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Preface

This monograph is for postgraduate students of statistics, statistical analysts,
and other professionals who are interested in the design and analysis of studies
in which responses are elicited from human subjects. Emphasis is placed on
dealing with data that arise in imperfectly conducted studies. The reasons for
imperfection include a sampling plan that cannot be implemented, measure-
ment or elicitation of information by imperfect instruments, poor motivation
of the subjects and their unwillingness to cooperate, and a multitude of other
unavoidable shortcomings in relation to textbook-like settings that would be
easy to analyse.

The subject of statistics is defined as making decisions in the presence of
uncertainty. The context of a population and one or several variables defined
for each member of this population is presented, and complete information is
at first defined as having established the values of these variables for every
member of the population. Making decisions with such complete information
is regarded as a task outside the remit of statistics and is assumed to be a
resolved problem or a problem for another profession. The raison d’être for
statistics is that the available resources (time, manpower, expertise, fund-
ing, respondents’ goodwill, and the like) are not sufficient for collecting the
complete information.

With insufficient resources, we may establish the values of the variables
for only some of the members of the population, and we may establish them
imprecisely using imperfect instruments. Estimation is defined as forming a
summary of the collected incomplete information (the data) with the purpose
of getting as close as possible to the complete-information quantity of inter-
est (the target). The quality of such a process (efficiency of the estimator)
is described in frequentist terms by the mean squared error (MSE), defined
by replications of the data-generating and estimation processes. Study design
is defined generally as doing the best that can be done with the available
resources. ‘Doing the best’ entails designing a study, implementing it (col-
lecting the data), and estimating the target with the smallest possible MSE.
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This scheme can be adapted for other forms of inference (such as confidence
intervals and hypothesis tests) and measures of quality different from MSE.

The text assumes that the reader is familiar with the basics of statistics:
the frequentist perspective; the definition of discrete and continuous distrib-
utions, including conditional and multivariate distributions; the concepts of
independence, density, and distribution function; the common classes of dis-
tributions (normal and distributions derived from it, uniform, beta, gamma,
binomial, and Poisson); sampling design and measurement process; the ele-
mentary statistical calculus (evaluating expectations and variances and fitting
ordinary regression); and hypothesis testing and confidence intervals for some
simple settings. This material is condensely presented in the Appendix, in-
tended both for revision before reading Chapter 1 and for reference throughout
the study. The exercises at the end of the Appendix are a suitable material
for an entrance or revision exam.

Chapter 1 follows the standard curriculum of the analysis of variance and
ordinary regression but parts company with the established solutions by ad-
hering to the goals of efficient estimation and unbiased assessment of the
efficiency. Chapter 2 introduces maximum likelihood as a general method of
estimation, presents the basic results (without proofs), and discusses model
selection and model uncertainty, issues broached in the previous chapter.

With limited resources, we can record the values of the relevant variables
for only some members of the population and may have to do so imprecisely.
These two forms of incompleteness lead to two general topics: survey sampling
(Chapter 3) and measurement processes (Chapter 6). Between them, Chapter
4 introduces the Bayesian perspective as an alternative to the frequentist one,
although it can be argued that there are three perspectives—model-based,
design-based, and Bayesian, introduced in the respective Chapters 2, 3, and
4.

Chapter 5 returns to the frequentist perspective to discuss data incom-
pleteness as a ubiquitous problem in implementing a design for studying a
human population and introduces methods for dealing with missing data,
data that we intended to collect but failed to. Complete information is de-
fined here as the result of a perfectly implemented study design, a dataset that
would be relatively easy to analyse. EM algorithm and multiple imputation
are presented as two generic methods for dealing with incompleteness. Some
other applications of these methods are outlined. In Chapter 6, imperfect
measurement is presented as one of them.

Chapter 7 discusses experiments and observational studies and highlights
the importance of the treatment-assignment process. Chapter 8 deals with
clinical trials and presents them as a model example of experiments, empha-
sising the key role of their design, in the context of high ethical costs. Here,
as well as in some earlier chapters, hypothesis testing is discussed, with the
criticism that it fails to integrate information about the consequences (sever-
ity) of the two kinds of error that may be committed. Model selection criteria
are subjected to similar criticism.
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Chapters 9 and 10 discuss methods for multilevel and generalised linear
models, respectively, as two indispensable elements of a statistician’s analyt-
ical (computational) armoury. Chapter 11 deals with longitudinal and time-
series analysis, treating them as applications of the methods presented in the
previous two chapters.

Chapter 12 concludes with meta-analysis, a method for summarising the
results of studies with a common or similar inferential agenda. The multi-
variate version of meta-analysis is discussed and connected to the problem of
estimating one or several of a large number of interrelated quantities.

The chapters are designed so that they can be read or studied in order,
with logical stopping points after Chapters 6, 8, and 10, which are followed by
increasingly demanding material. They are intended as both a textbook for a
semester, with some of the last few chapters optional, and a reference, with
chapters as self-contained units. Chapters 1–8 can be covered in an academic
quarter.

Several themes straddle the chapters. First among them is the view of
nonstandard problems as involving missing data. That is, the problem at
hand would be (more) tractable if some additional information were available.
With the EM algorithm and multiple imputation, this is a natural approach to
expanding the horizon of problems that we can deal with. Second is the pursuit
of efficiency (small MSE) and of honesty (unbiased estimation of MSE) in
estimation. Combining estimators (synthesis) is presented as an alternative to
model selection, and their properties are compared in several settings, starting
with the analysis of variance (ANOVA) in Chapter 1. Third is that we should
be concerned with analysis of information, not merely analysis of one dataset
at a time, and that study design is much more important than analysis. There
is no reprieve for the deficiencies in the study design, whereas a reanalysis is
a relatively inexpensive affair. The value of computing, for simulations in
particular, and graphics, for effective data exploration and to summarise the
results, is emphasised as a companion and, in some instances, an alternative,
to (mathematical) analytical effort.

Background in elementary calculus and linear algebra is assumed, and
experience in some statistical software, such as R [151] or S-plus [191], at
an introductory level at least, is essential. In the spirit of object orientation,
I tried to avoid subscripting whenever possible by defining suitable vectors
and matrices. At a slower pace, the text could be combined with a course
in R or other software for statistical analysis and graphics. Although all the
computing and graphics was prepared in R, the text has very few references to
R, and all the examples in the text, including simulations, can be reproduced
with other software. The code used for the analyses and illustrations, mostly in
the form of R functions, and the datasets for the exercises can be downloaded
from www.sntl.co.uk/BookA.

Each chapter has a few references for further reading and more detailed
study (for example, the monographs [168] for Chapter 3, [110] for Chapter
5, [113] for Chapter 9, [132] for Chapter 10, [37] for Chapter 11, and [72]
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for Chapter 12) and 16–26 exercises, some directly connected to the text
of the chapter and to its examples in particular. They range in difficulty
and complexity from those for solving within a few minutes to open-ended
problems suitable for projects for individual or small groups of students.

I have thought hard about the notation, whether to design rules that could
be used consistently throughout the book or to adhere to the conventions that
are consistent within narrow subject areas represented by the chapters but not
across them. For example, capital letters are used for population quantities
and lowercase for sample quantities in survey sampling, whereas in linear
models capital letters are used for matrices and lowercase for vectors. I have
settled for the prevailing conventions, with a few exceptions. As is common,
I use the same notation for a random variable (estimator, dataset) and its
realisation (estimate, realised dataset), but preface the latter by the term
‘value of’ whenever the two might be confused. In a few instances I simply
ran out of suitable symbols or wanted to stick to established conventions
and had to reuse some symbols. For example, β is used for both regression
parameters and the power of a selection (or a test) in Chapter 2.

I could not avoid a few forward references in the text. None of them re-
quires a detailed study of the section referred to, and when the section is
reached later, the introduction made earlier is useful because the topic is not
completely new. To smooth the text, I have set aside some mathematical
niceties in favour of terms that are commonly used, but strictly speaking are
not correct. Thus, by continuous distribution I mean throughout absolutely
continuous distribution, and every one-to-one continuous function is assumed
to be monotone.

I want to thank University Pompeu Fabra (UPF), Barcelona, Spain, and
other institutions for opportunities to use draft chapters of this book in my
lectures. I wrote and revised most of the manuscript in 2006 at UPF. I have
benefited from attending the annual Applied Statistics Weeks organised by
UPF and from eye-opening lectures by Don Rubin in particular. Support
for this work by grants from the Spanish Ministry of Education and Science
is acknowledged. Comments and encouragement from Anna Cuxart, Albert
Satorra, and Frederic Udina, my colleagues at UPF, are acknowledged.

I had a fair number of false starts and postponed deadlines, and I want to
commend Springer-Verlag for its near-asymptotic patience.

Reading, England Nick Longford
September 2007
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1

ANOVA and Ordinary Regression

In this chapter, we address the standard task of learning about a process when
it is observed incompletely, by means of a finite number of its realisations. We
study two simple settings, analysis of variance (ANOVA) and simple regres-
sion, with the standard assumptions of normality and equal residual variance.
We are interested in efficient estimation of a priori specified population quan-
tities.

1.1 Analysis of Variance

Analysis of variance is a historical term for the setting with K > 1 contexts
(groups) within which the studied process generates observations as random
samples from normal distributions with a common variance σ2

W but (possibly)
distinct means µk , k = 1, . . . , K. The observations are denoted by yjk , j =
1, . . . , nk , where nk are the sample sizes within the contexts. The overall
sample size is n = n1 + · · · + nK . For simplicity, we assume that n1 , . . . , nK

are fixed (constant across replications). The setting with n1 = . . . = nK is
referred to as balanced.

This description of ANOVA corresponds to the model

(y11 , y21 , . . . , yn11 , y12 , . . . , ynKK )� ∼ Nn

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
µ11n1

µ21n2

...
µK1nK

⎞⎟⎟⎟⎟⎠, σ2
WIn

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ . (1.1)

The symbols 1, I, and 0 are used for the vector of unities, the identity ma-
trix, and the matrix of zeros; their dimensions are given in their subscripts but
are omitted when they are obvious from the context. Although accurate, this
description is most inelegant and uninstructive, because it does not readily
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convey our assumptions or beliefs about the studied process. A more instruc-
tive description is by one or several model equations, algebraic expressions
that state how the observations (outcomes) are assumed to be related to the
contexts. For the class of distributions in (1.1), one such description is

yjk = µk + εjk , (1.2)

where the n terms εjk are a random sample from N (0, σ2
W). This description

is much neater and easy to interpret as follows: in context k, observations are
dispersed around their context-specific mean µk , with independent deviations
that are normally distributed with variance σ2

W . Note that the small print
following equation (1.2) is essential to complete the description.

We can regard the entire set of nk observations as a single multivariate
observation, yk = (y1k , . . . , ynkk)�, and write

yk = µk1nk
+ εk , (1.3)

where the vectors εk ∼ Nnk

(
0, σ2

WI
)
, k = 1, . . . , K, are mutually indepen-

dent. Such matrix notation focuses much better on the relevant without omit-
ting any detail. For completeness, we define the vector of all observations
y = (y�

1 , . . . , y�
K)�, obtained by vertical stacking of the vectors y1 , . . . , yK .

Suppose the task is to estimate one of the means, say µ1 . An obvious
solution is the sample mean of the observations made in context 1, µ̂1 =
(y11+ · · · +yn11)/n1 = n−1

1 y�
1 1. As µ̂1 ∼ N (µ1 , σ2

W/n1), µ̂1 is unbiased. More
information, in the form of greater sample size n1 in context 1, is rewarded
by smaller sampling variance. However, µ̂1 ignores all the remaining n − n1

observations.
If the within-context distributions were identical, µ1 = . . . = µK = µ, the

context would be irrelevant and µ1 = µ would be estimated much more effi-
ciently by µ̂ = n−1y�1. Like µ̂1 , µ̂ would also be unbiased, but its variance,
σ2

W/n, would be much smaller than var(µ̂1) = σ2
W/n1 , unless n1 is a substan-

tial fraction of n. In the long established approach, the hypothesis that the
context is irrelevant is tested, and if this (null-)hypothesis of equal means,
µ1 = . . . = µK , is rejected, µ1 is estimated by µ̂1 . Otherwise, having failed to
find evidence against the hypothesis, µ1 is estimated by µ̂. Hypothesis testing
is discussed in greater detail in Chapter 2; here we use it merely as a means
of choosing between two models.

This approach is flawed because failure to reject the null-hypothesis is
confused with confirming it. Failure to reject should be interpreted as ‘do not
know whether . . . ’, as a state of ignorance. Not only hypothesis testing, but
any other approach that commits us to either the assumption that µ1 = . . . =
µK = µ or its alternative (‘not all means are equal’) is also deficient unless
the choice made is unfailingly correct; that is, hypothetical replications of the
process generating the observations y would also yield the same decision, and
this decision would be correct. In one perspective, the decision is obvious.
Since the equality of the means, µ1 = . . . = µK , is an extremely special case,
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we can safely bet that the means differ, especially when we have no prior
information why they should not, at least by a little bit.

Another deficiency of the commitment to a model can be illustrated by
the following comparison. Consider two scenarios, both with the same overall
sample size n = 100. In the first, the sample size of context 1 is n1 = 2 and
in the other n1 = 80. In the first scenario, the two observations of context
1 tell us very little about µ1 ; var(µ̂1) = 1

2σ2
W is large, yet there may be a

lot of information in the n − n1 = 98 observations from the other contexts
that could contribute to estimating µ1 . If the means µk are equal, µ̂ is very
efficient, since var(µ̂) = σ2

W/100 is 50 times smaller than var(µ̂1). In the
second scenario, var(µ̂1) = σ2

W/80 is much smaller, and there is no urgency
to improve on µ̂1 , since the best that we might achieve is that the mean
squared error (MSE) would be equal to σ2

W/100, a reduction by a mere 20%.
Thus, our eagerness to estimate µ1 by µ̂ should be informed by the sample
size n1 . However, the hypothesis test treats all the sample sizes n1 , . . . , nK

symmetrically and implies the same decision regarding estimation of each
mean µk , irrespective of its sample size.

When we nonetheless make, with uncertainty, a decision as to whether or
not the context is irrelevant, we estimate µ1 by neither µ̂1 nor µ̂, but by

µ̂†
1 = (1 − I) µ̂1 + Iµ̂ ,

where I indicates failure to reject the null-hypothesis; I = 0 if we reject it, and
I = 1 otherwise. The distribution of this estimator is neither N (µ1 , σ2

W/n1)
nor N (µ1 , σ2

W/n); in fact, it is not normal, not even symmetric, except in
some esoteric settings. Certainly, µ̂†

1 is biased, and its variance or MSE are
equal to neither σ2

W/n1 nor σ2
W/n.

In the established approach, the within-group (population) variance σ2
W

is estimated, and the sampling variance of µ̂†
1 is estimated by ŝ2

1 = σ̂2
W/n1 or

ŝ2 = σ̂2
W/n, depending on the decision made as a result of hypothesis testing.

This estimator of the sampling variance is

ŝ2 †
1 = (1 − I) ŝ2

1 + I ŝ2

and is a very inefficient and biased estimator of MSE
(
µ̂†

1 ; µ1

)
or of var

(
µ̂†

1

)
.

It underestimates the MSE, often severely so. Details are postponed until
Chapter 2.

The cause of all the problems described in this example is model uncer-
tainty; if we knew which model applies we could estimate µ1 more efficiently.
By ignoring model uncertainty, we conclude with an inferential statement that
generates an impression of relative certainty that is not justified. By the a pri-
ori made assumption, the more general model applies, but we were hoping to
do better by reducing the range of plausible distributions or by narrowing the
associated parameter space.
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1.1.1 Synthetic Estimation

The solution to the problem of estimating µ1 in an ANOVA setting rests not
in committing ourselves to one of the estimators, µ̂1 or µ̂, depending on a
fallible criterion, however well it may be devised. Instead, we explore how the
relative strengths of the two estimators can be exploited more fully.

We consider the combinations

µ̃1 = (1 − b1) µ̂1 + b1µ̂ , (1.4)

with a constant b1 that is specific to estimating µ1 , more completely denoted
as bµ1 . We select this coefficient to further our aim of efficient estimation of
µ1 . For estimating the mean for a different context or for estimating another
quantity, we may choose a different coefficient. The MSE of µ̃1 is

MSE(µ̃1 ; µ1) = var(µ̃1) + {B(µ̃1 ; µ1)}2

= (1 − b1)2
σ2

W

n1
+ b2 σ2

W

n
+ 2b1(1 − b1) cov(µ̂1 , µ̂) + b2

1(µ − µ1)2;

B(η̂, η) denotes the bias of η̂ as an estimator of the target η. Further,

cov(µ̂1 , µ̂) =
n1

n
var(µ̂1) =

σ2
W

n
,

derived from the fact that µ̂ = (n1µ̂1 + · · · + nK µ̂K)/n is a sum of mutually
independent contributions from the contexts. Therefore

MSE(µ̃1 ; µ1) = b2
1

{
g1σ

2
W + (µ1 − µ)2

}− 2b1g1σ
2
W +

σ2
W

n1
, (1.5)

where g1 = 1/n1 − 1/n. This is a quadratic function of b1 , with a positive
quadratic coefficient, so it has a unique minimum, attained for

b∗1 =
g1σ

2
W

g1σ2
W + (µ1 − µ)2

. (1.6)

The MSE of µ̃1 with this coefficient is

MSE {µ̃1(b∗1); µ1} =
σ2

W

n1
−

(
g1σ

2
W

)2
g1σ2

W + (µ1 − µ)2
. (1.7)

We have added the argument b∗1 to the estimator µ̃1 to distinguish it from
µ̃1(b) based on some other (suboptimal) coefficient b.

At first, this development seems to lead us nowhere because we can set
the coefficient b1 in (1.4) to its optimal value only when we know the target
µ1 itself, or at least its deviation from µ. However, suppose prior information
about the contexts allows us to assume that the absolute deviation |µ1 − µ |
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Fig. 1.1. The MSEs of the estimators of µ1 as functions of the deviation µ1 − µ.
The estimators are µ̂1 , marked as A; µ̂, marked as B; and µ̃1(b1,Γ ) for Γ = 10 and
Γ = 5, marked as 10 and 5, respectively. The MSE of the ideal synthetic estimator
is drawn by dashes. Based on the setting σ2

W = 100, n1 = 10, and n = 60.

does not exceed a certain threshold Γ . We will use µ̃1 with the coefficient b1

that is optimal when µ1 = µ± Γ and then assess the loss of efficiency arising
from the fact that µ1 is closer to µ.

Denote by b1,Γ the coefficient b1 that would be optimal if |µ1 −µ | = Γ ; it
is obtained by substituting Γ 2 for (µ1 − µ)2 in (1.6). For this coefficient, the
identity in (1.5) yields

MSE{µ̃1(b1,Γ );µ1} =
(

g1σ
2
W

g1σ2
W + Γ 2

)2{
g1σ

2
W + (µ1 − µ)2

}− 2
(
g1σ

2
W

)2
g1σ2

W + Γ 2
+

σ2
W

n1
.

(1.8)
This is an increasing linear function of the squared distance (µ1−µ)2. For the
largest plausible distance, when |µ1−µ | = Γ , the MSE reaches its maximum,
and yet, among the combinations in (1.4), µ̃1(b1,Γ ) is efficient for µ1 .

Figure 1.1 gives an illustration for the following setting: σ2
W = 100, n1 =

10, n = 60, and Γ = 10. As the MSE of µ̃1 (b1,Γ ) depends on µ1 only through
its (absolute) deviation from µ, it suffices to explore its MSE for µ1 > µ.
As a reference, we use the two originally considered estimators, µ̂1 and µ̂;
their MSEs are marked in the diagram by the respective symbols ‘A’ and
‘B’. The former is unbiased and its sampling variance is constant, equal to
σ2

W/n1 = 10. Unbiasedness offers little comfort when the variance is so large,
exceeding MSE {µ̃1(b1,10)}, marked as ‘10’, for any plausible value of µ1 . The
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estimator µ̃1(b1,10) is more efficient than µ̂1 even for some values µ1 that are
beyond the threshold µ + 10. The sample mean µ̂ is very efficient when µ1 is
in the vicinity of µ, but otherwise it performs extremely poorly because of its
bias. So, with µ̃1(b1,10) we incur some bias, but its impact is not as crippling
as with µ̂.

Suppose next that Γ could be set to a smaller value, say, Γ ′ = 5. For
plausible values of µ1 , in the range µ − 5 ≤ µ1 ≤ µ + 5, µ̃1(b1,5) is more
efficient than µ̃1(b1,10), but when µ1 exceeds µ + 5, its MSE soon rises above
the MSE of µ̃1(b1,10) and even above the MSE of µ̂1 . Thus, tighter prior
information about µ1 is rewarded by greater efficiency in its estimation, but
there is a harsher penalty for unjustified optimism about the proximity of µ1

to µ.
The curve drawn in Figure 1.1 by dashes is the MSE of the ideal syn-

thetic estimator, in which the coefficient b1 is based on the actual value of
the deviation µ1 − µ. It is superior to either of the four estimators but coin-
cides with µ̂ when µ1 = µ, with µ̃1(b1,Γ ) when µ1 = µ ± Γ , and approaches
var(µ̂1) = σ2

W/n1 for large Γ , when we have next to no prior information about
µ1 . It represents the lower bound for the MSEs of the estimators µ̃1(b1,Γ ) over
all values of Γ . It is also the lower bound for the MSEs of all the synthetic
estimators µ̃1(b̂1), because with uncertainty about b1 we could not possibly
estimate µ1 more efficiently than when the value of b1 is known.

Our final point of criticism of model selection is that, in a flawed per-
spective that ignores model uncertainty, it aims to match the better of the
alternative estimators µ̂1 and µ̂. With the synthetic estimator µ̃1 , we set our
sights higher, aiming to outperform both estimators. Admittedly, we fail to
achieve this goal, but we fail in scenarios in which improvement is least neces-
sary (small distance of µ1 from µ) and rule out disasters that may be brought
on by selecting an inappropriate model.

Estimated Coefficient

The optimal coefficient b∗1 depends on σ2
W and, more disconcertingly, on the

target µ1 itself. So, when we are not willing to commit ourselves to a threshold
Γ , we face a circular problem. If we knew µ1 , we could set b1 to estimate µ1

efficiently. We are less concerned with the uncertainty about σ2
W , because all

n observations contribute to its estimation. In contrast, only n1 observations
from group 1 provide direct information for estimating µ1 .

A remedy is to estimate the coefficient b∗1 , and the obvious estimator
replaces the unknown parameters σ2

W , µ, and µ1 by their estimates,

b̂∗1 =
g1

g1 +
(µ̂1 − µ̂)2

σ̂2
W

. (1.9)

(Such an estimator is called naive.) We could have estimated (µ1 − µ)2 by
zero, assuming the null-hypothesis, but this would not be rational as it is the
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smallest possible value of a square. That would be a poor response to our
uncertainty about the deviation |µ1 − µ |. Another alternative might be to
correct (µ̂1 − µ̂)2 for its bias in estimating (µ1 − µ)2. We have

E
{
(µ̂1 − µ̂)2

}
= (µ1 − µ)2 + var (µ̂1 − µ̂)

= (µ1 − µ)2 + g1σ
2
W .

Hence, (µ̂1−µ̂)2−g1σ̂
2
W is unbiased for (µ1−µ)2, so long as σ̂2

W is unbiased for
σ2

W . The resulting estimator of b∗1 is b̂∗1 = g1/(µ̂1 − µ̂)2. Whereas 0 < b∗1 ≤ 1,
b̂∗1 can attain values greater than 1.0. Then µ̃1(b̂∗1) = (1 − b̂∗1)µ̂1 + b̂∗1µ̂ would
accord negative weight to µ̂1 , contradicting common sense. Bias adjustment
does not seem to improve estimation of µ1 . In any case, even when σ2

W is
estimated by σ̂2

W without bias, the reciprocal, 1/σ2
W is estimated by 1/σ̂2

W

with bias, although the bias is small when var
(
σ̂2

W

)
is small. A more fruitful

avenue to improving the synthetic estimator µ̃1 is by reducing the impact of
the uncertainty about (µ1 − µ)2 and estimating b∗1 by

b̂∗1 =
g1

g1 + r
(µ̂1 − µ̂)2

σ̂2
W

,

with a positive factor r < 1.
Yet another approach replaces (µ1 − µ)2 in (1.9) with the variance of the

context-level means, σ2
B = 1

K

∑
k(µk − µ̄)2, where µ̄ = (µ1 + · · · + µK)/K

is the mean of the context-level means. When this variance is not known, an
estimate is used instead. The rationale for this approach is that the context-
level variance σ2

B may in some settings be known or an intelligent guess of its
value can be made. Observations from all contexts k with nk > 1 contribute to
any reasonable estimator of σ2

B , so σ2
B can be estimated with greater precision

than (µ1−µ)2. In effect, we replace (µ1−µ)2 or its estimate with (an estimate
of) the average of (µk − µ)2 over the contexts k. It is preferable to err on
the side of positive bias in estimating σ2

B . By overstating σ2
B we reduce the

coefficient b1 , and therefore assign more weight to µ̂1 in µ̃1 , weighing more
in favour of unbiased estimation over variance reduction.

1.2 Ordinary Regression

Regression is defined as the conditional expectation E(Y |X = x) of a variable
Y , regarded as a function of the value of another variable (covariate) X in
the condition. The value x of covariate X can be regarded as a stimulus
that results in a particular distribution of the outcomes Y . This description
motivates the general model that assumes that the values of the covariate
X are set, by the analyst’s design (intent), to x1 , . . . , xn , and the resulting
values of the outcome variable Y are observed; these outcomes are denoted as
y1 , . . . , yn .
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The outcomes are subject to uncertainty (variation in hypothetical repli-
cations). A general model for this setting is

(yj |xj) ∼ D {f(xj); g(xj)} , (1.10)

independently, where D denotes a class of distributions specified by expecta-
tion f(x) and variance g(x). Important features of this model are that the
outcomes are independent (autonomous) and the impact of the stimulus X is
isolated to the associated observation; the stimulus set for observation j ex-
erts no influence on yj′ for any j′ �= j. The model in (1.10) can be generalised
by including further arguments in D, all of them dependent only on xj , by
defining more complex stimuli that combine several variables, and by allowing
some form of dependence among the outcomes.

All this is an agenda for later. Here we focus on a substantial simplification
of the model in (1.10), which is nevertheless of central importance in statistics.
First, we assume that the variance is constant; that is, g(xj) = σ2 for every j.
This property is called homoscedasticity. Next, we assume that f is a linear
function; f(xj) = β0 + β1xj . And finally, we assume that the distribution D
is normal.

Thus, the model we consider is

yj ∼ N (β0 + β1xj , σ2) , (1.11)

independently. This is equivalent to the model equation

yj = β0 + β1xj + εj ,

where εj , j = 1, . . . , n, are a random sample from N (0, σ2). The following
matrix notation is very useful: let x = (x1 , . . . , xn)�, y = (y1 , . . . , yn)�, and
β = (β0 , β1)�. Further, we define X as the n × 2 matrix composed of the
columns 1n and x. Now

y = Xβ + ε

and ε ∼ Nn(0, σ2I). The linear function β0 + β1x is called the regression
(function or line) and σ2 is referred to as the residual variance. The parameters
β0 and β1 are called the intercept and slope, respectively, and collectively they
are referred to as the regression parameters. The model with linear regression
and the assumptions of normality and homoscedasticity is called the ordinary
regression model.

It is straightforward to generate an example by simulation. Such an exam-
ple is presented in the left-hand panel of Figure 1.2, generated by setting the
values of X on the grid of points 1.0, 1.1, . . . , 2.9, 3.0 and repeating each value
three times. More difficult is the task of locating the regression line when all
we have are the vectors x and y. This problem is presented in the right-hand
panel.

A well-motivated approach is to estimate the regression (or fit a regression)
by a line from which the points have the smallest possible total of their dis-
tances. There are several analytical advantages when this proposal is altered
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1.0 1.5 2.0 2.5 3.0

5
10

x

y

1.0 1.5 2.0 2.5 3.0

5
10

x
y

Fig. 1.2. Data (x,y) generated according to the regression model y = β0 +β1x+ ε,
with β0 = 0.5, β1 = 2.4, and ε ∼ N (0, 3). The right-hand panel is a copy of the
left-hand panel with the regression line removed.

to minimising the total of the squared distances and measuring the distances
vertically. That is, we minimise the sum of squares

(y − Xβ)�(y − Xβ) =
n∑

j=1

(yj − β0 − β1xj)2 .

We prefer to work with the expression on the left-hand side because it is easier
to generalise, it relegates the indexing to the small print and is typographically
more convenient. We find the minimum of this expression either by completing
the square,

(y − Xβ)�(y − Xβ)

=
{

β − (X�X
)−1

X�y
}�

X�X
{

β − (X�X
)−1

X�y
}

+y�y − y�X
(
X�X

)−1
X�y , (1.12)

or, more elegantly, by matrix differentiation,

−1
2

∂

∂β

{
(y − Xβ)�(y − Xβ)

}
= X�(y − Xβ) .

Either way we obtain the unique solution

β̂ =
(
X�X

)−1
X�y , (1.13)
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assuming that the matrix X�X is not singular. It is easy to verify that that is
the case whenever the values of x are not all identical. The minimum attained
is (

y − Xβ̂
)� (

y − Xβ̂
)

= y�
(
y − Xβ̂

)
= y�y − y�X

(
X�X

)−1
X�y , (1.14)

the expression in the concluding line of (1.12). This estimator of β and the
method of deriving it are called ordinary least squares (OLS).

If we subtracted from x its mean x̄ and used x◦ = x − x̄1, the task of
estimating β would not be much different. The only change in Figure 1.2 would
be a relabelling of the horizontal axis to have the mean of the transformed
variable, x̄◦ = 0, in its centre, instead of x̄ = 2 at present. The slope β̂1 would
not be altered, and neither would be its estimate β̂1 , the second component of
β̂. The intercept would be different. At present, it is β0 = 0.5, the intersection
of the regression line with the vertical axis. With x◦, it would be equal to its
value at x = 2, that is, 0.5 + 2 × 2.4 = 5.3.

One advantage of using x◦ is that x◦�1 = 0, and so the corresponding
matrix or crossproducts X◦�X◦, required in (1.13), is diagonal:

X◦�X◦ =
(

n 0
0 x◦�x◦

)
.

Hence β̂◦
0 = ȳ and β̂1 = x◦�y/(x◦�x◦). The circle ◦ in the superscript of β0

and β̂0 indicates the association with x◦. Apart from obtaining the estimates
without having to invert any matrix, these expressions help us to establish
a connection with the regression as defined originally. The estimator of the
slope is

β̂1 =
(x − x̄1)�(y − ȳ1)

n

n

(x − x̄1)�(x − x̄1)

=
ĉov(X,Y )
v̂ar(X)

,

where the wide circumflex ̂ indicates naive estimation.
The population version of the regression is defined as E(Y |X = x). When

(X,Y ) have the bivariate normal distribution,

E(Y |X = x) = E(Y ) +
cov(X,Y )
var(X)

{X − E(X)} ,

so the regression is linear, with slope β1 = cov(X,Y )/var(X) and intercept
β0 = E(Y ) − β1E(X). Thus, the two meanings of the term ‘regression’, as a
population and a sample quantity, are in agreement.
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The conditional variance,

var(Y |X = x) = var(Y ) − {cov(X,Y )}2

var(X)
,

coincides with the residual variance σ2 = var(ε), and the minimum derived
in (1.14) is closely related to it; it is a naive estimator of the n-multiple of
var(Y |X = x):

σ̂2
† =

1
n
e�e , (1.15)

where e = y − Xβ̂ is the vector of residuals. These should not be confused
with the model deviations ε = y−Xβ but can be regarded as their estimates
in a peculiar form of replications in which β̂ varies according to its sampling
distribution but the same εj is realised every time for the target observation
j.

The regression parameter estimator β̂ is unbiased:

E
(
β̂
)

=
(
X�X

)−1
X�E(y) = β ,

since E(y) = Xβ, and its variance (and MSE) matrix is

var
(
β̂
)

=
(
X�X

)−1
X�σ2In X

(
X�X

)−1
= σ2

(
X�X

)−1
;

it can be estimated without bias by substituting for σ2 an unbiased estimator
σ̂2 of σ2.

Estimating the Residual Variance

The estimator σ̂2
† defined in (1.15) is biased for σ2. To show it, denote PX =

X
(
X�X

)−1
X� and QX = I − PX ; PX is called the projection matrix. It is

idempotent ; that is, P2
X = PX . The matrix QX is also idempotent. Further,

QX is orthogonal to X,
QXX = 0 .

More generally, QX is orthogonal to any matrix that is premultiplied by X;
we say that it is orthogonal to the regression space (spanned by X). All the
eigenvalues of PX and QX are either equal to zero or unity. This is obvious
when we realise that the eigenvalues of PX and P2

X have to coincide, so they
have to be the squares of themselves. With this background, we are ready for
the following sequence of identities:

E
(
σ̂2
†
)

=
1
n

E
(
y�QX y

)
=

1
n

tr
{
QXE

(
yy�)}

=
1
n

σ2tr(QX) + tr
(
QXXββ�X�) ,
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using first the identity tr(AB) = tr(BA) for any conformable matrices A and
B, then the commutative property of the expectation and linear operations,
E{tr(CU)} = C tr{E(U)} for any random matrix U and a conformable ma-
trix of constants C, followed by the identity E(yy�) = var(y)+E(y) {E(y)}�.
The second term in the concluding expression vanishes because QXX = 0,
and

tr(I − PX) = n − tr(I2) = n − 2 .

Hence E(σ̂2
† ) = σ2(n − 2)/n, and an unbiased estimator of σ2 is obtained by

reducing the denominator in σ̂2
† from n to n − 2:

σ̂2 =
1

n − 2
e�e . (1.16)

This is the estimator of choice by the vast majority of analysts. However, the
appropriateness of this choice depends on how σ̂2 is going to be used. Often
it appears in the denominator of a ratio of independent unbiased estimators,
σ̂2

A/σ̂2, of two unrelated variances σ2
A and σ2. This ratio is biased for the ratio

of the targets, σ2
A/σ2, because

E
(

σ̂2
A

σ̂2

)
= E

(
σ2

A

)
E
(

1
σ̂2

)
and E(1/σ̂2) �= 1/σ2. The property of no bias is lost by the nonlinear transfor-
mation. We postpone efficient estimation of σ2 and 1/σ2 to Section 2.3. The
‘2’ in n − 2 is referred to as the two degrees of freedom lost due to not know-
ing the values of β0 and β1 . If one of the regression parameters, say β1 , were
known, σ2 would be estimated without bias by (1.16), with e = y− β̂0 −β1x,
but with the divisor n − 1. If both β0 and β1 were known, e would be equal
to ε, and ε�ε/n would estimate σ2 without bias.

1.2.1 Prediction

A frequent task associated with ordinary regression is to estimate the value of
the outcome y in response to a specific stimulus x∗. In the usual setting that
motivates this problem, the process generating the values of y is triggered by
the values x1 , . . . , xn , at each turn independently from the previous outcomes
y, conditionally on the values of x. We would like to anticipate the value of
y that would be observed when the process is set off next time, with the
value xn+1 = x∗. Hence the commonly used term prediction for this problem,
although it is equivalent to estimating the linear combination x∗β of the
regression parameters for x∗ = (1, x∗).

It may seem that the problem is solved because ŷ = x∗β̂ is a suitable
predictor of the outcome in response to x∗. It is unbiased, as E(ŷ) = x∗β, and
its variance is
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var(ŷ) = σ2x∗ (X�X
)−1

x∗�

=
σ2

n
+

σ2

Sx
(x∗ − x̄)2 , (1.17)

where Sx =
∑n

j=1(xj − x̄)2 is the corrected sum of squares of the stimuli ap-
plied thus far. For the identity in (1.17) we used the centred parameterisation
(from x to x◦ = x − x̄), for which X◦�X◦ is diagonal. Note that in addition
to the sampling (or prediction) variance in (1.17) the anticipated outcome y
is associated with the residual variance σ2, which is inherent to the studied
process. The sampling variance can be reduced by increasing n and Sx , but σ2

is a source of uncertainty that cannot be affected, because prior to applying
the stimulus x∗ we have no information about the next deviation ε∗.

The predictor ŷ = xβ̂ can be improved. If the slope β1 were equal to zero,
the sample mean of the outcomes, ȳ, would be more efficient, because its bias
would be B(ȳ;x∗β) = 0 and var(ȳ) = σ2/n. The difficulty is that we cannot
establish whether β1 = 0. In any case, the bias incurred by using ȳ when β1 is
not zero, but not very large in absolute value, may be more than compensated
by the variance reduction, equal to σ2(x∗ − x̄)2/Sx ; see (1.17).

To find the more efficient of the predictors ȳ and ŷ of x∗β, we compare
the two estimators, assuming the linear regression model in (1.11). We have

MSE (ȳ; x∗β) =
σ2

n
+ β2

1(x∗ − x̄)2 ,

so (1.17) implies that ȳ is more efficient than ŷ when β2
1 < σ2/Sx . Thus, we

might choose ȳ when β̂2
1 < σ̂2/Sx , although it would be more appropriate to

estimate β2
1 without bias and compare β̂2

1 − var(β̂1) with σ̂2/Sx instead of β̂2
1

with σ̂2/Sx .
A more ambitious approach searches for the combination of ȳ and ŷ that

has the smallest MSE. We consider the combinations

ỹ(b) = (1 − b)ŷ + bȳ , (1.18)

evaluate their MSE as a function of b, and choose the coefficient b∗ for which
MSE {ỹ(b); x∗β} attains its minimum. This coefficient will turn out to depend
on the model parameters β1 and σ2, so we will have to resort to its estimation
and consider the associated loss in efficiency.

The sought MSE is

MSE {ỹ(b); x∗β} = (1 − b)2σ2

{
1
n

+
(x∗ − x̄)2

Sx

}
+ b2

{
σ2

n
+ β2

1(x∗ − x̄)2
}

+ 2b(1 − b)
σ2

n

= b2(x∗ − x̄)2
(

σ2

Sx
+ β2

1

)
− 2b(x∗ − x̄)2

σ2

Sx
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+σ2

{
1
n

+
(x∗ − x̄)2

Sx

}
. (1.19)

This is a quadratic function of b, with a positive quadratic coefficient, so it
has a unique minimum, attained for

b∗ =
σ2/Sx

σ2/Sx + β2
1

=
1

1 + Sx ω
, (1.20)

where ω = β2
1/σ2 is the relative squared slope. If ω were known, x∗β would

be predicted with MSE

MSE {ỹ(b∗); x∗β} =
σ2

n
+

β2
1(x∗ − x̄)2

1 + Sx ω
.

This is smaller than both var(ŷ) and MSE(ȳ; x∗β), because these two quan-
tities correspond to the choices b = 0 and b = 1 in (1.18), and they were
rejected in favour of a compromise, b∗ ∈ (0, 1), given by (1.20).

It remains to address the uncertainty about ω. One solution, parallel to
the development illustrated by Figure 1.1 for ANOVA, is to identify an upper
bound for ω, denoted by Ω, and explore how the estimator (or predictor)
ỹ (b∗Ω), which is optimal when ω = Ω, performs when in fact ω < Ω. For a
fixed coefficient b and variance σ2, MSE {ỹ(b); x∗β} is an increasing function
of σ2:

MSE {ỹ(b); x∗β} =
σ2

Sx
(x∗−x̄)2

{
b2 (1 + Sxω) − 2b

}
+σ2

{
1
n

+
(x∗ − x̄)2

Sx

}
;

(1.21)
see (1.19). Thus, for any fixed σ2, we minimise the MSE for the plausible
scenario that is least favourable for predicting x∗β. Therefore the estimator
ỹ(b∗Ω) is more efficient than ŷ for any pair of plausible values of σ2 and β1 and
is more efficient than ȳ from a certain value of β2

1 on. The loss of efficiency
due to not knowing ω is

MSE {ỹ(bΩ); x∗β} − MSE {ỹ(b∗); x∗β}

= σ2 (x∗ − x̄)2

Sx

{
1 + Sx ω

(1 + Sx Ω)2
− 2

1 + Sx Ω
+

1
1 + Sx ω

}
= σ2(x∗ − x̄)2

Sx

1 + Sx ω

(Ω − ω)2

(1 + Sx Ω)2
.

This is an increasing function of Ω for any ω < Ω. Therefore, specifying a
smaller Ω is advantageous, so long as it is still an upper bound for ω. By
reducing Ω, the squared coefficient b2 increases, and with it the curvature
of the MSE in (1.21) as a function of σ2ω = β2

1 . As a consequence, false
confidence in the small size of Ω is punished more harshly the smaller the
value of Ω. Note the close parallels with our conclusions in Section 1.2.1.
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In Section 2.3, we describe a general theory of which these two cases are
particular applications.

Suppose we use for combining ŷ and ȳ a value ω† that differs from the
population quantity ω. We explore how large an error |ω† − ω | can be com-
mitted before the synthetic estimator ỹ is no longer more efficient than both
ŷ and ȳ. By comparing (1.17) and (1.21), we conclude that ỹ based on ω† is
more efficient than ŷ so long as

σ2

Sx
(x∗ − x̄)2

{
1 + Sx ω

(1 + Sx ω†)2
− 2

1 + Sx ω†

}
< 0 ;

that is,

ω < 2ω† +
1
Sx

.

By similar operations, we conclude that ỹ is more efficient than ȳ so long as

σ2(x∗ − x̄)2
{

1 + Sx ω

(1 + Sx ω†)2
− 2

1 + Sx ω† + 1
}
− β2

1Sx(x∗ − x̄)2 < 0 ,

which reduces first to

Sx

(
ω + Sx ω†2

)
< Sx ω

(
1 + Sx ω†)2

and then to the condition

ω >
ω†

2 + Sx ω† .

The two conditions,

ω†

2 + Sx ω† < ω < 2ω† +
1
Sx

, (1.22)

are not very restrictive. Even if we err by setting ω† to one-half or double of
ω, ỹ remains more efficient than both ŷ and ȳ. Further, as we always choose
a positive ω†, the right-hand condition is redundant when Sx ω < 1.

In practice, ω is not known, so we have to estimate it and use the coefficient
b̂ = 1/(1+Sx ω̂) or another estimator of b. Efficient estimation of b is difficult
because b is a nonlinear function of the model parameters β1 and σ2. Although
β1 is estimated by β̂1 without bias, β̂2

1 is biased for β2
1 ;

E
(
β̂2

1

)
= β2

1 +
σ2

Sx
.

Hence, β̂2
1 − σ̂2/Sx is unbiased for β2

1 . By substituting this estimator in b, we
obtain

b̂ =
σ̂2

β̂2
1 Sx

.
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For estimating b this is not satisfactory because, unlike b, b̂ may attain values
in excess of 1.0. Dividing by β̂2

1 , which may attain arbitrarily small positive
values, is problematic even when β1 is estimated by β̂1 efficiently. An obvious
improvement may be achieved by adding a positive constant to the denomi-
nator in b̂; if we add unity we obtain the naive estimator of b. Similarly, even
though σ̂2 is unbiased and independent of β̂1 , its reciprocal 1/σ̂2 is biased for
1/σ2. However, even if we corrected for the bias of 1/σ̂2, this would be in vain
as b is a distinctly nonlinear function of both σ2 and 1/σ2.

Although efficient estimation of b is an open problem, we can explore
how ‘tampering’ with the naive estimator b̂ affects the predictor ỹ(b̂). Of
particular interest is avoiding very poor performance of ỹ. By choosing b =
0, and therefore ỹ(0) = ŷ, we act conservatively and obtain an unbiased
predictor. In contrast, choosing b = 1 might seem to be reckless because,
without any prior information, there is no limit on the bias, and therefore not
on the MSE of ỹ(1) = ȳ either. This suggests that, since MSE {ỹ(b); x∗β} is a
smooth function of b, we are on safer ground when we use an estimator b̂ that
underestimates b. Some efficiency may be lost in the process, but we protect
our inference about x∗β against very poor performance in some settings that
are plausible.

An obvious way to underestimate b or to reduce E(b̂) − b, which may be
positive, is to use rb̂ with a positive factor r < 1. It is difficult to recommend
a factor r universally, or even for a specific setting, because it should ideally
be informed by the clients’ preferences, willingness to take risks, and prior
information. Playing out some scenarios by simulations may be informative,
without taxing the analyst’s theoretical prowess.

1.3 Model Diagnostics

Models are our intermediaries between data and inferences. We specify one
or several models that capture what we know about the studied process and
attempt to narrow down the range of plausible distributions that govern this
process.

A model is associated with its fit, our data-based estimator of the model
parameters, such as β̂ for β in (1.13) and σ̂2 for σ2 in (1.16). Having fitted
a model, it is advisable to assess whether the model is appropriate—whether
there are any signs that some of the assumptions made, such as linearity and
normality in ordinary regression, are violated. Such procedures are referred
to as model diagnostics.

In the ordinary regression model, most assumptions focus on the devia-
tions ε. If we ignore the uncertainty about the regression parameters β, the
deviations ε coincide with the residuals e. Thus, we may explore whether the
residuals e have the appearance of a random sample from a centred normal
distribution, bearing in mind the licence taken by equating ε to e.
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Checking the assumption that E(ε) = 0 requires no scrutiny because
e�1 = 0 by construction, as e�X = 0 and 1 is a column of X. A histogram
of e is likely to be useful only for large samples, when the shape of the empir-
ical distribution of e can reasonably be expected to resemble its underlying
distribution. For example, substantial asymmetry of e is a telltale sign of a
departure from normality.

Outliers can be regarded similarly. A component of e (or of any other
vector) is called an outlier if it stands out among the other components, for
instance, by being far away from the vast majority of them. A small group of
values may also be outliers, if they are far away from the remaining values,
even though they may be close to one another. The obvious question arises:
when is a group small enough to be declared as a set of outliers? There is no
clinical answer. However, both situations, when a group of values is an outlier
and when it represents another population or process, indicate a violation of
the assumptions. It may result from using an inappropriate variable x or from
its inappropriate definition, or from the model being too simple a description
of the studied process. But it may be that one or a few observational units
behave exceptionally. Models have no intrinsic right to be valid.

The residuals can be regarded as random variables; their joint distribution
can be derived from the identity

e = y − Xβ̂

= QX y = QX ε .

Thus, each residual ej is normally distributed, and jointly they have the mul-
tivariate normal distribution Nn(0, σ2QX). The variance matrix of this dis-
tribution is singular because its rank is n − 2; QX has the unit eigenvalue
with multiplicity n − 2 and the zero eigenvalue with multiplicity 2. Further,
each diagonal element of QX , equal to var(ej)/σ2, is smaller than or equal to
unity. However, the variances var(ej), j = 1, . . . , n, are not necessarily equal
to one another. The residuals ej can be standardised, adjusted to have identi-
cal distributions, by the transformation e†j = ej/

√
(QX)jj . The jth diagonal

element of QX is

(QX)jj = 1 − 1
n
− (xj − x̄)2

Sx
.

It is exceptionally small only when xj is in a much greater distance from the
mean x̄ than the remaining stimuli xj′ , j′ �= j. In fact, when n > 2, the
only configuration of the stimuli xj that results in one diagonal entry of QX

vanishing is that n − 1 values of xj coincide and the remaining one differs.
One or a few values xj distant from the remainder raise the following

problem. As the linear regression fit minimises the sum of squares of the
residuals, it is averse to large residuals. For a distant (outlying) stimulus xj ,
a small change in β̂1 , interpretable as a rotation of the regression line around
β̂0 + β̂1x̄, results in a much greater change of the residual ej than for the
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Fig. 1.3. Example of high leverage in linear regression. The same set of observations
(xj , yj) are plotted in the two panels, with a high-leverage observation added in the
right-hand panel (encircled).

other observations. Therefore, the model fit will come close to matching the
outcome yj , and so the corresponding residual ej has a small variance.

Figure 1.3 gives an illustration. The two panels contain the plot of the
same 63 pairs of values (xj , yj), but another pair (x64 , y64) is added in the
right-hand panel. The solid line in either panel is the fit to the respective
63 and 64 displayed observations, and the dotted line indicates the other fit.
The substantial change in the regression (see the subtitles) is brought about
by the single observation No. 64 (marked by a circle). This observation is
said to have high leverage. High leverage is connected to the small value of
the corresponding diagonal entry of QX . Observations with high leverage are
best avoided because with them the inference is strongly influenced by a single
(or a few) observation. Note that high leverage is a property of the stimuli
(values of x) and is related to the outcome solely through x.

For outlying stimuli, the standardisation of ej to e†j amounts to a sub-
stantial inflation, to compensate for the propensity of the fit to match the
outcomes. Both ej and e†j are problematic as representations (estimates) of
the deviation εj , even more so than their counterparts for the remaining ob-
servations. In any case, εj are mutually independent, whereas ej are not.

A useful device for diagnosing nonlinearity of the regression E(Y |X = x)
is to plot the residuals against the values of x. Any pattern of the residuals in-
dicates a departure from linearity. It is meaningful to consider departures from
independence only when there are credible alternatives, such as dependence
due to the order of the observations, especially when the order (sequencing)
relates to time. Patterns in the plot of the order number against the residuals
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may indicate dependence, although we have to take into account the influence
of the values of the stimuli. This is particularly difficult when the stimuli are
administered in the ascending or descending order of its values. The study
design should attend to this problem by mixing up the order of the values of
xj , so that they do not follow any obvious pattern.

Departures from homoscedasticity, that is, from equal residual variance,
can be brought on by recording the value of the outcome on an inappropriate
scale. For example, the dependence of the residual variance on the stimulus
can be greatly reduced by a particular transformation of x or y or both. To
see this, suppose the linear model in (1.10) is appropriate. Then

E {exp(yj) |xj} = exp
(
xjβ +

σ2

2

)
,

var {exp(yj) |xj} = exp
(
2xjβ + σ2

) {
exp(σ2) − 1

}
. (1.23)

This suggests that heteroscedasticity (the negation of homoscedasticity) goes
hand in hand with nonlinearity. That is the case when the underlying mech-
anism, with x and y recorded on suitable scales, relates y to x linearly. Of
course, this need not be the case; a transformation may arrange one assump-
tion to be palatable at the expense of another. More general models are the
way to resolve this problem.

By way of a summary of model diagnostics, concerns about the validity
of the assumptions, Figure 1.4 gives examples of departures from normality,
linearity, homoscedasticity, and independence. The panels in the left-hand col-
umn plot the outcomes and stimuli, and the panels in the right-hand column
contain the graphs of residuals suitable for assessing the type of departure
concerned.

1.3.1 Simulation-Based Diagnostics

The examples in Figure 1.4 were constructed deliberately to be clear cut. In
practice, we may come across plots of residuals for which it is much more
difficult to conclude whether they indicate a failure of a particular model
assumption. In some instances, what appears to be an obvious pattern of the
residuals may in fact arise purely by chance; that is, it would not be present in
the analysis of a replication of the study. It may also arise as a consequence of
the configuration of the values of x, and so it would be present in replications.
A random sample from a normal distribution is not always ‘normal’ in an
exemplary way. This calls for caution and a balance in the eagerness to identify
patterns in the residuals e that contradict the assumptions about ε. The
more detailed an inspection of the data we conduct, the more likely we are
to discover an aberrant pattern, but at the same time, an aberrant pattern
is more likely to appear even when the corresponding assumption is satisfied.
There is no ready formula for the balance of thoroughness and sound judgment
of what indicates a genuine model violation.
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Fig. 1.4. Examples of departures from the assumptions of the linear model and
diagnostic plots.
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An alternative approach to model diagnostics is based on simulations.
The analyst defines a feature; this may be a statistic, table, graph, or any
other object and the process for generating it. The feature is evaluated on
the observed data; the result is called the realised feature. Next, outcomes are
generated by simulation from the fitted model and the feature is evaluated
for each replication, generating several simulated (replicate) features. The
realised and simulated features are shuffled, so that the location of the realised
feature is not known. If the realised feature stands out among all the features,
for instance, if another analyst identifies it as outlying, the model should be
rejected as unsuitable (not fitting well).

A feature may comprise several elements. For example, a graph may com-
prise several panels, and an array (table or matrix) of several sub-arrays or
individual entries. A feature may comprise elements of different kinds, such
as a graph and a matrix (e.g., the matrix may be displayed in the graph). If
each element can be regarded as a feature on its own, the collection of the
elements is called a multifeature. The purpose of a multifeature is to avoid the
natural human inclination to be more likely to spot something unusual when
several sets of objects are inspected. It is practical to generate 19 (49 or 99)
replicate features, so that false identification of a feature is associated with
probability 0.05 (0.02 or 0.01).

How should a feature be defined? Matching its choice to our concerns
(a priori suspicions) is the principal difficulty, but it is shared to a large
extent with the established methods discussed earlier. A residual plot can
be regarded as a feature, so no innovation is required. However, any other
object is suitable, and it is up to the analyst’s ingenuity to match the concern
about the studied process and the model applied with a suitable feature. For
example, if symmetry of the distribution of the deviations is a concern, a
suitable feature is

s = (eU + eD)�(eU + eD) ,

where eU and eD are the permutations of the residuals e in ascending and
descending order, respectively. We note in passing that the symmetry plot is
defined as the scatterplot of eU and −eD, although it suffices to plot these
values for only half the units.

The rationale for using s as a feature is that s = 0 corresponds to per-
fect symmetry; otherwise s is positive. A greater value of s corresponds to
greater asymmetry, although the residual variance σ2 also exerts an impact
on the distribution of s. Randomness in the model used for simulation causes
the replicate values of s to be positive, but the distribution of these values
indicates how large they tend to be when the distribution is in fact symmetric.

A disadvantage of this simulation approach is that the evidence, in the
form of 20 (50 or 100) replicates, is awkward to present in a publication that
has to be concise and contained in a few pages. However, good practice should
be granted primacy over good appearance. Of course, a single-number feature
does not suffer from this drawback. Even 100 features (99 simulated and 1
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Fig. 1.5. Stem-and-leaf plot of the realised (highlighted) and 99 replicate values of
the statistic s as a diagnostic feature.
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Fig. 1.6. The realised and a simulated (replicate) set of residuals summarised by
the stem-and-leaf plot of the feature s in Figure 1.5.

realised) can be compactly presented in a stem-and-leaf plot, with the realised
feature highlighted. If it is at the extreme, among the highest or lowest of the
values, it is appropriate to reject the model.

Figure 1.5 displays the stem-and-leaf plot of the one realised and 99 repli-
cate values of the statistic s for an example of non-normality similar to that
displayed in the top panels of Figure 1.4. The realised value, equal to 3.01, is
highlighted. Being by far the largest, it leaves little doubt that symmetry, and
hence normality, is not a suitable assumption for the model deviations. Fig-
ure 1.6 displays the histograms of the realised set of residuals and one set of
replicate residuals. It is much more difficult to make a diagnostic assessment
based only on these two histograms. The histogram itself could be adopted as
a feature, but the statistic s is much more practical for that purpose.
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Finally, we discuss what action to take when we identify a contradiction of
the data with the model. The generic answer is to review the model, for exam-
ple, by replacing the inappropriate assumption with an alternative or a more
general one. Thus, the analyst has to have in store models, methods for fit-
ting and interpreting them, and diagnostic procedures for them. This does not
resolve everything, however, because every diagnostic procedure is a process
that leaves a trace, however subtle, on the distribution of the estimators, and
of sample quantities in general.

By way of an example, suppose a particular model A is fitted and a diag-
nostic procedure applied, the outcome of which is to either approve the model
or fit a more general model B based on which the target θ would be esti-
mated. Suppose the models are associated with estimators θ̂A and θ̂B . Then
the estimator of θ is neither θ̂A nor θ̂B , but their mixture

θ̂AB = I θ̂A + (1 − I)θ̂B ,

where I is the indicator of adopting model A after the diagnostic procedure.
If the decision based on the diagnostic procedure is subject to uncertainty,
θ̂AB need not be efficient, even if both θ̂A and θ̂B are efficient when the cor-
responding model, A or B, is appropriate. In brief, our inferences are not as
efficient when we are uncertain about the model assumptions (and have to
check them), as when we are certain (and rightly skip some or all diagnostic
procedures). This should not be regarded as an invitation to skip diagnos-
tics, because the penalty for unjustified confidence is unpredictable. But the
diagnostics does not come free, even if we can conduct it effortlessly and com-
petently. Intelligence, in the form of prior information about the behaviour of
the studied processes, is irreplaceable.

It is important to bear in mind that diagnostic procedures can find a con-
tradiction with the assumptions of a model but cannot confirm the model. Fail-
ure to find a contradiction is more appropriately interpreted as ignorance—not
knowing whether the model is appropriate or not. However, a well-conducted
search, using features targeted for the particularly suspect points in the model-
building exercise, can be pragmatically regarded as giving some comfort that
the model is appropriate, or that the outcomes are not in any glaring contra-
diction with the model assumptions.

1.4 Toward Causal Inference

The methods discussed thus far deal with observable (visible) properties of the
outcomes—properties or features that can be constructed from the outcomes.
Some assumptions of the linear model cannot be confirmed by inspecting the
data because departures from them leave no trace in the outcomes. Foremost
among them are that the stimuli are defined up front, prior to observing the
outcomes, and that no influences other than the subject’s stimulus are at play.
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The ultimate understanding of a process is attained when we can influence
(manipulate) the outcomes by the stimuli directly, without intermediation of
any other variables. In such a case, we say that the stimulus is a cause of the
response. Suppose the response is related to the stimulus by the linear model
y = β0 + β1x + ε. If x is a cause of y, then for every unit j a change of x by
∆, to x + ∆, brings about the change, called the effect of the response, from
y to y +β1∆. The effect usually depends on ∆ but may also be specific to the
unit and the value of x. When we can engage a unit in the study only once,
we cannot apply both stimuli x and x + ∆ (on separate occasions) but may
nevertheless speculate what the response would be to the stimulus that was
not applied.

Regression is often used when x cannot be manipulated because x is an
inherent attribute or characteristic of the unit. This does not amount to an
abuse of the regression, so long as we do not interpret the results as inferences
about causes and effects. The most common example of this is estimation
of the ‘sex effect’ and ‘age effect’, the difference between men and women,
or young and old, with respect to a particular outcome variable, such as in-
telligence, a physical attribute, health, attitude, or the like. The term effect
would be meaningful in either of these contexts only if we had a straightfor-
ward means of altering subjects’ sexes or ages in isolation, without any impact
on the subjects in any other way. This is clearly an absurdity, for the time
being at least, and so are the associated ‘effects’—it is more accurate to refer
to them as (average) differences. We revisit this issue in Chapter 7.

1.5 Designing Regression Studies

Linear regression can be applied to any dataset in which one variable is iden-
tified as the stimulus and one as the outcome. However, interpretation of the
results is much easier for a designed study, in which the values of the stimuli
are set by the analyst. So, when design is feasible and can be afforded, how
should the sample size, the values of x, and other details be chosen, and how
should the study be conducted?

The first consideration should be given to the desired inferences—the sub-
stantive questions (purposes) that have generated the impulse to conduct the
study. Usually there is a collection of questions, and so some compromise
of the purposes is necessary. Suppose a population quantity, such as x∗β,
should be estimated with a particular precision. Equation (1.17) indicates
that var(x∗β̂) is a decreasing function of the sample size n and the corrected
sum of squares Sx , so these two quantities should be sufficiently large; we
require a sufficiently large sample without neglecting the dispersion of the
covariate X. Sample size contributes to an increase of Sx , as does increased
dispersion of the values of X.

The squared deviation (x − x̄)2 is a factor in MSE(ȳ; xβ), var(x∗β̂), and
the associated synthetic estimator [see (1.21)] so the optimal choice of x̄ is the
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stimulus for which we wish to make a prediction. Prediction is usually desired
for a range of values of X; then x̄ should be chosen near the middle of this
range, taking into account the relative importance of the inferences for the
various values of X.

The association of the outcome with the stimulus X need not be linear, but
when restricted to a narrow range of the values of X it may be indistinguish-
able from linearity. Therefore, we should resist applying a very wide range
of values of X, unless the shape of the (nonlinear) association is of interest,
we know that the regression is linear, or we want to establish whether linear-
ity applies for a wide range of values of X. Observations with high leverage
should be avoided—esoteric or uneven distributions of the values of X often
make the subsequent inferences problematic.

The term interpolation is used for approximating the value of a smooth
function f at a point x based on points x1 and x2 such that x1 < x < x2 .
Extrapolation is the complement of interpolation; it refers to approximating
the value of f at x based on points x1 and x2 such that x �∈ (x1 , x2). This
term is borrowed for prediction; extrapolation refers to predicting the out-
come y for a stimulus x∗ that lies outside the range of values xj used in the
study. Such extrapolation should be avoided for two reasons. First, MSE of
the prediction, using ŷ or ỹ, is an increasing (linear) function of (x∗ − x̄)2;
this is really an argument against predicting a large distance from the average
stimulus x̄. Second, the regression of y on x may be (approximately) linear
and homoscedastic for a narrow range of stimuli, but in a wider range the
departure from linearity or homoscedasticity may be substantial. Prediction
in a long distance from x̄ is then problematic. Extrapolation can be avoided,
in principle, by anticipating at the planning stage the range of values of x for
which prediction will be sought. By setting the stimuli in a wider range, we
increase the summary Sx and reduce the variance of the prediction, so long as
we do not stretch the assumption of linearity too far. An alternative is to con-
duct two or several studies that cover the entire range of x in which inferences
might be sought and base each prediction on the study for which it amounts
to interpolation. Nonlinear regression and other generalisations, discussed in
Chapter 10, offer other analytically more challenging alternatives.

Some of the model assumptions call for particular arrangements in the
conduct of the study. Independence of the deviations is ensured when the
incidents of outcome (data) generation for the subjects do not interfere with
one another. If the values of Y are realised in a sequence, a realisation should
not be affected in any way by the previous realisations. Any conscious action
by the personnel conducting the study, or a mechanism that acts outside our
control, that excludes responses based on their values y, is highly problematic.
If we have an opportunity to discard observations that we do not like, our
agenda, for instance, to distort the inference, can be very successful, especially
when the residual variance σ2 is relatively large. Ideally, all such action should
be ruled out; when it cannot be, it should be documented in detail, with the
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reasons for exclusion. Its impact, in replications, can in principle be explored
by simulations.

1.6 Observational Studies and Experiments

We conclude this chapter with a discussion of types of studies. In observa-
tional studies, values of variables are recorded without any intention to influ-
ence them by imposition, incentives, or any other means. By analysing such
studies we can compare subpopulations (strata) defined by the values of the
covariates—we can learn about the existing aspects of the studied population.

The purpose of experiments is to make inferences about effects, in the
sense of causal analysis. The variable that represents a cause is called the
treatment . Unfortunately, the values of such a variable are also called treat-
ments; to distinguish between them, we shall use the terms treatment variable
and treatment for the variable and value (type), respectively. Further, an ef-
fect refers to a comparison (contrast), so it has to be qualified by the two
treatments that are being compared. Thus, we are interested in the effect of
treatment B over A on the outcome—the change in the outcome that is at-
tributable to the change of the treatment from A to B. In the ideal setting, the
treatments are set by design, in such a manner that the treatment variable is
not associated with and exercises no influence on any of the other (incidental)
variables. As a consequence, any differences observed among the groups of
subjects defined by the treatment applied can be attributed to the sampling
variation and systematic differences among the treatments. The sampling vari-
ation is limited by the sample size (design), enabling us to make inferences
about the systematic differences that can be interpreted as average effects.

For simplicity, we focus on a simple experimental design used for compar-
ing two values of a treatment variable, A and B. The subjects (experimental
units) administered a treatment form the treatment group named after the
treatment. If administration of both treatments is equally expensive, symme-
try suggests that the same number of subjects should be assigned to each
treatment. The model for this setting is

yjk = µk + εjk , (1.24)

where k is the treatment (A or B) and j = 1, . . . , n1 = n2 = 1
2n identifies the

subject within each treatment group. The distribution of εjk is immaterial for
the discussion, although we assume that it does not depend on the treatment
group, has a finite variance σ2, and the distinct deviations εjk are uncorre-
lated. To be able to attach a meaning to µk , we assume that E(εjk | k) = 0
within each treatment k.

With the normality assumptions for ε, the model represented by (1.24) is
ANOVA with two categories, A and B. At the same time, it is a special case
of the linear regression model, with intercept µA and slope ∆µ = µB − µA ,
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and the covariate which indicates whether treatment B is applied (x = 0 for
A and x = 1 for B).

The target of estimation is the treatment difference ∆µ. It is estimated
naively by ∆µ̂ = µ̂B − µ̂A , where µ̂k , k = A or B, is the sample mean of
the outcomes in group k. The estimator ∆µ̂ is unbiased, and its variance is
var(∆µ̂) = 2σ2/n. Setting the sample size n involves balancing the outlay on
the study against the precision of the inferences. The outlay on the study can
usually be approximated as a linear function of n, C +2Dn, with its absolute
term C equal to the costs that are not affected by the sample size, and unit
cost D associated with each subject. If we could construct a function that
expresses the (monetary) gain in terms of precision, as G

(
n;σ2

)
, finding the

optimal sample size would be relatively easy, for instance, by maximising the
difference G

(
n;σ2

)− C − 2Dn.
Several factors make such optimisation difficult. First, the variance σ2 is

usually not known, although the study designer may have some idea of its
value. Next, summarising the costs by monetary values is often nontrivial.
When human subjects are involved, especially when they are patients who
suffer from a particular condition (for which the treatments are intended),
ethical ‘costs’ are involved, and these are difficult to convert to monetary val-
ues. Further, the gains achieved as a result of the study depend not only on
the precision but also on the difference ∆µ, which itself may not represent
fully the benefits derived from the tested (new) treatment. In a commercial
setting, the gains may be strongly influenced by actions of competitors and are
therefore subject to considerable uncertainty. And finally, one study is often
only part of a sequence of studies that may lead to a (nearly) definite conclu-
sion about a treatment. Therefore, the study design cannot be considered in
isolation from its convoluted context.

An important element of the study design is ensuring that the difference
∆µ can be regarded as the effect of the treatment and interpreted as the hy-
pothetical difference between the mean outcomes in the two treatment groups
that comprise perfectly matched pairs of subjects. In this hypothetical setting,
a pair of clones is available for each of n subjects. One clone is assigned to
treatment A and the other to treatment B. This ensures that the comparison
of the two treatment groups is of like with like. Instead of this unrealistic sce-
nario, the 2n subjects are assigned to the treatment groups at random, paying
no respect for any of the subjects’ attributes. This process (and principle) is
referred to as randomisation. Randomisation does not arrange the two groups
to be identical in any respect, but in a large number of replications the groups
would be nearly identical on average.

Randomisation is problematic in very small experiments because chance
may bring about substantial differences among the subjects prior to the ex-
periment. However, any form of deliberate allocation, based on the values
of relevant recorded variables threatens to introduce differences between the
treatment groups due to variables that were not recorded—variables that are
relevant but have not been recognised as such. In any case, small experiments
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with subjects that have substantial a priori differences on relevant variables
are problematic, because the analysis cannot disentangle the contributions of
the a priori differences and the differences due to the administered treatments
to the estimator ∆µ̂.

1.6.1 Human Subjects

When humans are involved, as subjects, informants or administrators of the
treatments, it is necessary to ensure that their conduct is not influenced by
any prejudice (or valid information) they may have about the treatments.
In clinical trials, in which medical treatments and procedures are compared,
this is enforced by making the treatments anonymous. For example, when
the treatments are drugs, alternative formulations are prepared so that they
are indistinguishable by sight, taste, or smell (e.g., by pills having identical
coating). This principle is referred to as blinding. Double-blinding is an es-
tablished practice in clinical trials in which neither the subject (patient) nor
the administrator (nurse) is informed about the identity of the treatment.
A treatment may be compared with ‘no action’. To disguise the latter, the
principle of blinding calls for administering the same procedure as for the
active treatment, but with the active ingredient removed, with neither the
administrator nor subject informed about it or being able to notice it when
the treatment is administered. Such a treatment is called placebo. Having a
placebo treatment group protects the study from an uneven influence (in the
everyday care and interaction and the like) exercised by the staff who admin-
ister the treatments. The identities of the treatments are disclosed for the sole
purpose of the analysis at the conclusion of the trial.

The model in (1.24) assumes that the treatment difference (or effect) ∆µ
applies to every member of the relevant population. That is, if a member of
the population could be subjected to both treatments A and B, independently
and without any influence (interference) of the other treatment, the difference
of the responses would be ∆µ or would differ from it by small values that
can be attributed to the measurement process and the inexplicable everyday
influences. Alternatively, if the pair of treatments A and B could be applied in
such a manner in replications, the average treatment difference would be the
same value ∆µ for every subject. In practice, not even one pair of treatments
can be applied in this way when the (healing) effect of a treatment cannot be
wiped out instantly. The hypothetical difference between the outcomes of two
such administrations is therefore called a counterfactual effect.

The assumption of independent deviations εjk can be interpreted as no
interference among the subjects. For a given treatment, the outcome for one
subject is not affected in any way by the outcome for another subject. When
subjects do not communicate with one another, this is a reasonable assump-
tion, although some correlation might still be introduced by the staff admin-
istering the treatments and caring for the subjects.
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The assumption of universal ∆µ, applicable to every member of the pop-
ulation, is often problematic, because it assumes that we have identified the
scale for measuring the responses that is linear. If a scale has this property
its nonlinear transformation does not, unless there are no differences in the
outcome variable among the members. Thus, the treatment effect ∆µ may
be constant on one scale and variable on another. Furthermore, the treat-
ment effect may be variable on any scale, for instance, when one treatment
is more beneficial to one subpopulation, the other treatment to another, and
the treatments are equally (or indistinguishably) beneficial to the remainder
of the population. Variable treatment effect is also referred to as treatment
heterogeneity.

Clinical trials, and any other experiments on human subjects, cannot select
subjects by any sampling design because the ethical standards dictate that
participants have to give informed consent—they have to be informed about
the nature and substance of the trial, the risks involved, and the role of the
subjects in the trial, including that none of their statutory rights would be
affected in any way if they refused to participate or agreed but subsequently
withdrew from participation at some stage. Also, a sampling frame of the
population of sufferers from a particular condition usually cannot be compiled.
In any case, the target population of the study are the future sufferers, some
of whom are yet to contract the condition. Admittedly, we can reasonably
assume that current sufferers are a population very similar to the sufferers in
the future. In brief, a clinical trial is both an experiment and a survey, but
the aspects associated with good survey design cannot be implemented. Yet,
under treatment heterogeneity they are not innocuous.

As inclusion in the study cannot be controlled by a sampling design, the
participating subjects may be a poor representation of the relevant popula-
tion. When the treatment effect is variable, the representation of the subject-
specific treatment effects may be distorted in the sample. This problem is not
alleviated by randomisation. As an example, suppose treatment B is superior
to treatment A for 50% of the population, inferior for 20%, and is about the
same for 30%. The recruitment process may conspire to select mainly subjects
for whom treatment B is inferior, likely to lead to the inappropriate conclusion
that B is inferior to A. However, estimating the distribution of treatment ef-
fects requires unrealistically large samples that in practice cannot be afforded,
and identifying subpopulations for whom a treatment is (uniformly) beneficial
is a problem that has to rely on the expertise of the medical profession.

1.6.2 Observational Studies and Estimation of Effects

Experimental design is essential, although not always sufficient, for making
inferences about effects. Drawbacks of experiments include their relatively
high expense, difficulties with their conduct on large samples and, over long
periods of time, adherence to their protocols and maintenance of the realistic
nature of the study in the setting in which control is imposed. Observational
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studies have fewer restrictions in their protocols, can usually afford substan-
tially greater sample sizes, and can be conducted over longer periods of time.
But they yield much less credible inferences or require a host of assumptions
and prior information to support such inferences.

In an observational study, a sample of subjects from the relevant popula-
tion is interviewed or observed. For contrast with experiments, we consider
a study in which the treatment applied, A or B, to a subject is recorded
together with the response to the treatment. As no control was exercised
over the treatment applied in the past, the treatments could not have been
randomised; subjects or their representatives selected their treatments and
exercised their free will, sometimes with minimum supervision, in adhering to
the details of the treatment. Of course, they were aware of which treatment
was applied and were informed about alternatives. Lack of randomisation and
blinding are serious barriers to unbiased estimation of the (average) treatment
effect. The bias cannot be reduced by increasing the sample size of the study.
With large sample size it becomes the dominant contributor to the MSE of
the estimator of the treatment effect, even when the estimator is unbiased for
the treatment difference, the difference between the means of the outcomes
within the treatment groups.

Any arrangements to combat the problems of subjects having selected
themselves into treatment groups can at best be regarded as a limitation of
the damage caused by the lack of experimental control. One approach finds
a match for each subject in one treatment group with a subject in the other
treatment group. Two such subjects have the same values on a set of matching
variables. These variables have to be selected with care; if too many variables
are selected a lot of subjects will end up being neither matched nor used as
matches, and the comparisons, using the matched pairs, will be based on too
small a fraction of the sample. Instead of an exact match on a variable, a
modicum of deviation may be allowed; this is relevant especially for variables
that are continuous or have many categories. To make the matching process
easier, some categories may be aggregated. Variables not identified as relevant
or not recorded represent a threat to the success of the inferences based on
matched (sub-)samples. An analytically more challenging approach defines a
score for each subject and the subjects are matched on this score, possibly
after some coarsening. Another approach defines or estimates adjustments
due to the process of subjects being selected or self-selecting themselves to
the treatments. Further details are given in Chapters 5 and 7.

Observational studies of responses to treatments can be classified as retro-
spective and prospective. In retrospective studies subjects are asked to recall
their treatment regime for the studied condition in the past. Prospective stud-
ies recruit from a population of healthy subjects or a population susceptible
to the studied condition, and incidences of the condition are recorded as and
when they occur. Prospective studies are usually conducted over very long
periods of time (years); otherwise too few subjects contract the condition
and comparisons involving them would have very large sampling variation.
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Prospective studies require very large sample sizes, but their protocols are
less demanding. They are suitable for treatments that are administered over
long periods of time, such as altered diet, physical exercise, primary health
care, and education, which could not be assigned by randomisation. For ex-
ample, a study may recruit middle-aged women, ask them about their diet,
extent of daily exercise, occupation, housing conditions, and the like, and col-
lect over the next decade or so information about breast cancer cases, either
from the subjects directly or from a maintained register of cases.

Suggested Reading

The material for this chapter is adapted from several journal articles by the
author, including [120] and [121]. Useful references to linear algebra in the
context of ANOVA and linear regression, which is indispensable for this and
most of the later chapters, are [70], [153], [176], and [178].

Problems and Exercises

1.1. Generate data according to the ANOVA model in (1.3) with K = 2
groups, within-group sample sizes n1 = n2 = 10, population means µ1 = 0
and µ2 = 1.25, and common within-group variance σ2

W = 0.25. Apply the
within-group mean (µ̂1), the sample mean (µ̂), and the selected-model-based
estimator which uses µ̂1 if the hypothesis of equal means, µ1 = µ2 , is rejected
and uses µ̂ otherwise. Repeat this exercise 1000 times, storing the values of
the three estimates, and estimate the MSEs of these estimators. Check that
MSE (µ̂1 ;µ1) = σ2/n1 and that MSE (µ̂;µ1) = σ2/n + 1

4 (µ1 − µ2)
2.

Hint: The hypothesis of equal means is rejected when

| µ̂1 − µ̂2 |
σ̂

√
1
n1

+
1
n2

(σ̂2 is the pooled estimator of the within-group variance) exceeds the 97.5th
percentile of the t-distribution with n1 + n2 − 2 degrees of freedom. In this
exercise, this percentile is equal to 2.101.

1.2. Repeat the simulations in Exercise 1.1 for a range of values of µ2 , in-
cluding µ2 = µ1 , while keeping all the other settings intact. Compare the
efficiencies of the estimators for the different values of µ2 . Can you anticipate
the results for different values of µ1 and σ2?

1.3. In the simulations in the previous two exercises, evaluate also the estima-
tor of the sampling variance: σ̂2/n1 when µ̂1 is used and σ̂2/(n1 + n2) when
µ̂ is used. Compare the empirical means of these estimators with the MSEs
(or variances) of the simulated values of the estimates of µ1 .
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1.4. Implement the synthetic estimator µ̃1 given by (1.4) with the coefficient
b1 estimated by (1.6). Simulate values of µ̃1 using one of the settings in the
previous exercises and compare the alternative estimators of µ1 . Compare
MSE(µ̃1 ;µ1) with the MSE of the estimator µ̃1 (b∗) based on the ideal coef-
ficient b∗1 .

1.5. Suppose that for the setting of the previous exercises, the absolute differ-
ence |µ1−µ2 | is unlikely to exceed 1.0. Derive the MSE of the estimator that
is efficient when |µ1−µ2 | = 1.0 and compare it with the MSE of µ̃1(b̂∗1). How
would you describe the value of the information that |µ1−µ2 | ≤ 1.0? Describe
the additional rewards (MSE reduction) when we know that |µ1 − µ2 | < 0.5.
Suppose we have inappropriately assumed that |µ1 − µ2 | < 0.5 and applied
the estimator µ̃1(b1,0.5). The threshold of Γ = 1 would have been more ap-
propriate than Γ = 0.5. Find the deviation ∆µ1(0.5, 1) = |µ1 − µ | for which
µ̃1(b1,0.5) and µ̃1(b1,1) have identical MSEs. Show that this deviation is in the
range

(
0.5,

√
0.625

)
or, in general, in the range(

Γ1 ,

√
Γ 2

1 + Γ 2
2

2

)
.

Interpret the value ∆µ1(Γ1 , Γ2) as forgiveness of the synthetic estimator (with
respect to an optimistic threshold Γ1 and a conservative threshold Γ2).

1.6. For the setting of the previous exercises, compare the synthetic estimators
of µ1 based on rb̂∗1 for r = 0.5, 0.6, . . . , 1.0, 1.1 and make a recommendation
as to which value of r to use for estimating µ1 .

1.7. For the linear regression model with two continuous covariates and their
interaction,

yj = β0 + β1x
(1)
j + β2x

(2)
j + β12x

(1)
j x

(2)
j + εj ,

with the assumptions of normality and homoscedasticity, express in terms of
β1 , β2 , and β12 the regression parameters when u

(2)
j = 3x(2)

j −7 is used instead

of x
(2)
j . Similarly, describe the changes when the outcome Y is replaced with

y′
j = 7yj + 4 and when both y′

j and uj are used.

1.8. Suppose the linear regression model has a continuous and categorical co-
variate (K categories), together with their interaction. Write down the model
formula with the first category as reference, so that there are K−1 regression
parameters for the differences between categories 2, 3, . . . , K and category
1, and K − 1 regression parameters for the differences in the within-category
slopes. Describe the changes in the model formula when category K is used
as the reference.
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1.9. Generalise the problem in Exercises 1.7 and 1.8 as follows. Suppose we
have regression E(y |X) = Xβ. Express the regression of b + cy on XA for
scalars (constants) b and c �= 0 and a nonsingular matrix A. Construct the
matrix A for the example in Exercise 1.7. Discuss what would happen if
matrix A were singular. What would happen if the vector of outcomes y were
replaced by y + Xd for a (column) vector d of suitable length?

1.10. Draw 20 independent random samples, each of size 50, from the stan-
dard normal distribution N (0, 1), and assess each sample separately whether
it has the features of the normal distribution: unimodality (consider carefully
its definition for a finite sample), symmetry and ‘thin’ tails. Should you reject
any of the samples based on this inspection?

1.11. Write a programme for fitting linear regression by ordinary least squares
for the setting with a single continuous covariate X. Generate a set of 50 values
x of a covariate by drawing them from the standard (continuous) uniform
distribution. Repeat Exercise 1.10 and use the samples to define 20 sets of
outcomes according to the linear regression model with X, using the the same
set of values x and intercept β0 = 2 and slope β1 = 0.27. Fit the regression
to each dataset and calculate the 20 sets of residuals e. Inspect each vector
e and note any unusual features. Should the model be revised in any way
in cases in which you have noticed something that might be interpreted as a
contradiction with the assumptions of normality and homoscedasticity of ε?

1.12. Find realistic examples of studies in which the values of one or several
covariates X are set by design, but the outcomes y are subject to interference.
For example, the (human) subjects may discuss their participation in the
study or the outcomes may be recorded in time order and the values already
recorded can be inspected; the subjects may find it desirable to have or not
to have exceptional outcomes.

1.13. The χ2 distribution with M > 0 degrees of freedom is defined as the
distribution of the sum of squares of a set of m independent variables, each
with the standard normal distribution:

X2 = Y 2
1 + · · · + Y 2

2 + · · · + Y 2
M , (1.25)

where Ym , m = 1, . . . , M , are independent and Ym ∼ N (0, 1). We write
X2 ∼ χ2

M . Derive the expectation and variance of the χ2
M distribution.

The noncentral χ2 distribution with M degrees of freedom and a noncentrality
parameter ξ ≥ 0 is defined similarly to (1.25), except that

Y1 ∼ N
(√

ξ, 1
)

;

the other variables, Y2 , . . . , YM , have standard normal distributions and all
the Y s are mutually independent. We use the notation χ2

M,ξ . Derive the ex-
pectation and variance of χ2

M,ξ .
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1.14. A variable X is said to have a scaled χ2 distribution if for a constant
c > 0, X/c has a χ2 distribution; c is referred to as the scale of the distribution.
Show that the estimator of σ2 in ordinary regression model with a single
continuous covariate has the scaled χ2 distribution with scale σ2/(n− 2) and
n − 2 degrees of freedom.
Hint: Express the vector of residuals y−Xβ̂ in terms of the projection matrix
PX = X

(
X�X

)−1
X.

1.15. Derive the expectation and variance of the estimator σ̂2 in the setting of
the previous exercise. Find the efficient estimator of σ2 among the estimators
dσ̂2 for d > 0.

1.16. The χ2
M distribution has the density

f(x) = Γ
(

1
2M
)
x

M
2 −1 exp

(− 1
2x
)

.

(Γ is the Gamma function, defined as Γ (a) =
∫ +∞
0

xa−1e−x dx.) The recip-
rocal χ2

M is defined as the distribution of 1/X for a variable X distributed
according to χ2

M . Derive the density of the reciprocal χ2
M . Derive the bias

and variance of the estimator 1/σ̂2 for the reciprocal of the residual variance
σ2 in ordinary regression. Find among the estimators d/σ̂2, with a positive
constant d, the one that has no bias and the one that has minimum MSE.
Hint: Let F (x) = P(X < x) for x > 0 be the distribution function of χ2

M .
Then G(x) = 1 − F (1/x) is the distribution function of the reciprocal χ2

M .
The corresponding density is obtained by differentiating G.

1.17. Plot the MSE in (1.19) as a function of b for a setting (X, σ2, and x̄)
of your choice and check that its minimum is attained for b∗ = 1/(1 + Sx ω).
Check the conclusions related to the inequalities in (1.22).

1.18. Derive the synthetic estimator ỹ for the prediction problem in Section
1.2.1 with the criterion var(ỹ) + ρB2(ỹ;x∗β) instead of MSE (ρ is a positive
constant). Check that the solution agrees with the text when ρ = 1. Discuss
the solutions for ρ = 0 and ρ → +∞.

1.19. Discuss the difference between an observation that is an outlier and one
that is associated with high leverage. Is being an outlier a population or a
sample (replication-specific) quantity? What about a unit (subject) with high
leverage? What, if anything, can be done about outliers and high-leverage
units when designing a study?

1.20. Reproduce Figure 1.3 for a dataset of your choice or one generated on
the computer, and add to it an observation with high leverage, unless the
dataset already has one. Illustrate how the regression slope changes as the
outcome for this subject is altered. Find among the subjects one for which
the residual ej = yj − xβ̂ is altered only slightly and one for which ej is
changed much more. Discuss the problems arising from having a high-leverage
observation when the regression is in fact not linear.
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1.21. Prove the identities in (1.23). Derive the corresponding identities for the
square transformation, E

(
y2

j |xj

)
and var

(
y2

j |xj

)
, when yj ∼ N (xjβ, σ2).

1.22. Generate a random sample of size 50 from the standard uniform distri-
bution. Denote it by U. Evaluate y = U1.1 (elementwise). Suppose you do
not know how Y was generated but have information that it may be a ran-
dom sample from the standard uniform distribution. Define a suitable feature
and apply simulation-based diagnostics to assess whether y is such a random
sample.
Hint: By raising the random sample U to a power, the symmetry of the under-
lying distribution is spoilt and the expectation of the distribution is reduced
from 1

2 .

1.23. Repeat the previous exercise with a range of powers of U, including
1.0, and assess the effectiveness of your method. Suppose the median of the
distribution underlying y is estimated as 0.5 if it is concluded that the sample
is from U(0, 1), and as the sample median otherwise. Discuss the properties
of this estimator and devise some improvements on it.

1.24. Inflation can be described as the effect of time on the price of a prod-
uct. Apply this definition to the house prices in a region given that there is
a great variety of houses, only some are sold in any given period of time,
and the sale price depends on a variety of factors, such as the professionals
involved (estate agent, solicitor, etc.), the bargaining positions of the seller
and buyer, and the details of the sales contract. The dataset in file EX1a.dat
on www.sntl.co.uk/BookA/Data contains an example. Explore how it can be
presented graphically.

1.25. Discuss the difficulties in estimating the average effect of a method of
teaching. The teachers participating in a study would be instructed about
the novel teaching style and encouraged to apply it in their classes. Discuss
whether (and how) the principles of experimental design can be applied. Con-
sider the ‘novelty factor’: as a novelty, the teaching style is attractive and
brings about better outcomes, but over time the novelty wears off and it is no
longer effective.

1.26. Consider the design of a study in which ordinary regression of the out-
come Y is to be fitted to the stimulus X, the value of which can be set at
the designer’s will. Discuss the advantages of the values of the stimuli set in
a wide range (interpolation possible for a wide range of values of X) and in
a narrow range (the assumptions of the linear regression are more palatable).
Apply your conclusions to a study in which the effect of an active compound
on the time it takes for an open wound of a particular kind to heal is to be
estimated.
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Maximum Likelihood Estimation

Maximum likelihood is a very general method for estimation of model parame-
ters. It has good properties in large samples and when a valid model is used.
Therefore it has to be accompanied by a method that addresses model uncer-
tainty. In this chapter, we give details of the method of maximum likelihood
and compare two approaches to dealing with model uncertainty—selecting a
model and combining estimators based on the alternative models.

2.1 Likelihood

The likelihood is defined as the joint density or probability of the outcomes,
with the roles of the values of the outcomes y and the values of the parame-
ters θ interchanged. Thus, let f(y;θ) be a class of joint densities with the
parameter vector θ in a set (parameter space) Θ. For each θ ∈ Θ, f(y;θ)
is a joint density of a continuous distribution. It will be expedient to use
the same notation for joint probabilities of discrete distributions; for them,
f(y;θ) = P(Y = y; θ), where Y is the random vector of the outcomes. The
likelihood is defined, after recording the values y of the vector Y, as the
function

L(θ;y) = f(y;θ) , (2.1)

with θ ∈ Θ as its argument. This definition reflects the task at hand. Having
observed, and therefore fixed, Y at y, we consider all possible values of θ,
intending to estimate the value that underlies the observed process, delineate
a plausible range of values of θ, or make an inference about θ that is for-
mulated in some other way. When we planned the study, we considered the
configurations of values of y that might arise and how likely they are to arise
if the studied process is governed by a particular joint density f ; that is, we
temporarily fixed θ and explored the plausible outcomes y. After observing
y, we now want to identify values of θ that are compatible with the vector of
outcomes y, pursuing the unattainable ideal of identifying the value of θ that
governs the process of generating Y.
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The maximum likelihood estimator of θ for the model given by the joint
densities or probabilities f(y;θ), with θ ∈ Θ, is defined as the value of θ at
which the corresponding likelihood L(θ;y) attains its maximum:

θ̂ML = arg maxθ L(θ;y) .

This definition is not complete because there is no guarantee that such a max-
imum exists or, when it does exist, it is unique. However, in many settings this
definition turns out to be very useful and constructive, yielding an estimator
with good properties.

The principal theoretical results about the efficiency of the maximum like-
lihood estimators relate to asymptotic settings, corresponding, roughly speak-
ing, to large sample sizes or increasing amounts of information. A ubiquitous
caveat associated with all the results is that the model has to be valid; it has
to contain the distribution according to which the outcomes are generated.
Another important assumption is that the likelihood L is a smooth function
of the parameter vector θ, usually interpreted as L being twice differentiable
with all its second-order partial differentials continuous and bounded. Further,
the distributions are distinct; if two distributions in the class coincide, then
so do the values of their parameter vectors θ. In most practical settings, these
conditions are satisfied, as a small change in the values of the parameters θ
corresponds to small changes in the likelihood L. Further, the parameter vec-
tor θ must be in the interior of the parameter space Θ. Notable cases in which
this condition is not satisfied include a zero variance and constraints, such as
θ1 ≥ θ2 , when the data-generating process satisfies the identity θ1 = θ2 .

Suppose the outcomes y are conditionally independent given the values of
the other (observed) variables, a matrix X, so that the model for them can
be expressed as

f(y; X,θ) =
n∏

j=1

f(yj ;xj ;θ)

(xj is the jth row of X). The corresponding likelihood is

L(θ;y,X) =
n∏

j=1

f(yj ;xj ;θ) . (2.2)

A standard approach to maximising this likelihood searches for values of θ̂ for
which the partial derivatives of L vanish. Instead of L it is more convenient
to work with its logarithm, called the log-likelihood,

l(θ;y,X) = log {L(θ;y,X)} ,

because the product in the likelihood L converts to a summation in l,

l(θ;y,X) =
n∑

j=1

log {f(yj ;xj ;θ)} .
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This simplifies the differentiation;

∂l

∂θ
=

n∑
j=1

∂f

∂θ
(yj ;xj ; •)

for the likelihood in (2.2). The black disc indicates the argument over which
the differentiation is carried out.

The vector of the first-order partial differentials of the log-likelihood is
called the score vector; we denote it by s(θ), with further arguments (as in
l) if it is necessary to avoid any ambiguity. Thus, the maximum likelihood
estimator should be sought among the roots of the score vector, solutions
of the equation s(θ) = 0, where the score vector is not defined, and on the
boundary of the parameter space Θ. The matrix of the negative second-order
partial differentials, defined as the matrix with elements

− ∂l2

∂θk ∂θh

as functions of θ and y, is called the observed information matrix . The ex-
pectation of the observed information matrix, with elements

−E
(

∂l2

∂θk ∂θh

)
as functions of θ, is called the expected information matrix . It is denoted by
I(θ,θ). The argument θ appears twice, so that we can use the notation also
for submatrices of I. For example, the vector θ may be split into a subvec-
tor θ1 of parameters of interest and subvector θ2 of nuisance parameters;
θ =

(
θ�

1 ,θ�
2

)�. Then the complete notation for the square submatrix of I
that corresponds to θ1 is I (θ1 ,θ1 ; θ1 ,θ2), emphasising that the submatrix
depends on the entire parameter vector.

Example 1. Ordinary Regression. Suppose the vector of outcomes y is gener-
ated according to the ordinary regression model

y = Xβ + ε ,

where X is a matrix of covariates, with 1 as its first column, and the deviations
ε are distributed according to N (0, σ2I) for a positive σ2. We derive the
maximum likelihood estimators of β and σ2. We assume that X is of full rank
p, the number of its columns, and p < n, so that the p × p matrix X�X is
nonsingular. The log-likelihood for this model is

l(β, σ2; y,X) = −1
2

{
n log(2πσ2) +

1
σ2

e�e
}

, (2.3)

where e = y−Xβ. This vector e differs from ε; e is a function of β, whereas
ε is the value of e for the population (‘true’) value of β. The log-likelihood in
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(2.3) is a quadratic function of β, involved in e, so its extremes are easy to
find. As ∂e/∂β = −X, we have

∂l

∂β
=

1
σ2

X�e ,

and this score vector has the unique root

β̂ =
(
X�X

)−1
X�y ,

irrespective of the value of σ2. (The inverse is well defined because X has
full column rank.) This coincides with the ordinary least squares estimator
derived in Section 1.2.

The observed information matrix for β is obtained by differentiating the
score vector ∂l/∂β, yielding

− ∂l2

∂β ∂β� =
1
σ2

X�X .

Being constant (not depending on y), it is also equal to the expected informa-
tion matrix. Its inverse, assuming that X�X is nonsingular, is the sampling
variance matrix of β̂. The two related results, that the maximum likelihood
estimator is efficient and that the inverse of its information matrix is equal to
the sampling variance matrix, hold more generally, but, unlike for ordinary
regression, they do only approximately and with some qualifications. These
are discussed in Section 2.1.2.

The maximum likelihood estimator of σ2 is obtained by finding the root
of the score function for σ2:

− n

2σ2
+

1
2σ4

e�e = 0 ,

that is,

σ̂2 =
1
n
ê�ê =

1
n

(
y�y − y�Xβ̂

)
,

where ê = y − Xβ̂ is the vector of residuals. This estimator differs from its
ordinary least squares counterpart by its denominator (n instead of n − p).
It is biased; E(σ̂2/σ2) = (n − p)/n. This might appear as a deficiency of the
maximum likelihood, although the bias of σ̂2 is small for large n.

2.1.1 Consistency

Consistency is a property of an estimator that it would recover the value
of the target if it were based on many observations. To formalise this, we
represent the idea of many observations by a sequence of sets of observations
and models for them, with sample sizes increasing beyond all bounds. The sets,
as well as observations within each set, are mutually independent. Each set
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is associated with a different model, but the models share the same vector of
model parameters. The simplest, yet still quite general, setting has the same
density (or probability) conditional on some covariates x with observation-
specific values, f(y;θ,x).

To avoid contorted verbal expressions, we refer to the sequence of (uni-
variate) estimators θ̂n based on the nth set of observations yn as a single
estimator. Consistency of such an estimator θ̂ of a target θ is defined as con-
vergence of θ̂n to the target θ as n → +∞. For distributions, there are several
definitions of convergence, and each corresponds to a different definition of
consistency. In practice, these differences are not important, and we can focus
on weak convergence, defined as convergence of the distribution functions of
θ̂n to the degenerate distribution with all its mass (a single jump) at θ.

An important result about maximum likelihood estimators is that under
some regularity conditions they are consistent. The regularity conditions in-
clude smoothness of the likelihood, its distinctness for each vector of model
parameters and finite dimensionality of the parameter space, independent
of the sample size. This result has extensions in several directions. First, uni-
variate outcomes can be replaced by multivariate ones. Next, some correlation
among the observations can be allowed, so long as it is distant from ±1. And
finally, the parameter space may be expanding with the sample size, but its
dimension has to grow at a rate much slower than n.

Consistency of the maximum likelihood estimator is a key condition for de-
riving other properties of maximum likelihood estimators that are of practical
importance.

2.1.2 Asymptotic Efficiency and Normality

Asymptotic efficiency and asymptotic normality are key properties of max-
imum likelihood estimators. The qualifier asymptotic refers to properties in
the limit as the sample size increases above all bounds. Asymptotic efficiency
supports the everyday application of maximum likelihood estimators, and as-
ymptotic normality enables us to make a convenient reference to a familiar
distribution.

For a set of many conditionally independent outcomes (large sample size
n), given covariates and a finite-dimensional set of parameters θ, the maxi-
mum likelihood estimator is approximately unbiased, and its distribution is
well approximated by the normal distribution with sampling variance ma-
trix equal to the inverse of the expected information matrix. This result is
referred to as asymptotic normality . Further, the maximum likelihood esti-
mator is asymptotically efficient and, asymptotically, the sampling variance
of the estimator is equal to the corresponding diagonal element of the inverse
of the expected information matrix. That is, for large n, there are no estima-
tors substantially more efficient than the maximum likelihood estimator. This
result is the main underpinning of maximum likelihood estimation. In the



42 2 Maximum Likelihood Estimation

next section, we construct estimators that are more efficient than maximum
likelihood, but not substantially so for large sample sizes.

The Cramér–Rao inequality is a powerful result that relates to all unbiased
estimators. It gives a lower bound for the variance of an unbiased estimator.
Let l(θ;y) be a log-likelihood and s(θ;y) and I(θ) the corresponding score
function and expected information. Suppose l satisfies the regularity condi-
tions listed earlier. Then any unbiased estimator θ̂ of θ satisfies the inequality

var
(
θ̂
)

≥ 1
I(θ)

; (2.4)

that is, there are no unbiased estimators that are more efficient than the
maximum likelihood estimator.

A more general result related to (2.4) states that, under the same regularity
conditions, any estimator θ̂ of θ, with bias B(θ̂; θ), satisfies the inequality

var
(
θ̂
)

≥
{

1 + B′(θ̂; θ)
}2

I(θ)
. (2.5)

Hence, there may be biased estimators with smaller MSE than any unbiased
estimator. This may at first appear as a contradiction, because any estimator
θ̂ might be improved by removing its bias. However, the bias itself has to
be estimated, and so its removal may be accompanied by a variance infla-
tion. The inequality in (2.5) suggests that efficient biased estimators should
be sought among those with bias B(θ̂; θ) that is a decreasing function of θ.
Some shrinkage estimators have this property, so it makes sense to search for
improvement on maximum likelihood estimators among them; see Example 4.

The Cramér–Rao inequality (2.4) justifies our focus on maximum like-
lihood only for large samples, when unbiasedness is essential for efficiency.
There is no clinical formula that would arbitrate whether a given sample size
in a particular setting is large enough for a specified purpose. Also, small-
sample behaviour of the maximum likelihood estimator may differ from what
the asymptotic expression would suggest. A further difficulty is that all the
results associated with maximum likelihood estimation are subject to the
caveat of working with the appropriate model. Sufficiently large samples can
come close to confirming that a particular model is appropriate, but model
uncertainty has to be reckoned with in small or moderate samples. The aim
of achieving the lower bound in (2.4) may either be too optimistic or not
particularly attractive because too complex a model has to be specified. In
any case, equality in (2.4) and (2.5) is attained only when the estimator θ̂ is
a linear function of the score ∂l/∂θ.

Asymptotic normality and efficiency of the maximum likelihood estimator
confer the central role on the normal distribution in statistics. The proof of
asymptotic normality relies on the weak law of large numbers, which confers
a similar role on the normal distribution in probability theory. We are rather
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fortunate that the normal distribution is relatively easy to handle, it has a
comprehensive generalisation to many dimensions that is closed with respect
to addition, taking margins and conditioning.

The results of asymptotic normality and efficiency have been extended
to settings other than those of independent and conditionally identically dis-
tributed outcomes, such as for correlated observations and observations that
do not have identical distributions, even after conditioning on the values of
the covariates in regression or similar quantities. Features common to these
extensions are that none of the observations and groups of observations that
have finite sizes make an unbounded (disproportionately large) contribution
to the expected information. A complication in formulating the assumptions
is that asymptotics requires a much more careful definition than for indepen-
dent observations. For example, for the random-effects ANOVA, the number
of clusters should diverge to infinity, but the fraction nk/n of the sample size
of each cluster k and the overall sample size (the representation of cluster k)
should converge to zero in such a way that even nk/

√
n converges.

The assumptions necessary for these results are that the log-likelihood is
smooth, with all its second-order partial differentials continuous, the expected
information matrix exists, the value of the parameter vector is in the interior
of the parameter space, and the distributions constituting the model are dis-
tinct and contain the data-generating (‘true’) distribution. Further, all the
eigenvalues of the expected information matrix diverge to +∞ as n → ∞.
These are the regularity conditions referred to earlier.

In brief, maximum likelihood has no competitor for large samples. The the-
oretical results provide no formula for establishing what constitutes a large
enough sample in any particular setting. Often only trial and error with sim-
ulations can provide an indication for how close we are to asymptotics. For
some simple models, such as ordinary regression, maximum likelihood estima-
tors coincide with established estimators or are very close to them. Together
with its universality, this gives maximum likelihood a strong appeal and jus-
tifies its role as the workhorse of statistical analysis. With small or moderate
sample sizes, maximum likelihood is applied as a default when there is no ob-
vious alternative. In evaluating maximum likelihood estimators we may have
to call on (iterative) numerical methods for maximisation of real functions.

In Chapter 1, we came across examples in which θ̂ was an unbiased and
efficient estimator of a parameter θ, yet a monotone nonlinear transformation
g(θ̂) was neither unbiased nor efficient for g(θ). Maximum likelihood has the
converse property. If θ̂ is the maximum likelihood estimator of θ, then g(θ̂)
is the maximum likelihood estimator of g(θ) for any monotone (one-to-one)
transformation g. This may at first appear to be a very convenient property.
However, it implies that not all maximum likelihood estimators are efficient.
A maximum likelihood estimator θ̂ is efficient only asymptotically (assum-
ing that the regularity conditions apply). As the sample size diverges, the
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sampling variance of θ̂ diminishes; only when it vanishes can the operations
of estimation and (nonlinear) monotone transformation be interchanged.

Under regularity conditions, the bias of a maximum likelihood estimator
converges to zero. We say that such estimators are asymptotically unbiased.
Together with the sampling variance converging to zero (as n → ∞), this
is equivalent to consistency, with the appropriate definition of convergence
(convergence in expectation). Consistency is a valuable property in connec-
tion with large samples but is not particularly relevant otherwise, when the
sampling variance is the dominating contributor to the mean squared error
(MSE).

2.2 Sufficient Statistics

The log-likelihood function l(θ;y) sometimes depends on the outcomes y only
through one or a few summaries of y; l(θ;y) = l{θ;u(y)}. To evaluate such
a likelihood, we do not have to provide the n-dimensional data vector y;
it suffices to provide the summaries u(y). A set of summaries that enables
the evaluation of the log-likelihood is called a set of sufficient statistics. When
there is such a set of statistics the score vector depends on y also only through
them: s(θ;y) = s{θ; u(y)}. As the main use of the likelihood is for its max-
imisation with respect to the vector of its parameters θ, we do not have to
be concerned with its factors that do not involve θ, even if they involve y. A
set of sufficient statistics can be motivated as a condensed version of the data
that is complete; any additional statistic (data summary) would be redundant
for maximum likelihood estimation.

A set of sufficient statistics is qualified by the model (a class of distribu-
tions) and the vector of its parameters. Formally, it is defined as follows. A
set of statistics u is sufficient for a parameter vector θ in a model if the condi-
tional distribution of y given the value of u = u(y), (y |u), does not depend
on θ. This conditional distribution may depend on model parameters that are
not included in θ. Also, it need not depend on θ in a particular model, but
may depend on it in a more general model.

Checking that a vector u is sufficient by applying this definition directly
is often tedious because it entails derivation of the (joint) density of u. A
much more practical equivalent definition refers to the form of the likelihood.
A random vector u is sufficient for a parameter vector θ in a model if and
only if the log-likelihood can be expressed as

l(θ;y) = l1{θ;u(y)} + l2(y) . (2.6)

This equivalence is known as the factorisation theorem, referring to the factors
exp(l1) and exp(l2) of the likelihood exp(l). Note that maximising the likeli-
hood is equivalent to maximising the ‘essential’ factor l1(θ,u) and is related
to the problem of finding the roots of s(θ) = ∂l1(θ,u)/∂θ.
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For example, X�y is a set of sufficient statistics for β in the ordinary
regression, and when supplemented with y�y it is sufficient also for σ2. This
is obvious from the expression

l = −1
2

log(2π) − n

2
log(σ2) − 1

2σ2
β�X�Xβ +

1
σ2

y�Xβ − 1
2σ2

y�y ;

the first three terms on the right-hand side do not depend on y, and the
last term does not involve β but does involve σ2. A set of sufficient statistics
u(y) is not unique because sufficiency is retained, for instance, when the
components of u(y) are subjected to strictly monotone transformations or
when further summaries are added to u(y). In particular, y itself is a set of
sufficient statistics.

A set of sufficient statistics u that has m components is said to be minimal
if for every transformation f from Rm to Rm′

, m′ < m, f(u) is not sufficient.
That is, a set of sufficient statistics is minimal if all of its reductions to fewer
statistics are not sufficient. For example, if we drop one of the components of
a set of minimal sufficient statistics or replace a pair of them by their total,
the result is not a set of sufficient statistics. In ordinary regression with X
of full column rank, y as a set of statistics is not minimal sufficient because
(X y)�y is a reduction of y to fewer dimensions. A set of sufficient statistics
u(y) is said to be linear if l1 in the factorisation (2.6) is a linear function of
u.

The importance of sufficient statistics is that they reduce the range of
data summaries that have to be considered for any inference about the model
parameters. Thus, immediately after data collection we can reduce the out-
comes y to the statistics u(y) without discarding any relevant information.
This is particularly valuable when u has only a small number of components,
and their number does not depend on the sample size n. In iterative proce-
dures for maximising the likelihood, we do not have to work with the entire
vector y in each iteration if we evaluate a vector of sufficient statistics before
the first iteration. We can consider similar summaries for (X y), formally by
regarding the covariates X also as outcomes. With such summaries, we could
conduct the analysis without requiring any access to X or y. For example,
the ordinary least squares requires the summaries in (X y)�(X y).

A theoretical result supporting our focus on sufficient statistics is the Rao–
Blackwell theorem. It states that any estimator θ̂ of a model parameter θ is
at least as efficient as the conditional expectation E(θ̂ |u) where u is a set
of sufficient statistics. Thus, any estimator of θ can be associated with an
estimator that is at least as efficient and depends on y only through u.

Example 2. Exponential Distributions. The class of exponential distributions
is given by the densities

f(x; θ) = θ exp(−θx)

for argument x > 0 and parameter θ > 0. We derive the maximum likelihood
estimator of θ based on a random sample x of size n from an exponential
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distribution. The log-likelihood is equal to

l(θ;x) = n log(θ) − θx+ ,

where x+ = x�1 is the sample total. Thus, x+ is a linear sufficient statistic.
Of course, it is minimal. The score for θ is equal to

l′(θ;x) =
n

θ
− x+ ,

so the maximum likelihood estimator is θ̂ = 1/x̄, the reciprocal of the sample
mean.

The sample total x+ has the gamma distribution with parameters θ and
n:

fn(u) =
θnxn−1

Γ (n)
exp(−θx) .

This can be proved by induction. For n = 1 the result is obvious. Assuming
the result for a given n, the density of the total of n + 1 random values is∫ x

0

θnyn−1

Γ (n)
exp(−θy) θ exp{−θ(x − y)}dy =

1
n

θn+1

Γ (n)
exp(−θx)

[
yn
]x
0

,

from which the result follows immediately.
The expectation of the reciprocal total 1/x+ , assuming that n > 1, is

E
(

1
X+

)
=
∫ +∞

0

θnxn−2

Γ (n)
exp(−θx) dx

=
θ

n − 1

∫ +∞

0

θn−1xn−2

Γ (n − 1)
exp(−θx) dx =

θ

n − 1
,

after realising that the latter integrand is the density of a gamma distribution.
By similar steps, we obtain the identity

E
(

1
X2

+

)
=

θ2

(n − 2)(n − 1)
,

so long as n > 2. Hence the maximum likelihood estimator θ̂ = n/X+ has the
expectation {1 + 1/(n − 1)} θ, that is, bias θ/(n − 1), and MSE

MSE
(

n

X+
; θ
)

=
n2θ2

(n − 2)(n − 1)2
+

θ2

(n − 1)2

=
(n + 2)θ2

(n − 2)(n − 1)
. (2.7)

The estimator n/X+ is biased; the bias can be eliminated by replacing the
numerator n with n − 1. This is more efficient than the maximum likelihood
estimator, as



2.2 Sufficient Statistics 47

var
(

n − 1
X+

)
=

θ2

n − 2
;

compare with (2.7). In this example, we eliminated the bias and at the
same time reduced the MSE. More precisely, we simultaneously reduced the
(squared) bias and the variance. In some cases such a ‘correction for bias’
is counterproductive—it is accompanied by variance inflation that results in
a net increase of MSE. Note, however, that the bias of n/X+ converges to
zero as n → ∞, as does the gain in efficiency of (n − 1)/X+ over n/X+ .
Asymptotically, n/X+ is unbiased and efficient.

