used to commit to
O(log n) bits while the sender communicates O(n) bits (see, for example, [32]).
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Randomness Extraction Via δ-Biased Masking

in the Presence of a Quantum Attacker
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Abstract. Randomness extraction is of fundamental importance for
information-theoretic cryptography. It allows to transform a raw key
about which an attacker has some limited knowledge into a fully se-
cure random key, on which the attacker has essentially no information.
Up to date, only very few randomness-extraction techniques are known
to work against an attacker holding quantum information on the raw
key. This is very much in contrast to the classical (non-quantum) set-
ting, which is much better understood and for which a vast amount of
different techniques are known and proven to work.

We prove a new randomness-extraction technique, which is known to
work in the classical setting, to be secure against a quantum attacker as
well. Randomness extraction is done by xor’ing a so-called δ-biased mask
to the raw key. Our result allows to extend the classical applications of
this extractor to the quantum setting. We discuss the following two ap-
plications. We show how to encrypt a long message with a short key,
information-theoretically secure against a quantum attacker, provided
that the attacker has enough quantum uncertainty on the message. This
generalizes the concept of entropically-secure encryption to the case of
a quantum attacker. As second application, we show how to do error-
correction without leaking partial information to a quantum attacker.
Such a technique is useful in settings where the raw key may contain er-
rors, since standard error-correction techniques may provide the attacker
with information on, say, a secret key that was used to obtain the raw
key.

1 Introduction

Randomness extraction allows to transform a raw key X about which an attacker
has some limited knowledge into a fully secure random key S. It is required that
the attacker has essentially no information on the resulting random key S, no

� Supported by a Veni grant from the Dutch Organization for Scientific Research
(NWO).

�� Supported by the EU projects SECOQC and QAP IST 015848 and a NWO Vici
grant 2004-2009.

��� Centrum voor Wiskunde en Informatica, the national research institute for math-
ematics and computer science in the Netherlands.

R. Canetti (Ed.): TCC 2008, LNCS 4948, pp. 465–481, 2008.
c© International Association for Cryptologic Research 2008



466 S. Fehr and C. Schaffner

matter what kind of information he has about the raw key X , as long as his
uncertainty on X is lower bounded in terms of a suitable entropy measure. One
distinguishes between extractors which use a private seed (preferably as small
as possible) [29], and, what is nowadays called strong extractors, which only use
public coins [15,21]. In the context of cryptography, the latter kind of random-
ness extraction is also known as privacy amplification [5]. Randomness-extraction
techniques play an important role in various areas of theoretical computer sci-
ence. In cryptography, they are at the core of many constructions in information-
theoretic cryptography, but they also proved to be useful in the computational
setting. As such, there is a huge amount of literature on randomness extraction,
and there exist various techniques which are optimized with respect to different
needs; we refer to Shaltiel’s survey [26] for an informative overview on classical
and recent results.

Most of these techniques, however, are only guaranteed to work in a non-
quantum setting, where information is formalized by means of classical infor-
mation theory. In a quantum setting, where the attacker’s information is given
by a quantum state, our current understanding is much more deflating. Renner
and König [23] have shown that privacy amplification via universal2 hashing is
secure against quantum adversaries. And, König and Terhal [18] showed secu-
rity against quantum attackers for certain extractors, namely for one-bit-output
strong extractors, as well as for strong extractors which work by extracting bit
wise via one-bit-output strong extractors. Concurrent to our work, Smith has
shown recently that Renner and König’s result generalizes to almost-universal
hashing, i.e., that Srinivasan-Zuckerman extractors remain secure against quan-
tum adversaries [27]. On the negative side, Gavinsky et al. recently showed that
there exist (strong) extractors that are secure against classical attackers, but
which become completely insecure against quantum attackers [13]. Hence, it is
not only a matter of lack of proof, but in fact classical extractors may turn
insecure when considering quantum attackers.

We prove a new randomness-extraction technique to be secure against a quan-
tum attacker. It is based on the concept of small-biased spaces, see e.g. [20].
Concretely, randomness extraction is done by xor’ing the raw key X ∈ {0, 1}n

with a δ-biased mask A ∈ {0, 1}n, chosen privately according to some specific
distribution, where the distribution may be chosen publicly from some family
of distributions. Roughly, A (or actually the family of distributions) is δ-biased,
if any non-trivial parity of A can only be guessed with advantage δ. We prove
that if A is δ-biased, then the bit-wise xor X ⊕ A is ε-close to random and in-
dependent of the attacker’s quantum state with ε = δ · 2(n−t)/2, where t is the
attacker’s quantum collision-entropy in X . Thus, writing δ = 2−κ, the extracted
key X ⊕ A is essentially random as long as 2κ is significantly larger than n − t.
Note that in its generic form, this randomness extractor uses public coins, namely
the choice of the distribution, and a private seed, the sampling of A according
to the chosen distribution. Specific instantiations though, may lead to standard
extractors with no public coins (as in Section 5), or to a strong extractor with
no private seed (as in Section 6). The proof of the new randomness-extraction
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result combines quantum-information-theoretic techniques developed by Ren-
ner [22,23] and techniques from Fourier analysis, similar to though slightly more
involved than those used in [2].

We would like to point out that the particular extractor we consider, δ-biased
masking, is well known to be secure against non-quantum attackers. Indeed,
classical security was shown by Dodis and Smith, who also suggested useful
applications [11,12]. Thus, our main contribution is the security analysis in the
presence of a quantum attacker. Our positive result not only contributes to the
general problem of the security of extractors against quantum attacks, but it
is particularly useful in combination with the classical applications of δ-biased
masking where it leads to interesting new results in the quantum setting. We
discuss these applications and the arising new results below.

The first application is entropically secure encryption [25,12]. An encryption
scheme is entropically secure if the ciphertext gives essentially no information
away on the plaintext (in an information-theoretic sense), provided that the at-
tacker’s a priori information on the plaintext is limited. Entropic security allows
to overcome Shannon’s pessimistic result on the size of the key for information-
theoretically secure encryption, in that a key of size essentially � ≈ n − t suffices
to encrypt a plaintext of size n which has t bits of entropy given the attacker’s
a priori information. This key size was known to suffice for a non-quantum ad-
versary [25,12]. By our analysis, this result carries over to the setting where
we allow the attacker to store information as quantum states: a key of size es-
sentially � ≈ n − t suffices to encrypt a plaintext of size n which has t bits of
(min- or collision-) entropy given the attacker’s quantum information about the
plaintext.

Note that entropic security in a quantum setting was also considered explicitly
in [8] and implicitly for the task of approximate quantum encryption [2,16,10].
However, all these results are on encrypting a quantum message into a quantum
ciphertext on which the attacker has limited classical information (or none at
all), whereas we consider encrypting a classical message into a classical cipher-
text on which the attacker has limited quantum information. Thus, our result in
quantum entropic security is in that sense orthogonal. As a matter of fact, the re-
sults in [2,16,10,8] about randomizing quantum states can also be appreciated as
extracting “quantum randomness” from a quantum state on which the attacker
has limited classical information. Again, this is orthogonal to our randomness-
extraction result which allows to extract classical randomness from a classical
string on which the attacker has limited quantum information. In independent
recent work, Desrosiers and Dupuis showed that one can combine techniques to
get the best out of both: they showed that δ-biased masking (as used in [2])
allows to extract “quantum randomness” from a quantum state on which the
attacker has limited quantum information. This in particular implies our result.

The second application is in the context of private error-correction. Consider
a situation where the raw key X is obtained by Alice and Bob with the help of
some (short) common secret key K, and where the attacker Eve, who does not
know K, has high entropy on X . Assume that, due to noise, Bob’s version of the
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raw key X ′ is slightly different from Alice’s version X . Such a situation may for
instance occur in the bounded-storage model or in a quantum-key-distribution
setting. Since Alice and Bob have different versions of the raw key, they first
need to correct the errors before they can extract (by means of randomness
extraction) a secure key S from X . However, since X and X ′ depend on K,
standard techniques for correcting the errors between X and X ′ leak information
not only on X but also on K to Eve, which prohibits that Alice and Bob can re-
use K in a future session. In the case of a non-quantum attacker, Dodis and Smith
showed how to do error-correction in such a setting without leaking information
on K to Eve [11], and thus that K can be safely re-used an unlimited number
of times. We show how our randomness-extraction result gives rise to a similar
way of doing error correction without leaking information on K, even if Eve
holds her partial information on X in a quantum state. Such a private-error-
correction technique is a useful tool in various information-theoretic settings
with a quantum adversary. Very specifically, this technique has already been
used as essential ingredient to derive new results in the bounded-(quantum)-
storage model and in quantum key distribution [7].

The paper is organized as follows. We start with some quantum-information-
theoretic notation and definitions. The new randomness-extraction result is pre-
sented in Section 3 and proven in Section 4. The two applications discussed are
given in Sections 5 and 6.

2 Preliminaries

2.1 Notation and Terminology

A quantum system is described by a complex Hilbert space HA (in this paper
always of finite dimension). The state of the system is given by a density matrix:
a positive semi-definite operator ρA on HA with trace tr(ρA) = 1. We write
P(HA) for the set of all positive semi-definite operators on HA, and we call
ρA ∈ P(HA) normalized if it has trace 1, i.e., if it is a density matrix. For a
density matrix ρAB ∈ P(HA ⊗ HB) of a composite quantum system HA ⊗ HB ,
we write ρB = trA(ρAB) for the state obtained by tracing out system HA. A
density matrix ρXB ∈ P(HX ⊗ HB) is called classical on HX with X ∈ X , if
it is of the form ρXB =

∑
x PX(x)|x〉〈x| ⊗ ρx

B with normalized ρx
B ∈ P(HB),

where {|x〉}x∈X forms an orthonormal basis of HX . Such a density matrix ρXB

which is classical on HX can be viewed as a random variable X with distribution
PX together with a family {ρx

B}x∈X of conditional density matrices, such that
the state of HB is given by ρx

B if and only if X takes on the value x. We can
introduce a new random variable Y which is obtained by “processing” X , i.e., by
extending the distribution PX to a consistent joint distribution PXY . Doing so
then naturally defines the density matrix ρXY B =

∑
x,y PXY (x, y)|x〉〈x|⊗|y〉〈y|⊗

ρx
B, and thus also the density matrix ρY B = trX(ρXY B) =

∑
y PY (y)|y〉〈y| ⊗( ∑

x PX|Y (x|y)ρx
B

)
. If the meaning is clear from the context, we tend to slightly

abuse notation and write the latter also as ρY B =
∑

y PY (y)|y〉〈y| ⊗ ρy
B, i.e.,
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understand ρy
B as

∑
x PX|Y (x|y)ρx

B . Throughout, we write � for the identity
matrix of appropriate dimension.

2.2 Distance and Entropy Measures for Quantum States

We recall some definitions from [22]. Let ρXB ∈ P(HX ⊗ HB). Although the
following definitions make sense (and are defined in [22]) for arbitrary ρXB, we
may assume ρXB to be normalized1 and to be classical on HX .

Definition 2.1. The L1-distance from uniform of ρXB given B is defined by

d(ρXB|B) := ‖ρXB − ρU ⊗ ρB‖1 = tr
(
|ρXB − ρU ⊗ ρB|

)

where ρU := 1
dim(HX)� is the fully mixed state on HX and |A| :=

√
A†A is the

positive square root of A†A (where A† is the complex-conjugate transpose of A).

If ρXB is classical on HX , then d(ρXB|B) = 0 if and only if X is uniformly
distributed and ρx

B does not depend on x, which in particular implies that
no information on X can be learned by observing system HB. Furthermore, if
d(ρXB|B) ≤ ε then the real system ρXB “behaves” as the ideal system ρU ⊗ ρB

except with probability ε in that for any evolution of the system no observer can
distinguish the real from the ideal one with advantage greater than ε [23].

Definition 2.2. The collision-entropy and the min-entropy of ρXB relative to
a normalized and invertible σB ∈ P(HB) are defined by

H2(ρXB |σB) := − log tr
((

(�⊗ σ
−1/4
B ) ρXB (�⊗ σ

−1/4
B )

)2
)

= − log
∑

x

PX(x)2 tr
((

σ
−1/4
B ρx

B σ
−1/4
B

)2
)

and

H∞(ρXB |σB) := − logλmax

(
(�⊗ σ

−1/2
B ) ρXB (�⊗ σ

−1/2
B )

)

= − log max
x

λmax

(
PX(x) σ

−1/2
B ρx

B σ
−1/2
B

)
,

respectively, where λmax(·) denotes the largest eigenvalue of the argument. The
collision-entropy and the min-entropy of ρXB given HB are defined by

H2(ρXB|B) := sup
σB

H2(ρXB|σB) and H∞(ρXB|B) := sup
σB

H∞(ρXB |σB)

respectively, where the supremum ranges over all normalized σB ∈ P(HB).

Note that without loss of generality, the supremum over σB can be restricted
to the set of normalized and invertible states σB which is dense in the set of

1 For a non-normalized ρXB, there is a normalizing 1/ tr(ρXB)-factor in the definition
of collision-entropy. Also note that tr(σ−1/2ρσ−1/2) = tr(ρσ−1) for any invertible σ.
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normalized states in P(HB). Note furthermore that it is not clear, neither in
the classical nor in the quantum case, what the “right” way to define condi-
tional collision- or min-entropy is, and as a matter of fact, it depends on the
context which version serves best. An alternative way to define the collision-
and min-entropy of ρXB given HB would be as H̃2(ρXB|B) := H2(ρXB|ρB) and
H̃∞(ρXB |B) := H∞(ρXB|ρB). For a density matrix ρXY that is classical on HX

and HY , it is easy to see that H̃2(ρXY |Y ) = − log
∑

y PY (y)
∑

x PX|Y (x|y)2,
i.e., the negative logarithm of the average conditional collision probability, and
H̃∞(ρXY |Y ) = − logmaxx,y PX|Y (x|y), i.e., the negative logarithm of the maxi-
mal conditional guessing probability. These notions of classical conditional
collision- and min-entropy are commonly used in the literature, explicitly (see e.g.
[24,6]) or implicitly (as e.g. in [5]). We stick to Definition 2.2 because it leads to
stronger results, in that asking H2(ρXB|B) to be large is a weaker requirement
than asking H̃2(ρXB |B) to be large, as obviously H2(ρXB|B) ≥ H̃2(ρXB|B), and
similarly for the min-entropy.

3 The New Randomness-Extraction Result

We start by recalling the definition of a δ-biased random variable and of a δ-
biased family of random variables [20,11].

Definition 3.1. The bias of a random variable A, with respect to α ∈ {0, 1}n,
is defined as

biasα(A) :=
∑

a

PA(a)(−1)α·a = 2
(
P [α·A=1] − 1

2

)
,

and A is called δ-biased if biasα(A) ≤ δ for all non-zero α ∈ {0, 1}n. A family
of random variables {Ai}i∈I over {0, 1}n is called δ-biased if, for all α �= 0,

√
�i←I

[
biasα(Ai)2

]
≤ δ

where the expectation is over a i chosen uniformly at random from I.

Note that by Jensen’s inequality, �i←I [biasα(Ai)] ≤ δ for all non-zero α is
a necessary (but not sufficient) condition for {Ai}i∈I to be δ-biased. In case
though the family consists of only one member, then it is δ-biased if and only if
its only member is.

Our main theorem states that if {Ai}i∈I is δ-biased for a small δ, and if
an adversary’s conditional entropy H2(ρXB|B) on a string X ∈ {0, 1}n is large
enough, then masking X with Ai for a random but known i gives an essentially
random string.

Theorem 3.2. Let the density matrix ρXB ∈ P(HX ⊗ HB) be classical on HX

with X ∈ {0, 1}n. Let {Ai}i∈I be a δ-biased family of random variables over
{0, 1}n, and let I be uniformly and independently distributed over I. Then

d
(
ρ(AI⊕X)BI

∣
∣BI

)
≤ δ · 2− 1

2 (H2(ρXB |B)−n).
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By the inequalities

H∞(X) − log dim(HB) ≤ H∞(ρXB|B) ≤ H2(ρXB|B) ,

proven in [22], Theorem 3.2 may also be expressed in terms of conditional min-
entropy H∞(ρXB|B) or in terms of classical min-entropy of X minus the size
of the quantum state (i.e. the number of qubits). If B is the “empty” quantum
state, i.e., log dim(HB) = 0, then Theorem 3.2 coincides with Lemma 4 of [11].
Theorem 3.2 also holds, with a corresponding normalization factor, for non-
normalized operators, from which it follows that it can also be expressed in
terms of the smooth conditional min-entropy Hε

∞(ρXB|B), as defined in [22], as
d(ρ(AI⊕X)BI |BI) ≤ 2ε + δ · 2− 1

2 (Hε
∞(ρXB |B)−n).

4 The Proof

We start by pointing out some elementary observations regarding the Fourier
transform over the hypercube. In particular, we can extend the Convolution
theorem and Parseval’s identity to the case of matrix-valued functions. Further
properties of the Fourier transform (with a different normalization) of matrix-
valued functions over the hypercube have recently been established by Ben-
Aron, Regev and de Wolf [4]. In Section 4.2, we introduce and recall a couple of
properties of the L2-distance from uniform. The actual proof of Theorem 3.2 is
given in Section 4.3.

4.1 Fourier Transform and Convolution

For some fixed positive integer d, consider the complex vector space MF of
all functions M : {0, 1}n → C

d×d. The convolution of two such matrix-valued
functions M, N ∈ MF is the matrix-valued function

M ∗ N : x �→
∑

y

M(y)N(x − y)

and the Fourier transform of a matrix-valued function M ∈ MF is the matrix-
valued function

F(M) : α �→ 2−n/2
∑

x

(−1)α·xM(x)

where α · x denotes the standard inner product modulo 2. Note that if X is
a random variable with distribution PX and M is the matrix-valued function
x �→ PX(x) · �, then

F(M)(α) = 2−n/2 · biasα(X) · � .

The Euclidean or L2-norm of a matrix-valued function M ∈ MF is given by

|||M |||2 :=

√

tr
( ∑

x

M(x)†M(x)
)
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where M(x)† denotes the complex-conjugate transpose of the matrix M(x).2

The following two properties known as Convolution Theorem and Parseval’s
Theorem are straightforward to prove (see Appendix A).

Lemma 4.1. For all M, N ∈ MF :

F(M ∗ N) = 2n/2 · F(M) · F(N) and |||F(M)|||2 = |||M |||2 .

4.2 The L2-Distance from Uniform

The following lemmas together with their proofs can be found in [22]. Again,
we restrict ourselves to the case where ρXB and σB are normalized and ρXB is
classical on X , whereas the claims hold (partly) more generally.

Definition 4.2. Let ρXB ∈ P(HX ⊗ HB) and σB ∈ P(HB). Then the condi-
tional L2-distance from uniform of ρXB relative to σB is

d2(ρXB|σB) := tr
((

(�⊗ σ
−1/4
B )(ρXB − ρU ⊗ ρB)(�⊗ σ

−1/4
B )

)2
)

,

where ρU := 1
dim(HX)� is the fully mixed state on HX .

Lemma 4.3. Let ρXB ∈ P(HX ⊗HB). Then, for any normalized σB ∈ P(HB),

d(ρXB |B) ≤
√

dim(HX)
√

d2(ρXB|σB).

Lemma 4.4. Let ρXB ∈ P(HX ⊗ HB) be classical on HX with X ∈ X , and let
ρx

B be the corresponding normalized conditional operators. Then, for any σB ∈
P(HB)

d2(ρXB|σB) =
∑

x

tr
(
(σ−1/4

B PX(x)ρx
Bσ
−1/4
B )2

)
− 1

|X | tr
(
(σ−1/4

B ρBσ
−1/4
B )2

)
.

4.3 Proof Theorem 3.2

Write Di = Ai ⊕ X and DI = AI ⊕ X . Since ρDIBI = 1
|I|

∑
i ρi

DIB ⊗ |i〉〈i| =
1
|I|

∑
i ρDiB ⊗ |i〉〈i|, and similar for ρBI , it follows that the L1-distance from

uniform can be written as an expectation over the random choice of i from I.
Indeed

d(ρDIBI |BI) =
1

|I| tr
(∣
∣
∣
∑

i

(ρDiB − ρU ⊗ ρB) ⊗ |i〉〈i|
∣
∣
∣
)

=
1

|I|
∑

i

tr
(∣∣ρDiB − ρU ⊗ ρB

∣
∣) =

1
|I|

∑

i

d(ρDiB|B) = �i←I
[
d(ρDiB |B)

]
.

2 We will only deal with Hermitian matrices M(x) where |||M |||2 =
�

tr
��

x M(x)2
�
.
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where the second equality follows from the block-diagonal form of the matrix.
With Lemma 4.3, the term in the expectation can be bounded in terms of the
L2-distance from uniform, that is, for any normalized σB ∈ P(HB),

d(ρDIBI |BI) ≤
√

2n �i←I
[√

d2(ρDiB|σB)
]

≤ 2n/2
√
�i←I

[
d2(ρDiB|σB)

]

where the second inequality is Jensen’s inequality. By Lemma 4.4, we have for
the L2-distance

d2(ρDiB|σB)

= tr

(
∑

d

(σ−1/4
B PDi(d)ρd

B σ
−1/4
B )2

)

− 1
2n

tr
(
(σ−1/4

B ρB σ
−1/4
B )2

)
.

(1)

Note that

PDi(d)ρd
B = PDi(d)

∑

x

PX|Di
(x|d)ρx

B =
∑

x

PXDi(x, d)ρx
B

=
∑

x

PXAi(x, d ⊕ x)ρx
B =

∑

x

PX(x)PAi (d ⊕ x)ρx
B

so that the first term on the right-hand side of (1) can be written as

tr

(
∑

d

(σ−1/4
B PDi(d)ρd

B σ
−1/4
B )2

)

= tr

(
∑

d

( ∑

x

PX(x)σ−1/4
B ρx

B σ
−1/4
B PAi(d ⊕ x)

)2
)

.

The crucial observation now is that the term that is squared on the right side is the
convolution of the two matrix-valued functions M : x �→ PX(x)σ−1/4

B ρx
B σ
−1/4
B

and N : x �→ PAi(x)�, and the whole expression equals |||M ∗ N |||22. Thus, using
Lemma 4.1 we get

tr

(
∑

d

(σ−1/4
B PDi(d)ρd

B σ
−1/4
B )2

)

= |||M ∗ N |||22 = |||F(M ∗ N)|||22

= |||2n/2 · F(M) · F(N)|||22 = 2n tr

(
∑

α

(
F(M)(α)F(N)(α)

)2

)

=
1
2n

tr
(
(σ−1/4

B ρB σ
−1/4
B )2

)
+ tr

⎛

⎝
∑

α�=0

F(M)(α)2 biasα(Ai)2

⎞

⎠ ,

(2)

where the last equality uses

F(M)(0) = 2−n/2
∑

x

PX(x)σ−1/4
B ρx

B σ
−1/4
B = 2−n/2σ

−1/4
B ρB σ

−1/4
B
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as well as

F(N)(0) = 2−n/2
∑

x

PAi(x)� = 2−n/2
� and F(N)(α) = 2−n/2 · biasα(Ai)� .

Substituting (2) into (1) gives

d2(ρDiB|σB) = tr

⎛

⎝
∑

α�=0

F(M)(α)2 biasα(Ai)2

⎞

⎠ .

Using the linearity of the expectation and trace, and using the bound on the
expected square-bias, we get

�i←I
[
d2(ρDiB |σB)

]
≤ δ2 tr

(∑

α�=0

F(M)(α)2
)

≤ δ2 tr
(∑

α

F(M)(α)2
)

= δ2|||F(M)|||22 = δ2|||M |||22 = δ2
∑

x

tr
(
PX(x)2(σ−1/4

B ρx
B σ
−1/4
B )2

)

= δ22−H2(ρXB |σB) ,

where the second inequality follows because of

tr
(
F(M)(0)2

)
= 2−n tr

(
(σ−1/4

B ρB σ
−1/4
B )2

)
≥ 0 .

Therefore,

d(ρDIBI |BI) ≤ 2n/2
√
�i←I

[
d2(ρDiB|σB)

]
≤ δ · 2−

1
2 (H2(ρXB |σB)−n)

and the assertion follows from the definition of H2(ρXB|B) because σB was
arbitrary. ��

5 Application I: Entropic Security

Entropic security is a relaxed but still meaningful security definition for
(information-theoretically secure) encryption that allows to circumvent Shan-
non’s pessimistic result, which states that any perfectly secure encryption scheme
requires a key at least as long as the message to be encrypted. Entropic security
was introduced by Russell and Wang [25], and later more intensively investi-
gated by Dodis and Smith [12]. Based on our result, and in combination with
techniques from [12], we show how to achieve entropic security against quan-
tum adversaries. We would like to stress that in contrast to perfect security
e.g. when using the one-time-pad, entropic security does not a priori protect
against a quantum adversary.

Informally, entropic security is defined as follows. An encryption scheme is
entropically secure if no adversary can obtain any information on the message M
from its ciphertext C (in addition to what she can learn from scratch), provided
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the message M has enough uncertainty from the adversary’s point of view. The
impossibility of obtaining any information on M is formalized by requiring that
any adversary that can compute f(M) for some function f when given C, can
also compute f(M) without C (with similar success probability). A different
formulation, which is named indistinguishability, is to require that there exists
a random variable C′, independent of M , such that C and C′ are essentially
identically distributed. It is shown in [12], and in [8] for the case of a quantum
message, that the two notions are equivalent if the adversary’s information on
M is classical. In recent work, Desrosiers and Dupuis proved this equivalence to
hold also for an adversary with quantum information [9].

The adversary’s uncertainty on M is formalized, for a classical (i.e. non-
quantum) adversary, by the min-entropy H∞(M |V = v) (or, alternatively, the
collision-entropy) of M , conditioned on the value v the adversary’s view V takes
on. We formalize this uncertainty for a quantum adversary in terms of the quan-
tum version of conditional min- or actually collision-entropy, as introduced in
Section 2.2.

Definition 5.1. We call a (possibly randomized) encryption scheme E : K ×
M → C (t, ε)-quantum-indistinguishable if there exists a random variable C′

over C such that for any normalized ρMB ∈ P(HM ⊗ HB) which is classical on
HM with M ∈ M and H2(ρMB |B) ≥ t, we have that

∥
∥ρE(K,M)B − ρC′ ⊗ ρB

∥
∥

1 ≤ ε ,

where K is uniformly and independently distributed over K.

Note that in case of an “empty” state B, our definition coincides with the indis-
tinguishability definition from [12] (except that we express it in collision- rather
than min-entropy).

Theorem 3.2, with I = {i◦} and Ai◦ = K, immediately gives a generic con-
struction for a quantum-indistinguishable encryption scheme (with C′ being uni-
formly distributed). Independently, this result was also obtained in [9].

Theorem 5.2. Let K ⊆ {0, 1}n be such that the uniform distribution K over
K is δ-biased. Then the encryption scheme E : K × {0, 1}n → {0, 1}n with
E(k, m) = k ⊕ m is (t, ε)-quantum-indistinguishable with ε = δ · 2 n−t

2 .

Alon et al. [1] showed how to construct subsets K ⊆ {0, 1}n of size |K| =
O(n2/δ2) such that the uniform distribution K over K is δ-biased and elements
in K can be efficiently sampled. With the help of this construction, we get the
following result, which generalizes the bound on the key-size obtained in [12] to
the quantum setting.

Corollary 5.3. For any ε ≥ 0 and 0 ≤ t ≤ n, there exists a (t, ε)-quantum-
indistinguishable encryption scheme encrypting n-bit messages with key length
� = log |K| = n − t + 2 log(n) + 2 log( 1

ε ) + O(1).

In the language of extractors, defining a (t, ε)-quantum extractor in the natural
way as follows, Corollary 5.3 translates to Corollary 5.5 below.
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Definition 5.4. A function E : J × X → {0, 1}m is called a (t, ε)-weak quan-
tum extractor if d(ρE(J,X)B |B) ≤ ε, and a (t, ε)-strong quantum extractor if
d(ρE(J,X)JB|JB) ≤ ε for any normalized ρXB ∈ P(HX ⊗ HB) which is clas-
sical on HX with X ∈ X and H2(ρXB |B) ≥ t, and where J is uniformly and
independently distributed over J .

Corollary 5.5. For any ε ≥ 0 and 0 ≤ t ≤ n, there exists a (t, ε)-weak quantum
extractor with n-bit output and seed length � = log |K| = n − t + 2 log(n) +
2 log(1

ε ) + O(1).

6 Application II: Private Error Correction

Consider the following scenario. Two parties, Alice and Bob, share a common
secret key K. Furthermore, we assume a “random source” which can be queried
by Alice and Bob so that on identical queries it produces identical outputs. In
particular, when Alice and Bob both query the source on input K, they both
obtain the same “raw key” X ∈ {0, 1}n. We also give an adversary Eve access to
the source. She can obtain some (partial) information on the source and store it
possibly in a quantum state ρZ . However, we assume she has some uncertainty
about X , because due to her ignorance of K, she is unable to extract “the right”
information from the source. Such an assumption of course needs to be justified in
a specific implementation. Specifically, we require that H∞(ρXKZ |KZ) is lower
bounded, i.e., Eve has uncertainty in X even if at some later point she learns K
but only the source has disappeared in the meantime.

Such a scenario for instance arises in the bounded-storage model [19,3] (though
with classical Eve), when K is used to determine which bits of the long random-
izer Alice and Bob should read to obtain X , or in a quantum setting when Alice
sends n qubits to Bob and K influences the basis in which Alice prepares them
respectively Bob measures them.

In this setting, it is well-known how to transform by public (authenticated)
communication the weakly-secure raw key X into a fully secure key S: Alice
and Bob do privacy amplification, as shown in [14,5] in case of a classical Eve,
respectively as in [23,22] in case of a quantum Eve. Indeed, under the above
assumptions on the entropy of X , privacy amplification guarantees that the
resulting key S looks essentially random for Eve even given K. This guarantee
implies that S can be used, say, as a one-time-pad encryption key, but it also
implies that if Eve learns S, she still has essentially no information on K, and
thus K can be safely re-used for the generation of a new key S.

Consider now a more realistic scenario, where due to noise or imperfect mea-
surements Alice’s string X and Bob’s string X ′ are close but not exactly equal.
There are standard techniques to do error correction (without giving Eve too
much information on X): Alice and Bob agree on a suitable error-correcting code
C, Alice samples a random codeword C from C and sends Y = X ⊕ C to Bob,
who can recover X by decoding C ′ = Y ⊕ X ′ to the nearest codeword C and
compute X = Y ⊕ C. Or equivalently, in case of a linear code, Alice can send
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the syndrome of X to Bob, which allows Bob to recover X in a similar man-
ner. If Eve’s entropy in X is significantly larger than the size of the syndrome,
then one can argue that privacy amplification still works and the resulting key
S is still (close to) random given Eve’s information (including the syndrome)
and K. Thus, S is still a secure key. However, since X depends on K, and the
syndrome of X depends on X , the syndrome of X may give information on K to
Eve, which makes it insecure to re-use K. A common approach to deal with this
problem is to use part of S as the key K in the next session. Such an approach
not only creates a lot of inconvenience for Alice and Bob in that they now have
to be stateful and synchronized, but in many cases Eve can prevent Alice and
Bob from agreeing on a secure key S (for instance by blocking the last message)
while nevertheless learning information on K, and thus Eve can still cause Alice
and Bob to run out of key material.

In [11], Dodis and Smith addressed this problem and proposed an elegant
solution in case of a classical Eve. They constructed a family of codes which
not only allow to efficiently correct errors, but at the same time also serve as
randomness extractors. More precisely, they show that for every 0 < λ < 1,
there exists a family {Cj}j∈J of binary linear codes of length n, which allows
to efficiently correct a constant fraction of errors, and which is δ-biased for
δ < 2−λn/2. The latter is to be understood that the family {Cj}j∈J of random
variables, where Cj is uniformly distributed over Cj , is δ-biased for δ < 2−λn/2.
Applying Lemma 4 of [11] (the classical version of Theorem 3.2) implies that
Cj⊕X is close to random for any X with large enough entropy, given j. Similarly,
applying our Theorem 3.2 implies the following.

Theorem 6.1. For every 0 < λ < 1 there exists a family {Cj}j∈J of binary
linear codes of length n which allows to efficiently correct a constant fraction
of errors, and such that for any density matrix ρXB ∈ P(HX ⊗ HB) which is
classical on HX with X ∈ {0, 1}n and H2(ρXB|B) ≥ t, it holds that

d
(
ρ(CJ⊕X)BJ

∣
∣BJ

)
≤ 2−

t−(1−λ)n
2 ,

where J is uniformly distributed over J and CJ is uniformly distributed over CJ .

Using a random code from such a family of codes allows to do error correction
in the noisy setting described above without leaking information on K to Eve:
By the chain rule [22, Sect. 3.1.3], the assumed lower bound on H∞(ρXKZ |KZ)
implies a lower bound on H∞(ρXSKZG|SKZG) (essentially the original bound
minus the bit length of S), where G is the randomly chosen universal hash func-
tion used to extract S from X . Combining systems S, K, Z and G into system
B, Theorem 6.1 implies that ρ(CJ⊕X)SKZGJ ≈ 1

2n� ⊗ ρSKZGJ . From standard
privacy amplification follows that ρSKZGJ ≈ 1

2��⊗ ρKZGJ . Using the indepen-
dence of K, G, J (from Z and from each other), we obtain ρ(CJ⊕X)SKZGJ ≈
1
2n� ⊗ 1

2�� ⊗ ρK ⊗ ρZ ⊗ ρG ⊗ ρJ . This in particular implies that S is a secure
key (even when K is given to Eve) and that K is still “fresh” and can be safely
re-used (even when S is additionally given to Eve).
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Specifically, our private-error-correction techniques allow to add robustness
against noise to the bounded-storage model in the presence of a quantum attacker
as considered in [17], without the need for updating the common secret key. The
results of [17] guarantee that the min-entropy of the sampled substring is lower
bounded given the attacker’s quantum information and hence, security follows as
outlined above. Furthermore, in [7] the above private-error-correction technique
is an essential ingredient to add robustness against noise but also to protect
against man-in-the-middle attacks in new quantum-identification and quantum-
key-distribution schemes in the bounded-quantum-storage model.

In the language of extractors, we get the following result for arbitrary, not
necessarily efficiently decodable, binary linear codes.

Corollary 6.2. Let {Cj}j∈J be a δ-biased family of binary linear [n, k, d]2-codes.
For any j ∈ J , let Gj be a generator matrix for the code Cj and let Hj be a
corresponding parity-check matrix. Then E : J × {0, 1}n → {0, 1}n−k, (j, x) �→
Hjx is a (t, ε)-strong quantum extractor with ε = δ · 2 1

2 (n−t).

This result gives rise to new privacy-amplification techniques, beyond using
universal2 hashing as in [23] or one-bit extractors as in [18]. Note that using
arguments from [11], it is easy to see that the condition that {Cj}j∈J is δ-biased
and thus the syndrome function Hj is a good strong extractor, is equivalent
to requiring that {Gj}j∈J seen as family of (encoding) functions is δ2-almost
universal2 [30,28].

For a family of binary linear codes {Cj}j∈J , another equivalent condition for
δ-bias of {Cj}j∈J is to require that for all non-zero α, Prj∈J [α ∈ C⊥j ] ≤ δ2,
i.e. that the probability that α is in the dual code of Cj is upper bounded by δ2

[11]. It follows that the family size |J | has to be exponential in n to achieve an
exponentially small bias δ and therefore, the seed length log |J | of the strong
extractor will be linear in n as for the case of two-universal hashing.

7 Conclusion

We proposed a new technique for randomness extraction in the presence of a
quantum attacker. This is interesting in its own right, as up to date only very few
extractors are known to be secure against quantum adversaries, much in contrast
to the classical non-quantum case. The new randomness-extraction technique
has various cryptographic applications like entropically secure encryption, in
the classical bounded-storage model and the bounded-quantum-storage model,
and in quantum key distribution. Furthermore, because of the wide range of
applications of classical extractors not only in cryptography but also in other ar-
eas of theoretical computer science, we feel that our new randomness-extraction
technique will prove to be useful in other contexts as well.
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A Proof of Lemma 4.1

Concerning the first claim,

F(M ∗ N)(α) =
1

2n/2

∑

x

(−1)α·x ∑

y

M(y)N(x ⊕ y)

= 2−n/2
∑

y

(−1)α·yM(y)
∑

x

(−1)α·(x⊕y)N(x ⊕ y)

= 2−n/2
∑

y

(−1)α·yM(y)
∑

z

(−1)α·zN(z)

= 2n/2 · F(M)(α) · F(N)(α) .

The second claim is argued as follows.

|||F(M)|||22 = tr
( ∑

α

F(M)(α)†F(M)(α)
)
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= 2−n tr
( ∑

α

(∑

x

(−1)α·xM(x)
)∗(∑

x′

(−1)α·x′
M(x′)

))

= 2−n tr
( ∑

x,x′

M(x)†M(x′)
∑

α

(−1)α·(x⊕x′)
)

= tr
( ∑

x

M(x)†M(x)
)

= |||M |||22

where the last equality follows from the fact that
∑

α(−1)α·y = 2n if y =
(0, . . . , 0) and 0 otherwise. ��
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Abstract. We show that a language in NP has a zero-knowledge proto-
col if and only if the language has an “instance-dependent” commitment
scheme. An instance-dependent commitment schemes for a given lan-
guage is a commitment scheme that can depend on an instance of the
language, and where the hiding and binding properties are required to
hold only on the YES and NO instances of the language, respectively.

The novel direction is the only if direction. Thus, we confirm the
widely held belief that commitments are not only sufficient for zero
knowledge protocols, but necessary as well. Previous results of this type
either held only for restricted types of protocols or languages, or used
nonstandard relaxations of (instance-dependent) commitment schemes.

1 Introduction

From the early days in the study of zero knowledge, it has seemed that com-
mitment schemes are the heart of zero-knowledge protocols. Indeed, the first
construction of zero-knowledge proofs for all of NP, due to Goldreich, Micali,
and Wigderson [GMW], shows that commitment schemes suffice for zero knowl-
edge. Moreover, there have been a number of partial converses to this result,
showing how to obtain certain kinds of commitments from certain kinds of zero-
knowledge protocols for certain kinds of languages. In this paper, we present a
complete equivalence between zero knowledge protocols and instance-dependent
commitment schemes [BMO, IOS], in which the protocol depends on a given
instance of a language (or promise problem). Specifically, we show that for every
language L ∈ NP, L has a zero-knowledge protocol if and only if L has an
instance-dependent commitment scheme. Thus, we confirm the intuition that
commitments are not only sufficient for zero knowledge, but necessary as well.

1.1 Review of Zero Knowledge and Commitments

In zero-knowledge protocols [GMR], a prover tries to convince a verifier that an
assertion is true, namely that some string x is a YES instance of a (promise)
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problem Π,1 without leaking any additional knowledge. Zero-knowledge proto-
cols have two security requirements. Informally, soundness says that a cheating
prover should not be able to convince the verifier of a false statement, and
zero knowledge says that a cheating verifier should not be able to learn any-
thing from the interaction other than the fact that the assertion being proven
is true. Both security requirements come in two flavors — statistical, whereby
we require security to hold even against computationally unbounded cheating
strategies (except with negligible probability2), and computational, whereby we
only require security against polynomial-time strategies (except with negligible
probability). Protocols with statistical soundness are typically called interac-
tive proof systems (which constitute the original model proposed by [GMR]),
and those with computational soundness are typically called argument systems
(which were introduced by [BCC]). Considering all combinations of computa-
tional and statistical versions of soundness and zero knowledge rise to four main
flavors of zero knowledge protocols, and thus four complexity classes consisting
of the problems Π having zero-knowledge protocols of a particular flavor. We de-
note these complexity classes SZKP, CZKP, SZKA, and CZKA, with the prefix
of S or C denoting statistical or computational zero knowledge, and the suffix
of P or A denoting proof systems (statistical soundness) or argument systems
(computational soundness).

A commitment scheme is the cryptographic analogue of a locked box. It is
a two-stage interactive protocol between a pair of probabilistic polynomial-
time parties, the sender and the receiver. In the first stage, the sender “com-
mits” to a string m, corresponding to locking an object in the box. In the
second stage, the sender “reveals” m to the receiver, corresponding to open-
ing the box. Like zero-knowledge protocols, commitment schemes have two se-
curity properties. Informally, hiding says that a cheating receiver should not
be able to learn anything about m during the commit stage, and binding says
that a cheating sender should not be able to reveal two different messages af-
ter the commit stage. Again, each of these properties can be statistical (hold-
ing against computationally unbounded cheating strategies, except with negli-
gible probability) or computational (holding against polynomial-time cheating
strategies, except with negligible probability). Thus we again get four flavors
of commitment schemes, but it is easily seen to be impossible to simultane-
ously achieve statistical security for both hiding and binding. However, it is
known that if one-way functions exist, then we can achieve statistical security
for either one of the security properties [HILL, Nao, NOV, HR]. Conversely,
commitment schemes, even with both properties computational, imply one-way
functions [IL].

1 A promise problem Π is a pair (ΠY, ΠN) of disjoint sets of strings, corresponding to
the YES instances and NO instances. Given a string x that is “promised” to be in
ΠY ∪ ΠN, the task is to decide whether x ∈ ΠY or x ∈ ΠN.

2 An even stronger notion that statistical security is perfect security, where the clause
“except with negligible probability” is removed. We will not consider perfect security
in this paper.
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1.2 Previous Work

The classic construction of Goldreich, Micali, and Wigderson [GMW] shows how
to construct zero-knowledge protocols for NP given any commitment scheme.
Moreover, the security properties of the commitment scheme translate to the
security properties of the zero-knowledge protocol: a statistically (resp., compu-
tationally) hiding commitment scheme yields statistical (resp., computational)
zero knowledge, and a statistically (resp., computationally) binding commitment
scheme yields a proof (resp. argument) system.3 Thus, if one-way functions exist,
CZKP, SZKA, and CZKA are very powerful in that they contain NP (and even
the classes MA or IP [IY, BGG+], depending on whether or not we require the
honest prover to be efficient).

Several papers, beginning with Damg̊ard [Dam1], gave results of a converse
nature, culminating in two theorems of Ostrovsky and Wigderson [OW]. The
first theorem shows that a zero-knowledge protocol (of any type4) for a hard-
on-average problem implies the existence of one-way functions. The second the-
orem shows that a zero-knowledge protocol for any problem that cannot be
solved in probabilistic polynomial time (BPP) implies a “weak form” of one-way
functions. (For problems in BPP, we do not expect to obtain any implication,
since every problem in BPP has a trivial zero-knowledge proof in which the
prover sends nothing and the verifier decides on its own.) These results sug-
gest that the nontriviality of zero knowledge is equivalent to the existence of
one-way functions, which in turn is equivalent to the existence of commitment
schemes [HILL, Nao, IL]. However, they are only partial converses to [GMW],
and do not provide an exact characterization of the power of zero knowledge.
This is because for problems that are neither hard on average nor in BPP, a
zero-knowledge protocol only implies the “weak form” of one-way functions in
the second result, which seems too weak to construct commitment schemes and
thus zero-knowledge protocols. Finally, note that first direction (one-way func-
tions imply that zero knowledge is powerful) seems to say nothing about SZKP:
to get an SZKP protocol out of [GMW], one would need a commitment scheme
that is both statistically hiding and statistically binding, which is impossible.

The above difficulties no longer seem inherent, however, if one turns away
from one-way functions and standard commitments to instance-dependent com-
mitments [BMO, IOS]. These are commitment protocols where the sender and
receiver both receive an instance x of some promise problem Π as an auxiliary
input. We only require the commitment scheme to be hiding when x is a YES in-
stance and binding when x is a NO instance. For example, Graph Isomorphism

has a simple instance-dependent commitment scheme: when the auxiliary input
is x = (G0, G1), the sender commits to a bit b ∈ {0, 1} by sending a random
isomorphic copy H of Gb, and reveals b by sending the isomorphism between H

3 In [GMW], only computational zero-knowledge proof systems were considered. The
original construction of statistical zero-knowledge arguments for NP [BCC] used
stronger cryptographic primitives than commitment schemes.

4 The results of [OW] are stated for CZKP, but are easily seen to hold even for the
most general class CZKA.
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and Gb. This protocol is perfectly hiding when G0 ∼= G1, and perfectly binding
when G0 � G1. It is possible to achieve both perfect hiding and perfect binding
because we do not require the properties to hold at the same time.

As shown by Itoh, Ohta, and Shizuya [IOS], this relaxation of commitment
schemes remains useful for constructing zero-knowledge protocols, because in
many constructions, the hiding property is used for zero knowledge (which is
required only when x is a YES instance) and the binding property is used for
soundness (which is required ony when x is a NO instance). For example, using
[GMW], we see that if a promise problem Π ∈ NP has an instance-dependent
commitment scheme, then Π has a zero-knowledge protocol, where the hiding
property (statistical or computational) translates to the zero-knowledge property
and the binding property translates to the soundness property.

In the last few years, there has been substantial progress on proving the
converse: if a problem has a zero-knowledge protocol, then it has an instance-
dependent commitment scheme. This progress started with SZKP, where both
security properties are statistical.

– It was conjectured in [MV] that every problem in SZKP has an instance-
dependent commitment scheme. As a first step, they constructed an instance-
dependent commitment scheme for a restricted version of Statistical Dif-

ference, one of the complete problems for SZKP [SV].
– In [Vad], it was shown that SZKP consists exactly of the problems with

instance-dependent commitment schemes in which the sender is computa-
tionally unbounded rather than polynomial time. The unbounded sender
renders the result useless for the study of zero knowledge with efficient hon-
est provers, which was the motivation of [MV]. But the result was useful for
the study of CZKP; see below.

– In [NV], the sender was made efficient, at the price of working with a new
variant of commitments, called 1-out-of-2-binding commitments (denoted as(2
1

)
-binding). These

(2
1

)
-binding commitments were shown to be sufficient for

constructing zero-knowledge proofs for NP, but are otherwise cumbersome
and of unclear value as cryptographic primitives on their own.

– In [Vad, OV], the classes involving computational security, namely CZKP,
SZKA, and CZKA, were characterized in terms of SZKP and “instance-
dependent one-way functions.” Thus, combining the above types of instance-
dependent commitments for SZKP with constructions of commitments from
one-way functions [HILL, Nao, NOV, HR], the classes CZKP, SZKA, and
CZKA could be characterized in terms of instance-dependent commitments,
but inheriting the deficiencies of [Vad, OV] (namely, an unbounded sender
or

(2
1

)
-binding).5 These instance-dependent commitments played a crucial

role in the characterization of the classes CZKP, SZKA, and CZKA, and
in proving various unconditional results about these classes (such as equiv-

5 The proceedings version of [OV] actually quotes the main result (Theorem 1) of this
present paper. However, this was done only to simplify the presentation there, and
the main results of [OV] were actually obtained prior to Theorem 1.
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alence of honest-verifier and cheating-verifier zero knowledge and closure
under union).

– Instance-dependent commitments for a restricted class of zero-knowledge
proofs, namely 3-round public-coin zero-knowledge proofs, were implicit in
the works of Damg̊ard [Dam1, Dam2]. Indeed, Kapron, Malka, and Srini-
vasan [KMS] used Damg̊ard’s techniques to show that 3-round public-coin
zero-knowledge proofs where the verifier just sends a single random bit —
called V-bit protocols — are exactly characterized by noninteractive instance-
dependent commitments.6

1.3 Our Results

In this paper, we show that zero knowledge proofs are equivalent to standard
instance-dependent commitments, where the sender is efficient and there is no
non-standard

(2
1

)
-binding property. The main technical contribution is the con-

struction for SZKP:

Theorem 1. For every promise problem Π, Π ∈ SZKP if and only if Π has
an instance-dependent commitment scheme that is statistically hiding on the
YES instances and statistically binding on the NO instances. Moreover, every
Π ∈ SZKP has an instance-dependent commitment scheme that is public coin
and is constant round.

As mentioned previously, a construction of instance-dependent commitments for
SZKP implies ones for the other classes (by their characterizations in terms
SZKP and instance-dependent one-way functions [Vad, OV] together with the
constructions of commitments from one-way functions [HILL, Nao, NOV, HR]).

Corollary 1. The following hold for every problem Π ∈ NP:7

1. Π ∈ CZKP if and only if Π has an instance-dependent commitment scheme
that is computationally hiding on the YES instances and statistically binding
on the NO instances. Moreover, this instance-dependent commitment scheme
is public coin and is constant round.

2. Π ∈ SZKA if and only if Π has an instance-dependent commitment scheme
that is statistically hiding on the YES instances and computationally binding
on the NO instances. Moreover, this instance-dependent commitment scheme
is public coin.

6 Noninteractive commitments are commitments where the sender commits to a mes-
sage in the commit stage by sending a single message to the receiver; hence, the
receiver does not send any message, both in the commit and reveal stages.

7 We state the result for problems in NP for simplicity. The direction stating that
zero-knowledge implies instance-dependent commitments (which is our main contri-
bution) actually holds without any constraint on Π other than being in the stated
zero-knowledge class. The other direction actually generalizes to problems in MA
when the honest prover is required to be efficient and IP when the honest prover is
allowed to be computationally unbounded.
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3. Π ∈ CZKA if and only if Π has an instance-dependent commitment scheme
that is computationally hiding on the YES instances and computationally
binding on the NO instances. Moreover, this instance-dependent commitment
scheme is public coin.

Note that for the case of proof systems (i.e., statistical binding), our instance-
dependent commitment schemes are constant round. (For arguments, the poly-
nomial round complexity is inherited from the statistically hiding commitments
based on one-way functions [NOV, HR].) This enables us to resolve some open
questions regarding the round complexity of zero-knowledge proofs. For example:

Corollary 2. Every problem in SZKP (resp., CZKP ∩ NP8) has a constant-
round, public-coin statistical (resp., computational) zero-knowledge proof system
with soundness error 1/ poly(n) and a black-box simulator.9

It was known how to achieve constant rounds for CZKP under the assumption
that one-way functions exist, but it was not known for SZKP under any as-
sumption. Previously, it was only known that SZKP had constant-round honest-
verifier statistical zero-knowledge proofs, and these were private coin [Oka].

Since SZKP is closed under complement [Oka], we can also obtain instance-
dependent commitments in which the security properties are reversed (i.e., sta-
tistically binding on YES instances and statistically hiding on NO instances).
Such commitments are useful for implementing commitments from the verifier.
Using such commitments in the protocol of [GK1] (or, more easily, [Ros]), we
obtain:

Corollary 3. Every problem in SZKP has a constant-round (private-coin) zero-
knowledge proof system with negligible soundness error.

Following [MOSV], a potential application of our instance-dependent commit-
ments is to show that every problem in SZKP has a concurrent statistical zero-
knowledge proof system with ω(log n) rounds. However, the analysis of [MOSV]
is given only for noninteractive commitments, so it would need to be extended
to handle our interactive commitments.

1.4 Overview of Our Techniques

Our proof of Theorem 1 uses techniques from Nguyen and Vadhan [NV] and
Haitner and Reingold [HR]. Recall that [NV] constructed instance-dependent(2
1

)
-binding commitments for SZKP. In the standard, non-instance-dependent

setting, [HR] showed how to convert
(2
1

)
-binding commitments into standard

8 This result actually generalizes to CZKP ∩ AM. No further restriction is needed for
SZKP because SZKP ⊆ AM [AH].

9 Using [GMW] would yield a poor soundness error of 1−1/ poly(n). To obtain sound-
ness error 1/ poly(n), we use an O(log n)-fold parallel repetition of [Blu]. Negligible
soundness error cannot be achieved with public coins and black-box simulation for
problems outside BPP [GK2].
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commitments using universal one-way hash functions [NY], whose existence is
equivalent to that of one-way functions [Rom, KK]. Thus, we obtain our re-
sult by constructing an instance-dependent analogue of universal one-way hash
functions for every problem in SZKP, and then applying the Haitner & Reingold
transformation.

