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Chapter 1
Causal Analysis in Population Studies

Henriette Engelhardt, Hans-Peter Kohler and Alexia Prskawetz

1.1 Introduction

An important hallmark of empirical research in population studies and demogra-
phy has traditionally been a focus on careful description of population trends and
changes using representative micro- or large-scale macro-data. For example, much
effort has been devoted to describing the trends and variations in the core demo-
graphic processes – fertility, mortality and migration – and how the size and struc-
ture of a population are affected by these underlying processes. A core aspect of de-
mographic methods therefore has been on the construction of vital rates, life-course
measures of the tempo and quantum of demographic events, life table analysis and
its extension to multi-state processes, and the decomposition of population differ-
ences in terms of rates and proportions (Vaupel 2001). Building on the methods and
insights of these descriptive analyses, demographers have also developed sophis-
ticated means for population projections (e.g. Lutz et al. 1999) and for investigat-
ing the relationships between mortality, fertility and migration in stable populations
(e.g. Preston et al. 2001). In recent years, however, the field of population studies
has grown increasingly diverse. While maintaining its traditional focus on formal
demography (e.g. Feichtinger 1979), the discipline has strengthened its connections
to other fields of science. As a result, demographers are increasingly adopting the-
ories, concepts, and methods from sociology, economics, biology, medicine, an-
thropology, ecology, agriculture, geography, as well as mathematics, statistics, and
econometrics, and demographic research increasingly addresses topics or questions
that used to be within the domain of other disciplines.

With this broadening of view, a central aim of many research papers in popu-
lation studies and demography is now to explain cause-effect relationships among
variables or events. That is, demographic research is increasingly trying to address
the causal mechanisms generating trends and variation in the core demographic
processes of fertility, mortality and migration, and demographers are increasingly

H. Engelhardt (B)
Department for Population Studies, University of Bamberg, Lichtenhaiderstr. 11,
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2 H. Engelhardt et al.

interested in understanding how these processes, and their changes over time, af-
fect other social and economic aspects of populations. The identification of genuine
causes is thus increasingly viewed as essential for understanding the basic driv-
ing forces underlying demographic phenomena such as marriage, fertility, divorce,
longevity, mortality and migration. Within this perspective, causal judgements are
made to explain the occurrence of events and help to understand why particular
events take place. However, it is important to realize that the causal understanding
of demographic processes is not only important in its own right. In contrast, it is
the understanding of the causal mechanisms that often facilitates the prediction of
events or new observations in the future and allows for a certain amount of control
over events. Moreover, causal knowledge is essential for demographers to provide
effective and accurate policy recommendations.

Despite the recognised importance of identifying causes, relatively little atten-
tion has been paid by population researchers to considering what causality actu-
ally means and how knowledge of causes is acquired (in the sociological literature
see, e.g. Abbott 1998; Goldthorpe 2001; Marini and Singer 1988). Reasoning is
usually guided by an intuitive idea of causality, i.e., vague ideas of the possible
determinant(s) of the event of interest, leading to attempts to consider directional
relationships that are not merely spurious. However, the “causal” effects estimated
in population studies (and in other social sciences) often do not provide much causal
understanding, not only because of a faulty methodology but also because the attri-
bution of hypothesised effects is merely based on an intuitive causality. Of late,
there is an increased awareness in population studies and demography. For exam-
ple, at the 2003 Annual Meeting of the Population Association of America (PAA)
a symposium was held on causal analysis in the population sciences (see Bachrach
and McNicoll 2003; Fricke 2003; Moffitt 2003, 2005; Smith 2003).

In the last two decades causality and causal inference has undergone a major
transformation: from a philosophically overloaded concept to a mathematical object
with well-defined semantics and a well-founded logic. For a long period, practical
problems regarding causal inference with traditional regression based approaches
were regarded as either metaphysical or unmanageable. These problems can now
be reduced by using new statistical techniques (see e.g. Holland 1986; Sobel 1995,
1996; Winship and Morgan 1999). The contributions of statistics to causal infer-
ence are unquestionably most substantial when it comes to counterfactual anal-
ysis. The counterfactual account of causation pertains to establish the effects of
causes (e.g. “What is the effect of womens’ labour force participation on fertility?”)
instead of the causes of effects (e.g. “What accounts for the decline of fertility
rates?”).

For decades, population scientists have concentrated their efforts on estimating
the causes of effects by applying standard cross-sectional and dynamic regression
techniques, with regression coefficients routinely being understood as estimates of
causal effects. The regression approach to causality has loomed large in population
research as well as in other social sciences because it seems to fit well with the way
in which empirical social research proceeded. Much of population sciences proceeds
by a researcher positing a causal theory of how and why a phenomenon occurs, im-



1 Causal Analysis in Population Studies 3

plying that the presence of attribute X causes an outcome Y. Data on observed values
of X and Y are then collected. If a correlation between X and Y is observed, it is seen
as supporting the causal theory. However, it does not demonstrate causality because
there are other possible explanations of the correlation, notably Y might be causing
X or a third (set of) attributes Z might be causing X and Y. Therefore, elaborating
the causes of an observed effect is a theoretical or a philosophical problem. There is
no epistemological basis for a statistical solution.

The standard approach to infer the effects of causes in natural sciences and in
psychology is to conduct controlled randomised experiments. In population studies
and most other social sciences, experimental designs are frequently infeasible and
most research continues to be based on non-experimental designs (also called ob-
servational designs or survey designs). Social experiments are often too expensive
or too challenging to implement and some experimental designs may be difficult
to reconcile with the guidelines for ethical research. The subjects in randomized
experiments may also be unwilling to follow the experimental protocol, and the
treatment of interest may not be directly manipulable. While important exceptions
exist, such as for example the Progressa Project in Mexico, experimental designs
therefore remain the exception among demographic studies. In lieu of suitable ran-
domized experiments, however, demographers, along with economists and other
social scientists, have started to utilize quasi experiments or natural experiments
to estimate treatment effects (e.g. the effects of social programs or public policy).

Unlike randomised experiments, quasi-experimental and non-experimental
designs suffer from the problem of non-compliance. Inferring the effects of causes –
or treatment effects – from other than experimental data is tricky (e.g. Manski 1995).
All efforts to infer treatment effects from quasi-experimental data and observational
data must confront the fact that the data are inherently censored. One wants to com-
pare outcomes across different treatments or causes, but on the one hand each unit of
analysis, whether a survey respondent or a quasi-experimental subject, experiences
only one of the treatments. On the other hand individuals with different treatments
or causes differ in many observable and unobservable respects which select them
into treatment.

However, treatment effects can be inferred from non-experimental data with a
counterfactual approach. Contemporary counterfactual analyses of causal effects
are in strong analogy to experimental methods but are adaptable to observational
studies as well. They start from the idea that the randomised experiment with per-
fect compliance and no missing data is the golden standard for estimating the causal
effects of treatment interventions (or, generally, any other kind of causes). In this
counterfactual perspective, causal effects are defined as the difference between the
potential outcome disregarding of whether an individual had received a certain treat-
ment (or experienced a certain cause) or not. The counterfactual approach to esti-
mate effects of causes from quasi-experimental data or from observational studies
was first proposed by Rubin (1974) in the context of what later became known as
the Rubin causal model. Other important contributions to this approach include the
work of James Heckman and his collaborators (e.g. Heckman et al. 1999) and that
of Charles Manski and his collaborators (e.g. Manski and Nagin 1998).
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These rapid strides of recent decades in econometrics and statistics give popula-
tion scientists much to think about. They have surely moved population researchers
closer to the elusive goal of discovering valid causal explanations of key demo-
graphic processes. At the same time, the advances have also stimulated greater at-
tention to the limitations of high-powered statistical analysis – and, more fundamen-
tally, current models of causality – in and for the social sciences. The importance
of these contributions is also to caution against too great a faith in the promise of
causal modelling of singular cause-and-effect-relationships in complex population
processes. The ambition to understand social processes – implying a causal explana-
tion – requires an indispensable eclectic mode, integrating findings of formal coun-
terfactual analysis with those of more qualitative, interpretative research, however
with both drawing on theory.

In December 2006 a conference with the theme “Causal Analysis in Population
Studies: Concepts, Methods, Application” was organized by the Vienna Institute of
Demography at the Austrian Academy of Sciences in collaboration with the Univer-
sity of Bamberg, Department of Population Studies and the University of Pennsyl-
vania, Department of Scoiology and Population Studies. The aim of the conference
was to bring together leading researchers working on causal analysis in population
sciences and to discuss the new developments in theoretical and statistical causal-
ity as well as empirical applications. A selection of the conference contributions,
covering a wide range of research issues, is arranged in the present proceedings.

1.2 Structure of the Volume

In Chapter 2 Robert Moffitt presents his paper on “Issues in the estimation of causal
effects in population research, with an application to the effects of teenage child-
bearing”. This essay surveys the recent literature in economics on the estimation of
causal effects, with a focus on the method of instrumental variables. Conditions for
the validity of instrumental variable methods are discussed along with the proper
interpretation of the resulting estimates. Several difficult issues with the method are
outlined, including the problem of external validity, reconciling the differences in
estimates when different instruments are used, and detecting instrument validity.

Chapter 3 by Michael Lechner is on “Sequential potential outcome models to
analyse the effect of fertility on subsequent labour-market outcomes”. This paper
proposes to use dynamic treatment models to analyze the effects of fertility on
labour market interactions when large data sets are available. The main advantages
are (i) its flexibility due to its nonparametric nature, (ii) its potential of allowing
careful consideration of the selection issues coming from the dynamic interaction
between fertility and labour market outcomes; and (iii) the possibility of defining
relevant parameters of interest in a precise and detailed way. Based on artificial data
that mimic important features of real data sets, the approach is implemented and
issues that come up in any practical application of this approach are discussed.

Michel Mouchart, Federica Russo and Guillaume Wunsch write in Chapter 4 on
“Structural modelling, exogeneity and causality”in the social sciences. They first
present a conceptual framework where causal analysis is based on a rationale of
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variation rather than on Humean regularities. They then develop a formal frame-
work for causal analysis by means of structural modelling. Within this framework
they approach causality in terms of exogeneity in a structural conditional model
based on (i) good model fit, (ii) invariance under a large variety of environmental
changes, and (iii) congruence with background knowledge and theory. They also
tackle the issue of confounding and show how latent confounders can play havoc
with exogeneity. Staying at the level of knowledge, this framework avoids making
untestable metaphysical claims about causal relations and yet remains useful for
cognitive and action-oriented goals.

In Chapter 5 Hans-Peter Blossfeld gives an overview of “Causation as a Genera-
tive Process. The Elaboration of an Idea for the Social Sciences and an Application
to an Analysis of an Interdependent Dynamic Social System”. In the social sciences,
two understandings of causation have guided the empirical analysis of causal rela-
tionships: (1) “Causation as robust dependence” and (2) “causation as consequential
manipulation.” Both approaches clearly have strengths and weaknesses for the so-
cial sciences as described in detail in this chapter. Based on this discussion, a third
understanding of “causation as generative process,” proposed by David Cox, is then
further developed. This idea seems to be particularly valuable for modern social
sciences because it can easily be combined with a narrative in terms of actor’s
objectives, knowledge, reasoning, and decisions (methodological individualism).
Using event history models, this approach is then applied to the causal analysis of an
interdependent dynamic social system. Based on separate applications in West and
East Germany, Canada, Latvia, and the Netherlands, the usefulness of the approach
of “causation as generative process” is demonstrated by analyzing two highly in-
terdependent family processes: entry into marriage (for individuals in a consensual
union) as the dependent process and first pregnancy/childbirth as the explaining one.
The authors then move to more substantive explanations, including the importance
of actors, probabilistic causal relations, preferences and negotiation, observed and
unobserved decisions and the problem of conditioning on future events.

Govert Bijwaard in Chapter 6 presents a paper on “Instrumental variable estima-
tion for duration data”. In this article he focuses on duration data with an endoge-
nous variable for which an instrument is available. In duration analysis the covari-
ates and/or the effect of the covariates may vary over time. Another complication
of duration data is that they are usually heavy censored. The hazard rate is invariant
to censoring. Therefore, a natural choice is to model the hazard rate instead of the
mean. Govert Bijwaard develops an Instrumental Variable estimation procedure for
the Generalized Accelerated Failure Time (GAFT) model. The GAFT model is a
duration data model that encompasses two competing approaches to such data; the
(Mixed) Proportional Hazard (MPH) model and the Accelerated Failure Time (AFT)
model. He discusses the large sample properties of this Instrumental Variable Linear
Rank (IVLR) estimation based on counting process theory. He shows that choosing
the right weight function in the IVLR can improve its efficiency and discusses the
implementation of the estimator and applies it to the Illinois re-employment bonus
experiment.

In Chapter 7 Gustavo De Santis and Antonino Di Pino analyse “Female labour
participation with concurrent demographic processes: An estimation for Italy”. Fe-
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male labour participation influences, but is also influenced by, several demographic
processes (like fertility or couple formation and dissolution, for instance), and this
endogeneity, if uncontrolled for, deprives regression analyses of most of their inter-
est. Refinements that lead close to a causal analysis are possible using instrumental
variables, and accounting for selectivity and treatment effects. In this paper, they
show an application on a data source that is cross sectional, but with retrospective
questions: the 2002 Bank of Italy Survey on Household Income and Wealth. The
main results are: endogeneity exists and affects residuals, but its effects can be at
least partly eliminated; well educated and less family-oriented women work more
than others, as expected, but marked differences exist in this respect between the
north and the south of Italy.

In Chapter 8 Shirley H. Liu and Frank Heiland present “New Estimates on the
Effect of Parental Separation on Child Health”. This study examines the causal link
between parental separation and the health status of young children. Using a repre-
sentative sample of children all born to unwed parents drawn from the Fragile Fam-
ilies and Child Wellbeing Study (FFCWS), the authors investigate whether separa-
tion between unmarried biological parents has a causal effect on a child’s likelihood
of developing asthma by age three. Comparing children with similar observable
characteristics who differ only in terms of whether their parents separate, they find
that parental separation increases the probability that a child develops asthma by
age three by seven percentage points, relative to children whose parents remained
romantically involved.

Chapter 9 by Francesca Francavilla and Alessandra Mattei is on “Assessing the
causal effect of childbearing on household income in Albania”. This paper analyzes
to what extent births may lead to changes in economic wellbeing. In contrast to most
previous studies on this issue the authors apply appropriate econometric techniques
based on longitudinal micro data in order to identify the causal effects of child
bearing events on income. The analyses are performed on longitudinal data from
the Albanian Living Standard Measurement Survey. They take a quasi experimental
approach, that is, they consider the experience of a childbearing event as the treat-
ment variable, and their measure of wellbeing as the outcome variable. In order to
deal with the confounding due to the presence of systematic differences in back-
ground characteristics between the treatment groups, the authors first fit a multiple
linear regression model that includes relevant background characteristics as well as
an indicator variable for the treatment (i.e., childbearing). This estimation is then
compared and contrasted with a matching approach, based on the bias-corrected
matching estimator introduced by Abadie and Imbens (2002). The analysis suggests
that there is some evidence that childbearing events can in fact increase household
wellbeing in Albania. In addition, the treatment effect is highly heterogeneous with
respect to observable characteristics such as the woman’s working status and the
woman’s parity. All the results appear to be robust with respect to the estimated
equivalence scale: changing the equivalence scale leaves the childbearing effect on
income positive and non-significant.

The volume concludes with a critical discussion of causality in population studies
by Herb Smith: “Causation and Its Discontents”. Here, the author puts forward his
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thoughts against the enthusiastic view that causation is the most precious thing that
populations scientists possess or could acquire.
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Chapter 2
Issues in the Estimation of Causal Effects in
Population Research, with an Application
to the Effects of Teenage Childbearing

Robert A. Moffitt

2.1 Introduction

Population research has a distinguished history of empirical work on a wide variety
of important topics related to population growth, the components of demographic
trends, estimation of vital rates, life table construction, investigation into causes
of historical population developments, and many others. However, one branch of
population research that has seen increasing interest has been in the area of social
demography, where the determinants of individual behavior regarding fertility, mar-
riage, and related areas has been studied. It is in that branch that issues of causal
inference have arisen, and with which this essay is concerned.

This development in population research coincides with a more general interest
in causal inference in statistics and in other social sciences such as economics. In
statistics, the development of the Rubin Causal Model (Rubin 1974) as a framework
for studying causal questions has become a dominant paradigm even though, at the
same time, there is considerable work by other statisticians using somewhat different
frames. The development in statistics, while having many historical antecedents in
the field, by and large occurred only in the 1970s and 1980s. Prior to that time,
randomized experiments were regarded as the only method for true causal infer-
ence. However, randomized experiments are generally not possible in many fields,
including population research, and hence methods for the analysis of causation using
observational data are needed.

In economics, while causality has a much longer history dating to the develop-
ment of the simultaneous equations model, which saw its fullest development in the
Cowles Commission work in the 1950s, renewed interest in the issue has arisen since
the 1980s and 1990s as more subtle issues have been addressed. Other social science
disciplines such as sociology and political science are following the developments
in statistics and in economics, with new developments adapted to their unique sets
of questions and issues.

R.A. Moffitt (B)
Department of Economics, John Hopkins University, 3400 N. Charles St., Baltimore, MD, USA
e-mail: moffitt@jhu.edu

H. Engelhardt et al. (eds.), Causal Analysis in Population Studies, The Springer Series on
Demographic Methods and Population Analysis 23,
DOI 10.1007/978-1-4020-9967-0 2, C© Springer Science+Business Media B.V. 2009

9



10 R.A. Moffitt

This essay will review the issues in causal modeling using primarily the frame-
work adapted in economics, and will apply those modeling issues to the study of
population questions. The economics framework is, when boiled down to essentials,
observationally equivalent to the Rubin Causal model in statistics, although the in-
terpretation and language used to describe the two are quite different. In addition,
their practical empirical implementation is often quite different, with economists
leaning toward modeling by the use of regression equations with explicitly repre-
sented error terms, an approach different from that in statistics.

While the causal modeling developments in economics have taken many direc-
tions, the vast majority of applications in the field use the method of instrumental
variables (IV) to estimate causal effects. Therefore, this essay will also concentrate
on that method, outlining both its rationale and advantages and the pitfalls and
weaknesses associated with its use. Brief mention will be made of other methods
such as panel data fixed effects methods and matching.

The running example in the essay is the question of whether teenage childbearing
has a deleterious effect on female economic outcomes such as income and earnings.
The increase in rates of teen childbearing in the U.S. has been a source of public
concern not only because much of that childbearing is nonmarital but also because
of the widespread perception that women who begin their childbearing at a very
young age run the risk of harming their educational progress and their later eco-
nomic and social success. There has been a great deal of research on this issue with,
surprisingly, much less support for this conventional view as might be expected. But
the literature has also generated much discussion of the method of causal effects
and of the effects of using different instruments for estimation. Thus, this particular
literature can be used to illustrate a number of the issues in causal modeling in
population research in general.

The first section below lays out the general causal model in economics and dis-
cusses a number of the main issues. The method of instrumental variables is then
outlined, followed by a categorization of the types of instruments most often used.
Additional issues in the use of instrumental variables are then reviewed, followed
by a set of conclusions. Some of the points made in the essay are (i) a tradeoff
between internal validity and external validity is often faced by analysts using the
method; (ii) multiple instruments or instruments with multiple values can be used to
learn more about effects in heterogeneous populations than binary instruments; and
(iii) use of theory is important to determine mechanisms by which treatments affect
outcomes and how differing instruments interact with those mechanisms.1

2.2 The Basic Causal Model

The basic causal model in economics dates to the Cowles Commission work on
simultaneous equations in economics and, later, its adaptation to individual ac-
tions represented in the switching regression model (Heckman 1978; Lee 1979).

1 See Moffitt (2003, 2005) for earlier reviews.
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Heckman and Robb (1985) and Björklund and Moffitt (1987) made the connection
between that model and newer thinking in causal modeling as well as introducing
the notion of heterogeneity to be discussed momentarily. Heckman et al. (2006)
provide a recent overview of the model.

The prototype linear regression model used in this literature is

yi = αi Ti + Xiβ + εi (2.1)

T ∗
i = Xiγ + Ziδ + υi (2.2)

Ti =
{

1 if T ∗
i ≥ 0

0 if T ∗
i < 0

(2.3)

where yi is the value of the outcome for individual i , Ti is a dummy variable for
whether an individual has received the “treatment,” αi is the effect of the treat-
ment on y for individual i , Xi is a vector of exogenous covariates and β is its
associated coefficient vector, Zi is a vector of exogenous variables affecting the
probability of receiving treatment but which do not affect y directly, and εi and
υi are mean-zero error terms. This two-equation model, consisting of an outcome
equation as a function of treatment and a second, selection equation (Equations (2.2)
and (2.3) together) representing the determinants of treatment, is a special case of
the general switching regression model. The selection equation is often not written
down explicitly in the studies in the literature, and does not have to have the latent
index structure shown in (2.2) and (2.3), but this is the most common interpretation.
In addition, when estimating some of the objects of interest such as the marginal
treatment effect or the local average treatment effect discussed below, an explicit
representation of the selection equation is particularly helpful in interpretation.

The most important difference between this model and the classic linear simulta-
neous equations model in economics is that the effect of receiving treatment on the
outcome (αi ) varies across individuals and hence treatment effects are “heteroge-
neous” in the population. In the older literature, this effect was assumed to be fixed.
Allowing the effect to be heterogeneous has critical implications for interpretation
and estimation. Most obviously, it requires a reconsideration of the object of esti-
mation. The parameter αi has a distribution in the population and one could imagine
attempting to estimate different features of that distribution. One could attempt to
estimate the mean of αi , E(αi ), commonly called the average treatment effect, which
is the average effect on y if all women in the population had a teen birth. Or one
could attempt to estimate the average αi for a subset of women observed, in a par-
ticular sample, to have had a teen birth. This object is E(αi |Ti = 1) and is called
the effect of the treatment on the treated. Two other possible objects of interest, the
marginal treatment effect and the local average treatment effect, will be discussed
below.

The assumptions on the covariance matrix of the error terms are that E(εiυi ) �= 0
and E(αiυi ) �= 0.2 If y is individual earnings at some age like 25 and T is a dummy

2 Conditioning on X and Z is left implicit.
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variable for whether a woman had a teenage birth, E(εiυi ) �= 0 if, for a group of
women who have the same X , those women who had a teen birth would have had
different future earnings than those women who did not, even if they had not had
a teen birth. For example, those who had a teen birth may have come from disad-
vantaged backgrounds in unobserved ways. If, on the other hand, those who had a
teen birth have a lower (i.e., less negative) impact of such a birth on future earnings
than that of women who did not have a teen birth, then E(αiυi ) �= 0. For example,
women from disadvantaged backgrounds, who are more likely to have a teen birth,
may be less affected by having a teen birth than women from less disadvantaged
backgrounds because they have a lower payoff to human capital investments in the
first place.

The implications for OLS of the two covariance assumptions are different. If
E(εiυi ) �= 0, OLS is biased for any object of estimation one might be interested in
(i.e., any feature of the distribution of αi ).3 OLS compares the y of women who had
a teen birth to the y of women who did not, and this comparison is faulty because
the y of women who did not have a teen birth does not equal the value of y for
the women who did have a teen birth, if they had not had one. If E(αiυi ) �= 0 but
E(εiυi ) = 0, however, OLS returns a coefficient on Ti of E(αi |Ti = 1), the effect
of the treatment on the treated; but this is biased for the average treatment effect,
if that is the object of interest. If both E(εiυi ) �= 0 and E(αiυi ) �= 0, again OLS
produces nothing of interest.

Equation (2.1) is formulated as a linear regression function with additively sepa-
rable X and with the vector of variables within X assumed to have effects through
a linear index, Xβ. Thus, no nonlinearities in X or interactions between X and T
are allowed. These restrictions can be relaxed by introducing such interactions into
the model. Alternatively, a fuller nonparametric method could be used which allows
T , and X to enter the model in arbitrary ways, although those methods typically
lack power unless sample sizes are large. The method of matching is in this family,
for matching is a method which nonparametrically estimates the effect of T on y,
allowing X to affect y in an arbitrary fashion and allowing arbitrary interaction of T
with X . However, the matching method is, explicitly or implicitly, an OLS method
with an extended set of nonlinearities and interactions added, and hence requires that
the error term in (2.1) be unrelated to υi (see Imbens (2004) for a review).4 More
formally, the assumption necessary for the method to produce unbiased estimates
is the assumption of conditional independence, E(εi |Xi ) = 0. Thus the method
of matching is designed to address a different question than the standard selection
model; the latter is designed to address the problem of unbiased estimation when
selection is on unobservables, while the former is designed to address the problem

3 OLS produces inconsistent and biased estimates because T is an “endogenous” independent
variable, defined as one which is correlated with the error term in the equation even after controlling
for X.
4 That is, a fully nonparametric regression of y on X and T is equivalent to matching except that
matching also imposes a “balancing” requirement to make the distributions of X in the T = 0 and
T = 1 samples the same, whereas the nonparametric regression would not impose this.
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of nonlinearities and interactions in the functional form of Equation (2.1) when
selection is only determined by observables in the data (X).5

2.3 Instrumental Variables

The method of instrumental variables (IV) is designed to address the problem of
selection on unobservables. It relies on the existence of the vector Z and, in its
traditional two-stage least-squares form, simply involves first regressing T on X
and Z and then regressing y on X and the predicted T from that first-stage equation.
However, it can be equivalently represented in other forms which provide more
intuition for what is being done and what is being estimated. To illustrate this point,
let us simplify the model in (2.1)–(2.3) by omitting the control variables X and
assume that Z is represented by a single binary (dummy) variable:

yi = β0 + αi Ti + εi (2.4)

T ∗
i = γ0 + δZi + υi (2.5)

Ti =
{

1 if T ∗
i ≥ 0

0 if T ∗
i < 0

(2.6)

For consistent estimation, the instrumental variable Zi is assumed to have three
properties: E(εi |Zi ) = 0, E(αi |Zi ) = ᾱ, and E(Ti Zi ) �= 0.6 The first two are
“validity” restrictions that require that the instrument be mean-independent of the
two unobservables in the y equation. The third is a “relevance” restriction which
requires that the instrument be correlated with the probability of receiving treatment;
the instrument must be “relevant.”

When studying the effect of teenage fertility on later earnings, for example, the
availability of contraceptives in a woman’s geographic area might satisfy these
conditions. For example, contraceptives might be more available in one area than
another because of different governmental decisions to provide them. Those gov-
ernmental decisions may be unrelated to the unobserved earnings levels of the
women in each area (εi ) or to the effects of teen childbearing on earnings of those
women (αi ). The assumption would fail, however, if governments provided more
contraceptives when the women in the area are more economically disadvantaged.
Availability of contraceptives is likely to be relevant since it presumably affects teen
childbearing.

A true experiment would guarantee that the conditions were met. Suppose that Z
is a dummy for whether a women is randomly assigned to an experimental group or

5 In principle, there is no reason that attention to nonlinearities and interactions in Equation (2.1)
cannot be addressed at the same time as addressing selection on unobservables.
6 These assumptions are stronger than what is needed and can be relaxed, but make the exposition
particularly simple.
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a control group. The experimental group is offered additional contraceptives while
the experimental group is not (this is called an “offer” experiment; not all women
in the experimental group use the contraceptives). This experiment should affect the
treatment variable T , i.e., whether a birth occurs, and hence Z should be relevant.
Because of the randomization, Z should be unrelated to the earnings functions of
the women in the experiment in the absence of the treatment, i.e., the women in
the experimental and control groups should be identical in all observed ways (εi

and αi ). Thus Z should also be valid. The search for a valid and relevant Z in
observational data is essentially a search for a “natural experiment” where Z is
effectively randomly assigned to different groups within the population.

An important question is whether there is any way to test whether a particular
variable is a suitable instrument and meets the criteria of validity and relevance.
Relevance can be ascertained to some degree by determining how significant and
strong a determinant of T a particular variable is, either by examining the t-statistic
or F-statistic for the coefficient on Z when estimating T as a function of Z . Validity,
however, cannot be tested if there is only one Z being examined (the case of a
“just-identified” model). To do so requires that a sample estimate of the covariance
between Z and ε (in a simple linear model) be obtained, and it is not possible to ob-
tain a consistent estimate of ε without the assumption that Z is valid in the first place.
Determining whether a variable is a valid instrument therefore requires appeals to
theory and priori arguments for why Z is likely to be randomly assigned, usually
based on arguments for why the determinants of Z are likely to be uncorrelated
with the unobservable determinants of y, as well as empirical investigations into
the observable determinants of Z which, while not constituting proof of its lack
of correlation with unobservables, nevertheless can give clues to the process of its
determination.

When Z is a dummy variable, the two-stage least-squares estimation of the model
yields a coefficient on T in the y equation equal to:

α̂I V = y1 − y0

T 1 − T 0
(2.7)

where ȳ1 is the mean of yi over all the observations for which Zi = 1, ȳ0is the mean
of yi over all the observations for which Zi = 0, T̄1is the mean of Ti over all the
Zi = 1 observations, and T̄0 is the mean of Ti over all the Zi = 0 observations. This
formulation of the IV coefficient, emphasized by Imbens and Angrist (1994) and
termed the local average treatment effect (LATE) for reasons to be explained below,
is instructive in understanding how IV effects are estimated. In the case of a binary
Z , the numerator of (2.7) represents the difference in the value of y for those in the
“experimental group” (Z = 1) and those in the “control group” (Z = 0). In each of
these groups, the mean of y is a weighted average of those with T = 1 and T = 0 in
the group. The denominator represents the difference in the fraction of each group
which “participates” by “taking up” the offer of treatment.

While Equation (2.7) involves only overall means in the two groups, it can be in-
terpreted as representing the change in y for the subset of observations who changed
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their value of T as a result of the differing Z . For example, if contraceptives are more
available in one area (Z = 1) and less available in another (Z = 0), the denominator
represents the difference in the fraction of women who have a teen birth because of
greater contraceptive availability. If the instrument is relevant, this change will be
nonzero, that is, contraceptive availability affects teen birth probabilities. The nu-
merator represents the difference in mean earnings in the two areas and is assumed
to be solely a result of the change in teen births; this follows from the assumption
of validity, which implies that earnings in the two areas are identical aside from Z
and hence any difference in earnings can be ascribed to the effects of differing Z .
The change in earnings has to be “inflated” by the change in the teen birth fractions
between the areas. So, for example, if the difference in average earnings between
the areas is $1,000 per year and the change in the teen birth fraction as a result
of increased contraceptive availability was −0.10, then the change in y for the 10
percent of women who changed their birth behavior must have been $10,000. That
is because 90 percent of women did not change their value of T at all, and hence
must have had no change in their y.

This formulation of the IV method when the instrument is binary underscores the
limited nature of what has been learned. The effect being estimated is the average
effect of treatment, such as having a teen birth, for the 10 percent of women who
switched from not having a teen birth to having a teen birth (called “switchers” or,
in the language of Angrist et al. 1996, “compliers”). The effect of having a teen birth
on outcomes cannot be assumed to be the same for any other group. For example,
if the difference in contraceptive availability in the two areas in the data changes
the teen birth rate from 0.30 to 0.20, its effect on earnings cannot be assumed to
equal what would happen if the birth changed from 0.20 to 0.10, or for any other
rate. If αi is heterogeneous, as is assumed here, then the effects of teen birth on
earnings will differ for different groups. If, for example, those women who have
teen births when there are few contraceptives available include many for whom the
negative consequences on earnings are particularly large, then expanding contracep-
tive availability and lowering the birth rate may have a gradually smaller and smaller
effect on earnings, as those who continue to have birth rates even when contracep-
tive availability is high are those who have the smallest negative consequences for
earnings.

This case is illustrated in Fig. 2.1. The mean of earnings in an area is plotted
against the teen birth rate in the area as line ABCDE. As the birth rate rises, mean
earnings fall as a larger fraction of the population has a reduction in earnings as a
result of a teen birth. However, the figure is drawn such that the slope of the curve
increases (becomes more negative) as the fraction with a teen birth rises, as would
be the case if those who have the largest negative earnings reductions are the “last”
ones to have a teen birth. The LATE estimate of the effect of teen births on earnings
when the binary instrument lowers the teen birth rate from T̄ (Z = 0) to T̄ (Z = 1) is
the slope of the dotted line connecting points B and D. It is termed the local average
treatment effect because it applies only to a “local” area of the curve (that between
B and D) and is only an average of those who change teen birth behavior in that
region. Obviously, a LATE estimate will differ depending on where the two points
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Fig. 2.1 Treatment effects y (z)
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induced by the instrumental variable are on the curve and, in this sense, there is no
longer a single effect of treatment on outcomes; one cannot speak of “the” effect
of teen births on earnings, for example, for “the” effect depends on the population
affected. The LATE estimate will not differ across ranges of fractions treated only
if the curve in Fig. 2.1 is a straight line, with constant slope.

The other two possible objects of interest mentioned above, the average treatment
effect (ATE) and the effect of the treatment on the treated (TT), are also shown in the
figure. The ATE is the slope of the line connecting points A and E, representing the
change in earnings that would occur if the entire population went from no teen births
to all teen births. Two values of the TT are shown by the slopes of the dotted lines
AB and AD, which show the difference in earnings that would arise if the fraction
of women having a teen birth in the population were T̄ (Z = 1) or T̄ (Z = 0),
respectively, rather than no teen births. The IV estimate obtained from a binary
instrument Z will not equal a TT unless one is lucky enough to have an instrument
for which T̄ = 0 (e.g., an area where contraceptives are so available that the teen
birth rate is almost zero) and will not estimate the ATE unless one is even luckier
to have an instrument for which the teen birth rate is zero for some values of the
instrument and is equal to one (everyone has a teen birth) for other values of the
instrument. In most applications, this is extremely rare.

Learning only the effect of the treatment in a local area may not be limiting if
the other areas of the curve are not particularly relevant. No populations or subpop-
ulations defined by demographic groups have teen birth rates close to 100 percent,
so the lack of knowledge in that region of the population may not be discouraging.
If the instrument in question moves the teen birth rate over a region which is very
similar to that of most other populations and periods one is interested in, it may not
be very disadvantageous.

In some cases, the researcher may be willing to extrapolate beyond the data
available and draw conclusions about the effect of treatment on other populations.
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Such extrapolation is a special case of the problem of “external validity” originally
discussed in the context of classical experiments, where the question is whether the
results of an experiment can be generalized beyond the specific type of program
examined and beyond the specific type of population enrolled in the experiment.
Extrapolation is always possible, but it is necessary to be clear that to do so requires
additional assumptions (e.g., on the shape of the curve outside the range of the data)
than were necessary to obtain the initial estimates, and a clear separation between
the two needs to be made.

Learning the effect of teen births over more points on the curve requires more in-
struments or more variation in a single instrument. Sometimes this can arise across
studies using different instruments, in which case one could imagine piecing to-
gether the curve from different investigations. Alternatively, if multiple instruments
or instruments with more than a two values are available, the effects can be estimated
over greater portions of the curve. Carneiro et al. (2006) and Moffitt (forthcoming)
have considered estimation in these circumstances, both noting that Heckman and
Vytlacil (2005) showed that the curve in Fig. 2.1 can be represented by the regres-
sion equation

yi = Xiβ + g [T (Zi )] + εi (2.8)

where a vector of other variables (Xi ) has been reintroduced. The function g is
intended to represent the curve ABCDE in Fig. 2.1, and can be specified as a poly-
nomial, piecewise-linear function, or estimated completely nonparametrically.7 To
estimate it requires a first-stage estimate of T (Zi ), which is the same as the first-
stage estimation in traditional two-stage least-squares estimation of these models.
The predicted probability of T = 1, as a function of Z , is then inserted into (2.8)
and estimation can proceed.

Heckman et al. and Moffitt, following on the terminology of Björklund and Mof-
fitt (1987) and Heckman and Vytlacil (2005) term the slope of the “g” function the
“marginal treatment effect” (MTE). It is simply the slope of the curve in Fig. 2.1,
and will vary over the range of T̄ . The slope of the dotted line at point C in Fig. 2.1
shows the MTE at that point, and Fig. 2.2 shows the MTE over the entire range. The
MTE represents the effect of the treatment on the outcome for the marginal person
“brought into” treatment by a small increase in the fraction treated. Estimates of
Equation (2.8) may reveal, on the contrary, that y is linearly related to T (Z ), in
which case the curve in Fig. 2.1 is a straight line and it can be concluded that there
is no heterogeneity of response in the population.

As before, how much can be learned from such an exercise depends on the range
of T̄ induced by the range of instrumental variables in the data. If the entire range
of T̄ from 0 to 1 is not induced, only a portion of the curve can be estimated.
Nevertheless, the general lesson is clearly that instruments which induce a wider

7 Carneiro et al. proposed applying the partial-linear regression model to obtain nonparametric
estimates, while Moffitt proposed applying series methods.
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Fig. 2.2 Marginal treatment
effect
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range of fractions treated are more desirable than those which induce a smaller
range.

If multiple instruments or instruments with more than two values are available,
application of IV (e.g., in its traditional two-stage least squares form) to Equa-
tion (2.1) without allowing for nonlinearity of T (Z ) will produce a single coefficient
which is a weighted average of the different MTE’s over the range of the data (An-
grist and Imbens 1995; Angrist and Krueger 1999; Heckman and Vytlacil 1999).
This weighted average can be more difficult to interpret than either the LATE for a
binary instrument or the varying MTE estimated in the Heckman-Moffitt approach
because it is unclear what range of population it applies to. Nevertheless, it roughly
characterizes the average effect in a loose sense.

2.4 Types of Instrumental Variables

The range of types of instrumental variables used in the literature in economics,
demography, and other fields is very wide, and hence any attempt to group them into
different types must necessarily be only approximate. But with this caveat in mind,
the large majority of instruments can be classified into one of four types: cross-
sectional ecological variables including area fixed effects instruments, population-
segment fixed effects instruments, sibling and related instruments, and a residual
category of “natural experiment” variables.

Cross-sectional ecological variables are variables which affect the environment in
which individuals make choices and are most often measured at the aggregate level,
most commonly for a geographic area. The variable for availability of contraceptives
discussed in the teen birth case is an example of this type of instrument (Klepinger
et al. 1999). Similar instruments used in this literature are state restrictive abortion
laws and state family planning services (Klepinger et al. 1999) and the availability
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of gynecologists in the individuals’ area (Ribar 1994). More generally, variables
measuring differences in laws, labor markets, social structure, prices and availability
of services (e.g., child care) in an area are used. The argument for the validity of such
instruments is that they are “external” to the individual’s own behavior, and therefore
can be argued to be unrelated to the individual’s individual determination of his or
her outcome, y. Unlike individual-level characteristics such as family background
or related measures, for example, which are quite likely to be direct determinants
of y and hence not excludable, the higher-level instruments could be argued to not
directly appear in the y equation.8

The most common objection to ecological variables is the well-known problem
of unobserved ecological correlations. One common type of correlation arises when
individuals who live in different areas are different in unobserved ways, as might
arise through residential sorting. Another is that, even if residential sorting does not
take place, unobserved area-level factors may be present which cause differences
in individual outcomes across areas, even holding individual characteristics fixed.
However, both of these problems cause difficulties only if the unobserved differ-
ences in question are correlated with the area-level instrument being employed. To
consider this requires investigating the determinants of the instrument and why its
value varies across areas. For example, if the availability of contraceptives is partly
affected by the level of teen births in an area, implying that any unobservable af-
fecting teenage fertility is correlated with contraceptive availability, the instrument
will be invalid. In many cases, the political process (e.g., in the case of laws) has
to be considered and, in some studies, a rather detailed study of the reasons for
passage of a particular piece of legislation is provided in order to prove that the
reasons for passage were purely “political” and not related to the value of y in
the area.

In many cases, objections to the validity of ecological instruments on the basis
that those instruments are correlated with area-level unobservables can be addressed
if the instruments change in value over time differently in different areas, and if
data are available on samples of individuals over time as well. In this case, an area
fixed-effects model can be estimated, most simply by estimating the model in first-
difference form.9 In this case, the main equation is formulated as one in which �y
is assumed to be a function of �T , and the instrumental variable used is �Z .10

Estimation in this form will eliminate any area-level unobservables that are fixed
over time, which will be differenced out. For example, examining how the change in
earnings over time across areas is related to the change in contraceptive availability,

8 The multi-level model in social statistics bears a relationship to ecological instruments but is
aimed at a different problem, for the multi-level model is aimed at obtaining correct and efficient
standard errors rather than addressing the problem of endogeneity of a treatment variable.
9 As in the standard fixed effects model, however, the “within” estimator is more efficient than the
first-difference estimator.
10 If panel data are available, this model can be estimated directly. If only repeated cross-sections
are available, the model has to be formulated slightly differently, with the waves of the data pooled
and an interaction term between time dummies and T and Z entered.
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working through changes in teen birth rates, may be a more reliable method. Once
again, however, one must carefully consider why contraceptive availability changed
in different ways across areas, to insure that it did not change in response to trends
in the teen birth rate in the area in question.

It is worth noting that estimation of the panel data fixed effects model without
adjustment for endogeneity with instrumental variables is no longer favored within
economics, whereas it was initially thought by some researchers to be an acceptable
solution to the problem. Simply examining whether a change in an independent
variable (T ) for an individual is correlated with a change in outcome (y), which
will eliminate individual-level fixed effects, is now thought to problematic because
individuals change their actions (T ) over time for reasons that are usually related to
changes in their situation that are also affecting y. It is still necessary to find some
determinant of the change in T that can be more plausibly argued to be unrelated to
the forces at the individual level that are driving changes in y.

A second type of instrument can be termed, for lack of a better term, the
population-segment fixed effects variable. In this case, changes in outcomes y for
two groups which experience different changes in T and Z are compared, and the
difference in those changes are assumed to be a result of the changes in T and Z
which also occur over time. The difference with the area fixed effects model is that
the groups are not defined by geographic location but rather by demographic or
economic group. For example, suppose that contraceptives are more or less freely
available to all higher-income and more-educated groups at all times, but become
more available to lower-income families over time (in the nation as a whole; no
geographic variation is assumed to occur). In that case, the variation in the change
in Z over time arises from differences by income or education group. The validity
of the instrument depends on the accuracy of the assumption that both groups would
have had the same change in their earnings (controlling for changes in observables,
X ) in the absence of a change in contraceptive availability for the lower-income,
less-educated group. Put differently, the assumption for validity is that the earnings
of both groups are trending at the same rate in the absence of the change in Z . This
may not be the case if there are other time-trending unobservable factors affecting
the two groups differently.

There have been no applications of this method in the teenage birth case, but
it has been used frequently in studies examining nationwide changes in govern-
mental policy such as changes in the welfare system (Moffitt and Ver Ploeg 2001,
Chapter 4). There, changes in earnings, fertility, or other outcomes over time for
groups primarily affected by welfare reform (e.g., less-educated single mothers) are
compared to those changes for groups presumably unaffected or less affected (more
educated single mothers, single childless women, married mothers, men). The as-
sumption that the different demographic groups, or population segments, trend at
the same rate in terms of earnings, fertility, and other outcomes would appear to
be a very strong one both because so many other social, economic, and political
forces are typically changing over time that may affect the groups differently but
also because, in some cases, the policy in question may affect the characteristics
that define the groups (e.g., marriage or fertility).
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A third type of instrumental variable used frequently in recent years is based on
sibling or twin differences. Assuming data are available on a sample of individuals,
some of whom are twins or siblings, Equation (2.1) can estimated on the pooled
sample of all individuals. The instrument in this case is (Ti f − T̄ f ), where Ti f is
the treatment value for individual i in family f and T̄ f is the average of Ti f over
all individuals in family f . Thus the instrument is the deviation of each individual’s
T from the family-specific mean. The assumption needed for validity in this case
is that that deviation is independent of the deviation of each individual’s ε from
its family-specific mean. In the teen childbearing case, for example, the necessary
assumption is that the fact that one sibling has a teen birth and another does not is un-
related to their future earnings or any determinant of future earnings such as ability,
motivation, or other factors related to economic success. What the mean eliminates
as a source of problem are the differences that arise from different levels of dis-
advantage across families, which is almost surely related both to teen childbearing
and to later earnings. Nevertheless, the assumption remains a very strong one, for
there are well-known differences in sibling development and in parental treatment
of siblings that could cause the necessary assumption to fail (for a discussion of
these issues by economists, see Bound and Solon (1999)).

Even though the model can be estimated by IV, most often it is estimated instead
in reduced form. Assuming that Equations (2.2) and (2.3) are “substituted” in for
Ti in Equation (2.1) (ignoring the nonlinearity involved in the substitution), a re-
duced form equation is obtained specifying yi as a function of Xi and Zi . Using
the within-family deviation on T for Z , OLS estimation of such an equation is
equivalent to estimating the model in within-family differences (that is, regress-
ing the within-family deviation of y on the similarly-defined X and Z ). Geronimus
and Korenman (1992) were the first to apply this method in the teen birth litera-
ture, and found it to have a large effects on the results relative to OLS. Hoffman
et al. (1993) and Ribar (1999) have provided further discussion of the method and
the results.

A fourth category of instrument, really a residual category comprising several
different types of approaches, is the use of “natural experiments” as instruments.
The term refers to occurrences of “random” events that arise in “nature” (that is, not
in a controlled laboratory setting) which can be arguably unrelated to unobservables
in many individual outcomes (Angrist and Krueger 2001). In fact, defining the term
this broadly would include all the other instruments already discussed, so the term
in this case is more narrowly defined. One type included here is really a subset of
the area fixed effects model and is applied whenever there is a law or policy change
that applies to a narrow group of the population in very similar circumstances. For
example, a law which affects only children in a particular age range and in a particu-
lar income in one state but not another states could be arguably unrelated to various
later outcomes for the children (see Currie and Gruber (1996) for a related example).
This differs from the general area fixed-effects model only by virtue of using a much
narrower demographic and geographic segment of the population. Another category
is what Rosenzweig and Wolpin (2000) have called “natural natural experiments”
which arise when a possibly random demographic event occurs such as the birth of
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twins, the month of the year in which a child is born, or whether a miscarriage occurs
for a woman who is pregnant. The birth of twins has been argued to cause a random
increase in the number of children and hence may be arguably used to estimate the
effects of childbearing on a wide range of outcomes (e.g. Angrist and Evans 1998).
The month in which a child is born has been argued to affect when a child can
enter school and when a child is legally eligible to drop out of school, and hence is
arguably a random determinant of years of education (Angrist and Krueger 1991).
Miscarriage can be argued to also randomly affect fertility, or at least its timing, and
has been used as an instrument for the likelihood of a teen birth (Hotz et al. 1997a,
b). The age at menarche is another possibly random variable which should affect
the age at which a first birth can occur and hence the probability of a teen birth
(Ribar 1994; Chevalier and Viitanen 2003). Yet another type of instrument which
may be termed a natural experiment are instruments based on so-called regression
discontinuity designs (Cameron and Trivedi 2005; Imbens and Lemieux, forthcom-
ing). This approach makes use of cases where there is an important variable which
affects outcomes, and therefore is not excludable, but there also exists a policy or
other event which generates a discontinuous change in that variable at a discrete
point in the range. For example, if a family planning organization provided free con-
traceptives and other services strictly only to those with incomes below the poverty
line, then a comparison of the outcomes of families just above and just below the
poverty line should come close to measuring the effects of free contraceptives, other
things being equal, because the two groups of families are “almost” identical in
terms of income.

The validity of natural experiment instruments must be considered on a case-by-
case basis, for there are very few generalizations possible. In the case of differing
laws across states, the same issues have to be considered as in the general area
fixed-effects model. For the natural natural experiments, threats to validity are often
based on the suspicion that the demographic event in question has direct effects
on the outcomes of interest. For example, a miscarriage may affect the mother’s
attitudes toward future fertility or her educational and economic outcomes directly,
and not simply through the consequent postponement of fertility. There is also the
possibility that miscarriage is related to underlying physiological or health factors
that might be related to later economic success. Likewise, age at menarche might be
related to unobserved health factors. Some demographers have argued that month
of birth is correlated with other variables affecting the timing of fertility and the
probability of conception, and therefore may have some indirect correlation with
later educational outcomes, for example.

A rather different concern with natural experiments is that they are rather limited
in their external validity. The narrow-population law differences necessarily apply
only to a small segment of the population, for example, whose effects may not gen-
eralize to other parts of the population or to other laws. The regression discontinuity
design necessarily can estimate impacts only for those around the point of discon-
tinuity, e.g., only those with incomes just around the poverty line. Again, those
effects may not generalize to other groups in the population. These issues of exter-
nal validity are in addition to those discussed in the prior section related to varying
MTE over the range of fractions population treated; the issue here is simpler and
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more traditional because the groups whose effects are estimated are characterized
by standard socioeconomic observables (age of the child, family income, etc).

The issue of external validity raised in the natural experiment literature also
serves to illustrate a seeming tradeoff between internal and external validity. In-
ternal validity, defined in this case to be the validity of an instrument in an IV
context, is attempted in the natural experiment literature by focusing on narrowly
defined groups for whom it is plausible not only that observables are equivalent
but also unobservables. But maximization of internal validity comes at the cost of
sacrificing external validity, i.e., generalizability. It is possible that a “partially valid”
instrument applied to a larger population could generate estimates which are biased
but have acceptable mean-squared error and yet are more generalizable. This issue
is difficult, if not impossible, to address because it is not clear how this tradeoff can
be formalized. As a result, much of the literature, particularly that on natural exper-
iments, has moved toward maximizing internal validity to at least learn something
definite even if on a narrow population.

2.5 Additional Issues

The discussion of types of instruments provided in the last section is sufficient in
and of itself to illustrate many of the issues with instrumental variable methods for
estimating causal effects. Some of these issues bear further discussion and emphasis,
and some additional issues should be introduced.

2.5.1 Heterogeneity

The issues discussed earlier in the paper surrounding the existence of heterogeneous
effects and varying MTE, and the importance of identifying the specific population
and point on the response curve from which estimates are being generated, has not
penetrated most of the applied IV literature at this writing. In a large majority of the
cases, binary instruments are used, which only permit a single LATE estimate to be
obtained. Only rarely are comparisons made across studies in an attempt to piece
together a fuller picture of the entire response curve (Card (2001) is an example of
such an attempt). In addition, even in cases where multiple-valued instruments or
multiple instruments are used, typically a single IV coefficient is estimated when
more could be learned by estimating some portion of the MTE response curve. The
literature is still young in this regard.

2.5.2 Differences in Estimates Across Instruments

One of the more difficult issues in the literature is that different instruments appear
to generate differences in estimates for reasons not apparent. One possible reason is
that just noted, that different instruments are moving the fraction of the population
that is treated across different ranges of the population response curve. However, this
often does not appear to explain the main differences in effects across instruments.
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For the teen childbearing case, for example, Reinhold (2007) conducted an inves-
tigation into the reasons for differences in the effects of teen childbearing on high
school completion using miscarriage as an instrument, which implies that childbear-
ing has no effect if not a positive one, versus age at menarche, which implies a neg-
ative effect (albeit one smaller than OLS). Reinhold found that the differences could
not be explained by the heterogeneous response curve, for the instruments yielded
different estimates even when estimated at the same point on the curve (although
the estimates also had large standard errors). Reinhold’s investigation revealed that
miscarriage occurs disproportionately among very young women, possibly because
of immature physical development at that age, and that a comparison of women who
miscarry with those who do not involves a comparison of women with different ages
at the time of pregnancy. If those who become pregnant at young ages have more
negative effects of teen childbearing on completed education than those who become
pregnant at older ages, this lack of proper control for age could lead to small or zero
effects of teen childbearing on education when using miscarriage as an instrument.

More generally, a possible cause of differences in IV estimates for different
instruments is that they affect different types of individuals. Miscarriage affects
women who have expressed a desire to have a child when young (assuming the
child is desired) whereas increased contraceptive availability is likely to affect
women who desire to have a child later and want to avoid having one early. These
two types of women may not be affected in the same way by a postponement
of childbearing, although it is not clear on a priori grounds which group would
have the greater impact on later earnings. Similar reasoning could apply to other
instruments.

A somewhat related reason for different estimates across instruments is that dif-
ferent instruments may work through different mechanisms, or channels. Indeed,
the effect of teen childbearing on later earnings can have many different pathways.
It could affect educational outcomes, which in turn affect earnings; the presence of
young children could affect the ability to work after leaving school, even if education
is unaffected; it could affect the types of jobs that a woman can and is willing to take,
for similar reasons; or it could affect the probability of marrying, and marital status
is known to have a significant effect on labor force participation and earnings. The
increased control of fertility made possible by more availability of contraceptives,
for example, may allow a woman to proceed with marriage to a suitable partner,
knowing that fertility can still be controlled. Miscarriage may not have the same
effects on marriage probabilities if fertility is relatively uncontrolled, and marriage
may be delayed. To some extent, these differences in instrument effects can be ex-
amined by studying different mechanisms, of course, but this is only occasionally
done.11

11 In all of these cases, the “compliers” – that is, the women whose decisions are changed by the
variation in the instrument – are different. See Angrist and Imbens (1995) for a discussion of IV
with multiple instruments.
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That the particular mechanism through which a treatment has an effect may mat-
ter for IV estimation is an illustration of the more general point of Rosenzweig and
Wolpin (2000) that a careful specification of theory is necessary prior to applying
instrumental variables. They provide several illustrations where the interpretation
of IV estimates differ dramatically depending on what other variables are controlled
for in the equation and by what channels treatment has an effect.

2.5.3 Relevance of Instruments to Policies of Interest

Yet another issue of some importance in the IV literature is whether the instruments
used are relevant to the policies or programs that might be the ultimate goal of the
analysis. This problem appears most often with experiments of the “natural natu-
ral” type, where twins, month of birth, miscarriage, age at menarche, and related
variables are used. These variables do not directly relate to any public policy and
hence may be difficult to use to learn what the effects of policies might be. This is
particularly true when there are multiple mechanisms by which the treatment can
affect outcomes, for particular government policies may work in different ways. If
teen childbearing were addressed by providing extra subsidies to stay in school,
for example, that could have a different effect on later earnings than the effect of a
miscarriage.

Studies which use policy-based instruments are preferable from this point of view
because they provide direct information on the effects of at least one concrete policy.
Even here, however, it is unclear how to use the results of a policy instrument study
to forecast the effects of some other government policy which works in different
ways. Both of these examples suggest that some attention should be paid to the
specification of the selection equation and to using theory to account for the different
mechanisms by which variables affect the treatment. For example, the monetary
cost of staying in school is, according to economic theory, one possible determinant
of voluntary teen childbearing. A study which represented that cost explicitly in
the teen birth probability equation and which estimated its effects would allow a
“mapping” of the effect of the instrument into the effect of schooling costs, and
thereby permit an estimate of the effect of such alternative policies.

2.5.4 Reduced Form Versus Structural Form

Some of the studies in the IV literature estimate reduced forms rather than structural
forms; that is, they estimate models for y as a function of X and Z directly. In the
case of a binary instrument, this effect is simply the numerator of Equation 2.7 and
therefore simply equals the IV coefficient multiplied by the change in the fraction
of the population treated, so there is no real difference between them. However, es-
timation of the reduced form alone is generally conducted only when the instrument
in question is of direct policy interest, for the results of reduced form estimation will
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yield an estimate of the effect of the policy even if it is does not work through the
particular T specified in the model. On the contrary, simply estimating the effects
of, say, having twins on later female earnings is not in and of itself very interesting
unless it is interpreted as working through effects on family size. Nevertheless, even
in the former case, most analysts believe that estimation of the structural form is of
the greater theoretical interest because learning the mechanism by which policies
have their effects, and that knowledge of this mechanism is necessary to design new
policies which work through the same mechanism.12

2.5.5 Weak Instruments

The criterion of relevance for an instrument is an important one, for in many cases an
instrument, while having a large asymptotic t-statistic in the estimation of the effect
of the instrument on T , may nevertheless have small explanatory power for T . In
that case, the instrument is said to be “weak” and the IV estimate of the effect of T
on y can be shown to be biased toward OLS, and to have much larger confidence
intervals than produced by the usual formulas (Cameron and Trivedi 2005). Rules of
thumb have been developed for detecting weak instruments based on the F-statistic
for a single instrument in the T equation, e.g., that it should be at least 10 (Stock
et al. 2002; Stock and Yogo 2005) as well as more formal methods, and there are
also formal methods for calculating more accurate confidence intervals for effect es-
timates when instruments are weak. The implication for practice is that a somewhat
higher standard for instruments must be applied, for they not only must be valid
in the standard asymptotic sense, but they must be sufficiently “strong.” In many
applications, instruments which are arguably exogenous on theoretical grounds or
which appear to have a significant coefficient in the T equation nevertheless are
only weakly related to the fraction of the population treated, in which case usually
a search for a stronger instrument is required.

2.5.6 No Instruments Available

The thinking about instrumental variables described in this essay has led to a higher
standard for the choice of instruments than existed in earlier years of research, when
the attitude toward instruments was more casual. This has made the search for a suit-
able instrument more difficult and in some cases no credible instrument exists either
conceptually or in the available data sources. Particularly if attention is restricted
to pure natural experiments of the type described above, the relative infrequency of

12 Heckman and Vytlacil (2001) have argued that the reduced form estimates, which they term
“policy relevant treatment effects,” are also useful because they do not require that there be no
“defiers” in the language of Angrist et al. (1996). Defiers are individuals who change T in the
opposite direction to that intended by the policy, e.g., who have more teen births after the increased
availability of contraceptives.
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such events may greatly restrict the set of research questions that can be studied.
It would not be useful for scientific advance if questions where no instrument is
available were simply left unstudied.

A variety of approaches are possible in this case. One is simply to apply OLS
to the (y, T , X ) relationship and to make a priori arguments on the degree of bias
expected. These arguments will necessarily turn on how well the vector X is ca-
pable of capturing the main determinants of y and whether there are likely to be
unobservables left out which are correlated with T . The direction and magnitude
of bias from any remaining unobservables is often something that can be partially
assessed on the basis of intuition and outside evidence. The method of matching,
described above, can also be applied to determine whether the functional form of
the estimated equation is affecting the conclusions drawn about the causal effect of
T on y.

Another approach is to apply more formal sensitivity tests to the model to assess
how much the estimated effect of T on y would be affected by different degrees
of bias. In the case where all error terms are assumed to be multivariate normal,
for example, the bias is captured by a control variable termed the Heckman lambda
term (Barnow et al. 1980), and a single parameter – the correlation between the
errors in the y equation and the T equation – determines the degree of bias in the
coefficient on T. Fixing the correlation coefficient at different values and estimating
the model with this restriction can be used to assess how the estimate of the effect
of T is affected by the magnitude of the correlation (Robins et al. 2000). At another
extreme, one can apply an analysis which determines the maximum degree of bias
that might arise, a method of “bounds” analysis most formally developed within
economics by Manski (1995). This “worst case” analysis can sometimes show that
even in the maximal bias case, the estimated effect of T on y is still of reasonable
magnitude on a scientific or policy basis. If the maximal bias results in a reversal
of results, however, more restrictions on those bounds are needed to obtain more
useful results.

2.6 Summary and Conclusions

Much progress has been made in understanding the estimation and interpretation of
causal effects with observational data and how exclusion restrictions, which are an
implicit assumption that an experiment exists in nature, can be used to identify those
effects. Nevertheless, while a deeper understanding has been achieved, the difficulty
of the problem has also become better understood. Most importantly, the criteria for
valid and relevant instruments have been shown to be particularly stringent, and the
scope of what is learned from instruments which are based on narrow populations is
now seen to be possibly quite limited. Assessing the validity of instruments is also
particularly problematic, as there are no formal tests for validity in the just-identified
case, and resolving why different instruments yield different effect estimates can
also be quite challenging. Studying the mechanism by which instruments affect
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the fraction of the population treated and how that interacts with the mechanism
by which treatment affects outcomes is now also recognized as important. Much
therefore remains to be done.
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Chapter 3
Sequential Potential Outcome Models
to Analyze the Effects of Fertility
on Labor Market Outcomes

Michael Lechner

3.1 Introduction

This paper proposes to use dynamic treatment models to analyze the effects of fertil-
ity on labor market interactions. It argues that when large data sets are available the
dynamic potential outcome model is an interesting modeling framework because
it allows the careful consideration of the selection issues coming from the inter-
action of fertility and labor market decisions at different ages. It allows explicitly
considering their dependence on the labor market and fertility history realized up
to that period. There is no need to collapse the ‘endogeneity’ problem into a static
setting since the dynamic nature and timing of the interaction can be explicitly ad-
dressed. Furthermore, the paper argues that this approach allows defining relevant
parameters of interest in a more precise way. Based on artificial data, the approach is
implemented and issues that may come up in practical applications of this approach
are discussed.