Next we consider maximum likelihood estimation of the expectation 1/θ.
The estimator is the sample mean X̄. Its expectation and variance are 1/θ and
1/(nθ2), respectively, derived immediately from the expectation and variance
of a random draw. We explore the estimators cX̄ for positive constants c.
Their biases are (1 − c)/θ and MSEs

c2

nθ2
+

(1 − c)2

θ2
=

c2

θ2

(
1 +

1
n

)
− 2

c

θ2
+

1
θ2

.

This quadratic function of c attains its minimum at

c∗ =
n

n + 1
.

The corresponding estimator, nX̄/(n + 1), is biased,

B
{

n

n + 1
X̄;

1
θ

}
=

1
(n + 1)θ

,

but its MSE,

MSE
(

n

n + 1
X̄;

1
θ

)
=

1
(n + 1)θ2

,

is smaller than for the maximum likelihood estimator X̄. Asymptotically, as
n → ∞, the gain vanishes. But in practice we work (almost) exclusively with
finite samples.

Example 3. Continuous Uniform Distributions. Let x1 , x2 , . . . , xn be a ran-
dom sample from the continuous uniform distribution on (0, θ), with an un-
known positive parameter θ. We derive the maximum likelihood estimator
of θ, and show that it is not efficient, not even asymptotically. Denote by
xmax the largest outcome xj , j = 1, . . . , n, and by Xmax its random-variable
counterpart. The joint density of the outcomes is

f(x; θ) =
1
θn

I (xmax < θ) ,

where I is the indicator function, equal to unity when its argument is true
and to zero when it is false. This density is positive when θ is greater than
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or equal to all xj , that is, when θ ≥ xmax . The log-likelihood for x is defined
only when θ > xmax . Then

L(θ;x) = −n log(θ) ;

xmax is a linear minimal sufficient statistic. The log-likelihood is a decreasing
function for all θ > xmax . Therefore, its maximum is at θ̂ = xmax . Note that
the likelihood is not continuous at this point.

The distribution of this estimator is derived as the probability that no
outcome xj exceeds x:

P (Xmax ≤ x) =
n∏

j=1

P(Xj < x) =
xn

θn
.

The corresponding density is

f(x) =
nxn−1

θn
.

The expectation and variance of this distribution are

E (Xmax) = n

∫ θ

0

xn

θn
dx =

n

n + 1
θ ,

var (Xmax) = n

∫ θ

0

xn+1

θn
dx − {E (Xmax)}2

= θ2

{
n

n + 2
− n2

(n + 1)2

}
=

nθ2

(n + 1)2(n + 2)
.

Therefore,

MSE (Xmax ; θ) =
nθ2

(n + 1)2(n + 2)
+

θ2

(n + 1)2
=

2θ2

(n + 1)(n + 2)
.

We can eliminate the bias of Xmax by multiplying the estimator by 1 + 1/n.
The sampling variance of the resulting estimator is

var
(

n + 1
n

Xmax

)
=

θ2

n(n + 2)
.

For large n, this is only about half of the MSE of the maximum likelihood
estimator Xmax . In this example, the maximum likelihood theory breaks down
because the likelihood is not smooth in the neighbourhood of θ.

2.3 Synthetic Estimation

In this section, we describe a generalisation of the synthetic estimator defined
in Sections 1.1.1 and 1.2.1. We contrast it with model selection, selecting one
of the candidate models.
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Suppose there are M + 1 candidate models for a particular study; the
models are indexed by integers 0, 1, . . . , M . Let θ̂m be the estimator derived
under the assumption that model m is valid. Further, suppose θ̂0 is unbiased,
irrespective of which model is valid, and the estimators θ̂m are not linearly
dependent, so that a combination b0θ̂0 + b1θ̂1 + · · ·+ bM θ̂M has zero variance
only when all the coefficients bm vanish.

A setting for which the general result that is derived next is intended
in particular is that model 0 is a general model and all the other models
are its submodels. In this setting, we say that model 0 is a supermodel or
an envelope of models 1, . . . , M ; model 0 contains their union. Model 0 is
assumed to be valid at the outset, prior to data inspection. Denote by θ̂ the
vector of estimators θ̂m , m = 1, . . . , M , by V its variance matrix, by B the
vector of its biases in estimating θ1 and by C the vector of the covariances of
θ̂ with θ̂0 :

θ̂ =
(
θ̂1 , . . . , θ̂M

)�
,

V = var
(
θ̂
)

,

C = cov
(
θ̂, θ̂0

)
,

B = E
(
θ̂
)
− θ . (2.8)

These (co-)variances and biases are evaluated assuming model 0. Note that
θ̂0 is not involved in θ̂, V, or B. Let V0 = var(θ̂0).

The ideal composition of the estimators θ̂m , m = 0, 1, . . . , M , is defined
as their convex combination with the smallest MSE. We show later that this
combination is

θ̃∗ =
(
1 − b∗�1

)
θ̂0 + b∗�θ̂ , (2.9)

where b∗ = Q−1P, with

Q = E
{(

θ̂ − θ̂01
)(

θ̂ − θ̂01
)�}

,

P = cov
(
θ̂01 − θ̂, θ̂0

)
.

The matrix Q is positive definite.
To prove this assertion, we consider the composition

θ̃ =
(
1 − b�1

)
θ̂0 + b�θ̂

for arbitrary M × 1 vector b. Its MSE in estimating θ is

MSE
(
θ̃; θ
)

=
(
1 − b�1

)2
V0 + b�Vb + 2

(
1 − b�1

)
b�C + b�BB�b .

This is a quadratic function of b, with its matrix-quadratic term equal to
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V011� + V − 1C� − C1� + BB� = Q ,

and so it is positive definite. Therefore MSE(θ̃; θ) has a unique minimum, and
it can be found as the root of the vector of first-order partial differentials.
Elementary matrix operations yield the identity

1
2

∂MSE
(
θ̃; θ
)

∂b
=
(
V011� + V − 1C� − C1� + BB�)b + C − V01

= Qb − P .

Hence the ideal synthetic estimator has the vector of coefficients b∗ = Q−1P.
Its MSE is

MSE
(
θ̃∗; θ
)

= V0 − P�Q−1P . (2.10)

If the matrix Q and vector P were known, θ̃∗ would be more efficient than any
of the estimators θ̂m , because the latter correspond to particular choices of
b, equal to 0M for m = 0 and to the unit vectors which comprise M −1 zeros
except for unity in location m for m = 1, . . . , M . The MSE in (2.10) could
be attained only if the matrices Q and P were known. In practice, the vector
b∗ is estimated, eroding some of the advantage of the composition θ̃ = θ̃(b∗)
over any one of the estimators θ̂m . The composition θ̃ can be defined for any
collection of estimators θ̂m ; neither of them has to be maximum likelihood,
although θ̂0 has to be unbiased, or its bias should be very small. In the con-
text of maximum likelihood or other estimators that are connected with a
model, we refer to θ̂m , m = 0, 1, . . . , M , as single-model-based and, because
they contribute to θ̃∗, as its constituent estimators. Note that these estima-
tors may have good properties when the model they are derived for is valid.
However, derivation of the synthetic estimator is based on their properties
(joint distribution) when only the a priori specified (designated) model 0 is
valid.

Example 4. Variance Estimation. We explore estimation of the variance of a
random sample from a centred normal distribution N (0, σ2). The mean square
of the observations,

S =
1
n

(
X2

1 + · · · + X2
n

)
,

is an obvious candidate. Its distribution is related to the χ2 distribution with
n degrees of freedom. This distribution is defined by the sum of squares of a
sequence of n independent variables, each with standard normal distribution;
see Exercise 1.13. From the properties of N (0, 1), it is easy to derive that
E
(
χ2

n

)
= n and var

(
χ2

n

)
= 2n. The number of generating variables (degrees

of freedom), n, is indicated by the subscript.
We have

n

σ2
S ∼ χ2

n ,
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confirming that S is unbiased for σ2; further, var(S) = 2σ4/n. As a much less
credible alternative, consider the constant zero. Its bias is σ2 and MSE is σ4.
For n = 1, zero is more efficient than S, and for n = 2 their MSEs coincide.
For greater n, S is more efficient. The synthesis of S and zero corresponds to
an estimator cS with suitably chosen c > 0. For c < 1, this can be interpreted
as a shrinkage, pulling the ‘original’ unbiased estimator closer to zero. The
minimum of the MSE,

MSE
(
cS;σ2

)
=
{

(1 − c)2 +
2c2

n

}
σ4 ,

is attained for c∗ = n/(n + 2), when the MSE is 2σ4/(n + 2). Thus, a small
bias, E(c∗S)−σ2 = 2σ2/(n+2), is accompanied by a (1+2/n)-fold reduction
of the MSE. This is modest for large n, but far from trivial for small n.

We come across χ2 distributions frequently in variance estimation. For
example, the ordinary least squares estimator of the residual variance in linear
regression, σ̂2 = e�e/(n − p), has a scaled χ2 distribution; (n − p)σ̂2/σ2 ∼
χ2

n−p . Standard textbooks emphasise unbiased estimation; for small sample
sizes we can do a bit better.

2.4 Model Selection

An alternative to synthetic estimation commits us to one of the single-model-
based estimators, the selection of which is also based on the data. The im-
portance of such a selection arises from the caveat of the maximum likelihood
estimator (in addition to asymptotics)—when the model is valid the estima-
tor is (asymptotically) efficient. Other model-based estimators are subject to
similar caveats. Note that the theory does not state that the estimator is not
efficient when the model is not valid.

We could protect our inferences against the lack of validity by defining
very general models. Although they still cannot ensure validity, they do no
harm to the chances of attaining this goal; if a narrower model is valid, then
so is its generalisation. If we are committed to basing our inferences on a
single model we have a strong incentive to select a narrower model because
estimation is in general more efficient in a smaller parameter space, so long as
it contains the parameter vector that governs the studied process. However, as
we make our model narrower, we may drop the data-generating distribution,
ending up with an invalid model.

A procedure for narrowing the model on which we base our inferences is
called model selection. Model selection entails uncertainty; a different model
may be selected in a replication. A typical model selection procedure arbitrates
between two models, A and B, where B is a submodel of A. A statistic t(y)
is defined, together with a critical value t∗. If the realised value of t(y) falls
below t∗, model B is adopted; otherwise model A is adopted. Following the
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selection (adoption) of either model, further model selection procedures may
be applied. A collection of such procedures is called multistage. Instead of
a critical value, a critical region, denoted by C, may be specified. This may
be an interval, such as (t∗L , t∗U) or its complement, with respective lower and
upper limits t∗L and t∗U , but in principle any division of the support of the
statistic t(y) can be declared a critical region.

There is no straightforward recipe for choosing the statistic t(y), but there
are several well-founded criteria for assessing them. In many settings, model
A is defined by a parameter space Θ and model B by its subspace, such as
ΘB = (θ; θ1 = 0), constraining the first component of θ to a specific value.
This setting is made much more general by allowing transformations of θ
or by imposing a constraint on a subvector of θ; ΘB = {θ; g(θ) = 0}. The
constraint function g is usually linear.

For the constraint θ1 = 0, we may use an estimator θ̂1 of θ1 ; the critical
region for θ1 comprises values of θ̂1 that are distant from the ‘special’ value
0. The choice of the critical region can be guided by the desire to minimise
the probability of making an erroneous choice. In one view, model A is always
a correct choice because we assume it to be valid. However, when model B
is also valid, we would regard the choice of A as an error, because we would
forego some gains in efficiency by not using the narrower model. Therefore, we
choose the critical region so that the probability of (inappropriately) selecting
A when B is valid does not exceed a small value, such as α = 0.05. Note that
this probability is conditional or, more accurately, hypothetical, because it
refers to the setting of model B, which need not be valid. The critical region
is usually set to one or both tails of the hypothetical distribution of t(y); t∗L
and t∗U are set so that

P {t(y) �∈ (t∗L ; t∗U) |B} ≤ α , (2.11)

or equal to α when it can be arranged. Special cases of practical importance
are t∗L = −t∗U (symmetric critical region), and t∗L = −∞ or t∗U = +∞ (one-
sided critical regions). Another choice includes in the critical region the part
of the support of t(y) that has the smallest density; that is, a constant c is
sought for which

P [ f{t(y)} < c |B ] ≤ α ,

where f is the density of t(y). When the density f is symmetric and increasing
to the left and decreasing to the right of its single mode at zero, this criterion
coincides with that in (2.11) with t∗L = −t∗U . Values of θ̂1 may fall in the
critical region even when θ1 �= 0, but the probability of this event, when
θ1 = 0, is small, so such cases can be regarded as exceptional.

A critical region is difficult to choose when the probability in (2.11) de-
pends on θ or, more accurately, on θ−1 , the subvector of θ with the con-
strained component θ1 removed. It may be opportunistic to simplify our task
by choosing a statistic t(y) that depends only on θ̂1 . However, this goal should
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be subordinated to the principal purpose, appropriate model selection, or se-
lection that results in an efficient estimator.

When choosing A or B, two kinds of error may be committed. One, de-
scribed by (2.11), is a failure to narrow down to model B. The other is the
inappropriate choice of B when B is not valid. The probability of such an
error usually depends on θ, and almost always on θ1 . For example, it is close
to 1 − α when θ1 is close to zero and the likelihood corresponding to model
A is smooth. The probability of appropriately selecting model A,

P {t(y) ∈ C} ,

as a function of θ, is called the power of the selection; it is denoted by β.
(Note the potential conflict with the notation for regression parameters.)

The ideal choice of t and t∗ for a given probability α is such that it has the
highest possible power. As power is a function, procedures for model selection
can be compared only partially. Some procedures may be more ‘powerful’
in certain regions of the parameter space Θ and less powerful elsewhere. A
procedure is called unbiased if its power exceeds α for all θ associated with
the complement of B in A (denoted by B \ A) and is smaller than or equal
to α for any θ when model B is valid. One procedure is said to be uniformly
more powerful than another if it has a greater power (is more powerful) for
any value of the parameter vector θ in B \ A.

Example 5. ANOVA. Suppose outcomes yjk , j = 1, . . . , nk , k = 1, 2, with
n1 = 5 and n2 = 50, are generated according to the ANOVA model introduced
in Section 1.1. We discuss estimation of the mean µ1 for group k = 1. We
consider the general model (A) in which the two groups have unrelated means
µ1 and µ2 and its submodel (B) defined by the constraint µ1 = µ2 . In both
models we assume that the two groups have the same within-group variance
σ2

W , assumed to be known.
We base the model choice on the difference of the sample means ∆µ̂ =

ȳ1 − ȳ2 , an unbiased estimator of the population difference ∆µ = µ1 − µ2 .
If |∆µ̂ | is large we choose model A. If model B is valid, ∆µ̂ is distributed
according to N (0, gσ2

W), where g = 1/n1 + 1/n2 . We set the critical region
to (−t∗, t∗), where t∗ is the (1 − 1

2α)-quantile of N (0, gσ2
W); that is,

t∗ = σW
√

g Φ−1
(
1 − 1

2α
)

,

where Φ is the distribution function of N (0, 1). Thus, we choose A, and with
it µ̂1 = ȳ1 if |∆µ̂ | > t∗, and B and µ̂1 = ȳ = (n1ȳ1 + n2ȳ2)/n otherwise.

The power of this selection procedure is

P(|∆µ̂ | > t∗; ∆µ) = Φ

(−t∗ − ∆µ

σW
√

g

)
+ 1 − Φ

(
t∗ − ∆µ

σW
√

g

)
,

calculating the probabilities separately for negative and positive values of ∆µ̂,
distributed according to N (∆µ, gσ2

W).
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The model selection procedure defined by ∆µ̂ and t∗ is unbiased. This can
be proved by differentiating the power function with respect to the difference
∆µ:

∂P(|∆µ̂ | > t∗; ∆µ)
∂∆µ

=
1

σW
√

g

{
−φ

(−t∗ − ∆µ

σW
√

g

)
+ φ

(
t∗ − ∆µ

σW
√

g

)}
.

As the density φ(x) of N (0, 1) is symmetric and monotone for negative and
positive values of x, the differential vanishes only when ∆µ = 0. So the power,
as a function of ∆µ, attains its extreme at ∆µ = 0, and it is easy to check
that this extreme is a minimum. Therefore, when ∆µ �= 0, the power exceeds
α.

Two model selection procedures are said to be equivalent if they yield the
same decision (A or B) for every possible outcome y. In particular, a procedure
based on statistic t and critical value t∗ is equivalent to the procedure based
on u(t) and u(t∗) for any increasing function u.

2.4.1 Hypothesis Testing

The model selection procedure described in the previous section is also re-
ferred to as hypothesis testing . In its terminology, model B corresponds to
the null-hypothesis and model A to the alternative hypothesis. We assume
that the null-hypothesis is valid and abandon it in favour of the alterna-
tive only if the outcomes present sufficient evidence against B. That is, the
null-hypothesis is regarded as the status quo and is overturned only when
successfully challenged.

To test a particular hypothesis, a test statistic t is defined, together with
its critical region, just like for model selection. When the realised value of the
test statistic, t(y), falls in the critical region, we regard it as evidence against
the null-hypothesis. When t(y) is outside the critical region, we adhere to the
status quo, although the logically appropriate conclusion is that ‘we do not
know’ whether the null-hypothesis is valid—we adhere to the null-hypothesis
by default, not as a result of any evidence that confirms it. After adopting the
null-hypothesis as an assumption, we have found no statistical contradiction
with it—we have merely failed to reject it.

Instead of defining a test statistic t(y) it suffices to split the outcome space,
the set of all possible outcomes y, into two subsets and designate one of them
the critical region. Although this is a more general definition of a hypothesis
test, it is of little practical use. Similarly, any subset of the parameter space Θ
can be declared as the null-hypothesis and its complement as the alternative.
However, many practical settings can be expressed in the narrower format
of the null-hypothesis being a subspace of the parameter space, defined by
constraining one or several components of θ to default (special) values.

One notable exception arises when the null-hypothesis has the form θ1 >
θ∗1 or a similar inequality for one or several components of θ. Such a hypothesis
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is called one-sided. For instance, in Example 5, adapted for hypothesis testing,
we could replace the null-hypothesis defined by µ1 = µ2 with µ1 < µ2 . We
can use the same test statistic, ∆µ̂, but a more suitable critical region is an
interval (t∗,+∞), so that the hypothesis would be rejected for large (positive)
values of ∆µ̂. We choose the limit t∗ as

t∗ = σW
√

g Φ−1(1 − α) ,

so that the probability of rejecting the null-hypothesis under the borderline
assumption µ1 = µ2 is equal to α. It is easy to check that when µ1 < µ2 ,
the probability of rejecting the null-hypothesis is smaller than α and that the
power exceeds α whenever the alternative is valid. Thus, the hypothesis test
based on ∆µ̂ and t∗ is unbiased.

2.4.2 Inference Following Model Selection

Having selected a model, A or B, we may apply further selection procedures,
each time pitting the previous ‘winner’ against a new challenger model. At the
end of such a string of selections we come to the concluding part of inference, a
statement about a quantity of interest θ. We might regard the ‘winning’ model
as valid and formulate all inferences assuming so. The profound drawback of
this approach is that we ignore model uncertainty. In each model selection
step, we may have been led astray by an inappropriate selection, not by our
(the analyst’s) fault, but by the inherent nature of each model selection step
that it does not yield the ‘correct’ answer with certainty. This is easy to
confirm by simulations, replicating the process of generating data and model
selection.

Figure 2.1 provides an illustration based on the setting of Example 5, with
µ1 = 1, µ2 = 0, σ2

W = 1, n1 = 5, and n2 = 50. The left-hand panel, containing
the plot of a simple random sample of 100 pairs of simulated values of the
within-group sample means µ̂1 and µ̂2 , shows that the hypothesis of equal
means is rejected mostly when µ̂1 is greater than µ1 . This should come as no
surprise, because µ̂2 has a small sampling variance (1/50), and so the outcome
of the hypothesis test depends mainly on the value of µ̂1 .

In the right-hand plot, the empirical distribution of the estimator µ̂†
1 that

is based on the selected model is drawn. The distribution is distinctly bimodal,
with the two mounds corresponding to rejection of the null-hypothesis (using
µ̂1 , the shaded part of the histogram) and estimating µ1 by µ̂. The solid ver-
tical line indicates the target (µ1 = 1) and the vertical dashes the expectation
E(µ̂†

1). The MSEs of the estimators we considered are: var(µ̂1) =
√

1/5 = 0.45,
MSE(µ̂; µ1) =

√
1/55 + (50/55)2 = 0.92, and MSE(µ̂†

1; µ1) = 0.46, the last
established by simulations. Note that the two mounds in the right-hand panel
deviate from the normal distribution; they are conditional distributions of the
form (Y | I) where Y is normally distributed and I is a dichotomous variable
correlated with Y . Thus, we set out with two normally distributed estimators,
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Fig. 2.1. Estimates based on hypothesis testing; the setting of Example 5 (µ1 = 1,
µ2 = 0, n1 = 5, n2 = 50, and σ2 = 1). In the left-hand panel, a random sample of
simulated estimates of µ̂1 and µ̂2 is plotted; the right-hand panel is the histogram
of the estimates of µ1 after testing the hypothesis that µ1 = µ2 ; the values obtained
after rejecting the null-hypothesis are represented by shading.

µ̂1 and µ̂, attempting to use the better of them. In this task we have almost
succeeded (0.46 vs. 0.45), but we ended up with an estimator that is biased
and distinctly not normally distributed.

In the 10 000 replications that are summarised in Figure 2.1, the null-
hypothesis was rejected in 5720 instances. If model uncertainty is ignored in
these cases the standard error of

√
1/5 = 0.45 would be reported, with a ref-

erence to N (0, 1/5), whereas in the remaining 4280 instances,
√

1/50 = 0.14
would be reported. Thus the standard error would be substantially underes-
timated.

In summary, the process of model selection has a nontrivial impact not
only on which model is selected and with what probability, but also on the
distribution of the estimator, on the quality of the inference made, and on the
assessment of this quality. We can rephrase this problem in the language of
hypothesis testing as follows. Whichever test we apply, we cannot proceed by
pretending that the outcome of the hypothesis test was known in advance of
data inspection. We cannot ignore the uncertainty of the steps taken prior to
the concluding act of applying the estimator that corresponds to the selected
model.

The problem illustrated in Figure 2.1 cannot be resolved by applying a
different test (different test statistic or different critical region). It does not
appear for all configurations of means µ1 and µ2 and sample sizes n1 and n2 ,
because in some settings the ‘correct’ decision is made by hypothesis testing
with high probability. However, without knowing the values of µ1 and µ2 , we
are exposed to the risk of poor performance of the two-stage estimator. (The
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two stages are model selection and evaluation of the estimator associated with
the selected model.)

A more complete overview of the problem is given in the next section
where two other model-selection criteria are introduced.

2.5 Model Selection Criteria Related to Likelihood

This section describes some common model selection criteria. They are all
related to likelihood and to one test statistic in particular, the likelihood ratio.
Throughout, we consider the setting with a general model A, assumed to be
valid, with a p-dimensional parameter space Θ, and its submodel B defined
by constraining the parameter vector θ to a (p − r)-dimensional subspace of
Θ, by means of a constraint (to zero) on each of r components of θ.

Let lA and lB be the maxima of the log-likelihood under the respective
models A and B. That is, lA = l(θ̂A ;y) and lB = l(θ̂B ;y), where θ̂A and θ̂B

are the maximum likelihood estimators under the respective models A and B.
The likelihood ratio statistic is defined as ∆l = 2(lA− lB). Its practical impor-
tance is that the asymptotic sampling distribution of ∆l is χ2 with r degrees
of freedom. This motivates the likelihood ratio test, which selects the general
model A when ∆l exceeds the 95th percentile of the χ2

r distribution. This test
can be used for model selection, selecting the submodel B when ∆l falls short
of the 95th percentile of the χ2

r distribution. Under the regularity conditions,
the likelihood ratio test based on ∆l is asymptotically most powerful; that is,
as the sample size increases, any other test of the same hypothesis is at best
only slightly more powerful.

The test and the model selection procedure can be interpreted as follows.
We strive for model adequacy, to obtain as high a (log-)likelihood as possible,
while pursuing model parsimony, to use models with as few parameters (di-
mensions of the parameter space) as possible. Therefore, we select the more
general model A only when it yields a much higher likelihood than the sub-
model B does. The likelihood ratio requires fitting both models A and B; this
is a drawback only for some very complex models and large-scale datasets,
because usually both estimation procedures require the same software.

The score test of the hypothesis θ1 = 0 is defined as

s =
θ̂1√I(θ1)

,

where I is the diagonal element of the information matrix that corresponds
to parameter θ1 and is evaluated at the default value θ1 = 0. Its asymptotic
(large-sample) distribution, assuming model B, is standard normal. The gen-
eral model is adopted when the value of | s | is large, | s | > Φ−1(1 − α/2), so
s2 is an alternative form of the test statistic and its distribution under model
B is χ2

1 , approximately, in large samples. The score test can be regarded as
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comparing a model and its submodel defined by the constraint θ1 = 0. It
requires fitting only the general model.

The Akaike information criterion (AIC) is an adjustment of the likelihood
ratio test statistic. It is based on the statistic 2(lA − lB + r); it selects the
submodel B when its value falls short of the 95th percentile of the χ2

r distrib-
ution. It corrects some of the deficiencies of the likelihood ratio criterion (for
model selection) but is subject to uncertainty, just like any other procedure.

The Bayesian information criterion (BIC) adjusts the likelihood ratio sta-
tistic by 2r log(n), where n is the sample size, so it is more likely to prefer the
submodel B in all but very small datasets.

We revisit Example 5 with the ANOVA setting with two groups. The
likelihood ratio test is equivalent to the test conducted in ANOVA. This is
shown by elementary operations:

lA − lB = − 1
2σ2

W

2∑
k=1

nk∑
j=1

(yjk − µ̂k)2 +
1

2σ2
W

2∑
k=1

nk∑
j=1

(yjk − µ̂)2

=
1

2σ2
W

2∑
k=1

nk (µ̂k − µ̂)2

=
n1 n2

nσ2
W

(µ̂1 − µ̂2)
2
.

This statistic is an increasing function of ∆µ̂ = | µ̂1 − µ̂2 |.
Figure 2.2 summarises the selected-model-based estimators for the range

of differences ∆µ ∈ (0, 3). In panel A, each curve represents the bias B(µ̂1 ;µ1)
as a function of µ2 − µ1 . Each curve is based on empirical evaluation (50 000
replicates) for the 31 points 0.0, 0.1, . . . , 3.0. The biases and MSEs are plotted
in the respective panels A and B for the probabilities α equal to 0.005, 0.01,
0.025, and 0.05. The MSEs in panel B and the powers of selection in panel
C are constructed similarly. For the synthetic estimator, no model selection
takes place, so the power of selection is not defined. In panel C, the synthetic
estimator is represented by the empirical mean of the shrinkage coefficient.

As MSE is our criterion for efficiency, panel B is key. The MSEs of the
model-based estimators are constant for model A, equal to 0.2, and quadratic
for model B, equal to 0.02 + ∆µ2. The estimator µ̂B = µ̂ based on B is
inefficient for all but very small differences ∆µ. The estimators based on
model selection criteria (LR, AIC and BIC) are also efficient for small values
of ∆µ but are very inefficient for a wide range of values of ∆µ. For large values
of ∆µ they are almost as efficient as estimator µ̂A .

Except for estimator µ̂A = µ̂1 , the synthetic estimator has by far the
smallest maximum MSE over the range (0, 3). It is not uniformly more ef-
ficient than the selected-model-based estimators, but it does not have their
glaring weaknesses. It is least efficient when ∆µ is small—when the estimation
problem is, in a way, the easiest. Similarly, for large ∆µ, when the data should
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Fig. 2.2. The biases, MSEs, and powers of selection using likelihood ratio (LR), AIC
and BIC, and synthesis, using a range of probabilities α, with the ANOVA setting
of Example 5: n1 = 5, n2 = 50, µ1 = 0, σ2 = 1, and µ2 in the range (0, 3). For
synthesis, the power of selection in panel C is replaced by the mean of the shrinkage
coefficient. A and B in panel B denote the MSEs of the estimators based on the
respective models A and B.

strongly indicate that ∆µ is positive, the synthetic estimator is not the most
efficient, but the MSEs of the competing estimators differ little. Thus, the
main strength of the synthetic estimator is that it does not have any weak-
nesses; for no values of ∆µ is its performance very poor. Panel A indicates that
the bias is a substantial contributor to the MSE for the selected-model-based
estimators. Panel C shows that the power of selection is related to the MSE.
Using the mean shrinkage coefficient as a substitute for the power for the
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Fig. 2.3. The MSEs of the synthetic estimators with reduced shrinkage.

synthetic estimator, we see that appropriate selection with high probability
does not imply small MSE.

Recall that in Section 1.1.1 we constructed an estimator uniformly more
efficient than both µ̂1 and µ̂ but it required information about the largest
plausible value of ∆µ. Such information would be difficult to incorporate in
the selected-model-based estimators.

All the estimators can be regarded as trading off small MSE when |∆µ | is
small against large MSE when |∆µ | is large. Which estimator is best for the
purpose? The answer lies in declaring our purpose; we have a freedom (and
responsibility) to do it to suit our needs. This is rarely straightforward even for
a single party. When several parties have a stake in the outcome of the study,
some compromise is necessary between the parties’ objectives, which may be
in mutual conflict. But we should never shy away from exploring a range of
purposes and then settle on an estimator that represents their compromise.
Such an exploration should not look at the possible results (estimates) but at
properties of estimators, MSEs as functions of parameters and design settings.

The synthetic estimator is attractive if we wish to minimise the maximum
of MSE(µ̂;µ1), which we interpret as having no weaknesses. However, by this
criterion the sample mean estimator µ̂1 is superior, negating all our efforts to
improve on it. We can explore some variations of the synthetic estimator, by
reducing its shrinkage coefficient. As a result, the estimator is improved for
large values of ∆µ, at the price or reduced efficiency for small values of ∆µ.
Figure 2.3 presents the results graphically, using the estimators µ̃1(b) with
the shrinkage coefficients b = rg1/(g1 + γ̂2), for r = 0.4, 0.5, . . . , 1.0.

The diagram shows that as we reduce the coefficient b we also reduce the
bias uniformly and trade off efficiency at small values of ∆µ for improvement
at large values of ∆µ. (The breakpoint at which all the plotted functions
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intersect is around ∆ = 0.7.) At the extreme, for r = 0, we match the even
performance of µ̂1.

This extended example should in no way be interpreted as evidence of
superiority of the synthetic estimator over selected-model-based estimators.
Instead, the example outlines how alternative estimators can be explored and
what entails the decision to choose one of them. First, the search is rarely
complete and definite, because we can rarely identify an estimator that is
uniformly more efficient than all its competitors. Second, we have to weigh
carefully the advantages and drawbacks of the alternative estimators and,
possibly, supplement our criteria with what we regard as ‘good’ estimation.
And finally, the search may indicate how prior information, additional to
the analysed dataset, can make the search more effective. For example, if in
Example 5 we knew that |∆ | < 0.5 we would zoom in our attention on the
appropriate part of panel B in Figure 2.2.

Nevertheless, some general comments can be made about the two classes
of estimators, synthetic and selected-model-based. By model selection, we
aim to match the most efficient of the competing estimators. This ‘ambition’
is not achieved because the selection is imperfect. Synthesis aims higher, to
outperform each of the constituent estimators. It fails to achieve this goal
because the ideal shrinkage coefficient can only be estimated.

For two constituent estimators (models), both classes of estimators have
the form

θ̃ =
(
1 − B̂θ

)
θ̂1 + B̂θ θ̂2 . (2.12)

With model selection, B̂θ ‘estimates’ the model to be used (B̂θ is a binary
variable, with possible values 0 and 1), whereas with synthesis it estimates the
ideal combination of the constituent estimators. The description by (2.12) has
an obvious extension to more than two constituent estimators for synthesis:

θ̃ =
M∑

m=0

B̂θ,m θ̂m ,

with the constraint that B̂θ,0 + B̂θ,1 + · · · + B̂θ,M = 1. Model selection en-
tails the additional constraint that (B̂θ,0 , B̂θ,1 , . . . , B̂θ,M ) is multinomial—it
contains M zeros and one unity.

Although model selection usually proceeds by choices within pairs, leading
to multistage selection, it is equivalent to a single-stage selection from among
several models. Synthesis can also be conducted in stages, for example, first
by combining estimators A and B, then by combining their synthesis with C,
and so on. At first, this might seem not to be useful because the constituent
estimators could be combined directly. However, synthesis of many estimators
is problematic because the matrix Q−1

θ may be estimated inefficiently even
when Qθ is estimated efficiently, especially when Qθ or Q̂θ is close to singu-
larity. In such a case, some estimators (models) can be discarded from the
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synthetic estimator because they can themselves almost be combined from
the other constituent estimators.

As the number of observations increases and the parameter space is un-
altered, the probability of selecting the appropriate model increases and the
shrinkage coefficients converge to a unit vector (0, . . . , 0, 1, 0, . . . , 0) or the zero
vector 0, so that synthesis is based on a single model. Thus, asymptotically,
model selection is not an issue. As the sampling variance of every estimator
converges to zero, our attention should focus on eliminating the bias, and
this is best done by applying the most complex model. Asymptotically, we do
not have to pursue model parsimony, because one or a few redundant para-
meters (degrees of freedom used unnecessarily) inflate the sampling variance
only slightly when we have degrees of freedom in abundance. Asymptotically,
maximum likelihood has no competitors, so long as the regularity conditions
are satisfied, and model adequacy should be the only concern. In practice,
asymptotics is usually far away and, if we are committed to working with a
single model, parsimony is highly relevant. Synthesis frees us up from this
constraint but does not offer a uniformly more efficient solution.

Suggested Reading

The classical text [27] contains a comprehensive treatment of the likelihood
theory, including proofs of all the key properties of maximum likelihood es-
timators. For a more recent monograph on likelihood, see [143]. The original
references to the two information criteria, AIC and BIC, are [3] and [175],
respectively. Maximum likelihood estimators for many models are evaluated
using methods for numerical optimisation. Useful references to such methods
are [35, 58], and [94]. A more recent monograph [98] is addressed specifically
to statisticians.

Problems and Exercises

2.1. Write down the likelihood for a random sample of size n from the binary
distribution with unknown probability p. How does it differ from the likelihood
for a single draw from the binomial distribution B(n, p) with known sample
size n and unknown probability p? Find a linear sufficient statistic for p. Derive
the maximum likelihood estimator of p. Check that its sampling variance
agrees with the reciprocal of the expected information and explain why this
agreement is not maintained for the parameter v = p(1 − p).

2.2. Generate random samples from a binomial distribution of your choice
and verify empirically the properties of the maximum likelihood estimator p̂
of the proportion p. Experiment with estimators of the form cp̂ for a range of
values of c near unity. Show that if p were known the minimum MSE would
be attained for c = p/{p + (1 − p)/n}.
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2.3. Suppose the probability p > 0 is known but the sample size n in a random
sample from a binary distribution is not. Derive the likelihood for this setting
with parameter n. How does this likelihood differ from the likelihood(s) in
Exercise 2.2? Compare the maximum likelihood estimator of n with n̂ = k/p,
where k is the number of positive outcomes.

2.4. Consider the following experiment comprising binary outcomes (success
and failure). We keep generating outcomes independently from a binary dis-
tribution with probability p > 0 and stop when we reach a given positive
number M of successes. Derive the likelihood for p and the maximum like-
lihood estimator. Explain why you would expect it to have a positive bias,
especially for small M . Check your conclusion by simulations.

2.5. Derive the results in Example 1 without the aid of matrix algebra and
matrix differentiation.

2.6. The beta distributions are defined by the densities

f(y; a, b) =
Γ (a + b)
Γ (a)Γ (b)

ya−1(1 − y)b−1

for positive constants (parameters) a and b; their support is the interval (0, 1).
(Note that the uniform distribution corresponds to a = b = 1.) Find a set of
sufficient statistics for a and b. Suppose we know that a and b are integers. How
would you go about maximising the likelihood? Derive the expectation and
variance of the beta distribution and use them to derive a moment-matching
estimator.
Hint: A moment-matching estimator is defined as a solution of an equation,
or of a set of equations, that matches sample moments (expectation, variance,
and the like) to the population moments expressed as functions of parameters.
This method is called the method of moments.

2.7. The beta distributions with b = 1 are called power distributions. Show
that they can be derived as powers of the continuous uniform distribution.
Derive the Cramér–Rao inequality for the power distributions. Compare it
with the sampling variance of the moment-matching estimator based on the
expectation and variance. Explain why the moment-matching estimator is not
efficient.
Hint: Look at the sufficient statistic for a.

2.8. Show that the χ2 distributions are a subset of the gamma distributions.
Hint: Show this first for χ2

1 distribution and then proceed by induction.
Using the densities of the gamma distributions, check that the expectation
and variance of χ2

n are n and 2n, respectively. Check these results using the
definition of χ2

n by construction from a random sample from N (0, 1); see
Exercise 1.13. Derive the expectation and variance of the reciprocal of χ2,
that is, of a variable X such that 1/X ∼ χ2

n .
Hint: Relate the integrals

∫
y−kf(y)dy, k = 1, 2 to the densities of some χ2

distributions.
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2.9. Either using Exercise 1.14 or independently, prove that the (unbiased)
estimator of the population variance σ2, σ̂2 = (y− ȳ)�(y− ȳ)/(n− 1), based
on a random sample y of size n from N (µ, σ2) has χ2 distribution with n− 1
degrees of freedom. Compare the efficiencies of the estimators with denom-
inators n (the maximum likelihood estimator), n − 1, and n + 1. Find the
denominator that yields the efficient estimator. Extend this result to estimat-
ing the residual variance in ordinary regression.

2.10. Estimate the reciprocal of the variance σ2 in the setting of the previous
example. Find an estimator more efficient than 1/σ̂2.
Hint: Use the results of Exercise 2.8.

2.11. Suppose β̂1 and β̂2 are the ordinary least squares estimators with
respective models 1 and 2. Models 1 and 2 may be invalid. Let β̂x , β̂x1 ,
and β̂x2 be the slopes on a covariate included in both models. Show that
cov(β̂x1 , β̂x2) = var(β̂x2). Generalise this result to a sequence of K nested
models and describe the pattern of the variance matrix of the K estimators
of the coefficient with respect to the same covariate.

2.12. Let (v1 , . . . , vK) be a decreasing sequence of positive numbers and V
the matrix defined by its elements Vkh = vmax (k,h). Find the determinant and
inverse of V.
Hint: Proceed by induction. Find in the literature on matrices formulae for

the determinant and inverse of a partitioned matrix
(

A B
B� C

)
; in our case,

B = vK1K−1 and C = vK .

2.13. Compile a programme for simulating the selected-model-based and syn-
thetic estimators of the expectation for a group in the setting of ANOVA with
several (say, eight) groups of ten observations each. Set the differences among
the groups in such a way that the target group has in one case an extreme
expectation, in another case is close to the mean of the expectations, and in
another has about the average deviation from the mean of the within-group
expectations. Describe the results of the simulations and present them in a
diagram.

2.14. The F-distribution with n1 and n2 degrees of freedom is defined as
the ratio of two scaled independent χ2-distributed variables with n1 and n2

degrees of freedom in the numerator and denominator, respectively:

X =
X1

X2

n2

n1

where X1 ∼ χ2
n1

and X2 ∼ χ2
n2

. Derive the expectation and variance of these
distributions.

2.15. Consider the ordinary regression model
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yj = β0 + β1x1j + β2x2j + εj

for two covariates, X1 and X2 , with ε ∼ N (0, σ2), independently. Derive the
likelihood ratio test statistic for the hypothesis that β2 = 0.
Hint: Replace the variable X2 with X∗

2 = X2 − b1X1 − b0 with b1 and b0 set
so that X2 is orthogonal to both X1 and the intercept 1.
Show that the test is equivalent to rejecting the hypothesis for large values of

β̂∗
2/

√
v̂ar
(
β̂∗

2

)
, where β̂∗

2 is the least squares estimator of the slope on X2 .

2.16. Compare (analytically) the estimators (1+1/n)maxj Xj and 2X̄ for the
parameter θ of the uniform distribution on (0, θ). Do you think the estimator
minj Xj +maxj Xj is more efficient than either of these? Check your view by
simulations.
Explore the analogous problem with the uniform distribution replaced by the
distribution that is formed as the mean of a random sample of size K from
U(0, θ). Show that this distribution is beta. Check by simulations that this
distribution converges to the normal as K → ∞. Presumably, as K increases,
twice the sample mean becomes a relatively more efficient estimator of θ than
(1+1/n)maxj Xj . Can you confirm this? For which K are the two estimators
about equally efficient? (You may consider all positive numbers for K, not
only integers.)

2.17. The Poisson distributions are defined by the probabilities

P(Y = k) =
e−λλk

k!

for k = 0, 1, . . . and parameter λ > 0. Show that E(Y ) = var(Y ) = λ and
that the sum of two independent variables, each with a Poisson distribution,
also has a Poisson distribution. For a simple random sample from a Poisson
distribution, find the maximum likelihood estimator of λ and its sampling
variance. Explain why and verify by simulations that λ is estimated more
efficiently as the sample mean than as the sample variance.

2.18. A local authority conducted an experiment in which all men below
the age of 21 were encouraged to be at home by 11 pm every night during
the months April to October 2004. To evaluate its success, they compared
the numbers of reported public-order offences that involved young men in
this period of 30 weeks with the same period in 2003 (dataset EX2a.dat on
www.sntl.co.uk/BookA/Data). Test by the likelihood ratio the hypothesis
that the average weekly numbers of offences are the same in the two years, as-
suming that each sequence of 30 outcomes is a random sample from a Poisson
distribution. Assess how valuable it is to know that both samples are from
Poisson distributions. Check and discuss how realistic such an assumption is.
Discuss the problems with interpreting the result of the test given that it is
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not possible to implement all the principles of experimental design.
Hint: Generate many pairs of random samples from the Poisson distribu-
tions with the same means as the two years have in the data, calculate their
variances as features, and plot the pairs of these variances, together with the
realised pair of the within-year means which, according to the adopted model,
are unbiased estimators of the variances.

2.19. Permutation test . As an alternative to the solution in the previous ex-
ercise consider the following. Generate a permutation dataset by assigning the
two observations for a week to the years 2003 and 2004 at random, with these
assignments being independent across the weeks. Evaluate the difference of
the within-year sample means. Replicate this process many times and compare
the (realised) version of this difference with the distribution of its permutation
counterparts. Reject the null-hypothesis of equal means if the realised differ-
ence is in the tail of the distribution of simulated (permutation) differences.
Discuss the relevance of the assumptions of the Poisson distributions and of
independence among the weeks for this test.
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Sampling Methods

This chapter deals with estimation of population quantities in surveys with a
known sampling design, specified (controlled) by the designer of the survey.
Sampling theory treats the values of variables as constants, and chance decides
whether or not they are observed for any given member of the population.
By sampling design, we set the joint probabilities associated with these obser-
vations. In Sections 3.7 and 3.7.1, pursuing efficient estimation of population
quantities, we bring into play regression and related models, making use of
the experience with them in the infinite population setting of Chapters 1 and
2.

3.1 Preliminaries

With unlimited resources and ready access to them, a population could be
studied by enumeration—by collecting the values of the relevant variables
from each member of the population. A more economic alternative is to col-
lect such information only from a subset of the members of the population.
These (selected) members are referred to as subjects, and collectively as a
sample. The sampling process, by which a sample is drawn, is governed by a
sampling design S defined as the function that assigns to each subset s of the
studied population P a probability, P(s), that s would form the sample. In
practice, only one such sample is realised, by a single application of the sam-
pling process, but inferential statements refer to distributions over samples
drawn by infinitely many replications of the sampling process.

Let I be the indicator of selection of a member into the sample: I(i) = 1
if member i is included and I(i) = 0 otherwise. For each member i, I(i) is a
binary random variable with expectation pi = E{I(i)} equal to the probability
of including member i in the sample. The variance of I(i) is pi(1 − pi). The
probability pi can be derived solely from the sampling design, by adding up
the probabilities of all the subsets of the population that contain member i:
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pi =
∑

s∈exp(P); i∈s

P(s) .

This is an impractical prescription for evaluating pi in all but some very
small populations and simple designs. In most cases, pi is derived much more
easily from a mechanistic description of the sampling design (the sampling
mechanism) and various considerations of symmetry. For example, in simple
random sampling without replacement and fixed sample size n, pi = n/N .
This follows from elementary combinatorics, but also by solving the equation
E (
∑

i Ii) =
∑

i pi = n for identical probabilities pi ≡ p.
For simplicity, we consider the setting with a single variable X and estima-

tion of its population mean µ =
∑

i Xi/N . The sample mean µ̂† =
∑

j xj/n,
the naive estimator of µ, can be expressed in terms of the population values
as

µ̂† =

N∑
i=1

I(i)Xi

N∑
i=1

I(i)

.

Evaluating the mean and variance of this estimator is difficult when the de-
nominator is random. This problem is sometimes sidestepped by conditioning
on the realised sample size n. If the variation of n is to be ignored, then
the size equal to the rounded expectation of the denominator, [

∑
i pi], might

seem to be the obvious choice for n. The conditional variance of µ̂† given n is
usually a steeply decreasing function of n, especially for small n.

Of course, the conditioning on the sample size is redundant when n is
fixed, when only subsets of size n have positive probabilities of forming the
sample. Then

E
(
µ̂†) =

1
n

N∑
i=1

piXi ,

var
(
µ̂†) =

1
n2

N∑
i=1

pi(1 − pi)X2
i +

2
n2

N∑
i=1

N∑
i′=i+1

(pii′ − pipi′)XiXi′

=
1
n2

N∑
i=1

N∑
i′=1

pii′XiXi′ −
(

1
n

N∑
i=1

piXi

)2

, (3.1)

where pii′ is the probability of including both members i and i′ in the sample;
we refer to it as the pairwise inclusion probability and set pii = pi . The result
for the variance uses the identity

cov {I(i), I(i′)} = pii′ − pi pi′ ,
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derived by equating the expectation of an indicator to the probability of it
being positive. The first double summation in (3.1) would vanish if pii′ =
pi pi′ , that is, if the events of including pairs of distinct members in the
sample were independent. However, independence and fixed sample size are
not compatible because, with independence, the variance of the sample size
n = I1 + · · · + IN ,

var(n) =
N∑

i=1

pi(1 − pi) ,

is positive. An important implication of the expression for var(µ̂†) in (3.1) is
that the inclusion probabilities pi are not sufficient for deriving the properties
of the sample mean (or of other statistics), because they depend also on the
pairwise inclusion probabilities pii′ .

The estimator µ̂† is biased when the probabilities pi are correlated with
the values of X. The expression for its bias,

B(µ̂†) =
1
n

N∑
i=1

{
pi − E(n)

N

}
Xi ,

highlights the advantage of equiprobability sampling, when all inclusion prob-
abilities pi are equal. For such a sampling design, with n fixed, µ̂† is unbiased.
In practice, this is a very weak argument in favour of such designs—control
over the survey costs is usually a more important consideration. In any case,
efficiency (small MSE) overrides unbiasedness as a desirable property of an
estimator and we are at liberty to define other estimators of µ.

Among sampling designs, we consider only those for which each inclusion
probability pi is positive. Such designs are called proper . Improper designs
can be regarded as excluding the subpopulation of members with pi = 0
from the study. An improper design becomes proper by reducing the target
population to the members with pi > 0. But the definition of a population
should in general not be influenced by the sampling design. In proper designs,
the reciprocals of the probabilities, wi = 1/pi , are called the sampling weights.

3.2 Horvitz–Thompson Estimator

Equation (3.1) for E
(
µ̂†) suggests that µ can be estimated without bias by

µ̂ =
1
N

N∑
i=1

I(i)wiXi , (3.2)

as E{I(i)wi} = 1 for each member i. This estimator, or its version for estimat-
ing the population total Nµ, which does not involve the divisor N , is called
the Horvitz–Thompson (HT) estimator. When the population size N is not
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known its estimate has to be substituted in (3.2). Its nonlinear involvement in
the estimator raises no substantial problems when N is estimated with high
precision. We assume first that N is known. The estimator in (3.2) involves a
summation of only n terms, those for the subjects (selected members):

µ̂ =
1
N

n∑
j=1

xj

qj
,

where q and x are the sample versions of the respective variables p and X.
Note that Xi is related to xj for j = i ≤ n only through being the values
of the same variable X. The ordering of the subjects is not related to the
ordering of the members in any way; pi and qj are related similarly.

The sampling variance of the HT estimator is

var (µ̂) =
1

N2

N∑
i=1

N∑
i′=1

(
pii′

pi pi′
− 1
)

XiXi′ . (3.3)

This identity does not have the form of an average squared deviation from
the mean, which might be easier to motivate. However, it will turn out to be
useful for a straightforward definition of its estimator. The expression

var (µ̂) =
1

N2

N∑
i=1

N∑
i′=1

pii′

pi pi′
XiXi′ − µ2 ,

equivalent to (3.3), is closer in form to some common expressions for the
sampling variance.

When all the pairwise probabilities of inclusion are positive, we can apply
the HT estimator to the N2 values of products XiXi′ , which have probabilities
of being observed equal to pii′ . These products are defined in the population
of all pairs i, i′ ∈ P, denoted by P × P. Denote by I(2)(i, i′) = I(i) I(i′) the
indicator of presence in the sample of both members i and i′. Then the HT
estimator of var(µ̂) is

v̂ar(µ̂) =
1

N2

N∑
i=1

N∑
i=1

1
pii′

(
pii′

pipi′
− 1
)

I(2)(i, i′)XiXi′

=
1

N2

n∑
j=1

n∑
j′=1

(
1

qj qj′
− 1

qjj′

)
xjxj′ , (3.4)

defined with reference to the population P × P. This variance estimator re-
quires a design for proper sampling from P × P. In Section 3.2.2, we explore
systematic sampling designs in which most pairs (i, i′) cannot appear in a
sample together. In brief, a systematic sampling design is defined by a ran-
dom start a and step length b, and it includes in the sample all the members



3.2 Horvitz–Thompson Estimator 71

with indices i = a+kb. The integer b is set by design, and a is drawn from the
discrete uniform distribution on (1, 2, . . . , b). Of course, pii′ = 0 unless i − i′

is divisible by b.
The singularity in (3.4) for the systematic sampling designs can be moti-

vated as follows. A single sample s provides next to no information about the
values of the other possible samples. On the one hand, the values of X may
be in a regimented order, constant within the sets of b

.= N/n members that
are represented in the sample by a single subject; on the other hand, the val-
ues may be dispersed much more than they are in any possible sample. This
diagnosis exposes a weakness of the estimator in (3.4): it allows no input of in-
formation about the association of the values of X for neighbouring members
and, more generally, members i and i′ in a distance | i − i′ | shorter than the
step length b. However, unlike model-based estimators discussed in Chapters
1 and 2, which could be incorrect because the adopted model may be invalid,
the variance estimator in (3.4) is ‘correct’ (unbiased) if the probabilities pi

and pii′ , set by design, are correctly specified. In practice, such correctness is
not attained because of numerous imperfections and compromises in the con-
duct of the survey, foremost among them nonresponse and imperfect sampling
frame.

The obvious strength of the HT estimator is its universality; it can be
applied to any proper sampling design and any variable X. Some of its draw-
backs can be exposed on some admittedly esoteric examples. Suppose X is
a constant variable, equal to µ for every member. Then its HT estimator µ̂
has a positive variance for a variety of designs. For illustration, consider any
sampling design with unequal probabilities pi and sample size n = 1. The
estimator is µ̂ = µ/(Nq1) and its sampling variance is

var (µ̂) =
µ2

N2

(
N∑

i=1

1
pi

− 1

)
. (3.5)

This summation is nonnegative, because it can be related to the difference
between the harmonic and arithmetic averages of the probabilities. The vari-
ance vanishes only when the pi are constant, equal to 1/N . When the pi are
constant but the sample size n is variable, µ̂ is constant conditionally on the
value of n, but not without such conditioning.

A further deficiency of the HT estimator relates to the division by some
very small probabilities qj . The corresponding subjects exercise strong in-
fluence over the value of µ̂, and the problem is further exacerbated in the
estimator v̂ar(µ̂), in which 1/(qjqj′) and 1/qjj′ are involved. These problems
show how important it is to incorporate our intelligence about X in the sam-
pling and estimation processes. We address these issues in Sections 3.7.1 and
3.7.2.

For designs with fixed sample size there is an alternative expression for
the variance of the HT estimator, namely



72 3 Sampling Methods

var (µ̂) = − 1
2N2

N∑
i=1

N∑
i′=1

(pii′ − pipi′)
(

Xi

pi
− Xi′

pi′

)2

. (3.6)

To show that it is equivalent to (3.3), expand the square and collect the terms
involving the squares X2

i :

− 1
N2

N∑
i=1

X2
i

p2
i

N∑
i′=1

(pii′ − pip
′
i) .

This summation vanishes because fixed sample size implies the identity∑N
i′=1(pii′ − pi pi′) = 0 for any fixed i. The remainder of (3.6) coincides

with the right-hand side of (3.3). The expression in (3.6) suggests that var(µ̂)
is small in sampling designs in which p• as a variable defined in P is close
to being proportional to X. We develop this theme in Section 3.7.2, after
introducing some commonly used sampling designs.

3.2.1 Simple Random Sampling

The HT estimator simplifies considerably for equiprobability sampling designs
and for simple random sampling (SRS) designs in particular. For the SRS
design with fixed sample size n and without replacement, pi = n/N and
pii′ = n(n − 1)/{N(N − 1)}. The latter identity is obtained from elementary
combinatorics or by solving the equation var {∑i I(i)} = 0 when p(2) = pii′

for every pair i �= i′, and pi = p for every member i. In general, fixed sample
size n is equivalent to the identity

N∑
i=1

∑
i′ �=i

pii′ = n2 − n .

To prove this, recall that fixed sample size n implies that
∑

i pi = n. Further,

var

{
N∑

i=1

I(i)

}
=

N∑
i=1

pi(1 − pi) +
N∑

i=1

∑
i′ �=i

(pii′ − pipi′)

= n − n2 +
N∑

i=1

∑
i′ �=i

pii′ ,

and this vanishes if and only if the N(N−1) pairwise probabilities of inclusion
of two distinct members add up to n(n − 1). When all these probabilities
coincide, p(2) = n(n − 1)/{N(N − 1)}, as claimed earlier.

For SRS with replacement and fixed sample size, the HT estimator of the
population mean µ is equal to the sample mean, and its sampling variance is
equal to
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var (µ̂) =
1

N2

N − n

n

⎧⎨⎩
N∑

i=1

X2
i − 1

N − 1

N∑
i=1

∑
i′ �=i

Xi Xi′

⎫⎬⎭
=
(

1
n
− 1

N

)
1

N − 1

N∑
i=1

(Xi − µ)2 . (3.7)

This expression is a product of the population variance σ2, with the finite-
sample divisor N − 1, and the scalar 1/n − 1/N that can be written as f/n,
where f = 1 − n/N . The factor f is referred to as the finite-population cor-
rection; it would be equal to unity if the population size were infinite. The
variance in (3.7) is estimated by its sample version.

Sampling designs with replacement are of little practical relevance, es-
pecially in surveys of human populations and their organisations (families,
schools, businesses, and the like), because multiple inclusion of a subject in
the sample would amount to multiple representation of the subject’s record
in the dataset. Most populations studied by surveys are large and the sample
fractions n/N are small, so that in a sampling design with replacement the
probability of multiple inclusion is very small. In such a setting, for every sam-
pling design with replacement there is a very similar sampling design without
replacement.

With independent draws of subjects into the sample, pii′ = pi pi′ for i �= i′,
so the formula for var(µ̂) is simplified. Suppose each member of a population
is included in the sample with a common probability p and the events of
inclusion are independent. Then the population mean of X is estimated by
µ̂ = x̄/(pN), where x̄ is the sample mean. The sampling variance of this
estimator is

var(µ̂) =
1 − p

pN2

N∑
i=1

X2
i .

Let Y = a + bX for some constants a and b �= 0. The population mean of this
variable is µY = a + bµ, and its HT estimator is µ̂Y = a + bµ̂. However, the
sampling variance of µ̂Y,

var (µ̂Y) =
1 − p

pN2

N∑
i=1

(a + bXi)2 ,

differs from b2var(µ̂). In contrast, when the sample size is fixed, we have the
equality var(µ̂Y) = b2var(µ̂); see (3.7).

3.2.2 Systematic Sampling Designs

To derive an estimator of var(µ̂), we require, instead of properness of the
sampling design, a stricter condition, that of properness of the sampling design
with the joint probabilities of inclusion pii′ in the population P×P. Systematic
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Fig. 3.1. Illustration of a general systematic sampling design. The segment at
the top represents the 130 members of a fictional population and the segment at
the bottom the sample selection points separated by the (constant) step length.
The vertical dots connect the selected points to the corresponding subject, whose
segments are highlighted.

sampling designs are a practical example of designs with pii′ = 0 for some pairs
(i, i′). For drawing a sample of size n, assuming for simplicity that b = N/n
is an integer, an integer a is selected at random from the sequence 1, 2, . . . , b,
and the members a + bh, h = 0, 1, . . . , n − 1, are selected into the sample.
Thus, two members can be selected into the sample only if the distance of
their positions in the sampling frame is a multiple of b. For any other pair of
members i and i′, pii′ = 0.

Systematic sampling designs and their various generalisations can be de-
scribed geometrically. We represent each member by a segment of unit length
and join the segments into a single segment of length N . We choose the step
length b and draw a random start a from the (continuous) uniform distribu-
tion on (0, b). The sample comprises all subjects whose segments contain the
points in distances a + b(j − 1), j = 1, . . . , n, from the origin. The unit-length
segments can be joined to form a circle (or N -hedron); then b = 2π/n and a
can be replaced by an angle. With such a scheme, the sampling can go round
the circle several times and may draw some elements repeatedly. Next, the
members’ segments may have unequal lengths, xi , enabling sampling with
probabilities proportional to these lengths. An illustration is given in Figure
3.1. With such a sampling design, a member represented by a segment longer
than b may be selected more than once. If we insist on sampling without re-
placement we retain only one selection. As an alternative, the lengths xi may
be truncated at b. The members for whom we set xi = b are selected into the
sample with certainty and the remainder of the sample is drawn from among
the other members.

Systematic sampling designs are easy to implement, but there are no obvi-
ous estimators of the sampling variance of µ̂. The number of distinct samples
that can be drawn is very limited (often equal to an integer close to b) and,
without some additional information, one (realised) sample contains no infor-
mation about the other possible samples because they do not overlap. This
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can in principle be remedied by supplementing the systematic sample with
subjects drawn at random from the other possible samples; these subjects
may be in preset or randomly set distances from the subjects in the original
sample.

3.2.3 Some Other Sampling Designs

Next we introduce two classes of sampling designs. In the first, each member
i is associated with probability pi , and the events of inclusion are mutually
independent for all the members. Thus, the (variable) sample size has expec-
tation E(n) = p1 + · · ·+pN and variance E(n) = p1(1−p1)+ · · ·+pN (1−pN ).
Independence of the inclusions implies that pii′ = pipi′ whenever i �= i′ , and
so the variance of the HT estimator reduces to

var(µ̂) =
1

N2

N∑
i=1

1 − pi

pi
X2

i

and is estimated without bias by

v̂ar(µ̂) =
1

N2

n∑
j=1

1 − qj

q2
j

x2
j .

The variable sample size has an undesirable impact on the estimation of the
population mean, especially when E(n) is not very large, because sample sizes
much smaller than E(n) cannot be ruled out. The HT estimator can be im-
proved by ‘correcting’ it for the population size:

µ̂∗ =
1
N̂

n∑
j=1

xj

qj
,

where N̂ = 1/q1+· · ·+1/qn can be interpreted and, when N is not known, used
as the HT estimator of the population size N . The estimator µ̂∗ is a weighted
mean, using the sampling weights. The variance of µ̂∗ is, approximately,

var(µ̂∗) .=
1

N2(N − 1)

N∑
i=1

N(1 − pi) − 1
pi

(Xi − µ)2. (3.8)

The method for deriving this approximation is presented in greater generality
in Section 3.7.

The next general sampling design is with replacement and has a fixed
sample size. Suppose each member is associated with a probability ri > 0, and
r1 + · · ·+ rN = 1. The sampling mechanism comprises n replicates of drawing
(with replacement) one member from the population, with the probabilities
ri . The HT estimator is a sum of n independent contributions, each being a
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random draw from the distribution given by the values X1/r1 , . . . , XN/rN .
Let V be the variance of these values. Then the variance of the HT estimator
is V/n. The population variance V can be estimated by its sample version.

The expressions for the (approximate) sampling variances of the estima-
tors µ̂ in these two general schemes indicate that µ could be estimated with
high precision if the probabilities pi in one scheme and ri in the other were
proportional to Xi . Of course, the values Xi are not known. However, if the
values of another (observed or constructed) variable Z, known to be highly
correlated with X, are available, then the probabilities pi (or ri) could be set
proportional to their values. This motivates the sampling designs in which the
selection probabilities are proportional to a variable that has positive values.
These designs are said to be with probability proportional to size.

3.3 Stratification

Stratification is a general device for converting the unwieldy task of conducting
a survey in a large population to conducting several smaller surveys in a set of
subpopulations that form a division (partition) of the studied population. The
subpopulations are called strata and the sampling designs in the strata are
independent. The strata are often geographical (regions), taking advantage
of information available about the regions and of the management structures
that the survey organisation in charge may have in place.

When inferences are required about the strata, stratification enables the
designers to control the precision of the estimators of the within-stratum pop-
ulation quantities because the sampling plan specifies, in effect, a separate de-
sign for each stratum. When the strata (regions) are relatively homogeneous
in comparison with the domain (country) as a whole, estimation within each
stratum is relatively precise. Estimation of the corresponding national quan-
tities then has a potential to be more efficient than with designs that do not
use stratification.

Stratification should be used sparingly. Each stratum can be associated
with a degree of freedom lost, so stratification that is too detailed or in which
the strata are not any more homogeneous than the entire population is in-
effective, resulting in an estimator that is not efficient. In this respect, an
analogy can be drawn with model-based estimation. The ideal stratification
is based on a few strata that have substantially different subpopulation means,
or distributions, of the target variable. Thus, stratification promotes smoother
organisation of a survey, and with it cost-effectiveness, and has a potential to
increase efficiency.

Stratification does not generate any analytical difficulties beyond those
of estimation for each stratum separately. Let µ̂h be unbiased estimators of
within-stratum population means µh , h = 1, . . . , H, of a variable X, and Nh

the within-stratum population sizes. Then the (national) population mean µ
is estimated without bias by
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µ̂ =
1
N

H∑
h=1

Nhµ̂h

and, as µh are independent, its sampling variance is

var (µ̂) =
1

N2

H∑
h=1

N2
h var (µ̂h) .

This variance is estimated by the same linear combination of the estimators
of the within-stratum variances var(µ̂h). Of course, difficulties arise when
the within-stratum population sizes Nh are not known, but this problem is
encountered also at the planning stage, when setting the sampling design.

3.4 Clustering

Most target populations are structured, and grouping into clusters in several
layers, such as of individuals in families within postal sectors, communities,
and districts, is a common structure. We consider first a population with
only one layer of K clusters. Just like the strata in the previous section, such
clusters form a division of the domain. In a simple (single-stage) clustered
sampling design, a sample of clusters is drawn by a sampling design, and
each member of a selected cluster is included in the sample. Subjects within a
cluster often provide similar responses, so the data collected from them contain
some (near) duplication. On the one hand, this may appear to be wasteful; on
the other hand, most of the effort and expenditure associated with the data
collection are spent on arranging and realising the interview—travel costs and
time of the interviewer, sometimes requiring additional calls. Thus, collecting
information from all members of a selected cluster may represent a relatively
small expenditure in addition to collecting information from some or only
one of them. Other factors may favour including the entire cluster in the
survey. For example, in educational surveys, data collection in the form of a
test may become part of the curriculum, so it is practical to administer it to
entire clusters (schools or classrooms). Administering it selectively may also
be disruptive and encourage some subjects to refuse cooperation, preferring
alternative activities.

Multistage clustered design is applied when a sample of clusters at the
most aggregate level H (the primary sampling units) is selected (the first
stage), and then samples at the lower level of aggregation, H − 1 (secondary
sampling units), are selected only from the clusters selected in the first stage,
and so on, until in stage H, in which individuals (elementary-level sampling
units) are selected from the clusters at level 2 that were selected to the sample
in stage H−1. The sampling designs in the various stages are independent and
may include enumeration within the clusters selected in the previous stage,
and the within-cluster sampling designs at each level are also independent.
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Fixed overall sample size is possible to arrange only by imposing fixed sample
sizes within all clusters in all the stages. This is rarely feasible, especially
when the clusters at the various levels have unequal population sizes.

Another important consideration is that a sampling frame for the entire
population may not be available or is too costly and time-consuming to com-
pile. In multistage clustered sampling, it suffices to compile sampling frames
within the selected clusters and only for the level of selection in the stage con-
cerned. For example, in a clustered design with students within schools and
schools within districts of a country, lists of schools need to be compiled only
for the selected districts, and lists of students only in the selected schools.

3.4.1 Two-Stage Clustered Sampling

A two-stage clustered sampling design is described easiest of all by the sam-
pling design at the first stage, in which clusters play the role of members
and subjects, and by the conditional sampling designs, one for each cluster,
given that the cluster is selected in the first stage. We use the superscripts I
and II to indicate the sampling stage. For stage II we have to indicate both
the cluster and its members. Thus, pII

ii′ | k stands for the pairwise conditional
(second-stage) probability of inclusion of members i and i′ in cluster k, given
that the cluster was selected in stage I. Other notation is defined by analogy.

The unconditional probabilities, required for the HT estimator µ̂, are the
products of the first-stage selection probabilities of the clusters and the con-
ditional probabilities of selection in stage II:

pi = pI
k pII

i | k .

The notation is incomplete, because it does not indicate that member i be-
longs to cluster k. We omit this to avoid a clutter of subscripts. For pairwise
inclusion probabilities, required for the sampling variance of µ̂ and its esti-
mator, different identities apply for two members from the same cluster and
from different clusters.

Although the general identity (3.3) applies also for the two-stage design, it
is instructive to express the sampling variance of µ̂ in terms of the cluster-level
and within-cluster design probabilities and variances:

var (µ̂) = varI (µ̂ | {µk}) +
1

N2

N I∑
k=1

N2
kvarII (µ̂k) , (3.9)

where the first variance (varI) is for the estimator of µ̂ in the hypothetical
setting of the cluster-level means µk observed in the selected clusters directly
(with precision) and the second variance (varII) is for estimating the cluster-
level means. The decomposition in (3.9) can be extended to multistage clus-
tered sampling designs by substituting for varII the variances that add up
the contributions from the stages after the first. Also, the identity (3.9) can
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be ‘composed’ from the conditional variances, and so no new analytical de-
velopment is required when the sampling design is changed at one of the
stages. However, we emphasise that independence of the stages as well as of
the within-cluster designs is an important assumption of the formula.

To prove (3.9), we make use of the identity

var (µ̂) = varI {EII (µ̂) | I} + EI {varII (µ̂ | I)} , (3.10)

where the subscripts I and II indicate, respectively, replications over the first
stage of sampling and over the second stage conditionally on the first. Given
the first stage (conditionally on the clusters in the sample),

EII (µ̂ | I) =
∑
k∈sI

µk /pI
k , (3.11)

because the means µk within the selected clusters k are estimated without
bias. The right-hand side of (3.11) has the form of the HT estimator with µk

as the observations, so it would be unbiased for µ if the means µk involved
were observed. Therefore, the first-stage variance of (3.10) is equal to the
first term on the right-hand side of (3.9). Each sampled cluster contributes
(additively) to the estimator µ̂ by Nkµ̂k , and the sampling variance of this
contribution is N2

kvarII (µ̂k) The first-stage expectation of their total is

N I∑
k=1

N2
kvarII (µ̂k) .

This concludes the proof of (3.9).
The sampling variance given by (3.9) is estimated without bias by

v̂ar (µ̂) = v̂arI (µ̂ | {µk}) +
1

N2

∑
k∈sI

N2
k

pI
k

v̂arII (µ̂k) , (3.12)

where

v̂arI (µ̂ | {µk}) =
∑
k∈sI

∑
k′∈sI

(
1

pI
k pI

k′
− 1

pI
kk′

)
µ̂k µ̂k′−

∑
k∈sI

1
pI

k

(
1
pI

k

− 1
)

v̂ar(µ̂k) .

In fact, both contributions are unbiased for their counterparts in (3.9).

Design Effect

The term design effect is used for the ratio of the sampling variances of two
unbiased estimators of the same population quantity with two different sam-
pling designs. The two estimators have similar or identical forms, so that the
design effect can be regarded as a comparison of the designs. A level playing
field is ensured by comparing two designs with the same (fixed or expected)
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sample size. The sampling design in the denominator is the standard or ref-
erence, against which the nonstandard design in the numerator is compared.
The most commonly adopted reference design is SRS without replacement.
The design effect has its ‘financial’ equivalent, in which two designs that re-
quire the same (or comparable) outlay of resources are compared.

Most large-scale surveys are used for a multitude of inferences, and each of
them is associated with a design effect. These design effects may vary, and one
sampling design need not have all the design effects greater (or smaller) than
another design. This complicates the choice among the alternative designs.
Priorities among the planned inferences have to be taken into account to
resolve this problem.

3.5 Planned and Realised Sampling Designs

Most large-scale surveys plan to have a set sample size. Stratification is com-
monly employed to ensure that certain subpopulations, usually defined by the
geography or administrative division of the domain, also have planned sam-
ple sizes. The statistical rationale for this is to secure sufficient information
for inferences about each subpopulation. Interviewers require training and in-
struction and may be renumerated by a fixed amount, so not engaging them
fully is wasteful. The survey management may therefore want to match the
contracted interviewers with agreed workloads. This can also be arranged, or
promoted, by stratification.

Despite careful planning, the conduct of a survey involves a lot of impro-
visation because most human subjects are disinterested and often reluctant,
unwilling, or unavailable for an interview. The generally adopted standards
rule out any coercion and any rewards for cooperation other than nominal. In
longitudinal surveys, one rejection is often interpreted as intention not to co-
operate in the future. Nonresponse raises profound difficulties because it alters
the sampling process as described by the probabilities P(s), s ∈ exp(P), or by
pi and pii′ . Chapter 5 deals with this topic in greater detail and generality.

As nonresponse entails a great deal of uncertainty about the size and
representativeness of the sample, it reduces the importance and relevance of
planning to have a fixed sample size, and it is more constructive to insist on
a sample size that has a small variance. Arranging fixed sample sizes within
strata may also be unrealistic, but measures to reduce their (within-stratum)
variation are important, especially when inferences are required for some or
all the strata.

An equiprobability sampling design is the natural choice for surveying
a population when no information other than a sampling frame is available
about it or if we do not wish to use any such information. Sampling designs
can be classified as those that apply one or several equiprobability designs
and those that apply designs with sampling probabilities dependent on one
or several variables. An example of the former, apart from SRS design, is the
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stratified sampling design with a distinct SRS design in each stratum and clus-
tered sampling design with an equiprobability design in each selected cluster.
A simple example of a design with probabilities dependent on a variable is a
clustered design in which the first-stage probabilities depend on a variable,
such as urbanity of the cluster.

To plan and implement a sampling design with unequal probabilities, the
variable(s) on which these probabilities are based have to be set first, and
this is practical only in populations that have been well researched in the
past and for which the values of the relevant variables are available and,
preferably, included in the sampling frame. Administrative registers may be
suitable sources of such information, even when they are constructed and
maintained for an unrelated purpose.

In multistage clustered sampling designs, the collection of the information
about the clusters can be postponed until their selection, sparing such work
in the clusters that are not selected. In principle, the ‘conditional’ sampling
design given the selection of the cluster could be set at that stage. However,
in a national survey this would involve instructing several administrators who
are in charge of the data collection processes in the clusters. Such procedures
are regarded by management as fragile and prone to imperfect (inconsistent)
implementation, so it is preferable to control the later-stage designs centrally.

Sampling with probability proportional to the size of the stratum ensures
that more populous strata have a richer representation in the sample. Such a
strategy is effective for estimating quantities associated with the entire pop-
ulation but may be inefficient for inferences about the strata. The targets for
the most populous strata will then be estimated with abundant precision. In
contrast, greater sample sizes could have been used in the most sparsely pop-
ulated strata without increasing the expenditure substantially. Thus, altering
the sample sizes in favour of the less populous strata may be advantageous.
However, the sampling costs per subject, pro-rated to strata and other ag-
gregate sampling units, may differ, making this problem of sample allocation
difficult not only to solve but even to formulate. Section 3.6 addresses some
of these problems but, by necessity, in settings that are much simpler, both
to formulate and to deal with, than those encountered in practice.

3.5.1 Adjusting and Trimming the Weights

A well-established method for compensating for nonresponse adjusts the orig-
inal sampling weights wj = 1/qj so that their summaries would agree with
certain known population summaries. As a simple example, suppose the stud-
ied population is known to contain P = 52% women, but the HT estimate
based on the realised sample is only p = 45%. The sampling weights are ad-
justed for every woman by the factor P/p and for every man by (1−P )/(1−p),
so that the sample total of the weights remains unchanged. Such a weight ad-
justment can be regarded as a poststratification—introducing a new layer of
stratification to force the within-stratum totals of ‘sampling’ weights to agree



82 3 Sampling Methods

with the corresponding subpopulation sizes. All inferences are then drawn
with the adjusted weights as if they were the original ones.

Generalisations to several categories are obvious in principle. When the
population composition is available for several categorical variables that are
recorded also in the survey, various iterative weight adjustment schemes have
to be applied. They adjust for one set of subpopulation percentages at a time
and cycle through these sets for other variables until the changes in the weights
since the previous cycle become very small. These schemes are referred to as
raking .

The adjusted weights engender a superficial respectability because some
cosmetic features of the sample agree with their population versions. Such an
adjustment is ‘too good’, because even if the planned sampling design were
implemented perfectly, with a perfect sampling frame, such an agreement
would not be achieved. Estimation with the weights adjusted by raking may
lead to underestimation of the sampling variances (unjustified optimism or
dishonesty), because the weights adjusted by a random process are regarded
as the original weights—the uncertainty involved in the adjustment is ignored.
In practice, this problem is often ignored, claiming that the uncertainty en-
tailed is only minute. The adjustment of the sampling weights is difficult to
follow up by a corresponding adjustment of the pairwise sampling weights,
the reciprocals of the pairwise inclusion probabilities.

Large sampling weights or large values of wjxj make disproportionately
large contributions to the sampling variance of µ̂. Recognising that, with or
without various adjustments, the weights are approximations to the recipro-
cals of the probabilities of inclusion, analysts adjust them further by trimming
them. A threshold W is set and each weight wj that exceeds W is reduced to
W . If wj were the original weights in a survey with perfectly implemented sam-
pling design, such trimming would make the HT estimator biased. However,
empirical evidence, supported by theoretical considerations, suggests that this
is well worth doing as the sampling variance of µ̂ is reduced substantially at
the price of a slight bias.

Smoother trimming schemes may be more effective. One such scheme is
motivated by shrinkage. Let w̄ be the (sample) mean of the sampling weights
wj . Then the weights wj are replaced by

w̃j = (1 − b)wj + bw̄ (3.13)

for a small positive constant b. This constant may be specific to each stratum
or to each category of some other division of the population and may be set
so as to reduce the dispersion of the adjusted weights w̃j to a desired level.
If σ2

w is the variance of the original weights wj , then the variance of the
adjusted weights is (1 − b)2σ2

w . Weights are often more naturally compared
on a multiplicative scale, especially when interpreted as numbers of members
of the population they effectively represent. This motivates a more radical
way of trimming the weights in which the shrinkage in (3.13) is applied to the
logarithms of the weights.
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Fig. 3.2. The values of the variable X and the probabilities of inclusion and their
logarithms with base 10 for a 2.5% simple random sample from the artificial gener-
ated population with N = 72 500.

The sets of weights {wj} and {cwj} are equivalent for any positive constant
c —only the relative sizes of the weights matter. Most estimators that use
weights do not depend on c. The dispersion of the weights is therefore more
practical to measure on the log scale, as we have the identity var{log(w)} =
var{log(cw)}.
Example 6. To play out the scenario of sampling and estimation and compare
a range of alternative estimators based on trimming and shrinkage of weights,
we generate an artificial population of size N = 72 500 and values of a variable
X in the range (0, 8.12), with high skew. In our realisation, about 43% of the
values are equal to zero and a further 18.5% are smaller than 1.0. For a survey
with expected sample size E(n) = 500, we devised a sampling design with
independent inclusions and probabilities of inclusion, p, correlated with the
values of X (correlation 0.35). Figure 3.2 plots the values of X against p and
log10(p) for a simple random sample with probability 0.025. Plotting all the
points would totally cover a large part of the plotting area with black ink, and
we would not be able to see the relative densities of the values. With the SRS
sample and a bit of random noise added to each point to avoid overprinting,
the density of the points with X = 0 can be clearly discerned.

The probabilities of inclusion range from 2 ·10−5 to 0.030, and their distri-
bution is highly skewed; their mean is E(n)/N = 0.0069 and median 0.0060.
We replicated 1000 times the sampling process with the given probabilities
of inclusion and independent inclusions, followed by evaluation of estimators
with trimming and shrinkage of the weights. The weights were trimmed at
100, 50, 20, 10, 7.5, and 5 times the median of the weights 1/p, and the log-
probabilities were shrunk toward their mean with coefficients ranging from
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Table 3.1. Empirical summaries of the estimators of the population means with
trimmed and shrunken sampling weights. The minimum root-MSEs for either
method are highlighted.

Trimming (at multiple of med(w·) )

None 100 50 20 10 7.5 5

Bias −0.0033 −0.0039 −0.0058 −0.0131 −0.0263 −0.0353 −0.0545
Variance 0.0133 0.1245 0.1130 0.0096 0.0083 0.0079 0.0072
Root-MSE 0.1154 0.1116 0.1064 0.0985 0.0948 0.0955 0.1007

Shrinkage (of log-weights)

0.05 0.10 0.15 0.20 0.25 0.30 0.35

Bias −0.0006 0.0037 0.0093 0.0163 0.0244 0.0336 0.0438
Variance 0.1150 0.1023 0.0093 0.0087 0.0083 0.0080 0.0078
Root-MSE 0.1071 0.1011 0.0970 0.0948 0.0943 0.0956 0.0988

0.05 to 0.35 in steps of 0.05. The results are summarised in Table 3.1. They
show that the smallest MSE is achieved by trimming at the threshold equal
to ten times the median weight and by shrinking the log-weights with coeffi-
cient 0.25. The sampling weights exceed ten times the median for about 3000
members of the population (4%) and 7.5 times the median for more than 4500
members (6%). (Note that in a sample, the sample median of the weights is
used and it is biased for the population median.) The result about shrinkage
indicates that a considerable amount of shrinkage should be applied, reducing
the population variance of the weights about seven times, from 1.5 × 106 to
0.21 × 106.

In this example, trimming and shrinkage are about equally efficient, if we
can find the ideal level of trimming or of shrinkage. This would be easy if
we had an enumeration of the population, but then the survey would be un-
necessary. Nowadays, it is not a computationally excessive task to generate
an artificial population of even several million members and conduct a simu-
lation that assesses alternative schemes of weight adjustment. The difficulty
is in collecting intelligence about the population to be surveyed that would
enable us to make such a simulation realistic. The rewards can be consider-
able. In our example, we reduced the root-MSE by about 20%, from 0.1154
to 0.0943. Equivalently, we could have reduced the sample size of the planned
survey by about 35%. In practice, we are unlikely to hone in on the optimal
level of trimming or shrinkage; however, the simulation exercise is well worth
it, even if we realise only half the gains. In our example, we can achieve that
by setting the trimming threshold in the range of 4 to 40 times the median
weight or the shrinkage coefficient in the range 0.10 to 0.40. Investment in
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computing (analysis) at the planning stage can be more than compensated by
savings at the data collection stage.

3.6 Sample Size Calculation

A grossly simplified version of the task of setting the sampling design involves
calculating the smallest sample size for a specified class of designs, for which
the sampling variance of a key estimator would be smaller than a prescribed
value. A typical large-scale survey is used for making inferences about a mul-
titude of population and subpopulation quantities, so its sampling design is a
compromise of statistical efficiency, cost-effectiveness, feasibility, the available
expertise and capacity, and management’s constraints and preferences, which
include the existing organisational structures and contractual arrangements.
No formal sample size calculation can take all these realities fully into account.
Nevertheless, even the calculation for a greatly simplified setting can provide
a useful guide and can serve as a starting point in planning a survey.

For an entire-domain (population) quantity µ, we may insist on a partic-
ular level of sampling variance of its unbiased estimator µ̂ and calculate the
sample size that would assure it. The sampling weights (or the inclusion prob-
abilities) are very difficult to take into account in such a calculation because
they are not constant and may be correlated with the target variable. In a
more practical approach a particular design effect is assumed and the relevant
problem is solved for a reference design, such as simple random sampling with
replacement.

A commonly considered problem is that of allocating a fixed sample size n
to the strata h = 1, . . . , H, as n = n1 + · · · + nH , with the aim of estimating
the population mean µ with the smallest possible MSE. Suppose the within-
stratum designs are set, except for their sample sizes nh . Each within-stratum
population mean µh would be estimated without bias by µ̂h(nh), an estimator
that depends on the within-stratum sample size. Suppose its sampling variance
is vh(nh) = uh/nh + th for some positive constants uh and th . We denote
n = (n1, . . . , nH). The sampling variance of the (national) estimator µ̂ =
(N1µ̂1 + · · · + NH µ̂H)/N is

var(µ;n) =
1

N2

H∑
h=1

N2
h

(
uh

nh
+ th

)
, (3.14)

and it can be minimised subject to fixed sample size n = n�1 by the method
of Lagrange multipliers or by substituting n1 = n−n2− . . .−nH . Either way,
we obtain the solution

n∗
h = n

Nh
√

uh∑H
h′=1 Nh′

√
uh′

.
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The realistic nature of this calculation can be enhanced by assuming fixed
total costs

C = B +
H∑

h=1

nhCh

(instead of fixed overall sample size n), yielding a similar solution

n∗
h = n

Nh

√
uh/Ch∑H

h′=1 Nh′
√

uh′/Ch′
,

which reflects higher costs Ch by reduced within-stratum sample sizes nh .
Note that the quantities n∗

h have to be rounded. The result might rule out
sampling within a stratum h in which data collection is very costly, but then
var(µ̂) = +∞. The design should be adjusted so that this is avoided.

A similar approach can be applied to allocating the sample size to strata
when all the within-stratum population means are to be estimated. The design
cannot be optimised separately for each stratum because greater subsample
size in one stratum comes at the expense of smaller subsample sizes in one
or more other strata. This problem is resolved by specifying a priority Ph for
estimating each target µh . The priority of a target is a positive constant that
describes the relative importance of its estimation. The linear combination of
the sampling variances, with the coefficients equal to the priorities,

H∑
h=1

Phvar (µ̂h) , (3.15)

is minimised. If an estimator µ̂h is biased, its variance in (3.15) is replaced by
MSE(µ̂h ;µh). High priority Ph inflates the contribution of the corresponding
var(µ̂h) to (3.15), and so the solution prefers to allocate greater subsample
size to such a stratum h. This is easy to confirm by finding the minimum of
(3.15). This can be done by the same methods as for minimising (3.14). We
obtain the condition

Ph
uh

n2
h

= const ,

so that the optimal sample sizes are proportional to
√

uh Ph . Hence

n∗
h = n

√
uh Ph∑H

h′=1

√
uh′ Ph′

. (3.16)

The priorities Ph may be set by negotiation among the parties with a stake
in the survey and its analysis. When this is not feasible a class of proposal
priorities may be adopted. One such class is given by the powers Ph = Nq

h for
nonnegative exponents q. The exponent q = 0 corresponds to equal priorities,
and high q results in allocating almost all the available sample size to the
most populous stratum. By setting q = 2, we obtain the allocation that is
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efficient for estimating the population mean. When it is desirable to improve
the estimation for the least populous strata more than for the more populous
ones, a setting with q < 2 is appropriate.

Whenever q �= 2, optimal estimation of the within-stratum means is ac-
companied by reduced efficiency of the national estimator µ̂. We may associate
µ̂ with a priority P and incorporate the desire for efficient estimation of µ by
supplementing the criterion in (3.15) with the term Pvar(µ̂) or P MSE(µ̂;µ).
By differentiating the expression in (3.14) we obtain the condition

Ph
uh

n2
h

+
P

N2

N2
huh

n2
h

= const ,

which yields the solution

n∗
h = C

√
uh

√
Ph + P

N2
h

N2
,

for a constant C that ensures the planned sample size n∗
1 + · · · + n∗

H = n.
This is the same solution as when we do not care about estimating the pop-
ulation mean (P = 0), but the priorities Ph for the subpopulation means are
adjusted to Ph + PN2

h/N2. Only the relative sizes of the priorities have any
meaning, because the choices {Ph} and {cPh} lead to the same solution for
every positive constant c. Greater P brings the allocation closer to optimality
of estimating µ, paying less attention to estimating the stratum means µh .
The ‘overall’ priority P has a meaningful interpretation only in relation to
the total of the stratum-priorities

∑
h Ph . With the stratum-level priorities

Ph = Nq
h for q < 2 fixed, the solution has the expected effect of bringing

the allocation of sample sizes to the strata closer to proportionality with the
stratum sizes Nh as the domain-priority P increases.

The method described can be extended to more complex formulae for the
sampling variances or MSEs, although its application is very difficult when
they cannot be expressed analytically. In particular, they are difficult to apply
when trimming, shrinkage, or some other adjustment of the weights is planned.
However, if the MSEs of the estimators are reduced by approximately the same
fraction, the error committed may be inconsequential.

3.7 Using Auxiliary Information

The HT and related estimators are direct—they use data only for the domain
and the variable concerned. In this section, we explore how the values of
other variables and direct estimators from other domains could be exploited
in the service of estimating a population quantity more efficiently. Using other
variables can be motivated by the following example. Suppose the target is
related to variable Y but we have much more abundant information about a
closely related variable Z (e.g., its enumeration or, possibly from a different
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data source, a precise estimator of its population mean). It would be highly
desirable to make use of such auxiliary information. At an extreme, we might
abandon the survey altogether and rely on an estimator based entirely on
Z, derived from a different source. Such an estimator may be biased for the
target related to Y , but its sampling variance is much smaller and would be
evaluated at a fraction of the cost.

Difference and Ratio Estimators

Suppose the target of estimation is the mean µY of a variable Y , and the value
of the corresponding target for a related variable X, denoted by µX , is known.
In the survey, the values of both X and Y are observed on a sample of subjects.
The following estimation strategy for µY makes use of µX and the values of X
recorded in the survey. The survey-based (direct) estimates of µX and µY , µ̂X

and µ̂Y , respectively, will inform us about how µX and µY are related, and
we derive an estimator of µY by applying this estimated relationship to µX .
In effect, the observed estimation error µ̂X − µX is used to adjust the direct
estimator µ̂Y . The result is the difference estimator µX + µ̂Y − µ̂X . It is very
efficient when the variable Y − X has a small population variance, because
then µ̂Y− µ̂X has a small sampling variance. The ratio estimator µX µ̂Y/µ̂X is
motivated similarly. It is very useful when the ratio Y/X has small variance,
the values of X are nonnegative, and none or only a small fraction of them
are close to zero, so that var (1/µ̂X) is not excessive.

The difference and ratio estimators are examples of exploiting the similar-
ity of the target and an auxiliary variable. This can be done most effectively
by relating the target and auxiliary variables by means of a model. The next
section develops methods for fitting models to survey data, which is a pre-
requisite for model-assisted estimation.

3.7.1 Fitting Models to Survey Data

Large-scale surveys involve populations of sizes that can be regarded as infinite
and models for infinite populations often provide attractive ways of describing
the associations among the studied variables. For fitting such models, the
reference to a superpopulation is often invoked, and some or all the sampling
design features are taken into account in the model. For example, clustering
can be represented by random effects, assuming that each cluster has its own
regression,

Y (k) = X(k)β(k) + ε(k) ,

and these cluster-specific regressions vary according to a pattern summarised
by a cluster-level variance matrix ΣB = var

(
β(•)). The pairwise probabilities

of inclusion play no role in such models, but they are eliminated also from
design-based formulae because sampling designs for such populations have
very small sampling fractions n/N and often also very small within-cluster
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fractions n(k)/N (k). More details of random-effects models are given in Chap-
ter 9.

Here we describe an approach that adheres much more closely to design-
based estimation and is less burdened with the caveat of model validity. We
consider the problem of estimating the fit of a particular model, such as ordi-
nary regression, to the data for the entire population. We disregard the issue of
appropriateness of the underlying model on the grounds that evidence against
any model in a very large population is easily found, given a survey with suf-
ficiently large sample size. No large population behaves according to a simple
mechanism. The model fit is described by a function f(X) = f{t(X)}, where
X is the population matrix of the values of all the relevant variables, and
t is a set of sufficient population-statistics; that is, they would be statistics
(evaluable summaries) if the population were enumerated.

We distinguish between the design-based perspective, in which X is fixed
and f(X) is a constant or a vector of constants, and model-based perspective,
in which X is the realisation of a data-generating process and f(X) is a random
variable or vector; the values underlying f(X) could be established only if the
superpopulation version of X were available. We adhere to the design-based
perspective to avoid a divide between direct and model-assisted estimation.
We have to draw a distinction between the uncertainty due to the population
being a ‘sample’ drawn from the superpopulation and the uncertainty due to
sampling from the population. The former source is a population quantity, and
therefore can itself be a target of estimation (for instance, to assess to what
extent the posited model is suitable), whereas the latter is a characteristic of
the sampling process.

Assuming that the sought function f(X) has a short list of sufficient
population-statistics t(X), we require (unbiased) estimators of these quan-
tities, t̂(x), and an estimator of their sampling variance matrix. We restrict
our development to statistics t that can be described as totals of variables,
observed or constructed. For example, the sufficient statistics for ordinary re-
gression parameters are the totals (or means) of squares and crossproducts of
the outcome variables and covariates.

We estimate the values of the sufficient population-statistics t(X). Denote
by t̂(x) their estimators based on the survey data x. The population-model fit
is estimated by f{t̂(X)}. Adjustment may be applied to reduce or eliminate
the bias arising by the nonlinear transformations involved in f . The sampling
variance (matrix) of f{t̂(X)} is estimated with the aid of the Taylor expansion.
An alternative approach to estimating the sampling variance (matrix) is based
on simulation from the joint sampling distribution of t̂(x). It can be formulated
as a missing data problem (Chapter 5) and is related to the method of multiple
imputation (Section 5.5).

Estimation of the sufficient statistics is conducted componentwise. We
handle the estimation of the covariances in var(t̂) by extending the results in
sampling theory to vectors of variables. All the results for sampling variation
carry over directly by replacing the squares x2 and (x−µ̂)2 with the respective



90 3 Sampling Methods

matrices xx� and (x− µ)(x− µ)�. For example, the multivariate version of
the identity (3.6) is

var(µ̂) = − 1
2N2

N∑
i=1

N∑
i′=1

(pii′ − pipi′)
(

1
pi

Xi − 1
pi′

Xi′

)(
1
pi

Xi − 1
pi′

Xi′

)�
,

where Xi is the row vector of the values of the variables in X for member i.
(Some clash with the notational conventions is unavoidable.)

Example 7. Fitting Ordinary Regression. The sufficient population-statistics
for the ordinary regression of a variable Y on a p × 1 vector of regressors
X are the totals of squares and crossproducts (X Y)�(X Y). Let T be the
1
2 (p + 1)(p + 2) × 1 vector of the unique elements in this (p + 1) × (p + 1)
matrix, and let T̂ be their (design-based) estimator with estimated sampling
variance matrix V = v̂ar(T̂). A smooth function of the population-model
fit g(T) is estimated by g(T̂), and its sampling variance is derived from the
Taylor expansion:

g(T̂) .= g(T) +
∂g

∂t

� (
T̂ − T

)
,

so that

var
{

g
(
T̂
)}

.=
∂g

∂t

�
var
(
T̂
) ∂g

∂t
, (3.17)

with the partial derivatives evaluated at t = T. The variance matrix is esti-
mated naively, by substituting T̂ for T in (3.17).

3.7.2 Regression Estimators of the Population Mean

With a given sampling design, the population mean is estimated with greater
precision for variables with smaller dispersion. This provides a motivation
for exploiting auxiliary information in the form of values of variables that are
related to the target variable, are recorded in the survey, and their population
totals are known or are estimated with high precision (from a register or
another survey).

Let X be the target variable and Z a vector of auxiliary variables with
known population mean (row) vector µZ . Let ε be the variable formed as
the residual of the population-regression of X on Z; the vector of its values,
ε, would be available if X and Z were enumerated. With X and Z observed
on a sample (survey data), we fit the ordinary regression of X on Z. The
sample-residuals ε̂ = x − Zβ̂ are evaluated using the estimated regression
coefficients β̂. (Here Z is the matrix of the values of Z—we cannot avoid
using the same symbol Z for two distinct objects.) The population mean of
X is then estimated by adjusting the HT estimator of µ for the difference
between µZ and its direct estimator based on the survey:

µ̂R = µ̂ + (µZ − µ̂Z) β̂ , (3.18)
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where the superscript R denotes ‘regression estimator’. Thus, the regression
estimator anticipates that the error in estimating the means of the covariates,
µZ , is similar to the error of the direct estimate, µ̂−µ, of the target variable.
If the regression fit were exact this error would be predicted with precision,
and the correction would be perfect. The adjustment would certainly be useful
if the population-regression parameter vector β were known; the uncertainty
in estimating β reduces the usefulness. We can ensure that the balance is on
the side of more efficient estimation of µ by using regression models with few
covariates (parsimony) that reduce the residual variance substantially. The
population means are rarely known for many variables, so parsimony is often
forced upon the analyst. However, a good plan anticipates which variables Z
might be useful and makes provisions for recording their values.

Two sources of uncertainty contribute to the sampling variation of µ̂R :
sampling variation and uncertainty about the regression parameters β. Com-
bining the two analytically is rather complex. A simpler, even though com-
putationally more demanding alternative is based on the method of multiple
imputation introduced in Section 5.5. We regard the regression estimator in
(3.18), with β instead of β̂, as the complete information and β as the missing
data. We draw several replicates from the estimated sampling distribution
of β̂. These so-called plausible regression parameters are denoted by β̃

(m)
,

m = 1, . . . , M . Then we evaluate µ̂R and its complete-data sampling variance
(assuming β to be known and equal to β̃

(m)
) with each β̃

(m)
and average the

M plausible estimates and complete-data sampling variances, with an infla-
tion by the between-imputation variance of the latter, according to equations
(5.9) and (5.10). The resulting (multiple-imputation) estimator is denoted by

µ̂R,MI. If the plausible estimates β̃
(m)

differ a great deal, that is, there is a
large between-imputation variance, then a lot of missing information is due to
uncertainty about the regression parameters β. A likely reason for this is that
too many covariates are used in the regression. Using a more parsimonious
model may resolve this problem and make the estimator µ̂R,MI more efficient.

The difference estimator is a special case of the regression estimator, with
one covariate, no intercept, and unit slope. The ratio estimator can be derived
as the regression estimator with the model

y√
x

= β
√

x + ε ,

where ε is a random sample from a centred normal distribution. The model
has the alternative description as y ∼ N (βx, σ2x).

Even the unity as a constant can be used as auxiliary information. The
corresponding ratio estimator of the population mean is equal to∑n

j=1 wjyj∑n
j=1 wj

,
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which has the form of a weighted average. It does not involve the population
size N , and so it can be applied even when N is not known. In fact the
denominator,

∑
j wj , is the HT estimator of the population size. When the

values of Y are nearly constant the ratio estimator has a small variance even
with sampling designs with random sample size. In this respect, it is superior
to the HT estimator.

In some settings, it is practical to apply a sampling design in which the
probability of inclusion is approximately proportional to the value of the (pos-
itive) target variable Y . In this case, the probability p, or the weight W , can
be regarded as the auxiliary information, yielding the estimator

w̄

∑n
j=1 wjyj∑n
j=1 w2

j

,

where w̄ is the sample mean of the weights. The fraction in this estimator
has the form of an ordinary least squares estimator of the regression slope
of Y on W , with the regression through the origin. This facilitates a natural
interpretation of the estimator. Note that the sampling variance of this esti-
mator cannot be derived as in ordinary regression because the weights w are
random. Approximations using the Taylor expansion lead to some unwieldy
expressions; simulations may be more effective, even if they do not yield an
analytical expression.

3.8 Small-Area Estimation

Increasing demand for inferences about the geographical details of the domain
(a country) has, over the last few decades, stimulated the development of a
wide range of methods for indirect estimation of the population means for
subdomains (districts). These methods are collectively referred to as small-
area estimation. Many of the methods draw on empirical Bayes models as
a way of borrowing strength across the districts. Random coefficient mod-
els (Chapter 9) are models for analysis of covariance in which the groups
are associated with random effects. By declaring these ‘effects’ as random,
maximum likelihood estimation yields shrinkage estimators of population and
model quantities associated with the districts.

A seemingly model-free rationale for these methods compares two estima-
tors. The direct estimator is based on the data solely for the variable and
the district involved. Usually it is (approximately) unbiased but its variance
may be so large as to render the estimate of limited or no use. As an alterna-
tive to the direct estimator, the estimator of the domain (national) mean, µ̂,
may be considered. It is biased for the district in question but, being based
on the entire sample, its sampling variance is much smaller. If the districts
of the country are similar, the national mean estimator may be efficient also
for the district. Instead of choosing the direct or national estimator, we
combine the two (alternative) estimators,
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µ̃d = (1 − bd)µ̂d + bd µ̂d , (3.19)

with the positive constant bd set, in ideal circumstances, so as to minimise the
MSE of µ̃d(bd) in estimating µd . We add the argument bd to µ̃d to emphasise
its dependence on bd . In practice, bd depends on the target µd itself and so can
at best only be estimated. The dependence on µd , or more precisely on the
squared deviation (µd−µ)2, is removed by using the between-district variance
σ2

B , which is the mean of the squared deviations (µd − µ)2 over the districts.
This variance is not known and has to be estimated. However, being based on
the data for all the districts, it is estimated with much greater precision than
the values (µd − µ)2 for most districts d.

Estimation of the district-level means can be improved by drawing on aux-
iliary information. Districts may differ substantially, but these differences may
be reduced after an adjustment by regression with one or several covariates.
The adjustment has to be flexible, allowing for some systematic differences
among the districts. But such auxiliary information can be exploited without
using empirical Bayes models. We motivate this by a simple example.

Suppose the population comprises a majority and a minority group. The
two groups are distributed unevenly across the districts and are not completely
segregated, so that some economic, social, and environmental phenomena af-
fect both groups, even if to somewhat unequal extent. A direct estimator
for the minority group is in most districts unsatisfactory because the group
is represented in the sample very sparsely. If the district-level differences of
the means between the majority and minority groups vary only modestly we
could estimate the minority-group means by adjusting the estimates for the
majority group in the same district. This can further be improved by esti-
mating the minority-group means by linear combinations of the two direct
estimators. The logical progression leads to a multivariate version of the esti-
mator in (3.19), which can be interpreted as exploiting the similarity across
the groups as well as across the districts. Further applications of this idea
draw on information from registers, past surveys and other variables recorded
in the same survey.

Let θ̂d be a vector of estimators unbiased for the district-level popula-
tion vector θd , and let θ̂ and θ be their domain (national) counterparts. For
example, the first component of θd may be the target, and the remaining com-
ponent may be associated with auxiliary information. To estimate the linear
combination θd = θ�

d u for a vector of specified coefficients u, we seek the
combination

θ̃d(b) = (u − b)�θ̂d + b�θ̂ (3.20)

that has the smallest MSE. We have

MSE
{

θ̃d(b); θd

}
= (u − b)�Vd(u − b) + b�Vb + 2(u − b)�Cdb

+b�DdD�
d b ,
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where V = var(θ̂), Vd = var(θ̂d), Cd = cov(θ̂d , θ̂), and Dd = θd − θ. This
MSE is a quadratic function of b, and its quadratic (matrix) coefficient

Qd = V + Vd − Cd − C�
d + DdD�

d = E
{(

θ̂d − θ̂
)(

θ̂d − θ̂
)�}

is positive definite. The MSE therefore has a unique minimum. The minimum
is found by differentiation or by completing the squares, and it yields the
solution

b∗
d = Q−1

d Pd u , (3.21)

where Pd = Vd − Cd . This vector of ‘ideal’ coefficients depends on several
(unknown) sampling-process quantities and has to be estimated. Estimation
of Dd is particularly problematic because it depends on the target θd . We
avoid this dependence by substituting for DdD�

d its average over the districts,
the district-level variance matrix

ΣB = E(d)

(
DdD�

d

)
.

(The subscript (d) with E indicates that the expectation, or averaging, is taken
over the districts d.) We estimate bd naively, using unbiased estimators of Vd ,
V and Cd , and ΣB . We assume that the districts coincide with the strata,
so that sampling within districts is independent. If the national estimator θ̂ is
a linear combination of the district-level direct estimators θ̂d , the covariance
matrix Cd can be expressed in terms of Vd :

cov
(
θ̂d , θ̂

)
= cov

(
θ̂d ,

1
M

D∑
d′=1

Md′ θ̂d′

)
=

Md

M
var
(
θ̂d

)
,

irrespective of the perspective adopted, design- or model-based. (In most set-
tings, M = N and Md = Nd .) Estimating Vd = var(θ̂d) is a standard task; its
complexity is related to the sampling design within district d. When there are
many districts, the variances in V are much smaller than their counterparts
in Vd , and V can be ignored in Qd . Then Cd is also small in relation to Vd

and can also be ignored, reducing (3.21) to

b∗
d

.= (Vd + ΣB)−1 Vd u ,

after substituting ΣB for DdD�
d . This can be interpreted as weighing (in a

multivariate way) the two estimators µ̂d and µ̂ by their (matrix) precisions.
Thus, it remains only to discuss estimation of ΣB .

We estimate ΣB by the method of moments. We form a statistic similar
to the expression for ΣB ,

SB =
∑

d

Gd (θ̂d − θ̂)(θ̂d − θ̂)�, (3.22)
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evaluate its expectation, and then solve the equation that matches the (ma-
trix) statistic SB with its expectation. The method can be motivated as fol-
lows. For a suitable choice of the scalar coefficients Gd , SB would recover the
target ΣB if θ̂d and θ̂ were precise, if we had Vd = V = 0. When Vd �= 0,
SB is inflated due to the sampling variation of θ̂d . Therefore we estimate ΣB

by adjusting SB for the sampling variation of θ̂d , d = 1, . . . , D.
Instead of (3.22), we can solve the (univariate) problems separately for

each element of ΣB . Then we do not have to assume that the same set of
coefficients Gd applies for each element of θd . This is useful when the sampling
variances of the elements of θ̂d have disparate magnitudes. For example, the
elements of θ̂d may be based on different surveys (data sources), with different
distributions of sample sizes to the districts.

For the diagonal element (k, k) in ΣB (a variance), denoted by ΣB,kk , we
have

E(SB,kk) =
D∑

d=1

Gkk,d

{
Vkk,d + Vkk − 2Ckk,d + (θk,d − θk)2

}
=

D∑
d=1

(
1 − 2Nd

N

)
Gkk,d Vkk,d + Vkk

D∑
d=1

Gkk,d

+
D∑

d=1

Gkk,d (θk,d − θk)2.

By replacing each squared deviation (θk,d − θk)2 with its district-level expec-
tation ΣB,kk , this reduces to

D∑
d=1

(
1 − 2Nd

N

)
Gkk,d Vkk,d + (Vkk + ΣB,kk)

D∑
d=1

Gkk,d .

Matching this averaged expectation of E(SB,kk) to SB,kk yields the estimator

Σ̂B,kk =

SB,kk −
D∑

d=1

(
1 − 2

Nd

N

)
Gkk,d Vkk,d

D∑
d=1

Gkk,d

− Vkk .

A similar estimator is obtained for a covariance in ΣB .
Note that the matrix Σ̂B is involved in some nonlinear transformations

in b̂
∗
d = Q̂

−1

d P̂d u, and so the method is effective only when its elements
are estimated with high precision. This condition is satisfied in the analysis
of a large-scale survey of a country with many districts, many of which are
represented in the survey by substantial subsamples. Difficulties arise when
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attempting to use many auxiliary variables because of the accumulated un-
certainty about the elements of ΣB and the impact of this uncertainty on Qd

and b∗
d . Absence of a district in the sample is no hindrance to estimation of its

population mean. Simply, we set its components of θ̂d that are based on the
survey sample to arbitrary values, and the corresponding sampling variance
submatrix of Vd to a diagonal matrix with very large variances (representing
+∞).

In the vector θd , we can include estimators from the same analysed sur-
vey, estimators derived from other surveys (even if the elementary data are
not available), and even known (population) quantities. In this way, we can
combine information from several sources, surveys, administrative registers or
observations made on the districts directly, such as their levels of urbanity and
population sizes. Thus, a survey of unemployment can be supplemented with
information from the register of persons claiming unemployment benefit, and
a recent survey can be supplemented with the same survey in the recent past,
say, from one, two, and three quarters ago. The surveys use one definition of
unemployment, for which inferences are desired. The register uses a different
definition, so its summaries are biased, but without any sampling variance,
unless we represent administrative errors by (a small) sampling variation. The
bias cannot be substantial because the variables recorded in the two sources
are bound to be very similar, and so are their district-level summaries. Fur-
ther, the district-level unemployment rates could not have changed substan-
tially over a year or two, even if changes in unemployment status over such a
period of time can be expected for many members of the labour force. A large
component of the trend in the rates may be uniform across the districts. All
these factors make the registers and the past surveys effective sources of aux-
iliary information with a great potential to reduce survey costs and increase
the precision of estimation.