It is not immediately clear, however, how to define instance-dependent uni-
versal one-way hash functions in a way that allows for statistical security (as
we need for Theorem 1). The standard definition of a universal one-way hash
family is as a family H of length-decreasing functions h : {0, 1}n → {0, 1}m, such
that for every fixed y ∈ {0, 1}n, if we are given a random h

R← H, it is infeasi-
ble to find an y′ �= y such that h(y′) = h(y). Note that the latter property is
necessarily computational. Since the hash functions are length-decreasing, h(y)
will have many preimages y′ with high probability over a random y and h, and
thus an unbounded adversary could find a collision easily. We observe, how-
ever, that the Haitner & Reingold transformation [HR] does not really require a
length-decreasing function. They only use the fact that h(y) typically has many
preimages, and they only use this to establish the hiding property of the resulting
commitment scheme. For the binding property, they use infeasibility of finding
collisions; for statistical security, this amounts to the functions being nearly in-
jective. With these observations, our notion of an instance-dependent universal
one-way hash family Hx is as a family of functions (typically not length decreas-
ing) that also depend on an instance x of some promise problem Π. When x is
a YES instance, a random hash function from the family has large preimages
with high probability, and when x is a NO instance, a random hash function is
nearly injective with high probability. We show that every problem in SZKP has
an instance-dependent universal one-way hash family of this type, and thus are
able to apply the Haitner & Reingold transformation to the

(2
1

)
-binding commit-

ments of [NV] to obtain our result.

1.5 Organization

In Section 2, we provide definitions to terminologies used in this paper. We prove
our main result, Theorem 1, in Section 3. The proof of Corollary 1 can be found
in [OV], and the proofs of the other corollaries will appear in the full version of
this paper.

2 Preliminaries

If X is a random variable taking values in a finite set U , then we write x
R← X

to indicate that x is selected according to X . If S is a subset of U , then x
R← S

means that x is selected according to the uniform distribution on S. We adopt
the convention that when the same random variable occurs several times in an
expression, they refer to a single sample. For example, Pr[f(X) = X ] is defined
to be the probability that when x

R←X , we have f(x) = x. We write Un to denote
the random variable distributed uniformly over {0, 1}n.
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A function ε : N → [0, 1] is called negligible if ε(n) = n−ω(1). We let neg(n)
denote an arbitrary negligible function (i.e., when we say that f(n) < neg(n) we
mean that there exists a negligible function ε(n) such that for every n, f(n) <
ε(n)). Likewise, poly(n) denotes an arbitrary function f(n) = nO(1).

PPT refers to probabilistic algorithms (i.e., Turing machines) that run in
strict polynomial time. A nonuniform PPT algorithm is a pair (A, z̄), where
z̄ = z1, z2, . . . is an infinite sequence of strings where |zn| = poly(n), and A is
a PPT algorithm that receives pairs of inputs of the form (x, z|x|). (The string
zn is the called the advice string for A for inputs of length n.) Nonuniform PPT
algorithms are equivalent to (nonuniform) families of polynomial-sized Boolean
circuits.

Promise problems. Roughly speaking, a promise problem [ESY] is a decision
problem where some inputs are excluded. Formally, a promise problem is speci-
fied by two disjoint sets of strings Π = (ΠY , ΠN), where we call ΠY the set of YES
instances and ΠN the set of NO instances. Such a promise problem is associated
with the following computational problem: given an input that is “promised”
to lie in ΠY ∪ ΠN, decide whether it is in ΠY or in ΠN. Note that languages
are a special case of promise problems (namely, a language L over alphabet Σ
corresponds to the promise problem (L, Σ∗ \ L)). Thus working with promise
problems makes our results more general. Moreover, even to prove our results
just for languages, it turns out to be extremely useful to work with promise
problems along the way. All of the complexity classes in this paper are taken
to be classes of promise problems. We refer the reader to the recent survey of
Goldreich [Gol] for more on the utility and subtleties of promise problems.

2.1 Instance-Dependent Cryptographic Primitives

Instance-dependent functions. It will be very useful for us to work with crypto-
graphic primitives that may depend on an instance x of a problem Π = (ΠY, ΠN),
and where the security condition will hold only if x is in some particular set
I ⊆ {0, 1}∗. We begin our discussion of instance-dependent primitives with the
following definition.

Definition 1. An instance-dependent function is a family F = {fx : {0, 1}n(|x|)

→ {0, 1}m(|x|)}x∈{0,1}∗, where n(·) and m(·) are polynomials. We call F poly-
nomial-time computable if there is a deterministic polynomial-time algorithm F
such that for every x ∈ {0, 1}∗ and y ∈ {0, 1}n(|x|), we have F (x, y) = fx(y).

To simplify notation, we often write fx : {0, 1}n(|x|) → {0, 1}m(|x|) to mean the
family {fx : {0, 1}n(|x|) → {0, 1}m(|x|)}x∈{0,1}∗.

Indistinguishability of instance-dependent ensembles. The notions of statistical
and computational indistinguishability have instance-dependent analogues. But
first, we define an instance-dependent analogue of probability ensembles.
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Definition 2. An instance-dependent probability ensemble is a collection of
random variables {Ax}x∈{0,1}∗, where Ax takes values in {0, 1}p(|x|) for some
polynomial p. We call such an ensemble samplable if there is a probabilistic
polynomial-time algorithm M such that for every x, the output M(x) is distrib-
uted according to Ax.

Definition 3. Two instance-dependent probability ensembles {Ax}x∈{0,1}∗ and
{Bx}x∈{0,1}∗ are computationally indistinguishable on I ⊆ {0, 1}∗ if for every
nonuniform PPT D, there exists a negligible function ε such that for all x ∈ I,

|Pr [D(x, Ax) = 1] − Pr [D(x, Bx) = 1]| ≤ ε(|x|) .

Similarly, we say that {Ax}x∈{0,1}∗ and {Bx}x∈{0,1}∗ are statistically indistin-
guishable on I ⊆ {0, 1}∗ if the above is required for all functions D, instead
of only nonuniform PPT ones. Equivalently, {Ax}x∈{0,1}∗ and {Bx}x∈{0,1}∗ are
statistically indistinguishable on I iff Ax and Bx are have statistical distance at
most ε(|x|) for some negligible function ε and all x ∈ I. We write ≈c and ≈s to
denote computational and statistical indistinguishability, respectively.

Instance-dependent commitments. We give a definition of instance-dependent
commitment schemes that extends the standard (that is, non-instance depen-
dent) definition of commitment schemes in a natural way. Note that in our
definition below, the reveal stage is noninteractive (that is, consisting of a single
message from the sender to the receiver). This because in the reveal stage, with-
out loss of generality, we can have the sender provide the receiver the random
coin tosses it used in the commit stage, and have the receiver verify consistency.

Definition 4. An instance-dependent commitment scheme is a family of pro-
tocols {Comx}x∈{0,1}∗ with the following properties:

1. Scheme Comx proceeds in two stages: a commit stage and a reveal stage.
In both stages, the sender and receiver receive instance x as common input,
and hence we denote the sender and receiver as Sx and Rx, respectively, and
write Comx = (Sx, Rx).

2. At the beginning of the commit stage, sender Sx receives a private input
b ∈ {0, 1}, which denotes the bit that S is supposed to commit to. At the end
of the commit stage, both sender Sx and receiver Rx output a commitment
c.

3. In the reveal stage, sender Sx sends a pair (b, d), where d is the decommit-
ment string for bit b. Receiver Rx accepts or rejects based on x, b, d, and
c.

4. The sender Sx and receiver Rx algorithms are computable in polynomial time
(in |x|), given x as auxiliary input.

5. For every x ∈ {0, 1}∗, Rx will always accept (with probability 1) if both
sender Sx and receiver Rx follow their prescribed strategy.

Instance-dependent commitment scheme {Comx = (Sx, Rx)}x∈{0,1}∗ is public
coin if for every x ∈ {0, 1}∗, all messages sent by Rx are independent random
coins.
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To simplify notation, we write Comx or (Sx, Rx) to denote instance-dependent
commitment scheme {Comx = (Sx, Rx)}x∈{0,1}∗ .

The hiding and binding properties of standard commitments extend in a nat-
ural way to their instance-dependent analogues.

Definition 5. Instance-dependent commitment scheme Comx = (Sx, Rx) is sta-
tistically [resp., computationally] hiding on I ⊆ {0, 1}∗ if for every [resp., nonuni-
formPPT]R∗, theensembles{viewR∗(Sx(0), R∗)}x∈I and{viewR∗(Sx(1), R∗)}x∈I

are statistically [resp., computationally] indistinguishable, where random variable
viewR∗(Sx(b), R∗)denotes the viewofR∗ in the commit stage interactingwithSx(b).
For a problemΠ = (ΠY , ΠN), an instance-dependent commitment schemeComx for
Π is statistically [resp., computationally] hiding on the YES instances if Comx is
statistically [resp., computationally] hiding on ΠY.

Definition 6. Instance-dependent commitment scheme Comx = (Sx, Rx) is sta-
tistically [resp., computationally] binding on I ⊆ {0, 1}∗ if for every [resp.,
nonuniform PPT] S∗, there exists a negligible function ε such that for all x ∈ I,
the malicious sender S∗ succeeds in the following game with probability at most
ε(|x|).

S∗ interacts with Rx in the commit stage obtaining commitment c. Then
S∗ outputs pairs (0, d0) and (1, d1), and succeeds if in the reveal stage,
Rx(0, d0, c) = Rx(1, d1, c) = accept.

For a problem Π = (ΠY, ΠN), an instance-dependent commitment scheme
Comx for Π is statistically [resp., computationally] binding on the NO instances
if Comx is statistically [resp., computationally] binding on ΠN.

1-out-of-2-binding commitments. A 1-out-of-2-binding commitment scheme—
denoted as

(2
1

)
-binding—is a commitment schemes with two sequential and re-

lated phases such that in each phase, the sender commits to and reveals a value.
(They are related in the sense that the protocol for the second phase takes the
transcript of the first phase as a common input to both the sender and receiver,
and the sender may maintain private state between the two phases.) The hid-
ing property of such commitments is strong: we require that at the end of each
commit stage, the receiver has not learned anything about the value to which
the sender is committing. The binding property, however, is relatively weak. It
only says that it is infeasible for a cheating sender to break the commitment in
both phases. That is, with high probability over the first commit stage, there is
at most one value to which the sender can open that will result in the second
phase being non-binding. A formal definition can be found in [NV, Sect. 2] (cf.,
[Ong, Sect. 3.4.1]).

3 Instance-Dependent Commitments for SZKP

Our goal in this section is to prove Theorem 1. We begin by recalling the result
of Nguyen and Vadhan [NV], which is the starting point for our work. Their
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construction started off from the SZKP-complete problem Entropy Differ-

ence [GV], ED = (EDY,EDN), defined as:

EDY = {(X, Y ) : H(X) ≥ H(Y ) + 1};
EDN = {(X, Y ) : H(X) ≤ H(Y ) − 1},

where X and Y are random variables specified by circuits that same from them
(by evaluating the circuit on a uniformly random input), and H(·) denotes the
(Shannon) entropy, i.e., H(Z) = E

z
R←Z

[log(1/ Pr[Z = z])]. We assume, without
loss of generality, that the size of the circuits X and Y are upper bounded by
the square of their respective input lengths. (This can be guaranteed by padding
dummy input variables to circuits.)

The [NV] construction of instance-dependent schemes for ED does not provide
a commitment scheme with a standard binding property, but rather with the
weaker

(2
1

)
binding property (cf., Sect. 2.1). These commitments, even though

with a weaker binding property, suffice for getting efficient-prover statistical
zero-knowledge proofs for all of SZKP ∩ NP [NV].

Our construction of instance-dependent commitments for all of SZKP will
follow the same approach as [NV], except at the place where they get stuck with(2
1

)
-binding commitments, we convert them into commitments with the standard

binding property using the ideas of Haitner and Reingold [HR]. Specifically, we
use an instance-dependent variant of the Haitner & Reingold transformation to
convert

(2
1

)
-binding commitments into commitments with the standard binding

property.
The commitments of [NV] were not constructed directly from ED, but instead

utilized a Cook reduction from ED to a restricted version of the Entropy

Approximation [GSV] problem, denoted as EA’ = (EA’Y,EA’N), and defined
below:10

EA’Y = {(X, t) : H(X) ≥ t + 1, and |X | ≤ n2};

EA’N = {(X, t) : t − 1/n14 ≤ H(X) ≤ t, and |X | ≤ n2}.

Here n denotes the number of input gates to the circuit encoding X , and |X | is
the size of that circuit. The condition |X | ≤ n2 simply allows us to use n as the
security parameter, even though the security properties of instance-dependent
commitment schemes are defined in terms of the size of the instance (X, t).

The problem EA’ is considered a restricted version of Entropy Approxima-

tion because (unrestricted version of) the Entropy Approximation problem
EA = (EAY,EAN) does not lower-bound the entropy in the case of the NO
instances. EA is defined as follows:

10 The definition of EA’ in [NV] has an additional ‘security parameter’ k, which is
eventually set to max{n14, |X|}. For convenience, we have restricted to the case
that |X| ≤ n2; this is without loss of generality for ED and is preserved in the
reduction from ED to EA’ in Proposition 1 below. Under this restriction, we can
simply set k = n14, resulting in our definition of EA’.
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EAY = {(X, t) : H(X) ≥ t + 1};
EAN = {(X, t) : H(X) ≤ t}.

For instances of EA, we will assume, without loss of generality, that the size of
the circuit X is upper bounded by the square of its input length (similar to what
we assumed for instances of ED).

The Cook reduction fromED toEA’ is established by the following proposition.

Proposition 1. (Cook Reduction from ED to EA’; from [NV, Lem. 4.9], which
builds on [GSV].) Let (X, Y ) be an instance of the Entropy Difference prob-
lem ED = (EDY,EDN), where the circuits encoding the random variables X and
Y both have input length n and are of size at most n2 (wlog). The Cook reduction
from ED to EA’ is as follows:

(X, Y ) ∈ EDY ⇒
n·k∨

i=0

⎛

⎝(Y, i/k) ∈ EA’Y ∧
i∧

j=0

(X, j/k) ∈ EA’Y

⎞

⎠ ;

(X, Y ) ∈ EDN ⇒
n·k∧

i=0

⎛

⎝(Y, i/k) ∈ EA’N ∨
i∨

j=0

(X, j/k) ∈ EA’N

⎞

⎠ ,

where k = n14.

Note that the reduction from ED to EA’ in the above proposition does not
alter the circuits; hence, the size of the circuits in both problems remain up-
per bounded by the square of their respective input lengths, which is what we
require.

Using Proposition 1, [NV] noted that it suffices to construct instance-
dependent commitments for both EA’ and its complement EA’ in order to
obtain instance-dependent commitments for ED and hence all of SZKP. We
capture that observation in the following lemma.

Lemma 1. Suppose that both the special case of the Entropy Approximation

problem EA’ and its complement EA’ have instance-dependent commitments.
That is,

– there exist instance-dependent commitments that are statistically hiding on
instances in EA’Y and statistically binding on instances in EA’N, and

– there exist instance-dependent commitments that are statistically hiding on
instances in EA’N and statistically binding on instances in EA’Y.

Then the Entropy Difference problem ED (and hence, every problem in
SZKP) has an instance-dependent commitment scheme that is statistically hid-
ing on the YES instances and statistically binding on the NO instances.

Indeed, [NV] constructed instance-dependent schemes for both EA’ and EA’.
Their scheme for EA’ is a standard instance-dependent commitment scheme,
but for EA’, they only managed to only get a weaker

(2
1

)
-binding commitment

scheme (cf., Sect. 2.1).
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Lemma 2. (From [NV, Thm. 4.4].) The problem EA’ has an instance-dependent
commitment scheme that is statistically hidingonYES instances (namely, instances
in EA’Y) and statistically binding on NO instances (namely, instances in EA’N).
Moreover, this scheme is public coin and constant round.

Lemma 3. (From[NV,Thm. 4.5].)TheproblemEA’hasan instance-dependent2-
phase commitment scheme that is statistically hiding on theYES instances (namely,
instances inEA’N) and statistically

(2
1

)
binding onNO instances (namely, instances

in EA’Y). Moreover, this scheme is public coin and constant round.

3.1 The Haitner and Reingold Transformation

To obtain instance-dependent commitments (with the standard binding prop-
erty) for EA’, we use an instance-dependent variant of the Haitner & Reingold
transformation [HR], which we informally describe now. (A detailed description
can be found in [HNO+, Sect. 7].)

Overview of [HR]. The
(2
1

)
binding property of 2-phase commitment schemes

states that it is infeasible for an adversarial sender S∗ to break both phases of the
commitment, but nonetheless it might be possible for S∗ to break one of the two
phases of its choice. With this in mind, suppose that after the first commitment
phase, receiver R flips a coin phase ← {1, 2}. If phase = 1, the first commitment
phase is used to do the commitment. On the other hand, if phase = 2, the
second commitment phase is used to do the commitment (this is done by S∗

revealing its first-phase commitment, and then proceeding to the second phase
with R). Intuitively, this would make the scheme binding (with probability 1/2)
if S∗ chooses which of the two phases it wants to break in advance. The problem,
however, is that S∗ could choose the phase that it wants to break after seeing
the value of phase.

A way to overcome this problem is to force the adversary S∗ to decide which
of the two phases it wants to break before seeing the value of phase. Haitner and
Reingold [HR] achieved this by having S∗ send back a value y = f(σ) before
the value of phase is announced by the receiver R, where σ is the message
committed to by S∗ in the first phase, and f is a random hash function from a
universal one-way hash family. A universal one-way hash family [NY] is a family
of length-decreasing hash functions such that it is hard to find collisions with
any particular value of x specified in advance. In other words, for a value of σ
announced before a random hash function f is selected from that family, any
efficient algorithm will not be able to find another σ′ such that f(σ′) = f(σ). This
property of a universal one-way hash family is termed target collision resistance
by Bellare and Rogaway [BR].

We first argue the hiding property of this new scheme. Before y is sent, the
value of σ, the message committed in the first phase, is hidden. If hash function
f is compressing enough, then the value of y = f(σ) leaks at most a few bits of
information about σ, so the entropy of σ given y is still large. This means that
we can apply a pairwise-independent hash on σ to get an almost uniform value
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(by the Leftover Hash Lemma [HILL]). Thus, this new scheme is hiding when
phase = 1. When phase = 2, the sender reveals σ and proceeds on to the second
phase, which is used for the commitment. In this case, the hiding property of this
new scheme follows from the hiding property of the second commitment phase.

Next, we argue the binding property of this new scheme by making the follow-
ing observation: the

(2
1

)
binding property says that after the first commitment

phase, there exists at most one value of σ∗ that allows an adversarial sender S∗

to cheat in the second phase. In other words, if S∗ reveals to a value other than
σ∗, the second phase will be binding.

When it is the sender’s turn to send y, after receiving a random hash function
f from receiver R, sender S∗ could decide to either send y = f(σ∗) or send
y �= f(σ∗). If it decides to send y = f(σ∗), and if R selects phase = 1 following
that, then S∗ is bound to a single value, since to decommit to two different
values it will have to reveal a σ′ �= σ∗ with f(σ′) = y = f(σ∗), and this is
infeasible by the target collision resistance property of f . (The value of σ∗ is
determined by the first-phase commitment, which is completed before a random
f is selected.) Instead if it decides to send y �= f(σ∗), and if R selects phase = 2
following that, then S∗ will have to reveal to a value other than σ∗ for its first-
phase commitment. In this case, the commitments are done in the second phase,
and by the

(2
1

)
binding property, this phase is guaranteed to be binding. Since

the value of phase is independent of y, both cases happen with probability 1/2,
which would make our scheme binding with probability close to 1/2.

3.2 Instance-Dependent UOWHFs

Our approach to construction standard instance-dependent commitments for
EA’ and hence all of SZKP is to carry out an instance-dependent analogue
of the Haitner & Reingold transformation. To do this, we want to construct
an instance-dependent analogue of universal one-way hash functions EA’ and
apply it to the

(2
1

)
-binding commitments of Lemma 3. Since we want instance-

dependent commitments with statistical security (and are not making any com-
plexity assumptions), we need to formulate the properties of universal one-way
hash functions in a way that allows for statistical security. The properties used
in the Haitner & Reingold transformation are that the functions should be com-
pressing (used for hiding) and target collision-resistant (used for binding). Thus
the first attempt would be to require that our instance-dependent universal
one-way hash functions are compressing on YES instances and statistically tar-
get collision-resistant on NO instances. However, it seems unlikely that this is
possible. Indeed, it would imply that EA’ is in BPP: statistical target collision
resistance implies that the functions are not compressing, so we could distinguish
YES and NO instances simply be checking whether the functions are compress-
ing or not. To get around this difficulty, we observe that the hiding analysis
sketched above only requires that σ retains a lot of entropy given y = f(σ). This
property can hold for non-compressing functions; it simply says that f has large
preimage sizes.

This leads to the following definition.
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Definition 7. Problem Π = (ΠY, ΠN) has an instance-dependent universal
one-way hash family if there exists a polynomial-time computable family F =⋃

x Fx = {f : {0, 1}n(|x|) → {0, 1}m(|x|)}, where n(·) and m(·) are polynomials,
such that the following two conditions hold.

– The family FY =
⋃

x∈ΠY
Fx has the large preimages property: there exists

a function α(·) = ω(1) and a negligible function ε, such that the following
holds for all x ∈ ΠY and every function f ∈ Fx:

Pr
y←{0,1}n(|x|)

[∣
∣f−1(f(y))

∣
∣ ≥ |x|α(|x|)

]
≥ 1 − ε(|x|) .

– The family FN =
⋃

x∈ΠN
Fx has statistical target collision resistance: there

exists a negligible function ε such that for every A, the following holds for
all x ∈ ΠY and every y ∈ {0, 1}n(|x|):

Pr
f←Fx

[
|f−1(f(y))| = 1

]
≥ 1 − ε(|x|) .

Following the discussion above, this definition allows m(|x|) > n(|x|), and only
insist that the family has the large preimages property on the YES instances. In
fact, our construction of an instance-dependent universal one-way hash family
for EA’ will be such that m(|x|) is much larger than n(|x|).

With the above definition, we have the following instance-dependent analogue
of the Haitner & Reingold transformation, obtained as corollary of Theorem 7.20
in [HNO+]:

Proposition 2. (Corollary of [HNO+, Thm. 7.20].) Let Π = (ΠY , ΠN) be a
promise problem, and suppose that the following two conditions hold:

– there exists an instance-dependent universal one-way hash family F =
⋃

x Fx

for Π, and
– there is an instance-dependent 2-phase commitment scheme (Sx, Rx) for Π

that is statistically hiding on the YES instances, and statistically
(2
1

)
binding

on NO instances.

Then, there is an instance-dependent commitment scheme (Sx, Rx) for Π that
is statistically hiding on the YES instances, and statistically binding on NO
instances. Moreover, (Sx, Rx) is public coin if (Sx, Rx) is.

Based on the above proposition, it suffices to construct an instance-dependent
universal one-way hash family for EA’ in order to get instance-dependent com-
mitments for EA’.

3.3 Instance-Dependent UOWHF for EA

Although we just need an instance-dependent universal one-way hash family for
EA’, we will construct one for the slightly more general problem of EA.
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Working directly with EA on an instance (X, t) is difficult since we do not
know any structure of the random variable X other than its entropy bound. To
get more structure, we flatten X by taking multiple independent samples of it
and outputting all of them. Let X ′ denote this new random variable. Doing this
makes the probability masses of X ′ concentrated around 2−H(X′), and this is why
we call it flattening the random variable. (This is also known as the Asymptotic
Equipartition Property in the information theory literature; see [CT].) Following
[GV], we give a quantitative definition of flatness as follows:

Definition 8. Random variable X is Θ-flat if for every r ≥ 1,

Pr
x←X

[
2−r·Θ <

Pr[X = x]
2H(X) < 2r·Θ

]
> 1 − 2−r2

.

Consider the flattened version of the Entropy Approximation problem, de-
noted as FlatEA = (FlatEAY,FlatEAN), and defined as follows:

FlatEAY = {(X, t) : H(X) ≥ t + n14/15, X is n8/15-flat, and |X | ≤ n2}
FlatEAN = {(X, t) : H(X) ≤ t, X is n8/15-flat, and |X | ≤ n2}

Here n denotes the number of input gates to the circuit encoding X , and |X | is
the size of that circuit. Recall that the condition |X | ≤ n2 simply allows us to
use n as the security parameter, even though the security properties of instance-
dependent commitment schemes are defined in terms of the size of the instance
(X, t). Note that the entropy gap between the two cases is close to being linear
in n, whereas the deviation from flatness is close to being

√
n.

It is clear that FlatEA is polynomial time reducible to EA, and the re-
verse reduction from EA to FlatEA is achieved by taking many (e.g. n28)
independent copies of X (cf., the Flattening Lemma of [GV, Lem. 3.5]). Hence,
constructing an instance-dependent universal one-way hash family for EA is
equivalent to constructing one for FlatEA, and we do this next.

Theorem 2. The complement of the flattened version of the Entropy Ap-

proximation problem, namely FlatEA has an instance-dependent universal
one-way hash family.

In the remaining of this section, we abuse notation by using X : {0, 1}n →
{0, 1}m to denote the circuit that samples random variable X .

Proof Idea of Theorem 2

For the problem FlatEA, we will need to construct an instance-dependent (fam-
ily of) functions that have statistical target collision resistance on the YES in-
stances and large preimages property on the NO instances. These are reversed
properties because we want to prove that the complement FlatEA has an
instance-dependent universal one-way hash family.

For the YES instances of FlatEA, X has entropy at least t + γ, where
γ = n14/15. Since X is a nearly flat random variable, most of its preimages
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are small, i.e., their sizes are <∼ 2n−t−γ . So with high probability over a random
y ← {0, 1}n, the preimage size of X(y) is <∼ 2n−t−γ . By applying a pairwise-
independent hash h : {0, 1}n → {0, 1}β to y, for β >∼ n− t− γ, it would make the
function gh(y) = (X(y), h(y)) almost injective, in that for almost every element
in the range has a unique preimage. (An injective function is, by definition,
collision resistant.)

The adversary, however, need not choose y uniformly at random; in particular,
it could choose an element y such that X−1(X(y)) is large, making f(y) =
(X(y), h(y)) no longer injective. To prevent the adversary from gaining, we add
a shift s ∈ {0, 1}n to the circuit X . Specifically, let the new function be fs,h(y) =
(X(y ⊕ s), h(y)). Since y is now randomly shifted by s, the preimage size of
X(y⊕s) is small with high probability over a random s ← {0, 1}n. Thus, we can
conclude that fs,h(y) is almost injective even for an adversarially chosen y. This
will give us the desired target collision resistance property for β >∼ n − t − γ.

For the NO instances of FlatEA, X has entropy at most t. Since X is a
nearly-flat random variable, most of its preimages are large, i.e., their sizes are
>∼ 2n−t. Restricting to a hash h : {0, 1}n → {0, 1}β will shrink the size of the
preimages by a factor of approximately 2−β. So if β <∼ n − t, the size of the
preimages will still be large enough to satisfy the large preimages property.

The fact that the entropy gap γ = n14/15 between the YES and NO instances
is much greater than the deviation Θ = n8/15 from flatness is what allows us to
find an appropriate value of β between n − t − γ and n − t that satisfies both
cases. A complete proof will be given in the full version of this paper.
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Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 328–
339. Springer, Heidelberg (2007)

[MOSV] Micciancio, D., Ong, S.J., Sahai, A., Vadhan, S.: Concurrent zero knowl-
edge without complexity assumptions. In: Naor, M. (ed.) TCC 2004. LNCS,
vol. 2951, pp. 1–20. Springer, Heidelberg (2004)

[MV] Micciancio, D., Vadhan, S.: Statistical zero-knowledge proofs with efficient
provers: lattice problems and more. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 282–298. Springer, Heidelberg (2003)

[Nao] Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–
158 (1991)

[NOV] Nguyen, M.-H., Ong, S.J., Vadhan, S.: Statistical zero-knowledge arguments
for NP from any one-way function. In: Proc. 47th FOCS, pp. 3–14 (2006)

[NV] Nguyen, M.-H., Vadhan, S.: Zero knowledge with efficient provers. In: Proc.
38th STOC, pp. 287–295 (2006)

[NY] Naor, M., Yung, M.: Universal one-way hash functions and their crypto-
graphic applications. In: Proc. 21st STOC, pp. 33–43 (1989)

[Oka] Okamoto, T.: On relationships between statistical zero-knowledge proofs. J.
Comput. Syst. Sci. 60(1), 47–108 (2000)

[Ong] Ong, S.J.: Unconditional Relationships within Zero Knowledge. PhD thesis,
Harvard University, Cambridge (May 2007)

[OV] Ong, S.J., Vadhan, S.: Zero knowledge and soundness are symmetric. In:
Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 187–209. Springer,
Heidelberg (2007) Earlier version appeared as TR06-139 in the Electronic
Colloquium on Computational Complexity

[OW] Ostrovsky, R., Wigderson, A.: One-way functions are essential for non-trivial
zero-knowledge. In: Proceedings of the 2nd Israel Symposium on Theory of
Computing Systems, pp. 3–17. IEEE Computer Society, Los Alamitos (1993)

[Rom] Rompel, J.: One-way functions are necessary and sufficient for secure signa-
tures. In: Proc. 22nd STOC, pp. 387–394 (1990)

[Ros] Rosen, A.: A note on constant-round zero-knowledge proofs for NP. In: Naor,
M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 191–202. Springer, Heidelberg
(2004)

[SV] Sahai, A., Vadhan, S.: A complete problem for statistical zero knowledge. J.
ACM 50(2), 196–249 (2003)

[Vad] Vadhan, S.P.: An unconditional study of computational zero knowledge.
SIAM J. Comput. 36(4), 1160–1214 (2006)



Interactive and Noninteractive Zero Knowledge

are Equivalent in the Help Model�
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1 Introduction

Zero-knowledge proofs [4] are protocols whereby a prover can convince a verifier
that some assertion is true with the property that the verifier learns nothing
else from the protocol. This remarkable property is easily seen to be impossible
for the classical notion of a proof system, where the proof is a single string sent
from the prover to the verifier, as the proof itself constitutes ‘knowledge’ that
the verifier could not have feasibly generated on its own (assuming NP �⊆ BPP).
Thus zero-knowledge proofs require some augmentation to the classical model
for proof systems.

The original proposal of Goldwasser, Micali, and Rackoff [4] augments the clas-
sical model with both randomization and multiple rounds of interaction between
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the prover and the verifier, leading to what are called interactive zero-knowledge
proofs, or simply zero-knowledge proofs. An alternative model, proposed by Blum,
Feldman, and Micali [5,6], augments the classical model with a set-up in which
a trusted dealer randomly generates a reference string that is shared between
the prover and verifier. After this reference string is generated, the proof con-
sists of a single message from the prover to the verifier. Thus, these are referred
to as noninteractive zero-knowledge proofs. Since their introduction, there have
been many constructions of both interactive and noninteractive zero-knowledge
proofs, and both models have found numerous applications in the construction
of cryptographic protocols.

It is natural to ask what is the relation between these two models, that is:

Can every assertion that can be proven with an interactive zero-knowledge
proof also be proven with a noninteractive zero-knowledge proof?

Our main result is a positive answer to this question in the ‘help model’ of
Ben-Or and Gutfreund [7], where the dealer is given access to the statement to
be proven when generating the reference string. We hope that this will serve
as a step towards answering the above question for more standard models of
noninteractive zero knowledge, such as the common reference string model and
the public parameter model.

1.1 Models of Zero Knowledge

Interactive Zero Knowledge. Recall that an interactive proof system [4] for a
problem Π is an interactive protocol between a computationally unbounded
prover P and a probabilistic polynomial-time verifier V that satisfies the follow-
ing two properties:

– Completeness: if x is a yes instance of Π , then the V will accept with high
probability after interacting with the P on common input x.

– Soundness: if x is a no instance of Π , then for every (even computationally
unbounded) prover strategy P ∗, V will reject with high probability after
interacting with P ∗ on common input x.

Here, we consider problems Π that are not only languages, but also ones that are
promise problems, meaning that some inputs can be neither yes nor no instances,
and we require nothing of the protocol on such instances. (Put differently, we
are ‘promised’ that the input x is either a yes or a no instance.) We write IP
for the class of promise problems possessing interactive proof systems.

As is common in complexity-theoretic studies of interactive proofs and zero
knowledge, we allow the honest prover P to be computationally unbounded, and
require soundness to hold against computationally unbounded provers. However,
cryptographic applications of zero-knowledge proofs typically require an hon-
est prover P that can be implemented in probabilistic polynomial-time given a
witness of membership for x, and it often suffices for soundness to hold only
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for polynomial-time prover strategies P ∗ (leading to interactive argument sys-
tems [8]). It was recently shown how to extend the complexity-theoretic studies
of interactive zero knowledge proofs to both polynomial-time honest provers [9],
and to argument systems [10]; we hope that the same will eventually happen for
noninteractive zero knowledge.

Intuitively, we say that an interactive proof system is zero knowledge if the
verifier ‘learns nothing’ from the interaction other than the fact that the asser-
tion being proven is true, even if the verifier deviates from the specified protocol.
Formally, we require that there is an efficient algorithm, called the simulator,
that can simulate the verifier’s view of the interaction given only the yes in-
stance x and no access to the prover P . The most general notion, computational
zero knowledge or just zero knowledge, requires this to hold for all polynomial-
time cheating verifier strategies (and the simulation should be computationally
indistinguishable from the verifier’s view). A stronger notion, statistical zero
knowledge, requires security against even computationally unbounded verifier
strategies (and the simulation should be statistically indistinguishable from the
verifier’s view). We write ZK (resp., SZK) to denote the class of promise prob-
lems possessing computational (resp., statistical) zero-knowledge proof systems.

Noninteractive Zero Knowledge. For noninteractive zero knowledge [5,6], we
introduce a trusted third party, the dealer, who randomly generates a reference
string that is provided to both the prover and verifier. After that, the prover
sends a single message to the verifier, who decides whether to accept or reject.
Completeness and soundness are defined analogously to interactive proofs, except
that the probabilities are now also taken over the choice of the reference string.
Computational and statistical zero knowledge are also defined analogously to
the interactive case, except that now the reference string is also considered part
of the verifier’s view, and must also be simulated.

There are a number of variants of the noninteractive model, depending on
the form of the trusted set-up performed by the dealer. In the original, common
random string (crs) model proposed by Blum et al. [5,6], the reference string is
simply a uniformly random string of polynomial length. This gives rise to the
classes NIZKcrs and NISZKcrs of problems having noninteractive computational
and statistical zero-knowledge proofs in the common random string model. A
natural and widely used generalization is the public parameter model, where the
reference string need not be uniform, but can be generated according to any
polynomial-time samplable distribution. That is, we obtain the reference string
by running a probabilistic polynomial-time dealer algorithm D on input 1n,
where n is the length of statements to be proven (or the security parameter).
This model gives rise to the classes NIZKpub and NISZKpub.

A further generalization is the help model introduced by Ben-Or and Gut-
freund [7]. In this model, the distribution of the reference string is allowed to
depend on the statement x being proven. That is, the reference string is gener-
ated by running a probabilistic polynomial-time dealer algorithm D on input x.
We denote the class of problems having computational (resp. statistical) zero-
knowledge proofs in this model as NIZKh (resp., NISZKh). This model does not
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seem to suffice for most cryptographic applications, but its study may serve as a
stepping stone towards a better understanding of the more standard models of
noninteractive zero knowledge mentioned above. Indeed, any characterizations of
noninteractive zero knowledge in the help model already serve as upper bounds
on the power of noninteractive zero knowledge in the common random string
and public parameter models.

We remark that one can also consider protocols in which we allow both a
trusted dealer and many rounds of interaction. The most general model allows
both help and interaction, yielding the classes ZKh and SZKh.

Quantum Interactive and Noninteractive Zero Knowledge. The definitions of in-
teractive proofs and zero knowledge extend naturally to the quantum setting. A
quantum interactive proof system ([11]) for a promise problem Π is an interac-
tive protocol between a computationally unbounded prover P and a quantum
polynomial-time verifier V that satisfies completeness and soundness properties
as in the classical case and where the interaction is via quantum messages.

For quantum zero knowledge [12], we require that the verifier’s view (which
consists of qubits) can be simulated by a quantum polynomial-time machine.
QSZK denotes the class of promise problems possessing quantum statistical zero-
knowledge proof systems. Kobayashi [13] defined quantum noninteractive zero
knowledge by having a dealer generate and share a maximally entangled quantum
state between the prover and verifier. We write QNISZK to denote the class
of promise problems possessing such quantum noninteractive statistical zero-
knowledge proof systems.

In this paper, we define two more variants of the quantum noninteractive
model, depending on the form of the trusted help created by the dealer. When
the help is a pure quantum state that depends on the statement x being proven
we have the class QNISZKh. When the help is a mixed quantum state that
depends on x, we have the class QNISZKmh. Last, the class QSZKh refers to
protocols where we allow both a pure quantum help and interaction.

1.2 Previous Work

Recall that we are interested in the relationship between the interactive zero-
knowledge classes ZK and SZK and their various noninteractive counterparts,
which we will denote by NIZK and NISZK when we do not wish to specify the
model. That is, for a given model of noninteractive zero knowledge, we ask: Does
ZK = NIZK and SZK = NISZK?

ZK vs. NIZK. A first obstacle to proving equality of ZK and NIZK is that NIZK
is a subset of AM, the class of problems having constant-round interactive proof
systems [14,15], whereas ZK may contain problems outside of AM. So, instead
of asking whether ZK = NIZK, we should instead ask if ZK ∩ AM = NIZK.

Indeed, this equality is known to hold under complexity assumptions. If one-
way permutations exist, then it is known that ZK = IP [16,17,18] and NIZKcrs =
AM [19], and thus ZK ∩ AM = NIZKcrs = NIZKpub = NIZKh. (In fact, if we
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replace NIZKcrs with NIZKpub, these results hold assuming the existence of any
one-way function [20,21,22,23].) Thus, for computational zero knowledge, the
interesting question is whether we can prove that ZK ∩ AM = NIZK uncondi-
tionally, without assuming the existence of one-way functions. To our knowledge,
there have been no previous results along these lines.

SZK vs. NISZK. For relating SZK and NISZK, the class AM no longer is a
barrier, because it is known that SZK ⊆ AM [24].

The relationship between SZK and NISZK was first addressed in the work of
Goldreich et al. [25]. There it was shown that SZK and NISZKcrs have the ‘same
complexity’ in the sense that SZK = BPP iff NISZKcrs = BPP. Moreover, it was
proven that SZK = NISZKcrs iff NISZKcrs is closed under complement.

In addition to introducing the help model, Ben-Or and Gutfreund [7] studied
the relationship between NISZKh and SZK. They proved that NISZKh ⊆ SZK
(in fact that SZKh = SZK), and posed as an open question whether SZK ⊆
NISZKh.1

1.3 Our Results

We show that interactive zero knowledge does in fact collapse to noninteractive
zero knowledge in the help model, both for the computational case (restricted
to AM) and the statistical case:

Theorem 1. ZK ∩ AM = NIZKh.

Theorem 2. SZK = NISZKh.

These results and their proofs yield new characterizations of the classes ZK and
SZK. For example, we obtain a new complete problem for SZK, namely the
NISZKh-complete problem given in [7]. Similarly, we obtain a new characteriza-
tion of ZK, which amounts to a computational analogue of the NISZKh-complete
problem. As suggested in [7], these results can also be viewed as first steps to-
wards collapsing interactive zero knowledge to noninteractive zero knowledge
in the public parameter or common reference string model. For example, to
show SZK = NISZKcrs (the question posed in [26]), it now suffices to show that
NISZKh = NISZKcrs.

As mentioned above, one can consider even more general classes ZKh and
SZKh that incorporate both help and interaction. Ben-Or and Gutfreund [7]
showed that SZKh = SZK. We prove an analogous result for computational zero
knowledge:

Theorem 3. ZKh = ZK.

In the quantum setting, very little is known about the relation of interactive and
noninteractive quantum zero knowledge. Here, we start by providing two com-
plete problems for the class QNISZK. Then, we define two variants of quantum

1 In fact, their conference paper [22] claimed to prove that SZK = NISZKh, but this
was retracted in the journal version [7].
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noninteractive zero knowledge depending on the ‘help’ created by the dealer. In
the case where the help is a pure quantum state that depends on the input x,
we prove an analogue of Theorem 2:

Theorem 4. QNISZKh = QSZK = QSZKh.

In the case where the help is a mixed quantum state, we show that the class
QNISZKmh contains AM and hence is most probably larger than QSZK.

1.4 Techniques

Here we sketch the techniques underlying the forward inclusions in Theorems 1
and 2, showing that interactive zero knowledge is a subset of noninteractive zero
knowledge in the help model.

We begin with the case of statistical zero knowledge. Our proof that SZK ⊆
NISZKh is similar to the approach suggested by Goldreich et al. [25] for showing
that SZK = NISZKcrs. They showed that this question boils down to proving
that co-NISZKcrs = NISZKcrs or in other words that the complement of the
NISZKcrs-complete problem Entropy Approximation belongs to NISZKcrs.
Similarly, the core part of our proof is showing that co-NISZKcrs ⊆ NISZKh,
which then we use to deduce that SZK ⊆ NISZKh.

More specifically, our goal is to reduce the SZK-complete problem Entropy

Difference (ED) to the NISZK-complete problem Image Intersection Den-

sity (IID). Following [25], we start by reducing ED to several instances of En-

tropy Approximation (EA) and its complement (EA). We know that EA ∈
NISZKh since by definition NISZKcrs ⊆ NISZKh. Next, inspired by Ben-Or and
Gutfreund’s attempt [22] to reduce ED to IID and relying on ideas from [27,28],
we prove that EA also belongs to NISZKh. Thus we obtain a reduction from ED to
several instances of IID. We then conclude our proof by showing that NISZKh has
enough boolean closure properties to combine these several instances into a single
instance of IID. We establish these closure properties of NISZKh and IID using
techniques developed in [27,29] to show boolean closure properties for interactive
SZK.

In the case of computational zero knowledge, we prove that ZK∩AM ⊆ NIZKh

by using certain variants of commitment schemes. Recall that a commitment
scheme is a two-stage interactive protocol between a sender and a receiver. In
the commit stage, the sender ‘commits’ to a secret message m. In the reveal
stage, the sender ‘reveals’ m and tries to convince the verifier that it was the
message committed to in the first stage. Commitments should be hiding, mean-
ing that an adversarial receiver will learn nothing about m in the commit stage,
and binding, meaning that after the commit stage, an adversarial sender should
not be able to successfully reveal two different messages (except with negligi-
ble probability). Each of these security properties can be either computational,
holding against polynomial-time adversaries, or statistical, holding even for com-
putationally unbounded adversaries. Commitments are a basic building block for
zero-knowledge protocols, e.g. they are the main cryptographic primitive used
in the constructions of zero-knowledge proofs for all of NP [16] and IP [17,18].
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A relaxed notion is that of instance-dependent commitment schemes [30,31,32].
Here the sender and receiver are given an instance x of some problem Π as aux-
iliary input. We only require the scheme to be hiding if x is a yes instance,
and only require it to be binding if x is a no instance. They are a relaxation of
standard commitment schemes because we do not require hiding and binding to
hold simultaneously. Still, as observed in [31], an instance-dependent commit-
ment scheme for a problem Π ∈ IP suffices to construct zero-knowledge proofs
for Π because the constructions of [16,17,18] only use the hiding property for zero
knowledge (which is only required on yes instances), and the binding property
for soundness (which is only required on no instances).

We show that a similar phenomenon holds for noninteractive zero knowledge
in the help model: If a problem Π ∈ AM has a certain kind of instance-dependent
commitment scheme, then Π ∈ NIZKh. For this, the instance-dependent com-
mitments naturally need to be noninteractive. On the other hand, they only need
to be binding (on no instances) in case the sender is honest during the commit
phase. (Our observation is that such commitments can be used to implement
the hidden bits model of [19].)

Thus our task is reduced to showing that every problem in ZK has a noninter-
active instance-dependent commitment scheme that is computationally hiding
on yes instances and statistically binding for honest senders on no instances.
To prove this, we begin by observing that a problem Π has such an instance-
dependent commitment scheme with statistical hiding if and only if Π reduces
to IID. Hence, the needed commitments already follow for all of SZK from our
first result (SZK ⊆ NISZKh). To obtain commitments for all of ZK, we use a
characterization of ZK in terms of SZK and ‘instance-dependent one-way func-
tions’ [33], and combine the instance-dependent commitment schemes we obtain
from both SZK and the instance-dependent one-way functions.

An alternative construction of the instance-dependent commitments we need
can be obtained by using the concurrent work of Ong and Vadhan [34]. They
showed that every problem in ZK (resp., SZK) has an instance-dependent com-
mitment scheme that is computationally (resp., statistically) hiding on yes in-
stances and statistically binding on no instances. While their commitments are
interactive, they can be made noninteractive if we assume that the sender is hon-
est during the commit phase (by having the sender simulate both parties). Thus,
our work can be viewed as a (substantial) simplification to their constructions
for the case of honest senders.

2 Definitions and Preliminaries

2.1 Promise Problems

Promise problems are a more general variant of decision problems than lan-
guages. A promise problem Π is a pair of disjoint sets of strings (ΠY , ΠN),
where ΠY is the set of YES instances and ΠN is the set of NO instances. The
computational problem associated with any promise problem Π is: given a string
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that is “promised” to lie in ΠY ∪ΠN , decide whether it is in ΠY or ΠN . Reduc-
tions from one promise problem to another are natural extensions of reductions
between languages. Namely, we say Π reduces to Γ (written Π � Γ ) if there
exists a polynomial time computable function f such that x ∈ ΠY ⇒ f(x) ∈ ΓY

and x ∈ ΠN ⇒ f(x) ∈ ΓN . We can also naturally extend the definitions of
complexity classes by letting the properties of the strings in the languages be
conditions on the YES instances, and properties of strings outside of the lan-
guage be conditions on NO instances.

2.2 Instance-Dependent Cryptographic Primitives

Many of the objects that we will be constructing for use in our zero knowl-
edge constructions will be instance dependent. Hence, we will modify common
cryptographic primitives such as one-way functions by allowing them to be para-
metrized by some string x, such that the cryptographic properties will only be
guaranteed to hold if x is in some set I.

Definition 5. An instance-dependent function ensemble is a collection of func-
tions F = {fx : {0, 1}p(|x|) → {0, 1}q(|x|}x∈{0,1}∗, where p(·) and q(·) are poly-
nomials. F is polynomial-time computable if there exists a polynomial-time al-
gorithm F such that for all x ∈ {0, 1}∗ and y ∈ {0, 1}p(|x|), F (x, y) = fx(y).

Definition 6. An instance-dependent one-way function on I is a polynomial-
time instance-dependent function ensemble F = {fx : {0, 1}p(|x|) →
{0, 1}q(|x|}x∈{0,1}∗, such that for every nonuniform PPT A, there exists a negli-
gible function ε(·) such that for all x ∈ I,

Pr
[
A(x, fx(Up(|x|))) ∈ f−1

x (fx(Up(|x|)))
]

≤ ε(|x|)

Definition 7. An instance-dependent probability ensemble on I is a collection
of random variables {Xx}x∈{0,1}∗, where Xx takes values in {0, 1}p(|x|) for some
polynomial p. We call such an ensemble samplable is there exists a probabilistic
polynomial-time algorithm M such that for every input x, M(x) is distributed
according to Xx.

Definition 8. Two instance-dependent probabilistic ensembles {Xx} and {Yx}
are computationally indistinguishable on I ⊂ {0, 1}∗ if for every nonuniform
PPT D, there exists a negligible ε(·) such that for all x ∈ I,

Pr [D(x, Xx) = 1] − Pr [D(x, Yx) = 1] | ≤ ε(|x|)

Similarly, we say {Xx} and {Yx} are statistically indistinguishable on I ⊂
{0, 1}∗ if the above is required for all functions D. If Xx and Yx are identically
distributed for all x ∈ I, we say they are perfectly indistinguishable .

We will sometimes use the informal notation X
c≡ Y to denote that ensembles

X and Y are computationally indistinguishable.



Interactive and Noninteractive Zero Knowledge 509

Definition 9. An instance-dependent pseudorandom generator on I is a
polynomial-time instance-dependent function ensemble G = {Gx : {0, 1}p(|x|) →
{0, 1}q(|x|} such that q(n) > p(n), and the probability ensembles {Gx(Up(|x|)}x

and {Uq(|x|)}x are computationally indistinguishable on I.

2.3 Probability Distributions

In this section, we define several tools that are useful for analysing properties of
probability distributions.

Definition 10. The statistical difference between two random variables X and
Y taking values in some domain U is defined as:

Δ(X, Y ) = max
S⊂U

| Pr [X ∈ S] − Pr [Y ∈ S] | =
1
2

∑

x∈U
| Pr [X = x] − Pr [Y = x] |

Definition 11. For an ordered pair of random variables (X, Y ), we define their
disjointness to be:

Disj(X, Y ) = Pr
X

[X ∈ Supp(Y )]

and we define their mutual disjointness:

MutDisj(X, Y ) = min(Disj(X, Y ), Disj(Y, X)).

Note that disjointness is a more stringent measure of the disparity between two
distributions than statistical difference. If two distributions have disjointness
α, then their statistical difference is at least α. The converse, however, does not
hold, since the two distributions could have statistical difference that is negligibly
close to 1, yet have identical supports and mutual disjointness 0.

Moreover, we can go from disjoint to mutually-disjoint distributions by the
following lemma:

Lemma 12. [7,35] Given a pair of distributions (X0, X1) with n input gates,
consider the following distributions:

Y0: Choose r
R← {0, 1}n, b

R← {0, 1}, output (Xb(r), b).
Y1: Choose r

R← {0, 1}n, b
R← {0, 1}, output (Xb(r), b).

The following properties hold:

1. Δ(Y0, Y1) = Δ(X0, X1)
2. If (X0, X1) is α-disjoint, then (Y0, Y1) is mutually α

2 -disjoint.

Tensoring Distributions. For random variables X, Y , we let X⊗Y be the random
variable consisting of a sample of X followed by an independent sample of Y .
The ⊗ notation reflects the fact that the mass function of X ⊗ Y is the tensor
product of the mass functions of X and Y . When the independence is clear
from context, we sometimes write (X, Y ) instead of X ⊗ Y . X⊗k is the random
variable consisting of k independent copies of X .
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Lemma 13 ([7,35]). Given a parameter k ∈ N and the distributions X1, . . . , Xk

and Y1, . . . , Yk, the pair (X, Y ) = X1 ⊗ . . . ⊗ Xk, Y1 ⊗ . . . ⊗ Yk) will satisfy the
following properties:

1. 1 − 2 exp(−kδ2/2) ≤ Δ(X, Y ) ≤ kδ where δ =
∑

i∈[k] Δ(Xi, Yi)/k.
2. MutDisj(X, Y ) = 1 −

∏
i∈[k](1 − αi), where αi = MutDisj(Xi, Yi).

XORing Distributions. We define the XOR operator which acts on pairs of
distributions and returns a pair of distributions. Given two pairs (X0, X1) and
(X

′

0, X
′

1), with n and n
′

input gates, respectively, XOR((X0, X1), (X
′

0, X
′

1)) is
defined by the circuits:

Y0: Choose b
R← {0, 1}, r

R← {0, 1}n, r
′ R← {0, 1}n

′
, output (Xb(r), X

′

b(r
′
)).

Y1: Choose b
R← {0, 1}, r

R← {0, 1}n, r
′ R← {0, 1}n

′
, output (Xb(r), X

′

b
(r

′
)).

Lemma 14 (XOR Lemma [7,35]). If (Y0, Y1) = XOR((X0, X1), (X
′

0, X
′

1)),
then the following properties hold:

1. Δ(Y0, Y1) = Δ(X0, X1) · Δ(X
′

0, X
′

1).
2. MutDisj(Y0, Y1) = MutDisj(X0, X1) · MutDisj(X

′

0, X
′

1).

By induction, the XOR Lemma implies the following method to decrease both
statistical difference and mutual disjointness exponentially fast:

Lemma 15 ([7,35]). Given circuits X0, X1 with n input gates and a parameter
k, consider the following pair:

Y0: Choose (b1, . . . , bk) R← {(c1, . . . , ck) ∈ {0, 1}k : c1 ⊕ . . . ⊕ ck =
0}, (r1, . . . rk) R← {0, 1}kn, output (Xb1(r1), . . . , Xbk

(rk)).
Y1: Choose (b1, . . . , bk) R← {(c1, . . . , ck) ∈ {0, 1}k : c1 ⊕ . . . ⊕ ck =

1}, (r1, . . . rk) R← {0, 1}kn, output (Xb1(r1), . . . , Xbk
(rk)).

The following properties hold:

1. Δ(Y0, Y1) = Δ(X0, X1)k.
2. MutDisj(Y0, Y1) = MutDisj(X0, X1)k.

Entropy and Hashing.