The literature on the effect of fertility on labor market outcomes can be organized
along the dimensions of model structure and time. The first strand, the so-called
structural approach, uses fully structural behavioral models typically based on some
sort of utility maximization subject to time and budget constraints. Usually, these
models are fully parametrically specified. An early example of this approach is Mof-
fitt (1984). There is in fact a considerable literature which is based on rather sophis-
ticated structural modeling of the individual decision problems. These parametric
models are combined with econometric modeling of the uncertainties in the model
or the data. The resulting moment conditions or likelihood functions are then the
basis for a parametric estimation of the parameters that are of particular interest in
the specific application. This literature is surveyed in Arroyo and Zhang (1997) and
Hotz et al. (1997), for example. Recent papers based on this approach are Del Bocca
and Sauer (2005), Francesconi (2002) and Klepinger et al. (1999), among others.
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An alternative approach to structural modeling is reduced form modeling, i.e.
deriving the equation to estimate not directly from some mathematically formulated
theoretical model, but instead specifying the empirical model to be estimated by
appealing to some general properties of various theoretical models of interest in a
more or less ad-hoc way. A prominent paper based on this approach analyzing the
timing and spacing of births in Sweden is Heckman and Walker (1990) who estimate
duration models. Recent papers by Adsera (2005a, b) are based on a fairly similar
approach.

A related approach that is more explicit on the various endogeneity problems
that almost naturally occur in the previously mentioned group of papers models
labor market outcomes and fertility decisions jointly based on selection type models.
Examples for this approach are Hotz and Miller (1988), Di Tommaso (1999), and
Troske and Voicu (2004).

However, even when the different decisions are analyzed within a joint modeling
framework, it remains questionable whether the different effects can really be iden-
tified independently of each other. Therefore, Angrist and Evans (1998) propose an
instrumental variable approach that allows analyzing the labor supply reaction when
family size is varied exogenously. The latter variation comes from the observation
that parents are more likely to get a third child, if the first two children have the same
sex. Using an explicit non- or semiparametric causal framework, like in the analyses
of post-unification fertility in East and West Germany by Lechner (1998, 2001a), is a
rather unusual approach in that literature. Reduced form models appear to be typical
as well for the demographic literature. For example, Rosenfeld (1996) and Con-
nelly (1996) describe the work-fertility interaction without strict behavioral models,
be it mathematical or not, and without a comprehensive empirical analysis. Note that
none of the mentioned econometric or demographic reduced form analyses uses a
dynamic framework.

The virtue of the structural approach is that the behavioral assumptions of the
model are very clear. The drawback is however that the tight parametric functions
are restrictive and usually rejected by the data, at least when the sample is large
enough. In contrast, the virtue of the reduced form approach, particularly in its non-
parametric causal version, is that it usually does not impose more than the required
just identifying restrictions on the data. The drawback may be that those just iden-
tifying conditions are not explicitly derived from a formal mathematical model of
utility maximization. Therefore, the conditions for their validity sometimes may be
less clear than in the case of structural models.

The second dimension ‘time’ is straightforward. Some paper collapse individual
fertility and labour market histories into one observation at a specific point in time,
while other empirical approaches follow the realization of fertility and labor market
outcomes over time. The virtue of the former approach is clearly its simplicity, while
the latter approach, which requires more and better data, allows taking into account
the important time dimension of fertility and labor market events.

Next, consider recent advances in econometric methodology. One of the recent
important developments in econometrics is the increased emphasis on discovering
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causal as opposed to associational relations from the data and clarifying the
conditions required for the causal interpretation of the estimators used. Only causal
relations are useful for policy advice, because they contain the reaction of the
economic variables of interest.1 Econometrics developed two different ways to
define what a causal effect is. One concept originated in time series econome-
trics. The other concept comes from the sphere of microeconometrics and
statistics.

The concept used in time series econometrics is due to Wiener (1956), Granger
(1969), and Sims (1972) (see the review article by Geweke (1984) for an overview).
Their basic idea is that (non-) causality is very similar, if not the same, than (non-)
predictability. Therefore, they consider one variable not to cause another variable, if
the current value of the causing variable does not help to predict future values of the
variables that might capture the effects of this cause. This statement is conditional
on the information set available at each point in time. This concept is in principle
(technically) applicable if one cross-sectional unit (e.g. a country) is observed for a
sufficiently long period.

The alternative concept popular in microeconometrics, particularly and most ex-
plicitly in the program evaluation literature (e.g. Heckman et al. 1999), is based
on the idea that the relevant comparison is between different states of the world,
each of which relates to a value of the causing variable. If causation is absent,
then the outcomes that would have been realized if those potential states had ac-
tually been occurred would be the same (in some probabilistic sense). To relate
this concept of different states of the world to data, it is necessary to observe
different sample units in the different states. Then, so-called identifying assump-
tions are employed to relate the observed data to the distribution of the potential
outcome variables, so that causal effects can be inferred from the ‘real world’
that is reflected in the data. The statistical formulation of the resulting inference
problem is probably due to Neyman (1923) and was extended and popularized
by Rubin (1974). Recently, dynamic versions of the potential outcome approach
were suggested by Robins (1986) and extended by Lechner and Miquel (2001) that
will be explained below.2 Lechner (2009) proposes matching type estimators for
this model.

The paper proceeds as follows: Section 3.2 outlines the dynamic causal frame-
work. The notation is introduced and the basic identification conditions are restated.
The estimation problem is explained in Section 3.3 and sequential matching estima-
tion is reviewed. Section 3.4 relates the model explicitly to the substantive questions
at stake in the pseudo-empirical example. Section 3.5 details the artificial data. Sec-
tion 3.6 presents the ‘empirical’ examples and Section 3.7 concludes.

1 See the excellent account of the historical developments in econometrics by Heckman (2000).
2 Pötter and Blossfeld (2001) discuss concepts of causality and the use of the time dimension
in sociology. However, they do not consider the research potential of dynamic potential outcome
models.



34 M. Lechner

3.2 The Dynamic Causal Model – Notation, Effects,
and Identification

3.2.1 Introduction

Robins (1986) first suggested an explicitly dynamic causal framework based on
potential outcomes that allows the definitions of causal effects of dynamic interven-
tions and systematically addresses this type of selection problem. His approach was
subsequently applied in epidemiology and biostatistics (e.g. Robins (1989, 1997,
1999) and Robins et al. (1999) for discrete treatments; Gill and Robins (2001) for
continuous treatments) to define the effect of treatments in discrete time. Identifi-
cation is achieved by sequential randomization assumptions (see the very compre-
hensible summary by Abbring (2003)). The effects are frequently estimated using
parametric models.

Recently, Lechner and Miquel (2001, LM01 further on) extend Robins’ (1986)
framework to comparisons of more general sequences, different parameters, and
different selection processes. Focusing on the case when all elements that influ-
ence selection and outcomes at each stage of the sequence are observable, LM01
discuss different identification conditions required for particular dynamic causal ef-
fects. Since the assumptions used in LM01 bear enough similarity to the selection
on observables or conditional independence assumption (CIA) that is prominent in
the static evaluation literature, Lechner (2009, L04 further on) proposed matching
and inverse probability weighting estimators that are dynamic extensions of similar
estimators used in the static model. These estimators retain most of the flexible and
convenient properties of the static methods that made them the workhorse in em-
pirical econometric evaluation studies (see the excellent survey by Imbens (2004)).
Lechner (2008b) discusses some operational characteristics of this approach in the
context of the evaluation of labor market programs. Although this approach has
been applied by Lechner and Wiehler (2007) to analyze the effects of the timing
and order of Austrian active labor market programs, generally applications of this
explicit dynamic causal framework based on potential outcomes are however rare in
econometrics so far.3

The following sections briefly repeat the definitions of the dynamic causal model
as well as the identification results derived by Lechner and Miquel (2001) for the
case of sequential selection on observables. To ease the notational burden, I use a
three-period-two-treatments model to discuss the most relevant issues that distin-
guish the dynamic from the static model, although in the application more periods
and more treatments are considered. As usual in the econometric evaluation liter-
ature, I use the standard statistics terminology based on treatments (fertility) and
potential outcomes (labor market indicators) to define causal effects.

3 A further exception is Ding and Lehrer (2003) who use this framework and related work by
Miquel (2002, 2003) to evaluate a sequentially randomized class size study using difference-in-
difference-type estimation methods.
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3.2.2 Basic Structure of the Model

For the fertility example, it is appropriate to treat age (in years) as the relevant
time dimension, and consider calendar time as an individual exogenous attribute.
Suppose that there is an initial period in which everybody is in the same treatment,
plus two subsequent periods in which different treatment states are realized. The
initial period is tied to the subpopulation of interest. Suppose further that interest
is in the effects of births on the women aged 25 who did not give birth so far. In
this case, the initial period would relate to age 25 and the population of interest
(which then leads to the sample used in the estimation) would be the women of age
25 who did not give birth so far. However, no restrictions will be imposed on the
population that relate to the periods after age 25. Periods are indexed by t or τ (t, τ ∈
{0, 1, 2}). The treatment is defined over all periods. It is described by a vector of
Bernoulli random variables (RV), S = (S1, S2). St measures the occurrence of a birth
in period t . For notational convenience, the treatment of the initial period (S0 = 0) is
sometimes not mentioned explicitly. A particular realization of St is denoted by st ∈
{0, 1}. Denote the history of variables up to period t by a bar below that variable,
i.e. s2 = (s1, s2).4 Since effect heterogeneity is not restricted over time, it makes
sense to define potential outcomes in terms of sequences of potential states of the
world. Thus, in period one, a woman is observed in exactly one of two treatments. In
period two, the treatment will be described by two potential outcomes depending on
what happened in period 1. Therefore, she is part of one of four treatments defined
by the sequences (0,0), (1,0), (0,1), and (1,1). Thus, every individual is observed
in exactly one sequence defined by s1 and another sequence defined by the same
value s1 and a value s2. To sum up, in the two (plus one)-period-two-treatments
example there are six different overlapping potential outcomes corresponding to
two mutually exclusive states defined by treatment status in period 1 only, plus four
mutually exclusive states defined by treatment status in periods 1 and 2 together.
Such states could be characterized for example by one birth in period 1, zero births
in period 2, or by no births at all, or any other sequence of births.

Variables used to measure the effects of the treatment in period t , i.e. the potential
outcomes, are indexed by treatments and denoted by Y

s1
t (t ≥ 1) or Y

s2
t (t ≥ 2). They

are measured at the end of each period, whereas treatment status is measured in the
beginning of each period. For each sequence length (1 or 2 periods), one of the
potential outcomes is observable and denoted by Yt . Here, the potential outcomes
measure individual labor market status, like labor market participation or earnings.
To link the potential outcomes of the causal model to the data, the following obser-
vation rules are defined in Equation (3.1):

4 To differentiate between different sequences, sometimes a letter (e.g. j) is used to index a se-
quence, as in s j

t . As a further convention, capital letters usually denote random variables, whereas
small letters denote specific values of the random variables. When I deviate from this convention,
the intended meaning should be obvious.
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Y1 = S1Y 1
1 + (1 − S1) Y 0

1 ;

Y2 = S1Y 1
2 + (1 − S1) Y 0

2

= S1S2Y 11
2 + (1 − S1) S2Y 01

2 + S1 (1 − S2) Y 10
2 + (1 − S1) (1 − S2) Y 00

2 . (3.1)

Finally, variables that may influence fertility behavior and (or) potential labor
market outcomes are denoted by X . The K-dimensional vector Xt may contain
functions of Yt and is observable at the same time as Yt .

3.2.3 Defining the Estimand: Average Causal Effects

Although it has already been stated that interest is in finding the effects of fertility on
post-fertility labor market outcomes, it remains to formulate this estimand in terms
of the dynamic causal model. First, assume for the sake of the simplified example
that interest is in the effects of births at age 26 and 27 on the labor market outcome
at age 28 (or any later age). It is important to note at this stage that this analytical
framework allows for complete effect heterogeneity, i.e. different individuals may
react differently to the same treatment sequence. Therefore, I will define different
average treatment effects for different subpopulations based on the comparison of
the same treatment sequences. Those subpopulations may be characterized by ex-
ogenous characteristics or more importantly by the treatment sequences themselves,
i.e. the fertility sequences the women actually experienced in those two years.

As in the static model, the potential outcomes are used to define several average
causal effects. Equation (3.2) defines the causal effect (for period t) of a sequence
of treatments up to period 1 or 2 (τ, τ ′) compared to an alternative sequence of the
same or a different length for a population defined by one of those sequences or a
third sequence:

θ
sk
τ ,s

l
τ ′

t

(
s j
τ̃

)
= E

(
Y

sk
τ

t |Sτ̃ = s j
τ̃

)
− E

(
Y

sl
τ ′

t |S τ̃ = s j
τ̃

)
, 0 ≤ τ̃ ;

1 ≤ τ, τ ′ ≤ 2, τ̃ ≤ τ ′, τ ;

k �= 1, k ∈ (1, . . . , 2τ ) , l ∈
(

1, . . . , 2τ ′)
, j ∈ (1, . . . , 2τ̃

)
. (3.2)

The treatment sequences indexed by k, l, and j may correspond to (0) or (1) if
τ (or τ ′) denotes period 1, or to the longer sequences (0,0), (0,1), (1,0), or (1,1)

if τ (or τ ′) equals two. LM01 call θ
sk
τ ,s

l
τ ′

t the dynamic average treatment effect

(DATE). Accordingly, θ
sk
τ ,s

l
τ ′

t (sk
τ ), as well as θ

sk
τ ,s

l
τ ′

t (sl
τ ′) are termed DATE on the

treated (DATET) and DATE on the nontreated. There are cases in-between, like

θ
sk

2,s
l
2

t (sl
1), for which the conditioning set is defined by a sequence shorter than the

one defining the causal contrast. Note that the effects are by definition symmetric

for the same population (θ
sk
τ ,s

l
τ ′

t (sk
τ ) = −θ

sl
τ ′ ,sk

τ

t (sk
τ )). This feature, however, does not

restrict effect heterogeneity across individuals (θ
sk
τ ,s

l
τ ′

t (sk
τ ) �= θ

sk
τ ,s

l
τ ′

t (sl
τ ′)).
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3.2.4 Identification

Having analytically defined the causal framework and the objects of interest,
assumptions that are plausible in our application are required to find consistent
estimators for those estimands, i.e. the estimands have to be linked to the data.

Assume that a large sample {s1i , s2i , x0i , x1i , y1i , y2i }i=1:N of size N is available,
randomly drawn from a large population defined by S0 = 0. The latter is character-
ized by the corresponding random variables (S1, S2, X0, X1, Y1, Y2).5 Furthermore,
assume that all conditional expectations that are of interest in the remainder of this
paper exist. To ease notation further, assume that interest is in the effects of se-
quences of length two only. If the variables that jointly influence selection at each
stage as well as the outcomes are observable, some average treatment effects are
identified (weak conditional independence assumptions):

Weak dynamic conditional independence assumption (W-DCIA)6

a) Y 00
2 , Y 10

2 , Y 01
2 , Y 11

2

∐
S1 |X0 = x0 ;

b) Y 00
2 , Y 10

2 , Y 01
2 , Y 11

2

∐
S2

∣∣X1 = x1, S1 = s1;

c) 1 > P (S1 = 1 |X0 = x0 ) > 0, 1 > P
(
S2 = 1

∣∣X1 = x1, S1 = s1
)

> 0;
∀x1 ∈ χ

1
, ∀s1 : s1 ∈ {0, 1} .

χ
1

= (χ0, χ1) denotes the support of X0 and X1. Part a) of W-DCIA states
that the potential outcomes are independent of treatment choice in period 1 (S1)
conditional on X0. This is the standard version of the static CIA (e.g. Rubin 1974).
Part b) states that conditional on the treatment in period 1, on observable outcomes
of period 1 (which may be part of X1), and on the confounding variables from
periods 0 and 1 (X1), potential outcomes are independent of participation in period
2 (S2).

To see whether such an assumption is plausible in this application, the question
is which variables influence births as well as subsequent labor market outcomes and
whether such variables are observable. If the answer to the latter question is yes,
and if there is common support (defined in part c) of W-DCIA), i.e. there are indi-
viduals with the same observable characteristics that are observed in both treatment
sequences of interest, then there is identification, even if some or all conditioning
variables in period 2 are influenced by the labor market and fertility outcomes of
period 1. LM01 show that, for example, quantities like E(Y 11

2 ), E(Y 11
2 |S1 = 0),

E(Y 11
2 |S1 = 1), or E[Y 11

2

∣∣S2 = (1, 0) ] are identified, but that E[Y 11
2

∣∣S2 = (0, 0) ]

5 To simplify the notation further, I consider period 2 as the only period relevant for the outcome
of interest. However, for all what follows Y2 should be considered as measured at some point in
time after treatment 2 occurred. The exact timing is determined by the substantive interest of the
researcher conducting the empirical study. Here, it could be any labor market outcome after the
last day of age 27.
6 A

∐
B |C = c means that each element of the vector of random variables B is independent of

the random variable A conditional on the random variable C taking a value of c in the sense of
Dawid (1979).
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or E[Y 11
2

∣∣S2 = (0, 1) ] are not identified. Thus, θ
sk

2,s
l
2

2 and θ
sk

2,s
l
2

2 (s j
1) are identified

∀sk
1 , sk

2 , sl
1, sl

2, s j
1 , s j

2 ∈ {0, 1}, but θ
sk

2,s
l
2

2 (s j
2) is not identified if sl

1 �= sk
1 , or sl

1 �= s j
1 ,

or sk
1 �= s j

1 . This result states that pair-wise comparisons of all birth sequences are
identified, but only for groups of women defined by their birth status in periods 0 or
periods 0 and 1 together. The relevant distinction between the populations defined
by fertility states in period 1 and subsequent periods is that in period 1, treatment
choice is random conditional on exogenous variables, which is the result of the
initial condition stating that S0 = 0 holds for everybody. However, in the second
period, randomization into these treatments is conditional on variables already in-
fluenced by the first part of the treatment. W-DCIA has an appeal for applied work
as a natural extension of the static framework. However, W-DCIA does not identify
the classical treatment effects on the treated which would define the population of
interest using one of the complete sequences (for all three periods), if the sequences
of interest differ in period 1.

LM01 show that to identify all treatment parameters, W-DCIA must be strength-
ened by essentially imposing that the confounding variables used to control selec-
tion into the treatment of the second period are not influenced by the selection into
the first-period treatment. This can be summerized by an independence condition
like Y

s2
2

∐
S2

∣∣X1 (LM01 call this the strong conditional dynamic independence
assumption, S-DCIA). Note that the conditioning set includes the outcome variables
from the first period. This is the usual conditional independence assumption used
in the multiple treatment framework (with four treatments; see Imbens 2000, and
Lechner 2001). In other words, when the control variables are not influenced by the
previous treatments, the dynamic problem collapses to a static problem of four treat-
ments with selection on observables. This result shows that by treating the dynamic
selection process explicitly, the identifying assumption can be relaxed and still in-
teresting effects are identified. In the example, the strong conditional independence
assumption amounts to assuming that (intermediate) labor market outcomes at age
25 and 26 are not influenced by the contemporeneous birth events, which clearly is
unrealistic.7

To sum up, note that the dynamic concept based on sequential conditional inde-
pendence assumptions allows for weaker conditions on the selection process than
using a static model: whereas the static model requires a selection on observables
assumption to hold for all elements of the sequence at once, the dynamic model
still works fine in most dimensions if the selection on observables assumption is
only valid in each period for the next selection step conditional on the past selec-
tions steps, past outcomes, and other past confounders. However, both strategies
will break down if there are unobservable characteristics that influence the selec-
tion steps as well as the potential outcomes. In this case, IV methods, like the one
suggested by Miquel (2003) become relevant.

7 Note that if this assumption does not hold, then the conditioning variable X1 would become
endogenous and thus change the meaning of the estimand in some way that is hard to interpret (see
Lechner 2008a).
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Any attempts of nonparametrically estimating these effects face the problem that
distributional adjustments based on a potentially high-dimensional vector of charac-
teristics and intermediate outcomes (X ) are required (details below). Therefore, in
the applied static matching literature balancing scores are a popular device to reduce
the dimension of the estimation problem (see Rosenbaum and Rubin 1983). Similar
properties hold for the dynamic model as well:

Balancing score property for W-DCIA
If the conditions of W-DCIA hold, then:

a) Y 00
2 , Y 10

2 , Y 01
2 , Y 11

2

∐
S1 |b1(X0) = b1(x0) holds for all b1(x0) such that E[ps1 (x0)

|b1(X0) = b1(x0)] = ps1 (x0); ps1 (x0) := P(S1 = s1 |X0 = x0 ).

b) Y 00
2 , Y 10

2 , Y 01
2 , Y 11

2

∐
S2

∣∣b2(X1, S1) = b2(x1, s1) holds for all b2(x1, s1) such that
E[ps2|s1 (x1)|b2(X1, S1) = b2(x1, s1)] = ps2|s1 (x1); ps2|s1 (x1) := P(S2 =
s2|X1 = x1, S1 = s1).

A low-dimensional choice for balancing scores consists of conditional transition
probabilities in combination with the variable indicating the treatment in the previ-
ous period (which of course can be ignored in the first period): b1(x0) = ps1 (x0),
b2(x1, s1) = [ps2|s1 (x1), s1].

3.3 Estimation

3.3.1 Structure of Sequential Estimators

Lechner (2009) shows that these scores are convenient for constructing sequential
propensity score matching estimators to correct for selection bias under W-DCIA.
I focus on this particular estimator because of its simplicity and because it is the
workhorse of empirical evaluation studies. Other static matching-type estimators
can be adapted to the dynamic context in a similar way (see Imbens (2004) for an
overview of available estimators). I refrain from discussing estimation based on the
S-DCIA explicitly, because that assumption is not relevant here.

Using the balancing scores suggested above, the following estimand results for
quantities identified under W-DCIA:

E
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Y
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2
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1
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E
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⎧⎨
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[
E
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2 |sk
1 ,sk

1
(
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)) ∣∣∣S1 = sk
1 , psk
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⎫⎬
⎭ ,

psk
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1 ,s1
(
X1

)
:=
[

psk
2 |sk

1
(
X1

)
, ps1 (X0)

]
, sk

1 , sk
2 , s j

1 , s1 ∈ {0, 1} . (3.3)
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To learn the counterfactual outcome for the population participating in s j
1 (the

target population) had they participated in sequence sk
2, women with sk

2 must be
reweighted to make them comparable to the women in the target population (s j

1 ).
The dynamic, sequential structure of the causal model restricts the possible ways
to do so. Intuitively, for the members of the target population, women in the first
element of the sequence of interest (sk

1 ) should be reweighted such that they have
the same distribution of psk

1 (X0) as the target population. Call this artificially cre-
ated group comparison group 1. Yet, to estimate the effect of the full sequence, the
outcomes of women in sk

2 instead of sk
1 are required. Thus, an artificial subpopu-

lation of women in sk
2 that has the same distribution of characteristics of psk

1 (X0)
and psk

2 |sk
1 (X1) as the artificially created comparison group 1 is required. The same

principle applies for dynamic average treatment effects in the population (DATE).
All proposed estimators in L04 have the same structure: They are computed as

weighted means of the outcome variables observed in subsample S2 = sk
2. The

weights, w(·) depend on the specific effects of interest and are functions of the
balancing scores.

̂

E
(

Y
sk

2
2

∣∣∣S1 = s j
1

)
=
∑
i∈sk
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w
sk

2,s
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1

i

(
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(
x1,i

)
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1

)
yi ;

w
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2,s
j
1

i ≥ 0;
∑
i∈sk
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w
sk

2,s
j
1

i = 1; (3.4)

̂
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∑
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w
sk

2
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(
psk

2 |sk
1 ,sk

1
(
x1,i

)
, sk

1

)
yi ; w

sk
2

i ≥ 0;
∑
i∈sk

2

w
sk

2
i = 1.

(3.5)

Note that in the case of more than two treatments, the balancing scores for (3.4)
and (3.5) will differ with respect to the participation probability for the first period.
For Equation (3.4), the required quantity is P(S1 = sk

1 |X0 = x0, S1 ∈ {sk
1 , sl

1}),
whereas in Equation (3.5), in which all of the population is the target, P(S1 =
sk

1 |X0 = x0 ) is appropriate.

3.3.2 Sequential Matching Estimators (SM)

Lechner (2009) propose to extend the simple pair-matching estimators that are
highly popular in applied studies to the dynamic context. The idea is to perform
the required adjustments by sequentially choosing close pairs of observations in
the various steps, so as to mimic the sequential conditional expectations appear-
ing in expressions (3.4) and (3.5). The first step is the same for both effects and
consists in finding for every women in S1 = sk

1 a women in S2 = sk
2 with very

similar (the same) values of psk
2 |sk

1 (x1,i ) and psk
1 (x0,i ). Note that matching must be

with replacement, because the target population may be larger than the treatment
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population. In the second step, every women in S1 = s j
1 (Equation 3.4) or S0 = 0

(Equation 3.5) is to be paired with a women observed with S1 = sk
1 with very

similar (same) values of psk
1 (x0,i ). The positive weights that are attached to some

or all women in S2 = sk
2 coming from step 1 are then updated depending on how

often a women in S2 = sk
2 is matched to a women of the target population via the

intermediate matching step. This procedure leads to the following weights:
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i = 1
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; ∀i ∈ S2 = sk
2; (3.6)
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)
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2 |sk
1 ,sk

1
(
x1,i

)
, sk

1 ; ·
]

; ∀i ∈ S2 = sk
2. (3.7)

N s j
1 denotes the number of observations for which S1 = s j

1 . The function
v1[psk

1 (x0,n), psk
1 (x0,m); ·] is defined to be one if psk

1 (x0,m) is closest to psk
1 (x0,n)

among all observations belonging to the subsample defined by S1 = sk
1 , and zero

otherwise. Similarly, v2[psk
2 |sk

1 ,sk
1 (x1,m), psk

2 |sk
1 ,sk

1 (x1,i ), sk
1 ; ·] is one if observation i is

closest to observation m (with s1,m = sk
1 ) in terms of psk

2 |sk
1 (x1,i ) and psk

1 (x0,i ), and
zero otherwise. The Mahalanobis metric (a quadratic form of the variables defining
the distance weighted by the inverse of their sample covariance matrix) is a fre-
quently used measure for similarity. Note that the weight of observation i is 0, if
it is not matched to any member of the target population. On the other extreme, if
observation i is matched to every member of the target population its weight would
be 1. A specific variant of this estimator is shown in Table 3.1 for the example of

estimating θ
s1

2,s
0
2

t (s1
1 ).

Some remarks about this protocol that are already contained in L04 are worth
repeating: First, matching is with replacement. Every step of the matching sequence
is essentially the same as for matching in a static framework. However, sequen-
tial propensity score matching involves several probabilities in the second period
matching step. Second, some issues arise from the sequential nature of matching.
By choosing observations as matches with similar values of the probabilities instead
of the same values (because such observations may not be available), it may happen
that the probabilities attached to observations in earlier matching steps (relating to
transitions in early periods) change over different sequential matching steps due to
imprecise matching. To prevent this from happening, every matched comparison

observation in period 2 is recorded with the values p̂
sl

1
i of the observation it was

matched to in period 1, instead of its own ( p̂ denotes a consistent estimate of p).
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Hence, the ‘history’ of the match, or, in other words, the characteristics of the ref-
erence distribution, does not change when the next match occurs in the subsequent
period.

Third, to compute E(Y sk
2

∣∣S1 = sl
1 ) the only information that is needed for the N sl

1

participants in sl
1 is p̂

sk
1

i . Similarly, for participants in sk
2, all probabilities of the type

p̂
sk

2 |sk
1 ,sk

1
i are required. For participants in sk

1 , but not in sk
2, only p̂

sk
1

i is needed, and so

on. To estimate E(Y sl
2

∣∣S1 = sl
1 ) instead of E(Y sk

2

∣∣S1 = sl
1 ), the only change in the

matching protocol is that the initial matching step on p̂
sl

1
i is redundant. When interest

is in the average effect in the population (E(Y sk
2 )), then the whole population plays

the role of the first reference group (instead of sl
1). In this case, in the matching step

based on p̂
sk

1
i , all participants in sk

1 are matched to themselves. In addition selected
participants in sk

1 are matched to participants in the remaining treatments in the first
period.

When matching is on the propensity score instead of directly on the confounding
variables, there is the issue of selecting a probability model. It seems that, so far,
even in the static model the literature has not addressed this thoroughly. So far the
consensus seems to be that a flexibly specified (and extensively tested) parametric
model is sufficiently rich and that the choice of the model does not really matter
(e.g., see the Monte Carlo results by Zhao (2004)). Similarly, the suggestions in the
literature to guide the specification choice by the ability to achieve balancing of the
respective covariates (e.g. Rosenbaum and Rubin 1984; Rubin 2004) can be applied
here as well (in each step).

Next, there is the issue of consistent estimation of the standard errors that is not
yet resolved for the static matching literature. Based on the simulation results pre-
sented in L04, the standard errors are computed conditional on the weights. In other
words, the fact that the weights are estimated quantities is ignored. Furthermore, the
outcomes may show heteroscedasticity. However, heteroscedasticity is only relevant
in this context if related to the weights. Therefore, a simple k-nearest neighbor esti-
mator is used as in L04 to adjust for any such heteroscedasticity. Although such an
estimator performed well in L04, there is potential for improvement.

The final remark about the matching protocol concerns the common support. The
region of common support – defined on the reference distribution for which the ef-
fect is desired – has to be adjusted period by period with respect to the conditioning
variables of that period. The matching estimator makes it easy to trace back the
impact of this procedure on the reference distribution.

3.3.3 Multiple Treatments and Many Periods

The main issue concerns the specification of the propensity scores: For example,
when specifying the probability of participating in sk

2 conditional on participating
in sk

1 , is it necessary to take account of the fact that not participating in sk
2 implies

a range of possible other states in period 2? The answer is no, because in each step

the independence assumption relates only to a binary comparison, e.g. Y
sk

2
2

∐
1(S2 =
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sk
2 )
∣∣S1 = sk

1 , X1 = x1 , and Y
sk

1
2

∐
1(S1 = sk

1 )
∣∣∣S1 ∈ {s j

1 , sk
1 }, X0 = x0 (s j

1 being the

target population as before). Therefore, the conditional probabilities of not partici-
pating in the event of interest conditional on the history are sufficient.8 Hence, as al-
ready noted P(S2 = sk

2

∣∣S1 = sk
1 , X1 = x1 ) and P[S1 = sk

1

∣∣X0 = x0, S1 ∈ {sl
1, sk

1 } ]
may be used in the matching step in period 1. The multiple treatment feature of the
problem does not add to the dimension of the propensity scores.

3.4 Specifying Causal Parameters of Interest

3.4.1 General Issues

Since the causal model is formulated in discrete time, the first issue that arises con-
cerns the concept of time to be used and the related question about the length of a
period.

An important distinction is between process time, i.e. the clock starts running
at some specific event that is related to the object of interest, or calendar time. The
choice between the two concepts depends on the application, i.e. whether interesting
causal effects are naturally defined in process time (like age specific birth patterns)
or more naturally defined in calendar time. If one of those concepts is chosen, usu-
ally the other dimension of the problem will be controlled for in the estimation. For
example, if process time is given by age, than any analysis based on calendar time
will control for age effects and vice versa. In our current example concerning the
labor market impacts of differential fertility behavior over the life-cycle, it appears
natural to specify the model in terms of process time, here age. Doing so, allows
specifying meaningful sequences as well as maximum flexibility in modeling rele-
vant selection processes.

In an ideal world with very large sample sizes and high frequency data, the type
of selection problem expected is one of the key determinants of the desirable length
of a period. If it is assumed that short term events have important influences on the
fertility decisions of the respective women, then shorter time periods allow more
flexibility than longer periods. The price to pay for such flexibility is a loss in the
precision of the estimates, because if the sequences cover only very specific events,
then not many observations will be observed in any such sequence. In addition, it
will be hard to interpret the (noisy) effects of sequences that have a very similar
economic interpretation (like a birth in the first or second month after the 20th birth-
day). Therefore, more parsimonious models leading to more precise estimates can
be obtained by using longer time periods. Since the systematic factors of fertility
decisions are based on longer term considerations, the application considers two
years as one period and counts the number of births within such a period. With
smaller samples, further aggregation of periods may be advantageous.

8 Imbens (2000) and Lechner (2001) develop the same argument to show that in static multiple
treatment models conditioning on appropriate one-dimensional scores is sufficient.
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Another issue concerns the length of the sequence specified. The longer the se-
quences, i.e. the treatments are fixed over a longer time horizon, the more precise
is the specification of the contrasts of interest, which could be important in some
situation. However, as before, the price to pay will be a larger number of parameters
to be estimated with a smaller number of observations.

3.4.2 Number of Children

First, consider the issue of estimating the effects of the number of children on labor
market outcomes. For example, if interest is in the effect of one child compared to
no child at all, one may want to consider sequences that cover (almost) all of the
fertile ages of women. The contrasts involve one sequence with zeros everywhere
compared to an alternative sequence with one child in some period. Since the timing
of birth is not relevant in the above formulated causal question, one may want to
aggregate the effects for all possible sequences describing one birth based on some
weighting scheme. A plausible weighting scheme could for example be based on
the number of observations in each such one-birth-sequence.

If this question is only interesting for example for births up to the age of 30, then
the specified one-birth and zero-birth sequences would only cover the ages up to age
30. The same principles apply when comparing two to zero or two to one birth, and
so on. Section 3.6 presents concrete examples.

3.4.3 The Effects of Timing and Spacing

A frequent question that arises is whether early births lead to different labor market
outcomes than late births. This can be easily analyzed comparing sequences with
the same total number of total births occurring at different ages. Varying the ages
would also allow getting an estimate of the effect of an incremental postponement.
Similarly, the spacing of the births, i.e. the time between the first and the second birth
may be analyzed by comparing sequences with first births occurring at the same age
in both sequences, but with the second birth occurring at a different age. Whereas
such sequences could cover (most) of the fertile ages, one may be interested in the
effects of ‘starting’ later or earlier without necessarily keeping the overall number
of births fixed, but rather considering it as being determined by the early or late start.
In this case, the sequences to be specified are much shorter. They would cover only
the ages until the first birth of interest. This age can be varied to understand the full
pattern of this effect.

Again, if interest is in a combination of different sequences, all effects for birth
sequences with the same distance between births may be aggregated.

3.4.4 The Role of Confounding Variables

Compared to the static potential outcome model, the dynamic potential outcome
model is a powerful tool if the selection process into (and the dropout from) the
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sequences is determined by time varying variables that are related to the outcome
of interest. Those variables, termed intermediate outcomes in the previous sections,
play an important role in addition to any selection variables that are constant over
the time window considered. Therefore, the data available must be informative about
such variables. In the second part of Section 3.5, the selection processes into and out
of some selected sequences are documented.

3.5 Data

To illustrate the methods, I generated a rather large sample of 100000 ‘women’ with
‘yearly’ information on labor market status, fertility, and some background char-
acteristics that show similarity to typical variables measuring education, vocational
degree and labor demand. These women are observed from the age of 16 to the age
45. For simplicity the data do not contain calendar time effects.9 Before discussing
the ‘data’ in more detail, note that they are simulated for the purpose of illustrating
some of the potentials of the suggested dynamic causal methods. They are neither
meant to reflect any real-life data nor are they supposed to reflect some specific
insights about the connection between fertility and socio-economic variables.

Quite to the contrary, when investigating some of the descriptive statistics for
specific subsamples to be presented below, it is obvious that some of the statistics
show rather extreme properties that are however not detrimental to the purpose in-
tended in this paper. It should also be pointed out that although the actual sample
size is rather large compared to real life data, the suggested approach can be used
with smaller sample sizes as well.

In the simulated data, the number of births per year is modeled by a latent index
model of the probit type. Choices depend on observables that also appear in the
outcome processes as well as on normally distributed unobservables that are inde-
pendent of observables and unobservables appearing in the outcome equations. Note
obviously that normality or an index model assumption is not required for W-DCIA
to hold, but they are convenient choices for a simulation exercise. Such observables
are schooling, vocational degree, regional indicators, as well as lagged labor mar-
ket indicators and the birth history. The labor market indicators, such as earnings
and employment, are modeled as dynamic processes influenced by the exogenous
variables as well as by their own past and current and past fertility behavior. All
selection processes fulfill W-DCIA, but not D-CIA.

Table 3.2 contains descriptive statistics as well as a characterization of the type
of variable for the most important time-dependent and time-independent variables.
They are the usual types of variables with typical codings, means, and standard
errors. A full set of statistics for all variables are available on request from the author.
All descriptive statistics are shown for particular subsamples defined by selected
treatment sequences. Since these are simulated data, I refrain from any interpretation

9 Since space constraints do not allow reproducing the data generating process explicitly, a Gauss
8.0 program is available from the author on request. Furthermore, a Gauss 8.0 program performing
the estimation is available as well.
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of the descriptive statistics. However, it is important that the variation of the values
of the covariates and intermediate outcomes across sequences reveals considerable
selection effects as well as considerable differences in the outcome variables.

The selection process along a sequence is modeled by a binary probit model.
The actual probit models underlying the results presented in the next sections are
slightly misspecified, but in ways that remain largely undetected by conventional
specification tests. The misspecification relates to the functional form as well as to
the omission of some covariates that are highly correlated with covariates included
in the sample. In this respect as well, the artificial data seem to exhibit similar prob-
lems and questions as real data sets usually do. The results for selected sequences
are given in Table 3.3.

Following the specification over time, it becomes obvious that all probits in-
clude the same set of time constant variables, but differ with respect to time varying

Table 3.3 Estimated coefficients of sequential probit models (first part of a selected sequence)

Variable 0
vs.
1

00
if 0

001
if
00

0011
if

001

00110
if

0011

001100
if

00110

0011000
if

00110

Schooling (8–12) −.33 −.31 .24 .26 −.44 −.43 −.44
Vocational degree (0,1, 2) −.31 −.22 .12 .14 −.45 −.31 −.34
Regional share of service

sector
.005 .009 −.01 −.01 .003 .01 .007

Regional share of production
sector

−.001 −.001 −.000 0.002 −.003 −.004 −.004

Sectoral UE rate −.002 −.000 −.001 .002 .005 .006 .01
Regional UE rate .001 −.000 .002 .002 .005 .008 .01
Employed at age 20 .42 0 0 0 0 0 0
Out-of labor force at age 20 −.24 0 0 0 0 0 0
Earnings at age 20 .0007 0 0 0 0 0 0
Employed at age 22 X .49 0 0 0 0 0
Earnings at age 22 X .0008 0 0 −.000 −.0002 .000
Employed at age 24 X X −.50 0 0 0 0
Earnings at age 24 X X −.0007 0 0 0 0
Out of labor force at age 26 X X X .62 0 0 0
Earnings at age 26 X X X −.0007 0 0 0
Out of labor force at age 28 X X X X −.73 0 0
Out of labor force at age 30 X X X X X −.73 0
Out of labor force at age 32 X X X X X X −1.12
Subsample 1 and 0 0 00 001 0011 00110 001100
Number of observations

in subsample
84183 67327 55131 6504 4787 4260 3933

Dependent variable 0 00 001 0011 00110 001100 0011000
Mean of dep. variable

in subsample
0.8 .8 .14 .74 .89 .93 .86

Note: Binary probit model estimated on the respective subsample. All specifications include an
intercept. If not stated otherwise, all information in the variables relates to age 20. Exclusion
restrictions: 0: Variables omitted from specification. X: Variable not temporarily prior to the de-
pendent variable. Bold letters in italics denote significance at the 1% level. Bold letters denote
significance at the 5% level. Italics denote significance at the 10% level.
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variables. According to the theory outlined so far, the number of time varying vari-
ables to be included in the probit should increase along the sequences, since each
estimation step should include all variables previously included as well as those
variables directly prior to the current treatment. Doing so would however lead to
multicollinearity problems due to overparametrization. This problem becomes more
binding over time, as the number of women still in the sequence decreases. Since
it is not the purpose of this estimation step to obtain consistent estimates of probit
coefficients, but of the respective probabilities instead, deleting variables because of
their almost perfect correlation with other variables already in the model does not
harm consistent estimation of the treatment effects.

3.6 Estimation Results

3.6.1 Quantity

Based on the considerations of Section 3.4, Table 3.4 presents some example on
how to estimate the labor market effects of additional children. In the left part of the
table two different ways of modeling the effect of one additional child are shown:
The first comparison is for a birth at the age 21/22 and no birth for the next four
years (sequence 100) compared to no births over six years from age 21–26 (000).
Since it may be true that the first child has a different effect than the second one, a
second specification is added which compares the one birth at 21/22 case to another
sequence with an additional birth at 23/24 (110). Note that the way the effect is
specified it is left open whether there will be or will not be more births after the age
of 26. In this sense it is a minimal specification with respect to time periods that
has been chosen because of sample size considerations (sequences with one child
only are very rare in the simulated data). If there are enough observations in the
individual sequences one may want to compare three children to two children as
well as consider different timings of births. Furthermore, one may consider longer
time periods without birth as is done in the final specifications contained in that
table. The latter compare two or three early children with no children. The coverage
of these sequences is now from age 21 to 40 and thus covers almost all of women’s
fertile period.

The particular target population and its size after imposing the common support
criterion is shown in the line just below the sequences.10 The effects are estimated
for different subpopulations that are defined by the first diverging element in each
of the sequences that are compared. These effects are identified by the W-DCIA.
A more stringent specification of those subpopulations (i.e. longer sequences for the
target population) would require the S-DCIA to hold instead of the weaker W-DCIA,

10 Members of the target population, for whom no comparable observations exist for any step
in any of the two sequences, are removed. They violate W-DCIA. This procedure changes the
estimand, but is common practice in station.
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which is however not true with this simulated data, and usually not plausible in such
applications as well.

The results of the estimations are given below the line for the target population.
They show the estimated values for the (counterfactual) potential outcomes in the
target population as well as their difference, which is the desired causal effect of the
comparison of the two sequences. Standard errors are in brackets.

With respect to the results, all effects have the expected sign. For the larger target
population of those women without a birth at age 21/22 all effects appear to be
significant at conventional levels, whereas for the smaller subpopulation precision
becomes a problem for the one-child comparisons, but not so for the comparisons
involving more than one child. Comparing the effects across populations reveals
some indication for possible effect heterogeneity.

3.6.2 Timing

Table 3.5 shows 8 different comparisons that all relate to timing issues, like when
to have the birth, the time between first and second birth, and when to start fertility.
The first 6 comparisons are based on rather long sequences (20 years if sample sizes
permit) to investigate the various dimensions of early versus late kids. Therefore,
the overall number of kids is kept constant over those 20 years. The remaining two
comparisons investigate the effects of timing the first birth only (‘starting early’ vs.
‘starting late’). Thus, the remaining birth history is not specified and considered as
being part of the effect.

According to the data generating process, later births should have positive effects
on labor market outcomes compared to earlier kids. Those effects should be some-
what smaller than the effects for different quantities of births. This result is generally
confirmed by the data, although the precision of the estimates is not always enough
to pin down the effects precisely.

3.7 Conclusions

This paper discusses to potential use of dynamic potential outcome models to ana-
lyze the effects of fertility on labor market interactions when large and informative
data sets are available. The main advantages of such an approach are (i) its flexibility
due to its non- or semiparametric nature, (ii) that it allows addressing the selection
issues coming from the dynamic interaction between fertility and labor market de-
cisions and realizations in a detailed way; and that (iii) it allows defining relevant
parameters of interest in a more precise way than in any static approach. Based on
artificial data, the approach is implemented and issues that come in any practical
application of this approach are discussed.



3 Sequential Potential Outcome Models 53

Ta
bl

e
3.

5
L

ab
or

m
ar

ke
te

ff
ec

ts
of

bi
rt

h
se

qu
en

ce
s

at
ag

e
45

(t
im

in
g)

O
ut

co
m

e
E

m
pl

oy
m

en
t

E
ar

ni
ng

s
E

m
pl

oy
m

en
t

E
ar

ni
ng

s
E

m
pl

oy
m

en
t

E
ar

ni
ng

s
E

m
pl

oy
m

en
t

E
ar

ni
ng

s

E
ar

ly
vs

.l
at

e
bi

rt
hs

Ti
m

e
be

tw
ee

n
bi

rt
hs

Se
qu

en
ce

s
s1

−
s0

11
00

00
00

00
–0

01
10

00
00

11
00

00
00

0–
00

00
00

01
10

00
11

00
00

00
–0

00
00

00
11

0
20

00
00

–1
01

00
0

Ta
rg

et
po

pu
la

tio
n

s
(o

bs
.a

ft
er

co
m

m
on

su
pp

or
t,

N
s)

1
(1

15
89

)
1

(4
38

1)
00

1
(2

87
9)

2
(1

07
6)

E
st

im
at

ed
ou

tc
om

e:
E

(Y
s1

t
|S

=
s)

25
49

4
51

10
64

57
12

02
21

51
8

(1
)

(2
5)

(2
)

(4
7)

(2
)

(5
1)

(4
)

(9
3)

E
st

im
at

ed
ou

tc
om

e:
E

(Y
s0

t
|S

=
s)

23
46

7
63

12
58

64
12

83
21

56
4

(2
)

(4
4)

(6
)

(1
30

)
(3

)
(6

1)
(5

)
(1

47
)

E
ff

ec
t:

θ
s0

,s
1

t
(s

)
2

27
−1

2
−1

94
−7

−8
0

1
−4

6
(2

)
(5

1)
(6

)
(1

38
)

(3
)

(7
9)

(6
)

(1
73

)
s(

N
s)

0
(5

62
59

)
0

(4
23

37
)

00
0

(3
95

26
)

1
(1

39
14

)

E
(Y

s1

t
|S

=
s)

56
11

22
69

13
86

80
16

67
17

34
5

(4
)

(9
8)

(5
)

(1
20

)
(4

)
(1

07
)

(2
)

(4
5)

E
(Y

s0

t
|S

=
s)

60
12

43
81

15
84

82
16

30
19

40
8

(3
)

(6
4)

1
(3

6)
(1

)
(3

5)
(2

)
(5

5)

θ
s0

,s
1

t
(s

)
−4

−1
20

−1
1

−1
98

−2
36

−2
−6

3
(4

)
(1

17
)

(5
)

(1
28

)
(4

)
(1

13
)

(3
)

(7
1)

C
on

td
.



54 M. Lechner

Ta
bl

e
3.

5
C

on
td

.

Ti
m

e
be

tw
ee

n
bi

rt
hs

E
ar

ly
vs

.l
at

e
st

ar
t

s1
−

s0
11

00
00

00
00

–1
00

10
00

00
0

1–
01

1–
00

01
1–

00
00

00
00

01
s(

N
s)

11
(7

09
2)

1
(1

67
39

)
1

(1
19

54
)

1
(3

76
6)

E
(Y

s1

t
|S

=
s)

21
43

7
18

41
1

23
47

2
50

10
33

(1
)

(2
1)

(.
3)

(8
)

(.
4)

(8
)

(1
)

(1
8)

E
(Y

s0

t
|S

=
s)

24
48

0
19

42
7

24
50

0
53

10
58

(2
)

(5
6)

(.
7)

(2
0)

(6
)

(1
45

)
(5

)
(1

05
)

θ
s0

,s
1

t
(s

)
−3

−4
3

−1
−1

7
−1

−2
8

−2
−2

5
(3

)
(6

0)
(1

)
(2

1)
(6

)
(1

45
)

(5
)

(1
06

)
s(

N
s)

10
(4

45
7)

0
(6

48
21

)
0

(6
23

76
)

0
(4

68
46

)

E
(Y

s1

t
|S

=
s)

28
56

9
57

11
80

59
12

14
71

14
62

(2
)

(3
1)

(1
)

(3
6)

(1
)

(3
7)

(2
)

(4
9)

E
(Y

s0

t
|S

=
s)

32
63

5
60

12
75

63
13

29
77

15
15

(2
)

(5
3)

(1
)

(2
7)

(2
)

(4
6)

(1
)

(3
9)

θ
s0

,s
1

t
(s

)
−4

−6
6

−3
−9

5
−4

−1
14

−5
−5

2
(3

)
(6

1)
(2

)
(4

5)
(2

)
(5

9)
(2

)
(6

3)

Se
e

no
te

be
lo

w
Ta

bl
e

3.
3.



3 Sequential Potential Outcome Models 55

References

Abbring, J.H. (2003). Dynamic Econometric Program Evaluation. IZA Discussion Paper 804.
Adsera, A. (2005a). Labor Market Performance and the Timing of Births. University of Chicago,

Department of Economics.
Adsera, A. (2005b). Where Are the Babies Gone? Labor Market Conditions and Fertility in Europe.

IZA Discussion paper 1576.
Angrist, J.D. and W.N. Evans (1998). Children and Their Parents’ Labor Supply: Evidence from

Exogenous Variation in Family Size. The American Economic Review 88: 450–477.
Arroyo, C. and J. Zhang (1997). Dynamic microeconometric models of fertility choice: A survey.

Journal of Population Economics 10: 23–65.
Connelly, R. (1996). Comments on the Fertility / Employment Interaction. Population and Devel-

opment Review 22, Supplement: 290–294.
Dawid, A.P. (1979). Conditional Independence in Statistical Theory. Journal of the Royal Statisti-

cal Society B 41: 1–31.
Del Boca, D. and R. Sauer (2005). Life Cycle Employment and Fertility Across Institutional Envi-

ronments. mimeo.
Di Tommaso, M.L. (1999). A trivariate model of participation, fertility and wages: the Italian case.

Cambridge Journal of Economics 23: 623–640.
Ding, W. and S.F. Lehrer (2003). Estimating Dynamic Treatment Effects from Project STAR.

mimeo.
Francesconi, M. (2002). A Joint Dynamic Model of Fertility and Work of Married Women. Journal

of Labor Economics 20: 336–380.
Geweke, J. (1984). Inference and Causality in Economic Time Series. In: Handbook of Economet-

rics, Vol. 2, eds. Z. Griliches and M. D. Intriligator. Amsterdam: North-Holland.
Gill, R.D. and J.M. Robins (2001). Causal Inference for Complex Longitudinal Data: The Contin-

uous Case. The Annals of Statistics 2001: 1–27.
Granger, C.W.J. (1969). Investigating Causal Relations by Econometric Models and Cross-Spectral

Methods. Econometrica 37: 424–438.
Granger, C.W.J. (1986). Comment. Journal of the American Statistical Association 81: 967–968.
Heckman, J.J. (2000). Causal Parameters and Policy Analysis in Economics: A Twentieth Century

Retrospective. Quarterly Journal of Economics 115: 45–97.
Heckman, J.J. and J.J. Walker (1990). The Relationship between Wages and Income and the

Timing and Spacing of Births: Evidence from Swedish Longitudinal Data. Econometrica 58:
1411–1441.

Heckman, J.J., R.J. LaLonde and J.A. Smith (1999). The Economics and Econometrics of Active
Labor Market Programs. In: Handbook of Labor Economics, Vol. 3A, eds. O. Ashenfelter and
D. Card. Amsterdam: North-Holland.

Holland, P.W. (1986). Statistics and Causal Inference. Journal of the American Statistical Associ-
ation 81: 945–970.

Hotz, J.V. and R.A. Miller (1988). An Empirical Analysis of Life Cycle Fertility and Female Labor
Supply. Econometrica 56: 91–118.

Hotz, J.V., J.A. Klermann and R.J. Willis (1997). The Econometrics of Fertility in Developed
Countries. In: Handbook of Population and Family Economics, eds. M. R. Rosenzweig and O.
Stark. Amsterdam: Elsevier.

Imbens, G.W. (2000). The Role of the Propensity Score in Estimating Dose-Response Functions.
Biometrika 87: 706–710.

Imbens, G.W. (2004). Nonparametric Estimation of Average Treatment Effects under Exogeneity:
A Review. Review of Economics and Statistics 86(1): 4–29.

Klepinger, D., S. Lundberg and R. Plotnick (1999). How Does Adolescent Fertility Affect the
Human Capital and Wages of Young Women? The Journal of Human Resources 34: 421–448.

Lechner, M. (1998). Eine empirische Analyse der Geburtenentwicklung in den neuen Bun-
desländern aus der Sicht der neoklassischen Bevölkerungsökonomie. Zeitschrift für Wirtschaft-
und Sozialwissenschaften (ZWS) 118: 463–488.



56 M. Lechner

Lechner, M. (2001a). The Empirical Analysis of East German Fertility after Unification: An Up-
date. European Journal of Population 17: 61–74.

Lechner, M. (2001b). Identification and Estimation of Causal Effects of Multiple Treatments un-
der the Conditional Independence Assumption. In: Econometric Evaluation of Active Labour
Market Policies, eds. M. Lechner and F. Pfeiffer. Heidelberg: Physica.

Lechner, M. (2009). Sequential Causal Models for the Evaluation of Labor Market Programs.
Journal of Business & Economic Statistics 27: 71–83.

Lechner, M. (2008a). A Note on Endogenous Control Variables in Causal Studies. Statistics and
Probability Letters 78: 190–195.

Lechner, M. (2008b). Matching estimation of dynamic treatment models: Some practical issues, in:
D. Millimet, J. Smith, and E. Vytlacil (eds.), Advances in Econometrics: Volume 21, Modelling
and Evaluating Treatment Effects in Econometrics 289–333.

Lechner, M. and Miquel, R. (2001). A Potential Outcome Approach to Dynamic Programme Evalu-
ation – Part I: Identification. Discussion paper 2001–07, Department of Economics, University
of St. Gallen; revised 2005.

Lechner, M. and S. Wiehler (2007). Does the Order and Timing of Active Labour Market Pro-
grammes Matter? Discussion paper 2007–38, Department of Economics, University of St.
Gallen.

Neyman, J. (1923). On the Application of Probability Theory to Agricultural Experiments. Essay
on Principles. Section 9, translated in Statistical Science 5 (1990): 465–480.

Miquel, R. (2002). Identification of Dynamic Treatments Effects by Instrumental Variables. Uni-
versity of St. Gallen, Discussion paper, 2002–11.

Miquel, R. (2003). Identification of Effects of Dynamic Treatments with a Difference-in-Differences
Approach. University of St. Gallen, Discussion paper, 2003–06.

Moffitt, R. (1984). Profiles of Fertility, Labour Supply and Wages of Married Women: A Complete
Life-Cycle Model. Review of Economic Studies 51: 263–278.

Pötter, U. and H.-P. Blossfeld (2001). Causal Inference from Series of Events. European Sociolog-
ical Review 17 (1): 21–32.

Robins, J.M. (1986). A new approach to causal inference in mortality studies with sustained ex-
posure periods – Application to control of the healthy worker survivor effect. Mathematical
Modeling 7:1393–1512; with 1987 Errata to: A new approach to causal inference in mortality
studies with sustained exposure periods – Application to control of the healthy worker survivor
effect. Computers and Mathematics with Applications 14:917–921; 1987 Addendum to: A new
approach to causal inference in mortality studies with sustained exposure periods – Application
to control of the healthy worker survivor effect. Computers and Mathematics with Applications
14:923–945; and 1987 Errata to: Addendum to ‘A new approach to causal inference in mortality
studies with sustained exposure periods – Application to control of the healthy worker survivor
effect’. Computers and Mathematics with Applications 18: 477.

Robins, J.M. (1989). The Analysis of Randomized and Nonrandomized AIDS Treatment Trials Us-
ing a New Approach to Causal Inference in Longitudinal Studies. In: Health Service Research
Methodology: A Focus on Aids, eds. L. Sechrest, H. Freeman and A. Mulley. Washington, D.C.:
Public Health Service, National Centre for Health Services Research.

Robins, J.M. (1997). Causal Inference from Complex Longitudinal Data. Latent Variable Mod-
elling and Applications to Causality. In: Lecture Notes in Statistics, ed. M. Berkane. New York:
Springer-Verlag.

Robins, J.M. (1999). Association, Causation, and Marginal Structural Models. Synthese 121:
151–179.

Robins, J.M., S. Greenland and F. Hu, (1999). Estimation of the Causal Effect of a Time-varying
Exposure on the Marginal Mean of a Repeated Binary Outcome. Journal of the American Sta-
tistical Association 94: 687–700.

Rosenbaum, P.R. and D.B. Rubin (1983). The Central Role of the Propensity Score in Observa-
tional Studies for Causal Effects. Biometrika 70: 41–50.

Rosenbaum, P.R. and D.B. Rubin, (1984). Reducing bias in observational studies using subclassi-
fication on the propensity score. Journal of the American Statistical Association 79: 516–524.



3 Sequential Potential Outcome Models 57

Rosenfeld, R.A. (1996). Women Work Histories. Population and Development Review 22, Supple-
ment: 199–222.

Rubin, D.B. (1974). Estimating Causal Effects of Treatments in Randomized and Nonrandomized
Studies. Journal of Educational Psychology 66: 688–701.

Rubin, D.B. (2004). On principles for modeling propensity scores in medical research. Pharma-
coepidemiology and Drug Safety 13: 855–857.

Sims, C.A. (1972). Money, Income, and Causality. American Economic Review 62: 540–552.
Troske, K.R. and A. Voicu (2004). Joint estimation of sequential labour force participation and

fertility decisions using Markov chain Monte Carlo techniques. Columbia: University of Mis-
souri, Department of Economics.

Wiener, N. (1956). The Theory of Prediction. In: Modern Mathematics for Engineers, Series 1, ed.
E.F. Beckenham, Chapter 8. New York: McGraw-Hill.

Zhao, Z. (2004). Using Matching to Estimate Treatment Effects: Data Requirements, Matching
Metric and a Monte Carlo Study. The Review of Economics and Statistics 86: 91–107.



Chapter 4
Structural Modelling, Exogeneity,
and Causality

Michel Mouchart, Federica Russo and Guillaume Wunsch

4.1 Causal Analysis in the Social Sciences

4.1.1 Goals of Causal Analysis

Whilst it might seem uncontroversial that the health sciences search for causes –
that is, for causes of disease and for effective treatments – the causal perspective is
less obvious in social science research, perhaps because it is apparently harder to
glean general laws in the social sciences than in other sciences, due the probabilistic
character of human behaviour. Thus the search for causes in the social sciences is
often perceived to be a vain enterprise and it is often thought that social studies
merely describe the phenomena.

On the one hand, an explicit causal perspective can already be found in pioneer-
ing works of Adolphe Quetelet (1869) and Emile Durkheim (1897) in demography
and sociology respectively, and the social sciences have taken a significant step in
quantitative causal analysis by following Sewall Wright’s path analysis (1934), first
applied in population genetics. Subsequent developments of path analysis – such
as structural models, covariance structure models or multilevel analysis – have the
merit of making the concept of cause operational by introducing causal relations
into the framework of statistical modelling. However, these developments in causal
modelling leave a number of issues at stake, for instance a deeper understanding of
exogeneity and its causal importance.

On the other hand, an explicit causalist perspective still needs justification. Dif-
ferent social sciences study society and humans from different angles and perspec-
tives. Sociology studies the structure and development of human society, demogra-
phy attends to the vital statistics of populations, economics studies the manage-
ment of goods and services, epidemiology studies the distribution of disease in
human populations and the factors determining that distribution, etc. In spite of
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these differences, social sciences share a common objective: to understand, predict
and intervene on individuals and society. In these three moments of the scientific
demarche, knowledge of causes becomes essential. The importance of causal knowl-
edge is twofold. Firstly, we pursue a cognitive goal in detecting causes and thus in
gaining general knowledge of the causal mechanisms that govern the development
of society. Secondly, such general causal knowledge is meant to guide and inform
social policies, that is we also pursue an action-oriented goal. If the social sciences
merely described phenomena, it would not be possible to design efficient policies
or prescribe treatments that rely on the results of research.

As stated above, the social sciences do not establish laws as physics does.
Whether this is an intrinsic issue of these sciences, or merely a contingent issue due
to the specifity of social problems, is still matter of debate and falls far beyond the
scope of the present paper. In the following, we will rather reverse the perspective
and try to tackle the issue: under what conditions can structural models give us
causal knowledge?

4.1.2 Variation and Regularity in Causal Analysis

The first thing worth mentioning is that we need to abandon the paradigm of reg-
ularity as regular succession of events in time, a heritage of Hume, in favour of a
more flexible framework. Hume believed that causality lies in the constant conjunc-
tion of causes and effects. In his Treatise Hume (1748) says that, in spite of the
impossibility of providing rational foundations for the existence of objects, space,
or causal relations, believing in the existence of causal relations is a “built in” habit
of human nature. In particular, belief in causal relations is granted by experience.
For Hume, simple impressions always precede simple ideas in our mind, and by in-
trospective experience we also know that simple impressions are always associated
with simple ideas. Simple ideas are then combined in order to form complex ideas.
This is possible thanks to imagination, which is a normative principle that allows
us to order complex ideas according to (i) resemblance, (ii) contiguity in space and
time, and (iii) causality. Of the three, causation is the only principle that takes us
beyond the evidence of our memory and senses. It establishes a link or connection
between past and present experiences with events that we predict or explain, so
that all reasoning concerning matters of fact seems to be founded on the relation of
cause and effect. The causal connection is thus part of a principle of association that
operates in our mind. Regular successions of impressions are followed by regular
successions of simple ideas, and then imagination orders and conceptualizes suc-
cessions of simple ideas into complex ideas, thus giving birth to causal relations.
The famed problem is that regular successions so established by experience clearly
lack the logical necessity we would require for causal successions. Hume’s solution
is that if causal relations cannot be established a priori, then they must be grounded
in our experience, in particular, in our psychological habit of witnessing effects that
regularly follow causes in time and space.
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If we want causality to be an empirical and testable matter rather than a psycho-
logical one, we need to replace the Humean paradigm of regularity with a paradigm
of variation. In this framework structural models do not only aim at finding regular
successions of events. Rather, causal models model causal relations by analysing
suitable variations among variables of interest (see Russo 2006, 2008). Differently
put, causal models are governed by a rationale of variation, not of regularity. A
rationale is a principle of some opinion, action, hypothesis, phenomenon, model,
reasoning, or the like. The quest for a rationale of causality is then the search for
the principle that guides causal reasoning and thanks to which we can draw causal
conclusions. This principle lies in the notion of variation.