Suggested Reading

Two classic texts, [95] and [20], are invaluable resources both for the basic
theory and as practical guides to all aspects of survey sampling. A carefully
compiled comprehensive text on sampling theory with emphasis on exploiting
auxiliary information is [168]. A more specialised monograph, [196], focuses
on estimation of the sampling variance in surveys. The original paper on
the Horvitz–Thompson estimator is [83], although similar estimators have an
even longer history. For small-area estimation, [48] is a landmark paper. The
multivariate composite estimator given by (3.20) is introduced in [116].
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Problems and Exercises

3.1. In the software of your choice, construct a (finite) population of size N =
10 000 as a random sample from a continuous distribution that is distinctly
not normal (e.g., log-normal) and apply simple random sampling schemes with
replacement with fixed and binomially distributed sample sizes.
Hint: Use a random sample from the uniform distribution as a source of events
with specified probabilities.

3.2. Replicate a sampling scheme with sample size n = 20 or E(n) = 20
from the previous exercise many times, evaluate the HT estimator µ̂ of the
population mean, and verify that the estimator is unbiased and that the ex-
pression for its sampling variance is correct. Assess whether the estimator is
(approximately) normally distributed.

3.3. Apply the systematic sampling scheme with step length 20 in the popu-
lation generated in Exercise 3.1 and evaluate the (obvious) estimator of the
population mean. List all 20 possible values of the estimator and calculate the
sampling variance of the estimator. Repeat the exercise on the same popula-
tion after ordering it according to the values of the outcome variable. What
kind of reordering of the members would yield the smallest and largest possible
values of the sampling variance?

3.4. Implement on the computer the general systematic sampling design il-
lustrated in Figure 3.1.

3.5. Discuss the problems with and devise some improvements on the follow-
ing scheme for sampling from a population of size 1 000 000 represented by a
perfect sampling frame. The sample size is fixed at 1000. We proceed through
the sampling frame, draw for each member a random number from U(0, 1) and
include the member in the sample if the value drawn is smaller than 0.001. We
stop if we make the 1000th inclusion before reaching the end of the sampling
frame. If by the end we have not selected the full quota of 1000 subjects we
return to the top of the sampling frame and continue the selection by the
same rule, skipping members that have already been selected.

3.6. Suppose a population comprises N (2) households with sizes given by the
following table:

Household size

1 2 3 4 5 6 7 Total

Number of
households 20 75 283 412 216 97 9 1112

(The population size is N = 4392). In a setting of your choice, discuss the
merits of sampling designs for this population, which are
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• simple random
• stratified, with the seven strata defined by the household size;
• clustered, with the households as clusters, and with each selected cluster

enumerated;
• stratified clustered, with household size defining the strata, households the

clusters, and simple random sampling within households.

3.7. Draw a pair of subjects (a sample of size n = 2) from the population
comprising 12 members with values X = (0, 0, 0, 1, 1, 2, 2, 2, 4, 5, 7, 10) with
probabilities (3 + Xi)/70 of drawing the sample comprising members i and
i + 1; if i = 12, the members 12 and 1 are selected. Write down the HT
estimator and define some other estimators of the population mean. Replicate
the sampling and estimation processes many times and compare the mean
squared errors of these estimators. Is this design proper?

3.8. Quota sampling is defined by an instruction to interviewers to collect
responses to the survey questionnaire from a given number of subjects. The
interviewers may be assigned to specific locations, such as the central square of
a city, the departure hall of an airport, a commuter train, or the like, on given
dates and at particular times of the day. The instructions may be ‘stratified’,
for example, to recruit given numbers of men and women, in specific age
groups and from nationalities or ethnic groups. Discuss the merits of such a
design for surveys with the following agenda:

• voting intention;
• preference for a particular brand of a consumer product;
• allocation of funds to public services;
• popularity of a personality or a sports team.

3.9. Discuss the problems with implementing a sampling design (devising a
sampling mechanism) with given (unequal) probabilities of selection pi , fixed
sample size n, and without replacement.

3.10. On an example of a small population, say 20 members, with a proper
sampling design that is easy to implement but has unequal inclusion probabili-
ties, compare equation (3.3) with some alternatives motivated by the equation
for the sampling variance of the sample mean of a random sample from an
infinite population, such as

var†(µ̂) =
1

w+ − 1

n∑
j=1

wj (xj − µ̂)2 ,

where w+ is the sample total of the sampling weights. Study the proposals
made in [148] and apply the proposed adjustments of this formula.

3.11. For a population of your choice (e.g., generated as a random sample
from a superpopulation), compare the MSEs of the HT estimator and the
estimator
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Table 3.2. The subsample sizes and sample totals of sampling weights in the eight
categories of a partition of a population.

Category

Total 1 2 3 4 5 6 7 8

Nk 16 020 26 730 86 470 105 880 69 910 34 100 11 540 27 920 378 570

nk 63 102 417 659 356 207 27 144 1975

w
(k)
+ 13 750 19 820 92 060 111 010 70 050 46 570 5990 32 050 391 300

µ̂′ =
1

w+

n∑
j=1

wjxj

for the simple random sampling designs without replacement, with fixed and
binomially distributed sample sizes. Repeat the comparison for a range of
(expected) sample sizes. Discuss the differences between the inferences about
the population and about the superpopulation.

3.12. Construct the enumeration of an artificial country that comprises 30
districts with population sizes in the range 1 000 to 12 000, with log-normally
distributed values of the target variable within each district. Set the parame-
ters of the within-district distributions so that both the expectations and vari-
ances within the districts would be moderately positively correlated with the
population size. Summarise the collection of the within-district populations
by a suitable graph. Discuss the rationale for using the districts as strata in a
national survey in which the constructed variable is of interest and compare
it with a clustered sampling design with the districts as clusters. Implement a
stratified sampling design with simple random sampling within each district.
Set the two stages of a clustered sampling design to simple random sampling
designs, and implement this design. Study the variance of the sample size as
a function of the sampling designs at the two stages.

3.13. Table 3.2 summarises the sampling weights for a partition of a popu-
lation into its eight categories (subsample sizes nk and subtotals of weights
w

(k)
+ , k = 1, . . . , 8). The subpopulation sizes for these categories are listed in

the table (Nk). Describe how you would adjust the sampling weights by post-
stratification, so as to make their totals agree with the subpopulation sizes.
What might be the reasons for the difference of the totals

∑
k Nk and

∑
w

(k)
+ ?

Study by replications of some simpler sampling schemes the differences that
can be expected between Nk and w

(k)
+ .

3.14. The dataset EX7a.dat on www.sntl.co.uk/BookA/Data contains the
records of the sample of subjects in a survey of professional athletes who re-
tired between one and two years ago. The outcome variable is their income
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from employment in the tax year that has just concluded. Apply the various
proposals for trimming and shrinkage of the sampling weights and assess their
impact on the HT estimator. Discuss what grounds you might have for select-
ing a weight adjustment that yields a (nearly) efficient estimator of the mean
income. Would your conclusion be different if the target was the proportion
of those with income below a certain level?

3.15. Construct a population of size N = 25 000 as a random sample from a
superpopulation in which variable X has a continuous uniform distribution
on (1, 6) and Y is generated according to the ordinary regression model, Y =
βxX + ε, with βx = 0.85 and var(ε) = 0.25. Suppose the values of X are
available for every member of the population and Y is the target variable.
Discuss the rationale for a stratified sampling design with the strata defined
by cut points for the values of X. For example, there could be ten strata
defined by the ranges [1, 1.5), [1.5, 2), . . . , [5.5, 6) of values of X. What are
the advantages and drawbacks of similar stratifications with much finer or
cruder divisions of the support of X, (1, 6)?

Implement the following sampling design, called semi-systematic. Repre-
sent each member by a segment of length equal to its value of X, and join
these segments as in Figure 3.1. Draw a random number u1 from the uniform
distribution on (50, 150) and include in the sample the member whose segment
covers the location u1 . Then draw independently another random number u2

from U(50, 150) and include in the sample the member whose segment covers
the location u1 + u2 . Continue in this fashion until the total

∑
j uj exceeds

the population total X+ = X1 + · · ·+XN . Relate this sampling design to sys-
tematic sampling. Describe the distribution of the sample sizes of this design.
Discuss the difficulties in calculating the pairwise inclusion probabilities pii′ .
Could the estimator of the sampling variance of the HT estimator, given by
(3.3), be applied if these probabilities were available?

3.16. For the population in the previous exercise, define pi = 0.01/(1 + 2Xi).
Implement the sampling design with these probabilities of inclusion and in-
dependent inclusions. Calculate the variance of the HT estimator. Replicate
the sampling process and evaluation of the HT estimator sufficiently many
times, so that you could check reliably that the equation for the variance is
correct. Experiment with the constants a and b in the formula for the inclu-
sion probabilities, pi = a/(1+bXi), subject to the constraint of a set expected
sample size p1 + · · · + pN = n, and find a design for which the HT estimator
is (nearly) efficient.

3.17. A small country comprises two regions, A and B, with respective sub-
population sizes N1 
 N2 . A survey is planned for this population, with a
stratified sampling design, with the regions as the strata, and simple random
sampling designs in both strata. The unit costs of sampling in the two regions
are c1 � c2 . The targets are the population percentages of a particular indi-
cator that are unlikely to be outside the range 10 to 25% in either region. The
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parties that have a stake in the results of the survey agree on the inferential
priorities P1 = 5, P2 = 1 for the respective regions, and on P = 5 for the
national estimator of the percentage. Suppose the total funds available for
the conduct of the survey are C. Propose suitable sampling fractions for the
two regions for the general setting or for some realistic choices of N1 , N2 , c1 ,
c2 , and C.

3.18. A national survey collected the values of the target variable Y on a
sample of about 5000 subjects. Of interest are the population means µd of
this variable in the D = 87 districts of the country. A national organisation
maintains a register that contains the values of a variable X closely related
to Y . The dataset EX7b.dat on www.sntl.co.uk/BookA/Data contains the
HT estimates µ̂d , d = 1, . . . , D, of the district-level means µd , the estimators
of the sampling variances of these estimators, and the district-level means of
X. Estimate the district-level means µd by the estimator related to (3.20),
with the register summaries as the auxiliary information. Assume that the
direct (within-district HT) estimators are independent and ignore the variance
matrix V of the national estimators as well as the covariance matrix Cd of
the district-level and national means. Regard the register-based quantities as
being free of any sampling variation, or associate each of them with a token
sampling variance, such as 0.0001. Assess the value of the information from
the register by comparing the coefficients of the direct estimator with the
coefficients of the register-based means in the composite estimator. Relate
them (e.g., the ratios or differences of the coefficients) to the within-district
sample sizes or sampling variances of the HT estimators.

3.19. In the setting of the previous exercise, discuss the fallacy of the follow-
ing proposal. We relate the within-district HT estimates to the corresponding
register-based quantities by a linear model. If the model fits well and appears
to be valid we estimate the means µd by their model-based predictions. (As-
sume that the model could incorporate the heteroscedasticity due to unequal
within-district sample sizes.)



4

The Bayesian Paradigm

In the previous chapters, we regarded the population quantities as unknown
fixed constants and the observations or records as outcomes of a random
process. In Chapter 3 the sampling process and in Chapters 1 and 2 the
data-generating process, as described by a model equation or a class of joint
distributions, were the sole sources of randomness. This chapter introduces a
radically different approach in which the observed quantities (data) are fixed
and all unknown quantities are random and described by their joint posterior
distribution—the conditional distribution of the target given what is known.

To distinguish between the Bayesian approach described in this chapter
and the methods that make references to hypothetical replications, we refer
to the latter as frequentist. We can classify frequentist methods as design-
based, which deal with a sampling process applied to a finite population and
model-based, which search for one or a few parameters that govern the joint
distribution (model) according to which the recorded data are generated.

4.1 The Updating Mechanism

Suppose our target is a parameter θ that governs the process by which the
vector of outcomes y has been generated. If the value of θ were known the data-
generating process would be described by the density f(y; θ). For maximum
likelihood estimation, we exchange the roles of y as the argument and θ as a
fixed (unknown) parameter.

The Bayesian approach adopts the following perspective of the analyst.
Everything that the analyst knows and has complete information about it is
regarded as fixed. Quantities of interest, focal (important) or peripheral (of
secondary importance), the values of which are not known, are regarded as
random, and the incompleteness of the information about them is charac-
terised by their joint distribution. Thus, in the setting of an already observed
vector of outcomes y and a single unknown parameter θ, we regard θ as ran-
dom, so it is more appropriate to write f(y | θ = θ0) instead of f(y; θ), and
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regard f , after y has been recorded, as a function of the parameter value
θ0 in the condition. We refer to f(y | θ) as the data-generating distribution.
With greater rigour, we should call it the class of conditional data-generating
distributions, because for each value of θ there is a conditional distribution
according to which the data would have been generated. The information we
have about θ is described by a prior distribution; let its density be p(θ). We
assume that the prior is a continuous distribution over a finite or infinite in-
terval of feasible values of θ. Our goal is the posterior distribution of θ, defined
as the conditional distribution of θ given the data y.

The posterior distribution is linked to the prior and the data-generating
distributions by the Bayes theorem, which for continuous (conditional) densi-
ties f and continuous prior densities p states that

g(θ |y) =
f(y | θ)p(θ)∫

f(y | θ′)p(θ′) dθ′
. (4.1)

For discrete data-generating distributions, this identity remains valid after
the densities f are replaced by the conditional probabilities P(Y = y | θ).
Any inferential statement about θ can be based on the posterior distribution.
Any summary or feature of this distribution is called posterior. For exam-
ple, we may quote its expectation or median, which might be regarded as
estimates of θ. Its variance is a sample quantity similar in its nature to the
sampling variance, but the two variances, posterior and sampling, should not
be confused. A sampling variance is usually unknown and is estimated; it is a
sampling-process quantity, the value of which could be recovered only after a
large number of replications of the study. In contrast, the posterior variance
is a known quantity, although its value depends on the data. However, in the
Bayesian perspective, all operations and statements are conditional on the
data, which are regarded as fixed.

The range of likely values of θ can be described by a so-called tolerance
interval (CL , CH) that covers a high percentage (say, 95%) of the posterior
distribution:

P {θ ∈ (CL , CH)} = 1 − α

for a small value α, such as α = 0.05. Tolerance regions are defined similarly,
as subsets of the support of θ that cover the posterior distribution with high
probability. Among tolerance intervals for a parameter, we prefer those that
have shorter lengths, although one-sided intervals are useful in some contexts.
Obvious parallels can be drawn with (frequentist) confidence intervals.

4.1.1 Setting the Prior

The prior distribution plays an important role in the analysis. In an idealised
setting, it is the posterior distribution obtained by the previous analysis re-
lated to the same target θ. More generally, it is a synthesis of all the in-
formation available about θ. Therefore, a Bayesian analysis, which evaluates
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(4.1), can be regarded as an updating of the information about the target.
In practice, there is no straightforward way of setting the prior distribution,
especially when no single study conducted in the recent past can be identified
as the sole and definitive source of information about θ prior to recording y in
the current study. The full potential of the analysis can be realised only by a
careful synthesis of what is known, conjectured, or believed. This entails elic-
iting information from experts who are not necessarily well acquainted with
Bayesian methods, or statistical methods in general, and the quantification of
their statements (expert judgement) can rarely be conducted according to a
formal protocol.

Different parties may specify different prior distributions, because beliefs
about θ have a rightful place among the inputs used in forming the prior
distribution for θ. This subjective nature of the analysis is by no means a
weakness of the approach. In the frequentist perspective, the prior distribution
and the data can be regarded as two data sources; the data are common to
all the parties that might conduct an analysis in pursuit of the value of θ. In
contrast, the prior is a source specific to the client, and it is their responsibility
to contribute to its formulation.

In practice, a default prior distribution is often specified, which bypasses
the need for synthesis of the prior information about the target. Such a non-
informative prior is intended to represent the state of total ignorance about
θ or of no prejudice for or against any region of the support of θ prior to data
inspection. For example, if the support of θ as a random variable is the interval
(0, 1), then the standard uniform distribution is the default prior. With con-
stant p(θ), the (Bayesian) posterior distribution f(θ |y) = C(y)f(y | θ)p(θ)
is proportional, and therefore for all purposes equal, to the (frequentist) like-
lihood L(θ;y) = f(y; θ). Thus, the uniform prior can be interpreted as a
Bayesian attempt to reproduce the results of the frequentist likelihood analy-
sis. Of course, the two approaches yield inferential statements in different
formats, but the mode of the posterior with the uniform prior coincides with
the maximum likelihood estimator.

Using the uniform as the default prior entails an inconsistency. If instead
of θ we considered η =

√
θ as the model parameter, the uniform prior for θ

would correspond to the prior gη(x) = 2x. This prior would seem to prefer
large values of η at the expense of small values—it no longer appears to be
noninformative. Noninformativeness is not invariant with respect to nonlinear
transformations; it is well defined only in connection with a particular para-
meterisation. This is in conflict with the reasonable expectation that ‘total
ignorance’ would require no such qualification.

For a parameter with unbounded support, such as (0,+∞) for the vari-
ance σ2 of a random sample from a normal distribution, a noninformative
prior cannot be defined; there is no distribution with constant density on
(0,+∞). We can side-step this problem by defining a noninformative prior
for a transformation of σ2 that is supported on a finite interval. For example,
we may specify the prior τ ∼ U(0, 1) for τ = σ2/(1 + σ2). It corresponds to
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the prior density

pσ2 (x) =
1

(1 + x)2

for σ2. The arbitrariness of the transformation τ highlights the lack of a
universal default prior for σ2.

An alternative resolution of this problem is to specify a prior that is uni-
form on (0, σ2

◦), where σ2
◦ is the largest plausible value of σ2. This upper bound

cannot be determined unambiguously, but a sensitivity analysis may assess
the impact of the details of how σ2

◦ is set. On the one hand, smaller σ2
◦ is ad-

vantageous because it represents more (focussed) prior information, expected
to yield a posterior distribution with smaller variance; on the other hand, a
larger σ2

◦ is more conservative, making it less likely that some plausible values
of σ2 would be ruled out.

Yet another solution is to use in the role of the prior density a function that
does not integrate to unity. For example, we may use the constant function
p(σ2) = 1 for variance σ2 ∈ (0,∞). Such a prior is called improper. If the
updating formula (4.1) yields a function that is a density, we declare it as the
posterior for σ2; otherwise we have to resort to a different prior. This is an
unsatisfactory feature of the method, because a prior is meant to represent
our knowledge about the data-generation process or the target prior to the
conduct of the current study, and its specification should not be affected by
any computational contingencies.

The difficulties with specifying a prior should not be regarded as a draw-
back of a Bayesian analysis. The prior and its incorporation in the analysis
offer an opportunity to exploit all the relevant information that the analyst
can access. However, in the frequentist analysis, we could represent the prior
distribution as a pseudo-observation, independent of the (genuine) observa-
tions in the study and maximise the corresponding log-likelihood. Bayesian
analysis does not have a monopoly over using prior information.

For extensive data, the prior has next to no impact on the posterior; with
the same data and model, very different priors yield very similar posteriors.
In contrast, the posterior may not differ substantially from the prior for a
small dataset. The posterior is a synthesis of the two sources of information,
the prior and the data, and their relative impacts are a reflection of their
informational content.

A posterior is defined for a parameter, and in multiparameter models the
posterior is a multivariate distribution. The posterior can be defined for a sin-
gle parameter, or more generally for a (univariate) function of the parameter
vector. The well-established rules for operating with distributions apply. For
example, the posterior distribution for the component θ1 of the parameter
vector θ = (θ1 , θ2 , . . . , θH) is the marginal of the joint posterior,

f(θ1 |y) =
∫

. . .

∫
f(θ |y) dθ2 . . . dθH .
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Model specification, setting the class of densities f(y | θ), has a direct coun-
terpart in the frequentist (model-based) approach. If several (finitely many)
models Mk , k = 1, . . . , K, are contemplated as alternatives, a Bayesian ver-
sion of combining the single-model-based posteriors is by specifying a prior
distribution for the models. This is a discrete distribution, with probabilities
pk for the alternative models; the probabilities add up to unity. Let the pos-
teriors for a target θ be fk , k = 1, . . . , K; we called them single-model-based
posteriors. The marginal posterior for the collection of the models is

f(θ |y) =
K∑

k=1

pkfk(θ |y) . (4.2)

The same vector of prior probabilities (p1 , . . . , pK) applies to any target. In the
frequentist approach, we combined single-model-based estimators, not densi-
ties, similarly, but the coefficients were derived from the estimated biases and
the covariance structure of the estimators. This suggests an improvement on
(4.2) by informing the choice of the prior probabilities pk by the joint distrib-
ution of the single-model-based posteriors. However, it is difficult to specify a
Bayesian analogue of the bias that would result from using an inappropriate
model.

A drawback of the marginal posterior in (4.2) is that the weights accorded
to the single-model-based posteriors are not informed by the data; the out-
comes may provide more support for some models and less for others. Indeed,
without any input from the data, the probabilities pk would in most settings
be very difficult to set because they would have to synthesize expertise about
the data-generating process with the analyst’s understanding of the models.
Instead of using model-specific posteriors fk(θ |y), we may include the model
as part of the condition in the density f :

fk (θ |y) = f (θ |y;Mk) .

The posterior probability of model Mk is

bk = P (Mk |y) =
pkfk(θ |y)

f(θ |y)
,

with the denominator given by (4.2). These probabilities are commonly re-
ferred to as Bayes factors. They can be used to address model uncertainty in
several ways. First, the model with the greatest Bayes factor may be adopted;
this would ignore model uncertainty altogether and commit the analyst to
the most plausible model. As a solution, we dismissed it in the frequentist
context in Chapter 2, and the argument presented there carries over to the
Bayesian analysis directly. Next, we may regard the factors as measures of
plausibility of each model and quote the single-model-based conclusions to-
gether with the associated factors bk , or with some less formal assessments
of plausibility. When there are many alternative models, a cutoff b(0) for the
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factors bk may be chosen and only conclusions for models with bk exceeding
b(0) listed and discussed. Finally, the single-model-based posterior densities
may be combined, with the Bayes factors as the coefficients, giving greater
weight to models judged as more plausible:

f(θ |y) =
K∑

k=1

bk f (θ |y,Mk) .

The summation can be curtailed to models with bk > b(0); then the Bayes
factors for the retained models have to be standardised so that they would
add up to unity.

Example 8. Suppose we realised a random sample from a normal distribution
with unit variance and unknown mean µ that we want to estimate. Let the
observed values be y = (y1 , . . . , yn)�.

We set the prior for µ to N (10, 10); µ is likely to be in the range (0, 20) and
values close to 10 are regarded as most probable. The posterior distribution of
µ is obtained by standardising the product of the data-generating and prior
densities:

f(µ |y) = C exp

⎧⎨⎩−1
2

n∑
j=1

(yj − µ)2

⎫⎬⎭ exp
{
− 1

20
(µ − 10)2

}
,

where C is the positive constant for which
∫

f(µ |y)dµ = 1. The density is the
exponential of a quadratic function of µ, so it can be matched with a normal
distribution. We obtain the (normal) posterior distribution directly, without
having to evaluate the denominator in the Bayes theorem. The logarithm of
the posterior density is

log {f(µ |y)} = c(y) − 1
2

(
n +

1
10

){
µ − 1

n + 1
10

(
1 + y�1n

)}2

,

where c(y) does not depend on µ. This density is matched by the normal
distribution with mean 10 (1 + y�1n)/(1 + 10n) and variance 10/(1 + 10n).
The impact of the prior on the posterior is the same as of an additional obser-
vation equal to 10, with variance 10, independent of the remaining (genuine)
observations. Thus, the mean of the posterior is the convex combination of the
prior mean and the sample mean ȳ = y�1n/n, with the coefficients propor-
tional to the respective precisions (reciprocals of the variances) in estimating
µ.

The impact of the prior diminishes with increasing n; the posterior has
the same limit as N (ȳ, 1/n). A (normal) prior with a very large variance has
only a slight impact on the posterior even when the sample size n is small.
A prior with a small variance is accorded substantial weight in the convex
combination and the posterior variance is then much smaller than 1/n. Our
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confidence about µ is rewarded by smaller posterior variance. This highlights
the need for integrity in the specification of the prior. There exists a prior for
any (normal) posterior distribution that a dishonest analyst might want to
obtain.

4.1.2 Conjugate Priors

Although the prior distribution for a parameter should be selected solely based
on the available information, there is often a considerable leeway in the choice
to make the evaluation of the posterior in (4.1) tractable. One important class
of such priors, for particular data-generating distributions, is such that the
posterior distributions belong to the same class. As an example, let y be the
number of successes in a sequence of independent binary trials with common
probability of success r, so that the data-generating process is

f(y | r) =
(

n
y

)
ry(1 − r)n−y.

We specify the prior p by the density of the beta distribution with parameters
a > 0 and b > 0;

p(r) =
Γ (a + b)
Γ (a)Γ (b)

ra−1(1 − r)b−1.

Its expectation and variance are
a

a + b
and

ab

(a + b)2(a + b + 1)
, respectively.

The posterior density of r is

f(r | y) = Cry+a−1(1 − r)n−y+b−1,

where C is the standardising constant. We do not have to evaluate C by inte-
gration because f(r | y) is the density of the beta distribution with parameters
y + a and n − y + b. Its expectation and variance are

r̄ =
y + a

n + a + b
and

r̄(1 − r̄)
n + a + b + 1

,

respectively. Thus, the prior can be motivated as adding a successes and b
failures in a + b independent trials to the n that were realised.

The beta distribution is the conjugate also for the geometric distribution
given by the probabilities r(1 − r)y, y = 0, 1, . . . . Another important class
of conjugate priors are the gamma distributions for the Poisson and gamma
data-generating distributions. The normal prior is conjugate for the normal
data-generating distribution, as is the continuous uniform for itself.

4.2 Computational Issues

In the frequentist approach, maximum likelihood involves maximisation of
a complex function. The solution is relatively simple when the log-likelihood
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function is quadratic. For example, fitting ordinary regression by least squares
is equivalent to maximum likelihood (except for an adjustment for σ̂2). More
generally, computations are relatively simple when all the distributions in-
volved are normal because the class of multivariate normal distributions is
closed with respect to taking margins, conditioning, and similar operations.
The likelihood in many other settings requires iterative maximisation that
entails complexities and may require some improvisation. The sampling dis-
tribution of the estimators is estimated from the inverse of the information
matrix, involving further nontrivial operations of differentiation, expectation
and matrix inversion.

In the Bayesian approach, the main difficulty is in evaluating the denom-
inator in (4.1). The integral is the standardising constant for the numera-
tor; its role is to ensure that the result is a density, with the property that∫

f(θ |y) dθ = 1. Thus, the posterior is proportional to the product of the
data-generating (model) and prior densities, representing the two (indepen-
dent) sources of information. The standardising constant can be evaluated
analytically or guessed from the form of the numerator only in some simple
settings, such as when a conjugate prior is used.

An integral
∫ B

A
f(x) dx can be approximated by a wide range of numerical

methods that partition the support (A,B) into a sequence of intervals. The
integrand f(x) is approximated within each interval (a, b) by a function that
can be easily integrated analytically. The constant and linear functions are
the obvious choices for such an approximation. Suppose the limits A and B
are finite. Then ∫ B

A

f(x) dx =
H∑

h=1

∫ bh

ah

f(x) dx , (4.3)

where the values a1 < b1 = a2 < b2 = . . . = aH < bH define the partitioning
of (A,B), so that A = a1 and B = bH . Each integrand on the right-hand side
of (4.3) is approximated by a constant, a linear or another function g(x) for
which the integral over the range (ah , bh) is easy to evaluate. This yields the
approximation ∫ B

A

f(x) dx =
H∑

h=1

∫ bh

ah

g(x) dx .

For g(x) constant, a practical choice is based on points ch ∈ [ah , bh] at which
the function f(x) is evaluated, and g(x) is set to f(ch) throughout (ah , bh).
Then ∫ B

A

f(x) dx
.=

H∑
h=1

(bh − ah)f(ch) .

For approximation by linear functions, the obvious choice in the range (ah , bh)
is

g(x) = f(ah) +
x − ah

bh − ah
{f(bh) − f(ah)} ,
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which matches f at ah and bh . This yields∫ B

A

f(x) dx
.=

1
2

H∑
h=1

(bh − ah) {f(bh) + f(ah)} .

In general, a finer grid of points (a1 , . . . , aH) and linear approximating func-
tions g yield better approximations. More complex approximations may be
well suited for particular functions f . For example, quadratic functions g may
fit f better, although finding a quadratic approximation requires solving a set
of three linear equations for each interval (ah , bh).

The cut points (a1 , . . . , aH) can be chosen uniformly, to split (A,B) to
intervals of equal length. When we know that the function f has substantial
curvature in some regions and is well approximated by a linear function else-
where, the cut points can be set more densely in the former and less densely
in the latter regions. As an alternative, the integrand f may be transformed
and uniformly distributed cut points can be chosen on the transformed scale.

The integral in (4.3) can be approximated as an expectation, using a dis-
tribution from which a large random sample can be drawn easily and with
computational economy. We express the integral as∫

f(x) dx =
∫

u(x)g(x) dx = Eg(U) , (4.4)

where g(x) is the density of a suitable distribution, u(x) = f(x)/g(x), and
U = u(X) is the variable defined by transforming a variable X with density g.
We refer to g (and the corresponding distribution) as the generating density
(distribution). The expression in (4.4) converts the integral to an expectation
that can be approximated empirically as∫

f(x) dx
.=

1
n

n∑
j=1

u(xj)

for a random sample from the distribution with density g. This method is
called importance sampling . The density g has to be selected with care. The
ideal choice for g is a density similar to f , so that the ratios u(x) = f(x)/g(x)
do not involve very large or very small values, and relatively small samples
can estimate the integral with high precision.

The generating density g has to have the same support as f . The choice
of g is more difficult when the support of f is the entire real axis. Matching
g so that it would have relatively large values in the region where f has large
values is usually easy, but finding a density g that has similar behaviour to f
in the proximity of ±∞ is often not trivial.

Example 9. As a simple illustration, we evaluate the gamma integral∫ +∞

0

x2e−x dx (4.5)
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using the exponential distribution with the density e−x as the generating dis-
tribution. Thus, we evaluate E

(
X2
)
. With a random sample of size 10 000,

we obtained the estimate 2.040. In this setting, we can derive the result an-
alytically: E

(
X2
)

= 2. Moreover, we can derive the sampling variance of the
estimator;

var

(
1
n

n∑
i=1

X2

)
=

1
n

{
4! − (2!)2

}
=

20
n

,

so for n = 10 000 the standard error of the estimator of the integral in (4.5)
is 1/

√
500 .= 0.045. Although n = 10 000 might seem excessive, the associated

computation takes only about two-hundredths of a second, so even much
higher precision could easily be afforded, even in conjunction with several
other computations of similar complexity.

For an integrand f defined in (−∞,+∞), we may find a distribution with
suitable tail behaviour in the vicinity of −∞, another in the vicinity of +∞,
and a third in another range, such as near the sole maximum of f , where
matching the behaviour of f is essential. Let these densities be g1 , g2 , and
g3 and suppose the values of each of them is very small in the two other
important ranges: g1 � g2 and g1 � g3 in the vicinity of −∞, g2 � g1 and
g2 � g3 in the vicinity of +∞, and g3 � g1 and g3 � g2 in the vicinity of
the maximum of f . Then the mixture density r1g1 + r2g2 + r3g3 is a suitable
generating density for f ; all three weights rm should be distant from zero, but
they do not have to be identical.

Rejection sampling is a method for drawing samples from a given density
f . To apply it, we have to find another density g and a positive constant c, such
that cg ≥ f . We draw a random sample (x1 , . . . , xn) from the distribution
with density g and select each value xk into a subsample with probability
f(xk)/{cg(xk)}. This subsample is a random sample from the density f .

The ideal choice for the density g and constant c is such that the ratio
f(x)/g(x) is close to unity. When these ratios have values in a wide range and
the probability that f(x)/g(x) is small is substantial, a large sample from the
density g is required to generate a subsample of a given size; a large fraction
of the sample is rejected. Finding a density g with a suitable behaviour in the
tails is often a problem, just like with importance sampling. The problem can
be addressed with mixtures of tractable distributions in a similar manner.

4.2.1 Sampling from Multivariate Distributions

A standard task in Bayesian analysis, associated with summarising the poste-
rior distribution in (4.1), is to draw a random sample from a joint distribution
of the parameter vector θ. Often we can draw values straightforwardly only
from the univariate conditional distributions (θh |θ−h), given all the other
components. Until the advent and proliferation of powerful computers and
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computational software to harness their power, generating draws from multi-
variate distributions was an insurmountable task in most settings. Nowadays
the problem is resolved by the Monte Carlo Markov chain (MCMC) method,
which generates a draw from an approximation to the sought joint distribu-
tion. The method is computationally intensive, involving many iterations, but
its programming is relatively simple.

We describe a special case of MCMC called the Gibbs sampler . To gen-
erate a sample from the distribution of θ, we start with an arbitrarily set
initial value θ(0) of θ within its support. Next we draw a single value from
the conditional distribution (θ1 |θ−1 = θ

(0)
−1); that is, we draw a value of the

first component, conditionally on the current values of the other components.
Similarly, we draw values of each component h = 2, 3, . . . , H in turn, condi-
tioning in draw h on the values of the components 1, 2, . . . , h − 1 generated
earlier, and on the initial values of components h + 1, . . . , H. At the end of
this cycle, each component of θ has been updated once; the result is denoted
by θ(1). This cycle of H univariate draws is repeated many times, generating
values θ(2),θ(3), . . . ,θ(M). The concluding vector θ(M) yields a value that can
be regarded as a sample from the joint distribution of θ with the specified
univariate conditional distributions.

The theory supporting this procedure claims that the distribution of θ(m)

converges to the joint distribution of θ as m diverges to infinity. The conver-
gence is often slow and the number of cycles M required for the approximation
to be satisfactory is very large, often in tens of thousands. However, the many
cycles (iterations) do not take up a lot of computing time, and the program-
ming effort to implement the procedure is quite modest. In practice, we need
many draws from the distribution of θ, so the sequence of M cycles has to
be repeated. For the second and subsequent draws we may use the previous
draw θ(M) in the role of the initial value θ(0). Thus, to generate n draws, the
cycle is repeated nM times, and the values after cycles M, 2M, . . . , nM are
extracted. Usually the consecutive values θ(m) and θ(m+1) are highly corre-
lated. It is therefore essential to maintain a substantial distance (M) between
consecutive draws from the approximate distribution of θ; otherwise the draws
may be far from being independent. Similarly, to remove any dependence on
the initial values θ(0), the first M0 cycles are discarded. These cycles are re-
ferred to as the burn-in. The convention is to set M0 to a fraction of M , but
M0 is usually still in the thousands.

Example 10. Suppose a random vector X = (X1 , X2 , X3) has the normal
distribution N (µ, σ2I3 + τ131�

3

)
, with µ = (1, 0, 3)�, σ2 = 1.5, and τ = 0.6.

We generate a random sample from this distribution by MCMC, using the
three univariate conditional distributions (Xk |X−k).

Denote Vm = σ2Im + τ1m1�
m . The conditional distribution of X1 given

the values X2 = x2 and X3 = x3 is also normal,

N
{

µ1 + τ1�
2 V−1

2

(
x2 − µ2

x3 − µ3

)
, σ2 + τ − τ21�

2 V−1
2 12

}
.
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The inverse of V2 is

V−1
2 =

1
σ2

(
I2 − τ

σ2 + 2τ
121�

2

)
and V−1

2 12 = (σ2 + 2τ)−112. Hence

(X1 |X2 = x2 , X3 = x3)

∼ N
{

µ1 +
τ

σ2 + 2τ
(x2 + x3 − µ2 − µ3), σ2

(
1 +

τ

σ2 + 2τ

)}
. (4.6)

The univariate conditional distributions for the other components are ob-
tained by the appropriate exchange of the components 1, 2, and 3.

Starting with the vector 0, we executed 100 000 cycles of MCMC and
extracted every 100th intermediate vector X to obtain a sample of size 1000.
Its sample mean vector and variance matrix are⎛⎝ 0.93

0.05
2.94

⎞⎠ ⎛⎝ 2.05 0.51 0.63
0.51 2.01 0.64
0.63 0.64 2.10

⎞⎠ .

They are close to their population counterparts but, of course, they are not
equal to them. For example, the sampling variance of the sample mean of size
1000 is 0.0021 (standard deviation 0.046). Univariate normality is checked
by the normal quantile plots. A concern more relevant than proximity of the
sample summaries to the population summaries is whether the consecutive
values in the sample are (nearly) independent. This can be checked by plotting
the sequences of values of the components, as done in Figure 4.1 for the first
200 values. Constants −1, 9, and 17 have been added to the three sequences to
separate them in the diagram. No trend can be observed for either sequence.
Independence of the sequence of the generated values can be assessed more
formally by checking that the sample variance matrix of the differences x2 −
x1 , x4 − x3 , . . . , xM − xM−1 , for M even, is close to 2(σ2 + τ)I3 .

We emphasise that Examples 9 and 10 have no practical use in Bayesian
analysis and are presented solely for illustration. It is easy to check that they
yield appropriate results because the problem they solve is tractable without
any simulations.

4.3 Coherence

The Bayes theorem (4.1) for updating the prior by the data to form the pos-
terior is the focal equation in Bayesian inference, applicable to every problem.
Secondary tasks involve evaluation of the properties of the posterior. The
compact description of Bayesian inference by (4.1) is regarded as an advan-
tage; improvisation is involved only in the evaluation (or approximation) to
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Fig. 4.1. Sequences of the draws from the normal distribution with mean µ =
(0, 10, 20)� and variance matrix 1.5I3 + 0.6131

�
3 , using MCMC with burn-in M0 =

100 and sampling frequency M = 100.

the posterior. It is therefore very easy to identify the analytical (computa-
tional) equipment that a Bayesian analyst requires—evaluation of densities
and analytical or numerical integration.

Adherents to the Bayesian paradigm refer to this compact formulation as
coherence of the Bayesian approach. Those who favour frequentist methods
can point out that likelihood maximisation has a similar focal role in how
they conduct inference. Admittedly, some other methods, such as ordinary
least squares, are often used, but they coincide in their principal features and
outcomes with maximum likelihood. A major point of departure is sampling
theory (Chapter 3), but it could be regarded as a separate paradigm, compet-
ing with the Bayesian and the frequentist. In sampling theory the population
is regarded as fixed, whereas in maximum likelihood only its summaries are.

With a noninformative prior, a Bayesian analysis is comparable to the
maximum likelihood analysis using the same model for data generation, be-
cause the presumed advantage of exploiting prior information in the Bayesian
analysis is set aside. In this setting, Bayesian analysis has a unique answer
in the form of the posterior. Frequentist analysis has a comparable answer,
presented in a different format, in terms of an estimated asymptotic (approxi-
mate) sampling distribution. The frequentist paradigm has alternatives to the
maximum likelihood with the assumed model, but none of them is universal;
they are useful only in some relatively narrow classes of problems. We defined
estimator as any function of the data; thus, we never contemplated coher-
ence. Instead of a procedural definition of inference we instituted flexibility
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and agreed to a universal criterion for efficiency—the mean squared error.
Indeed, maximum likelihood estimators with a valid model are efficient only
asymptotically; in some settings with finite samples, there are more efficient
estimators.

In the Bayesian paradigm, a similar contract could be made, but only by
sacrificing coherence; there are competing models, just like in the frequentist
paradigm, but there is no competition for estimation once a prior and model
are specified. Without such a contract, efficiency need not be considered be-
cause no alternative posteriors are ever compared.

The prior distribution appears not to have its counterpart in a frequentist
analysis. Prior information is used, just like by a Bayesian, in model formula-
tion, but the frequentist specification of the parameter space is rather rigid in
comparison with the prior. However, a Bayesian analysis often foregoes this
advantage because a prior is difficult to formulate and the analysis is for a
wide or unspecified audience who may have a wide range of priors. Eliciting
one’s prior is a nontrivial process. In some settings, the elicitation from a
subject-matter expert may be influenced by the formulation of the analyst’s
questions, and a misunderstanding may result in an inappropriate prior. Of-
ten the prior is subject to substantial uncertainty—even the expert may be
uncertain, especially about some less familiar population summaries, such as
regression parameters in a multiple regression, and the conclusion about the
prior may to a large extent be arbitrary.

The frequentists have an obvious recourse to specifying a prior within
their likelihood. Simply, some pseudo-observations are added to the data. The
pseudo-observations and the genuine observations are independent, so their
(joint) likelihood is equal to the product of their densities, as in the numerator
of (4.1). Pseudo-observations can be motivated by the Bayes prior and their
joint density set to the prior. Then the frequentist’s task coincides with finding
the mode of the posterior, without having to evaluate the denominator in (4.1).

As an alternative, the current data may be analysed jointly with past data
in a single estimation process. The two datasets are independent, so their joint
likelihood is easy to construct, if the constituent (dataset-specific) likelihoods
are available. A set of minimal sufficient statistics for such a likelihood can be
compiled by concatenating sets of minimal sufficient statistics for each of the
constituent likelihoods. This reveals a problem with the general formulation
of a Bayes prior. Suppose there is no single sufficient statistic for a parameter
in the past study that is involved also in the current study. The frequentist
view suggests that when no single summary of the prior information (the past
study) is sufficient, neither is a one-parameter prior distribution. In brief,
there may be prior information that cannot be presented in terms of a single
prior distribution.

The frequentist alternative to the Bayes posterior is the sampling distrib-
ution of the estimator. The posterior is a single distribution. In contrast, the
sampling distribution often depends on some (unknown) model parameters,
so the assessment of its quality is not straightforward. An estimator may have
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some (frequentist) strengths and weaknesses. Although these are often difficult
to explore, they open up possibilities to tailor the choice of an estimator to the
specific needs of the analysis, responding to the assumed consequences of es-
timation errors. The Bayes prior can be interpreted as averaging (smoothing)
over the strengths and weaknesses of the (maximum likelihood) estimator.
The client is rewarded by an answer that is simpler (a single distribution),
but a more complex answer, in terms of a distribution for each plausible value
of the parameter, might inform more completely about the quality of the
estimator.

A prior distribution may be degenerate, informing the analysis that the
values of some of the parameters or of their combinations are known. A uni-
variate prior is called highly concentrated if its variance is very small. A
multiviarate prior is called highly concentrated if some of its marginals are
highly concentrated. If the target is known then the data are redundant. If
only the values of some other (nuisance) parameters are known, or pretended
to be known, the posterior distribution is a proper distribution. Exploration
of the posteriors for a range of such degenerate or highly concentrated priors
is closely related to studying the sampling distribution of an estimator. How-
ever, a posterior for a parameter with a degenerate prior is also degenerate, so
the Bayesian cannot explore how well a parameter would be estimated given
that it has a particular value.

The frequentist’s replication principle provides a universal way of learn-
ing about properties of estimators in a wide range of congenial and adverse
conditions. Although much of statistical theory is about properties of estima-
tors in congenial conditions, with a valid model, the integrity of any analysis
is enhanced by sensitivity analysis—exploring the properties of the engaged
estimator in plausible adverse conditions. There are obvious Bayesian counter-
parts of the sensitivity analysis, but they are outside the confines of coherence.
The only way to bypass insurmountable analytical problems of evaluating a
posterior with an inappropriately specified density f(x;θ) is by borrowing the
frequentist principle—replication.

Frequentist thinking is full of ‘what might have happened’ because of the
ubiquitous reference to replications. For any given dataset, the frequentist
may have different optimal estimators depending on the (sampling) design.
For example, if simple random sampling design is applied, the sample mean
has no credible alternative as an estimator of the population mean. However,
if the sampling design is known to prefer units with larger values of the target
variable, a different estimator is optimal. Thus, we cannot condition on data
and on the distribution of the variable in the population, because other details
of the data collection process, the sampling design in particular, are essential.

Suppose a random sample from an unknown distribution is recorded in a
study. The sample size n is variable. The target is the data-generating distri-
bution. For simplicity, suppose it is described by a single parameter θ. The
frequentist would contemplate replications of the study, and these may yield
samples of different sizes. But common sense suggests that the realised value
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of the sample size n should not be ignored. Any analysis that is conditional on
this sample size, that is, that considers only replications with the same sample
size, borrows a bit of the Bayesian paradigm, which conditions on everything
that has been recorded. The orthodox frequentist approach, which does not
condition on the sample size, would have an insurmountable problem if zero
sample size had a positive probability. As the value of the estimator is not
defined when n = 0, neither is any property of the estimator without ruling
out such an outcome. In practice, some other resolution of this problem would
be improvised; for example, resources might still be available if no data were
collected, and the study would be replicated. Of course, the study plan may
anticipate this problem and rule it out by design.

4.4 Bayesian Study Design

In Bayesian analysis, the posterior is a function of the data; a different dataset
would yield a different posterior. The inference, encapsulated by the poste-
rior, is subjective (prior-specific) and private to the analyst—a replication of
the study will yield a different posterior, but the variation of such replicate
posteriors is not a concern in the analysis of the single realised dataset.

In this perspective, planning a study does not fit comfortably into the
Bayesian framework: the Bayes theorem is a clear prescription for dealing with
a realised dataset, but it offers no immediate clues as to how to conduct a
study so that the posterior would be sufficiently concentrated. Yet the design is
indispensable, both for arranging that the analysis is (likely to be) satisfactory
and for the conduct of the analysis itself. The design is reflected in the model
for data generation. For example, independence and identical distributions
of a sequence of observations are ensured by the design. If we regard these
features as observations, then the design is treated on par with the data. In
the frequentist analysis, there is a clear distinction: the design is always fixed,
common to all replications, but the data (outcomes) are random.

The statistical design of any study is based on the anticipated conclusions.
Thus, we consider the posteriors f(θ |y). For a particular data-generating
process, we may consider the average posterior,∫

. . .

∫
f(θ |y)g(y) dy1 . . . dyn ,

where g is the joint density of y. Of course, g depends on the unknown θ and
sometimes also on some other parameters. This we could address by another
round of averaging,

g(y) =
∫

g(y | θ)p(θ) dθ ,

but that would merely yield our starting point, the prior.
We can explore the posteriors more directly. Let V (y) be the posterior

variance, expressed as a function of y. For instance, in Example 8,
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V (y) =
τ

1 + nτ
,

where τ is the variance of the prior; τ = 10 in the example. We can ensure
that the posterior variance does not exceed a given value v0 by solving the
inequality V (y) < v0 ; the solution is

n >
τ − v0

v0 τ
.

The lower bound is negative when τ < v0 ; we do not need any observations
if the prior variance is already smaller than v0 .

The design in this setting is easy because the posterior variance does not
depend on the data y and depends on only one design feature, the sample size
n. For the general setting, we use the notation V (y, ξ) for the posterior vari-
ance; ξ are the features of the design that we can control. At the design stage,
we have to address the uncertainty about y. This we can do only by consid-
ering a ‘prior’ for y, the distribution of the outcomes without conditioning on
the model parameters. This is the denominator in (4.1),∫

f(y | θ)p(θ) dθ .

We do not have to evaluate this integral when V depends on y only through
one or a few functions of y, when

V (y; ξ) = V ∗ {t(y); ξ} .

Then we require a prior only for the summary t(y). Setting the design now
entails solving the inequality∫

V ∗ (t; ξ) ψ(t) dt < v0 ,

where ψ is the prior density of the statistic t(y). In most settings, ξ is uni-
variate, equal to the sample size n, so we seek the smallest sample size for
which the average posterior variance would be smaller than a set standard. A
small number of alternative designs can be compared straightforwardly.

Example 11. Suppose a single observation is generated according to the bino-
mial distribution with n trials and probability of success equal to r. We set
the prior distribution to beta with parameters a > 0 and b > 0. Earlier we
established that the posterior distribution for p is also beta, with parameters
a + y and n − y + b. Its variance is

V (y;n) =
(a + y)(n − y + b)

(n + a + b)2(n + a + b + 1)
.

We could avoid any complex computations by finding an upper bound for V
that does not depend on y:
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V (y;n) ≤ 1
4(n + a + b + 1)

,

exploiting the inequality r(1 − r) ≤ 1
4 for any probability r. Hence, setting

n > 1/(4v0)−a−b−1 would ensure that the posterior variance does not exceed
the threshold variance v0 . This is a stronger result than we set out to obtain:
the posterior variance will be smaller than v0 not only in expectation, but for
any possible outcome y. The frequentist version of this result is that we need
sample size n > 1/(4v0) to ensure that the sampling variance of the proportion
of successes falls below v0 , irrespective of the underlying probability r. Of
course, these calculations are quite crude when, in the frequentist perspective,
r is distant from 1

2 and, in the Bayesian perspective, the prior places a lot of
weight on r being either distant from 1

2 or in the vicinity of 1
2 , in brief, when

a + b is large.
For a more refined calculation, we derive first the prior distribution for y.

This is

f(y) =
∫ (

n
y

)
py(1 − p)n−y Γ (a + b)

Γ (a)Γ (b)
pa−1(1 − p)b−1 dp

=
(

n
y

)
Γ (y + a)Γ (n − y + b)

Γ (a + b + n)
Γ (a + b)
Γ (a)Γ (b)

.

The expected posterior variance is

n∑
y=0

V (y;n) f(y) . (4.7)

Suppose v0 = 0.001. Then the sample size of 1/(4v0) = 250 would certainly
be sufficient, but we may be able to do with a much smaller study, depending
on the parameters a and b or the prior. Before exploring a few settings, we
discuss evaluation of (4.7). For large n, the summation in (4.7) involves many
terms of small magnitude. Each term involves values of gamma functions,
and some of them are so large that a computer would fail to conclude the
calculation because of an overflow. Working with the logarithm of the gamma
function is more practical, but a more direct approach involves logarithms of
beta functions. The beta function is defined as B(a, b) = Γ (a)Γ (b)/Γ (a + b),
so that

f(y) =
B(y + a, n − y + b)
B(a, b)B(y, n − y)

.

Many of these expressions are very small numbers, so a direct computation is
likely to fail. The problem can be avoided by evaluating log{f(y)}, involving
logarithms of beta functions. Most software packages evaluate log{B(a, b)}
directly, without the intermediation of B(a, b).

For a = 6 and = 10, which represents a fairly focussed prior (expectation
0.375 and standard deviation 0.12), we require the sample size of at least 205.
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This figure can be found by the Newton method, although trial and error
is only slightly less effective. For the noninformative prior, a = b = 1, the
minimum sample size is only 165. The explanation for this seeming paradox
is that probabilities r close to zero and unity are plausible, so the posterior
variance could be quite small. This exposes a weakness of our sample size
calculation: the value of the expected posterior variance as a criterion for study
design diminishes with increasing dispersion of the posterior variance. We can
resolve this problem by adopting a more conservative criterion, that a specified
high quantile, such as 0.95, of the prior distribution of the posterior variances
should not exceed v0 . The posterior variance is highest for y = 1

2 (n+a+b)−a
when n + a + b is even, and for y = 1

2 (n + a + b ± 1) − a otherwise, and is
symmetric around the maximum (or the mean of the two maxima). Therefore,
the quantile is found by adding up the probabilities for the outcomes near the
maximum until we reach the complement of the quantile (say, 0.05). The
posterior variance at this value of the outcome is the sought quantity.

The function r(1−r) is quite flat in a wide range around r = 0.5, so we are
likely to reach the complement of the quantile for r such that r(1− r) .= 0.25.
Therefore, we can calculate the required sample size simply by assuming that
r(1 − r) = 0.25. For more focussed priors, which effectively rule out values
of r in the neighbourhood of 0.5, the required sample size can be based on
the plausible value of r that is closest to 0.5. For example, we may use the
0.95-quantile of the prior distribution that has its focus within (0, 0.5) and
the 0.05-quantile of the prior that has its focus within (0.5, 1).

Costs can be incorporated in the analysis as a function P of the design
features ξ. We define gain G as a decreasing function of the posterior variance
V , and seek to maximise the expected profit∫

G [V ∗ {t(y); ξ}] ψ(t) dt − P (ξ)

(ψ is the prior density of t). The maximum is unique when the costs increase
with sample size or, generally, with the extent of the study. Setting the func-
tions G and P is rarely straightforward, and it may be more constructive to
explore a few realistic proposals and choose a compromise among the corre-
sponding maxima.

4.5 Model Diagnostics and Prediction

It is a good practice to look back after evaluating the posterior and assess
whether the specified model is appropriate. The rationale for this is essentially
the same as in the frequentist perspective. The model assumptions cannot be
confirmed, but their contradiction with the observed data might raise a doubt
about them and justify their revision. In a Bayesian analysis, we make two
assumptions: the prior and the data-generating distributions.
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Fig. 4.2. Example of a conflict between the prior and posterior distributions, N (0, 3)
and N (6.5, 0.25), respectively.

We may have a good reason for revising the prior or for revisiting the
process that led to its declaration, when most of the probability of the pos-
terior distribution is in a region where the prior has a small probability. For
example, suppose the prior is N (0, 3) and the posterior is N (10, 0.25); see
Figure 4.2. With a large dataset we need not be concerned about this con-
flict because the prior has been effectively ignored. With a smaller dataset we
should be concerned that a prior that better reflects the information avail-
able at the time would yield a posterior substantially different from the one
obtained originally.

Another source of potential conflict is between the observed data y and
the posterior distribution. For example, the empirical distribution of y may
be highly skewed, even though the posterior distribution is normal. In this
case, we may revise the specification of the data-generating model, for in-
stance, questioning the assumption of normality. For a given posterior, we
can predict (anticipate) what another observation, or a dataset, generated by
the same process would be. The posterior predictive distribution is defined by
the density

f∗(u) =
∫

f(u | θ) f(θ |y) dθ ;

it is the marginal data-generating distribution after averaging over the poste-
rior distribution. We use the argument u to distinguish it from the observed
vector y. We have to use both qualifiers, posterior and predictive, because we
can define the prior predictive density as

f(u) =
∫

f(u | θ) p(θ) dθ ; (4.8)
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it describes the data we would expect before the actual data has been col-
lected. The posterior predictive distribution is informed by the data, whereas
the prior is not.

We can search for a conflict between the data and the posterior predictive
distribution by comparing their summaries, such as the histogram of the data
and the density of the posterior predictive distribution. A much more effective
approach is based on simulations from the posterior predictive distribution.
We define a feature, such as a graph, a table, a function of the data, or their
combination, and evaluate it on both the observed data and a large number
(19, 49, or 99) of simulated datasets from the posterior predictive distribu-
tion. If among these (20, 50, or 100) features, one realised and the remainder
simulated, the realised feature stands out, we have evidence of a conflict. This
approach, introduced in Chapter 1, has a frequentist (replication) flavour, but
is equally well suited in the Bayesian context. We may forego the integration
in (4.8) and generate a replicate vector u in stages as follows. First we draw
a value of the parameter θ from the posterior distribution, and then we draw
a realisation from the data-generating process with this parameter θ. This
approach is closely related to numerical integration.

An important component of the method is the choice of the feature that is
to be explored. It has to be informed by our a priori concerns about particular
aspects of model validity. For example, with the normal posterior distribution
we may be concerned about symmetry. Then we can proceed as in Section
1.3.1 by constructing a statistic that serves as a measure of asymmetry. We
compare the values of this statistic on the realised and simulated datasets
and conclude with evidence against the data-generating model if the realised
value stands out among the simulated values.

If we approach the analysis without confidence, prepared to apply an ex-
tensive battery of diagnostic checks and act upon their results by reviewing
the prior or the data-generating distributions, we should be less confident in
the posterior-based inference than if we approached the analysis with justified
confidence that all the specifications are appropriate. The lack of confidence
should be reflected in our inference even if all diagnostic checks turn out to be
negative and the original posterior is accepted. At present, this problem does
not have a satisfactory solution and the advice on the extent of diagnostic
checks to be applied is ambiguous at best. Pretending confidence when it is
not justified is not a good solution.

Suggested Reading

The Bayes theorem is named after the Reverend Thomas Bayes, the author
of [5]. Prior to the introduction of personal computers, Bayesian analysis was
principally a theoretical and partly philosophical discipline, but the ideas es-
poused in the 1960s and earlier by [88], [63], [102], [32], and [10] have built
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a solid foundation for the modern Bayesian statistics. A more modern the-
oretical introduction is given by [66], and [150] is more practically oriented
and up-to-date with regard to computational technology. Bayesian inference
became a practical proposition after the advent of modern computing and the
simulation-based methods for generating samples from multivariate distribu-
tions ([55], [183], and [57]). A very readable introduction to MCMC is given
by [16]. All the essential elements of Bayesian computing, including efficient
simulation-based sampling from multivariate distributions, are implemented
in the software winbugs; see www.mrc-bsu.cam.ac.uk/bugs. Other influen-
tial texts on Bayes analysis are [7], [189], [8], and [56]. Important references on
Bayes factors include [92], [139], and practically oriented [79]. The theoretical
support for the simulation-based diagnostics using features is given in [160].

Problems and Exercises

4.1. Prove the Bayes theorem.
Hint: Recall that a conditional density f(y | θ) is related to the joint density
f(y, θ) by the identity

f(θ |y) =
f(y, θ)
f(y)

,

where f is the density of the distribution implied by its argument. Further, a
marginal distribution is derived from the joint distribution by integration:

f(y) =
∫

f(y; θ) dθ .

Carefully state the conditions necessary in the proof. Derive a version of the
Bayes theorem for discrete distribution of θ. What changes are required when
y is discrete?

4.2. Suppose the posterior distribution for a parameter θ is exponential, with
the density u−1e−uθ for a given value of the parameter u > 0. Find the 95%
tolerance interval of the shortest length. Compare it with the tolerance interval
that has limits equal to the 2.5 and 97.5 percentiles of the distribution.

4.3. Prepare for the analysis of a survey of employment in your region by
formulating the prior for the rate of unemployment. This rate is defined as
the percentage of the labour force who are not in employment at present
but are actively seeking employment and would be prepared to take up an
offer and start working in a matter of days or as the offer stipulates. What
information would you draw on and how would you search for it? Suppose
each student in a class has this assignment and the students share all the
information they collect. Why could the students’ priors differ? If the priors
do differ, how would you try to reconcile them and formulate a prior that
represents the entire class?
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4.4. In a study, a random sample from a power distribution on (0, 1), given by
the density a−1xa−1 for a parameter a > 0, is observed. Suppose the exponen-
tial distribution with density 3e−a/3 is declared as the prior for a. Derive the
posterior distribution of a. Compare it with the sampling distribution of the
maximum likelihood estimator of a (which ignores the prior information). Ex-
plore ways of incorporating the prior information in the maximum likelihood
analysis.

4.5. Suppose the data in a study are generated as a random sample of size n
from the continuous uniform distribution on (0, θ) and a noninformative prior
is to be declared for θ. Explore how this prior can be declared, and compare
the posteriors for some of your proposals. Discuss whether the inefficiency (if
any) of the maximum likelihood estimator of θ is reflected in the Bayesian
analysis.

4.6. Describe the problem of estimating the mean of a group in the standard
setting of ANOVA. Specify a common prior for the mean of each group and
the noninformative prior for the two contending models:

A. the groups have identical means;
B. the groups do not have identical means.

Consider several distributions for the priors and discuss how convenient they
are for the computations. Compare the solutions with the synthetic estimators
derived in Chapter 1.

4.7. The class of negative binomial distributions is defined by the probabilities

P(X = k) =
(

m + k − 1
m − 1

)
(1 − r)mrk ,

where m is an integer, r a probability (parameter), and k = 0, 1, . . . . The
geometric distributions are a special case, with m = 1. A negative binomial
distribution arises as the number of trials with a positive outcome until the
mth trial with a negative outcome in a sequence of independent binary trials
with a constant probability r. Solve the problem of estimating r with a random
sample from this distribution with known m. Choose a conjugate prior for r.
Suppose it is not known whether m = 2 or m = 4. Compare the posterior
distributions for these two settings, and combine the posteriors using Bayes
factors. Use the noninformative prior for m. As an alternative to Bayes factors,
consider the problem of simultaneous estimation of m and p. Should the priors
for p and m be correlated?

4.8. Apply importance sampling to evaluate the integral∫ +∞

0

√
x2 +

1
2

exp
(−x4 − 2x2

)
dx .
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Hint: Complete the squares under the square root and the exponential and
relate an upper bound for the integrand to the density of the normal or gamma
distribution (after a change of variable in the integral).

4.9. Evaluate the integral ∫ 1

0

1 + 3x + e−x

2 + x + ex
dx

by importance sampling.

4.10. Apply rejection sampling to generate a random sample from the distri-
bution with the polynomial density f(x) = c(1 + 3x − 2x2 + 4x3) on (0, 1)
for the appropriate constant c. Use random draws from the uniform distrib-
ution. As an alternative, generate a random sample by a direct method. For
example, you could derive the distribution function F (u) =

∫ u

0
f(x) dx and

numerically approximate its inverse, the quantile function F−1. Then, for a
uniformly distributed variable X, F−1(X) has the sought distribution. Com-
pare the two procedures for the amount of computing and programming (and
mental) effort they require, and check on large samples (n ≥ 1000) generated
by the two methods that the underlying distributions are similar (identical).

4.11. Suppose a bivariate distribution is given by its conditional distributions
(X1 |X2) and (X2 |X1) with exponential densities with respective parameters
(reciprocals of the means) 3+x2/10 and 4+x1/10. Apply MCMC to generate a
random sample of size 250 from this bivariate distribution. Choose a sampling
frequency to avoid any perceptible dependence of consecutive draws. Discuss
what (you think) might happen if a distribution with the specified conditional
distributions did not exist.

4.12. Explain why the Bayesian sample size calculation in Example 11 with a
binomial outcome yields a lower minimum sample size, 1/(4v0)−a−b−1, than
its frequentist counterpart, 1/(4v0), even for the uniform prior (a = b = 1). Is
the Bayesian approach inherently superior?

4.13. Apply the sample size calculations to a study with a negative binomial
outcome with a given number m of failures (see Exercise 4.7). Use a conjugate
prior for the probability r.

4.14. Generate two independent random samples, with sample sizes in hun-
dreds, from distinct normal distributions, such as N (µ1 , 3) and N (µ2 , 2),
µ1 �= µ2 , and regard their union as a single dataset. (If µ1 differs a lot
from µ2 , then the underlying distribution may even be bimodal.) Suppose
the data-generating and the prior distributions are (inappropriately) declared
as a random sample from N (µ, 3) and N (0, 5). Apply suitable diagnostic pro-
cedures that would identify a conflict between the data and the assumptions,
those of normality of the data-generating distribution in particular.
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4.15. Collect all your arguments that support the statement:

The posterior variance is never greater than the variance of the prior.

Relate your arguments to the frequentist version of this statement:

Two independent estimators of the same target θ can always be com-
bined so that the result would have a smaller mean squared error than
either constituent estimator.

4.16. Suppose a study in which a random sample from a normal distribution
is observed has the outcomes

0.972, 0.998, 1.015, 0.983, 1.047, 1.020, 0.961, 0.998, 1.009, 1.107 .

Discuss how the (Bayesian and frequentist) inferences about the mean of this
sample would differ if we knew that

1. the sample size is fixed;
2. the sample size is in the range 8 to 12 and is set by a known mecha-

nism (e.g., with probabilities equal to 0.2 for each size) before the first
observation is made;

3. the study is concluded when the first observation that exceeds 1.10 is
recorded;

4. the study is concluded as soon as the first observation outside the range
(0.9, 1.1) is recorded or 20 observations are made.

4.17. Recall an example of ordinary regression that you fitted in the past
and discuss how you would set the prior distribution for its residual variance
σ2, with the limited resources at your disposal (a day or two, which does
not permit you to communicate with anybody familiar with the substantive
background and details of the study). In particular, why would it make sense
to define a prior with a bounded support that rules out very large values of
σ2? Can a similar argument be presented about a regression slope?
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Incomplete Data

In the previous chapters we assumed that the observational units are selected
by a sampling design, usually simple random, and that the values of the rel-
evant variables are recorded with precision for each selected unit. A sound
principle in conducting studies is to ensure good representation of the rele-
vant population by a planned (deliberate) design, a controlled sampling mech-
anism, and to collect all the data as planned. This chapter describes methods
applicable when the data collection exercise is imperfect—when, contrary to
the plan, some data are not collected or the sampling and data recording
processes depart from the protocol in some other way. At the outset, we con-
sider a sampling design with good representation and collection of the values
of a set of variables from each selected unit. Later we expand the scope of
the methods by defining ideal sampling and measurement processes that were
not intended to be implemented, but for which the analysis would have been
simple and manageable. We adapt the analysis to this less congenial setting.
Further exploitation of this idea, entailing ingenuity in what is declared as
‘missing’ from the ideal dataset, substantially widens the horizon of problems
that can be analysed efficiently and with integrity. Chapters 6 and 7 present
two such applications of methods for incomplete data.

5.1 Terminology and Notation

Suppose a study design intends to represent a population P by a sample s
drawn by a given sampling design, and the values of each of a set of variables
are recorded for every subject. A population quantity θ that is a function of
the values of these variables is to be estimated. Denote by X∗∗ the N × p
matrix of the values of the variables in the population and by X∗ the corre-
sponding (n×p) matrix for the planned sample. If X∗∗ were available, θ could
be established with precision. We obtain X∗ only when the study is executed
perfectly, with no deviation from the plan to apply the sampling design (or
the data-generating process). We consider settings in which another process or
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Table 5.1. Illustration of complete, incomplete (recorded), and missing datasets,
X∗, X , and Xmis , respectively.

X∗

Id. X1 X2 X3

1 2.6 4 0.25

2 3.1 4 0.31

3 2.7 2 0.40

4 1.9 1 0.11

5 2.4 2 0.52

6 3.7 3 0.56

7 3.0 5 0.42

8 2.6 3 0.32

9 2.5 4 0.44

X

X1 X2 X3

2.6 4 0.25

? 4 0.31

2.7 2 ?

1.9 1 0.11

? ? 0.52

? ? ?

3.0 5 0.42

2.6 3 0.32

2.5 ? 0.44

Xmis

X1 X2 X3

3.1

0.40

2.4 2

3.7 3 0.56

4

mechanism intervenes between sampling and estimation and further reduces
the data and, with it, the information collected. We call this the nonresponse
mechanism but, apart from noncooperation of a subject (nonresponse in a
narrow sense of its meaning), it includes many other reasons for failing to
collect every planned item of data. For example, the subject may have pro-
vided a response, but it was misinterpreted or mishandled and ended up not
being recorded. The dataset obtained after the losses due to nonresponse is
denoted by X . We denote by Xmis the missing data; this is a matrix of the
same dimensions as X∗, with entries defined (but unknown) only when the
corresponding value of Xjk was not recorded, contrary to the plan. We loosely
write X∗ = (X,Xmis), although this identity should not be interpreted as two
matrices attached to one another, but rather as two matrices overlaid in such
a way that the defined value always appears on top. A small example is given
in Table 5.1.

We refer to the planned dataset X∗ as the complete data and to X as the
incomplete data. Apart from a reference to the plan, these terms are meant
to indicate that the analysis of X∗ would be a relatively simple task, using
methods we can implement, such as those in Chapters 2 and 3, whereas the
analysis of X is much more complex. We could even regard the matrix X∗∗ as
the complete data and X∗ as the incomplete data. Calculation of a population
quantity from X∗∗ would then be the standard task and its estimation based
on X∗ a task we do not want to address directly. In this chapter, we assume
that estimation based on X∗ would be a standard task if X∗ were available, but
estimation based on X is not. In brief, the terms ‘complete’ and ‘incomplete’
are relative, related to our analytical ability and equipment.
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Both X∗ and X have two forms, as random objects, prior to execution of
the study and as structured sets of fixed values after the data are collected.
Whereas X∗ is (usually) a matrix of values, X is an irregular object. It is
convenient to regard it also as a matrix, using a special code for the missing
values, such as the question mark in Table 5.1. Several such codes may be
used to record distinct circumstances related to the nonresponse, such as
‘subject not available’, refusal, illegible handwriting, uncodable or ambiguous
response, and the like. Together with a code for ‘response’, these codes define
a separate categorical variable.

In a typical setting, a particular sampling design is planned in conjunction
with a specific analysis or a set of analyses that evaluate one or several esti-
mators and other statistics (sample quantities). These statistics, as random
variables, are called complete-data statistics (estimators and the like). For ex-
ample, if a survey has the plan to collect the values of a variable on 1000
subjects, the sample mean of such a (randomly selected) set of subjects is a
complete-data statistic. The same statistic applied to the incomplete dataset
is called an incomplete-data statistic. We use the notation in which the dataset
is indicated as an argument. Thus, for an estimator θ̂ we distinguish between
its complete-data version θ̂(X∗) and its incomplete-data version θ̂(X). This
distinction is essential because the distributions of θ̂(X∗) and θ̂(X) differ, and
they both differ from the conditional distribution of θ̂(X∗) given X. This con-
ditional distribution is relevant after data collection, when X becomes avail-
able, but the plan to evaluate θ̂(X∗) has been undermined by nonresponse.
Another conditional distribution to consider is {θ̂(X) |X∗}, which describes
the variety of incomplete-data estimates for a given complete dataset, that is,
the impact of the nonresponse mechanism.

Note that θ̂, originally defined and planned to be applied on X∗, may re-
quire some adaptation so that θ̂(X) could be evaluated at all, because mathe-
matical operations that involve a missing value either are not defined or their
result is defined as ‘missing’. In most cases, θ̂(X) is defined by applying θ̂ on
an object obtained from X by some form of data reduction, commonly by
discarding all rows of X that have a value missing. As an alternative, elemen-
tary operations with missing values, such as summation and multiplication,
may be defined that do not result in missing values. They include defining a
‘default’ value for each missing item. The default may depend on the variable
and subject involved. This is an example of imputation or data completion.

The Extent and Pattern of Nonresponse

We define an object with the same dimensions as X∗, which indicates whether
a particular element of the dataset has been recorded. This object is called
the response indicator and is denoted by R. When it is a matrix, its element,
called the response status (of subject j and variable k), is denoted by Rjk ,
row, called the response pattern, by rj and column by Rk ; Rjk = 1 when Xjk

is available and Rjk = 0 otherwise.
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The response rate for a variable X is defined as the proportion of the
subjects for whom the value of X is recorded; ηk = R�

k 1/n for variable Xk .
The extent of nonresponse for variable Xk is defined as 1 − ηk . A variable
is said to be observed completely if its value is recorded for every subject.
The proportions η1 , η2 , . . . , ηp do not provide all the information about the
missing values, because nonresponse may be concentrated in a small group of
subjects, or dispersed across many of them, with many subjects having only
a few missing values each.

The extent of nonresponse is a sample quantity, but we could also define
its population version. For this definition to be meaningful, we require the
assumption of response stability , that each pair of member i and variable k
would result in the same response status Rjk if member i became the subject
j in a sample. A weaker assumption is that each member is associated with
a distribution of the response patterns r, and, when the member is included
in the sample, a random draw from this response distribution determines how
the complete record is reduced to an incomplete one (or is left complete). In
most settings, it can reasonably be assumed that these draws are independent
across subjects. Note that subjects do exercise influence over one another, for
instance, when they are from the same household or neighbourhood, but the
result of that is that the distributions of their vectors r are similar. Lack of
independence of the draws means that one subject’s realised value of r has an
impact on the realised value of another.

It is very difficult to learn about the individual subjects’ distributions
r, because each subject provides only one realisation, a vector rj . Thus, a
subject’s distribution could be degenerate (the subject would have the same
response pattern in every replication), some of its marginals could be degen-
erate, or none of them. Further, the response status for one question may be
correlated with the response status for other questions, the next and previous
question in particular.

We can classify subjects according to their response patterns rj as having
complete records (no missing items, r = 1�), empty records (none of the data
items available, r = 0), and partial records (some items missing and some
available). The p indicators in the response pattern rj , each equal to zero or
unity, can be ‘glued’ together and tabulated. For example, when p = 5, the
code for an empty record is 00000 and for a complete record it is 11111; the
code 01110 is for a partial record in which the values of the the first and fifth
variables are not recorded. Figure 5.1 summarises graphically the response
patterns for an imaginary sample of 749 subjects and p = 5 response items.
The response rates ηk are given at the top and the numbers of subjects with
each response pattern at the right-hand margin. The subjects are reordered so
that those with the same pattern are in contiguous records, and the patterns
are ordered according to the number of subjects that have them. The patterns
could be displayed in any other meaningful order, such as in the alphanumeric
order, 00011, 01110, 10111, 11100, 11110, 11111 in the case of the example. For
data with many variables and many patterns, patterns with very few subjects
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337

132

104

97

62

17

SubjectsPattern

11111

01110

10111

11110

11100

00011

80.1% 83.8% 97.7% 91.7% 61.1%

Response rates

749X1 X2 X3 X4 X5

Fig. 5.1. A graphical summary of the response patterns in a survey. An artificial
example.

could be dropped or displayed in a separate diagram drawn on a different
scale. Also, the diagram may be easier to comprehend when similar patterns
are clumped together.

We can distinguish between unit nonresponse, when a subject is not con-
tacted or refuses to cooperate at the outset or there is another single reason
for no response to any of the items (response pattern 00. . . 0), and item non-
response, which gives rise to partial records. In survey databases in which
the variables are organized in sections, such as the responses to blocks of
questions, we can define response patterns for sections and section-level non-
response. Similarly, in surveys with clustered sampling design, it is meaningful
to consider cluster-level nonresponse. For example, in surveys in which house-
holds or schools are the clusters, the entire household or the entire school may
refuse to cooperate.

In longitudinal and panel surveys, in which subjects are contacted on sev-
eral occasions, it is practical to define response patterns associated with each
occasion. When there are only two patterns for the occasions, complete re-
sponse (pattern 11. . . 1) and total nonresponse (pattern 00. . . 0), we can define
the occasion-level response pattern in which each occasion is represented for
a subject by a unity for complete response and zero for total nonresponse.
Among these response patterns, the drop-out and drop-in are often the most
frequent incomplete patterns. In a drop-out pattern, such as 11100, a sequence
of responses is followed by a sequence of nonresponses; the subject cooperates
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2407

1123

427

794

241
290

582

SubjectsPattern

111111

111110

111100

111000

110000
100000

000000

90.1% 85.1% 81% 67.5% 60.2% 41%
Response rates

5864X1 X2 X3 X4 X5 X6

Fig. 5.2. Example of an incomplete dataset with monotone patterns of nonresponse.

up to a point and provides no responses thereafter. In a drop-in pattern, such
as 00011, the first response is obtained from a subject on a later occasion, but
the subject cooperates from then on until the last occasion. It is expedient
to regard the complete and empty response patterns as drop-out (and also as
drop-in). Completion of a long questionnaire can be treated like a longitudinal
survey in which each question (a block of questions or a page of the question-
naire) corresponds to an occasion. In such surveys, the drop-out pattern may
occur when a subject who proceeds through the questionnaire sequentially
stops completing it at some point.

The response patterns are said to be monotone if the variables can be
ordered in such a way that the corresponding response patterns are all drop-
out. When there are K variables, there are 2K possible response patterns in
general, but among monotone patterns there are at most K+1 patterns. With
the appropriate ordering of the variables and response patterns, the graphical
summary of the patterns looks like a staircase; Figure 5.2 gives an example.

For each record, we consider its (possibly empty) available and missing
parts as the subvectors of the record for the variables that were recorded and
those that were not. These two parts may be considered as both fixed (after
data collection) and random (prior to data collection). In the latter case, they
have variable lengths.
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5.2 Dealing with Incomplete Data

It is much easier to deal with complete datasets because they have a regular
shape and all the usual (matrix) arithmetic operations are well defined for
them. For incomplete data, we have to make special arrangements: define
operations that involve a missing value or avoid missing values altogether. Any
analysis conducted with incomplete data has to incorporate the fact that for
a missing value we do not know its counterpart in the complete dataset—the
value that would have been recorded had the survey been executed perfectly.
However, it may be too pessimistic to act as if no information were available
about the value at all. The available part of the record may provide some clues
about the missing value. For example, in a longitudinal survey of employment
status, in which some members of the labour force are contacted every quarter,
the status on any particular occasion is very likely to be unchanged from the
previous occasion, especially for those middle-class middle-aged subjects who
are known to have recently held permanent jobs since several years ago. Thus,
if they are not contacted on an occasion, copying the status from the previous
occasion is an attractive proposition. It is not correct to do so, but the rate of
error with this procedure is likely to be low. In contrast, a similar arrangement
for young men and women is not advisable because a much greater percentage
of them change their status within a quarter, as they complete education,
decide to return to education or training, leave the labour force for other
reasons, including end of tenure of a temporary or seasonal employment and
child-bearing or looking after the family.

The difficulty of evaluating θ̂(X) can be overcome in two distinct ways. The
first discards all the incomplete records, so that θ̂ is in fact evaluated on the set
of subjects with complete records, denoted by X− . This method is called data
reduction, and X− is said to have been obtained by listwise deletion. The term
complete-case analysis is also used for evaluating θ̂(X− ). The method is highly
problematic when there are many partial records, because a lot of valuable
information they contain is discarded. Variants of this method discard only
records that have incomplete subrecords for the variables used in evaluating
θ̂, or that are incomplete for particular calculations involved in evaluating θ̂.
When θ̂ depends on X∗ only through a few summaries, data reduction may
be applied separately for each summary. Such approaches remain deficient
because they ignore any information about the missing values that is contained
in the available data. Apart from this drawback, the (incomplete) sample
associated with a reduced dataset may not be a good representation of the
population, even if the complete sample would have been.

An imputation method completes the dataset by substituting a value for
each missing item. Such a substitute can be regarded as an estimate of the
value. Imputation methods are defined by the details of such estimation. The
estimators can be chosen so as to take advantage of the intelligence available
about the population and the data-collection process. Simple methods for im-
putation include copying the value, possibly after a transformation, of another
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variable and imputing the sample mean (median or mode) or the summary
of the variable for a suitable subsample. A dataset completed by imputation
is denoted by X+ . The apparent advantage of an imputation is that the es-
timator θ̂ can be applied straightforwardly to X+ . However, the sampling
distributions of θ̂(X∗) and θ̂(X+) are bound to differ because X+ contains
less information than X∗; except for some trivial settings, it is impossible
to recover what has been lost by imperfect execution of the data-collection
process.

By analysing X+ with the response status (R = 1 or R = 0) discarded, we
pretend that we have in fact observed X+ . Had we observed X+ as a complete
dataset, with no values missing, we would have been more confident about the
inferences made. However, the two analyses, of the same dataset X+ , regarded
as a completion in one case and as the complete dataset in the other, yield
identical results. This suggests that we should not estimate the mean squared
error MSE{θ̂(X+); θ} by applying the estimator s2(X∗) of MSE{θ̂(X∗); θ}
with X+ substituted for X∗, that is, by s2(X+). This is not appropriate
because the uncertainty of the imputation process (of the attempted recovery
of X∗) is ignored. Apart from underestimating MSE{θ̂(X+); θ}, θ̂(X+) may
be inefficient and biased, even when θ̂(X∗) is (or would have been) efficient
and unbiased.

By way of an example, suppose we wish to estimate the population variance
of a variable X. If we impute the sample mean for each missing value of X,
the sample variance of the completed set of values of X will underestimate the
population variance because the completed sample contains more observations
that do not deviate from the sample mean than the complete data would have.
As another example, suppose a missing value x is estimated by zero, with
sampling variance known to be equal to unity. If this value contributes to a
particular summary by its square, 02 = 0 would be substituted. However, in
view of the sampling variance of the estimator involved, substituting 1.0, the
value of the unbiased estimator (x̂)2 + v̂ar(x̂) of x2, would seem to be better
suited. This example confirms that efficiency is not maintained by nonlinear
transformations.

A more general criticism of this approach, based on efficient estimation of
each individual missing value, is provided in Section 5.4. It will suggest that
the imputed values should represent missing values not only on average but
also by their distribution and by their dispersion at least.

Imputation methods may involve some randomness; such methods are
called stochastic. A replication of a stochastic method on the same incomplete
dataset would yield different imputed values; the imputed values would have
between-imputation variance. Imputation methods that involve no between-
imputation variance are called deterministic.

The following scheme is an example of a stochastic imputation. We gen-
erate substitute values of a variable X according to the model

x̂ = x̄ + ε , (5.1)
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where x̄ is the (sample) mean of X for the subjects with the value of X
recorded, the values of ε are drawn independently from N (0, σ̂2) and σ̂2 is
an estimate of the population variance σ2 of the values of X. Note that this
model differs from

x̂ = µ + ε ,

where µ is the population mean of X and ε ∼ N (0, σ2). The former model
uses estimates (x̄ and σ̂2) and the latter uses the corresponding targets (µ
and σ2). The imputations based on these two models have different sampling
properties, because the mean used in the first, x̄, as well as the variance σ̂2,
would vary across replications, whereas their counterparts in the second, µ
and σ2, would not.

Yet another modelling possibility is

x̂ = µ̃ + ε , (5.2)

where ε ∼ N (0, σ̃2) and (µ̃, σ̃2) are a random draw from the estimated joint
distribution of the estimator

{
µ̂(X), σ̂2(X)

}
. The methods based on (5.1)

and (5.2) do not aim to reproduce the values lost by nonresponse. In the
method based on (5.2), we inject random (between-imputation) variation in
the imputed values—the sets of imputed values are generated in such a way
that there are some systematic differences among them. The substitute values
generated by a stochastic imputation are called plausible values. The ran-
domly drawn values of the model parameters in (5.2) and in similar (more
complex) models are called plausible parameter values. Ideally, the empirical
distribution of the plausible parameter values in replications based on the
same incomplete dataset would match the sampling distribution of the para-
meter estimator (vector). Of course, this is difficult to arrange because the
sampling distribution itself can only be estimated. But relying on one value
of the parameter vector, such as its estimate, amounts to pretending that the
value is known. It is far better to use an estimated (approximate) sampling
distribution, admittedly, pretending that it is known.

Imputation methods can be identified with models such as (5.2). They
relate the missing values (x̂) to the recorded values and their summaries, with
a random deviation (ε). Inasmuch as we seek more realistic models, including
a random deviation in them is essential. Deterministic imputation methods
can be described by models that relate missing values to observed values with
no random deviation. For example, in a longitudinal dataset, the imputation
based on the rule ‘bring last value forward’ (BLVF), according to which the
recorded outcome xk on occasion k is imputed for the missing outcome xk+1

on occasion k + 1, corresponds to the model

x̂k+1 = xk .

For continuous outcomes, x̂k+1 = xk + ε and x̂k+1 = β0 + β1xk + ε, with ap-
propriate distributions for ε, are the obvious adaptations that make the model
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more realistic. More complex regression models, including those introduced in
later chapters, can be used for the imputation model.

For categorical longitudinal outcomes, a natural deterministic model is
x̂k+1 = xk , and its obvious adaptation defines the conditional (transition)
probabilities P(x̂k+1 = h1 |xk = h0). The conditional probabilities of no
change, P(x̂k+1 = h |xk = h), may be quite large, but they do not reach
unity. When an ordering of the categories, from 0 or 1 to H, is meaningful,
the transitions to the neighbouring states, from h to h+1 and h−1 may have
higher probabilities than the transitions to states further apart.

5.3 Nonresponse Mechanisms

The sampling mechanism can be perceived as reducing the population to a
sample. The nonresponse mechanism can be regarded similarly, as reducing
the complete dataset to an incomplete dataset by deleting some of the items
that were planned to be recorded. We might consider a separate mechanism
for each variable, but these processes are usually correlated, so it is more
appropriate to think of them as a single multivariate process. We could then
borrow the terminology of sampling processes for nonresponse processes. One
crucial difference between them is that a typical sampling process is under the
study designer’s control, whereas the details of a typical nonresponse process
are not known and can, at best, be only conjectured.

The simplest nontrivial nonresponse process is related to the simple ran-
dom sampling design. Values of a variable are missing for a set of subjects
selected at random from the sample. Data are said to be missing completely at
random (MCAR) when the (multivariate) distribution of the response pattern
r does not depend on the complete data:

(r |X∗ = x) ∼ (r) .

It implies that nonresponse for each variable is like a simple random sampling
process. We use the acronym MCAR also for the nonresponse process in which
data are MCAR. As simple random sampling is a very special process, one
can hardly expect that the circumstances beyond our control would arrange
the event of nonresponse to be independent of any of the variables.

A much more general class of nonresponse processes is derived from strat-
ified sampling designs. The population is split into strata, and a different
MCAR process acts in each stratum. For example, young subjects may be
more reluctant to respond to a survey than the middle-aged or elderly, but
the nonresponse processes are MCAR within each age group. If the age cate-
gory is known for every subject, such data are said to be missing at random
(MAR). MAR is qualified by the stratification or conditioning variables, such
as age group in the previous example, although more than one variable can
be involved in general. Stratification can be extended to continuous variables,
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by a limiting argument referring to strata defined by narrow intervals of val-
ues, or by defining conditional processes given the values of the conditioning
variables Z. That is, conditionally on Z = z, with z observed, the process of
nonresponse is MCAR:

(r |X∗ = x,Z = z) ∼ (r |Z = z) .

In principle, r for a subject may be related to the values of the variables on
other subjects, and so the definition of MAR includes all processes in which
the missing data are conditionally independent of the response indicator, given
the recorded data:

(R |X∗) ∼ (R |X) ; (5.3)

the values that were not recorded contain no information about the nonre-
sponse process. MCAR is a special case of MAR, in which the conditioning is
redundant even on X:

(R |X∗) ∼ (R) .

Any nonresponse process that is not MAR is called NMAR—data are not
missing at random. (Logically it is more exact to refer to them as missing not
at random.) It includes a vast variety of idiosyncratic processes in which the
probability of nonresponse depends on the values that are missing. Such non-
response mechanisms are called nonignorable or informative. The informative
nature of a nonresponse process can rarely be gleaned from the incomplete
(collected) data without making some unverifiable assumptions.

For example, in a survey of drug use, occasional (recreational) drug users
may be more reluctant to respond. Suppose subjects respond to all ques-
tionnaire items, but most of the occasional users who took some drugs the
previous week would not respond to the item about drug use during that
week. If such use cannot be inferred or predicted from the other responses,
then the recorded data would generate an impression that occasional drug
users tend to take drugs less frequently than they do in reality. Inferences
based on estimators efficient for the complete-data design and that ignore the
impact of the nonresponse mechanism are then distorted.

The characterisation of MAR in (5.3) plays a key role in the analysis of
incomplete data. An analysis is much easier when the nonresponse mecha-
nism is MAR, and the chances of attaining MAR in a particular setting are
improved (or, more precisely, not worsened) by extending the list of condition-
ing variables. When nonresponse is anticipated in a survey the values of some
variables may be collected specifically for the purpose of promoting MAR in
the key analyses. Thus, identifying and recording suitable variables for this
purpose is an important element of survey design. However, dealing with in-
complete data should be regarded as a damage control measure, inferior to
collecting complete data. Therefore, expertise in imputation methods is no
substitute or excuse for reduced attention to eliciting responses, the more
complete the better, from survey subjects.
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5.3.1 Models for Incomplete Data

As the data-generating (sampling) and nonresponse processes may be corre-
lated, they should be modelled jointly. The joint distribution of the complete
data and the response indicator can be partitioned in two ways, as

f(X∗,R) = f(X∗ |R) f(R) (5.4)

and
f(X∗,R) = f(R |X∗) f(X∗) , (5.5)

where f is the density or probability of the (conditional) distribution indi-
cated by its argument. In (5.4), each pattern r is associated with a conditional
distribution (X∗ |R = r), so the joint distribution is a mixture of the pattern-
specific distributions (X∗ | r). Such models are called pattern-mixture models.
Without some constraints, a pattern-mixture model is not identified, because
for some incomplete patterns r certain components are never observed. Con-
straints have to be imposed, for instance, so that the conditional distributions
(X∗ | r) have some parameters in common.

In (5.5), the conditional distribution (R |X∗) is specified for the response
pattern given complete data, together with the marginal distribution of the
complete data. The conditional distribution can be interpreted as a selection
mechanism that reduces the complete dataset. Such models are called selec-
tion models. In general, there is no straightforward correspondence between
pattern-mixture and selection models. Under an NMAR mechanism, the mod-
els given by (5.4) and (5.5) may differ essentially; a model for one partitioning
may not have an obvious counterpart in the other. Under MCAR, the condi-
tioning in (5.4) and (5.5) is redundant, and their equivalence is obvious.

The set of variables in X∗ can be split into those that are always observed
completely, Z, and those subject to nonresponse, Y. The former include vari-
ables associated with the sampling design and attributes of the units to which
subjects belong, such as the neighbourhood or area (e.g., urban/rural). In
models (5.4) and (5.5), X∗ can be replaced by Y∗, the complete-data coun-
terpart of Y, and Z relegated to conditioning, or dropped altogether.

The joint distribution of the incomplete data X and the response indicator
R is obtained from the joint distribution of X∗ and R by integration over the
distribution of the missing values:

f(X,R) =
∫

f(X∗,R) dF (Xmis) ,

and similarly for the distribution of X,

f(X) =
∫

f(X∗) dF (Xmis) ,

which, in principle, can be obtained by summing over all the possible values of
R. Under MAR, we can replace in the selection model (5.5) the conditioning
on X∗ with the conditioning on X; then
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f(X∗,R) = f(R |X)f(X∗) .

Hence
f(X,R) =

∫
f(R |X)f(X∗) dF (Xmis) .

When f(R |X) and f(X∗) have unrelated parameters, not connected by any
constraints, then f(R |X) can be extracted from the integral and the joint
density f(X,R) can be expressed as the product

f(X,R;ψ,θ) = f(R |X;ψ) f(X;θ) , (5.6)

where ψ and θ are the respective parameter vectors for the selection, (R |X),
and the outcomes X. A pair of parameter vectors ψ and θ is said to be
separated in a model if their joint parameter space is the product Ψ × Θ
of their respective parameter spaces (ψ ∈ Ψ and θ ∈ Θ); that is, none of
the constraints on the parameters, if there are any, involves an element of
both ψ and θ. When the parameter vectors are separated in this way and
the nonresponse process is MAR, the nonresponse is said to be ignorable.
Ignorability confers an important advantage on the analysis of X. Owing to the
factorisation in (5.6), the complete-data model parameters can be estimated
by maximising the likelihood for X, ignoring the nonresponse mechanism.

5.4 EM Algorithm

We assume now that MAR applies. The likelihood for X can be partitioned
according to the response patterns as

L(θ;X) =
∏
r

Lr(θ;Xr) ,

where Xr denotes the incomplete data for subjects with pattern r. The like-
lihoods Lr cannot be maximised separately because they share some or all
of the components of θ as their arguments. When incomplete data involves
several response patterns, direct maximisation of this likelihood is much more
complex than the corresponding problem for the complete dataset. The EM
algorithm is a method for likelihood maximisation that takes advantage of
the availability (and relative simplicity) of a procedure for maximising the
complete-data likelihood L∗(θ;X∗).

The incomplete-data likelihood is related to its complete-data counterpart
L∗ by the identity

L(θ;X) =
∫

L∗(θ;X∗) dF (Xmis) .

Suppose s = s(X∗) is a vector of linear sufficient statistics for θ in the
complete-data model. That is, the complete-data log-likelihood depends on



142 5 Incomplete Data

X∗ only through s and is a linear function of s. When missing data are in-
volved in s(X∗), these statistics cannot be evaluated.

The EM algorithm is an iterative procedure for fitting the incomplete-data
model. Each iteration comprises two steps. In the first step, the estimation or
E-step, the conditional expectation of s(X∗) is evaluated, given the incomplete
data and model parameters, with the model parameters on which it depends
replaced by their current (provisional) estimates. This step is usually much
simpler when MAR is assumed.

In the second step, the maximisation or M-step, the complete-data like-
lihood is maximised, with the linear sufficient statistics s(X∗) replaced by
their estimates E{s(X∗) |X,θ = θ̂} obtained in the preceding E-step. The
pairs of E- and M-steps are iterated (applied repeatedly) until the parameter
estimates are changed by updating in the M-step by less than a set threshold.
A practical implementation of this is based on the Euclidean distance,∥∥∥θ̂h+1 − θ̂h

∥∥∥ =

√(
θ̂h+1 − θ̂h

)� (
θ̂h+1 − θ̂h

)
,

between the estimates obtained in successive iterations h and h + 1. When it
is smaller than the threshold, such as 10−5, the iterations are terminated.

Although the M-step uses the algorithm for complete-data analysis, the
algorithm has to be adapted, by replacing the linear sufficient statistics
with their estimates calculated in the preceding E-step. This suggests that
a (complete-data) algorithm that might in the future be applied as the M-
step of an EM algorithm should be constructed in the form of two modules,
one to calculate the linear sufficient statistics and the other to evaluate the
estimators as their functions. In an EM algorithm, the first module is replaced
by the E-step and the second can be used intact, with its arguments provided
by the result of the preceding E-step.

In some applications, the EM algorithm converges very slowly. The rate of
convergence is related to the fraction of the missing information, defined for
a univariate target as the complement of the ratio of the sampling variances
of its estimator in the complete- and incomplete-data analyses:

1 −
var
{

θ̂∗(X∗)
}

var
{

θ̂(X)
} .

An asterisk is added to θ̂ to emphasise that the complete- and incomplete-data
estimators differ; they are different functions of their respective arguments X∗

and X. When a lot of information is missing the EM algorithm converges very
slowly.

As EM is an iterative algorithm, it requires an initial set of estimates
for the first application of the E-step. Any reasonable provisional vector of
estimates is usually suitable, such as the complete-data estimates based on the
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reduced dataset X− , θ̂
∗
(X−). Except for some very complex problems, the

EM algorithm requires at most a handful of iterations to get on the right track
from a poor initial solution. Each iteration of the EM algorithm increases the
value of the log-likelihood, although, like all other maximisation algorithms,
it may converge to a local extreme that is not a global maximum.

An approximation to the maximum likelihood estimator is obtained by the
concluding M-step. (The level of precision is controlled by the set threshold.) If
the complete-data estimator implemented in the M-step is accompanied by an
estimator of the sampling variance s2(θ̂), it could be evaluated at convergence.
The result, ŝ2(θ̂), estimates the complete-data sampling variance, var(θ̂∗ |X∗),
that is, the variance that would be attained if the complete dataset were
available. The MSE of the (EM) maximum likelihood estimator, MSE(θ̂ |X),
is greater because it is based on less data.

The EM algorithm requires that the parameter space be convex, the
complete-data likelihood be smooth, and its expected information matrix be
positive definite. In general, convergence is attained at a local maximum, so
we have to verify that this maximum is also global.

Example 12. Suppose we wish to fit the ordinary regression of Y on X
for (X,Y ) with a bivariate normal distribution, but some of the values of
x∗ = (x1 , x2 , . . . , xn)� and y∗ = (y1 , y2 , . . . , yn)� in the complete bivariate
sample (x1, , y1), . . . , (xn , yn) have not been recorded. Suppose these values
are missing at random (MAR). The linear sufficient statistics for the regres-
sion slope β1 are the totals of crossproducts x∗�y∗ and squares x∗�x∗ and
the totals x∗�1 and y∗�1. The latter two totals are linear functions of x∗

and y∗, so they are ‘estimated’ in the E-step by substituting for each missing
item its conditional expectation, given the available data and current values
of the model parameter estimates:

E
(
x∗�1 |x,y;θ = θ̂

)
= x�1 + E

(
x∗

mis |x,y;θ = θ̂
)�

1 (5.7)

where θ collects all the parameters involved in the joint distribution of X and
Y .

For a subject’s contribution to x∗�y∗, we distinguish three cases. First,
if both X and Y are recorded, the contribution is established with precision.
Next, if one of the values is recorded and the other is missing, the contribution
xjyj is a linear function of the missing value, so its estimated conditional
expectation can be substituted:

x̂j = E
(
x∗

j |x,y;θ = θ̂
)

,

or ŷj derived by analogy. Finally, when both xj and yj are missing, the con-
ditional expectation of the contribution is estimated by

E
(
xjyj |x,y;θ = θ̂

)
= x̂j ŷj + cov

(
xj , yj |x,y;θ = θ̂

)
. (5.8)
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So the product of the conditional expectations has to be ‘adjusted’ by the
conditional covariance. As the pairs (xj , yj), j = 1, . . . , n, are mutually in-
dependent, the conditioning in the covariance in (5.8) is redundant and the
unconditional covariance σxy can be used instead. A similar adjustment is
necessary for the contribution to x∗�x∗ when xi is not recorded:

E
(
x∗

j
2 |x,y;θ = θ̂

)
= (x̂j)

2 + var(xj |x,y;θ = θ̂) .

The conditional expectations and variance required are

E
(
x∗

j |x,y;θ
)

= µx +
σxy

σ2
y

(yj − µy) ,

E
(
y∗

j |x,y;θ
)

= µy +
σxy

σ2
x

(xj − µx) ,

var
(
x∗

j |x,y;θ
)

= σ2
x − σ2

xy

σ2
y

.

Estimation of the residual variance σ2 requires also the sum of squares y∗�y∗;
it is estimated in analogy with x∗�x∗.

In each E-step, these quantities are evaluated with the current estimates
in place of the population means µx and µy and (co-)variances σ2

x , σ2
y , and

σxy . In each M-step, these moments are estimated using the current estimates
of the linear sufficient statistics. In the concluding M-step, the complete-data
sampling variance matrix of the model parameters could be estimated by sub-
stituting parameter estimates for their targets in the complete-data formula.
This matrix estimates the sampling variance of the model estimators in the
hypothetical setting of the complete data. It estimates the incomplete-data
sampling variance with bias, because it ignores the uncertainty associated
with the estimation of the sufficient statistics in the E-step.

For nonresponse mechanisms that are NMAR, the E-step can be adjusted,
although the nature of the departure from MAR has to be known. Even though
the EM algorithm is a very general prescription for dealing with missing val-
ues, it cannot be applied universally, because it relies on the availability of a
shortlist of sufficient statistics and on our ability to evaluate, analytically or
numerically, their conditional expectations.

5.5 Multiple Imputation

Many large-scale (national) surveys are conducted to make inferences about
numerous population quantities, often by several parties (secondary analysts)
who have limited expertise in handling missing values and rely on standard
software and complete-data methods. As they wish to apply the programmes
(estimators) that implement these methods without any alterations, treating
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them as a ‘black-box’, the EM algorithm is not suitable. The data construc-
tors may do their best to impute the value of an efficient estimator of each
missing value, but such efficiency will not be translated to efficient estimation
of population quantities and unbiased estimation of the associated MSEs by
the secondary analysts.

The method of multiple imputation (MI) was designed for such a setting. A
small number M of plausible complete datasets, also called completed datasets ,
are generated by completing the recorded dataset. They are denoted by X[1] ,
X[2] , . . . , X[M ] . These completions are replicates of a process in which the
uncertainty about the missing values (conditionally, given the recorded values)
is reflected. The complete-data analysis is applied, without any alterations,
on the completed datasets X[m] , yielding plausible estimates θ̂[m] = θ̂

(
X[m]

)
.

The complete-data estimator of the sampling variance var{θ̂(X∗)}, denoted
by ŝ2, applied to the completed dataset X[m] , is denoted by ŝ2

[m] ; that is,
ŝ2
[m] = ŝ2

(
X[m]

)
.

We assume that the method of analysis, represented by the pair of esti-
mators {θ̂, ŝ2(θ̂)}, is efficient and honest in the following sense: θ̂(X∗) is a
(nearly) unbiased and efficient estimator of the target θ and ŝ2(X∗) is an un-
biased estimator of its sampling variance var{θ̂(X∗)}. Then, under conditions
described later, each plausible estimator θ̂[m] is nearly unbiased for θ, and so
is their average

θ̃ =
1
M

M∑
m=1

θ̂[m] , (5.9)

called the MI estimator . The sampling variance of θ̃ is estimated with small
or no bias by

s̃2 =
1
M

M∑
m=1

ŝ2
[m] +

M + 1
M(M − 1)

M∑
m=1

(
θ̂[m] − θ̃

)2

. (5.10)

The latter equation can be described and motivated as

s̃2 = Ŵ +
(

1 +
1
M

)
B̂ , (5.11)

where Ŵ estimates the complete-data sampling variance var{θ̂(X∗)} and B̂
estimates the variance inflation attributable to the missing values; it is equal
to the between-imputation variance. There is an additional variance inflation,
by B/M , which could be made arbitrarily small by using sufficiently many
replicate completions or letting M → +∞. That is, B/M represents the
lack of efficiency of the MI estimator, and B/(W + B) is the fraction of the
information contained in the missing data.
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5.5.1 Modelling Nonresponse

The method of MI is devised in such a way that secondary analysts do not
have to face any nonstandard tasks and need not be informed about the
details of the process used to generate the completed datasets or about the
(assumed or real) response mechanism. The dataset completions are generated
by the data constructor prior to releasing the data and are based on a model
for nonresponse which relates the missing values to the recorded values by
means of a class of conditional distributions (Xmis |X,Z). In most practical
settings, this model is for MAR, which can be promoted by sufficiently rich
conditioning, that is, by including several suitably selected variables in Z as
well as X. That calls for a careful selection of variables to be recorded in
the survey; the selection should be informed by the planned analyses and the
likely response patterns.

One completion is generated by simulating from a plausible distribution of
the missing values. Such a distribution is drawn using the estimated sampling
distribution of the model parameters. Thus, suppose the vector of parameters
θ in the model for nonresponse is estimated by θ̂ ∼ N (θ,Σθ). Then a plau-
sible distribution is given by θ̃ drawn at random from N (θ̂,Σθ) when Σθ is
known. When Σθ is estimated a random draw Σ̃θ from the estimated (joint)
distribution of Σ̂θ is used instead of Σθ , and θ̃ is then drawn from N (θ̂, Σ̃θ).

By using the fitted distribution N (θ̂, Σ̂θ), we would pretend that the model
parameters are known and would underrepresent the uncertainty about θ. The
substitutes for the missing values, called the plausible values, are simulated
from the plausible conditional distribution of the missing values.

Another set of plausible values is generated by replicating this process.
Thus, another plausible distribution is drawn, via a vector of plausible para-
meter values θ̃, independently of the previous draw(s), and a set of plausible
values is drawn from this plausible distribution, independently of the previ-
ous set(s) of plausible values. The key feature of this process is the faithful
reflection in the plausible values of the uncertainty about the missing values
for which they are substituted (imputed). A process of generating sets of plau-
sible values is said to be proper if it satisfies this condition. Properness of the
plausible values is an essential assumption of the method of MI. In practice,
it is difficult to establish that it is satisfied, and so it may seem that MI is
not practical. However, most single imputation methods can be described as
trivial versions of MI, denying one or both sources of uncertainty (about the
parameters in the model for nonresponse and about the missing value given
the model parameters). A more constructive way of considering MI is as an
improvement over a single imputation (SI) method.

5.5.2 Working with Plausible Values

The completions can be organised as separate datasets with the same layout.
The recorded values in such a database are duplicated, so a lot of storage space
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is required. However, storage is quite cheap nowadays and there are all manner
of devices for external storage, so that this can no longer be regarded as a con-
straint. The secondary analyst then has to apply the planned complete-data
analysis once on each completion and average the estimates and estimated
complete-data sampling variances with an inflation of the latter according to
equation (5.10).

Alternatives that are more storage-efficient include the incomplete dataset
with a code for missing values and a separate dataset with M +2 columns, the
first two identifying the missing item (record/subject and variable), and the
remaining M columns containing the plausible values for the missing item.
The second column can be dropped if the plausible values within a record are
placed in the same order as in the incomplete dataset, and the first column
can also be dropped if the order of the subjects is the same in the two datasets.
Instead of the sets of plausible values the data constructor may provide only
a programme that generates them, and it could be integrated in the planned
complete-data analysis. When values are missing for only a few variables the
sets of plausible values can be included in a single dataset, together with the
completely recorded variables, as M separate variables.

We emphasise that it is not appropriate to analyse the dataset generated
by averaging the completions—that would destroy the between-imputation
variation which is essential for (approximately) unbiased estimation of the
incomplete-data sampling variance. Moreover, the efficiency of the complete-
data analysis would not carry over to the incomplete-data analysis. As a simple
example to reinforce this point, suppose the plausible values for a missing
item are drawn independently from the normal distribution with N (0, 1).
Averaging M = 5 plausible values is equivalent to drawing from N (0, 0.2).
Suppose the contribution to a sufficient statistic made by a subject is the
square of the missing item. If we ignore the uncertainty altogether, we would
impute zero, the square of the expectation. If we average the five plausible
values, we would impute 0.2 on average. Only with the plausible values that
are not averaged would we impute the correct contribution on average, equal
to 1.0, the expectation of the square.

How Many Sets of Plausible Values?

The fraction of the missing information B/(W +B), as well as the inefficiency
of MI, represented in (5.11) by B/M , depend on the target of estimation. For
convenience, we prefer to have fewer sets of plausible values M , but the more
of them we have the smaller the variance inflation B/M . The concern about
M is about the size of the database and the amount of computing involved.
The former concern can be dismissed, as storage capacity is cheap and easy
to expand nowadays. The amount of programming required to implement MI
for a particular setting does not depend on M because the complete-data
method is simply placed in a loop over the completions. The computing time
is also hardly a hindrance, as other activities can be attended to while the
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programme runs. Thus, there is little incentive to be sparing about M , except
for the analysis of extremely large datasets.

The established practice has been to use M = 5 sets of plausible values.
Even when B = W , so that half the complete-data information is contained
in the missing values, five sets of plausible values result in an inflation by B/5
over B+W = 2B, that is, by 10%. This percentage is halved with M = 10 sets
of plausible values. The fraction of missing information is usually much smaller
than 50%. It is usually smaller than the percentage of missing values (e.g.,
averaged over the variables involved), because some information is always
available about the missing values.

The between-imputation variance estimator B̂ has a distribution related to
χ2

M−1 , approximately, and can be interpreted as being based on M−1 degrees
of freedom. Estimation of B, the MI sampling variance W + B(1 + 1/M),
or the ratio B/(B + W ), is more precise for smaller B. A given number of
completions may be sufficient for near efficient estimation of θ, but sufficiently
precise estimation of var(θ̂) may require more completions.

5.5.3 Monotone Response Patterns and Chained Equations

The advantage with the monotone response patterns is not only that the
number of patterns is small, K + 1 at most, but mainly that sets of plausible
values can be generated using models for univariate outcomes. With monotone
patterns, MI can be organised into K separate univariate imputations, corre-
sponding to the factorisation of the density

f(X) = f(X1) f(X2 |X1) f(X3 |X1 , X2) . . . f(XK |X1 , X2 , . . . , XK−1) .
(5.12)

First we generate the plausible values for X1, the variable observed most
frequently, conditioning on the completely recorded variables (if any). Con-
ditioning on variables X2 , . . . , XK is redundant, because all their values are
missing whenever X1 is not recorded. Plausible values are then generated for
the second variable, using a model that conditions on the (recorded or im-
puted) values of the first variable and the completely recorded variables, and
so on, concluding with generating plausible values for XK , conditioning on
the (recorded or imputed) values of all the other variables. The factorisation
in (5.12) applies generally, but the sequence of univariate imputations it im-
plies can be used only with monotone response patterns. When imputing for
missing values of a variable Xk , we use all the information, because when Xk

is not recorded neither are the ‘later’ variables Xk+1 , . . . , XK .
Whereas the multivariate normal distribution has all possible covariance

structures, similarly rich multivariate distributions with other univariate mar-
ginals are hard to come by and are less well explored, and algorithms for fitting
them are much more complex. Therein lies the advantage of generating plau-
sible values using univariate models—we have at our disposal a much wider
array of tractable models.
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When the monotone patterns of nonresponse are spoilt by only a few
records, items in these records may be deleted temporarily, so that univariate
methods for MI could be implemented. After generating the requisite sets of
plausible values, the values of the deleted items may be restored. A problem
that may arise by such restoration is that some pairs or bigger groups of
variables have implausible or outright impossible combinations of values. For
example, when the body mass of some (human) subjects is missing much
more frequently than their height, we may delete the body mass for the few
subjects for whom height is not available. For a subject, a plausible height
of 200 cm may be generated, but it is not plausible if the subject’s (missing)
body mass is only 50 kg; the values of both variables are plausible, but not
their combination.