Definition 16. The entropy of a random variable X is H(X) =

Ex←X

[
log 1

Pr[X=x]

]
. The conditional entropy of X given Y is

H(X |Y ) = E
y←Y

[H(X |Y =y)] = E
(x,y)←(X,Y )

[
log

1
Pr [X = x|Y = y]

]
= H(X, Y )−H(Y ).

For entropy, it holds that for every X, Y , H(X ⊗Y ) = H(X)+H(Y ). More gener-
ally, if (X, Y )⊗

k

= ((X1, Y1), . . . , (Xk, Yk)), then H((X1, . . . , Xk)|(Y1, . . . , Yk) =
k · H(X |Y ).
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Definition 17. The relative entropy (Kullback-Liebler distance) between two
distributions X, Y is:

KL(X |Y ) = E
x←X

[
log

Pr [X = x]
Pr [Y = x]

]

We denote by H2(p) the binary entropy function, which is the entropy of a
{0, 1}-valued random variable with expectation p. KL2(p, q) denotes the relative
entropy between two {0, 1}-value random variables with expectations p and q.

Flat Distributions. Let X a distribution with entropy H(X). Elements x of X
such that | log Pr[X = x] − H(X)| ≤ k are called k-typical. We say that X
is Δ-flat if for every t > 0 the probability that an element chosen from X is
t · Δ-typical is at least 1 − 2−t2+1.

Lemma 18 (Flattening Lemma [36]). Let X be a distribution encoded by a
circuit with n input gates. Then X⊗k is

√
k · n-flat.

Definition 19. A family H of functions from A → B is 2-universal if for every
two elements x �= y ∈ A and a, b ∈ B, Prh∈RH[h(x) = a and h(y) = b] = 1

|B|2 .

We write Hn,m to denote the 2-universal family from {0, 1}n to {0, 1}m.

Lemma 20 (Leftover Hash Lemma [37]). Let H be a samplable family of 2-
universal hashing functions from A → B. Suppose X is a distribution on A such
that with probability at least 1 − δ over x selected from X, Pr[X = x] ≤ ε/|B|.
Consider the following distribution:

Z : Choose h ← H and x ← X, return (h, h(x)).

Then, Δ(Z, U) ≤ O(δ + ε1/3), where U is the uniform distribution on H × B.

3 Interactive Zero Knowledge

We consider a generalized version of interactive zero knowledge, introduced by
Ben-Or and Gutfreund [7], in which the prover and the verifier have access to a
help string output by a dealer algorithm that has access to the statement being
proven. We will call this model of interactive zero knowledge the help model.
Interactive zero-knowledge proofs are a special case of interactive zero-knowledge
proofs in the help model.

We denote the three algorithms that make up an interactive zero-knowledge
proof in the help model as D, P and V . All three receive as input x, the statement
being proven. The dealer selects the help string σ ← D(x) and sends it to P and
V . P and V carry out an interactive protocol and, at the end of their interaction,
they either output accept or reject. We call the transcript the sequence of
messages which the triple (D, P, V ) computes. (D, P, V )(x) denotes the random
variable of the possible outcomes of the protocol, while 〈D, P, V 〉(x) denotes the
verifier’s view of the transcripts (where the probability space is over the random
coins of D, P and V ).
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Definition 21 (ZKh, SZKh [7]). A zero-knowledge proof system in the help
model for a promise problem Π is a triple of probabilistic algorithms (D, P, V )
(where D and V are polynomial time bounded), satisfying the following condi-
tions:

1. Completeness. For all x ∈ ΠY , Pr [(D, P, V )(x) = 1] ≥ 2
3 , where the proba-

bility is taken over the coin tosses of D, P and V .
2. Soundness. For all x ∈ ΠN and every prover strategy P ∗,

Pr [(D, P ∗, V ) = 1] ≤ 1
3 , where the probability is taken over the coin

tosses of D, P ∗, V .
3. Zero Knowledge. There exists a PPT S such that the ensembles

{〈D, P, V 〉)(x)}x and {S(x)}x are computationally indistinguishable on ΠY .

If the ensembles are statistically indistinguishable, we call it a statistical zero
knowledge proof system in the help model. ZKh (resp., SZKh) is the class of
promise problems possessing zero-knowledge (resp., statistical zero-knowledge)
proof systems in the help model.

If the help string σ is generated according to D(1|x|), we call the proof system
an interactive zero-knowledge proof system in the public parameter model. The
corresponding complexity class is ZKpub (resp., SZKpub). If the help string σ is
generated from the uniform distribution on {0, 1}|x|, we call the proof system an
interactive zero-knowledge proof system in the common random string model.
The corresponding complexity class is ZKcrs (resp., SZKcrs).

If we remove the dealer’s help, the resulting proof system is said to be an
interactive zero-knowledge proof system. The corresponding complexity class is
ZK (resp., SZK).

Note that, in the help model, the dealer is computable in polynomial time given
only the instance, and not a witness (hence the notation D(x)).

It is simple to show (by having the verifier simulate the dealer’s help) that
ZKh is contained in IP, the class of promise problems with interactive proofs:

Lemma 22. ZKh ⊆ IP.

3.1 Statistical Zero Knowledge

In this section, we state a few characterizations of statistical zero knowledge
which will be related to the ones we will later obtain for the computational
case. We begin by noting that, in the statistical case, Ben-Or and Gutfreund [7]
showed that zero knowledge in the help model is equivalent to zero knowledge:

Theorem 23 ([7]). SZKh = SZK.

The theorem above implies that all the characterizations of SZK will also hold
for SZKh. In particular, SZKh shares the complete problems for SZK that are
due to [36,35,33]:

Theorem 24 ([36,35,33]). The following problems are SZK-complete:
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1. Statistical Difference:

SDY = {(X, Y ) : Δ(X, Y ) ≤ 1/3}
SDN = {(X, Y ) : Δ(X, Y ) ≥ 2/3}

where X and Y are samplable distributions specified by circuits that sample
from them.

2. Entropy Difference:

EDY = {(X, Y ) : H(X) ≥ H(Y ) + 1}
EDN = {(X, Y ) : H(Y ) ≥ H(X) + 1}

where X and Y are samplable distributions specified by circuits that sample
from them.

3. Conditional Entropy Approximation:

CEAY = {(X, Y, r) : H(X |Y ) ≥ r}
CEAN = {(X, Y, r) : H(X |Y ) ≤ r − 1}

where (X, Y ) is a joint samplable distribution specified by circuits that use
the same coin tosses.

Note that we can change the thresholds of 1/3 and 2/3 in SD to other thresholds
α < β. We denote the resulting problem SD

α,β . It is known that SD
α,β is SZK-

complete for all constants α, β such that 0 ≤ α < β2 ≤ 1 [35].

3.2 Computational Zero Knowledge

In the case of ZK, no natural complete problems are known (unless we as-
sume that one-way functions exist, in which case ZK = IP = PSPACE
[4,17,18,38,39,20,21]). However, characterizations that are analogous to the com-
plete problems for SZK do exist in the form of the Indistinguishability Con-

dition and the Conditional Pseudoentropy Condition below. These con-
ditions give ‘if and only if’ characterizations of ZK that provide essentially the
same functionality that complete problems provide.

The first characterization is a natural computational analogue of Statistical

Difference:

Definition 25. A promise problem Π satisfies the Indistinguishability

Condition if there is a polynomial-time computable function mapping strings
x to pairs of samplable distributions (X, Y ) such that:

– If x ∈ ΠY , then X and Y are computationally indistinguishable.
– If x ∈ ΠN , then Δ(X, Y ) ≥ 2/3.

Theorem 26 ([33]). Π ∈ ZK if and only if Π ∈ IP and Π satisfies the Indis-

tinguishability Condition.

The second characterization is based on the SZK-complete problem CEA:
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Definition 27. A promise problem Π satisfies the Conditional Pseudoen-

tropy Condition if there is a polynomial-time computable function mapping
strings x to a samplable joint distribution (X, Y ) such that:

– If x ∈ ΠY , then there exists a (not necessarily samplable) joint distribution
(X ′, Y ′) such that (X ′, Y ′) is computationally indistinguishable from (X, Y )
and H(X ′|Y ′) ≥ r.

– If x ∈ ΠN , then H(X |Y ) ≤ r − 1.

Theorem 28 ([33]). Π ∈ ZK if and only if Π ∈ IP and Π satisfies the Con-

ditional Pseudoentropy Condition.

Another characterization that we will use is the SZK/OWF Condition of [33].
The SZK/OWF Condition states that any problem in ZK can be decomposed
into a part with an SZK proof and another part on which instance-dependent
one-way functions can be constructed:

Definition 29 (SZK/OWF Condition [33]). A promise problem Π =
(ΠY , ΠN ) satisfies the SZK/OWF Condition if there exists a set I ⊆ ΠY

of YES such that:

1. The promise problem Π ′ = (ΠY \I, ΠN) is in SZK.
2. There exists an instance-dependent one-way function on I (in the sense of

Definition 6).

Theorem 30 ([33]). Π ∈ ZK if and only if Π ∈ IP and Π satisfies the
SZK/OWF Condition.

4 Noninteractive Zero Knowledge

4.1 The Help Model

In this section, we define the noninteractive analogue of zero-knowledge proofs
in the help model.

Definition 31 (NIZKh, NISZKh [7]). A noninteractive zero-knowledge proof
system in the help model for a promise problem Π is an interactive zero-
knowledge proof in which there is only one message π = P (x, σ) from prover
to verifier.

If the real transcripts are statistically indistinguishable from simulated ones,
we call it a noninteractive statistical zero knowledge proof system. NIZKh

(resp., NISZKh) is the class of promise problems possessing noninteractive zero-
knowledge (resp., noninteractive statistical zero-knowledge) proof systems in the
help model.

If the help string σ is generated according to D(1|x|), we call the proof system
a noninteractive zero-knowledge proof system in the public parameter model.
The corresponding complexity class is NIZKpub (resp., NISZKpub). If the help
string σ is generated from the uniform distribution on {0, 1}|x|, we call the proof
system an noninteractive zero-knowledge proof system in the common random
string model. The corresponding complexity class is NIZKcrs (resp., NISZKcrs).
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The main benefit of the public parameter model and the help model over the
simpler CRS model is that they make it easier to construct NIZK proofs from
simpler cryptographic primitives such as one-way functions ([7,23]), or, as we
will show in this paper, from noninteractive, instance-dependent commitment
schemes.

Like SZK, NISZKcrs and NISZKh exhibit complete problems:

Theorem 32 ([25]). The promise problem Entropy Approximation, de-
fined as:

EAY = {(X, t) : H(X) ≥ t + 1}
EAN = {(X, t) : H(Y ) ≤ t − 1}

is complete for NISZKcrs, where X is a samplable distribution specified by a
circuit that samples from it. We use the notation EA

t to specify an instance of
EA with parameter t.

Theorem 33 ([7]). The promise problem Image Intersection Density, de-
fined as:

IIDY = {(X, Y ) : Δ(X, Y ) ≤ 1/3}
IIDN = {(X, Y ) : MutDisj(X, Y ) ≥ 2/3}

is complete for NISZKh, where X and Y are samplable distributions specified by
circuits that sample from them.

We note that our definition of IID is slightly different than the one used by
[7]. In our definition, we are working with mutual disjointness, since it is easy to
transform disjoint distributions to mutually disjoint ones (Lemma 12). Addition-
ally, due to a stronger Polarization Lemma that we will describe in a subsequent
section, we use constant thresholds of 1/3 and 2/3 rather than functions tending
to 0 and 1.

We also recall the complexity class AM, which is is the class of promise
problems possessing constant-round interactive proofs, or equivalently, 2-round
public-coin interactive proofs [14,15]. Analogous to Lemma 22, AM proves to be
a natural upper bound for NIZKh, since we can just have the verifier replace
the dealer in creating the reference string. Also, a lower bound for NIZKh is
NIZKcrs, which is definitionally a more restricted version of the help model.

5 Quantum Preliminaries and Definitions

5.1 The Quantum Formalism

Let H denote a 2-dimensional complex vector space, equipped with the standard
inner product. We pick an orthonormal basis for this space, label the two basis
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vectors |0〉 and |1〉. A qubit is a unit length vector in this space, and so can be
expressed as a linear combination of the basis states: α0|0〉 + α1|1〉. Here α0, α1
are complex amplitudes, and |α0|2 + |α1|2 = 1.

An m-qubit pure state is a unit vector in the m-fold tensor space H ⊗· · ·⊗H .
The 2m basis states of this space are the m-fold tensor products of the states
|0〉 and |1〉. For example, the basis states of a 2-qubit system are the four 4-
dimensional unit vectors |0〉⊗|0〉, |0〉⊗|1〉, |1〉⊗|0〉, and |1〉⊗|1〉. We abbreviate,
e.g., |1〉⊗|0〉 to |0〉|1〉, or |1, 0〉, or |10〉, or even |2〉 (since 2 is 10 in binary). With
these basis states, an m-qubit state |φ〉 is a 2m-dimensional complex unit vector
|φ〉 =

∑
i∈{0,1}m αi|i〉. We use 〈φ| = |φ〉∗ to denote the conjugate transpose of the

vector |φ〉, and 〈φ|ψ〉 = 〈φ| · |ψ〉 for the inner product between states |φ〉 and |ψ〉.
These two states are orthogonal if 〈φ|ψ〉 = 0. The norm of |φ〉 is ‖ φ ‖ =

√
〈φ|φ〉.

A mixed state {pi, |φi〉} is a classical distribution over pure quantum states,
where the system is in state |φi〉 with probability pi. We can represent a mixed
quantum state by the density matrix which is defined as ρ =

∑
i pi|φi〉〈φi|. Note

that ρ is a positive semidefinite operator with trace (sum of diagonal entries)
equal to 1. The density matrix of a pure state |φ〉 is ρ = |φ〉〈φ|.

A quantum system is called bipartite if it consists of two subsystems. We
can describe the state of each of these subsystems separately with the reduced
density matrix. For example, if the joint quantum state of two subsystems A, B
has the form |φ〉 =

∑
i

√
pi|i〉A|φi〉B, then the state of the subsystem B, i .e.,

the subsystem which contains only the second part of |φ〉 is described by the
(reduced) density matrix

∑
i pi|φi〉〈φi|.

A quantum state evolves by a unitary operation or by a measurement. A
unitary transformation U is a linear mapping that preserves the complex �2
norm. If we apply U to a state |φ〉, it evolves to U |φ〉. A mixed state ρ evolves
to UρU †.

The most general measurement allowed by quantum mechanics is specified by
a family of positive semidefinite operators Ei = M∗

i Mi, 1 ≤ i ≤ k, subject to the
condition that

∑
i Ei = I. Given a density matrix ρ, the probability of observing

the ith outcome under this measurement is given by the trace pi = Tr(Eiρ) =
Tr(MiρM∗

i ). These pi are nonnegative because Ei and ρ are positive semidefinite
and they also sum to 1. If the measurement yields outcome i, then the resulting
mixed quantum state is MiρM∗

i /Tr(MiρM∗
i ). In particular, if ρ = |φ〉〈φ|, then

pi = 〈φ|Ei|φ〉 = ‖ Mi|φ〉 ‖2, and the resulting state is Mi|φ〉/‖ Mi|φ〉 ‖. A special
case is where k = 2m and B = {|ψi〉} forms an orthonormal basis of the m-qubit
space. ‘Measuring in the B-basis’ means that we apply the measurement given
by Ei = Mi = |ψi〉〈ψi|. Applying this to a pure state |φ〉 gives resulting state
|ψi〉 with probability pi = |〈φ|ψi〉|2.

The trace norm of a matrix A is denoted by ||A|| and is equal to the trace
of |A|, where |A| =

√
A†A is the positive square root of A†A. For two density

matrices ρ1, ρ2 we define their trace distance as the trace norm of the matrix
ρ1 − ρ2, i .e., ||ρ1 − ρ2||.

The von Neumann Entropy of a mixed quantum state ρ with eigenvalues λi

is defined as S(ρ) = −
∑

i λi log λi.
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5.2 Quantum Interactive and Noninteractive Statistical
Zero-Knowledge

Quantum statistical zero knowledge proofs are a special case of quantum interac-
tive proofs. We can think of a quantum interactive protocol 〈P, V 〉(x) as a series
of circuits (V1(x), P1(x), . . . , Vk(x), Pk(x)) on the space V ⊗ M ⊗ P . V are the
verifier’s private qubits, M are the message qubits and P are the prover’s pri-
vate qubits. Vi(x) (resp. Pi(x)) represents the ith action of the verifier (resp. the
prover) during the protocol and acts on V ⊗M (resp. M⊗P). βi corresponds to
the state that appears after the ith action of the protocol. We define complete-
ness and soundness exactly the same way as in the case of classical protocols.
We say that a protocol 〈P, V 〉 solves Π if it has completeness greater than 2/3
and soundness less than 1/3.

In the zero knowledge setting, we also want that the verifier learns nothing
from the interaction other than the fact that x ∈ ΠY when it is the case. The
way it is formalized is that for x ∈ ΠY , the verifier can simulate his view of the
protocol. We are interested only in honest verifier protocols where the verifier
and the prover use unitary operations, since by Watrous [40] we know that honest
verifier with unitary operations is equivalent to cheating verifier (that is allowed
to use any permissible operation).

Let 〈P, V 〉 a quantum protocol and βj defined as before. The verifier’s view
of the protocol is his private qubits and the message qubits, view〈P,V 〉(j) =
TrP(βj). We also want to separate the verifier’s view based on whether the last
action was made by the verifier or the prover. We note ρ0 the input state, ρi the
verifier’s view of the protocol after Pi and ξi the verifier’s view of the protocol
after Vi.

Definition 34. A quantum protocol 〈P, V 〉 has the zero knowledge property for
Π if there exists a quantum polynomial-time simulator σ and a negligible function
μ such that for every input x ∈ ΠY and ∀j ‖σj(x) − ρj‖ ≤ μ(|x|).

Note that for a state σ such that ‖σ − ρi‖ ≤ μ(|x|) it is easy to see that σ′ =
Vi+1σV †i+1 is close to ξi+1 = Vi+1ρiV

†
i+1 in this sense that ‖σ′ − ξi+1‖ ≤ μ(|x|).

Therefore, in the definition we just need to simulate the ρi’s. Also note that the
simulation in the quantum case is done round by round which seems to be a weaker
definition than in the classical case. However, since the message qubits are reused
in every round, the notion of a transcript can not be defined in the quantum case.

Definition 35. Π ∈ QSZK iff there exists a quantum protocol 〈P, V 〉 that
solves Π and that has the zero-knowledge property for Π.

In the setting of quantum noninteractive statistical zero knowledge, first defined
by Kobayashi [13], the prover and verifier share a maximally entangled state∑

i |i〉P |i〉V created by a trusted third party: the dealer D. Then the prover sends
a single quantum message to the verifier. We can assume that the message from
the dealer to the verifier goes into his private space V . Hence, after the prover’s
message, the verifier’s view ρ1 also contains the message from the dealer.

In this setting, we define the zero knowledge property as follows:
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Definition 36. A quantum noninteractive protocol 〈D, P, V 〉 has the zero know-
ledge property for Π if there exists a quantum polynomial-time simulator σ and
a negligible function μ such that for every input x ∈ ΠY ‖σ(x) − ρ1‖ ≤ μ(|x|).

Definition 37. Π ∈ QNISZK iff, when the prover and verifier share the maxi-
mally entangled state

∑
i |i〉P |i〉V created by the dealer D, there exists a quantum

noninteractive protocol 〈D, P, V 〉 that solves Π and that has the zero-knowledge
property for Π.

6 Statistical Zero Knowledge

6.1 The Polarization Lemma

Zero knowledge protocols usually require from promise problems some parame-
ters that are exponentially close to 0 or 1. Polarizations are reductions from
promise problems with weak parameters to promise problems that can be solved
by the protocols. For example, there is a polarization for the promise problem
SD that transforms SD

a,b with a2 > b to SD
1−2−k,2−k

for any k = poly(n) [35].
The best polarization that was known for IID was that IID

1/n2,1−1/n2
reduces

to IID
2−k,1−2−k

and henceforth IID
1/n2,1−1/n2

is complete for NISZKh [7]. We
will show here that IID

a,b is complete for NISZKh with b > a (where a and b
are constants).

Lemma 38 (Polarization Lemma [7,35]). There exists an algorithm that
takes a pair of distributions (X0, X1) and parameters n ∈ N, 0 ≤ α < β ≤ 1, and
outputs a pair of distributions (Y0, Y1) such that:

1. Δ(X0, X1) ≤ α ⇒ Δ(X0, X1) ≤ 2−n.
2. MutDisj(X0, X1) ≥ β ⇒ MutDisj(Y0, Y1) ≥ 1 − 2−n.

The algorithm runs in time poly
(
|(X0, X1)|, n, exp

(
α log(1/β)

β−α

))
.

Proof. Let λ = min{β/α, 2} > 1.
We first apply Lemma 15 with k = logλ 2n, obtaining two distributions which

are either statistically αk close, or have βk mutual disjointness.
Then, we apply Lemma 13 with m = λk/(2βk) ≤ 1/(2αk). This gives two

distributions with either statistical difference at most mαk ≤ 1/2, or mutual
disjointness of at most 1 − (1 − βk)m ≥ 1 − e−βkm = 1 − e−βk·λk/(2βk) =
1 − e−λk/2 = 1 − e−n.

Finally, we apply again Lemma 15 with parameter n to get either statistical
difference at most 2−n, or mutual disjointness at most (1 − e−n)n ≥ 1 − ne−n ≥
1 − 2−n, for sufficiently large n.

The running time of the algorithm is poly(|(X0, X1)|, n, k), where k =
O(log n/(λ − 1)) = O(α log n/(β − α)) and m ≤ 1/2 · (2/β)k =
exp

(
O

(
α log n log(2/β)

β−α

))
. This gives the claimed running time if either n = O(1)
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or if β − α = Ω(1). Thus we can obtain the lemma by applying the transfor-
mation in two steps, first with n′ = 2 to polarize to thresholds α′ = 1/4 and
β′ = 3/4, and then once more with the desired value of n.

This can be compared to the original Polarization Lemma of [35], which refers
to statistical difference in Item 2 (rather than mutual disjointness), but only
achieves polarization from thresholds such that 0 ≤ α < β2 ≤ 1, and for which
it is known that the gap between thresholds is inherent for a natural class of
transformations [41].

6.2 SZK and NISZKh are Equivalent

We show in this section that help and interaction are equivalent in the statistical
zero knowledge setting.

Theorem 39. SZK = NISZKh

The inclusion NISZKh ⊆ SZK was proven by Ben-Or and Gutfreund [7], since
the NISZKh-complete problem Image Intersection Density (IID) trivially
reduces to Statistical Difference (SD), the SZK-complete problem. In what
follows, we prove the opposite inclusion by reducing the SZK-complete problem
Entropy Difference (ED) to IID. Ben-Or and Gutfreund claimed to have
proven this reduction in [22] but due to a flaw they retracted it in [7]. Their
reduction from ED to IID was in fact only a reduction to SD. Still, part of our
proof is inspired by their method.

In order to prove that SZK ⊆ NISZKh, we follow [25] and reduce the SZK-
complete problem ED to several instances of Entropy Approximation and
its complement (EA and EA) using the following fact:

Fact 40 ([25]) Let X ′ = X⊗3 and Y ′ = Y ⊗3. Let n the output size of X ′ and
Y ′. It holds that:

(X, Y ) ∈ EDY ⇔ ∀t ∈ {1, . . . , n}
[
((X ′, t) ∈ EAY ) ∨ ((Y ′, t) ∈ EAY )

]

(X, Y ) ∈ EDN ⇔ ∃t ∈ {1, . . . , n}
[
((X ′, t) ∈ EAN ) ∧ ((Y ′, t) ∈ EAN )

]

We know that EA ∈ NISZKh (since by definition NISZKcrs ⊆ NISZKh), so it
remains to show the following two things:

1. EA ∈ NISZKh: in order to this, we reduce EA to IID, inspired by Ben-Or
and Gutfreund’s attempt [22] to reduce ED to IID. This reduction relies on
ideas from [27,28].

2. NISZKh has certain boolean closure properties: this will allow us to reduce
ED to a single instance of IID. Since IID and SD are closely related, we use
similar techniques to the ones used in [27,29].

Note that our proof’s structure is similar to the approach suggested by Goldre-
ich et al. [25] for showing that NISZKcrs = SZK. They proved that if NISZKcrs =
co-NISZKcrs then NISZKcrs = SZK. We show here that co-NISZKcrs ⊆ NISZKh,
and using the closure properties, conclude that NISZKh = SZK.
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6.3 EA Belongs to NISZKh

In this section, we prove the following lemma:

Lemma 41. EA ∈ NISZKh.

Proof. We will reduce EA to IID, which is complete for NISZKh.
Let (X, t) an instance of EA. By artificially adding input gates or output

gates to X , we can assume that X has m input and output gates. Let k a large
constant that will be specified later on and X ′ = X⊗s with s = 4km2. Note that
X ′ has m′ = s · m input and output gates and H(X ′) = s · H(X). We have:

Fact 42

1. X ′ is Δ-flat with Δ = 2
√

km2, where s was chosen such that s = 2
√

kΔ.
2. Pr[X ′ is

√
kΔ-typical ] ≥ 1 − 2−Ω(k).

Given (X, t), we can create two distributions Z as Z ′ as following

Z: Choose r
R← {0, 1}m′

, x = X ′(r), h
R← Hm′+st,m′ , z

R← {0, 1}m′
. Re-

turn (x, h, z).
Z ′: Choose r

R← {0, 1}m′
, x = X ′(r), h

R← Hm′+st,m′ , u
R← {0, 1}st. Return

(x, (h, h(r, u))).

Note that Z ′ is of the form Z ′ = (X ′, A). We write Ax to denote the distrib-
ution of A conditioned on X ′ = x. Note that we can describe Ax as follows :

Ax : Choose r
R← (X ′)−1(x), h

R← Hm′+st,m′ , u
R← {0, 1}st and return

(h, h(r, u)).
Hence, we need to show that, when conditioning on X ′ = x, we have either
Δ(U , Ax) small (on the YES instances) or Disj(U , Ax) large (on the NO in-
stances).

For x ∈ Supp(X ′), let wt(x) = log |(X ′)−1(x)| = m′ − log( 1
Pr[X′=x] ). The

number of different possible inputs (r, u) that are hashed in Ax is 2wt(x)+st.
Using Fact 42, it is easy to see that, if H(X) ≤ t − 1, then wt(x) will be large
with high probability, whereas, if H(X) ≥ t + 1, then wt(x) will be small with
high probability. We can now show the following two claims which will allow us
to conclude the proof.

Claim. (X, t) ∈ EAY ⇒ Δ(Z, Z ′) = 2−Ω(k).

Proof. For all x ∈ Supp(X ′) that are
√

kΔ-typical,
∣
∣
∣log( 1

Pr[X′=x]) − H(X ′)
∣
∣
∣ ≤

√
kΔ. Hence,

wt(x) ≥ m′ − s · H(X) −
√

kΔ ≥ m′ − st + s −
√

kΔ ≥ m′ − st +
√

kΔ.

Therefore, the number of inputs (r, u) such that X ′(r) = x and u ∈ {0, 1}st

is greater than 2m′+
√

kΔ ≥ 2m′+k. By the Leftover Hash Lemma (Lemma 20),
Δ(U , Ax) = 2−Ω(k). By Fact 42, the probability of a

√
kΔ-typical x is 1−2−Ω(k)

and hence we can conclude that Δ(Z, Z ′) = 2−Ω(k).
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Claim. (X, t) ∈ EAN ⇒ Disj(Z, Z ′) = 1 − 2−Ω(k).

Proof. For all x ∈ Supp(X ′) that are
√

kΔ-typical, we have:

wt(x) ≤ m′ − s · H(X) +
√

kΔ ≤ m′ − st − s +
√

kΔ ≤ m′ − st −
√

kΔ.

Therefore, the number of inputs (r, u) such that X ′(r) = x and u ∈ {0, 1}st

is smaller than 2m′−√kΔ ≤ 2m′−k. Since we hash at most 2m′−k values into
{0, 1}m′

, we get only a 2−k fraction of the total support and hence Disj(U , Ax) =
1 − 2−Ω(k). By Fact 42, the probability of a

√
kΔ-typical x is 1 − 2−Ω(k) and

hence we can conclude that Disj(Z, Z ′) = 1 − 2−Ω(k).

By taking k a large enough constant, we can ensure that (X, t) ∈ EAY ⇒
Δ(Z, Z ′) ≤ 1/4 and also (X, t) ∈ EAN ⇒ Disj(Z, Z ′) ≥ 3/4.

The only thing that remains is to transform the disjointness in the NO in-
stances to mutual disjointness. We first apply Lemma 12 to create distributions
(A, B) such that Δ(A, B) ≤ 1/4 or Disj(A, B) ≥ 3/8. Then, by the polariza-
tion Lemma shown in Subsection 6.1, we create distributions (A′, B′) such that
(X, t) ∈ EAY ⇒ Δ(A′, B′) ≤ 1/3 and (X, t) ∈ EAN ⇒ Disj(A′, B′) ≥ 2/3.

In conclusion, we see that from (X, t), we have created distributions A′, B′ in
polynomial time such that :

– (X, t) ∈ EAY ⇒ (A′, B′) ∈ IIDY .
– (X, t) ∈ EAN ⇒ (A′, B′) ∈ IIDN .

Hence, EA reduces to IID and from the completeness of IID for NISZKh, we
have EA ∈ NISZKh.

6.4 Closure Properties for NISZKh

We now prove some closure properties of NISZKh that we will use to complete
the proof of Theorem 39. Every promise problem Π ∈ NISZKh reduces to IID

and hence, we just have to concentrate on this problem. Note that this problem
is very similar to the SZK-complete promise problem SD and hence we use
similar techniques to those developed in [29,27] to show closure properties for
SZK. In our case, we just need to show some limited closure properties that will
be enough to prove that ED ∈ NISZKh.

Definition 43. Let Π some promise problem. We define AND(Π) to be the
following promise problem:

– AND(Π)Y = {(x1, . . . , xk) : ∀i ∈ {1, . . . , k} xi ∈ ΠY }.
– AND(Π)N = {(x1, . . . , xk) : ∃i ∈ {1, . . . , k} xi ∈ ΠN}.

Similarly, we define OR(Π) for a pair of instances of Π .

Definition 44. Let Π a promise problem. We define OR(Π) to be the following
promise problem:
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– OR(Π)Y = {(x1, x2) : ∃i ∈ {1, 2} xi ∈ ΠY }.
– OR(Π)N = {(x1, x2) : ∀i ∈ {1, 2} xi ∈ ΠN}.

We show that NISZKh is closed under AND and OR.

Lemma 45. NISZKh is closed under AND.

Proof. Let Π be in NISZKh and (x1, . . . , xk) be an instance of AND(Π). We
reduce Π to the IID problem which means that we transform each xi into a pair
of distributions (X i, Y i) such that xi ∈ ΠY ⇒ (X i, Y i) ∈ IIDY and xi ∈ ΠN ⇒
(X i, Y i) ∈ IIDN . Let X = X1 ⊗ · · · ⊗ Xk and Y = Y 1 ⊗ · · · ⊗ Y k. We first
polarize each pair (X i, Y i) to have statistical difference at most 1/3k or mutual
disjointness at least 2/3. From Lemma 13, we can easily see that (x1, . . . , xk) ∈
AND(Π)Y ⇒ (X, Y ) ∈ IIDY and that (x1, . . . , xk) ∈ AND(Π)N ⇒ (X, Y ) ∈
IIDN , which concludes our proof.

Lemma 46. NISZKh is closed under OR.

Proof. Let Π be in NISZKh. Let (x1, x2) be an instance of OR(Π). We reduce
Π to the IID problem which means that we transform each xi into a pair of
distributions (X i, Y i) such that xi ∈ ΠY ⇒ (X i, Y i) ∈ IIDY and xi ∈ ΠN ⇒
(X i, Y i) ∈ IIDN . We first polarize each pair (X i, Y i) to have statistical differ-
ence at most 1/3 or mutual disjointness at least

√
2/3. Now, consider the pair

(A, B) obtained by XORing (X1, Y1) and (X2, Y2) (in the sense of Lemma 14).
Using this Lemma, we conclude that (x1, x2) ∈ OR(Π)Y ⇒ (A, B) ∈ IIDY and
that (x1, x2) ∈ OR(Π)N ⇒ (A, B) ∈ IIDN .

6.5 Putting It Together

We can now prove that SZK ⊆ NISZKh and hence conclude the proof of Theorem
39. In the language of the previous section, Fact 40 says that the SZK-complete
problem ED reduces to AND(OR(EA,EA)) via a standard Karp (i .e., many-
one) reduction. Since EA and EA are in NISZKh (Lemma 41) and NISZKh is
closed under AND and OR (Lemma 45 and 46), we conclude that ED ∈ NISZKh

and that SZK ⊆ NISZKh.
An interesting corollary is the following new complete problem for SZK.

Corollary 47. IID is complete for SZK.

7 Computational Zero Knowledge

In this section, we extend the results presented in the previous section to compu-
tational zero knowledge. However, the techniques that we have used in the sta-
tistical case cannot be applied directly here, so we take a more indirect route to
proving anequivalence for the computational case.Wedefine theComputational

Image Intersection Density Condition (CIIDC), a natural computational
analogue of IID in the style of the Indistinguishability Condition and the
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Conditional Pseudoentropy Condition used in [33] (see Section 3.2), and
prove that all problems in ZK satisfy the CIIDC, building on our proof that every
problem in SZK reduces to IID. Next we want to show that every problem in AM
satisfying the CIIDC is in NISZKh. However, as the approach used in [7] to show
IID is in NISZKh does not generalize to the computational case, following [33], we
get around this difficulty by interpreting the Computational Image Intersec-

tion Density Condition as a special type of commitment scheme that is suffi-
cient for constructing NIZKh proofs. Hence, we show that any promise problem in
ZK∩AM has a NIZKh proof. For the other direction, we prove that ZK equals ZKh,
a class which contains NIZKh, concluding that NIZKh = ZK ∩ AM.

7.1 The Computational Image Intersection Density Condition

We define the Computational Image Intersection Density Condition,
and show that any promise problem with a ZK proof satisfies this condition.

Definition 48 (Computational Image Intersection Density Condi-

tion (CIIDC)). A promise problem Π satisfies CIIDC if there is a polynomial
time mapping from strings x ∈ Π to two distributions (X, Y ) specified by circuits
sampling from them such that

1. If x ∈ ΠY , then X and Y are computationally indistinguishable.
2. If x ∈ ΠN , then (X, Y ) have mutual disjointness at least 1/3.

Lemma 49. Every promise problem Π ∈ ZK satisfies CIIDC.

Proof. Since every problem Π ∈ ZK satisfies the SZK/OWF Condition, it
follows that Π can be decomposed into two promise problems, Γ and Θ, such
that Π = Γ ∪ Θ, Γ ∈ SZK = NISZKh and for x ∈ Θ, instance-dependent
one-way functions can be constructed.

On the instances x in Γ , a reduction to IID gives a pair (X0, X1) such that on
x ∈ ΓY , Δ(X0, Y0) is close to 0, and, on x ∈ ΓN , MutDisj(X0, X1) is close to 1.
Informally, on the instances in Θ, we apply [20] to the instance-dependent one-
way function to obtain an instance-dependent pseudorandom generator Gx(·),
and consider the pair (Y0, Y1) obtained by comparing the output of Gx(·) to
the uniform distribution. Note that on x ∈ ΘY , (Y0, Y1) will be computationally
indistinguishable, while on x ∈ ΘN , it will be disjoint (since Gx(·) has a small
support), and hence mutually disjoint by Lemma 12.

Since it might not be possible to efficiently distinguish between instances in Γ
and those in Θ, it is not sufficient to simply map x to (X0, X1) when x ∈ Γ , and
to (Y0, Y1) when x ∈ Θ. Rather, we map x to (X, Y ) = XOR((X0, X1), (Y0, Y1)),
which satisfies the CIIDC (by a computational analogue of Lemma 14).

7.2 Noninteractive, Instance-Dependent Commitments

We begin by reviewing Ben-Or and Gutfreund’s [7] proof that IID is in NISZKh

and note that this proof cannot be replicated in the computational case to show
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that every Π satisfying the CIIDC is in NISZKh. Ben-Or and Gutfreund show
that IID is in NISZKh by polarizing (X0, X1) ∈ IID to the distributions (Y0, Y1),
setting the help string to σ = Y0(r) and having P prove to V that σ ∈ Supp(Y1)
by sending a random preimage in Y −1

1 (σ). However, this protocol may fail to
even have completeness for promise problems satisfying CIIDC, since the images
of Y0 and Y1 might even be disjoint, although they are computationally indis-
tinguishable. Indeed, we do not expect to show that every problem satisfying
CIIDC is in NIZKh, since NIZKh ⊆ AM but problems outside AM may satisfy
CIIDC (indeed, if one-way functions exist, every promise problem satisfies the
CIIDC). Thus, in showing an equivalence between interactive and noninterac-
tive zero knowledge in the computational case, it is necessary to use a different
approach. Following [33], we view IID/CIIDC as a kind of instance-dependent
commitment scheme, and use it to implement the general construction of non-
interactive zero-knowledge proofs for AM [19].

We show that promise problems that reduce to IID or that satisfy CIIDC

have a natural form of noninteractive, instance-dependent commitment schemes.
In particular, for a promise problem Π which reduces to IID (resp., satisfies the
CIIDC), the sender and the receiver can use the Polarization Lemma to obtain
a pair of distributions (Y0, Y1) that are statistically close on YES instances, and
mutually disjoint on NO instances. To commit to a bit b, the sender draws c
from Yb and outputs c as the commitment. To reveal b, the sender only needs to
prove that c is drawn from Yb by presenting to the receiver the randomness used
in sampling from Yb. Note that this binding property requires that the sender
generates the commitments honestly. (Otherwise, it could always generate the
commitment from the intersection of the supports, even if it negligibly small.)
While assuming an honest sender is usually not suitable in applications of com-
mitments, it turns out to be fine for constructing NIZKh proofs, because the
dealer generates the commitments.

We note that this commitment-based approach can also be used as an al-
ternate, more circuitous proof of NISZKh = SZK, since our results regarding
commitments apply to both IID and CIIDC. Hence, the definitions and the-
orems presented below will deal with both the statistical and computational
variants.

We now give a formal definition of the noninteractive, instance-dependent
commitment schemes we will be using:

Definition 50. A noninteractive, instance-dependent commitment scheme is a
family {Comx}x∈{0,1}∗ with the following properties:

1. The scheme Comx proceeds in the stages: the commit stage and the reveal
stage. In both stages, both the sender and the receiver share as common
input the instance x. Hence we denote the sender and receiver as Sx and,
respectively, Rx, and we write Comx = (Sx, Rx).

2. At the beginning of the commit stage, the sender Sx receives as private input
the bit b ∈ {0, 1} to commit to. The sender then sends a single message
c = S(x, b) to the receiver.
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3. In the reveal stage, Sx sends a pair (b, d), where d is the decommitmentstring
for bit b. Receiver Rx either accepts or rejects based on inputs x, b, d and c.

4. The sender Sx and receiver Rx algorithms are computable in time poly(|x|),
given the instance x.

5. For every x ∈ {0, 1}∗, Rx will always accept (with probability 1) if both Sx

and Rx follow their prescribed strategy.

Security Properties. We now define the security properties of noninteractive,
instance-dependent commitment schemes. These properties will be natural ex-
tensions of the hiding and binding requirements of standard commitments:

Definition 51. A noninteractive, instance-dependent commitment scheme
Comx = (Sx, Rx) is statistically (resp., computationally) hiding on I ⊆ {0, 1}∗
if for every (resp., nonuniform PPT) R∗, the ensembles {Sx(0))}x∈I and
{(Sx(1)}x∈I are statistically (resp., computationally) indistinguishable.

For a promise problem Π = (ΠY , ΠN ), a noninteractive, instance-dependent
commitment scheme Comx is statistically (resp., computationally) hiding on the
YES instances if Comx is statistically (resp., computationally) hiding on ΠY .

Definition 52. A noninteractive instance-dependent commitment scheme
Comx = (Sx, Rx) is statistically (resp., computationally) binding for honest
senders on I ⊆ {0, 1}∗ if there exists a negligible function ε such that for all
x ∈ I, a computationally unbounded (resp., nonuniform PPT) algorithm S∗ suc-
ceeds in the following game with probability at most ε(|x|):

S outputs a commitment c. Then, given the coin tosses of S, S∗ outputs
pairs (0, d0) and (1, d1) and succeeds if in the reveal stage, Rx(0, d0, c) =
Rx(1, d1, c) = accept.

For a promise problem Π = (ΠY , ΠN ), a noninteractive, instance-dependent
commitment scheme Comx is statistically (resp., computationally) binding for
honest senders on the YES instances if Comx is statistically (resp., computa-
tionally) binding on ΠY .

Having defined noninteractive, instance-dependent commitment schemes, we
proceed to show that they are equivalent to IID (resp., CIIDC), and conse-
quently, SZK (resp., ZK).

Lemma 53. A promise problem Π has a noninteractive, instance-dependent
commitment scheme that is statistically (resp., computationally) hiding on YES

instances and statistically binding for honest senders on NO instances if and
only if Π reduces to IID (resp., if and only if Π satisfies the CIIDC).

Proof. For the backwards direction, consider a problem Π that reduces to IID

(the computational case will be similar). We construct the following protocol:
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Commitment protocol for Π:

1. Preprocessing:
First, reduce x ∈ Π to an instance (X0, X1) of IID. Use the Polarization
Lemma on (X0, X1) to obtain (Y0, Y1) such that, if x ∈ ΠY , Δ(Y0, Y1) ≤ 2−n,
and, if x ∈ ΠN , (Y0, Y1) have mutual disjointness (1 − 2−n), where n = |x|.

2. Commit Stage:
Sx(x, b): To commit to bit b ∈ {0, 1}, choose d

R← {0, 1}m, where m is the
input length of Yb, set c = Yb(d) and output (c, d).

3. Reveal Stage:
Rx(x, c, b, d): Accept if and only if Yb(d) = c.

On x ∈ ΠY , we know that Y0 and Y1 have negligible statistical difference.
Hence, a commitment to 1 is statistically indistinguishable from a commitment
to 0. Hence, the scheme is computationally hiding on YES instances (actually,
the scheme is statistically hiding.)

When x ∈ ΠN , the pair (Y0, Y1) has mutual disjointness (1− 2−n). It directly
follows that only a negligible fraction of commitments can be opened in two
ways.

In the case that we are working with a problem which satisfies the CIIDC, we
use the same scheme. However, instead of polarizing, we will simply take direct
products to amplify the mutual disjointness on NO instances while preserving
computational indistinguishability on YES instances (Lemma 13).

For the forward direction, let Comx = (Sx, Rx) be a noninteractive, instance-
dependent commitment scheme that is statistically hiding on YES instances and
statistically binding for honest senders on NO instances, and consider X = Sx(0)
and Y = Sx(1):

– If x ∈ ΠY , we know that Δ(viewR(Sx(0), R), viewR(Sx(1), R)) ≤ ε(|x|), and
hence, Δ(Sx(0), Sx(1)) ≤ ε(|x|).

– If x ∈ ΠN , assume that there exists no negligible function μ(|x|) such that
MutDisj(Sx(0), Sx(1)) = (1−μ(|x|)). Hence for all negligible functions μ(|x|)
and c ← Sx(b), Pr

[
c ∈ Sx(b)

]
> μ(|x|). But then, S can always succeed with

probability greater than μ(|x|) at the game described in Definition 52. So,
for some negligible μ, (Sx(0), Sx(1)) have mutual disjointness (1 − μ(|x|)),
and Π reduces to IID.

The proof for the computational case is analogous.

By combining our previous results concerning IID and CIIDC with
Lemma 53, we obtain the following theorem:

Theorem 54. If a promise problem Π is in SZK (resp., ZK), then Π also
has a noninteractive instance-dependent commitment scheme that is statistically
(resp., computationally) hiding on YES instances and statistically binding for
honest senders on NO instances.

Proof. This follows from the fact that any Π ∈ SZK (resp., ZK) reduces to IID

(resp., satisfies CIIDC) (Lemma 49). By Lemma 53, Π has a noninteractive,
instance-dependent commitment scheme.
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7.3 From Noninteractive, Instance-Dependent Commitments to
NIZKh

In section, we will show that noninteractive, instance-dependent commitment
schemes are sufficient to obtain NIZKh. We start from the hidden bits model, a
fictitious construction that implements noninteractive zero knowledge uncondi-
tionally for all promise problems in AM. Then, we show how our commitments
can be employed in conjunction with this model to construct NIZKh proofs.

The Hidden Bits Model. The hidden bits model is a model due to Feige, Lapi-
dot and Shamir [19] that allows for an unconditional construction of NIZK. It
assumes that both the prover P and the verifier V share a common reference
string σ, which we will call the hidden random string (HRS). However, only the
prover can see the HRS. We can imagine that the individual bits of σ are locked
in boxes, and only the prover has the keys to unlock them. The prover can se-
lectively unlock boxes and reveal bits of the hidden random string. However,
without the prover’s help, the verifier has no information about any of the bits
in the HRS.

Definition 55 (NIZK in the Hidden Bits Model [19]). A noninteractive
zero knowledge proof system in the hidden-bits model for a promise problem
Π is a pair of probabilistic algorithms (P, V ) (where P and V polynomial-time
bounded) and a polynomial l(|x|) = |σ|, satisfying the following conditions:

1. Completeness. For all x ∈ ΠY , Pr [∃(I, π)s.t. V (x, σI , I, π) = 1] ≥ 2
3 , where

(I, π) = P (x, σ), I is a set of indices in {0, . . . , l(k)}, and σI is the sequence
of opened bits of σ, (σi : i ∈ I), and where the probability is taken over
σ

R← {0, 1}l(|x|) and the coin tosses of P and V .
2. Soundness. For all x ∈ ΠN and all P ∗, Pr [∃(I, π)s.t. V (x, σI , I, π) = 1] ≤ 1

3 ,

where (I, π) = P ∗(x, σ), where the probability is taken over σ
R← {0, 1}l(|x|)

and the coin tosses of P ∗ and V .
3. Zero Knowledge. There exists a PPT S such that the ensembles of tran-

scripts {(x, σ, P (x, σ))}x and {S(x)}x are statistically indistinguishable on
ΠY , where σ

R← {0, 1}l(|x|).

Note that we have defined the zero-knowledge condition in this model to be
statistical rather than computational. Indeed, the known construction of hidden
bits NIZK proof systems is unconditional and yields statistically indistinguish-
able proof systems.

Theorem 56 ([19]). Every promise problem Π ∈ NP has a hidden bits zero
knowledge proof system (P, V ).

As has been observed before (e.g. [23]), this construction for NP automatically
implies one for all of AM.

Corollary 57 ([19]). Every promise problem Π ∈ AM has a hidden bits zero
knowledge proof system (P, V ).
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Proof. Informally, this result can be obtained by transforming an AM proof into
a statement that there exists some message from the prover that the verifier
accepts. Since this statement is an NP statement, it can be proven in the hidden
bits NIZK model.

The corollary above shows that there exists an unconditional construction of
NIZK for all problems in AM. However, this construction holds only in the im-
practical hidden bits model. In proving our results, we show how to implement
this construction in the help model by exploiting a novel connection to nonin-
teractive, instance-dependent commitment schemes:

Theorem 58. If Π ∈ AM and Π has a noninteractive, honest-sender, instance-
dependent commitment scheme that is statistically (resp., computationally) hid-
ing on YES instances and statistically binding for honest senders on NO in-
stances, then Π ∈ NISZKh (resp., Π ∈ NIZKh).

Proof. Our general strategy will be to exploit the correspondence between the
algorithms in our definition of an instance-dependent commitment scheme, and
the three algorithms in a NIZKh proof system. More specifically, we will have
the dealer D use the sender algorithm to commit to a hidden bits string (this
is why we can afford to assume the sender is honest). Since the prover P is
allowed to be unbounded, we will use it to exhaustively search for openings to
D’s commitments. Finally, the verifier V will use the receiver algorithm to check
P ’s openings.

Let (PHB, V HB) be a hidden bits proof system for Π and let (Sen, Rec) be the
noninteractive, honest-sender bit commitment scheme for Π . Then, the following
proof system (D, P, V ) is NIZKh:

1. D(x, 1k): Select σD R← {0, 1}m, and run Sen(x, σD
i ) to generate a commit-

ment ci, for all i. Output c = (c1, . . . , cm) as the public help parameter.
2. P (x, c): Exhaustively find a random opening oP

i for each ci (and, implicitly,
each σD

i ). If one commitment ci can be opened as both 0 or 1, P outputs
oP

i according to the distribution O|C=ci , where (O, C) is the output of S on
a random bit b. Let σP be the secret string obtained by P opening D’s help
string. P runs PHB(x, σP ) to obtain (I, π). Send (I, σP

I , oP
I , π) to V .

3. V (x, I, oP
I , π): Compute σP

j , ∀j ∈ I. Use Rec to check that the commitments
are consistent. Run V HB(x, I, σP

I , π) and accept if and only if V HB accepts.

In the full version of the paper, we show that the construction above satisfies
the completeness, soundness and zero knowledge properties, concluding that Π
is in NIZKh.

7.4 From ZKh to ZK

In this section, we generalize the results of Ben-Or and Gutfreund [7] that
SZKh = SZK (Theorem 23) to show that adding help to ZK proofs does not
confer any additional power:
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Theorem 59 (Theorem 3, restated). ZKh = ZK.

To prove Theorem 23, Ben-Or and Gutfreund employ the techniques of
[24,42,36], by considering the output of the simulator S for a zero-knowledge
proof for Π as the moves of a virtual prover and a virtual verifier. The simu-
lated transcripts are compared to the transcripts output by a cheating strategy
for a real prover PS (called the simulation-based prover), which tries to imitate
the behavior of the virtual prover. Intuitively, on YES instances, the output
of the simulator should be statistically close to the output of the simulation-
based prover interacting with the real verifier. On NO instances, however, if we
modify the simulator to accept with high probability (we can easily modify it
to do that), the difference between the two transcripts must be significant. [7]
exploit this to show that any problem in SZKh can be reduced to the intersection
of the SZK-complete problems Statistical Difference([35]) and Entropy

Difference([36]). Since the other direction (SZK ⊆ SZKh) follows from the de-
finitions, the conclusion that SZK = SZKh follows immediately. We will use the
same strategy with ZKh, replacing statistical measures of closeness with compu-
tational ones. To do this, we replace the SZK-complete problems SD and ED

with the Indistinguishability Condition and the Conditional Pseudoen-

tropy Condition, which characterize the class ZK, and show that for every
Π ∈ ZKh, Π can be reduced to the intersection of a problem which satisfies In-

distinguishability Condition and a problem which satisfies Conditional

Pseudoentropy Condition, and is thus in ZK.

7.5 Putting It Together

We can now use the previous sections’ results to prove our main theorems re-
garding computational zero knowledge:

Theorem 60 (Theorem 1, restated). ZKh ∩ AM = ZK ∩ AM = NIZKh.

Proof. By definition, NIZKh ⊆ ZKh ∩AM. For the other direction, we know any
Π ∈ ZK has a noninteractive, instance-dependent commitment scheme (Theo-
rem 54), so a NIZKh proof can built for Π (Theorem 58). Hence, ZKh ∩ AM ⊆
NIZKh, which completes the proof of our theorem.

Theorem 61. Π ∈ ZK = ZKh if and only if Π ∈ IP and Π satisfies the
CIIDC.

Proof. Since a promise problem that satisfies the CIIDC also satisfies the In-

distinguishability Condition (this follows from the fact that of two distrib-
utions have disjointness α, they must have statistical difference at least α), the
promise problem must have a ZK proof system by Theorem 26. Conversely, any
problem in ZKh = ZK satisfies CIIDC by Lemma 49.
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8 Quantum Statistical Zero Knowledge

In this section, we study different variants of help for quantum noninteractive
statistical zero knowledge. We start by providing complete problems for the class
QNISZK defined by Kobayashi [13] and proceed to define the following two types
of help: pure quantum help and mixed quantum help.