The rationale of variation manifestly emerges, for instance, in the basic idea of
probabilistic theories of causality and in the interpretation of structural equations.
Probabilistic theories of causality, see Suppes (1970), focus on the difference be-
tween the conditional probability P(E |C ) and the marginal probability P(E). To
compare conditional and marginal probability means to analyse a statistical rele-
vance relation, i.e. probabilistic independence. The underlying idea is that if C is a
cause of E , then C must be statistically relevant for E . Hence, the variation hereby
produced by C in the effect E will be detected because the conditional and the
marginal probability differ. Analogously, quantitative probabilistic theories focus
on the difference between the conditional distribution P(Y ≤ y |X ≤ x ) and the
marginal distribution P(Y ≤ y). Again, to compare conditional distribution with
marginal distribution means to measure the variation produced by the putative cause
X on the putative effect Y .

In structural equation models, the basic idea is that, given a system of equations,
we can test whether variables are interrelated through a set of linear relationships,
by examining the variances and covariances of variables. Sewall Wright, as early
as 1934, has taught us to write the covariance of any pair of observed variables
in terms of path coefficients. The path coefficient quantifies the (direct) causal ef-
fect of X on Y ; given the numerical value of the path coefficient β, the equation
Y = β X + ε claims that a unit increase in X would result in a β unit increase of
Y . In other words, β quantifies the variation of Y associated to a variation of X ,
provided that X doesn’t have null variance. Another way to put it is that structural
equations attempt to quantify the change in X that accompanies a unit change in
Y . It is worth noting that the equality sign in structural equations does not state an
algebraic equivalence. Jointly with the associated graph, the structural equation is
meant to uncover a causal structure. That is, given a structural equation of the simple
form Y = β X + ε1, the reverse equation X = γ Y + ε2 is not causally equivalent.
Pearl (2000, pp. 159–160) makes a similar point.

4.1.3 Background Knowledge in Causal Analysis

Variation, however, is not itself a causal notion and consequently cannot guarantee,
alone, the causal interpretations of probabilistic inequalities. Good epistemology
ought to tell us under what conditions, i.e. what the constraints are, for variations
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to be causal. A complete account of the guarantee of the causal interpretation
should focus on the difference between purely associational models and causal
models, pointing to the features proper to the richer apparatus of causal models
(see Russo 2008; Russo 2006). For a model to be causal, we shall particularly focus
on two types of constraints: background knowledge and structural stability. In a nut-
shell, concomitant variations will be deemed causal if they are structurally stable and
if they are congruent with background knowledge; see also e.g. Engle et al. (1983),
Florens and Mouchart (1985), Hendry and Richard (1983) or Thomas (1996). In this
way regularity, which would be better understood here in terms of invariance of the
model’s structure (variables and relations), becomes a constraint that participates in
the causal interpretation of variations.

On the one hand, background knowledge, both theoretical and empirical, serves
three roles: (i) it provides a relevant causal context for the formulation of hypothe-
ses, (ii) it guides the choice of variables and of the relations to be tested for structural
stability, and (iii) it constitutes the sounding board for results as they have to be
congruent with background knowledge. On the other hand, structural stability is a
constraint we impose on a relation for being causal, in order to rule out accidental
relations. Differently put, the crucial step in Hume’s argument is significantly differ-
ent from the rationale hereby proposed. We claim that we firstly look for variations.
Once concomitant variations are detected, a condition of invariance or structural
stability (among others) is imposed on them. What does structural stability give us?
Not logical necessity, nor mere constant conjunction as Hume advocated. Invari-
ance, which is an empirical feature, recalls Humean regularity but the scope of the
former is wider than that of the latter. Structural stability is a condition required in
order to ensure that the model correctly specifies the data generating process and
that the model does not confuse accidental and/or spurious relations with causal
ones. It is worth noting that, in the search for structurality, background knowledge
and invariance play a complementary role. In particular, unexplained stable relations
may lead to questioning background knowledge and eventually to modifying it.

It might be objected that if structural stability does not give us logical necessity
either, it does not any better than regularity. Undoubtedly necessity is an essential
feature for those who would like the social sciences to discover universal laws, or
for those who question their scientific legitimacy on this ground. However, inde-
pendently of whether it is a built-in impossibility of the social sciences to glean
laws, this would be a too rigid framework, for society and individuals are too mu-
table objects of study to be fettered in immutable and even regular deterministic or
probabilistic laws.

The philosophical gain of adopting this paradigm is twofold. Firstly, we go be-
yond the Humean tradition that somehow denies causation by reducing it to regular-
ity. Secondly, we do not fall into untestable metaphysical positions either, because
structural models stay at the level of knowledge. Let us clarify this last point. Struc-
tural modelling intends to represent an underlying causal structure, mathematically,
by means of equations, and pictorially, by means of directed acyclic graphs. How-
ever, structural models don’t pretend to attain the ontic level, i.e. to open the black
box, so to speak. They stay at the level of field knowledge and theory: if concomitant
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variations between, say, X and Y are structurally stable and are congruent with
available field knowledge, then we have no reasons not to believe that X causes Y .
In this sense structural models mediate epistemic access to causal relations without
claiming that the true causes have been discovered. Differently put, structural mod-
elling allows us to take a sensible causalist stance that guides actions and policies
without overflowing into untestable metaphysical claims.

The practical gain of adopting this paradigm is having a clearer understanding
of the causal import of background knowledge and of testing stability. Those as-
pects, in fact, turn out to be of fundamental importance for the interpretation of
results.

4.1.4 Probabilistic Modelling in Causal Analysis

Structural models belong to the category of probabilistic models. This leads us to
consider also the following issue. Is a probabilistic characterization of causation
a symptom of indeterministic causality or rather of our incomplete and uncertain
knowledge? In physics, quantum mechanics raised quite substantial issues about
the possibility of indeterminism. However, whether or not the world is actually
indeterministic, needs not to be decided once and for all. In fact, from an epistemo-
logical viewpoint, a probabilistic characterization of causal relations in structural
models only commits us to state that our knowledge is incomplete and uncertain.
Our endeavour to gain causal knowledge requires reducing, as far as possible, bias
and confounding by building good structural models, that is models that pick up
structurally stable relations consistent with background knowledge.

So far we have seen that the concept of variation plays a crucial role in the in-
terpretation of structural equations. A simple form of a structural equation such
as Y = β X + ε, can be interpreted as follows: variations in X lead to or are re-
sponsible for variations in Y . In other words, X is statistically relevant for Y , i.e.
P(Y |X ) �= P(Y ). However, statistical relevance, and consequently also variation,
are symmetrical notions. So how do we know that X causes Y and not the other way
around? There are three different but nonetheless related elements that participate in
determining the direction of the causal relations: background knowledge, invariance,
and time. Let us focus on time. In the social sciences we need temporal direction.
This is for several reasons.

Firstly, causal mechanisms – be they physiological, social or socio-
physiological – are embedded in time. Smoking at time t causes cancer at t ′ (t < t ′),
but not the other way around. To give another example, use of contraceptives is
followed by changes in the intensity and tempo of fertility. Secondly, although the
two causal relations marriage dissolution influences migration and migration influ-
ences marriage dissolution both make sense, we need to know whether marriage
dissolution or migration is the temporally prior cause for cognitive and/or policy
reasons. One out of the two claims might be eventually disproved due to problems
of observability or lack of theory. For instance, the causal chain migration influences
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marriage dissolution might be incorrect: although marriage dissolution is observed
after migration, there might exist a temporally prior process – marital problems and
the subsequent decision to divorce – causing migration.

This oversimplified example clearly shows that causal modelling requires a con-
stant interplay between observation, theory and testing. Indeed, this is the core of a
hypothetico-deductive methodology of structural modelling (see Russo 2008; Russo
2006). Causal hypotheses need to be confirmed or disconfirmed (i.e. accepted or
rejected in the statistical jargon) based on empirical testing: the model has to fit
observations, but the causal hypothesis itself has to be formulated, along with the
model building stage, in accordance with available well established theories and
background knowledge. However, we also need structural models to be flexible
enough to revise our theories in the light of new data disconfirming prior theories.

Following the H-D methodology, causal hypotheses are confirmed or discon-
firmed depending on the results of empirical testing. Suppose, for the sake of the ar-
gument, that the causal hypothesis is rejected. Such a negative result can be nonethe-
less useful as it can suggest that improvement is needed in the theory backing the
causal model, or that data may contain some source of bias. In other words, the
rejection of a causal hypothesis can trigger further research. Suppose now, again
for the sake of the argument, that the causal hypothesis is accepted. Such a pos-
itive result is not an immutable one, written on the stone, so to speak. Although
the causal hypothesis is not rejected, this may be subject to revision (and even to
rejection) in the future, due to new discoveries. It is worth stressing that the accep-
tance of the causal model is highly dependent on its structural stability. Unlike the
traditional falsificationist account (see Popper 1959), hypothetico-deductivism in
structural modelling allows and indeed encourages us to use at any stage of research
all available information. Williamson (2005) also makes a similar point in putting
forward a hybrid of inductive and hypothetico-deductive methodologies in which
the hypothesising stage is always informed by previous results, whether positive
or negative. This is indeed the advantage of handling structural models that are
assumed to represent underlying causal structures without pretending to uncover
immutable metaphysical causes. The following sections make more explicit and
formal these ideas about causality and structural modelling.

4.2 Structural Modelling

4.2.1 The Meaning of Structurality

Inspired by the seminal works of Wright, Haavelmo, Blalock, Pearl and others, we
will develop in this section a structural modelling approach to causation. In essence,
a model is deemed structural if it uncovers a structure underlying the data gener-
ating process. As discussed in Section 4.1.3, this approach systematically blends
two ingredients. First, the model must be congruent with background knowledge:
modelling the data generating process must be operated in the light of the current
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information on the relevant field. Second, the model must show stability in a wide
sense: both the structure of the model and the parameters have to be stable or
invariant with respect to a large class of interventions or of modifications of the
environment. Often, but not always, structural models make use of latent variables.
By integrating out the latent variables, the statistical model is thus obtained as the
marginal distribution of the manifest or observable variables. It is crucial to note that
this concept of structural modelling is wider than the framework of structural equa-
tions models, also known as covariance structure models or LISREL type models,
widely used in psychology or in sociology, and of simultaneous equations models,
widely used in econometrics.

A first consequence of this approach is that the notion of causality becomes
relative to the model itself, rather than to the data, as is the case, for instance,
in the Granger-type concept of causality. Also, this means that we do not aim
at making metaphysical claims about causal relations, but rather at saying when
we have enough reasons – specifically, reasons about background knowledge and
about structural stability – to believe that we hit upon a causal relation. A second
consequence of this model-based concept of causality, involving both background
knowledge and stability, is that the model does not simply derive from theory as is
often the case in the econometric tradition.

Therefore structural modelling is much more than a sophisticated statistical tool.
Good structural modelling ought to be accompanied by a broad and sensible account
of what a statistical model is and represents, of what statistical inference is, and of
what rationale guides model building and testing. The last point has been dealt with
in the previous section. The first and the second will be the object of the following
sections. We first recall the formal nature of a statistical model and of the basic
concepts of conditional modelling and of exogeneity, we then define the concept of
causality in such a framework.

4.2.2 The Statistical Model

Formally, a statistical model M is a set of probability distributions, explicitly:

M = {S, Pω: ω ∈ �} (4.1)

where S, called the sample space or observation space, is the set of all possible
values of a given observable variable (or vector of variables) and for each ω ∈
�, Pω is a probability distribution on the sample space, also called the sampling
distribution; thus, ω is a characteristic, also called parameter, of the corresponding
distribution and � describes the set of all possible sampling distributions belonging
to the model. The basic idea is that the data can be analyzed as if they were a
realization of one of those distributions. For example, in a univariate normal model,
the sample space S is the real line and the normal distributions are characterized by
a bivariate parameter, for instance the expectation (μ) and the variance (σ 2); in this
case: ω = (μ, σ 2).



66 M. Mouchart et al.

A statistical model is based on a stochastic representation of the world. Its ran-
domness delineates the frontier or the internal limitation of the statistical explana-
tion, since the random component represents what is not explained by the model.
A statistical model is made of a set of assumptions under which the data are to
be analyzed. Typical assumptions of statistical models are: the observed random
variables follow or not identical distributions; the observations are, or are not, in-
dependent; the basic sampling distributions are, or are not, continuous and may
pertain, or not, to a family characterized by a finite number of parameters (e.g. the
normal distributions).

If assumptions are satisfied, the statistical model correctly describes co-variations
between variables, but no causal interpretation is allowed yet. In other words, it
is not necessary that causal information be conveyed by the parameters, nor is it
generally legitimate to give the regression coefficients a causal interpretation. It is
worth noting that in specifying the assumptions typical of a statistical model, the
problem is not to evaluate whether an assumption is true. A (frequentist) statistician
may however want to test in due course whether a hypothesis is confirmed or not.
If a model-builder could prove that an assumption were (exactly) true, this would
not be an assumption anymore, but a description of the real world. Rather, the main
issue is to evaluate whether an assumption is useful, in the sense of making possible
a process of learning-by-observing on some aspects of interest of the real world.

4.2.3 Statistical Inference and Structural Models

Statistical inference is concerned with the problem of learning-by-observing and is
inductive since it implies drawing conclusions about what has not been observed
from what has been observed. Therefore, statistical inference is always uncertain
and the calculus of probability is the natural, and in a sense logically necessary tool,
(see e.g. de Finetti (1937), Savage (1954)), for expressing the conclusions of statisti-
cal inference. Therefore, the stochastic aspect of statistical models corresponds to a
stochastic representation of the world and is a vehicle for the learning-by-observing.

Here, two aspects ought to be distinguished. On the one hand, learning-by-
observing conveys the idea of learning about some features of interest, namely the
characteristics of a distribution or the values of a future realization. On the other
hand, learning-by-observing is also concerned with the problem of accumulating
information as observations accumulate. These two aspects actually refer to the
usefulness of the model. Structural models are precisely designed for making the
process of statistical inference meaningful and operational.

To better understand the idea behind this last claim, it is worth distinguishing
two families of models. In the first family we find purely statistical models, also
called associational or descriptive models, and exploratory data analysis, also called
data mining. In these approaches, the assumptions are either not made explicit or
restricted to a minimum allowing us to interpret descriptive summaries of data. In-
terest may accordingly focus on the distributional characteristics of one variable at a



4 Structural Modelling, Exogeneity, and Causality 67

time, such as mean or variance, or on the associational characteristics among several
variables, such as correlation or regression coefficients. It is worth noting that the
absence or the reduced number of assumptions constituting the underlying model
make these associational studies insufficient to infer a causal relation and leaves
open a wide scope for interpreting the meaning of the results.

The second family consists in the so-called structural models. “Structural” con-
veys the idea of a representation of the world that is stable under a large class of
interventions or of modifications of the environment. Structural models are also
called “causal models”. Here, the concept of causality is internal to a model which is
itself stable, in the sense of structurally stable. As a matter of fact, structural models
incorporate not only observable, or manifest, variables but also, in many instances,
unobservable, or latent, variables. The possible introduction of latent variables is
motivated by the help they provide in making the observations understandable; for
instance, the notion of “intelligence quotient” or of “associative imagination” might
help to shape a model which explains how an agent succeeds in answering the ques-
tions of a test in mathematics. Thus a structural model aims at capturing an under-
lying structure; modelling this underlying structure requires taking into account the
contextual knowledge of the field of application. The characteristics, or parameters,
of a structural model are of interest because they correspond to relevant properties of
the observed reality and can be safely used for accumulating statistical information,
precisely because of their structural stability. In this context, a structural model is
opposed to a “purely statistical model”, understood as a model that accounts for
observable associations without linking those associations to stable properties of
the world.

The invariance condition of a structural model is actually a complex issue. Two
aspects have to be considered. A first one is a condition of stability of the causal re-
lation. The idea is that each variable depends upon a set of other variables through a
relationship that remains invariant when those other variables are subject to external
influence. This condition allows us to predict the effects of changes in the environ-
ment or of interventions. A second condition is the stability of the distributions to
ensure that the parameters will not be affected by changes in the environment or
interventions.

4.3 Conditional Models, Exogeneity and Causality

4.3.1 Conditional Models

Originally, the concept of exogeneity appears with regression models. A first, and
naive, approach was to consider an exogenous variable as a non-random variable,
the endogenous variable being the only random one. That this approach was unsat-
isfactory became clear when considering complex models where the same variable
could be exogenous in one equation and endogenous in another one. A first progress
came through a proper recognition of the nature of a conditional model. Here, we
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present a heuristic account of the basic concepts; for a more formal presentation,
see Mouchart and Oulhaj (2000) and Oulhaj and Mouchart (2003).

Let us start with an (unconditional) parameterized statistical model Mω
X given in

the following form:

Mω
X = {pX (x |ω ) : ω ∈ �} (4.2)

where for each ω ∈ �, pX (x |ω ) is a (sampling) probability density on an underly-
ing sample space corresponding to a (well-defined) random variable X and � is the
parameter space, aimed at describing the set of sampling distributions considered to
be of interest. A conditional model is constructed through embedding this concept
into the usual concept of an unconditional statistical model (4.2). For expository
purposes, this paper only considers the case where a random vector X of obser-
vations is decomposed into X ′ = (Y ′, Z ′) (where ′ denotes transposition) and the
model is conditional on Z .

The basic idea of a conditional model is the following: starting from a global
model Mω

X as given in (4.2), each sampling density pX (x |ω ) is first decomposed
through a marginal-conditional product:

pX (x |ω ) = pZ (z |φ ) pY |Z (y |z, θ ) ω = (φ, θ ) (4.3)

where pZ (z |φ ) is the marginal density of Z , parametrized by φ, and pY |Z (y |z, θ )
is the conditional density of (Y |Z ), parametrized by θ . Next, one makes specific as-
sumptions on the conditional component leaving virtually unspecified the marginal
component. Thus a conditional model may be represented as follows:

MZ,θ ;�
Y = {

pX (x |ω ) = pZ (z |φ ) pY |Z (y |z, θ ) ω= (θ,φ) ∈ � = � × �
}

(4.4)
where � parametrizes a typically large family of sampling probabilities on Z only
and for each θ ∈ �, pY |Z (y |z, θ ) represents a conditional density of (Y |Z ). The
essential features of a conditional model are therefore:

1. θ indexes a well specified family of conditional distributions. This family con-
stitutes the kernel of the concept of a conditional model. The concept of condi-
tional model relates, however, to a family of joint distributions pX (x |ω ) obtained
by crossing the family of conditional densities pY |Z (y |z, θ ) with a family of
marginal distributions pZ (z |φ ).

2. φ is a nuisance parameter which is identified by definition (because � is a set of
distributions of Z ). Furthermore θ and φ are variation free. The notation MZ,θ ;�

Y
conveys the idea that θ is the only parameter of actual interest, leaving to φ no
explicit role.

3. The modelling restrictions are concentrated on the conditional component, i.e.
the set P Z ,θ

Y : θ ∈ � embodies the main hypotheses of the model, whereas in
most cases, the set � embodies a minimal amount of restrictions, typically only
the hypotheses necessary to guarantee essential properties for the inference on
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θ , such as identifiability or convergence of estimators. For instance, in a linear
regression model, suitable asymptotic properties of the Ordinary Least Squares
estimators require conditions such as stationarity or ergodicity of the process
generating the explanatory variables. Consequently, in most situations, but not
in all, � represents a “thick” subset of the set of all probability distributions of
Z . The role of � is to stress the random character of Z at the same time as the
vague specification of its data generating process; � may nevertheless play an
important role because its specification may determine desirable properties of the
estimators of θ , the parameter of interest. Oulhaj and Mouchart (2003) provides
more information on conditional models.

Let us give an example. Consider four variables: tabacism (T ), cancer of the
respiratory system (C), asbestos exposure (A) and socio-economic status (SE S).
A global (unconditional) model would consider a family of distributions on the
four variables (T, C, A, SE S) parametrized by, say, ω, as in (4.2). A conditional
modelling approach would run as follows. Suppose we are interested in the impact
of T , A and SE S on C . Attention would therefore focus on a particular component
of the global model, namely the conditional distribution of C given T , A and SE S,
leaving the marginal distribution of T , A and SE S with a minimum amount of
specification. In other words, for each distribution indexed by ω in the global model
(4.2), we have in mind a marginal-conditional decomposition as in (4.3):

pC,T,A,SE S (c, t, a, ses |ω ) = pC |T,A,SE S (c |t, a, ses, θ ) pT,A,SE S (t, a, ses |φ )

ω = (φ, θ ) (4.5)

The basic idea of the conditional model, as in (4.4), is to endow the global model
(4.2) with two properties. Firstly, the parameters characterizing the marginal (φ)
and the conditional (θ ) components are independent. Here, “independence” means
“variation-free” in a sampling theory framework, i.e. ω = (θ, φ) ∈ � = � × �,
or independent in the (prior) probability in a Bayesian framework, i.e. φ⊥⊥θ in
Bayesian terms. Secondly the marginal component is left almost unspecified, i.e.
the set � represents a “very large” set of possible distributions for (T, A, SE S).

4.3.2 Conditional Model and Exogeneity

Suppose we analyze data set X = (Y, Z ). A challenging issue is to decide whether
it is admissible, in the sense of losing no relevant information, to only specify a
conditional model MZ,θ ;�

Y rather than specifying the model Mω
X. This is the issue of

exogeneity.
The motivation for specifying a conditional model rather than a model on the

complete data set X is parsimony: some specifications on the marginal process may
not be avoided for ensuring suitable properties of the inference on the parameters
of the conditional process but by specifying less stringently the marginal process,
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generating Z , one looks for protection against specification error. The cost could
however be substantial if the marginal process generating Z contains relevant infor-
mation, an example of which is given in Section 4.5.1.

Formally, the condition of exogeneity is therefore: the parameter of interest
should only depend on the parameters identified by the conditional model and the
parameters identified by the marginal process should be “independent” of the pa-
rameters identified by the conditional process. It should be stressed that the inde-
pendence among parameters has no bearing on a (sampling) independence among
the corresponding variables.

In order to make the argument more transparent, we slightly modify the notation.
In Section 4.3.1 we constructed a model on the X -space, where X = (Y ′, Z ′)′,
by crossing a family of distributions on Z , indexed by φ, and a family of condi-
tional distributions on (Y |Z ), indexed by θ , and eventually obtained a joint model,
parametrized by ω = (φ, θ ). We now start from a joint model on X , parametrized by
ω, and deduce from the decomposition (4.3) the parameters characterizing the fam-
ily of marginal distributions of Z , denoted by θZ , and the parameters characterizing
the family of conditional distributions of (Y |Z ), denoted by θY |Z . Equation (4.3) is
accordingly rewritten as follows:

pX (x |ω ) = pZ (z |θZ ) pY |Z
(
y
∣∣z, θY |Z

)
(4.6)

where θZ , respectively θY |Z , represents the parameter identified by the marginal,
respectively conditional, process. The condition of independence, namely:

(
θZ ,θY |Z

) ∈ �Z × �Y |Z or θZ⊥⊥θY |Z (4.7)

is a condition of (Bayesian) cut (see Barndorff-Nielsen (1978) in a sampling theory
framework, and Florens et al. (1990) in a Bayesian framework), and is deemed to
allow for a separation between the inference on the parameters of the marginal pro-
cess and the inference on the parameters of the conditional process. More explicitly,
condition (4.7) implies that any inference on θZ , respectively, θY |Z , be based only
on the marginal, respectively conditional, model characterized by the marginal dis-
tributions pZ (z |θZ ), respectively conditional distributions pY |Z (y

∣∣z, θY |Z ).
This condition, along with the condition that the parameter of interest, say λ, de-

pends only on the parameters identified by the conditional process, i.e. λ = f (θY |Z ),
formalizes the concept of “losing no relevant information” when basing the infer-
ence on the conditional model rather than on the complete model, characterized by
the distributions pX (x |ω ). In this setting, the concept of exogeneity appears as a
binary relation between a function of the data, namely Z , and a function of the pa-
rameters, namely λ. Thus, Florens et al. (1990) suggests the expression “Z and λ are
mutually exogenous” (or Z is exogenous for λ), to stress the idea that a variable is
not exogenous by itself but is exogenous in a particular inference problem. Treating
Z as exogenous means therefore that the (marginal) process generating Z is min-
imally specified (and may be heuristically qualified as “left unspecified”) and that
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the inference on the parameter of interest, although based on the joint distribution of
all the variables in X , is nevertheless invariant with respect to any specific choice of
the marginal distribution of Z . Summarizing: exogeneity is the condition that makes
admissible the use of the conditional model as a reduction of the complete model.

The consequences of a failure of exogeneity may be twofold. There may be a
loss of efficiency in the inference if the failure comes from a restriction (equality
or inequality), or a lack of independence in a Bayesian framework, between the
parameters of the marginal model and those of the conditional model. There may
also be an impossibility of finding a suitable, e.g. unbiased or consistent, estimator
if the parameter of interest is not a function of θY |Z only. A typical example, well
known in the field of simultaneous equations in econometrics, is that the parameter
of interest in a structural equation may not be a function of the parameters identified
by the conditional model corresponding to a specific equation.

4.3.3 Exogeneity and Causality

In general, the specification of a parameter of interest is a contextual rather than
a statistical issue. A most usual rationale for specifying the parameter of interest
is based on the notion of a structural model. In this framework, Russo (2006)
approach causality as exogeneity in a structural conditional model. In the very sim-
ple case of two variables Y and Z , this concept may be paraphrased as follows: if
the conditional distribution of Y given Z is structurally stable and reflects a good
scientific knowledge of the field, there is no reason not to believe that Z causes
Y . This approach might be considered empirical because the observations provid-
ing the ground for a causal interpretation are not only the data under immediate
scrutiny but also the whole body of observations underlying the “field knowledge”
and leading accordingly to the present state of scientific knowledge. In this sense,
causal attribution “Z causes Y” is an issue of structural modelling, namely this is
the question whether the conditional model characterized by pY |Z (y

∣∣z, θY |Z ) is
actually structural.

4.4 Confounding, Complex Systems and Completely
Recursive Systems

4.4.1 Confounders and Confounding

In many circumstances, the same effect can be produced by several causes or the
same cause can produce several effects. We may however focus our interest on
a particular cause, say X and a particular effect, say Y . In this case, the causal
relation X → Y can be subject to confounding. In epidemiology and in demog-
raphy, for example, when one examines the impact of a treatment/exposure on a
response/outcome, a confounding variable – or confounder – is often defined as a
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variable associated both with the putative cause and with its effect, see e.g. Jenicek
and Cléroux (1982), Elwood (1988). Sometimes the definition is more precise, such
as in Anderson et al. (1980) or in Leridon and Toulemon (1997). According to these
authors, a variable is a confounder whenever two conditions simultaneously hold:

1. The risk groups differ on this variable;
2. The variable itself influences the outcome.

Some authors gloss condition 1 adding that the variable, as a background factor,
should not be a consequence of the putative cause, see e.g. Schlesselman (1982).

For instance, if we examine the impact of cigarette smoking on the incidence
of cancer of the respiratory system, a variable such as exposure to asbestos dust
confounds the relation between smoking and this type of cancer. Indeed, exposure to
asbestos dust and smoking are associated, i.e. proportionally there are more persons
exposed to asbestos in the smoking group than in the non-smoking group. Condition
1 is therefore satisfied. In addition, inhalation of asbestos dust is a strong cause
of cancer of the pleura; condition 2 is thus also satisfied. Cancer is the outcome
variable in this example, smoking a potential cause, and exposure to asbestos a
confounder. Vice-versa if one were to examine the impact of asbestos exposure on
the incidence of cancer of the respiratory system, smoking this time would be the
confounding factor, as it is associated with asbestos exposure and is a cause of lung
cancer. This simplified example is discussed in Russo (2006) but a real study would
also consider other causal factors and paths, and the synergy between smoking and
asbestos exposure.

Condition 1 needs to be clarified however; on this subject, see also McNamee
(2003). Why are smoking and asbestos exposure associated? In demography and in
epidemiology, one knows that both smoking and asbestos exposure are dependent
upon one’s socio-economic status (SES): those with a lower SES tend more to smoke
and work in unhealthy environments than those with a higher SES. The causal graph
can therefore be drawn as in Fig. 4.1, where A represents exposure to asbestos, T
tabacism, and C cancer incidence. It is worth noting that Fig. 4.1 incorporates two
assumptions, namely: A⊥⊥T |SE S and C⊥⊥SE S |A, T .

This graph shows that tabacism and asbestos exposure are in fact not independent
from one another as they are both related to one’s SES, i.e. they have a common
cause. Note that SES is also a common cause of T and C as it has an impact on
cancer through the intervening or intermediate variable A. However an association
between two variables such as smoking and asbestos exposure could also be due

Fig. 4.1 Socio-economic
status, smoking, asbestos
exposure and cancer of the
respiratory system

SES C

A

T
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Fig. 4.2 The relation
between T and A, A being an
intervening variable between
T and C

T C

A

Fig. 4.3 The relation
between T and A, A being a
common cause of T and C

A C

T

to a causal relation between them. T could be a cause of A or vice-versa. The two
corresponding causal graphs are given in Fig. 4.2 and 4.3 respectively.

This distinction leads to a more precise definition of a confounder: a confounding
variable, or confounder, is a variable which is a common cause of both the putative
cause and its outcome (Bollen 1989; Pearl 2000; Wunsch 2007). In graphical repre-
sentations, a common cause is a common ancestor to both putative cause and effect.
For example, A is a confounder in Fig. 4.3 because in this model it is a common
cause of both T and C . For the same reason, SE S is a confounder in Fig. 4.1, as it is
a common cause of both T and C (the latter via A). In Fig. 4.2, A is not a common
cause of T and C ; therefore A is not a confounder. Notice that confounding is always
relative to a particular cause and a particular effect. The confounder can be either
latent (i.e. unobserved) or observed; the issue of latent confounding is considered
in Section 4.5. This definition avoids taking an intervening (intermediate) variable
between the putative cause and the outcome such as in Fig. 4.2 as a confounder, even
though it is associated with the putative cause (as the latter has a causal influence on
the former) and it has an impact on the outcome.

Judea Pearl (2000) proposes two criteria for controlling confounding bias: the
back-door and the front-door. The back-door criterion tackles the problem of which
variables to control for in cases of possible confounding of a cause (C) and effect
(E) relation. A variable or a set of variables Z should be controlled for, according
to the back-door criterion, if (i) Z is not a descendant of the cause C and (ii) Z
blocks every path between C and E that contains an arrow into C . For example, in
Fig. 4.4 taken from Pearl (2000), the sets (X4, X3) and (X3, X5) meet the back-door
criterion by blocking every path between C and E containing an arrow into C , while
(X3) alone does not. The variable X3 is a collider depending upon the inverted fork
X1 and X2. If we condition on X3, the variables X1 and X2 become dependent

Fig. 4.4 An example of
Pearl’s back-door criterion

X3

C E

X4 X5

X2X1
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(Pearl 2000; Wunsch 2007) and thus controlling for the sole variable X3 does not
block the path (C ,X4,X1,X3,X2,X5,E).

The front-door criterion uses the presence of an intervening variable between
cause and effect to estimate the causal relation. As an example of Pearl’s front-
door criterion, consider the relation between smoking and lung cancer. If the im-
pact of smoking on lung cancer is mediated by the amount of tar in the lungs,
one can estimate on the one hand, the impact of smoking on the amount of tar
and on the other hand, the impact of the amount of tar on lung cancer. If these
relations are not confounded by other variables, one can then combine the two
effects in order to obtain an estimate of the impact of smoking on lung cancer.
If the relations between smoking and tar and between tar and lung cancer are
confounded, it is sometimes possible to assess the two relations in the absence
of confounding if one can control for another variable causing tar accumulation
(such as environmental pollution) which blocks the back-door paths from smoking
to tar and from tar to lung cancer An example is given in Pearl (2000, pp. 67 and
83). An application of the front-door criterion to the more complex problem of the
causal effect of Catholic schooling on learning is given in Morgan and Winship
(2007, p. 183).

4.4.2 Complex Systems and Completely Recursive Systems

In the previous sections, only small systems of a few variables have been dis-
cussed. Let us now consider a decomposition of X into p components: X =
(X1, X2, . . . X p). Once p increases, the analysis sketched above requires more struc-
ture because unrestricted systems become quickly unmanageable. In this section,
we show how to use field knowledge with the purpose of obtaining a recursive de-
composition of complex systems, giving space to further contextually meaningful
restrictions.

Suppose that the components of X have been ordered in such a way that in the
complete marginal-conditional decomposition:

pX (x |ω ) = pX p|X1,X2,...X p−1

(
x p

∣∣x1, x2, . . . x p−1, θp|1,...p−1
)

· pX p−1|X1,X2,...X p−2

(
x p−1

∣∣x1, x2, . . . x p−2, θp−1|1,...p−2
)
. . . pX1 (x1 |θ1 )

(4.8)

each component of the right hand side may be considered as a structural model with
mutually independent parameters, i.e. in a sampling theory framework:

ω = (
θp|1,...p−1 , θp−1|1,...p−2 . . . , θ1

) ∈ �p|1,...p−1 × �p−1|1,...p−2 . . . × �1 (4.9)

Equations (4.8) and (4.9) characterize a completely recursive system. For p = 3,
Equation (4.8) may be represented by Fig. 4.5, for p = 4 by Fig. 4.6. Once the
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Fig. 4.5 First 3 components
of a completely recursive
system

X3

X1 X2

Fig. 4.6 First 4 components
of a completely recursive
system

X4

X2X1

X3

value of p increases, graphical representations become quickly unmanageable un-
less some assumptions, in the form of conditional independences, operate simpli-
fications on the system. This is indeed a main issue in structural modelling: field
knowledge aims not only at ordering the components of X to obtain (4.8), but also
at bringing in more structure than in the complete system (4.8).

More specifically, statistical modelling of complex systems raises several
issues:

1. Given a p-dimensional vector of variables to be modelled, is field knowledge
sufficient for ordering the variables in such a way that one may obtain a com-
pletely recursive system as in (4.8), i.e. in such a way that each component
X j is univariate? It often happens, in particular in econometrics, that it is not
possible to disentangle recursively the process generating a vector of variables,
in other words that some components X j are subvectors of X rather than uni-
variate random variables. For instance, Mouchart and Vandresse (2005) handles
a case where the data are made of vectors, the components of which are price
and attribute of a set a contracts concluded through a bargaining process. The
data and the contextual information do not allow to know whether the prices
have been bargained after or before the attributes have been agreed upon. This is
a case of simultaneity where the model describes a process generating a vector
of (so-called “endogenous”) variables conditionally on a vector of exogenous
variables, in such a way that the equations of the model do not correspond to
a marginal-conditional decomposition. The econometric literature, particularly
between the Sixties and the Eighties, is rich in developing this class of models,
called “simultaneous equation models”.

2. Endowing each distribution of (4.8) with a structural interpretation amounts to
saying that each of these distributions represents a contextually relevant data
generating process. Parsimony recommends focusing the attention on the pro-
cesses of actual interest and is made operational by selecting a subvector (Xr+s,

Xr+s−1, . . . , Xr ) of X such that the joint distribution of (Xr+s, Xr+s−1, . . . ,

Xr |X1, . . . Xr−1 ) gathers all data generating processes of actual interest. In such
a case the subvector (X1, . . . Xr−1) becomes globally exogenous for the system
of interest.
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4.5 Partial Observability and Latent Variables

4.5.1 A Three-Component System

In this paper, the concept of causality is not rooted in latent variables, as in the
literature on counterfactuals (see for instance Morgan and Winship 2007). However,
this section shows that when latent variables are present in a structural model, causal
attribution becomes substantially more complex.

Historically, latent variables have been object of interest since at least the Forties
and early Fifties, see e.g. Reiersøl (1950), Neyman and Scott (1948, 1951). Latent
variables appear in measurement error models and in factor analytic and LISREL
type models, among others. Also those models and simultaneous equation mod-
els have been shown to be mathematically equivalent as they are all based on the
idea that mathematical expectations are required to lie in a linear space (Florens
et al. 1976, 1979). The last years have seen a voluminous amount of publications on
the large role of latent variables in statistical modelling. Thus Chapter 1 of Skrondal
and Rabe-Hesketh (2004) speaks of “the omni-presence of latent variables”, and the
book presents an interesting account of methodological issues and of applications.
Rabe-Hesketh et al. (2004) suggest how to use a latent variable framework as a uni-
fying device for a large class of models including multilevel and structural equation
models.

We begin by considering a three-variate case and next extend the analysis to a
p-dimensional vector. Consider a three-variate completely recursive system, repre-
sented in Fig. 4.7, for data in the form X = (Y, Z , U ):

pX (x |θ ) = pY |Z ,U
(
y
∣∣z, u, θY |Z ,U

)
pZ |U

(
z
∣∣u, θZ |U

)
pU (u |θU ) (4.10)

where each of the three components of the right hand side may be considered as
structural models with mutually independent parameters, i.e. in a sampling theory
framework:

θ = (
θY |Z ,U , θZ |U , θU

) ∈ �Y |Z ,U × �Z |U × �U (4.11)

This diagram suggests that U causes Z and (U, Z ) cause Y . Thus, according to
the definition offered above, U is a confounding variable for the effect of Z on Y .
Also, Equations (4.10) and (4.11) say that U is exogenous for θZ |U and that (U, Z )
are jointly exogenous for θY |Z ,U .

Now suppose that U is not observable. It might be tempting to collapse the
diagram in Fig. 4.7 into that of Fig. 4.8. Formally, Fig. 4.8 may be obtained by
integrating the latent variable U out of (4.10):

Fig. 4.7 3-component
completely recursive system Y

U Z
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Fig. 4.8 2-component system Z Y

pY |Z
(
y
∣∣z, θY |Z

) = ∫ pY |Z ,U
(
y
∣∣z, u, θY |Z ,U

)
pZ |U

(
z
∣∣u, θZ ,U

)
pU (u |θU ) du

∫ ∫ pY |Z ,U
(
y
∣∣z, u, θY |Z ,U

)
pZ |U

(
z
∣∣u, θZ ,U

)
pU (u |θU ) du dy

(4.12)

pZ (z |θZ ) = ∫ pZ |U
(
z
∣∣u, θZ |U

)
pU (u |θU ) du (4.13)

Therefore:

θY |Z = f1
(
θY |Z ,U , θZ ,U , θU

)
θZ = f2

(
θZ |U , θU

)
(4.14)

Two remarks are in order:

1. In general, Z is not exogenous anymore because (4.14) shows that the parameter
θY |Z and θZ are, in general, not independent; indeed some components of θZ |U
and of θU may be common to θY |Z and θZ . Therefore, Fig. 4.8 is an inadequate
simplification of Fig. 4.7 (see however next remark);

2. the non-observability of U typically implies a loss of identification: the functions
f1 and f2 are not one-to-one; thus Z might still be exogenous because potentially
common parameters in θY |Z and θZ might not be identified;

One might also look for further conditions deemed to recover the exogeneity of
Z . A simplifying assumption frequently used is the sampling independence between
Z and U :

Z⊥⊥U |θ (4.15)

This assumption implies that θZ |U is now written as θZ and Fig. 4.7 becomes
Fig. 4.9 suggesting that U and Z both cause Y (without U causing Z ).

Under condition (4.15), when U is not observable Fig. 4.8 is again obtained under
the following integration of U :

pY |Z
(
y
∣∣z, θY |Z

) = ∫ pY |Z ,U
(
y
∣∣z, u, θY |Z ,U

)
pU (u |θU ) du (4.16)

Therefore:

θY |Z = f3
(
θY |Z ,U , θU

)
(4.17)

Fig. 4.9 3-component
completely recursive system
with marginal independence Y

U Z
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is independent of θZ and the exogeneity between Z and θY |Z may be recovered. In
particular, under condition (4.15), U is not a common cause of Z and Y anymore,
but, from (4.17), the meaning of θY |Z comes from a combination of the causal action
of U along with that of Z , represented by θY |Z ,U , and of the distribution of U ,
represented by θU .

An example may be useful to better grasp some difficulties. Suppose, for sim-
plifying the argument, that the joint distribution of X in (4.10) is multivariate nor-
mal; thus the regression functions are linear and the conditional variances are ho-
moscedastic, i.e. they do not depend on the value of the conditioning variables. Let
us compare the following two regression functions:

E
[
Y
∣∣Z , U, θY |Z ,U

] = α0 + Zα1 + Uα2 (4.18)

α1 = [cov (Y, Z |U )] [V (Z |U )]−1

= [
cov (Y, Z ) − cov (Y, U ) [V (U )]−1 cov (U, Z )

]
× [

V (Z ) − cov (Z , U ) [V (U )]−1 cov (U, Z )
]−1

(4.19)

E
[
Y
∣∣Z , θY |Z

] = β0 + Zβ1 β1 = [cov (Y, Z )] [V (Z )]−1 (4.20)

Therefore, if the effect on Y of the cause Z is measured by the regression coef-
ficient, the correct measure would be α1 rather than β1, once the conditional model
generating (Y |Z , U ) is structural. Note that, in this particular case, α1 = β1 when
Z⊥⊥U , but this is a particular feature of the normal distribution for which Z⊥⊥U
implies that cov (Y, Z |U ) = cov (Y, Z ), and cov (Y, U |Z ) = cov (Y, U ), which is in
general not true. Moreover, α1 = β1 is also true when α2 = 0, i.e. when Y⊥⊥U |Z ,
which is contextually different from Z⊥⊥U .

This example makes two issues explicit:

(i) measuring the effect of a cause should be operated relatively to a completely
specified structural model; failing to properly recognize this issue may lead to
fallacious conclusions because in general: α1 �= β1

(ii) prima facie ancillary specifications, such as a normality assumption, may be
more restrictive than first thought; indeed, under a normality assumption, the
hypotheses Z⊥⊥U and Y⊥⊥U |Z each imply that α1 = β1, although they are
contextually different once the normality assumption is not retained. This hap-
pens because, in the normal case, independence is equivalent to uncorrelated-
ness, and because the regression functions are linear.

4.5.2 The General Case

A difficult issue in structural modelling is bound to the fact that many theories in
the social sciences involve latent or nonobservable variables. These are introduced in
order to help structuring a theoretical framework; think, for instance, of the concept
of “anomy” in sociology or of “permanent income” in economy. In such a case, the
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initial model includes both latent and manifest or observable variables, from which
a statistical model is obtained by integrating out all the latent variables. A typical
benefit of such an approach is to obtain a statistical model with more structure, i.e.
more restrictions, than a “saturated” statistical model constructed independently of
a structural approach. A well-known case is provided by the LISREL type model, or
covariance structure model. However this structural approach has also a cost, some-
times difficult to handle. Indeed, the analysis performed around the simplest case
of one unobservable variable along with two observable variables, given through
Equations (4.12) and (4.13), suggests that the analysis of exogeneity at the level
of the statistical model bearing on the manifest variables only soon becomes in-
tractable, jeopardizing most exogeneity properties and making the interpretation of
the identifiable parameters difficult.

4.6 Discussion and Conclusion

Philosophers have wandered for long time in search of the ultimate concept of
causality, i.e. in search of what causality in fact is. Hume (1748), unable to find what
gives logical necessity to causal relations, came to the conclusion that causality is
nothing more than a regular succession of events deemed to be causal only thanks
to our psychological habit to experience such regular sequences. In his System of
Logic, John Stuart Mill, as early as 1843, put forward an experimentalist notion of
cause. Causes are physical, i.e. one physical fact is said to be the cause of another.
In the System of Logic the experimental approach is seen as the privileged way for
ascertaining what phenomena are related to each other as causes and effects. We
have, says Mill, to follow the Baconian rule of varying the circumstances, and for
this purpose we may have recourse to observation and experiment. Mill believed
that his four methods – Method of Agreement, Method of Difference, Method of
Residues, and Method of Concomitant Variation – were particularly well suited to
natural science contexts but not at all to social sciences. The inapplicability of the
experimental method to the social sciences ruled them out straight away from the
realm of the sciences and still nowadays leads to a skeptical despair about the very
possibility of establishing causal relations in social contexts.

Causal analysis has indeed proved to be a challenging enterprise in the social
sciences. There are at least two difficulties in establishing causal relations. A first
difficulty is, as just mentioned, that a pure randomized experimentation is rarely
possible. A second one, already discussed in the Introduction, is that society and
individuals are too mutable to generate “laws of social physics” à la Quetelet.
However, is this reason enough to give up causal analysis? Should we then content
ourselves with Humean regular successions?

Interestingly enough, Durkheim (1895, Chapter VI) strongly argued against the
Millian attempt to dismiss social sciences as sciences and therefore against any at-
tempt to dismiss causal analysis. In particular, he maintained that the method of
concomitant variation is fruitfully used in sociology and indeed this is what makes
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sociology scientific. Although an explicit causalist perspective has been adopted
by the forefathers of quantitative causal analysis, in more recent times practising
scientists have, mistakenly, hardly ever taken a clear stance in this respect. As we
have suggested in the opening of this paper, a cognitive goal and an action-oriented
goal justify our effort in making causality an empirical and testable, i.e. scientific,
matter.

We have argued that structural modelling tries to make causality meaningful and
operational and we have seen that this objective can be achieved if two fundamen-
tal ingredients are incorporated. The first one is an epistemological element – viz.
the rationale of variation, and the second is a methodological element – viz. the
concept of structural model. Structural modelling aims at uncovering a structure
underlying the actual data generating process. Clearly there is an infinity of con-
ceivable structural models leading to a same statistical model “explaining” the data
under scrutiny. A main issue for the model builder is selecting one of those struc-
tures, taking into account the knowledge of the field and desirable properties of
invariance/stability. Thus the practical implication of this paper is twofold. Firstly,
causation may be attributed only within a structural model reflecting the state of
knowledge of the domain considered. Secondly, the structural stability of the rela-
tionships and of the parameters of the distributions should be thoroughly checked.
This approach is therefore at variance with purely statistical ones where causation
is supposedly tested from correlations without making explicit a suitable structural
model. Furthermore, causation should not be attributed from a model only based on
purely theoretical considerations. Finally, the search for agreement with background
knowledge and for structural stability leaves a lesser role to the goodness of fit.

However, although the development of a more adequate rationale of causality
and of an accurate concept of structural model give a meaningful framework for
causal analysis, we claimed that specific issues still needed to be addressed, e.g.
exogeneity and confounding. In this causal framework, the concepts of exogeneity
and of confounding have been explicitly defined. On the one hand, exogeneity is a
condition of separability of inference that allows us to concentrate on the conditional
distribution leaving aside the marginal one. On the other hand, we have adopted a
definition of confounders as common ancestors of both cause and effect. However,
we have shown that the impact of confounders complicates substantially the analysis
and the operational interpretation of exogeneity, because a variable may lose its
exogenous status under the impact of a latent confounder. Furthermore, if a latent
variable U is a determinant of an outcome Y but is independent of another cause Z
of this outcome, Z remains exogenous but, at the level of the manifest variables, the
measure of the effect of Z on Y depends upon the original causal effect of Z and
upon the distribution of the latent variable U .

Let us now give some general conclusions. In the framework of structural mod-
elling what is the meaning of the claim X causes Y ? Not metaphysical: by means
of structural modelling we do not pretend to attain the ontic level and to discover
the true and ultimate causes. If causal claims cease to have metaphysical meaning,
then they must have an epistemic one: we have reasons to believe that X causes
Y . Causality thus becomes a matter of knowledge generated by the sensible use
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of structural modelling. A major task of epistemology and methodology is then to
make explicit the conditions under which our causal beliefs are justified and to in-
form us correctly about causal relations in the world. The net advantage of spousing
an epistemic view is to avoid committing to the discovery of the “true” causes or of
the “true” model. Instead, causal beliefs are part of our knowledge of the world, and
thus are naturally subject to change and improvement.
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Louvain.

Savage, L.J. (1954). The Foundations of Statistics. New York: John Wiley.
Schlesselman, J.J. (1982). Case-Control Studies – Design, Conduct, Analysis. New York: Oxford

University Press.
Skrondal, A. and S. Rabe-Hesketh (2004). Generalized Latent Variable Modeling: Multilevel, Lon-

gitudinal, and Structural Equation Modeling. Boca Raton, FL: Chapman & Hall/CRC.
Suppes, P. (1970). A Probabilistic Theory of Causality. Amsterdam: North Holland Publishing

Company.
Thomas, R.L. (1996). Modern Econometrics. Harlow: Addison-Wesley.
Wright, S. (1934). The Method of Path Coefficients. Annals of Mathematical Statistics 5(3):

161–215.
Williamson, J. (2005). Bayesian Nets and Causality. Oxford: Oxford University Press.
Wunsch, G. (2007). Confounding and Control. Demographic Research 16: 15–35.



Chapter 5
Causation as a Generative Process. The
Elaboration of an Idea for the Social Sciences
and an Application to an Analysis of an
Interdependent Dynamic Social System

Hans-Peter Blossfeld

5.1 Introduction

The empirical investigation of causal relationships is an important but difficult sci-
entific endeavor. In the social sciences, two understandings of causation have guided
the empirical analysis of causal relationships: (1) Causation as robust dependence
and (2) causation as consequential manipulation. Both approaches clearly have
strengths and weaknesses for the social sciences which will be described in de-
tail in this chapter. Based on this discussion, a third understanding of causation as
generative process, proposed by David Cox, is then further developed. This idea
seems to be particularly valuable for modern social sciences because it leads to a
longitudinal analysis of social processes and can easily be combined with a narrative
in terms of an actor’s objectives, knowledge, reasoning, and decisions (methodolog-
ical individualism). Using event history models, this approach will then be applied
to the causal analysis of an interdependent dynamic social system. In doing so, we
first describe parallel processes and time-dependent covariates, the latter of which
are often used to include the sample path of parallel processes in transition rate
models. The widely used “system” and “causal” approach are contrasted, with the
latter proposed as a more appropriate method from an analytical point of view and
that it provides straightforward solutions to simultaneity problems, time lags and
varying temporal shapes of effects. Based on separate applications in West and East
Germany, Canada, Latvia, and the Netherlands, the usefulness of the approach of
“causation as generative process” is demonstrated by analyzing two highly interde-
pendent family processes: entry into marriage (for individuals in a consensual union)
as the dependent process and first pregnancy/childbirth as the explaining one. After
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potential statistical reasons for the time-dependent effects are described, we move
to more substantive explanations, including the importance of actors, probabilistic
causal relations, preferences and negotiation, observed and unobserved decisions
and the problem of conditioning on future events.

5.2 Models of Causal Inference

The goal to find scientifically based evidence for causal relationships leads to design
questions, such as which inference model is appropriate to specify the relationship
between cause and effect and which statistical procedures can be used to determine
the strength of that relationship (Schneider et al. 2007). Two different models of
causal inference have dominated the work of practitioners in the social sciences over
the last decades: (1) Causation as robust dependence and (2) causation as conse-
quential manipulation. The former approach – which in multiple regression or path
analysis is known as the “control variable” or “partialling” approach (Duncan 1966;
Kerlinger and Pedhazer 1973; Blalock 1970) and in the econometric analysis of
time-series as Granger causation (Granger 1969; Johnston 1972) – starts from the
presumption that correlation does not necessarily imply causation but causation
must in some way or the other imply correlation. In this view, the key problem
of causal inference is to determine whether an observed correlation of variable X
with variable Y , where X is temporally prior to Y , can be established as a “genuine
causal relationship.”

The advocates of the causation as robust dependence approach call X a “gen-
uine” cause of Y in so far as the dependence of Y on X cannot be eliminated
through additional variables being introduced into the statistical analysis. Thus, in
this approach causation is established essentially through the elimination of spuri-
ous (or non-causal) influences. Although this approach has dominated the social
sciences for several decades, sociologists consider it as a too limited approach.
First, they think that causal inference should not be limited entirely to a matter of
statistical predictability but should include predictability in accordance with theory
(Goldthorpe 2001: 3). Second, since scientists rarely know all of the causes of ob-
served effects or how they relate to one another, it is impossible to be sure that all
other important variables have in fact been controlled for (Shadish et al. 2002). A
variable X can therefore never be regarded as having causal significance for Y in
anything more than a provisional sense: “At any point, further information might be
produced that would show that the dependence of Y on X is not robust after all or, in
other words, that the apparent causal force of X is, at least to some extent, spurious”
(Goldthorpe 2001: 5).

The second understanding of causation as consequential manipulation seems
to have emerged as a reaction to the limitations of causation as robust depen-
dence. Instead of “establishing the causes of effects,” Holland (1986, 1988) and Ru-
bin (1974, 1978, 1980) are concerned with “establishing the effects of causes.” They
make clear that it is more to the point to take causes simply as given, and to con-
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centrate on the question of how their effects can be securely measured. According
to this approach, causes can only be those factors that could serve as treatments or
interventions in well-designed controlled experiments or quasi-experiments. Thus,
given appropriate experimental controls, if a causal factor X is manipulated, then a
systematic effect is produced on the response variable Y . The particular strength of
this design is that “. . .while statements in the form ‘X is a cause of Y ’ are always
likely to be proved wrong as knowledge advances, statements in the form ‘Y is
an effect of X ’, once they have been experimentally verified, do not subsequently
become false: ‘Old, replicable experiments never die, they just get reinterpreted”’
(Goldthorpe 2001: 5).

Understood in this way, causation is always relative in the sense that the specific
treatment of Xtr and its observed outcome Ytr are compared with what would have
happened to the same unit if it had not been exposed to this treatment (counterfactual
account of causality). Since it is not possible in the same experiment for a unit to
be both exposed and not exposed to the treatment, the conception of causation as
consequential manipulation leads to what Holland (1986) has called the “funda-
mental problem of causal inference”. For example, a student who completes one
mathematics program cannot go back in time and complete a different program so
that we can compare the two outcomes. Thus, the question arises of how we make
sure that one gets convincing measurements for something that is in fact impossible
to measure, i.e., the outcome Ycon for a unit in the control group which had not been
exposed to the treatment (Xcon ) in the same experiment?

In the hard sciences, such as physics or chemistry, it is often relatively easy to
conduct strictly controlled experiments and to demonstrate, based on the qualities of
the objects under study (e.g., physical entities), what would have happened (Ycon )
to the same unit (u) of analysis if it had not been exposed to the treatment (Xcon).
In other words, it is often plausible to assume that these objects have a constancy
of response over time (temporal stability) and that the effect of the first treatment is
transient and does not affect the object’s response to the second treatment (causal
transience). Or at least, that the physical entities or chemical substances respond
in a similar way under certain conditions. In these cases, the causal effect for u,
CauEff u , is easily defined as CauEff u = Ytr −Ycon . In fact, the model of causation
as consequential manipulation based on the well-designed controlled experiment
has been quite successful in the hard sciences.

In other disciplines such as biology, medicine or psychology, it is often not pos-
sible to assume temporal stability and causal transience at the level of the individual
unit, and it is normally impossible to eliminate the impact of confounding influences
at the individual level. For these sciences, Rubin and Holland suggest a statistical
approach to the fundamental problem of causal inference: rather than focusing on
specific units, this approach estimates an average causal effect for a population of
units: CauEff = E(Ytr |Xtr ) − E(Ycon |Xcon ), where E(Ytr |Xtr ) is the expected
value for participants in the treatment group, and E(Ycon |Xcon ) is the expected
value for participants in the control group. For this solution to work, however, par-
ticipants in the treatment and control groups should differ only in terms of treatment
group assignment, not on any other variables that might potentially affect their re-
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sponses. The approach to make sure that this is indeed the case is the randomized
experiment, where participants are randomly assigned to the treatment and control
conditions, so that one can expect that treatment group assignment would, on av-
erage, over repeated experiments, be independent of any measured or unmeasured
pretreatment characteristics (Fisher 1935). In randomized experiments treatment as-
signment and unit response are therefore statistically independent of each other and
any kind of selection bias is eliminated. However, it must be noted that the average
causal effect of randomized experiments in populations with different distributions
might be quite different, so that the effect of a randomized controlled experiment
is strongly context-dependent, too (see Rohwer, 2007, unpublished). For example,
when experimenters use convenience samples (e.g. if they use university students as
experimental units), the outcome might differ from the outcome of an experiment
based on a random sample from the larger population (Agresti and Franklin 2007:
170 pp).

In sociology, economics, and demography, however, the situation under which
causal inferences have to be drawn is often even more complex and complicated
than in the disciplines mentioned above. In particular, randomization is often prac-
tically or socially unacceptable (e.g., it is morally and legally impossible to assign
twins at birth randomly to different social classes in order to study the impact of
various social environments on school success). In addition, strict experimental
controls are hard to apply. Thus, well-designed randomized controlled experiments
or quasi-experiments are rarely applied by practitioners in the social sciences and
most demographic and sociological causal inference is based on non-experimental
observations of social processes.

Since these observational data are often highly selective, Rubin, Holland and
others subscribing to the approach of causation as consequential manipulation rec-
ommend that in their empirical work social scientists should make the process of
unit assignment itself a prime concern of the inquiry. In particular, social scien-
tists should attempt to identify, and then to represent through covariates in their
data analyses all unobserved and observed influences on the response variable that
could conceivable be involved in, or follow from, this unit assignment process
(Goldthorpe 2001). A difficulty at once obvious here is that of how one demonstrates
that given a constellation of covariables, treatment assignment and unit response
are indeed independent of each other. Thus the question arises: Have all relevant
variables been included and adequately measured and controlled?

A whole battery of statistical techniques has been developed to help to approx-
imate randomized controlled experiments with observational data (Schneider et al.
2007). These methods include fixed effect models (i.e., the adjustment for fixed,
unobserved individual characteristics), instrumental variables (i.e., a method to cor-
rect for omitted variables bias due to unobserved characteristics), propensity score
matching (an approach where individuals are matched on the basis of their observed
aggregate characteristics), and regression discontinuity designs (where samples and
comparisons between groups be restricted to individuals who fall just above or be-
low a specific cut-off point and, at the same time, are likely to be similar on a set
of unobserved variables). Yet, however valuable these techniques might be, “. . .it
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is still difficult to avoid the conclusion that, in non-experimental social research,
attempts to determine the effects of causes will lead not to results that ‘never die’
but only to ones that have differing degrees of plausibility. . . . (Or in other words),
such results will have to be provisional in just the same way and for just the same
reasons as those of attempts to determine the causes of effects via the ‘partialling’
approach” (Goldthorpe 2001: 6). It therefore seems that the benefits of the approach
of causation as consequential manipulation in the social sciences is quite limited.

Another and even more serious issue for social scientists arises from the insis-
tence of the exponents of the causation as consequential manipulation approach
that causes must be manipulable (by an experimenter or intervener – at least in
principle) (e.g., Holland 1986). Here it is not important, whether one requires a
situation of strong manipulation, as Holland (1986) does, or only a situation where
it is possible to conceive of a world where units of analysis receive treatment rather
than control for different reasons (e.g. choice, force, happenstance etc.) as Heckman
and Vytlacil (2005) do. The basic idea is that once the treatment or intervention is
introduced, it will quasi automatically lead to an outcome: Xtr → Ytr . There is no
explicit idea of how treatment and control are translated in a time-dependent way by
acting individuals. The units of analysis in the social sciences, the individuals, are
therefore assumed to be passive subjects whose behavior is explained only by causal
factors and their “. . .objectives, knowledge, reasoning and decisions have no further
relevance” (Goldthorpe 2001: 8). This understanding of causation clearly reduces
the testability of relevant theories and models in the social sciences. In particular, it
seems not to be compatible with the micro-foundation of modern sociological theory
where actors are considered to have agency, where individuals have objectives and
knowledge and, when faced with a choice between different courses of action, will
make decisions. Thus, the causation as consequential manipulation approach has a
limited bearing for social scientists who have conceptionally moved from so-called
factor-based to so-called actor-based models (Macy 1991; Macy and Willer 2002).

This limiting understanding of causation as consequential manipulation is par-
ticularly obvious, if dynamic social systems are studied over longer time-spans.
Life course researchers have demonstrated that by studying lives over substantial
periods of time they increase their opportunities to understand and explain the lives
within their changing social context, including relationships, workplaces, schools,
and communities (Elder et al. 2004). Individuals and their purposeful actions are
embedded and shaped by the historical times so that the same event may differ in
substance and meaning across different birth cohorts. The same events may also
affect individuals in different ways depending on when they occur in the life course.
Lives are also lived interdependently so that events in one person’s life often entail
events for other people as well. Thus, lives cannot be adequately represented when
removed from relationships with significant others. It is well known that individuals’
objectives, knowledge and beliefs are influenced by the interactions with others over
time (Hedström 2005). It is therefore theoretically important to study dynamic social
systems as processes over substantial periods of time.

These issues lead us to the third understanding of causation as generative pro-
cess. According to Cox (1990, 1992) it is crucial to the claim of a causal link that
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there is an elaboration of an underlying, generative process existing in time and
space. A causal association between X and Y must be considered as being produced
by a process and is created by some (substantive) mechanism. A major shortcoming
of the approaches of causation as robust dependence and causation as consequential
manipulation is that there is no explicit notion of an underlying generative process
present in these models. Thus, causation as generative process seems to be a neces-
sary expansion of these two understandings of causation (Goldthorpe 2001).