Chained equations is a method for generating plausible values for incom-
plete data with arbitrary response patterns. It is iterative, with each iteration
comprising a univariate imputation for each incompletely recorded variable.
First, a default value is provisionally imputed for each missing item. The value
may be specific to each variable and, in principle, even for each subject. Next,
plausible values are generated for the missing values for X1 , to replace the val-
ues provisionally imputed for X1 . The imputation model for X1 conditions on
all the remaining variables X−1 = (X2 , X3 , . . . , XK), using their recorded or
imputed values. Plausible values are then generated, in sequence for X2 , . . . ,
XK similarly. For Xk , the provisionally imputed values of Xk are discarded
and ignored, and the conditioning in the imputation model is on the values of
all the recorded or imputed values of all the other variables, X−k . These K
univariate imputations constitute one iteration. The sequence of provisional
imputations for the K variables, for one of them at a time, is repeated, with
the imputations from the previous iteration used as provisional values.

A small number of iterations, up to ten, usually suffices. Convergence is not
straightforward to ascertain because each univariate imputation is stochastic,
and of interest is convergence in distribution. The sample distributions of the
imputed values (or just their means and variances) for each variable should be
monitored, and the iterations can be terminated when these are altered only
as much as one would expect owing to the stochastic nature of the imputation.
Since this is not straightforward to judge, it is prudent to apply a few iterations
after the one at which we are satisfied that convergence has been achieved. At
convergence, we have obtained one completion. The iterative process is then
replicated to obtain further completions.

5.5.4 Sensitivity Analysis with Respect to NMAR

Sensitivity analysis is a general term for assessing the performance of an es-
timator, or any other outcome of an analysis, when some of its assumptions
may not be satisfied. Sensitivity analysis is often formulated as an exploration
of how distant the reality could be from the assumption before the estimate,
or another concluding statement of an analysis, is altered appreciably.
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A typical analysis of incomplete data relies on the usually unverifiable
assumption of MAR. This assumption should be subjected to scrutiny. Instead
of completions based on the assumption of MAR, we generate plausible values
according to an NMAR mechanism. A practical way of implementing a wide
range of NMAR mechanisms is by altering the MAR-based plausible values
in a systematic way.

Sensitivity analysis is most effective when employed to challenge a partic-
ular conclusion. For example, when the difference between two groups, A and
B, without any adjustments, is estimated, the obvious way to challenge the
conclusion is by altering the plausible values for subjects in A in one direction
and the plausible values for subjects in B in the other, aiming to reduce the
estimated difference between the sample means of A and B.

5.6 MI for Categorical and Longitudinal Data

To complete a record that has some of its items missing, it is natural to
look for similar records that are complete and ‘borrow’ their values for the
missing subvector. A wide range of such procedures can be devised, based
on different definitions of similarity. With categorical data, we may define
similarity as agreement of the values of all the categorical variables that are
recorded for both subjects. Such a definition may be too stringent when data
comprises many variables. It can be relaxed by reducing the list of variables
used for matching, aggregating some of the categories, and allowing one or a
few discrepancies, either on a subset or for any of the variables. More generally,
we may define a distance between any two records and define similarity as
distance shorter than a set threshold.

The class of nearest-neighbour imputation methods is based on such defi-
nitions of similarity. For the missing part of a subject’s incomplete record, we
impute the corresponding subrecord of its nearest neighbour; in case of a tie we
select a neighbour at random from the pool of candidates. Such methods aim
to estimate the missing subrecords efficiently, and as we discussed in Section
5.2, this goal is not in accord with making efficient incomplete-data inferences
when the complete-data estimators (linear sufficient statistics) involve some
nonlinear functions of the missing data.

The hot-deck method is an improvement on these methods, inasmuch as
it seeks to represent the variety of plausible subrecords for substitution. In
hot deck, each incomplete record x = (xrec ,xmis) is associated with a pool of
donors. The subject with the incomplete record is called a recipient , indicating
that his or her completion will be based on a subrecord obtained from a
donor. The pool of donors comprises subjects with complete records whose
subrecords corresponding to xrec are similar to the recipient’s subrecord. A
donor is then drawn at random and the recipient’s record is completed by this
donor’s subrecord that corresponds to xmis . In a practical implementation,
the recipients are also grouped, according to their response patterns and the
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values of xrec within the response patterns, so that the groups of recipients
share pools of donors.

The pools have to be large enough to ensure that their subrecords, which
are on offer for donation, represent the entire variety of plausible subvectors.
Hot deck is a stochastic imputation method; its replication yields a different
completion, unless there is no variety within the pools of donors. Even when
MAR applies, hot deck is not a proper imputation method. To see this, sup-
pose a particular pool of donors comprises h1 , . . . , hP records with respective
vectors of values v1 , . . . ,vP . Let h+ = h1 + · · · + hP . Then the donated
subrecord can be described as a random draw from the multinomial distri-
bution with probabilities p1 = h1/h+ , . . . , pP = hP /h+ . Each completion
would be based on the same set of probabilities. In this application of the
hot deck, we have ignored the uncertainty about the probabilities; the quanti-
ties p1 , . . . , pP are merely estimates of the probabilities we should use. Given
that these probabilities are unknown, we should represent our uncertainty
about them by drawing plausible sets of probabilities p̃1 , . . . , p̃P from their
estimated (joint) sampling distribution and use a different (replicate) set of
plausible probabilities for each completion of the dataset. This improvement
of the hot deck is called the approximate Bayes bootstrap (ABB).

To implement ABB, we estimate the distribution of the estimators p̂ =
(p̂1 , . . . , p̂P )�, where p̂k = hk/h+ . (This has to be done separately for each
pool of donors.) Assuming an infinite underlying population and simple ran-
dom sampling, this estimator is unbiased for the underlying vector of proba-
bilities p, and its sampling variance matrix is given by

var (p̂) =
1

h+

{
diag(p) − pp�} .

This is a singular matrix: p̂�1 = 1, and so 1�var(p̂)1 = 0. In practice, we
have to rely on asymptotic normality of p̂; this is problematic when some of
the counts hk are small. The problem is not serious when there are only a few
such counts among many, but when the counts of such categories add up to a
nontrivial fraction of the donor pool, the variety of the candidate donations
in the pool will not be well represented. Such pools of donors are ineffective
for another reason. If there are many sparse categories in a pool, we cannot
have confidence that there are categories absent from the pool that would be
present in a replication of the study or, indeed, in the complete dataset. Then
the variety of the pool is underrepresented by the realised pool.

With incomplete longitudinal data, hot deck and ABB can be developed
from the deterministic imputation by BLVF. For categorical outcomes, copy-
ing the previous value corresponds to the model P(Xt = k |Xt−1 = k) = 1
for the outcomes on occasions t − 1 and t. A more realistic model estimates
this and other conditional (transition) probabilities P(Xt = k |Xt−1 = h) and
reflects the uncertainty about them. If the uncertainty is ignored, imputation
based on this model is equivalent to hot deck with matching on the outcome
on the previous occasion.
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Conditioning can be extended to the occasion preceding the last one, t−2,
for imputations for occasions t = 3, . . . , T . Then the donor pool comprises
subjects who match the recipient on Xt−2 and Xt−1 and have their values of
Xt recorded. The potential donors need not have complete records; outcomes
at the earlier occasions need not be available. In fact, nonresponse at an
occasion may be part of the matching criterion. For example, for a recipient
with X1 missing, X2 = 1, X3 = 3, and X4 missing, we may include in the pool
of donors all subjects with X1 missing, X2 = 1, X3 = 3, and X4 recorded. Of
course, it is better to impute for X1 and X4 simultaneously, but if X1 is not
involved in any planned analysis, then imputing for it is unnecessary.

The BLVF method for continuous outcomes can be treated similarly. In-
stead of the implied unrealistic model Xt = Xt−1 , we admit that some change
takes place, Xt = Xt−1 + ε, with a suitable centred distribution for ε. This
can be extended to simple regression, Xt = β0t + β1t Xt−1 + ε, with the usual
assumptions of normality and homoscedasticity, or to the regression on two
or more previous outcomes. Transforming X may be necessary for the ordi-
nary regression to be appropriate. The log-transformation should always be
considered for outcomes that describe growth or reduction, because it may be
on a multiplicative scale.

In some settings with continuous outcomes, no change, Xt = Xt−1, has
a positive probability. This can be accommodated by mixture models that
assume that the sample is partitioned into several subsamples, and the corre-
sponding population to the corresponding subpopulations, and each subpopu-
lation is governed by a different model. For a subject, his or her subpopulation
need not be known.

For one subpopulation we specify the model Xt = Xt−1 and for the other
a linear regression. After fitting such a mixture model, we draw first from the
plausible binary distribution (indicating whether any change took place at
all), and if the outcome is positive, another draw is made from the plausible
conditional distribution given that change did take place. Combining the two
sources of incompleteness, whether change took place and nonresponse, gen-
erates no problems additional to dealing with each source on its own. Section
5.7.1 deals with mixture models in greater detail.

5.7 Other Applications of the Missing-Data Idea

In the applications of the EM algorithm and MI, missing data is the differ-
ence between the complete data, the data we intended to collect, and the
incomplete data, what we managed to collect. More generally, we can declare
any hypothetical dataset as the complete data, irrespective of the study plan,
and the realised dataset as the incomplete data. The complete dataset should
be relatively easy to analyse and should not involve an excessive amount of
missing information. If the EM algorithm is applied, the sufficient statistics
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for the E-step should be easy to calculate; in MI, the model for ‘nonresponse’,
used for generating sets of plausible values, should be easy to work with.

We sketch here two generic applications of missing-data methods, which
are discussed in greater detail in Chapters 6 and 7. Suppose we want to
estimate a population summary that involves a variable X∗, but it is a latent
variable—its values cannot be recorded with precision. Instead, the values of
its manifest version X are recorded. We declare an analysis in which we would
like to use the values of X∗ as the complete-data analysis, and the values x∗

of X∗ as the missing data. A set of plausible values x̃∗ is generated, for the
entire vector x∗, from a plausible conditional distribution of x∗ given x. If we
can observe the process of distortion, which alters a value of X∗ to X, then we
can estimate the conditional distribution (X |X∗ = x∗). From it, we can infer
about the conditional distribution (X∗ |X = x), from which plausible values
of X∗ can be generated, and the method of MI applied straightforwardly.

Randomisation is an important principle in study design, which enables an
unbiased comparison of educational, medical, or other treatments. But what
should we do when randomisation is not feasible or, simply, was not applied?
As an example, suppose we want to compare the quality of two schools, A and
B. For each student, we consider the pair of outcomes YA and YB that would
result after attending the alternative schools A and B. If both outcomes were
available the analysis would be straightforward, for instance, by comparing
the means of YA and YB . Let W be the school attended, so that YW is the
recorded outcome variable—it is a ‘mix’ of YA and YB . We declare YW as
the incomplete and (YA , YB) as the complete data. Imputation then involves
generating plausible outcomes YA for students who attended school B and YB

for those who attended A.
The remainder of this section outlines other applications of the EM algo-

rithm and MI. They show how a limited range of models that we can fit can
be extended and how we can attend to various data imperfections other than
nonresponse.

5.7.1 Finite Mixtures

Suppose a population P comprises a small number K of subpopulations with
distinct distributions of a target variable X. Although inferences are desired
about these K distributions, the subpopulation is not identified for any of
the n subjects in the sample. In other words, we observe a mixture of a finite
number K of distributions, and we wish to make inferences about each com-
ponent distribution. For simplicity, we assume that the number of components
K is known. In practice it is not, but the problem is solved for several values
of K and one or several plausible solutions are presented, together with an
assessment of how plausible they are.

In the terminology of the EM algorithm, we regard the indicator of each
subject’s subpopulation (group or component) as the missing information and
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estimate it in the E-step. The outcome of the E-step is the subjects’ condi-
tional probabilities of belonging to each component; for the sample, this is an
n × K matrix with its rows adding up to unity. In the M-step, we estimate
the parameters of each distribution. In estimating the parameters for compo-
nent k, the indicator of belonging to component k is replaced by its condi-
tional expectation, equal to the subject’s conditional probability of belonging
to component k. The E- and M-steps are then iterated until convergence is
achieved.

Let fk(x) be the density of component k and pk the probability of the
component. Then the (mixture) density is

f(x) = p1f1(x) + p2f2(x) + · · · + pKfK(x) . (5.13)

Suppose the current estimates of the component distributions at iteration h

are f̂
(h)
k (x) and the estimated marginal probabilities of the components are

p̂
(h)
k , k = 1, . . . , K. The next E-step evaluates the estimated probabilities

r̂
(h+1)
jk =

p̂
(h)
k f̂

(h)
k (xj)

p̂
(h)
1 f̂

(h)
1 (xj) + · · · + p̂

(h)
K f̂

(h)
K (xj)

for subject j and component k. In the subsequent M-step, the estimates of
the marginal probabilities p̂k are updated as the within-component averages
of r̂

(h+1)
jk ,

p̂
(h+1)
k =

1
n

(
r̂
(h+1)
1k + · · · + r̂

(h+1)
nk

)
,

and the parameters for component k are estimated by the complete-data
method. For example, the expectation of the kth distribution is estimated
as the weighted mean

µ̂
(h)
k =

∑n
j=1 r̂

(h)
jk xj∑n

j=1 r̂
(h)
jk

.

The components may involve models of differing complexity. For example,
some components may comprise unconditional distributions and others may
involve regression.

Mixtures of distributions can be useful even when the population does not
comprise any interpretable subpopulations with distinct distributions. Sup-
pose the population distribution is difficult to estimate directly. We can ap-
proximate it by a mixture of distributions from a specified class with which
estimation is much simpler. This class can be regarded as a basis, providing
the building blocks. For example, any continuous distribution can be approxi-
mated with arbitrary precision by a mixture of normal distributions, but also
by a mixture of uniform distributions, and even by a mixture of degenerate dis-
tributions. We prefer approximations by mixtures of a few rather than many
components. Therefore, if we know or assume that the target distribution is
continuous and does not have more than, say, two modes, approximation by
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Fig. 5.3. Approximation of a distribution by a mixture of normal distributions.

a mixture of a few normals may be suitable. Figure 5.3 gives an illustration.
Its left-hand panel contains the density with a histogram superimposed. In
the right-hand panel, the component densities, N (2.0, 0.17), N (2.4, 0.08), and
N (3.0, 0.14), are drawn by dots, their mixture, with respective probabilities
0.50, 0.35, and 0.15, by dashes, and the target by the solid line.

Mixtures can be applied also to multivariate distributions. There is a
paucity of classes of distributions that could serve as the basis, and we have
to rely on the multivariate normal distributions. Nevertheless, this basis, to-
gether with transformations of the outcomes, provides a powerful tool for
approximating distributions and for widening the horizon of models that we
can work with.

5.7.2 Outliers and Contaminants: Data Editing

Outliers are observations that spoil the good fit of a model. They are candi-
dates for exclusion from the sample on account of possibly not being members
of the relevant population (being included in the sample erroneously) or of
having incorrectly recorded values. When there is an obvious resolution, such
as contacting the subject again to check the recorded values or the nature
of the error is obvious (using different units, resulting in the values being,
say, 1000 times greater than they should be), the appropriate correction (data
editing) can be made and the item regarded as if it were recorded according
to the original protocol.

In many settings, the outlier status or the incorrectness of a value cannot
be established with certainty. Sometimes, the status of an item is assessed
subjectively, and the verdict of outlier/no outlier or plausible/implausible is
far too coarse, as another analyst might come to a different conclusion, and
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even the same analyst might conclude differently in a hypothetical replication
of the data-editing process.

The problem can be formulated in terms of incomplete data; the ideal
(perfectly clean) dataset is the complete data. Each item is associated with
a probability of being correct and with a conditional distribution of its value
given that it is not correct. Such a distribution may be conditioned not only
on the incorrectness or outlier status, but also on other variables as well as the
recorded value itself. For example, when a subject’s age is recorded as 254,
the specification of the conditional distribution may be informed by variables
such as (years of) education and whether in the labour force or retired, and if
there are reasonable grounds to suspect that (in a manual data entry) an extra
digit has been added inadvertently, the ages of 25 and 54 may be assigned
substantial (positive) probabilities. Multiple imputation is then implemented
by drawing from the (plausible) conditional distributions of the ideal values.
The key advantage of MI is that the uncertainty about the outlier status or
correctness is reflected by the between-imputation variation. With a single
editing, no idiosyncrasies among the amended records are introduced, even
if some idiosyncrasies do occur among the records that were left intact—the
edited records look ‘too good’. As a consequence, the inferences based on the
edited (completed) dataset project more confidence than is justified.

5.7.3 Balanced Complete Data

Some analyses are much easier to conduct when the data have a balanced
structure, such as equal number of subjects in each cluster. When the realised
(incomplete) data do not have such a structure, but would have it if appro-
priately supplemented, e.g., by additional observations, we can declare such
a supplemented dataset as the complete dataset. When it can be reasonably
assumed that the distribution of the studied attribute does not depend on
the cluster size, the data can be regarded as missing completely at random.
Otherwise care has to be exercised in specifying a model that relates the val-
ues we regard as missing to the recorded values for the subjects in the same
cluster. This approach is useful only when a completion can be achieved by
adding a small number of records to the data; otherwise the fraction of the
missing information is very large.

Suggested Reading

A much more detailed and comprehensive text on missing data is the mono-
graph [110]. The terminology and other background were originally set out
in [158]. The original reference for the EM algorithm is [33], although there
are several earlier applications of its principle, such as [71] and [141]. Fur-
ther developments and extensions of EM, with an emphasis on speeding up
its convergence, can be traced in [162] and [136]. A suitable textbook on the
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EM algorithm is [134]. Estimation of the incomplete-data standard errors is
addressed by [131] and [197]; [135] and [87] explore ways of accelerating the
convergence of the EM algorithm. The theory of MI is developed in [165];
[164] reiterates the arguments for MI for large-scale incomplete data. Models
for missing data are developed and motivated in [107]–[109]. The monograph
[169] is an excellent text on the applications of MI, with a detailed treatment
of computational issues. Further instructional material is presented in [170].
Part I of [122] gives a condensed account of the theory, discusses several case
studies, and outlines some less standard applications of MI. Readable journal
articles on applications of missing data include [75], [173], [74] [167], and [125].
Data augmentation, a Bayesian adaptation of the EM algorithm, is described
in [190]. The original reference for the method of chained equations is [14]. A
sensitivity analysis accompanying an application of MI is presented in [129].
An important reference on poststratification is [80].

SOLAS is a software package for MI, suitable for instruction and less
demanding analysis (www.statsol.ie). A comprehensive suite of functions
in R/Splus accompanies the monograph [169]; see

www.stat.psu.edu/∼jls/misoftwa.html.
Software for the method of chained equations can be downloaded from

web.inter.nl.net/users/S.van.Buuren/mi/docs.
Most established statistical packages have modules for some of the elements
of MI. See [82] for a review of these and some other packages.

Problems and Exercises

5.1. Discuss the difference between the following two studies. The datasets,
A and B, obtained by the studies have the same variables. Dataset A has
sample size 900 obtained by simple random sampling from a population P.
Every record in the dataset is complete; every subject responded to all the
questionnaire items. Dataset B also contains 900 complete records; they are
from the respondents in a survey with a simple random sampling design in
P and planned sample size of 1200. No information is available from the 300
nonrespondents. Would you apply the same analysis to both datasets? If not,
which dataset is easier to analyse and why? For which dataset would you have
more confidence in the results?

5.2. Write a programme (e.g., a function in Splus or R) to summarise the ex-
tent of missing data in an incomplete dataset. It should calculate the numbers
and percentages of missing values for each variable, tabulate the subjects’ re-
sponse patterns, and present them according to the number of missing values
in a record. The programme should have an option to draw a diagram similar
to Figure 5.1. It could be developed further to incorporate some of the sug-
gestions made in Section 5.1. Use a dataset of your choice for debugging and
refining the programme.
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5.3. For the dataset used in Exercise 5.2, find a permutation of the variables
that brings about the patterns of nonresponse as close as possible to being
monotone. In the solution, consider deleting individual values, discarding sub-
jects, discarding variables, and splitting the variables into subsets so that the
patterns are (almost) monotone in each subset. Further, these steps can be
combined. Automate these steps by a suitable programme or function.

5.4. Summarise the problems related to sampling and nonresponse in the fol-
lowing setting. A survey of environmental awareness plans to take advantage
of the time that departing passengers have in departure halls of major U.S.
airports. On days of the week and times of the day selected to ensure good
representation and to be balanced across the locations, every twentieth person
passing the security check will be asked to complete a short questionnaire in a
language of his or her choice. The passenger can either respond straightaway
or send the responses by mail on a card in a self-addressed envelope provided.

5.5. In a longitudinal study of diet, adult subjects are contacted once a year
and requested to complete the same questionnaire that comprises so-called
frequency items. The items have the common preamble:

In the last twelve months, how frequently did you eat the following
foods:

For each food item, such as bread, biscuits, or eggs, there are ten response
options, ranging from ‘Never’ to ‘Every day’. The items are presented in blocks
that relate to food types, such as ‘Fruit and vegetables’, ‘Meat, fish, and
poultry’, and ‘Baked products’. Describe the various kinds of nonresponse
related to the structure of the collected information (years, blocks, and items)
and the response patterns that are likely to occur. Consider that subjects may
also skip and leave out the response to an odd item because of distraction.

5.6. Discuss some intuitively motivated imputation schemes for a dataset an-
ticipated in the study of diet in the previous exercise. Why would any data
reduction be particularly disadvantageous? How would you justify imputation
by ‘bringing the last value forward’ (BLVF) from the previous year? (This ex-
ercise is suitable when you start studying the chapter, but it could be revisited
at the end of the study.)

5.7. Suppose a single normally distributed variable X was planned to be
recorded on a simple random sample of n subjects (sample size fixed by de-
sign), but the values were recorded only for a subsample of size n0 . Assume
that the nonresponse is MCAR. Apply the sample mean x̄ as an estimator of
the population mean and the obvious estimator ŝ2 of its sampling variance.
Apply these estimators to the complete dataset, the incomplete dataset, and
datasets completed by (deterministic and stochastic) single-imputation meth-
ods of your choice. To the extent that it is possible, compare the results
analytically and draw conclusions about the completed-data analyses.
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5.8. Construct a population of large size (several thousands) and generate the
values of a variable according to a normal distribution. Replicate the processes
of sampling, nonresponse, and estimation that were considered in the previous
exercise and confirm your results empirically (by replications).

5.9. In a longitudinal study of lifestyle and health, the body mass of each
subject is measured once a year. Subjects may refuse the measurement or may
be unavailable for a visit by the nurse who would like to come and conduct
the interview with a questionnaire about illnesses, changes in occupation,
activities pursued in free time, and mode of transportation used most often in
the last year. Compile a list of plausible reasons for nonresponse and discuss
what information they contain, if any, possibly in conjunction with some of
the recorded information (age, state of health, occupation, and the like) about
the change in body mass since last year. Based on this discussion, propose
models for imputation for body mass. Adapt to multiple imputation any of
those that involve single imputation.

5.10. For the setting of Example 12, specify an NMAR mechanism that is
easy to simulate (implement) and revise all the details, including equations
(5.7) and (5.8), for this mechanism.
Hint: In one such mechanism, the conditional expectation of the missing value
x∗

j is greater by a fixed (known) constant than what the conditional expecta-
tion would be if MAR applied. (The conditional variance is the same.)

5.11. Describe and implement the multiple imputation version of the EM al-
gorithm in Example 12. That is, replace the calculations of the conditional
expectations and variances by generating plausible values of the missing items.
Compare the complexity of the procedures (EM and MI) and how easy they
are to implement. What is the point of applying the EM algorithm but fol-
lowing it up by generating plausible completed datasets?

5.12. Compile a table that would relate the proportion of missing information
to the number of completions required to reduce the inefficiency of MI to f =
5%. Write a programme to generate such a table for an arbitrary percentage
f .
Hint: The inefficiency is defined as the percentage that B/M forms in W +
(1 + 1/M)B.
Assess the resources required and the effort and inconvenience to yourself as
the analyst involved in doubling the number of data completions in the context
of Example 12 or a similar problem. Consider this issue for the various ways
in which the plausible values or the completions might be stored and delivered
to the secondary analyst(s).

5.13. The Labour Force Survey in the United Kingdom (LFS) is conducted
every quarter and a subject is retained in the sample for five consecutive quar-
ters. For example, a subject who was included for the first time in the first
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quarter (Q1) of 2006 is retained for Q2–Q4 of 2006 and is ‘retired’ from the
sample after Q1 of 2007. In any one quarter, approximately one-fifth of the
sample is interviewed for the first time, one-fifth a second time, and so on, and
about one-fifth for the last time. A principal outcome variable is the employ-
ment status, coded as E — employed, U— unemployed, and N— economically
inactive (not in the labour force). Discuss the rationale for using BLVF to im-
pute for missing outcome in an interview when there is an earlier interview in
which the outcome is recorded. How can such an imputation be improved? Dis-
cuss how hot deck could be applied effectively. Look up details of imputation
procedures for the LFS on www.statistics.gov.uk/labour market/lfs or
on the web site for a similar survey in your country.

5.14. In a study of alcohol dependence, subjects were interviewed on one of
the first days of every month in 2004. They were asked to recall what kind and
quantity of alcoholic beverages they consumed in the previous month, in what
settings (home, friends’ home, public house, restaurant, and the like) and how
much their life was disrupted during the month (absence from work, running
out of money for everyday necessities, inability to attend to everyday tasks,
such as care for children, and having to sleep or rest several hours during the
day). Discuss why the interview-level nonresponse is likely to be nonignorable.
How suitable would be imputation by BLVF or by its improvements? How
would you alter your answers if the subjects were aware that they would
receive rewards if the assessment based on their responses indicated reduced
dependence? Would you draw any distinction between interview- and item-
level nonresponse? The former is due to not turning up for an interview, while
the latter is due to an error in the interview procedure (an item inadvertently
skipped or subject’s refusal to respond). Would you draw any distinction
between nonresponse to an isolated item and dropping out from the interview
(no response to the remainder of the questionnaire)?

5.15. Many large-scale surveys use sampling weights set by design, which
are then adjusted for imperfections of the sampling frame, nonresponse, and
other problems with the data collection by relating some sample summaries to
their known population versions; see Section 3.5.1 (poststratification). Obtain
the data from a national survey (e.g., from a social science data archive or
a national statistical office) and the accompanying documentation. Find out
how the sampling weights are adjusted, and summarise the adjustments with
suitable diagrams. Discuss the problems associated with poststratification and
propose some alternatives. Compare the estimates of some key quantities using
estimators based on the original and adjusted sampling weights.

5.16. For the analysis of a planned study, compile a protocol for dealing with
outliers (how they would be identified, what action would be taken about
them, and so on). Borrow the setting from a dataset or analysis that you
are familiar with. Adapt the protocol to allow for the possibility that the
analyst might be uncertain as to whether an observation is an outlier or not.
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Revisit the definition of the term ‘outlier’, and discuss it in greater detail.
For example, is being an outlier a population or a sample property? (Is the
labelling of a subject as an outlier associated with any uncertainty?) Could
a subject be an outlier in one sample but not in another? Consider defining
an index for every subject on the scale from 0 (definitely not an outlier) to 1
(certainly an outlier), which could be interpreted as the probability of being
an outlier. Draw up a proposal for how to analyse a dataset supplemented
with the values of such an index.

5.17. As a matter of convenience, experiments on a particular piece of equip-
ment in a manufacturing process are usually conducted in sets of eight, al-
though in some cases the sets are smaller. Dataset EX6a.dat on

www.sntl.co.uk/BookA/Data

contains the results of ten sets of experiments. To estimate the mean for a set
of experiments and for the collection of sets, apply a missing-data method that
uses as the complete dataset the 10× 8 records that would be realised if each
set comprised all eight experiments. Compare the advantages and drawbacks
of the EM algorithm and multiple imputation for this problem. Compare the
solutions based on the balanced complete-data analysis and on the direct
analysis of the recorded data.

5.18. Construct a population that comprises two disjoint subpopulations of
sizes N1 �= N2 in thousands. A variable X has different normal distributions
in the two subpopulations, say, N (10, 1) and N (14, 2). Draw a simple ran-
dom sample of substantial size (several hundreds) from the population and,
using the EM algorithm, fit the model that assumes that the distribution of
X is a mixture of two normals. Study the subjects’ estimated probabilities of
belonging to a subpopulation and compare them with the reality, which was
assumed not to be known in the estimation process. Carefully consider how
you associate an estimated distribution with one of the population distribu-
tions.

5.19. The dataset listed in file EX6b.dat on www.sntl.co.uk/BookA/Data is
an enumeration of the pool of applicants for a high-profile appointment. The
important variables recorded are age (A), number of years in education (E),
number of years of relevant working experience (W ), and current annual salary
(S). The question about W was misunderstood by some applicants and they
entered either zero or the same response as to item E. Confidentiality and
time constraints make it impossible to get in touch with these applicants to
check whether their records are correct. How would you rescue the situation?
Carefully state the assumptions you make.
Hints: Impute multiply for W where its value is in doubt. Start with some
simple schemes, and add useful features (complications) to them, so long as
you can cope with the computations. You can bypass some problems if you
work with a categorical version of the salary by defining suitable cut points
for the categories.



6

Imperfect Measurement

The developments in the earlier chapters assumed that the values of the vari-
ables involved in an analysis are obtained with precision. More often than
not, this is an unrealistic or even patently flawed assumption, but one with-
out which our ability to make inferences would be severely curtailed. This
chapter deals with the general problem of imperfect measurement, which in-
cludes measurement with error and using a variable that is a substitute for
the one we would ideally like to have recorded.

An instinctive way of addressing this problem is by estimating each value
of the ideal variable separately and then conducting the desired analysis as
if the estimated values were the ideal ones. We dismiss this approach as defi-
cient. We consider first the problem of measurement with normally distributed
variables and then its counterpart for categorical variables, which we refer to
as misclassification.

We refer to the ideal variable, with which the planned analysis would
be simpler, as the latent variable, and its substitute, which is recorded or
constructed, as the manifest variable. A study may involve several latent
variables, but we will assume that each of them is associated with one manifest
variable. By a naive analysis or the naive version of an analysis, we mean the
analysis as planned for the latent variables or one that would be well suited
for them, but in which each variable is replaced by its manifest version.

6.1 The Measurement Process

The values of a latent variable may be obtained, sometimes only in principle,
but there are numerous examples in which the latent variable is merely a
concept defined in abstraction. For instance, our state of health, or even the
function of a vital organ, such as the heart, can at best be assessed, by an
expert using specialised equipment, subject to an ‘error’ that may be perfectly
acceptable given the purpose of the assessment and the state of the art in
making the relevant medical diagnosis.
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A student’s ability is assessed by an exam. But the outcome of such an
exam is much more accurately described as performance on the day, affected
by a myriad of minor distractions, elements of preparation, and coping with
the artificial setting of the examination (dealing with the time constraint, at-
titude to taking risks when not certain about which of the offered response
options is correct, and the like). The representation of the domain (curricu-
lum) by the questions and the way the responses are marked (both the general
instructions and the idiosyncrasies of the rater who marks the exam papers),
are further nuisance features that contribute to the deviation of the recorded
result from what it is meant to stand for.

Among the manifest variables for a latent variable, we can distinguish vari-
ables that are defined with precision and those that entail some uncertainty
due to measurement or, more precisely, due to determination of the value. For
example, age of an individual is recorded with precision, but it is an imper-
fect substitute (manifest variable) for maturity or experience, in whichever
reasonable way these traits may be defined. In contrast, the systolic blood
pressure of a patient at a time point has a clinical definition, but its measure-
ment entails some uncertainty; had it been measured for the same patient at
the same time point in a hypothetical replication, by different equipment, a
different nurse, or even the same nurse, the outcome might have been slightly
different. In this case, we can talk about the measurement process, which de-
scribes how the value of the latent variable becomes distorted (tainted), so
that the recorded differs from the ideal.

We can consider convolutions of these two kinds of imperfection, such
as imperfect measurement of an alternative variable. One such example is
recording the age group, as guessed by the interviewer, instead of age. The
imperfection need not have a stochastic nature. For instance, rounding can
be regarded as an imperfection. For a given ideal value, each (hypothetical)
replication would in this case yield the same value.

To draw parallels with the notation in Chapter 5, we denote the latent
variable by X∗ and its manifest variable by X. In Section 6.5, we develop
an approach in which the values of the latent variable are regarded as the
missing data. Inferences that involve latent variables can then be formulated
as dealing with incomplete information and the problem can be delegated to
the methods developed in Chapter 5.

Since measurement is concerned with reproducing a particular value of
X∗, we define the process of measurement by the conditional distributions
of X given the values of X∗. Parsimony of this description is achieved by
stating what the conditional distributions (X |X∗ = x) for the values x in the
support of X∗ have in common. A simple example is

(X |X∗ = x) ∼ N (x, σ2
δ

)
;

it states that the manifest value differs from the latent value by a random draw
from a particular centred normal distribution. An alternative description of
X is that
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X = X∗ + δ , (6.1)

with the deviation δ ∼ N (0, σ2
δ

)
independent of X∗. This suggests a partic-

ular mechanism of how X∗ is distorted and ‘converted’ to X, by adding a
random ‘error’ (white noise) to the value of the latent variable. This model
may be appropriate even when no such mechanism can be identified. Its ob-
vious generalisations allow the variance σ2

δ to depend on the value of X∗ and
the mean of the deviation δ to differ from zero and to depend on X∗. Further,
δ need not be normally distributed. The model in (6.1) is often regarded as a
definition of measurement error in a narrow sense.

We say that a measurement process is unbiased if E(X − X∗) = 0;
otherwise it is called biased. An unbiased measurement process may become
biased when the measurement refers to a different scale. As an example, sup-
pose g is a nonlinear monotone function. Then g(X) can be regarded as a
manifest version of g(X∗). The measurement process may be biased with re-
gard to g(X∗) when it is unbiased with regard to X∗ because, in general,
E {g(X) − g(X∗)} �= g {E(X−X∗)}.

The property of unbiasedness is related also to the population. The restric-
tion of an unbiased measurement variable to a subpopulation may be biased;
simply, the subpopulation-specific biases may average out. The manifest vari-
able X in (6.1) is unbiased for each subpopulation (stratum) defined by a
value of X∗ or an interval of values; that is, E(X |X∗ = x) = x for each x.
We say that such a manifest variable is pointwise unbiased . Being pointwise
unbiased for every x in the support of X∗ is a much more stringent condition
than being unbiased without any qualification.

Historically, the difference between the manifest and latent versions of a
variable has been referred to as measurement error . This term is motivated
by applications involving physical measurement, regarding the value of the
latent variable as being within our grasp. We do not use this term and refer
to ‘deviation’ (from the latent value), distortion, or imperfect measurement
instead, to avoid the connotation that an avoidable mistake was committed
in the conduct of the study. A deviation is often anticipated and cannot be
avoided. In some settings, the value of the latent variable could be established,
but doing so is very expensive and would reduce the resources that might be
allocated more productively to other activities in the study. For example,
with the precise measurement, the study could afford a sample of only a
much smaller size. More generally, the trade-off between precise measurement
(quality) and number of subjects (quantity) is an important consideration in
studies in which there are several options for measurement.

The cost of measurement, expressible not necessarily solely in financial
terms, is an important consideration. For example, a detailed discussion of
the subject’s income in a lifestyle survey may erode the motivation, patience,
and goodwill of many subjects, and some of them may terminate the interview
prematurely or would not agree to a follow-up interview in the future. This
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example reaffirms that we should also drop the term ‘measurement’, because
we intend to deal with all forms of eliciting and recording information.

A case in point is estimation of the unemployment rate. The extensive
option is to contact each subject of a random sample of the members of the
labour force and, after a suitable introduction, ask them the relevant question
directly. As an alternative that involves no direct contact with the subjects,
the register of those claiming unemployment benefit may be consulted and
the rate of unemployed based on the number of registrations and the size
of the labour force. By direct contact and interview, we establish the value
of the latent variable with precision (assuming that all subjects give valid
responses), but do so only for a sample from the population. By inspecting
the register, we establish the value of a related (manifest) variable but obtain
it for every member of the population. (Not being registered is interpreted
as being employed or not being in the labour force.) The two variables, the
employment status as established by the interview and by the unemployment
register, differ; some unemployed have income, are not qualified for benefit,
or do not wish to claim it for some other reason, and there may be some
fraudulent claims and administrative errors in the register, e.g., due to delays
in reporting and recording changes in the employment status, as well as deaths
and migration. Assuming that each subject would give the same response in
a hypothetical replication of the interview, the deviation of the manifest from
the latent variable in this example is not stochastic. An analytical challenge
is to combine the information in the survey and register, to make inferences
that are superior to those based solely on either source of information.

Another instructive example is the assessment of the success of a medical
procedure, such as a surgery. If we waited for a few years we could establish
whether it was successful or not, except for a few patients who have in the
meantime died of causes unrelated to the surgery. However, an assessment is
required in a more timely fashion, for instance, in a clinical trial or to prescribe
a suitable follow-up treatment, including discharge. Making an (independent)
assessment by a medical consultant a few days after the surgery is a practical
proposition even though it may entail some sacrifice of precision.

An advantage of the mechanistic description by a model, such as (6.1)
or its various extensions, is that it can be explored by simulations. How-
ever, some properties and associations of X and X∗ can be derived an-
alytically. First, E(X) = E(X∗) + E(δ) in (6.1), highlighting how use-
ful it is that E(δ) vanishes—X and X∗ have identical expectations. How-
ever, var(X) = var(X∗) + σ2

δ , so X is dispersed more than X∗. Further,
cov(X,X∗) = var(X∗), which we denote by σ2

∗ , so that

cor(X,X∗) =

√
σ2∗

σ2∗ + σ2
.

An alternative description of the measurement process is by the joint distri-
bution of X∗ and X. For example, the model in (6.1) corresponds to
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(X∗, X) ∼ N2

{
µ∗12 ,

(
σ2
∗ σ2

∗
σ2
∗ σ2

∗ + σ2
δ

)}
, (6.2)

where µ∗ = E(X∗). The conditional distribution of X, given that X∗ = x, is
derived straightforwardly, and it confirms equivalence with (6.1).

6.1.1 Information About the Measurement Process

Information about the measurement process can be gathered by observing
X∗ precisely when this is possible and affordable, together with X, as pairs
of observations of (X∗, X). This does not have to be done on every subject
in the study; it suffices to observe (X∗, X) on a random subsample of the
subjects in the study, or even of the subjects in a different study, so long
as the two studies use representative samples from the same population. As
soon as the populations differ or the subsampling of one of the samples is not
representative, caution is in order, because the properties of a measurement
process may be closely connected with the population involved.

An indirect but often much more affordable alternative is to observe the
subjects or their subsample twice, that is, observe variables X(1) and X(2)

that are related to X∗ by the same model and are conditionally independent,
given the value of X∗. The model for these three variables is

X(k) = X∗ + δ(k) ,

k = 1, 2, where δ(1) and δ(2) are independent variables with the same distrib-
ution N (0, σ2). This is equivalent to

(
X∗, X(1), X(2)

)
∼ N3

⎧⎪⎨⎪⎩µ∗13 ,

⎛⎜⎝ σ2
∗ σ2

∗ σ2
∗

σ2
∗ σ2

∗ + σ2
δ σ2

∗
σ2
∗ σ2

∗ σ2
∗ + σ2

δ

⎞⎟⎠
⎫⎪⎬⎪⎭ .

The variables X(1) and X(2) can be regarded as replicates of the measurement
process or as replicate manifest variables. In fact, a population of measure-
ments can be considered, of which X(1) and X(2) are two members (realisa-
tions). In this perspective, σ2

δ is the replication variance.
The assumptions about the measurement process imply that the difference

X(1) − X(2) has zero expectation and variance 2σ2
δ . Good measurement can

therefore be identified with small variance σ2
δ . However, two measurement

processes can be meaningfully compared by their variances σ2
δ only when

both processes are unbiased. Extensions to more than two and to unequal
numbers of replications are straightforward. They include the setting in which
only a random subsample of subjects is involved in any replications, and, in
general, when the number of replications K is variable. In the latter case,
some complexities are avoided by arranging that the number of replications
is independent from X∗.
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We can define the average of the replicate manifest variables, X [K] =(
X(1) + · · · + X(K)

)
/K for K replications as another manifest variable. Since

var
(
X [K];X∗ = x

)
= σ2

δ/K, X [K] is preferred as a manifest variable for X∗

to either of the replicates X(k); however, when X(k) is (pointwise) biased,
X [K] ‘inherits’ the (pointwise) bias of X(k):

B
(
X [K];X∗ |X∗ = x

)
= E

(
X(k) |X∗ = x

)
− x . (6.3)

Unlike the replication variance, the bias cannot be reduced by replications.
Neither can it be inferred from X(1), X(2), . . . , X(k), because each X(k) is
unbiased for another latent variable, X† = X∗ + B, where B is the bias in
(6.3).

6.2 Attributes of a Good Manifest Variable

Unbiasedness and small variance σ2
δ of the deviations are clearly desirable

properties of a measurement process. However, the ultimate measure of the
quality of a manifest variable is how good are the inferences conducted with
it as a substitute for the latent variable, and so the assessment of the quality
may depend on the intended analysis. Ideally, we would like to recover the
inference that would have been obtained had the values of the latent variable
X∗ been recorded perfectly and, as second best, we would like to estimate the
population quantities of interest with as small inflation of MSE as possible.

For example, unbiased measurement is advantageous for estimating the
population mean of X∗, because the mean of the values of X for a random
sample is unbiased: E(X̄) = E(X̄∗) = µ∗ . If X∗ were observed on a ran-
dom sample of n subjects the sampling variance would be var(X̄∗) = σ2

∗/n.
When only the manifest variable is observed, the sampling variance is greater:
var(X̄) = (σ2

∗ + σ2
δ )/n. For a manifest variable with bias B, we have

MSE(X̄;µ∗) =
1
n

(
σ2
∗ + σ2

δ

)
+ B ,

so we should not dismiss biased measurements, especially when estimation (of
the population mean µ∗) is based on a small sample and the bias is small. The
appropriate criterion for a good measurement in this context is small value of
σ2

δ/n + B, and it depends on the sample size n.

6.2.1 Impartiality

A highly desirable property of a measurement process is that all variables
other than X∗ are associated with X only through X∗. A measurement process
with this property is called impartial. The condition can be expressed in terms
of conditional distributions as
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(X |X∗,Z) = (X |X∗) (6.4)

where Z is a vector of specified attributes; they are irrelevant to how X∗ is
distorted into X.

For example, in a judicial system, in which fairness of the assessment is
paramount, the penalty X meted out to an accused should depend only on the
crime committed (U) and, conditionally on this, should be unrelated to sex,
race, age, or political allegiance (Z) of the accused. In this setting, X∗ = g(U)
is the penalty that should be given (including full exoneration, X∗ = 0). The
system may operate imperfectly, that is, with positive E{(X − X∗)2}. Note
that impartiality is qualified by the variables in Z. By adding variables to Z
it becomes a more stringent criterion.

Similarly, conditionally on the latent ability, a student’s grade in an exam
should not be related to the student’s ability in other subjects, or to any ele-
ments of his or her background, socioeconomic background in particular, that
are meant to be irrelevant to the educational process. Such a criterion for a
fair exam or assessment may be a tall order and is not trivial to check, because
the student’s ability in the academic subject concerned can be assessed only
by an exam like the one that we are subjecting to scrutiny. In an examination
that comprises several elements (items, or questions), it is reasonable to in-
sist that the score given for the response to each element should be impartial.
Then, presuming that most of the items are impartial, summaries for a partial
item would stand out. For instance, one group of examinees would perform
on this item more poorly than another, even after matching on the scores
attained on the remaining items.

Impartial manifest variables are in general pointwise biased. Often the bias
cannot be defined unambiguously because the underlying variable is defined
only subject to a class of monotone transformations. For example, the abil-
ity to drive a motor vehicle does not have an unambiguous definition, even
though the driving test may be graded according to a well-defined scale. But
a desirable property of the test score is that better drivers tend to attain
higher scores. This property is in general referred to as validity . Impartiality
is a necessary condition for validity, but it is not sufficient. One particular
interpretation of the term validity is that any decision based on the value of
the manifest variable (test score) is the same as would be made if the latent
score were available. In most settings, this is an unrealistic assumption, even
when the decision depends only on a coarsened version of the latent variable,
for instance, when it is required to classify each examinee as ‘good enough’
or not.

Impartiality, absence of bias, and validity are absolute criteria. In most set-
tings, they are unlikely to be satisfied, but it would suffice if departures from
them were only slight, not undermining the purpose for which the manifest
variable is intended. Such variables may provide a more economic and practi-
cal solution than variables recorded by the more precise (and more resource-
intensive) measurement of the same latent variable.
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Suppose variable X is manifest for X∗ and Z is another variable, and they
are jointly normally distributed. The manifest variable is then related to the
other two as

X = a + bX∗ + cZ + δ , (6.5)

where δ is a centred normally distributed variable, independent of both X∗ and
Z. We prove this assertion by construction. No generality is lost by assuming
that the means of all three variables vanish; otherwise we use their centred
versions X − E(X), X∗ − E(X∗), and Z − E(Z) and absorb the differences
that arise in the constant a. Let U = (X∗, Z)� and assume that var(U) is
positive definite. We set a = 0 and

(b, c) = cov(X,U) {var(U)}−1
.

Then
cov {X − (b, c)U, U} = 0 ,

so for this choice of a, b, and c, δ = X − (b, c)U is correlated with neither X∗

nor Z. For normally distributed variables, independence and no correlation are
equivalent conditions, hence the assertion in (6.5). When var(U) is singular,
X∗ and Z are linearly related, so X∗ = dZ for some constant d, since E(X∗) =
E(Z) = 0. The assertion is then obtained by setting c = 0 and applying
the preceding proof to univariate U = X∗. The assertion has an obvious
generalisation for a vector Z with a multivariate normal distribution.

Impartiality in (6.5) corresponds to c = 0 and absence of bias to

(1 − b)E(X) = a + cE(Z) .

The model in (6.1) is a special case of impartiality, which arises when a = 0
and b = 1.

6.3 Linear Regression with Manifest Variables

In this section, we consider the problem of estimating the regression of a
latent variable Y ∗ on a perfectly measured variable X and the regression of
a perfectly measured variable Y on a latent variable X∗, when the latent
variables are represented by their manifest versions, by Y in the former and
X in the latter case. In both cases, we assume that all three variables involved
are normally distributed. We show that different properties of the manifest
variable are desirable in these two problems.

6.3.1 Latent Outcome Variable

Suppose the target is the slope β1 of the regression E(Y ∗ |X = x), but instead
of Y ∗ we observe only the values y of a manifest variable Y . By substituting
Y for Y ∗, we obtain the estimator of the vector of regression parameters β
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β̂
†

=
(
X�X

)−1
X�y ;

X is composed of the intercept column 1 and the values of X, denoted by x,
and they are assumed to be fixed in replications.

Assuming the representation Y = a + bY ∗ + cX + δ, as in (6.5), the bias

of β̂
†

=
(
β̂†

0 , β̂†
1

)�
is

E
(
β̂
† |x
)
− β =

(
X�X

)−1
X�E (a + by∗ + cx |x) − β

=
(
X�X

)−1
X� {a + (b − 1)β0 1, (b − 1)β1x + cx}

= {a + (b − 1)β0 , c + (b − 1)β1} .

Therefore, apart from the special case when c + (b− 1)β1 = 0, β̂†
1 is unbiased

for β1 only when b = 1 and c = 0, that is, when Y is pointwise unbiased
for Y ∗. We are less concerned about the bias in estimating β0 because that
corresponds to adding the same (unknown) constant to each predicted value
of Y ∗ and it does not affect any comparisons or differences of the predictions
Ŷ ∗ for different values of X. In any case, the additional condition for β̂†

0 to
be unbiased is that a = 0.

Denote by σ2
ε the residual variance in the regression of Y ∗ on X. The

sampling variance matrix of β̂
†

is

var
(
β̂
† |x
)

=
(
X�X

)−1
X� (σ2

δ + b2σ2
ε

)
IX
(
X�X

)−1

=
(
σ2

δ + b2σ2
ε

) (
X�X

)−1
,

to be compared with σ2
ε

(
X�X

)−1, its counterpart if the values of Y ∗ were
recorded. It may seem paradoxical that the regression parameters could be
estimated with smaller variance using the manifest than the latent outcome
variable. This happens when | b | is so small that σ2

δ + b2σ2
ε is smaller than σ2

ε .
On reflection, this is not a surprising result; when Y is dispersed much less
than Y ∗, its regression on X is estimated with smaller sampling variance than
if it were widely dispersed. In any case, we should be concerned with MSEs
of estimators, not with their variances. In this regard, β̂†

1 fares much worse
when β1 is substantial because of the large bias c + (b − 1)β1 .

In summary, when the variables X, Y ∗, and Y are jointly normally distrib-
uted, naive estimation of the regression parameters in E(Y ∗ |X), based on a
manifest variable Y , is unbiased when Y is pointwise unbiased for Y ∗. Given
choice, and other factors held fixed, manifest variables with smaller coeffi-
cients b are preferred, although with large samples the squared bias becomes
the dominant contributor to MSE, and the proximity to pointwise unbiased-
ness, b = 1 and c = 0, becomes more important.
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6.3.2 Latent Regression Variable

We consider next the problem of estimating the regression parameters in the
linear model

y = X∗β + ε , (6.6)

with X∗ comprising the intercept 1 and the values of the normally distributed
latent variable X∗ observed through its manifest version

X = a + bX∗ + cY + δ .

We assume that δ ∼ N (0, σ2
δ ), independently of X∗, Y , and ε. We reuse the

notation from the previous section, but the values of the associated quantities
in the previous and this section are unrelated.

The model in (6.6) is not in accord with the assumption that the values of
the latent variable X∗ are fixed or set by design. (Setting the values of a latent
variable is a logical contradiction.) Nonetheless, it is meaningful to consider
the model as a description of how Y and X∗ are related. The estimator of β
in (6.6) with the substitute manifest variable is

β̂
†

=
(
X�X

)−1
X�y .

Instead of considering the bias and MSE of this estimator, which cannot be
expressed analytically, we study the crossproducts X�X and X�y separately.

For the elements of E
(
X�X |x∗) =

(
A1 A12

A12 A2

)
, we have

A1 = n ,

A12 = E

[{
X∗
(

a
b

)
+ cX∗β + cε + δ

}�
1 |x∗

]
= γ�X∗�1 ,

A2 = E
[
{X∗γ + cε + δ}� {X∗γ + cε + δ}

]
= γ�X∗�X∗γ + n

(
c2σ2

ε + σ2
δ

)
,

where γ = {(a, b)� + cβ} and n = 1�1 is the sample size. Further,

E
(
X�y |x∗) = (1 X∗γ)� X∗β .

If x∗ were available, the ‘latent’ counterparts of these objects would be X∗�X∗

and
X∗ E(y |x∗) = X∗�X∗β .

Apart from some esoteric settings, E
(
X�y |x∗) and X∗�y coincide only when

a = 0, b = 1, and c = 0, that is, when X is pointwise unbiased. The matrices
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X∗�X∗ and E
(
X�X |x∗) differ even when X is pointwise unbiased for X∗;

in that case,

E
(
X�X |x∗) = X∗�X∗ +

(
0 0
0 nσ2

δ

)
.

So, in expectation, the total of crossproducts x�x is an inflated version of
x∗�x∗—the expected difference, nσ2

δ , is positive, unless the manifest and
latent variables coincide.

In conclusion, except for some esoteric cases that are of no practical im-
portance, the slope of the regression E(Y |X∗) is estimated with bias when
X∗ is replaced by a manifest variable X in the ordinary least squares esti-
mator. In contrast, the slope of the regression E(Y ∗ |X) is estimated without
bias, but with an inflated sampling variance, when Y is pointwise unbiased for
Y ∗. We note in passing that, even when we estimate the two factors, X∗�X∗

and X∗�y, without conditional bias (given x∗), some bias arises due to the
nonlinear operations applied in forming

(
X�X

)−1
X�y.

Suppose manifest X is generated from latent X∗ according to the point-
wise unbiased model in (6.1). By centring X∗, we could arrange that X∗�X∗

is diagonal. Then the substitution estimator of the slope, β̂†
1 = x�y/x�x,

is likely to underestimate its target β1 , because the numerator estimates its
latent counterpart x∗�y (conditionally on y) without bias, whereas the de-
nominator overestimates its positive target x∗�x∗. This phenomenon, called
attenuation, is addressed by subtracting the estimated bias from the denomi-
nator, that is, using x�x−nσ̂2

δ . The resulting estimator x�y/
(
x�x − nσ̂2

δ

)
is

unbiased only approximately, but the bias, arising from the nonlinear trans-
formations, is negligible when the sample size is moderate or large.

Figure 6.1 gives an illustration with an artificially generated dataset. The
outcomes are related to the latent covariate X∗ by the simple regression Y =
β0 +β1X

∗+ε, with β0 = 0.0, β1 = 0.35, and σ2 = 0.08. The manifest variable
X is generated according to the model X = X∗+δ with the deviations δ drawn
at random from N (0, 0.30), independently of X∗ and Y . In the left-hand panel,
the ‘latent’ pairs (X∗, Y ) are highlighted, with their fitted regression drawn
by dashes, whereas in the right-hand panel the ‘manifest’ pairs (X,Y ) are
highlighted, with their regression marked by dots.

If we regard each value of X as an estimate of the underlying value X∗,
then the results of this section can be interpreted as follows. When we would
like to evaluate a function g(x∗;y), its manifest counterpart g(x;y) is suitable
only when g is a linear function of x∗. Substituting estimates for each value
in x∗ is not efficient, even if g(x∗) would have been efficient for the intended
target. In the next section, we derive an estimator of x∗ that differs from x
but it is also poorly suited for naive estimation, as a substitute for x∗.
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Fig. 6.1. Attenuation in simple regression. Latent values and the regression on them
are highlighted in the left-hand panel and manifest values and their regression in
the right-hand panel.

6.3.3 Estimating the Latent Values

Suppose the latent and its manifest variable have an arbitrary joint bivariate
normal distribution(

X∗

X

)
∼ N

{(
µ∗

µ

)
,

(
σ2

x∗ σx∗x

σx∗x σ2
x

)}
.

The values of X∗ can be estimated from their manifest counterparts as the
conditional expectations x̂∗ = E(X∗ |X = x). We have

E (X∗ |X = x) = µ∗ +
σx∗x

σ2
x

(x − µ) ,

with the (constant) conditional variance var(X∗ |X = x) = σ2
x∗ − σ2

x∗x/σ2
x .

For the model in (6.1), this is

x̂∗ = E(X∗ |X = x) = µ +
σ2

x∗

σ2
x∗ + σ2

δ

(x − µ) . (6.7)

In a practical setting, the parameters µ∗, σ2
x∗ , and σ2

δ = var(δ) are not known
and have to be replaced by their estimates.

Suppose all our information about µ∗, σ2, and σ2
δ is contained in the

manifest values x for a random sample of n subjects. Then x are dispersed
more widely than x∗; var(X) = var(X∗) + σ2

δ . In contrast, the estimated
values x̂∗ are dispersed less;

var (x̂∗ |x∗) =
σ4

x∗

σ2
x∗ + σ2

δ

,
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ignoring the fact that µ and the variances have to be estimated. The estimators
in (6.7) can be interpreted as shrinking each manifest value x toward the
population mean µ, or as combining two estimators of x∗, x and µ. The
population mean µ is a trivial estimator, with bias B(µ;x∗) = x∗ − µ, so its
mean MSE, after taking expectation of the squared bias, is σ2

x∗ . The manifest
value has MSE σ2

δ . The shrinkage estimator x̂∗ combines these two estimators
according to their precisions (reciprocals of MSEs).

We can estimate x∗ so that the estimates would have the variance σ2
x∗ ;

x̃∗ = µ + (x − µ)

√
σ2

x∗

σ2
x∗ + σ2

δ

has this property but is less optimal for other purposes, including estimation of
the individual values x∗. No single estimator is efficient for all targets related
to x∗.

6.4 Categorical Manifest Variables

Suppose a categorical latent variable X∗, with support on the integers
1, 2, . . . , H, is observed through a manifest variable X with the same sup-
port. We say that X arises by misclassification of X∗. The misclassification
process is described by the (H × H) transition matrix T comprising the el-
ements Th,h∗ = P(X = h |X∗ = h∗) for all pairs of integers h (row) and
h∗ (column) in 1, . . . , H. The rows of T add up to unity, T1 = 1, so 1 is a
right-hand eigenvector of T and the corresponding eigenvalue is 1.0. As the
eigenvectors that correspond to other right-hand eigenvalues are orthogonal
to 1, all such eigenvectors v of T have zero totals; v�1 = 0. Further let p∗ be
the distribution of X∗; its elements are the probabilities p∗h = P(X∗ = h∗).
The manifest probabilities p, with elements ph = P(X = h), are related to
the latent probabilities p∗

h by the identity

p = Tp∗.

The deviations X − X∗ and their variance are meaningful quantities only
when the categories 1, . . . , H are ordered, so that a deviation by one point
is appropriately regarded as smaller than a deviation by two or more points.
In misclassification processes of particular interest in such a setting, X and
X∗ do not differ by more than one point; the transition matrix has positive
entries only on the diagonal and immediately below and above it.

To explore when p = p∗, we look for circumstances in which p∗ = Tp∗,
that is, when p∗ is a right-hand eigenvector of T with unit eigenvalue. We
consider a single category, 1, and collapse all the other categories into another
single one, denoted by 2. Let the corresponding transition matrix be T′, with
elements T ′

hh∗ , h, h∗ = 1, 2. A solution of the equation p∗′ = T′p∗′ has to be
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a scalar multiple of an eigenvector of T′, that is, either c
(

1
2 , 1

2

)
or c
(

1
2 ,− 1

2

)
,

where c is a nonzero constant. Only the former solution is admissible, because
it has to comprise probabilities. Hence ph = p∗h only when p∗h = 1

2 . Further-
more, T ′

12 = T ′
21 . Therefore, the settings in which the manifest and latent

variables have identical distributions are: H = 2, p∗ = 1
21, and T symmetric;

T12 = T21 .
Next we consider the discrete analogues of the regression. Suppose Z is a

dichotomous variable with support on (1, 2) and X∗ is impartial for X with
respect to Z, that is,

P(X = k |X∗ = h,Z = z) = P(X = k |X∗ = h) = Thk (6.8)

for all possible combinations of categories h, k, and z. We explore when

P(X = 1 |Z = 1) = P(X∗ = 1 |Z = 1) .

By conditioning on the value of X∗ and using the identity in (6.8), we obtain

P(X = 1 |Z = 1) = T11P(X∗ = 1 |Z = 1) + T12P(X∗ = 2 |Z = 1)

= T12 + P(X∗ = 1 |Z = 1)(T11 − T12) .

Combined with the analogous equation for P(X = 1 |Z = 2), this yields

P(X = 1 |Z = 1) − P(X = 1 |Z = 2)

= (T11 − T12) {P(X∗ = 1 |Z = 1) − P(X∗ = 1 |Z = 2)}
≤ T11 − T12 ,

with equality only when either P(X = X∗) = 1 or X∗ and Z are independent.
The latter case also requires that T11 = T12 , that is, P(X = 1 |X∗ = 1) =
P(X = 1 |X∗ = 2), or that X and X∗ are independent. Thus, the contrast
P(X∗ = 1 |Z = 1)−P(X∗ = 1 |Z = 2) would be estimated by using X instead
of X∗ with bias, akin to attenuation, with any imperfect impartial manifest
variable X, unless X∗, X, and Z are independent.

The substitution of X for X∗ in the condition of the ‘reverse’ probability
P(Z = 1 |X∗ = 1) can be explored similarly. Let

∆∗ = P(Z = 1 |X∗ = 1) − P(Z = 1 |X∗ = 2)

and ∆x = P(Z = 1 |X = 1) − P(Z = 1 |X = 2) its manifest version. The
Bayes theorem implies that

P(Z = 1 |X = k) = P(X = k |Z = 1)
P(Z = 1)
P(X = k)

,

k = 1, 2. We expand the conditional probability on the right-hand side and
make use of impartiality to derive
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P(Z = 1 |X = k) = P(Z = 1)
2∑

h=1

P(X = k |X∗ = h)
P(X = k)

P(X∗ = h |Z = 1)

= P(Z = 1)
2∑

h=1

P(X∗ = h |X = k)
P(X∗ = h |Z = 1)

P(X∗ = h)

=
2∑

h=1

P(X∗ = h |X = k) P(Z = 1 |X∗ = h) .

Hence the difference ∆x − ∆∗ is equal to

P(Z = 1 |X∗ = 1) {P(X∗ = 1 |X = 1) − P(X∗ = 1 |X = 2) − 1}
+ P(Z = 1 |X∗ = 2) {P(X∗ = 2 |X = 1) − P(X∗ = 2 |X = 2) + 1}

= −∆∗ {P(X∗ = 2 |X = 1) + P(X∗ = 1 |X = 2)} .

Therefore, replacing X∗ with X results in no change only when either X∗ and
Z are independent (∆∗ = 0) or the classification is perfect:

P(X∗ = 2 |X = 1) = P(X∗ = 1 |X = 2) = 0 ,

that is, T = I; these are both trivial cases. In brief, there is no good substitute
for a latent categorical variable.

6.5 Measurement Error as Incompleteness

Correction for attenuation in ordinary regression can be motivated as an ap-
plication of the EM algorithm. In the E-step, we estimate the totals of the
crossproducts that involve the latent variable, and in the subsequent M-step
we apply the complete-data analysis, with these totals of crossproducts re-
placed by their estimates. The reference to the EM algorithm is not necessary
in this application, but in others, in which the latent variable is involved in
the analysis in more convoluted ways, or the measurement process is more
complex than (6.1), the specification of the problem in terms of incomplete
data can be very constructive.

We regard the values (x∗,x, z) of (X∗, X, Z) on a sample of subjects as
the complete data and the values of (X,Z) as the incomplete data. It is of
no consequence that x is not involved in the complete-data analysis. If the
complete-data analysis is by maximum likelihood and it involves the missing
data x∗ only through a short list of linear sufficient statistics, then the EM
algorithm can be applied. Otherwise, sets of plausible values of x∗ can be gen-
erated by multiple imputation (MI). The application is in general easier than
for missing values because the process of ‘nonresponse’ (distortion) can be
observed by replications of the measurement or, when circumstances permit,
by recording the values of both X∗ and X for some subjects.
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For simplicity, we assume that X∗ and X are independent across subjects,
so that the MI method can be described in terms of univariate distributions.
We observe, or posit, a model for the measurement process, given by con-
ditional probabilities P(X = x |X∗ = x∗;θ) or densities f(x |X∗ = x∗;θ),
usually involving one or several parameters θ. First a plausible vector θ̃ is
drawn from the estimated sampling distribution of θ̂. Then a set of plausible
values, denoted by x̃∗ to indicate that they differ from the values x∗, is gen-
erated from the plausible conditional distribution (X∗ |X = x; θ̃), derived by
the Bayes theorem:

f
(
x∗ |X = x; θ̃

)
=

1

f
(
x; θ̃
) ∫ f

(
x |X∗ = x∗; θ̃

)
f
(
x∗; θ̃

)
dx∗

for continuous variables, and similarly, with the integral replaced by summa-
tion, for categorical variables. A set of plausible values x̃∗ is based on one
draw of θ̃, and other sets on replicates of such a draw. The number of these
sets (completions) is denoted by M . The complete-data analysis is carried out
for each completion (x̃∗,y, z), yielding M (replicate) completed-data results,
which are then averaged as in (5.5), with the appropriate inflation of the es-
timated sampling variance, which involves the between-imputation variance.

Example 13. As an illustration, we implement the method of MI for ordinary
regression, with a single covariate X∗ observed with the distortion given by
(6.1). Further, we generate r = 50 pairs of replicate values of X = X∗ + δ,
which we will regard as the sole information about σ2

δ = var(δ). Suppose these
pairs are observed on units different from those involved in the regression. The
solution derived in Section 6.3.2, by correcting for attenuation, is much more
practical for this setting, but it gives us an opportunity to make a direct
comparison with MI, which is applicable much more widely.

We generate a set of n = 120 values of the single regressor X∗ and corre-
sponding values of the outcome Y = β0 + β1X

∗ + ε, with β0 = 0, β1 = 0.35,
and σ2

ε = 0.08, as in Figure 6.1. We also set σ2
δ = 0.30, to agree with the

example in the diagram, but in all estimation we pretend that β0 , β1 , σ2
ε ,

and σ2
δ are not known. We evaluate the estimator based on the latent values

(this would in practice not be possible), based on the manifest values, with
the measurement error ignored, with the correction for attenuation, using the
estimated measurement-error variance σ̂2

δ , and several MI estimators that we
describe next.

Correction for attenuation implies generating plausible values of X∗ from a
plausible conditional distribution (X∗ |X). Thus, we generate plausible values
of the variances σ2

δ and σ2
x , followed by a plausible value of the mean µx of

X∗. The distributional identity

r
σ̂2

δ

σ2
δ

∼ χ2
r ,
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implies that for a random draw χ2 from χ2
r ,

σ̃2
δ = r

σ̂2
δ

χ2

generates a plausible value of σ2
δ . As var(X) = σ2

∗ + σ2
δ , a plausible value of

σ2
∗ can be obtained by adjusting the sample variance of X,

v̂ar(X) =
1

n − 1
(
x�x − nx̄2

)
.

For χ2 drawn at random from χ2
n−1 ,

σ̃2
∗ = (n − 1)

v̂ar(X)
χ2

− σ̃2
δ .

A plausible value of µx is generated by a random draw from N (µ̂x , σ̃2
∗ + σ̃2

δ ).
Having generated a plausible value of each parameter, a plausible value of x∗

j

is generated as a random draw from its plausible distribution:

x̃∗
j ∼ N

{
µ̃x +

σ̃2
∗

σ̃2∗ + σ̃2
δ

(xj − µ̃x),
σ̃2
∗ σ̃2

δ

σ̃2∗ + σ̃2
δ

}
.

The complete-data method is then applied to the completion (x̃∗,y), and
the process of generating σ̃2

δ , σ̃2
∗ , µ̃x , and x̃∗, followed by the complete-data

analysis of the completion, replicated M − 1 = 9 times. Finally, the ten sets
of results are averaged, with the inflation of the sampling variance according
to (5.10).

It may come as a surprise that this method yields rather disappointing
results. Although the plausible values of x∗ have the appropriate sampling
variance, their covariance with Y is smaller (closer to zero) than it should be.
The reason for this is that the outcomes Y contain information about X∗,
and this is not reflected in how we generate plausible values of x∗. Although
the mechanisms for generating X and Y involve independent random terms,
δ and ε, respectively, X and Y are correlated through their connection with
X∗.

The problem can be resolved by generating plausible values of X∗ from
the conditional distribution (X∗ |X,Y ). This is more complex because we
have to work with a trivariate normal distribution, and it turns out that the
conditional distribution of X∗ involves the targets β0 , β1 , and σ2.

The joint distribution of (X∗, X, Y ) is⎛⎜⎝ X∗

X

Y

⎞⎟⎠ ∼ N

⎧⎪⎨⎪⎩
⎛⎜⎝ µx

µx

β0 + β1µx

⎞⎟⎠ ,

⎛⎜⎝ σ2
∗ σ2

∗ β1 σ2
∗

σ2
∗ σ2

∗ + σ2
δ β1 σ2

∗
β1 σ2

∗ β1 σ2
∗ β2

1 σ2
∗ + σ2

ε

⎞⎟⎠
⎫⎪⎬⎪⎭ .

(6.9)
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Hence the conditional distribution of X∗ given X and Y has expectation

E(X∗ |X,Y ) = µx +

(
σ2
∗

β1σ
2
∗

)�
Σ−1

−1,−1

(
X − µx

Y − β0 − β1µx

)
,

where Σ−1,−1 is the variance matrix in (6.9), with its first row and column
removed. The corresponding conditional variance is

var(X∗ |X,Y ) = σ2
∗ − σ4

∗

(
1
β1

)�
Σ−1

−1,−1

(
1
β1

)
.

Elementary operations lead to the identities(
1
β1

)�
Σ−1

−1,−1 =
1

σ2∗ σ2
ε + β2

1 σ2
δ σ2∗ + σ2

δ σ2
ε

(
σ2

ε

β1 σ2
δ

)

and (
1
β1

)�
Σ−1

−1,−1

(
1
β1

)
=

σ2
ε + β2

1 σ2
δ

σ2∗ σ2
ε + β2

1 σ2
δ σ2∗ + σ2

δ σ2
ε

.

With these expressions, the sought conditional mean and variance are

E (X∗ |X,Y ) = µx +
1
v

{
X − µx + β1

σ2
δ

σ2
ε

(Y − β0 − β1 µx)
}

,

var (X∗ |X,Y ) =
σ2

δ

v
,

where

v = 1 + β2
1

σ2
δ

σ2
ε

+
σ2

δ

σ2∗
.

As indicated earlier, these expressions involve β0 , β1 , and σ2
ε , for which we

only have biased estimators, derived by assuming that X and X∗ coincide,
that is, σ2

δ = 0. (At this stage, we do not want to use the estimators derived
by correcting for attenuation.)

We implement the following procedure in which MI is applied several times.
First, we generate plausible values of β0 , β1 , and σ2

ε using the false assumption
of no measurement error. With these (multiple sets of) values β̃0 , β̃1 , and σ̃2

ε

and plausible values of the variances σ2
∗ and σ2

δ , we generate (multiple sets
of) plausible values of x∗ and carry out the completed-data analyses, yielding,
by averaging, provisional MI estimates and the associated estimates of the
sampling variances.

From the results of this improperly applied MI, we generate plausible
values of β0 , β1 , and σ2

ε and reuse the plausible values of σ2
∗ and σ2

δ to generate
new sets of plausible values of X∗, carry out the completed-data analyses and
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average them, and obtain updated MI estimates and the associated estimates
of the sampling variances. We could keep iterating this procedure until we
reach stability, when the estimates are changed only slightly. However, it turns
out that iterations of this procedure beyond the second or third yield only
negligible improvements.

It remains to assess the efficiency of the various estimators. For this, we
apply the estimators in a simulation study comprising H = 1000 replications.
The H sets of replicate values of the estimates of β0 , β1,, and σ2

ε are sum-
marised by their empirical biases, sampling variances, and MSEs. We prefer
to use the square roots of the latter two, to have them on the same scales
(units of measurement) as the target and bias. Taking the square root of the
sampling variance and MSE moderates their sizes, avoiding the printing of
many decimal or trailing zeros.

The results are summarised in Table 6.1. The seven methods (sets of es-
timators) described in the caption of the table are compared. Each method
estimates the intercept β0 , slope β1 , and the residual variance σ2

ε . For each
estimator θ̂, we calculate from its replicate values the empirical bias, B̂(θ̂; θ),

the square root of its sampling variance,
√

v̂ar(θ̂), and the root-MSE (rMSE).
Further, for the intercept and slope, their sampling variances are estimated
directly by the method applied, based on a single replication. The means
of these quantities assess whether the method estimates the MSE without a
negative bias. These figures, with the square root applied after averaging, are
given in the table in row ‘Internal rMSE’. The root-MSE is not listed for the
residual variance for which it is of limited importance.

For example, the empirical bias of the complete-data estimator of the in-
tercept is 0.001. We know that the estimator is unbiased, so the discrepancy
of 0.001 can be attributed to chance, having executed ‘only’ 1000 replica-
tions. The discrepancy between the empirical and internal root-MSE, also by
0.001 (0.095 vs. 0.096), is negligible. The regression based on the manifest
X (MAN ), with the measurement error ignored, is grossly dishonest (0.027
vs. 0.089), a consequence of overrating the quality of the data. By correct-
ing for attenuation (COR), we reduce the absolute bias substantially, but the
standard errors are still grossly underestimated (0.027 vs. 0.046); they esti-
mate without bias the standard errors of the complete-data estimators (LAT ).
The MI method MIx, which ignores the information about x∗ contained in
y, performs very poorly. The iterative MI methods, MI 1, MI 2, and MI 3,
improve with iterations. Their biases and rMSEs are reduced substantially
by the second iteration, and further iterations are not helpful; although the
bias is reduced, the sampling variance is inflated slightly. MI 2 and MI 3 are
honest—their internal and replication-based estimates of MSE agree. Based
on this, we would recommend MI 2 for settings similar to this example.

In all MI procedures, we used M = 10 completions. From Table 6.1, we
can assess whether this would be sufficient. The sampling variance of the
complete-data estimator of the slope is 0.0272, whereas its counterpart in MI 2,
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Table 6.1. Summary of the simulations of several estimators for the simple regres-
sion model with measurement error. The methods are: LAT—using complete data
(latent values); MAN—using manifest values, ignoring measurement error; COR—
correction for attenuation; MIx—MI based on the conditional distribution (X∗ |X);
MIk—MI based on the conditional distribution (X∗ |X, Y ); k iterations, k = 1, 2, 3.
Ten sets of plausible values are used in each MI procedure and 1000 replicates of
each procedure.

Method

LAT MAN COR MIx MI 1 MI 2 MI 3

Intercept (β0)

B(β̂0 ; β0) 0.001 0.294 −0.012 0.290 0.116 0.057 0.025√
v̂ar(β̂0) 0.096 0.094 0.161 0.098 0.116 0.129 0.138√
M̂SE(β̂0 ; β0) 0.096 0.309 0.162 0.306 0.164 0.141 0.140

Internal rMSE 0.095 0.097 0.094 0.150 0.138 0.143 0.145

Slope (β1)

B(β̂1 ; β1) 0.000 −0.085 0.004 −0.084 −0.033 −0.015 −0.007√
v̂ar(β̂1) 0.027 0.026 0.046 0.027 0.033 0.037 0.039√
M̂SE(β̂1 ; β1) 0.027 0.089 0.046 0.088 0.047 0.040 0.040

Internal rMSE 0.027 0.027 0.027 0.042 0.039 0.040 0.041

Residual variance (σ2
ε)

B(σ̂2
ε ; σ2

ε) −0.001 0.025 −0.003 0.047 0.015 0.008 0.004√
v̂ar(σ̂2

ε) 0.010 0.014 0.017 0.016 0.014 0.014 0.014√
M̂SE(σ̂2

ε ; σ2
ε) 0.010 0.029 0.017 0.050 0.021 0.016 0.015

0.0402 is about 1.52 = 2.25 times greater. Therefore, the between-imputation
variance B is about 2.25/(1 + 1/10) .= 1.15 times greater than the complete-
data variance W , and the inflation of the variance due to using only M = 10
completions is about 0.11W , that is, about 5% of the overall sampling variance
W + B(1 + 1/M). Another ten completions would cut this inflation to half,
gaining very little, but the amount of programming and computing to achieve
it is minute nevertheless.

This extended example may at first be discouraging, as it involves much
computing. The appropriate gauge for such an assessment is always the value
(gain, profit, or the like) of more efficient estimation and the better decision
made as a result of the analysis. Note that most of the complexity is due to the
generation of the plausible values x̃∗; the complete-data analysis is elementary
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in comparison. However, for a more complex complete-data analysis, the same
process of generating plausible values is required. In fact, the same set of
completions could be used for several analyses. In our implementation, the
completions are not stored, so it might be more practical to generate them
separately for each analysis. The extra computational load is only slight; after
all, we replicated the imputation and estimation processes 1000 times in the
simulation.

Most of this computing should be done at the design stage to select a
method of analysis and set its details. By doing so without having an oppor-
tunity to inspect the values of the outcome variable we forego any suspicions
that the method of analysis has been selected to promote a particular re-
sult, confusing an estimator with a mixture of estimators. Also, if we prepare
the computer programmes in advance of data collection the analysis can be
completed soon after the data become available. In the process, the methods
can be put to various tests regarding the assumptions made, in the spirit of
sensitivity analysis (Section 5.5.4). The assumption of multivariate normality
is particularly problematic, but experience shows that imputation methods
perform reasonably well even with substantial departures from normality. For
instance, in Example 13 we generated the values of X∗ not from a normal
distribution but as 2 + 3U1.1 + 0.4S, where U has standard uniform and S
standard normal distribution. The negative aspect of this approach is that
the real data may inform us about a more efficient estimator than the one
selected without the benefit of data inspection. However, such input into the
analysis is tainted with the possibility of distortions in the inferences.

6.6 Simulation–Extrapolation

The method described in the previous section can be applied whenever we
can estimate the relevant sampling distributions and draw samples from the
conditional distributions involved. This is relatively easy when working with
the multivariate normal distributions but much more complex otherwise, en-
couraging us to look for shortcuts which, although introducing some loss of
efficiency, would make the programming and computational load manageable.

This section describes an alternative method that is also computationally
intensive, but its programming is relatively easy, based on multiple applica-
tions of the complete-data method. It is not as universal as MI and involves
very different complexities. To make the comparison easier, we discuss it using
the setting of Example 13.

Suppose we know the value of the measurement-error variance σ2
δ . We can

fit the manifest regression (Y |X), as done by method MAN in Table 6.1. We
can increase the measurement-error variance by adding further distortion to
X. The distorted variable X ′ = X + η, with η ∼ N (0, σ2

+) independently of
X and Y , has measurement-error variance

var(X ′ |X∗) = σ2
δ + σ2

+ .
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We can fit manifest regression for a range of nonnegative values of σ2
+ and

observe, subject to the variation associated with generating the values of X ′,
how the regression E(Y |X ′) depends on σ2

+ or on the total measurement-error
variance σ2

δ + σ2
+ . The inferential question posed, translated to this perspec-

tive, is: what would the regression be if the measurement-error variance were
equal to zero? Setting aside the uncertainty associated with the generation
of the distorted sets of values x′ for each selected value of σ2

+ , this amounts
to extrapolation, because with the original observations x we can realise no
measurement error with variance smaller than σ2

δ .
For the selected positive values of σ2

+ , we generate several sets of values x′,
to reduce the impact of the vagaries of the additional distortion (from x to x′).
The method is known by the acronym SimEx , motivated by its two parts—
simulation of estimates using manifest variables with extra measurement error
and ex trapolation to the setting of no measurement error.

An example implementing this method is drawn in Figure 6.2, using the
setting of Example 13, with a computer-generated dataset, for which the la-
tent values x∗ are available. The variances σ2

+ were set to 0.1, 0.2, 0.3, 0.4,
and 0.5, and the process of generating x′ and estimation with it was repli-
cated 100 times for each value of σ2

+ . In panel A, each estimate of the slope
β1 is represented by a dot and the mean within each value of the overall
measurement-error variance σ2

δ + σ2
+ by a dash. The target β1 , which corre-

sponds to σ2
δ , is marked by a thin horizontal line. The estimate β̂1 based on

the latent values is marked by the black box. The panel suggests that the task
of extrapolation is difficult because of the curvature involved.

Panel B presents the same information, except that the vertical axis is
on the reciprocal scale, plotting 1/β̂1 . Extrapolation is now straightforward,
because the dependence of 1/E(β̂1) on σ2

+ is linear. Usefulness of the transfor-
mation becomes obvious when we examine how the correction for attenuation
works. The regression slope is estimated as

β̂
(c)
1 =

(x − x̄1)�(y − ȳ1)
(y − ȳ1)�(y − ȳ1) − nσ2

δ

.

Hence
1

β̂
(c)
1

=
(y − ȳ1)�(y − ȳ1)
(x − x̄1)�(y − ȳ1)

− nσ2
δ

(x − x̄1)�(y − ȳ1)
,

so long as the denominator (covariance) differs from zero. Therefore, for fixed
x and y, 1/β̂

(c)
1 is a linear function of the measurement-error variance σ2

δ .
Panel C displays the results for estimating the residual variance σ2

ε . The
extrapolation on the original scale is just as difficult as for the slope β1 , but
now there is no obvious transformation of the estimates σ̂2

ε that would simplify
the task. Panel D shows that taking the reciprocal is not helpful. A suitable
transformation can be found by inverting the formula for the estimator of the
residual variance.



6.6 Simulation–Extrapolation 185

0.0 0.2 0.4 0.6 0.8

0.
20

0.
25

0.
30

0.
35

A.
A.  ME variance

S
lo

pe

−
−

−
−

−

0.0 0.2 0.4 0.6 0.8

3
4

5
6

B.
B.  ME variance

1/
S

lo
pe

−
−

−
−

−

0.0 0.2 0.4 0.6 0.8

0.
08

0.
10

0.
12

0.
14

C.
C.  ME variance

R
es

id
ua

l v
ar

ia
nc

e

−
−

−
−

−

0.0 0.2 0.4 0.6 0.8

8
10

12

D.
ME variance

1/
R

es
id

ua
l v

ar
ia

nc
e

−
−

− − −

Fig. 6.2. Illustration of the SimEx method on the setting of Example 13 (simple
regression with β = (0, 0.35)�, σ2

ε = 0.08, and σ2
δ = 0.30). Estimating the slope β1

(the top panels) and the residual variance σ2
ε (bottom panels).

The SimEx method is restricted on several counts. First, the simulation
part can be implemented only with measurement processes with which x can
be made more distorted. Next, the extrapolation task is in general difficult,
and a suitable transformation to make it easier is not always easy to identify.
Finally, the selection of the parameter values at which simulation is conducted
is not obvious either, although much can be accomplished by trial and error.
Extrapolation in problems with two or more dimensions is particularly chal-
lenging.
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6.7 Coarse Data

The questionnaire design of many surveys has to strike a delicate balance
between asking for a lot of detail and minimising the response burden. For
example, a survey of annual household income may ask the subjects (heads of
households) for the relevant details from their tax returns, for rounded figures
(say, in thousands of UK£) for income from various sources (employment,
self-employment, pensions, rents, savings, sales of property, and the like), for
a single figure (total, also rounded to thousands of UK£), or present the
respondent with a small number of response options, such as below £10 000,
£10 000–19 999, . . . , and above £100 000. The last response format represents
the least response burden. Subjects are more likely to respond to it and less
likely to be discouraged from responding to further questions. However, the
response is poorer for information content than the response to one of the
more detailed questions would be if all subjects responded.

We can regard the process that distorts the exact (ideal) household in-
come, as would be declared for the given year on the tax return(s) in good
faith, into an income category as coarsening. It is a process akin to measure-
ment error, except that, conditionally on the ideal value X∗, it entails no
randomness. Since it has a deterministic description, we refer to this process
as a mechanism. The original variable has been coarsened , and the resulting
variable is said to be coarse. In general, a coarsening mechanism applied to a
variable X∗ is defined as any known function on the support of X∗. One-to-one
and constant functions are trivial cases of coarsening. One-to-one functions
correspond to no coarsening; the original values of X∗ can be recovered by
the inverse transformation. Constant functions annihilate all the information
about the original variable; they represent the other extreme. Nontrivial coars-
ening mechanisms for categorical variables correspond to aggregation of some
categories. For example, the number of political parties represented on the
city councils of a country may be recoded to three categories: one party, two
parties, and more than two parties.

For continuous variables, a wide variety of coarsening mechanisms can be
conceived, but those of any practical importance can be described as follows.
A (finite or infinite) ordered set of cut points c1 ≤ c2 ≤ . . . ≤ cH is defined,
complemented with c0 = −∞ and cH+1 = +∞ or the respective minimum
and maximum of the support. The values ch , h = 1, . . . , H, are such that
no three of them are identical; that is, no pair of successive inequalities are
both ‘equal to’. Each interval [ch ; ch+1) for which ch < ch+1 is associated
with a typical value vh such that ch ≤ vh < ch+1; when ch = ch+1 we set
vh = ch . The intervals [ch ; ch+1) are sometimes referred to as bins and the
corresponding coarsening process as binning.

A coarsening mechanism f1 is said to be cruder than another coarsening
mechanism f2 if the result of applying f1 is equivalent to the application of
f2 followed by another coarsening mechanism, say, f3 ; that is, f1 = f3(f2).
For continuous variables, the cut points of a cruder mechanism are a subset of
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the cut points of the finer (less crude) mechanism. Crudest mechanisms, for
which there are no nontrivial cruder mechanisms, result in a binary variable,
defined by a single cut point.

Histograms are perhaps the most common examples of coarsening. The im-
pact of coarsening of a variable is easy to explore. Too little coarsening leaves
details in the histogram that obscure the main features of the distribution,
whereas too much coarsening obliterates some of the important features.

The cut points and typical values of a coarsening mechanism are usually set
by design and are always known. The population (and therefore the sample)
may be partitioned into strata and a different coarsening mechanism applied
in each stratum. We regard such a composition of coarsening mechanisms
also as a single coarsening mechanism, so long as the stratum is known for
each subject. One of the constituent mechanisms in such a composition may
involve no coarsening. For example, some subjects in a survey of diet may
provide exact details of all the food and drink they consume in a designated
week, whereas others indicate the quantities by the coarse response options
provided in the questionnaire.

A coarse variable X is often regarded in an analysis as if it were the original
variable X∗—the distortion by coarsening is ignored. It is easy to show that
this is inappropriate, for any choice of the typical values vh . A choice that is
suitable for one analysis, such as estimating the population mean of X∗, is
poorly suited for another, such as estimating its variance. The typical values
can be regarded as estimates of the original values, and the (average) efficiency
of such estimation is not closely related to the efficiency of the completed-data
analyses conducted with them.

The original variable may be observable in principle, such as the income
reported on the tax return, or it may not be. An example of the latter case
is the level of satisfaction with a particular service. It can be thought of as
being on a continuum, but its recording is practical only with a discrete or-
dinal scale, such as the Likert scale, in which the extreme categories 1 and
5 represent total dissatisfaction and full satisfaction, respectively, category 3
is neutral (neither satisfied nor dissatisfied), and categories 2 and 4 repre-
sent intermediate levels of (dis-)satisfaction. The Likert scale can be used for
questions about preference, level of agreement, willingness to take part in an
activity, and the like. Of course, in most such cases the cut points defining the
coarsening are not known, because the original variable is not defined. It may
be defined by reference to the cut points, but its values are usually impossible
to establish.

6.7.1 Inference with Coarse Variables

We assume that the complete-data analysis involves the original variable and
adopt the strategy of Section 6.5. We generate several sets of plausible values
of the original variable and apply the complete-data analysis to each of them.
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We consider the simplest nontrivial setting in which only one (coarsened)
variable is recorded.

Let the density of the original (continuous) variable X∗ be f and the corre-
sponding distribution function F ; they may involve some unknown parameters
θ. The definition of coarsening implies that

P(X = vh ;θ) = F (ch+1;θ) − F (ch ;θ) .

Therefore, estimation of θ entails matching the sample distribution of X with
the probabilities F (ch+1 ;θ) − F (ch ;θ).

The conditional density of X∗ given the value vh of its coarse version X is

f(x∗ |X = vh) =
f(x∗)

P(X = vh ;θ)
, (6.10)

for x∗ ∈ (ch , ch+1). Thus, we require methods for drawing random samples
from such distributions. This may involve some approximations.

When the interval (ch , ch+1) is narrow enough that the density in it is well
approximated by a constant, the conditional distribution in (6.10) is uniform
and drawing samples from it is simple. The corresponding unconditional dis-
tribution has a piecewise constant density. Such a distribution of X∗ may be
unrealistic, but any smooth continuous distribution (density) can be approx-
imated arbitrarily closely by such distributions (densities).

Suppose both c0 and cH+1 are finite. The distribution of X∗ can then be
approximated by the distribution of the mixture

U =
H∑

h=0

IhUh ,

where each variable Uh has a uniform distribution in the interval [ch ; ch+1)
and Ih is the multinomial indicator of the category: Ih = 1 if X∗ ∈ [ch ; ch+1)
and Ih = 0 otherwise. Let ph = P(Ih = 1). Then for distinct cut points
h1 �= h2, cov(Ih1 , Ih2) = −ph1 ph2 , because the categories (bins) are disjoint.
The expectation and variance of U are

E(U) =
H∑

h=0

ph E(Uh) ,

(6.11)

var(U) =
H∑

h=0

ph var(Uh) +
H∑

h=0

ph {E(Uh) − E(U)}2
.

Before proving these identities, we discuss what they imply. The result for the
expectation is natural and suggests that we should choose the midpoints as the
typical values, that is, set vh to the conditional expectation within bin h, and
in the absence of any substantial asymmetry, set vh = 1

2 (ch+1 + ch). If we do
so, then the result for the variance indicates that the variance of the coarse
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variable, the second summation on the right-hand side, is smaller than the
variance of the original variable by the weighted total of the within-interval
variances. Thus, in addition to smoothness, the dispersion of the distribution
of X∗ is also distorted by coarsening.

The expectation in (6.11) follows from the linearity of the expectation and
independence of Ih and Uh . We decompose the variance first as

var(U) =
H∑

h=0

var(Ih Uh) + 2
H∑

h1=0

h1−1∑
h2=0

cov (Ih1 Uh1 , Ih2 Uh2) . (6.12)

For each variance on the right-hand side, we use the identity

var(Ih Uh) = EI {var(Ih Uh | Ih)} + varI {E(Ih Uh | Ih)}
= ph var(Uh) + ph (1 − ph){E(Uh)}2 ,

where the subscript I denotes expectation or variance over the distribution of
Ih . Each covariance in (6.12) is equal to the negative product of the expecta-
tions

cov (Ih1 Uh1 , Ih2 Uh2) = −ph1 E(Uh1) ph2 E(Uh2) ,

because E(Ih1 Ih2) = P(Ih1 Ih2 = 1) = 0. With these identities for the vari-
ances and covariances, we have

var(U) =
H∑

h=0

ph var(Uh) +
H∑

h=0

ph(1 − ph) {E(Uh)}2

− 2
H∑

h1=0

h1−1∑
h2=0

ph1 E(Uh1) ph2 E(Uh2)

=
H∑

h=0

ph var(Uh) +
H∑

h=0

ph{E(Uh)}2 −
{

H∑
h=0

ph E(Uh)

}2

,

from which the second identity in (6.11) follows immediately.
Working with the uniform conditional distributions is very easy because

plausible values of X∗ are generated directly, without having to generate any
plausible parameters, as implied by (6.10). The conditional distributions can
be approximated alternatively by distributions with linear densities,

f(x) = ah + bh
x − ch

ch+1 − ch
,

f(x) = ah + bh
ch+1 − x

ch+1 − ch
,

for constants ah and bh , for which f(x) is a density. However, estimating such
densities or choosing among them is in general not straightforward.
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When a class of distributions is specified for X∗ and we do not want to
apply any approximations, the distribution (or the parameters it involves) can
be estimated by the method of moments. The method looks for a match of
the expectation of X∗ and possibly other summaries of the distribution, such
as the variance, with its estimate based on (6.11) and similar identities. For
example, the expectation of X∗ is estimated as

µ̂∗ =
H∑

h=0

p̂hvh , (6.13)

where p̂h is the fraction of the sample with observations in the interval
[ch , ch+1). In this formula, the typical values vh can be replaced by the es-
timated or approximated conditional expectations. The method can be used
iteratively as follows. Starting with (6.13), we estimate E(Uh) from µ̂∗ using
(6.10); this may involve numerical integration or sampling from the relevant
conditional distribution. Then we re-estimate µ∗ using (6.13), with vh replaced
by the estimates of E(Uh). The iterations are terminated when convergence
is achieved. This should not take more than a few iterations.

When the variance of the (normal) distribution of X∗ is not known either,
it can be estimated similarly, using the second equation in (6.11). This is
somewhat more complex because of the intervening term

∑
h ph var(Uh). We

may start by evaluating var(Uh) for the uniform distribution. This implies
a moment matching estimate of var(U), which can then be used to update
var(Uh), as well as the expectations E(Uh) and E(U). In fact, estimation of the
expectation and variance of U should be meshed in one; that is, one iteration
of moment matching should update estimates of both E(Uh) and var(Uh) for
all h.

Note that a sample distribution of X, given by the proportions p̂h , can
strongly contradict a particular distributional assumption about X∗. For ex-
ample, a distinctly bimodal categorical variable X cannot be a rounded version
of a normally distributed variable X∗.

6.7.2 Bootstrap

Finally, we discuss estimation of the sampling variance of the parameters
associated with X∗. We apply a general method called bootstrap, which is
based on repeated applications of the estimator to samples drawn from the
original sample. Suppose the observations xj , j = 1, . . . , n, are independent
and n is sufficiently large. Bootstrap proceeds by the following steps. First
draw a simple random sample of size n, with replacement, from the n observed
units and apply the estimator(s) on this sample, resulting in estimate θ̂(1).
Replicate this process (sampling and estimation) to obtain a large number (M)
of so-called bootstrap replicate estimates θ̂(m), m = 1, . . . , M . The bias and
sampling variance of the estimator θ̂ are estimated by their sample versions
evaluated on the bootstrap replicates:
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Table 6.2. Summary of the annual income in a survey. Monetary values are in
thousands of Euros. Sample size n = 12 000.

Income category (thousand Euros)

From 0 10 20 30 40 50 75 100
To 10 20 30 40 50 75 100 +∞
Typical value 5 15 25 35 45 62.5 87.5 200

Subjects 43 1347 3068 2890 1943 2081 470 158

B̂
(
θ̂; θ
)

= θ̂ − ¯̂
θ ,

v̂ar
(
θ̂
)

=
1

M − 1

M∑
m=1

(
θ̂(m) − ¯̂

θ
)2

,

where ¯̂
θ =
(
θ̂(1) + · · · + θ̂(M)

)
/M . Bootstrap is an example of applying the

computer’s power and speed to make up for our analytical inadequacies.

Example 14. A survey of the annual income of the labour force of a European
country in year 2003 concluded with the summary given in Table 6.2. We
describe how a set of plausible values of the income is generated based on this
table. The coarse variable, with eight categories and typical values given in
the third row of the table, has sample mean 40 708 Euro and sample standard
deviation 25 591 Euro.

We assume that the values of income have a log-normal distribution. This
assumption is often well supported for variables in monetary units, such as
house prices, income, the values of assets and liabilities of companies, and the
like. Thus, the logarithm of the income is assumed to be normally distrib-
uted. We estimate the mean and standard deviation of this distribution by
maximising the log-likelihood

log(n!)−
H∑

h=0

log(nh!)+
H∑

h=0

nh log
{

Φ

(
ch+1 − µ

σ

)
− Φ

(
ch − µ

σ

)}
, (6.14)

where nh are the counts in Table 6.2, Φ is the distribution function of the
standard normal distribution, and N (µ, σ2) is our target, the original nor-
mal distribution. We can ignore log(n!) and the first summation in (6.14),
which do not involve the parameters µ and σ. The remainder is relatively
easy to evaluate, yet its derivative is not. We therefore search for the maxi-
mum by evaluating the log-likelihood over a grid of values of µ and σ, locate
the provisional maximum, and then refine the grid, find the maximum on
it, and continue until the grid is so fine that the maximum is located with
sufficient precision. We start with the values µ = 10.4, 10.41, . . . , 10.5 and
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Table 6.3. Estimates of the conditional means and standard deviations within the
eight income categories indicated in Table 6.2. Based on the uniform and the fitted
normal distribution on the log-scale.

Income category (thousand Euros)

From 0 10 20 30 40 50 75 100
To 10 20 30 40 50 75 100 +∞
Means Ê(Uh)

Uniform — 9.616 10.127 10.463 10.714 11.043 11.379 —

ML fit 9.065 9.695 10.128 10.453 10.704 10.989 11.342 11.676

Standard deviations
√

v̂ar(Uh)

Uniform — 0.200 0.117 0.083 0.064 0.117 0.083 —

ML fit 0.135 0.164 0.114 0.083 0.064 0.113 0.080 0.149

σ = 0.40, 0.41, . . . , 0.50 and find that the maximum value of the log-likelihood
is attained for µ = 10.46 and σ = 0.47. In the second round, we evaluate
the log-likelihood in the range 10.45–10.47 for µ and 0.46–0.48 for σ, find-
ing the provisional maximum at N (10.464, 0.4702

)
. By the next round, we

conclude the search at N (10.4643, 0.46962
)
; the attained maximum, equal to

−20 877.91 (with the functions of the factorials in (6.14) omitted), is of no
importance on its own but is useful for comparisons with the log-likelihood at
other points (µ, σ).

The fitted log-normal distribution has expectation 39 126 and standard de-
viation 19 437; see Section A.10.1 for the relevant formulae. Given the sample
size, this is a substantial change from the sample mean and standard devia-
tion of the coarse variable X, which are unduly affected by the typical values
set for the extreme bins.

Table 6.3 gives the within-category (conditional) means and standard de-
viations based on the uniform distribution and the maximum likelihood fit. It
shows that the uniform distribution fits well in the mid-range of the values but
is problematic near the tails. In fact, uniform distributions cannot be fitted
to the extreme categories because they both correspond to infinite intervals
on the log scale.

For generating a set of plausible values of income, we require an estimate of
the sampling distribution of the estimator of

[
E{log(X∗)}, √var {log(X∗)}

]
.

This we obtain by bootstrap. We replicate 1000 times the processes of resam-
pling from the sample given in Table 6.2 and estimation by iterated moment
matching. The mean of the bootstrap estimates is (10.4643, 0.4696) for the
mean and standard deviation, respectively. It agrees with the maximum likeli-
hood estimate to four decimal places, indicating that the bias of the moment-
matching estimator is small or none. The bootstrap estimates of the standard
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errors are 0.00451 and 0.00338. The former figure can readily be translated
to the original scale. As exp(1 + α) = α when |α | is small, it indicates that
the standard error corresponds to approximately 0.45% of the mean. The
pairs of bootstrap replicate estimates are correlated very weakly, so plausible
values of the mean and standard deviation can be generated independently.
The bootstrap replicates can be plotted to check that their distribution is
very close to (bivariate) normality; we omit the details to conserve space. To
conclude, plausible parameters of the log-normal distribution are drawn from
the bivariate normal distribution with mean (10.4643, 0.4696)� and variance

matrix 10−6

(
4.512 0

0 3.382

)
.

Having fitted a complete-data distribution using, in essence, an unverified
assumption of log-normality, we can now look back and assess whether the
fitted, or indeed, plausible, distributions are realistic for the observed distrib-
ution of the coarse variable given in Table 6.2. A method based on hypothesis
testing compares the observed proportions p̂h with the fitted probabilities
r̂h = F (ch+1 ; θ̂)−F (ch ; θ̂), where F is the distribution function of the fitted
log-normal distribution, the exponential transform of N (10.4643, 0.4696). The
test statistic is

H∑
h=0

nh
(p̂h − r̂h)2

r̂h
, (6.15)

and under the hypothesis that the distribution given by F does generate
the proportions r̂h it has, asymptotically, the χ2 distribution with H degrees
of freedom. The approximation due to asymptotics is not a problem in this
instance (n = 12 000), but, asymptotically, most hypotheses of special cases
are rejected because the test has a very high power and detects even a minute
deviation from the hypothesis. In our case, the value of the test statistic is 1.15,
and it would be compared with the 0.95-quantile of χ2

7 , equal to 14.1. The
fit is extremely good. The largest contribution to (6.15) is 0.49 for category
30 000–40 000 Euro, for which the recorded count is 1943 and the fit is 1974.

A more suitable method is based on generating datasets from the fitted
distribution; see Section 1.3.1. We replicate this process 19 times, creating,
together with the recorded table of counts, a 20 × 8 matrix of counts. A set
of such counts is displayed in Figure 6.3, with the realised counts drawn by
thick dashes. The counts are on the log scale to reduce their disparities. The
realised counts do not stand out, so we have found no contradiction with the
assumption of log-normality.

It may at first appear that a rather extravagant amount of computing is
involved in this example. The amount and intricacy of programming might
be a better gauge of the analytic effort. In any case, modern computers and
software are very efficient. All the computing for this example took about 20
seconds on a laptop computer. Of course, the programming took much longer,
but the expenditure of time (a few hours) is minor in comparison with the
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Fig. 6.3. The realised and simulated counts in Example 14. The realised counts are
drawn by thick dashes (largely obscured).

effort of collecting the data and the importance of the inferences made based
on numerous analyses planned to be conducted with the survey data.

Suggested Reading

The subject of imperfect measurement, with normally distributed distortions
in particular, is treated comprehensively by [54]. Impartiality is defined and
motivated and its importance in clinical trials discussed in [149]. The SimEx
method was introduced by [23]. A practically oriented textbook on measure-
ment errors for more complex models is [15]; it deals with SimEx extensively.
Classic texts on the methods for latent and manifest variables in psychomet-
rics (assessment of mental skills) are [130] and [29]. A collection of applications
in educational testing, some of them dealing with distortion due to the sub-
jective nature of the assessment, is presented in [115]. Methods for coarse data
are reviewed by [73], and [75] presents an original example that studies the
uncertainty brought about by coarsening. Studying the impact of rounding
in an analysis has a very long history; the so-called Sheppard’s correction is
attributed to [182]. Another reference of historical importance is [47]. In the
literature, coarse data are often referred to as grouped data.

Censored data arise when the time of an event is not recorded with preci-
sion but is known to have exceeded a recorded limit (e.g., the time when the
study was concluded). Such data can be regarded as coarsened so that the
latent value is recorded whenever censoring is not applied and is in a special
‘bin’ otherwise. There is an extensive literature on censored data, especially
in connection with survival analysis. A seminal paper on survival analysis is
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[26]; [91] and [28] are standard texts on the subject that have withstood the
passage of time. A comprehensive reference to bootstrap is [46].

Problems and Exercises

6.1. A study is planned in which the outcome variable will be recorded on
a simple random sample from a large population with a known positive
measurement-error variance σ2

e . The measurement process is pointwise un-
biased. Suppose each measurement involves a unit cost. Show that the pop-
ulation mean of the variable is estimated with greater precision if a single
measurement is applied on a sample of Kn subjects than K replicate mea-
surements on each of a sample of n subjects. Revise this conclusion if the
second and consecutive replicates involve a lower unit cost, say, by Q%, and
the same overall funds are available in each scenario.

6.2. A study intends to collect information about a (latent) variable X∗. Op-
tions for the measurement of X∗ include a so-called gold standard, which
establishes the value of X∗ with precision, but the largest sample size that
such a study could afford is n0 . With a different instrument, the sample size
n1 > n0 could be afforded, but the measurement process, although pointwise
unbiased, would have the variance σ2

1 . With a third instrument, n2 > n1 ob-
servations could be afforded, but the measurement process has variance σ2

2

and its bias is known to be in the range (−B,B). The positive constants B,
σ2

1 , and σ2
2 are known, as is the population variance σ2

∗ = var(X∗). Which
instrument would you select (and in what circumstances) for estimating the
population mean of X∗?

6.3. Implement the general solution of the problem in Exercise 6.1 in a com-
puter programme and expand it in the following direction. The measurement
variances are not known and would be estimated by replications of the mea-
surement process on a random sample of subjects. This would be done in
advance, and its results would inform the design of the study. You may have
some idea of the size of the variances (say, in the form of a plausible range for
each of them). Experiment with allocation of resources to the replicate mea-
surements and the study proper; the measurements made in the replications
may entail the same costs as the measurements with the same instrument in
the study proper, or they can be somewhat cheaper (e.g., by 20%).

6.4. A professional organisation has a test that is administered to the appli-
cants for a particular licence. Suppose the test scores are pointwise unbiased
and impartial for the ability or skill that is meant to be assessed. Suppose the
organisation decides to permit appeals. An applicant can re-sit for the test
once if he or she presents a credible explanation for the poor performance.
There are several options for how to score the responses from the second test
(the re-sit):
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1. the first score is ignored;
2. the better of the two scores is adopted;
3. an a priori set ‘penalty’ is subtracted from the score of the re-sit.

Discuss what happens to the properties of pointwise unbiasedness and impar-
tiality when one of these scoring schemes is adopted. In this setting, relate
the idea of ‘fairness’ to impartiality. Do they represent the same property?

6.5. Consider the following variation of Example 12 in Chapter 5. Whenever a
value of X is missing an alternative (second-rate) measurement of X, denoted
by X ′, is made. The variables X ′ and X are related by the model

X ′ = X + δ

with δ distributed according to N (0, σ2
x

)
; see (6.1). Similarly, a substitute

measurement Y ′ is made whenever Y is not observed and Y ′ is related to Y by
an analogous model, with a different measurement-error variance σ2

y . Discuss
how the substitute measurements could be used for estimating the regression
E(Y |X) and implement the procedure for a simulated or real dataset. (You
may use a real dataset, but delete some observations in it and replace them
by simulated values of X ′ and Y ′.)

6.6. Transformed measurement-error processes. Suppose a manifest variable
X is related to its latent version X∗ by the pointwise unbiased model (6.1),
with the usual assumptions of normality and independence. Suppose the tar-
get variable is a monotone transformation of X∗, g(X∗). For a variety of
functions g (logarithm, power, a distribution function, and the like), explore
the properties of g(X) as a manifest for g(X∗). Do this analytically whenever
possible and empirically otherwise.

6.7. This exercise is suitable for group discussion. Review the syllabus of a
subject you studied in the last term and the questions on its final exam.
Define carefully the curriculum (domain) of the subject and assess each exam
question whether and to what extent it might be partial. Compile a list of
issues on which you have failed to agree and summarise your recommendations
for preparing exam papers in the future. How is impartiality of the grade for
the exam related to the impartiality of the scores for the individual questions?
Are there subjects for which impartial exams are more difficult to prepare than
for others?

6.8. Revisit the proof of the identity in (6.5) and generalise it to a vector Z
with an arbitrary trivariate normal distribution. Can the identity be gener-
alised to a vector (with a multivariate normal or another joint distribution)
of arbitrary length?

6.9. For the assessment of a recovering patient by a consultant, consider the
various types of replications: the same patient at the same time, assessed by
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the same or a different consultant; the same patient at a different time (say,
a few hours earlier or later) assessed by the same or a different consultant.
The latent variable is dichotomous: appropriateness to discharge in two days’
time or not. Discuss how in some types of replication the assessment may
be biased and in others not. Rephrase the problem for the setting with the
outcome that indicates successfully solving or failing to solve a problem (of a
particular kind) in an exam.

6.10. Illustrate the phenomenon of attenuation in simple regression on a real
or simulated dataset; see Figure 6.1. Generate a diagram with several panels
with gradually increasing measurement-error variances applied to the same
‘latent’ dataset. As a more ambitious alternative, produce an animated graph
by redrawing the ‘manifest’ points and the fitted line in the same graph with
a time delay that would generate the desired effect.