8.1 Complete Problems for QNISZK

Kobayashi [13] gave a complete problem for the class of quantum noninterac-
tive perfect zero-knowledge, but not for statistical zero-knowledge. We continue
this line of work and give two complete problems for QNISZK, Quantum En-

tropy Approximation (QEA) and Quantum Statistical Closeness to

Uniform (QSCU).
Let ρ be a quantum mixed state of n qubits which can be created in time

polynomial in n by a quantum machine and t a positive integer. Then,

QEAY = {(ρ, t) : S(ρ) ≥ t + 1} QSCUY = {ρ : ||ρ − U|| ≤ 1/n}
QEAN = {(ρ, t) : S(ρ) ≤ t − 1} QSCUN = {ρ : ||ρ − U|| ≥ 1 − 1/n}

Note that these problems are the quantum equivalents of EA and SCU where
the statistical difference is replaced by the trace distance and the Shannon en-
tropy by the von Neumann entropy.

Theorem 62. QEA and QSCU are complete for QNISZK.

Proof Sketch: We start by showing that QEA belongs to QNISZK by using
results of Ben-Aroya and Ta-Shma ([43]) on quantum expanders. Then, similarly
to the classical case we reduce QSCU to QEA and last by Kobayashi’s results
([13]) we know that QSCU is hard for QNISZK. This concludes the proof. �

8.2 Help in Quantum Noninteractive Zero-Knowledge

In quantum noninteractive zero knowledge, the only model we defined so far is
the model where the prover and the verifier share the maximally entangled state∑

i |i〉P |i〉V which can be created by a dealer with quantum polynomial power
([13]). In the previous section, we provided two complete problems for this class.
Here, we extend this definition to allow the dealer to create as help a quantum
state that depends on the input.

We define two types of help and study the resulting classes:

– Pure Help: In the usual framework of quantum zero-knowledge protocols,
the prover and the verifier use only unitaries. We define QNISZKh as the
class where the prover and the verifier share a pure state (i.e., the outcome
of a unitary operation) created by the dealer in quantum polynomial time.
This state can depend on the input. Note that since the maximally entangled
state is a pure state QNISZK ⊆ QNISZKh. In fact, we show that QNISZKh =
QSZK = QSZKh.
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– Mixed Help: The previous definition does not allow the dealer to have some
private coins and hence does not fully correspond to NISZKh. We suppose
now that the prover and verifier share a mixed quantum state created by the
dealer. As before, the dealer has quantum polynomial power and the state
depends on the input. We call the resulting class QNISZKmh and show that
this kind of help is most probably stronger than quantum interaction.

For these classes, the definition of the zero knowledge property remains the
same as in the case of QNISZK (Section 5).

Pure Help. We suppose here that there is a trusted dealer with quantum
polynomial power. On input x, he performs a unitary Dx and creates a pure
state Dx(|0〉) = |hPV 〉 in the space P × V . The prover gets hP = TrV(hPV ) and
the verifier gets hV = TrP(hPV ). Note that the state hPV is a pure state and
depends on the input.

Definition 63. We say that Π ∈ QSZKh (resp. Π ∈ QNISZKh) if there is an
interactive (resp. noninteractive) protocol 〈D, P, V 〉 that solves Π, has the zero
knowledge property and where the verifier and the prover share a pure state hPV

created by a dealer D that has quantum polynomial power and access to the input.
They also start with an arbitrary polynomial number of qubits initialized at |0〉.

Next, we prove a quantum analogue of Theorem 39, i.e., interactive and nonin-
teractive zero knowledge are equivalent in the pure help model. We remark that
the proof of this statement is much more straightforward than in the classical
case.

Theorem 64. QNISZKh = QSZK = QSZKh

Proof. We start by showing that QSZKh ⊆ QSZK (and hence by definition
QNISZKh ⊆ QSZK). Let Π ∈ QSZKh and 〈D, P, V 〉 denote the protocol. Since
hPV is a pure state, we can create another protocol 〈P̃ , Ṽ 〉 where the verifier
takes the place of the dealer. That is, V generates for his first message the state
|hPV 〉 and sends the hP part to the dealer while keeping the hV part for himself.
At this point, note that the verifier and prover have exactly the same states then
when the dealer generates the state |hPV 〉 and sends it to them.

The protocol is the same so soundness and completeness are preserved. The
first message in 〈P̃ , Ṽ 〉 can be simulated because the circuit of the dealer is
public and computable in quantum polynomial time. The remaining messages in
〈P̃ , Ṽ 〉 can be simulated because of the zero-knowledge property of the protocol
〈D, P, V 〉.

The inclusion QSZK ⊆ QNISZKh (and hence by definition QSZK ⊆ QSZKh)
follows immediately from Watrous’ two-message protocol for the QSZK-complete
problem QSD [12]. The first message of the verifier can be replaced by the
dealer’s help.
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Mixed help. In the most general case, the dealer can create as help a mixed
quantum state, i .e., a state that can depend on some private coins or measure-
ments as well as the input.

Definition 65. We say that Π ∈ QNISZKmh if there is a noninteractive proto-
col 〈D, P, V 〉 that solves Π with the zero-knowledge property, where the verifier
and the prover share a mixed state hPV created by a dealer D that has quantum
polynomial power and access to the input. They also start with |0〉 qubits.

Note that the only difference between QNISZKh and QNISZKmh is that the
verifier and the prover share a mixed state instead of a pure state; however, we
show that this difference is significant. In the classical case, a model was studied
where the dealer flips some coins r and sends correlated messages mP (r) and
mV (r) to the prover and the verifier. The resulting class was called NISZKsec

and it was shown by Pass and shelat in [23] that NISZKsec = AM. To create
the secret correlated messages mP (r) and mV (r) in our quantum setting, we
just have to create the following state : |φ〉 =

∑
r |r〉|mP (r)〉|mV (r)〉. This state

can be created in polynomial time because mP (r) and mV (r) can be created
with a classical circuit. The dealer keeps the r part, sends the mP part to the
prover and the mV part to the verifier. From this construction, we can easily
see that AM = NISZKsec ⊆ QNISZKmh. Note that it is not known that NP ⊆
QSZK = QNISZKh so this may be interpreted as evidence that QNISZKh is a
strict subset of QNISZKmh.

Last, when we also allow the verifier to use non-unitary operations (i .e.,
private coins and measurements), we don’t know if help and interaction are
equivalent. The case of quantum zero knowledge protocols with non-unitary
players is indeed very interesting and we refer the reader to [44] for more results.

Acknowledgements. We thank the anonymous referees for their helpful comments.
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Abstract. The round-complexity of black-box zero-knowledge has for
years been a topic of much interest. Results in this area generally fo-
cus on either proving lower bounds in various settings (e.g., Canetti,
Kilian, Petrank, and Rosen [3] prove concurrent zero-knowledge (cZK)
requires Ω(log n/ log log n) rounds and Barak and Lindell [2] show no
constant-round single-session protocol can be zero-knowledge with strict
poly-time simulators), or giving upper bounds (e.g., Prabhakaran, Rosen,
and Sahai [15] give a cZK protocol with ω(log n) rounds). In this paper
we show that though proving upper bounds seems to be quite different
from demonstrating lower bounds, underlying both tasks there is a sin-
gle, simple combinatorial game between two players: a rewinder and a
scheduler. We give two theorems relating the success of rewinders in the
game to both upper and lower bounds for black-box zero-knowledge in
various settings (sequential composition, concurrent composition, etc).
Our game and theorems unify the previous results in the area, simplify
the task of proving upper and lower bounds, and should be useful in
showing future results in the area.

1 Introduction

Zero-Knowledge proofs, introduced by Goldwasser, Micali, and Rackoff [9], have
been the focus of much research since their invention, both in cryptography and
complexity theory. Interest in these proofs sparks from the fact that they provide
both a useful tool for the construction of higher level security protocols, and a
test-bed to explore new security issues, e.g., security under various forms of
protocol composition. As a consequence, numerous variants of zero-knowledge
have been considered and studied, resulting in many general possibility and
impossibility results.

Informally, a zero-knowledge proof system is a two party protocol between a
prover P and a verifier V that allows P to prove some assertion (e.g., member-
ship of a string x in an NP-language L) to V without leaking any information
other than the truth of the assertion. This is typically proven by exhibiting a
black-box simulator, i.e., an efficient procedure S that, given oracle access to the

R. Canetti (Ed.): TCC 2008, LNCS 4948, pp. 535–552, 2008.
c© International Association for Cryptologic Research 2008
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program of any (possibly misbehaving) verifier V ∗, produces (without interact-
ing with the prover) an output which is essentially identical to that of V ∗ when
interacting with P . Non-black-box simulation methods are also possible [1], but
most theoretical work, as well as essentially all protocols of practical interest,
fall in the black-box model, making black-box simulation an interesting area of
research on its own.

Much of the work on black-box zero-knowledge focuses on round-complexity, as
interaction is at the same time essential (to achieve the zero-knowledge property)
and expensive (from a practical performance point of view). In the last decade,
many general upper and lower bounds on the round complexity of black-box
zero-knowledge proof systems have been established [8,12,18,16,11,15].

Negative results (i.e., round complexity lower bounds) typically show that no
non-trivial1 language admits a black-box zero-knowledge proof system with less
than a given number of rounds. For example, Barak and Lindell have shown
that if the black-box simulator is constrained to run in strict polynomial time,
then only trivial languages admit constant round zero-knowledge proofs [2]. Sim-
ilarly, [3] has shown that only trivial languages admit black-box concurrent zero-
knowledge proofs with o(log n/ log log n) rounds. Such negative results are proved
by exhibiting a carefully crafted hard-to-simulate verifier V ∗ such that any ef-
ficient black-box algorithm S that simulates the interaction between V ∗ and P
can be transformed into an efficient decision procedure for the language L being
proven.

Positive results (i.e., round complexity upper bounds) typically assert that
under general cryptographic assumptions (e.g., the existence of commitment
schemes) every language in NP admits a black-box zero-knowledge proof system
with low round complexity. Such positive results are usually proved by giving an
explicit proof system for a single NP-complete problem (e.g., 3-coloring or graph
hamiltonicity), and proof systems for all other NP languages follow by reduction.
For example, Goldreich and Kahan [7] give a constant-round zero-knowledge
proof for 3-coloring, with an expected polynomial-time black-box simulator.

It would appear that the tasks of proving lower and upper bounds for black-
box zero-knowledge are quite different: the former needs to be completely general
and hold for any language and associated proof system; the latter considers a
specific (NP-complete) language and provides an explicit prover and simulator
strategy for that language.

1.1 Our Results

We describe a simple combinatorial game (parameterized by an integer r) that
closely characterizes (up to a small constant additive term) the round complexity
of black-box zero-knowledge, in the sense that (under standard cryptographic

1 In the context of zero-knowledge proofs, “non-trivial” typically refers to languages
that are not known to be decidable in probabilistic polynomial time, since any such
language admits a trivial zero-knowledge proof system where the verifier checks the
validity of the assertion on its own, without the help of the prover.
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assumptions) any non-trivial language (in NP \ BPP) admits a black-box zero-
knowledge proof system with r + O(1) rounds if and only if the combinatorial
game admits a solution. (See Sect. 3 for a formal statement of the results.)

The game is simple, yet general enough to study, in a unified way, black-box
zero-knowledge in many important settings, including

– zero-knowledge with sequential composition, where only a single prover in-
teracts with a single verifier at any time (no interleavings of sessions),

– concurrent zero-knowledge, where many colluding cheating verifiers can in-
teract with independent provers while interleaving their actions in the most
adversarially possible way,

– a form of parallel zero knowledge, where n provers send all their first mes-
sages in order, before moving to the next round, and so on,

– zero-knowledge under various forms of bounded concurrency, where different
sessions can be interleaved, provided not too many sessions are active at the
same time.

All of these settings are treated in a uniform way simply by parameterizing
the combinatorial game with a set Γ of “forbidden patterns”, i.e., sequences
of interleavings that are guaranteed not to occur. For example, in the case of
concurrent zero-knowledge, Γ = ∅ and all interleavings are allowed, while in
sequential zero-knowledge Γ is the set of all sequences in which labels are inter-
leaved (i.e., between the first and last labels in some session, there is a node with
a different label). For simplicity of exposition, we focus on the case of concurrent
zero-knowledge, where Γ = ∅ and can be omitted. The reader can easily check
that all our results and proofs immediately extend to arbitrary Γ .

Our game (described below) is similar, though not identical, to games implic-
itly defined in previous papers providing upper and lower bounds on the round
complexity of black-box concurrent zero-knowledge [3,15]. We remark that the
combinatorial games implicitly used in previous proofs differed from each other,
leaving a (perhaps small, but interesting) gap between upper and lower bounds.
A technical contribution of our paper is to identify (and precisely define) a
variant of the game that simultaneously yields both upper and lower bounds.
Moreover, our characterization result holds in a variety of settings (basically,
any kind of protocol composition that can be described by a set of forbidden
patterns). This can be useful not only to unify and simplify many previous re-
sults for the sequential and concurrent composition setting (e.g., [2,3,7,15,17],)
but also as a starting point to study the round complexity under other forms of
composition (e.g., parallel composition, bounded concurrency)

1.2 The Game

The game (parameterized by three integers d, h and r) is played by two players,
called the scheduler and the rewinder. The scheduler strategy is described by a
labeled tree, where each internal node v has exactly d children v1, . . . , vd, and all
leaves are at level h. Each node v is represented by a sequence {1, . . . , d}∗ in the
standard way, where nodes at level l of the tree are represented by sequences of
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length l, and the parent of a node is obtained by removing the last element in the
sequence. Each edge v → vm (from a node v to its mth child) carries the label
m, and every internal node carries a label π(v) which equals either the node itself
π(v) = v, or a previous label π(v) = π(w), where w is an ancestor of v.

For every node v ∈ {1, . . . , d}∗ in the tree, let μ(v) be the subsequence of v
corresponding to the edges immediately following a node w with label π(w) =
π(v). (See Fig. 2. The reader is referred to Sect. 3 for a formal definition.) In
an execution of the game, the rewinder explores the labeled tree defined by the
scheduler, learning the label π(v) when a node v is visited. Starting from the
root node, the rewinder selects at every step a child of some previously visited
node, subject to the following restriction:

– At any point during the game, if |μ(v)| = r, then the rewinder is allowed to
select a child of v only if he has already visited some other node w with the
same label π(v) = π(w) such that μ(w) is not a prefix of μ(v).

The rewinder is allowed to perform random choices during the game, with the
goal of reaching a random leaf of the tree, while visiting the smallest possible
number of nodes. Formally, we measure the success of the rewinder in the game
by the number of visited nodes (which should be small) and the distance from
random of the distribution over leaves defined by an execution of the game.

While the above game can be conveniently studied in a purely combinato-
rial setting, in order to establish a link between the game and computational
zero-knowledge proof and argument systems one has to consider a natural com-
putational version of the game where,

– the scheduler and rewinder strategies are required to be efficiently com-
putable, and

– the leaf reached by the rewinder is only required to be pseudo-randomly
distributed.

We remark that these computational restrictions are mostly a technicality, as
they do not seem to affect the combinatorial complexity of solving the game. In
particular, in all settings that we are aware of, the best known solution to the
game is also efficiently computable and it generates distributions over leaves that
are statistically close to (rather than simply indistinguishable from) random. We
give examples in the full version of the paper [14].

2 Preliminaries

2.1 Notation

We denote by Σ∗ the (infinite) set of all strings. We sometimes write {0, 1}≤n to
denote the set of all bit-strings with length at most n. We will often use bold letters
or overbars to represent (possibly empty) sequences of messages (e.g., q, β̄).

For interactive machines P and V , let 〈P, V 〉(x) be the local output of V after
interacting with P on common input x. We denote by viewP

V (x) the random tape
of V followed by the sequence of messages V receives while interacting with P
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on common input x. We will generally use α to denote a message from V , while
β will represent a message from P . We will often use next-message functions
when dealing with interactive machines. Let V (x, z, β̄; r) denote the next-message
function which takes as input a sequence of messages β̄ and a random tape r
and outputs the result of running interactive machine V with random tape r on
common input x, auxiliary input z, and sequence of incoming message β̄. When
dealing with a joint computation between two interactive machines, we define
a round to be two messages, one from each machine. So if we say a protocol
is four rounds, for example, there are actually eight messages exchanged. It is
sometimes convenient to run an interactive machine for a number of rounds which
is higher than the number specified by its program. We use the convention that
if an interactive machine implementing an r-round protocol is sent more than
r messages, it replies to the messages beyond round r with an empty dummy
message. For Turing machine M , we let desc(M) denote the description of M .

A function ν : N → [0, 1] is called negligible if ν(n) = n−ω(1), and non-
negligible (or noticeable) if ν(n) = n−O(1). We say two ensembles {Xw}w∈S

and {Yw}w∈S indexed by strings in some infinite set S, are computationally
indistinguishable (denoted {Xw}w∈S ≡c {Yw}w∈S) if for every probabilistic
(strict) polynomial time (PPT) algorithm D (called the distinguisher) we have
|Pr[D(Xw, w) = 1] − Pr[D(Yw, w) = 1]| < ν(|w|) for some negligible func-
tion ν. Conversely, we say that the same ensembles are computationally dis-
tinguishable if there is some PPT distinguisher D such that |Pr[D(Xw, w) =
1] − Pr[D(Yw , w) = 1]| ≥ ν(|w|) for some non-negligible function ν.

2.2 Interactive Proofs and Black-Box Zero Knowledge

Weuse the standarddefinition of interactive proofswith negligible soundness error:

Definition 1. A pair of interactive machines (P, V ) is an interactive proof sys-
tem for language L if machine V runs in polynomial time and there exists a
negligible function ν : N → [0, 1] such that

– Completeness: For every x ∈ L, Pr[〈P, V 〉(x) = 1] ≥ 1 − ν(|x|)
– Soundness: For every x 	∈ L and every interactive machine B,

Pr[〈B, V 〉(x) = 1] ≤ ν(|x|)

We say that such an interactive protocol has almost-perfect completeness or
negligible completeness error, and negligible soundness error. If the soundness
condition holds only against PPT B, then (P, V ) is called an argument system
(also known as a computationally sound proof). The results in this paper hold for
both proof and argument systems, but for simplicity we focus on proof systems.

Definition 2. Let (P, V ) be an interactive proof system for some language L.
We say that (P, V ) is black-box zero-knowledge if there exists a PPT oracle
machine S such that for every PPT interactive machine V ∗, the ensembles

{viewP (wx)
V ∗(z) (x)}x∈L,z∈{0,1}∗ and {SV ∗(x,z,·)(x)}x∈L,z∈{0,1}∗

are computationally indistinguishable.
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Note that in this definition the simulator S is given oracle access to the next-
message function of the adversarial verifier.

2.3 Composition of Interactive Proofs

We will consider a setting in which a verifier may interact with multiple, in-
dependent copies of the prover, each of which is attempting to prove the same
theorem. Specifically, the prover’s reply in some session should only depend on
previous messages from that session and not messages from some other session.
On the other hand, the verifier may make decisions based on messages it has
seen from any session. To model this, we will consider a single adversarial ver-
ifier V ∗ which sends messages of the form (α, s) to the prover, where s is just
some arbitrary string identifying the session. The prover’s next message must
be a reply for this session. The last message of the interaction is then consid-
ered the output of V ∗, which we require to have the form (α∗, end) for some
α∗. So, the transcript of an interaction between P and V ∗ will be of the form
((α1, s1), β1, (α2, s2), β2, . . . , (αv, sv), βv, (α∗, end)).

In this paper, we only consider adversarial verifiers which never abort, where
by abort we mean send messages that are malformed in some session (or deviate
in some other detectable way). This is without loss in the upper bound because
a simulator can easily modify its verifier to be non-aborting. In the case of the
lower bound, the adversarial verifiers we construct do not send abort messages
at any time. Previous lower bounds (e.g., [3]) rely on aborting sessions to force
the simulator to do extra work. Nevertheless, the act of the verifier informing
the simulator that it is going to abort some session simply makes the task of
simulating easier, since the simulator knows that on the current path it no longer
needs to worry about the aborted session. In our paper, the verifier can still
implicitly “abort” a session by never again sending a message for that session;
it just doesn’t tell the simulator it is doing this.

2.4 Black-Box Concurrent Zero Knowledge

In the most general form of concurrent composition, the verifier is allowed to
interact with a polynomial number of independent provers while maintaining
complete control over the scheduling of messages. Specifically, the verifier may
interleave messages from different sessions any way it chooses. This situation
was first explored for witness indistinguishability (a weaker notion than zero-
knowledge) in [6,5] and later for zero-knowledge in [4].

As observed in [3], the standard definition of black-box zero-knowledge is in-
sufficient in the concurrent setting, since the running time of the simulator must
be a fixed polynomial and independent of its oracle. Thus, a verifier could initi-
ate more sessions than the simulator has time to handle (yet still a polynomial
number). To overcome this subtlety, we give the simulator an additional input
representing an upper bound on the length of the interaction with the verifier
(how many messages the verifier will send in all sessions before halting with
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some local output). A similar approach was used in [3]2. We then require the
simulator to run in polynomial time in both the length of the common input
and the maximum length of an interaction.

Definition 3. Let (P, V ) be an interactive proof system for some language L.
We say that (P, V ) is black-box concurrent zero-knowledge if there exists
a PPT oracle machine S such that for every polynomial h(·) and every PPT
interactive machine V ∗ sending at most h(|x|) messages in any interaction, the
ensembles

{viewP
V ∗(z)(x)}x∈L,z∈{0,1}∗ and {SV ∗(x,z,·)(x, h(|x|))}x∈L,z∈{0,1}∗

are computationally indistinguishable.

3 A Simple Combinatorial Game

In this section we formally define our combinatorial game. We first describe a
purely combinatorial version, and then modify the game to satisfy some natural
computational restrictions. The game is parameterized by positive integers h, r,
and d and has two players: a rewinder S and a scheduler V.

3.1 The Scheduler

The scheduler V uses a private random input to specify a labeled tree where
each internal node v has exactly d children v1, . . . , vd and all leaves are at level
h (see Fig. 1). Each edge v → vm (from a node v to its mth child) carries the
label m. Each internal node v (represented by a sequence in D≤h = {1, . . . , d}≤h

of edges) carries a label π(v) which equals either the node itself (π(v) = v), or
a previous label π(v) = π(w) for some ancestor w (i.e. prefix) of v. The labeling
function V : D≤h → D≤h takes as input some node v and returns its label π(v).

We let Ud,h denote the uniform distribution on leaves in a tree of degree d
and height h. Leaves are sequences in Dh.

For any v = (m1, . . . , mj), let μ(v) = v[I], where I is the set of positions i
in v satisfying π(v[1, . . . , i − 1] = π(v). This means that μ(v) is the sequence of
edges coming out of nodes with the same label as v, on the path from the root
to v. See Fig. 2 for an illustration.

3.2 The Rewinder

The rewinder is a probabilistic oracle algorithm S
V where V : D≤h → D≤h. The

rewinder S uses the oracle to explore the scheduler tree, and it may query the
oracle on a child of some previously visited node v subject to one restriction:

– If |μ(v)| = r, then the rewinder must have already visited some other node
w with the same label π(w) = π(v) such that μ(w) is not a prefix of μ(v).

2 In [3], the simulator takes an additional input representing an upper bound on the
number of sessions the verifier will initiate during the interaction.
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Fig. 1. The scheduler tree. Each internal node has degree d, with edges labeled 1 to d.
The height of the tree is always h and the leaves are sequences in {1, . . . , d}h.

Fig. 2. The above depicts the explored portion of some tree. For brevity we
let a = ε, b = m1, and c = (m1, m2, m3, m4). The middle picture depicts
μ(m1, m2, m3, m4, m5) = (m1, m3, m4). The right picture shows how the node
(m1, m2, m6, m7) has the same label a = ε as the node (m1, m2, m3, m4, m5),
but μ(m1, m2, m6, m7) = (m1, m6) is not a prefix of μ(m1, m2, m3, m4, m5) =
(m1, m3, m4).

The restriction, which we often call the μ restriction, is illustrated in Fig. 2. It
is easy to see that the condition can be efficiently checked by S (without making
any additional queries) because it only depends on the previously issued queries
and respective answers. We consider rewinders S that always terminate (or, at
least terminate with probability 1), and always make at least one query v0 = ε.

We denote by S
V the probability distribution over leaves Dh, specified by the

last query asked by S to the oracle V. The goal of the rewinder is to produce a
distribution over leaves as close as possible to uniform Ud,h.
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3.3 A Computational Version

To make the game useful in asymptotic settings (like black-box computational
zero-knowledge proof systems), we need to impose some computational
restrictions.

Instead of considering a single scheduler V, we consider a family of schedulers
{Vx}x∈Σ∗ indexed by a parameter string x. Each Vx is a defined as usual as
a function Vx : Dhx

x → Dhx
x where Dx = {1, . . . , dx}, i.e., Vx is a labeled tree

of degree dx and height hx. We say that V is an efficient scheduler if hx ≤
|x|O(1), dx ≤ 2|x|

O(1)
and the labeling function (x, v) �→ Vx(v) is computable in

polynomial time |x|O(1). (Notice that by the bounds on hx and dx, the size of
the second argument |v| ≤ hx · log2 dx ≤ |x|O(1) is always polynomial in |x|.)

Similarly, we consider families of oracle algorithms S
V
x(h) indexed by the string

x. We say that S is an efficient rewinder if the strategy S
(·)
x (h) can be imple-

mented in PPT in |x| and h. The goal of S is to produce a distribution over
leaves Dhx

x which is computationally indistinguishable (in |x|) from the uniform
distribution.

Finally, the round number rx defining the rules of the game, can also depend
on x. Typically, hx, dx and rx are just functions of the parameter length |x|.

4 Two Theorems

In this section we give two theorems (for upper and lower bounds) which relate
the success of rewinders in our combinatorial game to the success of black-
box simulators in the more complicated concurrent zero-knowledge setting. For
simplicity, in both of the following theorems, fix dx to be some super-polynomial
function of |x|.

Theorem 1 (Lower Bound). For any round parameter rx and some language
L, if the following two conditions hold:

1. The game does not have a solution: For every efficient rewinder S there exists
an efficient scheduler (hx, Vx) such that the ensembles {S

Vx
x (hx)}x∈Σ∗ and

{Udx,hx}x∈Σ∗ are distinguishable in polynomial time
2. There exists an (rx + 1)-round black-box concurrent zero-knowledge proof

system for L

Then L ∈ BPP.

Theorem 2 (Upper Bound). For any game parameter rx, if the following
two conditions hold:

1. The game has a solution: There exists an efficient rewinder S such that for all
efficient schedulers (hx, Vx), the ensembles {S

Vx
x (hx)}x∈Σ∗ and {Udx,hx}x∈Σ∗

are computationally indistinguishable
2. Perfectly-hiding commitment schemes exist
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Then there exists an (rx+O(1))-round black-box concurrent zero-knowledge proof
system for all L ∈ NP.

We prove Thm. 1 in Sect. 5 and Thm. 2 in Sect. 6. Combining the two theorems
gives us our main result: Any non-trivial language (in NP \ BPP) has an (r +
O(1))-round black-box concurrent zero-knowledge proof system if and only if
our combinatorial game with parameter r admits a solution.

5 Proof of Theorem 1 (Lower Bound)

In this section we show the relationship between the combinatorial game and
black-box zero-knowledge lower bounds. Before getting into the details of the
proof we will first provide some intuition for our results.

Like in the lower bound proof of [3], we run the simulator S for language
L inside of a BPP decision procedure while simulating its oracle (an adversar-
ial concurrent verifier) using sufficiently independent copies of the single-session
honest verifier. However, the way we use the single-session honest verifier dif-
fers, as does our accepting criteria. We force the decision procedure to accept
if and only if at some point S causes a single-session verifier to accept without
successfully rewinding the session. Otherwise, the decision procedure rejects.

It is fairly straightforward to show that if x is not in L, then our decision
procedure will reject with overwhelming probability, due to the soundness of the
proof system. More difficult is showing that if x is in the language, then the
decision procedure accepts with noticeable probability. To accomplish this, we
want to make it difficult for the simulator to successfully rewind every session.
This is where we use the combinatorial game and our assumption that for any
rewinder there is a difficult scheduler.

Intuitively, a simulator making oracle queries to an adversarial verifier (and
possibly rewinding) is similar to a rewinder exploring a scheduler tree. Following
this intuition, we show that given S we can build a rewinder S. The rewinder runs
S internally and uses its scheduler oracle to help simulate a concurrent adver-
sarial verifier oracle for S. Given such a rewinder S, our assumption guarantees
a corresponding difficult scheduler V

∗. The hope is that this difficult scheduler
will make the corresponding adversarial verifier hard-to-simulate. We then sim-
ply make our BPP decision procedure run S and simulate its oracle in the same
way as the rewinder S, and using the difficult scheduler V

∗.
There is still one issue to overcome. Our assumption tells us that it is difficult

for S to reach a random leaf in V
∗, so we need to make sure the simulator’s

task of properly simulating and the rewinder’s task of reaching a random leaf
are related. To do this, we have the simulated adversarial concurrent verifier
randomize queries before querying the difficult scheduler V

∗. As long as the
independence used to randomize is greater than the maximum length of an
interaction between the honest prover and the verifier, the prover’s interaction
with this verifier will correspond to reaching a random leaf in the scheduler tree.
Since S must simulate this interaction properly (because of the zero-knowledge
property), we have our desired relationship between the game and the proof
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system. It should then be the case that if x is in L, S will have difficult time
rewinding every session, and thus it will be forced to make a single-session honest
verifier accept without rewinding. This, as we said above, causes the decision
procedure to accept x.

5.1 Details of the Proof

We will now expand on the ideas explained in the previous section. Fix some
function rx, fix function dx to be super-polynomial in |x|, and let L be some
language. Assume the following:

1. For every probabilistic oracle machine Sx(h) running in polynomial time in
|x| and h, there exists a polynomial time (in |x|) computable Vx(·), such
that the ensembles {S

Vx
x (hx)}x∈Σ∗ and {Udx,hx)}x∈Σ∗ are distinguishable in

polynomial time.
2. There exists an (rx + 1)-round black-box concurrent zero-knowledge proof

system for L.

We aim to show that L ∈ BPP. Since we are assuming L has a black-box zero-
knowledge proof, let S be its simulator. As we explained above, we will define a
decision procedure D which runs S and simulates for it a verifier oracle V , with
the help of some scheduler V. We would like our decision procedure to simulate
a verifier oracle which makes it difficult for S to properly rewind every session.
To do this we first show how to construct a difficult verifier after placing a few
restrictions on S.

Restrictions on S. We make some assumptions about S which are without loss
of generality. First, we assume that S only makes queries for which it has al-
ready queried all shorter prefixes. Second, we assume that before S outputs a
view with prover messages β̄, it queries its oracle one last time with β̄ (and all
shorter prefixes). Clearly, any PPT S can be transformed into a simulator S′

that satisfies the above properties and still runs in polynomial time.
Let t(|x|, h) and m(|x|) be polynomial bounds on the number of queries and

the message size for all queries made by S.

A Difficult Verifier. As with past lower bound proofs, we wish to describe a
verifier which will be difficult for the simulator S to simulate inside of the decision
procedure. We first describe an oracle verifier V̂ which is given oracle access to
a scheduler V which uses p bits of its private random input.

We will rely extensively on two hash functions, which we say are given to V̂
as auxiliary input. Let F = {Fn,h}n,h∈N be a family of t(n, h)-wise independent
hash functions. Let G = {Gn,h}n,h∈N be a family of t(n + h)-wise independent
hash functions. Each function f ∈ Fn,h will be from {0, 1}≤h·m to {0, 1}ρ, where
ρ is an upper bound on the number of bits the single-session honest verifier
reads from its random tape. Functions from F will be used to hash all of the
messages leading up to the start of a session in order to generate randomness
for the single-session honest verifier used in that session. Each function g ∈ Gn,h
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will be from {0, 1}≤h·m × {0, 1}≤h·m × m to {0, 1}logd. Functions from G are
used to randomize messages for use as edges in a scheduler tree. They contain
independence greater than the running time of S and therefore also greater than
the maximum length of an interaction. In particular, for a randomly chosen
function from the family, queries of length h will lead to a uniformly random
leaf as long as the inputs are unique.

Given any function g from the family just described, for simplicity we define
another function ĝV which is with respect to some scheduler V. Now, define
V ◦ g(β̄) = V(ĝV(β̄)) and recursively define ĝ as

ĝV(ε) = ε

ĝV(β̄, β) = (ĝV(β̄), g(πV◦g(β̄), μV◦g(β̄), β)),

where π and μ are defined as they were in Sect. 3. We are ready to describe the
verifier V̂ with oracle access to some scheduler V. We describe the next-message
function, which takes as input a sequence of messages β̄, β. The verifier is given
as auxiliary input two hash functions f and g from the families we described
above.

Algorithm V̂ Vx(x, (f, g), (β̄, β))
1. If |β̄, β| = h or V (x, (μV◦g(β̄), β); f(πV◦g(β̄))) = reject then

return ((β̄, β), end)
2. Else return (V (x, μV◦g(β̄, β); f(πV◦g(β̄, β))), V ◦ g(β̄, β))

The adversarial concurrent verifier intuitively executes multiple sessions and
interleaves them based on queries to its scheduler oracle (the queries are first
randomized using g before querying the oracle). The content of the replies from
V̂ comes from a single-session honest verifier V which V̂ runs internally. Each
session’s messages are determined by a sufficiently independent copy of V (the
independence is due to the hash function f).

The adversarial verifier V̂ sends final output (a sequence of messages) in two
cases. One is if at any time a single-session honest verifier rejects. The other is if
the end of the interaction is reached (the sequence of messages is length h). We
should mention that it is possible a valid rewinding of some session by S might
not yield a valid rewinding in V. This is because each message in the queries
from S is at most size m (a polynomial in |x|), but when g randomizes it maps
these messages into a message space of size d (which is super-polynomial in |x|).
However, since S makes at most polynomially many queries, the probability of
a collision is negligible, so we ignore this event for the rest of the proof.

Now, as we said earlier, we want to run the simulator inside of a decision
procedure, giving it oracle access to a difficult-to-simulate verifier. To make the
verifier just described “difficult”, we want it to have oracle access to a difficult
scheduler. To get such a scheduler, we need to define a rewinder and then use
our assumption about the combinatorial game not admitting a solution. The
rewinder is as follows.
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Algorithm S
Vx
x (h)

1. Randomly choose f and g from their respective families.
2. Run [SV̂ (x, h)]Vx

3. Watch for queries to Vx which violate the condition of the
combinatorial game.

4. If such a query is made then halt and output ⊥.

The rewinder S internally runs S, giving it oracle access to V̂ . Since V̂ expects
a scheduler oracle, S will simulate it using its own scheduler oracle V. However,
S will monitor these queries to V and if at any time there is a query which
violates the condition of the game (the scheduler was not properly “rewound”;
see Sect. 3) S will halt and fail. Otherwise S will continue until S halts with
some final output.

Given the efficient rewinder above, our assumption about the game not ad-
mitting a solution guarantees there is some difficult efficient scheduler V

∗. Our
adversarial concurrent verifier V̂ should now, when given oracle access to V

∗,
be hard-to-simulate for S. Let p be an upper bound on the number of private
random bits that V

∗ uses.

The Decision Procedure. We are ready to give the BPP decision procedure D
for language L.

Algorithm D(x)
1. Choose f, g randomly from the required families.
2. Choose private random input R

$← {0, 1}p.
3. Run [SV̂ (x,(f,g),·)(x, hx))]V

∗
x

4. If there is ever an attempted query to V
∗
x which violates the

conditions of the game, then halt and ACCEPT

The decision procedure D, on input x, runs the simulator S on input x and
with interaction length equal to the height hx of the difficult scheduler tree. The
simulator expects an oracle so to simulate it D uses V̂ with auxiliary input two
randomly chosen hash function f and g. Scheduler oracle queries from V̂ are
answered using the difficult scheduler V

∗. Like in the rewinder defined above, D
monitors the oracle queries to V

∗. If there is ever a query which would violate
the game condition, D halts and accepts. Otherwise, S will eventually halt with
some output (β̄, β), in which case D rejects. The correctness of our decision
procedure follows from two lemmas.

Lemma 1. For all but finitely many x ∈ L, Pr[D(x) accepts] ≥ 1/q(|x|) for
some polynomial q(·).

Lemma 2. For all but finitely many x 	∈ L, Pr[D(x) accepts] < ν(|x|) for some
negligible function ν(·).

Proof of Lemma 1. The idea of the proof is simple. The decision procedure only
accepts if there is some query which violates the game condition. Notice that
this is the only difference between the execution of the rewinder S

V
∗
x

x (hx) and
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the execution of SV̂ V
∗
(x, hx). We show that this latter execution (without any

check for game conditions) results in a random leaf when x is in the language.
The inability of the rewinder to reach a random leaf then allows us to argue that
the difference between the two executions above is noticeable.

We now give details. Consider some adversarial verifier V ∗ which is identical
to V̂ except that it does not make oracle calls to a scheduler. Instead, it is given
the code of a scheduler as auxiliary input (as well as hash function f and g and
private random input for the scheduler).

We first claim that for randomly chosen f and g, the ensembles

{ĝV∗(〈P, V ∗f,g,desc(V∗),R〉(x))}x∈L and {Udx,hx}x∈L

are computationally indistinguishable. To see this, notice first that the output
of V ∗ when interacting with the honest prover on input x ∈ L will be a prover
query of length h. This is because the proof system has negligible completeness
error, so any invocation of the honest verifier will accept with overwhelming
probability. Thus, with high probability V ∗ will only reply with final output
when the length of the query is h. This means that with high probability P will
cause V ∗ to query its scheduler at a leaf. Now, because the independence of g is
greater than h, g was randomly chosen from the family, and because each input
to g (inside the definition of ĝ) is distinct (appending π and μ ensures this), then
g, when applied to the query of length h will result in a uniformly random leaf.

The zero-knowledge property then ensures us that ensembles

{ĝ(SV ∗(x,(f,g),desc(V∗),R,·)(x, hx))}x∈L and {ĝ(〈P, V ∗f,g,desc(V∗),R〉(x))}x∈L

must be computationally indistinguishable as well (again for randomly chosen f
and g as above). Now, we know by our assumption that there must be some Δ
which can distinguish between Udx,hx and S

V
∗

x (hx) with noticeable probability
for all sufficiently large strings x. So there must be some Δ̃ which can distin-
guish between the ensembles S

V
∗
x

x (hx) and ĝ(SV ∗(x,(f,g),desc(V∗),R,·)(x, hx)) for all
sufficiently large x ∈ L.

Recall that the random variable S
V

∗

x (hx) is considered to be the function ĝ
applied to the last query from S, which we have said must be the same as the
sequence of messages S outputs. Yet for any x the statistical distance between
ĝ(SV ∗(x,(f,g),desc(V∗),R,·)(x)) and S

V
∗

x (hx) is at most the probability that some
invalid query from S causes an honest-verifier to accept plus the probability of
a collision, and the probability of collision is negligible (since d is a fixed super-
polynomial) so it must be the case that the former probability is noticeable. The
lemma immediately follows.

Proof Sketch of Lemma 2. The proof uses the standard technique from past lower
bound papers (cf. [3]), which relies on the soundness of the (single-session) proof
system. Since D accepts if and only if S is able to make the single-session honest
verifier accept without rewinding, we can use S to build a single-session “cheating
prover” which, while interacting with some single-session honest verifier, runs S
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internally. The cheating prover uses the actual verifier it is interacting with to
simulate one session with S, while for all other sessions the cheating prover
follows the strategy of D and runs copies of the single-session honest verifier
internally. The negligible soundness error of the proof system ensures that S must
only be able to make an unrewound session accept with negligible probability,
and the lemma follows.

6 Proof of Theorem 2 (Upper Bound)

In this section we show how our combinatorial game relates to black-box zero-
knowledge upper bounds. We follow the usual procedure for proving there is a
black-box zero-knowledge proof system for all languages in NP by giving such
a proof system for an NP-complete language (this was first done in [10]).

We want this proof system to closely resemble our combinatorial game. Specif-
ically, we desire a proof system in which

– for r rounds, an honest prover sends uniformly random messages, and
– if a simulator executes one successful rewind during these r rounds, it will

be able to successfully simulate that session.

Intuitively, we want the first property since in our combinatorial game the
rewinder must reach a uniformly random leaf. The second property matches
our μ restriction on the rewinder.

The Proof System. As a starting point, we will focus on NP-complete lan-
guages with 3-message, public-coin, committed-verifier zero-knowledge (CVZK)
proof systems (formalized in [13]). This means the proof system (P, V ) has three
messages, the verifier simply outputs bits from its random tape, and there ex-
ists a simulator S such that for all challenges c the ensembles {S(x, c)}x∈L and
{viewP

Vc
(x)}x∈L are computationally indistinguishable. Hamiltonicity is one such

NP-complete language.
We then follow the technique of Rosen [17] (which also appeared in [15]) and

augment the above proof system with a preamble which proceeds as follows.
The verifier initially commits (using a perfectly-hiding commitment scheme) to
a challenge σ and shares σ0

i,j , σ
1
i,j for 1 ≤ i ≤ l and 1 ≤ j ≤ r of σ such that

σ0
i,j ⊕ σ1

i,j = σ for all i and j. Numerous rounds of challenge-response follow.
In each round, the prover sends a random bit-string and the verifier opens the
shares corresponding to this bit-string. The prover then executes the 3-message,
public-coin, committed verifier zero-knowledge proof system (which we now call
the second stage). In this second stage, the verifier sends σ as its challenge, as
well as openings for the rest of the shares to show that it did not cheat in the
preamble. See Fig. 3 for details.

The Simulator. For an NP-complete language L with the property mentioned
above, we wish to show that there is an (r(·)+O(1))-round black-box concurrent
zero-knowledge proof system, assuming that there is an efficient rewinder S that
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Preamble:
V → P : commit to σ and σ0

i,j , σ
1
i,j for 1 ≤ i ≤ l and 1 ≤ j ≤ r .

For j = 1, . . . , r :

P → V : Send b1,j , . . . , bl,j
$← {0, 1}l.

V → P : Decommit to σ
b1,j

1,j , . . . , σ
bl,j

l,j .
Second Stage:

P → V : Send first message of three-round protocol.

V → P : Decommit to σ and σ
1−bi,j

i,j for 1 ≤ i ≤ l and 1 ≤ j ≤ r.
P → V : Answer according to the value of σ.

Fig. 3. The Rosen protocol

can win our combinatorial game with parameter r(·), and that perfectly-hiding
commitment schemes exist.

To accomplish this task, we will need to build a successful simulator S with
an output distribution computationally indistinguishable from the view of any
adversarial concurrent verifier V ∗ interacting with the real prover P . The simu-
lator is given oracle access to V ∗ to aid it in this task. We assume without loss
that V ∗ always sends exactly h messages in any concurrent interaction.

From a high level, our simulator S will make queries to V ∗ and use its one
advantage over a prover (the ability to rewind V ∗) to help it achieve its goal. At
some point S will make one final query to V ∗ and output a view corresponding
to this query.

The rewinding strategy employed by S will be dictated by the efficient, suc-
cessful rewinder S, which S will run internally. Since S expects a scheduler oracle
which it uses to explore a labeled tree, we make S simulate the oracle using an
internal tree data structure which it labels with the help of its own oracle, V ∗.

Each node v = (m1, . . . , mj) (denoted by the sequences of edges leading to
it) in the tree will correspond to some query made by S, and will contain three
pieces of information. The first is the label of the node π(v), which is either v
or π(w), the label of some ancestor. The other information will be a sequence
of prover message β̄ and the corresponding reply (α, s) from V ∗. Intuitively, s
is the session label which S uses to determine the node label π(v). If s is the
same as in some ancestor node w, then π(v) = π(w). If s is a new label, then
π(v) = v.

When S asks its oracle for the label of v, some previously unexplored node,
the simulator S adds the node v to the tree (recall nodes are specified by a
sequence of edges), and looks up the information (π(v′), β̄, (α, s)) stored at the
parent node v′ = (m1, . . . , mj−1). There are now two cases.

In the first case, there are less than r +1 nodes on the path to v labeled π(v′)
,i.e., |μ(v′)| < r, in which case the simulator appends mj to β̄ and queries it
to V ∗. This corresponds to taking some previous query β̄ and making a longer
query with the addition of preamble message mj .

In the second case, there are either r + 1 or r + 2 nodes with label π(v′)
on the path, so the preamble is finished. In this case, S searches the tree for a
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Fig. 4. Illustration of how S uses S to make queries to V ∗

node y with label π(y) = π(v′) and μ(y) not a prefix of μ(v′). This constitutes a
proper rewinding, so S should have V ∗’s challenge revealed to it by comparing
the messages stored at each node. The simulator, armed with the challenge,
uses the committed-verifier simulator to generate a message to send to V ∗. The
simulator will find the required information in the tree, since we are assuming
verifiers that do not abort and rewinders that do not make invalid queries. In
either case, the simulator will make some query (call it β̄j) to V ∗.

We still need to give S an answer to its query v. To do so we need to find out
which information to store at node v in the tree data structure. We will use V ∗

to accomplish this task. Let (αj , s) be the reply from V ∗ on query β̄j . If there
exists some ancestor w of v with a message (αi, s) stored at it, then at node
v store π(w), β̄j , (αj , s) and otherwise store v, β̄j , (αj , s). Finally, once the tree
has been updated, S returns the label π(v) to S. The sequences of messages S
ultimately outputs will be the β̄ stored at the last node S queries. The entire
process is illustrated in Fig. 4.

Showing zero-knowledge is straightforward. To do so we gradually modify the
simulator until it acts identically to the honest prover, arguing indistinguishability
for each modification. We first use a hybrid argument to argue that we can replace
the invocations of the CVZK simulator with the honest prover given a real witness.
Then we use the fact that S is a good rewinder, meaning it can reach a random leaf
given any scheduler, to replace the S inside of S with a single, random path down
the tree. It then is the case that S follows a single path down the tree, preamble
messages are randomly chosen, and second-stage messages are simulated using
the honest prover with an actual witness. This is the same as the behavior of the
honest prover, so the zero-knowledge property follows.
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Abstract. Loosely speaking, an interactive proof is said to be zero-
knowledge if the view of every “efficient” verifier can be “efficiently” simu-
lated. An outstanding open question regarding zero-knowledge is whether
constant-round concurrent zero-knowledge proofs exists for non-trivial
languages. We answer this question to the affirmative when modeling
“efficient adversaries” as probabilistic quasi-polynomial time machines
(instead of the traditional notion of probabilistic polynomial-time
machines).

1 Introduction

Zero-knowledge interactive proofs [14] are paradoxical constructs that allow one
player (called the Prover) to convince another player (called the Verifier) of
the validity of a mathematical statement x ∈ L, while providing zero addi-
tional knowledge to the Verifier. This is formalized by requiring that the view
of every “efficient” adversary verifier V ∗ interacting with the honest prover P
be simulated by an “efficient” machine S (a.k.a. the simulator). The idea be-
hind this definition is that whatever V ∗ might have learned from interacting
with P , he could have actually learned by himself (by running the simulator
S). As “efficient” adversaries normally are modelled as probabilistic polynomial-
time machines (PPT ), the traditional definition of ZK models both the verifier
and the simulator as PPT machines. In this paper, we investigate alternative
models of efficient adversaries—in particular, as in [21], we model adversaries as
probabilistic quasi-polynomial time machines (PQT ).

Concurrency and ZK. The notion of concurrent ZK, first introduced and
achieved, by Dwork, Naor and Sahai [8] considers the execution of zero-knowledge
proofs in an asynchronous setting and concurrent setting. More precisely, we con-
sider a single adversary mounting a coordinated attack by acting as a verifier in
many concurrent executions. Concurrent zero-knowledge proofs are significantly
harder to construct (and analyze).

Since the original protocols by Dwork, Naor and Sahai (which relied on so
called “timing assumptions”), various other protocols have been obtained based
on different set-up assumptions (e.g., [9] [6] [4]). On the other hand, in the
“plain” model without any set-up Canetti, Kilian, Petrank and Rosen [5] (build-
ing on earlier works by [17] [26]) show that concurrent ZK proofs for non-trivial

R. Canetti (Ed.): TCC 2008, LNCS 4948, pp. 553–570, 2008.
c© International Association for Cryptologic Research 2008



554 R. Pass and M. Venkitasubramaniam

languages, with so called “black-box” simulators, require at least Ω( log n
log log n )

number of communication rounds. Richardson and Kilian [25] constructed the
first concurrent zero-knowledge argument in the standard model. Their protocol
which uses a black-box simulator requires O(nε) number of rounds. Kilian and
Petrank [16] later obtained a round complexity of Õ(log2 n), and finally Prab-
hakaran, Rosen and Sahai [23] essentially closed the gap by obtaining a round
complexity of Õ(log n).

All of the above results rely on the traditional modeling of adversaries as
PPT machines. Thus, it is feasible that there exists some super-polynomial, but
“well-behaved”, model of adversaries that admits constant-round concurrent ZK
proofs.

Concurrent ZK w.r.t super-polynomial adversaries. The lower bound of
[17] shows that only languages decidable in probabilistic subexponential-time
have 4-round concurrent black-box zero-knowledge arguments w.r.t to prob-
abilistic subexponential-time adversaries. On the other hand, [21] constructs
constant-round concurrent zero-knowledge arguments w.r.t PQT verifiers (and
consequently also simulators); however the soundness condition of those argu-
ment systems only holds w.r.t. PPT adversaries—in fact, the simulator suc-
ceeds in its simulation by breaking the soundness condition of the argument
system. Additionally, it is noted in [21] that there exist 3-round concurrent ZK
proofs w.r.t. exponential-time adversaries (as any witness indistinguishable proof
is also zero-knowledge with respect to exponential-time verifiers). Finally, [25]
claimed that a constant-round version of their protocol remains secure w.r.t
PQT adversaries, when considering a “benign” type of concurrent adversary
(which never sends any invalid messages and has a fixed—i.e., non-adaptively
chosen—scheduling), but as far as we know a proof of this has never appeared.

Thus, the above results leave open the question of whether there exist r(n)-
round concurrent black-box zero-knowledge proofs w.r.t super-polynomial, but
sub-exponential, adversaries, as long as 4 < r(n) < log n. In particular,

Does there exists constant-round concurrent zero-knowledge arguments
w.r.t. PQT (or even sub-exponential time) adversaries?

1.1 Our Results

Our main result answers the above question in the affirmative. Let PQT denote
the class of probabilistic quasi-polynomial time machines, i.e., randomized ma-
chines that run in time npoly(log(n)). Let ω(PQT ) denote the class of probabilistic
super quasi-polynomial time machines, i.e. randomized machines that run in time
nω(poly(log(n))).

Theorem 1 (Main Theorem). Assume the existence of claw-free permuta-
tions w.r.t PQT . Then, every language in NP has an O(1)-round perfect con-
current black-box ZK argument w.r.t PQT .

In addition, we show:



On Constant-Round Concurrent Zero-Knowledge 555

Theorem 2. Assume the existence of one-way functions that are secure w.r.t
ω(PQT ) and collision-resistant hash function that are secure w.r.t PQT . Then,
every language in NP has an O(1)-round concurrent computational black-box
ZK proof w.r.t PQT .

Theorem 3. Assume the existence of one-way function that are secure w.r.t
ω(PQT ). Then, every language in NP has an O(1)-round concurrent computa-
tional black-box ZK arguments w.r.t PQT .

Theorem 4. There exists an O(1)-round concurrent perfect ZK proof w.r.t
PQT for Graph Non-Isomorphism and Quadratic Non-Residuosity

We emphasize that in the above theorems, “ZK proofs and arguments w.r.t
PQT ” refer to proofs/ arguments where both the soundness condition and the
ZK condition holds w.r.t to PQT adversaries; in particular, for the ZK property
we also require that the distinguishability gap is smaller than the inverse of any
quasi-polynomial function.

A note on expected running-time. In contrast to earlier work on concurrent
zero-knowledge (e.g. [25,16,23]), our simulators run in expected PQT . This is
inherent: by the work of Barak-Lindell [1] it follows that only languages decidable
in PQT have constant-round ZK protocols w.r.t PQT if requiring a strict PQT
simulator (let alone the question of concurrency). In particular, this shows that
none of the previous simulation techniques can be extended to get constant-round
protocols w.r.t PQT (at least when requiring that the output of the simulation
is also indistinguishable for PQT ).1

Additional results. Finally, we mention that our techniques apply also to
concurrent ZK proofs w.r.t PPT . As a result we obtain the first concurrent
perfect ZK arguments/proofs w.r.t PPT .

Theorem 5. Assume the existence of claw-free permutations (w.r.t PPT ).
Then, every language in NP has an O(nε)-round perfect concurrent black-box
ZK argument w.r.t PPT , for every ε > 0.