In summary, causal inference clearly should not be limited entirely to a mat-
ter of statistical predictability as in the causation as robust dependence approach.
Well-designed controlled experiments or quasi-experiments would be a great study
design for causal inference, but since in the social sciences randomization is of-
ten practically or socially unacceptable, they are rarely applied by their practition-
ers. Thus, most demographic and sociological causal inference has to be based on
non-experimental observations of social processes. Under these conditions, both
approaches, causation as consequential manipulation and causation as generative
process, need also to eliminate spurious (or non-causal) influences and will therefore
never lead to results that “never die” but only to ones that have differing degrees of
plausibility. Finally, the causation as generative process approach has the compar-
ative advantage that it focuses our thoughtful consideration on the theoretical and
statistical elaboration of an underlying, generative causal process existing in time
and space, including also actors who make decisions within social contexts.

In the present contribution, I would like to explore what the approach of cau-
sation as generative process has to offer to empirically working social scientists
who wish to engage in the causal analysis of dynamic systems using event history
data. Event history models are linked very naturally to an understanding of causa-
tion as generative process because the transition rate provides a local, time-related
description of how the process evolves in time (Blossfeld et al. 2007: 33). For each
point in time, these models try to predict future changes of the transition rate of the
dependent process on the basis of events of independent processes in the past. Of
course, this concentration on event history analysis does not imply that there might
also be other tools in the statistical arsenal of longitudinal data analysis (from simple
growth curve models to full-blown generalized equation models) which allow to
apply the causation as generative process approach.

5.3 Parallel and Interdependent Processes

The study of parallel or interdependent processes with transition rate models is one
of the most important advances of event history analysis (Willekens 1991; Courgeau
and Lelièvre 1992; Blossfeld and Rohwer 2002; Blossfeld et al. 2007). Parallel or
interdependent processes can operate at a variety of different levels. There may be
interdependent or parallel processes at the level of:

� different domains of an individual’s life. For instance, one may ask how upward
and downward moves in an individual’s job career influences her/his family tra-
jectory (e.g. Blossfeld and Huinink 1991).
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� individuals interacting with each other, termed “interdependent or linked lives”
(Elder 1987). One might study the effect of the career of the husband on
his wife’s labour force participation (Blossfeld and Drobnič 2001) or how the
death or migration of the head of the household impacts other family members
(Courgeau and Lelièvre 1992).

� intermediate organizations, such as how the changing household structure deter-
mines women’s labour force participation.

� macro processes, where the researcher may be interested, for instance, in the
effect of changes in the business cycle on family formation (e.g. Blossfeld and
Huinink 1991).

� any combination of the aforementioned processes. For example, in the study of
life course, cohort, and period effects, time-dependent covariates measured at
different levels must be included simultaneously (Blossfeld 1986; Mayer and
Huinink 1990). Such an analysis combines processes at the individual level
(life course change) with two kinds of processes at the macro level: (1) vari-
ations in structural conditions across successive (birth, marriage, etc.) cohorts;
and, (2) changes in particular historical conditions affecting all cohorts in the
same way.

In event history analysis, time-dependent covariates are often used to include
the sample path of parallel processes in transition rate models. In the literature,
however, only two types of time-dependent covariates have been described as not
being subject to reverse causation (see e.g. Kalbfleisch and Prentice 1980; Tuma and
Hannan 1984; Blossfeld et al. 1989; Yamaguchi 1991; Courgeau and Lelièvre 1992).
The first are defined time-dependent covariates whose total time path (or functional
form of change over time) is determined in advance in the same way for all sub-
jects under study. For example, process time like age or duration in a state (e.g.,
duration of marriage in divorce studies), is a defined time-dependent covariate be-
cause its values are predetermined for all subjects. It is the predefined onset of the
process when the individual becomes “at risk” in the event history model. Thus,
by definition, the values of these time-dependent covariates cannot be affected by
the dependent process under study. The second type are ancillary time-dependent
covariates whose time path is the output of a stochastic process that is external to the
units under study. Again, by definition, the values of these time-dependent covari-
ates are not influenced by the dependent process itself. Examples of time-dependent
covariates that are approximately external in the analysis of individual life courses
are variables that reflect changes at the macro level of society (unemployment rates,
occupational structure, etc.) or the population level (composition of the population
in terms of age, sex, race, etc.), provided that the contribution of each unit is small
and does not really affect the structure in the population (Yamaguchi 1991).

In contrast to defined or ancillary time-dependent covariates are internal time-
dependent covariates, which are often referred to as being problematic for causal
analysis in event history models (e.g. Kalbfleisch and Prentice 1980; Tuma and
Hannan 1984; Blossfeld et al. 1989; Yamaguchi 1991; Courgeau and Lelièvre 1992).
An internal time-dependent covariate Y B

t describes a stochastic process, considered
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in a causal model as being the cause, that in turn is affected by another stochastic
process Y A

t , considered in the causal model as being the effect. Thus, there are di-
rect effects in which the processes autonomously affect each other (Y B

t affects Y A
t

and Y A
t affects Y B

t ), and there are “feedback” effects, in which these processes are
affected by themselves via the respective other processes (Y B

t affects Y B
t via Y A

t and
Y A

t affects Y A
t via Y B

t ). In other words, such processes are interdependent and form
what has been called a dynamic system (Tuma and Hannan 1984). Interdependence
is typical at the individual level for processes in different domains of life and at
the level of a few individuals interacting with each other (e.g., career trajectories of
partners) (see Blossfeld and Drobnič 2001). For example, the empirical literature
suggests that the employment trajectory of an individual is influenced by his/her
marital history and marital history is dependent on the employment trajectory. In
the literature, there are two central approaches to modelling these processes, what
we term here as the “system approach” and the “causal approach,” with the former
often used to deal with such dynamic systems.

5.3.1 Interdependent Processes: The System Approach

The system approach in the analysis of interdependent processes (Tuma and Han-
nan 1984; Courgeau and Lelièvre 1992) defines change in the system of interdepen-
dent processes as a new “dependent variable.” Thus, instead of analyzing one of the
interdependent processes with respect to its dependence on the respective others,
the focus is on the modelling of a system of state variables. In other words, the
interdependence between the various processes is taken into account only implicitly.

Suppose that there are J interrelated qualitative time-dependent variables (i.e.,
processes): Y A

t , Y B
t , Y C

t , . . . , Y J
t . A new time-dependent variable (or process) Yt ,

representing the system of these J variables, is then defined by associating each
discrete state of the ordered J-tuple with a particular discrete state of Yt . As shown
by Tuma and Hannan (1984), as long as change in the entire system only depends
on the various states of the J qualitative variables and on exogenous variables, this
model is identical to modelling change in a single qualitative variable. Thus, the
idea of this approach is to simply define a new joint state space, based on the various
states spaces of the coupled qualitative processes, and then to proceed as in the case
of a single dependent process.

Although the system approach provides insights into the behaviour of the dy-
namic system as a whole, it has several disadvantages. First, from a causal analytical
point of view, the approach presented by Courgeau and Lelièvre (1992) does not
provide direct estimates of effects of coupled processes on the process under study.
In other words, when using the system approach, one normally does not know to
what extent one or more of other coupled processes affect the process of interest,
controlling for other exogenous variables and the history of the dependent process.
Since the effects can only be identified in simple models via a comparison of the
constant terms of hazard rate equations, it is only possible to compare transition rates
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for general models without covariates (see Courgeau and Lelièvre 1992; Blossfeld
and Rohwer 2002). Second, a mixture of qualitative and quantitative processes, in
which the transition rate of a qualitative process depends on the levels of one or more
metric variables, presents a problem in this approach. Tuma and Hannan (1984)
suggest that in these situations it is not very useful. Third, this approach is unable to
handle interdependencies between coupled processes occurring in specific phases
of the process (e.g., processes might be interdependent only in specific phases of
the life course) or interdependencies that are dynamic over time (e.g., an interde-
pendence might be reversed in later life phases, see Courgeau and Lelièvre 1992),
what Tuma and Hannan (1984) term “cross-state dependence”. Finally, the number
of origin and destination states of the combined process Yt , representing the system
of J variables, may lead to practical problems. Even when the number of variables
and their distinct values is small, the state space of the system is large. Therefore, in
light of the increase in the number of parameters with the system approach, the event
history data sets must contain a large number of events, even if only the most general
models of change (i.e., models without covariates) are to be estimated. Considering
these limitations, Blossfeld and Rohwer (2002) therefore suggested a different per-
spective in modelling dynamic systems, which they call the “causal approach”.

5.3.2 Interdependent Processes: The Causal Approach

The underlying idea of the causal approach for analyzing interdependent processes
can be outlined as follows (Blossfeld and Rohwer 2002). Based on theoretical rea-
sons, the researcher focuses on one of the interdependent processes and considers
it as the dependent one. The future changes of this process are linked to the present
state and history of the entire dynamic system as well as to other exogenous vari-
ables (see Blossfeld 1986; Blossfeld and Huinink 1991). Thus, in this approach
the variable Yt , representing the system of joint processes at time t, is not used as
a multivariate dependent variable. Instead, the history and the present state of the
system are seen as a condition for change in (any) one of its processes. The question
of how to give a more precise formulation for the causal approach remains. The
following ideas may be helpful.

Causes and time-dependent covariates. As discussed above, Holland (1986) de-
veloped the idea that causal statements imply counterfactual reasoning: If the cause
had been different, there would have been another outcome, at least with a certain
probability. However, the consequences of conditions that could be different from
their actual state are obviously not empirically observable. This means that it is
simply impossible to observe the effect that would have happened on the same unit
of analysis, if it were exposed to another condition at the same time.

To find an empirical approach to examine longitudinal causal relations, Bloss-
feld and Rohwer (2002) suggested the examination of conditions which actually
do change in time, controlling for other factors. These changes are characterized
as events or transitions. More formally, an event is specified as a change in a vari-
able, and this change must happen at a specific point in time. The most obvious
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empirical representation of causes is therefore in terms of quantitative or qualitative
variables that can change their states over time. These variables are easily included
as time-dependent covariates in event history analysis. The role of a time-dependent
covariate in this approach is to indicate that a (qualitative or metric) causal factor
has changed its state at a specific time and that the unit under study is exposed to
another causal condition. From this point of view, it seems somewhat misleading to
regard whole processes as causes. Rather, only events, or changes in state space can
sensibly be viewed as possible causes.

Time and casual effects. Consequently, we do not suggest that process Y A
t is a

cause of process Y B
t , but that a change in Y A

t could be a cause (or provide a new
condition) of a change in Y B

t . Or, more formally: �Y B
t → �Y B

t ′ , t < t′, meaning that
a change in variable Y A

t at an earlier time t is a cause of a change in variable Y B
t ′ at

a later point in time, t ′. Of course, it is not implied that Y A
t is the only cause which

might affect Y B
t ′ . We speak of causal conditions to stress that there might be, and

normally is, a quite complex set of causes (see Marini and Singer 1988). Thus, if
causal statements are studied empirically, they must intrinsically be related to time,
which relates to three important aspects of causation as generative process:

First, to speak of a change in variables necessarily implies reference to a time
axis. We need at least two points in time to observe that a variable has changed its
value. Of course, approximately, we can say that a variable has changed its value at
a specific point in time. Therefore, we use new symbols to refer to changes in the
values of the time-dependent variable �Y A

t and the state variable �Y B
t ′ at time t and

t ′. This leads to the important point that causal statements relate changes in two (or
more) variables, if we think in terms of causation as generative process.

Second, we must consider time ordering, time intervals and apparent simultane-
ity. Time ordering assumes that cause must precede the effect in time: t < t′, in
the formal representation given above, an assumption which is generally accepted
(Eells 1991: Chapter 5). As an implication, the causation as generative process
approach must specify a temporal interval between the change in the variable repre-
senting a cause and the corresponding effect (Kelly and McGrath 1988). The finite
time interval may be very short or very long, but can never be zero or infinity (Kelly
and McGrath 1988). In other words, in time-continuous event history models there
can never be simultaneity of the causal event and its effect event.

Some effects take place almost instantaneously. However, some effects may oc-
cur in a time interval that requires small time units (e.g., microseconds) or are too
small to be measured by any given methods, so that cause and effect seem to occur
at the same point in time. Apparent simultaneity is often the case where temporal
intervals are relatively crude such as, for example, yearly data. For example, the
events “first marriage” and “first childbirth” may be interdependent, but whether
these two events are observed simultaneously or successively depends on the degree
of temporal refinement of the scale used in making the observations. Other effects
need a long time until they start to occur. Marini and Singer (1988), for example,
discuss the gap between mental causal priority and observed temporal sequences
of behaviour. Thus, there is a delay or lag between cause and effect (see Fig. 5.1)
that must be specified in an appropriate model of causation as generative process.
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Fig. 5.1 Hypothetical temporal lags and effect shapes

Unfortunately, in most of the current social science theories and interpretations of
research findings, this interval is left conceptionally unspecified.

This leads to the third point of causation as generative process: temporal shapes
of the unfolding effect. This means that there might be different shapes of how the
causal effect Yt , unfolds over time (see Fig. 5.1). While the problem of time-lags is
widely recognized in the social science literature, little attention has been given to
the temporal shapes of effects in the social sciences (Kelly and McGrath 1988). Re-
searchers (using experimental or observational data) often seem to either ignore or
be ignorant about the fact that causal effects could be highly time-dependent, which,
of course, is an important aspect of causation as generative process. For instance in
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Fig. 5.1a, there may be an immediate impact of change that is then maintained (this
obviously is the idea underlying the approaches of causation as robust dependence
and causation of consequential manipulation because there is no explicit notion
of an underlying generative process present in these models). Or, the effect could
occur with a lengthy time-lag and then become time-invariant (see Fig. 5.1b). The
effect could start almost immediately and then gradually increase (see Fig. 5.1c) or
there may be an almost all-at-once increase which reaches a maximum after some
time and then decreases (see Fig. 5.1d). Finally, there could exist a cyclical effect
pattern over time (see Fig. 5.1e). Thus, based on these examples it is clear that
we cannot rely on the assumption of eternal, time-less laws but have to recognize
that the causal effect may change during the development of social processes. Since
the approaches of causation as robust dependence and causation of consequential
manipulation do not have an explicit idea of an underlying generative process in
time and space, it might happen that the timing of observations in observational or
experimental studies (see for example the arbitrary chosen observation times p2,
p3, or p4 in Fig. 5.1) lead to completely different empirical evidences for causal
relationships.

The principle of conditional independence. Suppose we consider only interde-
pendent processes that are not just an expression of another underlying process so
that it is meaningful to assess the properties of the two processes without regarding
the underlying one (control variable approach). This means, for instance, that what
happens next to Y A

t should not be directly related to what happens to Y B
t , at the same

point in time, and vice versa. This condition, which we call “local autonomy” (see
Pötter and Blossfeld 2001), can be formulated in terms of the uncorrelatedness of the
prediction errors of both processes, Y A

t and Y B
t , and excludes stochastic processes

that are functionally related.
Combining the ideas above, a causal view of parallel and interdependent pro-

cesses becomes easy, at least in principle. Given two parallel processes, Y A
t and

Y B
t , a change in Y A

t at any (specific) point in time t ′ may depend on the history of
both processes up to, but not including t ′. Or stated in another way: what happens
with Y A

t at any point in time t ′ is conditionally independent of what happens with
Y B

t at t ′, conditional on the history of the joint process Yt = (Y A
t , Y B

t ) up to, but
not including, t ′. Of course, the same reasoning can be applied if one focuses on
Y A

t instead of Y B
t as the “dependent variable”. This is the principle of conditional

independence for parallel and interdependent processes.
The same idea can be developed more formally. Beginning with a transition rate

model for the joint process, Yt = (Y A
t , Y B

t ) and assuming the principle of condi-
tional independence, the likelihood for this model can be factorized into a product
of the likelihoods for two separate models: a transition rate model for Y A

t which
is dependent on Y B

t as a time-dependent covariate, and a transition rate model for
Y B

t which is dependent on Y A
t as a time-dependent covariate. Estimating the effects

of time-dependent (qualitative and metric) processes on the transition rate can be
easily achieved by applying the method of episode-splitting (Blossfeld et al. 1989;
Blossfeld and Rohwer 2002; for a detailed explanation in relation to this analysis
see also Mills (2000)).
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The conditional independence assumption has important implications for the
modelling of event histories. From a technical point of view there is no need to
distinguish between defined, ancillary, and internal covariates because all of these
time-dependent covariate types can be treated equally in the estimation procedure.
A distinction between defined and ancillary covariates on the one hand and internal
covariates on the other is however sensible from a theoretical perspective, because
only in the case of internal covariates does it make sense to examine whether parallel
processes are independent, whether one of the parallel processes is endogenous and
the other ones are exogenous, or whether parallel processes form an interdependent
system (i.e., they are all endogenous). We will now present empirical applications
that illustrate the viability of the approach of causation as generative process to
interdependent dynamic systems.

Joint determination of interdependent processes. The principle of conditional
independence implies that the prediction errors (or residuals) of the correlated pro-
cesses Y A

t and Y B
t are uncorrelated, given the history of each process up t and the

covariates. In practice, however, there may be time-invariant unmeasured charac-
teristics that affect both Y A

t and Y B
t leading to a residual correlation between the

processes. In that case, we say that the two processes are jointly determined by
some unmeasured influences. Suppose, for example, that we are interested in study-
ing the relationships between employment transitions and fertility among women.
We might expect that a woman’s chance of making an employment transition at
t would depend on her childbearing history up to t (e.g. the presence and age
of children), and that her decision on whether to have a(nother) child at t would
depend on her employment history up to t . There may be unobserved individual
characteristics, fixed over time, that affect the chances of both an employment and
a fertility transition at t . For example, more “career-minded” women may delay
childbearing and have fewer children than less “career-minded” women. In the
absence of suitable measures of “career-mindedness”, this variable would be ab-
sorbed into the residual terms of both processes, leading to a cross-process resid-
ual correlation. If the residual correlation cannot be explained by time-dependent
and time-invariant covariates, the two processes should be modelled simultaneously
and multiprocess models (Lillard and Waite 1993) have been developed for this
purpose.

Unobserved heterogeneity. Often we are not able to include all important factors
into the event history analysis. One reason is the limitation of available data; we
would like to include some important variables, but we simply do not have the
information. Furthermore, we often do not know what is important. So what are
the consequences of this situation? Basically, there are two aspects to be taken into
consideration. The first one is well-known from causation as robust dependence.
Because our covariates are often correlated, the parameter estimates depend on the
specific set of covariates included in the model. Every change in this set is likely to
change the parameter estimates of the variables already included in previous models.
Thus, as in the causation as robust dependence approach the only way to proceed is
to estimate a series of models with different specifications and then to check whether
the estimation results are stable or not. Since our theoretical models are normally
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weak, this procedure can provide additional insights into what may be called context
sensitivity of causal effects in the social world.

Second, changing the set of covariates in a transition rate model will very often
also lead to changes in the time-dependent shape of the transition rate. A similar ef-
fect occurs in traditional regression models: Depending on the set of covariates, the
empirical distribution of the residuals changes. But, as opposed to regression mod-
els, where the residuals are normally only used for checking model assumptions, in
transition rate models the residuals become the focus of modelling. In fact, if transi-
tion rate models are reformulated as regression models, the transition rate becomes
a description of the residuals, and any change in the distribution of the residuals
becomes a change in the time-dependent shape of the transition rate (see Blossfeld
et al. 2007). Consequently, the empirical insight that a transition rate model provides
for the time-dependent shape of the transition rate more or less depends on the set
of covariates used to estimate the model. So the question is whether a transition rate
model can provide at least some reliable insights into a time-dependent transition
rate.

The transition rate that is estimated for a population can be the result (a mixture)
of quite different transition rates in the subpopulations. What are the consequences?
First, this result means that one can “explain” an observed transition rate at the pop-
ulation level as the result of different transition rates in subpopulations. Of course,
this will only be a sensible strategy if we are able to identify important subpopu-
lations. To follow this strategy one obviously needs observable characteristics to
partition a population into subpopulations. Although there might be unobserved
heterogeneity (and we can usually be sure that we were not able to include all
important variables), just to make more or less arbitrary distributional assumptions
about unobserved heterogeneity will not lead to better models. On the contrary, the
estimation results will be more dependent on assumptions than would be the case
otherwise (Lieberson 1985). Therefore, we would like to stress our view that the
most important basis for any progress in model building is sufficient and appropriate
data.

There remains the problem of how to interpret a time-dependent transition rate
from a causal view. The question is: Can time be considered as a proxy for an un-
measured variable producing a time-dependent rate, or is it simply an expression of
unobserved heterogeneity, which does not allow for any substantive interpretation?
There have been several proposals to deal with unobserved heterogeneity in transi-
tion rate models, which cannot be developed here (see e.g. Tuma and Hannan 1984;
Blossfeld et al. 2007). Furthermore, fixed-effects methods have become increasingly
popular in the analysis of event history data in which repeated events are observed
for each individual. They make it possible to control for all stable characteristics of
the individual, even if those characteristics cannot be measured (Yamaguchi 1986;
Allison 1996; Steele 2003; Zhang and Steele 2004). All these models broadly enrich
the spectrum of models and can be quite helpful in separating robust estimation
results (i.e., estimation results that are to a large degree independent of a specific
model specification) and “spurious” results, which might be defined by the fact that
they heavily depend on a specific type of model.
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5.4 An Application Example

In order to demonstrate the utility of the causation as generative process approach
to interdependent dynamic systems, we report the results of three cross-national
comparative studies about the effect of first pregnancy/first birth on entry into first
marriage for couples living in consensual unions. The earliest investigation was
conducted by Blossfeld et al. (1993), followed by Blossfeld et al. (1996, 1999) and
finally, Mills and Trovato (2001).

The basic research problem underpinning these studies can be defined as follows.
Historically, marriage has preceded the birth of a child in many countries. However,
in the last two decades, the link between marriage and childbirth has become more
complex, a phenomenon that has occurred in conjunction with a rapid rise in con-
sensual unions. The three studies explored this relationship by examining how the
experience of a pregnancy within a consensual union conditioned the likelihood of
transition to a formal marriage with the same partner. In the later investigations, the
process was modeled as explicitly time-dependent, with entry into first marriage as
the dependent and first pregnancy/childbirth as the explaining process. The theoret-
ical framework used by the authors to guide a substantive explanation of the time-
dependent process was the rational actor model, which proposes that norm-guided
and rational self-centered behaviour co-exist.

5.4.1 The Blossfeld-Manting-Rohwer Study

The purpose of the earlier study by Blossfeld et al. (1993) was to gain insight into
the process of how consensual unions were transformed into marriages in the former
West Germany and the Netherlands. It focused on the effect of fertility on the rate
of entry into marriage, controlling for other important covariates in a transition rate
model. Nationally representative longitudinal data were used: the German Socioe-
conomic Panel (West Germany) and the Fertility Survey (Netherlands) were applied.
Both data sets provide information about the dynamics of consensual unions in the
1980s. Attention was limited to cohorts born between 1950–1969 that started a con-
sensual union between 1984–1989 (West Germany) and 1980–1988 (Netherlands).

Recall that a change in the marriage process at any point in time during a con-
sensual union may depend on the history of both processes up to, but not including
t′.1 Thus, given appropriate statistical controls, a change in the marriage process
at time t′ is conditionally independent of what happens with the fertility process
at t′, conditional on the history of the joint process up to, but not including t′. The
likelihood for the joint process of first marriage and birth can therefore be factorized
into a product of the likelihoods for two separate transition rate models for: (1) first

1 We are viewing each of these two processes as having various states in their histories. For exam-
ple, the partnership process could consist of the states of never married, consensual union, married
and the pregnancy/birth process may consist of the states of not pregnant, pregnant and first child.
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pregnancy/first birth, dependent on first marriage as a time-dependent covariate;
and, (2) first marriage, dependent on first pregnancy/first birth as a time-dependent
covariate.

We will discuss only the fertility effects of one transition model from this study,
which utilized a piecewise constant exponential model to estimate transitions from
consensual unions to both marriage and dissolution (results not shown here, see
Blossfeld et al. 1993). The change in the fertility process was included as a series of
time-dependent dummy variables with the states: “not pregnant”, “pregnant”, “first
childbirth”, and “6 months after birth”. The effects of the fertility variables on the
marriage rate were significant for both countries and worked in the same direction.
As long as women were not pregnant, they observed a significant and comparatively
low rate of entry into marriage. But, as soon as a woman in both countries became
pregnant (and in West Germany also around the time when the woman gets her
child), the rate of entry into marriage increased strongly. If the couple did not get
married within six months after the child was born, the rate of entry into marriage
again dropped to a comparatively low level in West Germany. In the Netherlands,
this level is even below the “not pregnant” level (see Manting 1994).

5.4.2 The Blossfeld-Klijzing-Pohl-Rohwer Study

About a year after this comparative study was conducted, Blossfeld et al. (1996, 1999)
wanted to examine whether these results could be replicated with other data from
the German Fertility and Family Survey. These data were collected retrospectively
from respondents aged 20–39 years in West and East Germany in 1992. They started
with a simple model of the process of entry into first marriage for couples living in
consensual unions using only one time-dependent dummy variable for the event of
first birth. However, the effect of this covariate was – surprisingly – not significant.
What happened to the fertility effect? After much theoretical discussion, a hypoth-
esis was put forward that could explain the seemingly contradictory results of the
estimated models: the effect of changes in fertility on entry into marriage must be
strongly time-dependent in a very specific way. According to the first study, the rate
is low as long as women are not pregnant, then starts to rise at some time shortly
after conception, increases during pregnancy to a maximum and finally drops again
a few months after birth has taken place. Thus, when a time-dependent covariate was
switched at the time of childbirth, a period with a low marriage rate up to the time
of discovery of conception and a period with a high marriage rate during pregnancy
was confounded and compared with a relatively low rate after the birth had taken
place. Thus, the aggregated average tendency to marry before the child is born could
equal the aggregate average tendency to marry after the child is born, therefore
making the estimated coefficient of the time-dependent covariate “childbirth” not
significantly different from zero.

To deal with this problem, a series of 14 time-dependent pregnancy/birth binary
variables were created using information from the reported date of first birth (see
Table 5.1). These variables were grouped into categories ranging from “marriage
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Table 5.1 Partial likelihood estimates of the transition from consensual union to marriage (final
model), West and East Germany, Canada, Latvia, the Netherlands

Final model results by country

Covariates
West
Germany

East
Germany Canada Latvia

The Nether-
lands

Pregnancy/birth process (1)
[time before pregnancy] −1.2595 −0.6179 −1.0768 −1.3918 −1.0909
month of pregnancy 0.1131 0.1729 −0.1157 0.3822 −0.2217
1 month since pregnancy 0.4783 0.2715 0.7107 0.2009 0.3769
2 months since pregnancy 0.8837∗ 0.4225 1.0851∗ 1.0109∗ 0.9374∗

3 months since pregnancy 1.0260∗ 0.7723∗ 0.5849 1.2959∗ 1.3229∗

4 months since pregnancy 0.8578∗ 1.3903∗ 0.6563 1.0817∗ 1.5587∗

5 months since pregnancy 0.9905∗ 0.7938∗ 0.2480 0.9328∗ 1.0743∗

6 months since pregnancy 0.8701∗ 0.1510 −0.8948 0.7525∗ 0.0227
7 months since pregnancy 0.8158∗ −0.5166 −0.0365 0.4793 0.1028
8 months since pregnancy −0.8121∗ −2.5449∗ −0.5693 −0.4727 −0.2350
Month of birth −1.4709 −0.6254 −0.1115 −1.6669 −1.2711
1–3 months after birth −0.7513 0.2875 0.0096 −0.0136 −0.4595
4–6 months after birth −0.7638 0.1351 0.0363 −1.3576∗ −0.4404
More than 7 months after birth −0.9877∗ −0.0921 −0.5263∗ −1.2336∗ −1.6771∗

Birth cohort (2)
1965–69 −0.3094 −0.6001∗ −0.4341∗ −1.3096∗ −2.2829∗

1960–64 −0.1700 −0.0536 −0.3589∗ −0.8563∗ −1.4258∗

1955–59 −0.1486 0.0920 −0.4324∗ −0.6154 −0.8228∗

[1950–54] 0.0 0.0 0.0 0.0 0.0
Historical period
[Before 1974] 0.0 0.0 0.0 0.0 0.0
1974–83 0.0882 0.3521 −0.3027 0.0010 −0.2488
After 1983 −0.1554 0.0363 −0.2905 −0.3164 −1.7642∗

Highest education level
Low 0.1722∗ −0.0189 0.1563 −0.0164 0.2490∗

[Medium] 0.0 0.0 0.0 0.0 0.0
High −0.0354 0.0941 −0.1092 −0.0763 −0.1962∗

Educational enrollment
In school −0.3575∗ 0.0061 −0.3187 0.2700 −0.1856
[Out of school] 0.0 0.0 0.0 0.0 0.0
∗ = significant at the 0.05 level. Results are shown for the final model. (1) First covariate coded
as centered effects, all others as cornered effects. Reference groups denoted by brackets. (2) Birth
cohorts for West and East Germany are represented by 1968–72, 1963–67, 1958–62 and 1953–
57. Source: Blossfeld et al. (1999) for West and East Germany and Mills and Trovato (2001) for
Canada, Latvia and the Netherlands. Both the pregnancy/birth and educational enrollment variables
are time-dependent.

before the month of pregnancy”, “month of the pregnancy”, “one month since preg-
nancy”, and so on, to “more than seven months after birth”. To be clear, since no
information on the timing of pregnancy and only on the timing of successful births
was available, we were looking backward in time from the first birth and thus esti-
mated the date of pregnancy as nine months before the date of birth. As we discuss
in greater detail shortly, this presents two potential problems: neglecting abortions
and miscarriages, and conditioning past on future events.
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5.4.3 The Mills-Trovato Study

Building on the previous two studies, Mills and Trovato (2001) wanted to see if the
findings would hold in other diverse contexts such as North America or Eastern Eu-
rope or during a more recent time period within Western Europe. For this reason, we
selected Canada and Latvia and more recent data from the Netherlands. Replication
using diverse contexts provides a harsher and more useful validation than statistical
testing of many models on only one data set. Normally, there is less chance of an
artefact, more kinds of variation can be explored, and alternative explanations can
be ruled out (Freedman 1991).

A further impetus for this study centered on the fact that consensual unions and
non-marital births in Eastern Europe and the Baltic States have skyrocketed since
the 1980s (Katus 1992). Yet, these countries are rarely included in comparative anal-
yses. Similarly, we questioned whether this type of behaviour would still hold in the
North American context in a country such as Canada. Using data from the Fertil-
ity and Family Surveys (FFS) for Canada (1995), Latvia (1995) and the Nether-
lands (1993), we selected a comparative sample of women born between 1950 and
1969.

Table 5.1 summarizes the results of the partial likelihood estimates from the Cox
models for the transition from consensual union to marriage and for the final models
from the Blossfeld et al. (1999) and Mills and Trovato (2001) studies. Figure 5.1
plots the final partial likelihood estimates (coefficients) for the time-dependent preg-
nancy/birth process variable. Overall, the findings suggest a high degree of uni-
formity, though the levels and significance of effects tend to vary slightly across
countries. Notwithstanding these similarities, we acknowledge that the Canadian
and East German case show a few unexpected effects on the transition rate. In
Canada, the likelihood appears to drop earlier, at approximately three months before
birth, with fluctuations after that point. We attribute this largely to methodological
factors since some of the monthly data had to be partially estimated (see Mills and
Trovato 2001). In East Germany, there is a large drop one month before birth as op-
posed to the month of birth. Difference in the significance level of results by country
(especially Canada and East Germany) may also be related to smaller sample sizes
and less events. The theoretical reasons behind the generally comparable effects that
we observe across the five areas are central to understanding these investigations.

5.5 Substantial Explanations

We just speculated about these time-dependent fertility effects in statistical terms,
which does not, however, explain why we should expect these time-dependent ef-
fects in substantive terms at all. How can this effect found across a variety of coun-
tries be explained? Before we give a more detailed answer to this question, some
more general remarks about actors and probabilistic causal relations in the causation
as generative process approach are in order.
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5.5.1 Actors, Probabilistic Causal Relations
and the Hazard Rate

“When an analysis becomes causal, social regularities represent the effects for which
causes have to be discovered. And this task, contrary to what proponents of the idea
of causation as robust dependence would seem to have supposed, cannot be a purely
statistical one but requires a crucial subject-matter input” (Goldthorpe 2001: 11).
Today, there is a general consensus that demographic and sociological phenomena
are always directly or indirectly based on actions and interactions of individuals
(methodological individualism). We do not deal with associations among variables
per se, but with variables that are associated via acting people (see Blossfeld and
Prein 1998; Blossfeld et al. 2007).

There are at least three consequences for explanations of causal relations. First,
if individuals relate causes and effects through actions and interactions, then ex-
planation of demographic processes should be related to individuals. This is why
life history data on individuals, and not aggregated longitudinal data, provide the
most appropriate empirical evidence for causal relationships. Second, explaining or
understanding of demographic processes requires: (1) a time-related specification of
structural constraints which cut down the set of abstractly possible courses of action
to a vastly smaller subset of feasible actions; and, (2) a mechanism that singles out
which of the feasible courses of action shall be realized (see Elster 1979). Because
this is done by individuals, this mechanism must rest on the beliefs, expectations,
and motivations of the agents. (3) Since individuals are the actors, causal inference
must also take into account their free will.

This introduces an essential element of indeterminacy into causal inferences.
Hence, in demography and sociology we can only reasonably account for and model
the generality but not the determinacy of behaviour. The aim of substantive (and sta-
tistical) causal models in the social sciences must therefore be to capture common
elements in the behaviour of people, or patterns of action that recur in many cases
(Goldthorpe 1998, 2000). A narrative of action must be provided that captures the
main tendencies that arise in similar situations. This theoretical model must not seek
to explain the behaviour of single individuals, but abstract ideal-typical actors (Hed-
ström 2005: 38). As Stinchcombe (1968) has shown, the behaviour of large aggre-
gates can be reasonably well comprehended, even when the individual components
of the aggregate are poorly understood. Given this macro-level focus, small idiosyn-
cratic deviations from the postulated model are not damaging (Hedström 1995). The
consequence, however, is that in demographic applications, randomness has to enter
as a defining characteristic of causal models.

We can only hope to make sensible causal statements about how a given or
(hypothesized) change in variable Y A

t (e.g., pregnancy/birth) in the past affects the
probability of a change in variable Y B

t ′ (e.g., marriage) in the future. Correspond-
ingly, the basic causal relation becomes: �Y A

t → � Pr(�Y B
t ′ ), t < t ′. In other

words, a change in the time-dependent covariate Y A
t will change the probability

that the dependent variable Y B
t ′ will change in the future (t < t ′).
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In demography and sociology, this interpretation seems more appropriate than
the traditional deterministic approach. The essential difference is not that our knowl-
edge about causes is insufficient allowing only probabilistic statements, but that the
causal effect to be explained is a probability. Thus, probability in this context is not
just a technical term anymore, but is considered a theoretical one: it is the propensity
of social agents to change their behaviour intentionally.

Using continuous event history data and hazard rate models, the causal reasoning
underlying our approach can therefore be restated in a somewhat more precise form
as: �Y A

t → �r (t ′), t < t ′. As a causal effect, the changes in covariates Y A
t in the

past may lead to changes in the time-dependent transition rate r(t′) in the future,
which in turn describes the propensity that the actors under study will change their
course of action. This causal interpretation requires that we take the temporal order
in which structural constraints and the actors’ beliefs and motivations evolve in time
very seriously.

5.5.2 Diffuse Marriage Preferences
and the Negotiation Process

With regard to the marriage decision in our example study, it seems important to
distinguish two completely different situations at the time of the discovery of the
pregnancy: (1) the preferences of the partners to marry are vague and diffuse; and,
(2) the couple has already reached a decision to marry or not to marry in the case
of child. In the first instance, the occurrence of a pregnancy may initiate a pro-
cess of preference formation and persuasion. Formation means that initially rather
vague preferences with regard to marriage are formed, resulting in more clear-cut
preferences in a step-wise negotiation process. Persuasion means that an individual
is led by a sequence of short-term improvements into preferring marriage over
non-marriage, even if he or she has initially vaguely preferred non-marriage over
marriage. In such cases the discovery of a pregnancy engenders a time-structured
process of reasoning and interactions which results in a change in preferences. On
the one hand, the opportunity to legalize the birth of the child tends to decrease
with the duration of pregnancy. At the same time, the likelihood of possible medi-
cal complications connected with the pregnancy and the visibility of pregnancy to
others increases.

With these contradicting factors in mind, the optimal time for marriage is at
a relatively early pregnancy phase. On the other hand, the optimum in the sense
of a safe, well thought-out decision based on a negotiation process between the
partners, is often at a relatively later phase of the pregnancy. Thus, there is con-
stant tension between these opposing forces that may often (but not necessarily)
be connected to a considerable shift in preferences with regard to marriage. Based
on these contradictory forces, one would expect that the rate of entry into marriage
after the discovery of pregnancy at first increases with the duration of pregnancy
and then, after reaching some maximum, decreases again as the time of birth comes
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Fig. 5.2 Comparison of partial likelihood estimates (coefficients) of the transition from consensual
union to marriage, West and East Germany, Canada, Latvia and the Netherlands

closer. Shortly before and after the birth, one would expect a very low marriage
rate. Finally, after the birth has already taken place out of wedlock, the decision
of whether or not to marry has a different social meaning. The child is then al-
ready “illegitimate”, and the normative time pressure to marry has disappeared,
thus resulting in a relatively low marriage rate after some time since the birth of
the child.

Table 5.1 and Fig. 5.2 illustrate that after controlling for several important covari-
ates, women in consensual unions do indeed seem to follow this pattern with respect
to the rate of entry into marriage: the marriage rate is very low before pregnancy
across all countries; it generally increases strongly up to about 5 months before
birth, then falls deeply around the time of birth, and is finally at a relatively low
level more than 7 months after the birth. Therefore, our substantive interpretation
of the time-dependence in Table 5.1 is derived from a theoretically supposed un-
derlying negotiation process with the time-dependent dummy-variables serving as
proxies for a theoretically important process that is hard (or even impossible) to
measure.

5.5.3 Unobserved Marriage Decisions and the Observed Rate
of Entry into Marriage

Of course, one could also argue that many couples have already reached a decision
to marry or not to marry in the case of a child at the time of the discovery of the
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Fig. 5.3 Marriage rate for
couples who had already
decided to marry before the
event of pregnancy λ(t |x1 ),
marriage rate for couples who
had decided that they would
never marry before the event
of pregnancy λ(t |x2 ), and
observed marriage rate λ(t),
if these two subpopulations
are not controlled for in the
model

pregnancy. Thus, couples are in fact extremely heterogeneous with regard to their
baseline rate to enter into marriage when the pregnancy is observed. Consider the
example where the consensual union population consists of two groups – one with
a constantly low marriage rate λ(t |x2 ) and the other with an increasing rate as preg-
nancy progresses λ(t |x1 ) (see Fig. 5.3). This neglected heterogeneity would result
in a bell-shaped marriage rate λ(t) (see Fig. 5.3).

This is due to the fact that when pregnancy progresses, the composition of the
unmarried couples shifts towards couples being “less” or “not” ready for marriage
which, at first, increases and then decreases the observed effect pattern. Thus, if we
do not know whether the couples have already reached a decision to marry in the
case of a child at the time of pregnancy, we are unable to say whether the effects of
the dummy variables must be considered as proxies for the formation of couples’
decisions during pregnancy, or for the heterogeneity of couples’ marriage decisions
at the beginning of pregnancy. Obviously, in reality both interpretations may be
valid. The important conclusion is, however, that the discovery of a pregnancy leads
to a changing marriage rate for most couples.

5.5.4 Abortion, Miscarriage and the Problem of Conditioning
on Future Events

Another methodological problem is that we have not considered abortion and mis-
carriage. Couples can avoid the birth of children (and therefore marriage) by abor-
tion, and they can experience a miscarriage. Both groups present a problem for
our causal analysis because we do not have any information about abortion and
miscarriages in our data sets and have constructed the fertility variables on the basis
of successful births. In other words, there is the danger that we have committed one
of the most serious methodological errors in causal analysis: We have conditioned
past events on future events, reversing the temporal order of cause and effect. As
long as conditions are random and concern only a small proportion of couples, as
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is the case with miscarriages, this objection is not exceedingly important. We get
biased estimates only if specific couples sort themselves out by choice in greater
numbers, as is probably the case with abortion. In particular, we overestimate the
size of the pregnancy/birth effect because we systematically underrepresented preg-
nant couples that would not have wanted to marry because of a child in our “risk set
of pregnant couples” effect (i.e., if we overestimate, then the effect is negative on the
rate which gives a downward bias). In former East Germany and Latvia, abortion
was easier and more socially accepted than in the other countries. In Latvia, abortion
is a widespread method of fertility control with 111 terminated pregnancies per 100
live births and stillbirths in 1991 (Government of Latvia 1999: 125).

5.6 Summary and Concluding Remarks

Two understandings of causation have guided the empirical analysis of causal rela-
tionships in the social sciences: (1) Causation as robust dependence and (2) cau-
sation as consequential manipulation. On the one hand, our discussion of both
approaches made clear, that the idea of causation as robust dependence is too lim-
ited because causal inference cannot be a purely statistical consideration. Rather
it requires a crucial subject-matter input. On the other hand, the idea of causa-
tion as consequential manipulation requires well-designed randomized controlled
experiments or quasi-experiments. Since such designs can only rarely applied in
the social sciences, most demographic and sociological causal inference is based
on non-experimental observations of social processes. These data are often highly
selective. A whole battery of statistical techniques has therefore been developed
to help to approximate randomized controlled experiments with observational data.
However, it is still difficult to avoid the conclusion that, non-experimental social
research, will lead to results that “never die” but only to ones that have differing
degrees of plausibility. Thus such results will have to be provisional in just the
same sense and for just the same reasons as those of attempts to determine the
causes of effects via the causation as robust dependence approach.” Furthermore,
the approach of causation as consequential manipulation is still too restrictive for
modern social sciences because the idea is that once the treatment or intervention
is introduced, it will automatically lead to an outcome. The units of analysis in
the social sciences, the individuals, are therefore assumed to be passive subjects
whose behavior is explained only by causal factors. This restricted understanding
of causation as consequential manipulation is particularly problematic, if dynamic
social systems are studied over longer time-spans. A necessary augmentation of the
two understandings of causation is therefore the idea of causation as generative
process, proposed by David Cox. According to this view, it is crucial to the claim
of a causal link that there is an elaboration of an underlying (substantive) generative
process existing in time and space.

The main aim of this paper was to further develop the idea of causation as
generative process and to demonstrate the viability of this understanding in a
cross-national empirical investigation of interrelated family events. The story these
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empirical studies tell is persuasive. In substantive terms, the investigations confirm
the existence of a highly time-dependent causal process between pregnancy and
marriage for individuals in consensual unions across five different national contexts.
In particular, it shows that the force of an empirical analysis results from the clarity
of the prior substantive reasoning and the bringing together of seemingly contradic-
tory evidence. All studies have been instructive in methodological terms because:
(1) they analyzed two highly interdependent processes from a causal point of view,
(2) the interdependence occurs mainly in a very specific phase of individuals’ lives
(i.e., family formation), (3) the relationship between cause and its effect involves
time lags (e.g., time until detection of pregnancy); and, (4) the unfolding effect is
highly dynamic over time.

These applications illustrate the substantive importance and methodological pit-
falls of the identification of time-dependent causes and their time-dependent effect
patterns. A central contribution is that we have been able to demonstrate that one
process is influencing or causing a change in the other – even if they are interdepen-
dent. In cross-sectional data, we often have interdependent systems with feedback
mechanisms, but are unable to discern how one process influences the other. We
witness associations that describe what has happened, but cannot separate the effect.
Associations are quite different from causal statements designed to say something
about how events are produced or conditioned by other events. With the event his-
tory approach, however, it becomes possible to separate correlation and causation
(Blossfeld and Rohwer 2002).

One shortcoming is that our applications are only based on observed behaviour. It
could happen that a couple first decides to marry, the woman becomes pregnant, and
then the couple marries. In this case, we would observe only pregnancy occurring
before marriage and assume that it increases the likelihood of marriage. Yet, the
time order is exactly the other way around. Courgeau and Lelièvre (1992) have
introduced the notion of “fuzzy time” to represent this time span between decisions
and behaviour. Since the time between decisions and behaviour is probably not
random and differs per couple, examining observed behaviour could lead to false
causal inferences. This does not alter the key temporal issues embedded within the
causal logic. However, we must admit that using the time order of only behavioural
events without taking into account the timing of decisions could lead to serious mis-
specification. Thus, for studies aiming to model causation as a generative process
through the relationship between individuals’ objectives, knowledge, reasoning and
decisions over time, prospective panel observations of objectives and decisions and
retrospective information on behavioural events appear to be a very desirable design.
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Chapter 6
Instrumental Variable Estimation
for Duration Data

Govert E. Bijwaard

6.1 Introduction

Social scientists have a long tradition of exploring the substantive implications of
endogeneity in both methodological work and empirical work. Endogeneity is trou-
blesome because it precludes the usual causal kinds of statements social scientists
like to make. A canonical example is the evaluation of the effect of training pro-
grams of unemployment individuals on earnings and employment status. In general,
the indicator for those who were trained is endogenous, because those individu-
als who choose to get training perceive the training as beneficial for earning or
employment status. Other examples include the effect of union status and child-
bearing on labor market outcomes. All these problems have a treatment-control
flavor. The notion that treatment status is endogenous reflects the fact that sim-
ple comparisons of treated and untreated individuals are unlikely to have a causal
interpretation.

In recent years, social experiments have gained popularity as a method for evalu-
ating social and labor market programs (see e.g. Meyer 1995; Heckman et al. 1999;
Angrist and Krueger 1999). In experiments the assignment of individuals to the
treatment can be manipulated. If assignment is random, the average impact of the
treatment can be estimated. However, a randomized assignment may be compro-
mised, if the individuals can refuse to participate, either by dropping out, if they
are to receive the treatment, or by obtaining the treatment, if they are in the con-
trol group. If this non-compliance to the assigned treatment is correlated with the
outcomes in the treatment or control regimes, the observed effect of the treatment
is a biased estimate of the treatment effect. Thus, even with random assignment the
actual treatment status can be endogenous.

Most of the evaluation literature has focused on static treatments, i.e. treat-
ment that is administered at a particular point in time or in a particular time in-
terval. If the outcome is a duration the treatment or its effect can be dynamic,
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i.e. it can be switched on and off over time. Examples are the unemployment in-
surance experiments (see Meyer (1995) for a survey) in which the unemployed
receive a cash bonus if they find a job in a specified period. Another example
is a temporary cut in unemployment benefits of unemployed individuals who do
not expend sufficient effort to find a job (e.g. see Van den Berg (2004) for The
Netherlands, Lalive et al. (2005) for Switzerland and Ashenfelter et al. (2005) for
the U.S.).

The problem of endogeneity in duration models is similar to other statistical mod-
els: when endogeneity is present the standard interpretations given by any statistical
model generally do not hold. If the training is perceived beneficial those individuals
who choose to get training differ ex ante from those who choose not to get training.
Similarly, unemployed who choose to be eligible for a cash bonus if they find a job
in time, differ both in observed and unobserved characteristics that may influence
their job finding probability. For linear models the problem of endogeneity can be
solved if an instrument is available. The only requirement is that such an instrument
affects the endogenous variable but is not correlated with the errors of the regression.
We extend that notion to duration models that are inherently non-linear and propose
an estimation technique.

In this article we assume the durations follow a Generalized Accelerated Failure
Time (GAFT) model, a model introduced by Ridder (1990). The GAFT model is
based on transforming the duration and assuming some distribution for this trans-
formed duration. The transformation is related to the integrated hazard of a PH
model. The AFT model is obtained by restricting the transformation. The AFT does
not restrict the distribution of the transformed duration, while the MPH model re-
stricts this distribution to a mixture of exponentials. The regression coefficients in a
GAFT model can be interpreted in terms of the effect of regressing on the quantiles
of the distribution of the transformed duration for the reference individual. In an
AFT model the relation between the quantile of a individual with observed charac-
teristics X and the quantile of the reference individual is the acceleration factor. In a
GAFT this acceleration factor is multiplied by the ratio of the ‘duration dependence’
at the two quantile durations.

The basis of the proposed Instrumental Variable Linear Rank estimator (IVLR)
is that for the true GAFT model the instrument is independent of the transformed
duration. The intuition behind this idea can be clarified by considering the sim-
ple example of a re-employment experiment with random assignment to treatment
and a selective compliance. Assume that both the assignment and the compliance
decision are made at the start of the study. If the treatment has no impact on the
re-employment hazard, then the probability of observing an individual from the
treatment group among those still unemployed at a given unemployment duration
should be equal to the treatment assignment probability at the start. However, if
the treatment has a positive effect on the hazard the probability of observing an
individual from the treatment group among those still unemployed declines with the
duration, because the treated individuals find a job faster. A GAFT model transforms
the duration and for the true transformed durations the hazard of these transformed
durations does not depend on the treatment group. This implies that the proportion
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of people in the treatment group on the transformed duration time remains the same,
and is equal to the treatment assignment probability.

The IVLR estimation method uses the inverse of the rank test to obtain the pa-
rameters of the GAFT model, including the effect of the endogenous variable. The
rank test is a commonly applied method to test the significance of a covariate on
the hazard. The test is based on (possibly weighted) comparisons of the estimated
non-parametric hazard rates. It is also equivalent to the score test for significance
of a (vector of) coefficient(s) that arises from the Cox partial likelihood. The test
rejects the influence of the covariate(s) on the hazard when it is ‘close’ to zero.
Tsiatis (1990) shows that the inverse of the rank test can be used as an estimation
equation for AFT models. The inverse of the rank test is the value of the (vector
of) coefficient(s) that makes the rank-test equal to zero. Here we extend the inverse
rank estimation to a GAFT model, which also includes the parameters of the trans-
formation.

A common feature of duration data is that the durations are (right)-censored,
in the sense that we only know that their realisation exceeds the censoring time.
The existence of endogenous covariates implies (possible) dependence between the
transformed duration and the censoring time. This implies that the IVLR estima-
tor, which exploits the independence between the transformed durations and the
instruments, may give biased results. We can often make the assumption that the
(potential) censoring time is known at the start of the study. In the re-employment
bonus data, for example, we can only observe the unemployed while receiving UI
benefits. In this case the potential censoring time for all individuals is at 26 weeks,
the maximum duration of UI benefits in Illinois at the time of the experiment.
With known (potential) censoring time we can modify the GAFT transformation
by introducing additional censoring such that this modified transformation and the
instruments become independent for the uncensored observations. Then, the IVLR
estimator on this modified transformation leads to consistent estimators.

The IVLR estimation is based on a vector of mean restrictions on weight func-
tions of the covariates, instrument and the transformed durations. Thus the IVLR is
also related to GMM estimation. In GMM estimation it is feasible to get the most
efficient GMM estimator in just two steps. In the first step directly observed weight-
ing matrices lead to a consistent, but not necessary efficient estimator. From this
consistent estimator we can consistently estimate the efficient weighting matrices. It
is then possible to obtain an efficient estimate of the parameters involved in just one
additional step. A similar reasoning applies to the IVLR-estimator. In the first step
we use simple weighting functions to obtain consistent estimates of the parameters
of the GAFT model. From these parameters we can estimate the distribution of the
transformed durations, which are needed to calculate the most efficient weighting
functions. Then, in just one additional step the efficient IVLR is obtained.

For our empirical application we use data from the Illinois unemployment bonus
experiment. These data have been analysed before with increasing sophistication by
Woodbury and Spiegelman (1987), Meyer (1996) and Bijwaard and Ridder (2005).
In this experiment a group of individuals who became unemployed during four
months in 1984 were divided at random in three groups of about equal size: two
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bonus groups and a control group. The unemployed in the claimant bonus group
qualified for a cash bonus if they found a job within 11 weeks and would hold this
job for at least four months. In the employer bonus group, the bonus was paid to
their employer. The members of the two bonus groups were asked whether they
were prepared to participate in the experiment. About 15% of the claimant bonus
and 35% of the employer bonus groups refused participation. It is very likely that
the decision to be eligible for a bonus is related to the unemployment duration.
This makes the participation indicator an endogenous variable in relation to the
unemployment duration.

The outline of the article is as follows. Section 6.2 discusses the problems as-
sociated with endogenous variables in duration models. We introduce the GAFT
model and discuss the interpretation of the parameters of a GAFT model. We also
give the intuition for the idea that transforming of the durations, inherent in the
GAFT model, provide the basis for estimating the effect of endogenous covarites.
In Section 6.3 we introduce the IVLR estimator, derive its asymptotic properties and
discuss the efficiency and the practical implementation of the estimator. Section 6.4
discusses the empirical application of the IVLR estimator to the re-employment
bonus experiment. We conclude with a summary and discuss possible avenues for
further research in Section 6.5.

6.2 Endogenous Covariates in Duration Models

For many economic and demographic phenomena the timing of a transition from
one state into another state is important. Examples include the time till re-
employment of an unemployed individual, the time till marriage and the time till
death. Two important features of such transition data are that relevant characteris-
tics of the individual may change over time and that, due to a limited observation
window, we do not observe the completed duration for all individuals. In a dura-
tion model the timing of a particular event is modeled and it is straightforward to
incorporate time-varying variables and allow for (right)-censoring.

The key variables in duration analysis are the duration till the next event, T , and
the indicator of censoring, δ. The observed durations may be right-censored, i.e.
we observe T̃ = min(T, C) with C the censoring time. The possible time-varying
covariates are given by the vector Xi (t) where i refers to a member of the population.
The path of the covariates are predetermined. Thus X̄ (t) = {X (s); 0 ≤ s ≤ t} does
not depend on future events.

Two competing approaches for the analysis of duration data has been the (Mixed)
Proportional Hazard (MPH) model and the Accelerated Failure Time (AFT) model.
The MPH model assumes that the covariates and the unobserved heterogeneity
affect the baseline hazard proportionally (see Van den Berg (2001) for a recent
overview). The AFT model assumes that the covariates affect the duration propor-
tionally. An AFT model implies that the distribution of the duration of an individual
with covariate vector X and the transformed duration distribution of e−β ′ X T are the
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same (see a.o. Brännäs 1992, Kalbfleisch and Prentice 2002). Thus the covariate
accelerates the duration, when the coefficient β is smaller than zero, or decelerates
the duration, when the coefficient is greater than zero. This is equivalent to a linear
regression model for the log-duration.

6.2.1 The Generalized Accelerated Failure Time Model

A class of duration models that generalizes the AFT models in such a way that it
also includes the MPH models is the Generalized Accelerated Failure Time (GAFT)
model. The GAFT model, introduced by Ridder (1990), is not specified by the dis-
tribution of the log-duration. Instead, we transform the duration, and assume that
this transformed duration has some distribution, either known or unknown. The
transformation of the duration is related to the integrated hazard in a PH-model.
The GAFT model is also related to the generalized regression model proposed by
Han (1987).

The GAFT model assumes that the relation between the duration T and the co-
variates is specified as

∫ T

0
λ (s; α) eβ ′ X (s) ds = U (6.1)

where λ(t ; α) is a non-negative ‘baseline’ function on [0,∞). In the sequel we as-
sume that λ is the piecewise constant function, i.e.

λ (t, α) =
J∑

j=0

eα j I
(
t j < t ≤ t j+1

)
(6.2)

with t0 = 0 and tJ+1 = ∞ and the hazard on the last interval is normalized to 1, thus
αJ = 0. Other λ-functions are also possible. The non-negative regression function
eβ ′ X (s) captures the effect of the covariates.

The GAFT model is characterized by these baseline and regression functions
and by the distribution of the non-negative random variable U . We denote the sur-
vivor function of U0, the transformation in the true population parameters α0 and
β0, by Ḡ0(u) and its hazard function by κ0(u). We assume that the distribution of
U0 is absolutely continuous and independent of X . The semi-parametric estimators
considered in this article avoid assumptions on the distribution of U0.1

As mentioned, the GAFT model contains as special cases the AFT, the PH and
the MPH models. The AFT model restricts the transformation to λ(t ; α) ≡ 1, but
leaves the distribution of U0 unrestricted (with the exception of that U0 should be
non-negative, see e.g. Cox and Oakes (1984)). The (M)PH model restricts the dis-
tribution of U0, but leaves the λ unrestricted (non-negative). The distribution of U0

1 In appendix A we show when the parameters of GAFT model are identified.



116 G.E. Bijwaard

is an unit exponential distribution (PH) or a mixture of exponential distributions
(MPH).

We can interpret the GAFT model in terms of the effect of regressing on baseline
quantiles, the quantiles for the reference individual. To illustrate this let tq (X̄ ) be the
q-th quantile of the distribution of duration with covariate history X̄ . Let tq be the
q-th quantile for the reference individual (i.e. with X (t) identically equal to zero).
Then the ratio of the change in quantiles is

d tq
(
X̄
)

d tq
= e−β ′

0 X(tq(X̄)) λ
(
tq ; α0

)
λ
(
tq
(
X̄
)

; α0
) (6.3)

In an AFT model the ratio of the quantiles is the acceleration factor e−β ′
0 X . Thus,

in the GAFT model the ratio of the change in the quantiles is the acceleration factor
multiplied by the ratio of the values of the baseline λ(t) evaluated at the q-th quantile
of the reference duration and the q-th quantile of the duration with covariate X .

In the MPH model we can interpret λ(t) as the baseline hazard, i.e. the factor
in the proportional hazard that captures the (duration) time variation in the hazard
function. Thus, in the MPH model the ratio in (6.3) can be interpreted as the ratio of
baseline hazards and the regression parameter, β, is the proportional change in the
hazard rate due to a unit change in X (t) given the unobserved heterogeneity.

6.2.2 Endogenous Covariates in GAFT Models

It can rarely be defended that a study on unemployment durations includes all the
relevant characteristics of the individuals looking for a job. For example, consider
our application of analysing the effect of a cash-bonus on the re-employment proba-
bility. Because such a bonus increases the reward of leaving unemployment it gives
an incentive to search more intensively and therefore it increases the re-employment
hazard. However, the search intensity of the unemployed individuals is usually not
observed. Suppose that the unemployed have to choose at the start of their unem-
ployment spell whether they want to be eligible for a bonus. If they choose to be
eligible they have to fill in some forms, notify their new employer and provide a
proof that they held that new job for at least four months. Thus, joining the bonus
program implies some administrative duties for the unemployed and cooperation
with their new employer. This might refrain some individuals from joining the bonus
program. It is very likely that the unobserved motivation to return to work has an
impact on both the decision to join the bonus program and the search intensity. This
implies that the indicator of joining the bonus program is an endogenous variable for
the analysis of the unemployed duration. Without adjusting for this (self)-selection
standard duration analysis give biased results of the effect of the bonus on unem-
ployment duration.

A way of adjusting for an endogenous variable is the conventional instrumen-
tal variable method that assumes instrument-error independence and an exclu-
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sion restriction. A familiar example of an instrumental variable is the treatment
assignment-indicator of a randomly assigned treatment in which the actual treatment
still depends on a decision by the agents (or on decisions made by those who exe-
cute the program). For instance, long-term unemployed can be randomly assigned
to a training program, but for many programs they can still decide not to join,
or the training manager can decide to withhold some training from some people.
Then, the assignment indicator is an instrument for the actual indicator of training
received.

The method of instrumental variables (IV) is widely used in econometrics. For
illustration consider the simple linear model

Y = β ′ X + γ D + ε

where Y is observed outcome, X is a vector of exogenous variables, D is an endoge-
nous variable, and ε is a disturbance with mean 0. If D and ε are correlated OLS
gives biased estimates of θ = (β, γ ). The conventional IV method uses an instru-
ment R that affects D but is uncorrelated with ε, like the assignment indicator in a
random but compromised experiment. If we denote Z = (X, R) and X̃ = (X, D)
the IV estimator is

θ̂I V = (
Z ′ X̃

)−1
Z ′Y

Complications arise if the outcome variable of interest is a duration variable,
like the unemployment duration. Models for duration data are usually non-linear
in the mean. Then the standard IV-methods can not be applied. An important issue
in duration models is that the value of the endogenous variable may depend on
information that accumulates during the evolution of the duration. The common
approach to accommodate such time-varying variables is to relate them to the hazard
rate. Another issue is that duration data are usually (right)-censored, due to a limited
observation window. The hazard rate is invariant to censoring and is therefore the
natural choice for the analysis of duration data.

In this paper we provide an instrumental variable method for duration data based
on inference on the hazard rate. Let D(t) be the value of the endogenous variable at
duration t . The GAFT model with endogenous variables is

∫ T

0
λ (s; α) exp

(
β ′ X (s) + ψ (s, D (s) , γ )

)
ds = U = h

(
T, X̄ (T ) , D̄ (T ) , θ

)
(6.4)

where ψ(t, D(t), γ ) captures the effect of the endogenous variable and θ =
(β ′, α′, γ ′)′ is the whole parameter vector. Without loss of generality we assume
that the endogenous variable is binary and only changes at prediscribed durations.
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We also assume that the effect of the endogenous variable may change over the
duration. Then a flexible functional form for the ‘treatment’ function is

ψ (t, D (t) , γ ) =
J∑

j=0

γ j · D j · I j (t) (6.5)

where I j (t) = I (t j < t ≤ t j+1) are interval indicators with t0 = 0, tJ+1 = ∞ and
D j is the value of D during I j .