6.11. Derive the necessary and sufficient conditions for a misclassification
process among the ordered categories 1, 2, 3, and 4 to be unbiased.
Hint: Express the condition in terms of the transition matrix T.
What condition(s) have to be added for pointwise unbiasedness?

6.12. Explain how the conclusion that p = p∗ only when p∗ = (1
2 , 1

2 ) in
Section 6.4 is extended to variables with more than two categories.

6.13. In the setting of a simple regression on a latent variable X∗ represented
by a manifest variable X related to X∗ by the model in (6.1), explore the
consequences of correcting for attenuation using an incorrect or estimated
value of the measurement-error variance σ2

δ .
Hint: Follow the outline of a similar exploration in Section 1.1.1.

6.14. Express the estimator of the residual variance σ̂2 of an outcome variable
Y on a manifest covariate X in the simple regression in terms of the values
of the latent covariate X∗. Find a transformation of σ̂2 that is linear in the
total of squares x�x of the values of the manifest variable. Estimate σ2 by
SimEx using a linear extrapolation based on this transformation. Show that
the naive estimator of the residual variance (which ignores the measurement
error) is, in expectation and with some approximation, an increasing function
of the measurement-error variance σ2

δ .

6.15. Explain the origin of the rule that states that the variance of the
rounded version of a variable is smaller by ∆2/12 than the variance of the
original variable X∗; ∆ is the width of the interval (bin) that is rounded to
the same value. For example, ∆ = 0.1 when rounding to one decimal place is
applied. Discuss when the rule is suitable and when it is not.
Hint: Assume that the conditional distribution of X∗ within each bin is uni-
form.
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6.16. Explain how a random sample from the conditional density in (6.10)
could be drawn by rejection sampling. Implement the method for several
common distributions (normal, exponential, power, and the like) of the la-
tent variable.

6.17. In the assessment of a feature of a residential property (a house or
a flat), such as the foundations, roof, windows, and the like, surveyors use
the ordinal scale of integers from 0 to 10. The interpretation of score k is
that 10k% of the replacement cost of the feature would be required for the
repairs or improvements to bring the feature up to the prevailing standard.
In a survey of single-household residential properties of a country, a random
subsample of the properties is assessed twice. The two surveyors who assess a
property do not know about one another’s involvement or the score assigned.
Describe a realistic model for misclassification that takes account of two kinds
of discrepancies. One is such that the surveyor assigns a score that neighbours
on the ideal score; with the other, a randomly selected score is given as a result
of a gross error. Describe how the scores from the twice-surveyed properties
could be used for estimating the parameters of this misclassification process.
Derive the relevant moment-matching equations.

6.18. Suppose two normally distributed latent variables X∗ and Y ∗ are ob-
served through their coarse versions X and Y . Explore by simulations the
differences between the regressions E(Y ∗ |X∗) and E(Y |X) for a range of
settings of the cut points (their numbers and locations and typical values),
and draw up a set of guidelines for coarsening for which the difference would
be sufficiently small.

6.19. In a study concerned with recovery from a disease, the concentration
of a compound in the bloodstream of each patient is measured twice at the
beginning of a period of intensive treatment and once at the conclusion two
weeks later. The sets of three measurements are listed in dataset EX4a.dat
on www.sntl.co.uk/BookA/Data; they are in log-units per ml. Fit the ordi-
nary regression of the concentration at the conclusion on the concentration
at the beginning of the study. Take account of the uncertainty about the
measurement-error variance at the beginning by multiple imputation of plau-
sible values of the variance. Assuming that the measurement-error variance at
the conclusion is similar to the variance at the beginning, discuss how useful
it would be to have a replicate measurement also at the conclusion.

6.20. Find information about the use of plausible values for the students’
proficiencies in the National Assessment of Educational Progress (web site
www.nces.ed.gov/pubsearch). They represent the unknown ‘true’ scores
(abilities) of the survey subjects (students) and are derived from the fit
of a complex item-response model. Relate these plausible values to the
measurement-error framework presented in this chapter.
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6.21. Explore some analytical alternatives to maximising the likelihood in
(6.14), the Newton method in particular.

6.22. Re-analyse the study in Example 14, with the uniform conditional distri-
bution assumed within each bin on the original scale. Compare the plausibility
of this assumption with its counterpart in the analysis. To avoid problems with
the infinite length of the bin for the highest incomes, impose the upper limit
of one million Euro. Devise an improvement on the diagram in Figure 6.3 so
that the realised and simulated counts would be much easier to discern.



7

Experiments and Observational Studies

Experiments and observational studies are two kinds of statistical investi-
gations. Experiments are characterised by tight control over the processes
involved. They tend to incur high expenditure per subject (unit), but have
greater potential to collect more information in relatively small samples. In
contrast, observational studies involve much less control, their expense per
unit tends to be lower, but inferences are more difficult to make, and some of
the difficulties could not be resolved by increasing the sample size. In many
settings, experiments are not feasible, and inferences have to be based on
observational studies. Their analysis is more challenging than that of experi-
ments and often has to rely on some unverifiable assumptions.

This chapter presents a framework in which experiments and observational
studies are simply ‘studies’ distinguished by the presence or absence, or in gen-
eral the level, of the designer’s control over the assignment of treatments to
units. In several aspects, this approach parallels the sampling theory intro-
duced in Chapter 3. In particular, it makes use of a missing-data formulation
of the inferential task.

Experiments and observational studies relate to a population for which
inferences are intended. For instructional reasons, we assume at the beginning
of this chapter that the studies involve the entire population, so as to set aside
any issues related to good representation. These we address later in Section
7.2.2.

7.1 Comparing Treatments

We motivate the development of this chapter by a contrived example. Kevin
J., a recent graduate of college A makes a complaint stating that had he
attended college B (of the same type as A and involving the same costs), he
would have earned better grades, been better prepared for life, had better
prospects in further education, and acquired a greater potential to have high
income in the future. In ideal circumstances, these claims could be arbitrated
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by winding the clock back, wiping out all of Kevin’s experiences from school,
home, and the rest of his life over the four years he spent attending college
A, enrolling him in the alternative college B, and then comparing the grades
attained and other outcomes in the alternative versions of the reality. An
equally unrealisable proposal is to compare two identical copies (clones) of
Kevin J., one enrolled in college A and the other in college B.

The two proposals have one important feature in common—they attempt
to compare like with like. As they are not realistic, we have to consider some
compromise on this absolute standard. Kevin J., or his advocates, may point
to higher grades attained by graduates of college B than by graduates of
college A, but this may be a consequence of the ability of college B to attract
students with better background. So we should compare Kevin’s grades with
the grades of students in college B who were like Kevin when he enrolled in
college A.

We relate several key definitions to this story. Attending college A and
college B are two treatments we wish to compare. In general, there may be
more than two treatments (alternatives). The result of a treatment, recorded
as a single value, is called the outcome. For Kevin J., or unit i, we consider
the values of two outcomes, Y

(A)
i following treatment A and Y

(B)
i following

treatment B. Their difference, Y
(B)
i − Y

(A)
i , or the variable Y (B) − Y (A), is

the unit-level (Kevin J.’s) effect of treatment B over treatment A. The fun-
damental difficulty in establishing this effect, or even estimating it, is that no
more than one of the outcomes Y

(B)
i and Y

(A)
i can be realised and recorded

for any unit i. We therefore call them potential outcomes .
By W we denote the assignment variable; Wi = T if member i is assigned

treatment T; in our case, T = A or B. We can recode W to a 0/1 variable, with
the understanding that 0 stands for A and 1 for B. Further, by Z we denote
the variable that captures the background; usually it is multivariate, but that
generates no complexities additional to the univariate case. For simplicity, we
assume first that Z is a single categorical variable with a small number of
categories.

In one interpretation, Kevin J. is the sole unit because we focus on him
as the only student. It is more appropriate to consider a population of units
(students) from the catchment area (constituency) of the two colleges, who
could conceivably have attended either college. This we can reduce to the sub-
population of those who have the same background as Kevin J. The variables
that describe or define the background and what we would regard as ‘the
same’ (background) would have to be defined carefully.

We call the variable Y (B) − Y (A) an effect to emphasise that we want to
attribute its deviation from zero to no other cause than using, applying, or
administering treatment B instead of A. Such an attribution is appropriate
only when the (hypothetical) applications of the treatments A and B on a
unit differ in no aspect other than the identity of the treatment. Further, the
label of the treatment has to be genuine—each application of treatment A (or
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B) has to follow the same protocol (procedure), with all its details, without
any deviations.

We use the term effect exclusively in association with a cause (use of one
treatment instead of another with no other circumstance altered). Thus, it
implies that although one treatment was applied, the other could equally well
have been applied instead. For example, it makes sense to talk about school ef-
fect (for one student or a population of students) if, even though they attended
one school they could have attended another as an equal alternative. In prin-
ciple, a study could be designed in which the school to be attended would be
assigned by design. The effect of a country on a subject’s freedom, happiness,
or well-being is more problematic because a person could not be moved from
one country to another without altering his or her other circumstances (val-
ues of variables), such as proximity of and close communication with family,
relatives, and friends, as well as other elements of the social, economic, and
physical environment. The effects of gender and age are meaningless terms
because the values of these variables cannot be assigned. Conceivably, a per-
son’s sex could be changed by surgery, but it would be impossible to discount
the experiences and influences exerted on the subject during the life prior
to the change. In brief, effect is a meaningful term only when the treatment
could conceivably be manipulated in isolation, without influencing any other
variables that are well defined at the time of such manipulation, or earlier.

Variables defined after administering the treatment are called interme-
diate. Their values depend on the treatment applied. We can avoid some
confusion by defining potential versions of such variables by reference to the
treatment applied. For example, a summary U of the friendships with class-
mates is defined assuming that the member attended school A (variable U (A))
and school B (variable U (B)).

7.1.1 Experimental Design

The population-level effect of treatment B over treatment A is defined as
the difference of the expected outcomes, or the expectation of the unit-level
effects,

∆AB = E
(
Y (B)

)
− E
(
Y (A)

)
= E

(
Y (B) − Y (A)

)
, (7.1)

where the expectations are taken over the population. It is also called the
average effect. We assume that each expectation in (7.1) is well defined.
(This is an issue only in infinite populations and with outcomes that are
not bounded.) For a population of size N , only N of the 2N values Y

(A)
i

and Y
(B)
i , i = 1, . . . , N , are available, one per member. We can address this

problem by imputation—defining substitute values for each missing item in
the N × 2 matrix

(
Y(A), Y(B)

)
. A well-motivated proposal is to borrow a

recorded value of Y (A) for each missing value of Y (A), and similarly for Y (B).
How to select such a value is discussed in Section 7.3.1. A seemingly easier
method estimates ∆AB by the difference of the observed means,
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∆̂†
AB =

N∑
i=1

Y
(B)
i I(Wi = B)

N∑
i=1

I(Wi = B)

−

N∑
i=1

Y
(A)
i I(Wi = A)

N∑
i=1

I(Wi = A)

, (7.2)

where I is the indicator function; I(C) = 1 if statement C is true and I(C) = 0
otherwise. The expectation of this estimator is the difference of the conditional
expectations

E
(
∆̂†

AB

)
= E

(
Y (B) |W = B

)
− E

(
Y (A) |W = A

)
,

denoted by ∆†
AB . We can ensure that ∆̂†

AB is unbiased for ∆AB , that is,
∆†

AB = ∆AB , only by arranging that W is independent of Y (A) and Y (B). This
is the purpose of experimental design. In studies for comparing two treatments
A and B, experimental design is a (probabilistic) prescription for controlling
the assignment variable W in such a way that W is independent of Y (A)

and Y (B). Randomisation is the process of assignment in which each member
(experimental unit) has the same pair of probabilities (pA , pB), with pA +
pB = 1, of being assigned to the respective treatments A and B. We say that
such an assignment is completely at random (CAR), or unconfounded. Under
randomisation, ∆†

AB = ∆AB . The variance var(∆̂†
AB) is difficult to evaluate

in general and requires further discussion of the assumptions made. The CAR
assignment mechanism can be related to the MCAR nonresponse mechanism
introduced in Section 5.3. In both settings, assignment and nonresponse, we
miss some data that would make the analysis much simpler.

In some randomised designs, the assignments are mutually independent.
Such an assignment (mechanism) is easy to implement, similarly to selecting
a random sample of subjects (who are to be administered treatment A) by
simple random sampling without replacement. The within-treatment sample
sizes, nT , T = A or B, are random; var(nT) = NpT(1 − pT). This may
be inconvenient for the management of the study. In small studies, too few
units may be assigned a treatment, less than the expected count NpT . We
can protect the study against such occurrence by selecting the units for a
treatment by simple random sampling with a fixed sample size.

In the perspective we have adopted, the values of Y (A) and Y (B) are fixed
for each member of the population, and the assignment W is variable—it is left
to chance, under designer’s control or otherwise, whether any particular unit is
assigned treatment A or B. This is very close to the design-based perspective
of Chapter 3, where we regarded the population values of a variable as fixed
and the sampling mechanism as the sole source of variation. Assignment can
be regarded as sampling from the 2N values of the two potential outcome
variables.

We use the notation Ii = I(Wi = A) and let
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pi = E(Ii) = P(Wi = A) ,

pi,i′ = E(Ii Ii′) = P(Wi = A and Wi′ = A) ,

for 1 ≤ i, i′ ≤ N . We assume that the within-treatment subsample sizes
nA = I1 + · · · + IN and nB = n − nA are fixed. As Ii are (dependent) binary
variables,

var
(
∆̂†

AB

)
= var

{
1

nA

N∑
i=1

Ii Y
(A)
i − 1

nB

N∑
i=1

(1 − Ii)Y
(B)
i

}

= var

(
N∑

i=1

Ii Y
(+)
i

)

=
N∑

i=1

Y
(+)
i

2
pi(1 − pi) +

N∑
i=1

∑
i′ �=i

Y
(+)
i Y

(+)
i′ (pi,i′ − pi pi′) , (7.3)

where Y
(+)
i = Y

(A)
i /nA + Y

(B)
i /nB . The second line is obtained by exploiting

the fact that the total Y
(B)
1 + · · · + Y

(B)
N is constant. We derived an analo-

gous formula in Section 3.2 for the sampling variance of the estimator of the
population total in a survey with the sampling design given by the joint dis-
tribution of (I1 , . . . , IN ). This establishes a direct connection of our problem
with sampling methods, and through them with missing data problems. It is
now easy to anticipate the difficulties we encounter when the joint distribu-
tion of the assignment indicators Ii is not known or is complex and related to
the values of some other variables, to values that were not recorded in partic-
ular. Before discussing this, we derive some simple cases that are of practical
importance.

A constant number of units nA means that var(I1 + · · · + IN ) = 0, or

N∑
i=1

pi (1 − pi) + 2
N∑

i=1

N∑
i′=i+1

(pi,i′ − pi pi′) = 0 ,

and since I1 + · · · + IN = p1 + · · · + pN = nA ,

2
N∑

i=1

N∑
i′=i+1

pi,i′ = −
N∑

i=1

pi +
N∑

i=1

N∑
i′=1

pi pi′

= nA(nA − 1) .

When each unit has the same probability p = p1 = . . . = pN , then p = nA /N .
When all the pairwise probabilities are also identical, pi,i′ = p(2) for all pairs
i �= i′, then

p(2) =
nA(nA − 1)
N(N − 1)

.
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With p and p(2) , equation (7.3) reduces to

var
(
∆̂†

AB

)
=

nA (N − nA)
N(N − 1)

⎧⎨⎩
N∑

i=1

Y
(+)
i

2 − 1
N

(
N∑

i=1

Y
(+)
i

)2
⎫⎬⎭

=
nA (N − nA)
N(N − 1)

N∑
i=1

(
Y

(+)
i − Ȳ (+)

)2

, (7.4)

where Ȳ (+) = (Y (+)
1 + · · · + Y

(+)
N )/N . This is the sampling variance of the

sample total of Y (+) in a survey with simple random sampling design without
replacement and fixed sample size nA ; (N−nA)/N = 1−f is the complement
of the finite-population correction.

The variance in (7.4) vanishes when the variable Y (+) is constant. Given
that the definition of Y (+) involves the numbers of units, nA and nB , this
is a rather esoteric condition, implying that cor

(
Y (A), Y (B)

)
= −1. Much

more commonly, the two potential outcomes are positively correlated. In fact,
the assumption that the effect Y (B) − Y (A) is close to a constant is often
reasonable; then the correlation is close to +1.

In the balanced randomised allocation design, N is even, p = 1
2 and p(2) =

1
4 (N − 2)/(N − 1), and Y (+) = 2(Y (A) + Y (B))/N . Therefore,

var
(
∆̂†

AB

)
=

1
N(N − 1)

N∑
i=1

(
Y

(A)
i + Y

(B)
i − Ȳ (A) − Ȳ (B)

)2

=
1

N − 1
varP

(
Y (A) + Y (B)

)
, (7.5)

where subscript P indicates that the variance is over the members of the
population. To find the optimal allocation among the randomised designs, we
search for the minimum of the expression in (7.4). Denote VT = varP

(
Y (T)

)
for T = A or B and CAB = covP

(
Y (A), Y (B)

)
, so that, for example,

VA =
1
N

N∑
i=1

(
Y

(A)
i − Ȳ (A)

)2

.

Now

var
(
∆̂†

AB

)
=

1
N − 1

(
N − nA

nA
VA +

nA

N − nA
VB + 2CAB

)
, (7.6)

and this function of nA attains its minimum when VA/n2
A = VB/n2

B , that is,
when

nA

nB
=
√

VA

VB
.
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Therefore, the optimal allocation is proportional to the population standard
deviations of the potential outcomes. The minimum variance attained is

min
nA

var
(
∆̂†

AB

)
=

2
N − 1

√
VA VB (1 + ρAB) ,

where ρAB is the correlation of the potential outcomes Y (A) and Y (B). Cal-
culation of this quantity for a range of plausible values of ρAB , VA , and VB

enables us to anticipate what the sampling variation of ∆̂†
AB might be. It is

not relevant to discuss what would happen if ρAB or a variance VT were re-
duced because they are population quantities, fixed and outside the control
of the study designer.

7.1.2 Assignment and Sampling Designs

The connection between assignment and sampling designs can be made ex-
plicit by translating an assignment design directly to a sampling design. The
sampling setting is as follows. We have a population of 2N members, two for
each unit. We denote them by two subscripts, indicating the unit and the
treatment, as (i,T), i = 1, . . . , n and T = A or B. The pairs of members (i,A)
and (i,B) form strata. The outcome variable is defined as Xi,A = −2Y

(A)
i

and Xi,B = 2Y (B)
i , so that the population mean of X is equal to the target

Ȳ (B)− Ȳ (A). Assignment design is equivalent to the stratified sampling design
with probabilities pi,A = 1 − pi,B with the pairs as strata, and fixed within-
stratum sample sizes equal to unity; pi,A;i,B = 0. Fixed within-treatment
sample sizes impose a between-stratum dependence.

Thus, an assignment design is an improper sampling design, as some
pairwise inclusion probabilities vanish. Further, the within-stratum (within-
subject) variances cannot be estimated; that would require at least two obser-
vations within some strata. This limits the direct application of the results in
Chapter 3 to the context of experiments. However, the designs of experiments,
often in small populations, are usually much simpler in relation to sampling
designs in large structured populations.

7.1.3 SUTVA Assumptions and Cluster-Randomisation

Not even by applying a treatment (A or B) on the entire population can we
compare the treatments with certainty, unless ρAB = −1. That is a conse-
quence of the randomness of the assignment W and the limitation of a single
treatment for each unit; the (potential) outcomes Y (T) entail no variation.
More explicitly, in our definition of Y (T) we assumed that their values are
stable and units do not interfere with one another’s outcomes. These assump-
tions, stable unit-treatment and variable assignment, are commonly referred
to by the acronym SUTVA.
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Examples of violation of SUTVA are studies of intervention, such as smok-
ing cessation or sexual abstinence, in which the units, say, students from the
same classroom or school, communicate, discuss the treatment applied to each
of them, and are bound to influence one another’s behaviour and therefore
their outcomes. The solution to this problem is to define units (clusters) that
do not communicate, such as schools, and apply the same treatment to each
member of a cluster. Such designs are called cluster-randomised. For instance,
the clusters may be households, schools, general (medical) practices, busi-
nesses, or even towns and postcode sectors.

Without such an arrangement, we have to consider more than two potential
outcomes, because apart from the treatment the outcome depends also on the
assignment of treatments to the other units of the cluster. In practice, this
becomes unmanageable for all but very small populations and when inter-
ference could occur only among a small subset of the 1

2N(N − 1) pairs of
units.

In some exceptional settings, pairs of (nearly) identical units are avail-
able. For example, some studies recruit twins and assign each pair of twins
(U1 , U2), independently, either to the treatment pair (A, B) or to (B, A), with
probabilities pAB = pBA = 1

2 . Such an assignment is CAR. Although rarely
an issue, we should bear in mind that the conclusions of a twins study are
usually aimed at a human population (with particular attributes) and not the
population of twins. The difficulties with locating and recruiting twins are a
strong disincentive to conducting such studies.

7.1.4 The Scale for Comparison

Potential outcomes Y (A) and Y (B) can be compared by means other than
their difference Y (B) − Y (A). In some contexts, the ratio Y (B)/Y (A), or its
logarithm, are more appropriate. We say that the outcomes are compared
on the linear scale by differences and on the multiplicative scale by ratios.
Ratios are appropriate only for outcomes with positive values that are all
distant from zero. The multiplicative scale becomes linear when the outcomes
are subjected to the log-transformation. In principle, any other (continuous)
monotone transformation can be applied to the outcomes, and the linear scale
used after this transformation.

From the purely analytical standpoint, the difference is preferred. However,
when we regard the difference as a summary of the pairs of potential outcomes
within units, we would like it not to be associated with the actual values of
Y (A) and Y (B). That is, a given unit-level effect ∆AB,i could be interpreted
without any reference to Y

(A)
i and Y

(B)
i . For example, when Y (T) is annual

income, comparison by means of ratio (percentage) is more appropriate in
many contexts. We would like to regard the increase from £10 000 to £10 500
and from £50 000 to £52 500 as the same, equal to 5%. On the linear scale,
the values of the increases £500 and £2500 differ a lot. A reference to the
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values of Y (A) would help to explain the disparity. After taking logarithms,
the two contrasts are both equal to log(1.05) = 0.049.

When the outcomes Y (T) are proportions (or percentages), which have to
be in the range 0–1 (or 0–100), both the linear and multiplicative scale may be
inappropriate. For small percentages, a fixed reduction (subtraction) may lead
to a negative percentage, an inadmissible value. Similarly, for percentages close
to 100%, a fixed increase may result in exceeding 100%. The odds, defined as
o(T) = Y (T)/

(
100 − Y (T)

)
, offer a practical solution. The appropriate scale for

the odds is multiplicative, using odds-ratios, so that o(T) would be comparable
when the roles of ‘success’ and ‘failure’ are interchanged and 100 − Y (T) is
used instead of Y (T). Thus, we should use the log-odds scale,

log
(

Y (T)

100 − Y (T)

)
.

If we insist on using the linear scale we should apply a continuous monotone
transformation g such that the difference g

(
Y (B)

) − g
(
Y (A)

)
would amount

to the same effect, as interpreted substantively, irrespective of the value of
Y (A).

An average (additive) effect of treatment B over treatment A is some-
times interpreted as a net addition to the (potential) outcome of treatment
A, implying the model

Y (B) = Y (A) + ∆AB + ε , (7.7)

where ε is a random variable with zero mean and is independent of Y (A). The
term ε is sometimes referred to as error. In most instances, this is inappro-
priate because no mistake has been committed; the model simply does not
provide a perfect description of how the outcomes are related. Thus, ε is more
appropriately regarded as a deviation from the very simple and in most cases
invalid model of identical unit-level effects.

When the unit-level effects ∆AB,i are widely dispersed, the average effect
∆AB does not summarise them effectively because many values of Y (B)−Y (A)

differ from ∆AB substantially. That reinforces the rationale for a transforma-
tion after which the model in (7.7) would be palatable.

7.2 Block-Randomisation

In block-randomisation, separate randomisation schemes are applied in each
subpopulation (stratum) into which the population P is partitioned. These
subpopulations do not overlap and cover P. For example, medical treatments
A and B may be assigned to patients suffering from a specified condition at
random within age groups, denoted by G1, G2, G3, and G4, but the pro-
portions of patients assigned the novel (test) treatment B is highest for the
youngest patients (G1) and lowest for the elderly (G4). Such a design may
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respond to clinical research priorities or ethical considerations or may be in-
strumental in easier recruitment of patients. The conduct of a study may be
devolved to several centres, each of them, in effect, conducting their own sub-
study, although the results are to be analysed only for the units from all the
centres. In this setting, block-randomisation may be used for administrative
convenience. Although in the practical versions of these examples the study
usually involves only a sample from the target population, we assume here
that the entire population takes part in the study, and each of its members is
assigned a treatment.

For motivation, consider the number of months after surgery until requir-
ing another treatment for a particular chronic condition. If younger patients
tend to be healthier and more resilient, their outcomes would be higher on av-
erage for both treatments A and B. Thus, any comparison of the realised out-
comes would be tainted by the uneven assignment of patients to treatments.
The obvious solution is to compare the treatments within groups, yielding a
comparison for each age group, and then combine the comparisons, to reflect
the composition of the population. In this context, the groups are referred
to as blocks and the term blocking is used for the separate randomisations
(and analyses) within the blocks. Note the close parallels with stratification
in sampling theory.

Let n
(k)
T be the number of units in block (group or centre) k = 1, . . . , K

assigned treatment T = A or B, and set N (k) = n
(k)
A + n

(k)
B . Further, denote

by V
(k)
T the subpopulation variance of the potential outcomes Y (T) in block

T, and by C
(k)
AB their covariance.

The within-block estimators of the treatment effect are

∆̂†,h
AB = E

(
Y (B) |W = B, G = k

)
− E

(
Y (A) |W = A, G = k

)
=

1

n
(k)
B

N∑
i=1

I(Wi = B) I(Gi = k) Y
(B)
i

− 1

n
(k)
A

N∑
i=1

I(Wi = A) I(Gi = k) Y
(A)
i ,

where G is the variable that identifies the unit’s block. These estimators are
unbiased for their respective targets ∆

(k)
AB and have variances

var
(
∆̂†,k

AB

)
=

1
N (k) − 1

(
n

(k)
B

n
(k)
A

V
(k)
A +

n
(k)
A

n
(k)
B

V
(k)
B + 2C(k)

AB

)
;

see (7.6). Hence, the pooled estimator

∆̂†,G
AB =

1
N

K∑
k=1

N (k)∆̂†,k
AB
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is also unbiased and has the variance

var
(
∆̂†,G

AB

)
=

1
N2

K∑
k=1

N (k)2

N (k) − 1

(
n

(k)
B

n
(k)
A

V
(k)
A +

n
(k)
A

n
(k)
B

V
(k)
B + 2C(k)

AB

)
. (7.8)

7.2.1 When and How to Block

In this section, we explore when blocking is rewarded by greater precision in
estimating the effect ∆AB . This amounts to comparing the sampling variances
in (7.6) and (7.8). An analytical comparison for a general setting is not fea-
sible, so we restrict our attention to some simple cases. It suffices to consider
the case of two blocks (K = 2); our conclusions can then be generalised by
mathematical induction.

When the blocks are relatively homogeneous and the within-block vari-
ances V

(k)
T are much smaller than the pooled variances VT , blocking may be

useful even if the assignment proportions n
(k)
A /N (k) are similar (or identical).

The covariances C
(k)
AB exert a limited impact on these comparisons because

their sizes are constrained by the variances V
(k)
A and V

(k)
B . The within-block

variances are much smaller than the pooled variances when the within-block
means of the potential outcomes differ across the blocks a great deal.

Next, suppose the within-block variances and covariance depend only on
the treatment. Then V

(k)
A = VA for each k, and similarly for VB and CAB . If

the assignment fractions nA/N (k) are also identical, then

var
(
∆̂†,G

AB

)
var
(
∆̂†

AB

) =
(

N2
1

N1 − 1
+

N2
2

N2 − 1

)
N − 1
N2

.

This ratio exceeds unity, since

N2
1

N1 − 1
+

N2
2

N2 − 1
− N2

N − 1
=

N1

N1 − 1
+

N2

N2 − 1
− N

N − 1

= 1 +
1

N1 − 1
+

1
N2 − 1

− 1
N − 1

,

and this exceeds unity by at least 1/{min(N1, N2)−1}. Thus, blocking is inef-
fective and may even be counterproductive (inflating the sampling variance),
when the blocks do not differ in their mean outcomes and the within-block
assignment fractions are similar. Note that a (completely) randomised as-
signment design D differs from the block-randomised assignment design with
assignment fractions identical to those in D. Blocking ensures that the assign-
ment fractions are adhered to within blocks, not only overall. By blocking,
the variety of assignments W that have positive probability is reduced.
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7.2.2 From Sample to Population

Thus far, we assumed that every member of the population (unit) is involved
in the study and is subjected to one of the treatments. When only a sample
of units is involved, the estimators ∆̂†

AB and ∆̂†,G
AB involve two sources of

variation: assignment and sampling (engagement in the study). We assume
that these two processes do not interfere; the sampling design does not involve
the values of the potential outcomes and the assignment does not depend on
any aspect of the sampling design other than the sample size and the values
of the covariates.

Methods for analysing sample surveys were dealt with in Chapter 3. Here
we discuss two key identities related to the problem of extending inferences
from a sample s to the target population P. For the population-expectation
of an estimator ∆̂ we have

E
(
∆̂
)

= EP
{

EW
(
∆̂ | s
)}

,

where the subscript P indicates expectation (averaging) over the sampling
process (samples s), and W over the assignment process. In particular, if ∆̂
is conditionally unbiased for every sample s with respect to the assignment
design, then it is unbiased also without conditioning and with respect to both
the assignment and sampling designs.

For the unconditional sampling variance, we have the identity

var
(
∆̂
)

= EP
{

varW
(
∆̂ | s
)}

+ varP
{

EW
(
∆̂ | s
)}

; (7.9)

there are two contributions to the unconditional variance of ∆̂: the average
assignment-related variance for a fixed sample and the sampling variance of
the average sample-level effects. Even when the bias of ∆̂ vanishes for every
sample the second term in (7.9) may not vanish because the average effects
are not constant across samples s.

In a study with cluster-randomisation, the treatment may be applied not
to all the units, but only to a sample in each cluster. Then estimators of the
within-block average effects involve two sources of uncertainty, the assignment
and sampling, just like in a study with no blocking. For each cluster, we may
consider a superpopulation of elements; this introduces sampling as an addi-
tional source of uncertainty. In principle, a superpopulation may be considered
also for the clusters, so that the clusters involved in the study are a sample. We
may also consider hypothetical replications in which the clusters are formed
by different sets of individuals (schools with different students, neighbour-
hoods with different households, and the like), but with similar background
profiles. The issues of good representation are relevant throughout. A suitable
definition of the superpopulation may always resolve it, but only superficially,
because the target of inference should be defined at the planning stage. If this
was not done then, it should be done later, but without any regard for the
sample that was observed.
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An extreme form of blocking arises when the units are first paired, and
the units (i1 , i2) in each pair are assigned treatments (A, B) (i1 to A and i2
to B) or to (B, A). Such blocking is referred to as matching . Twin studies are
an example of matching. The discussion earlier in this section suggests that
matching is useful when the units within pairs have very similar potential
outcomes (Y (T)

i1 ≈ Y
(T)
i2 for T = A and B) and the pairs differ a lot from

one another. Note that any matching can be based only on the values of the
background variables, prior to the study, and so we often have to face the
uncertainty about the usefulness of matching, whether and to what extent
similar background implies similar outcomes. This highlights the need for
collecting intelligence about background variables at the planning stage and
using for matching those that are (believed to be) highly correlated with the
outcomes.

The rationale for matching can be formulated in terms of missing data.
Suppose unit i1 is assigned treatment A, Wi1 = A, and its pair i2 treatment
B. It would be hard to find a substitute better than Y

(B)
i2

for the missing
outcome Y

(B)
i1

. Nonetheless such a substitute is not perfect, because it is likely
that Y

(B)
i2

�= Y
(B)
i1

.
Intermediate variables should never be used for matching. First, it would

amount to matching post hoc, as their values can be established only after
administering the treatments. Further, unit i with U

(A)
i = u, established af-

ter having received treatment A, cannot be regarded as a match for unit i′

with U
(B)
i′ = u, after having received treatment B, because this is a match

on neither U (A) nor U (B); the potential intermediates U (A) and U (B) are dis-
tinct variables. Matching on either U (A) or U (B) would be appropriate if both
values were available for all subjects. This suggests an avenue for using an in-
termediate variable for matching, by declaring the unobserved values of U (T),
T = A, B, as missing and applying a suitable (multiple) imputation method
for them.

7.3 Observational Studies

In real life, the assignment variable W is often of keen interest; we select
among alternative treatments (schools, jobs, providers of services, shops, em-
ployees, and the like), trying to maximise the benefit to us (our future out-
come). We base such decisions on the knowledge of our own background (or
the background of the unit about to be treated), as well as guesses, not always
very good ones, about the values of the potential outcomes. In observational
studies, the assignment is not controlled and is left to be set by the circum-
stances, usually by the choices made by the subjects or their representatives.
The (joint) distribution of the assignment W is then not known, and neither
are any of its summaries, such as the number of units receiving treatment A.
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In Section 7.1, we defined the term CAR for assignment designs that are
completely randomised. In all but some esoteric settings, it is highly unlikely
that the assignment would be CAR, especially when the units (human sub-
jects) are strongly motivated to avoid it. By the time they are making their
choices, they cannot influence the values of the background variables Z but
may make good (intelligent) guesses about the values of their (future) poten-
tial outcomes Y (T). We say that such choices are informed.

An assignment that is not CAR may be CAR for each of the subpop-
ulations defined by one or several background variables Z. For example, it
may be CAR for all four categories defined by sex (M or F) and immigration
status (born in the UK, coded as H, or abroad, as O) in a particular study,
but with different pairs of probabilities (pA,G , pB,G), where G stands for the
combinations MH, FH, MO, and FO. Such an assignment design is said to be
at random (AR). It is qualified by the background variables (sex and immi-
gration status in this example). The background variables have to be defined
prior to assignment and their values have to be known for each unit.

An AR assignment (mechanism) is much more general than CAR, but as-
suming it is not always appropriate. Rarely is it possible to establish whether
a particular assignment mechanism is AR with respect to a given set of vari-
ables Z. However, by adding variables to Z we do no harm to our chances
of attaining AR. This suggests that we should be liberal in recording back-
ground variables in an observational study. The flip side of this suggestion is
that recording more variables (increasing the response burden by requesting
more detailed information) may discourage full cooperation and bring about
other difficulties, such as nonresponse. Anticipating that we would analyse an
observational study with assignment design that is AR as a block-randomised
experiment suggests some other deficiencies, as discussed in Section 7.2.1. Note
the parallels of how we discuss assignment here and nonresponse in Chapter
5.

There are assignment mechanisms that are neither AR nor CAR; we call
them ‘not at random’ (NAR) or nonignorable. The latter term can be moti-
vated by the inequality E(∆̂†

AB) �= ∆AB . The conditioning on W cannot be
ignored, not even when the expectations are restricted to subpopulations de-
fined by the background variables Z. Assignment mechanisms AR and NAR
are called confounded ; AR mechanisms are confounded with Z (and not with
Y ), whereas NAR mechanisms are confounded with Y , even after conditioning
on Z. With CAR, we can make straightforward comparisons without paying
any attention to the covariates Z; with AR, the covariates are relevant.

A simple example of NAR assignment is given in Table 7.1. The assignment
W is NAR because it depends on the differences Y (A) −Y (B) even within the
groups defined by sex and immigration status; treatment A is assigned (se-
lected) with higher probability, 0.8, when the outcome with A is greater than
12 (except for two units) and with lower probability, 0.2, when the outcome
of treatment B tends to be smaller than its average. The unit-level effects are
graphically represented in Figure 7.1 for the four background categories. For
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Table 7.1. Example of a nonignorable assignment.

P(W = A) Sex Status
Outcome

Y (A) Y (B)
P(W = A) Sex Status

Outcome

Y (A) Y (B)

0.8 M H 17 14 0.8 F H 14 12

0.8 M H 15 12 0.8 F H 15 10

0.2 M H 12 10 0.2 F H 12 12

0.2 M H 11 12 0.2 F H 14 11

0.8 M O 14 13 0.8 F O 13 10

0.8 M O 15 13 0.2 F O 12 10

0.2 M O 10 11 0.2 F O 16 12
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Fig. 7.1. Unit-level effects for the data given in Table 7.1. The effects are marked
by symbols ‘H’ when P(W = A) = 0.8 and ‘L’ when P(W = B) = 0.8.

MH, MO, and FO, units that are selected to A with high probability (symbol
‘H’) have smaller average effects than units selected to A with low probability
(symbol ‘L’).

In any one study, we observe only half the 14 × 2 values of the potential
outcomes Y , so we could not infer the insidious nature of the assignment
process. For example, if we happen to assign treatment A to the seven units
that have high probabilities of being assigned A and treatment B to the other
seven units, the naive estimator of the average effect, (7.2), is ∆̂†

AB = −3.6,
whereas the average effect is ∆AB = −2.0.

With the complete data on the potential outcomes, the bias of ∆̂†
AB can

be established by evaluating the estimator for all the 214 = 16 384 possible
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Fig. 7.2. Empirical distributions of the estimator ∆̂†
AB for the setting of Table 7.1

with assignment design indicated in the subtitles of the histograms. The vertical
solid line represents the target and the dots the expectation of the estimator.

assignments. This does not represent a substantial computing or programming
task, but if it did, the bias could be estimated by replications of the assignment
process. Note that the estimator ∆̂†

AB cannot be evaluated for the allocations
in which every unit is assigned the same treatment. These two assignments
can be ruled out, together with some other severely unbalanced assignments
that assign one of the treatments to h and the other to N − h units for small
h, such as h = 1 and h = 2. But the assignment can be constrained to have
exactly seven units (or 6–8 units) assigned to either treatment.

In general, replications are much easier to program than the enumeration
of all the possible assignments. The left-hand panel of Figure 7.2 summarises
a set of 10 000 replications of the NAR assignment mechanism applied to the
14 subjects with complete data given in Table 7.1. The target of estimation,
∆AB = −2.0, is marked by the solid vertical line, and the empirical mean of
the estimates, E(∆̂†

AB) .= −2.98, by the dotted vertical line. The bias of nearly
−1.0 is a result of the nonignorable assignment process. Only 650 (6.5%) of
the replicates yield estimates greater than the target −2.0. The empirical
sampling variance of this estimator is 0.373. In the replications we discarded
every realised assignment that would have two or fewer units in a treatment
group; only 22 such assignments (0.2%) were discarded.

The right-hand panel gives the same summary for a set of 10 000 replica-
tions of the CAR assignment mechanism, with pA = pB = 1

2 , applied to the
same dataset. The estimator ∆̂†

AB is unbiased; its empirical bias is smaller
than 0.001. The empirical sampling variance of this estimator is 0.629. (140
assignments, 1.4%, were discarded because they would result in two or fewer
units in a treatment group.)
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It should come as no surprise that the NAR design results in smaller
sampling variance. As we make the probabilities of assignment more extreme
(closer to zero or unity), we reduce the variation among the samples—some
samples become more frequent and others rarer. Taking this to its limit, if
each assignment probability is either zero or unity, only one sample is re-
alised, and then the sampling variance of the estimator vanishes. We should
be concerned with MSE and not the sampling variance or bias on its own.
The NAR assignment in Figure 7.2 has MSE equal to 0.373 + 0.9802 = 1.369
and the MSE of the CAR assignment is 0.629. If the sample size were greater
(or the population were subsumed in a greater population), the overwhelming
contribution of the bias might remain, while the sampling variances would
be reduced; the advantage of CAR would be more pronounced. The exam-
ple in Table 7.1 and Figure 7.2 shows that the bias can make a substantial
contribution to the MSE even in a small study. With greater sample size, the
sampling variance is reduced, but the bias remains intact. This justifies our
focus on combating bias by applying CAR and AR assignment whenever pos-
sible. When an assignment design with CAR is out of the question, suitable
background variables should be recorded, with which the assumption of AR
is palatable.

The Sampling Variance of ∆̂†
AB

If the N outcomes and the associated treatments are all the information avail-
able for the analysis, the sampling variance of ∆̂†

AB cannot be estimated with-
out bias. To see this, consider a small experiment with treatments A and B,
in which the treatment groups have fixed sizes, nA = nB = 3. Suppose the
recorded outcomes are 3, 5, and 7 following treatment A for one subset of
the population and 1, 3, and 2 following treatment B for its complement, so
that the value of ∆̂†

AB is −3.0. In (7.6), we related var(∆̂†
AB) to the popula-

tion variance of the totals Y (A) +Y (B). From the recorded outcomes, we have
no way of knowing whether the potential outcomes add up to a constant,
var(Y (A) + Y (B)) = 0, in which case var(∆̂†

AB) = 0, or Y (A) and Y (B) are
perfectly positively correlated, in which case

var
(
∆̂†

AB

)
=

1
N − 1

(√
VA +

√
VB

)2

.

For given within-treatment population variances VA and VB , this is the great-
est possible value of var(∆̂†

AB), so by estimating it without bias, we overesti-
mate var(∆̂†

AB) but satisfy the criterion of honesty in the assessment of the
precision of ∆̂†

AB . In the complete dataset given in Table 7.1, VA = 3.96,
VB = 1.65, and CAB = covP(Y (A), Y (B)) = 1.26, so that the correla-
tion is ρAB = 0.49. Hence, with the within-treatment group sizes fixed at
nA = nB = 7, var(∆̂†

AB) = 0.626. If we substitute ρAB = 1 and keep the two
variances unchanged, we obtain the upper bound on var(∆̂†

AB) equal to 0.825.
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We can confirm these derivations on the dataset given in Table 7.1. The
empirical variance of ∆̂†

AB is 0.629; if we restrict the allocation to balance,
nA = nB , the empirical variance is 0.564. The sampling variance of ∆̂†

AB

is estimated from the within-treatment sample variances of the outcomes, as-
suming ρAB = 1. For the balanced design, the empirical mean of the estimator
is 0.815; 79% of the replicate estimates exceed the target of 0.626.

7.3.1 Matching

If the assignment process is AR, it is meaningful, and natural, to make com-
parisons within strata (subpopulations) defined by the combinations of the
values of the background variables. This motivates the general method of
matching. For each unit i that was assigned treatment A, we find a unit that
has a background as similar as possible to i and was assigned treatment B and
‘borrow’ his or her value of Y (B). The records of the units that were assigned
treatment B can be completed similarly. After such a completion, the two
treatments can be compared straightforwardly.

To illustrate the method, suppose the study ended up with the assignment
given in Table 7.2. The recorded data are printed with the standard type, and
the values printed in smaller type are discussed later. The naive estimate
of the average effect is ∆̂†

AB = 98/8 − 70/6 = −2.33. The first two units,
both with background MH and treatment A (outcomes 17 and 15), have two
matches with treatment B, the next two units (outcomes 10 and 12). For
each of the first two units we select a match at random from the other two
units. The outcomes of the matches are the imputed (plausible) values of
Y (B). To impute values of Y (A) for the third and fourth units, we exchange
the roles of the first two and the next two units. To impute values of Y (A)

for the sixth and seventh units, we have no other choice than 14, donated
from the fifth record, the only match. The donors are selected independently
from the relevant pool. There are no rules regarding reciprocity. For example,
unit 1 received its plausible value of Y (B) from unit 3; unit 3 happens to have
received its plausible value Y (A) from unit 1, reciprocally, but the same value
was donated also to unit 4. The values printed in small type are the imputed
values for the potential outcomes that were not observed. We emphasise that
the purpose of imputation is to facilitate estimation of the average effect, not
itemwise estimation of the unobserved potential outcomes.

The variance of the estimator of the effect ∆AB would be underestimated
if we regarded the completed dataset as having been observed (recorded).
In fact, the complete dataset is without any variation, so a completion, if
confused with the complete dataset of the 2N values, would be without any
variation. Each imputation is associated with uncertainty, and this uncer-
tainty should coincide with the sampling variation. Methods for its assess-
ment were discussed in Chapter 5, where we emphasised the importance of
multiple imputation (MI)—replicating the process of completion a few times
and estimating the variance inflation from the between-imputation variance.
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Table 7.2. The results of a study of the population and outcomes listed in Table
7.1. Imputed values are printed in small font.

W Sex Status
Outcome

Y (A) Y (B)
W Sex Status

Outcome

Y (A) Y (B)

A M H 17 10 B F H 14 12

A M H 15 12 A F H 15 12

B M H 17 10 A F H 12 12

B M H 17 12 A F H 14 12

A M O 14 13 A F O 13 12

B M O 14 13 A F O 12 12

B M O 14 11 B F O 13 12

MI does not work well in the example given in Table 7.2 because the
pools of donors are too small and fail to represent the uncertainty about the
missing values by the candidates for plausible values, the donor pools. At the
extreme, as when imputing for Y (B) for the background combination FH, the
donor pool comprises a single unit, and so the value of 12 is imputed for all
three missing items in every completion.

In larger-scale studies, this problem does not arise, although when many
background variables are recorded, a fine balance has to be struck between
defining relatively small pools by conditioning on many variables and large
pools of donors by conditioning on a selection of the variables. The pools of
donors can be made larger by coarsening some of the background variables.
It is particularly useful to eliminate rare categories by aggregating them with
their neighbours.

Intermediate variables should never be involved in conditioning, because
their values are affected (tainted) by the treatment applied. Some studies
record the values of several intermediate variables, such as the outcome vari-
able recorded at regular intervals during the administration of the treatment.
For each intermediate variable, we can define its treatment-specific potential
versions. One-half of their values are not recorded, so plausible values have to
be generated for them. This is done multiply to reflect our uncertainty about
them. The ‘true’ value of any one of these potential intermediate variables
is defined prior to administering the treatment; they are independent of the
assignment. They can therefore be treated in conditioning as if they were
background variables, except that they are represented by sets of plausible
values. Thus, each completed-data analysis is based on a different (replicate)
set of such values.
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7.4 Imperfect Experiments

The assignment imposed by an experimental design may be violated by mis-
take or by the human subjects exercising their prerogative to discontinue
treatment (abandon participation in the experiment) or switch to the alter-
native treatment. This section deals with the analysis of such experiments
using the following approach. We consider the dataset planned to have been
collected as the complete and the recorded data as the incomplete (observed)
dataset, and address the problem by a method for missing data, such as MI.
The analysis of the complete data may itself require an application of MI, but
combining the two MI procedures generates no difficulties. First we outline
some alternatives related to data reduction and single imputation and point
out their deficiencies.

Treated as per Protocol

We may reduce the analysis to the units that were subjected to the treatments
as set out by the protocol and randomisation and ignore the units for which
the assigned treatment was applied only partially or not at all. The problem
with this approach is that the experiment is no longer regarded as having been
conducted on the entire population or a sample drawn according to a specified
design, and the units that departed from the assigned treatment may have
done so after an informed guess of their potential outcomes. For instance,
a patient in a clinical trial may opt out from (further) treatment believing
that it is not useful and that another treatment would be more effective.
Another patient may drop out from a study because of improvement that in
his or her view makes further treatment unnecessary and does not justify the
inconvenience involved.

Information about the reasons for dropping out may be useful for an ap-
plication of MI to (multiply) complete the data. It would narrow the range
or distribution of plausible values on which to base the data completion. In
some settings the dissenting subjects may provide such information, possibly
supplemented by expert opinion.

The Treatment Applied (as Treated)

If a unit switched (or has been switched) from the assigned to another treat-
ment we may estimate the treatment effect by regarding the treatments that
were applied as if they were assigned a priori. The deficiency of this approach
is that such an altered assignment is no longer an assignment by randomi-
sation. A concern is that any switch may have been informed, made in an
attempt to obtain a better outcome. Would the same outcome be observed
if the subject were assigned the latter treatment originally? If a switch of
treatments can occur we have to consider four possibilities: T assigned and
T′ administered, where T and T′ are either A or B. The combinations (T
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= A, T′ = A) and (T = B, T′ = A) need not result in the same values of
the outcomes, even though the same treatment is applied. And, of course, the
switch is not assigned by randomisation.

Intent to Treat

Finally, we may ignore any violations of the protocol and simply analyse the
data as if the protocol had been adhered to in every detail. The obvious defi-
ciency of this approach is the denial—pretending that the study was conducted
as intended, when in fact it was not. The missing-data perspective entails a
speculation as to what the outcome would have been had the protocol been
adhered to.

Randomised assignment is a key design feature in experiments that enables
us to make efficient inferences about the treatment effects. Any deviation from
randomisation should be reflected by reduced confidence, to maintain the
integrity of the analysis. Multiple imputation has a potential to achieve this,
and it does so when the uncertainty about the missing values is appropriately
reflected in the differences among the sets of completions.

For settings in which the (human) units are aware of the treatment received
and its status (e.g., as a novel experimental or as an established treatment), we
consider two complementary subpopulations: compliers (C) and noncompliers
(N). Let their proportions in the population be pC and pN . Compliers would
not object to the novel treatment B and would receive it as per protocol. Non-
compliers would object and would switch to A if assigned treatment B. Thus,
we can identify noncompliers only among the units that were assigned treat-
ment B. We cannot distinguish between compliers and noncompliers among
the units assigned treatment A. Therefore, ‘as treated’ analysis does not com-
pare the treatments on the same (sub)populations.

We could estimate the treatment effect by imputing values for all the miss-
ing items—for the noncompliers who were assigned treatment B but refused
to take it. For the noncompliers the assignment is irrelevant—they would in-
sist on their preferred treatment. This assumption of irrelevance is referred to
as the exclusion restriction. It should not be taken for granted in any setting,
although it is often quite realistic. In some settings, the roles of the treatments
are reversed. When treatment B is more attractive, departures from the pro-
tocol occur among units assigned to A who wish to receive the more promising
treatment B. In principle, there may be defections in both directions.

Without the exclusion restriction, we have to consider the four potential
outcomes, for the combinations (T,T′) of treatment assigned and treatment
received. One of these, such as A assigned and B received (or vice versa), may
not occur. We can avoid having to impute values for each missing item by
considering the effect of assigning treatment B over A, denoted by ΓAB . This
is different from the effect of (applying) treatment B over A, ∆AB . We have

ΓAB = pN Γ
(N)
AB + pC Γ

(C)
AB .
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The left-hand side is estimated directly by the ‘Intent to treat’ analysis, as-
suming that no error occurred in implementing the assignment (offering the
treatment selected by randomisation). For compliers, assignment is equivalent
to treatment, and so Γ

(C)
AB = ∆

(C)
AB . For noncompliers, Γ

(N)
AB = 0, according to

the exclusion restriction. Hence

∆AB =
ΓAB

pC
.

When estimating ∆AB naively we have to be concerned about dividing by
an (unbiased) estimator p̂C ; pC can be estimated straightforwardly from the
units assigned treatment B, for which noncompliance is identified without
uncertainty. This is problematic particularly when 1/pC is estimated with
little precision; when p̂C is small and when the experiment (n) is small. In
general, the smaller the fraction pC the more we have to rely on the exclusion
restriction.

7.5 Comparing Institutions

Modern management of services, such as education, health care, and public
transport, is invariably connected with targets and competition among the
institutions providing the service. Examples of such a trend are the promi-
nently publicised league tables that list the institutions (schools, universities,
hospitals, local administrative authorities, and the like) in the order of the
summaries of their performances, such as examination results for schools and
survival rates and waiting times for surgery for hospitals. In most of these
examples, manifest variables are used in place of latent variables, which are
difficult to ‘measure’, or their precise measurement would entail unacceptable
disruption of the institutions’ core activities. To avoid handling a convoluted
problem, we set aside the issue of substitution of a latent variable by a man-
ifest one, dealt with in Chapter 6, even though it is highly relevant in this
context.

Schools have students, hospitals have patients and, in general, institutions
have clientele or intake. A fundamental difficulty in comparing institutions is
that their intakes differ. Institutions may deliberately aim to serve or as a
result of development end up serving a clientele with a particular distribution
of profiles (backgrounds). Inasmuch as these distributions differ, comparison
of institution-level summaries is not of like with like. Desired are comparisons
for the hypothetical setting in which each institution has the same intake.
Therefore, we should first specify this intake, or the distribution of the pro-
files of the clientele. We could borrow it from an institution or define it as
the overall (national) profile. However, neither choice, nor any other, is ap-
propriate because the performance of each institution should be assessed for
its clientele, not for a clientele they would never contemplate serving.
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We regard the act of client i receiving the service of institution A as a
treatment and consider the outcome Y

(A)
i together with the potential out-

comes of the client in response to treatment by other institutions in which
the client could conceivably have been treated. These are usually not all the
institutions in their population, because the client may not qualify for or may
not be interested in being treated by some of them. We define the constituency
CT of institution T as the subpopulation of clients who could conceivably be
treated by institution T. A client and an institution are said to be compatible
if the client belongs to the constituency of the institution. A compatible pair-
ing of client and institution is realised if the client is or was treated by the
institution and is unrealised otherwise.

We say that two institutions are comparable if their constituencies have
a substantial overlap. The term substantial overlap itself has to be defined.
For example, two universities have a substantial overlap if at least a certain
percentage (say 80%) of students who attend one university would consider
attending the other as an equal alternative, defined as offering similar courses,
having similar entry requirements, comparable reputations, and similar fees
and other expenses. The constituencies need not be constrained by the catch-
ment areas of the institutions. For example, a patient would not contemplate
treatment for a minor ailment in a distant hospital. However, if the catch-
ment areas of the two hospitals are similar in terms of the profiles of their
patients—their socioeconomic, environmental, and related conditions—then
it is meaningful to define potential outcomes of patients in one area for the
distant hospital.

We define the effect of institution B over institution A for client i as the
difference of the potential outcomes Y

(B)
i − Y

(A)
i . Such an effect is defined

only for clients compatible with both institutions. The average (constituency-
level) effect of institution B over a comparable institution A is defined as the
mean of the client-level effects, averaged over the overlap of the institution’s
constituencies. We adopt the SUTVA assumptions, so that the effect does not
depend on the actual assignment.

In the complete-data setting, with all the defined potential outcomes avail-
able, the problem of comparing any two institutions is elementary, involving
a comparison of the means of the potential outcomes for the two institutions.
This complete-data analysis entails no uncertainty. The incompleteness, hav-
ing observed only one (or no) potential outcome for each client, is the sole
source of uncertainty, placing all the inferential burden on the process of gen-
erating (multiple) plausible outcomes for each unrealised compatible client-
institution pairing (i, T).

The hot deck and approximate Bayesian bootstrap (Section 5.6) are well
motivated methods for generating plausible outcomes. We define a match of
the backgrounds of clients as the agreement on their values of selected back-
ground variables; these variables may be original or coarsened. For an unre-
alised compatible client-institution pairing (i, T), we form a pool of realised



224 7 Experiments and Observational Studies

pairs (i′, T) who are a match for client i, draw a client from this pool at
random, and use his or her value as the plausible value of Y

(T)
i . This process

of completion, for every unrealised compatible pairing (i, T), is replicated M
times, resulting in M comparisons which are then summarised by the rules for
the results of completed-data analyses [see Section 5.5 and equation (5.10)]
with the within-imputation variance W set to zero.

As an alternative to matching on several background variables, a single
variable (an ‘index’) may be defined, when appropriate, and the match based
on its coarsened version. In some settings, institutions have many realised
clients and their backgrounds are not available or not accessible, or the analy-
sis of their backgrounds is not feasible for some other reason, such as confiden-
tiality. A random sample of clients may then be used for estimating whether
a pair of institutions is comparable, but the resulting uncertainty has to be
incorporated in the analysis.

When the background can be represented by a single ordinal variable,
such as a university entrance examination score, then the institutions can
be ordered by suitable summaries of the backgrounds of their clients. If only
within-institution summaries of this background variable are available or the
client-level matching exercise is regarded as too complex, caliper matching
provides a solution. For a set integer K, the 2K closest rivals of a given insti-
tution T are defined as the K institutions immediately preceding and following
institution T in the order of their background summaries. The outcome of the
comparison is the rank of the summaries of the outcomes of institution T
among its 2K closest rivals. Establishing this may itself be an incomplete-
data problem, if the background summaries or the outcome summaries are
established subject to uncertainty. Some provisions have to be made for the
top and bottom K institutions which have too few rivals preceding or fol-
lowing them in the ranking according to the background and are not at the
median of the list of their closest rivals. Apart from conceptual simplicity,
caliper matching has the advantage of an easy-to-interpret outcome: the score
(rank) of 1 is ideal and 2K +1 is the worst possible. Although each institution
has a score on the same scale, these scores can be compared only for pairs of
institutions whose sets of closest rivals have a substantial overlap. For such a
pair of institutions, scores can be defined also on the overlap of their closest
rivals.

The managements of institutions regard the assessment of their perfor-
mances as vital for recruitment of staff and clientele, and good assessment
may be accompanied by direct (financial) rewards. If they are acquainted
with the analysis planned for the summaries of the outcomes, they may ma-
nipulate the intake procedures so as to alter the distribution of their clients’
backgrounds or set aside some of the clinical priorities in favour of improving
the values of the outcome summaries. For example, a university may recruit
more intensively among students with backgrounds associated with successful
graduation, or a hospital may discourage references from general practices for
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surgery cases that are likely to entail risks or complications not taken into
account by the performance assessment system.

The results of caliper matching cannot be influenced by such manipulation
of the intake in any straightforward way because, by changing the distribution
of the profile of the intake, the institution changes the composition of the
group of its close rivals, and its score is then based on a different set of rival
institutions. Ordering the institutions’ scores is meaningless because they are
scores from different ‘contests’. The scores of two institutions can be compared
only when they share most of their closest rivals—when they are comparable
according to a well-founded definition.

7.5.1 Comparing Performances over Time

A single institution may assess the improvement of the quality of its ser-
vices by comparing within-period summaries of the outcomes, such as annual
success rates of the operations of a particular kind and percentages of stu-
dents retained (who do not drop out from courses). Comparisons of such
summaries are meaningful only when the period-specific constituencies of the
institution have a substantial overlap. Although the distribution of the clien-
tele’s background changes very little from one period (year) to the next, these
distributions may drift, move slowly but consistently, so that the profiles of
the constituencies several periods apart are substantially different. Therefore,
comparability is maintained only for a limited number of periods.

This setting is closely related to comparisons of institutions. Simply, we
regard the pairs of the institution in question and period t = 1, . . . , T for-
mally as separate institutions, with t defining their ordering; time is regarded
as capturing all the background of the clientele within the time period. In
this setting, comparing only within a ‘window of time’ corresponds to caliper
matching.

When background information about the clientele is available, the period
can be compared using multiple sets of plausible outcomes for the overlap of
the constituencies of the pairs of periods. If for periods far apart few clients
are compatible with the two periods, the comparison is not meaningful—the
periods are not comparable.

By way of an example, consider the rates of ruptured abdominal aor-
tic aneurysm (RAAA). It is an accident-like condition requiring immediate
(emergency) intensive treatment, and the success rate of treating it is not
very high. Many patients die before or during the emergency treatment or
within days, and few of those who survive can recover their earlier life style.
A (national) health care system may be concerned that the survival rates of
RAAA have not been rising over the years, despite improved training, new
equipment, accumulated expertise, and greater resources devoted to the treat-
ment.

RAAA can be attributed to the long-term wear and tear of the human
organism, exacerbated by various diseases such as heart disease, cancer, and
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infections. Although these diseases are cured or alleviated by invasive med-
ical procedures, at least temporarily, they impose shocks on the organism that
tend to accumulate until the body gives up at its weakest point. This suggests
that the relevant background of RAAA patients (more precisely, cases, since a
person may in principle suffer RAAA repeatedly) are their medical histories,
and invasive surgeries in particular. A typical RAAA patient in the 1970s had
a very different medical history than a more recent patient because numerous
types of surgeries that are commonly conducted today (or in the recent past)
were not available in the 1970s or were in early stages of their development
and were conducted with equipment inferior to today’s. This makes any com-
parison of the survival rates over the span of thirty or so years, but probably
even over a much shorter time span, misleading, because it is not a compari-
son of like with like. There may be a few patients in the 1970s or today who
are compatible with the other (unrealised) period, but basing a comparison
on them may also be misleading because they are exceptional patients in one
or both periods.

7.6 Regression Methods

The relevant background variables can be related to the outcomes by a regres-
sion model. If the values of the background variables were under the control
of the study designer, each regression parameter associated with a continuous
variable would have a straightforward interpretation as the expected change
in the outcome in response to the change of the value of the background vari-
able by one unit of measurement. In brief, the regression slope of a covariate is
equal to the effect of changing its value by a unit of measurement. The values
of the background variables usually cannot be prescribed (manipulated), and
so such an interpretation is inappropriate. The slope is more appropriately
described as the difference between two strata, after an adjustment for the
other background variables in the model.

Applying regression models to assess performance of institutions may seem
attractive because the outcomes have to be adjusted for background. A lack
of such an adjustment was a profound objection to early methods of assess-
ment that compared the mean outcomes, paying no regard to the differences
in the within-institution distributions of the background variables. Fitting
regression represents an improvement over comparing sample means. Some
extensions of regression to structured samples, with units within institutions,
are discussed in Chapter 9. When the variables used in the analysis are de-
fined for institutions, not for units, the residuals are interpreted as indicators
of performance—high residual as very good performance, low as poor perfor-
mance.

Such analysis is open to the vagaries of specification of the model. Linear-
ity is assumed, yet it may be problematic, especially when some covariates
have a wide support. Obvious nonlinearity is easy to detect with large-scale
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data (many institutions), but small deviations may not be, yet their impact on
the residuals may be decisive. A related argument against applying regression
is that the performance of an institution is, in effect, decided by some insti-
tutions that are not comparable with it. Institutions with extreme values, or
distributions of values, of the background variables exert a stronger influence
over the assessment of an institution closer to the middle of the range of the
backgrounds than the substance of the problem might suggest. Comparisons
based on plausible outcomes respond to this problem much more satisfactorily,
although they place the onus on the process of generating plausible values.

Suggested Reading

The theory presented in this chapter was developed by Donald Rubin in sev-
eral articles; see [157], [161], [163], and [166] and the references in the latter
two. An instructive exposition of the so-called Rubin’s causal model is given
by [81]. For a review of the earlier work on causal inferences from observa-
tional studies, see [22] and [19]. The subject is treated in an up-to-date form by
the monograph [156]. An alternative and in some aspects complementary ap-
proach that addresses causal inference from observational studies is developed
by [65]. The monograph [144] is a scientifically rigorous treatise on causality.

A landmark case study in comparing the performance of surgical teams
is reported in [185]. Methods for assessing surgical performance are reviewed
from a historical perspective by [184]. A study of outcomes of the UK higher
educational institutions is reported in [39]. A comprehensive list of guidelines
for the construction, use, and interpretation of performance indicators for in-
stitutions is compiled and discussed by [9]. The idea of using caliper matching
for comparing the performance of institutions is outlined in [128]. A frame-
work for incorporating information from intermediate variables is developed
by [52]. The example about ruptured abdominal aortic aneurysm in Section
7.5 is drawn from [86]; see [123] for its critique.

The monograph [96] is an inexhaustible source of profound and common-
sense advice on conducting experiments and observational studies. The foun-
dations of experimental design have been laid by [50], [21], and [25].

Problems and Exercises

7.1. Discuss the role that intermediate variables may usefully play in an analy-
sis of the outcomes of a study in which drop-out is anticipated. If you find it
helpful, discuss this issue separately for experiments and observational studies.

7.2. The file EX25a.dat on www.sntl.co.uk/BookA/Data contains a complete
dataset, with one background variable X and the two potential outcomes,
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Y (A) and Y (B), for respective treatments A and B. Implement on the com-
puter the design with randomised allocation of subjects to treatments and
two designs with blocked randomisation. In the first, blocking is applied hap-
hazardly, placing the first 1

2n subjects into one block and the remainder into
the other, and in the second, blocking is based on X: the 1

2n subjects with the
smallest values of X are placed in one block and the remainder in the other.
Replicate the assignment and estimation processes for each design 1000 times
and assess their efficiencies.

7.3. In a marketing study, recruited households can choose one of three known
brands of washing powder, A, B, and C. At the end of the trial period, they
are asked to rate how satisfied they have been with the brand they used.
Discuss how the study could have been improved by applying the principles
of experimental design. List difficulties this would have entailed. Why might
the study designers argue that the choice of brand is governed by CAR? Or
by AR, with a short list of background variables?

7.4. In encouragement studies, recruited units (individuals or groups) are ran-
domly assigned to two groups. One group receives no treatment, and the other
group is encouraged to pursue a particular activity, such as exercise, to con-
sume or stop consuming a particular product, to change diet or some other
element of the lifestyle, and the like. All subjects complete a questionnaire at
the end of the study period, and a suitable outcome variable is constructed
from the responses. Is such a study an experiment or an observational study?
Hint: Carefully define what constitutes a treatment.

7.5. Suppose the value of the individual-level outcome in a cluster-randomised
study of two treatments is recorded for a simple random sample of p = 2%
of the population of the cluster. Derive the sampling variance of the estima-
tor of the average cluster-level effect. Suppose the costs of administering the
treatments and measuring the outcome for a unit are given and the funds
available for the study are fixed. How should the percentage p be traded for
the cluster-level sample size n to estimate the treatment effect with as high
precision as possible?

7.6. Suppose potential outcomes Y (A) and Y (B) differ by a constant c,
Y (B) = Y (A) + c; the unit-level effect is constant, equal to c. Suppose Y (A)

and Y (B) are both positive. Can you anticipate how the variance of the unit-
level effects behaves as a function of the power transformation g

(
Y (T)

)
for

T = A and B? Use a standardised power transformation g(u) = uq/D(q),
so that a large variance of U (A) − U (B) could not be explained by the large
variances of U (T) = g

(
Y (T)

)
, T = A or B. Check your intuition analytically

or by simulation. Discuss the impact of the distributions of Y (A) and Y (B) on
this variance function. With another dataset, how would you search for the
power transformation that brings the transformed outcomes closest of all to
being a constant apart? Define the target of this search very carefully.
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7.7. The principal statement on a death certificate states the ‘cause of death’.
Find in the appropriate literature its definition and decide whether and in
what context this ‘cause’ is related to any intermediate variables.
Hint: Could poor diet or lack of exercise be declared causes of death?

7.8. Search in the statistical literature for references to studies of the asso-
ciation of smoking and lung cancer and find out how they concluded that
smoking causes lung cancer. Describe the design of a hypothetical experiment
from which the effect of smoking could be estimated without bias, and list
the reasons why it cannot be conducted.

7.9. Discrimination of a group (subpopulation) A by or in favour of group B
with respect to outcome Y is defined as the effect of group membership in the
following sense. There is an authority (or a mechanism) that sets the value of
Y for each member of the population A∪B and a vector of covariates Z that
should, apart from some inexplicable (unexplainable) deviations, determine
the value of Y . Adjust this definition as you see fit to suit your perception
of discrimination in public services, in contracting employment, wages paid,
and the like. Relate this definition to impartiality (recall the definition from
Chapter 6). Can the group membership be regarded as a cause, even though
it cannot be assigned to an individual? Discuss how you would design a study
for assessing the presence (and extent) of discrimination in a setting of your
choice. How is discrimination related to AR and CAR for a binary outcome
variable Y ?

7.10. Relate the rules for comparing sports teams in a competition, such as
a league, in which each pair of teams play one or two matches, a cup that
comprises rounds of matches from which winners proceed to the subsequent
rounds, to criteria used for comparing institutions, such as hospitals, uni-
versities, or national governments. Assess these rules or criteria by relevance
(face validity), fairness, and impartiality. Discuss the consequences of the com-
parisons (position in the league table) and whether the management of the
institutions would conduct their business differently if the consequences were
changed.

7.11. Discuss the difficulties of conducting a large-scale experiment to study
the effectiveness of vaccination against a disease. Which of these difficulties
are resolved by cluster-randomisation?
Hint: Consider the setting with and without a current vaccine and the public
perception of the vaccine as a potential solution.
This exercise can be revisited after Chapter 8.

7.12. A world-class sprinter (athlete) requires about 30 metres to reach a
speed close to his or her maximum. In outdoor competitions, there are two
events for sprinters, 100 metres and 200 metres. There has been a long-
standing argument among the connoisseurs of sprinting about who runs at
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a greater average speed: the 100-metre or the 200-metre runner. That is,
whether 200 metres can be run faster than double the time for 100 metres.
Check in the appropriate sources the world records for men and women, as
well as the national records and recent years’ best performances in your coun-
try. Discuss the appropriateness of the following comparisons to resolve this
issue:

1. Compare the mean of the ten best performances in the world for the two
events.

2. Select the ten fastest athletes ever who had no preference between 100
and 200 metres and compare the means of their best performances.

3. Reduce the comparison to athletes who took part in both 100-metre and
200-metre races at the same world championships (or Olympic Games)
and compare the means of their best performances in the championships.

4. Set a reasonable ‘qualifying limit’, such as 10.5 sec for 100 metres and
20.5 sec for 200 metres for men and compare the means of the best per-
formances of the athletes who have surpassed both these limits.

Discuss the hypothetical experiment that would resolve this issue, and what
kind of compromise has to be made in each feasible setting. What assump-
tion(s) have to be made in the analysis?

7.13. Discuss whether it is feasible and, if so, how caliper matching might be
applied to assess the individual employees of a midsize corporation.

7.14. Compile a list of plausible explanations for the substantially higher
number of successful results in the examinations at a particular level in the
educational system, such as the SAT scores in the United States or the number
of A-level passes in the UK. Classify the explanations into groups according
to whether they are associated with improved instruction, instruction better
targeted for the examinations, the examination papers becoming easier over
time (carefully define what this means), and the like.

7.15. The dataset in file EX25b.dat on www.sntl.co.uk/BookA/Data con-
tains the results of an experiment with a binary outcome, in which some
subjects switched their treatment, in most cases from the novel treatment B
to the established treatment A. Analyse the data by the three naive methods
described in Section 7.4 and by a missing-data approach assuming the exclu-
sion criterion, assuming that treatment A is more attractive than treatment
B. Ignore the few switches from A assigned to B taken if it makes the problem
simpler.

7.16. Discuss the advantages and drawbacks of the regression analysis using
the model

YW = β0 + Xβ1 + I(W = B)∆AB + ε

(W is the allocated treatment and I the indicator function) for the example in
Exercise 7.2 with the three allocation designs. Check in the analysis those of
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your arguments that can be checked, either by the realised (incomplete) data
or by the complete dataset. Discuss the circumstances in which the interaction
of the covariate X and the treatment would be necessary or useful to add to
the model. Apply the estimator of ∆AB in replications for each allocation
design and compare its efficiency with its counterpart in Exercise 7.2.

7.17. Organise a discussion of the issues related to gun control in the United
States. Formulate the arguments in its favour and against it in terms of effects
(such as violent crime and accidents with firearms versus personal security
and inalienable rights) and the difficulty of collecting statistical evidence that
would provide an effective support for a legislative proposal to ban private
ownership of firearms.
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Clinical Trials

Clinical trials are experiments conducted on human subjects or animals in
the process of developing new medical treatments, devices, and procedures.
The results of a clinical trial are usually part of a package that supports the
developer’s a priori stated claim that the proposed treatment has a benefi-
cial effect of a specified kind and for a specified condition. Clinical trials are
characterised by the intent to adhere to the principles of experimental design
and to ensure that the exposure of vulnerable subjects (humans or animals)
to experimentation is as small as possible, and yet sufficient for collecting
evidence related to the claim. After setting out the context in which clinical
trials are conducted, this chapter discusses the established methods for their
design and analysis and then presents some alternatives.

8.1 The Context

Development of a new medical treatment, such as a drug or a procedure for
treating a disease, is very a expensive and in its later stages a highly regulated
enterprise. Developing a drug can cost several tens of millions of Euro and the
process usually takes several years. It comprises several stages, starting with
identifying the compound or group of compounds as candidates for the role of
the active ingredient of a new drug. Experiments then may be conducted on
animals to establish that the compound has the desired effect and to decide
what quantity of the active ingredient (dose) would have the desired effect
in human subjects, without any undesirable side effects. This entails some
extrapolation which may not be perfectly reliable. In the next stage, the set
dose, or a range of doses, are tried out on healthy human subjects (volunteers).
Finally, the drug is tried out on a group of subjects who have the condition
for which the drug is intended.

In this chapter, we are concerned mainly with clinical trials at this final
stage, when the details of the drug—its dose, form of delivery (orally, as an
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injection, or the like), frequency (such as once a day), period of administra-
tion (such as two weeks), the condition and its exclusion criteria, that is, the
intended population of patients, and other details—are specified. The infer-
ential issue is now reduced to providing evidence that the proposed treatment
B has a positive effect over the established treatment A. When there is no es-
tablished treatment, placebo is used for treatment A. Treatment B is referred
to as the novel (studied or tested) treatment and A as the comparator.

Subjects for a clinical trial are recruited, usually by agents in the health
care system who come into contact with patients who have the condition.
Although inferences are sought about a particular population, a design for
sampling from it is not feasible, because the population is not accessible and a
sampling frame is impossible to construct. Of course, the treatment is intended
for administration to patients in the future, and so the target population is
not even identified—some are yet to contract the condition. However, the
population of current sufferers is likely to represent quite well the population in
a few years’ time, even if the overlap of the two populations is small. Although
we refer to a population of patients, it is more appropriate to consider a
population of cases, since some diseases are temporary and may be contracted
more than once in a lifetime.

Each recruited subject (a parent or carer for a minor) is sought for an
informed consent, by which the subject agrees to take part in the trial and
understands that a treatment will be assigned to him or her at random, with-
out any regard for which treatment might be (judged to be) more suitable.
The subjects are made aware that they can withdraw from the trial at any
time, without their statutory rights being affected in any way. Patients are
regarded as vulnerable subjects and the participation of every one of them
in a trial is associated with high ethical costs. The design of each trial is
subject to an approval process by the agency that regulates the process of
testing and distribution of drugs; the best known of these is the Food and
Drug Administration in the United States.

Randomisation and blinding are key principles for clinical trials. The sam-
ple size (number of patients engaged in the trial) and the extent of exposure
to the tested drug (or its alternative) are other important considerations. On
the one hand, these should be as small as possible; on the other hand, the
chances of arriving at the appropriate conclusions should be high, so that the
conduct of the clinical trial would be justified.

8.2 Models and Inference

Suppose the established and novel treatments, A and B, respectively, are to
be compared in a clinical trial. Each subject will be administered one of the
treatments, assigned at random. Let nA = nB = 1

2n be the planned within-
treatment subsample sizes. Suppose higher values of the outcome variable Y
signify better outcomes. Each member of the target population is associated
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with two potential outcomes , denoted by Y (A) and Y (B), the outcomes that
will or would be recorded if the respective treatment A and B is applied.
Exactly one treatment is applied to each subject, so only half the values of
Y (A) and Y (B) on the subjects are recorded. All 2n values are well defined
because, for any one subject, the randomisation could have yielded the other
assignment. Let τ2

A and τ2
B be the respective population variances of Y (A) and

Y (B). We assume that τ2
A = τ2

B = τ2, unless stated otherwise.
A statistic that might be used for inferences about the population mean

treatment effect of B over A is the sample difference of the within-treatment
means

∆̂†
AB = ȳB − ȳA .

As evidence is sought that treatment B is superior to treatment A, the hy-
pothesis that the expectations µA = E

(
Y (A)

)
and µB = E

(
Y (B)

)
satisfy the

inequality µA ≥ µB is adopted, so that its rejection would constitute evidence
of the claimed properties of the novel treatment B, µB > µA . Therefore, the
hypothesis is rejected for large values of ∆̂†

AB ; the critical region {∆̂†
AB > c}

is set so that if µA = µB , then the probability of the incorrect decision would
not exceed a prescribed level α:

P
(
∆̂†

AB > c |µA = µB

)
≤ α . (8.1)

When µA > µB , P(∆̂†
AB > c) is smaller than when µA = µB , so the size α

of the test is maintained. As a matter of convention, without any scientific
basis, α is set to 0.05. The assumption of normality of ∆̂†

AB is usually well
supported even for moderately large subsample sizes nA and nB . Further,
we assume that the sample of patients is a simple random sample from the
target population. This assumption is contentious and easy to challenge; its
discussion is postponed to Section 8.4. With the assumption,

∆̂†
AB ∼ N

{
0,

(
1

nA
+

1
nB

)
τ2

}
,

implying the critical region given by

c = τ

√
1

nA
+

1
nB

Φ−1(1 − α) (8.2)

(Φ is the distribution function of the standard normal distribution and Φ−1

is its inverse, the normal quantile). If the two sample means are normally
distributed (and τ is known), this choice of c results in equality in (8.1).

We set a minimum important difference ∆µ which we regard as the small-
est difference of µB − µA that is of any clinical importance. Setting ∆µ is a
task for a clinical expert who can relate the differences on the scale of the
outcomes to the clinical changes in the treated condition. For this value of
∆µ, we seek subsample sizes nA and nB , for which the planned test has a
prescribed power, such as β = 90%:
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P
(
∆̂†

AB > c |µB = µA + ∆µ
)

≥ β . (8.3)

Just like the value of α, this percentage does not have a firm scientific basis
either, but it is a well-established convention. The power cannot exceed 1−α;
otherwise equality in (8.1) could not be attained.

Equation (8.3) is solved by reference to the standard normal distribution.
By applying Φ−1 to both sides and substituting for the critical value c from
(8.2), we obtain the equivalent equation

Φ−1(1 − α) − ∆µ

τ

(
1

nA
+

1
nB

)− 1
2

≤ Φ−1(1 − β) .

Therefore the subsample sizes have to satisfy the inequality

1
nA

+
1

nB
≤ 1

{Φ−1(1 − α) + Φ−1(β)}2

∆µ2

τ2
.

When nA = nB , this implies that

n ≥ 4τ2

∆µ2

{
Φ−1(1 − α) + Φ−1(β)

}2
. (8.4)

When τ2
A �= τ2

B , the solution is obtained similarly, although the rationale for
equal treatment-group sizes, nA = nB, is no longer sustained. We may want
to minimise the total sample size nA + nB , in which case the subsample sizes
should be proportional to the reciprocals of the standard deviations, nA/nB =
τB/τA . There may be other reasons for assigning a greater proportion of
subjects to one of the treatments, for example, to make the participation more
attractive. (The informed consent form has to contain information about the
randomisation and related details.)

Ethical standards dictate that the sample size n should be as small as
possible. Therefore, the sample size should not be set much higher than the
right-hand side of (8.4), although some allowance is usually made for with-
drawals during the course of the trial. The value of ∆µ is rarely without any
contention or ambiguity, and the value of τ2 is usually guessed or estimated
from past trials in which the same outcome variable was used and subjects
were recruited from the same or a related target population using a similar
recruitment process.

Clinical trials described so far are associated with the model

YjT = µT + εjT , (8.5)

where T is the treatment applied (A or B) and εjT are a random sample from
a centred distribution specific to each treatment T. For each subject j, YjT

is realised only for one treatment. The deviation εjT should not be confused
with measurement error or deviation due to temporal variation or due to
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the details of how the treatment was administered. Usually the dominant
contributor to the within-treatment variance var(Y |T) = var(Y (T)) is the
heterogeneity of the patients—they may be at various stages of the treated
condition, and the extent and severity as well as the ability to combat the
condition differ from patient to patient. The association of the outcomes with
some of these factors might be anticipated, but a trial can rarely afford a
careful screening among suitable patients, so as to reduce the heterogeneity
of those in the sample. In any case, good representation of the population
should be a priority, because approval is sought not for the participants in the
trial, nor for a particular narrow subpopulation, but for the entire population
of sufferers from the specified condition. Section 8.3 describes designs that
address the problems of patient heterogeneity.

8.2.1 Comparing Two Groups

At the planning stage, we assumed a known subject-level variance τ2 and in
(8.2) derived the critical value c based on it. At the conclusion of the study
we may revise this position and admit that τ2 is in fact not known and use
its estimator instead. The obvious estimators are

τ̂2
T =

1
nT − 1

∑
j∈T

(yjT − ȳT)2 ,

for the variances within treatments T = A or B, and

τ̂2 =
(nA − 1) τ̂2

A + (nB − 1) τ̂2
B

nA + nB − 2
(8.6)

for their common value. When the outcomes Y are normally distributed (con-
ditionally on the treatment applied), this estimator has a scaled χ2 distribu-
tion:

(nA + nB − 2)
τ̂2

τ2
∼ χ2

nA+nB−2 .

If τ2 were known we would refer to the statistic

∆̂µAB

τ

√
nAnB

nA + nB
;

under the null-hypothesis it has the standard normal distribution. When τ is
not known we replace τ by its estimator given by (8.6). The resulting statistic

TAB =
∆̂µAB

τ̂

√
nAnB

nA + nB
(8.7)

is bound to be more dispersed as a consequence or replacing the constant
denominator by a random variable. Note an ambiguity in the notation: by τ̂
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we mean
√

τ̂2. Although τ̂2 is unbiased for τ2, τ̂ is biased τ . Similarly, 1/τ̂
and 1/τ̂2 are biased for the respective targets 1/τ and 1/τ2.

The statistic defined by (8.7) is an example of a t-statistic, named af-
ter Student’s t-distribution. The t-distribution with m degrees of freedom,
denoted by tm , is defined as the distribution of the ratio

t =
X√
U

√
m,

where variable X has the standard normal distribution and U has the χ2

distribution with m degrees of freedom, and X and U are independent. The t-
distribution is continuous, unimodal, and symmetric around zero. The density
of the tm distribution is

f(x) =
Γ
(

m+1
2

)
√

mπ Γ
(

m
2

) (1 +
x2

m

)−m+1
2

.

As its number of degrees of freedom m approaches +∞, tm converges to
the standard normal distribution. This follows immediately from the limit
identity (1+y/n)n → exp(y); we need not be concerned with working out the
limit of the fraction involving the constants, because the limiting function, a
density, has to integrate up to unity. For orientation, the densities of a few
t-distributions are plotted in Figure 8.1. The distribution tm does not have a
mean or variance for m = 1. For m > 1, its mean is equal to zero, as implied
by symmetry. The variance of tm is defined only for m > 2.

To prove that TAB has the tnA+nB−2 distribution when µA = µB , we set
X = ∆̂µAB/τ

√
nA nB/(nA + nB) and U = (nA + nB − 2) τ̂2/τ2. It remains

to show that, with these definitions, X and U are independent. We show
first that the within-treatment mean ȳT = y�

T1 and centred sum of squares
ST = (yT− ȳT1)�(yT− ȳT1) are independent. The latter can be expressed as
ST = y�

T(I−PT)yT , where PT is the projection matrix, PT = n−1
T 11�. Since

I−PT is idempotent, I−PT = (I−PT)2, and so ST = y�
T(I−PT)(I−PT)yT .

Now
cov
{
(I − PT)yT , 1�yT

}
= τ2

T(I − PT)1 = 0 ,

and no correlation of normally distributed variables implies their indepen-
dence. Hence ȳT is also independent of a function of yT− ȳT1, namely, of ST .
Finally, (ȳA , ȳB) is independent of (SA , SB), and so are their linear combina-
tions. This concludes the proof that TAB has the tnA+nB−2 distribution.

The hypothesis that µA ≥ µB against the alternative µB > µA is rejected
when TAB > c, where c is the (1 − α)-quantile of the tnA+nB−2 distribution.
For α < 0.5, this quantile is a decreasing function of the number of degrees of
freedom and it converges to the corresponding quantile of the standard normal
distribution as both sample sizes nA and nB increase above all bounds. The
decrease is rapid for few degrees of freedom, and then it levels off. For example,
the 0.95-quantile of t1 is 6.31, of t10 is 1.81, and of t100 is 1.66, very close to
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Fig. 8.1. The densities of the t-distributions with the indicated numbers of degrees
of freedom and the normal distribution (highlighted). The vertical lines mark the
95th percentiles of the distributions; these cannot be distinguished for t100 (1.660)
and the standard normal (1.645).

the 0.95-quantile of t+∞ or N (0, 1), 1.645; see Figure 8.1. So, when estimating
τ2 with 100 or more degrees of freedom, we can ignore the uncertainty about
it and compare the two groups (with normally distributed outcomes) as if the
value of τ2 were known and equal to τ̂2.

8.3 Crossover Design

For a given pair of sample sizes nA and nB , the between-subject variance τ2

governs the precision of the estimator ∆̂µAB . If the subject-level treatment
effects ∆AB,j = Y

(B)
j − Y

(A)
j vary much less than τ2 or are constant, ∆µAB

could be estimated much more precisely if these treatment effects were ob-
served, after administering both treatments to some or all of the subjects.
This is a powerful rationale for the crossover design.

In a crossover trial, each subject is administered a sequence of treat-
ments with the administrations separated by a washout period. In the simplest
crossover design, nAB subjects are administered treatment A in the first and
treatment B in the second period. Another group, comprising nBA subjects,
are administered treatment B in the first and treatment A in the second pe-
riod; usually nAB = nBA = 1

2n, although the equality is not necessary and,
in principle, some subjects could be administered the same treatment in both
periods. The sequence of treatments administered, AB and BA in this exam-
ple, is called a regimen. We refer to the treatment groups by their regimens.
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The purpose of the washout period is to let the effect of the treatment admin-
istered in the first period dissipate, so that the condition of the subject at the
beginning of the second period could be regarded as indistinguishable from
the subject’s condition at the beginning of the first. Then the differences in the
outcomes of the patients, period 2–period 1, are suitable manifest variables
for the subject-level effects of treatment B over A, ∆AB,i , in treatment group
AB, and of treatment A over B, ∆BA,i , in group BA. As ∆BA,j = −∆AB,j

for each subject, the average treatment effect (of B over A) of the subjects is
estimated straightforwardly, and the sole source of uncertainty is due to the
imperfect replacement of the (latent) effect by its manifest version.

Equation (8.5) is extended for a crossover trial as

YjTp = µT + γTp + ηp + εjTp , (8.8)

where p denotes the period (1 or 2) and the roles of µT and εj are the same
as in (8.5). The new terms, γTp and ηp , are called the carryover effect and
the period effect, respectively. The observation-level deviations εjTp may be
correlated within subjects. They could be decomposed into sums of subject-
and observation-level terms, εjTp = δj + νjTp ; these components are inde-
pendent and their respective variances are denoted by τ2 and σ2. The latter
variance can be estimated from within-subject contrasts, such as YjB2 − YjA1

for subject j in treatment group AB, in which the subject-level terms δj cancel
out.

Note that the term effect is used here differently from Chapter 7, even
though the treatment order and period are controlled by design. They are
more closely related to average effects (in the sample), but even that only
under some assumptions that are unlikely to be satisfied. Foremost among
them is the assumption that the subjects are a good representation of the
relevant population. Section 8.4 addresses this issue in more detail. In (8.8),
all pairs of indices jT are realised, as well as all pairs jp, but not all triplets
jTp, because each subject receives any given treatment in only one period.

The values of γA1 and γB1 in (8.8) are constrained to zero because there is
no treatment preceding the first period. Only the difference γB2 − γA2 can be
identified, so γA2 is also constrained to zero. Therefore, γ = γB2 is the only
parameter related to carryover. It can be described as an adjustment of the
mean outcome of treatment B when it is administered in the second period,
following treatment A in the first period. The period effect ηp is also identified
only for one period, so we set, by convention, η1 = 0. Then η = η2 is the sole
model parameter associated with the two periods.

The model in (8.8) presents a perspective different from that of Chapter
7. Here an infinite (very large) population is considered and its outcomes in
response to the treatments are random. The model parameters can be inter-
preted as either applicable to every member of the population (including a
common treatment effect) or as population averages. A clinical trial is some-
times referred to as a group trial, suggesting that inferences are sought only
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for the group of patients who participate in the trial, and the extrapolation to
the relevant population is deferred to a separate analysis. Then the interpre-
tation of the deviations ε is crucial. For example, if they are specific to each
participant-treatment combination, then the treatment effect in a crossover
trial is established with precision, because so is each subject’s treatment effect.

8.3.1 Estimation

The model in (8.8), with the assumptions of normality, independence, and
homoscedasticity, is an ordinary regression model. If the treatment, carryover,
and period are represented by binary variables, equal to unity for treatment B,
the treatment-period pair B2, and period 2, respectively, then the regression
design matrix is

X =

⎛⎜⎜⎝
1 0 0 0
1 1 1 1
1 1 0 0
1 0 0 1

⎞⎟⎟⎠ ,

where the first two row-blocks contain nAB rows each, and the next two nBA

each. Let the vector of outcomes be y, with the corresponding partitioning

y =
(
y

�
AB1 , y

�
AB2 , y

�
BA1 , y

�
BA2

)�
,

in which the subscripts indicate the regimen and period. Then the least
squares estimator of the vector θ = (µA,∆µAB , γ, η)� is

θ̂ =
(
X�X

)−1
X�y .

We have

X�X =

⎛⎜⎜⎝
2n n nAB n
n n nAB nAB

nAB nAB nAB nAB

n nAB nAB n

⎞⎟⎟⎠
and

(
X�X

)−1
=

⎛⎜⎜⎝
a −a a −a

−a b −b a
a −b 2b −b

−a a −b b

⎞⎟⎟⎠ ,

where a = 1/nAB and b = n/(nAB nBA). This can be checked directly by
multiplying the two matrices or derived by elementary operations. Note that
b − a = 1/nBA . Further,

X�y =
(
y�1, y�

AB21 + y�
BA11, y�

AB21, y�
AB21 + y�

BA21
)

,

so the estimator of the treatment effect (the second element of θ̂) is
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∆̂µAB = −ay�1 + by�
AB21 + by�

BA11 − by�
AB21 + ay�

AB21 + ay�
BA21

= − ay�
AB11 + (b − a)y�

BA11 = ȳAB1 − ȳBA1 , (8.9)

where the bar denotes the sample mean within the indicated period-treatment
combination. Thus, the treatment effect is estimated solely based on the out-
comes recorded in the first period. If the outcomes from the second period are
not used at all, conducting it could not be justified; the anticipated advan-
tages of the crossover design would not be realised. The sampling variance of
the estimator in (8.9) is

(V = ) var
(
∆̂µAB

)
=
(
τ2 + σ2

)( 1
nAB

+
1

nBA

)
, (8.10)

where τ2 is the variance of the subjects’ treatment effects and σ2 is the in-
consistency variance; in (8.8), var(ε) = σ2 + τ2.

The explanation of why the second period is redundant in (8.9) is that the
model in (8.8) and the estimation based on it fail to take into account the
purpose of the washout, to remove the carryover. We could either (optimisti-
cally) assume that the washout is effective and it removes the carryover or
expose the subjects to only one treatment each. A compromise of these two
solutions is based on the assumption that the carryover is small. Then the
crossover design is useful, and the analysis is not tainted by the inappropriate
assumption that γ = 0.

As an aside, note that the estimator ∆̂µAB can be derived without evalu-
ating the inverse of X�X. The means of the outcomes within the treatment-
period combinations are a set of (minimal) linear sufficient statistics, and the
four equations that match these statistics with their expectations are equiv-
alent to least squares and maximum likelihood estimation. There are four
statistics and four parameters, µA , µB , γ, and η, so there is at most one
solution. Details are left for an exercise.

If the carryover is assumed to be absent, then the ordinary least squares
estimator is

∆̂µ
(0)
AB =

1
2

(ȳAB2 − ȳAB1) +
1
2

(ȳBA1 − ȳBA2) ;

outcomes from both periods contribute to estimating the treatment effect. Its
sampling variance is

(V0 = ) var
(
∆̂µ

(0)
AB

)
=

σ2

2

(
1

nAB
+

1
nBA

)
, (8.11)

substantially smaller than (8.10), especially when τ2 is greater than σ2. In the
estimator ∆̂µ

(0)
AB , the periods contribute with equal weights, 1

2 each, whereas
with carryover as a nuisance parameter, only the first period contributes, so
that the periods associated with the weights are 1 and 0. This motivates a
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compromise estimator in which the first period is assigned weight w greater
than 1

2 and the second is assigned its complement to unity, 1−w. The difference
of the weights, and therefore the information value of the observations from
the two periods, would reflect our reduced confidence in the outcomes from
the second period because they are tainted by a possibly imperfect but not
totally ineffective washout.

8.3.2 Minimax Estimation

The MSEs of alternative estimators of the same target often depend on (un-
known) parameters, and so finding the most efficient of them is not trivial.
Some estimators have their niches, narrow regions of the parameter space
where they are efficient or nearly so, and weaknesses, where their MSEs are
much greater than for some other estimators. Minimax is a criterion for a
class of estimators. We compare the maxima of their MSEs over the parame-
ter space and select the one with the smallest maximum. Such an estimator,
qualified by the class and the parameter space, is called minimax. It is the
estimator of choice when we do not care about the niches or strengths of an
estimator and seek the one with the least pronounced weaknesses. For an ex-
pensive experiment, such as a clinical trial, we would like to state in advance
and with some level of certainty that the MSE of the selected estimator of the
treatment effect, the key target, will not exceed a given level. With a minimax
estimator, this level can be the smallest possible. In addition to the class of
estimators and the parameter space, this has to be qualified by adherence to
the plan (design) and validity of the assumptions made.

Suppose we are satisfied that the carryover effect does not exceed a certain
limit Γ ; we are confident that | γ | < Γ . We derive an estimator of ∆µAB well
suited for this threshold value of γ and explore its properties when | γ | < Γ .
The problem is symmetric around γ = 0, so no generality is lost by assuming
that γ > 0.

We have two estimators, ∆̂µAB and ∆̂µ
(0)
AB . The former is unbiased but has

a large variance, while the latter, although biased if γ �= 0, is more efficient
when | γ | is small. We combine the two estimators so as to minimise the MSE
of the combination when γ = Γ . The constituent estimators ∆̂µAB and ∆̂µ

(0)
AB

have respective biases 0 and 1
2Γ and their sampling variances V and V0 are

given by (8.10) and (8.11), respectively. The covariance of the two estimators
is V0 . This follows from independence of the two groups’ observations and the
identities

cov (ȳBA,1 , ȳBA,1 − ȳBA,2) = cov
(
δ̄BA + ν̄BA,1 , ν̄BA,1 − ν̄BA,2

)
= var (ν̄BA,1)

=
σ2

nBA
,

and similarly
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cov (−ȳAB,1 , ȳAB,2 − ȳAB,1) =
σ2

nAB
,

where bar denotes sample means within the indicated regimen-by-period com-
bination and δj + νjGp is the decomposition of εjGp in (8.8) to independent
components for subject j in group (regimen) G and period p = 1, 2. Hence

cov
(
∆̂µAB , ∆̂µ

(0)
AB

)
=

σ2

2

(
1

nAB
+

1
nBA

)
= V0 .

A convex combination of the two estimators,

∆̃µAB = (1 − d)∆̂µAB + d∆̂µ
(0)
AB ,

has the MSE

MSE
(
∆̃µAB ; ∆µAB

)
= (1 − d)2V +

{
d2 + 2d(1 − d)

}
V0 +

d2γ2

4

= d2

(
V − V0 +

γ2

4

)
− 2d (V − V0) + V .

This quadratic function of d attains its minimum for

d∗ =
4(V − V0)

4(V − V0) + γ2
, (8.12)

with

V − V0 =
(

τ2 +
σ2

2

)(
1

nAB
+

1
nBA

)
.

As 0 < d∗ < 1, the estimator ∆̃µAB has the anticipated interpretation. For
γ = 0, d∗ = 1 and we use only ∆̂µ

(0)
AB . For very large γ, d∗ .= 0, and we make

little use of the second period; ∆̃µAB
.= ∆̂µAB . This concurs with intuition.

If γ were known to be equal to Γ the minimum MSE would be

MSE
(
∆̃µAB ; ∆µAB

)
= V − 4(V − V0)2

4(V − V0) + Γ 2

= V0 +
1
4
Γ 2 4(V − V0)

4(V − V0) + Γ 2
;

the compromise estimator ∆̃µAB would be more efficient than either of its
constituents.

Let ∆̃µ
(Γ )
AB be the estimator ∆̃µAB with the coefficient d∗ evaluated at

γ = Γ . When γ has an arbitrary feasible value, | γ | ≤ Γ , its MSE is

MSE
(
∆̃µ

(Γ )
AB ; ∆µAB

)
=

(V − V0)2(
V − V0 + 1

4Γ 2
)2 (V − V0 +

γ2

4

)
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Fig. 8.2. The MSEs of estimators of the treatment effect ∆µAB in a crossover trial
with nAB = nBA = 20, σ2 = 1, τ = 2.5. The estimators are: E— ∆̂µAB , with the
carryover estimated; 0— ∆̂µ

(0)
AB , with the carryover assumed absent; 1 — ∆̃µ

(Γ )
AB ,

minimax for Γ = 1.0; and 2 — ∆̃µ
(Γ )
AB , minimax for Γ = 0.75. The MSE of the

optimal combination of estimators ‘E’ and ‘0’, marked by ‘I’, is drawn by dots and
dashes, obscured in most of the range (0, 1).

− 2(V − V0)2

V − V0 + 1
4Γ 2

+ V

= V − (V − V0)2(
V − V0 + 1

4Γ 2
)2 {V − V0 +

1
4
(
2Γ 2 − γ2

)}
.

(8.13)

This is an increasing linear function of γ2, with slope smaller than 1
4 . By

construction, it is efficient among the convex combinations ∆̃µAB when γ =
Γ . Therefore, the MSE of any other convex combination ∆̃µAB exceeds the
MSE in (8.13) when γ = Γ . Thus, ∆̃µ

(Γ )
AB is minimax among the convex

combinations ∆̃µAB for | γ | ≤ Γ .
Figure 8.2 gives an illustration. The MSE of the estimator ∆̂µAB , marked

as E in the diagram, does not depend on the carryover effect γ. The estimator
∆̂µ

(0)
AB , marked as ‘0’, is efficient when the carryover is absent or small but

inefficient otherwise; it has a niche but also a weakness. For the setting Γ = 1,
the estimator ∆̂µ

(Γ )
AB , marked as ‘1’, is uniformly more efficient than ∆̂µAB

and is more efficient than ∆̂µ
(0)
AB when the carryover is in the range 0.6–1.0.

The MSE of ∆̂µ
(0)
AB increases very steeply with carryover.
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If we are too optimistic about Γ and the value of γ exceeds Γ by a small
amount, the estimator ∆̂µ

(Γ )
AB remains more efficient than both its constituents.

If we can justify a smaller value of Γ , we are rewarded by uniformly higher
efficiency in the plausible range of values of γ. The MSE of the minimax
estimator based on Γ = 0.75, marked in the diagram by ‘2’, is more efficient
than estimator ‘1’, so long as | γ | < 0.75. The MSE of estimator ‘2’ increases
with carryover at a faster rate, so that it is less efficient than estimator ‘1’ for
values of γ from about γ = 0.85 on. The penalty for using too small a value
of Γ is quite harsh, especially with regard to the weaknesses of ∆̂µ

(Γ )
AB .

The optimal combination of the two constituent estimators, based on the
value of γ as if it were known, is drawn by dots and dashes. It represents
the lower limit of MSE, and its comparison with other estimators can be
interpreted as the loss due to combining the constituent estimators ∆̂µAB

and ∆̂µ
(0)
AB suboptimally. The minimax estimators give some ground against

it for small Γ , but the loss is very small for large values of γ when they are
plausible.

We have assumed that the values of σ2 and τ2 are known. In practice, they
have to be estimated. This does not pose any substantial difficulties because
for set sample sizes nAB and nBA the coefficient d∗ in (8.12) depends only on
the ratio γ2/(τ2 + 1

2σ2). In effect, we have to declare an upper bound on this
ratio instead of on γ2. It pays to be conservative, to protect our inferences
against the possibility of high MSE.

8.4 Treatment Heterogeneity

The model in (8.8) and its submodels assume that a common treatment effect
applies to every member of the population. In this section, we explore the
consequences when this assumption is not satisfied. Suppose we can coarsely
describe the effect of treatment B over A in a planned clinical trial as beneficial
when µAB > µ∗

1 , as innocuous (clinically unimportant) when µ∗
0 ≤ µAB ≤ µ∗

1 ,
and as harmful when µAB < µ∗

0 . The constants µ∗
0 and µ∗

1 depend on the
scale defined for the outcomes, but they apply to any treatment that is or
might be included in the clinical trial. When the treatment effect is constant
(homogeneous), the treatment is beneficial, innocuous, or harmful to every
member of the population equally.

When the treatment effect is not constant (is heterogeneous) we have to
consider the three subpopulations defined by the classification of the treatment
effect to beneficial, innocuous, and harmful or, in general, the distribution of
the treatment effect. The patient selection process (by recruitment, screening,
and informed consent) is not controlled by any sampling design, so it can-
not ensure a good representation of the treatment effects among the recruited
patients. By way of an example, suppose treatment B is beneficial (in compar-
ison with A) for 50% of the population and innocuous for the remaining 50%.
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In an analysis that assumes that the treatment effect is constant, we have
no means of discovering this because heterogeneity has been ruled out. The
only feasible conclusions are that we have or do not have sufficient evidence
that the treatment is beneficial. The latter outcome should be interpreted as
a state of ignorance (‘we do not know’); this is different from evidence against
a beneficial effect of the treatment, which is not sought by the trial.

If most subjects are recruited from the subpopulation for whom the treat-
ment is beneficial, the estimator applied will be biased for the population
mean treatment effect. This problem cannot be resolved by randomisation.
Randomisation ensures that the treatment effect is estimated without bias
for the target equal to the sample average of the treatment effects, not the
population average. The problem is that, without any control over the re-
cruitment process, the expectation of the sample average (over the sampling
mechanism) may differ from the expectation of the treatment effects in the
population. In brief, a clinical trial is both a survey and an experiment. The
aspects of the experiment can be adhered to closely, at least in the plan (pro-
tocol), but the survey imperatives (good representation) cannot be satisfied.

Treatment heterogeneity leaves no trace in the outcomes, because it is
confounded with the lack of constancy of the effects in the model and with
the residual term. Replicate measurement of the outcomes may offer some in-
sights into heterogeneity, enabling us to decompose the residual variance to its
contribution due to heterogeneity and measurement error. However, popula-
tion heterogeneity is not well represented in the sample, so the corresponding
variance of the treatment effects is estimated with bias.

A solution might be to ignore the problem until the studied treatment
has been distributed and used by patients who were prescribed it after an
appropriate diagnosis. A survey may then establish the extent of treatment
heterogeneity. However, in this setting, randomisation is no longer feasible, so
any population inference remains problematic. In fact, now it appears that we
should aim for inference not about the population of sufferers, but of those
who (would) end up being prescribed the treatment. They may be a selected
subpopulation, and the selection mechanism evolves as the reputation of the
treatment develops over time. So the target of inference is not readily identi-
fied and is far from fixed at the time of the study, making a straightforward
assessment of an estimator impossible. One might argue that treatment het-
erogeneity cannot be extreme, referring to the extensive successful experience
with using drugs in medical practice. However, treatment homogeneity may
be regarded as an equally extreme assumption.

8.5 Bioequivalence

Clinical trials described in Sections 8.2 and 8.3 are concerned with assessing
evidence of superiority of one treatment over another. The pharmaceutical
research and development sometimes require one to provide evidence that the
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effect of one treatment is very similar to the effect of another treatment over
the same comparator; that is, the two treatments are bioequivalent. For exam-
ple, if a company develops a much cheaper or reliable manufacturing process
for a drug it already distributes commercially, it has to provide evidence to
the regulatory authority that the product of the new process is, in effect, the
same as the product of the old process. A company may have an exclusive
licence to produce a drug for a limited period of time. When its licence runs
out competitors may produce generic versions of the drug but may distribute
it commercially only after they have provided evidence that their product has
a very similar effect.

Clinical trials in which evidence of similarity of treatment effects is sought
are called bioequivalence trials. Two treatments A and B are said to be bio-
equivalent if the treatment effect of B over A is equal to zero for every member
of the population. This definition represents an absolute standard. A lower but
much more constructive standard is based on the value of the mean squared
treatment effect, defined as

MSD (Y ; A,B) = E
{(

Y (B) − Y (A)
)2
}

for outcomes Y in response to treatments A and B. The standard is that

MSD (Y ; A,B) ≤ D , (8.14)

where D is a constant. The absolute standard corresponds to D = 0. The
condition in (8.14) can be interpreted as a form of rationing for the devia-
tions of the treatment effects from zero. There may be an average treatment
effect

√
D or −√

D if the treatment effect is homogeneous, or the standard
deviation of the treatment effect may be up to

√
D if the average treatment

effect vanishes. And D can be split to the two components, the squared mean
treatment effect and the treatment heterogeneity:

MSD (Y ; A,B) =
{

E
(
Y (B) − Y (A)

)}2

+ var
(
Y (B) − Y (A)

)
.

Every measurement of Y (T) is tainted with a composite of the measure-
ment error and the everyday influences on the patient; instead of Y (T) we
observe Y

(T)
† = Y (T) + ε(T). We have to distinguish between this manifest

outcome and its latent version Y (T). The values of Y
(T)
† are inconsistent—

the patient would respond differently to the same (identical) treatment on a
different occasion, and it would not be solely because of a consistent change
in the state of health. The latent outcome is consistent across replications
of the treatment—it is the consistent component in replications of the same
treatment. Therefore, the ‘manifest’ difference Y

(B)
† − Y

(A)
† between the out-

comes of two treatments comprises the (consistent) difference Y (B) − Y (A)

of the underlying latent values and the inconsistencies that accompany every
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administration of a treatment. The standard formulated by (8.14) refers to
the latent values.

By definition, any treatment is bioequivalent with itself and satisfies
the absolute standard, with D = 0 in (8.14), when compared with itself:
MSD(Y ; A,A) = 0. Bioequivalence trials use several periods, so that the ‘man-
ifest’ differences between administrations of the same treatment can be pitted
against the differences between administrations of alternative treatments. The
former contain only the inconsistency in the responses, whereas the latter com-
bine inconsistency with the treatment effects. The standard of bioequivalence
with small positive D corresponds to the two sets of dispersions differing very
little.

On the one hand, by administering treatments in more periods we obtain
more information about inconsistency and treatment effects; on the other
hand, we want to expose subjects to as little experimentation as possible. The
minimal design that has some within- and between-treatment comparisons
within subjects is the design with three periods in which one treatment group,
denoted by ABB, is treated by A in the first period and by B in the second
and third periods. Another group, with regimen BAA, is treated by B in
the first and by A in the second and third periods. Patients are assigned
to these regimens by randomisation. As an alternative, the regimens AAB
and BBA may be applied. A more extensive design has four periods, with
regimens ABAB and BABA, or ABBA and BAAB, or with all these four
regimens. Symmetry in the design entails two aspects: equal within-regimen
sample sizes and symmetry of regimens, as in (ABBA, BAAB); by swapping
the labels A and B of the treatments we obtain the same set of regimens. Such
symmetry simplifies the inference by eliminating some nuisance parameters.