Theorem 6. For every ε > 0, there exists a O(nε)-round concurrent perfect ZK
proof for Graph Non-Isomorphism and Quadratic Non-Residuosity.

As an additional contribution, we believe that both our protocols and their
analysis provides the simplest proof of the existence of concurrent ZK proofs
(w.r.t PPT ).2

PQT v.s. PPT: What is right model for adversarial computation? Re-
call that to show that ZK is closed under sequential composition, the origi-
nal definition of ZK was extended to consider non-uniform PPT adversaries
1 On the other hand, it might still be plausible that the technique of [25] can be

extended to give constant-round protocols w.r.t PQT , when allowing the indistin-
guishability gap to be a polynomial (or even some fixed quasi-polynomial) function.

2 In a related work [24], joint with Dustin Tseng we provide a simple proof for existence
of concurrent ZK proofs with logarithmic round complexity.
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[13]—in other words, in the context of ZK the notion of non-uniform PPT (for
modeling adversaries) is more robust than simply PPT . Additionally, security is
guaranteed w.r.t a stronger class of adversaries. Of course, the extra price to pay
is that all hardness assumptions now must hold also with respect to non-uniform
PPT .

In this paper we show that by considering an even stronger class of adversaries
—namely PQT —we get a notion that is even more robust; in particular, it is
now possible to get constant-round concurrent ZK protocols. Again, this requires
us to rely on hardness assumptions against PQT , but this seems like a weak
strengthening of traditional hardness assumptions (especially since the known
attacks on traditional conjectured hard functions require subexponential time).

A note on plausible deniability. The notion of ZK is traditionally associ-
ated with plausible deniability—i.e., that the interaction leaves “no trace” which
the verifier can use later to convince that the interaction took place. Intuitively,
this holds since the verifier could have executed the simulator (on its self) to
generate its view of the interaction. We mention, however, that since the tradi-
tional definition of ZK allows the simulator to have an arbitrary (polynomial)
overhead with respect to the verifier (who’s view it is supposed to simulate),
the deniability guarantee offered by traditional ZK proofs is weak: consider for
instance a verifier with a running-time of t = 240 computational steps, and a sim-
ulator with running-time, say, t3; although 240 is very feasible, 2120 seems like a
stretch! The example is not hypothetic—the “tightest” concurrent ZK protocols
[16,23] indeed have a running-time of t2 not counting the time need to emulate
the verifier. Additionally, as demonstrated in [18], the traditional notion of ZK
does not guarantee that the running-time of the simulator is (even polynomially)
related to the running-time of the verifier in the view it is outputting, but rather
the worst-case running-time of the verifier; this makes deniability even harder
to argue.3

Nevertheless, in this respect, ZK w.r.t PQT provides even worse guarantees
(as the overhead is now allowed to be quasi-polynomial).

1.2 Our Techniques

The concurrent ZK protocols of Richardson and Kilian (RK) [25], Kilian and
Petrank (KP) [16] and Prabhakaran, Rosen and Sahai(PRS) [23] rely on the
same principal idea: provide the simulator with multiple possibilities (called
“slots”) to rewind the verifier. If a rewinding is successful, the simulator obtains
a trapdoor that allows it to complete the execution that has been rewound.
The RK simulator is “adaptive” and dynamically decides when and where to
rewind, while making sure there are not too many recursive rewinding (which
would result in a large running-time). On a high-level this is done by recursively

3 In a recent work [19], joint with Pandey, Sahai and Tseng we also show how to obtain
precise concurrent ZK proofs. Precise zero knowledge guarantees that the view of
any verifier V can be simulated in time closely related to the actual (as opposed to
the worst-case) time spent by V in the generated view.
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invoking the simulator, but ensuring that the number of levels of the recursion
stays small (in fact, constant). On the other hand the KP (and PRS) simulator
is “oblivious”; the simulator has a fixed rewinding scheduling, thereby ensuring
a fixed (and bounded) running-time. The core of the argument is then to show
that every execution has a slot that is rewound at least once.

Our approach is based on the approach taken by RK. As RK, we consider an
adaptive simulator that makes recursive calls to itself, while ensuring that the
depth of the recursion stays small. Our actual simulation procedure is, however,
quite different. On a high-level, our approach will perform a straight-line simu-
lation until a “good” slot has been found, and then continue rewinding that slot
until a trapdoor has been found. Thus, in contrast to the previous approach,
we can not bound the worst-case running-time of our simulator, instead we are
forced to bound the expected running-time of the simulator.

The benefit of our approach is that 1) it enables us to achieve perfect sim-
ulation, and 2) our analysis works no matter how many slots we have and
what the depth of recursion is. In fact, we can achieve both of these proper-
ties while still guaranteeing the same expected running-time as RK—namely
O(mO(logr m)), where r is the number of slots. As a consequence, when applied
to constant-round protocols (and considering a logarithmic recursive depth) we
get a quasi-polynomial running time. As already mentioned, for this application,
it is inherent to have an expected quasi-polynomial running-time.

1.3 Open Questions

We have demonstrated that constant-round concurrent ZK is possible w.r.t
PQT adversaries. Our protocol currently uses 10 communication rounds4. A
natural open question is to either improve the round-complexity or to strengthen
the 4-round lower bound of [17]. Another question is to investigate the possibil-
ity of using an even weaker (but still super-polynomial) model of computation.
Rosen [26] shows that only languages in probabilistic sub quasi-polynomial time
have 7-round concurrent black-box zero-knowledge arguments when adversaries
are modelled as probabilistic sub quasi-polynomial time machines; thus, such
protocols would require more than 7-rounds.

1.4 Organization

Definitions are found in Section 2. The proof of main theorem is contained in
Sections 3 and 4. We give proof sketches for the remaining theorems in Section 5.

2 Definitions and Notations

We assume familiarity with the basic notions of an Interactive Turing Machine
(ITM for brevity) and a protocol (in essence a pair of ITMs. Briefly, a protocol
4 To obtain a 10 round protocol, we require non-interactive commitment schemes,

which can be constructed from one-way-permutations. If we assume only existence
of one-way functions, we get a 11-round protocol.



558 R. Pass and M. Venkitasubramaniam

is pair of ITMs computing in turns. A round ends with the active machine either
halting - in which case the protocol halts - or by sending a message m to the
other machine, which becomes active with m as a special input.

We let C denote any class of functions.

2.1 Interactive Proofs and Arguments

Given a pair of interactive Turing machines, P and V , we denote by 〈P, V 〉(x)
the random variable representing the (local) output of V when interacting with
machine P on common input x, when the random input to each machine is
uniformly and independently chosen.

Definition 1 (T (·)-sound Interactive Proof System). A pair of interactive
machines 〈P, V 〉 is called T (·)-sound interactive proof system for a language L if
machine V is polynomial-time and the following two conditions hold :

– Completeness: For every x ∈ L, Pr [〈P, V 〉(x) = 1] = 1
– Soundness: For every x �∈ L, and every interactive machine B,

Pr [〈B, V 〉(x) = 1] ≤ 1
T (|x|)

In case that the soundness condition holds only with respect to a T (n)-bounded
prover, the pair 〈P, V 〉 is called an T (·)-sound interactive argument.

〈P, V 〉 is an interactive proofs (interactive argument) w.r.t. C if for all T (·) ∈ C
the protocol is a T (·)-sound interactive proof (T (·)-sound interactive argument).

2.2 Indistinguishability

We rely on a generalization of the notion of indistinguishability [27], which con-
siders T (n)-bounded distinguishers and require the indistinguishability gap to be
smaller than 1

poly(T (n)) .

Definition 2 (Strong T (·)-indistinguishability[21]). Let X and Y be count-
able sets. Two ensembles {Ax,y}x∈X,y∈Y and {Bx,y}x∈X,y∈Y are said to be in-
distinguishable in time T (·) over x ∈ X, if for every probabilistic “distinguishing”
algorithm D with running time T (·) in its first input, and every x ∈ X, y ∈ Y it
holds that:

|Pr [a ← Ax,y : D(x, y, a) = 1] − Pr [b ← Bx,y : D(x, y, b) = 1]| <
1

poly(T (|x|))

Definition 3 (Computational indistinguishability w.r.t C). Let X and Y
be countable sets. Two ensembles {Ax,y}x∈X,y∈Y and {Bx,y}x∈X,y∈Y are said
to be indistinguishable w.r.t C over x ∈ X, if A, B are q(·)-indistinguishable for
every function q(·) ∈ C.
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2.3 Witness Indistinguishability

An interactive proof is said to be witness indistinguishable (WI) if the verifier’s
view is “computationally independent” of the witness used by the prover for
proving the statement—i.e. the view of the Verifier in the interaction with a
prover using witness w1 or w2 for two different witnesses are indistinguishable.

Definition 4 (Witness-indistinguishability w.r.t C). Let 〈P, V 〉 be an in-
teractive proof system for a language L ∈ NP. We say that 〈P, V 〉 is C-witness-
indistinguishable for RL, if for every probabilistic polynomial-time interactive
machine V ∗ and for every two sequences {w1

x}x∈L and {w2
x}x∈L, such that

w1
x, w2

x ∈ RL(x) for every x ∈ L, the probability ensembles {VIEW2[P (x, w1
x) ↔

V ∗(x, z)]}x∈L,z∈{0,1}∗ and {VIEW2[P (x, w2
x) ↔ V ∗(x, z)]}x∈L,z∈{0,1}∗ are com-

putationally indistinguishable w.r.t C over x ∈ L.

We say that the proof system is perfectly witness indistinguishable (Perfect-WI)
if the corresponding views are identically distributed.

2.4 Black-Box Concurrent Zero-Knowledge

Let 〈P, V 〉 be an interactive proof for a language L. Consider a concurrent ad-
versary verifier V ∗ that, given an input instance x ∈ L interacts with m inde-
pendent copies of P concurrently, without any restrictions over the scheduling
of the messages in the different interactions with P . Let

{
view2[P (x, y) ↔

V ∗(x, z)]
}

x∈L,w∈RL(x),z∈{0,1}∗
denote the random variable describing the view

of the adversary V ∗ on common input x and auxiliary input z, in an interaction
with P .

Definition 5 (Black-box concurrent zero-knowledge w.r.t C:). Let 〈P, V 〉
be an interactive proof system for a language L. We say that 〈P, V 〉 is black-box
concurrent zero-knowledge w.r.t C if for every functions q, m ∈ C, there exists
a probabilistic algorithm Sq,m, such that for every concurrent non-uniform ad-
versary V ∗ that on common input x and auxiliary input z has a running-time
bounded by q(|x|) and opens up m(|x|) executions, Sq,m(x, z) runs in time poly-

nomial in |x|. Furthermore, the ensembles
{
Sq,m(x, z)

}

x∈L,w∈RL(x),z∈{0,1}∗
and

{
view2[P (x, y) ↔ V ∗(x, z)]

}

x∈L,w∈RL(x),z∈{0,1}∗
are computationally indistin-

guishable w.r.t C over x ∈ L.

2.5 Other Primitives

We informally define the other primitives we use in the construction of our
protocols.
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Special-sound proofs: A 3-round public-coin interactive proof for the lan-
guage L ∈ NP with witness relation RL is special-sound with respect to
RL, if for any two transcripts (α, β, γ) and (α′, β′, γ′) such that the initial
messages α, α′ are the same but the challenges β, β′ are different, there is a
deterministic procedure to extract the witness from the two transcripts that
runs in polynomial time. Special-sound WI proofs for languages in NP can
be based on the existence of non-interactive commitment schemes, which in
turn can be based on one-way permutations. Assuming only one-way func-
tions, 4-round special-sound WI proofs for NP exists5. For simplicity, we
use 3-round special-sound proofs in our protocol though our proof works
also with 4-round proofs.

Proofs of knowledge: Informally an interactive proof is a proof of knowledge
if the prover convinces the verifier not only of the validity of a statement,
but also that it possesses a witness for the statement. If we consider com-
putationally bounded provers, we only get a “computationally convincing”
notion of a proof of knowledge (a.k.a arguments of knowledge)

3 Our Protocol and Simulator

3.1 Description of the Protocol

Our concurrent ZK protocol (also used in [24]) is a slight variant of the precise
ZK protocol of [20], which in turn is a modification of the Feige-Shamir protocol
[10]. The protocol proceeds in the following two stages, on a common input
statement x ∈ {0, 1}∗ and security parameter n,

1. In Stage 1, the Verifier picks two random strings s1, s2 ∈ {0, 1}n, and sends
their image c1 = f(r1), c2 = f(r2) through a one-way function f to the
Prover. The Verifier sends α1, . . . , αr, the first messages of r invocations of
a WI special-sound proof of the fact that c1 and c2 have been constructed
properly (i.e., that they are in the image set of f). This is followed by r

iterations so that in the jth iteration, the Prover sends βj ← {0, 1}n2
, a

random second message for the jth proof and the Verifier sends the third
message γj for the jth proof.

2. In Stage 2, the Prover provides a WI proof of knowledge of the fact that either
x is in the language, or (at least) one of c1 and c2 are in the image set of f .

More precisely, let f : {0, 1}n → {0, 1}n be a one-way function and let the
witness relation RL′ , where ((x1, x2), (y1, y2)) ∈ RL′ if f(x1) = y1 or f(x2) = y2,
characterize the language L′. Let the language L ∈ NP . Protocol ConcZKArg
for proving that x ∈ L is depicted in Figure 1.

The soundness and the completeness of the protocol follows directly from the
proof of Feige and Shamir [10]; in fact, the protocol is an instantiation of theirs.
(Intuitively, to cheat in the protocol a prover must “know” an inverse to either
c1 or c2, which requires inverting the one-way function f .).
5 A 4-round protocol is special sound if a witness can be extracted from any two

transcripts (τ, α, β, γ) and (τ ′, α′, β′, γ′) such that τ = τ ,α = α′ and β �= β′.
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Protocol ConcZKArg

Common Input: an instance x of a language L with witness relation RL.
Auxiliary Input for Prover: a witness w, such that (x,w) ∈ RL(x).
Stage 1:

V uniformly chooses r1, r2 ∈ {0, 1}n.
V → P: c1 = f(r1), c2 = f(r2). r first messages α1, . . . , αr for WI special-sound

proof of the statement. (called the start message)
either there exists a value r1 s.t c1 = f(r1)
or there exists a value r2 s.t c2 = f(r2)

The proof of knowledge is with respect to the witness relation R′

L

For j = 1 to r do

P → V: Second message βj ← {0, 1}n2
for jth WI special-sound proof.

(called the opening of slot j)
V → P: Third message γj for jth WI special-sound proof. (called the closing

of slot j)
Stage 2:

P ↔ V: a perfect-WI argument of knowledge of the statement
either there exists values r′1, r

′

2 s.t either c1 = f(r′1) or c2 = f(r′2).
or x ∈ L

The argument of knowledge is with respect to the witness relation
RL∨L′(c1, c2, x) = {(r′1, r

′

2, w)|(r′1, r
′

2) ∈ RL′(c1, c2) ∨ w ∈ RL(x)}.

Fig. 1. Concurrent Perfect ZK argument for NP

3.2 Description of the Simulator

On a very high-level the simulation follows that of Feige and Shamir [10]: the
simulator will attempt to rewind one of the special-sound proofs—each such
proof, i.e. the challenge(β) and the response(γ) is called a slot. If the simulator
gets two accepting proof transcripts, the special-soundness property allows the
simulator to extract a “fake” witness ri such that ci = f(ri). This witness can
later be used in the second phase of the protocol. We call an execution “solved”
if a witness is extracted. More precisely, our simulation is defined recursively in
the following manner.

On the recursive level �, the simulator feeds random Stage 1 messages to
V ∗ (Step 3). Whenever a slot s closes, S decides whether or not to rewind s
depending on the number of new executions that started between the opening
and the closing of s. If the number of executions is “small” (where small is defined
based on the level �), S begins rewinding the slot, i.e. S sends a new challenge
β for slot s and recursively invokes itself on recursive level � + 1, and continues
executing until one of the following happens:

1. S is “stuck” at Stage 2 of an unsolved execution that started at level � + 1:
S halts and outputs fail.

2. The closing message γ for slot s occurs: S extracts a “fake” witness using
the special-sound property and continues its simulation (on level �).
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3. V ∗ aborts or starts “too many” executions: S restarts its rewinding using a
new challenge β for s. We show that S in expectation restarts O(1) times
because of this. (Intuitively this follows since during the execution at level
�, S only starts rewinding if V ∗ did not abort and only opened a “small”
number of executions).

4. S gets “stuck” at Stage 2 of an unsolved execution that started at level �:
Again, S restarts its rewinding. We show that this case can happen at most
m − 1 times, where m is the total number of executions.

5. S gets “stuck” at Stage 2 of an unsolved execution that started at level �′ < �:
S returns the view to level �′.

In the unlikely event that S asks the same challenge β twice, S performs
a brute-force search for the witness. Furthermore, to simplify the analysis of
the running-time, the simulation is cut-off if it runs “too long” and S extracts
witnesses for each execution using brute-force search.

The basic idea behind the simulation is similar to [25]: if we define “small”
appropriately we can ensure that some slot of every execution is rewound and
the expected running time is bounded. A first approach would be to ensure that
at recursive level l at most m

r� executions start, and define “small” to be m
r�+1 ,

where m is the number of executions and r is the number of slots. Then, for every
execution that started at level � and completed r slots, S is guaranteed to rewind
at least one slot. Furthermore, if we show that the expected number of rewindings
of each slot is O(m), then the expected running time of the simulator is at most
poly(mlogr m); letting r = 2, the running time becomes poly(mlog2 m). However,
to make sure that the simulator does not output fail, our analysis requires the
simulator to be able to rewind at least two slots—in fact, we require that once
the simulator reaches the last slot, it has already performed one rewinding. To
ensure this, we make sure that at level �, there are at most m

(r−1)� executions
and define “small” to be m

(r−1)�+1 ; now letting r = 3 we get a running-time of
poly(mlogr m).

A formal description of our simulator can be found in Figure 4.2. We rely on
the following notation.

– d = 
logr−1 m� will denote the maximum depth of recursion.
– slot (i, j) will denote slot j of execution i.
– A partial view h is defined to be good w.r.t (s, l), if in h, V ∗ does not abort

on s and does not open more that (r−1)d−l new executions after the opening
of the s.

– W is a repository that stores the witness for each execution. The update W
command extracts a witness from two transcripts of a slot (using the special-
sound property). If the two transcripts are identical (i.e. the openings of the
slot are the same), the simulator performs a brute-force search to extract a
“fake” witness ri s.t. ci = f(ri) for i ∈ {1, 2}.

– R is a repository that stores the transcripts of slots of unsolved executions.
Transcripts are stored in R when the simulator gets stuck in a rewinding
(cases 4 and 5 mentioned in the high-level description).
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4 Analysis of the Simulator

To prove correctness of the simulator, we show that the output of the simulator
is correctly distributed and its expected running-time is bounded. We first prove
in Claim 1 that the simulator never outputs fail. Using Claim 1, we show in
Proposition 1 that the output distribution of the simulator is correct. In Propo-
sition 2, we show that the expected running time of the simulation is at most
poly(mdrd). Throughout this proof we assume without loss of generality the ad-
versary verifier V ∗ is deterministic (as it can always get its random coins as part
of the auxiliary input).

4.1 Simulation Never Fails

Claim 1. For every x ∈ L, SV ∗
(x, z) never outputs fail.

Proof: Recall that SV ∗
(x, z) outputs fail only if SOLVEV ∗

d (x, 0, , , ) outputs fail.
Furthermore, SOLVE outputs fail at recursive level � only if it reaches Stage 2 of
an unsolved execution that started at level � (i.e. only in Step 3 of SOLVE). Note
that at recursive level �, at most (r −1)d−� executions are opened up. Hence, for
all executions that start and complete r − 1 slots at level �, there is some slot,
inside which have fewer than (r − 1)d−(�+1) executions opened; SOLVE must
have rewound that slot “completely”—i.e. executed Step 5.d to obtain m good
views without returning to a lower recursive level. Below, we show that whenever
SOLVE rewinds a slot completely a witness is extracted and thus the proof of
the claim follows.

Assume for contradiction that SOLVE fails to extract a witness after rewind-
ing a particular slot. Let level � and slot j of execution i be the first time this
happens. This means at the end of Step 5.d, m good views are obtained and
none of them contained a second transcript for slot j. Furthermore, in each such
view, SOLVE got stuck only on unsolved executions that started at level � (since
otherwise SOLVE would have returned the view to the lower level). We now
show that SOLVE can get stuck on the (at most m − 1) other executions that
started on level � at most once; this contradicts the fact that m good views were
obtained.

For every execution i′ that SOLVE gets stuck on, both the opening and the
closing of the last slot occurs inside the rewinding of slot (i, j); otherwise, SOLVE
would have rewound one of the r − 1 slots that occurred before the opening of
slot (i, j) and by our assumption that l, i, j was the first “failed” slot, extracted
a witness. Furthermore, the transcript of this slot enables SOLVE to never get
stuck on execution i′ again, since next time the last slot of execution i′ closes a
witness for that execution will be extracted.

4.2 Indistinguishability of the Simulation

Proposition 1. Theensembles{VIEW2[P (x, w)↔V ∗(x, z)]}x∈L,w∈RL(x),z∈{0,1}∗

and {SV ∗
(x, z)}x∈L,w∈RL(x),z∈{0,1}∗ are identical.
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SOLVEV ∗

d (x, �, hinitial, s, W, R):
Let h ← hinitial.
Repeat forever:

1. If v is a Stage 2 verifier message of some execution, continue.
2. If V ∗ aborts or the number of executions that started after hinitial in h exceeds

(r − 1)d−�, return h.
3. If the next scheduled message is a Stage 2 prover message for execution i and

W(i) �= ⊥, then use W(i) to complete the WI proof of knowledge; if W(i) = ⊥ and
start message of execution i is in hinitial return h, otherwise halt with output fail.

4. If the next scheduled message is a Stage 1 prover message for slot s′, pick a random
message β ← {0, 1}n2

. Append β to h. Let v ← V ∗(h).
5. Otherwise, if v is the closing message for s′ = slot (i′, j′), then update W with v

(using R) and proceed as follows.
(a) If s = s′, then return h.
(b) Otherwise, if execution i′ starts in hinitial, then return h.
(c) Otherwise, if W(i′) �= ⊥ or the number of executions started inside s′ exceeds

(r − 1)d−(�+1), then continue.
(d) Otherwise, let h′ be the prefix of the history h where the prover message for

s′ is generated. Set R′ ← φ.
Repeat m times:

i. Repeat h∗ ← SOLVEV ∗

d (x, � + 1, h′, s′, W, R′) until h∗ is “good” w.r.t
(s′, � + 1).

ii. If h∗ contains an accepting proof transcript for slot s′, extract witness for
execution i′ from h and h∗ and update W.

iii. Otherwise, if the last message in h∗ is the closing message for the last slot
of an execution that started in hinitial return h∗.

iv. Otherwise, add h∗ to R′.

SV ∗

(x, z):

1. Let d ← 	logr−1 m
. Run SOLVEV ∗

d (x, 0, , , , ) and output whatever SOLVE out-

puts, with the following exception. If in the execution of SOLVEV ∗

d (x, 0, , , , ), it
queries V ∗ more that 2n times, proceed as follows: Let h denote the view reached
in the “main-line” simulation (i.e., in the top-level of the recursion). Continue the
simulation in a “straight-line” fashion from h by using a brute-force search to find
a “fake” witness each time Stage 2 of an execution i is reached.

Fig. 2. Description of Simulator

Proof: Consider the following hybrid simulator S̃V ∗
that receives the real

witness w to the statement x. S̃V ∗
on input x,w, and z proceeds just like SV ∗

in order to generate the prover messages in Stage 1, but proceeds as the honest
prover using the witness w in order to generate messages in Stage 2 (instead of
using the “fake” witness as SV ∗

would have). Using the same proof as in Claim 1,
we can show that S̃V ∗

(x, (w, z)) never outputs fail. Furthermore, as the prover
messages in Stage 1 are chosen uniformly and S̃V ∗

behaves like an honest prover
in Stage 2. Therefore, we get:
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Claim 2. The ensembles {VIEW2[P (x, w) ↔ V ∗(x, z)]}x∈L,w∈RL(x),z∈{0,1}∗ and
{S̃V ∗

(x, (w, z))}x∈L,w∈RL(x),z∈{0,1}∗ are identical.

To show the proposition, it suffices to show that output distributions of S̃V ∗
and

SV ∗
are identical. This follows from the perfect-WI property of Stage 2 of the

protocols, since the only difference between the simulators S̃V ∗
and SV ∗

is the
choice of witness used. For completeness, we provide a proof below.

Claim 3. The ensemble {S̃V ∗
(x, (w, z))}x∈L,w∈RL(x),z∈{0,1}∗ is identical to

{SV ∗
(x, z)}x∈L,w∈RL(x),z∈{0,1}∗

Proof: To prove the claim we will rely on the fact that the running time of
the simulator is bounded. This holds since S stops executing SOLVE whenever
it performs more than 2n queries and continues the simulation in a straight-
line fashion, extracting “fake” witnesses using brute-force search. Assume, for
contradiction, that the claim is false, i.e. there exists a deterministic verifier V ∗

(we assume w.l.o.g that V ∗ is deterministic, as its random-tape can be fixed)
such that the ensembles are not identical.

We consider several hybrid simulators, Si for i = 0 to N , where N is an
upper-bound on the running time of the simulator. Si receives the real witness
w to the statement x and behaves exactly like S, with the exception that Stage 2
messages in the first i proofs are generated using the honest prover strategy (and
the witness w). By construction, S0 = S̃ and SN = S. Since, by assumption, the
outputs of S1 and SN are not identically distributed, there must exist some j
such that the output of Sj and Sj+1 are different. Furthermore, since Sj proceeds
exactly as Sj+1 in the first j executions, and also the same in Stage 1 of the
j + 1’th execution, there exists a partial view v—which defines an instance x′ ∈
L∨L′ for Stage 2 of the j+1’th execution—such that outputs of Sj and Sj+1 are
not identical also conditioned on the event that Sj and Sj+1 feed V ∗ the view
v. Since the only only difference between the view of V ∗ in Sj and Sj+1 is the
choice of the witness used for the statement x′ used in Stage 2 of the j + 1’the
execution, we contradict the perfect-WI property of Stage 2.

4.3 Running-Time of S

We consider the hybrid simulator S̃V ∗
constructed in proof of Proposition 1. It fol-

lows by the same proof as in Claim 3 that the running time distributions of S̃ and
S are identical. Therefore, it suffices to analyze the expected running time of S̃.

Proposition 2. For all x ∈ L, z ∈ {0, 1}∗, and all V ∗ such that V ∗(x, z) opens
up at most m executions, E[timeS̃V ∗ (x,z)] ≤ poly(mdrd)

Proof: Recall that S̃V ∗
(x, z) starts running SOLVE, but in the event that

SOLVE uses more than 2n queries to V ∗, it instead continues in a straight-line
simulation using a brute-force search. By linearity of expectation, the expected
running time of S is
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poly(E[# queries made to V ∗ by SOLVE ])
+ E[time spent in straight-line simulation]

In Claim 4 below, we show that expected time spent in straight-line simulation
is negligible. In Claim 5 we show that the expected number of queries made by
SOLV E to V ∗ is atmostm2(d+1−�)(2r)d+1−�. The proof of the proposition follows.

Claim 4. The expected time spent by S̃V ∗
in straight-line simulation is negligible.

Proof: The straight-line simulation takes at most poly(2n) steps since it takes
O(2n) steps to extract a “fake” witness. Recall that, SOLVE runs the brute-force
search only if it picks the same challenge (β) twice. Since, SOLVE is cut-off after
2n steps, it can pick at most 2n challenges. Therefore, by the union bound, the
probability that it obtains the same challenge twice is at most 2n

2n2 . Thus, the
expected time spent by SV ∗

in straight-line simulation is at most 2n

2n2 poly(2n),
which is negligible.

Claim 5. For all x ∈ L, h, s, W, R, � ≤ d such that SOLVEV ∗

d (x, �, h, s, W, R)
never outputs fails, E[# queries by SOLVEV ∗

d (x, �, h, s, W, R)] ≤ m2(d+1−�)

(2r)d+1−�.

Proof: We prove the claim by induction on �. To simplify notation let α(�) =
m2(d+1−�)(2r)d+1−�. When � = d the claim follows since SOLVE does not perform
any recursive calls and the number of queries made by SOLVE can be at most
the total number of messages, which is mr.

Assume the claim is true for � = �′ + 1. We show that it holds also for � = �′.
Consider some fixed x ∈ L, h, s, W, R such that SOLVEV ∗

d (x, �′, h, s, W, R) never
outputs fails. We show that

E[# queries by SOLVEV ∗

d (x, �′, h, s, W, R)] ≤ m2(d+1−�′)rd+1−�′

= α(�′) = m2(2r)α(�′ + 1)

Towards this goal we introduce some additional notation. Given a view ĥ ex-
tending the view h,

– Let q�′

ŝ (ĥ) denote the probability that the view ĥ occurs in the “main-line”
execution of
SOLVEV ∗

d (x, �′, h, s, W, R) (i.e., starting on level �) and that slot ŝ opens
immediately after ĥ.

– Let Γŝ denote the set of views such that q�′

ŝ (ĥ) > 0.

We bound the number of queries made by SOLVEV ∗

d (x, �′, h, s, W, R) as the sum
of the queries SOLVE makes on level �′, and the queries made by recursive calls.
The number of queries made by SOLVE on level �′ is at most the total number of
messages in an execution, i.e. mr. The number of queries made on recursive calls
is computed by summing the queries made by recursive calls on over every slot ŝ
and taking expectation over every view ĥ (such that q�′

ŝ (ĥ) > 0).
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More precisely,
E[# queries by SOLVEV ∗

d (x, �′, h, s, W, R)] ≤ mr +
∑

ŝ

∑
ĥ∈Γŝ

q�′

ŝ (ĥ)Eŝ(ĥ)
where Eŝ(ĥ) denotes the expected number of queries made by SOLVE from the
view ĥ on ŝ. There are two steps involved in computing Eŝ(ĥ). The first step
involves finding the expected number of times SOLVE is run on a slot and the
second step using the induction hypothesis computing a bound for Eŝ(ĥ).

Step 1: Given a view ĥ from where slot ŝ opens, let p� denote the probability
that SOLVE rewinds slot ŝ from ĥ, i.e. p� is the probability that in the simulation
from ĥ at level �, V ∗ completes ŝ with an accepting proof while opening fewer
than (r − 1)d−�′

new executions within the slot ŝ. Let y� denote the probability
that when executing SOLVE at level � from ĥ, V ∗ either aborts or opens more
than (r − 1)d−�′

new executions in slot ŝ. We clearly have that p� ≤ 1 − y� (note
that equality does not necessarily hold since SOLVE might also return to a lower
recursive level). Furthermore, it holds that y� = y�+1. This follows since SOLVE
generates random Stage 1 messages, and uses the same (real) witness to generate
Stage 2 messages, independent of the level of the recursion; additionally, since
by Claim 4.1, SOLVE never halts outputting fail, we conclude that the view of
V ∗ in the “main-line” simulation by SOLVE on level l is identically distributed
to its view on level l + 1.

Therefore, the expected number of times SOLVE recursively executes ŝ at
level � + 1, before obtaining a good view, is at most 1

1−y�+1 = 1
1−y� ≤ 1

p� . Using
linearity of expectation, the expected number of times SOLVE executes ŝ before
obtaining m good views is at most m

p� . Since, SOLVE rewinds ŝ from ĥ only with

probability p�, the expected number of recursive calls to level � + 1 from ĥ is at
most p� m

p� = m.
Step 2: From the induction hypothesis, we know that the expected number of
queries made by SOLVE at level �′+1 is at most α(�′+1). Therefore, if SOLVE
is run u times on a slot, the expected total number of queries made by SOLVE
is bounded by uα(�′ + 1). We conclude that

Eŝ(ĥ) ≤
∑

u∈N
Pr[u recursive calls are made by SOLVE from ĥ]uα(�′ + 1)

= α(�′ + 1)
∑

u∈N
u · Pr[u recursive calls are made by SOLVE from ĥ]

≤ mα(�′ + 1)

Therefore, E[# queries by SOLVEV ∗

d (x, �′, h, s, W, R)] ≤

mr +
∑

ŝ

∑

ĥ∈Γŝ

q�′

ŝ (ĥ)Eŝ(ĥ) ≤ mr +
∑

ŝ

mα(�′ + 1)
∑

ĥ∈Γŝ

q�′

ŝ (ĥ)

≤ mr +
∑

ŝ

mα(�′ + 1) ≤ mr + (mr)mα(�′ + 1) ≤ α(�′)

This completes the induction step and concludes the proof of Claim 2.
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4.4 Concluding the Proof of Theorem 1 (and Theorem 4)

Using r = 3, we get by Proposition 2 that the expected running-time of S is
poly(mlog2m), and by Proposition 1 that its output is correctly distributed. This
concludes the proof of Theorem 1. We also remark that the proof of Theorem 4
is directly obtained by instead relying on an nε-rounds version of the protocol.

5 Proving the Other Theorems

Due to lack of space, we provide only proof ideas for the remaining theorems.
The complete proofs will be contained in the full version.

Proof idea of Theorem 2: To prove the theorem, we rely on a slight variant of
the ZK proof of [18,20] (which is an instantiation of the protocol of [23]); the
protocol is described in Figure 3. We assume the existence of honest-verifier ZK
proofs that are secure w.r.t ω(PQT ). Such proofs exists if one-way functions
that are secure w.r.t ω(PQT ) exists. Furthermore, we require constant round

Protocol CompZKProof

Common Input: an instance x of a language L with witness relation RL.
Auxiliary Input for Prover: a witness w, such that (x,w) ∈ RL(x).
Stage 1:

V uniformly chooses r = r1, r2, ..., rn ∈ {0, 1}n, s ∈ {0, 1}poly(n).
V → P: c = Com(r; s), where Com is a statistically hiding commitment,

which has the property that the commiter must communicate at least m bits
in order to commit to m strings.

V → P: r first messages α1, . . . , αr for WI special-sound proofs of the statement.
(called the start message)
there exists values r′, s′ s.t c = Com(r′; s′)

The proof of knowledge is with respect to the witness relation R′

L(c) =
{(v, s)|c = Com(v; s)}.

For j = 1 to r do

P → V: Second message βj ← {0, 1}n2
for jth WI special-sound proof.

(called the opening of slot j)
V → P: Third message γj for jth WI special-sound proof. (called the closing

of slot j)
Stage 2:

P ↔ V: P and V engage in n parallel executions of the GMW’s (3-round) Graph
3-Coloring protocol, where V uses the strings r1, .., rn as its challenges:
1. P → V: n (random) first messages of the GMW proof system for the

statement x.
2. V ← P: V decommits to r = r1, .., rn.
3. P → V: For i = 1..n, P computes the answer (i.e., the 3rd message of the

GMW proof system) to the challenge ri and sends all the answers to V.

Fig. 3. Computational ZK Proof for NP
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statistically hiding commitments that are computationally binding w.r.t PQT
adversaries. Such commitment schemes can be constructed from collision resis-
tant hash functions that are secure w.r.t PQT [7,15]. The simulator and the
proof of indistinguishability is essentially similar to Section 3.2. However, to
bound the running-time of the simulator we require the Stage 2 of the protocol
to satisfy the honest-verifier ZK property w.r.t. ω(PQT ).

Proof idea of Theorem 3: The protocol is obtained by using a computational WI
protocol w.r.t PQT instead of the perfect WI protocol in Stage 2 described in
Section 3.1, which can be constructed based on the existence of OWF secure for
PQT . The simulator and the analysis from Section 3.2 essentially works for this
protocol too, except that to show indistinguishability we use the computational
WI property of the protocol in Stage 2.

Proof idea of Theorems 5 and 6: Our constructions are essentially identical to
the protocols in [18,20]. On a high level, the protocols show how to recast the
ZK protocols for Graph Non-Isomorphism and Quadratic Non-Residuosity into
the Feige-Shamir paradigm, after which we can rely on the same proof as in
the previous section. Finally, Theorem 6 is directly obtained by relying on an
r = nε-rounds version of the protocol.
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Abstract. We show the existence of concurrent non-malleable commit-
ments based on the existence of one-way functions. Our proof of security
only requires the use of black-box techniques, and additionally provides
an arguably simplified proof of the existence of even stand-alone secure
non-malleable commitments.

1 Introduction

Often described as the “digital” analogue of sealed envelopes, commitment
schemes enable a sender to commit itself to a value while keeping it secret from
the receiver. For some applications, however, the most basic security guarantees
of commitments are not sufficient. For instance, the basic definition of commit-
ments does not rule out an attack where an adversary, upon seeing a commitment
to a specific value v, is able to commit to a related value (say, v−1), even though
it does not know the actual value of v. This kind of attack might have devas-
tating consequences if the underlying application relies on the independence of
committed values (e.g., consider a case in which the commitment scheme is used
for securely implementing a contract bidding mechanism). The state of affairs
is even worsened by the fact that many of the known commitment schemes are
actually susceptible to this kind of attack. In order to address the above con-
cerns, Dolev, Dwork and Naor (DDN) introduced the concept of non-malleable
commitments [6]. Loosely speaking, a commitment scheme is said to be non-
malleable if it is infeasible for an adversary to “maul” a commitment to a value
v into a commitment of a related value ṽ.

The first non-malleable commitment protocol was constructed by Dolev,
Dwork and Naor [6]. The security of their protocol relies on the existence of
one-way functions and requires O(log n) rounds of interaction, where n ∈ N is
the length of party identifiers (or alternatively, a security parameter). A more
recent result by Barak presents a constant-round protocol for non-malleable
commitments whose security relies on the existence of trapdoor permutations
and hash functions that are collision-resistant against sub-exponential sized cir-
cuits [2]. Even more recently, Pass and Rosen present a constant-round protocol,
assuming only collision resistant hash function secure against polynomial sized
circuits [12].

R. Canetti (Ed.): TCC 2008, LNCS 4948, pp. 571–588, 2008.
c© International Association for Cryptologic Research 2008



572 H. Lin, R. Pass, and M. Venkitasubramaniam

1.1 Concurrent Non-malleable Commitments

The basic definition of non-malleable commitments only considers a scenario
in which two executions take place at the same time. A natural extension of
this scenario (already suggested in [6]) is one in which more than two invoca-
tions of the commitment protocol take place concurrently. In the concurrent
scenario, the adversary is receiving commitments to multiple values v1, . . . , vm,
while attempting to commit to related values ṽ1, . . . , ṽm. As argued in [6], non-
malleability with respect to two executions can be shown to guarantee individual
independence of any ṽi from any vj . However, it does not rule out the possibility
of an adversary creating joint dependencies between more than a single individ-
ual pair (see [6], Section 3.4.1 for an example in the context of non-malleable
encryption). Resolving this issue has been stated as a major open problem in [6].

Partially addressing this issue, Pass demonstrated the existence of commit-
ment schemes that remain non-malleable under bounded concurrent composi-
tion [10]. That is, for any (predetermined) polynomial p(·), there exists a non-
malleable commitment that remains secure as long as it is not executed more
than p(n) times, where n ∈ N is a security parameter. More recently, Pass
and Rosen [12] constructed a commitment scheme that remains non-malleable
also under an unbounded number of concurrent executions. Their construction
uses only a constant number of rounds and is based on the existence of (certi-
fied) claw-free permutations. The protocol—which is a variant of the protocol
of [11]—relies on the message-length technique of [10], which in turn relies on
the non-black box zero-knowledge protocol of Barak [1]. As such, it seems that
practical implementations of this approach currently are not within reach.

In contrast, the original construction of Dolev, Dwork and Naor (which is only
stand-alone secure) relied on the minimal assumption of one-way functions and
had a black-box security proof. Natural questions left open are thus:

Can concurrent non-malleable commitments be based solely on the exis-
tence of one-way functions?

Does there exist concurrent non-malleable commitments with black-box
proofs of security?

A partial answer to the second question was provided by Pass and Vaikun-
tanathan [13], demonstrating the existence of concurrent non-malleable com-
mitments with black-box security proofs; their construction, however, relies on
a new (and non-standard) hardness assumption with a strong non-malleability
flavor.1

1.2 Our Results

In this work, we fully resolve both of the above questions. Namely, we show the
following theorem using only black-box techniques.
1 More precisely, they assume the existence of, so called, adaptive one-way permuta-

tions—namely permutations which remain one-way even when the adversary has
access to an inversion oracle.
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Main Theorem If one-way functions exist, then there exists a statistically-binding
commitment scheme that is concurrent non-malleable.
Our protocol, which is a variant of the protocol of [6] (and in particular relies
on the same scheduling techniques as in [6]), uses O(n) number of communi-
cation rounds. Moreover, it seems that by relying on specific (number theo-
retic) hardness assumptions (and appropriate Σ-protocols [4]), one can obtain
an “implementable” instantiation of our protocol (without going through Cook’s
reductions).

Additional results. All previous constructions of non-malleable commitments
require complex and subtle proofs. As an additional contribution, our protocol
and its proof provide the arguably simplest proof of existence of non-malleable
commitments (let alone the question of concurrency); more precisely, it provides
a new (and arguably simpler) proof of the feasibility result of [6].

Furthermore, by relying on the concurrent security of our protocol, we also
obtain a simple (and self-contained) proof of the existence of log n-round (stand-
alone secure) non-malleable commitment schemes based on only the existence of
one-way functions. As far as we know, a complete proof of this statement (which
appeared only with a proof sketch in [6]) has never appeared before.

Finally, we mention that our protocols satisfy a notion of non-malleability
called strict (as opposed to liberal) non-malleability—this notion, which was
defined (but not achieved) in [6], requires simulation to be performed by a strict
polynomial-time machine (as opposed to an expected polynomial-time machine).
Our results provide the first construction of strictly non-malleable commitments
based on one-way functions, or using a black-box security proof.

1.3 Overview

Section 2 contains basic notation and definitions of commitment schemes and
concurrent non-malleability. In Section 3, we present our O(n)-round commit-
ment scheme, and in Section 4, we prove that the commitment scheme is con-
current non-malleable. In Section 5, we additionally provide the construction of
a O(log n)-round (stand-alone secure) non-malleable commitment scheme based
on any O(n)-round concurrent non-malleable commitment scheme.

2 Definitions and Notations

We let N denote the set of all integers. For any integer m ∈ N , denote by [m]
the set {1, 2, . . . , m}. For any x ∈ {0, 1}∗, we let |x| denote the size of x (i.e., the
number of bits used in order to write it). For two machines M, A, we let MA(x)
denote the output of machine M on input x and given oracle access to A. The
term negligible is used for denoting functions that are (asymptotically) smaller
than one over any polynomial. More precisely, a function ν(·) from non-negative
integers to reals is called negligible if for every constant c > 0 and all sufficiently
large n, it holds that ν(n) < n−c.



574 H. Lin, R. Pass, and M. Venkitasubramaniam

2.1 Witness Relations

We recall the definition of a witness relation for an NP language [8].

Definition 1 (Witness relation). A witness relation for a language L ∈ NP is
a binary relation RL that is polynomially bounded, polynomial time recognizable
and characterizes L by L = {x : ∃y s.t. (x, y) ∈ RL}

We say that y is a witness for the membership x ∈ L if (x, y) ∈ RL. We will also
let RL(x) denote the set of witnesses for the membership x ∈ L, i.e., RL(x) =
{y : (x, y) ∈ L}. In the following, we assume a fixed witness relation RL for each
language L ∈ NP .

2.2 Interactive Proofs

We use the standard definitions of interactive proofs (and interactive Turing
machines) [9] and arguments (a.k.a computationally-sound proofs) [3]. Given a
pair of interactive Turing machines, P and V , we denote by 〈P, V 〉(x) the random
variable representing the (local) output of V when interacting with machine P
on common input x, when the random input to each machine is uniformly and
independently chosen.

Definition 2 (Interactive Proof System). A pair of interactive machines
〈P, V 〉 is called an interactive proof system for a language L if for every proba-
bilistic polynomial time machine (PPT) V there is a negligible function ν(·) such
that the following two conditions hold :

– Completeness: For every x ∈ L, Pr [〈P, V 〉(x) = 1] = 1
– Soundness: For every x �∈ L, and every interactive machine B,

Pr [〈B, V 〉(x) = 1] ≤ 1
ν(|x|)

In case that the soundness condition is required to hold only with respect to a
computationally bounded prover, the pair 〈P, V 〉 is called an interactive argument
system.

Special-sound proofs. A 3-round public-coin interactive proof for the language
L ∈ NP with witness relation RL is special-sound with respect to RL, if for any
two transcripts (α, β, γ) and (α′, β′, γ′) such that the initial messages α, α′ are
the same but the challenges β, β′ are different, there is a deterministic procedure
to extract the witness from the two transcripts and runs in polynomial time.
Special-sound WI proofs for languages in NP can be based on the existence
of non-interactive commitment schemes, which in turn can be based on one-
way permutations. Assuming only one-way functions, 4-round special-sound WI
proofs for NP exist.2 For simplicity, we use 3-round special-sound proofs in our
protocol though our proof works also with 4-round proofs.
2 A 4-round protocol is special sound if a witness can be extracted from any two

transcripts (τ, α, β, γ) and (τ ′, α′, β′, γ′) such that τ = τ ,α = α′ and β �= β′.
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2.3 Indistinguishability

Definition 3 ((Computational) Indistinguishability). Let X and Y be
countable sets. Two ensembles {Ax,y}x∈X,y∈Y and {Bx,y}x∈X,y∈Y are said to
be computationally indistinguishable over x ∈ X, if for every probabilistic “distin-
guishing” machine D whose running time is polynomial in its first input, there
exists a negligible function ν(·) so that for every x ∈ X, y ∈ Y :

|Pr [a ← Ax,y : D(x, y, a) = 1] − Pr [b ← Bx,y : D(x, y, b) = 1]| < ν(|x|)

2.4 Witness Indistinguishability

An interactive proof is said to be witness indistinguishable (WI) if the verifier’s
output is “computationally independent” of the witness used by the prover for
proving the statement. In this context, we focus on languages L ∈ NP with a
corresponding witness relation RL. Namely, we consider interactions in which
on common input x the prover is given a witness in RL(x). By saying that the
output is computationally independent of the witness, we mean that for any two
possible NP-witnesses that could be used by the prover to prove the statement
x ∈ L, the corresponding outputs are computationally indistinguishable.

Definition 4 (Witness-indistinguishability). Let 〈P, V 〉 be an interactive
proof system for a language L ∈ NP. We say that 〈P, V 〉 is
witness-indistinguishable for RL, if for every probabilistic polynomial-time inter-
active machine V ∗ and for every two sequences {w1

x}x∈L and {w2
x}x∈L, such that

w1
x, w2

x ∈ RL(x) for every x ∈ L, the probability ensembles
{〈P (w1

x), V ∗(z)〉(x)}x∈L,z∈{0,1}∗ and {〈P (w2
x), V ∗(z)〉(x)}x∈L,z∈{0,1}∗ are com-

putationally indistinguishable over x ∈ L.

2.5 Commitment Schemes

Commitment schemes are used to enable a party, known as the sender, to com-
mit itself to a value while keeping it secret from the receiver (this property is
called hiding). Furthermore, the commitment is binding, and thus in a later stage
when the commitment is opened, it is guaranteed that the “opening” can yield
only a single value determined in the committing phase. In this work, we con-
sider commitment schemes that are statistically-binding, namely while the hiding
property only holds against computationally bounded (non-uniform) adversaries,
the binding property is required to hold against unbounded adversaries. More
precisely, a pair of PPT machines 〈C, R〉 is said to be a commitment scheme if
the following two properties hold.

Computational hiding: For every (expected) PPT machine R∗, it holds that,
the following ensembles are computationally indistinguishable over {0, 1}n.
– {staR∗

〈C,R〉(v1, z)}v1,v2∈{0,1}n,n∈N,z∈{0,1}∗

– {staR∗

〈C,R〉(v2, z)}v1,v2∈{0,1}n,n∈N,z∈{0,1}∗
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where staR∗

〈C,R〉(v, z) denotes the random variable describing the output of
R∗ after receiving a commitment to v using 〈C, R〉.

Statistical binding: Informally, the statistical-binding property asserts that,
with overwhelming probability over the coin-tosses of the receiver R, the
transcript of the interaction fully determines the value committed to by the
sender. We refer to [8] for more details.

2.6 Concurrent Non-Malleable Commitments

Our definition of concurrent non-malleable commitments is very similar to that
of [11], but different in two aspects: first, our definition of non-malleability is
w.r.t identities (in analogy with DDN [6])3; second, our definition considers not
only the values the adversary commits to, but also the view of the adversary.4

Let 〈C, R〉 be a commitment scheme, and let n ∈ N be a security parameter.
Consider man-in-the-middle adversaries that are participating in left and right
interactions in which m = poly(n) commitments take place. We compare be-
tween a man-in-the-middle and a simulated execution. In the man-in-the-middle
execution, the adversary A is simultaneously participating in m left and right
interactions. In the left interactions the man-in-the-middle adversary A interacts
with C receiving commitments to values v1, . . . , vm, using identities id1, . . . , idm

of its choice. In the right interaction A interacts with R attempting to commit
to a sequence of related values ṽ1, . . . , ṽm, again using identities of its choice
ĩd1, . . . , ĩdm. If any of the right commitments are invalid, or undefined, its value
is set to ⊥. For any i such that ĩdi = idj for some j, set ṽi = ⊥—i.e., any commit-
ment where the adversary uses the same identity as one of the honest committers
is considered invalid. Let mimA

〈C,R〉(v1, . . . , vm, z) denote a random variable that
describes the values ṽ1, . . . , ṽm and the view of A, in the above experiment.

In the simulated execution, a simulator S directly interacts with R. Let
simS
〈C,R〉(1

n, z) denote the random variable describing the values ṽ1, . . . , ṽm com-
mitted to by S, and the output view of S; again, whenever view contains a right
interaction i where the identity is the same as any of the left interactions, ṽi is
set to ⊥.

Definition 5. A commitment scheme 〈C, R〉 is said to be concurrent
non-malleable (with respect to commitment) if for every polynomial p(·), and
every probabilistic polynomial-time man-in-the-middle adversary A that partic-
ipates in at most m = p(n) concurrent executions, there exists a probabilistic
polynomial time simulator S such that the following ensembles are computation-
ally indistinguishable over {0, 1}n:
3 That is, we disallow even copying of commitment as long as the adversary uses

a different identity (than all the committers he receives commitments from). In
contrast, [11] defined non-malleability w.r.t content; i.e., the adversary allowed copy
commitments. This difference is inconsequential as any commitment non-malleable
w.r.t content can be turned into one that is non-malleable w.r.t identities, and vice
versa.

4 This point is particularly important when considering our definition w.r.t compos-
ability; see Proposition 1 and Section 5.
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{
mimA

〈C,R〉(v1, . . . , vm, z)
}

v1,...,vm∈{0,1}n,n∈N,z∈{0,1}∗{
simS
〈C,R〉(1

n, z)
}

v1,...,vm∈{0,1}n,n∈N,z∈{0,1}∗

We also consider relaxed notions of concurrent non-malleability: one-many,
many-one and one-one secure non-malleable commitments. In a one-one (i.e.,
a stand-alone secure) non-malleable commitment, we consider only adversaries
A that participate in one left and one right interaction; in one-many, A partici-
pates in one left and many right, and in many-one, A participates in many left
and one right.

Dolev, Dwork and Naor [6] argued that one-one commitments are also many-
one secure. Pass and Rosen [11] additionally showed that one-many
non-malleability implies (many-many) concurrent non-malleability if the com-
mitment protocol is “natural”. Given our stronger definition, which also con-
siders the view of the adversary, we prove that any protocol that is one-many
non-malleable is also concurrent non-malleable. Namely,

Proposition 1. Let 〈C, R〉 be a one-many concurrent non-malleable commit-
ment. Then, 〈C, R〉 is also a concurrent non-malleable commitment.

Proof. Let A be a man-in-the-middle adversary that participates in at most m =
p(n) concurrent executions. Below, we provide a simulator S for A. S proceeds
as follows on input 1n and z. S incorporates A(z) and internally emulates all the
left interactions for A by simply honestly committing to the string 0n. Messages
from the right interactions are instead forwarded externally. Finally S outputs
the view of A.