If D were exogenous, standard techniques for the analysis of survival time data
could be used to estimate the γ ’s. For example, we can use a Mixed Proportional
Hazards model and estimate γ using (semi-parametric) Maximum Likelihood pro-
cedures, depending on the assumptions we make about the distribution of the unob-
served heterogeneity, and the baseline hazard. If the model is correctly specified the
MLE yields a consistent estimate. However, we will get biased estimation results for
the parameters if the covariate is endogenous. The problem is that those who comply
with their assigned treatment differ in observed and unobserved characteristics from
those who do not comply.

Since physical randomization implies that at time zero all attributes of the two
treatment groups are (in expectation) identical, a commonly used solution to this
problem is to ignore the post-randomization compliance and rely on the analysis of
the treatment assignment groups. This intention-to-treat (ITT) analysis replaces the
actual value of the endogenous variable, D by the instrument, R in the estimation
procedure. Further, if the model is correctly specified the estimated γ ’s effect will
correspond to the overall effect that would be realized in the whole population, under
the assumption that the compliance rate and the factors influencing compliance in
the sample are identical to those that would occur in the whole population.

The major drawback of the intention-to-treat analysis is that the estimated effect
is a mixture of the population effect and the effect on the compliance. Hence, if the
treatment effectively raises the re-employment hazard, the intention-to-treat mea-
sure of this effect will diminish as non-compliance increases. Another disadvantage
is that compliance is very likely to depend on the perceived effects of the treatment.
If, for example, the unemployed know that being eligible for a re-employment bonus
does not stigmatize them, they will be more prone to participate. Thus, when the
pattern of compliance is a function of the perceived efficacy of the treatment the
estimated intention-to-treat will not represent the overall effect of the treatment had
it been adopted in the whole population.

6.2.3 Intuition for Instrumental Variable Estimation

The basis of the proposed Instrumental Variable Linear Rank estimator (IVLR) is
that for the true GAFT model the instrument is independent of the transformed
duration. This implies that the proportion of people in the treatment group, R = 1
on the (true) transformed duration time remains the same, and is equal to the
treatment assignment probability. Thus, for the true transformed duration U0 =
h(T, X̄ (T ), D̄(T ), θ0) we have
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Pr (R = 1 |U0 ≥ u ) = Pr (R = 1 |U0 = 0) , (6.6)

This implies that the hazard of the true transformed duration is independent of
the instrument. This independence only holds for the true parameters and we can
therefore build an estimation procedure that exploits this conditional independence.
In the next section we introduce our proposed method based on this condition inde-
pendence assumption.2 First we discuss the implications of right-censoring on these
independence assumption.

A common feature of duration data is that some of the observations are censored.
Assume the censoring time, C , is (potentially) known. For example, in the anal-
ysis of unemployment duration based on administrative data the duration is often
only observed while the individual receives unemployment benefits. Usually, the
maximum duration of receiving benefits is based on the labor market history of the
individual and is recorded in the data. Then, the potential censoring time is known
and the observed durations are T̃ = min(T, C) and � = I (T ≤ C), where � is one
if T is observed.

One is tempted to define the censored transformed durations by the minimum
of the transformed time till (potential) censoring and the transformed time till the
event occurs, Ũ (θ ) = min(h(T ; θ ), h(C ; θ )) = h(T̃ ; θ ). However, the existence of
endogenous covariates and censoring makes some of the orthogonality conditions
fail to hold. This can be illustrated by a simple example: Consider a fixed censoring
time, all individuals have the same maximum duration of receiving benefits. Then
for all individuals, irrespective of their value of the endogenous variable, censoring
occurs at time C . Suppose the binary endogenous variable, D, and other covariates
all be determined at the start of the study and have a constant effect on the haz-
ard. Finally, we assume that except for γ the effect of the endogenous variable, all
parameters, β0 and α0, are known. Then, the transformation is

U0 = eγ0 D+β ′
0 X �0 (T ) (6.7)

with �0(t) = ∫ t
0 λ(s, α0) ds. Hence, if D = 0 censoring in the transformed time

occurs at eβ ′
0 X �0(C), but if D = 1 censoring occurs at eβ ′

0 X+γ0 �0(C). Thus, if
γ0 > 0, then all transformed durations in the interval [eβ ′

0 X �0(C), eβ ′
0 X+γ0 �0(C)]

have D = 1 (for γ0 < 0 the boundaries are reversed). The hazard of U0 on this
interval clearly depends on D and hence on R. The independence of the hazard of
U0 and R only holds up to the lower bound of the interval. This implies that in the
IVLR, which exploits this independence, the transformed durations that fall in the
problematic interval have to be censored. In Appendix 2 we derive the additional

2 Here we only concentrate on a static binary instrument and a discrete, but possible time-varying
according to a prescribed protocol, endogenous variable. It is not difficult to extend the analysis to
more, discrete, levels of both the instrument and the endogenous variable and to have a sequential
instrument.
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censoring required in a more general setting. This additional censoring, CU (θ ), de-
pends on the (unknown) parameters. The IVLR estimation method is than based on
the (transformed) durations Ũ (θ ) = min(U (θ ), CU (θ )), with U (θ ) given in (6.4)
and the censoring indicator �U (θ ) = I (U (θ ) < CU (θ )). Then for the ‘uncensored’
observations, that is for �U (θ ) = 1, the transformed duration Ũ (θ ) is independent
of the instrument. This is explained in more detail in Appendix 2.

6.3 Instrumental Variable Linear Rank Estimation

In this section we introduce an Instrumental Variable method for duration mod-
els that adjusts for the possible endogeneity of the intervention, without suffering
the problems of the intention-to-treat method. The basis of this IVLR estimator is
that for the true GAFT model the instrument does not influence the hazard of the
transformed duration. A typical way to test the significance of a covariate is the
rank-test, see Prentice (1987). The test is based on (possibly weighted) comparisons
of the estimated non-parametric hazard rates. It is also equivalent to the score test for
significance of a (vector of) coefficient(s) that arises from the Cox partial likelihood.
The test rejects the influence of the covariate(s) on the hazard when it is ‘close’
to zero. Tsiatis (1990) shows that the inverse of the rank test can be used as an
estimation equation for AFT models. The inverse of the rank test is the value of the
(vector of) coefficient(s) that puts the rank-test equal to zero. Here we extend the
inverse rank estimation to a GAFT model, which also includes the parameters of the
duration dependence.

6.3.1 The IVLR Estimator

Before we turn to the general model we discuss a simple AFT example to provide
more insight into the inverse rank estimation approach. Suppose we would like to
test whether a covariate X influences the hazard. If the covariate does not influence
the hazard, the mean of the covariate among the survivors does not change with the
survival time, i.e. E[X |T ≥ t ] = E[X ]. Define the observation indicator, that is the
indicator that individual j is still alive (unemployed) at time t , by Yi (t) = I (ti ≥ t).
Then the rank test-statistic is (assuming no censoring)

n∑
i

[
Xi −

∑
j Y j (ti ) X j∑

j Y j (ti )

]

where the second term is the mean of the covariate among those individuals still
alive at ti . Thus for each observation of the covariate we compare the observed
value with its expected value among those still alive (under the hypothesis of no
effect of the covariate) and sum over all observations. If this sum is significantly
different from zero, we reject the null of no influence.
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Now assume that the true model is an AFT-model with U = eβ X T . Then, for the
true parameter β = β0 the hazard of U does not depend on the covariate X . This
implies that the rank statistic for the true parameter on the transformed U -time is
zero. However the β0 is unknown and an inverse rank estimate β̂ of β0 is the value
of β for which

n∑
i

[
Xi −

∑
j Y U

j (Ui ) X j∑
j Y U

j (Ui )

]
= 0

with Ui = eβ̂ Xi ti and Y U
j (u) = I (U j ≥ u), the observation indicator on the (trans-

formed) U -time. Tsiatis (1990) derives the asymptotic properties of this estimator.
Robins and Tsiatis (1991) discuss how the rank estimator can be used to estimate
the effect of an endogenous variable in an AFT-model.

We extend the method of Robins and Tsiatis (1991) to GAFT models. We use the
transformed GAFT durations in (6.4) and adjust them for censoring, see Appendix 2.
Just as in the example above, we have that for the population parameter vector θ0

the hazard of the implied transformed duration U0, which is κ0(u), is independent
of the covariate and instrument history up to h−1

0 (u). Because this is true only for
θ = θ0, we can use the inverse of the rank statistic to get an estimate of θ0. Note that
for notational convenience we suppress the dependence on θ in censored durations
Ũ (θ ).

The estimating equations that defines the IVLR estimator contain a left-continuous
vector weight function W . The weight function may depend on Ũ i (θ ) = Ũ i , X̄

U
i (u),

the path of the covariate on the transformed time scale (see Appendix 2) and R.
Typical examples are W = (Wβ, Wγ , Wα) with Wβ = X for the coefficient vector β

of the exogenous variables and Wγ = R, the instrument, for a dummy endogenous
variable D and Wα j = I j (u) = I (h(t j ) < u ≤ h(t j+1)) for a piecewise constant
baseline hazard on intervals (t j , t j+1]. The variance of the IVLR estimator depends
on the choice of the weight-function and in Section 6.3.2 we discuss the optimal
choice of this function. For a given choice of the weight-function and possible ad-
ditional censoring the IVLR estimator is defined by the estimating equations

Sn (θ ; W ) =
n∑

i=1

�U
i

{
W
(
Ũi , X̄U

i

(
Ũi
)
, Ri ; θ

)− W̄
(
Ũi ; θ

)}
(6.8)

where

W̄
(
Ũi ; θ

) =
∑n

j=1 Y U
j

(
Ũi
)

W
(

Ũi , X̄U
j

(
Ũi
)
, R j ; θ

)
∑n

j=1 Y U
j

(
Ũi
) ,

is the average weight function among the individuals still at risk at the transformed
duration Ũi (θ ). Note that we use �U

i instead of �i to assure independence of the
instruments and the transformed durations for all uncensored observations.



122 G.E. Bijwaard

The interpretation of the estimation equations is that it compares the value of
the weight function at a transformed duration Ũi (θ ) to the average of the weight
functions for those individuals that are still at risk at that particular transformed
duration. For the true parameter vector θ0 = (β0, α0, γ0) the expected difference of
the weight function and its average for those still at risk is zero. Thus, the statistic
Sn(θ ; W ) has mean zero for the true parameters. We therefore base our estimator
on the roots of Sn(θ ; W ) = 0, which is the inverse of the extended rank statistic.
However, the estimating functions are discontinuous, piecewise constant, functions
of θ and a solution may not exist. For that reason we define the Instrumental Linear
Rank estimator (IVLR) θ̂n(W ) as the minimizer of the quadratic form, i.e.

θ̂n (W ) = inf
{
θ
∣∣Sn (θ ; W )′ Sn (θ ; W )

}
(6.9)

To ensure weak consistency and asymptotic normality of the IVLR estimator
we make the following assumptions. The random variable R is an instrument that
is determined at the start. We restrict both the instrument, R, and the endogenous
variable D, to be binary. The other assumptions can be found in Appendix 3.

If Sn(θ ; W ) were differentiable with respect to θ , then asymptotic normality can
be proved using Taylor series expansion in a neighborhood of θ0. Tsiatis (1990)
showed that, if Sn(θ ; W ) is not differentiable, as in the current problem, we can
still use a linear approximation of n−1/2Sn(θ ; W ). Using this approximation and the
asymptotic normality of Sn(θ0; W ), we can show that

√
n(θ̂n(W ) − θ0) is asymp-

totically normal. For the derivation of the asymptotic properties we use counting
process theory (see Appendix 2). Let a(u; θ0) be the probability limit of the average
weight function (see assumption 7 in appendix 3), C0 the transformed censoring
time for θ = θ0. Let di0(u) the derivative of the hazard of U (θ ) w.r.t. θ , i.e.

di0 (u) = �κU
i (u; θ )

�θ

∣∣
θ=θ0

and V (u, θ ) is the probability limit of

1

n

n∑
i=1

[
W
(
u, X̄ u

i (u) , Ri
)− W̄ (u; θ )

]× di0 (u)′ Y U
i (u)

The asymptotic properties of the IVLR estimator are summarized in the follow-
ing two theorems.

Theorem 1. (Consistency) If assumptions 1 to 7 (in appendix 3) hold θ̂n(W ) con-
verges in probability to θ0.

Theorem 2. (Asymptotic Normality) If assumptions 1 to 9 (in appendix 3) hold and
Q(W ) has full rank, then

√
n
(
θ̂n (W ) − θ0

)
N
(

0, Q−1 (W ) � (W ) Q′−1 (W )
)

(6.10)
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where

� (W ) =
∫ C0

0
a (u; θ0) κ0 (u) du (6.11)

is the asymptotic variance of n−1/2Sn(θ0; W ) and,

Q (W ) =
∫ C0

0
V (u, θ0) du (6.12)

the limiting covariance matrix of the processes W (u, X̄i0(u), Ri ) and di0(u)/κ0(u).

Proof. See Appendix 3.

6.3.2 Efficiency of the IVLR Estimator

Many different choices of the weight functions lead to consistent estimates of the
parameters. By properly choosing the weight function the asymptotic variance of
the IVLR can be minimized. Tsiatis (1990) has shown that for the AFT model with
exogenous covariates weight functions proportional to uκ ′

0(u)/κ0(u)X , with κ0(u) is
the hazard of the true transformed durations U0, minimize the asymptotic variance
of the estimated regression parameters. In general the distribution of the true trans-
formed duration, U0, is unknown. This distribution can consistently be estimated
from the implied transformed durations induced by IVLR-estimation with a weight
function that does not depend on the transformed durations.

The IVLR estimation is based on a vector of mean restrictions on weight func-
tions of the covariates, the instrument and the transformed durations. GMM estima-
tion is also based on moment conditions and in GMM estimation it is feasible to get
the most efficient GMM estimator in just two steps. A similar reasoning applies to
the IVLR-estimator. This justifies an adaptive construction of an efficient estimator.
In the next section we address the practical implementation of an adaptive estimation
procedure. First, we introduce the optimal weight function.

Theorem 3. (Optimal weight function in IVLR) The weight-function that gives the
smallest asymptotic variance for θ̂n(W ) is

Wopt

(
u, X̄ (u) , R

) ∝ � ln κU (u; θ )

�θ

∣∣∣∣
θ=θ0

= di0 (u)

κ0 (u)
(6.13)

The asymptotic covariance matrix of the optimal IVLR estimator reduces to

�−1
(
Wopt

) = Q−1
(
Wopt

)
. (6.14)
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Proof of Theorem 3. From

1√
n

(
Sn (ϑ0; W )

Sn
(
ϑ0; Wopt

)) D−→ N

(
0,

(
� (W ) Q (W )′

Q (W ) �
(
Wopt

)))

follows that the matrix

Z =
(

� (W ) Q (W )′

Q (W ) �
(
Wopt

))

is non-negative definite, the same is true for its inverse. In particular, the submatrices
on the main diagonal of the inverse are non-negative definite. Hence the matrix

Q−1 (W ) � (W ) Q′−1 (W ) − �−1
(
Wopt

)
is a non-negative definite matrix Q.E.D.

Consider, for example, a GAFT model with a piecewise constant λ function as
defined in (6.2). Assume that the model has a constant coefficient for the endogenous
variable then by (6.13) the optimal weight functions are

Wopt,β = X (u)

[
1 + u

κ ′
0 (u)

κ0 (u)

]
(6.15)

Wopt,α j =
(

1 + u
κ ′

0 (u)

κ0 (u)

)
· (RI 1

j (u) + (1 − R) I 0
j (u)

)+ (6.16)

+ R

[
(1 + uκ0 (u))

f0 (u |1, R ) − f0 (u)

f0 (u)
+ u

f ′
0 (u |1, R ) − f0 (u)

f0 (u)

]
I 1

j (u)

+ (1 − R)

[
(1 + uκ0 (u))

f0 (u|0, R) − f0 (u)

f0 (u)
+ u

f ′
0 (u |0, R ) − f0 (u)

f0 (u)

]
I 0

j (u)

Wopt,γ = R

[
1 + u

κ ′
0 (u)

κ0 (u)

]
+ (6.17)

+ R

[
(1 + uκ0 (u))

f0 (u |1, R ) − f0 (u)

f0 (u)
+ u

f ′
0 (u |1, R ) − f0 (u)

f0 (u)

]

where f0(u |D, R ) is the density of U0 given D and R, f ′
0(·) is the derivative of the

density and I D
j (u) = I (m j (X, D) < u ≤ m j+1(X, D)) for

m j (X, D) =
∫ t j

0
λ (s, α) eβ ′ X (s)+γ D ds
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6.3.3 Estimation in practice

The statistic Sn(θ ; W ) is a multi-dimensional step-function. Therefore, the standard
Newton-Raphson algorithm cannot be used to solve the minimizer of the quadratic
form of the estimation equations in (6.9). One of the alternative methods for finding
the roots of a non-differentiable function is the Powell-method. This method (see
Press et al. 1986, §10.5 and Powell 1964) is a multidimensional version of the Brent
algorithm.3

An additional difficulty in solving the estimation equations is that the (optimal)
weight-functions may depend on the, unknown, distribution of U0. However, a con-
sistent first stage estimator based on weight-functions that are independent of the
distribution of U0 is easy to find. For example, in a GAFT model with a piecewise
constant λ and a time-invariant coefficient of the endogenous variable, the choice
for the first-step weight functions could be: W = (X, R, I1(u), . . . , IJ−1(u)), with
X is the weight-function for the effect of the exogenous covariates, R is the weight-
function for the (time-constant) endogenous variable and, I1(u), . . . , IJ−1(u) are the
weight-functions for the parameters of the piecewise constant baseline hazard. Then
based on the first stage estimator we can calculate the optimal weight functions.4

Related to the computation of optimal weight function is the estimation of the
variance matrix for an arbitrary weight function.5 The difficulty in estimating the
covariance matrix lies in the calculation of the matrix Q(W ) and not in the calcula-
tion of the variance matrix of the estimating equation. The latter can be consistently
estimated by

�̂ = 1

n

n∑
i=1

�Û
i [W (u, X̄ Û

i (u), Ri ) − W̄ (u, θ̂ )][W (u, X̄ Û
i (u), Ri ) − W̄ (u, θ̂ )]′ (6.18)

where Û is the value of U (θ̂).
Thus, the optimal weight functions, the covariance matrix and the most efficient

estimators are estimated in two steps. The first step consists of obtaining a consistent
estimate of θ0 using a weight function that does not depend on the distribution of U0.
The second step concerns the estimation of the unknown distribution of U0, based
on the transformed durations implied by the first step estimates. Many different
methods are available to get a reasonable estimate of an unknown distribution. We
shall not apply the commonly used kernel based method. Although kernel-smoothed
hazard rate estimators have been developed and adjusted to deal with the boundary
problems inherent to hazard rates these methods can be difficult to implement due
to the choice of the bandwidth. It is also unclear how the boundary corrections can

3 See the site of Bo Honore http://www.princeton.edu/honore/ for the Powell method in Gauss.
4 The estimation procedures written in Gauss are available upon request from the author.
5 Robins and Tsiatis (1991) suggested to use a numerical derivative of n−1 Sn(θ ; W ) that does not
need an estimate of the optimal W –function to get Q̂(W ). This numerical derivative is sensitive to
the choice of the difference in θ . We found it hard to get stable results.
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be incorporated in the kernel estimates of the derivative of the hazard. We therefore
choose to use a series approximation of the distribution.

Suppose the distribution of U0 can be approximated arbitrary well using or-
thonormal polynomials. We base our approximation on Hermite polynomials using
the exponential distribution as a weighting function:

g0 (u) = ae−au∑L
l=0 b2

l

[
L∑

l=0

bl Ll (u)

]2

(6.19)

where

Ll (u) =
l∑

k=0

(
l
k

)
(−au)k

k!
(6.20)

are the Laguerre polynomials. The unknown parameters of this approximation are
a and b0, . . . , bL . If bl ≡ 0 for all l > 0 the distribution of U0 is exponential.
Even for L as small as three (6.19) allows for many different shapes of κ0(u) and its
derivative. Both can be derived analytically given the estimates of the parameters.
The parameter estimators can be obtained from standard maximum likelihood pro-
cedures on the observed transformed durations implied by the first step estimates.

If a consistent but inefficient estimator θ̂n(W ) of θ0 is available, e.g. the first stage
estimator, and we have estimated the parameters of the polynomial approximation of
the distribution of U0 we can obtain an efficient estimator θ̂opt in just one additional
step. From the linearization of the estimating equations, given in (6.36), we obtain
an efficient estimator from

θ̂opt = θ̂n (W ) − Q̂ (W )−1 Sn
(
θ̂n (W ) ; Wopt

)/
n (6.21)

This procedure is related to obtaining an efficient GMM estimator in two steps
from a consistent, but possible, inefficient GMM estimator. It also possible to obtain
the efficient estimator directly from minimizing the quadratic form. However, this
involves again the minimization of a multi-dimensional step function.

6.4 Application to the Illinois Re-employment
Bonus Experiment

Between mid-1984 and mid-1985, the Illinois Department of Employment Security
conducted a controlled social experiment.6 This experiment provides the oppor-
tunity to explore, within a controlled experimental setting, whether bonuses paid

6 A complete description of the experiment and a summary of its results can be found in Woodbury
and Spiegelman (1987).
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Table 6.1 Average unemployment durations: control group and (non-)compliers

Claimant bonus Employer bonus

Control group All Compl. Non-compl. All Compl. Non-compl.

Benefit weeks 18.33 16.96 16.74 18.18 17.65 17.62 17.72

(0.20) (0.20) (0.22) (0.50) (0.21) (0.26) (0.35)
N 3952 4186 3527 659 3963 2586 1377

Note: Standard error of average in brackets.

to Unemployment Insurance (UI) beneficiaries or their employers reduce the time
spend in unemployment relative to a randomly selected control group. In the ex-
periment, newly unemployed claimants were randomly divided into three groups:
a Claimant Bonus Group, a Employer Bonus Group and, a control group. The
members of both bonus groups were instructed that they (Claimant group) or their
employer (Employer group) would qualify for a cash bonus of $500 if they found a
job (of at least 30 hours) within 11 weeks and, if they held that job for at least four
months. Each newly unemployed individual who was randomly assigned to one of
the two bonus groups had the possibility to refuse participation in the experiment.

Woodbury and Spiegelman (1987) concluded from a direct comparison of the
control group and the two bonus groups that the claimant bonus group had a sig-
nificantly smaller average unemployment duration. The average unemployment du-
ration was also smaller for the employer bonus group, but the difference was not
significantly different from zero. These results are confirmed in Table 6.1. Note that
the response variable is insured weeks of unemployment. Because UI benefits end
after 26 weeks, all unemployment durations are censored at 26 weeks. In Table 6.1
no allowance is made for censoring. In the table we distinguish between compli-
ers, those who agreed to be eligible for a bonus if assigned to a bonus group, and
non-compliers. We see that the claimant bonus only affects the compliers and that
the average unemployment duration of the non-compliers and the control group are
almost equal.

About 15% of Claimant group and 35% of the employer group declined partici-
pation. The reason for this refusal is unknown. Bijwaard and Ridder (2005) showed
that the participation rate is significantly related to some observed characteristics
of the individuals that also influence that re-employment hazard. Hence, we cannot
exclude the possibility of unmeasured variables that affect both the compliance de-
cision and the re-employment hazard. Meyer (1996) analyzed the same data using
a PH model with a piecewise constant baseline hazard. He used the randomization
indicator instead of the actual bonus-group agreement indicator as an explanatory
variable. Thus he used the ITT estimator. He found a significantly positive effect
of the claimant bonus. However, as shown by Bijwaard and Ridder (2005), the ITT
may have a downward bias.

We calculate the IVLR estimate of the effect of the claimant and employer bonus
on the unemployment duration in a GAFT model and compare these estimates with
the IVLR estimates of an AFT model, with ITT estimates in an MPH model and
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the ML estimates of an MPH model that ignores the endogeneity of the decision to
participate in the bonus group. We consider the two interventions separately: thus
Claimant Bonus group versus Control group and Employer Bonus group versus
Control.

We shall consider two alternative specifications for the effect of the bonus on
unemployment duration: (i) constant effect and, (ii) a change in the effect after 10
weeks, in line with the end of the eligibility period of the bonuses. Thus, the implied
transformed durations are

U (θ ) =
∫ T

0
λ (s; α) eβ ′ X+(γ1 I1(s)+γ2 I2(s))Dds (6.22)

with I1(t) = I (0 ≤ t < 11) and I2(t) is its complement. Note that the covari-
ates are all time-constant because the individual characteristics available in the data
are all determined when the individuals register at the unemployment office. We
include the following: the logarithm of the age (LNAGE), the logarithm of the pre-
unemployment earnings (LNBPE), gender (MALE = 1), ethnicity (BLACK = 1),
and the logarithm of the weekly amount of UI benefits plus dependence allowance
(LNBEN). We employ two different specifications for λ(t ; α0): (i) AFT model, i.e.
λ(t ; α0) ≡ 1; and (ii) GAFT model with a piecewise constant λ on six intervals 0–2,
2–4, 4–6, 6–10, 10–25 and 25 and beyond.

For identification we need to set one of the parameters of the piecewise constant
λ equal to one (or the log equal to zero). We let the base interval, the interval on
which λ = 1, start on the last week before the end of the observation period, at 25
weeks. This allows us to capture the spike in the observed unemployment duration
just before the UI eligibility period ends. The end of the UI eligibility period, at 26
weeks, is for all individuals the same and thus provides the potential censoring time.

For both the AFT and the GAFT specifications we estimate a first stage IVLR
using the Powell-method and the one step optimal IVLR. The first stage IVLR uses
the values of the covariates, X , the interval indicators on the transformed duration
(only for the GAFT-model), I j (u) and, the bonus group assignment indicator times
the interval indicators on the transformed duration, R · I1(u) and R · I2(u), as the
weight functions. From these first stage IVLR’s the implied transformed duration
are obtained. Then, we estimate the parameters of the polynomial approximation
of the distribution of U conditional on R and D as mentioned in Section 6.3.3.
From these estimated parameters we calculate the hazard and its derivative of the
transformed duration. These functions are then used as inputs to derive the optimal
weight functions (see Theorem 3), which in turn are necessary to calculate the co-
variance matrix. We also calculate the 1-step efficient estimates with these optimal
weight functions. In the case of a constant bonus effect, the optimal weight function
are given in (6.15), (6.16) and (6.17). When we assume that the effect of the bonus
changes after 11 weeks the optimal weight function in (6.17) is more complicated
and therefore not spelled out here.

The estimation results for the bonus effects are reported in Table 6.2. The re-
sults for the piecewise constant λ and for the regression coefficients in the AFT and
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Table 6.2 Instrumental Variable Linear Rank estimates for the effect of the Bonus

Claimant group

Constant effect
AFT GAFTa MLE ITT

First stage 0.1446 0.1024 – –
(0.0493) (0.0523) – –

1-step optimal 0.1596 0.0932 0.1039 0.1117
(0.0460) (0.0380) (0.0285) (0.0303)

Time varying effect
First stage
0–10 0.2955 0.1433 – –

(0.0523) (0.0907) – –
10+ −0.0720 0.0063 – –

(0.0608) (0.0886) – –
1-step optimal
0–10 0.3865 0.1439 0.1601 0.1516

(0.0486) (0.0578) (0.0361) (0.0378)
10+ −0.0437 −0.0411 – –

(0.0572) (0.0850) – –

Employer group

First stage 0.1011 0.0721 – –
(0.0646) (0.0470) – –

1-step optimal 0.1332 0.0696 0.0387 0.0516
(0.0612) (0.0425) (0.0318) (0.0307)

Time varying effect
First stage
0–10 0.2304 0.1103 – –

(0.0710) (0.0736) – –
10+ −0.0783 −0.0048 – –

(0.0836) (0.1253) – –
1-step optimal
0–10 0.6334 0.1279 0.0881 0.0800

(0.0674) (0.0521) (0.0402) (0.0348)
10+ 0.0330 −0.0747 – –

(0.0745) (0.0882) – –
a GAFT piecewise constant intervals: 0–2, 2–4, 4–6, 6–10, 10–25, 25 →;
Note: Standard error in brackets.

GAFT models can be found in Appendix 4. A comparison of the results shows that
AFT overestimates the effect and that both ML and ITT estimators underestimate the
effect of the employer bonus. For the claimant bonus the ML and ITT estimates are
very close to the IVLR estimates. This indicates that endogeneity of the compliance
decision is rather limited for the claimant group. The compliance rate in the claimant
group is much higher and most probably the compliance decision of the individuals
in the claimant bonus group is less related to their expected unemployment duration.
The results clearly indicate that the bonuses only influence the chances to find a job
in the first ten weeks. This is in line with the bonus eligibility period: those who find
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a job after that period would not get the bonus. The effect of the Claimant Bonus
increases from about 10% higher probability to find a job at every unemployment
duration to about 15% higher probability to find a job in the first ten weeks (and no
effect thereafter). The bonus for the Employer group raises the job finding proba-
bility with about 7% at every unemployment duration or with about 12% in the first
ten weeks of unemployment.

In the GAFT (and AFT) model the effect of the bonus is defined in terms of the
change in the quantiles, see (6.3). In an AFT model with a time-constant coefficient
for the bonus this effect is constant and independent of the other covariates. In a
GAFT model the λ function influences this effect directly and indirectly as the other
covariates determine the quantiles. Using the distribution of U0, already calculated
to estimate the optimal IVLR and the variance-covariance matrix, we can derive the
effect of the bonus in the GAFT depending on the quantile of the distribution. In
Table 6.3 we present the effect of the bonus on the unemployment duration at the
80%, 60% and 40% survival for the reference individual and for a black individual,
together with the AFT effect (first stage). Figures 6.1, 6.2, 6.3, and 6.4 depict the
change over the whole 90%–25% survival range of the effect of the bonus in the
GAFT model.

Note that an effect smaller than one indicates that the bonus decreases the dura-
tion till re-employment and an effect bigger than one increases the duration. We

Table 6.3 Effect of the Bonus on the length of unemployment duration

Claimant Employer

Constant Time-varying Constant Time-varying

AFT 0–10 0.865 0.744 0.904 0.794
10+ 0.865 1.075 0.904 1.081

GAFT Reference individual

80% tq(0) 3.9 3.7 2.8 4.3
tq(1) 3.5 2.9 2.5 3.7
effect 0.911 0.866 0.933 0.823

60% tq(0) 12.8 12.6 8.9 12.7
tq(1) 10.4 9.4 7.8 10.0
effect 0.911 0.571 0.933 1.078

40% tq(0) 25.7 25.7 20.7 24.3
tq(1) 22.8 23.1 18.3 22.5
effect 1.772 1.973 0.933 1.078

GAFT Black individual

80% tq(0) 7.5 6.8 4.8 8.1
tq(1) 6.5 5.3 4.1 6.4
effect 0.911 0.681 0.933 0.880

60% tq(0) 25.3 24.4 18.44 24.22
tq(1) 22.1 21.0 16.2 22.5
effect 1.772 1.042 0.933 1.078

40% tq(0) 35.6 35.1 30.7 34.2
tq(1) 32.9 33.8 28.9 33.9
effect 0.911 1.042 0.933 1.078
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Effect in GAFT constant gamma

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25

Survival quantile

ef
fe

ct

Claimant constant
Employer constant

Fig. 6.1 Effect of Bonus on quantiles of unemployment duration
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d tq (0) (constant γ )

Effect in GAFT time-varying gamma
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Fig. 6.2 Effect of Bonus on quantiles of unemployment duration,
d tq (1)

d tq (0) (time-varying γ )

see from the table (and more pronounced in Figs. 6.1 and 6.3) that even for a
time-constant γ the effect of the bonus on the unemployment duration in the GAFT
model changes with the duration. The huge spike in the effect at the survival quantile
of 40% for the claimant group is because the re-employment rate exhibits a spike
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Effect in GAFT model (black) constant gamma
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Fig. 6.3 Effect of Bonus on quantiles of unemployment duration of BLACKS,
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Fig. 6.4 Effect of Bonus on quantiles of unemployment duration of BLACKS,
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just before the time that unemployment benefits are exhausted, which is at 26 weeks.
For the individuals in the control group the 40% survival time is just before 26
weeks, while in the claimant bonus group it is at 23 weeks. Thus the control group
individuals are in the re-employment spike while the claimant bonus group are not.
The interval boundaries of the other intervals of λ also cause, although not as pro-
nounced, spikes. These spikes are downward because the λ is jumping to a lower
level at these boundaries. The spikes are also visible in the effect of a time-varying
coefficient of the bonus, see Figs. 6.2 and 6.4. Here, the change in γ at a duration
of 10 weeks, after which the coefficient is negative, is reflected is a upward shift of
the effect curve.

An indication that the AFT is not the right model is the difference between the
first stage and one-step optimal estimators for the AFT model. For a correctly spec-
ified model both estimators are consistent and, therefore, do not differ much. In the
GAFT model the first stage and one-step estimator are of the same magnitude. The
estimated standard errors of the latter are, as expected, substantially lower in most
situations.

Although the focus in this article is on the estimation of the effect of a possibly
endogenous variable on the duration we also give a short discussion on the estima-
tion results of the other parameters. These estimators can be found in the Tables 6.4,
6.5, 6.6, and 6.7 in Appendix 4. The regression parameters are overestimated (in
absolute terms) if we assume an AFT model. These regression parameters hardly
change from a model with constant bonus effect (Table 6.5) to a model with time-
varying bonus effect (Table 6.6). The regression parameters for the Claimant data
and the Employer data (both including the control group) are almost identical.
Gender, MALE, is the exception; Gender has no significant influence on the re-
employment probability in the Employer data. The shape of the estimated λ’s indi-
cate a U-shaped λ.

We end with a discussion on the selectivity in the bonus data. The compliance
rate in the Claimant group, 85%, was much higher than the compliance rate in the
employer group, 65%. Many individuals in the Employer group, apparently and
contrary to our findings, did not perceive a bonus paid to their new employer ben-
eficiary for their job search. Following Moffitt (1983) this partial compliance may
be explained by a stigma effect. However, this is a tentative explanation because our
analysis only adjust for (possible) selective compliance. It does not provide a model
for the selection process. Thus, both an advantage and a drawback of our method is
that we do not make any assumptions on the selection process and therefore cannot
tell why individuals make such a selective decision.

6.5 Conclusion

In this article we proposed and implemented an instrumental variable estimation
procedure for duration models. We show how the effect of an endogenous vari-
able on the duration in a Generalized Accelerated Failure Time (GAFT) model can
be estimated. The GAFT model is based on a transformation of the durations that
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encompasses both the Accelerated Failure Time (AFT), very popular in biostatistics,
and the Mixed Proportional Hazards (MPH) model, very popular in econometrics.
The interpretation of regression coefficients in the GAFT is in terms of shifting the
quantiles of the distribution.

The basis of the Instrumental Variable Linear Rank estimator is that for the true
GAFT model the instrument does not influence the hazard of the transformed dura-
tion. This implies that a rank test on the significance of the effect of instrument
on the hazard of the transformed duration is zero. The IVLR estimation proce-
dure is based on the inverse of an extended, including all the parameters of the
GAFT model, rank-test. The estimation procedure is related to the rank estimation
procedures of Robins and Tsiatis (1991) and of Bijwaard and Ridder (2005). The
Two Stage Linear Rank procedure of Bijwaard and Ridder (2005) is based on a
semi-parametric MPH and requires preliminary estimates of the baseline hazard.
The Rank Preserving Structural Failure Time Model of Robins and Tsiatis (1991)
is based on the strong version of the Accelerated Failure Time model. Their model
imposes a strong non-interaction assumption. This implies that if two individuals
have the identical observed durations and observed treatment histories then they
would have had identical durations had treatment always been withheld. The IVLR
estimator does neither impose the non-interaction assumption nor requires prelimi-
nary estimates of the baseline hazard.

The estimation procedure is also related to quantile-regression, in particular
Koenker and Bilias (2001) and Koenker and Geling (2001). It is, however, un-
clear how these methods can handle time-varying endogenous variables. Because
the IVLR is based on a vector of mean restrictions it is related to the well-
known GMM estimation procedure. Similar to the application of GMM estima-
tion choosing the right weight functions can improve the efficiency. However,
again similar to the GMM, these optimal weight functions are not directly observ-
able. Fortunately, an adaptive (or even 2 step) procedure can provide the efficient
IVLR.

We can give a causal interpretation to the effect of the endogenous variable the
IVLR identifies for the GAFT model. However, the causal effect is defined in terms
of shifting the quantiles of the outcome distribution and not in terms of the (Local)
Average Treatment Effect, common in the treatment evaluation literature. But aver-
ages are less usefull to base treatment effects on for duration data, due to censoring
and time-varying treatment.

The empirical application shows that the ML and ITT estimates for the employer
group, in which the new employer of the claimant receives the bonus, are downward
biased due to endogeneity. In the claimant group, in which the claimant himself
receives the bonus, the ML and ITT estimates are close to the IVLR estimates. This
might indicate that the endogeneity of the decision to participate in this group is
rather small. Incorrectly assuming an AFT model can give misleading conclusions
about the effects of a bonus on the re-employment hazard. In the Illinois bonus re-
employment experiment many unemployed found a job just before their UI-benefits
expires. This induces a spike in the re-employment hazard. In the GAFT, even with
a constant regression coefficient, such a spike leads to an effect that changes over
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the quantiles. This has important implications for the evaluation of the effect of a
possible endogenous variable on a duration.

Social experiments may provide instruments for an endogenous variable. With
good instruments available the proposed method can be very useful in analyzing
the effects of a possible endogenous variable on an inherently duration outcome.
Examples in population studies include the effect of training programs on the un-
employment duration, policies to increase the birth rate and migration policies.

There are several issues that need further research. First, the current approach
to adjust for endogenous censoring implies loss of information and depends on the
(unknown) parameters of the model. An important improvement would be to find
a method to adjust for endogenous censoring that is parameter independent and
minimizes the loss of information. Another related issue is that if the IVLR assumes
that the censoring time is (potentially) known in advance. Further research on more
general censoring patterns deserve attention. Second, in our empirical application
we have, because of random assignment, a perfect assignment. Such an instrument
is, however, not always available. Finding good instruments is therefore an impor-
tant issue just as the influence of weak instruments on the properties of the estimator.
A final issue for further research is the extension of the IVLR to recurrent duration
data, like repeated unemployment spells.
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Appendix 1: Identification of the GAFT Model

Assume that the regression function in the GAFT model is log-linear. Then, the
model is characterized by the non-negative function λ(t ; α) defined on [0,∞), the
distribution of U0 and the regression parameter β. Ridder (1990) has shown that if
the covariates are time constant, all observationally equivalent GAFT models, i.e.
models that give the same conditional distribution of T given X , have regression
parameters dβ, integrated transformation c1(

∫ t
0 λ0(s; α0) ds)c2 and U0 distribution

G0(( u
c1

)1/c2 ) for some constants c1, c2 > 0. The equivalent class follows from the
fact that a GAFT model with time constant covariates can be expressed as a trans-
formation model

ln

(∫ T

0
λ0 (s; α0) ds

)
d= −β ′

0 X + ln U,

and the constants c1, c2 correspond to addition of ec1 to and division by c2 of the
left- and right-hand sides.
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With time-varying covariates, the set of observationally equivalent GAFT models
is generally smaller. In particular, the power transformation that gives an observa-
tionally equivalent model if the covariates are time constant, in general does not re-
sult in a GAFT model. As an example consider the GAFT model with time-varying
regressors that differ between two groups. In group I

X (t) =
{

1 if 0 ≤ t ≤ 1,

0 if t > 0.

and in group I I , X (t) = 0; t ≥ 0. Moreover λ0(t ; α) = αtα−1. With time constant
regressors the parameter α is not identified. It can be shown that the observationally
equivalent GAFT models have transformation c1tα and U-distribution with survival
Gu( u

c1
). Hence, with time-varying covariates α is identified (and so is β).

We conclude that identification depends on whether the covariates are time con-
stant or time-varying. If the covariates are time constant we can identify the trans-
formation h(T, X̄ (T ); θ0) up to a power and β up to scale (with the power and the
scale being equal). Moreover, if we fix the power we can identify h(T, X̄ (T ); θ0)c2

up to scale and the distribution of U0 up to the same scale parameter.
If the covariates are time-varying we can, except in special cases, identify

h(T, X̄ (T ); θ0) and the distribution of U0 up to a common scale parameter. Because
we leave the distribution of U0 unspecified in our estimation method, we can not
use restrictions on U0 to find the scale parameter. For that reason we normalize
h(T, X̄ (T ); θ0) by setting h(T, 0; θ0) = 1 for some t0 > 0. With time constant
regressors we need the same normalisation, but in addition we need to set one regres-
sion coefficient equal to one. Of course, we could choose a class of transformations
that is not closed under the power transformation. This amounts to identification by
functional form.

Finally, we need a condition on the sample paths of X in the population. If we
rewrite (6.1) as

∫ T

0
eln λ(s;α0)+β0 X (s)ds = U0 (6.23)

we require that

Pr (ln λ (s; α0) + β0 X (.) = 0) = 0 (6.24)

where the probability is computed over the distribution of X as a random function
of t and 0 is the zero function. In other words, ln λ is not collinear with X .

For the identification in the GAFT model with endogenous variables we need
additional assumptions on the instrument. First, the instrument should only affect
the duration through the endogenous variable and not directly. Second, the value of
the instrument should influence the value of the endogenous variable in a non-trivial
way. For example, if both the instrument and the endogenous variable are binary
then Pr(D = 1 |R = 1) > 0 and Pr(D = 0 |R = 0) > 0.
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Appendix 2: Counting Process Interpretation

The density and the survival function of a duration T can be expressed as functions
of the hazard rate. These expressions can be used to obtain a likelihood function. In
this appendix we use a different (but of course equivalent) representation of the
relation between the hazard rate and the random duration. In particular, we use
the framework of counting processes (see e.g. Andersen et al. 1993 and Klein and
Moeschberger 1997). The main advantage of this framework is that it allows us to
express the duration distribution as a regression model with an error term that is a
martingale difference. This simplifies the analysis of the estimator. The conditions
for non selective observation can be precisely stated in this framework. The same is
true for conditions on time-varying covariates.

The starting point is that the hazard of T is the intensity of the counting process
{N (t); t ≥ 0} that counts the number of times that the event occurs during [0, t].
The counting process has a jump +1 at the time of occurrence of the event.7 A
jump occurs if and only if dN (t) = N (t) − N (t−) = 1. For duration data, the
event can only occur once. In many unemployment studies the individuals are only
observed until re-employment. So, at most one jump is observed for any unit. To
account for this we introduce the observation indicator Y (t) = I (T ≥ t) that is zero
after re-employment. By specifying the intensity as the product of this observation
indicator and the hazard rate we effectively limit the number of occurrences of the
event to one. We assume that the observation indicator only depends on events up
to time t . The observation process is assumed to have left-continuous sample paths.
We define the history of the process up to time t by H (t) = {Ȳ (t), D, X̄ (t)}, where
Ȳ (t) = {Y (s), 0 ≤ s ≤ t}. The history H (t) only contains observable events.

Let V be some unobserved variable that both influence the endogenous variable
and the duration. An example is the, usually, unobserved search intensity of unem-
ployed looking for a job. We assume that V and X̄ (t) are stochastically independent.
Denote H V (t) = {H (t), V }, the history that also includes the unobservables. As
with dynamic regressors in time-series models, the time-varying X (t) may depend
on the dependent variable up to time t but not after time t (conditionally on V ). Thus
D only depends on H V (t) and X (t) only on H (t). In the counting process literature
such a time-varying covariate is called predictable. We will use the econometric
term predetermined.

If the conditional distributions of N (t) given H V (t) or H (t) are well-defined
(see Andersen et al. (1993) for assumptions that ensure this) we can express the
probability of an event in (t − dt, t] as8

Pr
(
dN (t) = 1

∣∣H V (t)
) = Y (t) κ

(
t
∣∣X̄ (t) , D, V

)
dt (6.25)

7 The sample paths are assumed to be right-continuous.
8 Because the sample paths of {Y (t), X (t), t ≥ 0} are assumed to be left-continuous (as is the
baseline hazard), we can substitute t for t − dt in (B.1).
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with κ(t |· ) is the hazard of T at t given X̄ (t), D and V . By the Doob-Meier decom-
position

dN (t) = Y (t) κ
(
t
∣∣X̄ (t) , D, V

)
dt + dM (t) (6.26)

with {M(t); t ≥ 0} a (local square integrable) martingale. The conditional mean and
variance of this martingale are

E (dM (t) |H (t) ) = 0 (6.27)

Var (dM (t) |H (t) ) = Y (t) κ
(
t
∣∣X̄ (t) , D, V

)
dt (6.28)

The (conditional on H (t)) mean and variance of the counting process are equal,
so that the disturbances in Equation (6.26) are heteroscedastic. The probability in
Equation (6.21) is zero, if the individual is not at risk.

A counting process can be considered as a sequence of Bernoulli experiments,
because if dt is small Equations (6.21) and (6.28) give the mean and variance of
a Bernoulli random variable. The relation between the counting process and the
sequence of Bernoulli experiments is given in Equation (6.26), which can be con-
sidered as a regression model with an additive error that is a martingale difference.
This equation resembles a time-series regression model. The Doob-Meier decom-
position is the key to the derivation of the distribution of the estimator, because the
asymptotic behavior of partial sums of martingales is well-known.

The GAFT model transforms the observed duration T to a transformed
duration U0. The transformation involved a parameter vector θ0 = (β ′

0, γ
′
0, α

′
0)′. We

denote the transformation for parameter vectors θ �= θ0 by U (θ ) with U0 = U (θ0).
The distribution of U (θ ) can also be represented by a (transformed) counting
process {NU (u); u ≥ 0}. The relation between the original and transformed counting
process, the observation indicator, and the time-varying exogenous
covariates is

NU (u; θ ) = N
(
h−1 (u; θ )

)
Y U (u; θ ) = Y

(
h−1 (u; θ )

)
XU (u; θ ) = X

(
h−1 (u; θ )

)
I U
k (u; θ ) = Ik

(
h−1 (u; θ )

)
with h(T ; θ ) = h(T, X̄ (T ), D̄(T ); θ ), defined in (6.4), and Ik(t) = I (tk < t ≤
tk+1). For θ = θ0 we denote h0(T ) = h(T ; θ0). The corresponding history is
HU (u; θ ) = {Ȳ U (u; θ ), X̄U (u; θ ), Ī U

k (u; θ ), D}. In the sequel we suppress θ and
write Y U (u), NU (u), X̄U (u), Ī U

k (u) and HU (u) for θ �= θ0 and Y0(u), N0(u), X̄0(u),
Īk0(u) and H0(u) for θ = θ0. The intensity of the transformed counting process
with respect to history HU (u) is obtained by the innovation theorem (see Andersen
et al. 1993, pp. 80, 87)9

9 If U = h(T ) and κT is the hazard rate of the distribution of T , then the hazard rate of the
distribution of U is κU (u) = κT (h−1(u)) 1

h′(h−1(u)) .



140 G.E. Bijwaard

Pr
(
dNU (u) = 1

∣∣HU (u)
) = Y U (u) E

[
λ
(
h−1 (u; θ ) ; α0

)
λ
(
h−1 (u; θ ) ; α

) e(β0−β)′ XU (u)

× exp

(
K∑

k=1

(γk0 − γk) I U
k (u) D

)
κo
(
h0
(
h−1 (u; θ )

)) ∣∣HU (u)

]
du (6.29)

We implicitly integrate with respect to the distribution of the unobserved V con-
ditional on HU (u). Note that these unobserved covariates are only introduced to as-
certain the predictability of the endogenous covariate process. Although
the distribution of those variables determines the distribution of U0, the consis-
tency of the IVLR is independent of that distribution. Unfortunately, even for the
population parameters θ0 the hazard of U0, κ0(u), still depends on the interven-
tion path (through the correlation with V ). If we condition on the history of the
instruments instead of the actual endogenous covariates we do get the desired
independence.

We must add the instrument R to the conditioning variables in (6.29) if we
consider instrumenting the endogenous variable. Let the U R-history, HU R(u) =
{Y U (s), XU (s), R; 0 ≤ s ≤ u}, be the history on the transformed durations in which
the endogenous variable D is replaced by the instrument. Then, another application
of the innovation theorem gives the intensity of the transformed process on the U R-
history

Pr
(
dNU (u) = 1

∣∣HU R (u)
) = Y U (u) E

[
λ
(
h−1 (u; θ ) ; α0

)
λ
(
h−1 (u; θ ) ; α

) e(β0−β)′ XU (u)

× exp

(
K∑

k=1

(γk0 − γk) I U
k (u) D

)
κ0
(
h0
(
h−1 (u; θ )

)) ∣∣HU R (u)

]
du (6.30)

which for the population parameters simplifies to Y U
0 (u)κ0(u)du with HU R

0 (u) =
HU R(u; θ0). Note that (6.29) and (6.30) only differ in the history the intensities are
conditioned on.

For further reference we denote the intensity in (6.30) by κU
i (u; θ ) such that

Pr
(
dNU (u) = 1

∣∣HU R (u)
) = Y U (u) κU

i (u; θ ) du

which reduces to κ0(u) for the population parameters.
A common feature of duration data is that some of the observations are censored.

Assume the censoring time, C , is (potentially) known. Then, the potential censoring
time is known and the observed durations are T̃ = min(T, C) and � = I (T ≤ C),
where � is one if T is observed.

Assume the piecewise constant structure for the effect of the endogenous variable
in (6.5). This implies that for tk < t ≤ tk+1, the coefficient of D = 1 is eγk . We
define the transformed censoring time CU (θ ) (possibly depending on the observed
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history of other covariates) such that: (a) T ≥ C implies h(T ; θ ) ≥ CU (θ ) and (b)
U0 and R are independent on the interval bounded above by CU (θ ).

Note that we either observe T ≤ C and � = 1, or T > C and � = 0. If
some of the other covariates are also time-varying we have another identification
problem, because these covariates are only observed up until T̃ . The transformed
censoring times (conditional on T, C > tk) that take all these considerations into
account are the sum of the transformed duration up to tk , h(tk ; θ ) and the censoring
adjustment, i.e.

CU (θ ) =
{∫ C

0 λ (s; α) eβ ′ X (s) P (s; γ ) ds if T > C,∫ T
0 λ (s; α) eβ ′ X (s) P (s; γ ) ds + ∫ C

T λ (s; α) ds if T ≤ C.
(6.31)

where P(s; γ ) = I (s ≥ tk)
∏k

j=0 min(eγ j , 1). From the last term on the right-hand
side of (6.31) we see why we need to know C even for the uncensored observations.
Otherwise we can not compute CU (θ ) for these observations. We can estimate the
parameters of the model from the following observed data

Ũ (θ ) = min
(
U (θ ) , CU (θ )

)
, �U (θ ) = I

(
U (θ ) < CU (θ )

)
(6.32)

and Y U (u; θ ) = I (Ũ (θ ) ≥ u). Now Ũ (θ0) is independent of R for �U (θ0) = 1. Note
that if, at least, one of the γ ’s is different from zero, we introduce extra censoring
on the transformed durations, because then some units with � = 1 have �U (θ ) = 0.

The counting process interpretation allows for an alternative formulation of the
estimating equations in (6.8). The relevant counting measure, NU

i (u), can be seen
as a discrete ‘probability distribution’ that assigns weight unity to uncensored trans-
formed durations and is zero elsewhere. Then the estimating equations can be ex-
pressed as an integral with respect to that counting process

Sn (θ ; W ) =
n∑

i=1

∫ CU
i

0

{
W (u, Ri ) − W̄ (u; θ )

}
dNŨ

i (u) (6.33)

where CU
i is the transformed censoring time defined in (6.31).

Appendix 3 Asymptotic Properties of the IVLR

In this section we discuss the asymptotic behavior of the Instrumental Variable
Linear Rank estimator. The counting process framework simplifies the derivation
of these asymptotic properties. We assume a piecewise constant λ for the GAFT
model.
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We make the following assumptions:

1. The covariate process X (t) is predetermined, i.e. its distribution is independent
of {H (s), s > t}. The sample paths of the covariate process are bounded and at
least one of time-varying covariates is a continuous variable.

2. The observation process Y (t) is cadlag and Y (t) is predetermined. Moreover,

Pr (dN (t) = 1 |Y (t) = 1, H (t)) = Pr (dN (t) = 0 |Y (t) = 0, H (t) )

3. The population distribution of T given X̄ and D̄ satisfies

∫ T

0
λ (s; α0) eβ ′

0 X (s)+ψ(s,D;γ0)ds = U0

The absolutely continuous distribution of U0 does not depend on X̄ or R̄. The
p.d.f. of U0 is bounded.

4. The transformed observation process Y U (u) = I (Ũ (θ ) ≥ u) is cadlag and pre-
determined, with Ũ (θ ) = min(U (θ ), CU ) and CU defined in (6.31).

5. The instrumental function W is bounded and left-continuous.
6. The intensity of U (θ ), κU

i (u) given history HU R(u) in (6.30) can be linearized in
a neighborhood of θ0 as a function of θ , i.e. there exist μ(u) and ε > 0 such that
for ‖θ − θ0‖ < ε

∣∣κU
i (u; θ ) − κ0 (u) − (θ − θ0)′ di0 (u)

∣∣ ≤ ‖θ − θ0‖2 μ (u)

for u ≤ C0 = CU (θ0) with

di0 (u) = �κU
i (u; θ )

�θ

∣∣
θ=θ0

7. There exists a continuous function a(u; θ ) of θ in a neighborhood B of θ0 such
that

sup
u≤C0

sup
θ∈B

∥∥W̄ (u; θ ) − a (u; θ )
∥∥ 0

where

W̄ (u; θ ) =
∑n

j=1 Y U
j (u) W

(
u, X̄U

j (u) , R j

)
∑n

j=1 Y U
j (u)

8. There exists a continuous matrix function A(u; θ ) of θ in a neighborhood B of
θ0 such that
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sup
u≤C0

sup
θ∈B

∥∥∥∥∥1

n

n∑
i=1

[
W
(
u, X̄U

i (u) , Ri
)− W̄ (u; θ )

]

× [W (
u, X̄U

i (u) , Ri
)− W̄ (u; θ )

]′
Y U

i (u) − A (u; θ )
∥∥∥ p−→ 0

9. There exists a continuous matrix-function V (u; θ ) of θ in a neighborhood B of
θ0 such that

sup
u≤C0

sup
θ∈B

∥∥∥∥1

n

n∑
i=1

[
W
(
u, X̄U

i (u) , Ri
)− W̄ (u; θ )

]

× di0 (u)′ Y U
i (u) − V (u; θ )

∥∥∥∥ p−→ 0

The starting point is (6.32), which can, for θ in a small neighborhood of θ0, be
rewritten as

Sn (θ ; W ) =
n∑

i=1

∫ Ci0

0

{
W
(
u, X̄U

i (u) , Ri
)− W̄ (u; θ )

}
dNU

i (u)

+
n∑

i=1

∫ Ci0

CU
i

{
W
(
u, X̄U

i (u) , Ri
)− W̄ (u; θ )

}
dNU

i (u) (6.34)

Substitution of the Doob-Meier composition in the first term on the right for NU
i

gives

Sn (θ ; W ) =
n∑

i=1

∫ Ci0

0

{
W
(
u, X̄U

i (u) , Ri
)− W̄ (u; θ )

}
d MU

i (u)

+
n∑

i=1

∫ Ci0

0

{
W
(
u, X̄U

i (u) , Ri
)− W̄ (u; θ )

}
κU

i (u) Y U
i (u) ddu (6.35)

We consider both terms separately. The first term is, for θ close to θ0, close to
Sn(θ0; W ) and for the second term we have

(θ − θ0) ·
n∑

i=1

∫ Ci0

0

{
W
(
u, X̄U

i (u) , Ri
)− W̄ (u; θ )

}

× �κU
i (u)′

�θ
Y U

i (u) du + Op
(‖θ − θ0‖2

)
Returning to (6.34) we note that the second term in this equation equals
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n∑
i=1

{[
W
(
Ci0, X̄i0 (Ci0) , Ri

)− W̄ (Ci0; θ0)
]× θ0 (Ci0) Yi (Ci0)

}+ Op
(‖θ − θ0‖2

)

The term between brackets is the covariance between θ0(Ci0) and W (Ci0, X̄i0

(Ci0), Ri ) which is zero. Thus this whole term is zero for θ close to θ0 and we have

Sn (θ ; W ) ≈ Sn (θ0; W ) + n
∫ C0

0
Z (u; θ0) du · (θ − θ0) (6.36)

Hence, approximately for the IVLR estimator θ̂n(W )

√
n (θn (W ) − θ0) =

[∫ C0

0
Z (u; θ0) du

]−1
1√
n

Sn (θ0; W ) (6.37)

The proof of the consistency and asymptotic normality are both based upon the
asymptotic linearity of Sn(θ ; W ) in the neighborhood of the true value θ0. We follow
the reasoning of Tsiatis (1990). Instead of a mean and variance condition, we have a
mean and three covariance conditions. Let S̃n(θ ; W ) be the right-hand side of (6.36).
The following lemma shows that the linearization in (6.36) is uniformly close to the
original estimating function

Lemma 1. In neighbourhoods of O(n−1/2) of θ0

n−1/2
∥∥S̃n (θ ; W ) − Sn (θ ; W )

∥∥
converges uniformly to zero.

This lemma implies that n−1/2 S̃n(θ ; W ) and n−1/2Sn(θ ; W ) are asymptotically
equivalent in a neighbourhood close to θ0.

Proof. This can be proved in lines of Tsiatis (1990) Lemma (3.1) and (3.2) and
Theorem (3.2) and this is, because of the analogy, not repeated here.

Proof of Theorem 1 and Theorem 2 According to Lemma 1 are n−1/2Sn(θ ; W )
in a neighbourhood close to θ0 asymptotically equivalent to n−1/2 S̃n(θ ; W ). Then
the estimates θ∗ and θ̂ , with S̃n(θ∗; W ) = 0, will also be asymptotically equivalent.
Clearly, θ∗ converges in probability to θ0. Hence, if we show that

√
n(θ̂ − θ∗)0 then

this would imply that θ̂ also converges in probability to θ0. Tsiatis (1990) argues
that Lemma 1 suffices to proof this. This proves Theorem 1.

According to the Mann-Wald theorem convergence in probability implies con-
vergence in distribution. We note that

√
n(θ∗ − θ0) = n−1/2 Q−1(W )Sn(θ0; W )

clearly converges to a normal distribution with mean zero and variance matrix
Q−1(W )�(W ) Q′−1(W ). This completes the proof of Theorem 2.

Remark 1. To establish detailed conditions on when S̃n(θ ; W ) has a unique root is
rather tedious; however Ying (1993) gave an excellent general treatment on rank
estimation, which can also be used for the estimating equations in this article.
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Appendix 4 Additional Tables for the IVLR of Reemployment
Bonus Experiment

Table 6.4 Descriptive statistics for control, claimant bonus and employer bonus group

Control group Claimant bonus Employer bonus

White 0.632 0.651 0.647
Black 0.271 0.251 0.256
Other 0.097 0.099 0.097

Male 0.547 0.563 0.538

Age 20–29 0.425 0.436 0.424
Age 30–39 0.333 0.324 0.326
Age 40–49 0.179 0.185 0.187
Age 50–54 0.063 0.054 0.064

Weekly benefit
–$51 0.088 0.085 0.084
$52–$90 0.201 0.212 0.217
$91–$120 0.169 0.176 0.179
$121–$160 0.190 0.196 0.181
$161– 0.353 0.331 0.339

Dependence allowance 0.323 0.345 0.332
Average pre-claim earnings 3188 3222 3215
Average age 33.0 32.9 33.1

Average weekly 119.9 118.8 118.5

N 3952 4186 3963
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Table 6.5 Instrumental Variable Linear Rank estimates for the regression coefficients of the Illi-
nois data (Constant Bonus Effect)

First stage

Claimant Employer

AFT GAFTa AFT GAFTa

LNAGE −0.5718 −0.3424 −0.5219 −0.3379
(0.0734) (0.0897) (0.0717) (0.0699)

LNBPE 0.3528 0.2146 0.3188 0.2036
(0.0510) (0.0601) (0.0512) (0.0482)

BLACK −0.6636 −0.3770 −0.6264 −0.3792
(0.0526) (0.0842) (0.0510) (0.0641)

MALE 0.1135 0.0663 0.0464 0.0295
(0.0377) (0.0330) (0.0376) (0.0305)

LNBEN −0.5841 −0.3558 −0.6263 −0.4010
(0.0867) (0.1011) (0.0871) (0.0865)

One step optimal

LNAGE −0.5204 −0.3612 −0.4733 −0.3110
(0.0693) (0.0653) (0.0683) (0.0603)

LNBPE 0.3537 0.2266 0.3133 0.1871
(0.0473) (0.0449) (0.0483) (0.0424)

BLACK −0.6162 −0.3982 −0.5646 −0.3574
(0.0509) (0.0510) (0.0495) (0.0443)

MALE 0.1293 0.0691 0.0698 0.0227
(0.0355) (0.0303) (0.0355) (0.0303)

LNBEN −0.5924 −0.3692 −0.6040 −0.3610
(0.0813) (0.0762) (0.0826) (0.0727)

a GAFT piecewise constant intervals: 0–2, 2–4, 4–6, 6–10, 10–25, 25 →;
Note: Standard error in brackets.
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Table 6.6 Instrumental Variable Linear Rank estimates for the regression coefficients of the Illi-
nois data (Time-varying bonus effect)

First stage

Claimant Employer

AFT GAFTa AFT GAFTa

LNAGE −0.5361 −0.3285 −0.5233 −0.3355
(0.0693) (0.0897) (0.0706) (0.0763)

LNBPE 0.3313 0.2139 0.3153 0.2029
(0.0481) (0.0617) (0.0506) (0.0530)

BLACK −0.6086 −0.3665 −0.6268 −0.3771
(0.0494) (0.0861) (0.0501) (0.0740)

MALE 0.1036 0.0668 0.0461 0.0294
(0.0352) (0.0337) (0.0371) (0.0304)

LNBEN −0.5470 −0.3564 −0.6187 −0.3989
(0.0867) (0.1043) (0.0859) (0.0959)

One step optimal

LNAGE −0.4861 −0.3288 −0.4529 −0.3660
(0.0653) (0.0664) (0.0675) (0.0622)

BPE 0.3332 0.2061 0.3017 0.2236
(0.0442) (0.0455) (0.0474) (0.0434)

BLACK −0.5644 −0.3615 −0.5286 −0.4189
(0.0476) (0.0533) (0.0488) (0.0480)

MALE 0.1176 0.0626 0.0622 0.0283
(0.0332) (0.0304) (0.0349) (0.0302)

LNBEN −0.5501 −0.3343 −0.5813 −0.4284
(0.0765) (0.0770) (0.0815) (0.0752)

a GAFT piecewise constant intervals: 0–2, 2–4, 4–6, 6–10, 10–25, 25 →;
Note: Standard error in brackets.
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Table 6.7 Estimated λ in GAFT model for the bonus data

Claimant

Constant bonus effect Time-varying bonus effect

Interval First Opt. First Opt.