The periods are separated by washouts, and we assume that they are
perfect, so that there is no carryover. This assumption is somewhat more
realistic with established treatments that have been studied extensively in
the past, both in clinical trials (development) and observational studies (in
operation, after approval). We also assume that the period effects vanish. This
is mainly to keep the notation simple and to keep the focus on inference about
bioequivalence, although it is often a reasonable assumption.

We assume that the outcomes (both manifest and latent) are jointly nor-
mally distributed. Denote by σ2

A and σ2
B the inconsistency variances associated

with respective treatments A and B, by σ2
AB the variance of the treatment

effects, and by ∆µAB the mean treatment effect. That is, the manifest version
of the within-subject differences of the outcomes in response to treatments B
and A is

Y
(B)
† − Y

(A)
† ∼ N (∆µAB , σ2

AB + σ2
A + σ2

B

)
,

whereas its latent version is Y (B) − Y (A) ∼ N (∆µAB , σ2
AB

)
. Suppose nr

subjects are assigned to regimen r =ABB and BAA by randomisation and
the protocol is adhered to throughout.
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Let yr,t be the vector of outcomes for the subjects in regimen r = ABB,
BAA in period t = 1, 2, 3 and denote the between-period within-subject sums
of squares

s2
r,t1,t2 =

1
nr

(yr,t2 − yr,t1)
� (yr,t2 − yr,t1) .

In regimen ABB, the comparisons of the outcomes in the second and third
period have variance 2σ2

B , and both comparisons of first with second and first
with third period have variance σ2

AB + σ2
A + σ2

B ; for t = 2 and 3,

E
(
s2
ABB,1t

)
= σ2

AB + σ2
A + σ2

B + ∆µ2
AB ,

E
(
s2
ABB,23

)
= 2σ2

B . (8.15)

The variances of the between-period comparisons in regimen BAA are derived
by exchanging the roles of A and B:

E
(
s2
BAA,1t

)
= σ2

AB + σ2
A + σ2

B + ∆µ2
AB ,

E
(
s2
BAA,23

)
= 2σ2

A .

The mean squared treatment effect is equal to σ2
AB +∆µ2

AB . We can estimate
it without bias by

M̂SD(Y ; A,B) =
s2
ABB,12 + s2

ABB,13 + s2
BAA,12 + s2

BAA,13

4
−s2

ABB,23 + s2
BAA,23

2
.

This is an example of a moment-matching estimator. We derived it by match-
ing a (linear) combination of some suitably selected statistics with its expecta-
tion. Often there is no unique moment-matching estimator for a target. That
is also the case here—there are many ways to combine the estimators s2

r,t1,t2 .
We chose a formula in which all the statistics appear and do so symmetrically.
Linear moment-matching estimators imply unbiasedness, but no claims about
efficiency can be made. Note that s2

ABB,12 and s2
ABB,13 are correlated, because

both involve outcomes for regimen ABB from period 1. This makes deriving
the sampling distribution of M̂SD(Y ; A,B) difficult.

An alternative moment-matching estimator is constructed from the vectors
ξr,X = yr,1−(yr,2+yr,3)/2 and ξr,W = yr,3−yr,2 . Here X and W are symbols
for ‘across’ (between) and ‘within’ treatment contrasts. The covariance of
these two variables vanishes:

cov (ξr,X , ξr,W) = cov
(

Yr,1 − Yr,2 + Yr,3

2
, Yr,3 − Yr,2

)
= cov (Yr,1 , Yr,3) − cov (Yr,1 , Yr,2) +

var (Yr,3) − var (Yr,2)
2

= 0 ,

where ξr,X denotes the component of ξr,X for a subject. As ξr,X and ξr,W

are uncorrelated and normally distributed, they are also independent. For
moment matching with ξr,W and ξr,X , we require the identities
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1
nr

E
(
ξ�

r,X ξr,X

)
= σ2

AB + σ2
r1

+
1
2
σ2

r2
+ ∆µ2

AB ,

1
nr

E
(
ξ�

r,W ξr,W

)
= 2σ2

r2
,

where r1 and r2 are the treatments (A or B) administered in the respective
periods 1 and 2 of regimen r. Hence the moment-matching estimator

M̃SD (Y ; A,B) =
1
2

∑
r

1
nr

ξ�
r,X ξr,X − 3

8

∑
r

1
nr

ξ�
r,W ξr,W , (8.16)

with summations over the regimens r = ABB and BAA. We relate the distri-
bution of this estimator to χ2 distributions. First, ξ�

r,W ξr,W has a scaled χ2

distribution with nr degrees of freedom. The expectation of ξr,X differs from
zero, so we decompose ξ�

r,X ξr,X to

ξ�
r,X ξr,X =

(
ξr,X − ξ̄r,X1

)� (
ξr,X − ξ̄r,X1

)
+ nr ξ̄ 2

r,X ,

where ξ̄r,X is the sample mean ξ̄r,X = ξ�
r,X1/nr . The corrected sum of squares

in this identity has χ2 distribution with nr − 1 degrees of freedom, one being
lost because of estimating the mean treatment effect, the population version
of ξ̄r,X .

The squared sample mean ξ̄ 2
r,X has a scaled noncentral χ2 distribution

with one degree of freedom. The noncentral χ2 distribution with one degree
of freedom is defined as the square of a variable with distribution N (µ, 1). The
squared mean µ2 is referred to as the noncentrality parameter. The distribution
is denoted by χ2

1,µ2 . Its mean is µ2+1 and variance µ4+6µ2+3. The noncentral
χ2 distribution with m > 1 degrees of freedom is defined by the sum of two
independent variables, one with χ2

1,µ2 and the other with χ2
m−1 distribution.

Its noncentrality parameter is defined as µ2 and the distribution is denoted
by χ2

m,µ2 .

We can now describe the distribution of M̃SD in (8.16) as a linear combi-
nation of six independent χ2 distributions:

M̃SD(Y ; A,B) =
1
2

σ2
AB + σ2

A + 1
2σ2

B

nABB
X1 +

1
2

σ2
AB + 1

2σ2
A + σ2

B

nBAA
X2

− 3σ2
B

8nBAA
X3 − 3σ2

B

8nBAA
X4

+
1
2

(
σ2

AB + σ2
A +

1
2
σ2

B

)
X5 +

1
2

(
σ2

AB +
1
2
σ2

A + σ2
B

)
X6 ,

where X1 , X2 , X3 , and X4 are mutually independent random variables with
χ2 distributions with nABB−1, nBAA−1, nABB , and nBAA degrees of freedom,
and X5 and X6 have noncentral χ2 distributions with one degree of freedom
each and respective noncentrality parameters
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nABB ∆µ2
ABB

σ2
AB + σ2

A + 1
2σ2

B

and
nBAA ∆µ2

BAA

σ2
AB + 1

2σ2
A + σ2

B

.

The variance of this distribution is the sum of the variances of the six (inde-
pendent) components. It is a formidable and unwieldy expression; it depends
on the population variance σ2

AB as well as on the two inconsistency variances.
Substituting estimates for the unknown variances is not appropriate, because
the error committed in estimation is then committed again in estimating the
sampling variance of the estimator. This highlights the difficulties of making
inferences about variances in general. However, even with moderate sample
sizes nABB and nBAA , we have approximate normality, and a quantile of the
estimator’s distribution can be approximated using its (approximate) sam-
pling variance.

Evidence of bioequivalence corresponds to small values of M̃SD. This corre-
sponds to testing the hypothesis that the underlying value (population quan-
tity) MSD is small. In practice, testing the hypothesis that MSD = 0 would
require too great a sample size, and given that the original treatment has been
proven to be beneficial, some deviation of MSD from zero can be allowed. The
critical value is difficult to set without being too conservative because the vari-
ances σ2

AB , σ2
A , and σ2

B are not known. Their estimation can be improved by
incorporating the (prior) information that these variances, and the latter two
in particular, are not large. If such thresholds can be set for all three vari-
ances, the sampling variance of the test statistic could be evaluated for the
least favourable setting. At the extreme, σ2

AB = 0 may be adopted as prior
information. Then we are concerned only with the common (mean) treatment
effect ∆µAB and could base our inference on its estimator ∆̂µAB . However,
unlike in an assessment of superiority, we now seek evidence against large val-
ues of |∆µAB |, and so evidence of bioequivalence corresponds to | ∆̂µAB | < c
for a suitable positive constant c.

To select the critical value c, we set first the largest value of ∆AB that is still
compatible with bioequivalence. That is, the mean treatment effect of B over A
would just about be regarded as unimportant. Let this value of the mean effect
be ∆∗

AB . The critical value c is then set so that the probability of rejecting
the hypothesis of no bioequivalence, |∆AB | > ∆∗

AB , would not exceed the
size of the test α (usually 0.05), whenever the hypothesis is valid. When the
residual variance σ2 is known and the outcomes are normally distributed, this
probability is

P(| ∆̂AB | > c |∆∗
AB) = Φ−1

(
c − ∆µ∗

AB

2σ

√
n

)
+ Φ−1

(−c − ∆µ∗
AB

2σ

√
n

)
,

when ∆AB = ±∆∗
AB , and it can be shown that the probability is smaller when

|∆AB | > ∆∗
AB .
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8.6 Incorporating Utilities

An outstanding weakness of hypothesis testing as a tool for making a binary
(Yes/No) decision is that it is oblivious to the consequences of an erroneous
choice. Instead of limiting the probabilities of the two kinds of error, whichever
way we balance the probability of one kind against the probability of the
other, we should evaluate the consequences of making an incorrect decision
and make the choice for which the expected loss is minimised. Implementing
this scheme is not elementary because we have to operate with several elements
of uncertainty. Further, we have to evaluate what the losses would be in each
particular circumstance.

We consider a clinical trial for superiority of treatment B over treatment A.
In the trial, the mean treatment effect of B over A is estimated, assuming that
the treatment effect is constant in the studied population. For a given class of
designs, such as the two-period crossover design with balance (nAB = nBA),
there is an obvious estimator of the treatment effect θ, denoted by θ̂, and its
MSE is a function of the sample size:

v(n) = MSE(θ̂; θ |n) ;

we omit from the notation any other parameters on which the variance may
depend. As a simple example, v(n) = 4σ2/n for the single-period randomised
trial with n/2 subjects in either of the two treatment groups.

The consequences of a decision are governed by the cost of development
and experimentation, possibly offset over time by income from sales (with
the costs of production and distribution subtracted), and the risk of failure
due to distributing a drug that turns out to be ineffective, or even harmful,
compounded by the loss of good reputation. Experimentation costs depend on
the sample size, and we assume that this is a linear function. There is a setup
cost and a constant per-subject cost. Of course, the development of a drug
involves several experiments, but we assume that these have been concluded
successfully and subsume their cost in that of the development.

The utility of a drug is zero if the decision is not to distribute it commer-
cially. Otherwise, as a simplification, we assume that the utility is a monotone
function of θ, independent of all other parameters. It may be smooth, or
smooth except for one or two ‘jumps’ at some critical values of θ. Establish-
ing this utility function U(θ) is essential, because it has a profound impact
on the (commercial) decision. For example, if the utility is extremely high
throughout the range of feasible values of θ, experimentation is unnecessary.
If the losses are modest even in the worst plausible scenario and the utility
is positive and very large for a range of values of θ, the decision should be
formed differently from when the losses may be catastrophic and the gains
modest even in the most optimistic scenario.

The details of the utility function, its exact shape, are difficult to set. The
regulatory authority might impose one, representing the population that will



254 8 Clinical Trials

be affected in the future, or more generally the general public’s interest in
health care. The setting would reflect the society’s priorities—to be sure that
any treatment available for prescription is effective and to quantify the harm
done by using an ineffective treatment. The developer, a pharmaceutical com-
pany, may have different priorities. They consider the profit that a successful
drug might bring in the future and balance it with the risks of a possibly
catastrophic failure if a drug turned out to be ineffective or even harmful af-
ter its appearance on the market. Possible loss of good reputation and of the
public’s confidence in the company’s products are important considerations.

Let (θL , θH) be the range of plausible values within which the treatment
effect θ is bound to lie. We simplify the task of setting the utility function by
agreeing with the developer (or the regulatory agency) on the utilities for θL

and θH , the extreme values of θ. Let them be UL = U(θL) and UH = U(θH).
Usually, UL < 0, UH > 0, and −UL � UH ; the risks greatly outweigh the
possible profits. Further, let θ0 be such that U(θ0) = 0; this is the break-even
point; distribution of the product is beneficial (profitable) if θ > θ0 .

We now overlay a smooth function over the points (θL , UL), (θ0 , 0), and
(θH , UH). The form of the function should be informed by the circumstances.
For example, if the utility increases slowly for large θ and reaches a plateau
at around θH and drops precipitously for large negative values of θ, a suitable
function is

U(θ) = c − exp(a − bθ) , (8.17)

with the constants a, b > 0 and c > 0 set so as to satisfy the conditions at
θL , θ0 , and θH . A singular ‘penalty’ can be subtracted from the utility in
(8.17) for negative θ. The utility function is then discontinuous at θ = 0 but
is monotone throughout.

We set the cost of experimentation to C(n) = d0 + d1n, with positive
constants d0 and d1 . The cost may be a more complex function. In particular,
it may have some discontinuities, related to the capacity to conduct trials. For
example, the cost may increase by a singular quantity when additional staff
have to be engaged for recruitment or the conduct of the trial.

Suppose θ will be estimated from the mean of the outcomes of the two
treatment groups as θ̂ = ȳB − ȳA , and the decision rule for marketing and
distribution will have the form θ̂ > θ∗ for a sample-size-dependent value θ∗.
For a given value of θ, the gain is defined as the expected utility adjusted for
the cost of experimentation:

G (θ∗, θ;n) = U(θ)P
(
θ̂ > θ∗

)
− C(n) .

The gain is easy to calculate for any combination of θ and θ∗, assuming a
known distribution of θ̂. The difficulty is that θ is not known. We want to set
θ∗ and n so as to maximise the gain G.

With increasing sample size, the cost C(n) increases, so we have an in-
centive to keep the trial small. In contrast, disastrous decisions would have
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an appreciable probability if the sample size were very small, because the
estimate θ̂ may exceed a high threshold θ∗ even when θ is much smaller
than θ0 .

8.7 Example

Suppose the feasible range of mean treatment effects of a novel drug against its
established competitor is from θL = −2 to θH = 6, and the manifest variance,
which can be interpreted as the amalgam of the measurement (assessment)
error, temporal inconsistency, and subject-level heterogeneity, is σ2 = 2. Fur-
ther, suppose the break-even value is θ0 = 0.5, the utility at θH is UH = 10,
and the utility at θL is UL = −100, with a singular penalty of 10 units applied
when θ < 0. We fit a utility function of the form (8.17) by the Newton method .

The univariate Newton method for solving the equation f(x) = d, for a
differentiable function f , comprises iterations

xnew = xold +
d − f(xold)

f ′(xold)
, (8.18)

where f ′ is the derivative of f regarded as a function of the same argument
as f . This formula is derived by the Taylor expansion applied to the function
f at the solution xnew :

f(xnew) .= f(xold) + f ′(xold) (x − xold) ,

from which (8.18) follows immediately. The multivariate version of (8.18), with
a vector of functions F and the search for the vector x∗ for which F (x∗) = d,
is

xnew = xold +

(
∂F

∂x

∣∣∣∣
x=xold

)−1

{d − F (xold)} .

In our case, F comprises three functions of (a, b, c), equal to c − exp(a − bθ)
for θ = θL , θ0 , and θH , and x = (a, b, c). The partial differentials of these
functions are

∂f

∂a
= − exp(a − bθ) ,

∂f

∂b
= θ exp(a − bθ) ,

∂f

∂c
= 1 ,

and ∂F/∂x comprises these values as three columns, evaluated at θL , θ0 ,
and θH . The penalty introduces a discontinuity. It can be dealt with by first
removing it, finding a solution for the penalty-free problem with UH adjusted
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accordingly (from −100 to −90), and then incorporating the penalty to the
solution. An initial guess is required for xold in the first iteration.

Table 8.1 gives details of the iterations. The distance in the right-most
column is defined as the total of the squared deviations of F (xold) from U =
(UL , U0 , UH). The values of utility given in the table are already adjusted for
the penalty. We see that the convergence is quite fast, despite a very poor
starting solution. The fitted utility function is plotted in Figure 8.3.

Table 8.1. Iterations of the Newton method to find a suitable utility function.

Utility parameters Values of utility

Iteration a b c θL = −2 θ0 = 0.5 θH = 6 Distance

Start 1.000 1.000 1.000 –29.09 –0.65 0.99 —
1 5.877 0.553 10.058 –1076.56 –260.45 –2.90 ∼ 106

2 4.921 0.576 8.723 –435.38 –94.05 4.41 ∼ 105

3 4.037 0.632 9.049 –201.58 –32.24 7.77 ∼ 104

4 3.321 0.738 9.552 –121.67 –9.59 9.22 562.32
5 2.902 0.860 9.950 –101.76 –1.89 9.85 6.71
6 2.778 0.914 10.058 –100.01 –0.13 9.99 0.02
7 2.768 0.919 10.064 –100.00 0.00 10.00 < 10−5

8 2.768 0.919 10.064 –100.00 0.00 10.00 < 10−6
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Fig. 8.3. The utility as a function of the treatment effect, with a penalty of 10 units
at θ = 0.5. Details of this function are given in the bottom row of Table 8.1.
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Table 8.2. The expected gains for n = 20. The penalty of 10 units for θ < 0 is not
subtracted.

θ

θ∗ –2 –1 0 1 2 3 4 5 6

0.0 –0.537 –2.868 –3.566 3.149 7.207 8.686 9.250 9.466 9.549

0.2 –0.478 –1.677 –2.792 2.973 7.196 8.686 9.250 9.466 9.549

0.4 –0.458 –1.020 –2.092 2.712 7.169 8.686 9.250 9.466 9.549

0.6 –0.452 –0.692 –1.518 2.360 7.110 8.685 9.250 9.466 9.549

0.8 –0.451 –0.544 –1.091 1.932 6.992 8.684 9.250 9.466 9.549

1.0 –0.450 –0.483 –0.805 1.458 6.777 8.679 9.250 9.466 9.549

1.2 –0.450 –0.461 –0.630 0.985 6.424 8.666 9.250 9.466 9.549

1.4 –0.450 –0.453 –0.534 0.556 5.900 8.634 9.250 9.466 9.549

1.6 –0.450 –0.451 –0.486 0.204 5.194 8.563 9.249 9.466 9.549

1.8 –0.450 –0.450 –0.464 –0.057 4.332 8.422 9.248 9.466 9.549

2.0 –0.450 –0.450 –0.455 –0.233 3.382 8.166 9.242 9.466 9.549

2.2 –0.450 –0.450 –0.452 –0.340 2.431 7.745 9.229 9.466 9.549

2.4 –0.450 –0.450 –0.450 –0.399 1.570 7.120 9.195 9.466 9.549

2.6 –0.450 –0.450 –0.450 –0.428 0.863 6.278 9.120 9.465 9.549

2.8 –0.450 –0.450 –0.450 –0.442 0.339 5.252 8.970 9.464 9.549

3.0 –0.450 –0.450 –0.450 –0.447 –0.014 4.118 8.698 9.458 9.549

Suppose the cost of the trial is C(n) = 0.25 + 0.01n. The initial costs,
d0 = 0.25, are 2.5% of the gains from sales in the most optimistic scenario of
θ = θH . We search for the best combination of critical value θ∗ and sample
size n by evaluating the function G over a rectangular grid of values of θ∗

and θ for a range of sample sizes n. As an example, Table 8.2 presents the
results for n = 20. For instance, if the critical value is set to θ∗ = 1.0 and the
treatment effect is θ = 0, the gain is −0.805, that is, the expected loss is much
greater than C(20) = 0.45. This is because the decision to market the novel
treatment, and therefore incur losses, has a large probability P(θ̂ > θ∗ | θ = 0).

If the decision at the end of the trial is not to proceed with distribution,
the gain is −0.45, the cost of the trial. For θ∗ = 3.0 and θ < 1, the gain is
−0.45 or only slightly higher, because P(θ̂ > θ∗ | θ) is very small. In contrast,
when θ = 6.0, any setting of θ∗ in the range (0, 3) will lead to realising most
of the possible gains.

The critical value θ∗ and the sample size n are set by design, when θ is
not known. Therefore, we cannot place our bets regarding the gains on any
particular value of θ but have to average over its feasible values. We average
over all the feasible values of θ, that is, evaluate

E {G(θ∗;n)} =
∫ θH

θL

G(θ∗, θ;n) dθ (8.19)
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for a range of sample sizes n. We can approximate this integral by the sum-
mation

θH∑
θ=θL

G(θ∗, θ;n)∆θ ,

over a grid of feasible values of θ with gaps of ∆θ. We could use a finer grid,
but that is not necessary, because first we hone in on the combinations of θ∗

and n and evaluate the expected gains over a finer grid later.
We can also calculate the average gain, by integration or its approximation

by summation with weights, describing our beliefs about the relative plausibil-
ity of each value of θ. The integral in (8.19) corresponds to equal weights, or
indifference (no preference) among the values of θ in (−2, 6). It can be moti-
vated as a noninformative Bayes prior (Chapter 4). A more optimistic scenario
corresponds to weights increasing with θ and a more pessimistic scenario to
weights decreasing with θ.

The weights, as a function of θ, represent a distribution—they are non-
negative and, after scaling if necessary, their integral is equal to unity. The
discrete version of the weights, when only a finite number or countably many
values of θ are feasible, also represents a (discrete) distribution. The expected
loss with a continuous prior distribution w is

E {G(θ∗;n) |w} =
∫ θH

θL

G (θ∗, θ;n) w(θ) dθ . (8.20)

Figure 8.4 displays the indifference, an optimistic, a pessimistic, and a fo-
cussed prior. The indifference prior is unique—it corresponds to the uniform
distribution. However, there are priors more pessimistic than the one depicted
in panel B. More probability can be concentrated on the negative values of
θ; in principle, a prior could even rule out any positive values of θ. By sym-
metry, there are priors more optimistic than that in panel C. By a focussed
prior (panel D), we incorporate in the analysis our belief about the location of
the value of θ. More concentrated density corresponds to greater confidence
and stronger commitment; at the same time, it presents a greater threat to
the validity of the analysis, if its choice is not well founded. The qualifier ‘fo-
cussed’ is also relative. The knowledge that the value of θ is in a very narrow
range represents a more focussed prior than the one in panel D. On the other
hand, even the indifferent prior is ‘slightly’ focussed, since it rules out values
of θ below −2.0 and above 6.0.

With the indifference (uniform) prior on (−2, 6), the expected gains are
approximated by the within-row averages of the gains in Table 8.2. These
averages are listed in Table 8.3. The expected gain increases up to about 0.8
and then decreases at a somewhat faster rate. For example, the expected gain
for θ∗ = 3 and n = 20 is 3.34. Thus, if n = 20 were chosen, the optimal critical
value would be θ∗ .= 0.8.

Since we can also set the sample size n, we find the maximum expected
gains for a range of sample sizes. These values are given in Table 8.4 in the
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Fig. 8.4. Examples of prior distributions for the mean treatment effect θ.

Table 8.3. Approximate expected gains in the clinical trial with n = 20.

θ∗ 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 . . .

E{G(θ∗; 20)} 4.48 4.69 4.81 4.86 4.87 4.83 4.76 4.66 . . .

row with the heading Round 1. We see that the maximum gain is attained
for n = 20 or 22. The maximum increases while n < 20 more steeply than it
decreases when n > 22, so it is better to err on the side of setting a higher
n, even when drop-out and other problems with the conduct of the trial are
disregarded.
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Table 8.4. Approximations to the maximum expected gains for sample sizes n in
the range 14 to 30.

Sample size (n)

14 16 18 20 22 24 26 28 30

maxθ∗ E{G(θ∗; n)}
Round 1 4.831 4.852 4.862 4.865 4.865 4.864 4.860 4.854 4.846

Round 2 4.812 4.840 4.859 4.870 4.876 4.877 4.875 4.871 4.865

The critical values for which the maximum gains in Table 8.4 are attained
are in the range 0.5 < θ∗ < 0.9. We can now hone in on the solution by
evaluating the expected gains over a finer grid for both the treatment effect
(in steps of 0.1) and critical values (steps of 0.01). The results are given in the
row of Table 8.4 labelled Round 2. The optimum sample size based on these
approximations is n∗ = 24, although the gains for n = 22 and 26 are only
slightly smaller. The critical value with which the expected gain attains its
maximum is θ∗ = 0.75; for instance, the expected gains with θ∗ = 0.70 and
θ∗ = 0.80 (and n = 24) are 4.8751 and 4.8754, respectively.

We have derived the optimum design and critical value for a given setting,
the utility function, variance σ2 = 2, and the prior in particular. It remains
to explore how the optimal values of θ∗ and n change as we alter the setting.
This entails rerunning the programme that establishes the optimal values for
a range of alternative settings that are feasible and perhaps slightly beyond
this range, as a form of sensitivity analysis.

Suggested Reading

There are several monographs on clinical trials, with a focus on testing a
single hypothesis of equality of (mean) treatment effects, [4], [147], [51], [180],
and [145]. Standard references to the design and analysis of crossover trials
are [90] and [179]. The argument against including the carryover effect in the
analysis is presented by [53]. The minimax estimator of the treatment effect
in crossover trials is derived in [119]; the impact of treatment heterogeneity
on the established methods of analysis is discussed in [117]. Several journals
specialise in research on clinical trials; foremost among them are Controlled
Clinical Trials, Drug Information Journal, and Journal of Biopharmaceutical
Statistics. Statistics in Medicine also publishes many articles on statistical
issues in clinical trials.

Bioequivalence is a relatively recent concern in clinical trials; see [18]. The
method described in [174] is widely adopted in the pharmaceutical research
and development, even though it assumes treatment homogeneity. An alter-
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native proposal is developed by [171]; see [181] for a related discussion. The
method presented in this chapter is described in greater detail in [118]. A
critique of using hypothesis testing for decisions about bioequivalence is pre-
sented in [103]; the points it makes are applicable to clinical trials in general.

Two advanced topics related to clinical trials are not addressed in this
chapter: testing several hypotheses (multiplicity), [78] and [6], and sequential
trials (trials with interim decisions as to stop or continue, based on summaries
of intermediate variables) [194].

Problems and Exercises

8.1. Verify that the assumption of normality is essential for the sample mean
X̄ and sample variance Û to be independent. Generate random samples from
different distributions (log-normal, beta, gamma, and the like) and estimate
the correlation of X̄ and Û . Repeat this exercise with some symmetric dis-
tributions, such as t and symmetric beta, B(b, b). Relate your findings to the
definition of the t-distribution.

8.2. Empirically (by simulations) it is not possible to prove that a distribution,
such as t1 does not have an expectation. How could you get some indication
by simulation that the expectation (or variance) of a t-distribution may not
exist?

8.3. What kinds of treatments cannot be studied by trials with crossover
design?

8.4. List the problems with estimation of the mean treatment effect that
would arise in a crossover trial if all subjects were assigned to the same regi-
men, say, AB.

8.5. Derive the estimator of the treatment effect ∆µAB by moment matching,
as outlined in Section 8.3.1.

8.6. Repeat the derivation of the minimax estimator in Section 8.3.2 with
the assumption that the absolute value of the carryover does not exceed a
given fraction of the absolute value of the treatment effect; | γ | ≤ c |∆µAB |.
Identify the problem(s) additional to those in the original derivation, and
devise ways of circumventing them. Could a treatment have a zero effect
and yet be associated with a nonzero carryover? Relate your answer to the
appropriateness of the assumption about γ and ∆µAB .

8.7. Derive the value of the carryover effect γ for which the two minimax
estimators, based on different maximum plausible carryover effects Γ < Γ ′

have the same MSEs; that is, where their MSE curves (curves 1 and 2 in
Figure 8.2) intersect.
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8.8. Discuss the definitions of patient heterogeneity and treatment hetero-
geneity and which features of a clinical trial, if any, address either of them.

8.9. The definition of bioequivalence used in this chapter is called individual
bioequivalence in much of the literature. In the definition of population bio-
equivalence, a constant treatment effect is assumed. That is, two treatments
are declared bioequivalent if the absolute value of the average treatment effect
of one in comparison with the other is smaller than a set threshold D. De-
fine the corresponding mean squared deviation, MSD, and derive a moment-
matching estimator for it. Compare your test of the hypothesis that MSD≤ D
with the test derived by [174].

8.10. Discuss the rationale for regimens with more than one application of
a treatment for studying population bioequivalence, and compare it with the
rationale for studying individual bioequivalence.

8.11. Trace through the derivation of the distribution of M̂SD in Section
8.5 the importance of normality of the outcomes. For a contrast, consider
the problem with binary outcomes. How could (individual) bioequivalence be
assessed when, in essence, all that is recorded is whether the outcomes of each
subject are in concordance (agreement) or discordance (disagreement)?
Hint: For one possible solution, recall the details of the permutation test.

8.12. Devise a graphical method for (informal) assessment of individual bio-
equivalence. Explore, for example, plots of the outcomes for one period against
another, within regimens. Align such plots when they are for the same treat-
ment and for different treatments. To make the exploration easier, gener-
ate (normally distributed) datasets from models that satisfy individual bio-
equivalence and that fail it by a wide margin.

8.13. Adopt the diagram from the previous exercise as a feature; see Section
1.3.1. Generate replicates of the dataset with the same sample sizes and model
parameters as the fit for the realised dataset, but set the between-treatment
variance σ2

AB to zero. Draw the diagram for each replicate and compare these
simulated diagrams with the diagram for the realised dataset. If the latter
stands out among them, then we declare evidence against individual bio-
equivalence. Summarise the advantages and drawbacks of this approach.

8.14. Implement the Newton method described in Section 8.6. For a particular
set of treatment effects (θL , θ0 , θH) and the associated utilities (UL , U0 , YH),
explore how poor the initial values (a, b, c) have to be for the Newton algorithm
to fail.

8.15. For the setting of the example in Section 8.7, explore how the expected
gains could be presented graphically. Explain why the results in the two rounds
differ for a pair (θ, θ∗) for which the expected gains are evaluated on both
occasions. Explore how different the expected gains and the optimum sample
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sizes are when the utility function or the unit expenditure in the trial are
altered by a small amount. Similarly, explore the sensitivity of the optimum
sample size with respect to the prior.
Hint: Replace the uniform prior by a beta prior with both parameters close
to 1.0 or by a prior with a linear density.

8.16. Discuss how the formulation of the placebo incorporates the principle
of blinding. In a typical clinical trial, none of the staff who are in contact with
the subjects (patients) can identify the treatments they administer. That is,
they are aware of the labels of the treatments, such as A and B, but do not
know which is the novel and which is the established treatment. Explain why
it is essential to maintain such blinding until all the outcomes are recorded.
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Random Coefficients

Clustering is a common structure in populations. We belong to families, com-
munities, educational institutions, places of employment, or, in general, clus-
ters. Members of a cluster are often more similar to one another than members
of the population in general. When the population comprises many clusters
and studying each of them in isolation is not practical, it is meaningful to
regard them as another population and study them as such. At the same
time, each cluster on its own is a population, with its features that may be
described by a model. Therefore, a clustered population may be described by
a population of models, which can itself be regarded as a single model. The
subject of this chapter are such models. We focus on populations of ordinary
regression models, building on the familiar, and expand the horizons later in
the chapter.

9.1 Introduction

In earlier chapters, we found linear regression an effective means of describing
how two variables are associated. Originally, we considered designs in which
the values of the stimuli X are set and done so with no regard for the antici-
pated values of Y . Such a setting enables inferences about the effect of X on
Y , as defined in Chapter 7. More commonly, neither X nor Y entails any form
of control, so any interpretation of the fitted regression coefficients as effects
is highly problematic. Nevertheless, they are useful to describe how the two
variables are associated in a particular context.

In a structured population, with members i within clusters d, we may
consider a separate regression for each cluster:

yid = xidξd + εid ,

where yid is the outcome, xid the corresponding row vector of the values of
the covariates (with the intercept 1 as its first element), ξd the vector of
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regression coefficients for cluster d, and εid a random draw from N (0, σ2
d). In

a more compact notation,

(yd |Td , d) ∼ N (Tdξd , σ2
dI
)

. (9.1)

We refer to this as the within-cluster model. Such a model is well suited for
one or a few clusters, but not for an entire population, especially when it
comprises so many clusters that the listing of all sets of parameters (ξd , σ2

d)
would be impractical and would not inform us effectively without further
analysis. We add d as a condition on the right-hand side of (9.1) to indicate
that two clusters may have different regression coefficients ξd even when they
have the same regression matrix Td .

We formulate a separate model for the population of clusters:

ξd ∼ N (Udη, ΣB) , (9.2)

independently, that is,
ξd = Udη + δd ,

with a known matrix Ud , unknown vector of regression parameters η, and
a random sample δd from N (0,ΣB) with unknown variance matrix ΣB . We
refer to this as the cluster-level model. It is customary to assume a degenerate
distribution for the residual variances σ2

d , σ2
d ≡ σ2, but this is by no means

the only option. For instance, we can specify a linear model for log(σ2
d) or

add σ2
d as another component to the vector ξd in (9.2) and allow for σ2

d

to be correlated with the components of ξd . Model parsimony and relative
computational simplicity are two reasons for preferring the assumption of
homoscedasticity, σ2

d ≡ σ2.
The models in (9.1) and (9.2), or the corresponding equations, can be

combined to yield
yd = TdUdη + Tdδd + εd , (9.3)

so that
(yd |Td ,Ud , d) ∼ N (TdUdη + Tdδd , σ2I

)
. (9.4)

As a convention, we assume that the first columns of Td and Ud correspond
to the intercept. The model in (9.4) is called two-level , to indicate that it
combines models for members (elements or atoms) and clusters. It is a special
case of the multilevel model in which models are combined for clusters at
several levels. We discuss these in Section 9.6.

The regression matrix Td Ud can be interpreted as containing regression
variables T defined for members, U defined for clusters, and all their inter-
actions (products). Equation (9.3) states that the within-cluster regression
coefficients are constant for all variables except for those in T. The average
(typical) regression is characterised by δd = 0, that is, by TUη. The regres-
sion for cluster d deviates from the average regression by Tδ.

All the T-by-U interactions are included in the model because the cluster-
level model in (9.2) involves the same set of variables for each component of
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ξd . We can relax this substantially and simplify the model description at the
same time. Instead of (9.3) we assume that

yd = Xd β + Zd δd + εd , (9.5)

where δd , d = 1, . . . , D, is a random sample from a centred (multivariate)
normal distribution, N (0,ΣB), and εd are independent random vectors with
distributions N (0, σ2Ind

); nd is the subsample size within cluster d. The two
sets of random vectors, δd and εd , are mutually independent. The variables
in X contain the intercept, and the variables in Z are a selection from those in
X; Z always contains the intercept, unless Z is empty. The variables in X that
are not included in Z form the regression part of the model; these variables
are denoted by R. The variables in Z form the (cluster-level) variation part
of the model. The regression and variation parts are also referred to as fixed
and random, respectively, but we reserve these two qualifiers for use solely
in conjunction with replications (fixed —constant; random — varying). We
denote the numbers of variables in X and Z by p and r, respectively.

The model in (9.5) can be interpreted as a collection of regressions:

yd = Rd β(R) + Zd

(
β(V) + δd

)
+ εd ,

where β
(V)
d = β(V)+δd is the vector of within-cluster regression coefficients on

Z and β(R) and β(V) are the subvectors of β that correspond to the respective
regression and variation parts of the model. The regressions share the same
slopes for the variables in R, while their slopes on Z differ. The differences
among the slopes can be effectively described by their (cluster-level) variance
matrix ΣB . We this discuss in Section 9.2. A variable can be moved from
R to Z, but then the corresponding variance in ΣB is equal to zero. As a
convention, we can rule out such moves, although ΣB may still contain some
zero variances when we do not know that they are equal to zero.

The variance of an observation comprises two terms,

var(yid) = σ2 + zidΣB z�id ,

which correspond to the two levels. They are referred to as variance compo-
nents . When z is univariate, zid ≡ 1, both components are constant. In the
model with no covariates, yid = µ+δd +εid , the relative sizes of the variances
are sometimes of interest. They are related to the within-cluster correlation,
cor(yid , yi′d) = σ2

B/(σ2 + σ2
B), for i �= i′ .

9.2 Patterns of Variation

For simplicity, we consider first a model with a single covariate X defined for
members (elements):
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yd = Xdβ + Xdδd + εd ,

where X comprises the intercept and the covariate. The within-cluster regres-
sions are E(yd |Xd , d) = Xd(β+δd), so the regression coefficients βd = β+δd

have cluster-level distribution N (β,ΣB).
When every cluster has the same regression, then ΣB = 0. When the re-

gressions are parallel (they share the same slope but have different intercepts),

ΣB =
(

σ2
1 0
0 0

)
; σ2

1 is the variance in ΣB that corresponds to the intercept.

We use the notation σ1x and σ2
x for the other two independent elements of

ΣB . When the regressions differ in both their intercepts and slopes they may
cross at a single point. Let this point be x∗, and denote x∗ = (1, x∗). Then
var (x∗δd) = x∗ΣB x∗� = 0. Since x∗ �= 0, ΣB is singular. Further, assuming
that σ2

x > 0, the identity

σ2
1 + 2σ1x x∗ + σ2

x x∗2 = 0

implies that x∗ = −σ1x/σ2
x .

Finally, when ΣB is nonsingular, we can describe the differences among
the regressions (that is, the cluster-level variation) by var(xδd) = xΣB x�.
This quadratic function of x has a unique minimum, equal to σ2

1 −σ2
1x/σ2

x and
attained at x∗ = −σ1x/σ2

x . The minimum-variance value x∗ may be within
the range of the values of X in the population; then the regression lines go
through a knot at x∗, where the cluster-level variance xΣBx� is smallest.
The tightness of the knot depends on var(x∗δ) = σ2

1 −σ2
1x/σ2

x , that is, on the
proximity of the matrix ΣB to singularity. When ΣB is singular and the slopes
vary (σ2

x > 0), all the regressions go through a single point (x∗,x∗β). When
x∗ is smaller than all the values of X in the population, then the variance of
the regressions increases throughout the range. When it exceeds all the values
of X the variance decreases, and when it lies within the range the variance
decreases up to x∗ and then it increases. Figure 9.1 illustrates these patterns
of variation. The within-cluster regressions are drawn in the left-hand panels
and the variance as a function of X in the right-hand panels.

The patterns of variation with two or more variables associated with vari-
ation are more difficult to discuss or represent graphically, because variation
occurs in more than two dimensions. We may reduce our attention to one
variable at a time and to the corresponding 2 × 2 submatrix of ΣB , akin to
conditioning on the regressions with respect to the other variables.

9.2.1 Invariance with Respect to Linear Transformations

In ordinary regression models we subscribe to the following hierarchy of co-
variates:

1. intercept is always included in the model;
2. with any interaction X(1) X(2), both its constituent variables, X(1) and

X(2), are included;
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Fig. 9.1. Patterns of cluster-level variation. The within-cluster regressions xβd are
plotted in the left-hand panels and the corresponding variances xΣBx� in the right-
hand panels. Vertical dashes mark the value of x for which the cluster-level variance
attains its minimum.
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3. a categorical variable with K categories, represented by K − 1 indicator
(0/1) variables, is included among the covariates either en masse or not
at all.

These rules are motivated by the desire to work with models that are invariant
with respect to linear transformations. When instead of a continuous variable
X(1) we might equally well have used variable X(1) − c as a covariate, the
only change would be in the intercept. Therefore, constraining the intercept to
any specific value is not appropriate; hence rule 1. (Excluding the intercept is
equivalent to setting its coefficient to zero.) Similarly, if we use the interaction
X(1) X(2) as a covariate, then the slope on X(2) would be changed if X(1) were
replaced with X(1) − c; hence rule 2. Rule 3 is implied by the arbitrariness
of the reference category or, more generally, of how the categorical variable is
represented in the model.

For random coefficient models, these rules are equally relevant but have
to be supplemented by a hierarchy for the parameterisation of the variance
matrix ΣB . Suppose variable Z is associated with variation. As a result of
replacing Z with bZ for an arbitrary nonzero constant b, all covariances in
ΣB that involve Z are divided by b and the variance associated with Z, σ2

z , is
divided by b2. By replacing Z with Z−c, the variance associated with Z is not
altered, and neither are the covariances that involve Z and another covariate.
However, the intercept-by-Z covariance σ1z and the intercept variance σ2

1

are changed, because the intercept is changed for every cluster. The ‘new’
covariance is

σ′
1z = σ1z + cσ2

z

and the ‘new’ intercept variance is

σ2
1
′

= σ2
1 + 2cσ1z + cσ2

z .

Hence the additional rules:

4. the intercept has to be associated with variation, unless the variation part
is empty;

5. no intercept-by-covariate covariance in ΣB should be constrained to any
specific value;

6. with every interaction associated with variation both its constituents
should also be associated with variation.

Rule 6 is of little practical importance because interactions are rarely asso-
ciated with variation. Associating with variation can itself be regarded as
an interaction (with the cluster as a categorical variable), so associating an
interaction with variation is akin to a three-way interaction.

9.3 Maximum Likelihood Estimation

In this section, we describe a method for fitting the random coefficient model
in (9.5) by maximum likelihood (ML). The starting point is an expression for
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the likelihood. As the vectors yd , d = 1, . . . , D, are mutually independent
(conditionally on Xd) and normally distributed, the log-likelihood for y =(
y�

1 , . . . ,y�
D

)� is

l =
D∑

d=1

ld ,

with the log-likelihoods (contributions) for each cluster d equal to

ld = −1
2
[
nd log(2π) + log{det(Vd)} + e�d V−1

d ed

]
,

where Vd = var (yd |Xd) and ed = yd − Xdβ. The overall sample size is
denoted by n; n = n1 + · · · + nD . For the variance matrices, we have

Vd = σ2Ind
+ ZdΣBZ�

d .

When the sample size nd is much greater than the number of variables in the
variation part, r, the inverse and the determinant of this variance matrix can
be evaluated with computational economy by the formulas

det (Vd) = σ2nd det (Gd) ,
(9.6)

V−1
d =

1
σ2

Ind
− 1

σ4
ZdΣBG−1

d Z�
d ,

where Gd = Ir + σ−2Z�
d ZdΣB . Note that Gd is an r × r matrix, irrespective

of the value of nd . The identity for the inverse can be proved by checking that
the product of Vd and the expression for V−1

d is equal to the identity matrix:

(
σ2Ind

+ ZdΣBZ�
d

)( 1
σ2

Ind
− 1

σ4
ZdΣBG−1

d Z�
d

)
= Ind

+
1
σ2

ZdΣBZ�
d − 1

σ2
ZdΣB (Gd − Ir)G−1

d Z�
d − 1

σ2
ZdΣBG−1

d Z�
d

= Ind
.

To prove the identity for det(Vd), consider the matrix with the partitioning(
σ2Ind

−Zd ΣB

Z�
d Ir

)
. (9.7)

The determinant of this matrix is not altered if we subtract the σ−2Z�
d (or

any other) premultiple of the blocks at the top from the blocks at the bottom.
This results in the matrix (

σ2Ind
−Zd ΣB

0 Gd

)
,
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and its determinant is σ2nd det (Gd). Neither is the determinant of the matrix
in (9.7) altered by subtracting from its left-hand blocks the Z�

d postmultiples
of the right-hand blocks. This results in the matrix(

Vd Zd ΣB

0 Ir

)
,

so its determinant is equal to det (Vd). Hence the determinant identity in
(9.6).

We find the maximum of the likelihood using the Fisher scoring algorithm.
The algorithm proceeds by iterations of the updating formula

θ̂new = θ̂old +
{
I
(
θ̂old

)}−1

s
(
θ̂old

)
,

where θ is the vector of all the parameters; θ̂old and θ̂new its current (provi-
sional) and updated estimate, respectively; I the expected information matrix;
and s the score vector; I and s are evaluated at θ̂old . The vector of parameters
θ comprises σ2, all the components of β, and all the nonduplicated elements of
ΣB , that is, 1+p+r(r+1)/2 elements in total. The difference ∆θ̂ = θ̂new−θ̂old

is referred to as the updating vector.
We simplify the task of maximising l by introducing the scaled variance

matrix Ω = σ−2ΣB and the matrices Wd = σ−2Vd , so that

ld = −1
2

[
nd log(2π) + nd log

(
σ2
)

+ log{det(Wd)} +
1
σ2

e�d W−1
d ed

]
and Wd = Ind

+ ZdΩZ�
d . The advantage of this is that σ2 can now be esti-

mated separately from the remaining parameters. We have

2
∂ld
∂σ2

= −nd

σ2
+

1
σ4

e�d W−1
d ed ,

since neither ed nor Wd involves σ2 (after introducing Ω). The score function
for σ2, ∂l/∂σ2, has the root

σ̂2
new =

1
n

D∑
d=1

ê�d Ŵ
−1

d êd (9.8)

obtained after adding up the derivatives of ld over the clusters d. By adding
carets ˆ we indicate that ed and Wd are not available, and expressions for
them have to be evaluated using the current values of β̂ and Ω̂, respectively.

The score vector for the regression parameters β is derived from the iden-
tity

∂ld
∂β

=
1
σ2

X�
d W−1

d ed ,
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so that
∂l

∂β
=

1
σ2

D∑
d=1

X�
d W−1

d ed =
1
σ2

X�W−1e ,

where W is the block-diagonal matrix composed of W1 , . . . ,WD as its diag-
onal blocks, and e = y − Xβ is the vector of residuals; e = (e�1 , . . . , e�D)�.
The root of the score vector with respect to β is

β̂new =
(
X�Ŵ

−1
X
)−1

X�Ŵ
−1

y . (9.9)

This is equivalent to the updating formula

β̂new = β̂old +
(
X�Ŵ

−1
X
)−1

X�Ŵ
−1

ê ,

which we would obtain using the Fisher scoring algorithm.
Finally, we deal with estimating the elements of Ω. It turns out that we

need to apply Fisher scoring only for these parameters. Let ω be an arbitrary
element of Ω. It can be expressed as ω = i�1 Ωi2 , where i1 and i2 are the
respective indicator vectors of the row and column of ω in Ω. An indicator
vector comprises zeros, with one exception, unity, for the element it indicates.
For example, suppose Ω is 4×4. Then for the covariance Ω2,3 , i1 = (0, 1, 0, 0)�

and i2 = (0, 0, 1, 0)�. As Ω2,3 = Ω3,2 , the values of i1 and i2 could be swapped.
The element of the score vector for ω is

∂l

∂ω
= −1

2
∂ log{det(W)}

∂ω
+

1
2σ2

e�W−1 ∂W
∂ω

W−1e . (9.10)

Here, a diagonal block of ∂W/∂ω is

∂Wd

∂ω
= Zd

∂Ω
∂ω

Z�
d . (9.11)

When ω = i�1 Ωi2 is a covariance,

∂Ω
∂ω

= i1i�2 + i2i�1 . (9.12)

When ω is a variance in Ω, ∂Ω/∂ω = i i�, where i indicates the column and
row of ω in Ω. When ω is half of a variance, ω = 1

2 i�Ωi, the derivative matrix
∂Ω/∂ω = 2 i i� has the same form as for a covariance, with i1 = i2 = i. Then
(9.12) holds for every parameter in Ω, and we do not have to distinguish
between the two types of parameters ω.

We derive an expression for the derivative of the log-determinant indirectly.
The expectation of the score vanishes, E(∂l/∂ω) = 0, so (9.10) implies that

∂ log{det(W)}
∂ω

=
1
σ2

E
(
e�W−1 ∂W

∂ω
W−1e

)
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=
1
σ2

tr
{
W−1 ∂W

∂ω
W−1 E

(
ee�
)}

= tr
(
W−1 ∂W

∂ω

)
,

as E(ee) = var(e) = V = σ2W. Therefore, (9.10) with (9.11) and (9.12)
becomes

∂l

∂ω
= −1

2

D∑
d=1

{
tr
(
W−1

d

∂Wd

∂ω

)
− 1

σ2
e�d W−1

d

∂Wd

∂ω
W−1

d ed

}

= −1
2

D∑
d=1

{
tr
(
Z�

d W−1
d Zd

∂Ω
∂ω

)
− 1

σ2
e�d W−1

d Zd
∂Ω
∂ω

Z�
d W−1

d ed

}

= −
D∑

d=1

(
i�1 Z�

d W−1
d Zd i2 − 1

σ2
e�d W−1

d Zd i1 e�d W−1
d Zd i2

)
, (9.13)

exploiting the properties of the trace operator and the symmetry of the way
ω is expressed in terms of Ω.

The result of premultiplying an arbitrary matrix M by an indicator vector i
is a row of M, so pre- and postmultiplying M by indicator vectors is equivalent
to extracting an element of M. Similarly, the product of a vector and an
indicator vector is an element of the former. For the concluding expression in
(9.13), we require the matrices Ud = Z�

d W−1
d Zd and vectors ud = Z�

d W−1
d ed .

Note that Ud = σ−2E
(
udu�

d

)
. Evaluation Ud and ud is simplified by (9.6)

adapted for Wd . The inverse of Wd is W−1
d = Ind

− ZdΩG−1
d Z�

d , and so

Z�
d W−1

d = Z�
d − Z�

d ZdΩG−1
d Z�

d

=
{
Ir − (Gd − Ir)G−1

d

}
Z�

d = G−1
d Z�

d . (9.14)

Hence Ud = G−1
d Z�

d Zd and ud = G−1
d Z�

d ed . Denote by Ud,hk the (h, k)-
element of Ud and by ud,h the h-element of ud . Then for a covariance ωhk =
Ωhk or a half-variance ωkk = 1

2Ωk , (9.13) becomes

∂l

∂ωhk
= −

D∑
d=1

(
Ud,hk − ud,h ud,k

σ2

)
.

In summary, the scoring vector for the elements of Ω requires the summaries
Z�

d Xd and Z�
d yd . It turns out that the former are sufficient also for evaluating

the expected information matrix for Ω.
Let ω1 = i�1 Ωi2 and ω2 = i′1

�Ωi′2 be covariances or half-variances in Ω,
expressed in terms of their indicator vectors. In terms of the elements of Ω
they represent, ω1 = Ωhk and ω2 = Ωh′k′ , or their respective halves if h = k
or h′ = k′. Then by differentiating (9.13) we obtain
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∂2 l

∂ω1 ∂ω2
=

D∑
d=1

{
tr
(
Ud

∂Ω
∂ω1

Ud
∂Ω
∂ω2

)
− 2

σ2
u�

d

∂Ω
∂ω1

Ud
∂Ω
∂ω2

ud

}
.

Note that E(udu�
d ) = σ2G−1

d Z�
d WdZdG−1

d

�
= σ2Ud . An element of the

expected information matrix is

−E
(

∂2 l

∂ω1 ∂ω2

)
= −

D∑
d=1

tr
(
Ud

∂Ω
∂ω1

Ud
∂Ω
∂ω2

)

+
2
σ2

D∑
d=1

tr
{

∂Ω
∂ω1

Ud
∂Ω
∂ω2

E
(
udu�

d

)}

=
D∑

d=1

tr
(
Ud

∂Ω
∂ω1

Ud
∂Ω
∂ω2

)

=
D∑

d=1

(
i�1 Ud i′1 i�2 Ud i′2 + i�1 Ud i′2 i�2 Ud i′1

)
=

D∑
d=1

(Ud,hh′ Ud,kk′ + Ud,hk′ Ud,kh′) . (9.15)

Evaluation of this expression requires only the matrices Ud .
The iterations of the Fisher scoring algorithm can avoid handling the orig-

inal data (X y) altogether by evaluating and storing all the sufficient sum-
maries before the first iteration. For estimating β, we require the quadratic
forms X�

d W−1
d Xd and X�

d W−1
d yd , and these can be expressed as

X�
d W−1

d td = X�
d td − X�

d Zd ΩG−1
d Z�

d td ,

where td is an arbitrary vector of length nd . Therefore, we require the within-
cluster totals of crossproducts (Xd yd)�(Xd yd). In fact, it suffices to have
(Xd yd)�Zd . The remaining summaries can be replaced by the overall to-
tals of crossproducts (X y)�(X y). The quadratic form e�W−1e, used for
updating σ̂2, is economically evaluated as

e�W−1e =
(−β

1

)�
(X y)� W−1 (X y)

(−β
1

)
,

without having to access the elementary-level data.
For parallel regressions, when Ω comprises the variance ratio ω = σ2

B/σ2 as
its sole parameter, the univariate versions of Ud and ud are Ud = nd/(1+nd ω)
and ud = ēd nd/(1 + nd ω), where ēd = e�d 1nd

/nd is the mean of the residuals
in cluster d. The equations for Fisher scoring collapse to
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∂l

∂ω
= −1

2

D∑
d=1

Ud

(
1 − ē2

d

σ2
Ud

)
,

−E
(

∂2l

∂ω2

)
=

1
2

D∑
d=1

U2
d .

In this case, the sufficient data summaries are the within-cluster totals
(Xd yd)�1nd

and the matrix (X y)�(X y) of the overall totals of crossprod-
ucts.

9.3.1 Restricted Maximum Likelihood

Just like the ML estimator of the residual variance in ordinary regression, ML
estimators of the variances and covariances in random coefficient models are
biased. The estimator of the elementary-level variance σ2 takes no account
of the fact that the regression parameters β (as well as the between-cluster
variance matrix ΣB) are estimated; that is, the ML estimator σ̂2 coincides
with the ML estimator that would be derived if β were known and happened
to be equal to β̂. A sign of the problem is that σ̂2 = e�W−1e/n, whereas
n− p, interpreted as the number of degrees of freedom, might be regarded as
a more appropriate denominator; p degrees of freedom have been lost due to
estimating β.

This problem, if regarded as such, is resolved by maximising the likelihood
for the so-called error contrasts. They are linear transformations of the out-
come vector y, Py, where P is an (n− p)× n matrix of full rank n− p, such
that PX = 0. In effect, the transformation eliminates any dependence of the
outcomes on β, since E(Py) = PXβ = 0, and isolates the estimation of σ2

and Ω to Py. The choice for P turns out to be immaterial because the like-
lihoods for the choices differ only by a constant (multiplicative) factor which
has no impact on likelihood maximisation. The likelihood for Py is called re-
stricted, and its maximisation is referred to as restricted maximum likelihood
(REML). Apart from a constant that depends on none of the parameters or
on y, the restricted likelihood is l(re) = l − ∆l, where the adjustment ∆l is

∆l =
1
2

log
{
det
(
X�V−1X

)}
. (9.16)

This adjustment does not depend on β, so the expression for estimating β
in (9.9) is unchanged. However, it now involves a different estimator of W,

and so the REML estimator of β, β̂
(re)

, differs from the ML estimator β̂. The
difference (in their distributions) is usually inconsequential.

By extracting σ2 as a factor in (9.16), using the identity V = σ2W, we
obtain the REML counterpart of (9.8):

σ̂2
re,new =

1
n − p

D∑
d=1

ê�d Ŵ
−1

d êd ;
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the denominator for σ̂2
re is adjusted for the degrees of freedom used for esti-

mating β.
The adjustment for the parameters involved in Ω is somewhat more in-

volved; its starting point is the identity

∂∆l

∂ω
= − 1

σ2
tr

{(
X�W−1X

)−1
D∑

d=1

X�
d W−1

d Zd
∂Wd

∂ω
Z�

d W−1
d Xd

}
.

REML would seem to be more essential for Ω (or ΣB) than for σ2, because
D (or a smaller number) is more appropriate than n for the role of degrees
of freedom in estimating Ω. Usually D 
 n, so the relative change in the
degrees of freedom from D to D − p is much greater than from n to n − p.
To see why estimation of Ω should be associated with D or D − p degrees of
freedom, consider the setting in which each of the D clusters is represented
in the data by so many elements (observations) that the uncertainty about
the corresponding values of δd can be ignored. Then ΣB = varD(δd) would
be estimated by

1
D

D∑
d=1

δd δ�
d

or a similar expression with the denominator D − p; the distributions of the
estimators of the variances in ΣB would then be related by scaling to χ2

D−p

distribution. In practice, we have much less information (every cluster has only
finitely many elements in the data), so Σ̂B and Ω̂ are likely to be associated
with fewer than D−p degrees of freedom. As an extreme example, when each
cluster is represented in the data by only one element, only the total σ2 + σ2

B

can be estimated in a model with parallel regressions. In this case, there are
no degrees of freedom available for estimating σ2

B . We revisit this issue in
Section 9.5.

Small MSE, not small bias, is the criterion for efficient estimation. There-
fore, the adjustment by REML does not serve our purpose directly. When D
is much greater than p, the adjustment is unimportant. When p is a large frac-
tion of D or even of n, quantities of interest may be estimated more efficiently
by ML (or REML) fitted to some submodels, for which the bias incurred is
more than offset by variance reduction. In any case, the property of unbi-
asedness is lost by nonlinear transformations. Synthesis (Section 2.3) has a
potential for estimation with even smaller MSE, but it is difficult to explore
and implement. Model selection has limitations similar to those in ordinary
regression.

9.3.2 Residuals

The model in (9.5) contains two kinds of random terms, δd and εid . Their re-
alisations can be estimated by their estimated conditional expectations. Such
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estimation refers to a very strange (conditional) replication scheme in which
the target δd for a given d, or εid for a given pair (i, d ), is fixed, while the
remaining deviations are random, with the between-replication variation spec-
ified by the model. To emphasise that we consider a specific cluster d, we de-
note it by j. The conditional distribution of δj given all the model parameters
and the data is derived from the joint distribution of yj and δj ; the rest of
the vector y, denoted by y−d , can be discarded because it is independent of
δj . From the distributional identity(

yj

δj

)
∼ N

{(
Xjβ

0

)
,

(
Vj ZjΣB

ΣBZ�
j ΣB

)}
,

we obtain the conditional distribution of δj given yj :(
δj | yj ;Xj ,β, σ2,ΣB

) ∼ N (ΣB Z�
j V−1

j ej , ΣB − ΣB Z�
j V−1

j ZjΣB

)
.

After applying the identity in (9.14), this simplifies to(
δj | yj ;Xj ,β, σ2,ΣB

) ∼ N (ΩG−1
j Z�

j ej , ΣBG−1
j

)
. (9.17)

For parallel regressions, when only the intercept is associated with cluster-level
variation, this reduces to

(
δj | yj ;Xj ,β, σ2, σ2

B

) ∼ N
(

nj ω

1 + nj ω
ēj ,

σ2
B

1 + nj ω

)
.

By a similar process we derive the conditional distribution of εj from the
joint distribution of yj and εj . It is normal, with expectation W−1

j ej and
variance matrix σ2ZjΣB G−1

j Z�
j . Note that

Zj E(δj |yj) + E(εj |yj) = ej ; (9.18)

the conditional expectations of δj and εj ‘apportion’ the overall residual ej

to its cluster-level (consistent) and elementary-level components.

9.3.3 Borrowing Strength

An alternative estimator of δj that might at first appear better motivated is

δ̂
†
j =

(
Z�

j Zj

)−1
Z�

j ej .

It is derived by ordinary least squares. If we regard cluster j as the universe,
the estimator is conditionally unbiased and its sampling variance is

var
(
δ̂
†
j | δj

)
= σ2

(
Z�

j Zj

)−1
.
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The difference of this and the variance matrix in (9.17) is positive definite.
We show it first for a positive definite Ω.

σ2
(
Z�

j Zj

)−1 − ΣBG−1
j = ΣB

{(
Z�

j ZjΩ
)−1 − G−1

j

}
= ΣB

{
(Gj − I)−1 Gj − I

}
G−1

j

= ΣB (Gj − I)−1 G−1
j

= σ2
(
Z�

j Zj

)−1
G−1

j , (9.19)

and both matrix-factors in the concluding expression are positive definite.
A limiting argument, considering a sequence of positive definite matrices Ω
that converges to a singular variance matrix, can be applied to show that the
difference is positive definite even when ΣB is singular. The univariate version
of the identity in (9.19) is

var
(
δ†j | δj

)
− var (δj |yj) =

σ2

nj

1
1 + nj ω

; (9.20)

the difference is positive. These identities show that we can improve on unbi-
ased estimation of the within-cluster regression coefficients, which is focussed
on the data from the cluster concerned (j), by incorporating information from
the rest of sample, in the form of the variance matrix Ω. This improvement is
referred to as borrowing strength (across clusters). Alternatively, we can de-
scribe it as exploiting the similarity of the clusters. In (9.20), we can see that
the gain (variance reduction) is greater for smaller nj ω —for small clusters
and when the clusters are more similar.

Borrowing strength has to be carefully qualified. First, some losses vis-à-
vis (9.19) and (9.20) are incurred because β and Ω are not known. Second, the
improvement is only on average, after taking expectation over the (estimated)
cluster-level distribution of δd . And finally, the gains are derived under the
assumption that the model is appropriate. Although this condition applies
equally to the ordinary regression model, the two-level model entails the vari-
ation part as a specification additional to that for the ordinary regression.

9.3.4 EM Algorithm—A Connection to Missing Data

Although the Fisher scoring algorithm for ML estimation, with some remain-
ing details given in the next section, is satisfactory in most settings, we outline
an alternative that is connected to incompleteness (Chapter 5). If we regard
the deviations δd as missing data the complete-data analysis amounts to fit-
ting ordinary regression to the adjusted outcomes y′

d = yd − Zdδd :

y′
d = Xd β + εd . (9.21)
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The EM algorithm (Section 5.4) can be applied to this setting. The data sum-
maries required for fitting this model are X�

d Xd , X�
d y′

d , and y′
d
�y′

d . They
are linear and quadratic functions of δd . The E-step evaluates the conditional
expectations of δd , involved in X�

d y′
d , and of δd δ�

d , involved in y′
d
�y′

d . For
evaluating the latter, the identity

E
(
δd δ�

d |yd

)
= var (δd |yd) + E (δd |yd) E (δd |yd)

�

is useful. The equations for the conditional expectations and variances are
given in (9.17).

In the M-step, the ordinary regression model in (9.21) is fitted, with the
linear sufficient statistics X�

d y′
d and y′

d
�y′

d replaced by their conditional ex-
pectations that were evaluated in the preceding E-step. The between-cluster
variance matrix ΣB is estimated by moment matching:

Σ̂B =
1
D

D∑
d=1

E
(
δd δ�

d |yd

)
.

With each updating of the estimates of β, σ2, and ΣB , the conditional expec-
tations and variance matrices of δd are altered, and so the pairs of E and M
steps have to be iterated until convergence. The EM algorithm requires the
same expressions as Fisher scoring, Ud = Z�

d W−1
d Zd and ud = Z�

d W−1ed ,
but uses them differently. The convergence with the Fisher scoring algorithm
is in general much faster. In contrast, an advantage of the EM algorithm is
that its convergence, together with an increased value of the log-likelihood
at every iteration, is supported by theory. Also, each provisional estimate of
ΣB or of Ω in the EM algorithm is nonnegative definite; in the Fisher scoring
algorithm, it may have a negative eigenvalue at any iteration. Iterations of the
two methods can be combined to take advantage of their respective strengths.

9.3.5 Technical Details

The first iteration of Fisher scoring requires a set of provisional (initial) esti-
mates of all the parameters. For the regression parameters, the ordinary least
squares (OLS) fit β̂0 =

(
X�X

)−1
X�y is suitable. It is the ML estimator

when Ω̂ = 0. For σ2, the estimate of the residual variance in the OLS fit can
be used. For Ω, there is no obvious initial estimator, although the estimates
of all its covariances can be set to zero. The estimate of the cluster-level in-
tercept variance can initially be set to a fraction of the OLS estimate σ̂2

0 . The
other variances may be set to zero or to a fraction of the corresponding initial
values of β̂2

x . This can be motivated as follows. If a regression slope is equal
to βx , then the corresponding between-cluster variance is likely to be of the
order β2

x . Of course, this ‘guess’ is not always very good, but the first few
iterations of the Fisher scoring algorithm are likely to make up for it.
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An iteration of Fisher scoring may yield an estimated variance matrix Ω̂
that is not nonnegative definite. An updated estimate of a variance may be
negative or an estimated covariance may be so large in absolute value that
the corresponding correlation is outside the interval [−1, 1]. These examples
do not exhaust all the possibilities. For instance, the matrix⎛⎝ 5 4 4

4 5 1
4 1 5

⎞⎠
is not a variance matrix; its determinant is equal to −8. At the outset, the
estimated variance matrix is positive definite. It will remain so if we halve the
updating for each parameter ω in Ω sufficiently many times. This may slow
the progress toward convergence, especially when the ML estimate of Ω is
singular, but all the provisional estimates Ω̂ will be positive definite and will
be allowed to converge to a singular variance matrix. In the EM algorithm
described in the previous section, this problem is not encountered.

Another fail-safe solution is based on the parameterisation of Ω that uses
the Cholesky decomposition Ω = LL�, where L is a lower triangular matrix
(a matrix with zeros above the diagonal) with positive entries on its diagonal.
The Cholesky decomposition of a nonsingular variance matrix is unique. The
score vector and information matrix with respect to the elements of L are
evaluated similarly as for the elements of Ω. The equations are somewhat
more complex because the elements of L are not linear in Ω. For elements θ,
θ1 , and θ2 of L, we have

∂Ω
∂θ

= L
∂L�

∂θ
+

∂L
∂θ

L�,

∂2Ω
∂θ1 ∂θ2

=
∂L
∂θ1

∂L�

∂θ2
+

∂L
∂θ2

∂L�

∂θ1
;

all the second-order partial derivatives ∂2L/(∂θ1 ∂θ2) vanish. When a provi-
sional (or the final) estimate of Ω is singular, the expected information matrix
for the elements of L is also singular. Nonuniqueness of L in this case is re-
solved by setting the element in the bottom right-hand corner of L to zero and
not estimating it any further. If that is not sufficient to get rid of the singu-
larity of the information matrix, further elements of L have to be constrained
to zero, starting with those in the next-to-last column.

The iterations are terminated when a convergence criterion is satisfied.
Such a criterion can be that any element of the updating vector ∆θ̂ is smaller
than the precision of rounding, such as 10−4, or that the mean squared updat-
ing ∆θ̂

�
∆θ̂/q is smaller than a set tolerance, such as 10−8; q is the number

of estimated parameters. The criterion may also include the change in the
value of the log-likelihood between two consecutive iterations. In an orderly
convergence, the log-likelihood increases at every iteration except the first,
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and the changes get smaller at a geometric rate. Slow and erratic convergence
are signs of having too many covariates in the regression or variation part of
the model or of having too little data.

9.4 Model Validity

The two-level model in (9.5) assumes that clusters are selected by a simple
random sampling design from an infinite population of clusters. Each cluster,
as a population, is assumed to contain infinitely many elements, and their rep-
resentation in the realised sample is according to a simple random sampling
design. Thus, a replication of the study would yield a different collection (sam-
ple) of clusters, and for a cluster that happens to be drawn in two replications
their sets of subjects would be different.

In many settings, these assumptions are not satisfied, but the model in
(9.4) is constructive nevertheless, because it provides a compact description
of the population, by regression in a typical (average) cluster (β), variation
of the within-cluster regressions (ΣB), and the (conditional) within-cluster,
or residual, variance σ2. With such an application, we have to bear in mind
that the description by the model fit then describes the compendium of the
population and the sampling design. Good representation, for both elements
and clusters, is very difficult to arrange, as the following examples show.
Suppose the clusters in a finite population have unequal (finite) numbers Nd

of elements and a simple random (not clustered) sampling design is applied.
Then some clusters may not be represented in a sample at all. Clusters of
small size Nd are less likely to be represented than large clusters. We have no
means of adjusting the analysis for such a distortion. As a consequence, larger
samples have a greater say in the model fit, without our intention to bring
about such a disparity. The assumption about the deviations δd is that their
expectation vanishes. In this assumption, each cluster is given equal weight.
Therefore, good representation has to be arranged not for members, but for
clusters and for members within each selected cluster.

When a clustered sampling design is applied, with sampling clusters co-
inciding with the clusters d in the model, and a simple random sample of a
fixed and common size n(1) = n1 = . . . = nD is drawn within each cluster, ele-
ments from small clusters have a greater probability of appearing in a sample.
Sometimes most of the clusters are small, such as with individuals in human
families. Then it is practical to include every member of a selected cluster in
the sample. When included, a cluster is always represented in the sample by
the same set of elements. The consequences of such departures from the model
assumptions are difficult to assess and require detailed information about the
sampling mechanism, because the problem cannot be detected by inspecting
the data.

A replication of a study may end up with the same set of clusters. A case
in point arises when the clusters are the districts of a country and the realised
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survey sample includes most of the districts. Then it is more appropriate
to regard the districts as fixed. This may at first appear to be inconvenient
because one of the rationales for declaring the deviations δd as random is to
facilitate their compact description by a variance matrix. However, a variance
matrix is well defined also for a finite (and fixed) set of quantities, as

Vδ =
1
D

D∑
d=1

(
δd − δ̄

) (
δd − δ̄

)�
,

where δ̄ = (δ1 + · · · + δD)/D is their population mean. When the deviations
δd are not known estimation of δ̄ and Vδ is subject to uncertainty, and further
uncertainty arises when some δd are not represented in the sample. Without
some assumption that relates δd for a cluster not represented in the data to
δd for the represented clusters, δ̄ cannot be estimated without the threat of
a substantial bias.

The model in (9.5) assumes that the within-cluster regression matrices Xd ,
as well as the subsample sizes nd , are given. This is rarely the case in practice,
especially when data are collected by a survey. When the values of Xd are not
assigned or may have been assigned nonignorably, no inferences about the
coefficients β as (causal) effects are warranted. Without some assumptions
external to the data, usually not verifiable, only an assignment of the values
of X that is not informed by the values of the outcomes y enables us to make
causal inferences.

Fixed or Random?

An estimate of the conditional expectation in (9.17) can be used as an esti-
mate of the deviation δj , assuming that this deviation is fixed and the other
deviations are random. If the uncertainty about β and Ω is ignored, this
estimator is unbiased on average:

ED
{

E
(
δ̂j | δj

)}
= ΩG−1

j Z�
j Zj ED(δj) = 0 .

We have unbiasedness only after averaging over the distribution of δd . If each
realisation of cluster j entails a different value of δj , then the quantities δj

will be estimated without average bias in the long run.
In contrast, if we regard δj as fixed (otherwise δj is like a moving goalpost),

its expectation is
E
(
δ̂j | δj

)
= ΩG−1

j Z�
j Zj δj ,

so δ̂j is biased. For parallel regressions,

E
(
δ̂j | δj

)
=

nj ω

1 + nj ω
δj ,
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so its bias is δj/(1 + nj ω). Large values of δd are underestimated and small
(large negative) values are overestimated. In their expectations, the estimators
of the deviations δj are shrunk toward zero.

The interpretation of ΣBG−1
j as a sampling variance or MSE is equally

problematic, even when β, σ2, and Ω are known. When δj is fixed,

var
(
δ̂j | δj

)
= ΩG−1

j Z�
j (σ2Inj

)ZjG−1
j

�
Ω

= ΣBG−1
j Z�

j ZjG−1
j

�
Ω ,

so that the MSE of δ̂j in estimating δj is

MSE
(
δ̂j | δj

)
= ΣBG−1

j Z�
j ZjG−1

j

�
Ω

+
(
ΩG−1

j Z�
j Zj − I

)
δjδ

�
j

(
ΩG−1

j Z�
j Zj − I

)�
.

Only after taking the expectation over the distribution of δd , when δjδ
�
j is

replaced by ΣB = σ2Ω, we obtain the conditional variance in (9.17):

ED
{

MSE
(
δ̂j | δj

)}
= ΣBG−1

j Z�
j ZjG−1

j

�
Ω + ΣB − 2ΣBG−1

j (Gj − I)

+ΣBG−1
j (Gj − I)Z�

j ZjG−1
j

�
Ω

= ΣBZ�
j ZjG−1

j

�
Ω − ΣB + 2ΣBG−1

j

= ΣBG−1
j ,

exploiting the fact that the evaluated expectation is a symmetric matrix.
In summary, MSE(δ̂j | δj) �= ΣB G−1

j , even when β, σ2, and Ω are known;
equality holds only after averaging over the clusters.

Assessing Normality

If we regard δ̂d as estimators of the deviations δd , we might use them to assess
whether the assumptions associated with δd are satisfied. This is problematic
first of all because each δ̂d is intended as an estimator of the individual value
of δd (for fixed d); the collection {δ̂d} need not have any good properties even
when each individual δ̂d has them all. Next, the cluster-level matrices Zd are
involved in δ̂d in such a way that when Z�

d ZdΩ is small relative to Ir , the
estimator δ̂d is shrunk a lot toward 0. At an extreme, when cluster d is not
represented in the data, δ̂d = 0 with certainty. Thus, the matrices Zd and,
when Zd = 1, the within-cluster subsample sizes nd , influence the pattern of
the values of δ̂d . Similar problems arise with the estimators ε̂d = Ŵ

−1

d êd .
And finally, note that univariate normality of each component of δd does not
imply multivariate normality of the vector δd .
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Any one of these undesirable features can be dealt with by a suitable
transformation of δ̂d , but possibly at the price of exacerbating another. As
an alternative, we propose the simulation-based method described in Section
1.3.1. We generate 19 (or 99) datasets from the model fitted to the collected
data using the design for the study. Then we evaluate a feature (or multi-
feature) on each dataset and shuffle the 20 (or 100) features, so that the
realised feature could not be recognised solely by its location among them. If
one of these features stands out, and after its identification it turns out to be
the realised feature, we have evidence against the model assumptions.

A practical approach to choosing a feature for simulation reflects the con-
cern we have about the values of δd . We define a summary of δ̂d that is
likely to detect the departure if the values of δd were available. For example,
if the skewnesses of the components of δd , denoted by κ(δD), are a concern
we evaluate κ(δ̂D) for the fit based on the collected data and on 19 datasets
simulated according to the model fit with the same set of matrices Xd .

9.5 Inference About Variation

The variance matrix ΣB , or its scaled version Ω, is a very convenient de-
scriptor of the pattern of variation of the within-cluster regressions. However,
inference about their elements is much more difficult than about the regres-
sion parameters. To see this, consider a simple version of the problem. Suppose
the univariate cluster-level deviations δd are known. Then their variance σ2

B

is estimated straightforwardly by

σ̂2
B =

1
D

D∑
d=1

δ2
d .

The distribution of Dσ̂2
B/σ2

B is χ2
D , so σ̂2

B is unbiased for σ2
B , and its sampling

variance is 2σ4
B/D. The standard error of σ̂2

B is estimated by ŝ = σ̂2
B

√
2/D

without bias, but σ̂2
B and ŝ are perfectly correlated. So, an error in estimating

σ2
B is duplicated as an error in estimating s =

√
var (σ̂2

B).
In more realistic settings, with finite within-cluster sample sizes, this prob-

lem is equally pressing, although its diagnosis is more difficult. For example,
the expected information about ω in a model with parallel regressions is

I(ω, ω) =
1
2

D∑
d=1

n2
d

(1 + nd ω)2
,

so it also depends on ω, but in a way that is more difficult to analyse. When
each cluster has the same sample size n• , the asymptotic variance of the
ML estimator ω̂, equal to 1/I(ω, ω), is 2(1/n• + ω)2/D. Knowing the values
of δd corresponds to n• = +∞. The estimated asymptotic standard error
(1/n• + ω̂)

√
2/D is also perfectly correlated with the estimator ω̂.
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As an aside, we derive an approximation for the number of degrees of
freedom associated with the ML estimator ω̂. We match the asymptotic (ap-
proximate) sampling variance of ω̂ with the variance of a χ2 distribution. Let
this χ2 distribution have m degrees of freedom; then we solve the equation

2ω2

m
=

2(1/n• + ω)2

D
.

The solution is m = D/{1 + 1/(n• ω)}2; naturally, it involves ω. When the
within-cluster sample sizes are unequal, a good approximation to m is ob-
tained by replacing n• with the harmonic mean of the sample sizes,

n∗
• =

D
D∑

d=1

1
nd

. (9.22)

Thus, for a fixed value of ω, information about ω increases with n∗
• but does

not do so linearly. The increments get smaller with increasing n∗
• . This is an

indirect consequence of borrowing strength across clusters; the borrowing is
greater for clusters with sparser representation. Of course, another reason for
incomplete information is that only a finite number of clusters is represented
in the overall sample.

9.5.1 Confounding in Cluster-Level Variation

For ordinary regression, we have powerful algebraic equipment for understand-
ing the correlation structure and estimability of the OLS estimator β̂. For
example, estimability is equivalent to full rank p ≤ n of the n × p regression
matrix X. With a modicum of approximation, it can be applied also to its
counterpart in a random coefficient model.

For the parameters in Ω, a similar diagnosis is much more difficult to
make. The number of parameters to be estimated, 1

2r(r+1), proliferates with
increasing number r of variables in the variation part of the model and a
connection to linear algebra is much more difficult to establish. In (9.15) we
expressed the elements of the information matrix for the parameters in Ω in
terms of the elements of the matrices Ud = Z�

d W−1
d Zd = G−1

d Z�
d Zd . We

form the cluster-level variables Hhk = (U1,hk , U2,hk , . . . , UD,hk)� from the
(h, k) elements of the matrices Ud . These variables depend on the variation
matrix Z as well as on Ω.

For simplicity, we discuss the case of one variable in the variation part,
when Ω involves three parameters, two half-variances and a covariance. The
information matrix for these parameters is

U =

⎛⎜⎝ 2H�
11 H11 2H�

12 H12 2H�
11 H12

2H�
12 H12 2H�

22 H22 2H�
12 H22

2H�
11 H12 2H�

12 H22 H�
11 H22 + H�

12 H12

⎞⎟⎠ .
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Each matrix Ud is nonnegative definite and is positive definite whenever Zd

is of full rank 2, that is, when the values of the covariate in the variation part
are not constant. Therefore

H�
12 H12 ≤ H�

11 H22 ,

with equality when all matrices Zd are of rank 1. Further, by the Cauchy-
Schwartz inequality, (

H�
11 H22

)2 ≤ H�
11 H11 H�

22 H22 .

Equality in both these relations occurs only when all matrices Ud are singular,
that is, when all matrices Z�

d Zd are singular. Apart from this trivial case, the
submatrix of U for the two half-variances (the first two rows and columns)
is always positive definite. A similar discussion applies to any other pair of
parameters (a covariance and a half-variance), but it is much more difficult
to extend to the entire 3 × 3 matrix U .

9.6 Multilevel Models and Other Extensions

The clusters can themselves be clustered, in several layers, or levels of nest-
ing . Then we have elements within clusters of level 2, these within clusters
of level 3, and so on. Each cluster is associated with its own (conditional) re-
gression, and the vectors of coefficients in these regressions at a given level of
nesting vary according to a multivariate normal distribution. This description
corresponds to the three-level model

yad = Xadβ + Z(3)
a δ(3)

a + Z(2)
ad δ

(2)
ad + εad , (9.23)

in which δ
(3)
a and δ

(2)
ad , d = 1, . . . , Da and a = 1, . . . , A, are mutually inde-

pendent random samples from respective multivariate normal distributions
N (0r3 ,Σ3) and N (0r2 ,Σ2), both independent of εad ∼ N (0nad

, σ2Inad

)
,

which are themselves mutually independent. Extensions to more than three
levels are obvious, although a neater notation for them is necessary. We say
that the data have three levels; the term multilevel is used for data (analysis,
model, and the like) with an unspecified number of levels.

Figure 9.2 gives an illustration of varying regressions. The average regres-
sion xβ, with a single covariate, x = (1, x), is drawn by a thick line and
the within level-3 cluster regressions xβ + δ

(3)
a by lines of medium thickness.

These lines are indented and marked by asterisks. The level-2 regressions
xβ + δ

(3)
a + xδ

(2)
ad are drawn by thin lines, except for those belonging to one

level-3 cluster, which are drawn by dashes, so they stand out. In the model
used for generating this example, the level-3 regressions are parallel, with vari-
ance σ2

3 = 0.08, and the level-2 regressions within each level-3 cluster have
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Fig. 9.2. Illustration of a three-level model. The average regression is drawn by a
thick solid line. The regressions of the level-2 clusters are indented, and those within
one level-3 super-cluster are drawn by dashes. The level-3 regressions are marked in
the right-hand margin by asterisks; the asterisk for the highlighted super-cluster is
enlarged.

the normal distribution with mean vector β = (0.8, 0.65) and variance matrix

Σ2 =
(

0.0100 0.0025
0.0025 0.0100

)
. The highlighted level-2 regressions indicate that

they are much more similar within a level-3 cluster than in general. This is a
consequence of the relatively large variance σ2

3 .
The random vector δ

(2)
ad describes the deviation of the regression within

level-2 cluster ad from the regression in its level-3 cluster (or super-cluster) a,
and δ

(3)
a describes the deviation of the regression in level-3 cluster a from the

average (typical) cluster or from the overall regression Xβ. The variables in
Z(h), h = 2, 3, are said to be associated with variation at level h; Z(h) contains
a subset of the variables in X with the intercept as its first column, unless
Z(h) is empty.

The model in (9.23) can be fitted by ML. We relate it to ML estimation
with a two-level model. For a cluster a at level 3, form ya by vertical stacking
of the vectors of outcomes yad , d = 1, . . . , Da . Define similarly Xa and ea =
ya − Xaβ. Let Ωh = σ−2Σh , h = 2, 3, and Wa,3 = σ−2var(ya). The log-
likelihood is l = l1 + · · · + lA , where

la = −1
2

[
na log(2π) + na log(σ2) + log {det(Wa,3)} +

1
σ2

e�a W−1
a,3 ea

]
.

Each matrix Wa,3 can be expressed as

Wa,3 = Wa,2 + Z(3)
a Ω3Z(3)

a

�
,
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where Wa,2 = diagd (Wad,2) is the block-diagonal matrix comprising the

blocks Wad,2 = I + Z(2)
ad Ω2Z

(2)
ad

�
, d = 1, . . . , Da , on the diagonal. For the

determinant and inverse of Wa,3 we have expressions similar to those in (9.6):

det (Wa,3) = det (Wa,2) det (Ga,3) ,
(9.24)

W−1
a,3 = W−1

a,2 − W−1
a,2 Z(3)

a Ω3 G−1
a,3 Z(3)

a

�
W−1

a,2 ,

and

Ga,3 = Ir3 + Z(3)
a

�
W−1

a,2 Z(3)
a Ω3 ,

= Ir3 +
Da∑
d=1

Z(3)
ad

�
W−1

ad,2 Z(3)
ad Ω3 .

These identities reduce the problem of dealing with Wa,3 to the problem of
dealing with matrices Wad,2 , which have the form of scaled variance matrices
for two-level data. Equations for maximising the likelihood carry over from
Section 9.3, using the identities in (9.24) instead of those in (9.6). They require
various expressions that involve Wad,2 , and these are evaluated using (9.6).

The identities in (9.24) can be generalised substantially. They state that
if a matrix W has a decomposition W = W0 + Z1Z�

2 in which both Z1 and
Z2 have only a few columns and W0 is much easier to invert than W directly,
then the determinant and inverse of W can be expressed in terms of their
counterparts for W0 and I + Z�

2 W−1
0 Z1 . An application of this expresses

the likelihood for an M -level model in terms of several quadratic forms and
determinants for (M − 1)-level likelihood and, by recursive application of the
identities in (9.24), eventually in terms of quadratic forms and determinants
for only two levels.

At the end of such a recursion, the matrix W0 need not be the iden-
tity matrix; it merely has to be a matrix that is relatively easy to invert
and its determinant easy to evaluate. In particular, W0 may be a diago-
nal matrix. This is useful when the observations are associated with unequal
elementary-level variances σ2. The variances may depend on some covariates,

such as σ2
adi = exp

(
Z(1)

adiα
)

or σ2
adi =

(
Z(1)

adiα
)2

for a vector of parameters

α. In both cases, we assure that every elementary-level variance σ2 is non-
negative. The latter parameterisation is more natural because the variables
in the cluster-level variation part of the model also contribute to the overall
variance by a quadratic function, so we can refer to Z(1) as variables associ-
ated with elementary-level variation. Such models can also be developed as
generalisations of the single-level model with heteroscedasticity,

yj = xjβ + zjεj ,

where εj is a random sample from a centred multivariate normal distribution
and Z is formed as a selection of variables in X.
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A consequence of associating variables with variation, at any level, is that
the variance of an observation depends on the values of these variables. We can
take advantage of this by associating variables with variation not for the origi-
nal purpose, but for describing the heteroscedasticity (varying variance) of the
outcomes. This has to be done with care, to avoid confounding because, com-
pared to the regression, data usually contain very sparse information about
the shape of the variance, defined as a function of some variables.

Random coefficients can be considered for models other than regression,
so long as they involve parameters that describe them. In a general setting,
each cluster d is associated with a vector of quantities θd , which would be
regarded as parameters if we focussed solely on cluster d as the population. A
cluster-level distribution is specified for θd . Multivariate normal distributions
are advantageous for this purpose because their class is complete (for any
variance matrix there is a distribution), self-contained (closed with respect
to taking margins, conditioning, and linear operations), and easy to handle
(their densities, expectations, and variance matrices are simple expressions).
In principle, any other class of distributions can take over this role, but not
without introducing considerable analytical complexity. When the parameters
θd differ in only one component, this problem is tractable in some settings.
Some of them are discussed in Chapter 10.

9.7 Estimating Many Quantities

Multilevel models involve many quantities of several kinds that may be of
interest. It is often tempting to list as a default all the inferential statements,
such as the (ML or REML) estimate and the associated estimated root-MSE
(θ̂, ŝθ) for every quantity (parameter or deviation) θ, inspect them, and focus
the report on the findings that we regard as interesting or believe that our
client would find them so. The alternative is to state in advance of any data
inspection and analysis what would be reported and how (in what context)
and to declare in advance how each possible configuration of estimates (and
associated estimated root-MSEs) would be interpreted. This might appear to
be an unnecessary straitjacket, imposing a lot of abstract work in advance of
what is often regarded as the most interesting activity—evaluating estimators
(computing) and improvising the discussion of the results. One might argue
that after learning from the data we are in a better position to state what the
important findings are and to document them appropriately.

The principal argument for preparing a protocol for analysis and its re-
port, that is, for imposing a straitjacket on them, is that the properties of an
estimator used, such as its (estimated) MSE, are quoted appropriately only
when they are reported unconditionally. For example, reporting the estimate
β̂x = 1.17 with the associated estimated root-MSE ŝ(β̂x) = 0.22 would in-
vite the interpretation that βx is almost certainly greater than, say, 0.5. We
should downgrade our confidence in this statement if its reporting is a result



9.7 Estimating Many Quantities 291

of sifting through the estimates of many other quantities. Given that β̂x is
reported, the distribution of the estimator β̂x differs from its unconditional
distribution, that is, the distribution conditional only on the model that was
selected a priori.

The problem is most acute for inferences about the clusters, especially if
we regard them before the analysis as anonymous, without any preconceptions
that some of them may be exceptional in any particular way—their deviations
δd are assumed to have an unknown (normal) distribution. After inspecting
the results that list the clusters and their estimates δ̂d , we may promote a
cluster to the status of being of interest and worthy of a (mention in the)
report. The act of promotion, denoted by R, is random (data dependent); in
a replication of the data-generating process followed by the process of inspect-
ing the results, a different cluster d may be promoted to the status of being of
interest. The problem is that the unconditional distribution of δ̂d differs from
the conditional distribution of (δ̂d |R), and they both differ from the distri-
bution of δ̂dR , which attempts to identify the cluster that would be selected
for promotion if the values of δd were known. These distributions, (δ̂d |R)
and (δ̂dR), depend on the promotion process. In general, they are difficult to
derive or estimate and without a rigorous definition of the promotion process,
even their approximation is next to impossible. The confusion of the realised
index dR (an integer) with the index dR as an integer random variable is
called personalisation.

The most common example of a promotion process is reporting the cluster
with the largest (or smallest) value of δ̂d in the fit of a model with parallel
regressions. Having observed that the maximum occurs for a cluster d∗, an
analyst may declare that this cluster is of interest. However, the distribu-
tions of δ̂d∗ and maxd δ̂d differ, as can easily be established by simulations,
and neither is a good estimator of maxd δd . The core of the problem is that
by promoting d∗ we have committed personalisation—we confused inference
about an a priori declared cluster with inference about the (unknown) cluster
that has a particular attribute, such as the largest value of δd . If we ‘trust’
the model we have applied, we may estimate the largest value of δd directly
by sampling from the fitted cluster-level distribution N (0, σ̂2

B) and improve
on this by acknowledging the uncertainty about σ2

B . This entails generating
several plausible values (replicate imputations) of σ2

B as random draws from
the estimated sampling distribution of σ̂2

B and then simulating the extreme
value of δd based on each of these plausible variances σ̃2

B.
The promotion of a cluster is appropriate when we can, with integrity,

defend the position that not declaring the cluster in the protocol for the
analysis was an oversight. That is, if we could roll the clock back to the state
prior to data inspection and prepare the protocol with greater care, the cluster
would have been declared of interest, for a particular reason, without having
gained any information about the values of the outcomes in the dataset.
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9.8 Some Applications

Multilevel models are well suited for data collected in populations that have
a hierarchical structure. In this section, we discuss four such applications. For
each we point out that the setting of the application is not perfectly matched
by multilevel models.

9.8.1 Small-Area Estimation

Small-area statistics is concerned with estimating population means and pro-
portions or, more generally, regressions in a division of the domain, such as
in the districts of a country. When there are many districts, it is attractive
to associate them with random terms, referring to a superpopulation which
would yield a ‘different country’ in every replication. This is usually in conflict
with the inferential goal of estimation for a specific set of districts into which
a country is divided—the same districts would appear in replications of the
survey because the country is regarded as fixed at the time point for which
inferences are sought.

The problem can be resolved by applying models with random coefficients
representing the districts but followed up by an analysis of the consequences
of using an invalid model. For example, the standard errors derived by the
assumption of randomness of the districts may be unbiased for this replication
scheme but are biased under the more realistic scheme in which the deviations
δd are fixed.

Setting these issues aside, a two-level model is formulated with the purpose
of reducing the variation at both levels as much as possible. If the between-
district variance were reduced to zero, the same regression formula would
apply in every district. Any prediction for the district would then, in effect,
be based on the data from the entire survey. Caution has to be applied in fol-
lowing this plan, because if we use sufficiently many covariates the estimated
between-district variation may indeed be reduced substantially, but this may
be achieved at the cost of substantial inflation of the sampling variation of
the regression parameter estimator β̂. If the between-district variation were
reduced to zero the district-level means would be estimated by x̂dβ̂, where
x̂d is an estimator of the vector of means of the covariates for district d. The
estimator may combine information from the analysed survey with other sur-
veys, or some components of xd may even be known precisely. The uncertainty
about x̂d is a factor additional to MSE(β̂;β) and the magnitude of ΣB . As a
consequence, a better-fitting model need not result in more efficient small-area
estimation.

An alternative approach to small-area estimation was described in Section
3.8.
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9.8.2 Performance Assessment of Institutions

We dealt with this topic in Section 7.5, regarding it as an application of causal
analysis. Setting aside the issue of whether institutions should be regarded as
a fixed set or as a random draw from a superpopulation, institutions with
their clients (students, patients, customers, and the like) have a hierarchi-
cal structure, as assumed in two-level models. Assessing the performance of
institutions can then be regarded as inference about the deviations of the
institution-specific regressions from the typical (average) regression. The co-
variates in these regressions have the role of adjustment for the differing dis-
tributions (profiles) of their clientele or caseload; institutions with clients who
require more attention, are more difficult to treat, and so on, should not be
handicapped in the assessment. In other words, the covariates are meant to
take account of the (self-)selection process that results in the assignment of
the particular clients (cases) to institutions (treatments).

In variance with the approach in Chapter 7, in which the potential out-
comes of a client are fixed, the outcomes in two-level models are regarded as
random. The attribution of a value of εid for case i in institution d to the
deviation from the regression part of the model (Xβ) or to variation across
replications is ambiguous. (Would the case have the same outcome in every
replication, or is its value of εid due mainly to its consistent idiosyncrasy?)
Some of this ambiguity can be resolved by studying the measurement process
involved in establishing the values of the outcomes. Several arguments pre-
sented in Section 7.5 are against the application of random coefficient or other
linear models. Foremost among them is that regression is too smooth and in-
flexible, especially when fitted over a wide range of values, and inferences for
an institution at one end of the scale should not be influenced in any way by
institutions at the other end or even near the centre of the scale. In this re-
spect, treating the problem as that of missing data for the unrealised potential
outcomes is more principled and does not rely so heavily on the optimistic
assumption that the model applied is good enough. Validity of the model
cannot be established by model diagnostics, that is, solely by inspecting the
visible features of the data.

9.8.3 Progression over Time

Studies in which subjects are observed several times, at a sequence of time
points, are called longitudinal . We can regard an observation (on a subject
at a time point) as an element and the set of observations on a subject as a
cluster. The time is an obvious covariate, and it is meaningful to associate it
with subject-level variation to allow for subjects to have different speeds of
change or, more generally, different patterns of change over time.

When the time points are set by design, the same set for every subject,
multivariate analysis can be applied, regarding the subjects’ responses at the
T time points as a single outcome. When the subjects’ time points differ we
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may have to resort to models with random coefficients. However, the process
of how the time points are set should be carefully considered. When subjects
choose their time points purposefully, with some agenda or purpose in mind,
such as to record an exceptional value of the outcome variable, we observe a
distorted version of what we believe the data represent. Values of the outcome
variable at time points are selected nonignorably, related to or influenced by
the value to be recorded.

Variables used in longitudinal analysis may be defined for observations
(elements) and subjects (clusters). If treatment effects are the targets, inter-
mediate variables, recorded after the treatment has been assigned, should not
be included among the covariates. Observation-level covariates should be scru-
tinised for this in particular, except for time and its transformations, when
time is set by design and the scheduled treatment that is applied in a crossover
trial.

The subject of longitudinal analysis is treated in greater detail in Chapter
11.

9.8.4 Studying Families

Families and their members are studied with a wide range of inferential agenda
that includes the inheritance of physical, mental, and intellectual traits and
diseases and the effect of upbringing (nurture). In such studies, the family-level
variation is of interest, being interpreted as a descriptor of how much families
differ and in what way. Such an interpretation has a strong ‘causal’ flavour,
inviting highly speculative judgments of how different certain offspring would
be if he or she had different parents. These are poorly supported because,
in the terminology of Chapter 7, they refer to an assignment that could not
possibly have been realised. It would be meaningful to discuss the ‘effect of
parents’ only if parents could be regarded as assignable treatments.

Associated with this is the problem that the values of most covariates
in X could not possibly have been assigned either. Nor can the number of
children and the timing of their births. If we regard parents as the treatment
applied to their children, then essentially all the variables defined for children
are intermediate and their presence in the model is problematic, because they
bear the stamp of the treatment. But parents make conscious choices not
only about their children’s environment and context in which they would be
or are growing up, but also about their own, even prior to the births of their
children. Thus, variables defined for parents, at a time preceding the birth of
their children, should also be regarded as intermediate, and so their role as
covariates is therefore problematic.

While all these comments are negative, models fitted to data about families
can reveal how variables are associated and how their associations vary. As
a typical family has only a few children, if any, and the children tend to be
similar in most characteristics and attributes, there is little scope for complex
modelling of between-family variation. Studies of twins might be regarded as
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an application of random coefficient models, but most of the inferences can
be based on summaries defined for the pairs. An essential assumption is that
twins do not differ from single-birth children in any systematic way related to
the outcome variables.

Suggested Reading

Early developments of random coefficient models were stimulated by appli-
cations in agriculture, and animal breeding in particular; [76] is a pioneering
contribution; see also [77]. Maximum likelihood estimators for the setting
with the standard normality assumptions were derived first by [67]. A series
of papers [42]–[45] discussed the advantages of random coefficient models for
estimating the quantities associated with each cluster. Key papers on REML
are [142] and [69]. The Fisher scoring algorithm for data with arbitrarily many
layers of nesting is described in [112]. Prominent early applications using the
EM algorithm are presented in [159] and [34]; the method is treated in de-
tail by [13]. There is a rich literature on the Bayesian versions of random
coefficient models; a good entry point to it is [93].

Applications connected to computational algorithms are discussed in detail
by [113] and [60], the latter motivated mainly by educational research and as-
sociated with the software MLwin; see www.cmm.bristol.ac.uk/MLwin/ based
on the method of iteratively reweighted least squares. A comprehensive library
of Splus functions and the theory supporting them is documented in [146]. A
detailed account of models for variance components is given by [177]; it also
contains a detailed historical review.

Prominent applications of random coefficient models to performance as-
sessment are [2] and [62]. Small-area estimation with random coefficient mod-
els is treated in detail by [154]; Part II of [121] gives details and applications
of an alternative approach outlined in Section 3.8.

Problems and Exercises

9.1. Work through all the details of the random coefficient model given by
the equations for its two levels:

yd = Xdβd + εd ,

βd = Zdγ + δd ,

with the standard assumptions of independence and normality of δd and εd ,
when both X and Z comprise a continuous and a categorical variable.

9.2. Covariates in two-level models can be defined for elements or clusters.
Cluster-level covariates can be constructed as summaries of the values of
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elementary-level covariates; for instance, the within-cluster sample mean x̄d of
a continuous variable X is such a covariate. Relate to the material in Chapter
6 the problems with using such a covariate, especially when the within-cluster
sample sizes nd are small.
Hint: Study the correlation of X and the variable constructed by expanding
x̄d to the subjects in such a way that each subject in cluster d has the value
x̄d . Compare this correlation with its population counterpart, cor(X,X[d]),
where X[d] is formed by expanding the within-cluster population means.
Why should a cluster-level covariate not be associated with variation?

9.3. Describe some patterns of variation with a singular 3×3 variance matrix
ΣB. Devise a way of presenting these patterns graphically.

9.4. List the rules related to invariance with respect to linear transformations
when the within-cluster regressions are polynomial. As an example, consider
the setting with cubic average regression and the within-cluster regressions
differing from it by quadratic functions.

9.5. Prove the identity

(In + ρJn)−k = In − 1
n

gk
n − 1
gk

n

Jn (9.25)

for k = ±1,±2, . . ., where gn = 1 + nρ.
Hint: Prove it first for k = −1, and then apply mathematical induction.
Suppose Z is an n × r matrix of full rank r < n and Ω is a variance matrix,
not necessarily nonsingular. Prove the identity(

In + ZΩZ�)k = In − Z
(
Z�Z

)−1 (
In − Gk

)
Z�

where G = I + Z�ZΩ and k = ±1,±2, . . .. This identity generalises (9.25)
and the second identity in (9.6).

9.6. This exercise relates to the setting of Section 9.3. Show that when the
sample size nd exceeds the number of variables associated with variation, r,
the variance matrix Vd = var(yd) has eigenvalue σ2 with multiplicity nd − r.

9.7. Derive the part of the Fisher scoring algorithm in Section 9.3 for σ2 with
the original parameterisation, using Vd and ΣB . Can you avoid having to
derive the diagonal element of the information matrix for σ2?

9.8. A two-level dataset is called balanced if each cluster has the same matrix
Zd . A slightly more general definition of balance requires only that Z�

d Zd is
the same for every cluster d. Derive the ML estimator of β for a balanced
dataset and the equations for the ML estimates of σ2 and Ω.

9.9. Derive the conditional distribution of εd given in the text leading up to
(9.18).
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9.10. A two-level model can be associated with the ANCOVA model that
differs from it only by the status of the cluster-level deviations δd . Two such
models are called paired. For a simple model, say with a single covariate X
and parallel regressions (no group-by-X interactions), derive the estimators
of the deviation δ1 for the first cluster in the two models. Make the necessary
assumptions, e.g., that the variance ratio ω is known, under which the MSEs
of two estimators can be compared analytically. Discuss how the comparison
should be made empirically.

9.11. A two-level model yid = xid β+δd +εid can be ‘collapsed’ to the cluster
level by defining a similar model for the cluster-level averages as

ȳd = x̄dγ + δ′d ,

where the bar ¯ denotes the averaging and δ′d = δd + ε̄d . Give an example or
a reason why the parameters β and γ may have very different values, even
when the within-cluster sample sizes nd are identical. This phenomenon is
known as ecological fallacy .
Hint: Consider a setting in which the values of δd are associated with the
means x̄d .

9.12. Two-level models are sometimes called empirical Bayes; [42]. That is,
the model would be Bayes if the cluster-level variance (matrix) were known;
the corresponding distribution N (0,ΣB) would then play the role of the prior
for the deviations δd . Give a complete Bayes specification of the two-level
model, with priors for all the model parameters. Discuss or resolve the am-
biguity about the role of δd . Are they on par with εd , or are they model
parameters? Is the distinction essential?

9.13. Work out all the details of the EM algorithm for fitting a two-level
model.

9.14. If the assumption of normality of δd in a two-level model is problem-
atic, a more general assumption, that their distribution is a mixture of two
unrelated centred normal distributions, may be adopted. Describe how the
EM algorithm could be combined with the Fisher scoring to fit such a model.

9.15. Verify empirically the approximation given by (9.22).

9.16. Show that the regression matrix X is of full rank p < n if and only if
X�V−1X is of full rank. Relate this equivalence to the relationship between
estimability of the vector of regression parameters in the ordinary regression
model (y = Xβ + ε) and in the two-level model with the same regression
matrix X and a nonsingular variance matrix V = var(y). Does the presence
of some clusters d for which the regression matrix Xd is singular affect the
estimability of β in any way? Can δd be estimated for such clusters? Could
the p × 1 vector β be estimated even when every cluster has a sample size
smaller than p?
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9.17. For a finite structured population, the population mean of a vari-
able Y may differ substantially from the mean of the within-cluster means,
(Ȳ1 + · · ·+ ȲD)/D. Construct such an example. Explain why the sample mean
ȳ may differ substantially from the ML estimator of the parameter µ in the
two-level model yid = µ + δd + εid . Generalise this conclusion to the com-
parison of the OLS estimator β̂ = (X�X)−1X�y and the ML estimator
β̃ = (X�Ŵ

−1
X)−1X�Ŵ

−1
y for a suitable regression matrix X and non-

singular estimate of the scaled variance matrix W.

9.18. In the software of your choice, write a programme for fitting the two-
level model with parallel regressions. Include in the output the estimates of
the deviations δd and the elementary-level residuals ε̂id . The dataset in file
EXMa.dat on www.sntl.co.uk/BookA/Data contains log-values of the assets
and liabilities of the 1965 French companies listed on the stock exchange
in 1980. The companies are classified to 71 industrial sectors. Regard these
sectors as clusters, and fit the two-level model of the log-liabilities as the
outcomes. Explore the results for exceptional sectors.

9.19. Using the dataset from the previous exercise and the software devel-
oped, devise a method for checking the assumption of parallel within-cluster
regressions.
Hint: Fit the ordinary regressions within each cluster of sufficient size or in
the clusters in which the regression can be fitted. Compare the variation of the
regression slope estimates with the variation that one would expect if all the
regression slopes were identical. The latter can be established either analyti-
cally, from the matrices of crossproducts X�

d Xd , or by simulations. Consider
also the compromise in which only replicate sets of estimates are generated,
without any replicate outcomes.

9.20. Extend the programme you compiled earlier to fit two-level models with
a covariate associated with variation and reanalyse the dataset in EXMa.dat.
Try out several ways of forcing the provisional (and final) estimates of the
scaled variance matrix Ω to be nonnegative definite. Describe the pattern of
cluster-level variation implied by Ω̂. Draw the fitted deviations zδ̂d for z in
the same range as the values in the dataset, and discuss whether these lines
agree with the pattern implied by Ω̂. Compare the sample variance of the
estimates of the slope with the estimated variance, σ̂2Ω̂x , and explain the
discrepancy.

9.21. Prepare a complete list of the assumptions for a causal interpretation of
the setting of a two-level model. Carefully define the various average effects.
Discuss the advantages and drawbacks of regression and matching and why
matching should be done within clusters.

9.22. Suppose a two-level model with parallel regressions is appropriate for a
particular setting, and this is confirmed when the model is fitted (and com-
pared with some alternatives). What is likely to happen to the property of
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parallelness when the outcome or a covariate is subjected to a nonlinear trans-
formation? Check your conjectures or conclusions by experimenting with the
dataset in EXMa.dat.

9.23. Suppose a very large population comprises many clusters, each of them
of substantial size. The population also comprises two types, such as men and
women, who are present in each cluster with abundance. The within-cluster
differences of the means of a key variable for these two types are constant;
∆AB = µA,d − µB,d for every cluster d. A survey is to be conducted with the
purpose of estimating ∆AB . Its sample size is fixed at n. Suppose the variance
ratio σ2

B/σ2 is known to be in the range 0.07–0.12. Discuss the design of the
survey. Advise about the number of clusters and the composition of the types
within the clusters.
Hint: Study the information matrix for the target.

9.24. Consider the two-level model with parallel regressions,

yid = β0 + βxxd + βuuid + δd + εid ,

in which X is a cluster-level variable (xid = xd) and U is such that u1d +u2d +
· · ·+undd = const. For example, for the setting of classrooms and students, X
may be an attribute of the classroom and U gender of the student, and each
classroom has the same number of boys as girls in the sample. Show that the
maximum likelihood estimators of β̂x and β̂u are uncorrelated. Further, show
that β̂x and the estimate of the cluster-level variance, σ̂2

B , are not altered
when U is dropped from the model.
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Generalised Linear Models

Normality of the conditional distributions in ordinary regression and in other
models is a very constraining assumption because outcomes in a wide range
of settings have distributions that are distinctly not normal. This section
presents a generalisation of the ordinary regression beyond normality, which
retains several features of the ordinary regression. In Section 10.5 we extend
multilevel models similarly.

10.1 Introduction

For motivation, we consider the setting with conditionally independent binary
outcomes Y given a continuous covariate X. The plot of the realised values y
against the values of x is not very informative because Y is supported by only
two points, 0 and 1. An illustration is given in Figure 10.1. The outcomes,
equal to zero or unity, are marked by circles ◦. The figures printed in the
diagram are the proportions of positive outcomes within the 1

2 -point bands of
values of X. For example, in the band on the extreme left, 3.0–3.5, all seven
outcomes are negative. The conditional probability of a positive outcome,
p(x) = P(Y = 1 |X = x), is related to x; greater values of X are associated
with higher probabilities p(x). The curve drawn in the diagram is the function
p(x) and the vertical ticks on it mark its values for the realised values of X.
More details about this curve (function), called logistic, are given later.

The function p(x) could not be nonconstant linear and at the same time
bounded by zero and unity, just like the outcomes and probabilities are. Yet,
relating p(x) to a linear function would be very convenient, for the same
reasons that underlie our preference for linear regression with normally dis-
tributed outcomes—analytical simplicity and easy interpretation. Transfor-
mations of p(x) provide a solution; we assume that

g{p(x)} = β0 + β1x (10.1)
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Fig. 10.1. Example of a logistic regression with a single covariate. The outcomes
are marked by circles and the underlying probabilities p(x) by short vertical ticks on
the logistic curve. The numbers at the height of 0.8 give the proportions of positive
outcomes and the numbers of observations within the bands 0.5 wide.

for some (unknown) coefficients β = (β0 , β1)�. More generally, g{p(x)} =
xβ for a vector of covariates x and a regression parameter vector β. As a
convention, the first components of x and β represent the intercept. By X we
denote the regression matrix formed by vertical stacking of the rows x for the
observed units, and by y the corresponding vector of outcomes. The function
xβ is referred to as the linear predictor .