We show that the values that S commits to are indistinguishable from the
values that A commits to. Suppose, for contradiction, that this is not the case.
Then, there exists a polynomial-time distinguisher D and a polynomial p(n) such
that for infinitely many n, there exist strings v1, . . . , vm ∈ {0, 1}n, z ∈ {0, 1}∗
such that D distinguishes mimA

〈C,R〉(v1, . . . , vm, z) and staS
〈C,R〉(1

n, z) with proba-
bility 1

p(n) . Fix a generic n for which this happens. Consider the hybrid simulator
Si that on input 1n, z′ = v1, . . . , vm, z, proceeds just as S, with the exception
that in left interactions j ≤ i, it instead commits to vj . It directly follows that
mimA

〈C,R〉(v1, . . . , vm, z) = staSm

〈C,R〉(1
n, z′) and staS

〈C,R〉(1
n, z) = staS0

〈C,R〉(1
n, z′).

By a standard hybrid argument there exists an i ∈ [m] such that
∣
∣
∣Pr

[
a ← staSi−1

〈C,R〉(1
n, z′) :D(1n, z′, a) = 1

]

− Pr
[
b ← staSi

〈C,R〉(1
n, z′) : D(1n, z′, b) = 1

]∣∣
∣ ≥ 1

p(n)m

Note that the only difference between the executions by Si−1(1n, z′) and
Si(1n, z′) is that in the former A receives a commitment to 0n in session i,
whereas in the latter it receives a commitment to vi. Consider the one-many
adversary Ã that on input z̃ = z′, n, i executes Si−1(1n, z′) with the excep-
tion that the i’th left interaction is forwarded externally. Consider, the function
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reconstruct that on input mimÃ
com(0n, z̃), i.e. values v′1, . . . , v

′
m, and the view of

Ã, reconstructs the view view of A in the emulation by Ã, and sets ṽi = v′1 if
A did not copy the identity of any of the left interactions, and ⊥ otherwise, and
finally outputs ṽ1, . . . , ṽm, view. By construction, it follows that

reconstruct(mimÃ
〈C,R〉(0

n, z̃)) = staSi−1

〈C,R〉(1
n, z′)

reconstruct(mimÃ
〈C,R〉(vi, z̃)) = staSi

〈C,R〉(1
n, z′)

Since reconstruct is polynomial-time computable, this contradicts the one-many
non-malleability of 〈C, R〉.

3 The Protocol

Our protocol is based on Feige-Shamir’s zero-knowledge protocol [7] while relying
on the message scheduling technique of Dolev, Dwork and Naor[6]. For simplicity
of exposition, our description below relies on the existence of one-way functions
with efficiently recognizable range, but the protocol can be easily modified to
work with any arbitrary one-way function (by simply providing a witness hiding
proof that an element is in the range of the one-way function). The protocol
proceeds in the following three stages on common input the identity id ∈ {0, 1}l

of the committer, and security parameter n.

1. In Stage 1, the Receiver picks a random string r ∈ {0, 1}n, and sends its
image s = f(r) through a one-way function f with an efficiently recognizable
range to the Committer. The Committer checks that s is in the range of f
and aborts otherwise.

2. In Stage 2, the Committer sends c = com(v), where com(·) is any commit-
ment scheme that is statistically-binding.

3. In Stage 3, the Committer proves that c is a valid commitment for v or s
is in the image set of f . This is proved by 4l invocations of a special-sound
WI proof where the messages are scheduled based on the id (very similar to
the scheduling presented in [6]). More precisely, there are l rounds, where in
round i, the schedule designidi

is followed by design1−idi
(See Figure 1).

We remark that the scheduling (essentially identical to [6]) in Stage 3 of the
protocol is the key in achieving concurrent non-malleability. Loosely speaking,
the purpose of the scheduling is to guarantee that for each of the commitments
that a man-in-the-middle adversary gives, there exists a point at which the
adversary cannot answer the challenge from the receiver simply by “mauling”
the commitments on the left (provided that the identity of the commitment is
different from any of the commitments on the left).

One important difference between our protocol and the protocol of [6] is that
the designs we use consist of two three-round protocols, whereas the protocol in
[6] uses more rounds; this makes the analysis clearer. An additional simplification
is the use of only WI proofs (instead of zero-knowledge proofs as in [6]).
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design0 design1

γ2

β2

α2

γ1

β1

α1

γ2

β2

γ1

β1

α1

α2

Fig. 1. Description of the schedules used in Stage 3 of the protocol

Claim 1. 〈C, R〉 is a statistically-binding commitment scheme.

Proof. We show that the 〈C, R〉 scheme satisfies the binding and hiding
properties.

Protocol ConcNMCom

Common Input: An identifier id ∈ {0, 1}l.
Auxiliary Input for Committer: A string v ∈ {0, 1}n.
Stage 1:

R uniformly chooses r ∈ {0, 1}n.
R → C: s = f(r).
C aborts if s not in the range of f .

Stage 2:
C uniformly chooses r′ ∈ {0, 1}poly(n).
C → R: c = com(v, r′).

Stage 3:
C → R: 4l special-sound WI proofs of the statement

either there exists values v, r′ s.t c = com(v, r′)
or there exists a value r s.t s = f(r)

with verifier query of length 2n, in the following schedule:
For j = 1 to l do: Execute designidj

followed by Execute design1−idj

Fig. 2. Non-Malleable String Commitment Scheme 〈C, R〉

Binding: The binding property follows directly from the binding property of
com.

Hiding: The hiding property essentially follows from the hiding property of com
and the fact that Stage 3 of the protocol is WI (since WI proofs are closed
under concurrent composition [7]). For completeness, we provide the proof.
We show that any adversary R∗ that violates the hiding property of 〈C, R〉
can be used to violate the hiding property of com. More precisely, given any
adversary R∗ (without loss of generality, deterministic) that distinguishes
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a commitment made using 〈C, R〉, we construct a machine R′ that distin-
guishes a commitment made using com. Let s be the first message sent by
R∗. R′ on auxiliary-input a “fake” witness r such that s = f(r), proceeds as
follows. It internally incorporates R∗ and forwards the external commitment
made using com to R∗ in Stage 2. In Stage 3, R′ gives WI proofs using
the “fake witness” r. Finally, it outputs whatever R∗ outputs. From the WI
property of Stage 3, it follows that R′ distinguishes the commitment made
using com, if R∗ distinguishes the commitment made using 〈C, R〉.

4 Proof of Security

Theorem 1. 〈C, R〉 is one-many concurrent non-malleable.

Proof: Let A be a man-in-the-middle adversary that participates in one execution
in the left and many executions in the right. We construct a simulator S such
that the following ensembles are computationally indistinguishable over {0, 1}∗.

{
mimA

〈C,R〉(v, z)
}

v∈{0,1}n,n∈N,z∈{0,1}∗{
simS
〈C,R〉(1

n, z)
}

v∈{0,1}n,n∈N,z∈{0,1}∗

The simulator S on input (1n, z) proceeds as follows. S incorporates A(z) and
internally emulates the left interaction by honestly committing to the string 0n.
Messages in the right interactions are instead forwarded externally. Finally, S
outputs the view of A. We show that the values that S commits to combined
with the output view are indistinguishable from the values that A commits
to combined with its view. Since S emulates the left interaction by honestly
committing to 0n, this is equivalent to showing that
{
mimA

〈C,R〉(v, z)
}

v∈{0,1}n,n∈N,z∈{0,1}∗
≈

{
mimA

〈C,R〉(0
n, z)

}

v∈{0,1}n,n∈N,z∈{0,1}∗

Towards this goal, we define a new commitment scheme 〈Ĉ, R̂〉 (much like the
adaptor scheme in DDN [6]), which is a variant of 〈C, R〉 where the receiver can
ask for an arbitrary number of special-sound WI designs in Stage 3. Further-
more, 〈Ĉ, R̂〉 does not have a fixed scheduling in Stage 3; the receiver instead
gets to choose which design to execute in each iteration (by sending bit i to
select designi). Note that, clearly, any execution of 〈C, R〉 can be emulated by
an execution of 〈Ĉ, R̂〉 by simply requesting the appropriate designs.

Using the same proof as in Claim 1, it follows that 〈Ĉ, R̂〉 is hiding, i.e.

Lemma 1. For every (expected) PPT machine M ,
{
staM
〈Ĉ,R̂〉(v, z)

}

v∈{0,1}n,n∈N,z∈{0,1}∗
≈

{
staM
〈Ĉ,R̂〉(0

n, z)
}

v∈{0,1}n,n∈N,z∈{0,1}∗

Below, in Lemma 2, we show that for every adversary A, there exists an expected
non-uniform PPT machine R∗ whose output, upon receiving a commitment us-
ing 〈Ĉ, R̂〉 to v, is indistinguishable from the view and the values committed to
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by A(z) when receiving a commitment to v using 〈C, R〉; by the hiding property
of 〈Ĉ, R̂〉 we then conclude that mimA

〈C,R〉(v, z) and mimA
〈C,R〉(0

n, z) are indis-
tinguishable. On a high-level, R∗ will emulate an execution of 〈C, R〉 for A (by
requesting the appropriate design in 〈Ĉ, R̂〉) and then will attempt to extract
the values committed to by A. In fact, it suffices for R∗ to extract only the
values committed to after the left execution starts (as all values committed to
before-hand can be non-uniformly given to R∗).

Let Γ (A, z) denote the distribution of all joint views τ of A and the receivers
in the right, such that A sends its first message in the left interaction directly
after receiving the messages in τ . Let the function Z : {0, 1}∗×{0, 1}∗ → {0, 1}∗
be such that, Z(z, τ) = z‖τ‖ṽ1‖ . . . ‖ṽ� where ṽ1 . . . ṽ�, 	 ∈ [m] are the values
committed to by A(z) in τ (using com).

The main technical content of Theorem 1 is in proving the following lemma.

Lemma 2. For every PPT adversary A, there exists an expected PPT adversary
R∗ such that the following ensembles are indistinguishable over {0, 1}∗.

–
{
τ ← Γ (A, z), z′ ← Z(z, τ) : staR∗

〈Ĉ,R̂〉(v, z′)
}

v∈{0,1}n,n∈N,z∈{0,1}∗

–
{
mimA

〈C,R〉(v, z)
}

v∈{0,1}n,n∈N,z∈{0,1}∗

Before proceeding to the proof of lemma 2, note that by lemma 1, it holds that
the following ensembles are indistinguishable

–
{
staR∗

〈Ĉ,R̂〉(v, z′)
}

v∈{0,1}n,n∈N,z,τ,z′∈{0,1}∗

–
{
staR∗

〈Ĉ,R̂〉(0
n, z′)

}

v∈{0,1}n,n∈N,z,τ,z′∈{0,1}∗

It thus follows that the following ensembles also are indistinguishable

–
{
τ ← Γ (A, z), z′ ← Z(z, τ) : staR∗

〈Ĉ,R̂〉(v, z′)
}

v∈{0,1}n,n∈N,z∈{0,1}∗

–
{
τ ← Γ (A, z), z′ ← Z(z, τ) : staR∗

〈Ĉ,R̂〉(0
n, z′)

}

v∈{0,1}n,n∈N,z∈{0,1}∗

By lemma 2, we thus conclude that the following ensembles are indistinguishable,

–
{
mimA

〈C,R〉(v, z)
}

v∈{0,1}n,n∈N,z∈{0,1}∗

–
{
mimA

〈C,R〉(0
n, z)

}

v∈{0,1}n,n∈N,z∈{0,1}∗

which concludes the proof of theorem 1.

Proof (of lemma 2). Recall that by the definition of Z it holds that z′ =
z‖τ‖ṽ1‖ . . . ‖ṽ� where ṽ1 . . . ṽ�, 	 ∈ [m], are the values committed to by A(z)
using com in the view τ . On a high-level, R∗ on auxiliary input z′, internally
incorporates A(z) and emulates the left and the right executions for A. First,
however, it starts by feeding A its part of the joint view τ . It, then, emulates
the left interaction for A by externally forwarding messages using 〈Ĉ, R̂〉 (by
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Description of R∗

Input: R∗ receives auxiliary input z′ = z‖τ‖ṽ1‖ . . . ‖ṽ�.
Procedure: R∗ interacts externally as a receiver using 〈Ĉ, R̂〉. Internally it incorpo-
rates A(z) and emulates a one-many man-in-the-middle execution by simulating all
right receivers and emulating the left 〈C, R〉 interaction by requesting the appropriate
designs expected by A(z) using 〈Ĉ, R̂〉 from outside.

Main Execution Phase: Feed the view in τ to A and all right receivers. Emulate
all the interactions from τ and complete the execution with A. Let Δ be the
transcript of messages obtained.

Rewinding Phase: For k = �+1 to m, if interaction k is convincing and its identity
is different from the left interaction, do:
– In Δ, find the first point ρ that is a safe-point for interaction k; let the asso-

ciated proof be (αρ, βρ, γρ).
– Repeat until a second-proof transcript (αρ, β′

ρ, γ′
ρ) is obtained:

Emulate the left interaction as in the Main-Execution Phase. For the left
interaction:

• If A expects to get a new proof from the external committer (case (i)
in Figure 5): Emulate the proof, by requesting for design0 from outside
committer. Forward one of the two proofs internally.

• If A sends a challenge for a proof whose first message occurs in ρ: Cancel
the execution, rewind to ρ and continue.

– If βρ �= β′
ρ extract witness w from (αρ, βρ, γρ) and (αρ, β′

ρ, γ′
ρ). Otherwise halt

and output fail.
– If w = (v, r) is valid commitment for interaction k, i.e. com(v, r) = ck, where

ck is the Stage 2 message in interaction k, then set v̂k = v. Otherwise halt
and output fail.

Note that, since right interactions �+1 to n all have their Stage 2 and 3 occurring
after τ , none of the rewinding can make A request a new commitment from the
external committer.

Output Phase: For every interaction k that is not convincing or if the identity of the
right interaction is the same as the left interaction, set v̂k =⊥. Output (v̂1, . . . , v̂m)
and the view from the Main Execution Phase.

Finally, if it runs for more than 2n steps, halt and output fail.

Fig. 3. The construction of R∗

appropriately choosing the “right” designs); the right interactions are instead
dealt with internally by first honestly emulating the receivers on the right, from
the view in τ—this is called the main execution. In a second phase, it then at-
tempts to extract all the values committed to on the right—this is called the
rewinding phase. Finally, in the output phase, it outputs the view of A and all
the values extracted, including the ones received as auxiliary input (additionally,
if A fails in completing one of the commitments that started in τ , or if it uses
the same identity as the left interaction, that value is replaced by ⊥). The core
of the proof is to show that extraction during the rewinding phase is successful.
Towards this goal, we need to ensure that there exist some point where we can
rewind A on the right interaction, without rewinding on the left ; this is possible
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in two cases: (1) if rewinding on the right does not cause A to request any new
messages on the left, or (2) if rewinding on the right causes A to only request a
new special-sound proof—in this case R∗ can perfectly emulate this new proof
by simply requesting another design from 〈Ĉ, R̂〉.

We show below that there exist certain points—called safe-points—in each ex-
ecution, from which it will be possible to perform extraction by simply rewinding
until we obtain a second proof transcript, without rewinding on the left (and
aborting all rewindings where A requests a message on the left which would
require us to rewind also the left execution). (Actually, to simplify our analysis
this extraction procedure is cut-off if it runs “too long” (2n steps) in which case
R∗ halts and outputs fail.)

Below we provide a definition of safe-points. A formal description of R∗ (which
relies on the notion of safe-points) is found in Figure 3.

Intuitively, a safe point ρ is a prefix of some transcript Δ which has the
property that if during a rewinding from ρ, A uses the same “scheduling” of
messages as in Δ, then the left execution can be perfectly emulated without
rewinding (on the left). As we show later, if we rewind only from such points
we ensure that the expected running time is polynomially bounded (even if A
adaptively schedule the messages on the left).

Definition 6. A prefix ρ of a transcript Δ is called a safe-point for interaction
k, if there exists an accepting proof (αr, βr, γr) in the kthright interaction, such
that:

1. αr occurs in ρ, but not βr (and γr).
2. for any proof (αl, βl, γl) in the left interaction, if αl occurs in ρ, then βl

occurs after γr.

If ρ is a safe-point, let (αρ, βρ, γρ) denote the canonical “safe” right proof.5

Note that the only case a right-interaction proof does not have a safe-point is
if it is “aligned” with a left execution proof (such that A can forward messages
between the left and the right interactions); see Figure 4. In contrast, in all other
cases, a right-interaction proof has a safe-point. In Figure 5, we present the three
characteristic types of safe-point. Note that in the first case (see Figure 5 (i)),
when rewinding from ρ, R∗ can emulate the left proof by requesting a new design
from 〈Ĉ, R̂〉; in the second case (Figure 5 (ii)), R∗ can simply re-send the third
message of the left proof (since it is determined by the first two messages in the
proof); and in the last case (Figure 5 (ii)), no new message is requested by A,
so the left interaction can be “trivially” emulated (by doing nothing).

5 We remark that our definition of safe-points is analogous to the “safe” rewinding
points inside exposed triplets defined in DDN [6]. Loosely speaking, for every exposed
triplet, there is a “safe” rewinding point that one can rewind to extract the committed
value on the right without “affecting” the left interaction. Defining safe-point this
way, avoids the complication of finding the “safe” rewinding point in each type of
the exposed triplet.
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Fig. 4. Prefix ρ that is not a safe point
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Fig. 5. Three characteristic safe-points

Running-time analysis of R∗. We show that R∗ is expected PPT. Note that the
time spent by R∗ in the Main Execution Phase is poly(n) (where n is the security
parameter), since A is a strict polynomial time machine. We show below that
the expected time spent by R∗ in the Rewinding Phase is poly(n). To bound
the expected running time, we assume for simplicity that R∗ does not check the
fail conditions and may run for more than 2n steps (since this only increases the
running time).

Recall that in the Rewinding Phase, R∗ rewinds A from all safe points. Let
Tk(i) be the random variable that describes the time spent in rewinding a proof
in interaction k after i messages have been exchanged. We show that E[Tk(i)] ≤
poly(n) and then by linearity of expectation, we conclude that the expected time
spent by R∗ in the Rewinding phase is

m∑

k=1

∑

i

E[Tk(i)] ≤
m∑

k=1

∑

i

poly(n) ≤ poly(n),

where the total number of messages exchanged and m is poly(n).

Bounding E[Tk(i)]. Given a (partial) transcript of messages ρ, let Pr [ρ] denote
the probability that ρ occurs as a prefix of the execution emulated in the Main
Execution phase. Furthermore, let pρ denote the probability that ρ is a safe-point
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and is rewound—i.e. pρ is the probability that, conditioned on the prefix ρ occur-
ring, the right interaction k is convincing and ρ is a safe-point for interaction k.
Recall that R∗ rewinds until it finds another transcript for the proof (αρ, βρ, γρ)
associated with ρ, cancelling each rewinding for which A requests the second
message of a proof in the left-interaction whose first message occurs in ρ. We
claim that the probability of cancelling a rewinding from ρ, is at most 1−pρ since
ρ is not a safe-point for every rewinding that is cancelled, and conditioned on ρ,
the probability of a view occurring in a rewinding from ρ is same as occurring
in the Main Execution phase (as the emulated receiver picks uniformly random
messages in Stage 3 of the protocol). Thus, the expected number of rewindings
is at most 1

pρ
Therefore, the expected number of rewindings from ρ is at most

pρ · 1
pρ

= 1 and each rewinding takes at most poly(n) steps, i.e.

E[Tk(i)|ρ] ≤ poly(n)

Thus,

E[Tk(i)] =
∑

ρ of length i

E[Tk(i)|ρ] Pr [ρ] ≤ poly(n) ×
∑

ρ of length i

Pr [ρ] ≤ poly(n)

Output distribution of R∗ is correct. We proceed to show that the output dis-
tribution of R∗ is correct. This follows from the following two claims:

Claim 2. Assume that R∗ does not output fail, then except with negligible prob-
ability, its output is identical to the values committed to by A in the right inter-
actions combined with its view.

Proof. We first note that since in the Main Execution Phase, R∗ feeds A messages
according to the correct distribution, the view of A in the simulation by R∗ is
identical to the view of A in a real interaction. We show in Lemma 3 that there
is a safe point for every right interaction that has an identity different from the
left interaction. Hence, for every convincing right interaction k > 	 that has a
different identity, R∗ rewinds that interaction and eventually will either output
fail or a witness is extracted from the rewinding phase of R∗. Conditioned on
R∗ not outputting fail, by the statistical-binding property of com, except with
negligible probability the witnesses extracted by R∗ are the values committed
to by A.

Lemma 3 (Safe-point Lemma). In any one-many man-in-the-middle execu-
tion with m right interactions, for any right interaction k, k ∈ [m], such that
it has a different identity from the identity of the left interaction, there exists a
safe-point for interaction k.

Proof. Consider a one-many man-in-the-middle execution Δ, where the identities
in the left and right interaction are different. Assume for contradiction, that there
is some right interaction k which does not have a safe-point, i.e. every prefix of
Δ is not a safe-point for interaction k.
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Consider any proof (αr, βr, γr) in the right interaction k. Let ρ be the prefix
after which βr is sent immediately. By assumption, ρ is not a safe-point. This
means there exists a proof (αl, βl, γl) in the left interaction, such that αl occurs
before ρ, βl occurs after ρ and before γr, as depicted in Figure 4. That is, βl

occurs in between βr and γr; we say a left proof is associated with a right proof
in this case. Note that each left proof can be associated with at most one right
proof. For the interaction k to not have a safe-point, the proofs in the left and
right interactions must match up each other one by one: the ith proof in the left
is associated with the ith proof in the right.

Since the identities in the left and right interactions are different, there must
be a position j they differ at. Let the jth bit in the left be b and that in the
right be 1 − b. Recall that, in the jthround of Stage 3 of the protocol, the
left interaction has designb followed by design1−b; and the right interaction has
design1−b followed by designb. Since all the proofs are “matched up”, it must be
the case that there is a design0 on the left that is matched with a design1 on
the right, as depicted in Figure 6. Let (αl

i, β
l
i, γ

l
i), i = 1, 2, be the two proofs

in design0, and (αr
i , β

r
i , γr

i ), i = 1, 2, be the ones on the right in design1. In
this case, consider ρ to be the prefix that includes all the message up until βl

1.
Consider the second proof (αr

2, β
r
2 , γr

2); there is no proof on the left having its
first message before ρ and its challenge before γr

2 at the same time. Hence, we
arrive at a contradiction to our assumption that there is no safe-point for that
right interaction.

Claim 3. R∗ outputs fail with negligible probability.

Proof. R∗ outputs fail only in the following cases:

R∗ runs for more than 2n steps: We know that the expected running time
of R∗ is poly(n). Using Markov inequality, we conclude that the probability
that R∗ runs more than 2n steps is at most poly(n)

2n .
The same proof transcript is obtained from some safe-point: This case

occurs if R∗ picks some challenge β in the Rewinding Phase that appeared
as a challenge in the Main Execution Phase. As R∗ runs for at most 2n steps,
it picks at most 2n challenges. Furthermore, the length of each challenge is

γl
2

βl
2

αl
2

γl
1

βl
1

αl
1

γr
2

βr
2

γr
1

βr
1

αr
1

αr
2

ρ

Fig. 6. A design0 matches up with design1
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2n. By applying the union bound, we obtain that the probability that a β is
picked twice is at most 2n

22n . Since there are at most polynomially many chal-
lenges picked in the Main Execution Phase, using the union bound again, we
conclude that the probability that it outputs fail in this case is negligible.

The witness extracted is not a valid decommitment: Suppose, the wit-
ness extracted is not the decommitment information, then by the special-
sound property it follows that it must be a value r such that f(r) = s. We
show that if this happens with non-negligible probability, then we can invert
the one-way function f . More precisely, given A, z and v, we construct A∗

that inverts f ; A∗ on input y, picks τ uniformly at random from Γ (A, z) (by
emulating an execution of A(z) internally) and proceeds identically as R∗

with inputs τ, z′ where z′ = z‖τ‖⊥‖⊥‖ . . . with the exception that it picks a
random right interaction, say k, and feeds y as the Stage 1 message in that
interaction. On the left interaction it honestly commits to the string v using
〈Ĉ, R̂〉. Finally, if the value r′ output for interaction k is the inverse image of
y w.r.t f (i.e. f(r′) = y), then A∗ outputs r′. (Notice that it is not necessary
to compute z′ according to the definition of Z, since R∗ uses the values in z′

only in the output phase and not in its extraction procedure). Therefore, the
probability that A∗ inverts f is identical to the probability that R∗ inverts
f which is non-negligible; this contradicts the one-wayness of f .

Since each of the above cases occur with negligible probability, using the union
bound, we conclude that R∗ outputs fail with negligible probability.

5 A log n-Round Non-malleable Commitment Scheme

In this section, we show how to construct a O(log n)-round commitment scheme
that is stand-alone non-malleable using any O(n)-round commitment scheme
that is one-many non-malleable. In particular, using the scheme 〈C, R〉 described
in the previous section, we obtain a O(log n)-round commitment scheme that is
stand-alone non-malleable. The idea for this construction is almost identical to
the O(log n)-round protocol constructed in [6], except that our construction is
more general, as it can be applied to any commitment scheme that satisfies our
notion of one-many non-malleability; we here rely on the fact that our definition
considers not only the values committed to by the adversary but also its view.

Description of the Protocol 〈C̃, R̃〉: To commit to value v ∈ {0, 1}n, choose ran-
dom shares r1, . . . , rn ∈ {0, 1}n, such that v = r1 ⊕ . . . ⊕ rl. If id ∈ {0, 1}l is
the identity of the 〈C̃, R̃〉 interaction, then for each i, commit to ri (in parallel)
using 〈C, R〉 with identity (i, idi), where idi is the ith bit of id.

In the full version of the paper, we show the following claim.

Claim 4. 〈C̃, R̃〉 is stand-alone non-malleable.
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Abstract. This paper presents an improved password-based authenti-
cated key exchange protocol in the common reference string model. Its
security proof requires no idealized assumption (such as random oracles).

The protocol is based on the GL framework introduced by Gennaro
and Lindell, which generalizes the KOY key exchange protocol of Katz
et al. Both the KOY and the GLprotocols use (one-time) signatures as
a non-malleability tool in order to prevent a man-in-the-middle attack
against the protocol. The efficiency of the resulting protocol is negatively
affected, since if we use regular signatures, they require a large amount
of computation (almost as much as the rest of the protocol) and fur-
ther computational assumptions. If one-time signatures are used, they
substantially increase the bandwidth requirement.

Our improvement avoids using digital signatures altogether, replacing
them with faster and shorter message authentication codes. The crucial
idea is to leverage as much as possible the non-malleability of the en-
cryption scheme used in the protocol, by including various values into
the ciphertexts as labels. As in the case of the GL framework, our pro-
tocol can be efficiently instantiated using either the DDH, Quadratic
Residuosity or N-Residuosity Assumptions.

For typical security parameters our solution saves as much as 12
Kbytes of bandwidth if one-time signatures are implemented in GL with
fast symmetric primitives. If we use number-theoretic signatures in the
GL framework, our solution saves several large exponentiations (almost a
third of the exponentiations computed in the GL protocol). The end result
is that we bring provable security in the realm of password-authenticated
key exchange one step closer to practical.

1 Introduction

The central problem of cryptography is to enable reliable and secure commu-
nication among parties in the presence of an adversary. In order to do this,
parties must share a common secret key to secure communication using known
techniques (e.g., applying encryption and message authentication codes to all
messages).

A protocol that allows two parties to establish such a secret key is called a
key exchange protocol. The key exchange problem was initially studied by Diffie
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and Hellman [15] who considered a passive adversary that can eavesdrop on the
honest parties’ communication, but cannot actively modify it. In other words,
parties are assumed to be connected by reliable, albeit non-private, channels.
Many efficient and secure protocols are known for this scenario. The more real-
istic scenario however is that of a far more powerful adversary who can modify
and delete messages sent between the parties, as well as insert messages of its
own choice. This is the scenario we consider in this paper.

Once we allow such a powerful adversary it becomes clear that in order to
securely exchange a key, any two parties (call them Alice and Bob) must hold
some secret information. Otherwise, there is nothing preventing an adversary
from pretending to be Bob while communicating with Alice (and vice versa).
The most common type of secret information considered are (i) parties already
share a high entropy secret key; (ii) each party holds a secret key matching an
authenticated public key (i.e. a public key securely associated with his identity)
and (iii) the case we consider in this paper: parties share only a low entropy
password that can be remembered and typed in by human users.

Cryptography has long been concerned with cases (i) and (ii), while the sce-
nario of low entropy passwords (arguably the most commonly used case) has
only recently received attention. This paper proposes a new and improved fam-
ily of protocols (a framework) for password-based key exchange in the face of a
powerful, active adversary.

Password-based authenticated key-exchange. Our model consists of a group of
parties, with each pair of them sharing a password chosen uniformly at random
from some small dictionary (the assumption of uniformity is made for simplicity
only). The parties communicate over a network in the presence of an active
adversary who has full control over the communication lines. In other words all
communication between parties is basically carried out through the adversary.
Nevertheless, the goal of the parties is to generate session keys in order to secretly
and reliably communicate with each other.

An immediate observation is that the small size of the dictionary implies a
non-negligible probability that the attacker will succeed in impersonating one of
the parties, since the adversary can always guess Bob’s password and pretend
to be him while communicating with Alice. This type of attack is called an on-
line guessing attack and is inherent whenever security depends on low entropy
passwords. The severity of on-line guessing attacks can be limited with other
mechanisms (such as locking an account after a number of failed attempts). A
more dangerous attack is the off-line guessing attack, in which the adversary
obtains a transcript of an execution of the key exchange protocol and is then
able to check guesses for Bob’s password against this transcript off-line. The aim
of password-based authenticated key exchange is to limit the adversary only to
on-line guessing attacks, and rule out possible off-line ones.

Prior related work. Bellovin and Merritt [3] proposed the first protocol for
password-basedsession-key generation.Although the specific protocol of [3] can be
attacked (see [28]), small modifications to the protocol prevent these attacks [28],
and even allow one to prove it secure under the ideal cipher and random oracle
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models [1]. Bellovin and Merritt’s work was very influential and was followed by
many protocols (e.g. [4,29,23,27,28,30]) which, however, have not been proven se-
cure and their conjectured security is based on heuristic arguments.

A first rigorous treatment of the problem was provided by Halevi and
Krawczyk [22]. They consider an asymmetric model in which some parties (called
servers) hold certified public keys available to the all parties, including the clients
who instead hold only passwords. In this model (which requires a public-key
infrastructure) Halevi and Krawczyk provide a secure password-based key ex-
change. The first (and only currently known) protocol to achieve security without
any additional setup is that of Goldreich and Lindell [20]. Their protocol is based
on general assumptions (i.e., the existence of trapdoor permutations) and con-
stitutes a proof that password-based authenticated key exchange can actually
be obtained. Unfortunately, the protocol of [20] is not very efficient and thus
cannot be used in practice.

Katz, Ostrovsky and Yung (KOY ) [24] present an efficient and practical pro-
tocol for the problem of password-authenticated key-exchange in the common
reference string model. In this model, the extra setup assumption is that all
parties have access to some public parameters, chosen by some trusted third
party. This assumption is clearly weaker than assuming a public-key infrastruc-
ture, and there are settings in which it can be implemented safely and efficiently
(such as a corporation wanting to provide secure password login for its employ-
ees, and thus can be trusted to choose and distribute the common reference
string). The KOYprotocol is based on the security against chosen-ciphertext at-
tack [16] of the original Cramer-Shoup encryption scheme [11]. This in turn can
be reduced to the Decisional Diffie-Hellman (DDH) assumption. The complex-
ity of the KOYprotocol is only 5–8 times the complexity of a Diffie-Hellman
unauthenticated key-exchange protocol.

The KOYprotocol was generalized by Gennaro and Lindell [19], using generic
building blocks instead of specific number-theoretic assumptions. More specifi-
cally, they use the notion of projective hash functions and the CCA-secure en-
cryption schemes defined in [12]. The resulting protocol GL has a much more
intuitive proof of security and can be proven secure under a variety of compu-
tational assumptions (such as Quadratic Residuosity and N -Residuosity).

We note that there are password-authenticated key-exchange protocols which
are more efficient than KOY and GL , but whose proof holds in an idealized model
of computation such as the ideal cipher and random oracle models [1,6]. The
common interpretation of such results is that security is likely to hold even if the
random oracle is replaced by a (“reasonable”) concrete function known explicitly
to all parties (e.g., SHA-1). However, it has been shown that it is impossible to
replace the random oracle in a generic manner with any concrete function [7].
Thus, the proofs of security of these protocols are actually heuristic in nature.

1.1 Our Contributions

We improve on the both the GL and KOYprotocols, in particular by reducing
the communication bandwidth required by the protocol.
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Both the KOY and the GL protocol use (one-time) signatures as a non-
malleability tool in order to prevent a man-in-the-middle attack against the
protocol. This negatively affects the efficiency of the resulting protocol. Indeed
in order to preserve provable security without use of the random oracle an im-
plementation of the KOY or GL protocol is presented with two choices.

One-time signature schemes (i.e. signature schemes which are secure if the key
is used to sign only one message) can be implemented from fast symmetric key
primitives (such as one-way functions). However the length of the resulting keys
and signatures is problematic and causes a substantial increase in the required
bandwidth.

One could use “regular” signature schemes (i.e. secure for many messages)
but then, if we require provable security in the standard model, the amount
of computation would substantially increase. Moreover if we want to use the
most efficient provably secure signature schemes in the literature (e.g. [18,14,25])
we would introduce new computational assumptions such as the Strong RSA
assumption, on top of the ones required by the GL protocol.

Our improvement avoids using digital signatures altogether, replacing them
with faster and shorter message authentication codes. The crucial idea is to
leverage as much as possible the non-malleability of the encryption scheme used
in the protocol, by including various values into the encryption as labels. For
typical security parameters our improvement saves as much as 12 Kbytes of
bandwidth in a protocol execution.

As in the case of the GL framework, our protocol can be efficiently instantiated
using either the DDH, Quadratic Residuosity or N -Residuosity Assumption.

1.2 Our Construction in a Nutshell

Let us describe our construction informally. We start by first describing the tools
that we are going to use and then describing the protocol.
Chosen-Ciphertext Secure Public-Key Encryption [16]: We use an en-

cryption scheme E which is secure against chosen-ciphertext attack. The com-
mon reference string for our password protocol is simply the public key PK
for such an encryption scheme. We stress that the corresponding secret key
does not have to be known by any party1.

Smooth projective hashing [12]: Let X be a set and L ⊂ X a language.
Loosely speaking, a hash function Hk that maps X to some set is projective
if there exists a projection key that defines the action of Hk over the subset
L of the domain X . That is, there exists a projection function α(·) that maps

1 In the GL protocol the requirement is actually weaker, as all is needed is a non-
interactive non-malleable (with respect to many commitments) commitment which
in the common reference string can be built out of CCA-Secure Encryption. For
simplicity we describe our protocol using encryption, but in the final version we show
that we can also use commitments. In practice this does not make much difference
since CCA encryption is the most efficient known implementation of for this type of
non-malleable commitments.
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keys k into their projections s = α(k). The projection key s is such that for
every x ∈ L it holds that the value of Hk(x) is uniquely determined by s and
x. In contrast, nothing is guaranteed for x �∈ L, and it may not be possible
to compute Hk(x) from s and x. A smooth projective hash function has the
additional property that for x /∈ L, the projection key s actually says nothing
about the value of Hk(x). More specifically, given x and s = α(k), the value
Hk(x) is uniformly distributed (or statistically close) to a random element
in the range of Hk.

What makes smooth projective hashing a powerful tool (in both our
application and the original one in [12]) is that if L is an NP-language, then
for every x ∈ L it is possible to efficiently compute Hk(x) using the projection
key s = α(k) and a witness of the fact that x ∈ L. Alternatively, given k
itself, it is possible to efficiently compute Hk(x) even without knowing a
witness. Gennaro and Lindell [19] also prove another important property of
smooth projective hash functions that holds when L is a hard-on-the-average
NP-language. For a random x ∈R L, given x and s = α(k) the value Hk(x) is
computationally indistinguishable from a random value in the range of Hk(x).
Thus, even if x ∈ L, the value Hk(x) is pseudorandom, unless a witness is
known.

The basic idea behind the KOY and GL protocols is to have the parties exchange
non-malleable encryptions of the joint password. The session key is then com-
puted as the result of applying smooth projective hash functions to these en-
cryptions (in this case the hard-on-the-average NP language consists of correct
ciphertext/message pairs). Figure 1 shows the basic layout of the protocol.

The basic problem with the protocol described in Figure 1 is that the projec-
tive hash function themselves can be malleable, and an adversary could manage
to get information about the session key by playing man-in-the-middle. In order
to avoid this attack, the GL and KOYprotocols add a signature step. A verifica-
tion key is chosen by party A in the first message and bound together with the
first encryption, by including it as a label2. Then A signs the whole transcript
in the third message. Party B accepts only if the signature is correct. Since the
verification key cannot be changed (being protected by the non-malleability of
the encryption in the first step), the adversary cannot modify the projection
keys, unless it is able to produce a forgery.

In our protocol we expand the use of encryption labels. We protect the first
projection s, by including it as a label in the second ciphertext3 c′. Now the
adversary is left with the possibility of manipulating the second projection key s′.
But at this point the master key computed by party A is already pseudorandom

2 A label is a public string that accompanies a ciphertext and is an integral part of it.
It must be submitted together with the ciphertext in order to obtain a decryption
and the adversary should not be able to modify it. See Section 2.1 for details.

3 Interestingly this is already done in the KOYprotocol, but it is not used in the proof
in any significant way. Indeed the GL proof shows that the use of digital signatures
make this step unnecessary. We reinstate it exactly because we want to avoid using
signatures.
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Insecure Password-Authenticated Key Exchange

• Common reference string: The public key PK for a chosen-ciphertext
secure encryption scheme E . A description of a smooth projective hashing
family Hk over the set X of ciphertext/password pairs (c, w).

• Common input: a shared (low-entropy) password w.

• The protocol:
1. Party A computes an encryption c = EPK(w) and sends it to party B.

2. Party B chooses a key k for the smooth projective hash function, and
computes its projection s = α(k). Also B computes the projective hash
over (c, w), i.e. skB = Hk(c, w).
Finally B computes another encryption of the password i.e., c′ =
EPK(w).
B sends s, c′ to party A.

3. Party A chooses another key k′ for the smooth projective hash function,
and computes its projection s′ = α(k′). Also A computes the projective
hash over (c′, w), i.e. skA = Hk′(c′, w).
A sends s′, t to party B.

• Session Key Definition:
1. Party B computes skA using the projection s′ and its knowledge of

a witness for the fact that c′ is an encryption to the password w (it
knows a witness because it generated c′) and outputs the session key
sk = skA ⊕ skB .

2. Party A also computes skB using the projection s and its knowledge of
a witness for the fact that c is an encryption to the string w (it knows
a witness because it generated c) and outputs sk = skA ⊕ skB .

Fig. 1. Common skeleton of KOY , GL and our protocol

for the adversary and thus it can be used as a key to MAC the projection key
s′ in order to prevent A from changing it.

A technical issue arises here, as party B has to use the same key that party
A uses to compute the MAC, but party B has to yet finish the protocol and
compute such key. Moreover the adversary can make B compute a different
key from A, by modifying the projection s′. This issue can be solved by using
skB as a MAC key since B already knows it. However the explicit use of only
one component of the session key would allow an off-line attack from A (see
Section 4).

The final solution is to MAC the transcript with skB and then use skA to
“mask” the value of the MAC from the adversary. In the proof if B accepts after
A modified s′ he will be able to retrieve a forgery on the MAC keyed with skB .
The protocol in full details is shown in Figure 2.
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1.3 Efficiency Gains

Using symmetric primitives. In terms of computation, the most efficient
implementation of the KOY or GL protocols uses one-time signatures based on
symmetric primitives, such as one-way functions. One example of such a signa-
ture is the Lamport signature [26]: to sign a single bit b the public key consists
of two values y0, y1 and the secret key is x0, x1 where yi = F (xi) for a one-way
function F . To sign bit b the signer reveals xb.

Assuming a security parameter of 128 (e.g. a one-way function applied to 128
bits input, and messages hashed to 256 bits using a collision resistant function),
we have that transmitting the key and the signature requires about 12 KBytes.
Other solutions exist that create shorter signatures at the expense of an increase
in computation time (see a survey of possible one-time signatures in e.g. [10]).
In contrast our solution requires only 256 bits for the MAC.

Number-Theoretic Signatures. Of course one could implement the signature
step in the KOY or GL protocol using provably secure signature schemes such as
Gennaro-Halevi-Rabin [18] or Cramer-Shoup [14] which are based on the Strong
RSA Assumption: they not only introduce another computational assumption
for the security of the scheme, but require several modular exponentiations and
about 4 Kbit of bandwidth to transmit keys and signatures. A shorter alternative
would be the Boneh-Boyen [5] which requires only 160 bit for the signature, but
it would still require 2 Kbits to send the verification key. Moreover signature
verification in the Boneh-Boyen scheme is particularly expensive since it requires
the computation of a bilinear map.

The above signatures are secure against many messages. There are more effi-
cient number-theoretic one-time signatures such as the one obtained by a chain
of length two in the GMR scheme [21], or the one recently proposed in [10] based
on chameleon hashing with two trapdoors. Still because of the computation of
modular exponentiations and the transmission of verification key and signature,
these options are much more expensive then sending a simple MAC. It is not
hard to see that for each one of these options the reduction in the number of
exponentiations is at least a third.

1.4 Organization

We first recall the cryptographic tools that we need in Section 2: chosen-
ciphertext secure public-key encryption, and message authentication codes. In
Section 3 we review the notions of smooth projective hash functions (mostly
lifted verbatim, with permission, from [19]). The protocol is then presented in
Section 4 with an intuitive informal proof. Some concluding remarks are pre-
sented in Section 5.

For lack of space we refer the reader to [19] for the formal definition of
password-authenticated key exchange. Also the formal proof of our protocol can
be found in the expanded version of this paper [17].
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2 Cryptographic Tools

We denote by n the security parameter.
If S is a set, with |S| we denote its cardinality. |m| denotes the bit length of

m, if m is a string or a number.
If A(·, ·, · · ·) is a probabilistic algorithm, then x ∈R A(x1, x2, · · ·) denotes the

experiment of running A on input x1, x2, · · · with x being the outcome. If S is a
set, x ∈R S denotes the experiment of choosing x ∈ S uniformly at random. If
X is a probability distribution over S then x ∈R X denotes the experiment of
choosing x ∈ S according to the distribution X .

Finally, we denote statistical closeness of probability ensembles by
s≡, and com-

putational indistinguishability (with respect to non-uniform polynomial-time
machines4) by

c≡.
We say that a real-valued function ε(·) defined over the integers is negligible

if for every constant c ≥ 0 there exists an integer nc such that for all n > nc

ε(n) < n−c.

2.1 Chosen-Ciphertext Secure Public-Key Encryption

A public key encryption scheme is a tuple of three algorithms PKE = (K, E , D).
The key generation algorithm K generates a pair (PK, SK) ∈R K(1n), where
PK is a public key and SK is a secret key.

We use labeled encryption, which means that the encryption algorithm E takes
a public key PK a plaintext m, and a label � and returns a ciphertext c ∈R

EPK(m, �). The decryption algorithm D takes a secret key SK, a ciphertext c
and a label �, and returns DSK(c, �) which is either a message m or reject. If
c ∈R EPK(m, �) then m = DSK(c, �).

The adaptive chosen ciphertext attack (IND-CCA) game is defined as follows.
A key pair is generated by the key generation algorithm: (PK, SK) ∈R K(1n).
Then a PPT adversary A, on input the public key PK, queries a pair of
equal length messages m0 and m1 and a label �∗ to an encryption oracle.
The encryption oracle chooses b ∈R {0, 1} and computes a challenge cipher-
text c∗ ∈R EPK(mb, �

∗), which is given to A. In the course of the game the
adversary A is given access to a decryption oracle, DSK(·, ·) which A can query
on any ciphertext/label pair except the challenge ciphertext/label pair c∗, �∗.
The game ends with the adversary outputting a bit b̃.

We say that the encryption scheme is secure against (adaptive) chosen-
ciphertext attack if for any adversary A, the probability that b = b̃ is negli-
gible (in the security parameter n).

Notice that the adversary is allowed to query the decryption oracle on any
ciphertext/label pair which is not the target pair. In particular this definition
guarantees that the adversary will not get any information from querying a
ciphertext with a label different from the one used when the ciphertext was
created.
4 All of our results also hold with respect to uniform adversaries.
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Notice that in our notation the first argument of the encryption algorithm is
always the message, the second argument is the label, and the random coins are
implicit.

2.2 Message Authentication Codes

A message authentication code MAC is a function

MAC : {0, 1}n × {0, 1}∗ −→ {0, 1}n.

The first input is the key k ∈ {0, 1}n, and the second input is the message
m ∈ {0, 1}∗. The output is called a “tag” t = MACk(m).

The chosen message attack (CMA) game is defined as follows. A key is selected
uniformly at random k ∈R {0, 1}n. The adversary A is given t∗ = MACk(m∗)
for many adaptively adversarially chosen m∗, after which the adversary outputs
a pair (m, t). We say that (m, t) is a forgery if m �= m∗ for all the queried m∗

and t = MACk(m).
We say that a MAC is secure if for every adversary A the probability of

computing a forgery is negligible. We say that a MAC is 1-time secure if the
adversary in the above game is restricted to querying a single message. We note
that 1-time secure MACs can be constructed unconditionally.

3 Smooth Projective Hash Functions

Following Gennaro and Lindell [19] we use a modified version of the notion
of smooth projective hashing introduced by Cramer and Shoup [12]. We re-
call the definition from [19] which is needed here and refer the reader to [19]
for a description of the differences between this definition and the original one
from [12].

Subset membership problems. Intuitively, a hard subset membership problem is
a problem for which “hard instances” can be efficiently sampled. More formally,
a subset membership problem I specifies a collection {In}n∈N such that for
every n, In is a probability distribution over problem instance descriptions Λ.
A problem instance description defines a set and a hard language for that set.
Formally, each instance description Λ specifies the following:

1. Finite, non-empty sets Xn, Ln ⊆ {0, 1}poly(n) such that Ln ⊂ Xn, and dis-
tributions D(Ln) over Ln and D(Xn\Ln) over Xn\Ln.

2. A witness set Wn ⊆ {0, 1}poly(n) and an NP-relation Rn ⊆ Xn ×Wn. Rn and
Wn must have the property that x ∈ Ln if and only if there exists w ∈ Wn

such that (x, w) ∈ Rn.

We are interested in subset membership problems I which are efficiently sam-
plable. That is, the following algorithms must exist:



598 R. Gennaro

1. Problem instance samplability: a probabilistic polynomial-time algorithm
that upon input 1n, samples an instance Λ = (Xn, D(Xn\Ln), Ln, D(Ln),
Wn, Rn) from In.

2. Instance member samplability: a probabilistic polynomial-time algorithm
that upon input 1n and an instance (Xn, D(Xn\Ln), Ln, D(Ln), Wn, Rn),
samples x ∈ Ln according to distribution D(Ln), together with a witness w
for which (x, w) ∈ Rn.

3. Instance non-member samplability: a probabilistic polynomial-time algorithm
that upon input 1n and an instance (Xn, D(Xn\Ln), Ln, D(Ln), Wn, Rn),
samples x ∈ Xn\Ln according to distribution D(Xn\Ln).

We are now ready to define hard subset membership problems:

Definition 1. (hard subset membership problems): Let V (Ln) be the following
random variable: Choose a problem instance Λ according to In, a value x ∈ Ln

according to D(Ln) (as specified in Λ), and then output (Λ, x). Similarly, define
V (Xn\Ln) as follows: Choose a problem instance Λ according to In, a value
x ∈ Xn\Ln according to D(Xn\Ln) (as specified in Λ) and then output (Λ, x).
Then, we say that a subset membership problem I is hard if

{
V (Ln)

}
n∈N

c≡
{
V (Xn\Ln)

}
n∈N .

In other words, I is hard if random members of Ln cannot be distinguished from
random non-members. In order to simplify notation, from here on we drop the
subscript of n from all sets. However, all mention of sets X and L etc., should
be understood as having been sampled according to the security parameter n.

Smooth projective hash functions. Loosely speaking a smooth projective hash
function is a function with two keys. The first key maps the entire set X to some
set G. The second key (called the projection key) is such that it can be used to
correctly compute the mapping of L to G. However, it gives no information about
the mapping of X\L to G. In fact, given the projection key, the distribution over
the mapping of X\L to G is statistically close to uniform (or “smooth”). We
now present the formal definition.

Let X and G be finite, non-empty sets and let H = {Hk}k∈K be a collection
of hash functions from X to G. We call K the key space of the family. Now, let
L be a non-empty, proper subset of X (i.e., L is a language). Then, we define a
key projection function α : K × X → S, where S is the space of key projections.
Informally, the above system defines a projective hash system if for x ∈ L,
the projection key sx = α(k, x) uniquely determines Hk(x). (Ignoring issues of
efficiency, this means that Hk(x) can be computed given only sx and x ∈ L.)
We stress that the projection key sx = α(k, x) is only guaranteed to determine
Hk(x) for x ∈ L, and nothing is guaranteed for x′ �= x. Formally,

Definition 2. (projective hash functions): The family (H, K, X, L, G, S, α) is a
projective hash family if for all k ∈ K and x ∈ L, it holds that the value of Hk(x)
is uniquely determined by α(k, x) and x.
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Of course, projective hash functions can always be defined by taking α(·, ·) to
be the identity function. However, we will be interested in smooth projective
hash functions which have the property that for every x �∈ L, the projection
key sx = α(k, x) reveals (almost) nothing about Hk(x). More exactly, for every
x �∈ L, the distribution of Hk(x) given α(k, x) should be statistically close to
uniform. Formally,

Definition 3. (smooth projective hash functions [12]): Let (H, K, X, L, G, S, α)
be a projective hash family. Then, for every x ∈ X\L define the random vari-
able V (x, α(k), Hk(x)) by choosing k ∈R K and output (x, α(k, x), Hk(x)). Sim-
ilarly, define V (x, α(k, x), g) as follows: choose k ∈R K, g ∈R G and output
(x, α(k, x), g). Then, the projective hash family (H, K, X, L, G, S, α) is smooth if
for every x ∈ X\L:

{
V (x, α(k), Hk(x))

}

n∈N

s≡
{

V (x, α(k), g)
}

n∈N
.

Efficient smooth projective hash functions. We say that a smooth projective hash
family is efficient if the following algorithms exist:

1. Key sampling: a probabilistic polynomial-time algorithm that upon input 1n

samples k ∈ K uniformly at random.
2. Projection computation: a deterministic polynomial-time algorithmthat upon

input 1n, k ∈ K and x ∈ X outputs s = α(k, x).
3. Efficient hashing from key: a deterministic polynomial-time algorithm that

upon input 1n, k ∈ K and x ∈ X , outputs Hk(x).
4. Efficient hashing from projection key and witness: adeterministicpolynomial-

timealgorithmthatupon input1n,x ∈ Lwithawitnessw suchthat (x, w) ∈ R,
and α(k, x) (for some k ∈ K), computes Hk(x).

We note an interesting and important property of such hash functions. For x ∈ L,
it is possible to compute Hk(x) in two ways: either by knowing the key k (as in
item 3 above) or by knowing the projection sx of the key, and a witness for x
(as in item 4 above). This property plays a central role in our password-based
protocol.

Another interesting property formalized by Gennaro and Lindell in [19] is that
these are the only ways to compute Hk(x). Specifically, for x ∈R D(L) (where
an appropriate witness w is not known), the value Hk(x) is computationally
indistinguishable from random, given the projection sx.

Since we use smooth projective hashing in our password protocol, it is nec-
essary to prove the above statement even when the adversary sees many tuples
(x, sx, Hk(x)) with x ∈R D(L). Let M be a (non-uniform) polynomial-time or-
acle machine. Define the following two experiments.

Expt-Hash(M): An instance Λ = (X, D(X\L), L, D(L), W, R) of a hard subset
membership problem is chosen from In. Then, the machine M is given access
to two oracles: ΩL and Hash(·). The ΩL oracle receives an empty input and
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returns x ∈ L chosen according to the distribution D(L). The Hash oracle
receives an input x. It first checks that x was previously output by the ΩL

oracle. If no, then it returns nothing. Otherwise, it chooses a key k ∈R K and
returns the pair (α(k, x), Hk(x)) . We stress that the Hash oracle only answers
for inputs x that were generated by ΩL. The output of the experiment is
whatever machine M outputs.