0–2 0.8098 0.7500 0.8625 0.9328
(0.4638) (0.2052) (0.5262) (0.2409)

2–4 0.3146 0.2348 0.3542 0.2309
(0.3691) (0.1462) (0.4048) (0.1799)

4–6 −0.0782 −0.0415 −0.0390 −0.0318
(0.2646) (0.1220) (0.3015) (0.1552)

6–10 −0.2743 −0.1859 −0.2341 −0.2085
(0.2392) (0.1133) (0.2807) (0.1369)

10–25 −0.6868 −0.6655 −0.6077 −0.6345
(0.1626) (0.1006) (0.1758) (0.1261)

Employer

0–2 0.7095 0.8929 0.7088 0.5647
(0.3063) (0.1450) (0.4375) (1716)

2–4 0.2540 0.4451 0.2542 0.1464
(0.2134) (0.0939) (0.3344) (0.1227)

4–6 −0.1217 −0.1178 −0.1195 0.0875
(0.2008) (0.0925) (0.2330) (0.1050)

6–10 −0.4552 −0.2707 −0.4526 −0.4098
(0.1516) (0.0751) (0.2255) (0.0975)

10–25 −0.7492 −0.6826 −0.7180 −0.6057
(0.0971) (0.0372) (0.1015) (0.0491)

Note: Standard error in brackets.



Chapter 7
Female Labour Participation
with Concurrent Demographic Processes:
An Estimation for Italy

Gustavo De Santis and Antonino Di Pino

7.1 Introduction

This paper sets out to measure the “true” influence of partnering and fertility de-
cisions on women’s participation in the labour market in Italy in 2002. Our model
is rather complex for the following reasons. Firstly, because we consider several
demographic processes, all of which are potentially affected by endogeneity (i.e.
are in turn influenced by labour market decisions). Secondly because we use a cross
sectional data source with retrospective questions, which calls into question two
additional issues: selectivity and treatment effects. Selectivity arises because only a
few, non-random individuals (women in our case) are observed in a given state (e.g.
at work, or with children). Treatment effects arise because certain experiences of the
past (e.g. having found a husband), may later put a woman on a different life course,
which affects her approach towards family formation and labour participation.

After a quick look at the main issues at stake and the solutions offered by the
relevant literature (Section 7.2), we present our model (Section 7.3) and the data
(Section 7.4). The results that we obtain (Section 7.5) are discussed (in Section 7.6)
in the light of the institutional setting that characterises Italy.

7.2 Background

Female labour participation decisions cannot be fully understood if one ignores the
demographic setting that surrounds such decisions (marital status, living arrange-
ment, fertility, etc.). Unfortunately, however, the analysis of this type of influence,
from “demography” to labour participation, is hampered by a problem of endogene-
ity, since these demographic variables are, in turn, influenced by the past and current
work status of the woman herself, and, if relevant, of other household members, in-
cluding her partner (Browning 1992). So, how can one say anything sensible about
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the effect of demography on labour market decisions, at the micro level? And what
type of data does one need for such a study?

The specialised literature offers a few alternative solutions to this problem. In
one, demographic decisions are assumed to be taken together with those on labour
participation, jointly by husband and wife at the beginning of their life as a cou-
ple. Partners are thus assumed to know, right from the start, their optimum equi-
librium in terms of standard of living, progeny (number and quality of children),
and time allocation between work, indoors and outdoors, and leisure (Mincer 1963;
Becker 1981; Cigno 1991). In such a setting, marriage, reproductive behaviour, and
work schedules of both partners cannot be analysed in terms of cause and effect,
because they are all determined jointly, and they all depend on some other prior
variables, for instance the characteristics of the parental home. But these assump-
tions are probably too strong: they imply that the context is static and that the need to
adapt to unforeseen circumstances never arises. Besides, this approach underplays
the stochastic nature of human reproduction, as well as uncertainty and variability in
parental income streams and market wage rate (Heckman and Macurdy 1980; Hotz
and Miller 1988).1

An alternative approach admits that there is a trade-off between labour sup-
ply and housework, including the time devoted to childcare (e.g. Joshi 1990;
Dankmeyer 1996; Sousa-Poza, Schmid and Widmer 2001). This trade-off applies
particularly to women, for whom children constitute an indirect or “opportunity”
cost that, together with other variables (for instance, labour market prospects), af-
fects women’s and couples’ decisions on labour supply.

The evaluation of the causal relationship between demographic and labour mar-
ket choices is further complicated by the fact that there may be variables that affect
both marital instability and female labour market participation: an increase in female
wages, for instance, increases both (Becker, Landes and Michael 1977). Besides,
what actually happens within a household is difficult to evaluate. For example, in
case of marital instability, partners may not divorce immediately: instead, they may
find various forms of non-cooperative equilibrium within their marriage, which in-
fluences, among other things, the allocation of their working time (Lundberg and
Pollak 1993, 2003). Therefore, a correct estimate of the impact of marital instability
on the economic status of women should be based on a fully exogenous assessment
of the probability of divorcing, which, unfortunately, is not available (Bedard and
Deschênes 2003).

As is now standard in this type of study, endogeneity can be reduced (or, at best,
altogether eliminated) with instrumental variables: instead of regressing on actual
variables (e.g. fertility and marital status), one can put in their place theoretical val-
ues, i.e. the fertility and marital status that would have been observed, given certain
assumptions, had labour market behaviour not interfered with these processes. In
order to estimate instruments correctly, one needs exogenous variables that satisfy

1 Heckman and Macurdy (1976), for example, find evidence of a married female labour supply
response to transitory shocks in household income.
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two criteria: they must not be correlated with the disturbances of the participation
equation, and they must be correlated with the allegedly endogenous variables (here:
fertility and marital status). Unfortunately, variables with these characteristics are
rare. Take education, for instance: it is not exogenous to work and fertility choices,
and it should ideally be transformed into an instrument itself, with the use of extra
control variables, taken from the background of women (e.g. their parental home;
Bratti 2003). But this procedure cannot always be followed, because the relevant
information may be missing, the model becomes complicate, and identification is
not always assured. What researchers often do (and this is also our case) is to accept
a few approximations, as long as the “exogenous” variable does not violate too
patently the two previous basic conditions.

We note, finally, that the same caveats hold also for geographical mobility. This,
too, is in part an endogenous variable, that is a conscious decision that women take
with certain professional careers in mind, because living in, or moving to, the north
of Italy significantly increases the chances of finding an occupation, especially for
women. However, since geographical mobility is relatively low in Italy, where there
is a strong tendency to live close to one’s parents, relatives and friends, we do not
deem it inappropriate to focus mainly on the opposite influence: that of the geo-
graphical context on work chances. In short, we will treat the area of residence as
another weakly exogenous variable.

7.3 Model Specification: Theoretical
and Methodological Issues

Several methodological difficulties arise from the specification and estimation of
models with endogenous regressors. The main problem is how to substitute a la-
tent, partially endogenous regressor with an instrument that is observable only as
a dichotomous or count variable. In doing this, we distinguish between two types
of instruments: one is a “treatment effect estimate”, and concentrates on the con-
sequences that may derive from being in a given situation (Angrist, Imbens and
Rubin 1996; Angrist 2000), while the other is a “propensity score estimate”, and
keeps into account the theoretical propensity each individual has of actually finding
him/herself precisely in that situation.

Let us develop these concepts with specific reference to our case. In the estima-
tion of female labour market participation L , endogeneity is an obstacle, because L
is influenced by, but also influences, what happens in the demographic sphere D.
Let us generically model this demographic process as D = g(X D; L; εD) and let
the participation function be L = f (X L ; D; εL ), where X D and X L are exogenous,
possibly partly overlapping sets of variables that influence D and L respectively,
and where εD and εL are unobserved error terms. If the demographic factors D are
endogenous, the errors εD and εL will be correlated.

The demographic process D may be characterized by a binary dummy variable,
for example marital status: having (D = 1) or not having (D = 0) a partner affects
a woman’s attitudes towards the labour market, and therefore affects the equation
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L = f (X L ; D; εL ). We may consider this structural change as an “endogenous
switching” due to the treatment effect of the endogenous dummy variable D (Gold-
feld and Quandt 1973; Maddala and Nelson 1975; Maddala 1983; Terza 1998).

As mentioned, we attempt to correct the estimates for endogeneity by first esti-
mating the reduced form D̂ = g(X D) on the basis of a set of exogenous regressors
X D that we assume to be independent of the individual choice of participating in
the labour market. Then, D̂ can be included as an instrumental, non-endogenous
regressor in the second stage estimation: L̂ = f (X L ; D̂). The reduced form estima-
tion D̂ = g(X D) originates a series of residuals, D̆ = D − D̂, representing the part
of the demographic behaviour that our model cannot explain. They may depend on
some unobservable components or on pure hazard, say, having or not having found
the “right” partner in the marriage market.

The standard assumption, in these cases, is that D̆ is a stochastic component,
uncorrelated with the disturbances εL . However, we will also introduce another as-
sumption: that the difference D̆ has an interest in itself, because it can affect labour
market participation. Consider, for instance, two otherwise identical women, whose
reduced-form estimates of the chances to marry are, say, 70%, and imagine that one
did actually get married some time in the past, while the other did not. Do we expect
them to behave similarly in the labour market? And, if not, should the difference D̆
(+0.3 for the ever-married one, −0.7 for the other) not be considered among the
explanatory variables? It may be worthwhile, then, to rewrite the previous identity
as D̂ = D − D̆, and to use the following model L = f (X L ; D; D̆; εL ),2 as we did
in a few cases in our application (e.g. in Equation 7, below).

If the disturbance terms εD and εL are correlated (a consequence of the presence
of “endogenous switching”), the condition that permits us to identify the treatment
effect is that at least one exogenous variable included in the set X D does not appear
among the explanatory variables of L (Imbens and Angrist 1994; Angrist 2000).

In this paper, we take into account that endogenous structural modifications in
the model can take different forms. For instance, let us assume the following rela-
tionship between women’s fertility, C(= 0, 1, 2, . . . children ever born), and a set
of explanatory variables XC

C |P = XCβC + εC (7.1)

where βC is a vector of coefficients, intercept included, and εC is a vector of random
disturbances N (0; σ 2

εC
). The count, dependent variable C |P depends, among other

things, on the outcome of the binary switching variable P = (0; 1), i.e. on whether
the woman actually has a partner. The dummy variable P is characterized by a
dichotomous rule of the following form:

P =
{

1 if X pβp + εp > 0

0 otherwise
(7.2)

2 Cfr. inter alia, Terza (1998).
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where X P is a matrix of observable exogenous variables “explaining” the presence
of a partner, and βP is the corresponding vector of parameters. The random vec-
tors εP and εC are assumed to be jointly normal with mean vector zero. If there is
endogenous switching, the covariance σεC ;εP differs from zero.

Notice that endogenous switching may take various forms:

(i) “endogenous treatments effects”. The structural change in XCβC is only influ-
enced by the treatment effects (in this case, only by the presence or absence of
a sexual partner);

(ii) presence of “partially observable” endogenous explanatory variables. The de-
pendent variable C is influenced by one or more extra explanatory variables
related to P , which, unfortunately, cannot always be observed. For instance,
a potentially relevant explanatory variable of a woman’s fertility C may be
the age difference between herself and her partner, but this variable can be
observed only if a partner is there;

(iii) presence of an “endogenous latent variable”, which means that the dependent
variable C can be explained both by the theoretical propensity of the subject to
choose a specific outcome of P , and by her actual choice. As a matter of fact,
several characteristics that enhance a woman’s fertility C also impact positively
on her chances of having a partner P .

In the estimation, however, our specification is general enough, so as to encom-
pass all these cases (as in Maddala and Nelson (1975), and in Terza (1998)).

Notice, finally, that in the two-stage procedure that we adopt here, we obtain a
generally good “diagnostic” for instrumental variable (IV) estimates at the first stage
(see, infra, Tables 7.2 and 7.3), which protects us from the risks that derive from
poor specification and the use of “weak instruments” (Staiger and Stock 1997).

7.3.1 The Model

Let us sum things up: we want to model the labour force participation of Italian
women in the year 2002: this will be our Equation (11). This participation is in-
fluenced by several “explanatory” variables, among which some are truly exoge-
nous, while others need to be explained themselves, and this leads to a multiple
equation model. On top of this, some of these “explanatory” variables are endoge-
nous: i.e. they depend, at least partly, on the same variables that we want them
to explain. We circumvent this difficulty in the standard way, using instrumental
variables (IV).

The model, in its structural form, consists of the eleven equations of table 7.1,
where the most interesting to us is Equation (11), a consistent estimate of the latent
probability an Italian woman has to participate in the labour market, which empir-
ically translates into a dichotomy (yes/no). The first ten equations are introduced
either to estimate instrumental variables (Equations 7.1, 3, 5, 6, 7, and 9), or to
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Table 7.1 The structural form of the model

(1)
L∗ = α1 + α2AgeF + α3Age2

F + α4AgeM + α5Age2
M+

+α6EduM + α7EduF + α8South + u1

(2) HL = L − [L∗] (L = 1 if L∗ > 0; L = 0 otherwise)
(3) P∗ = α9 + α10AgeF + α11Age2

F + α12Sib + α13EduPar + α14EduF + u3

(4) HP = P − [P∗] (P = 1 if P∗ > 0; P = 0 otherwise)
(5) Sen = α15 + α16Sex + α17EduF + α18South + α19Jobs + u5

(6) W = α20 + α21Sex + α22Edu + α23GNPreg + α24White + α25 [HL ] + u6

(7)
C∗ = α26 + α27AgeF + α28Age2

F + α29Agediff + α30Par + α31EduF+
+α32Sib + α33 [P∗] + α34 [HP ] + u7

(8) HC = C − [C∗]
(9) Div∗ = α35 + α36AgeF + α37South + α38EduPar + α39 [HP ] + u9

(10) HDiv = Div − [Div∗] (Div = 1 if Div∗ > 0; Div = 0 otherwise)
Finally, and most importantly for this study,

(11)

L∗
F = α41 + α42AgeF + α43Age2

F + α44EduF + α45GNPreg+
+ [α46WM N + α47WF N + α48WF S] + α49 [SenF N ] + α50 [HP N ] + α51 [HP S] +
+α52 [HDiv ] +

{
α53 [C∗]

α53 HC
+ u11

(L F = 1 if L∗ > 0; L F = 0 otherwise; we use both alternatives, first [C∗], in
Equation (11a), and then HC in Equation (11b) – see further in the text)

where there are 10 endogenous variables (in brackets):
C∗ = expected number of children ever born {or HC = unexpected component of fertility}
Div∗ = propensity to divorce
HL , HP , HDiv = Heckman (or treatment) correction factors
L∗ = Labour participation (of men and women)
L∗

F = Labour participation of women
P∗ = propensity to have a Partner
Sen = ln (Seniority/Age) (Seniority = Number of years of work)
W = ln (Wage) [with exogenous fixed effects for Males/Females and for geographical area, North-
centre, or South]
Besides, we consider 15 exogenous variables:
Age; AgeF ; AgeM = age (and fixed effects Male/female)
Age2

F ; Age2
M = squares of age (and fixed effects Male/female)

Agediff = AgeF − AgeM (partner )
Edu = Education (number of years of school)3

EduPar = Education of parents (number of years of school of the parent with the highest education
level)
GNPreg = log of the per capita GNP of the administrative region
Jobs = Number of previously held jobs
Par = Dummy variable (if at least one parent of the woman is living)
Sex = Dummy variable (man = 0; woman = 1)
Sib = number of siblings still alive at the time of the interview
South = Geographical dummy variable (South = 1; North-Centre = 0)
White = Dummy for type of occupation (White collar = 1; Blue collar = 0) plus constant terms
Note that Equation (11) can be identified, because the number of the exogenous variables consid-
ered in the system, but excluded from the final equation (15–5=10) is larger than the number of
endogenous variables included minus one (5).
An asterisk denotes a latent (continuous) variable, the empirical counterpart of which is ordinarily
a dummy (e.g. L or P), or a count variable (e.g. C).
We tried several specifications for several variables: gender (M/F), region (Reg for single Region,
out of the 20 that make up Italy; S for South and N for North-Centre) and cohort (Par refers to the
parent generations – fathers and mothers of the adult women we are considering here). Only those
that proved significant and consistent in the various attempts were retained in the final model.
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Table 7.2 Estimation results of the reduced-form equations

Equation (1) Equation (3) Equation (5)
10408 4526 (women) 10408
Probit Probit OLS

Sample L (dummy) P (dummy) Sen
Estimator
dependent log (years of
variable 0 = unemployed S.E. 0 = no partner S.E. work /age) S.E.

Intercept −3.3650 0.0124 −2.2671 0.5480 −1.3705 0.0474
AgeM 0.2808 0.0124
AgeM

2 −0.0038 0.0001
AgeF 0.1968 0.0138 0.1757 0.0266
AgeF

2 −0.0026 0.0002 −0.0018 0.0003
EduM 0.0660 0.0060
EduF 0.1065 0.0054
South (North-
Centre =
0)

−0.3870 0.0318 −1.4310 0.0507

Sib 0.0703 0.0211
Edupar −0.0348 0.0082
EduF −0.0494 0.0093 −2.2491 0.0484
Sex (M=0;
F=1)

0.1085 0.0060

Edu
Jobs 0.3422 0.0137
HL

∧

GNPreg (×106)
White
AgeDiff

Par
P
HP

∧

% correctly
classified

0.7932 0.9450

R2 adj. 0.3313

estimate residuals (Equations 7.2, 4, and 8), which correct for selectivity both in the
final Equation (11), and in a few intermediate Equations (6, 7 and 9).

3 We first calculated the “equivalent (or theoretical) number of years of school”, i.e. those in princi-
ple necessary for a non-repeating pupil to attain a given grade. However, the meaning of schooling
changes over time, because the youngest cohorts tend to study considerably more than their pre-
decessors. This trend is only interrupted by censoring, because the most recent cohorts haven’t
completed their education, yet. In short, to make schooling comparable over the generations, we
consider how better (or worse) off in this respect each individual is in comparison with the average
of his or her own cohort. For instance, it normally takes 8 years to complete junior high school
(scuola media), compulsory since 1963. For women aged 65 in 2000–02, whose average number
of years of schooling was about 5, this case translates into +3, i.e. considerably above average.
For women born around 1968, whose average is nearly 12 years spent at school, this translates into
about −4 (i.e. strongly below average).
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Table 7.3 Estimation results of the reduced-form equations

Equation (6) Equation (7) Equation (9)
Employed: 5542 Women: 4526 Ever married women: 4221
OLS Log-Poisson Probit

Sample W C Div (dummy)
Estimator
Dependent log (yearly Children ever
variable wage) born S.E. 0 = no divorce S.E.

Intercept 8.5443 0.1169 3.3697 0.2884 −1.0397 0.6362
AgeM

AgeM
2

AgeF 0.1423 0.0131 −0.0779 0.0097
AgeF

2 −0.0014 0.0001
EduM

EduF −0.0370 0.0033
South (North-
Centre = 0)

−0.4106 0.1580

Sib 0.0494 0.0052
Edupar 0.0872 0.0221
EduF −0.0370 0.0033
Sex (M=0;
F=1)

−0.3312 0.0242

Edu 0.0350 0.0030
Jobs
HL

∧ −0.1929 0.0542
GNPreg

(×106)
19.2137 2.2116

White 0.2307 0.0229
AgeDiff −0.0074 0.0029
Par 0.0205 0.0307
P 0.1201 0.1207
HP

∧ 2.1784 0.1577 −4.9324 0.5340
% correctly
classified

0.9754

R2 adj. 0.1615
Pseudo R2 0.2155

All the endogenous variables marked with an asterisk are latent, and not directly
observable. For instance, we have the latent probabilities of working (L∗), hav-
ing a partner (P∗) and having experienced a divorce (Div∗ – for married women
only). Endogenous fertility C∗ (Equations 7 and 8), is the expected, unobserved
number of children ever born to women of given characteristics (age, age differ-
ence with partner, number of siblings, . . .), which, together with the difference be-
tween the observed and the expected number of children HC , translates into actual
fertility.

HL (H for Heckman) in Equation (2) represents the random factors that may
make actual employment status L differ from its propensity score L∗ – for both
men and women. Similarly, HP in Equation (4) links actual to expected part-
ner status. Notice that HL appears as a regressor in Equation (6), log of yearly
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wage,4 and can be interpreted as a Heckman correction for the selectivity of ac-
tual employment status on wage, for men and women. The correction HL proves
necessary because only a non random sub-sample of individuals work, and the
wage that can be observed on them may not be automatically extended to the
whole of the population. Analogously, HP represents the correction for the endo-
geneity of treatment effects in three cases: Equation (7) (expected fertility), Equa-
tion (9) (probability of marital dissolution),5 and Equation (11) (labour participation
of women).6

Equations (5) and (6) describe seniority (relative to age, in log) and log-wage,
and both variables help explain women’s participation in Equation (11).

We are basically adopting a two-stage procedure. In the first stage, i.e. the first 10
equations, we estimate the instrumental variables; in the second stage (Equation 11),
we launch the Probit estimation that we are most interested in, that of female labour
participation, on the basis of exogenous and instrumental variables, i.e. avoiding
endogeneity. This allows us to tentatively interpret our parameters in terms of cause
and effect: although we cannot exclude that other types of correlation are at play,
too, we can at least rule out inverse causation.

[P̂∗] and ĤP are, respectively, the theoretical values and the residuals of the
Probit estimation of Equation (3) – having a partner. [P̂∗] measures how much the
“theoretical” probability of entering a marital union affects fertility (Equation 7),
while ĤP is an estimate of unobserved factors that lead to having or not having
a partner. The inclusion of ĤP in Equation (7) tries to measure how much these
unobserved factors influence fertility. ĤP is also adopted to correct the selection
bias for the estimation of the probability to divorce, in Equation (9).

Finally, we introduce the instrumental variable [ĤL ] (residuals of the probit es-
timate of Equation 7.1), in order to correct for the bias that we may introduce in
Equation (6), where we estimate wages on the selected sub-sample of the employed
(Heckman 1974, 1979).

The path we are following here is rather complex, but, in our opinion, necessary,
in order to avoid the several types of potential biases we described before. However,
there are still a few problems that we cannot tackle with our data. Let us mention
just two of them:

4 We use yearly and not hourly wage, so as to avoid the need to estimate separately the number
of hours worked, not asked in the survey, and endogenous itself (see. e.g. Fortin-Lacroix 1997; for
Italy, see Di Pino 2004).
5 The probability of marital dissolution can be defined only for women ever in marital union. Note
that HDiv proves negatively correlated with the latent probability of being with a partner (not
shown here). Therefore, HP may be interpreted as a proxy for “search costs”, which impact on
the decision to divorce (Becker, Landes and Michael 1977): the higher the probability of having a
partner, the lower the search costs incurred to find a new one, should this search prove necessary.
6 Equations (7) and (11) are examples of the “endogenous switching” we discussed in the preced-
ing paragraph.
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1) we do not have sufficient information on the number of hours worked, either in
the household or in the labour market. This is why we are modelling the simple
dichotomous variable work/no work;

2) the number of children ever born depends, among other things, on having or
not having experienced couple dissolution, but we ignore this influence in our
model, because, once again, this would introduce endogeneity (what causes
what?), the correct treatment of which would have further complicated our
study. Note, however, that we are not trying to fully explain fertility,7 here: we
are merely introducing it as an instrument in the explanation of labour force
participation.

Let us briefly discuss the stochastic properties of the model. We assume that
the error terms of Equations (7.1), (3), (9), and (11) are distributed as a normal
standard. The distribution of the error terms of Equations (5), (6), and (7) is assumed
to be normal, with zero mean. The existence of endogenous switching in fertility
(Equation 7), influenced by the presence of a partner (Equation 3), can be modelled
by the inclusion in the regression both of the dummy variable P (to have a partner
or not) and the correction term for endogeneity, HP . If the presence of a partner is
endogenous, the error terms of Equations (3) and (7) are correlated, as discussed
in Section 7.2. Analogously, the existence of an endogenous correlation between
marital instability and labour market participation, or between marital status and
participation implies a non-null correlation in the error terms of Equations (9) and
(11) and in the error terms of Equations (3) and (11).

The term HC , resulting from the fertility equation, is introduced as an explanatory
variable of labour participation in Equation (11), as an alternative to the theoretical
expected fertility, C∗. We estimate two distinct alternative specification of Equa-
tion (11). The first (11a), under the assumption that expected fertility affects female
participation, and the second (11b) under the assumption that the unexplained com-
ponent of fertility affects woman’s behaviour in the labour market.

7.4 The Data

Our sample derives from the 2002 SHIW dataset, the Survey on Household Income
and Wealth, carried out under the initiative of the Bank of Italy (2004). All the details
of this survey, and the data itself, are freely available on the internet (http://www.
bancaditalia.it/statistiche/ibf). Let us just mention that it is a biennial survey, on
about 8 thousand private households (about 20 thousand people), mainly aimed at
estimating income, saving and wealth, but with a large set of ancillary questions
on work, household composition, and families of origin. We exploit especially this
part of the survey, here. The survey has also a panel part in it, which however, we

7 Besides, we miss several important pieces of information in this respect, and notably contracep-
tion.
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cannot use for our exercise, since it is too small, too short and with non trivial (and
probably not random) attrition.

We selected 10408 of the surveyed persons: 4526 women of working age (18 to
60 years), and 5782 men. These are either their partners (not necessarily husbands)
of any age, or other men aged 18 to 75. There are 3997 couples in our sample, either
husband and wife, or simply cohabiting sexual partners.

Retrospective questions are not very many in the SHIW and, most importantly,
not asked of all respondents: only of the “reference couple”, i.e. the first person
in the household roster and his/her partner, if present. Fertility (here: number of
children ever born, up to the date of the interview), is not asked directly. We recon-
structed it from two separate questions: on the number of children present in the
household and on the number of children living elsewhere. The latter question, once
again, is asked only of the reference couple, which leaves out a certain proportion
of women. We assumed that these women, relatively young and not in the reference
couple, had no children living elsewhere: comparison of fertility levels (ours and the
official one, estimated by Istat), indicates that this assumption is tenable, especially
if one considers that fertility enters our estimates only instrumentally, because what
we are really modelling is female labour participation. Notice that our calculations
on the number of children ever born do not take into account those who died some
time before the interview. This should not be too much of a problem given the very
low level of infant and child mortality in Italy.

7.5 Results

Tables 7.2 and 7.3, below, show our first stage IV estimates. Notice that our param-
eters are always meaningful (with only a couple of minor exceptions, in Equation
7), and that the overall goodness of fit is relatively good. This protects us from the
potential bias that may derive from the use of “weak instruments” (Bound, Jaeger
and Baker 1995; Staiger and Stock 1997).

Although these are instrumental regressions, it may be worthwhile to stop a
minute to consider what we get. Labour force participation (Equation 7.1) is bell-
shaped with respect to age, with a maximum between 35 and 40 years, for both
men and women. Work is more frequent for the well educated (especially for well
educated women) and for those who live in the Centre-North of Italy.

Being currently with a sexual partner is more frequent among women around the
age of 50, when own and parents’ education is low, and the number of siblings high
(Equation 3). Seniority (the ratio between the number of years worked and own age,
in log) is lower in the South, for women, and for people with low own or familial
education (Equation 5). Wage (Equation 6) is estimated for the employed, but with
Heckman’s factor (HL ) so as to correct for the distortion that derives from leaving
aside those who do not work, and who are therefore selected. Wage is higher for
men, for the well educated, for those who live in rich regions and for those who
have “white-collar type” jobs.
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Table 7.4 Female participation estimation

Equation (11a) Equation (11b)
Sample (women) 4526 (2181 with WF = 1)
Estimator Probit
Dependent variable LF (Female work, dummy)

(0 = unemployed; 1 = employed)

Coeff. S.E. From
equation

Coeff. S.E. From
equation

Intercept −6.1078 0.5150 −5.7587 0.5040
AgeF 0.2419 0.0221 0.2264 0.0199
Age2

F −0.0031 0.0002 −0.0029 0.0002
EduF 0.1029 0.0123 0.1137 0.0118
GNPreg (×106) 34.9366 8.7894 33.3571 8.8462
W∧

MN(×103) 0.0111 0.0082 (6) 0.0093 0.0083 (6)
W∧

FN(×103) −0.1039 0.0205 (6) −0.0102 0.0206 (6)
W∧

FS(×103) 0.0689 0.0239 (6) 0.0634 0.0241 (6)
Sen∧

FN 4.6803 0.6779 (5) 4.4688 0.6671 (5)
H∧

PN −0.5013 0.0855 (4) −0.5949 0.0833 (4)
H∧

PS −0.6416 0.1208 (4) −0.7337 0.1119 (4)
H∧

Div 0.6022 0.1640 (10) 0.5861 0.1661 (10)
C∧ −0.1257 0.0669 (7)
H∧

C −0.1060 0.0347 (8)
% correctly
classified

72.02% 72.09%

Loglikelihood −2555.9 −2545.6

The number of children ever born (our indicator of past fertility – Equation 7),
is estimated on women only. The number of children ever born, which peaks at the
age of about 50, is higher for women with a partner (but we include Heckman’s
correction HP here, too, because having a partner is endogenous to having had
children), for those whose partner is younger, and for those whose parents are still
alive, or at least one of them. We interpret this as an indication that family support
with child care is (or has been) potentially available, because in Italy the adults
very frequently live close to their (now old) parents. Finally, Equation 9 focuses
on couple dissolution (divorce or separation), which, by definition, can characterise
only ever-married women, and which therefore needs Heckman’s correction factor
HP . Divorce decreases with age, because a cohort effect prevails: the young di-
vorce much more than their predecessors, and this counts more than the fact that
the young have had less time to go through this experience. Divorce is higher in the
North-Centre of Italy, and among well-educated women.

Table 7.4 below shows our Probit estimates of Equation (11),8 which is the most
important result of our research. There are two versions of this final equation, be-

8 The standard errors of the estimated coefficients are calculated by applying the correction of the
variance of residuals generally utilized in two-stage estimates. To compute unbiased residuals, we
use the observed endogenous variables, not the instrumental variables estimated at the first stage.
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cause in one case we try estimated fertility Ĉ among the regressors (Equation 11a),
and in the other we try its “unexpected” (residual) component HC (Equation 11a).9

In both cases, the parameters of the other variables change only marginally (same
sign and same order of magnitude) and we may therefore comment on them con-
sidering indifferently Equations (11a) or (11b). Our exogenous variables affect the
chances of female employment in the expected direction: it has an inverted U-shaped
evolution with age (maximum at about 40 years), and both education, GNPreg (a
rough measure of the economic performance of the area where our respondents live),
and (not very significantly, and only in them North-Centre of Italy) high partner’s
wage make female employment more likely.10 As for the instrumental variables,
having a partner (or, better: the residual, and therefore the “unexplained” part of
this variable, HP ) reduces the likelihood of female employment, especially in the
southern regions (HP S). Fertility, too, depresses female employment: both in its
“expected” (instrumental) part Ĉ (Equation 11a) and in its “unexpected” (residual)
component HC (Equation 11b) and the order of magnitude is comparable. Divorce
and separations induce women to work more.

7.6 Discussion

What do we learn from this study? That female employment depends in part on what
happens in the demographic sphere (having children, living with a partner, etc.) and
in part on the forces that shape these demographic decisions. With a few retrospec-
tive questions, and a sufficient number of variables, it seems possible to separate
these two types of influence, at least partly, and therefore to obtain parameter esti-
mates that get us closer to an interpretation in causal terms. A direct regression of
female labour force participation on several of these variables (although generally
yielding the same sign – not shown here), would not be interpretable in this sense,
because of endogeneity and, in a few cases, selection.

Regression parameters are not always easy to interpret: the sign is clear, but
what about the order of magnitude? One possible answer is to tabulate the expected
employment profiles of women with given characteristics (age, education, marital

9 We cannot use both of them simultaneously because, when used jointly, they produce endogene-
ity.
10 The introduction of the regional GNP as a “fixed effect” among the explanatory variables in
Equations (6), (11a) and (11b) may introduce some heteroskedasticity in the error terms “between”
different regions, and a possible autocorrelation in the error terms “within” the observations in each
region. All in all, however, we think that the opposite effect prevails: our equations are thus better
identified, and this results in more (not less) efficiency in our estimates. In fact, Equations (11a),
(11b) and (6) can be thought of as, respectively, a “supply function” of labour, and a “demand
function” of wage: they are influenced by the level of economic activity and labour demand, both
proxied by the regional GNP.
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Table 7.5 Labour market participation probability of Italian women. Classification for age, fertil-
ity, and geographical area (in percent)

Married
Age 25 30 35 40 50
No. of
Children CN South CN South CN South CN South CN South

0 43.87 32.68 57.73 47.66 64.99 56.04 66.46 57.71 53.54 41.96
1 39.74 28.95 53.55 43.46 60.99 51.83 62.52 53.53 49.32 37.87
2 35.71 25.44 49.33 39.33 56.87 47.61 58.44 49.30 45.10 33.91
3 31.84 22.16 45.11 35.32 52.68 43.41 54.27 45.09 40.94 30.13
4 28.16 19.14 40.95 31.47 48.45 39.28 50.05 40.93 36.88 26.54

Unmarried

0 62.49 56.46 75.09 71.36 80.96 78.36 82.21 79.79 72.37 67.12
1 58.41 52.26 71.61 67.65 77.95 75.13 79.32 76.67 68.72 63.21
2 54.23 48.03 67.92 63.76 74.68 71.65 76.16 73.31 64.88 59.15
3 50.02 43.83 64.03 59.72 71.18 67.96 72.76 69.71 60.88 54.99
4 45.80 39.69 60.00 55.57 67.46 64.08 69.13 65.92 56.75 50.78

Divorced

0 66.71 55.46 78.27 70.11 83.43 76.98 84.40 78.25 75.01 64.92
1 62.78 51.25 75.02 66.33 80.65 73.63 81.73 75.00 71.53 60.92
2 58.71 47.02 71.54 62.38 77.61 70.06 78.79 71.52 67.83 56.80
3 54.54 42.83 67.84 58.30 74.32 66.28 75.60 67.82 63.95 52.61
4 50.32 38.72 63.96 54.12 70.79 62.33 72.15 63.94 59.91 48.38

state, region of residence, etc.) (Table 7.5).11 Labour force participation for a typical
Italian woman increases up to the age of about 40, and decreases subsequently. It is
higher for the never married and the divorced, especially in the central and northern
part of the country. And, not surprisingly, decreases with the number of children, by
about 4 percentage points for each child.

Another possible use is to study elasticities. Let us just consider two examples. In
the first (Fig. 7.1), we can see that the propensity to go to work, for Italian women,
increases up to about age 40, which confirms our previous finding. The extra infor-
mation, here, is that this increase, stronger for the younger generations, is especially
marked in the south, and most particularly for the married. Their starting point (not
shown here) is lower, but their trend is more steeply on the increase: in other words,
they might be (slowly) catching up.

Similarly, Fig. 7.2 considers the elasticity of labour participation with respect
to education. Extra years of school always increase female labour supply, but the
increase is strongest in the South, where, as mentioned, starting levels are lower, but
potential for growth apparently greater.

11 Some of these, as discussed before, are not (fully) exogenous to labour market participation.
Therefore, the simulated values of Table 7.5 only give us a rough idea of the true probabilities of
the hypothetical women considered.
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Chapter 8
New Estimates on the Effect of Parental
Separation on Child Health

Shirley H. Liu and Frank Heiland

8.1 Introduction

While marriage remains the most common foundation of family life in the U.S., the
prominence of the traditional process of family formation, namely marriage before
having children, is diminishing. Today, more than one-third of all births in the U.S.
occur outside of marriage (Martin et al. 2006). Although most unmarried parents are
romantically involved when their child is born (Carlson et al. 2004), many separate
before their child reaches age three (Osborne and McLanahan 2006). While the
consequences of marital dissolution on children have been studied extensively,1 the
effect of separation of never-married parents on child wellbeing has rarely been
examined. This is mainly due to the lack of large representative surveys that col-
lect detailed information on men who father children born out of wedlock.2 If the
characteristics of the parents and their relationship that determine the risk of union
dissolution also affect child wellbeing, then estimates of the effect of separation on
child outcomes that fail to account for these factors may suffer from confounding or
“selection bias”.

Even when detailed information on the determinants of child wellbeing is avail-
able and can therefore accounted for, however, conventional regression approaches
such as Ordinary Least Squares (OLS) may produce invalid estimates of the effect of
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1 See Cherlin (1999) and Liu (2006) for recent surveys of this literature. See Morrison and Ritu-
alo (2000) for evidence on the economic consequences of cohabitation and remarriage for children
who experienced parental divorce.
2 Finding a representative sample of nonresident fathers has proved extraordinarily difficult. In
U.S. nationally representative surveys such as the CPS, NSFH, and SIPP, researchers estimated
that more than one fifth and perhaps as many as one-half of nonresident fathers are “missing”,
i.e. not identified as fathers (e.g., Cherlin et al. 1983; Garfinkel et al. 1998; Sorenson 1997). The
problem is especially pronounced for men who fathered children outside of marriage: More than
half appear to be missing. Although longitudinal studies of divorced fathers offer a more complete
picture, even these suffer from non-inclusion and non-response bias (Garfinkel et al. 1998).
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separation on child wellbeing. Regressions rely on strong functional form assump-
tions (linearity between the covariates and the outcome of interest). In the present
context we expect that children who experienced separation (“treated”) may have
very different characteristics or environments than children whose parents remained
involved (“untreated”). Not only may the treated children differ in terms of the
means of their characteristics and environmental variables from the untreated, but
also the distribution of these variables could overlap relatively little across groups
(“lack of common support”). In this case the regression will project the outcome
of the untreated children outside the observed range to form a comparison (“coun-
terfactual outcome”) for the treated children at common values of the covariates.
The concern is that such projections, which are highly sensitive to functional form
assumptions, will be invalid.

To measure the effect of relationship dissolution on child wellbeing, ideally
researchers would use data from randomized experiments or controlled social ex-
periments where parental separation (the treatment) was randomly assigned. In the
absence of such data, one strategy is to only compare outcomes between children
who experienced parental separation and otherwise similar children whose parents
remained together, thereby minimizing potential bias from confounding factors.
The challenge of this matching strategy in practice is to identify those children
in the untreated group who can serve as good comparisons to the children in the
treatment group, i.e. to balance out the children being compared in terms of their
characteristics and environmental factors. This approach makes extensive use of
the observed characteristics, provides a direct test of whether the observables have
common support, and is non-parametric as it does not require assumptions regarding
the functional form of the relationship between characteristics and child outcomes.

This study employs a matching strategy to identify whether union dissolution
between unmarried parents (defined as the dissolution of a romantic relationship)
has a causal effect on child health. We focus on the effect of parental relationship
dissolution within three years since childbirth on the child’s likelihood of developing
asthma by age three.3 The analysis utilizes data from the Fragile Families and Child
Wellbeing Study (FFCWS), which provides detailed information on both biological
parents of a large sample of children born out of wedlock. The FFCWS allows
us to estimate the separation effect accounting for an unusually large set of char-
acteristics of the child’s parents and their relationship. We present estimates from
standard parametric regressions as well as a semi-nonparametric approach based
on propensity score matching (Rubin 1979; Rosenbaum and Rubin 1983; Heckman
and Hotz 1989; Heckman et al. 1997, 1998). The latter method matches each child
whose parents separated with children whose parents remained romantically in-
volved but share similar (observable) characteristics, then compare the outcomes

3 Much of the existing evidence on the effects of family structure and child outcome stems from
studies using data on the wellbeing of school-age children and adolescents. We focus on early child
outcomes since unmarried families tend to be less stable and hence more short-lived (Bumpass and
Lu 2000; Manning et al. 2004), findings from these previous studies may be characteristic of stable
unmarried families only.
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of these matches. By only using those children that are very similar to children of
separated parents to estimate the counterfactual child outcome, the matching method
helps us identify the causal relationship between separation and child health. We find
that parental separation increases a child’s odds of developing asthma by age three
by 6% ∼ 7%, relative to the situation where their parents had remained romantically
involved.

8.2 Background

This section provides the conceptual and empirical background for analyzing the
effects of separation on child wellbeing, with special emphasis on how separation
of the biological parents may harm children born out of wedlock. We draw on the lit-
eratures on family formation, dissolution, and resource allocation (e.g. Becker 1973,
1974; Becker et al. 1977; Weiss and Willis 1997; Willis 1999; Ribar 2006), which
stress the importance of family resources (time and money) and endowments (care-
givers’ ability) in the production of family public goods such as child health (“child
quality”).

8.2.1 Consequences of Separation

Parental separation is expected to lead to a reduction in parental involvement with
and resources for the children as benefits associated with growing up in a (parental)
union are at best temporarily interrupted and potentially discontinued for a pro-
longed amount of time.4 McLanahan (1985) shows that income explains up to half
of the differences in child wellbeing between one- and two-parent families. Unions
yield gains from specialization and exchange in the presence of comparative ad-
vantages of the partners. Couples may also pool individuals’ resources, and realize
economies of scale in household production and gains from exploiting risk-sharing
opportunities.5 Individuals may also be more productive as part of a family due to
social learning or other positive externalities.6 Lastly, the effective use of monetary
transfers from one partner to the other on behalf of the child is more easily monitored
within a union (Willis and Haaga 1996; 1999).

4 For a detailed discussion of the benefits of a parental union, see Becker (1991), Michael (1973),
Shaw (1987), Drewianka (2004).
5 Following Becker (1991), the pooling of all resources arises if the dominant decision-maker is
altruistic or if the partners have the same objectives. However, if these assumptions are relaxed
(McElroy 1990; Manser and Brown 1980; McElroy and Horney 1981), one person’s resources
cannot be treated as common household income.
6 Waite and Gallagher (2000) find some evidence that living together may induce a stabilizing
effect on the partners, which can increase resources as a result of greater productivity at home and
in the labor market.
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8.2.2 Existing Evidence

Parents’ economic resources have been shown to be important determinants of
child wellbeing (Blau 1999). While caregivers’ time and income are substitutable
to a certain extent as money can buy childcare services and working in the labor
market increases available financial resources, both time and material resources
are needed for healthy child development (Coleman 1988). Especially, parenting
resources – the services provided by the parents using their time and childrea-
ring ability are believed to be important complements to economics resources
(McLanahan and Sandefur 1994).7 Studies that compare children across living ar-
rangements have shown that children in single-parent families experience fewer
economic and parenting resources (Brown 2002; Hofferth 2001). Single parents
may be unable to perform the multiple roles and tasks required for childrear-
ing, which can result in heightened stress levels and insufficient monitoring, de-
mands, and warmth in their parenting practices (Cherlin 1992; Thomson et al. 1994;
Wu 1996). Conflicts over visitation may also encumber parenting effectiveness
(Brown 2004).

While a large body of research consistently shows a negative correlation be-
tween marital dissolution and child outcomes,8 until very recently, the relationship
between non-marital separation and child wellbeing has received little attention.
Heiland and Liu (2006) report that children born to cohabiting or visiting (i.e.
romantically involved but living apart) biological parents who end their relation-
ship within a year after birth are up to 9% more likely to have asthma compared
to children whose parents stayed together. They also report an increase in child
behavioral problems associated with a break-up among children born to romanti-
cally involved but not co-residing parents but no effect on mother-reported child
health status measures. However, their estimates are obtained from conventional
(parametric) models and whether these correlations reflect causal relationships is
unclear.

8.2.3 Separation and Selection

A change in the parental relationship towards no (romantic) involvement is expected
to decrease the availability of resources and paternal investments in children. How-
ever, the environment provided by and the characteristics of parents who separate
may differ substantially from parents who remain together. In examining the effect
of separation on child outcomes, potential differences in the characteristics of the
parents who break up and those who stay together, need to be addressed.

7 For example, parental interaction with the child has been found to foster the development of the
child by providing support, stimulation, and control (e.g., Maccoby and Martin 1983).
8 See Ribar (2006) and Liu and Heiland (2009) for recent surveys of the literature on the effect of
marriage on child wellbeing.
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Economic theories of relationship dissolution posit that couples break up when
the value of the ‘outside opportunity’ of one partner exceeds the benefits from con-
tinuing the relationship (Becker et al. 1977; Weiss and Willis 1997). This implies
that dissolution does not occur randomly across couples which complicates the
identification of the effect of separation on child wellbeing. Simple comparisons
of child outcomes by parental relationship status can be misleading if, for example,
couples with characteristics that benefit child health are also more likely to break up
after childbearing (ceasing a source of positive influence), compared to those who
remain together, then the (negative) consequences of separation may be understated
(e.g. Steele et al. 2007; Liu 2006). Conversely, if arrangements that induce adverse
effects on the child – such as having an abusive father – are more likely to end in a
break-up, the association between separation and child wellbeing may even become
positive (e.g. Jekielek 1998).

The benefits of father involvement in childrearing are increasingly recognized
(see e.g. Lamb 2004). The father’s involvement in the child’s life may depend on
the quality of his relationship with the mother. Couples in good relationships tend
to communicate more effectively and mothers are more likely to encourage the
father’s active involvement in both her and the child’s lives (Carlson et al. 2004).
In contrast, when mothers are not able to cooperate with the father and do not
perceive that he has the child’s best interests at heart (or are unable to provide
for her and their children), they may discourage his involvement and end the ro-
mantic relationship. Sigle-Rushton (2005) found that men who fathered children
outside of marriage are more likely to come from socioeconomically disadvan-
taged backgrounds and receive public assistance. Separating from a “deadbeat”
dad may reduce the mother’s stress level and allow her to increase available re-
sources for the child through forming new partnerships (e.g. Waller and Swisher
2006).9

8.3 Statistical Framework and Estimation Strategy

8.3.1 Conceptual Model

Consider a (romantically involved) couple i who has a child out of wedlock. Bor-
rowing from the standard formulation of a selection problem in econometrics, the
interrelation of child outcomes, parental investments in children, and relationship
status may be formalized as follows:

Ci = βSi + γ Xi + εi (8.1)

Si = δXi + νi (8.2)

9 McLanahan and Sandefur (1994) found that children living in stepparent families generally have
better outcomes than children in single-parent families.
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where Ci denotes the observed child outcome of couple i . Si is equal to 1 if the
couple separates (i.e., dissolve their romantic relationship) and 0 otherwise. The
vector Xi includes characteristics of the couple i that affect its willingness and
ability to make child investments as well as the risk of relationship dissolution.
Unobservables affecting child wellbeing and parental separation are captured by εi

and νi , respectively.
Regression approaches seek to identify the effect of union dissolution on the

wellbeing of children, β. Estimates of β based on standard regression methods such
as Ordinary Least Squares (OLS) may be biased if Si and εi are statistically depen-
dent. This dependence can arise from two sources: First, couples characteristics
(child investments) may be correlated with unmeasured health endowments, i.e.
Xi and εi are correlated. There may also be bias due to unobservable factors that
affect both the child outcomes and the couple’s relationship status. In either case,
at least part of the observed relationship between child outcomes and the indicator
for parental separation is spurious (confounded). The existence of either source of
bias would likely show that children of separated parents to have different outcomes
from their peers whose parents remained together, independent of any true causal
effect of parental separation on child outcomes (selection bias problem).

Selection bias arise in conventional regression analysis as these estimators em-
ploy data from all observations to be combined into one estimate of the separation
effect. If parents who remain together tend to be very different regarding their child
investments compared to couples who separate, then the validity of results from
standard regression models is suspect since the combining functions operate over
very different families. Specifically, the separation effect is identified by comparing
the average outcome of children who experienced a dissolution to those who did not.
In the presence of any characteristics that affect the couples’ decision to separate as
well as child wellbeing, the resulting estimates will reflect both the “true” effect of
parental separation on children who experience union dissolution and the effects of
factors that influence the parents’ risk of separation in the first place.

In addition to estimates from conventional regression approaches, this study
builds on a non-parametric strategy known as the potential outcome approach to
investigate the effect of parental separation on child health. In this approach, the
relationship between union dissolution and child outcome is formulated in a frame-
work similar to a social experiment in which the treatment is randomly assigned.
Pioneered in the program evaluation literature in economics (see e.g. Lechner 2002;
Imbens 2004), the matching approach has been fruitfully employed to study the
effect of an event (“treatment”) on participant outcomes when participation (“selec-
tion into treatment”) is expected to be non-random. For instance, when analyzing
the effect of a welfare program on individuals, researchers want to know what the
outcomes of the participants would have been had they not enroll in the program.
Since data on the counterfactual are typically unavailable in observational data, one
needs to rely on the behavior of the non-participants in the sample to construct
the counterfactual outcome. However, since welfare participation is voluntary, the
participation choice is non-random and participants tend to exhibit different char-
acteristics from non-participants. As a result, standard regression estimates of the
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effect of the treatment, obtained from comparing participants with non-participants
who are systematically different, will be confounded with the effects of selection
into participation. The matching method is particularly useful in this situation as it
re-establishes the conditions of an experiment, by matching the sample of partici-
pants and non-participants with respect to characteristics that rule the selection into
program participation (treatment).

In the present context, the “treatment” of interest – parental separation – is de-
fined in terms of the potential outcomes for children whose parents separated. Chil-
dren whose parents separated are in the treated group, and children whose parents
remained romantically involved are defined as the control group (or “untreated”).
We want to identify the effect of parental separation on children whose parents sep-
arated. To construct the counterfactual, i.e. the outcomes of children whose parents
separated had their parents remained romantically involved, we draw on match-
ing methods developed in the statistics literature (Rosenbaum and Rubin 1983;
Heckman and Robb 1985) that exploit the full information of the observable charac-
teristics. Unlike regression approaches, these methods balance out the groups being
compared in terms of their covariates and do not require assumptions regarding the
functional form of the relationship between family characteristics and child out-
comes. Specifically, they provide systematic ways to construct a sample counterpart
for the missing information on the counterfactual outcomes of the treated children
by pairing treated and control children who share similar observable characteristics.
Our application of propensity score matching to the study of parental separation on
child health is novel and adds to the growing number of areas within population
studies that have benefited from this technique (see Sigle-Rushton 2005; Liu and
Heiland 2009, and the related chapters in this book for additional applications).

We note that the methodology adopted here addresses selection on observable
factors and does not readily extend to selection on unobservables. If unobservable
factors are proxied for by Xi then matching based on observables also reduces se-
lection bias generated by unobserved factors. The extent to which the treatment
bias is reduced will thus crucially depend on the richness and quality of the control
variables, Xi , that are used to match treated and control observations. Typically, the
information about the parents of out-of-wedlock children and their relationship is
limited in large representative survey datasets. Fortunately, the FFCWS contains de-
tailed information on the child as well as both biological parents and their romantic
involvement, allowing us to capture factors believed to be important determinants
of the separation risk including the degree to which the parents are assortatively
matched.10

10 Approaches that seek to address selection bias due to unobservables directly include treatment
effects estimators and instrumental variables estimators. The former essentially model the selection
process directly and require strong distributional assumptions. In the context of divorce and child
outcomes, variation in state and local divorce policy and costs have been used as instruments for
divorce. However, to what extent these types of events can serve as valid instruments has been
debated (see Steele et al. 2007; Liu 2006) and finding a suitable instrument for union dissolution
among unmarried couples promises to be even more challenging.
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8.3.2 Potential Outcome Approach

Consider the “treatment” to be the separation (i.e. romantic relationship dissolution)
between the biological parents of child i : Si = 1 denotes the “treatment group” (i.e.
children whose parents separate), and Si = 0 denotes the “control group” (i.e. chil-
dren whose parents remain romantically involved). Let Ci (1) denote the potential
outcome of child i under the treatment state “parents separated” (Si = 1), and Ci (0)
the potential outcome if the same child receives no treatment, “parents remained
romantically involved” (Si = 0). Thus, Ci = Si Ci (1)+ (1− Si )Ci (0) is the observed
outcome of child i . The individual treatment effect is βi = Ci (1) − Ci (0), which is
unobserved since either Ci (1) or Ci (0) is missing.11

Ordinary least squares estimates the average treatment effect (ATE) by taking
the average outcome difference between the treated and control groups: βO L S =
E[Ci (1) |Si = 1] − E[Ci (0) |Si = 0]. The ATE is the average of the treatment
effect on the treated and the treatment effect on the controls. Given that many
children whose parents remained involved may never be at risk of parental sepa-
ration, the ATE may not be particularly illuminating when our interest lies in how
parental separation has affected children whose parents did separate. Hence, alter-
natively, one might focus on the average effect of treatment on the treated only
(“effect of parents’ separation on children whose parents separate”), i.e. the ATET
henceforth:

βSi =1 = E [βi |Si = 1] = E [Ci (1) |Si = 1] − E [Ci (0) |Si = 1] (8.3)

which is the difference between the expected outcome of a child whose parents
separate, and the expected outcome of the same child if his/er parents had remained
romantically involved. While we do observe the outcomes of children whose parents
separate, and are thus able to construct the first expectation E[Ci (1) |Si = 1], we
cannot identify the counterfactual expectation E[Ci (0) |Si = 1] without invoking
further assumptions. To overcome this problem, one has to rely on children whose
parents remained romantically involved to obtain information on the counterfactual
outcome. Since treatment status is likely non-random, replacing E[Ci (0) |Si = 1]
with E[Ci (0) |Si = 0] is inappropriate since the treated and untreated might differ
in their characteristics determining the outcome.

An ideal randomized experiment would solve this problem because random as-
signment of couples to treatment ensures that potential outcomes are independent
of treatment status;12 and if such data exist, conventional regression methods would

11 The individual treatment effect is equivalent to taking the difference between the outcome of
child i if his/er parents separated, and the outcome of the same child if his/er parents remained
together. Since for any given child, his/er parents can only be observed as either “separated” or
“remained involved”, we can never observe the outcomes of a given child in both of these situa-
tions.
12 Randomization implies that Si ⊥(Ci (0), Ci (1)) and therefore: E[Ci (0) |Si = 1 ] =
E[Ci (0) |Si = 0 ] = E[Ci |Si = 0 ].
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produce an unbiased estimate of β. However, this would require that couples who
share similar characteristics are randomly assigned to separate or remain involved,
which would be infeasible for obvious practical and ethical reasons. In this non-
experimental setting, the couple’s relationship status is likely non-random and
depends on characteristics that may also influence the couple’s child investment
behavior. For instance, the couples’ economic conditions can influence both their
relationship stability and ability to care for their children. In what follows, the
approach used to construct a suitable comparison group when random assignment
is unavailable, namely the matching method, and the identifying assumptions on
which it is based, are described.

8.3.3 Matching

Statistical matching is a way to identify a suitable control group that is comparable
to the treated. This method is particularly useful in settings where data often do
not come from randomized trials, but from (non-randomized) observational studies.
Matching estimators try to re-establish the condition of an experiment by stratifying
the sample of treated and untreated children with respect to covariates X that rule
the selection into treatment. Selection bias is eliminated provided all variables in X
are measured and comparable (or “balanced”) between the two groups. In this case,
outcome differences between the treated and controls provide an unbiased estimate
of the treatment effect.

8.3.3.1 Conditional Independence Assumption (CIA)

The matching method pairs treated and control units with similar observable charac-
teristics and assume that their relevant differences, in terms of potential outcomes,
are captured in their observable attributes. This underlying assumption, called the
conditional independence assumption (CIA henceforth), requires that conditional on
observables Xi , the distribution of the counterfactual outcome Ci (0) in the treated
group is the same as the (observed) distribution of Ci (0) in the non-treated group.
In other words, the outcomes of the untreated are independent of participation into
treatment Si , conditional on observable characteristics Xi : Ci (0)⊥Si |Xi . This rules
out the possibility that variables not included in Xi , on which we cannot condition,
affect both Ci (0) and Si (i.e., there is no selection on unobservables). It follows
that, for a child whose parents separated with a given x , the outcomes of matched
children whose parents remained romantically involved can be used to measure
what his/er outcome would have been, on average, had his/er parents remained
romantically involved. This assumes that there are untreated individuals for each
x : Pr (Si = 0 |Xi = x ) > 0 for all x , implying that individuals are matched only
over the common support region of Xi where the treated and untreated group over-
lap. Note that under the CIA, it is not necessary to make assumptions regarding the
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functional forms of the outcome equations, decision processes, or distribution of the
unobservables.13

8.3.3.2 Average Treatment Effect for the Treated (ATET)

Following the CIA, the average treatment effect on the treated can be computed as
follows:

β|Si =1 = E [Ci (1) |Si = 1] − E [Ci (0) |Si = 1] (8.4)

= EX [E [Ci (1) |Xi , Si = 1] − E [Ci (0) |Xi, Si = 1] |Si = 1]

= EX [E [Ci (1) |Xi, Si = 1] − E [Ci (0) |Xi, Si = 0] |Si = 1]

= EX [E [Ci |Xi, Si = 1] − E [Ci |Xi, Si = 0] |Si = 1]

To estimate the ATET, one is to first take the outcome difference between the
two treatment groups conditional on Xi , then average over the distribution of the
observables in the treated population.14

Conditioning on X within a finite sample, however, can be problematic if the
vector of observables is of high dimension. The number of matching cells increases
exponentially as the number of covariates in Xi increases. Thus, it is possible that
there will be some cells that contain only treated or untreated units, but not both,
making the comparison impossible. Rubin (1979) and Rosenbaum and Rubin (1983)
suggest the use of the propensity score, the conditional probability of selection into
treatment: p(Xi ) = Pr(Si = 1 |Xi = x ) = E(Si |Xi ), to stratify the sample. In the
present context, the propensity score is simply the conditional probability that the
parents of a given child would separate. They showed that by definition the treated
and the non-treated with the same propensity score have the same distribution of
X : Xi⊥Si (Xi ). This is called the balancing property of the propensity score. Fur-
thermore, if Ci (0)⊥Si |Xi , then Ci (0)⊥Si (Xi ) |p(Xi ) . This implies that matching
can be performed on p(Xi ) alone, which is more parsimonious than the full set of
interactions needed to match treated and untreated on the basis of observables, thus
reducing the dimensionality problem into a single variable.

Matching treated and untreated with the same propensity scores and placing them
into one cell (i.e., observations with propensity scores falling within a specific range)
is as if the selection into treatment is random within each cell and the probability of
participation within this cell equals the propensity score. Consequently, the differ-
ence between the treated and the untreated average outcomes at any value of p(Xi )

13 The CIA assumption is strong because it is based on the assumption that the conditioning vari-
ables in Xi be sufficiently rich to justify the application of matching. In particular, CIA requires that
the set of Xi should contain all the variables that jointly influence the outcome without treatment
Ci (0) as well as selection into treatment Si (Heckman et al. 1998). To justify this assumption,
econometricians implicitly make conjectures about what variables enter in the decision set of cou-
ples, and unobserved relevant variables are related to observables.
14 The regression equivalent of this procedure requires the inclusion of all the possible interactions
between the observables Xi .
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is an unbiased estimate of the ATET at that value of p(Xi ). Therefore, an unbiased
estimate of the ATET can be obtained by conditioning on p(Xi ):

β|Si =1 = E p(X ) [(E (Ci |Si = 1, p (Xi )) − E (Ci |Si = 0, p (Xi ))) |Si = 1] (8.5)

The implementation of this framework has several challenges. First, the propen-
sity score itself needs to be estimated.15 Second, since it is a continuous variable,
the probability of finding an exact match for each treated child is theoretically zero.
Therefore, a certain distance between the treated and untreated has to be accepted.