The function g is called the link function. Practical choices for g are
monotone functions that map the interval (0, 1) to the entire real axis. These
include the logit ,

g(p) = log
(

p

1 − p

)
, (10.2)

complementary log-log ,

g(p) = − log {− log(p)} ,

and probit ,
g(p) = Φ−1(p) ,

where Φ−1 is the inverse of the distribution function of the standard normal
distribution N (0, 1). Instead of Φ, we could use the distribution function of
any continuous distribution supported on (−∞,+∞).

The logit link stands out among these options because it is connected to
the likelihood in a special way. The log-likelihood for β given by (10.1) and g
by (10.2) is
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l(β;y;x) =
n∑

j=1

yj log
{

p(xj)
1 − p(xj)

}
+

n∑
j=1

log {1 − p(xj)}

= y�Xβ −
n∑

j=1

log {1 + exp (xjβ)} ,

so X�y is a set of minimal linear sufficient statistics for β. Maximisation of
this log-likelihood corresponds to moment matching, as

∂l

∂β
= X�y −

n∑
j=1

p(xj)xj ,

and E(yj |X = xj) = p(xj). Further,

− ∂l2

∂β ∂β� =
n∑

j=1

p(xj) {1 − p(xj)}xjx�
j .

This does not depend on the outcomes y, so the observed and expected in-
formation matrices for β coincide.

We refer to the model implied by (10.1) as a regression and to the model
with the logit link as logistic regression. The connection with ordinary regres-
sion is made more obvious by the equivalent expression

E(Y |X = x) = g−1 (β0 + β1x) , (10.3)

so that the regression is linear, but for the application of the inverse of the
link function. Ordinary regression is subsumed in these models by setting the
link to identity; g(x) = x.

The three link functions for binary outcomes are compared in the left-
hand panel of Figure 10.2. A link function g can be regarded as identical with
any of its nontrivial linear transformations a + bg, with b �= 0, because such
a transformation can be compensated for in the linear regression by using
β′

0 = (β0 − a)/b and β′
1 = β1/b. In the right-hand panel, the complementary

log-log and probit are linearly transformed to match the logit link as closely
as possible in the range p ∈ (0.25, 0.75). The graph shows that the three link
functions differ very little in the mid-range of probabilities, and probit and
logit differ only slighly even in the tails. Probit and logit links are symmet-
ric around 1

2 , that is, g(p) = −g(1 − p), unlike the complementary log-log.
The functions − log{− log(1−p)} and − log{− log(p)} represent substantially
different links.

The generalisation of the model in (10.3) to multiple regression is straight-
forward—we replace β0 + β1x by xβ for a row vector x of values of the
covariates preceded by the intercept 1. For the conditional distribution of Y ,
assumed to be binary thus far, we can specify other classes of distributions,
to match the information we have about Y prior to data collection as closely
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Fig. 10.2. The logit, complementary log-log, and probit link functions for binary
outcomes, as defined (left-hand panel) and after linear transformations (right-hand
panel).

as possible. With these two generalisations, we obtain the class of generalised
linear models (GLMs). They are specified by

• linear regression Xβ;
• link function g; and
• a class conditional distributions of Y given x.

The link operates for classes of equivalence; links within a class are linearly
related. A link function is monotone and one-to-one. We lose no generality by
considering only links that are increasing functions.

Maximisation of the log-likelihood for GLM is, in general, a nontrivial
computational task involving iterative procedures. The pairing of binary dis-
tribution and logit link is an example in which the problem is simpler because
the likelihood for the regression parameters β depends on the outcomes y
through a short list of sufficient statistics, X�y. Such a link function, associ-
ated with a specified class of conditional distributions (Y |X = x), is called
canonical ; logit is the canonical link for binary outcomes.

A very wide class of distributions suitable for GLMs is given by the expo-
nential family of distributions. It is specified by the densities or probabilities

f(y;x, a, b, c, θ) = exp
{

yθ − b(θ)
a

+ c(y, a)
}

, (10.4)

where a is a positive constant, called the scale, b and c are functions, and θ is
a value underlying the conditional expectation of y given x; θ = ν(xβ).

We derive a connection between a and b in (10.4) and the expectation and
variance of the distribution. For any parametric class of densities f(y; θ),
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∂

∂θ

∫
f(y; θ) dy = 0 ,

because the integral is equal to unity for every θ. If f(y; θ) is a smoothly
differentiable function of θ for every value of y,

∂

∂θ

∫
f(y; θ) dy =

∫
∂f(y; θ)

∂θ
dy

= E
[
∂ log {f(y; θ)}

∂θ

]
= 0 ,

so long as the order of differentiation and integration can be exchanged. For
distributions in the exponential family, this identity yields

∂

∂θ

∫
f(y;x, a, b, θ) dy =

y − b′

a
.

As the expectation of this derivative vanishes,

E
[
∂ log {f(y;x, a, b, θ)}

∂θ

]
=

E(Y ) − b′(θ)
a

= 0 ,

E(Y ) = b′(θ). In the following, we suppress the arguments x, a, and b of a
density f .

If the density f is twice continuously differentiable in θ for every y, its
further differentiation yields the identity

∂

∂θ
E
[
∂ log {f(y; θ)}

∂θ

]
=
∫

∂2 log {f(y; θ)}
∂θ2

f(y; θ) dy

+
∫ [

∂ log {f(y; θ)}
∂θ

]2
f(y; θ) dy

= E
[
∂2 log {f(y; θ)}

∂θ2

]
+ E

[
∂ log {f(y; θ)}

∂θ

]2
.

For an exponential family of distributions, this yields

−E
[
∂2 log {f(y; θ)}

∂θ2

]
=

1
a2

var(Y ) ,

and hence
var(Y ) = ab′′(θ) .

In a GLM, the observations are associated with a common pair of functions
b and c and scale a, and θ is related to the covariates by the identity

θj = ν(xjβ) .
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The canonical link corresponds to the identity function ν. The expectation
b′(θ) is equal to the inverse of the canonical link.

In some settings, it is difficult to identify a suitable distribution for y,
and it is much easier to specify how the conditional variance and expectation
are related. The variance function is defined as var(y |x) = V (µ), where
µ = E(y |x), that is, as a function of the expectation. It provides an alternative
to specifying the conditional distribution in a GLM. Some combinations of
variance and link functions do not correspond to a distribution, but that is in
general no hindrance to their application.

10.2 Examples of GLMs

The ordinary regression is a special case of GLM. It is defined by the identity
link, g(θ) = θ, and the normal distributions or the constant variance function
V (µ) = a. The normal distributions are a member of the exponential family,
defined by a = σ2, b(θ) = 1

2µ2, and

c(y, σ2) = − 1
2 log

(
2πσ2

)− y2

2σ2
.

The Poisson distributions are given by the sets of probabilities

P(Y = k;λ) = e−λ λk

k!

for k = 0, 1, . . . , and parameter λ > 0. The Poisson distributions belong to
the exponential family, with a = 1, θ = log(λ), and c(k, a) = log(k!). The
mean and variance of Y are both equal to λ, so V (λ) = λ. The canonical
link for the Poisson distribution is the log function. Poisson is often selected
as the class of distributions for modelling count data. A Poisson distribution
can be derived as the limit of a sequence of binomial distributions B(n, pn)
such that n diverges to infinity and npn converges to a positive constant.
It can also be derived as the number of random draws from an exponential
distribution before their total exceeds a given threshold. These derivations
and the simple form of their probabilities motivate the use of the Poisson
distributions. However, the assumption that the mean and variance coincide
may be unrealistic. It can be relaxed by adopting the variance function V (µ) =
aµ and estimating the constant a by moment matching; see later. This may
be useful even if a distribution with such a variance function does not exist.

The Gamma distributions are given by the densities

f(y; θ, ξ) =
θξyξ−1 exp(−θy)

Γ (ξ)

for y > 0 and positive values of the parameters θ and ξ. These distributions
are members of the exponential family, with a = −1, b(θ) = ξ log(θ), and
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c(y, a) = (ξ − 1) log(y) − log{Γ (ξ)}, when the value of ξ is known. The mean
and variance of the Gamma distributions are ξ/θ and ξ/θ2, respectively.

The family of exponential distributions can be expanded further by
monotone transformations. If the distribution of a continuous variable Y is in
the exponential family, then its differentiable increasing transformation h(Y )
has the density

exp
{

h−1(u)θ − b(θ)
a

+ c†(u, a)
}

, (10.5)

where c†(u, a) = c{h(y), a} + h′{h−1(u)}. Transformations of the parameters
(reparameterisation) offer further extensions.

10.3 Maximum Likelihood Estimation

The special form of the exponential family of distributions enables us to max-
imise the log-likelihood by the Newton–Raphson or Fisher scoring algorithms.
For a vector of outcomes y, mutually conditionally independent given the ma-
trix of covariates X, the log-likelihood is

l(β;y,X) =
1
a

n∑
j=1

yjθj − 1
a

n∑
j=1

b(θj) +
n∑

j=1

c(yj , a) ,

where θj = η(xjβ) is a transformation of the linear predictor xjβ. The score
vector for β is

∂l

∂β
=

1
a

n∑
j=1

{yj − b′(θj)} ∂θj

∂ηj
xj , (10.6)

where the differential is of θj as a function of ηj = xjβ. For the canonical
link, θj = xjβ, and so ∂θj/∂ηj = 1. The score vector can be thought of as a
weighted total of crossproducts of the residuals yj−b′(xjβ) and the covariates
xj , with the weights ∂θj/∂ηj . The observed information matrix for β is

− ∂l2

∂β ∂β� =
1
a

n∑
j=1

b′′(θj)
(

∂θj

∂ηj

)2

xjx�
j +

n∑
j=1

{yj − b′(θj)}
∂θ2

j

∂2ηj
xjx�

j .

Its expectation, the expected information matrix, is equal to the first summa-
tion on the right-hand side:

−E
(

∂l2

∂β ∂β�

)
=

1
a

n∑
j=1

b′′(θj)
(

∂θj

∂ηj

)2

xjx�
j . (10.7)

For the canonical link, the observed and expected information matrices coin-
cide and are equal to a−1

∑
j b′′(θj)xjx�

j .
The maximum likelihood estimates are found by iterative updating
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β̂new = β̂old + I−1
β,β

(
β̂old , β̂old

)
sβ

(
β̂old

)
,

where sβ and Iβ,β , given by (10.6) and (10.7), respectively, are evaluated
at the current solution β̂old . A provisional solution is required for the first
iteration. The ordinary least squares fit,

(
X�X

)−1
X�y, suitably scaled for

the (approximated) variances b′′(θj)/a, can be used. An alternative is based
on the fit with all the slopes in β̂ set to zero. For a canonical link, this is
obtained by transforming the mean ȳ = y�1n/n to the scale of the linear
predictor, that is, solving the equation b′(β̂0) = ȳ.

There is no guarantee that the Fisher scoring algorithm would converge,
and a general discussion of the problems entailed is not possible. Some but
not all of the problems can be related to the ill-conditioning of the regression
matrix X. In general, the convergence is faster for simpler models and when
the factors wj = b′′(θj) (∂θj/∂ηj)

2 in (10.7) are smooth functions of the linear
predictor xβ and, evaluated at β̂ or β̂old , are distant from both zero and +∞.

The factors wj can be interpreted as weights, ascribing relative impor-
tance to the observations as compared to ordinary regression, in which every
weight is equal to unity. For example, with binary outcomes and logit link,
wj = p̂j(1−p̂j), where p̂j = 1/{1+exp(−xjβ̂)} is the fitted probability. There-
fore, observations with fitted probabilities p̂j distant from zero and unity are
relatively less important than observations with p̂j close to 1

2 , for which wj

is close to 1
4 . This agrees with intuition: observations with their values of the

covariates x in a region where p̂j is small contain little information because
almost all the corresponding outcomes are the same (equal to zero).

We emphasize that wj represents relative importance, because the values of
xj have an impact on how useful an observation is even when wj are constant.
Further, importance cannot be assigned to each observation in isolation from
the rest, because, for instance, dispersion of the values of xj is associated with
information about the regression parameters.

The formulae for the Fisher scoring algorithm can be expressed in terms
of the weights wj . Define the generalised residuals as

e∗j =
yj − b′(θj)

b′′(θj) ∂θj/∂ηj

and their vector as e∗ = (e∗1 , . . . , e∗n)�. Further, let W be the diagonal matrix
with the weights wj on its diagonal. Then the score vector and expected
information matrix are

∂l

∂β
=

1
a
X�We∗,

−E
(

∂2l

∂β ∂β�

)
=

1
a
X�WX . (10.8)
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The weights depend on the linear predictor xjβ, so their estimated version ŵj

as a function of β̂ has to be updated at each iteration. Thus, fitting a GLM
can be described as iteratively reweighted least squares.

10.3.1 Overdispersion

In the terminology of GLM, the normal-identity model involves a scale (σ2)
that is estimated. In models for binary and Poisson-distributed outcomes,
the scale is implied by the distributional assumption and is equal to unity
in both cases. The scale may be set to a different value, and for the Poisson
distributions it can even be estimated. The assumption that the mean λ is
associated with the variance cλ for a particular value of c, whether known or
not, may in some settings be appropriate. With c �= 1, we seek a match of
the association of the mean and variance, V = cµ, without reference to any
particular class of distributions. A distribution with the posited association
need not even exist.

For binary outcomes, the mean (probability) and variance can be con-
nected only by the variance function V (p) = p(1 − p). However, even for
counts in a given number of trials, for which the binomial would be the distri-
butions of choice, the variance function may be greater than for the binomial.
When the set of m trials from which an outcome is derived are condition-
ally independent, given the values of the covariates, the variance function is
V (p) = mp(1 − p). When the trials yield conditionally positively correlated
outcomes, the variance function is V (p;m) = cmp(1−p) for a constant c > 1.
This phenomenon is referred to as overdispersion. If the conditional correla-
tion of outcomes within a set of trials is equal to ρ, then c = 1 + (m − 1)ρ.

Conditionally correlated outcomes may arise when the list of covariates is
not complete. That is, if one or several further variables were included among
the covariates, the outcomes would be independent after conditioning on all
of them, but with an incomplete list of covariates they are conditionally cor-
related. This is easy to demonstrate on a simple example. Suppose n = 1280
binomially distributed outcomes with denominator m = 6 are generated ac-
cording to a logistic regression model logit(pj) = −0.5+0.2xj , where xj have
integer values in the range 1–10. Figure 10.3 summarises such a (simulated)
dataset by the distribution of the covariate and the conditional probabilities
of ‘success’ for each value of the covariate. If the covariate is ignored, the
fitted model is derived directly by transforming the overall sample mean pro-
portion. For a particular realisation, we have p̂ = 0.64, so β̂0 = 0.576. The
sample variance of the outcomes is 1.489, higher than mp̂(1 − p̂) = 1.382,
derived by assuming that the m = 6 trials that constitute a unit are inde-
pendent and ignoring the uncertainty about p̂. The difference between these
two estimated variances is substantial and does not arise solely by chance. To
verify this, we replicate the simulation 1000 times. The realised proportions
of success are in the range (0.626, 0.660), with mean 0.643; the correspond-
ing (estimated) binomial variances, mp̂(1− p̂) are in the range (1.346, 1.405).
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Fig. 10.3. The sample and binomial variances in a simulation of simple logistic
regression (right-hand panel). In the left-hand panel, the distribution of the covariate
is plotted, with the conditional probability of success given above each bar and
indicated by shading. The right-hand panel summarises the sample variances.

However, the simulated sample variances
∑n

j=1(Yj − Ȳ )2/(n − 1) are 1.011–
1.254 times greater, in the range (1.378, 1.731). The right-hand panel of Figure
10.3 plots the sample and binomial variances. So, although not dramatic, the
overdispersion is persistent.

The example highlights the importance of the conditional as a qualifier
for independence of the outcomes in regression models in general. For a given
dataset, overdispersion in this example has no impact on the estimates be-
cause the multiplicative inflation of the variances and weights in X�We∗ and
X�WX in (10.8) cancels out. However, the information matrix is reciprocally
proportional to the inflation factor, so the standard errors are affected.

Overdispersion need not be multiplicative. We are at liberty to specify
any variance function V , so it can be related to the variance function V ∗ for
a known distribution in essentially any way that maintains positivity of V .
One such example arises by assuming that the outcomes as counts contain
an excess of zeros. That is, conditionally on the values of the covariates, the
distribution of the outcomes is a mixture of a Poisson (binomial or some other
discrete) distribution and the identical zero. In a setting with no covariates,
let the (mixture) probability of identical zero be ρ and the mean of the other,
say, Poisson-distributed, component λ. Note that the probability of a zero
outcome is greater than ρ because zero may also be generated by the Poisson
component. The expectation of the mixture is λ(1 − ρ) and its variance is
λ(1−ρ)(1+λρ). Thus, in relation to the expectation of the mixture, λ(1−ρ),
an excess of zeros always amounts to overdispersion. In contrast, when related
to the original Poisson-distributed variable, overdispersion arises only when
(1 − ρ)(1 + λρ) > 1, that is, when λ > 1/(1 − ρ).
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Suppose the mean λ depends on the values of some covariates, but the
proportion ρ is independent of them. Then the extent of overdispersion, mea-
sured on the multiplicative scale, depends on λ. The overdispersion is greater
for greater values of λ, when zero is a more extreme value in the conditional
mixture distribution. When there are fewer zeros than the Poisson (or another
discrete) reference distribution would have, we have a case of underdispersion.

Models for under- and overdispersion can be fitted by specifying an appro-
priate variance function, although difficulties may be encountered when the
probability associated with the mixture components has to be estimated and
when it depends on some covariates. The EM algorithm, in which the iden-
tity of the mixture component for each observation is regarded as the missing
data, addresses this problem. In the E-step, the outcomes equal to zero are
apportioned to the two components according to the probability of zero out-
come given the nondegenerate (Poisson, binomial, or some other specified)
distribution. In the M-step, which itself involves iterations, this distribution
is updated, based on the apportionment from the preceding E-step, and the
iterations of E- and M-steps are repeated until convergence.

10.3.2 Model Selection

Often a range of alternative models is considered and one of them is selected
as the most suitable description of the data-generating process. The elemental
part of this is a choice between two models, based on how well they fit the
data. The fit of two models, A and B, such that A is a submodel of B, can
be compared by the likelihood ratio. Suppose these models involve pA and
pB > pA unconstrained regression parameters. Denote by DA and DB the −2-
multiple of the log-likelihood evaluated at the fit of the respective models A
and B. Then, if model A is valid and the values of the model parameters are not
on the boundary of the parameter space (for A), DA−DB has asymptotically
χ2 distribution with pB − pA degrees of freedom. This provides a prescription
for selecting between the two models. We choose A if the realised value of
DA − DB does not exceed the a priori set quantile of the χ2 distribution;
otherwise we choose B. Such a model selection can be related to hypothesis
testing in which we adopt model A as the default and choose B only when
there is evidence against A, in the form of a value of DA −DB that would be
exceptional if model A were valid.

This procedure has all the drawbacks of its counterpart for ordinary re-
gression. First, it is not informed by the target of estimation, the purpose
for which the model is to be employed. Second, the procedure is concerned
with probabilities of correct choice, not with minimising the undesirable con-
sequences of the two kinds of incorrect choices. And third, we have no means
of estimating the sampling distribution (or the MSE) of the selected-model-
based estimator given the model-selection process. Any (estimated) summary
of the conditional sampling distribution, given the selected model, such as
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the standard error of a model parameter, is misleading because the corre-
sponding summary of the unconditional distribution, which is a mixture of
the selected-model-based estimators, should be quoted.

Let C be the selected model; C = A or C = B. Suppose a quantity θ would
be estimated by θ̂A or θ̂B , depending on which model is selected. With the
model selection, the estimator is

θ̂C = IA θ̂A + IB θ̂B ,

where IA = 1 − IB indicates the selection of model A. This estimator is not
efficient even if θ̂A and θ̂B would be efficient if the respective model A or B were
selected unconditionally. Further, if ŝ2

A and ŝ2
B are unbiased estimators of the

MSEs of the respective estimators θ̂A and θ̂B , then MSE(θ̂C ; θ) is estimated
by ŝ2

C = IA ŝ2
A + IB ŝ2

B with bias. In fact,

MSE
(
θ̂C ; θ

)
= pA var

(
θ̂A | IA = 1

)
+ pB var

(
θ̂B | IB = 1

)
+ pA

{
E(θ̂A | IA = 1) − θ

}2

+ pB

{
E(θ̂B | IB = 1) − θ

}2

,

where pA = P(IA = 1) and pB = P(IB = 1). The bottom line in this formula
can be interpreted as the inflation of the MSE due to model uncertainty.

In Section 2.3, we applied synthesis as an alternative to model selection.
Synthesis estimates θ by

θ̃ =
(
1 − b̂θ

)
θ̂A + b̂θ θ̂B ,

with b̂θ estimating the coefficient bθ that would minimise the MSE of θ̃ for θ.
Estimation of var(θ̂A) and var(θ̂B), involved in bθ , is more complex because of
the dependence of var(Y ) on E(Y ) and because the sampling variance is usu-
ally only approximated, from the inverse of the expected information matrix.
The targets are often on the scale of the outcomes, such as probabilities in
logistic regression, and so the sampling variances var(θ̂A) and var(θ̂B) involve
further approximations. The MSE of neither θ̂C nor θ̃ can be evaluated or
estimated without bias, except by simulations.

Example 15. The dataset analysed in this example was generated by an ex-
periment in which the stimulus x was set to one of the integers 1, 2, . . . , 10,
and the outcome y was binary. The values of x are distributed approximately
uniformly on 1–10; the frequencies of the values are in the range 81–114. One
thousand observations were made in total.

The logistic regression yields the fit −0.112 + 0.071x with the standard
error of the slope estimated by 0.023. We are interested in estimating the
probability of positive outcome for each integer value x = 1, 2, . . . , 10 of the
stimulus, perhaps with some mild extrapolation to x = 0 and x = 11 and
x = 12. These probabilities are estimated straightforwardly, by transforming
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the fitted value of the linear predictor to the probability scale. For example,
for x = 10 we obtain the prediction by transforming the linear fit −0.112+10×
0.071 = 0.598 to the probability scale; we obtain p̂10 = 0.645. An alternative
estimator is the frequency of positive outcomes, based on all 1000 observations.
It ignores the values of the stimulus, so this estimator is biased for prediction
at all values of x, except perhaps one near the mean x̄. At the same time, its
variance is smaller than for the regression-based estimator because we have
‘saved’ one degree of freedom. The estimate is p̂ = 0.566 and the associated
sampling variance is estimated by 2.456 × 10−4. The latter is unbiased only
when the probabilities px do not depend on x. However, it differs only slightly
from its counterpart based on the logistic regression,

v̂ar(p̂ | β̂) =
1
n2

n∑
j=1

p̂xj

(
1 − p̂xj

)
, (10.9)

equal to 2.433 × 10−4.
Using the logistic regression, we estimate first the standard error of the

prediction on the logit scale. For x = 10, this is

10−4

(
1

10

)�( 189 −28
−28 5

)(
1

10

)
= 0.01589 , (10.10)

where the 2× 2 matrix is the 104-multiple of the estimated sampling variance
matrix of β̂. Since all the probabilities involved are in the range (0.45, 0.70),
far away from zero or unity, we can approximate the logit and its inverse
by linear functions, with slopes equal to 4 and 1

4 , respectively. Thus, p̂10 is
approximately unbiased, with estimated standard error 1

4

√
0.01589 = 0.0315,

or about 3%.
We combine the two estimators of the conditional probability of positive

outcome px ; p̂x derived from logistic regression fit and the sample proportion
p̂. The former is nearly unbiased and its sampling variance is approximately
equal to

var (p̂x) .= {px(1 − px)}2 x
(
X�WX

)−1
x� ,

where x = (1, x) is the regression vector for the target. The covariance of the
two estimators is approximated by

Cx =
1
n

px(1 − px) x
(
X�WX

)−1
X�W1 .

These two quantities are estimated naively, as is the bias of p̂, by B̂x = p̂− p̂x ,
and var(p̂x) is estimated by (10.9).

The optimal combination of the estimators p̂x and p̂ is p̃x = (1−bx)p̂x+bxp̂,
with

bx =
var(p̂x) − Cx

var(p̂x) + var(p̂) − 2Cx + B2
x

, (10.11)
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Table 10.1. Synthetic estimation of the probabilities by logistic regression.

Regression/Selection Synthesis

x p̂x

√
v̂ar(p̂x) p̃x

√
M̂SE(p̃x ; px) b̂x

0 0.4718 0.0343 0.4807 0.0330 0.0945
1 0.4896 0.0294 0.4968 0.0284 0.0951
2 0.5073 0.0248 0.5129 0.0240 0.0956
3 0.5251 0.0207 0.5290 0.0202 0.0960
4 0.5428 0.0175 0.5450 0.0173 0.0976
5 0.5603 0.0159 0.5611 0.0158 0.1443
6 0.5777 0.0161 0.5765 0.0161 0.1051
7 0.5950 0.0181 0.5922 0.0179 0.0944
8 0.6120 0.0213 0.6077 0.0208 0.0918
9 0.6287 0.0249 0.6231 0.0242 0.0898

10 0.6451 0.0289 0.6382 0.0279 0.0878
11 0.6612 0.0328 0.6531 0.0317 0.0856
12 0.6769 0.0366 0.6677 0.0353 0.0833

where Bx is the bias of p̂ in estimating px . The coefficient bx is estimated
naively, using the naive estimators of the quantities required in (10.11). The
estimates and associated standard errors for x = 0, 1, . . . , 12 are given in Table
10.1.

The table shows that the regression estimates p̂x are altered by synthesis
only slightly; the sample proportion p̂ is assigned small weight b̂x , around 0.1,
for all values of x. The coefficients are nearly identical because the problem is
very similar to synthesis in simple regression, where the coefficient is common
to all values of x. The small differences arise because of slight heteroscedas-
ticity, weak dependence of var(Y |X = x) on x, and nonlinearity of the logit
function in the range of the fitted probabilities. Figure 10.4 summarises the
results graphically. Although the differences between the pairs of maximum
likelihood and synthetic estimators are small, they are perceptible.

The estimated standard errors require a careful qualification. First, we did
not state up front whether we would have contemplated the logistic model with
no covariates, which would yield the common estimator p̂ for all values of x.
If so, we would have to declare the selection criterion. In some replications,
this ‘empty’ model might be accepted by the model-selection criterion. For
the synthetic estimator, the uncertainty about b̂x is ignored in estimating its
MSE. Thus, a fair comparison can be made only by simulations, as done in
Section 2.3 for a different example. The simulations confirm that the synthetic
estimator is slightly more efficient than p̂x or its model-selection counterpart,
and that model selection can be counterproductive, resulting in inflated MSE
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Fig. 10.4. The synthetic and maximum likelihood estimates of the probabilities px

(thicker lines) and the associated pointwise 95% confidence limits (thinner lines).
The subsample proportions for the values of x are marked by crosses and are ac-
companied by the number of observations.

of prediction. Details are omitted because the conclusions are similar to those
based on simple regression.

10.4 Residuals

In ordinary regression, each deviation εj can be regarded as a target and
estimated by ej = yj − xjβ̂ or its standardisation e†j that arranges var(e†j)
to be constant. In GLM, there is no direct analogue of εj , but we can adopt
the deviation yj − E(yj |xj) = yj − b′(θj), or its naive estimator, yj − b′(θ̂j),
as a generalisation of the residual. In ordinary regression we would study the
patterns among the residuals; in GLM this is not always useful. Residuals for
binary outcomes represent an extreme example. For each value of xjβ̂ there
are only two possible values of the residual, 1− b′(xjβ̂) and −b′(xjβ̂), so the
pattern of the residuals is strongly influenced by the pattern of the values of
the covariates.

In other cases, even with continuous outcomes, the expectation is associ-
ated with the variance of the outcomes, so a particular pattern of the residuals
can be expected when fitting valid models. The so-called Pearson residuals,

e
(P)
j =

yj − b′(xjβ̂)√
b′′(xjβ̂)

,
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would remove such patterns (heteroscedasticity) if the error in estimating β

by β̂ could be ignored. The scale parameter a could be added as a factor in the
denominator, but that is of no relevance because only the relative magnitudes
of the residuals matter. The residuals e

(P)
j could be further adjusted for their

unequal influence, as done with residuals in ordinary regression (Section 1.3).
These residuals are e

(P)
j /
√

hj , where

hj = xj

(
X∗�WX∗

)−1

x�
j .

A simple diagnostic procedure is motivated by Figure 10.1. The values
of the estimated linear predictor xjβ̂ are coarsened into K categories with
approximately equal numbers of units, and the sample proportions p̂k within
the categories are compared with the estimated expected proportions pk(β̂).
The latter are evaluated as the means of the fitted probabilities. Substantial
deviations indicate poor fit and suggest that the model should be revised. The
categories should be defined so that each would have a sufficient number of
units. However, if there are too few categories the assessment of the model
may be too crude and some consistent deviations from the model may be
missed by averaging over too many subjects.

The simulation-based version of this procedure, introduced in Section
1.3.1, in which the vector of the within-category deviations is the feature,
avoids the need for a judgment as to whether a deviation is unusual. The
procedure requires a definition for the coarsening that can be implemented on
the computer after fitting the model to a replicate (simulated) dataset.

For outcomes other than binary, a similar procedure compares the within-
category means or other summaries of the outcomes with their expected coun-
terparts. In principle, the within-category empirical distributions can be com-
pared with their expected versions, but this is practical only for very large
datasets.

Deviance Residuals

The deviance is defined as the −2-multiple of the log-likelihood. The log-
likelihood is used only for comparisons of its values and for differentiation, so
it can be defined subject to an arbitrary constant additive term. For example,
the constant n log(2π) in a log-likelihood for normally distributed outcomes,
or n log(m!) in a log-likelihood involving binomial outcomes (x successes in m
trials), can always be dropped without any impact on ML estimation.

Deviance is sometimes preferred to the log-likelihood because of its con-
nection with the likelihood ratio test, which is a comparison of the deviances,
but also because it represents a summary of the failure to fit the outcomes
perfectly. In this context, perfect fit corresponds to yj = g−1(xjβ̂) for every
subject j. Thus, a well-motivated definition of the deviance uses the version
that attains the value of zero when a perfect fit is attained. Let a particular
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version of the deviance be D. Its arguments are y, the vector of outcomes,
and µ, the conditional expectation given X. Then

D∗(y;µ) = D(y;µ) − D(y;y)

is the version of the deviance for which D∗ = 0 when µ = y. For some GLMs,
D∗ is not defined. For example, for binary outcomes with logit link perfect fit
corresponds to a singularity, with all fitted probabilities equal to either zero
or unity. But then the corresponding linear predictors are all equal to +∞ or
−∞. In ordinary regression, D∗ is well defined only when the variance σ2 is
fixed. The estimate of σ2 with the perfect fit would be zero, also resulting in
a singularity.

As a nontrivial example, consider outcomes with exponential distributions
and reciprocal link to the linear predictor. The density of the exponential
distribution is µ−1 exp(−y/µ), where µ is its expectation, so each observation
yj contributes to the log-likelihood with lj = − log(µj) − yj/µj , where the
linear predictor is xjβ = 1/µj . The deviance D∗ is equal to D∗

1 + · · · + D∗
n ,

where the contribution D∗
j = D∗(yj , µj) of subject j is

D∗
j = −2

{
− y

µj
− log(µj)

}
+ 2 {−1 − log(y)}

= 2
(

yj

µj
− 1
)
− 2 log

(
yj

µj

)
. (10.12)

It is left for an exercise to show that D∗
j is nonnegative and when µj is fixed

its minimum of zero is attained for yj = µj .
The deviance residuals e

(D)
j are defined as sign(yj − µj)

√
Dj , where sign

is the function with values +1 for positive, −1 for negative arguments, and
zero when its argument is equal to zero. When one or a small number of
the observations make disproportionately large contributions to the deviance,
they deserve scrutiny—the analyst should explore whether they are outliers
due to errors in the data-collection process or due to some exceptional cir-
cumstances in the data-generating process. The difficulty in this proposal is
that ‘disproportional’ requires a judgment that may not be straightforward
to make. If computing power is not a limiting factor, simulation-based diag-
nostics are an alternative. We define a feature, possibly based on the deviance
residuals, generate 19 (or 99) simulated versions of this feature, and inspect
the anonymised set of 20 (or 100) features to see whether any of them stands
out. If one of them is identified and it turns out to be the realised feature, we
have evidence against validity of the model we have applied, and the model
should be revised.

10.4.1 Overall Assessment of Fit

The fit of a model can be assessed by defining a feature, evaluating it on the
realised data, and comparing it with its version generated by simulations from
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the fitted model. The feature can be based on the residuals, but these are not
very useful for binary outcomes. An alternative approach defines a coarsening
of the linear predictor xβ̂ to a suitable (finite) set of categories and compares
the means of the outcomes with the means of the fitted values g(xβ̂) within
these categories. As g is a monotone function, coarsening based on the values
of xβ̂ is equivalent to a coarsening based on g(xβ̂). Good fit corresponds to
close agreement of the two sets of the means, although this has to be qualified
by the subsample sizes involved. This method is particularly useful for binary
outcomes, for which there are few effective alternatives.

For a particular coarsening of xβ̂ or g(xβ̂), denote the subsample sizes
within the coarse categories by nh , h = 1, . . . , H. We refer to these categories
as bins, to help draw parallels with the diagnostic method used in Example
14 in Section 6.7. For a binary outcome variable and a model fit to its values,
let p̂h be the proportion of positive outcomes among the observations that
fell into bin h, and let r̂h be the average of the fitted probabilities g(xjβ̂) for
these outcomes. The statistic

S =
H∑

h=1

nh
(p̂h − r̂h)2

r̂h

assesses the proximity of the proportions p̂h to the estimated proportions r̂h .
It is motivated by the test of the hypothesis that a set of sample proportions
is compatible with a set of (underlying) probabilities. If we ignore the uncer-
tainty about each r̂h , then under the null hypothesis that p̂h are compatible
with r̂h , the statistic S has asymptotic χ2 distribution with H − 1 degrees of
freedom. The qualifier asymptotic refers to many observations in each bin. It
suggests that the number of bins should not be excessive, and each of them
should contain many observations. Details can be explored by a simple simu-
lation study, but defining too many bins, several of them sparsely occupied,
is not practical anyway. The uncertainty about r̂h can also be addressed by
simulation, declaring the statistic S as a feature and evaluating it on replicate
datasets generated according to the fitted model.

10.5 Random Coefficients

In this section, we adapt GLMs for structured populations, with elements in
clusters. GLMs involve linear regression:

E(y |x;β) = g−1(xβ) ,

where g is the link function. A constraining assumption of GLM is that the
outcomes are conditionally independent. It is easily challenged with struc-
tured observations, such as with units within clusters. The model formulation
in terms of varying regressions (Chapter 9) carries over from the setting with
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normally distributed outcomes, although the nonlinearity of the link func-
tion as well as the departure from normality bring about a host of analytical
complexities. We explore these later in this section.

Suppose observations are made on subjects within clusters and each cluster
is associated with a different regression. The regressions have a common link
function and the conditional (within-cluster) distributions of the outcomes
belong to the same class. It is practical to introduce the notation

GLM(F , g,Xβ)

for the GLM with the class of distributions F (e.g., binary), link function
g (e.g., probit), regression matrix X, and vector of regression parameters
β. Then a general model for the setting with elements i = 1, . . . , nd within
clusters d = 1, . . . , D can be concisely specified as

(yd | δd ;Xd ,Zd) ∼ GLM (F , g,Xdβ + Zdδd) ,

δd ∼ N (0,ΣB) . (10.13)

Here the vector of regression parameters β represents the typical regression
and the vector of cluster-level deviations δd , or the corresponding term zδd

that is specific to cluster d, is the deviation of the regression in cluster d
from the typical regression. The matrices Xd and Zd are the segments of the
respective matrices X and Z that correspond to cluster d = 1, . . . , D. The
variation (design) matrix Z is usually formed by a selection from the columns
of X. The regression slopes with respect to the variables in Z vary across
the clusters, and with respect to the other variables in X they are constant.
These models, GLM with random coefficients (GLMrc), are also known as
generalised linear mixed models (GLMM); the qualifier mixed refers to the
combination of within-cluster regression slopes constant for some and varying
for other covariates.

The ‘rules’ for model specification listed in Section 9.2.1 apply also to
GLMM, irrespective of the link function used. However, nonlinearity of the
link function brings about a lot of complexity that requires a careful discus-
sion. With identity link g(µ) = µ, we can refer to xβ as the average regression,
because the expectation over the clusters and the link function can be inter-
changed:

ED {g(xβ + zδd)} = g {ED(xβ + zδd)} = xβ

for any fixed vectors x and z. For nonlinear link functions we have this identity
only in some special cases, such as when xβ = 0 and g is symmetric around
zero, since the multivariate normal distribution is symmetric around zero.
Therefore it is misleading to refer to xβ as the average regression. We use
the qualifier typical, since β does not stand out among the within-cluster
regression coefficients β + ∆βd in any way. (The vector ∆βd is formed by
supplementing δd with zeros for the variables not associated with variation.)
By way of a simple example, suppose β0 = −3 in a logit model for binary data
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with no covariates, and the between-cluster regression is very large, say σ2 = 4.
The typical within-cluster probability is equal to exp(−3)/{1 + exp(−3)} =
0.0474; it is the median of the within-cluster probabilities. However, these
probabilities are highly skewed; on the one hand, they can be smaller than
the median by no more than 0.0474 because they are all positive, and on the
other hand, within-cluster probabilities in excess of 0.50 are not exceptional,
as their probability is equal to 1 − Φ(1.5) = 0.067. The marginal probability
is equal to

1√
2π

∫
exp(β + σδ)

1 + exp(β + σδ)
exp
(
−δ2

2

)
dδ .

It can be approximated by quadrature methods described in Section 10.5.1.
As an alternative that is easier to programme, the marginal probability can be
approximated as the mean of the transformation of a random sample of logits,
in our case as E[exp(U)/{1+exp(U)}], where U ∼ N (−3, 4). The probability
is equal to approximately 0.1295, way in excess of the typical probability
0.0474.

In a GLMM with univariate cluster-level deviations δd , when only the
intercept is associated with variation, the within-cluster regressions are not
parallel. The lines xβ + δd , d = 1, . . . , D, are parallel, but after the nonlinear
transformation, g(xβ + δd), they are not, even though they do not intersect.
The within-cluster regressions are linear only on the scale of the linear predic-
tor. This is illustrated in Figure 10.5 by examples of logistic regression with
several patterns of variation. In the left-hand panels, the within-cluster regres-
sions are plotted on the logit (linear) scale, so they are linear functions. In
the right-hand panels, these regressions are plotted on the probability scale,
after the inverse-logit transformation, so they are not linear. However, the
departure from linearity is not dramatic and is perceptible only outside the
interval (−1, 1). Thus, we can exchange averaging and the application of the
logit link function, so long as all the logits involved are within this range, that
is, the probabilities are in the range (0.25, 0.75).

The marginal regression in a GLM is defined as the expectation of an
outcome with a set vector of covariates x, E(Y |x), after averaging over the
clusters. It can be derived from the within-cluster regressions as

E(Y |x) =
∫

. . .

∫
E(Y | δ,x)φ(δ;0,ΣB) dδ ,

where φ denotes the density of the multivariate normal distribution with the
mean vector and variance matrix given as its arguments. For multivariate δ
this integral is multiple. Unlike for random coefficient models with identity
link, the marginal distribution need not belong to the same class of regressions
as the within-cluster regressions. For example, the marginal regression in a
logistic GLMM is not logit, and its approximation by a logit is good only in
a region that involves no probabilities outside the range (0.25, 0.75). That is,
the approximation is good only when the link function is very close to being
linear.
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Fig. 10.5. Examples of varying logistic regressions, drawn on the logit and proba-
bility scales. In the right-hand panels, the vertical dots delineate the interval (−1, 1),
within which the logit is very close to linearity.

10.5.1 Fitting GLMM

The log-likelihood for a GLMM is equal to the total of the log-likelihoods for
the observations within clusters: l = l1 + · · · + lD , where



322 10 Generalised Linear Models

exp(ld) =
∫

. . .

∫
f (c) (yd |Xd , δd) φ (δ;0,ΣB) dδ (10.14)

and

f (c) (yd |Xd , δd) =
nd∏

j=1

f (yjd |xjd , δd) ,

as the outcomes within a cluster are conditionally independent given δd . With
normally distributed outcomes and identity link, this integral can be expressed
in an analytical form, as done is Chapter 9. For most other combinations of
distribution and link, this is not possible. Note that we want to evaluate
not only the integrals in (10.14) but also their first- and second-order partial
differentials, to find the maximum likelihood by the Newton–Raphson or a
similar method.

We outline several approaches to maximising the likelihood for a GLMM.
The first-order partial differentials of an arbitrary smooth function q can be
approximated by finite differences as

q′(x) .=
q(x + h) − q(x − h)

2h
(10.15)

for a small h. This approximation can be derived from the mean value theorem,
which states that for a smooth function q defined in an interval (a, b) there is
a point c ∈ (a, b) such that

q(b) − q(a) = (b − a) q′(c) .

The sought approximation is obtained by setting b = x+h and a = x−h; the
error of approximation is equal to q′(c) − q′(x). The step h in (10.15) has to
be small, so that the values of the derivative q′ vary very little in the interval
(x − h, x + h); otherwise the approximation is not very good. However, for
very small h, numerical imprecision may arise when evaluating the ratio of
two very small numbers in (10.15). A suitable value of h can be found by
trial and error, using functions similar to q, but for which their derivative is
known. The second-order partial differentials can be approximated by finite
differences of the first-order partial differentials. So, at least in principle, we
require only a method for evaluating the contributions ld to the log-likelihood.

The integral in (10.14) can be approximated by the finite sum

1
M

M∑
m=1

f (c) (yd |Xd ; δm)

for the vectors δm , m = 1, . . . , M , selected so that they represent well the
distribution N (0,ΣB). For example, δm could be a random draw from the
distribution. Although simple to implement, this approach requires very ex-
tensive computing and is affordable only in some simple problems. An alter-
native is to choose the values δm deliberately, aiming to achieve a set precision
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with a small number M . This problem is solved for univariate (and normally
distributed) δ by the so-called Gaussian quadrature. The requisite values can
be found in statistical tables or software.

For multivariate δ, we can express the integral in terms of δ∗ = Σ− 1
2 δ, the

components of which are independent and have unit variances; var(δ∗) = I.
For δ∗, Gaussian quadrature can be applied to each component separately.
Even for a moderate number of points M in the quadrature for each dimension,
the number of summands with three or more dimensions is very large; for
example, for M = 10 and three-dimensional δ, the approximation has 1000
terms for one cluster and 1000D for a dataset with D clusters in a single
iteration. In most settings, Gaussian quadrature is practical to implement
only for one- or two-dimensional random terms δ.

10.5.2 Exact Derivatives of the Log-Likelihood

The log-likelihood can be differentiated analytically, by exchanging integration
and differentiation, leaving us with the task of integrating a function similar
to the joint density, although somewhat more complex. We assume that the
conditional density f belongs to the exponential family given by (10.4) and
that the canonical link is used. Then

∂ld
∂β

=
1
Ld

∫
f (c) (yd |Xd , δ) sx,d(δ)φ (δ;0,ΣB) dδ ,

where Ld = exp(ld) and

sx,d(δ) =
1
a

nd∑
j=1

{yjd − b′(xjdβ + zjdδ)} xjd .

The second-order partial differentials with respect to β are expressed similarly.
In general, they involve ∂2θjd/

(
∂β ∂β�), but for canonical link this vanishes.

We have

∂2 ld
∂β ∂β� = −∂ld

∂β

∂ld
∂β� +

1
Ld

∫
f (c) (yd |Xd , δ)Sxx,d(δ)φ (δ;0,ΣB) dδ ,

where

Sxx,d(δ) = sx,d(δ) {sx,d(δ)}� − 1
a

nd∑
j=1

b′′(xjdβ + zjdδ)xjd x�
jd .

For differentiating with respect to parameters involved in ΣB , it is advanta-
geous to extract ΣB from φ and compensate for it in the terms that involve
zjdδ. Then similar expressions to those for ∂ld/∂β are obtained:

∂ld
∂ω

=
1
Ld

∫
f (c)
(
yd |xd ,Σ

1
2
Bγ
)

sz,d

(
Σ

1
2
Bγ
) ∂Σ

1
2
B

∂γ
γ φ (γ;0, I) dγ ,
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where ω is a parameter involved in ΣB (but not in β), γ represents Σ− 1
2

B δ,
and

sz,d(δ) =
1
a

nd∑
j=1

[{yjd − b′(xjdβ + zjdδ)} zjd] .

Further, for parameters ω1 and ω2 , both involved in ΣB but neither in β,

∂2 ld
∂ω1 ∂ω2

= − ∂ld
∂ω1

∂ld
∂ω2

+
1
Ld

∫
f (c) (yd ;xd ,ΣB) γ�Szz,d

(
Σ

1
2 γ
)

γ
∂Σ

1
2
B

∂ω1

∂Σ
1
2
B

∂ω2
φ (γ;0, I) dγ

+
1
Ld

∫
f (c)
(
yd ;xd ,Σ

1
2
Bγ
)
sz,d

(
Σ

1
2
Bγ
)

γ
∂2Σ

1
2
B

∂ω1 ∂ω2
, (10.16)

where

Szz,d(δ) = sz,d(δ) sz,d(δ)� − 1
a

nd∑
j=1

b′′(xjdβ + zjdδ) zjd z�jd .

Note that the concluding term in (10.16) vanishes when ω1 and ω2 are linear

functions of Σ
1
2
B . Thus, some computational advantage is conferred by such a

parameterisation, together with the canonical link. Instead of the square-root
matrix Σ

1
2
B , the Cholesky decomposition, ΣB = LL� with a lower tridiagonal

matrix L can be used as a basis for parameterisation of the between-cluster
variation.

10.5.3 Laplace Approximation

Although the expressions derived in the previous section are all of the same
type as for evaluating the log-likelihood, their evaluation is nevertheless not
always feasible. A computationally simpler method is based on approximating
the log-likelihood by an expression that involves no integrals.

For this, we apply the Taylor expansion to the conditional log-likelihood
log{f (c)(yd ;xd , δd)} around log{f (c)(yd ;xd ,0)}:

log
{

f (c)(yd ;xd , δd)
}

= log
{

f (c)(yd ;xd ,0)
}

+
1
a

δ�
d sz,d(0)

−
∑
k=2

nd∑
j=1

1
a k!

(zjdδd)
k ∂k−2wjd

{∂ (zjdδ)}k−2

∣∣∣∣∣∣
δ=0

,

where wjd = b′′(xjdβ + zjdδ). We approximate the contribution ld by the
integral of the sum of the first three terms in this expansion:
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ld
.= log

{
f (c)(yd ;xd ,0)

}− 1
2r log(2π) − 1

2 log {det(ΣB)}
− log

[∫
exp
{

1
aδ�sz,d(0) − 1

2δ� (Σ−1
B + 1

aZ�
d WdZd

)
δ
}

dδ
]

, (10.17)

where Wd is the diagonal matrix with its diagonal elements equal to wjd , j =
1, . . . , nd . The integrand is the exponential of a quadratic function of δ, so
it can be matched with the density of an r-variate normal distribution. For
brevity, we denote Hd = Σ−1

B + a−1Z�
d WdZd . The integrand is equal to

exp
[
−1

2
(δ − Ad)�Hd(δ − Ad) − 1

2
{sz,d(0)}� H−1

d sz,d(0)
]

,

for Ad = a−1 H−1
d sz,d(0). In evaluating the integral in (10.17), we make use

of the fact that any multivariate normal density integrates to unity. Thus,

ld
.= log

{
f (c)(yd ;xd ,0)

}
− 1

2
r log(2π) − 1

2
log {det(ΣB)}

− 1
2

log {det(Hd)} − 1
2
A�

d HdAd

= C + log
{

f (c)(yd ;xd ,0)
}
− 1

2
log {det(Gd)} − 1

2a2
s�z,d Σ

1
2
BG−1

d Σ
1
2
B sz,d ,

where Gd = I + a−1Z�
d WZdΣB and C is a constant. This expression has the

form of a log-likelihood for normally distributed outcomes, with deviations
ed = Σ

1
2
B sz,d(0) and variance matrix a−1W +ZdΣBZ�

d . If we ignore that Gd

depends on ΣB , we could maximise it by the Fisher scoring algorithm applied
to the ‘normal’ version of the likelihood. The estimates of the matrices Gd

have to be updated in every iteration, as Σ̂B and Ŵd are altered by the
iterations.

In the derivations we assumed that ΣB is nonsingular. These methods
work also for singular ΣB without needing any adjustments because inversion
of ΣB is avoided throughout; only the matrices Ĝd have to be inverted.

10.5.4 Some Generalisations and Alternatives

We pointed out earlier that the principal rationale for using normally dis-
tributed cluster-level deviations is expediency—the multivariate normal dis-
tributions have several very convenient properties, foremost among them an
analytical form of the density. With GLMs we have to numerically evaluate
integrals involved in the likelihood or use some approximations for them, even
with normally distributed cluster-level deviations, so the appeal of the normal
distributions is not as strong. Instead of the normal densities we might as well
use any other class. Nevertheless, it is advantageous to retain some connection
with normality. Two devices for this are using transformations of the normal
distribution and mixtures of GLMMs.
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If we replace normality of the cluster-level deviations by the assumption
that they have a class of distributions formed by one or a class of transforma-
tions of the normal, the log-likelihood has a similar form, so its maximisation
does not introduce any new difficulties. Some classes of transformations retain
some features of the normal, such as symmetry and unimodality. It is also ad-
vantageous for the transformed distribution to have zero mean, but that can
be arranged by subtracting the mean.

As an alternative, we may choose a class of distributions for the coef-
ficients associated with the clusters for which the integrals involved in the
marginal distribution can be evaluated analytically. As an example, suppose
the outcomes are binary, with no covariates,

P(Yjd = 1 | pd) = pd ,

so that the marginal distribution is

P(Yjd = y) =
∫

py(1 − p)1−yf(p) dp ,

y = 0, 1. This integral is easy to evaluate for the density of the beta distribu-
tion,

f(p) =
Γ (a + b)
Γ (a)Γ (b)

pa−1(1 − p)b−1 ,

which has the same form as the probability for the binary distributions, but
with the roles of parameters and values of the outcomes interchanged. The
beta and binomial distributions are said to be conjugate. The marginal prob-
ability of positive outcomes in a cluster of m trials is

P(Yd = y) =
(

m
y

)
Γ (a + b)
Γ (a)Γ (b)

∫ 1

0

pa+y−1 (1 − p)b+m−y−1 dp

=
Γ (m + 1)Γ (a + b)

Γ (a)Γ (b)Γ (a + b + m)
Γ (a + y)Γ (b + m − y)
Γ (1 + y)Γ (1 + m − y)

, (10.18)

exploiting the fact that the density of the beta distribution integrates to unity.
The impact of the parameters a and b can be explored on distributions

with small m. For m = 2, the simplest nontrivial case, the probabilities in
(10.18) are (b2 + b)/B, 2ab/B, and (a2 + a)/B for y = 0, 1, 2, where B =
(a + b)(a + b + 1). Compared to the binomial distribution with probabilities
b2/(a + b)2, 2ab/(a + b)2, and a2/(a + b)2 for y = 0, 1, 2, the probabilities for
y = 0 and 2 are increased, (1+1/b)/{1+1/(a+b)} and (1+1/a)/{1+1/(a+b)}
times, respectively, whereas for y = 1 they are reduced 1 + 1/(a + b) times.

Although the probabilities in (10.18) involve no integrals, ML estimation
based on them is far from simple. Moment matching is an alternative. It
can be interpreted as finding parameter values â and b̂ for which the level
of overdispersion agrees with its sample (data-based) version. The mean and
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variance of the beta distribution are a/(a + b) and ab/(a + b)/(a + b + 1),
respectively. Hence the mean and variance of the marginal distributions are

E(Y ) =
ma

a + b

and

var(Y ) = varB(mp) + EB{mp(1 − p)}

=
m2ab

(a + b)2(a + b + 1)
+

ma

a + b
− ma(a + 1)

(a + b)(a + b + 1)

=
mab

(a + b)(a + b + 1)

(
1 +

m

a + b

)
,

where the subscript B indicates expectation or variance with respect to the
beta distribution. In relation to the binomial distribution with expectation
ma/(a + b), var(Y ) is {1 − 1/(a + b + 1)} {1 + m/(a + b)} times greater.

Conjugate cluster-level distributions cannot be defined with elementary-
level covariates, when the value of a covariate is defined for every trial within
the binomial sequence. Even with cluster-level covariates only categorical vari-
ables can be dealt with easily, in essence regarding each category as a separate
dataset.

In earlier sections we considered only additive cluster-level deviations.
When the multiplicative scale is natural, multiplicative cluster-level devia-
tions are well motivated and give us the advantage of working on the original
scale, without any transformations. Models with multiplicative deviations are
an alternative to GLM with log link. For instance, with the class of Poisson
distributions, the log link converts multiplication to addition on the scale of
the linear predictor.

Suppose the outcomes are positive and satisfy the model

yjd = yo
jd δd , (10.19)

where yo
jd is the outcome that would be realised if the unit were in a ‘typical’

cluster, for which δd = 1. The deviations δd are a random sample from a dis-
tribution supported on (0,+∞), with unit mean; E(δd) = 1. It is independent
of yjd . This distribution is usually skewed, so that its median differs from
unity. For yo

jd we specify a GLM, so that E(yo
jd) is linked to a linear predictor

xjdβ and yo
jd are mutually independent. To make the problem tractable, we

assume that all the covariates are defined for the clusters d, so that within
each cluster d, yo

jd have identical distributions.
The joint distribution of the outcomes within a cluster cannot be estab-

lished (the relevant distributions are not specified), so we apply moment
matching. Its starting point is evaluation of the means, variances, and co-
variances of the outcomes. We denote by µd the common expectation of yo

jd ,
j = 1, . . . , nd , and by Vd = V (µd) their common variance. We have
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E(yjd) = E(yo
jd) E(δd) = µd ,

var(yjd) = ED
(
δ2
dVd

)
+ varD (δdµd) ,

=
(
1 + σ2

B

)
Vd + σ2

Bµ2
d

cov (yj1d , yj2d) = ED
{
δ2
d cov(yj1d , yj2d)

}
+ covD (δd µd, δd µd)

= σ2
B µ2

d ,

where the subscript D indicates expectation, variance, or covariance with
respect to the distribution of δd and σ2

B = varD(δd).
The variance matrix for the set of outcomes in cluster d, yd , can be ex-

pressed compactly as

var(yd) =
(
1 + σ2

B

)
Vd Ind

+ σ2
B µ2

d Jnd
.

The within-cluster sample mean ȳd = (y1d + · · · + yndd)/nd has expectation
µd and variance

Ud = var(ȳd) =
1 + σ2

B

nd
Vd + σ2

B µ2
d .

If the variance σ2
B were known we would estimate the regression parameters

by fitting a regression to the sample means ȳd . This entails solving the system
of nonlinear equations

D∑
d=1

nd
∂µd

∂β
Ûd(ȳd − µ̂d) = 0 . (10.20)

To estimate the variance σ2
B , we match the expectation of the sum-of-squares

statistic S =
∑D

d=1

∑nd

j=1(yjd − ȳd)2 with its expectation. We have

E(S) =
D∑

d=1

ED

⎧⎪⎨⎪⎩
nd∑

j=1

E

⎛⎝yo
jdδjd − 1

nd

nd∑
j′=1

yo
j′dδj′d

⎞⎠2
⎫⎪⎬⎪⎭

=
D∑

d=1

nd∑
j=1

ED

⎧⎨⎩var

⎛⎝yo
jdδjd − 1

nd

nd∑
j′=1

yo
j′dδj′d

⎞⎠+ µ2
d

(
δjd − δ̄d

)2⎫⎬⎭
=

D∑
d=1

(nd − 1)
(
Vd + µ2

d

)
σ2

B ,

where δ̄d = (δ1d + · · · + δndd)/nd is the within-cluster sample mean of the δs.
Hence the moment-matching estimator
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σ̂2
B =

S
D∑

d=1

(
V̂d + µ̂2

d

)
(nd − 1)

. (10.21)

This estimator can be motivated as gauging the excess within-cluster varia-
tion, on the multiplicative scale. It may seem strange that σ2

B , a character-
istic related to between-cluster variation, is estimated from a within-cluster
sum-of-squares statistic. There are alternatives to the statistic S, such as the
between-cluster sum of squares

∑
d nd(ȳd − ȳ)2. This statistic is derived from

the D sample means ȳd and can be loosely associated with D − 1 degrees
of freedom. The heteroscedasticity induced by multiplicative random terms
leaves an imprint also on the within-cluster statistic S. We prefer to use S
because it is associated with many more degrees of freedom, about n − D.

Equations (10.20) and (10.21) have to be iterated because after updating
the regression parameter estimates β̂ we have to recalculate the value of S,
and after updating σ̂2

B the values of Ûd and µ̂d are altered and (10.20) has to be
solved (iteratively) again. There is no guarantee that this algorithm converges.
For starting values of β̂, we may set σ̂2

B = 0 and solve (10.20). Statistics
alternative to S can be used for diagnostics. For the fitted model we evaluate
such a statistic T and generate its values for datasets simulated according to
the fitted model. Evidence against validity of the model corresponds to the
value of T for the realised dataset being at the extreme or outside the range
of the simulated values of T .

Suggested Reading

The original paper on GLM is [138], and [132] is without dispute the princi-
pal reference on GLM. The GLM methods were implemented in the software
GLIM (web site
www.nottingham.ac.uk/is/services/software/is-machines/appls/glim.phtml),
which had a near monopoly on model fitting until the advent in the early
1990s of the new generation of statistical software and Splus in particular.
Textbooks on GLM with a practical orientation include [1], [38] and [84], the
last focussing on the logistic regression. Concise descriptions of methods for
overdispersion are found in [195] and [11].

Some analytical difficulties with GLM can be overcome by defining suit-
able approximations to the densities or probabilities or to the log-likelihood.
The term quasi-likelihood is often used in this context; see [193] for the original
contribution and [137] for an extension. Approximate maximum likelihood for
GLMM using the Laplace transformation is derived in [12], and the Gaussian
quadrature is described in [114]. More recent developments in statistical com-
puting, motivated mainly by problems in Bayesian analysis and supported by
greatly enhanced computational power, have made these methods somewhat
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obsolete; see [133]. Inference with models with multiplicative random devi-
ations is discussed in [49]. A likelihood-related theory that bypasses all the
difficulties with integration is developed in [99] and extended in [100].

Problems and Exercises

10.1. Generalised ANOVA. A set of D independent binomial outcomes, with
yd successes out of md independent trials with probabilities pd , d = 1, . . . , D,
differs from the ANOVA setting only by the distributional assumption. Derive
the maximum likelihood estimators of the probabilities pd and verify that they
coincide with the estimators derived from the fit of the logistic regression
model

logit {P(yjd = 1)} = β0 + βd ,

where yjd is the ith (binary) outcome in set d. Generalise this to other link
functions for binomial outcomes. Can this equivalence be extended to out-
comes with other distributions?

10.2. Compile a programme (function) for fitting GLM to conditionally inde-
pendent binary outcomes. In the programme, the link function should be an
argument. In the output, include information about the speed of convergence
and an assessment of the fit of the model.

10.3. Generate the values of a variable X on a sample of subjects of size
n = 250 as a random sample from the uniform distribution, and for these
values generate a set of binary outcomes Y according to the logistic regression
model

logit {P(yj = 1)} = β0 + xjβx ,

with β0 = −0.5 and βx = 0.75. Fit the logistic regression by maximum likeli-
hood and compare the estimates β̂0 and β̂x with the fit of the ordinary regres-
sion of Y on X (disregarding the obvious nonnormality of Y ). Describe how
and explain why the two pairs of estimates are related. Repeat the exercise
with the probit link function.

10.4. For a binary outcome Y with probability p, var(Y ) = p(1−p). Suppose
p̂ is the proportion of successes in a sequence of n independent trials, each
with probability p. Is p̂(1−p̂)/n an unbiased estimator of var(p̂)? If not, adjust
this estimator for its bias. Explain the problem that arises when p̂ = 0, and
devise some remedies.

10.5. Describe all the circumstances in which the logistic regression with a
single covariate cannot be fitted because the provisional information matrix
for the regression parameters is singular. Do your conclusions carry over to
other link functions?
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10.6. Derive the score and information matrix for the linear regression for
binary outcomes with the complementary log-log link.

10.7. Explore GLMs for outcomes with conditional beta distribution, and
discuss their connection to GLMs for binary outcomes.

10.8. Binomial outcomes with excess zeros. Suppose outcomes are generated
as random samples from a distribution that is a mixture of a binomial with
denominator n = 12 and identical zero. The binomial is realised with prob-
ability r = 0.7 and the (excess) zero with probability 0.3. Derive the mean
and variance of this mixture distribution and work out when the mixture
amounts to overdispersion. Devise a method for estimating the proportion of
extra zeros.

10.9. Show that a mixture of two Poisson distributions, with expectations
λ1 and λ2 and respective probabilities p and 1 − p, can be used for mod-
elling overdispersion of counts. (Derive the expectation and variance of the
mixture, and show that the variance exceeds the expectation.) Describe the
impact the probability p and the absolute difference |λ1 − λ2 | have on the
extent of overdispersion. Generalise this description to mixtures with several
components.

10.10. Generate random samples from binomial distributions and assess their
proximity to a Poisson distribution by comparing the sample proportions of
the values of the outcomes with the probabilities of the Poisson distribution
that fits to them best. Define a rule of thumb that arbitrates whether the
distribution for a probability p and number of trials m is close to a Poisson
distribution. Relate this rule to the condition that np2 is smaller than a set
threshold.

10.11. Adapt the programme compiled in Exercise 10.2 to a limited set of
other distributions and the associated canonical links. The dataset in file
EX9a.dat on www.sntl.co.uk/BookA/Data contains the numbers of homi-
cides in the cities with population greater than 50 000 in a country in 2001.
The population of each city and the proportion of substandard residential
housing is also given. Relate the number of homicides to these two covariates
and assess the quality of the fit and presence of outliers. Can it be concluded
that poor housing is a cause of high homicide rate?

10.12. Suppose the survival to the age of one month of a young of a species
of mammal is independent of the survival of the siblings in the litter given the
litter’s probability of survival. Marginally, the litters’ probabilities of survival
have a beta distribution, B(a, b) with a = 0.2 and b = 0.8. Try to guess the
probability that the whole litter of five survives one month after birth and the
probability that none of the litter survives, and then compare your guesses
with the results obtained by simulations. Compare the marginal probability
of survival with the probability of survival in a typical litter, in which the
probability of survival is a/(a + b).
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10.13. Explore how importance sampling (Section 4.2) can be applied to eval-
uate the integral in (10.14) and its partial differentials, first for the case of
parallel regressions (univariate integration). Describe the difficulties that arise
when a distribution different from the normal is used for δd .

10.14. A binary outcome can be regarded as a coarse version of a normally
distributed outcome. This motivates an application of the missing data meth-
ods in which incompleteness is brought about by coarsening. Develop this idea
and discuss its (computational) advantages in the setting of random coefficient
models.

10.15. A national employment agency applies the policy of finding three va-
cant posts for each client (job seeker) in the first round of their engagement.
The headquarters produces quarterly summaries of its nationwide business
with first-time clients by tabulating the numbers of offers made to them within
four weeks of the date of application. For example, the table for the third
quarter of 2005 (27 161 clients) is

Number of offers

0 1 2 3

Number of applicants 8035 10 770 6191 2165

As a refinement, they intend to fit a logistic regression to such data in the
future, assuming that the conditional distribution of the outcomes is binomial
(with denominator m = 3), given suitable covariates, such as qualifications,
experience, age, flexibility and the like, suitably coded. Give advice on the
potential value of such an analysis.
Hint: If a suitable set of covariates is used, then the conditional variance of
the outcome for client j is equal to mpj(1 − pj), where pj is the probability
implied by the model. Therefore, a diagnostic procedure may be based on an
assessment of whether the estimates of such variances agree with the sample
variances within narrow bands (bins) of the predictions p̂j . If one or several
important covariates are dropped, overdispersion can be expected. Hence, the
usefulness of any covariates can be assessed by the extent of overdispersion in
the ‘unadjusted’ data in the table.

10.16. Adapt the programme you compiled in Exercise 9.19 or 9.21 for ran-
dom coefficient models with the normality assumptions to their counterpart
for logistic regression using Laplace approximation.

10.17. Derive the marginal distribution, that is, the probabilities P(X = k),
k = 0, 1, . . ., for the model with conditional Poisson distributions,

P(X = k |λd , d) =
e−λdλk

d

k!
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within clusters d, and gamma distribution of their conditional expectations
λd , with the density

f(λ; θ, c) =
1

Γ (c)
θcλc−1 exp(−λθ)

for parameters c > 0 and θ > 0.



11

Longitudinal and Time-Series Analysis

Longitudinal analysis is concerned with studying the progression of the values
of a variable over time for the members of a population. If time is defined as
a categorical variable, longitudinal analysis is closely related to multivariate
analysis, studying vectors of outcomes. When time is a continuous variable,
longitudinal analysis studies the subjects’ curves (trajectories), and random
coefficient models are well suited for this purpose. We can associate each
time point with a separate variable, in the spirit of the original definition of
the term variable. Then longitudinal analysis is the study of collections of
variables; in most applications the variables are strongly associated. Features
of this association are frequently the targets of inference.

11.1 Introduction

In longitudinal studies we work with populations and variables that are well
defined at specified time points. For example, all those obliged to make annual
declarations of income to the tax authority of a country are a population and
the income of each of them is well defined by the rules of the authority in
every year. Figure 11.1 summarises the income of a small random sample
of taxpayers aged 25 in 1995 (year 0) in a country over the period of seven
years, 1996–2002, coded as 1–7. The left-hand panel plots the values of income
on the original scale and the right-hand panel on the logarithmic scale. The
seven values of a subject are connected by straight lines. In the diagram, we
can identify and describe certain features, such as the extent to which the
lines criss-cross, how much they fan out over the seven years, and for how
many subjects there are substantial changes from one year to the next. As
an alternative, the values of the income may be described by a seven-variate
distribution. The normal distribution would be convenient for this purpose
because we are familiar with it. By applying the log-transformation to each
component, the assumption of normality becomes much more palatable, so a
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Fig. 11.1. Income (in Euros) of a simple random sample of 80 taxpayers who were
25 years old in 1995, in a country over the seven following years (1996–2002). The
thick line represents their average on the original and log scales in the respective
panels.

suitable description is provided in the form log(Y) ∼ N (µ,Σ) for the vector
of incomes Y.

On the original scale, in Euros, there appear to be a few subjects whose
income is exceptionally high throughout the seven years. The distribution of
incomes is skewed in every year. The annual distributions of log-income are
much closer to symmetry, and the annual maxima of log-income are much
less exceptional than they are on the original scale. For most subjects, income
does not change a great deal from one year to the next, so few of those with
high income in year 1 have low income in year 7 or vice versa.

We can complement the plots in Fig. 11.1 by the within-year univariate
summaries, such as the sample means and variances:

µ̂ = 103 × (14.45, 15.64, 16.12, 17.13, 18.55, 20.20, 20.93) ,

diag
(
Σ̂
)

= 106 × (49.37, 61.18, 63.95, 73.59, 89.60, 80.13, 97.71)

on the original scale and

µ̂ = (9.49, 9.55, 9.58, 9.65, 9.72, 9.82, 9.85) ,

diag
(
Σ̂
)

= (0.17, 0.23, 0.20, 0.20, 0.21, 0.18, 0.20) (11.1)

on the log scale. These summaries confirm that the average income increases
over the years and becomes more dispersed on the original scale, but they
do not inform us about the year-to-year changes in the income of individual
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Fig. 11.2. Examples of extreme patterns of changes of income, based on the sum-
maries in (11.1).

subjects. At one extreme, annual income varying wildly from one year to the
next, and at another, income increasing in an orderly manner, are compatible
with the description in (11.1). Figure 11.2 gives corresponding examples. In
the left-hand panel, the incomes in any pair of distinct years are independent,
whereas in the right-hand panel they are perfectly correlated. The two sce-
narios are equally unrealistic, but they both conform with the summaries in
(11.1).

These summaries are incomplete because they convey no information
about the associations of income across time. This is remedied by the sample
correlation matrix (for log-income), equal to

ĉor(Y) =
1

100

⎛⎜⎜⎜⎜⎜⎜⎝
100 84 83 78 75 74 77
84 100 90 85 81 78 74
83 90 100 89 87 81 80
78 85 89 100 90 91 88
74 78 81 85 91 100 91
77 74 80 84 88 91 100

⎞⎟⎟⎟⎟⎟⎟⎠ .

In the right-hand panel of Figure 11.2, cor(Y) = I, and in the left-hand panel
cor(Y) = 11�. Our data are closer to the latter case. The annual incomes of
a subject are highly correlated, especially for consecutive years.

Working with log-income is advantageous because the data conform much
more closely to multivariate normality. A small difference ∆ on the log-scale is
easily converted to relative change as exp(∆)− 1 .= ∆, that is, an increase by
approximately 100∆%. For example, ∆ = 0.03 corresponds to exp(0.03)−1 =
1.0305, or an increase by 3.05%.
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A key inferential task connected with this dataset is to predict the income
of a subject in year 8, given his or her income history from years 1–7. We
can reasonably anticipate that income in year 8 will be highly correlated
with income in the earlier years, and year 7 in particular, and that the mean
income in year 8 will be slightly higher than in year 7, since the (estimated)
mean annual income has risen in every one of the seven years for the analysed
sample. The estimated variances, the diagonal of Σ̂, show no trend, so we may
assume that the population variance in year 8 will be in the range (0.17, 0.23).

If we knew that the joint distribution of the incomes in years 1–8 is normal
with mean vector µ(1−8) and variance matrix Σ(1−8) , the income in year
8 for a given income history y(1−7) could be estimated by its conditional
expectation

E
(
Y (8) |Y(1−7) = y(1−7)

)
= µ(8) + Σ(8,1−7)Σ

−1
(1−7)

(
y(1−7) − µ(1−7)

)
,

using the obvious notation for the submatrices and subvectors of Σ(1−8) and
µ(1−8), and with all population quantities replaced by their estimates. The
conditional variance,

Σ(8|1−7) = Σ8,8 − Σ(8,1−7)Σ
−1
(1−7)Σ(1−7,8) ,

or its estimator, indicates the uncertainty about the (future) value of Y (8),
assuming that µ(1−8) and Σ(1−8) are known. We refer to

√
Σ(8|1−7) as the

conditional standard deviation.
Without information external to the data, inferences about the mean and

variance of the incomes in year 8 are difficult to make, because they are based,
in effect, on only seven observations, the corresponding summaries for years 1–
7. They would be based on only seven observations (degrees of freedom) even
if the entire population were observed in years 1–7 and the values of µ(1−7)

were known. Although no radical changes may have been observed in years
1–7, the seven years of observations are not sufficient to rule out a sudden
shock that would have an effect on the employment and income of the studied
population. Such shocks happen infrequently and without any recognisable
signals announcing their arrival in the near future.

We face an apparently similar problem when studying a small population
that contains a small fraction of exceptional members. A random sample of
small size might contain no such members as its subjects. In studying the
years 1–7, we may also consider a population of years, e. g., dating back to a
notable year, such as the end of World War II, but the years 1–7 cannot be
regarded as a random sample from them. Nevertheless, income in years 1–7
is the most relevant for information about income in year 8.

We could condition our inferences about (Y (8) |Y(1−7) = y) on particular
scenarios, described by the mean vector µ(1−8) and variance matrix Σ(1−8) ,
and carefully qualify them by these assumptions. By way of an example,
we consider the three income histories given in Table 11.1 and assume two
scenarios:
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Table 11.1. Prediction for log-income histories with scenarios 1 and 2 (see text).
For the scenarios, predictions and the associated standard errors (in parentheses)
are given for three income histories.

Income history (year) Scenario

Subject 1 2 3 4 5 6 7 1 2

A 9.24 9.01 9.18 9.45 9.14 9.21 9.01 9.26 (0.18) 9.27 (0.28)

B 9.20 9.18 9.24 9.25 9.24 9.27 9.27 9.34 (0.18) 9.43 (0.28)

C 9.10 9.20 9.35 9.45 9.52 9.60 9.71 9.74 (0.18) 9.76 (0.28)

1. µ(8) = 9.89, Σ8 = 0.20 and R(8,1−7) = 1
100 (91, 88, 84, 80, 77, 74, 70);

2. µ(8) = 9.94, Σ8 = 0.25 and R(8,1−7) = 1
100 (81, 78, 76, 74, 72, 70, 68),

where R(1−8) is the correlation matrix that corresponds to Σ(1−8) . The first
scenario can be regarded as more settled, with smaller variance and higher cor-
relations, and the second as more volatile, with greater variance and smaller
correlations. The three subjects for whom predictions are sought are repre-
sented by their income histories. Subject A has a relatively volatile history
of income, with substantial drops and increases from one year to the next,
subject B has nearly constant income over the seven years, and subject C has
above-average increases in most years.

The predictions differ somewhat under the two scenarios, but by far less
than the conditional standard deviations. Uncertainty within a scenario is
much greater than the uncertainty about the scenario, although the latter
is not trivial either. Within a scenario, the subjects’ conditional standard
deviations are the same, equal to 0.18 and 0.28. This is a consequence of
the normality assumptions. Although analytically very convenient, it may
not be realistic. For example, we would expect a greater standard error of
prediction for subject A because his or her history suggests less predictability
than for subjects B and C. Also, the predictions have the following translation
property. For any vector of constants c,

E
(
Y (8) |Y(1−7) = y + c

)
= d + E

(
Y (8) |Y(1−7) = y

)
,

where d is a constant that does not depend on y. In fact, d = Σ(8,1−7) Σ
−1
(1−7)c.

The importance of the distant past for prediction can be assessed by com-
paring the predictions in Table 11.1 with their counterparts obtained after
discarding the data for the first few years. Judging by the conditional standard
deviations, the years 1, 2, and 3 are not important; the estimated standard

deviations
√

Σ̂(8|4−7) are greater than
√

Σ̂(8|1−7) by only 0.0023 and 0.0039
for the respective scenarios 1 and 2. However, the predictions are altered out
of proportion with these figures for subject A; they are increased by 0.030
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(scenario 1) and 0.051 (scenarios 2). The corresponding changes for the other
two subjects are much smaller, 0.018 and −0.017 for scenario 1 and −0.009
and 0.024 for scenario 2 for the respective subjects B and C.

11.2 Markov Property

In the example analysed in the previous section, we could have used for pre-
diction only data from year 7 and the conditional standard deviations would
not have been much greater than if data from all years 1–7 were used (0.185
and 0.293, compared to 0.176 and 0.283, respectively). In both scenarios,
the annual incomes are close to having the property that

(
Y (8) |Y(1−7)

) ∼(
Y (8) |Y (7)

)
or, more generally, that two observations in time are conditionally

independent given any intermediate observation:(
Y (k) |Y (h1), Y (h2)

)
∼
(
Y (k) |Y (h1)

)
,

when k > h1 > h2 . This is called the Markov property. The Markov property
can be detected in the variance matrix of the sequence Y or, more precisely,
in its inverse. The inverse of the variance matrix is called the concentration
matrix. We use the notation ‘con’ for concentration matrices; for example,
con(Y) = Σ−1. For submatrices of a concentration matrix, we have to in-
dicate the original matrix because, in general, the concentration matrix of a
subvector Y(1) of Y is not equal to the corresponding submatrix of con(Y).
An unambiguous notation is con

(
Y(1),Y(2) |Y) for the submatrix of con(Y)

that corresponds to Y(1) (rows) and Y(2) (columns).
A sequence of variables Y (1), . . . , Y (K) has the Markov property when

the inverse of their variance matrix is tridiagonal; that is, the only nonzero
elements of the inverse are on the diagonal and immediately below and above
it. To prove this for vectors with multivariate normal distribution, we derive
first a seemingly more general result. Let Y(1), Y(2), and Y(3) be three vectors
such that Y(1) and Y(3) are conditionally independent given the value of Y(2).
Let their variance matrix be

Σ =

⎛⎜⎝ Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33

⎞⎟⎠ ,

partitioned compatibly with Y1 , Y2 , and Y3 , and denote its inverse similarly,
with indices in the superscript; for example, Σ(12) = con

(
Y(1),Y(2) |Y). Then

Σ(13) = 0. That is, conditional independence of A and C given condition
B = b corresponds to zeros in the concentration submatrix

con (A,C |A,B,C) .

(We could omit A and C from the condition.)
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We derive first an alternative characterisation of conditional independence.
Conditional independence of Y(1) and Y(3) given a value of Y(2) is equivalent
to the equality of the distributions(

Y(1) |Y(2) = y(2)
)

∼
(
Y(1) |Y(2) = y(2),Y(3) = y(3)

)
,

for any vectors y(2) and y(3). For the corresponding conditional variance ma-
trices, this means that

Σ11−Σ12 Σ−1
22 Σ21 = Σ11−

(
Σ21

Σ31

)�(
Σ22 Σ23

Σ32 Σ33

)−1(
Σ21

Σ31

)
. (11.2)

For the inverse on the right-hand side, we have the expression(
Σ22 Σ23

Σ32 Σ33

)−1

=

(
Σ−1

22 + EF−1E� −EF−1

−F−1E� F−1

)
, (11.3)

where E = Σ−1
22 Σ23 and F = Σ33 −Σ32 Σ−1

22 Σ23 . The formula for the inverse
can be verified by multiplication with the original matrix. With this formula,
the identity in (11.2) is equivalent to

0 =

(
Σ21

Σ31

)�(
EF−1E� −EF−1

−F−1E� F−1

)(
Σ21

Σ31

)
= (Σ12 E − Σ13)F−1 (Σ12 E − Σ13)

�
,

that is,
Σ13 = Σ12 Σ−1

22 Σ23 , (11.4)

since F is positive definite. We obtained the univariate version of this identity
in Chapter 6 in connection with impartiality, interpreting it as absence of the
partial correlation of Y(1) and Y(3) given the value of Y(2). Finally, we relate
this identity to the submatrices of Σ−1. We have

Σ21 Σ(11) + Σ22 Σ(21) + Σ23 Σ(31) = 0 ,

Σ31 Σ(11) + Σ32 Σ(21) + Σ33 Σ(31) = 0 ,

since these are off-diagonal blocks in the product Σ−1Σ = I. By subtracting
the Σ32 Σ−1

22 premultiple of the first equation from the second and exploiting
the identity in (11.4), we obtain the identity(

Σ33 − Σ32 Σ−1
22 Σ23

)
Σ(31) = 0 ,

which, since F = Σ33−Σ32 Σ−1
22 Σ23 is positive definite, is satisfied only when

Σ(13) = 0. Although we proved this characterisation only for multivariate nor-
mally distributed vectors, it holds generally, for all vectors with finite variance
matrices.
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For a vector Y with the Markov property, Yk−1 and Yk+1 are conditionally
independent given the value of Yk for k = 2, . . . , K − 1. Then (Y1, , . . . , Yk−1)
and (Yk+1 , . . . , YK) are conditionally independent given the value of Yk , and
so the elements Ch,m of C = con(Y) vanish whenever 0 < h < k < m ≤ K.
This is the case for each k = 2, . . . , K − 1, so C is tridiagonal.

The joint density of a vector Y with the Markov property can be factorized
as

f(y1) f(y2 | y1) f(y3 | y2) . . . f(yK | yK−1) (11.5)

into a product of univariate conditional densities. Thus, any likelihood-related
analysis, such as maximum likelihood, comprises K univariate analyses, al-
though estimation of parameters shared by these K distributions would in-
volve all the outcomes. Further, when we can rely on some structural sym-
metry in how Yk are related to the preceding outcomes, the same model can
be posited for each conditional distribution in (11.5). Of course, the model
parameters are likely to be time-dependent. Then the model specification is
reduced to the model for Y1 and for the ‘one-step’ conditional distributions
(Yk+1 |Yk = y). Regression models are prime candidates for the latter, for
normally distributed outcomes and, more generally, for distributions in the
exponential family. We can take advantage of the full flexibility of GLM by
specifying models by a variance function instead of a class of distributions.

The joint density of Y can be expressed in terms of univariate conditional
densities even without the Markov property, but these densities involve pro-
gressively more extensive conditioning:

f(y1) f(y2 | y1) f(y3 | y1 , y2) . . . f(yK | y1 , y2 , . . . , yK−1) .

We can check how close the annual incomes are to the Markov property. The
sample concentration matrix in scenario 1 (see Table 11.1) is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

26.3 −11.9 6.7 0.6 4.2 1.0 −13.8 11.8
−11.9 31.0 −16.1 −7.0 0.6 −5.9 12.5 −13.5
−6.7 −16.1 43.4 −10.4 −12.3 4.9 −1.3 −0.8

0.6 −7.0 −10.4 38.1 −13.9 −0.8 −6.3 2.3
4.2 0.6 −12.3 −13.9 46.9 −20.2 −7.2 1.1
1.0 −5.9 4.9 −0.8 −20.2 50.7 −17.2 −18.8

−13.8 12.5 −1.3 −6.3 −7.2 −17.2 54.0 −52.5
11.8 −13.5 −0.8 2.3 1.1 −18.8 −52.5 168.9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
;

although the elements outside the diagonal strip do not vanish, many of them
are quite small. The concentration matrix for scenario 2 has similar features.

11.3 Time Series

Among multivariate normal vectors with the Markov property, a special
case is defined by the same model for each one-step conditional distribution
(Yk+1 |Yk), k = 1, . . . , K − 1:
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Yk+1 = β0 + β1 Yk + ε(k) , (11.6)

where ε(k) ∼ N (0, σ2). The realisations of ε(k) are independent both within a
time point k (for different subjects) and across time points k = 1, . . . , K − 1.
A separate model has to be specified for time point 1, such as Y1 ∼ N (µ, τ2).
To avoid any trivial cases, we assume that σ2 > 0 and K > 2.

We may consider an infinite sequence Y = (Y1 , Y2 , . . .); it is called a
time series. A time series Y is said to be stationary if its components have
identical distributions. The model given by (11.6) is stationary only when
β0 = 0, β1 = 1 and τ2 = 0. A condition weaker than stationarity is that the
components of Y have a limiting distribution. This condition is satisfied when
|β1 | < 1, and the limiting distribution is then N {β0/(1 − β1), σ2/(1 − β2

1)
}
.

Note that the parameters of the initial distribution, µ and τ2, play no role in
the limiting distribution, when it exists.

A sequence defined by (11.6) is called autoregressive (AR). The assumption
of normality may be dropped and replaced by that of a centred distribution
for ε with a finite variance. The AR time series can be generalised by replacing
the simple (one-step) regression with regression on the preceding m outcomes:

Yk+m = β0 + β1 Yk+m−1 + β2 Yk+m−2 + · · · + βmYk + ε(k+m).

The corresponding series Y is called AR or order m, denoted by AR(m), so
that the sequence defined by (11.6) is AR(1). In an AR(m) series, components
Yk and Yk+h (k > 0 and h > 0) are conditionally independent given the inter-
mediate history, the values (Yk+1 , . . . , Yk+h−1), so long as h ≥ m. Therefore
the concentration matrix C of a segment Y(1−K) has nonzero entries only up
to the distance m from the diagonal: Ck1k2 = 0 if | k1 − k2 | > h.

We can regard longitudinal data as replicates of a segment of time se-
ries. The replication is invaluable for efficient estimation of the parameters
that govern the underlying process. Autoregressive time series motivates the
model in which the concentration matrix has zeros in entries distant from
the diagonal. The corresponding log-likelihood is l = l1 + · · · + lK , where
observations yj of subject j contribute with

lj =
1
2

log {det(C)} − 1
2
(yj − µ)�C(yj − µ) , (11.7)

and Y ∼ N (µ,C−1
)
. The log-likelihood can be maximised by the Fisher

scoring algorithm, making use of the formulae for differentiation of matrices,
as done in Chapter 9.

11.3.1 Moving Average

Let ξ1 , ξ2 , . . . be a sequence of random draws from a centred distribution,
such as N (0, κ2). The sequence defined by the identity

Yk+1 = γ0 + γ1 ξk+1 + γ2 ξk , (11.8)
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with Y1 defined arbitrarily (as a constant or a variable) is called a moving
average; γ0 , γ1 , and γ2 are parameters (constants). Outcomes more than one
time point apart are independent. A generalisation, MA of order m, MA(m),
is defined by the identity

Yk+1 = γ0 + γ1 ξk+1 + γ2 ξk + · · · + γm+1 ξk−m+1 .

In MA(m), observations m + 1 time points apart are independent. Thus,
MA(m) can be recognised in the variance matrix Σ = var(Y) by zeros for
every element Σhh′ of Σ such that |h − h′ | > m. The log-likelihood for an
MA sequence y is given by

l = −1
2

log {det(Σ)} − (y − µ)Σ−1(y − µ)�,

similar to (11.7), except that it is preferable to use a parameterisation for the
variance matrix instead of one for the concentration matrix.

Autoregressive moving average (ARMA) models combine the features of
AR and MA. They are specified by the orders of the AR and MA parts of the
model; thus, ARMA(mA ,mM) is defined by the equation

Yk+1 = γ0 +
mA∑
j=1

βj Yk−j+1 +
mM+1∑

j=1

γj ξk−j+2 + ε(k+1).

(The AR constant β0 is absorbed in the MA constant γ0 ; only their total
can be identified.) In principle, the outcomes of an ARMA process can be
decomposed into their AR and MA components, linear combinations of Y
and ξ, respectively, and their log-likelihood maximised. A difficulty in this is
that for AR and MA we prefer different parameterisations (C vs. Σ), and
these cannot be reconciled. In practice, the order of either the AR or the MA
part is small; then the parameterisation better suited for the other part makes
the likelihood maximisation simpler.

11.4 Targets, Designs, and Models

The setting of the example in Section 11.1 is rather artificial because it is
concerned with the subpopulation of a country who were born in a particular
year. We refer to them as an age cohort, implying a division of the country
into cohorts according to age or year of birth. Cohorts can be defined similarly
according to entry into the labour force, the beginning or completion of a
course of studies, and the like.

Why would one be interested in a particular age cohort, those aged 25 in
1995, but not those who are a bit younger or older? The cohort of 1970 (the
year of birth) may be regarded as a good representation of those who are a
few years younger or older, so that, although the targets relate to this cohort,
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the inferences about it can be interpreted as applying also to the neighbouring
cohorts.

It is important to distinguish between changes in a subpopulation over
time and comparisons of subpopulations at a given time. For inferences about
changes, a sample of such changes has to be observed, so subjects have to be
observed at the relevant time points. In contrast, for comparisons of cohorts
at a time, samples from the cohorts at the time point have to be observed.
The two kinds of inferences—longitudinal and cohort—in general differ. For
example, the statement that an age cohort of men is taller than their fathers on
average by, say 10 cm, is a comparison of subpopulations (sons and fathers).
It is unreasonable to deduce from this the longitudinal comparison that in
the next 25 years or so, when they reach their fathers’ ages, the sons will lose
about 10 cm of their height on average.

A study may combine the two goals, for example, by comparing the
changes made over a given period of time by two or several cohorts. If only
a few cohorts are to be compared, the study can be regarded as a union of
related longitudinal studies, one for each cohort. It is often more practical
to regard the cohorts on a continuum and represent them by a continuous
variable, such as age or calendar year. The principles of good representation
of each cohort are then still relevant, but it may not be necessary for each
cohort to be represented in the survey by a sufficiently large subsample.

The cohort can be incorporated in the analysis by specifying a separate
model for each cohort; the samples for the cohorts are usually mutually inde-
pendent. With the assumptions of multivariate normality, we may posit the
general model

(Y | k) ∼ N
(
µ(k);Σ(k)

)
. (11.9)

The cohort-specific models may have some parameters in common. For ex-
ample, they may have a common variance matrix; Σ(k) ≡ Σ. The vectors
µ(k) may have a pattern, such as constant differences, µ(k) − µ(h) = ∆µkh1,
or fanning out, µ(k) = µ(0) + akd for a nondecreasing sequence d and some
constants ak .

These models can be expressed in the form of a single equation as

Y = XB + ε , (11.10)

where Y is the matrix of outcomes (n×K), B the (p×K) matrix of regression
parameters, ε the (n × K) matrix of model deviations, and X the regression
(design) matrix. Note that Y in (11.10) is a matrix of values, whereas in (11.9)
it is a random vector; we cannot avoid the clash of notation. The model in
(11.10), with its various generalisations, is for a multivariate regression. From
now on, we use the term univariate as a qualifier for the regression models
with univariate outcomes.

The matrix X is formed just like for univariate regression, with a column
representing the intercept and further columns identifying the cohort. For
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example, if the rows of Y are sorted by the cohort and there are four cohorts,
then

X =

⎛⎜⎜⎜⎝
1 0 0 0
1 1 0 0
1 0 1 0
1 0 1 0

⎞⎟⎟⎟⎠ ,

where the vertical partitioning corresponds to the observations from the four
cohorts. In the parameter matrix B, the first row is the population mean
vector for the reference cohort 1, µ(1), and the second to fourth rows are
the respective differences between cohorts 2–4 and 1, µ(k) − µ(1), k = 2, 3, 4;
that is, the cohort is treated like any other categorical covariate. Alternative
parameterisations use a different reference cohort, omit the intercept but rep-
resent each cohort by an indicator, or linearly transform each column, perhaps
except the first, so that the column total is equal to zero.

The matrix X can include further covariates (columns). Each column of
X, denoted by X(k) corresponds to a row B(k) of B. Their matrix product,
X(k)B(k), is a contribution to the expectation of the matrix of outcomes Y.
For a covariate other than an indicator of the cohort, it does not depend on
the cohort; the association of the outcomes with the covariate is the same
in each cohort. By introducing interactions of covariates with the cohort, we
allow the within-cohort regressions to differ. When there are K cohorts, the
interaction of a (continuous) covariate with the cohorts is represented by K−1
variables, each of them equal to the product of the covariate with an indicator
variable that represents the cohort. Interactions of other covariates are defined
similarly, although, unlike in univariate regression where they are represented
in the regression parameter vector β by one or several parameters, each of
them is represented in B by one or several rows. The greater flexibility in
modelling the association of Y and X that is attained by interactions has to
be carefully weighed against the proliferation of the parameters involved.

Each column of B can be interpreted as the vector of parameters in the
regression for the corresponding column of the (random) vector Y. Therefore,
if no constraints that span several columns are imposed on the elements of
B, then multivariate regression yields the same estimates as the collection of
univariate regressions conducted separately for each column of the matrix Y.
The multivariate regression adds to this a description of the covariance struc-
ture across the time points. This is a valuable addition in many settings. By
the univariate regressions we can estimate the variances in the matrix Σ but
none of the covariances.

Covariates can be defined for subjects (vectors—rows of the matrix Y)
or for the elementary observations (on a subject at a time point). They are
called subject- and elementary-level covariates, respectively. The former can
be incorporated in X straightforwardly. The latter, also called time-dependent,
can be accommodated only in more general models discussed in Section 11.5.
The principles regarding causal analysis carry over from univariate regression.
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We can refer to the elements or rows of B as (multivariate) effects only when
the designer can assign the values of the covariates in X and does so without
any regard for the values of Y. Randomisation is one way of arranging this.
Of course, in many settings it is not possible to assign subjects to cohorts.
Then it is not meaningful to talk about cohort effects, and effects (of other
covariates) cannot be estimated without bias.

When one of a set of alternative treatments is assigned to subjects by
randomisation, causal inferences can be made. Care has to be exercised when
including any covariates to accompany the treatment indicators in the model;
inclusion of any intermediate variables is particularly problematic, just like
in univariate models. With longitudinal outcomes, the effects are vectors, so
it is much more difficult to specify what amounts to a substantial treatment
effect. For example, we cannot expect the effect to be present at the first
time point if it immediately follows the administration of the treatment. A
favourable outcome may be that the expected differences increase over time
and, perhaps, they settle at a particular level that is regarded as being of
substantive importance. The pattern in which the differences first increase
and are then reduced to a small value or even reverse their sign is more
difficult to interpret. Although an effect is present it is of little relevance when
a persistent effect, present over a long period of time (such as a permanent
cure), is sought.

The elements of Σ can be constrained to have a particular pattern,
such as conditional independence (tridiagonal Σ−1), compound symmetry
(Σ = σ2

WI + σ2
BJ, where J is a matrix of unities), compound symmetry with

changing dispersion (Σ = σ2
Wdiag(c)2 + σ2

Bcc� for a vector c), or the like.
Without any such constraint, the multivariate regression model in (11.10) is
fitted by the multivariate version of the ordinary least squares:

B̂ =
(
X�X

)−1
X�Y ,

Σ̂ =
1

n − p
Y�
{
I − X

(
X�X

)−1
X�
}

Y .

The maximum likelihood estimator of Σ is the (n−p)/n-multiple of Σ̂; it has
the denominator n instead of n − p.

The assumption that the variance matrix Σ is common to all the ob-
servations can be relaxed substantially, just like in univariate regression.
Each cohort k can be associated with a separate variance matrix Σ(k), and
these matrices may have some features in common. For example, they may
be proportional, Σ(k) = ckΣ(1), or have the same correlation matrix R:
Σ(k) = D(k)RD(k), where D(k) are diagonal matrices. More generally, the
(residual) variance matrix Σ can be specified as a function of some (categor-
ical or continuous) covariates. Of course, this has to be done in such a way
that Σ(x) is positive definite for every configuration of covariates x. It may be
difficult to define this function in such a way that its values would be realistic
for all plausible values of x.
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11.4.1 Panels

Some inferential agenda remains relevant over a long period of time. For ex-
ample, basic economic and demographic indicators, such as per capita income,
retail price index, rate of unemployment, birth rate, and prevalence of some
diseases, are estimated annually, quarterly, or even more frequently. Regularly
conducted surveys in which a different sample is drawn on each occasion are
suitable for estimating the state of the population at each time point (year).
But they can offer no insight into the changes made by the individual mem-
bers. For example, if the rate of unemployment is not changed between two
quarters, we can only speculate whether the subpopulations of unemployed
at the two time points are the same or how large their overlap is. More gen-
erally, if subjects’ recall cannot be relied on, information about long-term
unemployment can be collected only in surveys in which subjects are inter-
viewed repeatedly.

However, only a limited response burden can be imposed on a subject,
so he or she can be retained as a respondent only for a few rounds (waves)
of a survey. For example, the UK Labour Force Survey (LFS) is conducted
every quarter, that is, in January–March 2006, April–June 2006, and so on.
Each subject is retained in the sample for five quarters, such as from January–
March 2006 until January–March 2007. In this setting, a sample has several
meanings. According to our definition, it is the set of all subjects in a wave,
such as in January–March 2007. This sample comprises five subsamples de-
fined by the wave in which the subject concerned was included for the first
time; see Figure 11.3 for illustration. These subsamples are cohorts, and their
union, the sample, is referred to as the panel. After each survey, the cohort
that was just interviewed for the fifth time is retired and replaced by a new
cohort. This design is called a rotating panel design; this term refers to the se-
quence of surveys. The panel for each wave (quarter) of the survey comprises
five cohorts, one ‘new’ and one about to be retired and replaced in the next
quarter.

In fact, LFS is conducted continually; a subsample of the panel is inter-
viewed every week, so that the division of the data-collection effort into waves
is almost entirely administrative. Even the subsamples of subjects interviewed
during a week are representative of the population, at least in some aspects,
so that a ‘survey’ could be defined for each week.

Panel designs respond to the need for information about the population
at several time points and about changes made by their members. An un-
related advantage of panel designs is that a subject whose cooperation has
been gained and who has been located will provide more information than if
he or she were interviewed only once. The second and subsequent interviews
could be made by phone or email, eliminating the costs of travel, arranging
an appointment, and the like. On the other hand, however, the second and
subsequent responses of a subject may be highly correlated with the first, so
less information is gained than from a subject responding for the first (and
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01/05 04/05 07/05 10/05 01/06 04/06 07/06 10/06 01/07 04/07 07/07

144 140 141 139 148 144

23

30
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31

32

118+ 92+ 63+ 32+

Fig. 11.3. Illustration of a rotating panel design. The numbers at the top are the
sizes (in thousands, rounded) of the panels between the dates given at the bottom
(e.g., 144 000 in January–March 2005), and the sizes of the cohorts are given at the
left-hand margin (e.g., 23 000 interviewed for the first time in January–March 2005).
The present time is July 2006; for the panels in the future only the totals over the
cohorts already drawn are given and indicated by ‘+’.

Note: The diagram is motivated by the design of the UK LFS but the sizes of cohorts
and panels are not equal to their counterparts in the design or realisation of LFS.

only) time. This highlights the importance of choosing an appropriate time-
span between consecutive interviews, to ensure that changes in the recorded
categories (statuses) of outcome variables occur with appreciable probabil-
ity, while the probability of more than one change within the time-span is
small. If several changes take place between two interviews, some may not
be recorded because only information about current status is collected. Of
course, administrative convenience should also be taken into account.

11.5 Irregular Time Points and Time-Specific Covariates

In previous sections we considered sequences of outcomes over discrete sets of
time points that were fixed by design, although the example of LFS could be
interpreted as having continuous time, coarsened for the purposes of reporting
and management. The time is often meaningfully defined on a continuum and
an observation of the outcome variable could conceivably be made at any point
in time. An interview in which the current status of the subject is established
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may then be arranged at a date convenient for all the parties involved or may
even be improvised. For example, a survey instrument may be administered
immediately following each appointment at a dental clinic.

On the one hand, no arrangements related to the survey have to be made to
contact respondents; on the other hand, members of the population who do not
attend a clinic (regularly) are unlikely to become subjects. The clientele are
instructed or encouraged to attend the clinic at least once a year for a routine
checkup, but such visits may be brought forward, delayed, or skipped, and
clients with problems they identify themselves make more frequent visits. The
regime of visits may therefore be related to the outcomes. In this setting, the
process of arranging appointments, the times when observations are made and
its nonignorability, have to be considered. The association of the results of an
analysis with causes is straightforward only when control over the assignment
of the dates to subjects can be exercised, to ensure that it is ignorable.

With a fixed set of time points, the outcomes form an easy-to-handle n×K
rectangular array labelled by subjects and time points. When subjects have
sets of time points that differ in both their numbers and distributions, their
tabular presentation is much more complex and requires some improvisation.
For example, the dates could be coarsened to the month and, for a survey
conducted over one year, the data could be presented in an n× 12 array, with
missing values for subject-by-month entries when no observation was made.
For a subject-by-month with several observations, only a summary, such as
the mean, would be given, accompanied by a special symbol. An illustration is
given in Table 11.2 for the first few subjects of a larger dataset comprising 90
subjects with a total of 514 observations. For example, the record for subject
1, with exact dates, is:

Date (2005) 7/7 28/9 9/10 4/11 7/12
Outcome 135.5 125.7 132.6 163.6 204.8

and the entry for subject 3 in April is the mean of the outcomes 105.8 and
130.9, recorded on the 9th and 26th of April, respectively.

In Table 11.2 or a similar display, we should draw a distinction between
cells that are empty because no appointment was made and those where an
appointment was arranged but not kept. A symbol could be used for the
latter to indicate that an observation was planned. However, even without
such absences, the time points of a subject may be selected nonignorably,
if appointments are arranged shortly before the visit, prompted by an event
or change in status that are related to the outcome planned to be observed.
The (causal) dependence of the date (appointment) on the outcome is a pro-
found complication. It could not be resolved without modelling the process
that generates the appointments. In the presence of a multitude of incentives,
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Table 11.2. Illustration of a longitudinal dataset (part) with coarsened irregular
time points. Asterisk ∗ marks entries for two (or more) observations in a month;
for them, their mean is given.

Month (year 2005)

Id. Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec

1 135.5 125.7 132.6 163.6 204.8

2 125.6 122.1 176.2 120.8

3 118.3∗ 132.1 162.2 128.0 185.6

4 158.7 131.5 178.9

5 142.9 148.8∗ 157.1 128.1

6 105.7 123.7 110.7 115.0 142.8 186.8 231.7

7 123.9 154.6 168.6 145.7 125.0

8 105.0 129.3∗ 129.5∗ 168.8

9 100.1 114.5 129.2 125.5 140.1∗ 145.1 121.9

habits, and attitudes to one’s health care and to the services available, this is
a nontrivial undertaking.

The dates of all the observations are concisely summarised in Figure 11.4.
Each subject is represented by a horizontal line interrupted by dots that
mark the dates of the observations. A similar display of the outcomes, by a
plot of the dates on the horizontal axis and the values of the outcomes on
the vertical, may be misleading because the diagram would be dominated by
the segments connecting the consecutive observations of a subject. Segments
connecting distant observations are prominent, yet they are associated with
less information than segments connecting observations made more frequently.
Figure 11.5 gives an example based on the nine subjects whose observations
are listed in Table 11.2.

Covariates may be defined for the subjects. A categorical subject-level
variable can be represented in Figure 11.5 by ordering the subjects according
to their values and inserting gaps to separate the subsamples from the cate-
gories. The values of a categorical outcome variable can also be represented in
a diagram like Figure 11.5 by distinct symbols, such as circles and crosses for
binary outcomes, instead of the dots that mark the appointments. A coars-
ened version of a continuous outcome variable may be indicated similarly. The
size of the symbol may reflect the value of the outcome.

Covariates may also be defined for the elementary observations. Such
elementary-level covariates may be functions of the time (day) but may also
be specific to the observations. In most settings, the values of such variables
are observed without the designer of the study exercising any control over
them, and we can only speculate about the mechanism that assigns its value
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Fig. 11.4. The dates of the observations in a longitudinal study. Each subject is
represented by a horizontal segment joining the dates of the first and last appoint-
ments and interrupted at the intermediate appointments. The vertical dashes mark
the quarters of the year 2005 in which the study was conducted.

to a subject at a time point. The presumption or hypothesis that it is an
intermediate variable, affected by the values of the variables with controlled
assignment, is often well founded. The inclusion of such a variable as a co-
variate in a regression model is therefore problematic even if it would result
in a substantially better fit as judged by data-based criteria.

11.6 Analysis

The observations from a longitudinal study have the structure of elements
within clusters, so they are well suited for analysis with random coefficient
models (Chapter 9). One model is posited for the outcomes of each subject
(member of the population) and another describes the variation of the pa-
rameters in these models. Regression on time and its transformations is the
natural choice for the former, leading to the model

yjt = xjt β + zjtδj + εjt ,
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Fig. 11.5. The dates and outcomes for the subjects listed in Table 11.2. The vertical
dashes delineate the quarters of the year.

with a random sample δj , i = 1, . . . , n, from N (0,Σ) and εjt an independent
random sample from N (0, σ2). Time is the obvious candidate for a covariate
in both the regression and variation parts of the model. Greater flexibility is
achieved by including a quadratic and higher powers of time. In general, we
should include fewer such terms in the variation than in the regression part,
while adhering to the rules that ensure invariance of the model with respect to
linear transformations. The regression part, x, may contain variables defined
for subjects or elements (appointments). Subject-level variables should not be
included in the variation part because they are constant for the observations of
each subject, and so regressions on them could not be identified even if many
observations were made on the subject. However, the variance matrix Σ may
itself depend on one or several subject-level variables; for example, it may
be specified as chΣ for subjects in category h of a variable. The constants ch

would usually be estimated, except for c1 = 1, set for the sake of identifiability.
We can interpret the estimated conditional expectation xβ̂ + zδ̂j as the

fit to the observations for subject j. The values of some components of x
and z are given, but for time and its transformations we can, in principle,
substitute any values. This is appropriate within the range of time points of
the subject, and possibly slightly beyond (both earlier and later), but the
further we attempt to extrapolate, the more heavily the fit depends on the
details of the model specification.

For the dataset partly summarised in Table 11.2 and Figure 11.5, we ob-
tained the fit

E(y) = 101.478 + 0.187t

with estimated residual variance σ̂2 = 430.80 and estimated variance ratio
ω̂ = −0.0033. Instead of this negative value, zero can be quoted as the esti-
mate and the ordinary regression fit adopted. It differs very little from the
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Fig. 11.6. The realised and a simulated longitudinal dataset. To avoid congestion,
the progressions are plotted only for subjects with odd order numbers.

maximum likelihood fit with negative ω̂ : 101.465 + 0.187t, with estimated
residual variance 429.37. The difference of the deviances for the two models is
only 0.015. The estimated standard error of the slope on time t is 0.0094. The
estimated standard error of ω̂ is 0.024, so the standard error of the between-
subject variance estimator is about 10.0. Therefore, although the fit indicates
that the subjects’ curves do not differ, the uncertainty about the estimated pa-
rameters is such that even substantial between-subject variance is plausible.
Quadratic regression and varying within-subject regression do not improve
the model fit either. Appropriateness of the model with linear time and iden-
tical regressions can be assessed by generating datasets from the model fit
and comparing their features with the realised dataset. A pair of such graphs
is displayed in Figure 11.6. We may identify some features in which the two
panels, for the realised and a simulated dataset, differ. However, we are inter-
ested only in features that would be replicated on most simulated datasets. In
practice, the realised dataset is compared with several simulated datasets, but
the corresponding features (graphs) cannot be printed in the limited space of
a publication.

11.6.1 Missing Values

When an outcome is not recorded, because the appointment is not kept or
some problems in the measurement process arise, it is tempting to disregard
the anticipated data record in the subsequent analysis. A more principled
approach regards the record as missing, considers the planned data as the
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complete dataset, and formulates a model for imputation; see Chapter 5. The
obvious candidates that inform about the missing value are the observations
from the recent past and near future, relying on the continuity of the outcome
as a variable defined in time.

Common nonresponse patterns are those of dropping out, when a subject
cooperates perfectly up to a time point and from then on provides no obser-
vations. Imputations for records with such patterns are simpler because they
can be converted to sequences of univariate imputation problems. A drop-out
is usually associated with a single cause of nonresponse, triggered at the first
time point with nonresponse, when the subject makes a conscious decision
to withdraw from the study, or some other circumstance makes continuation
impossible. A difficulty with irregular time points is that for a drop-out we
may have to impute an (irregular) schedule of appointments and outcomes
based on them.