Expt-Unif(M): This experiment is defined exactly as above except that the Hash
oracle is replaced by the following Unif oracle. On input x, Unif first checks
that x was previously output by the ΩL oracle. If no, it returns nothing. Oth-
erwise, it chooses a key k ∈R K and a random element g ∈R G, and returns
the pair (α(k, x), g). As above, the output of the experiment is whatever M
outputs.

In [19] it is proven that no efficient M can distinguish between the experiments.
In other words, when x ∈R D(L), the value Hk(x) is pseudorandom in G, even
given α(k, x). This lemma is used a number of times in the proof of our password
protocol.

Lemma 1. Assume that I is a hard subset membership problem. Then, for every
(non-uniform) polynomial-time oracle machine M it holds that,

∣∣Pr[Expt-Hash(M) = 1] − Pr[Expt-Unif(M) = 1]
∣∣ < negl(n).

Hard partitioned subset membership problems. We now consider a variant of
hard subset membership problems, where the set X can be partitioned into
disjoint subsets of hard problems. That is, assume that the set X contains pairs
of the form (i, x), where i ∈ {1, . . . , �} is an index. We denote by X(i) the
subset of pairs in X of the form (i, x). Furthermore, we denote by L(i) the
subset of pairs in the language L of the form (i, x). (We also associate sampling
distributions D(L(i)) and D(X(i)\L(i)) to each partition.) Then, such a problem
constitutes a hard partitioned subset membership problem if for every i, it is
hard to distinguish x ∈R D(L(i)) from x ∈R D(X(i)\L(i)). (In the notation of
Definition 1, we require that for every i, the ensembles {V (L(i))} and {V (X(i)\
L(i))} are computationally indistinguishable.) We stress that the definition of
smooth projective hashing is unchanged when considered in the context of hard
partitioned subset problems. That is, the smoothness is required to hold with
respect to the entire sets X and L, and not with respect to individual partitions.

Lemma 1 also holds for hard partitioned subset membership problems (see
[19]). Specifically, the definitions of the oracles in the experiments are modified
as follows. The ΩL oracle is modified so that instead of receiving the empty
input, it is queried with an index i, and returns x ∈R D(L(i)). Likewise, ΩX\L
receives an index i and returns an element x ∈R D(X(i)\L(i)). Notice that in
this scenario, the distinguishing machine M is given some control over the choice
of x. Specifically, M can choose the index i that determines from which partition
an element x is sampled.
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Corollary 1. Assume that I is a family of hard partitioned subset membership
problem. Then, for every (non-uniform) polynomial-time oracle machine M

|Pr[Expt-Hash(M) = 1] − Pr[Expt-Unif(M) = 1]| < negl(n).

4 The Protocol

Our protocol uses a chosen-ciphertext secure public-key labeled encryption
scheme E . The common reference string for the protocol is a public key PK
for E .

We then use a family of smooth projective functions H = {Hk} such that for
every k in the key space K, Hk : CPK × M → {0, 1}2n, where M is the message
space, CPK is an efficiently recognizable superset of the ciphertext space. Notice
that we are assuming that the projective hash function outputs 2n-bit strings5.
If sk is a 2n-bit string we denote with sk(1) and sk(2) the first and second half
of it respectively.

Finally, we assume that there is a mechanism that enables the parties to dif-
ferentiate between different concurrent executions and to identify who they are
interacting with. This can easily be implemented by having Pi choose a suffi-
ciently long random string r and send the pair (i, r) to Pj along with its first
message. Pi and Pj will then include r in any future messages of the protocol.
We stress that the security of the protocol does not rest on the fact that these
values are not modified by the adversary. Rather, this just ensures correct com-
munication for protocols that are not under attack. The protocol appears in
Figure 2.

Intuitive Security Proof. First notice that both A and B can compute the session
key as instructed. Specifically, A can compute Hk(c, w, A ◦ B) because it has
the projection key s and the witness (coins) for c. Furthermore, it can compute
Hk′(c′, w, c◦s) because it has the key k′ (and therefore does not need the witness
for c′). Likewise, B can also correctly compute both the hash values (and thus
the session key). Second, when both parties A and B see the same messages
(c, s, c′, s′, t) the session keys that they compute are the same. This is because
the same hash value is obtained when using the hash keys (k and k′) and when
using the projection keys (s and s′). This implies that the correctness property
holds for the protocol.

We now proceed to motivate why the adversary cannot distinguish a session
key from a random key with probability greater than Qsend/|D|, where Qsend
equals the number of Send oracle calls made by the adversary to different protocol
instances and D is the password dictionary. In order to see this, notice that if A,
for example, receives c′ that is not an encryption to w with label c◦s under PK,
then A’s component of the session key skA will be statistically close to uniform.
5 We note that the constructions in [19] output values in a large algebraic group G.

It is a standard application of randomness extraction (e.g. via universal hashing) to
map such elements into 2n-bit strings, assuming the group G is large enough.



602 R. Gennaro

RG-PaKE

• Common reference string: The public key PK for a chosen-ciphertext
secure encryption scheme E . A description of a smooth projective hashing
family Hk over the set X of ciphertext/password pairs (c, w). The NP
language L is composed of the tuples (c, m, �) where c = EPK(m, �) i.e. c is
an encryption of m with label � under PK. A message authentication code
MAC.

• Common input: a shared (low-entropy) password w.

• The protocol:
1. Party A computes an encryption c = EPK(w, A ◦ B) and sends it to

party B.

2. Party B chooses a key k for the smooth projective hash function (for the
language L described above), and computes its projection s = α(k, c).
Also B computes the projective hash over (c, w, A ◦ B), i.e. skB =
Hk(c, w, A ◦ B).
Finally B computes another encryption of the password with label c◦s

i.e., c′ = EPK(w, c ◦ s).
B sends s, c′ to party A.

3. Party A chooses another key k′ for the smooth projective hash function
(for the language L described above), and computes its projection s′ =
α(k′, c′). Also A computes the projective hash over (c′, w, c ◦ s), i.e.
skA = Hk′(c′, w, c ◦ s).
A also computes skB using the projection s and its knowledge of a
witness for the fact that c is an encryption to the string w with label
A ◦ B (it knows a witness because it generated c).

Set t = MAC
sk

(1)
B

(c, s, c′, s′) ⊕ sk
(1)
A .

A sends s′ to party B.

• Session Key Definition:
1. Party B computes skA using the projection s′ and its knowledge of a

witness for the fact that c′ is an encryption to the password w with
label c ◦ s (it knows a witness because it generated c′)

It tests if t = MAC
sk

(1)
B

(c, s, c′, s′) ⊕ sk
(1)
A . If the test fails it outputs

an error message, otherwise it outputs sk = sk
(2)
A ⊕ sk

(2)
B .

2. Party A outputs sk = sk
(2)
A ⊕ sk

(2)
B .

Session-Identifier Definition: Both parties take the series of messages
(c, s, c′, s′) to be their session identifiers.

Fig. 2. Improved Password-Based Session-Key Exchange

This is because A computes Hk′(c′, w, c◦s) for c′ �∈ EPK(w, c◦s) i.e. on an input
outside the language. Therefore, by the definition of smooth projective hashing,
{c′, w, α(k, c′), Hk(c′, w, c ◦ s)} is statistically close to {c′, w, α(k, c′), r}, where r
is a random 2n-bit string.
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The same argument holds if B receives c that is not a encryption of w with label
A◦B. It therefore follows that if the adversary is to distinguish the session key from
a random element, it must hand the parties encryptions of the valid messages (and
in particular containing the correct passwords). One way for the adversary to do
this is to copy (valid) commitments that are sent by the honest parties in the pro-
tocol executions. However, in this case, the adversary does not know the random
coins used in generating the commitment, and once again the result of the pro-
jective hash function is a pseudorandom 2n-bit string (see Lemma 1). This means
that the only option left to the adversary is to come up with valid commitments
that were not previously sent by honest parties. However, by the non-malleability
of the encryption scheme, the adversary cannot succeed in doing this with prob-
ability non-negligibly greater than just a priori guessing the password. Thus, its
success probability is limited to Qsend/|D| + negl(n).

This intuitive explanation of the security of the protocol is not complete. Indeed
it does not address the use of message authentication codes in the protocol. The
MACisneeded toprevent furthermalleability attacks. Indeedwhile the ciphertexts
containing the password are not malleable (because of the strong security of the
encryption scheme used), the computation of the projective hash function could
be malleable, and by recycling messages from previous executions the adversary
could gain some knowledge about a session key. For example, it is possible that for
some smooth projective hash family it holds that for every k, H2k(x) = 2Hk(x),
and that by seeing s = α(k, c), the value ŝ = α(2k, c) is efficiently computable.

If this were the case, in the basic protocol described in Figure 1 an adversary
could cause two instances to accept with different session identifiers and related
session-keys. For example, given the message s = α(k, c), c′ by party B in Round
2, the adversary could forward to A the message ŝ = α(2k, c), c′. By requesting
a Reveal for one of the instances, it could then distinguish the other instance’s
session-key from random, in contradiction to the security requirements.

Notice that the projection s is protected by malleability attacks because is
incorporated as a label in the ciphertext c′. The surprising thing is that at this
point the value skB is already pseudo-random to the eyes of the adversary, and
known to both parties A and B. The most intuitive thing would be to use it to
MAC the other projection s′.

But if A were to send t = MACskB (c, s, c′, s′) the adversary could perform the
following off-line attack. The adversary would start a session with A pretending
to be B and obtain the commitment c. Next, the adversary A chooses k and
returns s = α(k, c) to A together with an incorrect encryption c′. The response
from A is s′ and t computed as above with skB = Hk(c, w, A ◦ B). Now the
adversary can traverse the entire dictionary D and for all possible w’s compute
skB = Hk(c, w, A ◦ B) (it can do this because it knows k and so can compute
Hk(c, w) without a witness for c). The right password is the one for which skB

verifies the above MAC t.
The final solution is then to “mask” the MAC, using skA which is not known to

the adversary, and cannot even be computed off-line by traversing the dictionary
(because the adversary does not know the coins used to produce c′). If the
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adversary modifies s′ and makes B accept then it must produce a MAC forgery
with key skB . We note that a specific MAC key is used to MAC a single message,
so it is sufficient to assume 1-time security for the MAC algorithm.

Of course this is just an intuition and the proof presented in [17] works out
all the details6.

Theorem 1. Assume that E is a public-key encryption secure against adaptive
chosen ciphertext attack, MAC is a 1-time secure message authentication code
and H is a family of smooth projective hash functions. Then, Protocol RG-PaKE
in Figure 2 is a secure password-based session-key generation protocol.

5 Extension and Conclusions

The reader is referred to [19] to see examples of efficient chosen-ciphertext secure
encryption schemes that admit the type of projective hash functions needed in
this protocol. They are based on the encryption schemes proposed by Cramer
and Shoup in [11,12], and can be based on the DDH, Quadratic Residuosity and
N -Residuosity Assumptions.

For simplicity we have presented the protocol using chosen-ciphertext secure en-
cryption. It is possible using techniques used in [19] to prove the protocol assuming
that E is non-malleable commitment scheme, which admits a projective hash func-
tion.Theprotocol needs to bemodified and the proof ismore complicated.However
in practice it does not make much of a difference, as the only known efficient imple-
mentations of such commitment schemes are the ones mentioned above (i.e. based
on chosen-ciphertext secure encryption and described by [19]).

Canetti et al. extend the KOY and GL protocol to the Universal Composabil-
ity framework in [8]. Their protocol also uses one-time signatures to prevent
malleability attacks and our modification is applicable to their protocol as well.

Conclusions. We have shown an improvement of the KOY and GL protocols,
which does not require one-time signatures. Our protocol works in the com-
mon reference string and its proof does not require idealized assumptions such
as the random oracle. For typical security parameters our protocol saves about 12
Kbytes of bandwidth, thus bringing provable security in the realm of password-
authenticated key exchange one step closer to practical.
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Abstract. Can a one-way function f on n input bits be used with fewer
than n bits while retaining comparable hardness of inversion? We show
that the answer to this fundamental question is negative, if one is limited
black-box reductions.

Instead, we ask whether one can save on secret random bits at the
expense of more public random bits. Using a shorter secret input is highly
desirable, not only because it saves resources, but also because it can yield
tighter reductions from higher-level primitives to one-way functions. Our
first main result shows that if the number of output elements of f is at
most 2k, then a simple construction using pairwise-independent hash
functions results in a new one-way function that uses only k secret bits.
We also demonstrate that it is not the knowledge of security of f , but
rather of its structure, that enables the savings: a black-box reduction
cannot, for a general f , reduce the secret-input length, even given the
knowledge that security of f is only 2−k; nor can a black-box reduction
use fewer than k secret input bits when f has 2k distinct outputs.

Our second main result is an application of the public-randomness
approach: we show a construction of a pseudorandom generator based
on any regular one-way function with output range of known size 2k.
The construction requires a seed of only 2n + O(k log k) bits (as op-
posed to O(n log n) in previous constructions); the savings come from
the reusability of public randomness. The secret part of the seed is of
length only k (as opposed to n in previous constructions), less than the
length of the one-way function input.

1 Introduction

PRG Seed Length It is important to keep the seed required for a pseudorandom
generator (PRG) as short as possible, lest the amount of true random bits needed
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to run it exceed the amount of pseudorandom bits its application requires, thus
rendering it pointless. Moreover, in reductions from PRGs (or other constructs)
to one-way functions, the blowup in the input length turns out to be the most
central parameter in determining the security of the construct. It is therefore
a major goal to reduce this parameter (as was addressed in [GIL+90, HL92,
HHR06b, Hol06, HHR06a]). The ultimate goal is a linear blowup, a necessary,
although not a sufficient, condition to achieve a reduction with tight security
preservation, i.e. a linear preserving one [HL92, HILL99].

Consider, therefore, the following problem: when is it possible to build a
pseudorandom generator out of a one-way function f while keeping the gen-
erator seed length linear in the one-way function input length n? Certainly this
is possible if f is a permutation—in fact, in the original PRG construction of
[BM82, Yao82] the seed length is equal to the one-way function input length.
However, no broader class of one-way functions satisfying this condition is cur-
rently known: even one-way bijections, if their output range is not easily mapped
to {0, 1}n, are not known to satisfy this condition (the best constructions for
them are the same as for other regular one-way functions, discussed below).

In this paper we demonstrate constructions of PRGs with the linear input
length condition for a large class of known regular one-way functions. Specifically,
if every output of f has α preimages (thus f has 2k distinct outputs where k =
n− log α) and (a lowerbound on) α is known, then we can build a PRG with seed
length 2n + O(k log k). Thus, for functions with high enough degeneracy, where
k = O(n/ log n), our PRG has a linear-length seed, like the Blum-Micali-Yao
PRG built from one-way permutations. The construction, described in Section 4,
builds upon the techniques of Haitner, Harnik and Reingold [HHR06b], which
require longer seed length of O(n log n), but assume only regularity rather than
known regularity.

New Tool: One-Way Functions with Short Secret Inputs. We arrive at our
pseudorandom generator as part of a study of a more fundamental problem:
when is it possible to reduce the input length of a one-way function while main-
taining some of its security? In other words, given a one-way function f with
input length n, when is it possible to build another function g of input length
�(n) < n with comparable security? Indeed, if this were possible, then one could,
for example, build a pseudorandom generator from g rather than from f , and
maintain a reasonable seed length even if the PRG construction blows up the
input size. However, we show that in general it is impossible to significantly
reduce the input length of one-way function in a black-box manner, even for
regular one-way functions (Theorem 5). That is, one must invest essentially the
full n random bits when calling a one-way function.

This result, however, does not doom all efforts of using the one-way func-
tion with a shorter input. The insight is to use the paradigm introduced by
Herzberg and Luby [HL92], which separates public randomness from secret ran-
domness. It turns out to be possible to reduce the amount of secret random-
ness at the cost of additional public randomness. In Theorem 1 we show how
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to convert any one-way function f with 2k distinct outputs into a collection
of one-way functions fh with inputs of length k, where the index h into the

fhx

collection is the public randomness. The simple con-
struction uses a pairwise independent family of expand-
ing hash functions. The choice of the function from the
collection is a choice of a hash function h, and we define
fh(x) = f(h(x)). This choice is made using 2n pub-
lic random coins, which are available to any potential
inverter.

One way to achieve such a result is by using a technical Lemma of Dodis
and Smith [DS05, Lemma 12], which shows the same construction secure if it
uses k + 2 log 1

ε + 1 secret input bits, where ε is the additive security loss. In
particular, even if one needs to ensure that extra security loss is exponentially
small, the result of [DS05] requires only linearly more input bits. However, the
linear improvement we achieve over [DS05] is crucial for building our pseudo-
random generator, as we explain shortly. To achieve this improvement, we take
a different path from [DS05]: instead of showing that the distributions (f(x), h)
and (f(h(x)), h) are statistically close, we show they have polynomially related
subset weights, a relation between distributions that we call g-domination.

The secret input to our one-way function need not consist of k uniform inde-
pendent bits: inputs from any distribution of entropy1 k suffice (the same is true
for our pseudorandom generator construction). This is beneficial, because uni-
form random bits may be harder to obtain that simply strings of high entropy.2

Moreover, this enables our pseudorandom generator construction.

Application: The PRG Construction We construct our pseudorandom generator
by applying the randomized iterate construction of [HHR06b] (henceforth called
“the HHR construction”) to fh for a known regular f . Because fh is secure
even when h is public, the coins for h can be given only once and used for all
iterations, resulting in a shorter seed. As compared to the HHR construction,
we replace the need for many large hash functions with one large hash function
(the ĥ used for fĥ), and many small ones (h1, . . . , hk used in the randomized
iterate construction). Our construction is illustrated in Figure 1.

To get some intuition for the construction, observe that if f is regular, then
the number of secret random input bits we require for fh is the entropy of the
output of fh. This enables iteration, because the output of fh has enough entropy
to be used (after an appropriate transformation) as an input to the next fh. We
could not use the result of [DS05], because it requires more input entropy than
is output; nor could we use functions that are not regular, because they produce
less output entropy than the input requires. The proof of pseudorandomness is
1 Specifically, Renyi entropy of order 2, i.e., negative logarithm of collision probability.
2 Of course, almost uniform independent bits can be obtained from a distribution of

high entropy through the use of a strong extractor (whose seed can be public), but
extractors necessarily lose entropy, so this approach would require a secret input with
entropy higher than k, which, as we already pointed out, would create difficulties for
our PRG construction.
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fĥ h1 f h2 … f hkx

br br br br

ĥ ĥ

br

Fig. 1. Our pseudorandom generator on seed x. ĥ is a pairwise-independent hash func-
tion from k bits to n bits; h1, h2, . . . , hk are almost-pairwise independent hash functions
from the output space of f to k bits, generated by a bounded space generator from a
common seed s of length O(k log k); br is the Goldreich-Levin hardcore bit (the same r
is used throughout). ĥ, s and r are included in the output or, equivalently, are public.

not as simple as applying the HHR result to fĥ, because the HHR construction
needs to start with a regular one-way function, and fĥ is not necessarily regular
even if f is.

In Appendix A we show how one can further exploit the knowledge of the
regularity and further shorten the seed of our PRG to 2n+O(k log log k), albeit
at the cost of lowering its security.

In addition to considering the overall PRG seed length, it is also important to
consider how much of the generator seed must be secret, because secret random
bits tend to be much harder to obtain than nonsecret ones (again, this was
already observed in [HL92]). Our PRG is the first to require a sublinear number
of secret bits, namely, just k (the HHR generator, like the generators of [BM82,
GKL93], requires n secret bits). Moreover, just like for our one-way function,
the secret input to our PRG need not consist of uniform independent bits, but
can come from any distribution of entropy k.

Example: One-way Function and PRG Based on Factoring. Consider the prob-
lem of building a one-way function based on the hardness of factoring products
of two b-bit randomly chosen primes. If one is willing to assume a trusted party
with secret coins, then it is easy: the trusted party chooses two secret random
b-bit primes p and q, publishes N = pq, and the function can be, for example,
squaring modulo N .

However, without trusted setup, there is no such easy construction. In order
to work on the domain {0, 1}n, the one-way function needs to include the process
of generating the two random primes. A natural way to do this is to test some
number of random integers for primality. To guarantee that two primes are found
with probability 2−s for some security parameter s, the number of integers tested
should be Θ(sb) (because the probability that a random b-bit integer is prime
is Θ(1/b)). The natural function therefore gets n = Θ(sb2) bits as input, splits
them into Θ(sb) integers of length b each, finds the first two such integers p, q
that are prime (if they do not exist, output 0), and outputs their product N = pq.
We call this function fmult (observe that, for sufficiently large s, it is one-way
under the assumption that factoring is hard).
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For reasonably secure values for b (e.g., 2048) and s (e.g., 64), the input length
n of fmult will be on the order of tens of megabytes. To come up with such a
long secret input is, naturally, quite costly. Because the output of fmult is short,
however, we can apply our result on converting one-way functions to families
with shorter secret inputs. Setting k = 2b = o(

√
n), we obtain a family of one-

way functions with secret inputs of length only 2b—as short as the description
of the two primes p and q. To sample a function from this family, one still needs
Θ(n) random bits, but they can be public, and are therefore much less expensive
to obtain (e.g., from adversarially observable sources such as user behavior or
ambient noise). Finally we note that using our techniques, one can generate
a product N = pq of two secret b-bit primes p,q using private randomness of
entropy 2b (and the appropriate amount of public randomness). This can be
used, for example, for generating public/secret key pairs for RSA or Paillier
functions, from a modest amount of private randomness.

Consider now trying to make a PRG out of fmult. The prior most efficient
way (in terms of seed length) to achieve this is to notice that fmult is a regular
one-way function (except the negligible 2−s portion that leads to the 0 output)
and use the HHR construction, which takes a seed of O(n log n) bits with O(n) of
the bits being secret.3 For reasonable parameter settings, it would be useful only
in applications that can afford to gather tens of megabytes of secret randomness
and gigabytes of public randomness before invoking the PRG.

Instead, observe that fmult is also a known4 regular one-way function, with
k < 2b. Applying our PRG construction, we get a pseudorandom generator with
just 2b = o(

√
n) secret seed bits (which is roughly what’s required to describe

the two primes, anyway) and O(n) seed bits total (which is linear in what’s
anyway required as an input to fmult).

Impossibility Results. As already mentioned, Theorem 5 shows that the total
input length of a one-way function cannot be reduced in a black-box manner,
thus leading us to use public randomness in order to reduce the amount of
secret randomness. It is natural to ask if this approach can also work for one-
way functions with a large number of outputs. On the positive side, we show in
Theorem 2 that if a sufficiently large portion of the inputs goes to a sufficiently
small portion of the outputs, then the answer is yes. In general, however, this
appears unlikely to be the case, for the following reasons. In Theorem 6 we show
that the number of secret random bits used when calling a one-way permutation
f cannot be reduced to be substantially smaller than n by use of black-box

3 It seems fruitless to try to turn fmult into a permutation to order to apply the
efficient construction of [BM82, Yao82]. Indeed, a natural way to build a bijection
from fmult is to include in the output all the unused bits as well as information on
where p and q were in the sequence. However, this does not make it a permutation,
because the output range (which includes the product of two primes) is not easily
mapped back to the input domain of bit strings. Unfortunately, known solutions for
bijections are not any better than those for regular functions.

4 Our results apply to a weaker notion of “known”: α can be a lower bound on the
regularity of f , rather than its exact value.
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reductions. This theorem is actually more general, and shows that our positive
result is indeed tight for regular one-way functions, and the number of secret
bits cannot be reduced any further in a black-box manner. Moreover, Theorem 7
shows that there is no black-box reduction that takes a one-way function f with
hardness 2s on n input bits and produce a collection of one-way functions on
n − s + O(log n) input bits. Thus, unless f has hardness very close to 2n, in
general the number of secret inputs bits must remain linear if one wants to have
any hardness at all.

Discussion. Ideally, one would like to use only as many secret bits as the security
one gets from the one-way function (it is clear that at least that many bits are
necessary: a one-way function with n secret input bits can be easily inverted with
probability 2−n). Indeed, typical conjectured one-way functions, for example,
RSA or discrete logarithm, are known to provide less security than 2n (for the
above examples, at most roughly 2n1/3

). Our negative results show that this is
not possible in general with a black-box reduction (although we do not rule it
out for specific functions such as discrete logarithm, of course). Our positive
result, however, shows that if this weaker than optimal security manifests itself
in a “structural” way, i.e., with the function having fewer outputs (a one-way
function with k output bits can be easily inverted with probability 2−k), then
reduction in the number of inputs bits is possible.

It is natural to ask, of course, if one can not simply use the same one-way
function f on a shorter input. It should be noted that our negative results
do not consider such constructions, and hence do not rule them out. However,
this option is unavailable when f is a fixed-length function secure in a concrete
sense, such as a 128-bit block cipher or a hardware device implementing modular
exponentiation for a 2,048-bit modulus. In this case, our impossibility results
indicate that if we are given a hardware implementation of a one-way function
we should use it with its full input length (unless we can look inside the box and
learn something from there). This last observation adds motivation to results
that take as input an exponentially hard one-way function and construct from
it a pseudorandom generator with weaker security (of nlog n) (e.g., some of the
results stated in [Hol06, HHR06a] and the one in Appendix A in this paper).
These results would be less interesting if there was a direct method of trading
input length for security.

Even when the one-way function has variable input length, using it on a
shorter input will reduce security. Of course, our construction also reduces se-
curity, but the security loss (i.e., security of fh with n-bit f as compared to
security of f on n bits) is polynomial. In contrast, simply using f on a shorter
input can reduce security more than polynomially when the reduction in input
length is superlinear.

Security comparison of the original f and our construction fh depends on
what parameters are set to equal each other. For example, we can compare the
security of f on n bits to the security of fh with a n-bit f (thus equating the input
length to f , and hence the output length and likely most of the computational
cost). In that case, fh incurs a polynomial deterioration in security. Herzberg
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and Luby [HL92] advocate equating the secret input length. In that comparison,
our constructions can actually be more secure that f , because f needs all n bits
to be secret, while fh and our PRG need only k < n secret bits.

2 Definitions and Notation

If Y is a set, we denote by Y also the uniform distribution over that set, unless
another distribution on Y is specified. We denote by Un the uniform distribution
over {0, 1}n. Given a distribution X and a function f : X → Y , we denote by
f(X) the induced distribution on Y .

Let P and Q be distributions over some finite domain X . The collision-
probability of P is CP (P ) =

∑
x∈X P (x)2. P and Q ε-close (or have statis-

tical distance ε) if for every A ⊆ X it holds that | Prx←P (A) − Prx←Q(A)| ≤ ε
(equivalently, 1

2

∑
x∈X | PrP [x] − PrQ[x]| ≤ ε).

We assume familiarity with the standard notions of computational indistin-
guishability, one-way functions and pseudorandom generators (with public in-
puts, or equivalently, as public-coin collections), which are given in the full ver-
sion of this paper [DHR07].

Definition 1 (Regular functions). A function f : {0, 1}∗ → {0, 1}∗ is regular
if for any x, y ∈ {0, 1}n, |f−1(f(x))| = |f−1(f(y))|. If k(n) = − log(|{f(x) | x ∈
{0, 1}n}|) then f is said to be regular with output entropy k. When k is also
polynomial-time computable on input 1n, f is known-regular.

It is also customary to say that f is an α-regular function (for some α : N → N)
— this means that f is a regular function with output entropy k(n) = n −
log α(n), i.e. preimage sizes are equal to α(n).

Definition 2 (Family of almost pairwise-independent hash functions).
Let {Xn}n∈N,{Yn}n∈N be two families of subsets of {0, 1}∗. For any n ∈ N let
Hn be a collection of functions where each h ∈ Hn is from Xn to Yn. {Hn}n∈N

is an (efficient) family of δ-almost pairwise-independent hash functions if: 1. there
is a polynomial-time sampler which on n ∈ N outputs a description of randomly
chosen h ∈ Hn, 2. for any h ∈ Hn, |h| (i.e., the description length of h) is
polynomial in log |Xn|, 3. each h ∈ Hn is a polynomially-computable function,
and 4. for all x �= x′ ∈ Xn and all y, y′ ∈ Yn,

∣∣
∣
∣ Pr
h← Hn

[h(x) = y
∧

h(x′) = y′] − 1
|Yn|2

∣∣
∣
∣ ≤ δ(n).

A 0-almost pairwise independent family is called simply pairwise independent.

There are various constructions of efficient families of pairwise-independent hash
functions (i.e. δ = 0) for any Xn = {0, 1}n and Yn = {0, 1}�(n) whose description
length (i.e., |h|) is linear in max{n, �(n)} (e.g., [CW77]). It is possible to con-
struct δ-almost pairwise independent families for δ > 0 whose description size
depends very mildly on the input size. In particular, using [CW77], [WC81] and
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[NN93] one gets constructions of efficient families of almost pairwise-independent
hash functions for Xn = {0, 1}n and Yn = {0, 1}�(n) whose description length is
O(log(n) + �(n) + log(1/δ)).

Proposition 1. Let {Hn} be a family of δ-almost pairwise independent hash
functions from Xn to Yn. Then for any n, and any distinct x1, x2 ∈ Xn the
following distributions have statistical distance at most δ|Yn|2/2: 1. uniform on
Yn × Yn, 2. (h(x1), h(x2)) for uniformly random h ∈ Hn.

Proof: For any y1, y2 ∈ Yn,∣
∣Prh[(h(x1), h(x2)) = (y1, y2)] − Pr(z1,z2)∈Yn×Yn

[(z1, z2) = (y1, y2)]
∣
∣ ≤ δ by def-

inition. Summing over all y1, y2 ∈ Yn and dividing by 2, we get the desired
result. �
To simplify exposition, we will often work with (almost) pairwise independent
hash functions on some fixed domain and range X and Y (rather than consider
families {Xn}, {Yn}).

Definition 3 (g-Domination). Let B and C be distributions on the same set
Π, and g a real-valued function. We will say that C g-dominates B if ∀S ⊆
Π, PrC [S] ≥ g(PrB[S]) (this is a generalization of the notion of “dominates”
from [Lev86], which contemplated linear g).

Lemma 1. If C g-dominates B for a convex function g, then for any distribu-
tion D on a set Φ, D × C g-dominates D × B.

Proof: Let E ⊂ Φ × Π . Let p(π), for π ∈ Π , be Prφ← D[(φ, π) ∈ E].

Pr
D×C

[E] = E
π ← C

p(π)

=
∫ 1

0
Pr

π ← C
[p(π) > α] dα (using E(x) =

∫
Pr[x > α] dα)

≥
∫ 1

0
g

(
Pr

π ← B
[p(π) > α]

)
dα

≥ g

(∫ 1

0
Pr

π ← B
[p(π) > α] dα

)
(Jensen’s inequality, since g is convex)

= g
(

E
π ← B

p(π)
)

= g

(
Pr

D×B
[E]

)
. �

A common approach in cryptographic reduction is to focus only on the subset
of B for which p(π) is large, and use Markov’s inequality to obtain g′-domination
of D × B by D × C, for g′ ∈ ω(g). Instead, this lemma, which takes all subsets
into account, saves the increase in g and the corresponding loss of tightness in
reductions.

3 One-Way Functions and Public Randomness

Here we show that a one-way function needs only as many secret input bits as
the number of output bits it produces. We state our theorem in terms of bits in
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order to get a more concise statement; neither the domain nor the range need
to be restricted to bit strings of a particular length, as shown in Lemma 2.

Theorem 1. Let f : {0, 1}∗ → {0, 1}∗ be a one-way function that on n-bit in-
puts has at most 2k distinct outputs. Let Hk,n be a family of pairwise-independent
functions from {0, 1}k to {0, 1}n. Define the domain-sampled f as fh(x) def=
f(h(x)) for h ∈ Hk,n and x ∈ {0, 1}k. Then {fh}h∈Hk,n

is a public-coin col-
lection of one-way functions.

The theorem is immediate from the following lemma.

Lemma 2. Let f : Y → Z be a function, where |Z| = K. Let X be a distribution
with collision probability at most 1/K, and let HX,Y be a family of pairwise-
independent functions from the elements of X to Y . For every h ∈ HX,Y define
fh : X → Z as fh(x) def= f(h(x)). Then any adversary A that inverts fh with
probability at least ε over x ∈ X and h ∈ HX,Y can be used to invert f on
uniformly random inputs from Y with probability at least ε4/21− 1/(4K2) (ε2/2
if f is regular) in the same running time as A (plus the time required to pick
and evaluate a random hash function from HX,Y ).

Proof: Suppose that an algorithm A, when given (fh(x), h) computes x′ such
that fh(x′) = fh(x) with probability ε. That is,

Pr
(x,h)← (X,HX,Y )

[fh(A(fh(x), h)) = fh(x)] ≥ ε

Consider the following procedure MA for inverting f : on input z ∈ Z, choose a
random h′ ∈ HX,Y , let x′ = A(z, h′), and output h′(x′). Note that the notation
h′ in MA, rather than h, emphasizes that the h′ does not necessarily have to
be consistent with z. While there exist many h with x such that z = fh(x), the
chosen h′ might not be one of them.

We will analyze the success probability of MA as follows. The success of A
(and therefore MA) is determined by its internal coin flips and its input (z, h′).
We will show that the distribution of (coinflips, input) pairs that A sees when run
within M g-dominates the distribution for which A is designed, for a polynomial
g; therefore, the probability of the event that MA succeeds in inverting f is
polynomially related to the probability of the event that A inverts the domain-
sampled f . We will first show g-domination for inputs only, ignoring the coinflips,
and take care of the coinflips later.

It is worth comparing the following proposition, about g-domination of inputs,
to the aforementioned lemma by Dodis and Smith [DS05, Lemma 12], which an-
alyzes the same construction but with longer inputs to h, showing that (f(y), h′)
is close to (f(h(x)), h). Our proof technique is entirely different and builds on
the technique of [HHR06b].

Proposition 2. For any (not necessarily one-way) f : Y → Z with K distinct
outputs, distribution X with CP (X) ≤ 1/K, and pairwise-independent hash
family HX,Y , the distribution (f(y), h′) (where y ← Y, h′ ← HX,Y ) g-dominates
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(f(h(x)), h) (where x ← X, h ← HX,Y ), for g(δ) = δ4/21 − 1/(4K2), or g(δ) =
δ2/2 if f is regular.

Proof: We need show that for any S ⊆ Z × HX,Y ,

Pr
(x,h)← X×HX,Y

[(fh(x), h) ∈ S] ≥ δ ⇒ Pr
(y,h′)← Y×HX,Y

[(f(y), h′) ∈ S] ≥ δ4

21
− 1

4K2

(replace the right-hand-side with δ2/2 if f is regular).
First we give a one-paragraph outline of the proof of this proposition. Call the

points in S good. Let (y, h) ∈ Y × HX,Y be called good if and only if (f(y), h)
is good. We will divide the space Y of inputs to f into K equal-size chunks,
producing a set of chunks called C. Call (c, h) ∈ C × HX,Y good if ∃y ∈ c such
that (y, h) is good (i.e., a chunk is good if contains a preimage of a good point
in Z). We will show, simply using properties of HX,Y , that the fraction of good
chunks (under the uniform distribution) is at least δ2/2.125. This will imply
that A works on some portion of sufficiently many chunks. Then, using the fact
that f has only K outputs, we will show that A works on a sufficiently large
portion of most of these chunks. The actual proof is in in the full version of this
paper [DHR07]. �
MA succeeds whenever A succeeds; in turn, the success or failure of A depends
on the point (z, h′) chosen, and on the coin flips of A. Let Φ, with probability
distribution D, be the space of all coin flips of A. Let Π = Z × HX,Y , let B be
the distribution on Π obtained by choosing x ← X, h ∈ HX,Y , and z = fh(x),
and let C be the distribution on Π obtained by choosing a uniform y ∈ Y ,
h′ ∈ HX,Y , and z = f(y). Applying Lemma 1 below to the event E that that A
succeeds (here g(δ) = δ4/21 − 1/4K2, or δ2/2 in the case of regular functions),
we obtain the desired statement. �

3.1 The Case of Many Outputs

Theorem 1 can be used to reduce the number of secret input bits to a one-way
function provided the function has a sufficiently small output range. As we show
in this section, the same technique is useful even if the function has large output
range, as long as an appreciable fraction of the inputs falls into a rather small
subset of the output range. Namely, suppose there is a set of outputs OH of size
2k such that Pry∈{0,1}n [f(y) ∈ OH ] ≥ pH . If k <

√
pHn, then it is possible to

reduce the number of secret input bits from n to k2/pH , as follows.
Let X be a distribution of collision probability 1/2k, and HX,Y and fh(x) as

above. In the full version [DHR07], we show that fh(x) is a collection of weak
one-way functions, i.e., is not invertible with probability appreciably more than
1 − pH .

We can then use the standard hardness amplification technique of Yao [Yao82]
in order to convert the weak one-way function collection into a strong one. The
technique simply concatenates many independent copies of the weak one-way
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function. The number of repetitions needed to reduce the easily invertible frac-
tion of inputs to (negligibly more than) 1/2k from 1−pH is k/pH (thus requiring
k2/pH secret bits) This gives the following result, whose proof is similar to the
proof of Theorem 1 and is outlined in the full version of this paper.

Theorem 2. Let f : {0, 1}∗ → {0, 1}∗ be a one-way function and suppose
for every n there exists a set OH(n) of size k(n) such that Pry∈{0,1}n [f(y) ∈
OH(n)] ≥ pH(n). For every n ∈ N let Hk,n be a family of pairwise-independent
functions from k bits to n bits. Denote � = k/pH and define fh(x1, . . . , x�)

def=
(fh1(x1), . . . , fh�

(x�)) for h = (h1, . . . , h�) ∈ H�
k,n and x1, . . . , x� ∈ {0, 1}k. Then

{fh}h∈H�
k,n

is a public-coin collection of one-way functions.

4 Pseudorandom Generator Collection from Any Known
Regular OWF

In this section we show a construction of a pseudorandom generator collection
from any regular one-way function. Unlike in the randomized iterate construc-
tions of [GKL93, HHR06b], here the underlying function f has known (i.e. effi-
ciently computable) regularity. We use this knowledge to get a PRG collection
with particularly short secret input and little security loss.

Namely, suppose f is a regular OWF with output entropy k(n), and that
(t(n), ε(n)) is the security of f . On secret seed of length sS(n) = k(n), our PRG
collection attains the security of (poly(n) + t(n), poly(ε(n))) (Theorem 3). For
example, if k(n) = n1/3, then we get security comparable to (t(n), ε(n)) using
only n1/3 secret bits. And since, for sufficiently small k, the public index of our
PRG collection is of linear size O(n), one can also view it as a PRG, rather
than collection, with good security preservation: on seed length O(n) it attains
security (poly(n) + t(n), poly(ε(n))).

Our construction in fact requires a somewhat weaker condition on f than
known regularity: f still must be regular, but it is sufficient to have an efficiently
computable upper bound k(n) on the output entropy of f . Note that a more
accurate bound leads to greater savings in the number of secret seed bits.

Theorem 3. Let f be a regular one-way function with security (t(n), ε(n)) and
output entropy at most k(n) (for k computable in time polynomial in n). Then
there is a public-coin PRG collection G, which is (poly(n) + t(n), poly(ε(n)))-
indistinguishable on secret seeds of length sS(n) = k(n) and public seeds of length
sP (n) = 2n+O(k(n) log k(n)). (In particular sP (n) = O(n) if k = O(n/ log n).)

Before the actual construction we present the basic tool of the randomized iterate
[GKL93, HHR06b]. We define it slightly differently than [GKL93, HHR06b]:
theirs outputs a value in Im(f), and ours outputs a hash function image.

Definition 4 (The mth Randomized Iterate of f). Let f : {0, 1}k → {0, 1}�

and let H be a family of functions from {0, 1}� to {0, 1}k. For input x ∈ {0, 1}k



618 N. Dedić, D. Harnik, and L. Reyzin

and h = (h1, . . . , ht) ∈ Ht define the mth Randomized Iterate fm : {0, 1}k×Ht →
Im(f) for every m ∈ [t] recursively as:

fm(x, h) = hm(f(fm−1(x, h)))

where f0(x, h) = x.

We first show a construction with public seed length 2n+O(k2) and then describe
how it may be reduced to as low as 2n+O(k log k), following the same technique
as in the HHR construction.

Construction 1. The generator takes the following as inputs:

1. A secret random x ∈ {0, 1}k

2. A (public) description of one hash function ĥ from a family Hk,n of pairwise
independent hash functions from k bits to n bits (requires 2n bits).

3. (Public) descriptions of k hash functions h = (h1, . . . , hk) from a family
H�,k of 2−3k-almost pairwise independent hash functions from � bits to k
bits (requires O(k) bits each).

4. A (public) random string r ∈ {0, 1}k for the Goldreich-Levin [GL89] hardcore
bit br (requires k bits).

The generator is defined as follows:

Gĥ,h,r(x) = br(x), br(f1
ĥ
(x, h)), . . . , br(fk

ĥ
(x, h)) ,

where f i
ĥ

denotes the ith randomized iterate of the function fĥ = ĥ ◦ f (see
Figure 1).

Theorem 4. Suppose f is regular one-way with output entropy at most k(n) and
security (t(n), ε(n)). Then G in Construction 1 is a public-coin pseudorandom
generator collection. It is (poly(n) + t(n), poly(ε(n)))-indistinguishable on secret
seeds of length sS(n) = k(n) (and public seeds of length sP (n) = 2n + O(k2)).
(In particular, sP (n) = O(n) if k(n) = O(

√
n)).

Proof: G takes k bits and outputs k + 1 bits. Thus it is expanding. We must
now prove that it is indistinguishable. It is tempting to first fix ĥ and since by
Theorem 1 fĥ is a one-way function, simply plug fĥ in the HHR construction.
However, the HHR construction relies heavily on the fact that the underlying
function is regular or at least very close to regular. The function fĥ on the other
hand is not guaranteed to be regular once ĥ is fixed, even if f is regular to
begin with. If ĥ were from a k-wise independent family (rather than a pairwise
independent one) then one can prove that with overwhelming probability fĥ is
close to regular. This is not the case with pairwise independent ĥ and on the
contrary, it is likely that with noticeable probability fĥ will deviate too much
from a regular function. Our proof follows the basic structure of the proof of
the HHR construction, so we give a sketch, detailing the parts which differ from
[HHR06b].
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As in the previous iterative constructions (such as [BM82, Yao82, Lev87],
[GKL93, HHR06b]), the key to the proof is the unpredictability of the sequence

(
fk

ĥ
(x, h), fk−1

ĥ
(x, h), . . . , f1

ĥ
(x, h), x

)
,

even for an adversary who is given (h, ĥ). Once this is shown (Lemma 3), it
follows from the stronger Goldreich-Levin theorem [Lev93], that the output of
the PRG is next-bit unpredictable with essentially the same security. Next-bit
unpredictability is equivalent to indistinguishability with a security loss 1/kO(1)

(see [Gol01], Theorem 3.3.7). Thus the output of G is indeed pseudorandom,
with security essentially the same as of the above sequence. We now turn to the
proof of unpredictability.

Let Supp(n) = Hk
�,k ×Hk,n ×{0, 1}k, and call an element of Supp an instance.

Let Φ = {0, 1}N denote the set of all coin toss sequences. We say that an algo-
rithm A inverts i-th iteration (on random coins ω and instance (h, ĥ, f i

ĥ
(x, h)))

if
A(ω, h, ĥ, f i

ĥ
(x, h)) = f i−1

ĥ
(x, h).

Let D(n) be the distribution of instances produced by the generator, i.e.
(h, ĥ, f i

ĥ
(x, h)) for uniform (h, ĥ, x). Let Z(n) be the uniform distribution of

instances, i.e. uniform (h, ĥ, z).

Lemma 3. Let A be an algorithm with running time ≤ t(n). Suppose that

Pr[A inverts i-th iteration on (ω, h, ĥ, f i
ĥ
(x, h))] ≥ ε(n),

where ω is uniform and (h, ĥ, f i
ĥ
(x, h)) is distributed according to D(n). Then

there is an algorithm B which runs in time ≤ poly(n) + t(n) and inverts f(x)
with probability ≥ ε2.5(n)/(16(k + 1)) (for |x| = n).

Proof: On input y, the algorithm B generates random (h, ĥ), sets u ← A(h, ĥ,

hi(y)), and outputs ĥ(u).
Fix some n and then we can omit it from the notation. B chooses the hash

functions independently of y, i.e. it produces instances distributed according
to Z. However, A is guaranteed to invert with probability ε on a different dis-
tribution D. The bulk of the proof is devoted to proving that A inverts with
comparable probability ≈ ε2 also on distribution Z. The basic idea of the proof
is similar to [HHR06b]: we show that collision probabilities of Z and D are
closely related CP (Z) ≥ O(k) · CP (D), and from that we conclude that event
probabilities are closely related as well PrZ [S] ≥ (PrD[S])2/O(k). In particular,
the inversion event happens with probability ε2/O(k) under Z. The actual proof
is more involved than this simple outline, the main complications being: 1. there
is a single expanding hash function ĥ which is used in every iteration, so the
technique of [HHR06b] is not directly applicable, 2. contracting hash functions
hi cause collisions, so an inverse of i-th iteration may be unrelated to y. The
details of the proof are given in the full version of this paper [DHR07]. �
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Reducing the public seed length. To reduce the public seed length of the above
construction from 2n + O(k2) to 2n + O(k log k), we follow exactly the same
derandomization technique as in the HHR construction. The idea is to not use
independent choices of hash functions for h = (h1, . . . , hk) but rather choose
functions that are correlated yet satisfy the proof of the previous section. The
central observation is that the collision probability of a randomized iterate can
be computed by a bounded space program. More precisely, there is a simple
bounded space branching program such that its input tape consists of the choice
of h and its acceptance probability is precisely the collision probability of fk

ĥ

(the probability is over inputs x, h) for every fixed ĥ. Thus replacing the hash
functions in the input tape by the output of a generator that fools bounded
space programs (such as the generators of [Nis92, INW94]) changes the collision
probability only by a small additive error. This is sufficient to make the proof of
the previous section go through. Loosely speaking, the bounded space program
takes two initial inputs x1 and x2.5 At the first step the program reads the
randomizing hash function h1 and computes f1

ĥ
(x1, h

1) and f1
ĥ
(x2, h

1) and stores
only these two intermediate values (not storing x1 and x2). At each iteration
the program reads a new randomizing hash and computes the next randomized
iterate of the two values, while not storing the previous one. At the end the
program simply compares the two values and outputs 1 only if they are the
same value. An accurate account of such a program, bounded space generators
and the revisions needed in the proof appears in [HHR06b].

Construction 2. The generator takes the following as inputs:

1. A secret random x ∈ {0, 1}k

2. Description of one hash function ĥ from a family Hk,n of pairwise indepen-
dent hash functions from k bits to n bits (requires 2n bits).

3. Seed s ∈ {0, 1}O(k log k) to a bounded space generator BSG with space bound
2k and error 2−k. The output BSG(s) = (h1, . . . , hk) of the generator con-
sists of the descriptions of k hash functions from a family H�,k of almost
pairwise independent hash functions from � bits to k bits.

4. A random string r ∈ {0, 1}k for the Goldreich-Levin hardcore bit br (requires
k bits).

The generator is defined as follows:

G′(x, ĥ, s, r) = br(x), br(f1
ĥ
(x, BSG(s))), . . . , br(fk

ĥ
(x, BSG(s))), ĥ, s, r

Where f i
ĥ

denotes the ith randomized iterate of the function fĥ = ĥ ◦ f .

The seed length of the aforementioned generators is O(log |H�,k| · log k) (which
equals O(k log k) with our choice of parameters) and thus the overall construction
takes seed length 2n + O(k log k).
5 The program actually computes the collision probability for one fixed pair of inputs

x1, x2. The actual collision probability is the average over all possible input fixings.
But since the generator fools each program separately, it will also fool the average.
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On using secret seeds from non-uniform distributions. A simple modification
makes our PRG secure even when used with secret seed drawn from any distri-
bution X as long as CP (X) ≤ 2−k. The modification can be applied to either
Construction 2 or Construction 1. The public seed then increases by only O(k)
bits, therefore it remains unchanged asymptotically. Please see Appendix B for
a brief description of the modification.

5 Black-Box Separations

As discussed in the introduction, it is natural to ask under which conditions one
can reduce the input length to a one-way function below its “native” length n.
More abstractly, we want to know: Is there a generic way of securely using a
OWF on n-bit inputs, if we are given only � < n random bits? How small can
� be?

We formalize these questions using circuits, where it is easy to talk about
security on fixed-length input. (It is possible to formulate them in the uniform
context, but they become too cumbersome.) We then give some indications that
improving upon our results requires non-black-box reductions. Roughly, by “no
black-box reduction of P to Q” we mean that the security proof “if Q is secure
then P is too” is necessarily non-black-box (the construction of P from Q, how-
ever, may be black-box). Before elaborating, let us informally summarize the
optimality results:

1. For any l < n, there is no black-box reduction of l-bit input OWF to regular
n-bit-input OWF (and, as a corollary, no black-box reduction to either OWF
of known hardness, or arbitrary OWF).

2. For any l < n− logα, there is no black-box reduction of l-bit input one-way-
collection to α-regular n-bit-input OWF (and, as a corollary, no black-box
reduction to either OWF of known hardness < 2n/α, or arbitrary OWF).

3. For any s < n and l < n − s, there is no black-box reduction of l-bit input
one-way-collection to an n-bit input OWF of hardness at most s.

5.1 Formal Statements

Let Fn denote the set of all f : {0, 1}n → {0, 1}n. Let ν(n) denote a negligible
function (one decaying faster than any inverse polynomial). Note that 1/ν(n) is
then a superpolynomial function.

Circuits, oracle circuits. Let |A| denote the size of the circuit A. For an oracle
circuit A and a function f : {0, 1}n → {0, 1}m, Af denotes the oracle circuit
in which each oracle gate with input x outputs f(x). If G = {gi}i∈{0,1}n is a
collection of functions gi : {0, 1}n → {0, 1}m then AG denotes the oracle circuit
in which each oracle gate, on input (i, x) outputs gi(x).

Inverter. A circuit A : {0, 1}l → {0, 1}n is a p-inverter for f : {0, 1}n → {0, 1}l

if Prx∈{0,1}n [A(f(x)) ∈ f−1(f(x))] ≥ p. A 1-inverter is called perfect.
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Black-box reduction. Let F ⊆ Fn. A pair of circuits (R, g) is an (l, p)-reduction
to F if for any f ∈ F :

1. g has l input wires.
2. If V is a perfect inverter for gf , then RV,f is a p-inverter for f .

A sequence (Rn, gn) of (ln, pn)-reductions to Hn ⊆ Fn is called d(n)-saving if:
1. (|Rn| + |gn|)/pn is polynomial in n, 2. n − ln = d(n).

Let Fn,α
reg ⊆ Fall denote its subset of all α-regular functions. Let Fn,s

low ⊆ Fall

denote the subset of all at most s-hard permutations (permutations which have
a 1/2-inverter of size < s).

Black-box collection reduction. A pair of circuits (R, g) is a (l, m, p)-collection-
reduction to F if:

1. For any f ∈ F , and any (i, x) ∈ {0, 1}m × {0, 1}l, gf(i, x) is of the form (i, y).
2. If V is a perfect inverter for gf , then RV,f is a p-inverter for f .

A sequence (Rn, gn) of (ln, mn, pn)-reductions to Hn ⊆ Fn is called d(n)-saving
if: 1. mn(|Rn| + |gn|)/pn is polynomial in n, 2. n − ln = d(n).

The following two technical lemmas are at the heart of our separations. Their
proofs can be found in the full version of the present article [DHR07].

Lemma 4. Let l = n − c and p ≥ 2−c/2+1. If (R, g) is an (l, p)-reduction to
Fn,α

reg then |g| > 2c/2 or |R| > p2n−a+3.

Lemma 5. Let l = n− log α−d. If (R, g) is a (l, m, p)-collection-reduction from
Fn,α

reg , then |R| > p2d−4/m.

Theorem 5. Let α(n)=ν(n)2n. There is no ω(log n)-saving reduction to Fn,α(n)
reg .

Proof: Suppose to the contrary that (R, g) is a ω(log n)-saving reduction to
Fn,α(n)

reg . Consider some particular f , and let D be the set of all possible oracle
queries that gf can ask, on any input. Then |S| ≤ |g|2l, because on each of the
2l distinct inputs, g asks at most |g| queries. The basic idea of the lower bound
proof is that, for l < n−ω(logn), and polynomial-sized g, S occupies a negligible
fraction of f ’s domain. But the one-way f can be easy on S, and gf is then not
one-way.