8.3.4 Matching Estimators

Various methods exist to implement matching estimates, all are based on the same
strategy of pairing individuals but with different weighting schemes given to coun-
terfactual individuals. Let T and C be the set of treated and untreated individuals,
respectively. The observed outcome of a treated individual be denoted Y T

i , and Y C
j

denotes the observed outcome of an individual in the control group. Let C(i) be
the set of control individuals matched to the treated individual i with an estimated
propensity score pi .

In general, Kernel matching matches all treated observations with a weighted
average of all control observations with weights that are inversely proportional to the
distance between the propensity scores of treated and controls. The kernel matching
estimator is given by:

τ k = (1 / N T
)∑
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⎡
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⎛
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j∈C

Y C
j K
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)
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)⎞⎠/
(∑

k∈C

Y C
j K ((pk − pi ) / hn)

)]]

where K (.) is a kernel function and hn is a bandwidth parameter. In this study, we
consider three matching estimators, namely Uniform (also known as the “radius”
matching estimator), Epanechinikov, and Gaussian kernels, each uses a specific
kernel function:

Epanechinikov: K (u) = (3 / 4)(1 − u)2 for |u| < 1, and 0 otherwise
Gaussian: K (u) = (1/

√
2π ) exp[−u2/2] for all u

Uniform (Radius): K (u) = 1/2 for |u| < 1 and 0 otherwise

15 The propensity score, i.e., the conditional probability that the parents of a given child would sep-
arate, can be estimated using any standard probability model. For example, Pr(Si |Xi ) = F(h(Xi )),
where F(.) is the normal or the logistic cumulative distribution and h(Xi ) is a function of covari-
ates with linear and higher ordered terms. See Dehejia and Wahba (1999) for a description of the
algorithm used to estimate the propensity score.



178 S.H. Liu and F. Heiland

Under the standard conditions on the bandwidth and kernel,

∑
j∈C
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)
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)/∑
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j K ((pk − pi ) / hn)

is a consistent estimator of the counterfactual outcome Y0i .
The main difference between these matching estimators is in how weights are

assigned to the matches. In radius matching, each treated unit is matched only
with control units whose propensity score falls within a predefined neighborhood
(i.e., radius) from its propensity score. All matches within this radius are assigned
the same weight. If the dimension of the neighborhood (i.e., radius) is defined to
be very small, it is possible that some treated units are not matched because the
neighborhood does not contain any control units. Conversely, the smaller the size of
the neighborhood the better the quality of the matches. With Gaussian and Epane-
chinikov kernel matching, all treated are matched with a weighted average of all
controls, with the Gaussian kernel assigning weights that follow a normal distri-
bution, and the Epanechinikov kernel assigning weights that follow a triangular
distribution.16

Estimation using propensity score matching is now available via a set of Stata
programs using the pscore package. Details of the algorithms used can be found
in Becker and Ichino (2002). There are tradeoffs between the quantity and quality
of the matches among these estimators but none is a priori superior. Relative to
radius matching, the Gaussian and Epanechinikov matching tend to produce higher
quantity of matches; however, the quality of the matches may be poorer since treated
units are potentially matched with distant controls. Nevertheless, their joint consid-
eration offers a way to assess the robustness of our results.

8.4 Data, Sample, and Descriptive Evidence

Our data are drawn from the Fragile Families and Child Wellbeing Study (FFCWS),
which follows a cohort of 4,898 children and both of their biological parents in 20
U.S. cities from birth (1998 ∼ 2000), at age one, and again when the child is about
three years old.17 The FFCWS is unique as it includes a large set of children born
to unmarried parents. Areas such as parent-parent and parent-child relationships,
socioeconomic activities, and child development are covered.

16 Depending on the choice of the bandwidth, the Gaussian kernel assigns positive weights to
potentially poor matches (matches in which distance between the treated and controls are very
far), while the Epanechinikov kernel assigns no weight to some potentially bad matches.
17 See Reichman et al. (2001) for a detailed description of the study design and sampling
methods.
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8.4.1 Sample Selection

Our study sample consists of 1,419 children all born to parents who were unmar-
ried but romantically involved at childbirth. The sample is selected in the following
manner. First, given that the relationship arrangement between the biological parents
is crucial for our study question, we exclude children whose parents’ relationship
status at either the one- or three-year follow-ups cannot be identified (n = 1, 733 are
dropped). Second, we focus on children born to unmarried biological parents who
were romantically involved at childbirth (i.e. either in cohabiting or visiting unions),
therefore children whose parents were either married (944 cases) or not romanti-
cally involved (302 cases) at childbirth are excluded. Third, we exclude children
for whom we do not observe the outcome measure, i.e. whether they have devel-
oped asthma by age three (406 cases). Fourth, the parents of 32 of the remaining
children had been married within the first year after childbirth, but divorced before
their child reached age three. To avoid confounding the effect of separation between
never-married parents and parental divorce, these observations are dropped.18 Fifth,
we cross check the marriage date (available since the one-year follow-up) with
parents’ reported marital status at childbirth. Observations in which the reported
marriage date contradicts the reported marital status of the parents at childbirth are
dropped (9 observations). An additional 32 observations are dropped due to missing
information on important socioeconomic and demographic characteristics.19 In the
resulting sample, consisting of 1,434 children all born to unmarried parents, 37% of
the parents have ended their (romantic) relationship by the time their child reaches
age three.

Finally, we estimate the propensity score of selection into treatment (i.e. the prob-
ability of parental separation within three years since childbirth) within this sample
of 1,434 children. To ensure sufficient overlap of the propensity scores between the
treatment and control groups, observations with propensity scores falling outside of
the common support region are excluded from the analysis (7 treated and 8 controls),
resulting in the final sample size of 1,419 children.20 Table 8.1 presents summary
statistics of the measures employed in this study. Sample means are presented for
the full sample (Columns 2 and 3) and by treatment status (Columns 4 and 5).

18 We note that our results are robust to the inclusion of these observations (results available upon
request).
19 To ensure that exclusion of these observations does not result in a selected sample (i.e. if the
tendency of under-reporting is correlated with the treatment), we constructed missing indicators for
each of these covariates and conducted t-tests of means for each of the missing indicators between
the treated and control groups. None of the t-tests showed significant differences in the prevalence
of under-reporting across the two groups (results available upon request).
20 Imposing the “common support” restriction implies that the test of the balancing property is
performed only on the observations whose propensity score belongs to the intersection of the sup-
ports of the propensity score of treated and controls. Imposing the common support condition in
the estimation of the propensity score may improve the quality of the matches used to estimate
ATET.
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Table 8.1 Sample means by relationship status three years after an out-of-wedlock birth

Entire sample

Parents’ relationship
status (3 years after
childbirth)

Mean [S.D.] Involved Separated

Child developed asthma by age 3 0.249 [0.433] 0.221 0.298∗

Parents separated by age 3 0.371 [0.483]

Parents’ relationship at childbirth
Cohabiting 0.654 [0.476] 0.765 0.466∗

Visiting 0.346 [0.476] 0.235 0.534∗

Child characteristics
Child is of low birth weight (< 88 oz) 0.107 [0.309] 0.108 0.105
Child is female 0.464 [0.499] 0.479 0.437
Child’s birth order (mother):

– 1st 0.376 [0.485] 0.353 0.416∗

– 2nd 0.330 [0.470] 0.336 0.319
– 3rd or higher 0.294 [0.456] 0.311 0.264+

Parent’s demographic characteristics
Mother’s age < 20 at childbirth 0.228 [0.419] 0.197 0.279∗

Father’s age < 20 at childbirth 0.111 [0.315] 0.089 0.149∗

Father is younger than mother 0.195 [0.380] 0.207 0.175
Mother’s race/ethnicity:

– white 0.165 [0.371] 0.185 0.129∗

– black 0.523 [0.500] 0.456 0.635∗

– Hispanic 0.285 [0.452] 0.331 0.207∗

- other 0.028 [0.164] 0.027 0.029
Father’s race/ethnicity:

– white 0.126 [0.332] 0.144 0.095∗

– black 0.557 [0.497] 0.495 0.662∗

– Hispanic 0.285 [0.452] 0.328 0.213∗

– other 0.032 [0.175] 0.032 0.030
Mother and father of different race/ethnicity 0.145 [0.353] 0.143 0.150
Mother is foreign-born 0.111 [0.315] 0.147 0.051∗

Father is foreign-born 0.218 [0.413] 0.209 0.234
Child’s household income
Income less than $10,000 0.202 [0.402] 0.163 0.269∗

Income between $10,000 and $24,999 0.340 [0.474] 0.352 0.319
Income at least $25,000 0.458 [0.498] 0.484 0.412∗

Parents’ education
Mother’ education:
– less than H.S. diploma 0.367 [0.482] 0.364 0.373
– high school diploma/GED 0.356 [0.479] 0.345 0.375
– some college 0.247 [0.432] 0.285 0.230
– bachelor & beyond 0.030 [0.170] 0.034 0.023
Father’s education:
– less than H.S. diploma 0.357 [0.484] 0.386 0.357
– high school diploma/GED 0.383 [0.486] 0.354 0.434∗

– some college 0.213 [0.410] 0.229 0.186+

– bachelor & beyond 0.028 [0.166] 0.032 0.023
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Table 8.1 (Continued)

Entire sample

Parents’ relationship
status (3 years after
childbirth)

Mean [S.D.] Involved Separated

Father is less educated than mother 0.271 [0.445] 0.279 0.257

Parents’ labor market activities
Mother works 0.190 [0.393] 0.199 0.175
Mother’s weekly hours of work 35.75 [9.199] 36.08 35.10
Mother’s annual labor income:
– less than $10,000 0.423 [0.495] 0.417 0.432
– between $10,000 and $24,999 0.432 [0.496] 0.424 0.444
– at least $25,000 0.145 [0.353] 0.158 0,123
Father works 0.839 [0.368] 0.862 0.798∗

Father’s weekly hours of work 43.71 [11.52] 44.11 42.88
Father’s annual labor income:
– less than $10,000 0.280 [0.449] 0.264 0.315+

– between $10,000 and $24,999 0.473 [0.500] 0.466 0.486
– at least $25,000 0.247 [0.431] 0.270 0.199∗

Mother’s labor income > father’s 0.121 [0.328] 0.145 0.071

Other characteristics
Mother is catholic 0.281 [0.450] 0.326 0.204∗

Mother reports no religious affiliation 0.128 [0.334] 0.123 0.137
Mother attends religious activities frequently 0.166 [0.372] 0.165 0.169
Parents’ have known each other for < 1 year

before pregnancy
0.245 [0.430] 0.236 0.260

Father suggested abortion during pregnancy 0.152 [0.359] 0.137 0.177∗

Prenatal smoking and/or drinking (mother) 0.268 [0.443] 0.263 0.278
Maternal grandmother’s education ( > HS) 0.216 [0.412] 0.218 0.213
Mother’s PPVT score (Year 3) 88.11 [11.15] 88.58 87.39+

N 1,419 893 526

Notes: Sample means between “children whose parents remained romantically involved” and “chil-
dren whose parents separated” by age 3 is statistically significantly different at the ∗ = 5% level,
+ = 10% level.

8.4.2 Measure of Child Health

Child health is measured by a child’s likelihood of developing asthma by age three.
Asthma is the most common chronic illness affecting children,21 with symptoms
formulated since infancy (Klinnert et al. 2001). Genetic predispositions combined
with exposure to environmental toxins are common risk factors for asthma onset
(Weisch et al. 1999; Sporik et al. 1991; Cogswell et al. 1987; Weitzman et al. 1990).
In the U.S., children from lower socioeconomic and minority backgrounds develop
higher rates of asthma, a pattern attributable to toxic environmental exposures and
poor health investments (Neidell 2004; Gergen et al. 2006; Oliveti et al. 1996).

21 “Asthma in Children Fact Sheet”, American Lung Association 2004.
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Psychological stress is also known to aggravate asthma, and the relationship be-
tween stressful life events and the onset of asthma has been well established among
the adult population (Teiramaa 1979; Levitan 1985; Kilpeläinen et al. 2002). Recent
research also points to stress experienced by a caretaker as an independent factor
contributing to child asthma (Wright et al. 2002).22 Stressful life events, such as
parental relationship conflicts, have been found to be associated with asthma onset in
infants, mainly through the mother’s coping abilities that translate into her parenting
behavior (Klinnert et al. 1994).

In the FFCWS, mothers are asked to report whether her child has asthma or
asthma attacks (or were informed by a health care professional that the child has
asthma)23 by age one, and again by age three. Within our sample, 25% report having
asthma or an asthma attack by age three.24 The incidence of asthma differs markedly
by treatment status: a significantly higher proportion of children whose parents sep-
arated by age three reports having asthma (30%), relative to children whose parents
remained romantically involved (22%).

8.4.3 Who Gets Separated?

While a number of recent studies examine the determinants of marriage among un-
married parents (e.g. Carlson et al. 2004; Goldstein and Harknett 1988), the factors
contributing to the dissolution of these unions have received little attention (see Liu
and Heiland 2009). Relationships that dissolve within three years after childbirth
were potentially less stable at the onset. Parents in visiting relationships at the time
of childbirth are more likely than cohabiting parents to separate within three years
after a premarital birth: 26% of cohabiting parents as opposed to 57% of visiting
parents end their romantic ties within three years after childbirth (not shown). Chil-
dren whose parents separate are more likely the result of unplanned pregnancies,

22 Wright et al. studied the role of caregiver stress on infant asthma. Using a birth cohort with
family histories of asthma to account for genetic predisposition, they find that greater stress levels
experienced by caregivers when the child is 2 to 3 months old (before any symptoms of asthma can
be detected) is associated with increased risk of recurrent episodes of wheezing (clinical definition
of asthma) in children during the first 14 months of life. The findings are robust to established
controls and potential mediators (including socioeconomic status, birth weight, race/ethnicity,
maternal smoking, breast-feeding, indoor allergen exposure, and lower respiratory infections). In
addition, the direction of causality runs from caregiver stress to levels of infant wheezing, rather
than the reverse.
23 This is consistent with the standard definition of childhood asthma, which is measured based on
the response of a parent or adult household member (“America’s Children: Key National Indica-
tors of Well-Being, 2001,” Federal Interagency Forum on Child and Family Statistics, Washington
D.C.: U.S. Printing Office).
24 According to the 2002 National Health Interview Survey, about 12% of U.S. children under the
age of 18 are diagnosed with asthma, but the incidence is much higher among minority children
(CDC 2004, http://www.cdc.gov/asthma/children.htm). Diagnosing asthma in young children is
more difficult than in older children, but an estimated 50% of kids with asthma develop symptoms
by age two.
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as indicated by the greater percentage of fathers who suggested abortion during the
pregnancy. Having an unplanned pregnancy can strain a romantic relationship, as
it has been found to be associated with less positive interactions between spouses
(Cox et al. 1989).

Studies of married couples have found that husbands’ socioeconomic charac-
teristics to be positively correlated with marital stability, but not the wife’s (e.g.,
Whyte 1990). One of the most important barriers to a stable relationship is finan-
cial instability, as a father that cannot contribute to the economic wellbeing of the
family is seen as a liability (Edin 2000). Consistent with this argument, we find that
fathers who separate from the child’s mother tend to be younger, foreign-born, less
educated, and less attached to the labor force, relative to fathers who remain roman-
tically involved with their child’s mother. Low levels of education and poverty are
linked to risky and abusive behavior (e.g. Clark et al. 2004). Unmarried non-resident
fathers have been found to exhibit these risk factors at higher rates than married or
cohabiting fathers (Wilson and Brooks-Gunn 2001; Jaffee et al. 2001). These risk
factors may lead to lower father involvement with children both directly, or indi-
rectly by weakening his relationship with the mother. Mothers may further mediate
father involvement with the child even after their romantic relationship with the
father has ended (Fagan and Barnett 2003).

8.5 Estimation Results

Our descriptive evidence points to a negative association between parental sep-
aration and child’s likelihood of developing asthma. However, one cannot read-
ily conclude that this association is causal, as there may be factors that influence
both the child outcomes and parental separation. Ideally, to determine whether
this association is causal, we would have information on the potential outcomes
of these children if their parents had remained romantically involved. Since the
counterfactual outcome is never directly observed, and standard regression esti-
mates based on the average outcomes of all control observations (many of whom
may differ systematically from the treated) are potentially biased, an alternative
statistical method to identify the counterfactual is needed. Matching methods is a
semi-parametric method that can be used to reduce selection bias, by construct-
ing a suitable control group whose outcomes are more likely to resemble the
counterfactual outcomes of children whose parents separated if they had remained
together.

In this setting, children who experience parental separation are compared only
to children whose parents remain romantically involved but share very similar (en-
vironmental) characteristics, and not to children subjected to very different condi-
tions in addition to their treatment status. Hence, the estimated effect of parental
separation is the average of the typical effect of treatment on the treated only,
and the differences in their outcomes are taken as driven only by their treatment
status (i.e. the “causal” effect of parental separation on children whose parents
separated).
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8.5.1 The Propensity Score of Parental
Relationship Dissolution

The first step in implementing the matching method is to estimate the propensity
score for the treatment (“parental separation”) under study: Pr[Si = 1 |Xi ]. Parents’
propensity to separate is defined as a function of each parent’s socioeconomic and
demographic characteristics, child-specific characteristics observed at childbirth,
and measures of union match quality. Parameter estimates for the probit model used
to match the treated and control groups of children are presented in Table 8.2. Con-
sistent with our descriptive evidence (holding everything else constant), parents who
did not co-reside at the time of childbirth (“visiting relationships”) are significantly
more likely to dissolve their romantic relationship within three years after childbirth.
Unmarried fathers who are young (less than 20 years of age), foreign-born, poorly
educated, and work few hours per week are significantly more likely to see their
romantic relationship with the child’s mother end within three years since childbirth.

Once the propensity score is estimated, we need to make sure that the treated and
controls are (statistically) identical in terms of their observable characteristics X and
their estimated propensity scores, but differ only in terms of their treatment status
(“test of the balancing property”). The sample is stratified into 5 equally spaced
intervals (or blocks) based on the predicted propensity score. We test (1) whether
the average propensity scores and means of each covariate in X are (statistically)
identical between the treated and control units within each interval, and (2) there is
sufficient overlap of the propensity scores between the treated and controls within
each interval, to ensure that adequate number of matches can be found for the treated
units.25 Table 8.3 reports results of the test of the balancing property between the
treated and controls. The test shows that the treated and controls are comparable in
their observable characteristics within each interval. In addition, Fig. 8.1 reveals that
there is sufficient overlap of the propensity scores between the treated and controls
in each block.

8.5.2 Main Findings

Table 8.4 presents the estimated effect of parental separation on child’s propensity
to develop asthma by age 3. We first report the OLS estimates: column 2 shows the
unadjusted mean differences in the prevalence of child asthma between the treated
and controls (i.e. OLS regression without any controls), and column 3 reports the
mean outcome difference after adjusting for a full set of controls. The propensity
score matching estimates based on the Gaussian, Epanechnikov, and uniform kernel
(radius) estimators, respectively, are reported in columns 4–8. To assess the sensitiv-
ity of the matching estimates to the choice of bandwidth (or radius), we also report

25 For details of this test, see Dehejia and Wahba (1999).
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Table 8.2 Probit estimates of the propensity score

Coefficient
Robust Standard
Error P > |z|

Child is of low birth weight (< 88 oz) −0.034 0.120 [0.780]
Child is female −0.080 0.073 [0.278]
Child’s birth order (mother):
– (Ref: 1st)
– 2nd −0.114 0.092 [0.214]
– 3rd or higher −0.170 0.104 [0.101]

Mother’s age < 20 0.048 0.107 [0.652]
Father’s age < 20 0.227 0.134 [0.091]
Father is younger than mother −0.059 0.103 [0.565]

Parents’ race/ethnicity:
– (Ref: both black)
– both white −0.274 0.144 [0.057]
– both Hispanic −0.122 0.150 [0.413]
– both other 0.312 0.397 [0.432]
– mother is white, father is non-white −0.002 0.198 [0.992]
– mother is black, father is non-black 0.213 0.224 [0.343]
– mother is Hispanic, father is non-Hispanic 0.074 0.203 [0.717]
– mother is other, father is non-other −0.218 0.465 [0.639]

Parents’ region of birth:
– (Ref: both U.S.)
– mother is foreign-born, father is not −0.403 0.278 [0.147]
– father is foreign-born, mother is not 0.308 0.122 [0.011]
– both parents are foreign-born −0.318 0.183 [0.081]

Mother’s education:
– (Ref: less than HS)
– H.S. diploma/GED) −0.059 0.156 [0.703]
– some college −0.146 0.255 [0.567]
– bachelor & beyond −0.440 0.424 [0.299]

Father’s education:
– (Ref: less than HS)
– H.S. diploma/GED 0.250 0.150 [0.095]
– some college 0.174 0.251 [0.488]
– bachelor & beyond 0.344 0.422 [0.415]

Father’s education relative to mother’s:
– (Ref: same)
– less 0.061 0.174 [0.725]
– more −0.131 0.169 [0.439]

Child’s household income:
– (Ref: less than $10,000)
– between $10,000 and $24,999 −0.153 0.112 [0.172]
– at least $25,000 −0.092 0.117 [0.428]

Parents’ labor force participation:
– (Ref: neither parents work)
– both parents work −0.092 0.361 [0.800]
– only mother works 0.358 0.423 [0.397]
– only father works 0.219 0.137 [0.109]
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Table 8.2 (Continued)

Coefficient
Robust Standard
Error P > |z|

Mother’s weekly hours of work 0.007 0.009 [0.450]
Father’s weekly hours of work −0.005 0.002 [0.034]

Mother’s labor income exceeds father’s −0.538 0.336 [0.110]

Length of parents’ relationship before
pregnancy:

– (Ref: more than 2 years)
– less than 6 months 0.030 0.123 [0.807]
– 6 months to 1 year 0.173 0.112 [0.120]
– 1 to 2 years 0.029 0.095 [0.762]

Mother is catholic −0.078 0.113 [0.490]
Mother has no religious affiliation 0.031 0.114 [0.786]
Mother attends religious activities frequently −0.003 0.102 [0.978]
Father suggested abortion during pregnancy −0.007 0.101 [0.946]
Maternal grandmother attained more than a

high school education
−0.055 0.099 [0.576]

Prenatal smoking/drinking (mother) 0.105 0.089 [0.242]
Parents in visiting relationship at childbirth 0.604 0.085 [0.000]
Mother’s PPVT score (Year 3) −0.000 0.004 [0.965]
Constant −0.570 0.441 [0.196]

Log Likelihood = −821.31
Pseudo R2 = 0.132

Notes: 1. Additional controls for “mother’s state of residence at childbirth” (14 state dummies)
omitted here. 2. Region of Common Support ∈ [0.05292221, 0.83660801].

results using different bandwidths (or radiuses). Details on the choice of bandwidth
are discussed in the next section.

On average, children whose parents separate are 7.8% more likely to develop
asthma by age 3 compared to children whose parents remain romantically involved.
Differences in observable parental and child characteristics partially explain the out-
come difference between the treated and controls: the separation effect is reduced to
5.2% (OLS) or 6.1% ∼ 7.1% (matching) but remains statistically significant. This
finding suggests that selection into relationship separation helps explain the child
outcome differences between children whose parents separate and those who do
not. A notable share of unmarried fathers have disadvantaged characteristics that
may not be conducive to increase engagement (or sustain romantic involvement),
hence their relationship with the child’s mother may have been less stable (or sus-
tainable) from the onset. Hence, these factors may help explain the poorer health
among out-of-wedlock children whose parents separate.

Recall that the OLS estimates the average treatment effect (ATE) and match-
ing estimates the average treatment effect on the treated only (ATET). While our
matching estimates confirm the direction of the separation effect suggested by the
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Table 8.3 Test of balancing properties between the control and treatment group (Two-sample
T-Test of means): T-statistics reported

Block 1 Block 2 Block 3 Block 4 Block 5

Range of the
propensity score

[0.053, 0.200] [0.200, 0.400] [0.400, 0.600] [0.600, 0.800] [0.800, 0.837]

N Treated 37 166 175 133 15
N Controls 264 392 169 62 6

Two-Sample Test of Means: Significance Level = 0.01
|T | Statistic

Propensity score 1.314 2.432 2.136 1.116 0.005

Child is of low birth
weight (< 88 oz)

0.592 1.236 0.778 0.323 0.679

Child is female 0.105 1.006 0.150 0.897 0.400
Child birth order

(mother):
– (Ref: 1st)
– 2nd 0.640 0.660 1.185 2.102 1.405
– 3rd or higher 1.173 0.751 0.308 0.226 0.679
Mother’s age (< 20) 1.372 0.619 0.262 0.149 0.535
Father’s age (< 20) 0.842 1.020 0.443 0.618 0.291
Father is younger

than mother
0.316 0.906 1.587 0.120 0.623

Parents’
race/ethnicity:

– (Ref: Both parents
are black)

– Both parents are
white

0.274 0.643 0.449 1.011 0.000

– Both parents are
Hispanic

0.225 1.206 0.779 0.538 0.000

– Both parents are of
“other”
race/ethnicity

0.018 1.386 0.427 0.787 0.679

– Mother = white,
Father �=
non-white

0.755 0.144 0.157 0.293 0.000

– Mother = black,
Father �=
non-black

0.374 1.150 0.664 1.772 1.165

– Mother =
Hispanic, Father
�= non-Hispanic

0.515 1.308 0.891 0.420 0.000

– Mother = other,
Father �= other

0.752 1.150 0.043 0.057 0.679

Parents’ region of
birth:

– (Ref: Both parents
are born in U.S.)

– Mother is
foreign-born (not
Father)

0.032 0.069 0.025 0.000 0.000
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Table 8.3 (Continued)

Block 1 Block 2 Block 3 Block 4 Block 5

– Father is
foreign-born (not
Mother)

1.114 1.490 0.717 1.140 0.400

– Both parents are
foreign-born

0.966 1.210 2-104 0.682 0.000

Child household
income: (Ref: <

$10,000)
– Between $10,000

and $24,999
0.452 0.267 0.057 0.251 1.405

– More than $25,000 0.338 0.185 0.341 0.515 0.623
Parents’ educational

backgrounds:
– (Ref: Less than

HS)
– Mother’s

education: H.S.
diploma/GED

1.898 1.198 0.801 1.247 0.400

– Mother’s
education: some
college

0.859 1.383 1.410 1.047 0.914

– Mother’s
education:
bachelor and
beyond

1.026 0.018 1.227 0.553 0.000

– Father’s education:
H.S.
diploma/GED

1.530 1.055 1.041 2.422 0.734

– Father’s education:
some college

0.070 0.091 0.408 1.403 0.914

– Father’s education:
bachelor and
beyond

0.515 0.333 1.312 0.057 0.000

Mother’s education
relative to father’s:

– (Ref: Same)
– Father is less

educated than
mother

1.355 1.897 1.229 0.230 0.167

– Father is more
educated than
mother

0.164 0.245 0.561 0.666 1.371

Parents’ labor force
participation:

– (Ref: Neither
parents work)

– Both parents work 1.018 0.453 0.585 0.334 1.648
– Only Mother

works
0.000 0.650 0.247 0.571 0.167

– Only Father works 1.024 0.727 0.306 0.167 0.291
Mother’s weekly

hours of work
0.627 0.404 0.451 0.450 0.035
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Table 8.3 (Continued)

Block 1 Block 2 Block 3 Block 4 Block 5

Father’s weekly
hours of work

0.396 0.713 1.918 0.506 0.077

Mother’s labor
income > Father’s
labor income

1.065 1.462 0.025 0.000 0.000

Length of parents’
relationship prior
to pregnancy

– (Ref: > 2 years)
– ≤ 6 months 1.527 0.293 0.781 0.509 1.165
– 6 months ∼ 1 year 0.400 0.414 0.855 0.900 0.623
– 1 year ∼ 2 years 1.050 0.587 1.673 0.230 1.031
Mother is catholic 0.451 0.084 0.291 0.862 0.623
Mother has no

religious
affiliation

1.547 1.691 0.837 0.148 0.914

Mother attends
religious activities
(at least few times
a week)

1.608 1.482 1.005 0.874 0.465

Father suggested
abortion during
pregnancy

0.122 0.814 0.568 0.496 1.405

Maternal
grandmother’s
education (some
college and
beyond)

0.450 0.439 0.742 0.077 0.679

Prenatal smoking or
drinking (mother)

1.678 0.329 1.046 0.423 0.167

Parents in visiting
relationship
(baseline)

1.114 0.092 1.259 0.186 0.000

Mother’s PPVT
score (measured
at year 3)

1.786 1.327 0.782 0.653 0.401

Notes: 1. |T | statistics of the two-sample test of means for “mother’s state of residence at baseline”
(14 indicators) not reported here (available upon request).

parametric estimate, they are consistently larger in magnitude. This indicates that
non-marital relationship dissolution may not be as detrimental for child health as
one might suspect (at least for some children whose parents separate). To see this,
consider a child whose parents separate (treatment group). The finding that, on aver-
age, the outcome difference between a treated child and a child in the control group
that does not (necessarily) share similar disadvantages is smaller (i.e., OLS) than
the outcome difference between the same treated child and a control child that does
share these disadvantages (i.e., matching) implies that at least for some children
in the treated group, having their parents separate may not be as detrimental as if
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Fig. 8.1 Box plot of the propensity score overlap

their parents had remained romantically involved. Given that caretaker stress level
has been identified as an independent determinant of child asthma onset (Wright
et al. 2002), this result is consistent with the hypothesis that separating from a
“deadbeat” dad may indirectly benefit some children by reducing the mother’s stress
level and enhance her parenting (Waller and Swisher 2006), in addition to potential
increases in available resources for the child by allowing the mother to form new
relationships (e.g. McLanahan and Sandefur 1994).

8.5.3 Sensitivity Analysis

8.5.3.1 Choosing the Bandwidth

The matching estimates may be sensitive to the choice of bandwidth. The Silver-
man’s rule-of-thumb (1986) may be used to select the optimal bandwidth:

ĥ = 1.06 × Min {σ̂ , R/1.34} × n− 1
5

where σ̂ = sample standard deviation, R = interquartile range (75th-quantile –
25th-quantile), and n = sample size. The method is based on the assumption that
the underlying distribution of p(X ) (the propensity score) is normally distributed.
The rule-of-thumb will give reasonable results for all distributions that are unimodal,
fairly symmetric and do not have fat tails. However, the rule-of-thumb may not be
applicable in our case as the distribution of the estimated propensity score is far from
normal (see Appendix Fig. 8.2). As a result, the bandwidth suggested by the rule-of-
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Table 8.4 Summary of the effect of Parents’ separation on the Child’s likelihood of developing
Asthma by age 3

OLS Matching

Un-adjusted Adjusted Gaussian Epanechnikov Uniform

(h = 0.01) (h = 0.005) (r = 0.01) (r = 0.005)

Estimate 0.078∗ 0.052∗ 0.061∗ 0.071∗ 0.071∗ 0.067∗ 0.069∗

Standard
error

[0.024] [0.026] [0.028] [0.033] [0.035] [0.027] [0.028]

N Treated 526 526 526 526 526 526 517
N Controls 893 893 893 893 893 880 862
% Matched

treated
100 100 100 100 98

Notes. 1. The OLS estimates of the separation effect without controls (“unadjusted”) and with con-
trols (“adjusted”) are reported. 2. h = bandwidth, and r = radius. 3. Robust standard error reported
for the OLS estimate, standard errors for the matching estimates are obtained by bootstrapping with
500 replications. 4. Propensity score is re-estimated at each replication of the bootstrap procedure
to account for the uncertainty associated with the estimation of the propensity score. 5. Estimated
propensity score in region of common support [0.05292221, 0.83660801], which is defined by
the minimum estimated propensity score within the treatment group, and the maximum estimated
propensity score within the control group. 6. The propensity score is estimated using a probit
model with the following specification: Pr [Si = 1] = F[Parents’ relationship status at childbirth,
child is of low birth weight, child gender, birth order of the child (mother), mother is less than 20
years old, father is less than 20 years old, father is younger than mother, both parents are white,
both parents are Hispanic, both parents are of other race, mother is white (not father), mother is
Hispanic (not father), mother is of other race (not father), mother is foreign-born (not father), father
is foreign-born (not mother), both parents are foreign-born, mother’s education, father’s education,
father is less educated than mother, father is more educated than mother, length of time parents
knew each other before pregnancy, father suggested abortion during pregnancy, mother’s PPVT
score, mother is catholic, mother has no religious affiliation, mother attends religious activities
frequently, prenatal smoking and/or drinking (mother), household income at childbirth, mother
works (not father), father works (not mother), both parents work, mother’s hours of work per
week at childbirth, father’s hours of work per week at childbirth, mother’s labor income exceeds
father’s, maternal grandmother has some college education (or more), mother’s state of residence
at childbirth]

thumb may be far from optimal. If the choice of bandwidth is too large, the treated
and their matches tend to differ more on observable characteristics. As a result,
the matching estimates tend to converge to that produced by the OLS. Our match-
ing estimates using the bandwidth suggested by the rule-of-thumb (ĥ ≈ 0.048) is
statistically equivalent to the OLS estimates. Hence, for our analysis smaller band-
width(s) (0.010 and 0.005) are chosen to ensure closer matches between the treated
and controls are used in the estimation.

8.5.3.2 Relaxing the Common Support Condition

Our estimates are based on observations with propensity scores falling within the
common support, to ensure that there are sufficient overlap between the treated
and control units to enhance comparability, which may improve the quality of our
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estimates. A potential drawback of imposing the common support condition is that
as the sample may be considerably reduced, since observations with propensity
scores falling outside of the common support boundaries are dropped, the estimated
treatment effect may be sensitive to this sample restriction. Hence imposing the
common support restrictions is not necessarily better (Lechner 2001). Imposing the
common support condition results in 8 control and 7 treated units being dropped
from our main analysis. To ensure that our estimates are not sensitive to the exclu-
sion of these observations, we relax the common support condition and re-estimate
the ATET using all 1,434 observations. Appendix Fig. 8.3 presents the box plot of
the propensity score overlap for this sample. Overall, the ATET estimates obtained
by relaxing the common support condition are very similar to our main results
(results available upon request).

8.5.3.3 Assessing the Conditional Independence Assumption

An identifying assumption of the matching method, namely CIA, requires that con-
ditional on the observables, the distribution of the potential outcomes of the treated
group in the absence of treatment is identical to the outcome distribution of the
controls. Yet since the data are uninformative about the distribution of potential
outcomes for the treated group in the absence of treatment, they cannot directly
reject the CIA. Imbens (2004) proposes an indirect way of assessing its plausibility,
relying on estimating a causal effect that is known to be zero. Specifically, the test
involves estimating the causal effect of the treatment on a lagged outcome, with its
value determined prior to the treatment itself. If it is not zero, this implies that the
underlying conditional distribution of the potential outcomes of the treated under no
treatment is not comparable to control outcomes. The power of this test is enhanced
if the variable used in this proxy test is closely related to the outcome of interest.

A number of studies have found strong associations between low birthweight and
subsequent poor lung function among children, including childhood asthma (e.g.,
Nepomnyaschy and Reichmann 2006). We estimate the “causal” effect of parents’
separation within three years after childbirth on whether the child was of low birth-
weight (< 88 oz). A child’s birthweight is realized before the treatment can take
place, and potentially correlated with the child’s subsequent propensity of devel-
oping asthma. All of our matching estimates show that parental separation has no
effect on whether the child was of low birthweight (results available upon request).

8.6 Conclusion

This study documents a causal relationship between parental non-marital separation
and child health among out-of-wedlock children. Using a recent and representative
sample of children all born to unmarried parents in large U.S. cities and adopting
a potential outcome framework to account for self-selection into relationship disso-
lution, we find that parental separation has a detrimental effect on child health. By
matching children who share similar backgrounds but differ only in terms of whether
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their parents dissolve their romantic relationship, we find that out-of-wedlock chil-
dren whose parents separate within the first three years after childbirth are 6% ∼
7% more likely to develop asthma by age 3, relative to if their parents had remained
romantically involved.

Our findings are consistent with explanations that poor health investments and
caretaker stress are important determinants of asthma among young children. In par-
ticular, we find that socioeconomic disadvantages of fathers are crucial in explaining
relationship dissolution between unmarried parents. Similarly, the status and quality
of unmarried parents’ relationships seem to be important predictors of early pater-
nal involvement (Carlson and McLanahan 2004; Johnson 2001). In addition to the
lack of available resources as a result of having a “deadbeat” dad, having a partner
who is unable (and potentially unwilling) to provide for the family may contribute
to relationship instability and heightened stress level for the mother. If the mother
were to maintain a romantic relationship with the father, as opposed to being single
or forming new partnerships, she may experience greater socioeconomic hardships
and tension with adverse effects on her parenting behavior. Our results are consis-
tent with findings by Sigle-Rushton (2005), that men who fathered children out of
wedlock are more likely to experience relationship instability, which are likely to
militate against protective benefits of social bonds that a union may confer. Hence,
promoting greater (or maintained) involvement between these parents may induce
some parents to remain in unhealthy relationships (Allard et al. 1991; Raphael and
Tolman 1997), with potentially undesirable consequences for the children involved.

The rise in unmarried parenthood and research suggesting that children from
single parent families face disadvantages as adults, prompted recent policies geared
toward responsible fatherhood initiatives and promoting greater involvement of fa-
thers with their biological children (Harden 2002). While there is evidence sug-
gesting that the majority of unmarried fathers are highly involved in their child’s
lives, especially during the first few years after childbirth (McLanahan et al. 1998),
studies of divorced fathers indicate that men often disengage from their children
when their romantic relationship with the mother ends (e.g., Furstenberg and Cher-
lin 1991). Even more controversial, government funding for programs promoting
fathers’ co-residence with their children through marriage are in place. While our
findings generally support stronger paternal involvement and child support enforce-
ments to protect out-of-wedlock children from socioeconomic hardship, policies
that promote marriage between unmarried parents should be mindful that a notable
share of the fathers that are targeted might have characteristics not conducive for
healthy relationships.

Two caveats of this study should be noted. The matching approach addresses
selection effects driven by differences in observable characteristics between chil-
dren of separated and intact parents. It implicitly assumes that even if there are un-
observable factors affecting both relationship dissolution and child outcomes, they
are correlated and hence proxied by included controls. While we have access to an
unusually detailed sets of observable characteristics including information on both
parents’ and the quality of their relationship, our estimates may still suffer from
some selection bias due to unobservables affecting both parental relationship status
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and child outcomes such as the home environment and other family-level influences.
Within-cluster matching (or “Differences-in-differences” matching) makes further
attempts to account for selection on unobservables by requiring that observations
in the control groups be identical to the treated ones in a dimension believed to
be particularly important to capture common (unobserved) background influences
(for an application to the context of out-of-wedlock childbearing and schooling see
Levine and Painter 2003). A possible application of this approach in our context is to
require the children in the control group to come from the same family as the treated
child. However, this is beyond the scope of the present study since it would require
multiple children to be observed for each couple and such data are not available in
the FFCWS.

Finally, while this study reports the effect of non-marital separation between the
parents on child health, one may also be interested in how it compares to the effect
of marital separation, holding union duration and other aspects constant. Although
the FFCWS interviewed a sample of married parents with a newborn at baseline, the
sample size (net of sample attrition by wave 3) of initially married parents is small
and fewer than 5% (roughly 30 observations) divorced before their child reaches age
3. In addition, due to sample design, information on parents with a newborn in the
FFCWS are limited to the observational period only: time after the birth of the focal
child (who is more likely of higher parity than a child born to unmarried parents
at baseline). As such, we have very little information on parents who are married
at baseline prior to marriage (or even prior to childbirth) needed to account for
important differences between married and divorced families. Hence, comparisons
between the effects of marital vs. non-marital dissolution on child outcomes are
beyond the scope of this study.
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Fig. 8.2 Distribution of the estimated propensity score (Relaxing the common support condition)
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Fig. 8.3 Box plot of the propensity score (Relaxing the common support condition)



Chapter 9
Assessing the Causal Effect of Childbearing
on Household Income in Albania

Francesca Francavilla and Alessandra Mattei

9.1 Introduction

The relationship between demographic developments and economic performance
has been the subject of rather intense debate in the economics literature for nearly
two centuries.

Until recently limitations on both data sources and statistical techniques have
prevented clear insights into the relationship between population growth and eco-
nomic wellbeing (Birdsall et al. 2001), and most of the existing studies have relied
on either cross sectional or aggregate level data. Cross sectional data, no matter
what techniques are applied, is unlikely to provide robust causal information about
the relationship between the occurrence of life events (such as a childbearing event)
and economic wellbeing. Past empirical studies concerning the relationship between
economic wellbeing and fertility have consequently showed mixed results, indicat-
ing that the relationship does not appear to be unidirectional (see Schoumaker and
Tabutin (1999) for further details).

In this paper we analyze to what extent births may lead to changes in economic
wellbeing. In contrast to most previous studies on this issue we apply appropriate
econometric techniques based on longitudinal micro data in order to identify the
causal effects of child bearing events on poverty.

Fertility is measured in terms of childbearing events, and we use monthly real
equivalised income as an indicator of household living standards. Childbearing
might affect economic wellbeing through different channels. The most obvious one
is that an additional child in the household increases the number of adult equiv-
alence units without increasing household income. Therefore, childbearing would
decrease, ceteris paribus, (equivalised) household income. However, as the eco-
nomic theory suggests, there exist many factors that might interact with both fertil-
ity and income, generating economies and/or diseconomies of scale (Cigno 1991).
One of the main factors concerns the impact of fertility on the optimal time allo-
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cation within the household. According to the principle of division of labor, the
birth of an additional child may require a re-allocation of specific tasks within the
household (Cigno 1991). This kind of specialization is a key feature of domestic
organization (Becker 1985). Private and public transfers are other possible trans-
mission channels. If the credit market is deficient or rationed, an extended fam-
ily network could substitute for a capital market by arranging loans to its young
members from its middle-aged ones and enforcing repayment later when the young
borrowers have become middle-aged and the middle-aged lenders have become old
(Ermisch 2003). Moreover, in environments with less-developed markets, altruism
or mutual “caring” among family members play an important role in facilitating risk
sharing (Becker 1991). In an endogenous fertility model, public transfer could be
justified if society assigned a positive welfare weight to children in their own right
(Cigno 1983), or if children generated a positive externality (Cigno et al. 2000).
State transfers may, totally or partially, compensate households for income loss due
to the cost of children, and in turn influence fertility decisions. Other public policies,
affecting quality of life, may contribute to explaining the interaction between child-
bearing and economic wellbeing. Service provision affects the ability of the family
to deal with the reduction in equivalised income; for instance, support for child care
costs will help parents to take paid work. However, some of the social transfers bene-
fiting childbearing may be in the form of tax concessions rather than cash payments.
In general, progressive income taxation would mitigate diseconomies, because any
fall in earnings would reduce the marginal rate of tax, whereas progressive child
subsidization could generate economies in the number of children (Cigno 1991).
Since all these potential sources of economies or diseconomies could be present at
the same time, it is possible that economies of scale would result for a number of
children, and diseconomies for others (Cigno 1991).

The focus of this paper is primarily on the relationship between fertility and
wellbeing. We perform our analysis on longitudinal data from the Albanian Liv-
ing Standard Measurement Survey (ALSMS). Albania is interesting for a range of
reasons. Since 1992, when democracy was re-installed in Albania, the country has
experienced rapid political, social and economic changes. However, the country is
by far the poorest in Europe, and in terms of the human development indicator, only
ranked at 73rd out of 177 countries (see the UNDP web site: http://hdr.undp.org).

We take a quasi experimental approach, that is, we consider the variable of inter-
est (the experience of a childbearing event) as the treatment variable, and our mea-
sure of wellbeing as the outcome variable. Individuals experiencing a childbearing
event might be self selected, generating systematic differences in background char-
acteristics between the treatment groups. In order to deal with this confounding fac-
tor, we first fit a multiple linear regression model that includes relevant background
characteristics as well as an indicator variable for the treatment (i.e. childbearing).
This estimation is then compared and contrasted with a matching approach, which
is specifically designed to deal with the problem of confounding in observational
studies. We apply the bias-corrected matching estimator introduced by Abadie and
Imbens (2002), which allows us to regression-adjust the difference within matches
for the difference in covariate values. Our analysis suggests that there is some
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evidence that childbearing events can in fact increase household wellbeing in Al-
bania, although the causal parameter estimate is not significant. In addition, the
treatment effect is highly heterogeneous with respect to observable characteristics
such as the woman’s working status and the woman’s parity. All the results appear to
be robust with respect to the estimated equivalence scale: changing the equivalence
scale leaves the childbearing effect on income positive and non-significant.

The structure of the paper is as follows. Section 9.2 briefly describes the Alba-
nian context. Section 9.3 gives a short description of the ALSMS data. Section 9.4
explains how we define wellbeing putting particular emphasis on the choice of the
equivalence scale. Using this wellbeing definition, Section 9.5 provides interesting
descriptive patterns of wellbeing for different family types. Section 9.6 explains
the methodological strategy for the causal analysis and Section 9.7 presents the
results along with a dissertation on the robustness of our estimates with respect to
the selected equivalence scale. Section 9.8 draws some conclusions.

9.2 The Albanian Background

Given the socialist background, Albania has a history of strong social protection.
Before the collapse of communism, guaranteed employment schemes protected
most families from poverty ensuring them income from earnings. Wages were low
but prices and rents were controlled and the state invested extensively in maternal
and early child health. Since 1992, when democracy was reinstalled, Albania has
enjoyed strong economic growth and its economic progress is rapidly transforming
Albania to become a middle income country. From the mid 1990s, Albania’s GNP
started to grow and surpassed the so-called Lower Income countries, and currently
the GNP is moving toward the levels of the Middle Income countries. Despite the
impressive performance of the economy over the last years, Albania continues to
have one of the lowest levels of per capita income in Europe and the incidence
of poverty in Albania is large compared with countries in the region.1 According
to the World Bank Poverty Assessment in 2003 one-quarter of the Albanian pop-
ulation – about 780,000 people – fell below the poverty line, and around 5% of
the population – 150,000 people – are extremely poor. The modernization that the
country experienced in the last decade has benefited Tirana and other urban areas
more than rural areas. Poor individuals in rural areas comprise nearly 35% of the
population and almost half of the residents in the most remote districts in the North
and North-East Mountain regions are poor.

1 According to the World Development Indicator database and the Country Poverty Assessment
Reports by World Bank, Albania is the eighth poorest country among the transition economies
in Europe and Central Asia. Herzegovina (19%), FYR of Macedonia (16%), Bulgaria (13%) and
Croatia (8%); whereas some recent studies show that the poverty dimension in Albania is near to
some countries of the Commonwealth of Independent States such as Uzbekistan and Moldova. See
World Bank, Making Transition Work for Everyone: Poverty and Inequality in Europe and Central
Asia, 2004.
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Amongst the Southeast European countries, Albania performs badly in many
health indicators, education attainment, and dependency ratio (see International
Monetary Fund, 2005 for further details). The official statistics suggests that in 2003
Albania experienced infant and maternal mortality rates equal to 18 per 1000 births
and 21 per 100,000 births, respectively, – which appear to be the highest levels of the
Southeast European area. However in the last years the two indicators have reported
an encouraging downward trend. Despite these pictures the life expectancy at birth,
currently 74 years, is comparable with European countries.

The strong economic growth following the transformation to a market economy,
obviously produced rapid and dramatic social changes. Several structural reforms
have been carried out involving banking, land reforms and privatization. Almost all
the small and medium enterpriser and the strategic sectors (such as telecommunica-
tion) have been privatized.

In 1993 the Social Insurance System existing since 1946 was completely reor-
ganized. The new law introduced in 1993 and the following amendments brought
substantial changes in the Albanian social assistance programme which included old
age, disability and survivor pensions, sickness and maternity benefits, work injury,
as well as unemployment benefits and family allowances, which were introduced
for the first time. There is however, no specific child benefit, but general “economic
assistance” is allocated on a means-tested basis for families with low earned income.
Employees with at least twelve months of contributions are entitled to 365 days
of paid maternity leave. The benefit is 80% of the average daily wage in the last
calendar year for the leave period taken before childbirth and for 150 days after,
whereas the benefit is paid at 50% of the average daily wage for the remainder of
the entitlement period. For more children extensions are provided. Compensation
is payable for changes of employment due to pregnancy. A lump-sum payment is
payable to either insured parent with a minimum of 1 year’s contributions.

Moreover, the Albanian social system provides a child supplement for each de-
pendent child under age 15. It is clear therefore, that there is still reasonably good
support available for mothers with young children. Whereas, the total fertility rate
has declined steadily over the years, it seems to have stabilized in recent years, and
there is little indication that Albania will experience lowest low fertility as experi-
enced in Italy and other Mediterranean countries.

9.3 The Albania Living Standards Measurement Study

Our analysis is based on data from the Albania Living Standards Measurement
Survey (ALSMS), a periodic study carried out by the Albanian Institute of Statistics
(INSTAT) with the technical and financial assistance of the World Bank. The
first survey was conducted in 2002, and provided individual level and household
level socio-economic data from 3,599 households drawn from urban and rural
areas in Albania. The sample was designed to be representative of Albania as
a whole, Tirana, other urban/rural locations, and the three main agro-ecological
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areas (Coastal, Central, and Mountain). The 2002 ALSMS was followed by two
panel surveys (in 2003 and 2004) on a sub-sample of the original households. The
sample size for the panel took approximately half the ALSMS households and
has re-interviewed these households annually in 2003 and 2004. The ALSMS data
collected in 2002 therefore constitute “wave 1” of a three-wave panel survey.

The sample selected from the ALSMS for the panel was designed to provide
a nationally representative sample of households and individuals within Albania.
This differs from the original ALSMS where the sample was designed to be repre-
sentative of each strata which broadly represented the main regions in Albania so
that regional level statistics could be generated (Mountain, Central, Coastal, Tirana).
The panel is essentially an individual level survey as individuals are followed over
time regardless of the household they live in at any given interview point.

The 2002 survey contains a wealth of information collected at the individual and
household levels. Information collected at the household level includes housing,
subjective poverty, consumption expenditures, agriculture, non-farm enterprises,
and other income. Information collected at the individual level includes demograph-
ics, migration, education, health, fertility, labor, transfers and social assistance, and
anthropometrics (for children under 6 years of age). The ALSMS also collects com-
munity level information on the basic characteristics of the community, access to
public services such as education, health, and transportation, community services,
community organizations, community safety, migration, child labor and problems
related to the environment. Finally, the ALSMS has information concerning price
which can be used to adjust for regional price differences.

The two following panel waves provide updated individual level and household
level socio-economic data for household members 15 years of age and older. It is
important to note that we have no panel information on consumption expenditure.
In addition, whereas the first wave contains complete fertility histories, waves 2
and 3 only provide additional information on any new births. All the analyses in
this paper are based on a sub-sample of women of child-bearing age (15–49 years)
with complete information on the relevant variables drawn from the Albanian panel
survey.

9.4 A Measure of Well-Being

The focus of our study is on the extent to which childbearing events lead to changes
in wellbeing. In order to address this issue we first have to define a measure of
wellbeing. As a multidimensional phenomenon, wellbeing can be defined and mea-
sured in a multitude of ways. One approach is to think of one’s wellbeing as the
command over commodities in general, so people are better off if they have a greater
command over resources. In this view, the main focus is on whether households or
individuals have enough resources to meet their needs, and wellbeing is typically
seen in monetary terms. The most common welfare-monetary indicators for poverty
measurement are expenditure on household consumption and household income. In
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our study we use an income-based measure for poverty analysis. This choice was
mainly driven by the availability of data. As previously noted, in the ALSM study
information on consumption expenditure is only available for the first wave; whereas
we have data on income for all the three waves of the Albanian panel survey.

Our measure of monetary wellbeing is constructed using the monthly total
household income, which comprises income from dependent work (wages, in-kind
salaries, bonuses) as well as non-dependent work, earnings transfer (only incom-
ing), public transfers and other income (such as rental income, inheritance, lot-
tery/gambling winnings and other).

When assessing economic wellbeing it is important to adjust for price variability
across space and time and household heterogeneity. Microeconomic theory suggests
that we may wish to account for price variability by comparing real as opposed
to nominal income. Several procedures can be followed to enable such compar-
isons. Here we deflate the level of total nominal income by a cost-of-living index.
Specifically, we convert income in 2004 to be real with respect to 2002 Leks prices,
using the aggregate consumption price index reported by the International Monetary
Fund (2004).

Household size and demographic composition vary across households, as do
the prices they face, including wage rates. As a result, it takes different resources
to make ends meet for different households. In order to adjust for household het-
erogeneity we use an equivalence scale, that is, we divide the real total household
income by the number of adult equivalents, ne:

ne = (A + α · K )θ , (9.1)

where A and K stand for the number of adults and children, respectively. Both α and
θ take a value between 0 and 1. The parameter α is the adult-equivalence of a child,
and the parameter θ reflects possible economies of scale favoring larger households,
due to the allocation of fixed costs (such as heat and light) over a greater number of
people.

The notion of equivalence scale is compelling. It is much less persuasive in prac-
tice, because of the problem of picking an appropriate scale. How the parameters α

and θ should be calculated and whether it makes sense to even try is still subject to
debate, and there is no consensus on the matter. There are two possible solutions to
this problem: either pick a scale that seems reasonable on the grounds that even a
bad equivalence scale is better than none at all, or try to estimate a scale typically
based on observed consumption behavior from household surveys. In our study,
preliminary analyses suggested that standard equivalence scales do not work very
well. Looking at the cases where α and θ take values of 0.5 or 1, we found that
our results were highly sensitive to both the choice of a weight of a child relative to
an adult and economies of scale. Therefore, we decided to estimate the equivalence
scale from the data.

Following Lanjouw and Ravallion (1995), we focus on the class of equivalence
scales whereby the money metric of an individual’s welfare has an elasticity θ with
respect to household size. As in Lanjouw and Ravallion (1995), the parameter θ is



9 Assessing the Causal Effect of Childbearing 207

often termed the “size elasticity”. The welfare of a typical member of any house-
hold is then measured in monetary terms by x/nθ , where x denotes total household
consumption expenditure, and n denotes household size; nθ can be interpreted as
the equivalent number of single-persons.

It is well known that empirical data alone cannot reveal equivalence scales. Ad-
ditional assumptions are needed to identify equivalence scales from observed data
on household consumption patterns. The approach we follow is based on what is
sometimes called Engel’s second law, which asserts that the food share is an inverse
indicator of welfare across households of different sizes and compositions, namely,
the higher the share of non-food spending the better off members of the household
are deemed to be. Generally, an Engel curve measures the relationship between the
expenditure on a particular good and the total expenditure of the household. In our
study, as in Lanjouw and Ravallion (1995), we estimate size elasticity by regressing
the food share on the log expenditure per person and a set of demographic variables.
The basic specification is the following:

ωi j = μ + β ln
(
xi j / nθ

i j

)+ X ′
i jγ + ν j + εi j

= μ + β ln
(
xi j
)− βθ ln

(
ni j
)+ X ′

i jγ + ν j + εi j , (9.2)

where ωi j is a food share of household i in village j , xi j is total household expen-
diture, ni j denotes the number of household members, θ is the size elasticity, Xi j is
a set of demographic variables, ν j is community specific characteristics including
prices in village j , and εi j represents an error term. We consider a community fixed
effect regression in order to control for relative prices across regions. The estimate of
size elasticity, θ , is obtained by taking the ratio of the coefficient on log of household
size to that of log of household expenditure in Equation (9.2).

Recall that, in our application information on consumption expenditure is only
available for the first wave; so we estimate size elasticity using observed panel data
from wave 1 of ALSM survey, and apply the estimated equivalence scale both to
income in 2002 and income in 2004.

Table 9.1 shows the results. We consider different specifications of the Engel
curve, both imposing the homogeneity restriction, that is θ = 1, (models (5), (6),
and (7)) and those which do not (models (1)–(4)). Column 1 is the simple commu-
nity fixed effect regression of the food share on the logarithm of the household size.
There is a slight tendency for larger households to have higher food shares, but the
correlation is not strong (the correlation coefficient is 0.108). When expenditures
are added (column 2) the estimated size elasticity of the money metric of welfare
is 0.415. The homogeneity restriction is rejected (t − value = −4.428). In col-
umn 3 we give the augmented model including both household size and household
composition (represented by the numbers of people in each demographic group) as
independent variables. We obtain a value for θ of 0.221, with a standard error of
0.196. The homogeneity restriction is again rejected (t − value = −3.975). For
this model the demographic composition parameters are not significant; only if the
homogeneity restriction is imposed (column 6), do we observe significant even if
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Table 9.1 Engel curve estimation of the size elasticity using the first wave of ALSMS. Community
fixed effect regression. (Standard errors in parentheses)

Models
Independent
variables (1) (2) (3) (4) (5) (6) (7)

Log total
expenditure

−0.064 −0.062 −0.063

(0.008) (0.008) (0.008)
Log household

size
0.007 0.026 −0.014 0.021

(0.011) (0.011) (0.037) (0.011)
Log expenditure

per person
−0.051 0.060 0.050

(0.007) (0.008) (0.007)
No. of adults 0.005 0.010

(0.008) (0.003)
No. of children 0.013 0.003

(0.009) (0.003)
Proportion of

children
0.022 0.006

(0.017) (0.016)
Constant 0.631 1.262 1.268 1.255 1.092 1.208 1.084

(0.016) (0.084) (0.085) (0.084) (0.065) (0.080) (0.068)

Observationsa 1301 1301 1301 1301 1301 1301 1301
No. of

communities
283 283 283 283 283 283 283

R−squared 0.0117 0.0498 0.0527 0.0501 0.0568 0.0503 0.0571
Implied size

elasticity (θ )b
0.415 0.221 0.338 1 1 1

(0.132) (0.196) (0.131)
a The number of observations is given by the number of households which our 1698 panel women
belonged to at the time of the first wave.
b The estimate of size elasticity, θ , is obtained by taking the ratio of the coefficient on log of
household size to that of log of household expenditure. The standard error for θ is computed using
the Delta method.

not strong differences in food shares among households with a different number of
adult members. As alternative, the model in column 4 includes the demographics as
proportion of children in household. This specification gives an elasticity of 0.338,
and leads to a rejection of the homogeneity restriction (t − value = −5.053). In
addition, the model suggests that there exists a positive although not strong rela-
tionship between demographic composition and food share in the Engel curve (the
regression coefficient on proportion of children appears to be significant according
to a standard two-sided t-test at the 10% level). Therefore, once relaxed, the equiva-
lence scale implied by the Engel curve appears to be approximated well by nθ with
adjustment for the proportion of children in household.

Thus, we estimate θ to be 0.338. This size elasticity implies surprisingly large
falls in food spending per head for consumers. According to these estimated size
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economies, ten individuals, each spending, say, 1 Lek per day in separate single-
dweller households could achieve the same welfare level living as a 10-person single
household with total expenditures lower than 5 Leks per day (101−0.338 = 4.6).

9.5 Descriptive Statistics

Table 9.2 presents some descriptive statistics for the sample of 1,698 women classi-
fied by a binary variable, Zi , equal to 1 if woman i experienced a childbearing event
between the time of the first wave and 31st, December 2003, and 0 if she did not.

The upper panel of Table 9.2 shows the mean values of the components of the
(real) total household income in wave 2002 and wave 2004. All the income com-
ponents are real with respect to 2002 and equivalised, using as number of adult
equivalents ne = nθ̂ , where θ̂ = 0.338 is the estimated size elasticity from model

Table 9.2 Means in wave 2002 and wave 2004, and relative mean differences between waves by
childbearing status for income variables and some demographic variablesa

Means Rel. mean

Wave 2002 Wave 2004 difference (%)b

Childbearing Childbearing Childbearing

Yes No Yes No Yes No

Woman’s
bonuses

7 67 25 109 242.6% 62.2%

Wage 7,713 9,304 9,144 10,385 18.5% 11.6%
Income from

self-employed
14,069 8,440 16,289 7,383 15.8% −12.5%

Private transfers 661 5,562 574 1,307 −13.1% −76.5%
Public transfers 1,807 1,736 2,296 2,087 27.1% 20.2%
Total income 21,826 21,528 28,632 21,447 31.2% −0.4%

Maternity
benefits (Yes)c

0.9% 0.8% 4.7% 0.5% 3.7% −0.3%

No. of HH
workers

2.20 2.01 2.07 1.98 −5.5% −1.3%

No. of HH male
workers

1.20 1.06 1.29 1.04 7.8% −1.8%

No. of HH
female
workers

1.00 0.95 0.79 0.94 −21.5% −0.7%

a All the income variables are equivalised using as equivalence scale ne = nθ̂ , where θ̂ = 0.338.
b The relative mean difference is the mean difference between waves as percentage of the mean
in wave 2002: [100(x̄2004(z) − x̄2002(z))]/x̄2002(z), where for each variable x̄2004(z) and x̄2002(z) are
the sample mean in wave 2002 and wave 2004 in the group of women with Z = z, z = 0, 1.
c “Maternity benefits” is a binary variable equal to 1 if at least a household member received
maternity benefits in the last 12 months. Therefore, the means are proportions and the relative
difference in percent is the percent difference between waves for each group of women defined by
childbearing status.
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(4) (see Section 9.4). Table 9.2 also presents the average number of workers by
household and the percentage of women belonging to a household where at least
a member received maternity benefits in the last 12 months. Finally, the last two
columns in the table show the mean difference between waves as percentage of the
mean in wave 2002.