Formally: apply Lemma 4 to (Rn, gn) with c = ω(log(n)) and p = p(n). Since
2c/2 = 1/ν(n) and 2n−log α(n) = 2n/α(n) = 1/ν(n) we conclude that |Rn| + |gn|
is superpolynomial. �

Theorem 6. Let α(n) = ν(n)2n. There is no (ω(log(n)) + log α(n))-saving
collection-reduction to Fn,α(n)

reg .

Proof: Suppose that (R, g) is the collection-reduction which contradicts the
theorem statement, and let l be the number of g’s input wires. We show that
it is possible to build from (R, g) a circuit B of size about 2l which inverts any
f ∈ Fn,α(n)

reg . To do this, note that RV inverts any f ∈ Fn,α(n)
reg as long as it



Saving Private Randomness 623

is given an inverter V for gf . But V can be implemented as a circuit of size
2l/ν(n). Therefore RV can be implemented (without any oracle) as a circuit of
size about |R|2l/ν(n). But this is too small to invert any function f ∈ Fn,α(n)

reg .
The formal argument follows.

If |gn| is superpolynomial we are done. Else suppose |gn| grows polynomially
fast. Apply Lemma 5 with d = ω(log(n)) (and log |I| < |gn| since log |I| is at
most the number of input wires of gn), to get that |Rn| > p(n)2ω(log(n))/|gn|
which is superpolynomial. �

Theorem 7. Let s(n) < n. There is no (ω(log(n)) + s(n))-saving collection-
reduction to Fn,s(n)

low .

Proof Sketch: Let f be a random permutation and let h(p, y) output x =
f−1(y) if p is an s-bit prefix of x. This ensures that f is “exactly” s-hard. For
any construction gf with input size l = n−s−d (and description of family index
m polynomial in n), we can show an oracle V which inverts it, but such that V
does not significantly reduce the hardness of f . Some minor modifications are
needed to ensure that (f, h) is a permutation.

V , on input (i, y), simply outputs a random x for which gf
i (x) = y. To see that

f is still s-hard, suppose there is a poly-size inverter A(f,h),V for f . From it one
can build a circuit Bf which perfectly simulates A(f,h),V . Each call to h can be
simulated using 2n−s queries to f , and each call to V using ≈ 2l queries to f . So
Bf calls f about |B|(2l + 2n−s) < |B|(2 · 2n−s) times. With this many queries,
the probability of inverting f cannot exceed ≈ 2−s, so f is still s-hard. �

Corollary 1 (To Theorem 5). There is no ω(log n)-saving reduction to Fn.

Corollary 2 (To Theorem 6). There is no (ω(log n)+log α(n))-saving reduc-
tion to Fn.
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A Further Shortening the PRG Seed

In our pseudorandom generator, the output of the last hash function has, intu-
itively, almost k bits of entropy. It entropy can be converted to pseudorandom-
ness using an extractor with a public seed (of length k). To get this pseudoran-
domness to be, e.g., nlogc n-close to uniform for some c, one will lose Θ(logc+1 n)
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bits. If we take this approach, then the we need to run the randomized iter-
ate construction not k times, but Θ(logc+1 n) times; thus, we need the space-
bounded generator to produce not k, but Θ(logc+1 n) hash functions, which can
be done in space O(k log(logc+1 n)) = O(k log log k). The result is a PRG with
seed length 2n+O(k log log k) of which only k bits needs to be secret, but security
reduced to the bare minimum nlogc n.

B On Using Secret Seeds from Non-uniform Distributions

Suppose X is a distribution with the only guarantee that CP (X) ≤ 2−k. We
outline the modification which makes our PRG secure even when its seed x is
drawn from X . Namely, suppose that the support of X is {0, 1}m, and let Hm,k

be a family of 2−3k-almost pairwise independent hash functions from {0, 1}m

to {0, 1}k. The modified generator first pre-processes its seed x by applying a
random h0 ∈ Hm,k to x, and then uses our PRG (either of Construction 2 or of
Construction 1) on secret seed h0(x). The hash function h0 need not be secret.
As explained in Section 2, h0 can be specified using O(k) bits, therefore the
public seed length remains essentially unchanged (O(k log k) for Construction 2,
or O(k2) for Construction 1).
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Abstract. What happens when you use a partially defective bit-
commitment protocol to commit to the same bit many times? For
example, suppose that the protocol allows the receiver to guess the com-
mitted bit with advantage ε, and that you used that protocol to commit
to the same bit more than 1/ε times. Or suppose that you encrypted
some message many times (to many people), only to discover later that
the encryption scheme that you were using is partially defective, and an
eavesdropper has some noticeable advantage in guessing the encrypted
message from the ciphertext. Can we at least show that even after many
such encryptions, the eavesdropper could not have learned the message
with certainty?

In this work we take another look at amplification and degradation of
computational hardness. We describe a rather generic setting where one
can argue about amplification or degradation of computational hardness
via sequential repetition of interactive protocols, and prove that in all
the cases that we consider, it behaves as one would expect from the cor-
responding information theoretic bounds. In particular, for the example
above we can prove that after committing to the same bit for n times,
the receiver’s advantage in guessing the encrypted bit is negligibly close
to 1 − (1 − ε)n.

Our results for hardness amplification follow just by observing that
some of the known proofs for Yao’s lemmas can be easily extended also to
handle interactive protocols. On the other hand, the question of hardness
degradation was never considered before as far as we know, and we prove
these results from scratch.

1 Introduction

This work discusses the effect of running several executions of a cryptographic
protocol sequentially, on the secrecy or correctness guarantees of that protocol.
An illustrating example to keep in mind is a defective bit-commitment scheme,
where the sender may open the commitment in two ways with probability up to
δ (binding defect) and the receiver may have probability of up to (1 + ε)/2 in
guessing the sender’s bit (secrecy defect). We ask how does sequential repetition
of such a protocol effect ε and δ, in situations where the inputs to the various
executions may be dependent.

This question is closely related to the issue of robust combiners for crypto-
graphic protocols. Indeed, Damg̊ard et al. considered in [2] just this kind of

R. Canetti (Ed.): TCC 2008, LNCS 4948, pp. 626–643, 2008.
c© International Association for Cryptologic Research 2008
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defective protocols (for both commitment and oblivious transfer), and described
how a non-defective protocol can be obtained from them. Two transformations
were described in [2], one running many copies of the defective protocol with
the same input bit, and the other running many copies with randomly chosen
inputs whose exclusive-or equals the original input bit. Damg̊ard et al. proved
that in an information-theoretic setting, if the original defects satisfy ε + δ < 1
then alternating between these two transformations can reduce the secrecy and
binding defects to negligible quantities. Given these results, one would like to
prove the same result also in the computational setting.

To illustrate the problem with moving to the computational setting, consider
using a defective bit-commitment scheme to commit twice to the same input bit.
In the information theoretic setting from [2], it is clear that if the commitment
scheme has secrecy defect of ε, then using it twice with the same input bit yields
a secrecy defect of 1− (1− ε)2 = 2ε− ε2. In the computational setting, however,
the simple hybrid argument that is commonly used to reason about “encrypting
the same message many times” can only prove a bound of 2ε on the resulting
defect, which is clearly too weak of a bound. (For example, one needs to show
that the resulting scheme offers some secrecy, even if the original one has secrecy
defect of 2

3 .)
In the specific context of robust combiners for commitment and oblivious-

transfer, results similar to those of Damg̊ard et al. were recently proved in the
computational setting by Wullschleger [11]. Wullschleger bypassed the problem
of analyzing many executions on related inputs in the computational setting,
by considering a “randomized” variant of these primitives, where the parties
execute the protocol on random bits, which are considered outputs of the pro-
tocol rather than inputs to it. These variants are known to be equivalent to
the standard notions of commitment and oblivious transfer, but since the par-
ties have no inputs then the different executions are truly independent. Using
results of Holenstein on hardness amplification of independent executions [5,6],
Wullschleger proved that starting from a defective protocol for the randomized
variants, one can obtain a non-defective protocol for the same variant.

1.1 Our Results

Although sufficient for the context of defective commitment and oblivious-
transfer, Wullschleger’s results do not answer the fundamental question regard-
ing the effect of sequential repetition with related input on the secrecy and
correctness guarantees of protocols. They also do not answer the question of
whether the specific transformations that were described by Damg̊ard et al. [2]
work also in the computational setting. Answering these questions is the focus
of the current work.

Hardness Degradation Lemmas. In Section 3 we describe a rather generic setting
where one can argue about hardness amplification and degradation of interactive
protocols. We formulate and prove two new lemmas, showing that the informa-
tion theoretic bounds on hardness-degradation (for both secrecy and correctness)
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carry over also to the computational setting: Lemma 2 asserts that the secrecy
degradation from “encrypting the same message t times” obeys the bound of
1 − (1 − ε)t. Similarly, Lemma 5 asserts that given t interactive puzzles that
are δ-hard to solve, the probability of solving at least one of them is at most
1 − (1 − δ)t. These lemmas can be thought of as mirroring Yao’s XOR lemma
and Yao’s hardness-amplification lemma for one-way functions [12], respectively.
The proofs of these hardness-degradation lemmas are similar in their high-level
structure to the corresponding hardness-amplification proofs. For Lemma 2 we
had to prove a new lemma (Lemma 3) that plays a role similar to the one played
by Levin’s “Isolation Lemma” in the proof of Yao’s XOR lemma.

We complement the results for secrecy/correctness degradation with results
on secrecy/correctness amplification. Specifically, we observe that some (but not
all) of the known proofs for Yao’s XOR lemma and Yao’s hardness-amplification
lemma can be used to prove amplification also for interactive protocols.1

Improving Defective protocols. We then consider the applicability of our hardness
amplification and degradation lemmas to the analysis of the transformations
from [2]. Roughly, we prove that these transformations result in a secure protocol
whenever the defect parameters of the original protocol satisfy ε + δ ≤ 1 −
1/polylog(k) (with k the security parameter), but our techniques cannot be
applied to prove security in some cases where ε + δ is bounded away from 1
only by a polynomial fraction. In Lemma 6, we characterize exactly the range of
the defect parameters (ε, δ) for which we can prove that these transformations
produce a secure protocol.

2 Notations

The statistical distance between two distributions D1, D2 over a countable do-
main is the scaled sum |D1 − D2| def= 1

2

∑
x |D1(x) − D2(x)|, where the sum is

taken over all the elements in the union of the support of the two distributions,
and Di(x) is the probability mass of x according to the distribution Di. We use
x ∈R S to denote choosing x from S uniformly at random. A positive function
is negligible if it tends to zero faster than any polynomial, and it is noticeable
otherwise.

An algorithm is called efficient if it runs in probabilistic polynomial time.
A two-party protocol is a pair of algorithms, one for each party. We use the
following notations to describe a two-party protocol (A, B):

– The communication transcript is denoted 〈A(a, ra), B(b, rb)〉.
– The event where A outputs the string x is denoted (A(a, ra), B(b, rb))

A→ x,
and similarly (A(a, ra), B(b, rb))

B→ y for the output of B, and (A(a, ra),
B(b, rb)) → (x, y) for the output of both.

1 Essentially, the proofs that can be extended are those where the single-instance
adversary A runs the multiple-instance adversary A′ on just one vector that includes
the instance that A wants to solve. In the interactive case, this translates to a “non-
rewinding” reduction. See more details in the proofs of Lemma 1 and Lemma 5.
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In these notations, a, b are the inputs and ra, rb are the randomness used by
the participants. We often omit the randomness (and sometimes also the input)
from these notations. We use � to denote a “don’t care” input or output.

3 Amplification/Degradation of Computational Hardness

In this section we prove some lemmas about amplification and degradation of
computational hardness for sequential composition of protocols. (By “compu-
tational hardness” we roughly mean breaking either the secrecy or correctness
of the protocol.) The amplification lemmas are straightforward extensions of
Yao’s XOR lemma and Yao’s hardness-amplification lemma for one-way func-
tions [12,4], but the degradation lemmas are new.

We deal with two-party protocols, where one player either tries to guess the
input of the other party or tries to break the correctness of the protocol (e.g., in a
commitment scheme the goal is either to learn the committed bit or to open the
commitment in two different ways). We study how the computational-hardness
of accomplishing these tasks is amplified or degraded when several copies of the
protocol are run sequentially in various settings. We consider the following four
scenarios in the setting of two parties A and B, where A has input a.

Secrecy. In this setting player B wants to learn the input of player A.

Amplification. We examine the effect of running the protocol t times, where
in each invocation player A chooses a random input, subject to the condition
that the XOR of the t inputs is A’s original input a.
When restricted to the non-interactive case of one-way functions, this is
exactly the setting for Yao’s XOR lemma [12]. We note that Levin’s proof
[9] can be easily extended to sequential composition of interactive protocols
(see also [4, Lemma 4]).

Degradation. We examine the effect of running the protocol t times, but this
time player A uses the same input in every run. This “secrecy degradation”
setting is dealt with in Lemma 2.

Correctness. In this setting, player A tries to break the correctness of the pro-
tocol by outputting some “forbidden value” at the end of the protocol execution
(such as two different opening of the commitment).

Amplification. We consider the setting where after t runs of the protocol,
player A needs to break all the t executions.
When restricted to the non-interactive case of one-way functions, this is
exactly the setting for Yao’s hardness-amplification lemma from weak to
strong one-way functions [12]. Here, again, the proof of Canetti et al. [1] can
be easily extended to interactive protocols.2

2 Despite the similarities, the hardness-amplification lemma does not follow from the
results for soundness amplification of interactive proofs. The reason is that in our
case the adversary can compute the “forbidden output” at the very end, after all
the executions took place. In the IP setting, on the other hand, the prover needs to
“convince the verifier” after each execution and before the next one starts.
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Degradation. We consider the setting where after t runs of the protocol, player
A needs to break any one of the t executions. This “hardness degradation”
setting is dealt with in Lemma 5. (The proof closely mirrors the “hardness
amplification” proof from [1].)

3.1 Secrecy Amplification and Degradation

Let (A, B) be an interactive protocol where A has a single-bit input a ∈ {0, 1}
(and B may have no input), and let t = t(k) be polynomially bounded. Denote
by (At

=, Bt) a t-fold sequential repetition of (A, B), where the protocol (A, B)
is run t times sequentially, each time with the same input bit a. Also denote by
(At
⊕, Bt) a t-fold sequential repetition of (A, B), where the input of A in each

run is random and independent, subject to the condition that the XOR of the
inputs in all the runs equals to the input bit of At⊕.

Definition 1 (Input Secrecy Defect). The protocol (A, B) has an ε-bounded
secrecy defect with respect to A if, for every efficient B′, it holds that Pr[(A(a),

B′) B′
→ a] ≤ (1 + ε)/2 + negl(k), where the probability is taken over the choice of

a ∈R {0, 1} and the randomness of A and B′, k is the security parameter, and
negl is a negligible function.

Lemma 1 (Yao’s XOR Lemma [12] – Secrecy Amplification). If (A, B)
has an ε-bounded secrecy defect with respect to A and t is polynomially-bounded,
then (At

⊕, Bt) has an εt-bounded secrecy defect with respect to At
⊕.

Proof (sketch): We observe that Levin’s proof of Yao’s XOR lemma [9] can be
extended also to interactive protocols. (See a description of that proof also in
[4, Lemma 4].) The reason that this particular proof extends to the interactive
case (whereas the other proofs from [4] do not seem to extend) is that this proof
does not need to “rewind” A:

Recall that we assume an adversary B′ with advantage better than εt when
talking to At⊕, and we want to construct an adversary B∗ with advantage better
than ε when talking to A. In the non-interactive case, we had a “puzzle” that
came from A and we could stick that puzzle anywhere in a vector of t puzzles
and let B′ attempt to solve that vector. We could also stick the same puzzle in
many vectors and run B′ on all of them. In the interactive case, on the other
hand, once we sent some messages to the real party A, we cannot “take them
back” and try another interaction instead.

On a high level, the reduction following Levin’s approach proceeds as follows:
B∗ simulates the interactions between B′ and At⊕ for several runs, i = 1, 2, . . .:
Starting from the state that B′ ended at after the i− 1’st run, B∗ uses repeated
sampling to look for a simulated execution of the i’th run after which B∗ still has
advantage better than εt−i in guessing the bit of At−i

⊕ (where the probability
is taken over the remaining runs). It continues in this fashion until it cannot
find such an i’th run (or until it gets to the last run). Then it uses the current
state of B′ as a basis for a single interaction with the “real player” A. If this
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was the last run then it uses the output of B′ as the guess of A’s input bit, and
otherwise it uses repeated sampling again to estimate the probability that B′

outputs one (taken over the remaining runs), and compares that probability to
some threshold (that it can also compute using repeated sampling).

Levin’s isolation lemma then proves that if at some point B′ failed to find an
i’th run as above, then there is a threshold that it can set that would give it an
advantage better than ε of guessing the input bit of the “real player” A. ��

Lemma 2 (Secrecy Degradation). If (A, B) has an ε-bounded secrecy defect
with respect to A and t is polynomially-bounded, then (At

=, Bt) has an ε′-bounded
secrecy defect with respect to At

=, where ε′ = 1 − (1 − ε)t.

We emphasize that the simple hybrid argument that is commonly used to reason
about “encrypting the same message many times” can be used in this context
to prove a bound of ε′ ≤ tε. The difficulty in the proof below is in improving the
bound from tε to 1 − (1 − ε)t.

Proof. Let t = t(k) be polynomially bounded, let ε = ε(k), and denote ε′ def=
1 − (1 − ε)t. We show that if there exist a randomized adversary B′ of time
complexity T ′ such that

Pr
a,ra,rb

[
(
At

=(a, ra), B′(rb)
) B′

→ a] ≥ 1 + ε′ + ρ

2
,

where ρ = ρ(k) is noticeable, then there exists a randomized adversary B∗ of
time complexity T = T ′ · poly(kt/ερ) such that

Pr
a,ra,rb

[(A(a, ra), B∗(rb))
B∗
→ a] ≥ 1 + ε + ερ/4

2
.

An alternative way to write the condition Pr[(At
=(a), B′) B′

→ a] ≥ 1+ε′+ρ
2 is

Pr[
(
At

=(1), B′
) B′

→ 1] − Pr[
(
At

=(0), B′
) B′

→ 1] ≥ ε′ + ρ .

Below we always use this alternative formulation.
Consider breaking B′ into two parts: the first part B′1 interacts with A(a)

only once and outputs the internal state at the end of this interaction, and the
second part B′2 gets this internal state as input and then interacts with A(a)
for t − 1 more times before outputting a guess for the bit a. Denote by D0, D1
the probability distribution of the internal state s after B′1 interacts with A(0),
A(1), respectively.

D0
def=

{
s : (A(0), B′1)

B′
1→ s

}
, and D1

def=
{

s : (A(1), B′1)
B′

1→ s

}

(the notation D0, D1 is interpreted both as a probability distribution and as the
corresponding support set). For any given internal state s ∈ D0 ∪ D1, consider
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the experiment where starting from this internal state s, B′2 interacts t−1 more
times with A, but the input of A in all these executions is some bit a′ (which
may or may not be equal to the input bit a of the first execution). We denote by
p0(s), p1(s) the probabilities that B′ outputs 1 in this experiment when a′ = 0
and a′ = 1, respectively. Namely, for every s ∈ D0 ∪ D1 we denote

p0(s)
def= Pr

[
(
At−1

= (0), B′2(s)
) B′

2→ 1
]

, and p1(s)
def= Pr

[
(
At−1

= (1), B′2(s)
) B′

2→ 1
]

We view p0, p1 as random variables in [0, 1], where each random variable can
be chosen over either of the two probability spaces D0 or D1. Below, we use
notations such as PrD0 [p0 > t] to denote the probability that we get p0(s) > t
when setting s ∈R D0, or ED1 [p1] to denote the expected value of p1(s) taken
over the choice s ∈R D1, etc.

The technical Lemma 3 below asserts roughly that either there exists some
internal state s∗ such that p1(s∗) − p0(s∗) > 1 − (1 − ε)t−1, or there exists some
probability threshold τ such that PrD1 [p1 > τ ]−PrD0 [p1 > τ ] > ε. If there exists
a state s∗ as in the first case, then B′2(s

∗) guesses the input bit of At−1
= with

advantage better than 1− (1−ε)t−1 and we can continue recursively. Otherwise,
we can construct B∗ roughly as follows: B∗ first plays the part of B′1, interacting
with A(a) and gets the internal state s. Then, it evaluates p1(s) (by repeated
sampling), outputs 1 if p1(s) > τ and 0 otherwise.

The actual statement of the technical lemma below is slightly more compli-
cated, since it also includes the “slackness parameter” ρ that is needed to get the
result in a uniform complexity setting. Specifically, in the first case there should
be a significant probability of finding a state s∗ for which p1(s∗) − p0(s∗) >
1 − (1 − ε)t−1 + ρ, and in the second case there should be some uniform way of
finding the threshold τ .

Lemma 3. Fix any integer t and any ε, ρ ∈ [0, 1] such that ρ < (1 − ε)t. Also
let D0, D1 be two probability distributions and let p0, p1 be two random variables
that are defined over both D0 and D1. If ED0 [p1] − ED1 [p0] > 1 − (1 − ε)t + ρ,
then at least one of the two conditions must hold:

(i) Either Pr
D0

[
p1 − p0 > 1 − (1 − ε)t−1 + ρ

]
≥ ερ

2
,

(ii) or Eτ

[
Pr
D1

[p1 > τ ] − Pr
D0

[p1 > τ ]
]

> ε(1 + ρ/2), where the expectation is over

choosing τ uniformly at random in the interval [1 − (1 − ε)t−1 + ρ, 1].

We prove Lemma 3 later in this section. Using this lemma, we now complete
the proof of Lemma 2 as follows: from the assertion we have that ED0 [p1] −
ED1 [p0] > 1 − (1 − ε)t + ρ so we can apply Lemma 3. The adversary B∗ will
sample poly(k/ερ) internal states s ∈R D0, and for each will evaluate p0(s) and
p1(s) with accuracy poly(ρ/t) and error poly(ερ/tk). If it finds a state s for which
p1 − p0 > 1 − (1 − ε)t−1 + ρ(1 − 1/2t) then it uses B′2(s) as an adversary against
the (t − 1)-sequential repetition At−1

= (a) and continue by recursion.
Otherwise, B∗ plays the role of B′1, interacting with A(a) to produce an inter-

nal state s. Then B∗ evaluates p1(s) with accuracy poly(ερ) and error poly(ερ/k).
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X + Δ
s in D0 s in D1

τ

s*

P1(s)

P0(s)

Fig. 1. An illustration of Lemma 3. We know that the gray area in the lower-right box
is more than X + (1 − (1 − ε)t). We essentially prove that either there is s∗ such that
p1(s

∗)−p0(s
∗) > 1−(1−ε)t−1 or there is τ such that PrD1 [p1 > τ ]−PrD0 [p1 > τ ] > ε.

It then chooses at random τ ∈R [1− (1−ε)t−1+ρ, 1], and outputs 1 if p1(s) > τ
and 0 otherwise. It is not hard to see that this algorithm has expected advantage
of ε(1 + ρ/2) − poly(ερ/k) > ε(1 + ρ/4).

Proof of Lemma 3. The proof relies on the identity E[X ] ≡
∫∞
0 Pr[X > τ ]dτ ,

that holds for any non-negative random variable X . In our case, we have p0, p1 ∈
[0, 1] so we can integrate between 0 and 1 (rather than 0 and ∞). Assume that
the premise of the lemma holds but condition (i) does not, and we prove that
then condition (ii) must hold. For the proof below, denote

μ
def= 1 − (1 − ε)t−1 + ρ

If condition (i) does not hold then with all but probability ερ/2 over choosing
s ∈R D0, we have p1(s) − p0(s) ≤ μ. This implies that, for all τ ∈ [μ, 1], it holds
that PrD0 [p1 > τ ] ≤ PrD0 [p0 > τ − μ] + ερ

2 , and therefore also
∫ 1

μ

Pr
D0

[p1 > τ ]dt ≤
∫ 1−μ

0

(
Pr
D0

[p0 > τ ] +
ερ

2

)
dt =

∫ 1−μ

0
Pr
D0

[p0 > τ ]dt+
(1 − μ)ερ

2
(�)

Using this inequality and the premise of the lemma, we can write:

1 − (1 − ε)t + ρ < ED1 [p1] − ED0 [p0] = ED1 [p1]−ED0 [p1]+
∫ μ

0
Pr
D0

[p1 > τ ]dτ

+
∫ 1

μ

Pr
D0

[p1 >τ ]dτ −
∫ 1−μ

0
Pr
D0

[p0 >τ ]dτ −
∫ 1

1−μ

Pr
D0

[p0 >τ ]dτ
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Eq. (�)
≤ ED1 [p1] − ED0 [p1] +

∫ μ

0
Pr
D0

[p1 > τ ]dτ +
(1 − μ)ερ

2
−

∫ 1

1−μ

Pr
D0

[p0 > τ ]dτ

≤ ED1 [p1] − ED0 [p1] +
∫ μ

0
Pr
D0

[p1 > τ ]dτ +
(1 − μ)ερ

2

=
∫ μ

0
Pr
D1

[p1 > τ ]dτ +
∫ 1

μ

Pr
D1

[p1 > τ ]dτ −
∫ 1

μ

Pr
D0

[p1 > τ ]dτ +
(1 − μ)ερ

2

≤ μ +
∫ 1

μ

(
Pr
D1

[p1 > τ ] − Pr
D0

[p1 > τ ]
)

dτ +
(1 − μ)ερ

2

= μ
(
1 − ερ

2

)
+

∫ 1

μ

(
Pr
D1

[p1 > τ ] − Pr
D0

[p1 > τ ]
)

dτ +
ερ

2

Substituting back μ = 1 − (1 − ε)t−1 + ρ, we conclude that
∫ 1

μ

(
Pr
D1

[p1 > τ ] − Pr
D0

[p1 > τ ]
)

dτ > (1 − (1 − ε)t + ρ) − (1 − (1 − ε)t−1 + ρ)(1 − ερ

2
) − ερ

2

=
(
(1 − ε)t−1 − ρ

)

︸ ︷︷ ︸
1−μ

(
ε − ερ

2

)
+ ερ > (1 − μ)

(
ε +

ερ

2

)

Hence, the expected value of the difference PrD1 [p1 > τ ] − PrD0 [p1 > τ ], taken
over a uniform random choice of τ ∈R [μ, 1], is at least ε + ερ

2 . ��

3.2 Hardness Amplification and Degradation

Consider an interactive protocol P = (A, B), and let RP be a poly-time recog-
nizable relation that describes what it means for A to “break the protocol’s
correctness”. Namely, after the protocol is run and B’s output is some string y,
a cheating A′ is successful if it outputs a string x such that (x, y) ∈ RP . (For
example, (A, B) is a commitment scheme, A is the sender, B’s output is the com-
munication transcript y, and (x, y) ∈ RP if x contains two different openings
that are both consistent with y.)

Let (At, Bt) be a t-fold sequential repetition of the protocol (A, B) with A,
B having the same input (if any) but independent randomness. Define ∧t(RP)
and ∨t(RP) as the AND and OR of the t individual relations, namely

∧t(RP) def= {(〈x1, . . . , xt〉 , 〈y1, . . . , yt〉) : ∀i ≤ t, (xi, yi) ∈ RP},

∨t(RP) def= {(x, 〈y1, . . . , yt〉) : ∃ i ≤ t s.t. (x, yi) ∈ RP}

In other words, ∧t(RP ) represents the case that all the t copies must be broken,
and ∨t(RP) represents the case that at least one copy is broken.

Definition 2 (RP-defect). The protocol P = (A, B) has a δ-bounded RP -defect
with respect to B if for every efficient A′ it holds that Pr[(A′, B) → (x, y) :
(x, y) ∈ RP ] ≤ δ + negl(k), where the probability is taken over the randomness
of A′ and B, k is the security parameter, and negl is a negligible function.
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Lemma 4 (Hardness Amplification). If P = (A, B) has a δ-bounded RP -
defect with respect to B and t is polynomially bounded then (At, Bt) has a δt-
bounded ∧t(RP)-defect with respect to Bt.

The proof is nearly identical to the hardness-amplification proof from [1] for the
non-interactive case (and also very similar to the proof for Lemma 5 below).
Again, the reason that this proof extends to the interactive case (whereas some
other proofs of Yao’s lemma of weak-to-strong-OWFs do not extend) is that it
does not need to “rewind” the player B. ��

Lemma 5 (Hardness Degradation). If P = (A, B) has a δ-bounded RP -
defect with respect to B and t is polynomially bounded then (At, Bt) has a δ′-
bounded ∨t(RP)-defect with respect to Bt, where δ′ = 1 − (1 − δ)t.

Proof (sketch): The proof is very similar to the hardness-amplification proof
from [1]. Let t = t(k) be polynomially bounded, and let δ = δ(k) be a noticeable
function and δ′ = 1−(1−δ)t. Assume that there exists a randomized adversary A′

of time complexity T ′ that satisfies the relation ∨t(RP) with probability δ′ +
ρ′ for some noticeable quantity ρ′ = ρ′(k). We then show that there exists a
randomized adversary A∗ of time complexity T ∗ = T ′ ·poly(kt/δ′ρ′) that satisfies
RP with probability δ + ρ, where ρ is the solution to (1 − δ − ρ)t = (1 − δ)t − ρ′.
Observe that if ρ′ is noticeable and t is polynomial then also ρ is noticeable.
Note also that by definition, the success probability of A′ is 1 − (1 − δ − ρ)t.

Denote the state of A′ after the i’th interaction with B by si (with s0 being
the initial state of A′). The adversary A∗ begins by playing the role of B in
the first interaction. Repeating the first interaction up to poly(kt/δρ) times,
A∗ is looking for an internal state s1 after the first interaction such that when
proceeding from this state, A′ satisfies RP for one of the last t − 1 runs with
probability at least 1−(1−δ−ρ)t−1. (Note that A′ can estimate that probability
by sampling.)

If A∗ succeeds in finding such s1, then it fixes that internal state and keeps
looking for internal states s2, s3, . . . such that when proceeding from si, adversary
A′ satisfies RP for one of the last t − i runs with probability at least 1 − (1 −
δ − ρ)t−i. If A∗ can find an internal state st−1 from which A′ satisfies RP for
the last run with probability ≥ δ + ρ then we are done: A∗ just uses A′ from
this state when interacting with the real B. Otherwise, A∗ has some state si

with 0 ≤ i < t − 1 such that A′ satisfies RP for one of the last t − i runs with
probability at least 1− (1−δ−ρ)t−i, and yet for (almost) all continuation states
si+1, A′ only satisfies RP for one of the last t − i − 1 runs with probability less
than 1 − (1 − δ − ρ)t−i−1.

We now consider a “matrix” M that represent the interaction of A′ with B on
the remaining t − i runs of the protocol, when A′ starts from this state si. (We
assume that si includes all the randomness that A′ needs for all the runs.) The
columns of M are labeled by all the possibilities for the randomness of B during
the i + 1’st run, and rows are labeled by all the possibilities for the randomness
of B in runs i + 2, . . . , t. Hence, each entry in the matrix corresponds to a
particular interaction of A′ with B on the remaining t − i runs of the protocol.
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Each entry in M is labeled with two bits, where the first bit is 1 if at the
end of that interaction A′ satisfies RP for the i + 1’st run, and the second bit
is 1 if A′ satisfies RP for one of the last t − i − 1 runs. By our assumption on
the state si, we know that a random entry in this matrix is labeled with (0, 0)
with probability at most γ = (1 − δ − ρ)t−i. Denote α = (1 − δ − ρ)t−i−1 and
β = (1 − δ − ρ), so α · β = γ. Then, it must be the case that either M has
(sufficiently many) columns where the fraction of entries of the form (�, 0) is no
more than α, or else the conditional probability of a (0,0) entry given that the
entry is of the form (�, 0) is at most (only slightly more than) β.

The failure of A∗ to find a continuation state si+1 with sufficient residual
success probability indicates that the first case does not hold, so the second case
must hold. Hence, in this case A∗ uses A′ starting from si to interact with the
real player B, arriving at some state si+1 after this “real interaction.” Then,
A∗ simulates many more runs of A′ with B starting from this si+1. Adversary
A∗ looks for a run in which A′ does not satisfy RP for any of the last t − i − 1
runs, and uses the output of A′ in that run in the hope that it satisfies RP for
the i + 1’st run. The conditional probability argument from above says that the
odds of satisfying RP for the i+ 1’st run conditioned on not satisfying it for the
last t − i − 1 runs is (only slightly less than) 1 − β = δ + ρ. Indeed, a detailed
argument that mirrors the proof of [1, Lemma 1] shows that this algorithm A∗

has success probability noticeably larger than δ. ��

4 Fixing Defective Protocols

In [2], Damg̊ard et al. considered defective two-party protocols such as oblivious-
transfer and commitment between a Sender and a Receiver. They suggested
reducing the defect by alternating between two transformations: Roughly, in a
“type-R” transformation the parties run t copies of the protocol with the same
input bits for the sender, and in a “type-S” transformation the sender chooses t
random bits whose exclusive-or equals to its input bit and then the parties run
one copy of the protocol for each of these random bits.

Below we assume that the underlying protocol has defect ε for the Sender
security and defect δ for the Receiver security (such as the commitment protocol
that was described in the introduction). In the information-theoretic setting
that was considered in [2], it is clear that applying a type-R transformation
results in a protocol with sender defect 1 − (1 − ε)t and receiver defect δt, and
similarly applying a type-S transformation results in a protocol with sender
defect εt and receiver defect 1 − (1 − δ)t. It was shown in [2] that as long as
ε + δ < 1 − 1/poly(k), one can alternate between these transformations several
times (with total number of copies polynomial in k) and reduce both defects to
negligible quantities in k.

Our lemmas from Section 3 imply that the same bounds on the effect of type-
R and type-S transformations hold also in the computational setting. One could
hope, therefore, that the alternation strategy from [2] can be proven to work also
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in this setting. Unfortunately, this is not the case. The reason is the strategy
from [2] uses a non-constant number of alternations. The proofs for hardness-
amplification and degradation from Section 3 all incur a polynomial blowup in
the complexity of the adversary for every alternation, and hence a non-constant
number of alternations would cause a super-polynomial blowup in the adversary
complexity. In Section 4.1 below we analyze the range of parameters ε, δ for
which we can reduce the defect to a negligible amount using only a constant
number of alternations.

Relation toWullschleger’s work. As wedescribed in the introduction, Wullschleger
recently was able to extend the results from [2] to the computational setting via
a somewhat different approach. Roughly, instead of running many copies of the
protocol on related inputs, he suggested to run many copies on random and in-
dependent inputs, followed by the Sender sending to the Receiver various linear
combinations of these random bits and the input bit. Since the protocols are now
run on independent inputs, then one can use the hardness-amplification results
of Holenstein to argue about them [5,6], and these arguments still hold even in
the presence of the various linear combinations that the Sender later sends to the
Receiver.

Wullschleger’s work yield stronger defect-reduction results than the ones that
we can obtain from a direct analysis of the transformations of [2]: he is able
to fix a defect of ε + δ < 1 − 1/poly(k), where we can roughly fix only when
ε + δ < 1 − 1/polylog(k). However, Wullschleger’s work does not shed light on
what happens when a defective protocol is run several times on related inputs,
and does not say what happens when the original transformations from [2] are
used in the computational setting.

4.1 Iterating the Transformations

Below, we prove that repeating the transformations S and R a constant number
of times results in a scheme with negligible defects as long as ε + δ is bounded
away from 1 and, moreover, ε + δ < 1 − min(ε, δ)/polylog(k).

We begin by setting a few conventions and notations. First, we can assume
without loss of generality that we always alternate between transformations S
and R (since applying two successive transformations of the same type with pa-
rameters t and t′ is the same as just one transformation with parameter tt′). We
also assume, without loss of generality, that for ε > δ we begin with transforma-
tion S and for ε ≤ δ we begin with transformation R. (Namely, we choose the
first transformation to increase the larger value and decrease the smaller one.)
This is without loss of generality, since we can always start with a “dummy
transformation” with parameter t = 1.

With these two assumptions, a chain of transformations is completely char-
acterized by the initial values ε0, δ0 and by the sequence of parameters t1, t2, . . .
that indicate how many times we repeat the scheme from step i in step i + 1. In
the analysis below we refer to this representation as a “chain”.
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Definition 3 (Transformation chains). A transformation chain (or just
chain) is represented by a vector C = 〈(ε0, δ0), (t1, t2, . . . , t�)〉 where ε0, δ0 ∈ [0, 1]
and ti ≥ 1 for all i. Given C as above, we can compute the values εi, δi for each
i = 1, . . . , � as follows:

– If ε0 ≥ δ0 then for even i we set εi+1 = 1 − (1 − εi)ti+1 and δi+1 = δ
ti+1
i ,

and for odd i we set εi+1 = ε
ti+1
i and δi+1 = 1 − (1 − δi)ti+1 .

– If ε0 < δ0 then we swap the even and odd rules.

It is clear, however, that not every “chain” corresponds to a sequence of transfor-
mations that we can use. For example, it is clear that

∏
i ti must be polynomial

in the security parameter k. Moreover, all the εi’s and δi’s must be bounded
away from 1 (i.e., be at most 1 − 1/poly(k)), since our defect definitions imply
that a defect of 1 − negl(k) is the same as a defect of 1. These conditions are
captured in the following definition:

Definition 4 (Confined chains). A chain C = 〈(ε0, δ0), (t1, t2, . . . , t�)〉 is con-
fined if there exist constants c, c′ > 0 such that (a)

∏�
i=1 ti ≤ kc and (b) for all

i ≤ �, we have εi, δi ≤ 1 − k−c′
.

Moreover, the reductions proving lemmas 1 and 2 increase the size of the adver-
sary by a polynomial factor (even if we only use t = 2), so we can only apply these
transformations a constant number of times. This means that, to get a scheme
with negligible defect, we must find a constant-length confined chain that begins
with the given (ε0, δ0) and ends with ε�, δ� = negl(k). The next lemma asserts a
necessary and sufficient conditions on (ε0, δ0) for such a chain to exist.

Lemma 6. Fix some ε0 = ε0(k) and δ0 = δ0(k) such that ε0+δ0 < 1−1/poly(k).
There exist a constant-length confined chain that begins with these (ε0, δ0) and
ends with ε�, δ� = negl(k) if and only if ε0 + δ0 ≤ 1 − Ω

(
min(ε0,δ0)
polylog(k)

)
.

Proof. Roughly, the proof considers the quantity a = 1−max(ε,δ)
min(ε,δ) , and shows that

as long as a = 1 + o(1), then each iteration increases the o(1) part of a by at
most a factor of O(log k). Thus, we must have a ≥ 1 + Ω(1/polylog) if we want
a to grow beyond 1+ o(1) in a constant number of iterations. In the proof below
we use the following facts:

1. For every α > −1 and x ≥ 1, (1 + α)x ≥ 1 + αx.
2. For every 0 ≤ α ≤ 1

2 and 1 ≤ x ≤ 1
2α , (1 + α)x ≤ 1 + 2αx.

3. For every 0 ≤ α ≤ 1
2 and 1 ≤ x ≤ 1

α , (1 − α)x ≤ 1 − αx/2.
4. For every 0 ≤ α ≤ 1, (1 − α)1/α < e−1(≈ 0.37)
5. For every 0 ≤ α < 1

2 , (1 − α)1/α > 1/4

If (⇒) Assume that, for some constant c ≥ 1, it holds that max(ε0, δ0) ≤
1 − k−c, and also ε0 + δ0 ≤ 1 − min(ε0,δ0)

logc(k) . We show a confined chain of length at

most c + 5 such that εc+5, δc+5 = negl(k). Assume that max(ε0, δ0) > k−c′
for

some c′ (otherwise we already have ε0, δ0 = negl(k)), and consider the following
procedure for generating such a chain:
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1. H0 := max{ε0, δ0}, L0 := min{ε0, δ0}
2. i := 1, t1 := max{t ∈ N : (1 − H0)t > k−c} // t1 ≤ �c ln(k)/H0� = O(kc′

log k)
3. H1 := 1 − (1 − H0)t1 , L1 := Lt1

0 // 1
2 ≤ H1 < 1 − k−c

4. while (1 − Hi)/Li < 2k do // Li > (1 − Hi)/2k > k−c−1/2
5. ti+1 := max{t ∈ N : (1 − Li)t > k−c} // ti+1 ≤ �c ln(k)/Li� = O(kc+1 log k)
6. Hi+1 := 1 − (1 − Li)ti+1 , Li+1 := H

ti+1
i // 1

2 ≤ Hi+1 < 1 − k−c

7. i := i + 1

8. ti+1 := �k/(1 − Hi)�, Hi+1 := 1 − (1 − Li)ti+1 , Li+1 := H
ti+1
i

9. ti+2 := k, Hi+2 := 1 − (1 − Li+1)ti+2 , Li+2 := H
ti+2
i+1

We start by establishing some simple invariants that holds throughout all the
iterations of the loop.

– For all i we have Li+Hi < 1. This follows since initially we have L0+H0 < 1,
and if x+y < 1 then also (1− (1−x)t)+yt < 1 for all t ≥ 1 so this property
is preserved.

– For all i we have Li < 1
2 < Hi < 1 − k−c:

• The condition Hi < 1 − k−c follows since the ti’s are chosen specifically
to ensure it.

• On the other hand, we always set Hi := 1 − (1 − α)ti for some α < 1
and where ti is chosen as max{t : (1 − α)t > k−c}. So either α > 1

2 , in

which case Hi ≥ α > 1
2 , or α ≤ 1

2 , in which case (1 − α)� 1
α� > 1

8 > k−c

and therefore ti ≥
⌈ 1

α

⌉
, so Hi > 1 − (1 − α)� 1

α� > 1 − e−1 > 1
2 .

• Finally, since Hi > 1
2 and Hi + Li < 1 then Li < 1

2 .
– Since Li < 1

2 then (1 − Li)
1

Li > 1/4. Thus (1 − Li)
c log2 k

2Li > k−c, so ti+1 ≥
c log2 k

2Li
.

– Inside the loop, we always have 1−Hi

Li
< 2k which means that Li > 1−Hi

2k >
k−c

2k = 1
2kc+1 .

We now observe that all the ti’s are polynomially bounded: Recall that (1 −
H0)�c ln(k)/H0� < e−c ln(k) = k−c so we must have t1 < �cln(k)/H0� < ckc′

ln(k)=
O(kc′

log k) (since we assume that H0 ≥ k−c′
). Similar argument using Li >

1
2kc+1 shows that in Line 5 we have ti+1 = O(kc+1 log k).

Next, we consider the quantity ai
def= 1−Hi

Li
. First, observe that the condition

ε0 + δ0 ≤ 1 − min(ε0,δ0)
logc(k) (which we can re-write as H0 + L0 ≤ 1 − L0

logc(k) ) implies

that 1−H0
L0

− 1 = 1−(H0+L0)
L0

≥ 1
logc(k) . Next, observe that

1 − H1

L1
=

1 − (1 − (1 − H0)t1)
Lt1

0
=

(
1 − H0

L0

)t1

>
1 − H0

L0
≥ 1 +

1
logc(k)

.

We now show that in each iteration of the loop, the quantity ai − 1 increases by
at least a factor of Ω(log k). Denote bi

def= 1−Li

Hi
, and note that

bi − 1 =
1 − Li

Hi
− 1 =

1 − Li − Hi

Hi
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=
Li

Hi
· 1 − Li − Hi

Li
=

Li

Hi
·
(

1 − Hi

Li
− 1

)
=

Li

Hi
· (ai − 1) .

Observe that for each iteration of the loop, we have

ai+1 =
1 − Hi+1

Li+1
=

1 − (1 − (1 − Li)ti+1))
H

ti+1
i

=
(

1 − Li

Hi

)ti+1

= b
ti+1
i

and therefore

ai+1 − 1 = b
ti+1
i − 1 = (1 + (bi − 1))ti+1 − 1

> [1 + ti+1(bi − 1)] − 1 = ti+1(bi − 1) = ti+1
Li

Hi
· (ai − 1) > ti+1 · Li · (ai − 1)

≥ c log2 k

2Li
· Li · (ai − 1) =

c

2
log2 k · (ai − 1) = Ω(log k) · (ai − 1) .

We have seen that a1 − 1 > Ω( 1
logc(k) ) and that ai+1 − 1 ≥ Ω(log k) · (ai − 1), so

after at most c + 1 iterations of the loop we get ai − 1 ≥ Ω(log k) > 4.
If we still do not have ai > 2k then we will do another iteration of the loop.

In this iteration, we have (as usual) ti+1 ≥ c log2 k
2Li

, but now ai = 1−Hi

Li
> 5, so

ti+1 ≥ 5c log2 k
2(1−Hi)

. Therefore, at the end of this iteration we have

Li+1 = H
ti+1
i = (1 − (1 − Hi))ti+1 ≤ (1 − (1 − Hi))

5c log2 k

2(1−Hi)

< e−5c log2 k/2 = e−5c ln(k)/2 ln(2) = k−5c/2 ln(2) < k−3c .

On the other hand, we have (as usual) Hi+1 ≤ 1 − k−c, and therefore ai+1 =
1−Hi+1

Li+1
> k−c

k−3c = k2c > 2k.
We conclude that the loop terminates after at most c + 2 iterations, so the

chain is indeed of constant length. It is left to show that the chain remains
confined in the last two steps, and that Li+2, Hi+2 are both negligible. Once the
loop terminates, we have

Li+1 = H

�
k

1−Hi

�

i < (1 − (1 − Hi))
k

1−Hi
−1

< e−k/Hi < 2e−k.

On the other hand, 1−Hi

Li
> 2k so Li < 1−Hi

2k and therefore

Hi+1 = 1 − (1 − Li)ti+1 < ti+1Li <

⌊
k

1 − Hi

⌋
· 1 − Hi

2k
≤ 1

2
.

Finally, after the last step we have

Hi+2 = 1 − (1 − Li+1)k < kLi+1 < 2ke−k, and Li+2 = (Hi+1)k < 2−k.

This concludes the proof of the if direction. ��
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Only if (⇐). Assume that ε0+δ0 ≤ 1−poly(k), but ε0+δ0 ≥ 1−o
(

min(ε0,δ0)
polylog(k)

)
,

and assume that ε0 ≥ δ0 (the other case is symmetric). Let C =
〈(ε0, δ0), (t1, t2, . . .〉 be a confined chain with constant length.

Instead of analyzing the chain C, it will be more convenient below to analyze
an “equivalent chain” C′ for which δi ≤ εi for all i. We get C′ from C as follows:
we go over the transformations one at a time, starting from the first transfor-
mation, and maintain the invariant that we always have δi ≤ εi. If after the
next transformation we still have δi+1 ≤ εi+1 then we leave that transformation
unchanged. On the other hand, if after the next transformation (of type R with
parameter ti) we have δi+1 ≥ εi+1 then we break it into two transformation: a
type R transformation with parameter t′i that increases δ and decreases ε until
they are exactly equal (t′i could be fractional), and a type S transformation with
parameter t′′i = ti/t′i. In some more detail, instead of computing εi+1 = εti

i and
δi+1 = 1 − (1 − δi)ti , we do the following:

– We compute the real number t′i < ti such that ε
t′
i

i = 1 − (1 − δi)t′
i ,

– We set ε′i+1 = ε
t′
i

i and δ′i+1 = ε′i+1 = 1 − (1 − δi)t′
i ,

– We compute t′′i = ti/t′i and then set ε′′i+1 = 1 − (1 − (ε′i+1))
t′′
i and δ′′i+1 =

(δ′i+1)
t′′
i .

– We invert the type of all the transformations until the end of the chain.

Formally, what we do is to remove ti from the chain and replace it with t′i, t
′′
i

(so we get a chain which is one longer than the original one).
It is clear that the change from above only switches the roles of ε and δ (i.e.,

we have ε′′i+1 = δi+1 and δ′′i+1 = εi+1, and similarly for i + 2, i + 3, . . .). It should
also be noted that the resulting chain does not correspond to transformations
that can be applied to the commitment scheme (since we use fractional values
for the ti’s), but all the values of εi, δi are still well defined, and their sum is
equal to what it was in C. Finally, the length of C′ is at most twice the length
of the original C, so C′ still has constant length.

From now on, we therefore assume that we have a constant-length confined
chain C′ that starts from δ0 ≤ ε0 and maintains δi ≤ εi, for all i. Denote the
number of transformations in C′ by � and assume, without loss of generality,
that � is even (since we can always append a last dummy transformation with
t = 1).

Again, we consider the quantity ai = 1−εi

δi
, and the condition ε0 + δ0 ≥

1−o
(

δ0
polylog(k)

)
implies that a0−1 ≤ o(1/polylog(k)). We show that the quantity

ai − 1 grows by at most a factor of O(log k) in every two successive transforma-
tions in the chain. It follows that a�−1 = (a0−1)·O(log�/2(k)) = o(1/polylog(k)),
which in particular means that ε� + δ� ≥ 1 − o(1) > 1/2. In more details, we
prove by induction that, for every even i, we have ai −1 ≤ (8c log k)i/2 · (a0 −1),
where the constant c is the one from the “confinement” property of the chain C′

(namely all the εi’s and δi’s are bounded by 1 − k−c).
This holds for i = 0 by definition, and we now proceed to the induction step.

Assume that for some even i < � it holds that 1 − ai ≤ (1 − a0) · (8c log k)i/2.
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This in particular means that εi + δi ≥ 1 − o(1), and therefore (since we have
δi ≤ εi) then εi ≥ 1

2 − o(1). We now examine how the quantity 1−ε
δ evolves over

the next two steps.

– The next (odd-numbered) transformation is of type S, so we have δi+1 = δ
ti+1
i

and εi+1 = 1 − (1 − εi)ti+1 . Since εi > 1
2 − o(1) then 1 − εi < 2−1/2, and

since the sequence is confined then 1 − εi+1 ≤ k−c. Thus we have

2−c log2 k = k−c ≤ (1 − εi)ti+1 <
√

1/2
ti+1

= 2−ti+1/2

so it follows that ti+1 < 2c log k< 1/2(ai−1) (since 1/(ai−1)=ω(polylog(k)).
This means that we have

ai+1 =
1 − εi+1

δi+1
=

(
1 − εi

δi

)ti+1

= a
ti+1
i = (1 + (ai − 1))ti+1

Fact 2
< 1 + 2ti+1(ai − 1) < 1 + 2c log k · (ai − 1)

Thus ai+1 − 1 < 2c log k(ai − 1) = o(1/polylog(k)). Let us denote bi+1
def=

1−δi+1
εi+1

, so we have bi+1 − 1 = (ai+1 − 1)δi+1/εi+1.
– The next (even-numbered) transformation is of type R, so we have δi+2 =

1− (1−δi+1)ti+2 and εi+2 = (εi+1)ti+2 . Recall that we have δi+2 ≤ εi+2 and
therefore δi+2 < 1/2 < 1 − e−1, so (1 − δi+1)ti+2 = 1 − δi+2 > e−1, which
means that ti+2 < 1/δi+1. Recall also that we have εi+1 ≥ εi ≥ 1/2 − o(1),
and therefore bi+1 − 1 = (ai+1−1)δi+1

εi+1
= o(1)

Θ(1) · δi+1 < δ1+1/2 , so ti+2 <

1/δi+1 < 1/2(bi+1 − 1). Thus we have

bi+2 = (bi+1)ti+2 = (1 + (bi+1 − 1))ti+2
Fact 2

< 1 + 2ti+2(bi+1 − 1)

Hence

bi+2 − 1 < 2ti+2(bi+1 − 1) =
2ti+2(ai+1 − 1)δi+1

εi+1

<
2ti+2 · 2c log k(ai − 1) δi+1

εi+1
=

4c log k δi+1 ti+2

εi+1
· (ai − 1)

In addition, since δi+1 < 1/2 and 1 ≤ ti+2 < 1/δi+1 then from Fact 3 above
we get that

δi+2 = 1 − (1 − δi+1)ti+2 > δi+1ti+2/2

and we also know that εi+2 ≤ εi+1. Thus, we have

ai+2 − 1 =
(bi+2 − 1)εi+2

δi+2
<

(bi+2 − 1)εi+2

δi+1ti+2/2

<
4 δi+1 ti+2 c log k

εi+1
· (ai − 1) · 2εi+2

δi+1ti+2
= 8c log k(ai − 1) · εi+2

εi+1

≤ 8c log k · (ai − 1) < (8c log k)(i+2)/2 · (a0 − 1) = o

(
1

polylog(k)

)

This concludes the proof of the only if direction.
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