Table 9.2 suggests that women who experienced a new birth belong to a house-
hold with a higher number of workers with respect to women who did not. This
result characterizes both wave 2002 and wave 2004. However, while the higher
number of household workers in 2002 appears to be a consequence of a large number
of female and male workers, in 2004 the lower number of female workers is com-
pensated by a higher number of male workers. Looking at the trend in the period
2002–2004 Table 9.2 suggests that the number of household workers decreases for
the two groups of women in the time. However, the reduction in the number of
workers in households where there are women who gave birth to a new child is four
percentage points greater than the reduction in the number of workers experienced
by the other households. This is probably due to the fact that households who ex-
perienced a childbearing event are affected by a high reduction in the number of
female workers (21.5% with respect to 2002), which is not sufficiently compen-
sated by the increasing in the number of male workers (8% with respect to 2002).
This result strongly suggests that there exists a reorganization of labor supply in
households who experienced a new birth. Between 2002 and 2004 households who
experienced a childbearing event tend to decrease the supply of female work, and
increase the supply of male work. On the contrary, households who did not experi-
ence a childbearing event did not substantialy reduce their labor supply. Table 9.2
also shows some differences in the income composition of the two groups of women
defined by the childbearing status. Both in 2002 and 2004 women who experienced
a childbearing event belong to households with a higher self-employed labor income
and a lower wage income. This result is partially explained by the fact that women
who gave birth to a new child received lower bonuses (which are a component of
household income). A further explanation could be related with the higher capacity
of household members who work as self-employed to react to a childbearing event
modifying their labor supply.

As discussed in Section 9.2, public and private transfers are a crucial component
of household income in Albania. The descriptive statistics suggest that women who
experienced a new birth belong to households with a slightly higher level of pub-
lic transfers but a substantial low level of private transfers. This evidence appears
in both the waves. Concerning the trend of the different components of income,
Table 9.2 shows an increase in the household wages for both groups of women, al-
though we observe a higher growth, of about six percentage points, among women
who experienced a new birth. On the contrary, income of self-employed workers
appear to increase for household, who experienced a new birth and decrease for
households who did not. Table 9.2 shows that public and private transfers move in
opposite directions: the former increases while the latter decreases for both groups
of women, even if public transfers increase more for women who experienced a
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new birth, and private transfers have a heavier reduction for women who did not
experience a new birth.

9.6 Identifying the Causal Effect of a New Birth

9.6.1 The Quasi-Experimental Approach

The aim of our analysis is to assess whether in Albania a childbearing event leads
to changes in wellbeing. We address this problem using a quasi-experimental ap-
proach, that is, we consider the endogenous variable of interest as the treatment
variable and a measure of wellbeing as the outcome variable. In our study, the treat-
ment is given by the childbearing status, Z , that is, our binary treatment variable
is equal to 1 if a woman experiences a childbearing event between the time of the
first wave (t0) and December 31, 2003, and 0 otherwise. The outcome of interest is
the income-based measure of wellbeing at the time of the third wave (t1) defined in
Section 9.4.

More formally, consider a set of N individuals, and denote each of them by
subscript i , i = 1, . . . , N . At time ti (t0 < ti < t1), subject i is “treated”, i.e.,
she gives birth to a new child, or “untreated”; in this latter case she will also be
named “control”. The treatment indicator is Z ∈ {0, 1}. Interest lies in the contin-
uous scalar outcome representing the equivalised income at the time of the third
wave t1: Y ∈ R+. Note that the distance between the treatment assignment – that is,
the birth of a new child – and the time at which we observe the outcome variable
(t1 − ti ) varies among women. For each individual i , i = 1, . . . , N , with all units
exchangeable, let (Yi (0), Yi (1)) denote the two potential outcomes, that is, Yi (0) is
the income level for individual i when she is not exposed to the treatment, and
Yi (1) is the income level for individual i when she is exposed to the treatment. If
both Yi (0) and Yi (1) could be observed, then the effect of the treatment on i would
be Yi (1) − Yi (0). The root of the problem is that only one of the two outcomes is
observed. Let the observed outcome be denoted by Yi :

Yi ≡ Yi (Zi ) = Zi · Yi (1) + (1 − Zi ) · Yi (0) .

In this study, we are interested in the estimation of the average treatment effect for
the subpopulation of women who experience a childbearing event, usually called,
the Average effect of Treatment on the Treated (ATT):

τ = E (Yi (1) − Yi (0) |Z = 1) .

If we could observe both outcomes, we could estimate this causal effect using
the estimator

1

N1

∑
i

Zi · (Yi (1) − Yi (0)) ,
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where N1 = ∑
i Zi is the number of treated units in the sample. In practice, for each

treated unit i we observe only the income level under treatment, Yi (1); the untreated
income level Yi (0) has to be estimated.

If the decision to give birth to a new child was “purely random”, we could ex-
pect that the background characteristics in the treatment groups to be similar, so
that comparisons of the groups’ outcome variables would measure the effect of the
treatment.

However, it is reasonable to believe that subjects who experience childbearing
events might be self-selected, and so large differences may exist between women
experiencing a new birth and those who do not on observable as well as unobserv-
able covariates, which can lead to severe bias in the estimates of treatment effects.

Tables 9.3 and 9.4 show some descriptive statistics for the observed background
variables separately for women who experience a childbearing event and women
who do not. Table 9.3 presents, for each continuous covariate, the mean, the standard
deviation, and the standardized percentage difference, defined as the mean differ-
ence between women who experience a childbearing event and women who do not,
as a percentage of the standard deviation: [100(x̄(1) − x̄(0))]/

√
(s2(1) + s2(0))/2,

where x̄(1) and x̄(0) are the sample means in the childbearing and no-childbearing
groups, and s2(1) and s2(0) are the corresponding sample variances.

Table 9.4 shows, for categorical covariates, the proportion of women in each
category in the two groups defined by the childbearing status, Z , as well as the
absolute differences in percentage (third column).

As we can seen in Tables 9.3 and 9.4, there exist considerable differences
between women who experience a childbearing event and women who do not:
sixteen of the continuous covariates have standardized differences larger than 10%;
and the distributions of most of the categorical variables appear to be substantially
different in the two groups of women. These differences indicate the possible extent
of the bias when comparing outcomes between the two groups of women due to
the different distributions of observed covariates. Therefore, before estimating the
causal effect of interest we have to think clearly about the correct way to adjust for
the systematic differences in background characteristics.

9.6.2 Econometric Framework

In our non-experimental context, because treatment and outcome can be endoge-
nous, an identifying assumption is needed to consistently estimate the treatment
effects of interest. We assume that assignment to treatment, Z , is independent of
the outcome for untreated units, Y (0), conditional on the covariates, X ; and that
the probability of assignment is bounded away from one. Formally, for all x in the
support of X ,

1. (Unconfoundedness) Z is independent of Y (0) conditional on X = x ;
2. (Overlap) Pr (Z = 1 |X = x ) < 1 − η, for some η > 0.
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Table 9.3 Means (standard deviations), and standardized differences in per cent for continuous
covariate in both treatment groups before matching

Childbearing Standardized

No Yes
Difference

Covariate mean (s.d.) mean (s.d.) (%)b

Demographic variables
No. of adults 3.473 (1.399) 3.673 (1.484) 13.9
No. of children under 2 years 0.217 (0.477) 0.364 (0.573) 28.0
No. of children 3–6 years old 0.334 (0.576) 0.561 (0.742) 34.2
No. of children 7–10 years old 0.407 (0.612) 0.224 (0.501) −32.6
No. of children 11–14 years old 0.504 (0.666) 0.224 (0.537) −46.2

Educational attainment
No. of household members

with:
Sub compulsory education 2.043 (1.562) 2.168 (1.850) 7.3
Compulsory education 1.559 (1.410) 1.963 (1.359) 29.1
Post compulsory education 1.332 (1.285) 0.916 (1.167) −34.0

Working status
No. of male workers 1.059 (0.700) 1.196 (0.679) 20.0
No. of female workers 0.952 (0.897) 1.000 (1.019) 5.0
No. of children workers 0.089 (0.406) 0.047 (0.253) −12.4

Measures of welfare
Deprivation index 0.358 (0.186) 0.403 (0.176) 25.1
Log of consumption

expenditurea
9.844 (0.454) 9.841 (0.414) −0.7

Log of income in wave 2002a 9.007 (2.257) 8.827 (2.362) −7.8

Household head characteristics
Age of the household head 48.223 (11.667) 47.701 (15.252) −3.8
Grade level of household head 9.724 (3.466) 8.643 (3.140) −32.7

Woman characteristics
Age 31.985 (10.365) 24.832 (5.509) −86.2
Grade level 9.771 (2.686) 9.362 (2.473) −15.8
No. of births until 2002 1.926 (1.720) 1.056 (1.204) −58.6
Time since the last birth in

months
96.998 78.526 55.548 41.011 −66.2

a The consumption expenditure and income variables are equivalised using as equivalence scale
ne = nθ̂ , where θ̂ = 0.338.
b The standardized difference is the mean difference as a percentage of the average standard devia-
tion: [100(x̄(1)−x̄(0))]/

√
(s2(1) + s2(0))/2, where for each covariate x̄(1) and x̄(0) are the samples

means in the childbearing and no-childbearing groups and s2(1) and s2(0) are the corresponding
sample variances.

The combination of these two conditions represents a relaxed form of strong
ignorability introduced by Rosenbaum and Rubin 1983 (e.g., Abadie and Imbens
2002). The first assumption requires that all variables that affect the unobserved out-
come and the likelihood of receiving the treatment are observed, and the second one
requires that there is sufficient overlap in the probability of receiving the treatment
among treated and controls. These conditions are strong, and in many cases may not
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Table 9.4 Table of observed proportions and percent differences for categorical covariates

Childbearing Difference

Covariate No Yes (%)

Demographic variables
Region

Coastal 0.280 0.187 9.3
Central 0.449 0.467 1.9
Mountain 0.129 0.168 3.9
Tirana 0.142 0.178 3.6

Area
Urban 0.518 0.607
Rural 0.482 0.393 9.0

No. of generations
≤ 2 0.748 0.701
> 2 0.252 0.299 4.7

Household head characteristics
Gender

Female 0.105 0.084
Male 0.895 0.916 2.1

Marital status
Unmarried 0.093 0.112
Married 0.907 0.888 1.9

Working status
Head does not work 0.232 0.271
Head works 0.768 0.729 3.9

Woman characteristics
Relation to household head

Household head 0.043 0.009 3.4
Partner of the household head 0.549 0.393 15.7
Other 0.407 0.598 19.1

Religion
No Muslim 0.232 0.121
Muslim 0.768 0.879 11.0

Marital status
Unmarried 0.309 0.131
Married 0.691 0.869 17.8

Working status
Woman does not work 0.439 0.514
Woman works 0.561 0.486 7.5

Currently breast feeding
No 0.940 0.869
Yes 0.060 0.131 7.1

be satisfied. In many studies, however, researchers have found it useful to consider
estimators based on these or similar conditions (see, for example, Rosenbaum and
Rubin 1983; Heckman, Ichimura and Todd 1997; Dehejia and Wahba 1999; Becker
and Ichino 2002).

In the present setting, the most critical assumption is the first one. Generally
speaking, it may be problematic to interpret the birth of a child as a treatment of a
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household because fertility may be affected by many unobservable and unobserved
variables.

In our study, unconfoundedness might be violated for reasons related to the de-
mand and supply for children and the cost of fertility control. Some characteristics
of the area where the woman lives, such as the presence and the nearness of care fa-
cilities, and the possibility of reaching family planning services, which might lower
the cost of fertility control, might affect fertility, making it easier for a woman to
control her fertility. These same area-specific characteristics might also affect the
subsequent individual living standards. Analogously, some individual unobserved
characteristics (e.g., psychological cost related to contraception) might affect the
propensity to give birth to a new child and, at the same time, improve (or worsen)
the individual living standards.

Despite these potential confounders, in our study, we have carefully investigated
which variables are most likely to confound any comparison between treated and
control units, and so we believe that the assumption that all relevant variables are
observed may be a reasonable approximation (e.g., Aassve, Mencarini and Maz-
zucco 2005 and 2006). Moreover, any alternative approach which does not rely
on unconfoundedness, while allowing for consistent estimation of the causal ef-
fects of interest, must make alternative untestable assumptions, which are even
more difficult to justify. Whereas the unconfoundedness assumption implies that
the best matches are units that differ only in their treatment status, but otherwise
are identical, alternative assumptions may implicitly match units that differ in the
pretreatment characteristics. For instance, the technique of instrumental variables
is sometimes considered as an alternative to assuming unconfoundedness, but in
our setting the use of this approach is not particularly useful since finding valid
instruments is difficult.

Under the Assumptions 1 and 2, the average treatment effect for the subpopula-
tion with Z = 1 is equal to:

τ = E (Y (1) − Y (0) |Z = 1) (9.3)

= E [E (Y (1) − Y (0) |Z = 1 , X = x)]

= E [E (Y |Z = 1, X = x) − E (Y |Z = 0, X = x) |Z = 1]

= E (τ (x) |Z = 1) ,

where the outer expectation is over the distribution of X conditional on Z = 1, and
τ (x) is the average treatment effect for the subpopulation with X = x and Z = 1.
Therefore, under Assumptions 1 and 2, the ATT effect, τ , can be estimated by first
estimating τ (x), for all x in the support of X for the treated (say X1), and then
averaging over the distribution of X conditional on Z = 1.

A usual way to control for differences in the groups’ background variables is to
specify a multiple regression of the outcome variable on the covariates, including
an indicator variable for treatment status. When the model is well specified, the
resulting estimated coefficient of the treatment indicator is a consistent estimate
of the average causal effect of the treatment. Hahn (1998) showed that under the
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unconfoundedness assumption the use of non-parametric series regression adjusting
for all covariates can achieve efficiency bounds of the treatment effect.

However, the estimate can be badly biased when the model is not well speci-
fied as, for example, when the treatment is assumed constant, but instead it varies
depending on the covariate values. In addition, when the data in the treated and
comparison groups have different multivariate distributions of the covariates, the
fitted regression involves extrapolations over much of the multidimensional covari-
ate space (Rubin 1997). Such violations of model assumptions can be difficult to
detect.

As an alternative to multiple linear regression, we can use matching methods to
create groups of treated and control units that have similar background characteris-
tics so that comparisons can be made within these matched groups. For each subject
i , matching estimators impute the missing outcome by finding other individuals in
the data whose covariates are similar but who were exposed to the other treatment.
Specifically, the matching estimator we consider imputes the missing potential out-
come, Yi (0), by using average outcomes for individuals with “similar” values for the
covariates. We use matching with replacement, allowing each unit to be used as a
match more than once.

A simple way to do this is imputing Yi (0) for a treated individual (Zi = 1)
with covariate values X = x as the average of the outcomes we observe among
controls with the similar covariate values X = x . When the available covariates for
predicting acceptance of treatment are plentiful and/or continuous, such as in our
study, the resulting matching estimator can be biased, since it may not be possible
to come up with exact matches. Abadie and Imbens (2002) show that subject to some
regularity assumptions, the simple matching estimator defined above is inconsistent
if the number of (continuous) covariates available for matching exceeds two. In
order to address this problem, they develop a bias-corrected matching estimator
where the difference within the matches is regression-adjusted for the difference in
covariate values.

In our study we apply their bias-corrected matching estimator. Let JM (i) be the
set of indices for the matches for treated unit i that are at least as close as the M th
match; i.e., for the set { j : Z j = 0}, find the M nearest neighbors of i in the predictor
space X , using a metric. The missing potential outcome, Yi (0), is then imputed as

Ỹi (0) = 1

#JM (i)

∑
l∈JM (i)

(Yl + μ̂0 (Xi ) − μ̂0 (Xl)) ,

where #JM (i) is the number of elements of JM (i), and μ̂0(x) denotes the estimated
regression function for the controls with covariate values X = x . The corresponding
estimator for τ is

τ bcm
M = 1

NT

∑
i :Zi =1

(
Yi − Ỹi (0)

)
, (9.4)

where bcm stands for bias-corrected matching.
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Our motivation for using this bias-corrected matching estimator is twofold. First,
it has better statistical properties than the simple matching estimator. Abadie and
Imbens (2002) show that their bias-corrected matching estimator is consistent and
has a sampling distribution that is asymptotically normal. In addition, they provide
expressions for computing the variance of the bias-corrected estimator making it
possible to test the significance of the treatment effect without relying on bootstrap-
ping. Second, in our study, the bias-corrected matching estimator performs much
better. It allows us to improve the balancing in the covariates after matching, and to
obtain better results in terms of efficiency and robustness.2

9.7 Results

In this section, we apply both the regression and the Abadie–Imbens bias-corrected
matching approaches to our subsample of panel women from Albania Living Stan-
dards Measurement Study (ALSMS) in the attempt to assess the impact of child-
bearing on economic wellbeing in Albania. Both the regression and matching ap-
proaches produce consistent estimates of the treatment effect only when we have
controlled for all confounding covariates. When there are important confounding
variables that have not been controlled for, either method can lead to biased esti-
mates of treatment effects. It is important to keep in mind, however, that the two
methods estimate the ATT effect under different assumptions. The simple linear
regression model estimates the average treatment effect assuming that the treat-
ment effect is constant across the subpopulation defined by the covariate values.
Therefore, when the treatment effect is a non-constant function of the covariates,
the regression model and the matching approach can achieve different estimates of
the treatment effect even if each method produces unbiased estimates.

9.7.1 Regression Results

We first estimate the causal effect of interest using a multiple linear regression
model of the form Y |X , Z ∼ N (α + Xβ + γ Z , σ 2), where X denote the matrix
of background covariates. We control for the geographic characteristics, the socio-
demographic and economic variables and the pregnancy history. The regression

2 The choice of estimating the causal effect of interest using the bias-corrected matching estimator
proposed by Abadie and Imbens (2002) is the result of lots of preliminary analyses, concerning the
selection of an appropriate set of pre-treatment matching variables, which allows us to consider the
unconfoundedness assumption reasonable, and the comparison among different matching methods
and matching estimators. Specifically, the goals of this preliminary work were: (1) investigating
which variables were most likely to confound any comparison between treated and control units
in such a way that the assumption that all relevant variables were observed might be a reasonable
approximation; (2) choosing the matching method and the matching estimator which gave the best
results in term of efficiency and robustness of the estimated effects.
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model also contains a quadratic term for woman’s age. Table 9.5 presents our
regression results.

The results in Table 9.5 show that there is a statistically significant shift in the
regression equation for women who give birth to a new child in comparison with
those women who do not: the birth of a new child causes an increase of living
standard by 8.838 Leks by month (with a standard error of 4.056 Leks).3 As a refer-
ence, note that the observed average monthly income for treated units is 28,632
Leks. Therefore, for the treated the estimated “counterfactual” average monthly
income in the case of no-childbearing is 19,794 Leks (i.e., 28,632–8,838). This
means that having a new child would increase the average monthly income level
by 44.6 percentage points (i.e., 100 · 8, 838/19, 794) with respect to the “counter-
factual” situation of not having a new child. This result is surprising and puzzling.
We worry about the scientific validity of the inference drawn from the regression
model, which relies heavily on the correct specification of the functional form of the
relationship (e.g., linearity) between the outcome and the covariates. In particular,
the regression results might be driven by the specific way of extrapolating outcome
values from the model (Dehejia and Wahba 1999; Rubin 1997). In our data, the
observed average monthly income for controls is 21,447 Leks, which is higher than
the estimated “counterfactual” average monthly income in the case of no-treatment
for treated women (19,794 Leks), so that there is some sign that the regression
results can be affected by the specific form of the model to extrapolate estimates
of childbearing differences. In addition, the goodness of fit of our model appears
to be very poor: the adjusted-R2 is 8.5%. We could fit different specifications of
the model, but we prefer to relax model assumptions by focussing on the matching
approach.

9.7.2 Matching Results

The main purpose of matching is to re-establish the conditions of an experiment
when no randomized control group is available. The matching method aims to con-
struct the correct sample counterpart for the missing information on the outcome for
treated individuals, had they not been treated by pairing each childbearing woman
with women of the control group. Also matching estimators depend on the uncon-
foundedness assumption, but the diagnostics for matching analysis (checking for
balance in the covariates) are much more straightforward than those for regression
analysis and, enable the researcher to easily determine the range over which com-
parisons can be supported. Furthermore, the matching approach is more objective in
the sense that the comparison group can be constructed without ever looking at the
outcome variables. These two aspects of the analysis are inextricably linked in the
linear regression analysis.

3 US$1.00 equals 105.6 Leks.
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Table 9.5 Regression results (Y = Equivalised household real (with respect to 2002) monthly
income at the time of the third wave). Standard errors in parentheses∗

Adjusted R2 0.085
Overall F-statistic 5.490
Sample size 1698

Covariates Coef. (s.e.)

Intercept 0.074 (16.552)

Childbearing status
No childbearing
Childbearing 8.838 (4.056)

Household variables
Region

Coastal
Central 1.144 (2.278)
Mountain −4.121 (3.223)
Tirana 9.078 (3.232)

Area
Rural
Urban 2.526 (2.600)

Deprivation index −16.215 (6.090)
Income in wave 1 (per 1000) −0.013 (0.017)
Consumption expenditure (per 1000) 0.563 (0.097)
No. of generations

No more than 2
More than 2 1.668 (2.787)

No. of adults 0.789 (1.571)
No. of children under 2 years 2.936 (2.556)
No. of children between 3 and 6 years −0.030 (1.892)
No. of children between 7 and 10 years −0.762 (1.791)
No. of children between 11 and 14 years −0.449 (1.596)
No. of HH members with compulsory education −0.856 (1.291)
No. of HH members with post compulsory education −1.909 (1.683)
No. of men who work in Household 2.974 (1.942)
No. of women who work in Household −2.198 (1.739)
No. of children who work in Household −1.081 (2.469)

Household head variables
Gender

Female
Male 0.472 (6.291)

Age 0.260 (0.153)
Marital status

Unmarried
Married 1.524 (5.498)

Grade level 0.642 (0.360)
Activity status

Household head doesn’t work
Household head works −1.375 (3.279)
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Table 9.5 (continued)

Adjusted R2 0.085
Overall F-statistic 5.490
Sample size 1698

Covariates Coef. (s.e.)

Woman variables
Age −0.967 (0.899)
Square of Age 0.017 (0.013)
Relation to household head

Head
Partner of household head −1.559 (6.974)
Other −3.819 (7.996)

Religion
No Muslim
Muslim 1.266 (2.269)

Marital status
Unmarried
Married 1.786 (4.189)

Grade level
Working status

Woman doesn’t work
Woman works 3.086 (2.818)

Number of births until 2002 −0.912 (1.145)
Time since the last birth in months 0.002 (0.026)
Currently Breast feeding

No
Yes −3.831 (4.618)

∗ For the categorical variables, the level which no coefficient value corresponds to, represents the
baseline group.

The literature on matching methods is vast and growing. We apply the Abadie–
Imbens bias-corrected matching estimator described in the previous section.4

Here, the biased-corrected matching estimator uses one match and the weighted
Euclidean norm to measure the distance between different values for the covariates,
with weights given by the inverse of the sample standard errors of the pre-treatment
variables used in matching. The bias adjustment uses linear regression on all the pre-
treatment covariates in Table 9.3 and 9.4, but not higher order terms or interactions.
The bias correction is estimated using only the matched units in the comparison
group.

4 All of the analysis is implemented by the use of the nnmatch module in STATA (Abadie
et al. 2001). This programme estimates the average treatment effects either for the overall sam-
ple or for the subsample of treated or control units using nearest neighbor matching estimators.
The nnmatch command implements the specific matching estimators developed in Abadie and
Imbens (2002), including their bias-corrected matching estimators. The procedure nnmatch allows
individuals to be used as a match more than once. Compared to matching without replacement this
generally lowers the bias but increases the variance.
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9.7.2.1 Covariate Balance After Matching

To see how well the bias-corrected matching estimator performs in terms of balanc-
ing the covariates, Figs. 9.1 and 9.2 evaluate balance on observed continuous and
categorical covariates, respectively, in the matched sample derived from the model.

Fig. 9.1 Comparison of standardized differences (in %) for covariates between childbearing and
no-childbearing women

Fig. 9.2 Comparison of observed proportions for categorical covariates between childbearing and
no-childbearing women
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The matching performs very well in reducing the bias of the background covari-
ates with moderate-large initial standardized differences. For instance, the initial
standardized bias for “Age” is 86%, and the matching reduces it to 15%. In addition,
exact matches have been obtained for three covariates, “Number of children between
3 and 6 years”, “Number of male workers”, and “Head’s grade level”, which have
initial standardized differences equal to 34%, 20%, and 33%, respectively.

For the indicator variables “Region” and “Area” we specified exact matching,
and for “Religion” exact matching is obtained. The other categorical variables are
not matched exactly, but the quality of the matches appears very high: the average
difference within the pairs is very small compared to the average difference between
treated and comparison units before the matching.

These result suggest that the matched units can be considered sufficiently similar
to the treated units. Therefore, provided the unconfoundedness assumption holds,
one may proceed to estimate the causal effect of interest.

9.7.2.2 Estimated Causal Effects

Table 9.6 presents the estimated average causal effect of childbearing on income for
the subpopulation of childbearing women using the Abadie–Imbens bias-corrected
matching estimator. The estimate of the ATT effect is equal to 10,416 Leks, with a
standard error of 9,441 Leks. Thus, as with the linear regression model, the matching
analysis shows some evidence that giving birth to a new child increases living stan-
dards in Albania. In contrast with the regression analysis, however, the matching-
based estimate of the ATT effect does not appear to be statistically significant.

There are several considerations behind the positive but negligible effect. First
note that, using the Abadie–Imbens bias-corrected matching method, we estimate
the “counterfactual” average monthly income for treated women in the case of no-
treatment being equal to 17,658 Leks; this value is lower than the observed pre-
treatment income level for the treated, which is equal to 21,826 Leks. Between wave
2002 and wave 2004 the observed average monthly income level for treated women
decreases, but the difference does not appear to be relevant (see Table 9.2). On the
contrary, it seems that had the treated women not experienced a childbearing event,
their average monthly income level would have been much less than 21,826 Leks,
being 17,658 Leks. Thus, childbearing appears to have a positive effect for women

Table 9.6 Means (standard deviations) for income (Leks) in both treatment groups after matching,
and Average Causal Effect of childbearing on income (Leks) for the subpopulation of childbearing
women in Albania

Estimand Mean (s.e.)

Income for childbearing 28,632 (90,470)
Income for matched no-childbearing women 17,658 (13,466)
Average treatment effect on childbearing women 10,416 (9,441)
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who would have suffered from a stronger reduction in their monthly income level in
the absence of childbearing.

Our estimated effect appears consistent with the descriptive statistics shown in
Table 9.2. As we argued in Section 9.5, households where treated women reside
seem to undertake a reorganization of the labor supply by increasing the number of
male workers and decreasing the number of female workers. This descriptive result
is in line with the positive ATT effect in the sense that treated households try to
compensate the additional cost of a new member (the newly born child) and the
possible loss of an active labor member (the woman who gives birth to the new
child) increasing the number of male workers. In fact, it is reasonable that mothers
will be completely inundated by the child bearing event whereas the other women
of the family assist them with housework, while men focus on the market work.
This insight is consistent with the results shown in Table 9.7, which presents the
effect of childbearing on each income component. Although all the estimated effects
are statistically negligible, confirming the global analysis, childbearing appears to
have the highest effect on income from self-employment, suggesting that the time
allocation within household is the most important means to face with income loss
due to childbearing.

The positive sign of our estimated effect appears to be also fairly consistent with
the Albanian welfare system. According to the Albanian Labor Code, “a woman is
entitled to maternity leave provided she has been included in the social insurance
scheme for the last 12 months and has been employed with an employment contract
from the initial moment of pregnancy until the beginning of maternity leave. Mater-
nity leave benefits are provided for one year, including a minimum of 35 days before
delivery and 42 days after delivery. Women carrying more than one child during
pregnancy are entitled to 390 days leave, including a minimum of 60 days before
delivery and 42 days after delivery. Women in employment receive during maternity
leave 80% of the average daily payment for the period before delivery and 50% of
the average daily payment for 150 days after delivery, based on previous year’s
average salary”. For women who are employers or the self-employed, the maternity
benefit is equal to the basic old-age pension.

The Albanian Social Insurance System also offers birth grants to an insured
person who is the mother or father of a newborn child, provided one of them has
contributed for one year prior to the childbirth. The grant is however payable only
once and the mothers have priority in eligibility, if insured. Birth grant is a lump
sum of one-half of the minimum wage.

Table 9.7 Average Causal Effect of childbearing on equivalised income components (Leks) for
the subpopulation of childbearing women in Albania

Outcome ATT (s.e.)

Wage 241 1515
Income from self-employed 9,729 9,460
Private transfers −215 293
Public transfers 330 331
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This system enables working mothers to make informed choices concerning the
number and timing of their children. Specifically, maternity benefits and birth grants
allow working mothers to recover from childbirth and to care for their newborn
infants, providing them with protection against income loss due to childbirth and
maternity. These law-based arguments tally with the positive effect of childbearing
on public transfers shown in Table 9.7. However, this effect is much lower than the
effect on income from self-employment, and it has a higher coefficient of variation
(1.003 versus 0.972).

The law-based arguments, and the time re-allocation due to the birth of a new
child jointly help us to explain the estimated positive effect. On the other hand,
childbearing does not seem to substantially affect wage and private transfers (see
Table 9.7).

In spite of the theoretical and practical positive aspects of the Albanian Social
Insurance System, we have to keep in mind that parental leave and child support
policies are mainly addressed to working women. In our sample, about half of
the treated women worked in the week before the first interview, and the other
half did not. This distribution of treated women by working status can at least
partially explain the fact that the estimated effect is statistically non significant.
In other words, we expect that the treatment effect is heterogeneous with respect
to woman working status with a stronger and more significant effect for working
women.

In addition, recent work on fertility behaviour in Albania during the nineties
suggests that “traditionalism” and “norms” persist for the onset of family formation,
whereas “modernity” and economic constraints impacts on the number of children,
especially for third births and higher parities. For instance, using data from the Alba-
nian Living Standard Measurement Survey, Aassve et al. (2006) show that formation
in Albania is still traditional and having (at least) one child is still the norm.

These remarks suggest we should investigate the heterogeneity of the treatment
effect along observable characteristics such as “woman’s working status” and “num-
ber of children”. Table 9.8 shows some sources of heterogeneity in the treatment
effect.5 Most of the estimated effects are statistically negligible, confirming the
global analysis, and the corresponding standard errors are sometimes fairly large
(e.g., the estimated ATT effect for women with one child – equal to 28,480 Leks –
has a standard error of 33,751 Leks). This result can be partially due to the small
number of observations belonging to each subgroup.

Due to the small size of each subsample and the high sample variability, it is
unlikely that we can draw robust inference on the size of the childbearing effect

5 All the ATT effects are estimated using the Abadie–Imbens matching estimator in its simple
form. We do not regression-adjust the results because of the small size of each subsample defined
by the marginal and joint values of the two covariates, “woman’s working status” and “number of
children”, which we suspect being source of treatment-effect heterogeneity. For each subsample
we first find one match for each treated woman using the weight Euclidean norm to measure the
distance between units, with weights given by the inverse of the subsample standard errors of the
matching variables. Then, we estimate the ATT effects separately in each subsample.



9 Assessing the Causal Effect of Childbearing 225

Table 9.8 Heterogeneity of the treatment effect (Standard errors in parentheses)

Heterogenity of the treatment effect with respect to “woman’s working status”

Average income

Covariate
Treated
controls Controls Treated Matched ATT (s.e.)

Woman does not
work

55 698 22,008 22,307 20,500 1,807 (2,592)

Woman works 52 893 21,009 35,322 12,762 22,560 (19,758)

Heterogenity of the treatment effect with respect to “number of children”

0 children 45 481 19,388 23,689 16,139 7,550 (3,709)
1 child 32 137 22,847 50,006 21,526 28,480 (33,751)
More than 1

child
30 973 22,269 13,250 16,541 −3,291 (2,772)

Heterogenity of the treatment effect with respect to “woman’s working status”
and “number of children”

Woman does not
work and she
has

0 children 23 264 20,093 25,342 19,489 5,852 (5,570)
1 child 28 64 20,721 22,541 21,046 1,495 (3,631)
more than 1 child 14 370 23,597 17,022 22,371 −5,349 (4,014)

Woman works
and she has

0 children 22 217 18,530 21,960 12,363 9,597 (3,182)
1 child 14 73 24,711 85,318 24,915 60,403 (71,362)
more than 1 child 16 603 21,454 9,949 15,562 −5,613 (4,104)

in each subgroup of women from our heterogeneity analysis. However, keeping in
mind this caveat, we can look at the results in order to obtain some insight on the
possible presence of treatment-effect heterogeneity.

As we can see in Table 9.8, there appears to be a somewhat strong even if
not much significant positive effect of a newly born child on income for working
women, whereas this effect becomes small and totally negligible when we focus on
women who do not work. This result appears to be consistent with the Albanian
Social Insurance System.

Concerning the heterogeneity of the treatment effect with respect to the number
of children, we find a significant positive childbearing effect for women who give
birth to the first child. This effect appears to be larger for women who have the
second child, but in this case it loses much of its significance. Finally, the effect
of childbearing for women who already have at least two children is negative and
much lower in absolute value. The heterogeneity of the childbearing effect with
respect to the initial parity can be linked to the Albanian traditionalism in the family
formation in the sense that the birth of the first infant is expected, and so the family
is able to prevent income loss due to it. The birth of the second child is still quite
normal in Albania, and the cost of the newly born child can be at least partially
cushioned by re-using baby accessories and nursery equipment purchased for the
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first child. The negative impact of a birth at higher parities (more than one) can be
due to the fact that the average income level of treated women with two or more chil-
dren is significantly lower than the income level for the other two groups of treated
women.6

In order to understand better how treatment effect heterogeneity occurs, we also
investigate the differences in the ATT effect across subgroups of women defined
by the joint value of “woman’s working status” and “number of children”. Not
unexpectedly we find a quite strong and highly significant childbearing effect for
working women who give birth to the first child in the treatment spell (see Table 9.8).
For women with a child, the working status seems to heavily affect the size of the
positive effect, although a standard two-sided t-test suggests the two effects are not
significant. For women with at least two children at the time of the first wave, there
appears to be no relevant difference in the treatment effect with respect to the work-
ing status: we find a negative and barely significant effect of childbearing on living
standards.

These results suggest that the treatment effect is highly heterogeneous with re-
spect to “woman’s working status” and “number of children”. Therefore, it may be
of substantive interest to investigate whether this heterogeneity in average treatment
effects by “woman’s working status” and “number of children” is statistically sig-
nificant or whether it is simply due to the sampling variability. We check whether
the observed heterogeneity in the average treatment effects is statistically not negli-
gible by regressing the average effect conditional on “woman’s working status” and
“number of children” on the two covariates:

τ (x1, x2) = γ0 + γ1 · x1 + γ2 · x2 + ε,

where we denote with x1 and x2 “woman’s working status”, and “woman’s par-
ity”, respectively. Note that we consider “number of children” as a continuous
covariate in this regression model. In order to allow for heteroscedasticity of the
average treatment effects, we use a variance-weighted least squares model, where
the variance-weights are given by the square of the estimated standard errors of
the ATT effects we computed in each subsamples. As we can seen in Table 9.9, the
regression model confirms that there exists relevant heterogeneity in the treatment
effect along “woman’s working status” and “number of children”: all the estimated
regression coefficients are statistically significant.

6 As an alternative, we could study the effect of a sequence of births. Lechner and Miquel (2005)
developed a framework for causal analysis of sequences of treatments from a potential outcome
perspective. A key feature of their framework is the identifying power of several different as-
sumptions concerning the connection between the dynamic selection process and the outcomes of
different sequences (Sequential Conditional Independence Assumptions). In our study, we prefer
to focus on a static analysis, also because of the lack of information on covariates throughout the
life history of each woman.
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Table 9.9 Heterogeneity of the treatment effect: variance-weighted least squares results

Goodness of fit χ2 1539.150
Model χ2 2849.030
Sample size 1698

Covariates Coef. (s.e.)

Intercept 4.230 (0.195)

Woman’s working status∗
Not at work
At work 1.765 (0.205)

Number of children −3.038 (0.058)
∗ Women who do not work, whom no coefficient value corresponds to, represent the baseline group.

9.7.2.3 Sensitivity of the Estimated Causal Effects
to the Equivalence Scale

All the previous estimates rest on the plausibility of our income-based measure of
wellbeing as proxy for poverty, which has been adjusted for differences in household
size and composition using an equivalence scale.

We estimated the equivalent scale implied by the data using a variation of the
well-known Engel method as described in Lanjouw and Ravallion (1995). Unfortu-
nately, this method has some limitations. Gibson (2002) showed that Engel estimates
of size economies are large when household expenditures are obtained by respon-
dent recall but small when expenditures are obtained by daily recording in diaries.
This results suggest that the Engel method could not give robust empirical estimates
of scale economies, which should not depend on the method used to gather expen-
diture data. In our study, food consumption was collected by means of a 14-day
diary, so we could expect that our estimate of size elasticity (θ = 0.338) is biased
downwards.

In addition, the assumption that the food share is an inverse welfare measure
across household types, underlying the Engel method, does not always make sense.
For instance, consider a larger household with the same per capita expenditures as
a smaller household. If there are scale economies, the larger household is better off.
Thus, according to Engel’s second law, the larger household should have a lower
food share. But a decline in the food share with constant per capita expenditures can
occur only if there is a decline in food spending per person. It is very unlikely that
people who are better off would spend less on food, especially in mid-low income
countries where nutritional needs are not being met.

Given these conceptual and empirical problems with the Engel method, it seems
important to carry out sensitivity analyses to see whether any conclusions reached
previously using our measure of wellbeing are overturned. Our sensitivity analy-
ses is based on Equation (9.1), trying different values of α and θ . Specifically, we
approximated the continuous function (9.1) with a discrete function on a grid of
points: we computed the equivalence scale (9.1) at a set of 20 × 20 evenly spaced
values, (α j , θ j ), that cover the range of the parameter space of α and θ – that is
[0, 1] × [0, 1]. Then, for each j = 1, . . . , 400, we equivalised the household total
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Fig. 9.3 Average treatment
effect on treated by relative
weight of a child and size
elasticity

income using ne, j = (A + α j · K )θ j as equivalence scale, and re-estimated the ATT
effect of interest.

As we can see in Fig. 9.3, the estimates of the average treatment effect appear to
decrease almost monotonically with respect to the relative cost of a child, α, and the
size elasticity, θ , ranging from 3,064 Leks (with a standard error of 3,267 Leks) –
which corresponds to α = θ = 1 – to 18,113 (with a standard error of 15,313
Leks) – which corresponds to α = θ = 0.05.

This descending trend also appears looking at the two marginal functions in
Fig. 9.4. Examining the trend of the ATT effects with respect to the relative cost
of the child when the size elasticity is fixed at its estimated value θ̂ = 0.338
(Fig. 9.4(a)), we see that our estimated causal effect, equal to 10,416 Leks, is the
lowest. This means that if the assumption that adults and children have the same
weight (equal to 1) does not hold, our estimated average treatment effect would
underestimate the real treatment effect. Finally, Fig. 9.4(b) – which shows the dis-
tribution of the ATT effect as function of the size elasticity, θ , when the relative cost
of the child, α, is fixed to 1 – suggests that our estimated size elasticity could be
actually biased downwards, implying an enlargement of the real causal effect.

Our sensitivity analysis allows us to make clear two important remarks. First, all
the estimates of the ATT effect we obtain ranging α and θ between 0 and 1 appear to
be positive and statistically negligible7 – confirming the result reached previously;
therefore, we are safe to say that our poverty estimates are not heavily affected by the
adult equivalence weights that we chose. Second, the sensitivity analysis supports
the conclusion that having an additional child has a non-negative effect on the living

7 The standard errors are omitted. However, their values along with further details are available on
request from the authors.
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(a) (b)

Fig. 9.4 Average childbearing effect on treated: (a) by relative weight of a child (size elasticity, θ ,
equals to 0.338); (b) by size elasticity (relative weight of a child, α, equals to 1)

standards in Albania, although our data seem to be unable to identify the size of this
effect.

9.8 Conclusions

This paper evaluates whether and to what extent a childbearing event changes eco-
nomic wellbeing for Albanian women. We use a panel sample of women drawn
from the Albania Living Standard Measurement Study. Studying the causal relation-
ships between poverty and fertility involves several crucial issues. First, a suitable
measure of economic wellbeing is developed. Second, an appropriate economet-
ric methodology is chosen, which works correctly with longitudinal information
and takes into account that variation in fertility can be endogenous with respect to
wellbeing. We use an income-based measure of wellbeing adjusted for household
heterogeneity applying an equivalence scale. We estimate the equivalent scale from
the data assuming that the number of adult equivalents in a household is given
by the household size to the power of the size elasticity. Following Lanjouw and
Ravallion (1995), the implied size elasticity from the Engel curve estimation in the
ALSMS is 0.338. We then identify the causal effect of a childbearing event on our
measure of monetary wellbeing applying both a linear regression model and the
Abadie–Imbens bias-corrected matching estimator. Both approaches lead to a pos-
itive effect of childbearing on living standards, but whereas the regression model
suggests that this effect is highly significant, the Abadie–Imbens bias-corrected
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matching approach shows a negligible and insignificant effect. The regression re-
sults are most likely driven by the specific way of extrapolating outcome values
from the model, thus preference is given to the results drawn from the Abadie–
Imbens bias-corrected matching estimator, which leads to an average causal effect of
10,416 Leks (s.e. = 9, 441) for childbearing women. This effect seems to be mainly
driven by the effect of childbearing on income from self-employment. We find that
the treatment effect is fairly heterogeneous along observable characteristics such as
woman’s working status and woman’s parity. Because of the high sample variability
and the small number of observations of each subgroup of women defined by the
marginal and/or joint values of the two covariates, it is difficult to draw clear insights
on the size of the effects in each subsample. However, our heterogeneity analysis
casts considerable doubt on the hypothesis that the average effect conditional on the
covariates is identical for all subpopulations.

All these results rest on the plausibility of our income-based measure of well-
being as a proxy for poverty, which depends on the estimated equivalence scale.
In order to investigate the sensitivity of our results depending on the way in which
household size and household composition is taken care of, we re-estimated the ATT
effect using different equivalence scales, that is, different values of the parameters
α, the weight for a child relative to an adult, and θ , the size elasticity. This sensitivity
analysis finds that in Albania the estimated ATT effect is robust with respect to the
estimated equivalence scale: all the estimates of the ATT effect appear to be positive
and not significant.

There are two main directions for future research. The first is to extend this study
by using other measures of wellbeing including multidimensional measures (such as
deprivation indices) and subjective measures. Secondly, it is of considerable interest
to analyze the conditional distribution of the difference between the two potential
outcomes (Y (1) − Y (0)) given a childbearing event (Z = 1) as a whole, instead of
focussing on its expected value as we have done in this paper.
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Chapter 10
Causation and Its Discontents

Herbert L. Smith

It is impossible to escape the impression that population scientists commonly use
false standards in adducing causation – that they seek to make claims about the
power of their research in elucidating cause and effect and admire similar claims in
others, and that they mis-estimate the true values of important causal parameters.
And yet, in making any general judgment of this sort, we are in danger of forgetting
how variegated the human population and the mental constructs associated with its
apprehension are.1

When Preston (1993) surveyed the “contours of demography” – its role among
the social sciences, its methods and orientations, and promising research areas for
the future – causation figured hardly at all. The specific term shows up in but one
sentence: “Because of pressures from the scientific community, it is likely that more
surveys will be longitudinal in design, and thus will provide better opportunities for
sorting out issues of causation” (p. 597). The reference to longitudinal data nicely
anticipates the many fixed-effects models that now proliferate, where multiple ob-
servations over time are held to be the key to controlling for unobserved variation,
hence causal inference.2 On the other hand, the offhandedness of the observation –
“sorting out issues of causation” [emphasis added] – suggests that the problem is (or
was) not of the highest order for the field. A similar impression attaches to the use
of the word “cause”, which features primarily in the demographic chestnut “causes
and consequences”, of “population change”, or “variation in fertility, mortality, and
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1 With apologies to Freud (1961, p. 11).
2 “Every empirical researcher knows that randomized experiments have major advantages over
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using the fixed effects methods . . . it is possible to control for all possible characteristics of the
individuals in the study – even without measuring them – as long as those characteristics do not
change over time. . . .[T]his is a powerful claim, . . . one that I will take pains to justify. . .. What
is . . . remarkable is that fixed effects methods have been lying under our noses for many years”
(Allison 2005, pp. 1–2).
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migration patterns” (p. 594); there is no great sense of fundamental epistemological
issues related to inferring causation.

Crimmins (1993), writing contemporaneously under the same warrant, also saw a
relationship between demographers’ interest is causation and demands for new data,
which had “grown increasingly complex to correspond to increasing complexity in
the causal models underlying the demographic behavior we wish to understand”
(p. 582). She also made a distinction between the use of causation in formal and
social demography:

Formal demographers in the future will concentrate increasingly on models that incorporate
the entire causal process of population change. This greater emphasis on causation, cou-
pled with the expanding application of formal demography to new substantive areas will
move the work of formal demographers increasingly closer to that of social demographers
(p. 584).

The causal models of social demographers to which Crimmins (1993, p. 585) was
referring were path models, or structural equation models (e.g., Duncan et al. 1972).
These models had received mixed reviews when vetted from the standpoint of the
counterfactual model of causation, since the involved arithmetic that transmutes cor-
relations into path coefficients does not in and of itself render a causal model, absent
some stipulations that lie outside the arithmetic:

The essential point . . . about [path] diagrams is that they are easily interpreted in terms
of Rubin’s model when they are not causally meaningless. The causal model literature
has not been careful in separating meaningful and meaningless causal statements and path
diagrams. . ..

(Holland 1986, p. 958).

Freedman (1987) was less equivocal in his condemnation of the causal inter-
pretations that putatively attached to such models (e.g., “Estimating nonexistent
parameters cannot be very fruitful” [p. 125]), and Duncan himself had apparently
long since recanted, labeling his work on structural equation models (Duncan 1975)
“a big mistake” (Berk 2004, p. xvii).

The most prominent rehabilitation of structural equation models within a modern
of theory of causation owes to Pearl (2000, esp. Chapter 7). Winship and Hard-
ing (2008) provide an excellent exegesis of these ideas in their application to the
relationship between the canonical demographic accounting categories of age, pe-
riod, and cohort and variation in political alienation in the United States (cf. Kahn
and Mason 1987). There is a path- or graph-analytic model that offers a resolution to
the well-known identification problem (Mason et al. 1973) caused by the linear re-
lations among the constructs “age”, “period”, and “cohort”. Identification is largely
with reference to the specification of the variables that intervene in a path diagram
between age, period, and cohort and political alienation, the outcome variable. These
are variables such as church attendance, employment, and education. I continue to
wonder (Smith 2008, p. 294, 1997, pp. 333–334) whether it makes any sense to talk
about variables such as age and cohort as causes, in any meaningful sense, since how
do you change them?; and have attempted to argue (Smith 2003, pp. 464–466) that
the manipulation criterion (Holland 1986, p. 959) is more blessing than curse. But
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there are plenty of folks writing from both within the modern orthodoxy of potential
outcomes (Winship and Sobel 2004, pp. 484–485) and without (Nı́ Bhrolcháin and
Dyson 2007, p. 3) who can tell you why things that you cannot manipulate are
causes nonetheless.

When Caldwell (1996) surveyed the relationship between demography and the
social sciences, causation and causal models were not part of the equation. There
were the standard anodyne references to the “causes and consequences” of popu-
lation growth (p. 306) and population change (p. 307). Certainly demography was
evolving under an interest in causation: “a greater emphasis on social causation”
(p. 328); a move away from “ ‘social-bookkeeping’ . . . as a hankering for causal
explanation and theory developed” (p. 329); similarly, “many demographers felt
that the advances in the study of causation with regard to fertility could be, and
needed to be, duplicated with regard to mortality” (p. 324). But, in general, the
treatment is that of someone who knows a cause when he sees it (e.g., Caldwell
et al. 1988) and it would seem to have been, for example, disciplinary predilections
and prejudices, not formal understandings of causation, that had to date hindered
“the use of anthropological approaches and concepts to study the nature and causes
of demographic [behavior] . . .” (Caldwell 1996, p. 327).

A companion paper surveying the history of formal demographic models (Coale
and Trussell 1996) makes no reference to their causal epistemological basis and, in-
deed, the search for causes is explicitly located outside of these models: The models
are descriptive and were never intended to be anything else: “No deep theory, or
even shallow theory, underlies the search for empirical regularities. In contrast, the
discovery of empirical regularities can simulate the search for underlying causes”
(p. 483).

Morgan and Lynch (2001) surveyed demography with an emphasis on data and
methods. They make a strong case for the scientific status of demography less on
the sophistication of data and methods than empirically, based on the cumulative
salience of research papers. In this respect demography looks more like physics and
chemistry, less like the (other) social sciences (pace Caldwell 1996). Causal mod-
eling and causal thinking again factor only glancingly in the assessment of the field
and its scientific status. This is the first survey of demography to highlight explicitly
the type of causal models that feature so prominently in the current volume:

[T]he new wave of demography is more ambitious, aiming toward causal modeling at the in-
dividual level. The primary microlevel theories are social–psychological or microeconomic,
and the method of choice is based in econometrics

(Morgan and Lynch 2001, p. 46).

The specific ideas underlying these methods – the potential outcomes framework
and the concomitant primitive definition of a causal effect – are not mentioned,
which is a shame, since this was a lost opportunity to reinterpret the role of such
thinking in the history of demography (if not the role of demography in the his-
tory of thinking about causation). A search for the word “cause” in Morgan and
Lynch (2001) turns up a number of references to cause-deleted life tables. Is this
a matter of an atavistic use of a term that has now evolved in the direction of a
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more precise, more developed scientific meaning? Hardly. “The construction of [a
cause-deleted life] table . . . involves a thought experiment in which we ask ‘what
would happen if . . .”’ (Preston et al. 2001, p. 80). This is a clear counterfactual: life
expectancy as observed in the U.S. in 1964 (for example) and life expectancy if there
were no mortality due to cancer (for example); Keyfitz (1977) estimated the latter as
3% greater than the former. The comparison is at the population level, the effect of
a cause (Holland 1986, p. 945), or the difference in life expectancy outcomes under
two alternative treatment values {current rates of cancer, no cancer}.

At the individual level, the parallels are more complicated. In the simplest model
for mortality, each death is ascribed to a single cause. This is closer akin to the cause
of an effect: We observe a death and we ascribe it uniquely to a cause. Sadly, death
is a constant; everyone will die. Thus the effect – the variation in response – is in
time to death. In the theoretical framework for competing risks:

It is imagined that each individual at birth is endowed with a set of cause-specific ‘times
due to die.’ The actual observed time, of course, is the minimum of these, because a person
who dies from one cause cannot later die from another

(Namboodiri 1991, p. 120).

This is precisely the potential outcomes framework (Holland 1986, p. 946) and
a nice statement of what Holland (1986, p. 947) called the Fundamental Problem
of Causal Inference: that causal effects are defined in terms of alternative outcomes
for a given unit, but that for any unit, only one outcome can be observed. The stan-
dard computational methods for cause-deleted life tables are quite recondite (e.g.,
Preston et al. 2001, pp. 80–84) and can be read as alternative assumptions for the
identification of otherwise unobservable potential mortality outcomes. And this is
without a full consideration of the problem of population heterogeneity, since “it is
now widely recognized that eliminating one disease may yield an increase in deaths
from another, due to comorbidity” (Morgan and Lynch 2001, p. 46). People who are
spared death from cancer are not only exposed to the hazard of mortality from other
causes, but the causes are likely correlated in their effects. This has been modeled
with reference to manifest data on the secondary causes of death that appear on
death certificates (Manton and Poss 1979) and to unobserved heterogeneity, the
posited but unobserved distribution of frailty, or individual-specific probability of
dying (Keyfitz and Littman 1979; Vaupel et al. 1979).

This modest claim on behalf of the causal thinking behind cause-deleted
life-tables does cast a different light on what might be called the evolutionary pro-
gression of demography: that demography first mastered descriptive treatments of
population data, life tables chief among them, and is now moving on toward scientif-
ically valid models of cause and effect (e.g. Moffitt 2003, p. 448). But for me to dis-
pute this view on the basis of a minor piece of scholarship – scholasticism, in truth –
would be disingenuous. My discontent with this view is deeper: I think that there
is no logical scientific hierarchy with description, however valuable, on the bottom,
and causal analysis on the top. The weak version of this claim is empirical, that
demography has long functioned well as a science (Morgan and Lynch 2001) absent
anything other than a casual approach to the description/causation divide (which
is, in essence, my reading of Caldwell’s [1996] synthesis). The strong version is
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theoretical and methodological (Smith 1990, 2003, 2005, pp. 258–268). In brief:
The formal treatment of causation has had the useful effect of undermining the
received wisdom (e.g., Campbell and Stanley 1963), that experiments are the “gold
standard” and inherently superior to observational studies. The emphasis on the het-
erogeneity of treatment effects (e.g., Heckman 2001, pp. 712–732) makes the very
definition of a treatment effect, or a policy intervention, contingent on the distribu-
tion of traits within a population. This places demography, a field that has long had
an interest in the accurate representation of populations and their heterogeneity, in a
useful place. Ultimately, one wants a balance between emphases on representation
and randomization (Kish 1987, Chapter 1).

This said, I can hardly gainsay the fact that there is a specter haunting demog-
raphy, the specter of causal modeling (e.g., Bachrach and McNicoll 2003).3 This
derives from some primitive but powerful thinking about the definition of causa-
tion in both statistics and economics. Holland (1986) was instrumental in calling
attention to Rubin’s (1974) model and the statistical view of causation; Gelman
and Meng (2004, especially Part I) is a good example of its substantial influence.
Heckman (2005a) provides an exhaustive summary of what might be termed the
“strong program” in economics. Morgan and Winship (2007) provide an excellent
practical synthesis that reflects a close reading of both literatures, which developed
in large measure in studied ignorance of one another.

Some future historian of science will have a field day with this topic, less in
expositing the commonalities between the points of view, more in regaling readers
with the whiggish efforts of each camp to document disciplinary priorities (e.g.,
Rubin 1990; cf. Heckman 2005a, p. 1, 2001, pp. 686–690). That the econometric
and statistical approaches have so very much in common can be inferred, even
before careful study of definitional and notational equivalences, by the massive
amount of energy devoted – and spleen vented – in the pursuit of “boundary main-
tenance” (Gieryn 1999), of ruling science “in” and non-science “out”. How else to
explain, for example, the intensity of Heckman’s (2005b) rebuke to a few points
of reinterpretation scattered within an otherwise semblable tract (Sobel 2005)? It
is well-established within sociological theory that dissent is more threatening to
orthodoxy than is outright heresy (Coser 1956, pp. 86–93). The proto-sociological
functionalist interpretation of the narcissism of minor differences is also apposite: “a
convenient and relatively harmless satisfaction of the inclination to aggression, by
means of which cohesion between the members of the community is made easier”
(Freud 1961, p. 72). Although Freud’s pretentions to science have taken a beating
(e.g., Webster 1995), it is hard not to marvel at his anticipation of the anthropology
of early twenty-first century economics!4

Demographers are fortunate, therefore, to have Moffitt’s (2009, 2005, 2003) pa-
pers on causal analysis, which are orthodox in the presentation of the economic

3 With apologies to Marx and Engels (1976), all the more so since, as is evident from the papers
in this volume, the powers of European social and statistical science are wholly receptive to the
power of causal modeling.
4 But where to stand in throwing stones? Freud’s penchant for reading out dissenters, and the paral-
lels between the psychoanalytic edifice and religion, are well attested (Webster 1995, pp. 359–362).
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framework, with its emphasis on exclusion restrictions (as, for example, via the
method of instrumentation – the search for variables that affect the assignment of
subjects to treatments, but not the response subsequent to treatment), but tolerant
with respect to parallel formulations within statistics, and catholic with respect to
the role of this form of analysis within demography.

A very important point that emerges clearly (Moffitt 2005, pp. 94–96) is that
causal inference in regression-type models is compromised when assignment of
subjects to treatments is a function of unobserved differences between individuals
and when there is variability across subjects in the effects of a treatment that is
associated with who gets, or opts for, a treatment. Experienced researchers who are
first exposed to the reinterpretation of regression analysis through the lens of the
potential outcomes model for causal inference can be forgiven for imagining that it
is a case of old wine in new models, since the problem of omitted variable bias is in
general well apprehended. It is the emphasis on heterogeneity in treatment effects
that is new, subtle, and powerful in its implications for inference:

For example, as cigarette prices vary across areas, the fraction of individuals who smoke
will change as some individuals who would have smoked if prices were low instead choose
not to smoke because prices are higher. With this Zi , one can estimate the average effect
of smoking of these “switchers”. Suppose that the variation in cigarette prices in the data
induces a variation in the fraction who smoke from 30% of the population to 40%. The price
variation allows the estimation of the average β for the 10% of the population who were
affected by this variation. What cannot be estimated is the average β in the entire population
because doing so would require having a Zi that moved the fraction of smokers from 0% to
100%, thereby permitting the researcher to observe how Y changes as the entire population
goes from not smoking to smoking, or vice versa

(Moffitt 2005, p. 96).

This is the nub of the possible disjuncture between the interests of population
scientists and the predilections of those working within the formal structures of
micro-econometrics. The emphasis on modeling and conceptualizing causal pro-
cesses at the individual level is not without costs. Moffitt (2005) is admirably clear
on this point: “[T]here is an important trade-off between the validity of a particu-
lar estimated causal effect and its generalizability, for pursuit of the former often
leads to the loss of the latter, and vice versa” (p. 91). My own efforts (Smith 2003,
especially pp. 462–463, 2005, pp. 258–268) have emphasized causal inference at the
population level. There is no reason to imagine that one perspective need dominate
the other a priori, but I do think that a pall mall rush toward micro modeling of
causal processes may distract from the proper specification of estimands. What can
be estimated is not necessarily what should be estimated. It depends on the way the
problem is posed. A similar disquiet would appear to underlie the discontent mani-
fest on behalf of demography by Nı́ Bhrolcháin and Dyson (2007), although I con-
tinue to find the potential outcomes framework congenial, even at the macro level.

I close with some comments that follow from Moffitt’s (pp. 96–97) discussion
of structural versus reduced forms. The government increases the availability of
contraceptives in an area. Fertility declines. This is the reduced form result. A struc-
tural mechanism concentrates on the pathways from more contraceptives to lower
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fertility. Was lower fertility the result of more couples using contraceptives? Or did
the policy effect some sort of attitudinal change that resulted in less sexual activity?

[S]ome economists have taken the view that if the only aim of the researcher is to know the
effect of Zi on Yi . . . it does not matter what the mechanism or the channel of effect is . . . .
One only needs to assume that Zi is not itself endogenous. This makes unbiased estimation
much easier, but at the cost of not learning as much about the social process being studied”

(Moffitt 2005, p. 97).

The canonical method in support of the assumption that “Zi is not itself endoge-
nous” is to assign subjects to treatments at random – to do an experiment! Discus-
sions of the problem of causal inference from observational data often start with the
premise that everything would be easier were an experiment feasible (e.g., Winship
and Morgan 1999, p. 659), but the desire to understand causal mechanisms under-
mines the experimental model pretty quickly. My own interest in causation began
(Smith 1990) with an attempt to make sense of a debate (Zeisel 1982a, 1982b; Rossi
et al. 1982) over the proper interpretation of results from a randomized experiment
(Berk et al. 1980; Rossi et al. 1980). Since then, there have been great advances,
largely by greater precision in the definition of estimands. These include the causal
interpretation of instrumental variables, by analogy with the experimental notion of
“intention to treat” (e.g., Angrist et al. 1996; Gennetian et al. 2005). The general-
ization of these ideas, under the rubric of “principal stratification” (Frangakis and
Donald Rubin 2002; Frangakis 2004; Rubin 2004), also has great promise for at
least some problems in demography.

For a wide variety of reasons, it is very far from my intention to express an opin-
ion upon the value of causal thinking in the field of demography. I have endeavored
to guard myself against the enthusiastic prejudice which holds that causation is the
most precious thing that we possess or could acquire and that its application puts us
on a path that will necessarily lead to heights of unimagined perfection. One thing
only do I know for certain and that is that our judgments of value follow directly
our wishes for greater insight – that, accordingly, they are an attempt to support our
illusions with arguments. Social scientists, including demographers, have gained
control over the forces of calculation and computation to such an extent that with
their help they would have no difficulty in estimating virtually any parameter. But
who can foresee with what success and with what result?
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