11.6.2 Multivariate and Cluster-Longitudinal Data

Multivariate outcomes can be motivated as longitudinal outcomes in which
the time is a discrete variable represented by the components of the vector of
outcomes. Although in such a setting multivariate analysis is usually simpler
than an analysis with random coefficients, there are some exceptions. When
there are many components and most subjects have incomplete records (by
design), the imputation task to complete them (multiply) may be too com-
plex, even when the nonresponse mechanism is MCAR. In a random coefficient
model, the K components of the outcome vector are represented by K−1 indi-
cator variables. Assuming multivariate normality of the outcomes, in the most
general model these indicator variables are included in both regression and
variation parts. Submodels can be specified by imposing constraints on the
pattern of variation and the differences among the categories, while maintain-
ing model invariance with respect to linear transformations. It is advantageous
to avoid specifications in which the variance matrix is singular.

In some settings, the subjects are observed at a time point indirectly. For
example, a summary of the prices of the residential properties in a district
is observed only through the properties sold, which may be recorded in a
register of sales. The resulting data can be regarded as having three levels,
with transactions within district-years within districts. Within each district-
year we have a different set of properties (houses or flats) that were sold
during the year. If they are a random sample of the housing stock their prices
represent well the market values of the entire stock. In ideal circumstances,
we would analyse the underlying means, which are a set of time series over
the years of the study; for them longitudinal analysis would be appropriate.

We regard the properties sold during a year in a district as a cluster and
refer to the study (the dataset) of such clusters for several years as a cluster-
longitudinal study (dataset). Missing-data methods can be applied for their
analysis. It is natural to declare the district-year means (or other summaries
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that are relevant) as the missing data and apply the EM algorithm, when
feasible, and multiple imputation otherwise, with a method for longitudinal
analysis used for the complete data.

Functional data analysis is concerned with longitudinal data in which ob-
servations on a variable continuous in time are made so frequently that the
association of the outcome with time is observed for the subjects completely.
For example, the movement of a fixed point of the human body can be recorded
at the speed of 100 records (locations) per second. Treating such data by longi-
tudinal analysis is not practical. Alternatives include representing the motion
as a function, in some applications multivariate, in a suitably defined system
of coordinates using a basis of functions, b = (b0 , b1 , . . .). For example, they
may be the polynomials, with b0 the constant function; there are obvious ad-
vantages to using an orthonormal basis. Thus, the observed function f for a
subject is projected onto this basis, expressing it as

f(u) =
∞∑

h=0

chbh(u) ,

and approximating it by the summation of the first H terms. The analysis then
proceeds by studying the vectors of coefficients c = (c0 , c1 , . . . , cH), that is,
the coordinates with respect to the basis, as the outcomes. Using more terms
yields a better approximation to f but is associated with greater complexity.

11.6.3 Mixture Models

When continuous outcomes are not (conditionally) normally distributed but
we do not have a suitable class of (conditional) multivariate distributions for
their description, mixture models can be applied with advantage. With them,
we assume that the population comprises a small number of subpopulations,
each with a description in terms of a multivariate normal distribution, either
unconditionally or given some covariates; a different regression applies in each
subpopulation. The membership of a subpopulation (category) is not known
for any subject. In practice, the number of categories is not known either.

Let Im be the variable that indicates whether a member belongs to cate-
gory m, and let M be the categorical variable that states to which category
a member belongs. That is, IM ≡ 1. Assuming that the values of all the co-
variates are fixed, we can define (latent) outcomes Y(m), so that the observed
outcome is

Y(M) =
M∑

m=1

ImY(m). (11.11)

Since Y(m) can be defined without any restrictions other than agreement with
Y(M), no generality is lost by assuming that the indicators Im and outcomes
Y(m) are independent for every category m.
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We came across an expression similar to (11.11) in Chapter 7 when consid-
ering M potential outcomes of a subject, corresponding to M distinct treat-
ments. There we denoted by W the indicator of the treatment applied; the
indicator of the category, I, has a similar role here. Thus, mixture models
can be motivated by the setting in which the treatment applied is not known.
The targets of inference are the conditional distributions

(
Y(m) | Im = 1

)
,

m = 1, . . . , M . By construction, the indicators Im are independent of the
(potential) outcomes Y(m). However, the realised outcomes Y(M) contain
information about M, the identity of the category.

Mixture models can be fitted by the EM algorithm in which the indicators
Im are the missing values. The E-step of this algorithm evaluates the condi-
tional expectations pj,m of Im for each subject j, and the subsequent M-step
executes separate analyses for each category, with Im (and I2

m) replaced by
pj,m . The E-step expectations are

p̂
(new)
j,m =

r̂
(old)
m L

(old)
j,m

r̂
(old)
1 L

(old)
j,1 + · · · + r̂

(old)
M L

(old)
j,M

,

where L
(old)
j,m is the contribution to the likelihood made by subject j, evalu-

ated assuming that its category is m and with the current estimates of the
model parameters substituted for the parameter values; r̂m is the estimated
(marginal) probability of belonging to category m. The superscripts ‘old’ and
‘new’ indicate the current and updated values, and carets ˆ are added to in-
dicate that the quantities involved are estimates. In the M-step, the analysis
for category m maximises the log-likelihood

n∑
j=1

p̂
(new)
j,m log

(
L

(old)
j,m

)
.

The marginal probabilities of the category m are estimated by the means of
the subject-specific probabilities:

r̂(new)
m =

1
n

n∑
j=1

p̂
(new)
j,m .

The outcome of an analysis is a fitted distribution for each category and
the estimated marginal probabilities r̂m . The categories need not have an
interpretation in terms of distinct subpopulations. They are simply the best
division of the sample in terms of minimising the likelihood with a normal
distribution within each category. For instance, if we adopted another class of
multivariate models, such as a class of multivariate gamma distributions, the
division of the subjects to categories would be different. In fact, any continu-
ous distribution can be approximated, with arbitrary precision, by a mixture
of multivariate normal distributions. This property is not specific to the mul-
tivariate normals. For example, the multivariate uniform distribution, defined
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by the constant density on a rectangle, also has this property of forming,
together with the operation of mixing, a basis for the space of continuous
multivariate distributions.

The division, as indicated by the estimated conditional probabilities p̂j,m ,
is usually subject to uncertainty. Not only are these probabilities estimated,
but they are also distant from zero and unity. This is easy to illustrate on
a mixture of univariate normal distributions. For the density fm(x) of cat-
egory m, we define the scaled density as rm fm(x). When M = 2, the un-
certainty about the mixture category is greatest at the intersection of the
scaled densities, where r1f1(x) = r2f2(x); for an observation j at that point;
pj,1 = pj,2 = 1

2 .
Mixtures of normal distributions may be multimodal, asymmetric, and

have long tails. In a multivariate setting, a variety of shapes of the density can
be generated by mixtures of even very few distributions. Greater generality is
achieved by considering mixtures of models, not only mixtures of joint (data)
distributions from the same model. For example, different sets of covariates
may be included in the models for the subpopulations. In principle, a category
may comprise outliers; they are characterised by large variance, small marginal
probability, and few or no covariates.

Settings in which the number of the mixture components (categories) is
known are rare and unusual. More commonly, mixtures of some known (classes
of) distributions are used as an approximation for an unknown distribution.
It is then practical to proceed by fitting mixtures of two, three, and more
distributions, stopping when the model fit with M components is very similar
to the fit with M − 1 components. Similarity can be assessed by the likeli-
hood ratio test, although for very large datasets this would invite us to fit
exceedingly complex models with very small fractions of the population be-
longing to each component. A more practical rule is to stop when one of the
fitted components has a small probability. At an extreme, an attempt to fit M
components may result in a singularity, when the estimated probability r̂m

for a category approaches zero after a few iterations. Then the most complex
mixture model we can fit is with M − 1 components.

The EM algorithm requires an initial solution. When fitting a sequence
of models with increasing numbers of components, it is practical to make
use of the previous solution. For instance, the initial solution for the three-
component mixture can be the two-component fit supplemented by the
parameterwise averages as the third component. The properties of the likeli-
hood for a mixture model are difficult to explore, and multiple local maxima
cannot be ruled out. Therefore it is prudent to fit a mixture model several
times, with a range of starting values, especially when the number of com-
ponents M is large. Slow convergence is often a reliable indication of such
problems.
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11.7 Example: House Prices in New Zealand

In this section, we describe a study of the residential property prices in the
districts of New Zealand in the period 1996–2002. We are concerned with the
house-price inflation—the increase of prices over the studied period. In the
established approach, the mean or median price is calculated over each year,
and these summaries are compared straightforwardly. Medians are preferred
because they reduce the influence of the few very expensive properties. We
prefer to work with the means of the log-prices because the property prices
are much closer to normality, and symmetry in particular, on the log scale.

A problem with comparing any summaries of the house prices is that they
refer to the properties sold, whereas inferences are desired for the housing
stock in general or for a given property (a typical or ‘standard’ house or flat).
Otherwise the comparison of prices may reflect the amalgam of improvements
of, additions to, and removals from the housing stock, the selection of prop-
erties (by sellers and buyers), together with genuine inflation—change in the
prices that can be attributed solely to time. For example, relatively more
large properties may be sold in one period than in another, complicating the
comparisons intended for a set of unchanging properties that are sold in both
periods or for a set of properties sold in one period matched for all relevant
characteristics by a set of properties sold in the other.

New Zealand comprises 74 districts (local authorities); 49 of them are on
the North Island, 24 on the South Island, and one district, Chatham Islands,
is several hundreds of miles east of either island in the Pacific Ocean. It is
sparsely populated and there are only a few transactions in any year; we
omit these from our study. Rounded to hundreds, there are records of 485 400
transactions in the study, 93 500, 83 600, 64 600, 60 500, 53 700, 59 200, and
70 200 in the respective years 1996–2002 (years 1–7).

New Zealand has about 4.0 million inhabitants and about 1.5 million
single-household residential units. These are very unevenly distributed across
the districts. The four districts that comprise the Auckland Metropolitan Area
(Auckland City, Manukau, Waitakere, and North Shore) account for about a
quarter of the population and a somewhat greater proportion of the trans-
actions. In general, properties tend to be more expensive in urban areas and
their prices are believed to have risen in the studied period at a higher rate
than in towns and rural areas. A graphical summary of the annual log-mean
prices in the districts is given in Figure 11.7. The lines connect the log-means
of the prices for a district over the seven years. We refer to them as inflation
trajectories. For orientation, the log-price of 11.0 corresponds to NZ$59 875
and 12.0 to NZ$162 750; in 2006, the exchange rate was about NZ$2.75 to
UK£1.00.

The diagram shows that the districts tend to maintain their ranking of log-
mean prices, but the log-means have gotten more dispersed over the years;
the inflation trajectories are close to forming a right-facing megaphone. The
trajectory highlighted in the right-hand panel, marked as Q in both margins,
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Fig. 11.7. The inflation trajectories for the districts of New Zealand from 1996 (year
1) to 2002 (year 7). The mean of the district-level log-means is indicated by dots.
The right-hand panel is an extract for the fifteen city districts: North Shore (NS),
Auckland City (Auc), Wellington (Wel), Manukau (Man), Waitakere (Wai), Porirua
(Por), Nelson (Nel), Hamilton (Ham), Upper Hut (UHt), Napier (Nap), Christchurch
(Chc), Hutt (Htt), Palmerston North (PN), Dunedin (Dnd), and Invercargill (Inv).
Nelson, Christchurch, Dunedin, and Invercargill are on the South Island.

Adapted from [126], with permission of L. Erlbaum Associates.

is for Queenstown Lakes, a district in the South Island, parts of which have
undergone substantial development as a holiday and adventure resort.

The pattern of the inflation trajectories can be summarised by the means
of the district-level vectors of annual log-means:

µ̂ = (11.466, 11.505, 11.504, 11.555, 11.600, 11.615, 11.677)�,
(11.12)

marked in Figure 11.7 by large dots, variances

1
1000

(140, 171, 188, 198, 214, 224, 243) ,

and the correlation matrix
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1
1000

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1000 990 979 966 966 965 958
990 1000 990 979 976 973 964
979 990 1000 993 988 983 971
966 979 993 1000 991 988 978
966 976 988 991 1000 995 986
965 973 983 988 995 1000 993
958 964 971 978 986 993 1000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

These confirm our observations from Figure 11.7: the variances increase over
the years and the correlations are very high. The correlations decrease with
distance in time, but they are very high even six years apart. The districts’
trajectories cross one another very little.

The means in (11.12) differ substantially from the national means of log-
prices, which are

(11.840, 11.887, 11.851, 11.887, 11.914, 11.932, 11.983)�. (11.13)

In the vector µ̂ in (11.12), the districts’ means are of equal importance, ir-
respective of the numbers of their transactions. In contrast, in (11.13) each
transaction is of equal importance, so districts with fewer transactions have
less influence on the mean.

Our analysis is based on an enumeration of the transactions, so no sam-
pling issues arise. However, some of the districts are very sparsely populated
and have fewer than one hundred transactions in a year. We might consider
a replication of the year’s real-estate business in each district, in which some
other properties would be sold, and those that happen to be sold in both
replications would be sold at different prices. Such within-district variation is
accounted for by the two-level model

ytda = µa + γda + εtda , (11.14)

for log-price y in transaction t of district d in year a; the vectors γd =
(γd1 , . . . , γd7)�, d = 1, . . . , D = 73, are a random sample from a centred
seven-variate normal distribution (one component for each year), and εtda are
independent random samples from centred (univariate) normal distributions.
The samples {γd} and {εa}, a = 1, . . . , 7, are mutually independent. Denote
varD(γd) = ΣD and var(εtda) = σ2

a . We allow the within-district variances σ2
a

to differ from year to year; we have ample data for estimating each of them
with high precision.

The fit of the model in (11.14), obtained by pooling the within-district
variances, closely resembles the summaries of the district-level means, but
we have an additional description in terms of the estimated within-district
variances:

σ2
A =

1
1000

(201, 200, 220, 232, 244, 249, 249) .
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Table 11.3. Summary of the three-component mixture model fit to the log-sale
prices.

Year

Comp. 1 2 3 4 5 6 7

log-mean Probability

1 11.256 11.256 11.223 11.270 11.307 11.312 11.366 0.42
2 11.558 11.603 11.621 11.681 11.733 11.757 11.822 0.34
3 11.760 11.823 11.841 11.885 11.946 11.965 12.032 0.23

District-level variances

1 0.097 0.120 0.138 0.157 0.180 0.177 0.193
2 0.112 0.133 0.136 0.137 0.154 0.169 0.187
3 0.078 0.080 0.070 0.066 0.059 0.058 0.066

Transaction-level (within-district) variances Correlations

1 0.259 0.261 0.295 0.313 0.341 0.351 0.345 0.942–0.996
2 0.205 0.197 0.209 0.215 0.224 0.218 0.228 0.958–0.997
3 0.144 0.144 0.158 0.167 0.164 0.168 0.169 0.962–0.998

Adapted from [126], with permission of L. Erlbaum Associates.

Thus, the within-district variances also increase over the period of the study.
Mixture models provide a more detailed description. For brevity, we give

only the three-component mixture fit (see Table 11.3) and condense the cor-
relation matrices into the ranges of the correlations. In all three fitted corre-
lation matrices, the correlations decrease with distance in time, with very few
exceptions, all of which are minor.

The first component has the lowest and the third the highest mean
throughout the seven years. Although these differences appear to be sub-
stantial, they are only moderate when compared to the district-level standard
deviations. A district-level variance of, say 0.09, corresponds to standard de-
viation of 0.30, and the distances between the pairs of means are of the same
order of magnitude. Therefore, the district-level means in one mixture com-
ponent have a substantial overlap with the means in another.

The district-level variances are estimated with little precision, because the
73 or slightly fewer degrees of freedom are split among the three compo-
nents. However, we can discern that these variances increase in categories 1
and 2 and in category 3 remain small and are close to being constant. The
transaction-level variances also increase over the seven years and are well sep-
arated; category 1 has the highest and category 3 the lowest variances. The
correlations are very high for each component and the small differences among
them are of no importance.

The marginal probabilities are 0.42, 0.34, and 0.23; they correspond to
31, 25, and 17 districts in the respective categories 1, 2, and 3. In fact, each
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Fig. 11.8. The assignments of the districts’ inflation trajectories to mixture cate-
gories according two- and three-component mixture model fits. The category in the
two-component fit is given in the titles in parentheses.

Adapted from [126], with permission of L. Erlbaum Associates.

district is assigned to a category with probability in excess of 0.99. It seems
that the three fitted distributions are well separated in the seven dimensions.
There are no regions in which more than one distribution has an apprecia-
ble density. Figure 11.8 displays the assignment of the districts to mixture
categories. For completeness, it includes the assignment of districts accord-
ing to the two-component fit. The three-component fit can be described as
forming a new component by taking some districts from either category of
the two-component fit. Component 1 of the two-component solution becomes
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component 1 of the three-component solution, after losing some districts. Sim-
ilarly, component 2 of the two-component solution becomes component 3 of
the three-component solution, after losing some districts. These ‘lost’ districts
form component 2 of the three-component solution. The panels of Figure
11.8 confirm that the district-level variances in category 1 increase over the
seven years, while in component 3 the trajectories are nearly parallel, and
component 2 (bottom two panels, split according to the category of the two-
component solution) represents a halfway house. Note that the diagrams do
not display the transaction-level variances which also influence the assignment
of districts to the mixture categories.

11.7.1 Adjustment for Rating Valuation

Every residential property in New Zealand is assessed by its district authority
annually or once in three years. The result of this assessment, called the rating
valuation, is the capital value (CV), a figure in NZ$, that estimates the market
value of the property on the day of the valuation. This date is common within
each district, usually 1st of September of every third year, but the dates vary
from district to district. Being a large-scale exercise, the assessment is far from
perfect as it is bound to involve subjective judgment and convention and has
to rely on faithful and timely reporting by homeowners of all substantial
alterations to the property. Nevertheless, CV is a very good covariate for the
size, quality, and other attributes of the property, so that by adjusting for it
we get closer to the ideal of comparing the sale prices in a district as like with
like from one year to the next.

We consider the two-level model

ytd = xtd(β + δd) + εtd , (11.15)

in which x is the row vector of covariate values, comprising the logarithm of
CV in force on 1st of January 2003, denoted by v, the scaled number of days
(day/1000) between the valuation and the date of sale, u, its squared distance
from 1

2 ,
(
u − 1

2

)2, and the intercept. Each of these variables is included in
the variation part of the model. We divide the number of days by 1000, so
that the corresponding estimates are not very small; a period between two
rating valuations (three years) corresponds to about 1.1 on this scale. In the
computational algorithm, the log-values v and y are replaced by v − 11.5 and
y−11.5, respectively, to reduce any numerical problems due to adding a large
number of values. The adjustment of the computer output, so that it refers
to v and y is straightforward.

The single-component model fit is

Ê(y) = 0.936v − 0.883u − 0.0570
(
u − 1

2

)2 + 0.7053 ,

σ̂2 = 0.0705 ,
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Table 11.4. The two-component mixture model fit for regression on capital value
and time elapsed since valuation. All the figures are multiplied by 10 000.

Component 1 (29 districts) Component 2 (44 districts)

CV u
(
u− 1

2

)2
1 CV u

(
u− 1

2

)2
1

β̂ 9429 847 –746 6311 9312 908 –449 7456

σ̂2 590 843

Ω̂D

⎛⎜⎝ 1053 −502 201 −604
−502 967 160 21
−201 160 2632 −380
−604 21 −580 697

⎞⎟⎠
⎛⎜⎝ 855 −424 −29 −452

−424 1164 −91 22
−29 −91 3953 −618

−452 22 −618 860

⎞⎟⎠

Ω̂D =
1

10 000

⎛⎜⎜⎜⎝
983 −476 39 −509

−476 1164 −6 14
39 −6 3778 −686

−509 14 −686 915

⎞⎟⎟⎟⎠ ,

where ΩD = σ−2ΣD is the scaled district-level variance matrix and Ω̂D is its
estimate. This fit can be interpreted only by calculating the fitted values and
variances for a range of values of v and u. This we do for the two-component
solution given in Table 11.4.

The average regression slope on CV is close to unity and is smaller than
1.0 for both components, but the fitted variation of the district-level slopes is
large (estimated standard deviation

√
0.0590 × 0.1053 = 0.079 for component

1 and 0.085 for component 2). This indicates that a large fraction of the
districts have slopes greater than unity. However, the deviations of the slopes
on v, u, and

(
u − 1

2

)2 are correlated, so the district-level variation is explored
more adequately by examples.

Figure 11.9 plots the fitted expectations and standard deviations for prop-
erties with capital values of NZ$100 000, NZ$160 000, and NZ$250 000 over a
period of three years since the rating valuation, for the solution given in Ta-
ble 11.4. These three cases are marked as A, B, and C, respectively, and the
two components as 1 and 2, so that, for instance, B1 stands for the expected
log-price of a property with CV of NZ$160 000 using the first (left-hand) com-
ponent in Table 11.4. The horizontal dots indicate the CV.

The left-hand panel shows that the first components have uniformly higher
values, although the differences get smaller toward year 3, and shows how
much, on average they differ from the associated CVs, the values intended at
time u = 0. The right-hand panel displays the fitted district-level standard
deviations. These generally increase. The small reductions at the beginning of
the period could be due to the inflexibility of the fitted curve for the variance,
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Fig. 11.9. The fitted expectations and district-level standard deviations for prop-
erties with capital values of NZ$100 000 (A), NZ$160 000 (B), and NZ$250 000 (C)
for mixture components 1 and 2.

which is a polynomial of fourth degree in time. The diagram confirms that
the district-level variances of the second component are higher, except for CV
of NZ$250 000 at the end of the third year, shortly before the next valuation
(compare curves C1 and C2). Although by necessity the two panels are on
different scales, it is obvious that the standard deviations are of greater or-
der of magnitude than the differences between the pairs of expectations. The
within-district standard deviations (0.24 and 0.30) are much greater still. In
conclusion, the two groups are distinguished more by their patterns of vari-
ation than by their expectations. The three-component solution has similar
features; it ‘distils’ the two categories and collects the remainder in a ‘com-
promise’ third category.

Suggested Reading

Two established textbooks on longitudinal analysis are [37] and [192]. Alter-
native terms used for longitudinal data or substantially overlapping with it
are repeated measures [30] and [104] and growth curves [186] and [85]. Lon-
gitudinal studies are often considered as an application of random coefficient
models [97]. Further analytical challenges are presented by nonnormality of
the outcomes [101] and [188], nonlinearity [31], and nonresponse [172] and
nonignorable drop-out in particular [111]. For normally distributed outcomes,
[89] and [105] discuss details of model-fitting algorithms for a wide range of
dependence structures. The method of generalised estimating equations [198]
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was an important breakthrough in the analysis of nonnormally distributed
outcomes in the late 1980s, but it has largely been superseded by computa-
tionally intensive methods.

A very good introduction to time-series analysis, with many examples, is
[17]; [68] is a textbook suitable for the more advanced student. A monograph
on the theory and applications of functional data analysis is [152]. An example
of multivariate mixture models for longitudinal data is given in [127].

Problems and Exercises

11.1. Plot the trajectories for simulated normally distributed longitudinal
datasets observed completely at three time points on n = 50 subjects. Choose
a range of patterns for the vector of expectations µ (increasing, decreasing,
increasing first and then decreasing, and the like) and for the variance matrices
Σ, including some that are close to singularity.
Hint: Compose a variance matrix from its eigenvalue decomposition.
Compare the diagrams and the patterns of expectations and variation for the
data on the original scale and after some common transformations, such as
exponentiation and square, and square root if all the values are positive.

11.2. The triplet of outcomes for a subject can be summarised by the angle
of the trajectory at the second time point; see Figure 11.10 for an illustration.
(This angle depends on the scales used for the two axes.) Plot these angles and
relate their distribution to the vector of expectations µ and variance matrix
Σ. Supplement it with another summary that would provide more information
about µ and Σ.

11.3. For a dataset used (or generated) in Exercise 11.1, predict the outcomes
at the third time point based on the previous two outcomes or only the out-
comes at point 2. Assess the result by the absolute difference | ŷ3j − y3j | for
the two predictors of y3j . Relate the relative success of the simpler predictor
to the (1,3) element of the concentration matrix and to the relative sizes of
the two conditional variances.
Repeat this exercise after a transformation of the outcomes so that they are
not normally distributed but use the predictors that assume normality. Assess
to what extent the prediction is now deficient.

11.4. Check that the sequence of partial totals of a sequence of independent
variables has the Markov property. That is, let X1 , X2 , . . . be independent
variables; then the sequence X1 , X1 + X2 , . . . , X1 + X2 + · · · + Xm , . . . has
the Markov property. Note that the variables X1 , X2 , . . . can have arbitrary
and unrelated distributions.

11.5. Construct an example that shows that a submatrix of a concentra-
tion matrix can differ substantially from the inverse of the corresponding
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Fig. 11.10. The trajectories and angles for a longitudinal dataset with three time
points. The angles are distorted because the horizontal and vertical axes have dif-
ferent scales.

submatrix of the variance matrix. That is, using the standard notation,
Css �= (Vss)−1, where s denotes a set of indices. Explain why this happens.

11.6. Verify the formula for the inverse of a partitioned matrix in (11.3).
Derive an expression for the determinant of this matrix in terms of its blocks.

11.7. Derive the maximum likelihood estimator of the parameters β0 and β1

of an AR(1) sequence.
Hints: Use the parameterisation in terms of the concentration matrix. Derive
the determinant of the concentration matrix by induction, using the identity
Ek+2 = a1Ek+1 − a2

12Ek for the determinants Ek of a sequence of symmetric
tridiagonal matrices Ek , k = 1, 2, . . ., with diagonal elements ah and off-
diagonal elements ah,h+1 = ah+1,h ; Ek is the submatrix of Ek+1 formed by
deleting its first row and column.
Derive a predictor of the next outcome. Explain why outcomes from the past
beyond the immediate are useful for prediction.

11.8. On the web site of the Labour Force Survey in the UK or your country,
find the details of the sampling design, as well as the information about the
imperfect conduct, nonresponse in particular. If a rotating panel design is
used, find out how it was started (full sample size in the first quarter, early
retirements from the panel, or a combination). Find out how nonresponse is
handled.

11.9. Draw a graphical summary of the dates (days) in the dataset EXLb.dat
obtainable from www.sntl.co.uk/BookA/Data. The outcomes in the data are
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the measurements of the concentration of the human placental lactogen (log-
transformed) on 69 healthy women during their (normal) pregnancies; the
measurements are made irregularly. The stature (height) of the women is also
given (in meters). Classify the women into a small number of categories ac-
cording to how regularly they attended the clinic for the measurement and
compare these groups on summaries of the outcomes (by numbers or graphs).
Redraw the diagram so that these categories can be easily distinguished and
explore ways of indicating the women’s heights, suitably coarsened if neces-
sary.

11.10. Fit a random coefficient model to the data in EXLb.dat with a poly-
nomial average regression on gestational age and parallel regressions. Assess
whether the assumption of parallelness is appropriate by simulations from the
fitted model. If your conclusion is negative fit a more complex model (e.g.,
with linear variation of the women’s regressions) and describe the pattern of
patient-level variation.

11.11. Suppose a vector of K outcomes is recorded for each subject in a study
at time points k = 1, . . . , K. Suppose the vectors have a multivariate normal
distribution. Show that the general model X ∼ N (µ,Σ) with no constraints
on µ or Σ is equivalent to the random coefficient model with a polynomial of
degree K−1 on time and unrestricted subject-level variation. Explain why the
scale used for the time (1, 2, . . . ,K) is immaterial. That is, if a different scale
is used, such as (1, 2, 4, 7, . . .), the population can be described by the same
random coefficient model, although with different values of the parameters.

11.12. Fit a mixture of two random coefficient models, both with parallel
regressions, to the dataset in EXLb.dat and describe the features in which the
two mixture components differ most radically. How much certainty is there
in the assignment of the women to the components? Can the assignment be
guessed from their trajectories?

11.13. Generate a dataset from a mixture of two multivariate normal distri-
butions, one with small variances and high correlations and the other with
large variances and small correlations. Fit a mixture of two multivariate nor-
mals and check how well it identifies each subject’s category. Explore how
this depends on the sample size, number of observations per subject, and the
difference between the two distributions.

11.14. Discuss how one might deal with nonresponse or erratic attendance
in the study of pregnant women and human placental lactogen (dataset
EXLb.dat in Exercise 11.10) and what difference it could make to the re-
sults. How should dropping in (first measurement at a later gestational age
than planned) and dropping out (due to delivery in some cases) be treated?

11.15. Discuss how house-price inflation is assessed (informally) in the dis-
tricts of your region or country and what its deficiencies are with regard to
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the causal interpretation of the inflation rate. Give reasons why the inflation
may be uneven, for example, as properties of certain kinds and in certain
price ranges become more sought after. How could this be reflected in a more
complex description of the inflation?

11.16. Semicontinuous outcomes. A variable is said to be semicontinuous if it
is a mixture of a constant (a degenerate variable) and a continuous variable.
A common example of a semicontinuous outcome variable is the amount con-
sumed or usage of a particular product, commodity or service, such as alcohol,
bread, petrol (or miles travelled by car), and air travel. In the subpopulation
of users (consumers), the distribution of the usage is continuous, but the non-
consumers contribute with identical zeros. In a longitudinal study with such
an outcome variable, there are persistent and intermittent consumers and non-
consumers; persistent consumers may tend to consume less in periods when
they do consume. Discuss how the data from such a study would be analysed.
How could the consumption of a subject be predicted for the next time point?
How could the amount consumed (which may be equal to zero) be related to
a background variable?
Hint: For a nonconsumer, consider a negative ‘hypothetical’ consumption
which is never observed because it is truncated at zero (left-censored). For
each positive consumption, the value of the hypothetical consumption is the
same. Regard the hypothetical consumption as having missing values when-
ever the observed consumption is equal to zero. Propose methods for missing
data in this setting.

11.17. Devise a method for dealing with missing data that is suitable for the
following setting. A longitudinal study inquires bi-monthly over a period of one
year (seven time points) about subjects’ attitudes toward their local authority.
Nonresponse arises mainly because subjects are not at home during the week
designated for the contact. Among those with complete records, there is a fair
amount of consistency—the responses of a large proportion of subjects are
the same on every occasion, and for most of the rest they differ by at most
one point on an ordinal scale of seven points. The target of the analysis is the
transition matrix, that is, the matrix of conditional probabilities

P(Xk+1 = h1 |Xk = h0)

for 1 < h0 , h1 ≤ 7, or the average of these probabilities over the six occasions,
k = 1, . . . , 6.
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Meta-Analysis and Estimating Many
Quantities

Meta-analysis is a term used for summarising a collection of studies that
have the same or closely related targets. Each study may contain only modest
information about the target, and meta-analysis seeks to synthesise this infor-
mation and conclude with a single inferential statement. The main challenges
in meta-analysis are related to the incompleteness of the studies: some are
not reported at all, others are reported in a format that does not contain the
items required for the meta-analysis, and, arguably, some studies that should
have been were not conducted. Each study has its own context, such as the
country or region in which it is conducted, time period (year), recruitment
process, measurement and data-recording procedures, and other details of the
design and protocol, which exert an influence on the targets of the studies
and make the meta-analysis more complex.

Section 12.8 deals with a more general problem, that of estimating a large
number of related quantities. If the quantities are similar all the observations
can contribute to the estimation of each of them.

12.1 Introduction

In meta-analysis, we consider D studies, each of them yielding an estima-
tor θ̂d and an estimator of its sampling variance vd = var(θ̂d). Each study
has its target θd , d = 1, . . . , D, such as the average effect of a new treat-
ment over its established alternative in a particular population. It is usually
reasonable to assume that such targets differ very little from one another,
and that sometimes they even coincide. Why should the mean treatment ef-
fect in one country be different from that in another country? Why should
it differ across time (years) or subpopulations? We do not seek any answers
to these questions or any explanations; rather, we take such differences for
granted, although we assume that they are not very large. Apart from the ge-
ographical domain (country) and time, the recruitment, administration, and
data-recording processes exert an influence on the expectation E(θ̂d | d) which
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is regarded as the target in study d. We refer collectively to the domain, time,
and the processes involved in a study as the context . The context of a study
comprises elements, such as the domain (country) and the data-management
procedures, which may include the protocol for dealing with nonresponse and
outlying (exceptional) values.

Meta-analysis seeks to estimate the parameter θ that is devoid of any
context or that would be realised by a study in which each element of the
context would be represented. This definition entails several difficulties. Good
representation, if its meaning were well defined, would entail control over the
context in which studies are conducted. This is impossible to arrange because
a list of all possible contexts cannot be compiled, studies in the past were con-
ducted without any regard for meta-analyses that might be carried out in the
future, and the teams planning their studies may have preferences regarding
some elements of the context that are not in accord with the requirements of
a future meta-analysis. Some elements can be used only in conjunction with
others. For instance, some countries have comprehensive medical registers,
from which suitable patients can be drawn by specified sampling designs, and
the records of the subjects used, with appropriate confidentiality safeguards.
Elsewhere a study has to rely on recruitment of subjects.

The first step in a meta-analysis is to identify the rules for studies that
will be included in it and the sources in which information about such studies
will be searched. For example, of interest may be all the studies in which a
specific treatment was used as the test treatment in comparison with an es-
tablished alternative. The sources may be a list of medical journals and their
volumes since 1975 or another year. The protocol for meta-analysis may in-
clude rules for following up on information with the authors of the identified
journal articles or with their institutions. On no account would any subjects
of the past studies be contacted; their identities are in any case hardly ever
disclosed. The process of the search for studies, delineating them by a compre-
hensive definition, listing the sources to be searched (journals, agencies, and
the like), keywords to be searched in them, and specifying the information to
be extracted, is referred to as systematic review .

In most settings, the datasets or databases of the identified studies are
not available. We assume that for each study we have an estimate θ̂d and
an estimate of the associated sampling variance, v̂d = v̂ar(θ̂d). Further, we
assume that θ̂d is unbiased for its target θd , and v̂d is unbiased for its target
vd = var(θ̂d). These assumptions are not very restrictive. Covariates may be
defined for the studies; the year of the study and its domain (country or region
and its subpopulation) are obvious choices, and other covariates may be based
on the details of the protocols of the studies. Throughout we assume that the
studies are mutually independent. Cases when this assumption is not satisfied
are rare. For example, some dependence arises when one study recruits from
the participants of another.

Figure 12.1 gives an example of a set of D = 28 studies. Each study d is
represented by a horizontal segment centred around the estimate θ̂d , marked
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Fig. 12.1. Graphical summary of a set of 28 studies in a meta-analysis. Each study
d = 1, . . . , D = 28, is represented by a horizontal segment delimited by θ̂d ± 2

√
v̂d ,

with its centre θ̂d marked by a tick.

by a tick, and delimited by θ̂d − 2
√

v̂d and θ̂d + 2
√

v̂d . Instead of c = 2,
another factor could be used for the limits θ̂d ± c

√
v̂d . Such limits could be

interpreted as confidence limits, but they are now redundant because they
refer to a single study. It is not meaningful to count the numbers of studies
that would yield a nominally significant result (indicating evidence that θd

differs from zero), because the hypothesis tests involved are associated with
errors of both types and the powers of these tests are unequal. By analysing
all the studies together, we are bound to estimate with greater precision both
a summary of the quantities θd and each value θd .

12.2 Studies with Identical Targets

The target of a meta-analysis, denoted by θ, is obvious only when the targets
of the individual studies coincide; θ1 = . . . = θD = θ. In this case, the context
of the study is immaterial, or the studies have identical contexts. We consider
this case first and then explore how its assumption may be contradicted by
the data.

The D estimators θ̂d are unbiased for the common target θ, so their linear
combination that is most efficient for θ is

θ̃ =
D∑

d=1

cd

c+
θ̂d , (12.1)
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where cd = 1/vd is the reciprocal of the sampling variance, called the precision
of θ̂d (in estimating θd), and c+ = c1 + · · ·+ cD is the total of these precisions.
If the sampling variances vd are not known, usually the case in practice, their
estimates are used instead. The estimator θ̃ is a simple example of synthesis;
see Section 1.1.1. Assuming that the studies are mutually independent, the
sampling variance of θ̃ would be

var
(
θ̃
)

=
1
c2
+

D∑
d=1

c2
d vd

=
1
c+

, (12.2)

if the precisions cd were known. Although this is an unrealistic assumption,
the relative sizes of the precisions may be known, for instance, when cd are
proportional to the sample sizes nd , for instance, when cd = nd/σ2. In this
setting, σ2 is usually the common population variance in the studies. Then
the coefficients cd/c+ are proportional to the sample sizes of the studies,
cd = c+ nd/(n1 + · · · + nD). The sampling variance of θ̃ is not known in this
case but is a known multiple of the factor σ2:

var
(
θ̃
)

=
σ2

n1 + · · · + nD
.

Note that we have made no reference to normality in the derivation of θ̃.
Being common to the D studies, the variance σ2 can be estimated by pool-

ing its within-study estimates σ̂2
d . We can reuse the general idea of synthesis

for this purpose, but this can no longer be done without a distributional as-
sumption. If σ̂2

d are distributed according to the scaled χ2 distributions with
n∗

d = nd − pd degrees of freedom, then they are unbiased for their respective
targets σ2

d , and their respective sampling variances are 2σ4/n∗
d . Here pd is the

number of degrees of freedom lost due to estimation of model parameters in
study d, typically by using ordinary regression. When θ̂d are sample means,
pd = 1. In complete analogy with (12.1) and (12.2), we obtain the combination

σ̃2 =
D∑

d=1

n∗
d

n∗
+

σ̂2
d (12.3)

(n∗
+ = n∗

1 + · · · + n∗
D) and

var
(
σ̃2
)

=
2σ4

n∗
+

.

Of course, studies with n∗
d < 1 are of no use for estimating σ̃2, because they

contain no information about σ2.
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The assumptions of equal treatment effect, θ1 = . . . = θD , and propor-
tional sampling variance, vd = σ2/n∗

d , represent the setting most congenial for
analysis. When the variances vd are known or estimated with high precision,
the estimates θ̂d are unlikely to be identical, even when their targets θd are.
Their expected dispersion is related to the variances vd :

E

{
1

D − 1

D∑
d=1

(
θ̂d − θ̄

)2
}

=
1

D − 1

D∑
d=1

E
{(

θ̂d − θ̄
)2
}

=
1

D − 1

D∑
d=1

⎧⎨⎩ (D − 1)2

D2
vd +

1
D2

∑
d′ �=d

vd′

⎫⎬⎭
=

1
D2(D − 1)

D∑
d=1

{
(D − 1)2 + (D − 1)

}
vd

=
1
D

D∑
d=1

vd ,

where θ̄ = (θ̂1 + · · · + θ̂D)/D is the average of the study-level estimates.
Therefore, when the sample variance of the estimates θ̂d is way in excess of
the average sampling variance of the estimators θ̂d , we have evidence that
the targets of these estimators, θd , are not identical. The distribution of the
sample variance, which would aid us in judging what amounts to being in
excess, is not straightforward to derive. It is more practical to generate it
empirically, by drawing random vectors from the distribution N (0,V), where
V = diagd (vd). An example based on the setting of Figure 12.1 is given in
Figure 12.2. The histogram summarises 25 000 replicate values of the sample
variance of the set of 28 estimates θ̂d with the variances vd equal to their
estimates v̂d . The vertical dashes mark the 0.025 and 0.975 quantiles, equal
to 0.70 and 2.09, respectively; the expectation of the distribution is equal
to 1.29 and median to 1.26. For the realised dataset, the sample variance is
2.86, equal to the percentile 99.3 of the empirical distribution. That is ample
evidence that the targets of the studies are not identical. The distribution
of the sample variance is close to normal, but it is closer to a scaled χ2

distribution with degrees of freedom close to D − 1 = 27. In fact, it would be
27 if each study had the same variance vd .

12.3 Study-Specific Targets

If the subjects’ records for all the studies in a meta-analysis were available,
we would consider a two-level (regression) model with subjects within studies,
allowing for differences among the within-study regressions in their intercepts
and possibly also in the slopes on some of the covariates. In such a model, the
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Fig. 12.2. Empirical distribution of the average dispersion of a set of studies that
are assumed to have a common target; based on the setting of Figure 12.1. The
vertical line marks the empirical mean and the vertical dashes the 2.5th and 97.5th
percentiles. The realised value of the dispersion is marked by the short solid vertical
segment.

average regression describes the associations in an average context and the
study-level variance (matrix) the extent and pattern of variation among the
study-specific regressions. Usually the subject-level records are not available
for all the studies, and the sufficient statistics for the two-level model, which
include the totals of crossproducts of the outcome variable with the covariates,
cannot be recovered from the available information. Therefore this avenue
cannot be pursued.

When only the D pairs of the sample quantities (θ̂d , v̂d) are available we
consider the model

θ̂d = θ + δd + εd , (12.4)

where δd , d = 1, . . . , D, are the deviations of the study-specific effects θd

from their (superpopulation) average θ and εd are the errors in estimating
the study-specific effects θ̂d . The deviations are assumed to be a random
sample from a centred normal distribution with unknown variance σ2

B . We
refer to σ2

B as the context-level variance. The estimation errors are mutually
independent and are independent also from the deviations δd , both within
and across studies. Even though the model contains two random terms for
studies, it is well identified because the variance of one of them is assumed to
be known. In fact, only v̂d = v̂ar(εd) are available, but we regard the confusion
of the estimate v̂d with its target vd as a minor transgression.
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The pair of parameters θ and σ2
B may seem to be an attractive and compact

summary of the D studies; θ is the expected effect in an average context and
σ2

B describes the variation of the within-context expected effects. The variance
σ2

B can also be motivated as the variation of the D estimates that is in excess
of what one might expect if the studies had a common target:

varD(θ•) = ED(v•) + σ2
B ,

where the subscript D indicates averaging over the studies. For example, the
studies summarised in Figure 12.1 have sample variance 2.86 and the average
sampling variance is 1.29, yielding the estimate σ̂2

B = 1.57. In the next section,
we derive an alternative estimator.

Provisionally, we adopt the average of the study-level estimates θ̂d , equal
to 0.81, as an estimate of θ. If it were equal to θ, and σB were equal to
σ̂B = 1.25, we would conclude that the average expected treatment effect is
positive but the expected effect in some studies (contexts) is negative. Such
a conclusion implies a reference to a population of contexts, and hence their
representation among the studies that were conducted and were identified
for the meta-analysis. Usually each study responds to a specific need and is
funded after approval of a carefully formulated proposal. The proposal may
review and draw on the experiences of other studies conducted in the past
that have similar inferential agendas, but an appeal to good geographical or
temporal representation rarely carries much weight. Other elements of the
context, definitions of the outcomes and measurement and recording proce-
dures in particular, could, with good reason, be proposed only as pursuing
the practice believed to be the best at the time and best suited for the cur-
rent circumstances. Therefore, good representation of these elements of the
context is not feasible, but neither can the meaning of ‘good representation’
be defined without ambiguity and temporal dependence.

In brief, for a straightforward interpretation of the parameters θ and σ2
B we

would require a meta-design which controls the representation of the contexts
in the collection of studies to be conducted. This is not feasible. However,
even setting this problem aside, θ may not be a meaningful or useful quantity.
For example, if the most important element of the context is the country
in which the study is conducted, the average of these elements is not well
defined. For example, suppose studies of methods for encouraging cessation
of smoking have been conducted mainly in the United States, Canada, some
western European countries, and Japan. The average of the treatment effects
is not a useful quantity because we cannot identify a (human) population that
would correspond to the ‘average’ context (country). Similarly, for time (year)
as the element of the context, we are interested in the present and near future,
and the main purpose of the studies conducted in the past is to contribute
to such inference, not to make θ refer to the average or median year of the
studies.

Time is an example of an element of the context that is ordered, and so, at
least in principle, we can consider the inference about present or near future
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as a slight extrapolation. This can be incorporated in the model in (12.4) by
a regression on time. Most other contexts are categorical, such as the method
of measurement. The mean or average for such a categorical variable is not
defined and, in fact, one of the categories, such as the practice established as
present, may be the most appropriate context for inference.

12.4 Maximum Likelihood Estimation

We describe the Fisher scoring algorithm for fitting the model in (12.4) to
which we add regression,

θ̂d = xdβ + δd + εd , (12.5)

with the assumptions of independence and normality of δd and εd ; xd is the
vector of covariates for study d; its first element is the intercept 1. The log-
likelihood associated with this model is

l = −1
2

{
D log(2π) +

D∑
d=1

log
(
σ2

B + vd

)
+

D∑
d=1

e2
d

σ2
B + vd

}
,

where ed = θ̂d − xdβ. Differentiation of l with respect to β yields

∂l

∂β
=

D∑
d=1

ed xd

σ2
B + vd

,

which can be expressed in matrix notation as

∂l

∂β
= X�V−1e , (12.6)

where X is the matrix constructed by vertically stacking the rows xd , e =
(e1 , . . . , eD)� is the vector of residuals, also expressible as e = θ̂ − Xβ with
θ̂ = (θ̂1 , . . . , θ̂D)�, and V is the diagonal matrix with the variances σ2

B + vd

on its diagonal. Equation (12.6) has the solution

β̂ =
(
X�V̂

−1
X
)−1

X�V̂
−1

θ̂ , (12.7)

which depends on σ̂2
B through an estimate V̂ of V. If σ2

B were known, the
sampling variance of β̂ would be var(β̂ |σ2

B) = (X�V−1X)−1. The estimator
in (12.7), similar to (9.9), is a weighted least squares estimator. Each study
contributes to the quadratic forms X�V−1X and X�V−1θ̂ with weights
1/(σ2

B + vd); smaller sampling variance vd results in greater weight, but the
disparities in the contributions are moderated by σ2

B or its estimate.
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The study-level variance σ2
B is estimated from its score and expected in-

formation. The score is

s =
∂l

∂σ2
= −1

2

D∑
d=1

1
σ2

B + vd
+

1
2

D∑
d=1

e2
d

(σ2
B + vd)2

,

and the expected information is

I = − E
{

∂2l

∂(σ2)2

}
= −1

2

D∑
d=1

1
(σ2

B + vd)2
+

D∑
d=1

E
(
e2

d

)
(σ2

B + vd)3

=
1
2

D∑
d=1

1
(σ2

B + vd)2
.

Hence the iterative updating formula

σ̂2
new = σ̂2

old +
sold

Iold
,

using the same notational conventions as in Section 9.3.
For the example in Figure 12.1, we obtain θ̂ = 0.851, with estimated

standard error 0.297, and estimated study-level variance σ̂2
B = 1.207, with

estimated standard error 0.654. The latter estimator has the same problem as
discussed in Section 9.5, that the estimator and the estimator of its standard
error are highly correlated. The likelihood ratio test statistic, which compares
the deviances of the model fits with σ2

B estimated on the one hand and set
to zero on the other, provides a more suitable assessment of the evidence
against the hypothesis that σ2

B = 0. The value of this test statistic is 7.87,
and it should be compared with a high quantile of the χ2

1 distribution. For
example, the 95th percentile is 3.84 and the 99.5th percentile is 7.88. Thus
we have ample evidence that the studies do not have a common target. This
is in accord with the conclusion based on Figure 12.2.

The studies were conducted over a period of 25 years, between 1970 and
1995, and most of them took more than a year to complete. With an element
of arbitrariness, we classify the studies into five ordinal categories according
to the year in which they commenced. The first five studies in ascending order
in Figure 12.1, started in 1970–1974, are in the first category, the next four
(1975–1979) in the second, then seven in the third, nine in the fourth, and
the top three (1990–1995) in the fifth category. We regard this categorical
variable as ordinal, so that by including it in the regression model in (12.5)
we introduce only one new parameter. The regression fit with this covariate
t is 0.003 + 0.277t; the deviance is reduced by only 1.39 vis-à-vis the model
without the covariate. Therefore we have no evidence of any trend over the
period covered by the studies. The estimate of the between-study variance σ̂2

B

is reduced to 1.064 (from 1.207). The date of the study does not contribute
substantially to the between-study variation.
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The analysis presented here is tainted with the problem of improper use
of the regression. The year of the study, or the related category, cannot be
assigned (manipulated) for a study, and so the regression parameter as a target
cannot be regarded as an effect of time. Related to this is the problem that
the studies have subjects drawn from different populations, with differences
that may have substantial systematic components over time. For example, the
success rates of an emergency operation cannot be compared straightforwardly
over a long period of time if the subjects (patients) in the different periods have
very different medical histories. One reason for such differences is that certain
operations that were experimental many years ago have become routine since,
so that many of the subjects in recent years would not have survived had they
been treated for their illnesses and conditions earlier in their lives by methods
current at that time. At an extreme, the success rate may be dropping over
the years because more and more acute cases are presented that in the past
would not have been considered for surgery at all. The comparison of the
success rates would not be appropriate for assessing the effectiveness of the
surgeons and their teams, or of a health care system as a whole.

In brief, infeasibility of a meta-design is an obstacle to making inferences
about effects. We cannot assign subjects to studies (e.g., by randomisation),
nor can we assign at will values of covariates to studies as assumed by the
regression models that are applied.

12.5 Publication Bias

The results of studies that have large sample sizes and are conducted over a
long period of time or in several countries are usually published and discussed
extensively in the literature. Being expensive, such a study may have a range of
inferential goals. The team of researchers working on the study may publish
details of its design, some results based on intermediate outcomes, results
of some preliminary analyses, and results of analyses on peripheral issues in
addition to those responding to the main inferential agenda. In contrast, small
studies are less likely to be published. The team may find the results of little
importance, for example, because no evidence of a treatment effect was found.
(Setting aside numerous other factors, no evidence is a more likely outcome
in small studies than in large ones.) Journal editors may reject a submitted
manuscript for the same reason, or simply because of the small sample size
of the study, or because submissions about other more prominent studies
are regarded as more important and a better ‘value’ for the limited space in
their journals. Also, larger studies tend to be conducted by bigger and more
competent teams, with greater experience in all aspects of research, including
the publication process.

Attainment of a significant outcome of a key hypothesis test is often re-
garded as a kudos by the authors and as a positive point by manuscript
reviewers. This is inappropriate; if such practice were pursued consistently,
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we would not be able to assess the extent of false positive indications of sig-
nificance. Another undesirable consequence of such practice is that studies are
published selectively. Studies should be published as documents of their good
conduct and analysis, and the statistical significance is not directly related to
these. Of course, the design of a study may influence the likelihood of a sig-
nificant outcome, but this should not be confused with the actual realisation
(result) of the planned hypothesis test.

We are unable to estimate θ without bias because, in essence, some stud-
ies that should have been conducted, to arrange good representation of the
contexts, were not carried out. It may still be meaningful to consider what
the outcome of a meta-analysis would be if the results of all the studies were
available. For this goal, it is appropriate to refer to the missing-data frame-
work. In it we regard the corresponding data as the complete dataset and the
available results as the incomplete dataset (see Chapter 5 for the terminology
used). Such an analysis is concerned principally with the bias in estimating the
average effect θ relatively to the complete-data analysis. The issue is referred
to as publication bias. We could similarly refer to the uneven representation
of the contexts among the studies as conduct bias.

Apart from the failure to publish the results of a study, we include under
the heading of publication bias all other reasons for not having the results of
some of the studies. These include publication in journals not included in the
search, in languages other than English (and some other western European
languages), and the failure to identify all the appropriate articles and their
details in the searched literature. Including a study in the meta-analysis in-
appropriately or more than once are other possible sources of error, but they
are easy to avoid when the meta-analysis comprises only a moderate number
of studies, as is often the case.

12.5.1 Funnel Plot

The fundamental difficulty in constructing a plausible complete dataset is that
we do not know how many studies, if any, are missing from our list and can
merely hypothesise about the reasons for not publishing a study, or failing to
find any publications about it.

If all studies were published, without any prejudice, studies with large
sample sizes nd and small sampling variances vd would tend to have estimates
θ̂d in a narrow range and studies with small sample sizes in a wider range.
Both would be approximately symmetrically distributed around the estimate
θ̂. Therefore, a plot of the estimates θ̂d against the (estimated) sampling vari-
ances v̂d , or their transformation, would have a funnel shape for the complete
data. Departure from this shape would indicate that some studies are omit-
ted from the analysis. The plot of θ̂d against f(v̂d) for a suitable monotone
function f is called the funnel plot. An example is presented in Figure 12.3 for
a set of 75 studies. The estimated sampling variation of the studies is drawn
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Fig. 12.3. Example of funnel plots for a collection of 75 studies. The median of the
study-specific estimates θ̂d is marked by vertical dashes.

on two scales, as standard deviations,
√

v̂d , in the left-hand panel, and log-
precisions, − log(v̂d), in the right-hand panel. Although some asymmetry can
be discerned in both panels, completing either plot to make it symmetric is
a nontrivial task. Moreover, we cannot expect a perfectly symmetric diagram
even with a complete set of studies because of sampling variation within each
study and a relatively small number of studies within any narrow range of
estimated standard errors

√
v̂d . This is easy to illustrate by simulations.

We borrow the context of Figure 12.3, that is, the number of studies D =
75 and their (estimated) mean 0.73 and the standard errors, and generate
sets of D estimates θ̂d according to the model in (12.4), with θ = 0.73, δd ∼
N (0, 0.01), and εd ∼ N (0, v̂d). We define a measure of asymmetry, evaluate
it on every replicate collection of the D studies, and compare the distribution
of these simulated features with its realised version. The purpose of this is
to assess how much asymmetry is generated by a complete-data (symmetric)
model. First we define a measure of asymmetry of a K × 1 vector u with
respect to a constant c as

S(u, c) = max
∣∣ 1

2 (uA + uD) − c
∣∣ ,

where uA and uD are the versions of vector u obtained by sorting it in as-
cending and descending order, respectively. This is the largest of the (ab-
solute) deviations of the means of the kth and (K + 1 − k)th largest values,
k = 1, . . . , [K/2], from the ‘centre’ c.

We define the measure of asymmetry for a collection of studies as follows.
We sort the realised studies according to their estimated sampling variances
v̂d . We take segments of K = 10 studies, and for each segment evaluate
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their measure of asymmetry around the estimated mean θ̂. Let θ̂
(A)

be the
permutation of θ̂ into ascending order according to the estimated variances.
The first segment, composed of (θ̂(A)

1 , . . . , θ̂
(A)
K ), yields the value S1 , the next,

(θ̂(A)
2 , . . . , θ̂

(A)
K+1), yields S2 , and the last, (θ̂(A)

D−K+1 , . . . , θ̂
(A)
D ), yields SD−K+1 .

Denote S = (S1 , . . . , SD−K+1).
We repeat this exercise, but this time exclude from each segment the study

with the smallest value of the estimate θ̂d , so that the measure of asymmetry
is evaluated for only K − 1 studies in each instance. The resulting vector of
measures is denoted by S(A). Finally, we carry out the mirror image of this
exercise and evaluate the measure of asymmetry after excluding from each
segment the study with the largest value of θ̂d . The result in denoted by S(D).

If by excluding a study with (θ̂d , v̂d) we reduce the value of S substantially,
the funnel plot could be made much more symmetric by adding a study near
the mirror image of this study, that is, with (2θ̂d − θ̂, v̂d). From the vectors
S, S(A), and S(D) we can identify the study which, when excluded, would re-
sult in the greatest reduction of the measure of asymmetry. Thus, we identify
the segments for which S − S(A) and S − S(D) attain their respective max-
ima sA and sD and take the segment with the greater of these two values.
Let s∗ = max (sA , sD). This is the maximum reduction of asymmetry by ex-
cluding a single study, and we denote it by MRA1. The maximum reduction
of asymmetry by excluding m > 1 studies from the meta-analysis is defined
similarly, and is denoted by MRAm. In the segment in which the value of s∗

is realised, we identify the study that was excluded to attain s∗. This is the
study with the smallest value of θ̂d in the segment if s∗ = s(A) and the maxi-
mum occurs for S(A), and the study with the largest value of θ̂d otherwise. If
we could add the results of a single study to our collection, symmetry of the
funnel plot would be improved most by adding a study with results equal to
the mirror image of the results of this study.

We adopt MRA1, the value of s∗, as our feature. We fit the model in (12.4)
and simulate from the fit 999 sets of estimates θ̂d , d = 1, . . . , D, with the same
values of v̂d as in the realised study. For each replicate dataset we evaluate the
feature s∗. For the realised set of D studies, s∗ = 0.350, and among the 1000
values it is the 917th largest. Therefore, we have very weak evidence of an
omitted study. The study that brings about more asymmetry than any other
has θ̂d = 1.801, the largest of all of the estimates, with v̂d = 0.143, close to
the largest value, which is 0.159.

The appropriate conclusion is that we have failed to find any evidence of
a missing study. This we cannot interpret as certainty that all the relevant
studies have been identified. We could add fictitious study results to the funnel
plot without upsetting the symmetry and yet alter the estimates θ̂ and σ̂2

B

appreciably. Further, if we found evidence of a missing study and did identify
a study d∗, the results of which upset the symmetry more than any other
study, the missing study need not have results in the vicinity of (2θ̂d∗ − θ̂, v̂d∗),
because symmetry of the funnel plot could be promoted by adding (imputing)
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one or several study results elsewhere. Attaching any importance to study d∗

or to the mirror image of its results would amount to personalisation (Section
9.7).

The procedure described finds or fails to find evidence of a single missing
study. If some evidence is found, the procedure can be repeated as many times
as necessary, with the studies that upset the symmetry most in each of the
earlier applications removed, until no evidence is found. By each removal, the
funnel plot becomes more symmetric, so it is unlikely that evidence could
be found of more than a handful of studies missing. After each removal, the
estimate θ̂ can be updated.

Although the problem of missing studies (publication bias) can be formu-
lated as a problem of missing data, addressing it with integrity, for example,
by multiple imputation (Section 5.5), is difficult because we have uncertainty
about both the number of missing studies and their results. In the described
procedure, the width of the segment, K = 10, is chosen partly by convention.
On the one hand, the studies in each segment should have a narrow range of
variances v̂d . On the other hand, K should not be too small, otherwise sub-
stantial departures from symmetry can be expected in many segments even
when the funnel plot is symmetric. The procedure can be used in another
mode. By simulating measures of asymmetry for a range of scenarios (number
of studies D, sampling variances vd , and study-level variance σ2

B), we can get
a feel for how much asymmetry can be expected in the funnel plot when no
studies are missing.

In conclusion we note that large-scale studies are unlikely to be missing, so
the impact of the studies that might be hypothesised to be missing would be
overstated by their number. However, missing studies are only one element of
uncertainty about the ideal target θ associated with the average (or no) con-
text. For example, when no studies with the relevant agenda were conducted
in a particular period or a particular geographical region, we could not draw a
conclusion to the contrary, that some studies must have been conducted, but
we may consider what the results of the meta-analysis would be if such studies
were conducted and these and other elements of the context were represented
in the meta-analysis more evenly.

12.6 Inference for a Particular Context

We return to the setting in which we assume that all the relevant studies have
been identified and the contexts are represented among these studies evenly. A
weakness of the target θ, and consequently of its estimator θ̂, is that it refers to
an unrealisable context. For example, the ‘average’ of a collection of countries
does not have a meaningful definition. For inferences about θ applicable to
the present or the recent past, studies conducted decades ago should be less
relevant than more recent studies. In brief, it is more meaningful to make
inferences for a given context, instead of the ambiguously defined and often
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nonexistent ‘average’ or a typical context. Extrapolation to the near future
and a country not represented among the studies would be even more useful,
but it is a more difficult problem.

We consider first estimation of θ for one of the realised contexts, say,
d∗, so that our target is θd∗ . We derive an estimator of θd∗ that draws on
the information in all the studies. This is the estimator of the conditional
expectation of θd∗ given θ̂d∗ . When both θd∗ and θ̂d∗ are regarded as random
variables their joint distribution is(

θd∗

θ̂d∗

)
∼ N

{(
θ

θ

)
,

(
σ2

B σ2
B

σ2
B vd∗ + σ2

B

)}
.

Hence, (
θd∗ | θ̂d∗

)
∼ N

{
θ +

σ2
B

vd∗ + σ2
B

(
θ̂d∗ − θ

)
, σ2

B − σ4
B

vd∗ + σ2
B

}
,

which motivates the estimator

θ̃d∗ = θ̂ +
σ̂2

B

v̂d∗ + σ̂2
B

(
θ̂d∗ − θ̂

)
. (12.8)

This is a shrinkage estimator, pulling the unbiased estimator θ̂d∗ toward the
average estimator θ̂. The amount of shrinkage, or pull, depends on the relative
sizes of the sampling and between-study variances. For instance, if σ2

B were
very small, θ̂d∗ could be improved a great deal, because all D studies would
contribute substantially to θ̃d∗ . In contrast, when σ2

B is large, the studies have
very different targets, and one study contributes very little to the shrinkage
estimation of the other. We can describe θ̃d∗ as exploiting the similarity of
the studies; see Section 3.8 for a similar application to small-area estimation.

The estimator θ̃d∗ can also be derived by synthesis. The unbiased θ̂d∗ and
small-variance θ̂ are alternative estimators of θd∗ . Instead of choosing one of
them, we combine them with the coefficient for which the combination has
the smallest MSE. For simplicity, we ignore the uncertainty about θ̂, that is,
assume that θ = θ̂. Then

MSE
{

(1 − b)θ̂d∗ + bθ̂; θd∗
}

.= (1 − b)2vd∗ + b2(θd∗ − θ)2 , (12.9)

and the minimum of this quadratic function is attained for

bd∗ =
vd∗

vd∗ + (θd∗ − θ)2
.

We estimate bd∗ by b̂d∗ = v̂d∗/(v̂d∗ + σ̂2
B), replacing the squared deviation

(θd∗ − θ)2 by its estimated expectation σ̂2
B . The estimator (1− b̂d∗)θ̂d∗ + b̂d∗ θ̂

coincides with θ̃d∗ in (12.8).
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The estimator θ̃d∗ can be adapted for the regression model in (12.5) by
replacing the estimated average effect θ̂ with its fit xd∗ β̂:

θ̃d∗ =
σ̂2

B

v̂d∗ + σ̂2
B

θ̂d∗ +
v̂d∗

v̂d∗ + σ̂2
B

xd∗ β̂ .

Note that σ2
B and its estimator in this expression refer to the study-level

variance after adjusting for the covariates in X.
The squared deviation ∆2

d∗ = (θd∗−θ)2 might be estimated more efficiently
by combining its alternative estimators, (θ̂d∗ − θ̂)2 and σ̂2

B . However, the
relevant combination (coefficients) is easy to find only in some simple settings
that are not realistic.

The uncertainty about θ̂ is easy to incorporate, although it makes very
little difference to θ̃d . Assuming that σ2

B and vd are known, the exact version
of equation (12.9) is

MSE
{

(1 − b)θ̂d∗ + bθ̂; θd

}
= (1−b)2vd∗ +b2

(
v + ∆2

d∗
)−2b(1−b) cov

(
θ̂d∗ , θ̂

)
and

cov
(
θ̂d∗ , θ̂

)
=

1
c+

cov

(
θ̂d∗ ,

D∑
d=1

cdθ̂d

)

=
cd∗

c+
vd∗ ,

where v = var(θ̂), cd = 1/(vd + σ2
B), and c+ = c1 + · · ·+ cD . Hence the MSE

is

b2

{
v + vd∗

(
1 − 2

cd∗

c+

)
+ ∆2

d∗

}
− 2bvd∗

(
1 − cd∗

c+

)
+ vd∗ ,

and this quadratic function of b attains its minimum for

bd∗ =
vd∗ (1 − cd∗/c+)

v + vd∗ (1 − 2cd∗/c+) + ∆2
d∗

.

As earlier, we replace the squared deviation ∆2
d∗ by σ2

B , its expectation over
the studies, and the unknown quantities vd∗ , θ, and σ2

B by their estimates.
Usually, vd∗ is much greater than v, so the impact of v on the coefficient bd∗ is
negligible. When σ2

B is small the fraction cd∗/c+ is substantial for at most one
or two studies that have variances vd∗ much smaller than the other studies.
For other studies the fraction cd∗/c+ is small and can be ignored. Then we
obtain the original shrinkage estimator in (12.8).

The estimator θ̃d∗ can be improved by exploring alternatives to estimation
of ∆2

d∗ . A conservative strategy is to specify an upper bound for ∆2
d∗ , and

combine θ̂d∗ and θ̂ optimally, assuming that ∆2
d∗ attains this bound. It can

be shown, as in Section 8.3.2, that this is a minimax estimator among the
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linear combinations of θ̂d∗ and θ̂ for feasible deviations ∆d∗ . In most contexts,
an upper bound for ∆2

d∗ would be set to a multiple of σ̂2
B , such as 4σ̂2

B .
Information specific to study d∗ may be available, and that might enable one
to set the bound much lower, although only for study d∗.

12.6.1 Prediction for an Unrealised Context

We turn next to estimating θ for a context not realised by any of the studies;
we refer to this as the target context . Prediction of θ for the near future in
a given population is a realistic example. If the context can be represented
in a regression model, this is a standard prediction problem. However, we
should be wary of any extrapolation, especially when the values of x have not
been set by design. As the number of studies is never very large, we cannot
rely on any asymptotic results or properties, and the procedures based on
search for a parsimonious valid model are not very effective. Every degree
of freedom expended by defining a more complex regression model inflates
the sampling variance of the prediction a lot, so a covariate is useful only
when it reduces the bias of the prediction substantially. In practice, clear cut
associations are difficult to identify because each study result is subject to
considerable uncertainty. Therefore we may have no useful model on which to
base our prediction, other than the model in (12.4), or (12.5) with one or a
few covariates.

If we regard all the realised or plausible contexts as an unstructured col-
lection, our best prediction for a specific context is θ̂, with MSE equal to
σ2

B + var(θ̂). This may be unsatisfactory when some information, originating
from another data source or from expert opinion, suggests that certain studies
have contexts that are closer to the target context. When the target context is
estimated by θ̂, the realised studies contribute to the prediction with weights
wd = vd/(vd + σ2

B). We can alter these weights to w′
d = wd ud/u+ , where

u+ = (u1 + · · · + uD)/D. The adjustment factors ud are set subjectively,
reflecting expert opinion. Their purpose is to alter the influence each study
exerts on the prediction; for those with contexts closer to the target, ud is set
greater than for those with more distant contexts. The concerns about the
ambiguity of how ud are set can be allayed by a sensitivity study, considering
several plausible sets of factors ud . The favourable outcome of such a study
is that the predictions based on these sets differ insubstantially. Otherwise it
is difficult to draw a firm conclusion.

12.7 Multivariate Meta-Analysis

Meta-analysis is usually concerned with estimating a single target or one
target per study. Examples where two or more targets are estimated for the
typical or a specific context are rare because, within a relevant theme, many
studies that do not record all the relevant outcomes would have to be excluded.
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We nevertheless study this setting and explore how one outcome variable can
contribute to estimating a summary of another.

Suppose studies d = 1, . . . , D concluded with K-variate vectors of esti-
mates θ̂d and estimated sampling variance matrices V̂d . We assume that the
estimators θ̂d are unbiased for their respective targets θd and V̂d are unbiased
for the sampling variances Vd = var(θ̂d). We can estimate the vector θ for
the average context componentwise, but a more elegant approach is by direct
maximum likelihood. The model considered is

θ̂d = θ + δd + εd ,

where δd is a random sample from NK(0,ΣB) and εd is a random draw from
NK(0,Vd); we ignore the uncertainty about Vd . The constant vector θ can
be replaced by multivariate regression Xdβ with a matrix of regressors for
θ̂. We impose no constraints on ΣB ; in particular, the components of δd (or
of θd = θ + δd) may be highly correlated. Maximum likelihood estimators of
θ and ΣB are derived by Fisher scoring, yielding equations similar to their
counterparts for the univariate case:

β̂ =

(
D∑

d=1

X�
d Ŵd X

)−1 D∑
d=1

X�
d Ŵd θ̂ ,

Σ̂B,new = Σ̂B,old +

(
D∑

d=1

Ŵ
(2)

d

)−1 D∑
d=1

{
−Ŵd +

(
ed,W e�d,W

)}
, (12.10)

where Wd = (Vd + ΣB)−1, W(2)
d is the matrix formed by elementwise squar-

ing of Wd , and ed,W = Ŵ
−1

d êd . As an alternative, ΣB may be estimated by
moment matching as the matrix difference between the sample variance ma-
trix of the estimates θ̂d and the average of the estimated sampling variances
Vd . Weights can be used in this averaging, and the weights can be iterative,
adjusted after each updating of ΣB .

The vectors θd are estimated by shrinkage as their estimated conditional
expectations given the model fit:

θ̃d = θ̂ + ΣB (ΣB + Vd)
−1
(
θ̂d − θ̂

)
.

Like its univariate version, this estimator can be interpreted as exploiting the
similarity of the context-specific values θd . When ΣB involves high correla-
tions, components k of θ̃d , d �= d∗, contribute to component k of θ̃d . However,
the other components of θ̂d also contribute to component k of θ̃d . This is ob-
vious as the weight matrix ΣB (ΣB + Vd)

−1 is not diagonal. Thus, similarity
is exploited not merely across the studies but also across the components of
the outcome vector.
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12.8 Estimating Many Quantities

Inference about a specific context is an example of estimating one (or sev-
eral) of a large number of related quantities. In this section, we study a more
general setting in which there are D independent estimators θ̂d , each based
on a separate dataset (study), with target θd . Suppose each estimator θ̂d is
unbiased for its target θd and has sampling variance vd = f(nd)g(θd), where f
and g are known functions. An example is provided by the setting f(n) = 1/n
and g(θ) = θ, which may be suitable for the means of Poisson-distributed
samples. For estimating the within-sample variances of homoscedastic nor-
mally distributed samples, f(n) = 1/(n − 1) and g(θ) = 2θ2. Note that there
is some indeterminacy in the product f(n)g(θ); a constant factor can be ex-
tracted from one function and included in the other.

Let θ be the mean of the D quantities θd , and σ2
θ =
∑

d(θd − θ)2/D their
variance. As an alternative to θ̂d , we might consider an (unbiased) estimator
of θ, such as the mean of the estimators, θ̂ = (θ̂1 + · · · + θ̂D)/D, or their
weighted version

θ̂ =

(
D∑

d=1

1
vd

)−1 D∑
d=1

θ̂d

vd
. (12.11)

Denote the sampling variance of θ̂ by v.
Instead of choosing either θ̂d or θ̂ to estimate θd , we combine them as

θ̃d = (1 − bd)θ̂d + bd θ̂ , (12.12)

with the coefficient bd for which MSE(θ̃d ; θd) is minimised. This coefficient
depends on some unknown quantities, so we use its estimator instead. The
MSE of the composition θ̃d is

MSE
(
θ̃d ; θd

)
= (1 − bd)2vd + b2

dv + 2bd(1 − bd)
cd

c+
vd + b2

d (θd − θ)2 ,

where cd = 1/vd are the coefficients in the estimator θ̂ in (12.11) and c+

is their total. We ignore the bias of θ̂ in estimating θ, but not its bias in
estimating θd . The MSE attains its minimum for

b∗d =
vd

(
1 − cd

c+

)
vd

(
1 − 2cd

c+

)
+ v + (θd − θ)2

. (12.13)

Since θd is the target, we replace the squared deviation (θd − θ)2 in b∗d by its
mean σ2

B . When there are many studies this variance is estimated with much
greater precision than the squared deviation it replaces. For example, based
on the statistic S =

∑D
d=1(θ̂d − θ̂)2, the estimator



390 12 Meta-Analysis and Estimating Many Quantities

σ̂2
B =

1
D

{
S −
(

1 − 2
D

) D∑
d=1

vd

}
− v ,

derived by moment matching, is approximately unbiased for σ̂2
B . In this ap-

proach, the variance σ2
B or its estimator has a pivotal role, as we rely on an

assessment of how similar the targets θd are. As an alternative to estimating
(θd − θ)2 by σ̂2

B , we may adhere to the form of b∗d in (12.13) but explore the
consequences of substituting an incorrect value for θd or θd − θ and attempt
to ameliorate the error.

By way of an illustration, we explore estimation of within-group variances
in an ANOVA setting with heteroscedasticity. There are D groups, with nor-
mally distributed outcomes yjd , j = 1, . . . , nd , d = 1, . . . , D, and within-group
variances σ2

d , d = 1, . . . , D. The pooled variance is

σ2 =
1

n − D

D∑
d=1

(nd − 1)σ2
d ,

where n = n1 + · · ·+nD is the overall sample size. We assume that nd 
 n for
all groups for which we are interested in improving on the obvious unbiased
estimator of σ2

d ,

σ̂2
d =

1
nd − 1

nd∑
j=1

(yjd − ȳd)
2
,

where ȳd is the sample mean in group d. We consider the synthetic estimator

σ̃2
d = (1 − bd)σ̂2

d + bd σ̂2,

where

σ̂2 =
1

n − D

D∑
d=1

(nd − 1) σ̂2
d

is the pooled (unbiased) estimator of σ2. The MSE of σ̃2
d is

2(1 − bd)2σ4
d

nd − 1
+

2b2
d σ4

n − D
+ 4bd (1 − bd)

σ4
d

n − D
+ b2

d (σ2
d − σ2)2

= σ4b2
d

{
2r2

d

(
1

nd − 1
− 2

n − D

)
+

2
n − D

+ (rd − 1)2
}

− 4σ4bd r2
d

(
1

nd − 1
− 1

n − D

)
+

2r2
d σ4

nd − 1
, (12.14)

where rd = σ2
d/σ2 is the ratio of the group-specific and pooled variances. If

all the quantities involved in this quadratic function of bd were known, its
minimum would be attained for
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b∗d =
2r2

d

(
1

nd − 1
− 1

n − D

)
2r2

d

(
1

nd − 1
− 2

n − D

)
+

2
n − D

+ (rd − 1)2

.=
2r2

d

2r2
d + (nd − 1)(rd − 1)2

,

after dropping all fractions with the denominator n − D. This function of
rd increases from zero to unity for 0 ≤ rd ≤ 1 and decreases from unity to
2/(nd +1) for 1 ≤ rd < +∞. The minimum MSE that would be attained with
b∗d is

MSE
{
σ̃2

d(b∗d);σ
2
d

} .= σ4

{
2r2

d

nd − 1
− 2r2

d

2r2
d + (nd − 1)(rd − 1)2

2r2
d

nd − 1

}
= σ4 2r2

d(rd − 1)2

2r2
d + (nd − 1)(rd − 1)2

=
2σ4

d

nd − 1 +
2r2

d

(rd − 1)2

.

This is the (unattainable) lower bound for the MSE of σ̃2
d when an estimated

or guessed value of b∗d is used. We have a great potential for improvement
when rd

.= 1 because the pooled variance σ2 is estimated with high precision.
For a given value of rd , the potential for improvement is greater for smaller
nd .

Suppose we do not have any prior information about the variance ratio
rd . What value of bd should σ̃2

d be based on? Let ud be our estimate, or guess,
of rd , and cd the corresponding coefficient:

cd =
2u2

d

2u2
d + (nd − 1)(ud − 1)2

.

Then the MSE of σ̃2
d(cd) is equal to

σ4

[
2r2

d

nd − 1
+
{

2r2
d

nd − 1
+ (rd − 1)2

}
cd(cd − 2bd)

]
.

Therefore we should strive to make cd(cd − 2bd) = (cd − bd)2 − b2
d as small as

possible. If we prefer a conservative strategy we should base cd on a value of rd

as far from zero and infinity as possible, while being confident that cd < bd . In
this way, we avoid the largest possible deviations | cd − bd |. If we can rule out
neither that rd < 1 nor that rd > 1, it is better to err on the side of overstating
rd , that is, choosing ud as the largest plausible value of rd , because bd has a
higher limit and the MSE a lower limit as rd diverges to +∞.
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Suggested Reading

Analyses that can be regarded as meta-analyses have been conducted for a
long time without recognising their special nature. A milestone paper that is
generally agreed to have set off the modern meta-analysis is [59], and [72] is the
first systematic treatment of the topic. For a review of later developments,
see [140]. Research synthesis and synthesis of evidence are two commonly
used synonyms for meta-analysis. The term systematic review is used for
protocol-based search for studies in the literature and the subsequent analy-
sis. It implies a codification of the process for literature search and extraction
of information. See www.cochrane.org/resources/handbook for guidelines
for meta-analysis in medical research and information about the Cochrane
Collaboration, a library of systematic reviews. The principal areas in which
meta-analysis is conducted are clinical trials [36], epidemiology [64], and edu-
cational research [106] and [155]. The book [187] deals with methods for and
applications of meta-analysis in medical research (clinical and epidemiology).
Ever since [40], the topic has been of keen interest to Bayesians. Key refer-
ences to publication bias are [41] and [24]; the latter emphasises sensitivity
analysis as a way of addressing the uncertainties not accounted for by the
analysis directly.

Problems and Exercises

12.1. Recall the definitions of the terms standard deviation and standard er-
ror. Relate them to the terms concentration and precision.

12.2. Figure 12.1 can be redrawn with the studies ordered according to their
values of θ̂d . Such diagrams, and the identification of pairs of studies for which
there is evidence that their targets θd differ, is described in [61]. Study this
paper and discuss its relevance to meta-analysis. Verify the conclusions of the
paper by simulations using a setting similar to that of Figure 12.1.

12.3. For a set of D = 12 studies with identically normally distributed estima-
tors θ̂d with sampling variances vd = v1 , d = 1, . . . , D, study by simulations
the error involved in the identity in (12.3) arising from substituting the es-
timator v̂d for vd . For simplicity, assume that the variance estimators also
have the same scaled χ2 distribution. Relate the scaling σ2 and the common
number of degrees of freedom to the bias of the estimator of var(σ̃2). Repeat
this exercise for a similar setting with studies that have distinct targets.

12.4. Describe how the hypothesis that the context-level variance σ2
B vanishes

could be tested and describe the rationale for testing the hypothesis that
σ2

B < ∆ for a suitably selected value ∆. Relate this problem to the hypothesis
test of small treatment effect in (individual) bioequivalence in Section 8.5.
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12.5. Consider a meta-analysis of the average grades in a standardised ex-
amination in an academic subject, such as the A-levels in the UK or the
Placement Test in the United States. Suppose a comparison of the average
grades between two types of schools is of interest. Compile a list of causes that
confound the straightforward interpretation of (substantial) differences of the
sample means as the effect of the school type. Discuss how the difference in
the coming year could be predicted. Compile another list of reasons why the
changes in the differences over time cannot be interpreted as changes in the
quality of the education/instruction provided by the schools.

12.6. Implement the Fisher scoring algorithm described in Section 12.4. (To
simplify the task, suppose there are no covariates.) Construct a moment-
matching estimator of the context-level variance σ2

B and compare it with the
maximum likelihood estimator on real or artificially generated examples.

12.7. Translate the arguments for restricted maximum likelihood (REML)
(see Section 9.3.1) to the setting of meta-analysis and devise an adaptation of
the maximum likelihood that takes into account the lost degree of freedom.
Compare REML and ML estimates on a few examples from the previous
exercise.

12.8. Revisit the example in Section 7.5.1 about RAAA. Several studies have
been conducted (in the UK) since the 1950s (and register information may
be available from more recent years). Discuss what results one might expect
from a meta-analyis of these studies. How should time (e.g., the year of the
study) be treated in a meta-analysis? How could the results be interpreted?
Compare your conclusions with those of [86].

12.9. Construct funnel plots for the datasets you used in Exercise 12.6 and,
ignoring all the theory in Section 12.5, make a judgment about the symmetry
of each of them. Construct a dataset comprising (θd , vd), d = 1, . . . , D, where
θd is the target and vd the sampling variance of its unbiased estimator, in such
a way that the funnel plot of your choice, with θd instead of θ̂d , is perfectly
symmetric. Generate replicates of (θ̂d , v̂d) and assess the symmetry of the
plots for these datasets.

12.10. Implement the measure of asymmetry MRA1 or a similar measure
that you design yourself or find in the literature and assess its performance
on the replicates generated in the previous exercise or Exercise 12.6. As an
alternative, delete a study from a dataset and explore whether MRA1 indicates
that such a study (with similar values of θ̂d and v̂d) is missing. Construct
scenarios in which the task of detection might be easier.

12.11. Implement the shrinkage estimator θ̃d∗ given by (12.8). Assess the loss
of efficiency due to estimating (not knowing) the values of θ, σ2

B , and vd∗ .
That is, on a set of replications, compare the MSEs of θ̃d∗ based on estimates
θ̂, σ̂2

B , and v̂d∗ on the one hand and θ̃d∗ based on the values of θ, σ2
B , and vd∗
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on the other.
Consider an alternative way of assessing these estimators. For each replication,
count the number of studies for which the estimate based on the values of the
parameters is closer to the target θd than the estimate based on estimated
values of the parameters. Discuss the merits of the two assessments.

12.12. Explore how the minimax estimator based on an upper bound for the
plausible value of the context-level variance σ2

B could be implemented and
whether it would have properties similar to those of the estimator derived in
Section 1.1.1 or Section 8.3.2.

12.13. Discuss how a meta-analysis could take advantage of a register (census
or some other form of enumeration) in the following scenario. Each study
included in the meta-analysis is associated with a domain (region or country)
and time period (year), and the estimate θ̂d of its target θd can be augmented
by a similar quantity derived from the register. The register-based quantity
is biased for θd because the relevant variable is defined (slightly) differently
from the outcome variable in the studies included in the meta-analysis, but its
sampling variance is effectively zero. The study-based estimators are unbiased,
but their sampling variances are large. Relate this problem to its counterpart
in small-area estimation in which districts are in the role of studies.

12.14. Summarise the information lost because the subject-level records from
the studies included in a meta-analysis are not available.
Hint: Consider the set of sufficient statistics that are used by meta-analysis
and the set of sufficient statistics that you would prefer to use, e.g., for fitting
a random coefficient model to the subject-level data. Discuss how the results
of a study commonly reported at present (consult the relevant literature for
examples) could be augmented to facilitate a more efficient meta-analysis in
the future.

12.15. Derive an estimator of the squared deviation (θd∗ − θ)2 that combines
the naive estimator (θ̂d∗ − θ̂)2 and the context-level variance σ2

B (or its ap-
proximately unbiased estimator).
Hint: See [124] for the solution of a related problem in small-area estimation.

12.16. Consider the problem of estimating many quantities in Section 12.8
for a set of concentrations (reciprocals of variances). Work out all the details
and compare the conclusions with those for estimating the variances.



Appendix. A Refresher

This appendix gives a condensed summary of the basic terminology used
throughout the book. To the extent possible it is organised in the order of
the chapters, indicating how they are connected. Not all the terms are stan-
dard or used in the same way as in the statistical literature. The appendix
can be used as a glossary, although the principal definitions are accompanied
by motivating examples.

A.1 Populations and Variables

We define statistics as the study of the values of variables on the members
of populations. Any collection of units can be regarded as a population. For-
mally, a population is defined by a rule that arbitrates without any ambiguity,
about any entity, as to whether it does or does not belong to (is a member of)
the population. For instance, the population of the residents of a country is
defined by a qualification stipulated by the relevant laws of the country. Such
a population has to be associated with a date, to resolve the membership of
those who were born or died, emigrated, immigrated, or qualified for residence
by some other means around the designated date. The rule may be revised
from time to time. A population need not comprise human subjects or other
living organisms. Moments in time, repeated operations (e.g., in a production
process), locations, or computer records may form a population, as can organ-
isations defined by human subjects, such as companies, households, schools,
and (local) administrative authorities.

A variable is defined on a population by its value for each member. Instead
of these values, the variable may be defined by a procedure that establishes
its value for each member. For instance, the income of a resident of a country
is defined as the sum of all the payments received by the member in a given
period of time. More details may be given to classify the payments into cate-
gories, such as income from employment, investments, pension, rents, sale of
property, winnings in games of chance, and the like. The details of a definition
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of a population or a variable that are essential to remove any ambiguity but
are not listed every time we refer to the population or the variable are called
the small print .

The support of a variable is defined as the set of all values that occur
for the variable. The values of a variable may be counts (integers), numbers,
categories, lists, or (unordered) sets of objects. They define the type of the
variable. A variable is said to be categorical if its support comprises a finite
number of values. These values may be associated with ordering, such as for
the integers from one to six. Such a variable is called ordered categorical ; its
support consists of ordered categories. An unordered categorical variable is
also called a factor. A variable is said to be discrete if its support comprises
isolated values; around any value x in the support there is a neighbourhood
that contains no value other than x. A variable is said to be continuous if its
support contains no isolated values; any neighbourhood of any value x in the
support contains at least one other value that belongs to the support. This
definition is revised in Section A.3.

These definitions imply that the support is a subset of a space in which
certain structures and operations are defined. For example, ordering is an
operation; it assigns to each pair of values their comparison (the same, greater
than, or smaller than). Whether two values are the same or not can also be
regarded as a (trivial) operation. Neighbourhoods of points define a structure.
Neighbourhoods are commonly defined by a metric. A metric is an operation
that assigns to each pair of values (points) in the space their distance. The
distance is nonnegative; d(x1 , x2) ≥ 0 for any pair of points x1 and x2 in
the space. The only point in the distance of zero from any given point is the
point itself; d(x1 , x2) = 0 only when x1 = x2. The distance is symmetric,
d(x1 , x2) = d(x2 , x1), and satisfies the triangular inequality:

d(x1 , x3) ≤ d(x1 , x2) + d(x2 , x3)

for any three points x1 , x2 , and x3 . We can define the size of a value by its
distance from a common reference point, called the origin and denoted by 0 ;
that is, s(x) = d(x, 0). The origin (its existence and location) is an element
of the structure. A space is said to be bounded if there is a positive number
M such that the distance between any two points in the space is shorter than
M . The triangular inequality implies that a space is bounded only when there
is an upper bound on the size of the values. If there is no such bound the
space is said to be unbounded. Bounded and unbounded support are defined
similarly.

Usually several variables are defined in a population. From one or several
such variables, new variables can be defined by transformations, using oper-
ations that are well defined in the supports of the variables concerned. For
instance, when the values of a variable are real numbers new variables can be
defined by the usual arithmetic operations.

Clustering is a commonly occurring structure in populations of human
subjects. For example, the members of a family, each of them also a member



A.1 Populations and Variables 397

of the population, form a cluster. Clusters may be nested, such as families
(households) within streets, towns or villages, and districts, or cross-classified,
such as families and birthplaces. Other structures can be defined by the values
of one or several variables. For instance, the geographical location of a member
of the population can be indicated by a categorical variable (place name) or
even by its coordinates (latitude and longitude, both continuous variables).

Variables are defined because their values provide useful descriptions of the
members of the population. For large populations, containing tens of thou-
sands or even millions of members, a list of the values of a variable is not very
useful for learning about the population; the values require some processing
and summarising. This often takes the form of calculating certain summaries
of the values. Examples of such summaries are the mean (average), range (the
difference between the maximum and minimum value), the fraction of the
members whose value exceeds a given threshold, and the proportion of the
members who have a particular value. Such summaries are popularly referred
to as information. A summary need not be a single number; it may comprise
several numbers, although not many, because a summary is intended as an
easy-to-digest, even if not comprehensive, description of the population.

Although it is usually derived from a single variable, a summary may in-
volve several variables. For example, the proportion of members whose value
of one variable exceeds the value of another variable is derived from two vari-
ables. However, this proportion depends only on the difference of the two
variables. By defining this difference as another variable, the summary de-
pends only on this new (constructed) variable.

An elementary task in statistics is associated with establishing the value of
a population summary of a variable. This value could be determined by enu-
meration—by establishing the value of the variable on each member of the
population and then evaluating the summary. We regard the task of evaluat-
ing a summary as elementary, requiring only minimum effort and expertise,
if all the values are available. The principal difficulty is that enumeration re-
quires resources, such as labour, equipment, services (including transport and
telecommunications), and time, and therefore funding, and these are usually
insufficient for an enumeration. Cooperation of the studied population, their
goodwill, is another important resource.

Collecting information from every member of a large population is often a
singularly unreasonable proposition, from the perspectives of both the mem-
ber of the population (respondent) and the consumer of the information. The
consumer associates the required information with a financial, ethical, profes-
sional, or some other benefit (value). They would be willing to finance, and
assist by other means, the effort of collecting the information if the investment
(expenditure) they make was recovered by the outcome—by valuable informa-
tion that would facilitate the conduct of their business, such as governing the
country (by adjusting policies and incentives), production and distribution
for the retail trade, and location of service outlets. Instead of enumeration,
the values of the variable of interest could be collected on only a subset of the
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population. Such a subset is called a sample. The members of the population
who belong to the sample are called subjects. The number of subjects in the
sample is called the sample size. The value of the summary of interest, called
the target, could not be established with precision but, hopefully, a summary
of the sample would not be far off. Thus, the expense is reduced, but precision
is sacrificed in the process.

The cost can be further reduced by establishing the value of the variable
not precisely but subject to some approximation. For instance, instead of
asking for a complete list of food and drink consumed in a given period of time
(say, in a week), a questionnaire would inquire merely about the frequencies
of eating certain kinds of food and consuming beverages in a short list of
categories (types of food and drink). In this way, less detail is collected, but
the exercise of eliciting information from the subjects is made easier and less
intrusive.

In this description, we can readily identify two activities: selecting a sam-
ple (sampling) and eliciting the value (measurement). They are referred to
as processes, because they are defined not by the selected sample and the
recorded values, respectively, but by how they would be applied (methods)
in any conceivable instance. Examples of these processes are all the adult
human passengers on a selected list of rail services (date and number of the
service) who are not employees of the railways, and requesting the subjects to
complete a particular questionnaire that inquires about their experiences as
railway passengers in the last few months. With this sampling process, mem-
bers of the population who use rail services infrequently are less likely to be
included in the sample than those who travel by rail frequently.

Ideally, we would like to draw (select) a sample in which the country’s
regions, age groups, occupational categories, and other attributes of the mem-
bers of the studied population are represented in proportions that resemble
their composition in the country. Similarly, a more elaborate process of mea-
surement, with more detailed and clearly formulated questions, may be more
useful than the responses to a single ambiguous question for which there is
a limited set of response options, such as, at the extreme, only ‘Agree’ and
‘Disagree’. More detailed questioning takes longer and detains the respondent
for longer; it requires more preparation, instruction, and training of the in-
terviewers and, as a result, a sample with fewer subjects (a smaller sample)
can be afforded for the fixed resources available. Thus, higher quality of the
measurement process may not serve well the primary purpose of the survey.

From the values of a variable recorded, possibly not precisely, on a sample
of subjects, we cannot establish the value of the target; we can merely make a
guess based on the available values and informed by the details of the sampling
and measurement processes. Such a guess is called an estimate, and the process
of deriving it is referred to as drawing (making) an inference. The process may
be described by a mathematical formula, a verbal description, such as ‘the
proportion of subjects who responded with “Yes”’, or it may be implemented
in a computer program. The process (or procedure) by which the estimate is
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evaluated (calculated) is called an estimator . A typical estimator is intended
for a specific target. A desirable property of an estimator is that it is close
to the target. The difference between estimates (numbers) and estimators
(procedures) will become clearer in Section A.2.

Among the values and summaries defined so far, we can distinguish be-
tween population and sample quantities. A summary and a target are exam-
ples of population quantities; they can be established only when the values
of the relevant variable are available for every member of the population. An
estimate and the sample size are examples of sample quantities; they can be
established from the values of the variable on the sample, after one applica-
tion, or realisation, of the sampling and measurement processes.

With the terms defined so far, we can specify the role of statistics as making
inferences about population quantities related to variables, when the resources
available for these activities are limited. This entails specifying the processes
of sampling, measurement, and estimation that yield the best inference that
can be afforded with the available resources. To solve this problem, we have to
agree first on what to regard as ‘best’ inference. Next, we require formulae for
the cost of executing any considered sampling and measurement processes.
The estimation process can also be associated with a cost, although it is
usually fixed and trivial in comparison with the expenditure on the sampling
and measurement processes.

A.2 Replications and Randomness

Replication is a key device for comparing alternative sampling, measurement,
and estimation processes (schemes). Replication is the act of repeating (re-
peatedly applying) a set of processes, doing so each time without being af-
fected in any way by the previous applications. Replications are independent
applications of the same scheme. The outcome of a replication is called a
replicate. Thus, we talk about replicate samples, replicate measurements, and
replicate values of an estimator.

We assume that the estimator is perfectly replicable. That is, its appli-
cation on the values of a variable for a given (fixed) set of subjects always
yields the same estimate. In general, replicate estimates are not constant (are
dispersed) because replications of the sampling process yield different sets of
subjects, and they have different values of the observed variable. The replica-
tions of the measurement process might yield different values of the variable
even if the same sample were drawn in the replications, or the measurement
process were replicated on the entire population. The sampling and measure-
ment processes involve randomness; we say that they are stochastic. Note
that the sampling process cannot be replicated in practice; resources are usu-
ally available only for one application. Nevertheless, in some circumstances
at least, we can discuss what results would be obtained in a long sequence
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of replications. In Section A.8.1, we discuss a general method for generating
replications on the computer.

Replicate measurements on the same subject are not constant because
the measurement process is affected by the idiosyncrasies of the measurement
instruments or agents (interviewers), momentary distractions influencing the
respondents (subjects), and imperfect communication between the respondent
and the interviewer. In some settings, measurements can be replicated (on the
same set of subjects), especially when they leave no trace on the subject, are
not costly to conduct, and have no ethical consequences. Such replications
enable us to learn about the quality of the measurement.

Measurements are difficult to replicate when the subject or the interviewer
can recall, even if only partially, the previous measurement. For instance, a
school examination would be very difficult to replicate, especially if the same
questions were presented in the second version of the exam. Nevertheless, we
can speculate how different the results would be if a replication took place,
with students unaffected by the experience of having taken the same exam
in the past. We say that such a replication is hypothetical. When the idiosyn-
crasy of the measurement process is mainly due to the interviewer, his or her
assessment, independence of the measurements can be ensured by engaging
different interviewers who are not informed about each other’s assessments or
workloads (which subjects they assessed).

A.2.1 Efficiency

An estimator in a particular scheme is said to be efficient if its values obtained
by replications (replicate estimates) are tightly concentrated around the tar-
get. To assess how close an estimate is to the target, we need a measure of
its distance, the deviation of the estimate from the target. The difference of
the estimate from the target is the obvious choice, although the sign of the
difference is immaterial for the assessment of the size of the deviation. For an
estimator in a scheme, represented by its replicate values, it is necessary to
summarise its deviations from the target. Two important summaries, captur-
ing two aspects of the deviations are bias and dispersion.

The bias is defined as the average deviation, with the sign of the deviation
not ignored. The dispersion of an estimator is defined as the spread of its values
around its mean. No bias, or being unbiased, and having small dispersion are
desirable properties of an estimator. However, small bias is of little value
if it is accompanied by large dispersion, and small dispersion is not useful
if the bias is very large. Figure A.1 illustrates this with four examples of
combinations of small and large bias with small and large dispersion. In each
panel, the diagram, called a histogram, comprises bars. The height of each
bar is proportional to the number of replicate estimates that fall into the
(horizontal) range covered by the bar. Each histogram is based on 10 000
replications. The target is marked by a vertical line. The four panels have the
same horizontal and vertical scales.
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Fig. A.1. Histograms of replicate estimates for estimators with small and large
biases and dispersions. The target is marked by a thin vertical line in each panel.
The horizontal axes of the four histograms have the same scale.

The measurement process can be considered similarly, with the genuine
value of the variable for a subject regarded as the target. The ideal measure-
ment process recovers the target value in each replication. Otherwise, repli-
cate measurements concentrated more tightly around the target are preferred.
Note that the value of the variable for each member of the population is a
potential target, and so the properties of the measurement process have to be
considered for all members. The replicate measurements may be constant for
some or all members of the population, and they may agree with the target
for some members. The variable for which the value cannot be recovered with
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precision is called latent. The variable that is recorded in its stead is called
manifest. A latent variable may have several manifest versions, defined by
different measurement instruments, or other circumstances (settings or small
print) of the measurement process. Sets of replicate measurements can be
regarded as separate variables.

Before defining a criterion for efficiency, of an estimator or a measurement
process, which combines small bias and small dispersion, we introduce some
notation.

A.3 Notation

The population is denoted by P and its members by integers i = 1, 2, . . . , N .
The number of members of the population, N , is called the population size.
It need not be known but, to avoid some complications, we assume it to be
finite, until specified otherwise. The values of a variable on the members of the
population are denoted as X1 , . . . , XN , and the variable, or its value on an
unspecified member, is denoted by X. It is practical to denote the collection
of these values by a single symbol, X; that is, X = (X1 , X2 , . . . , XN )�. Any
variable defined in a finite population is discrete because it cannot have more
than N distinct values. However, when the number of unique values in X is
large (then necessarily so is N), and any point on a continuum, such as a real
interval, could, in principle, be a value of the variable, it is more appropriate
to regard the variable as continuous. For example, income of the members of
the labour force of a country is a continuous variable because any positive
value, within a range, could be someone’s income. Income is rounded to the
smallest unit of currency, and so, strictly speaking, it is a discrete variable.
However, it will turn out to be more constructive to regard it as a continuous
variable.

The sampling and measurement processes are denoted by S and M, re-
spectively. The sample is denoted by s, the number of its elements (subjects)
by n, the subjects by j = 1, . . . , n, and the values of the variable on the sub-
jects by x1 , . . . , xn , or as x. Note that (sample) subject j = 1 is distinct from
(population) member i = 1, and their respective values x1 and X1 are not
related in any way other than both being one of the N values in X.

A population quantity, such as a target, is denoted by θ. For instance,
θ may stand for the mean of a variable in a population. As the mean can
be calculated for any numerical variable, a more complete notation includes
the variable involved: θ(X). The ‘same’ variable may be defined in another
population, and so the population may be added as another argument of θ, in
addition to X; θ(X;P). As in most cases we work with a single population,
this is not necessary. We regard two variables as different if they are defined in
different populations, even if their descriptions are the same. In other words,
the population is part of the small print in the definition of a variable.
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An estimator of θ is denoted by θ̂ or θ̂(x), although a more rigorous no-
tation would include the sampling and measurement processes as arguments.
The measurement process may be subsumed in the definition of the variable
X. Then the values of one variable (on a sample of subjects) are used for
making inferences about the summary of another variable. The sampling and
measurement processes cannot be recognised from the sample values x. That
is, a particular sample x, a set of n values, could be realised by several distinct
pairs of sampling and measurement processes.

The replicate samples are denoted by x(1), . . . ,x(H), where H is the num-
ber of replicates. Each of these samples is associated with an estimate,
and these are denoted by θ̂(1), . . . , θ̂(H), or, more completely, as θ̂(1) =
θ̂
(
x(1)
)
, . . . , θ̂(H) = θ̂

(
x(H)
)
, emphasising that we use the same estimator

θ̂. The expectation of an estimator θ̂ is defined as the mean of the estimates
in a large number of replications, that is, as

1
H

(
θ̂(1) + · · · + θ̂(H)

)
or, more precisely, as the limit of this expression with H diverging to infinity
(H → +∞). The expectation of θ̂ is denoted as E(θ̂). The expectation depends
on the sampling process. We add the sampling process S to the notation, as
E(θ̂; S) or ES(θ̂), for emphasis or when we operate with several sampling
processes.

The bias of θ̂ is denoted by B(θ̂; θ):

B
(
θ̂; θ
)

= E
(
θ̂ − θ

)
.

It is essential to retain the target θ as an argument of B because an estimator
may be used for more than one target; it may be unbiased for one target, and
biased for another.

An obvious candidate for the estimator of a population quantity θ = θ(X)
is the same function of the sample values: θ̂ = θ(x). For instance, the popula-
tion mean may be estimated by the sample mean. Such estimators are called
naive. (The term is not intended to be derogatory.) Note that θ has to be
well defined for both N values in the population quantity θ(X) and n values
in the estimator (sample quantity) θ(x). In fact, many estimators have to
be similarly flexible, because the (replicate) samples need not have constant
size n.

The sampling variance of an estimator θ̂ is defined as the expectation of
the squared deviation of θ̂ from its expectation E(θ̂):

var
(
θ̂
)

= E
[{

θ̂ − E
(
θ̂
)}2
]

.

The mean squared error (MSE) of an estimator θ̂ is defined as the expectation
of its squared deviation from the target θ:
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MSE(θ̂; θ) = E
{(

θ̂ − θ
)2
}

.

The sampling variance and MSE depend on the sampling and measurement
processes, and the MSE depends also on the target. The MSE, sampling vari-
ance, and bias are connected by the identity

MSE
(
θ̂; θ
)

= var
(
θ̂
)

+
{

B
(
θ̂; θ
)}2

. (A.1)

Thus the sampling variance and the squared bias are two contributors to
the MSE. An estimator with small MSE cannot have a large bias or a large
sampling variance. We adopt the MSE as a measure of efficiency. Suppose θ̂A

and θ̂B are estimators intended for the same target θ. Then θ̂A is said to be
more efficient than θ̂B for θ if MSE(θ̂A ; θ) < MSE(θ̂B ; θ).

The MSE is an example of a sampling-process quantity. It characterises the
sampling and estimation processes engaged. Except for some simple cases, it
can be established only by replicating the sampling process many times. Usu-
ally, the MSE (of an estimator θ̂ for a target θ) depends on some population
quantities, often the target itself, and so the MSE can itself be regarded as
a target and estimated. As the MSE depends on some unknown (population)
quantities, we may consider properties of the estimator θ̂ assuming specific
values of these population quantities. One estimator of θ is said to be uni-
formly more efficient than another estimator of the same target if it is more
efficient for any configuration of the population quantities on which their
MSEs depend.

Estimators of a target may have strengths and weaknesses; they may be
more efficient than their competitors for some configurations of population
quantities and less efficient for others. When striving to choose an efficient
estimator, information, however incomplete, about the relevant population
quantities is sometimes invaluable; it can assist in discarding estimators that
are inefficient for the particular setting.

A.4 Distributions

When studying the values of a variable in a population, we are usually not
interested in the identities of the members; we say that the members are
anonymous. Each member has a unique identifier. It is useful for tracing the
various steps in the construction of the dataset and for connecting the values
of two (or more) variables of a member. Given the values of all the defined
variables for a member, the member’s identifier has no information content
and we treat it as a mere label.

We often wish to summarise a variable by how frequently certain values,
and their ranges, arise. Examples of such summaries are:



A.4 Distributions 405

• What proportion of the households in a country have income below a
certain level?

• How many households comprise a single person each?
• How many students fail a particular examination?

To address the first of the listed questions, we define a new variable, U , equal
to unity (or ‘Yes’) for members whose answer to the question

Is your household’s income below £. . . ?

is affirmative, and equal to zero (or ‘No’) if the answer is negative. The sum-
mary of interest, the proportion of ‘Yes’, is equal to the mean of the variable
U . Such a population proportion is called a probability. We write P(U = 1)
for this probability, but also as P(X < c∗), where X is income and c∗ the
value of the threshold income in the question.

The distribution of a variable X with real values is defined as any collec-
tion of probabilities from which the probability P(X < c) could be recovered
for any real value c. Of course, such a collection is not unique. For instance,
P(X < c) for every value c that occurs in the population is a distribution, but
so is P(X > c) for every such c, or indeed P(X = c), so long as the number of
distinct values c of X is finite. As every population we consider has a finite pop-
ulation size, the number of distinct values of the variable in the population is
finite. By definition, it can be established whether two collections of probabil-
ities correspond to the same set of probabilities P(X = c) for values c in their
supports. If they do, it is practical to regard them as identical distributions.
With this convention, the distribution is uniquely defined, and any conceivable
probability involving X, such as P(X = c1 or X = c2 or . . . or X = cK) can
be derived by adding up the relevant probabilities P(X = ck), k = 1, 2, . . . , K,
so long as the values c1 , . . . , cK are distinct.

The distribution of a variable often comprises many probabilities, so it
cannot be effectively presented in any tabular form. The distribution of a
variable can be presented graphically by a histogram. An example is presented
in Figure A.2 for a variable with 400 distinct values in a population of size
25 000. The vertical segments represent the distinct values and the height of
each segment is equal to the frequency—how many times the value occurs
in the population. Note the similarity in the layout with the histograms in
Figure A.1. Part of the distribution is presented in tabular form in Table A.1,
giving the frequencies of the 15 smallest values of the variable.

Some of the detail in Figure A.2 is unnecessary. The segments that are very
close to one another could be represented by a single segment, or a bar, as in
Figure A.1. Two examples of this are given in Figure A.3. Either histogram
conveys much better that the most frequent values are around zero, all the
values are nonnegative, very few values exceed 7.0, there are fewer values
in the neighbourhood of 3.0 than elsewhere in the support, and so on. The
vertical axis in Figure A.1 is in fractions (probabilities), whereas in Figure
A.2 it is in counts (numbers of members). This has no impact on what we can



406 Appendix. A Refresher

0 2 4 6

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

Value

F
re

qu
en

cy

Fig. A.2. Histogram—graphical representation of the distribution of a variable.

Table A.1. The distribution of the variable in Figure A.2 (an extract).

Value Frequency Value Frequency Value Frequency

0.0004 15 0.0035 52 0.0128 71

0.0008 52 0.0042 52 0.0160 155

0.0009 87 0.0048 43 0.0165 134

0.0022 62 0.0059 80 0.0231 23

0.0025 250 0.0115 18 0.0242 73

learn about the distribution; that is, the same information could be extracted
from the diagrams with either layout.

The histogram in panel A is more detailed and the histogram in panel
B somewhat coarser. The coarseness is given by the width of the bars or by
the number of bars that cover the entire range of the values, in this example,
from zero to 7.41. The more detailed histogram in panel A has 50 bars and
the histogram in panel B 20 bars. Each histogram is associated with a table
that lists the range of each bar with the corresponding frequency. Table A.2
presents such a table for the histogram in panel B.

A.4.1 Describing Distributions

Although we can reconstruct from the distribution most of the important
facts about a variable, we do not always need to convey all the details of
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Fig. A.3. Coarse histograms of the variable in Figure A.2.

Table A.2. The ranges and frequencies associated with the histogram in panel B
of Figure A.3.

Range Frequency Range Frequency Range Frequency

0.000–0.370 3819 2.594–2.964 566 5.187–5.558 1218

0.370–0.741 811 2.964–3.334 914 5.558–5.928 1506

0.741–1.111 1412 3.334–3.705 1341 5.928–6.298 1503

1.111–1.482 616 3.705–4.075 709 6.298–6.669 1202

1.482–1.852 1046 4.075–4.446 1112 6.669–7.040 1478

1.852–2.223 345 4.446–4.816 1638 7.040–7.410 2066

2.223–2.594 721 4.816–5.187 977

the distribution. Coarse histograms and the associated tables of frequencies
condense the information about the distribution and present it in a form that
is easy to digest. Often it useful to have a single-number or a succinct verbal
description of a particular feature of the distribution. In this section, we define
a few such features.

Any summary of the values of a variable that can be derived directly from
the distribution is also a summary, or feature, of the distribution. For instance,
the population mean of a variable can be expressed as

E(X) =
1
N

(M1 C1 + M2 C2 + · · · + MK CK) ,

where M1 , . . . , MK are the frequencies (multiplicities) of the respective
(unique) values C1 , . . . , CK of X in the population, or as



408 Appendix. A Refresher

E(X) = C1 P(X = C1) + C2 P(X = C2) + · · · + CK P(X = CK) ,

where P(X = Ck) = Mk/N . Note that a more rigorous notation would use
MCk

instead of Mk , to associate the multiplicity with the value Ck , not with
its order k.

Location Quantities

A population quantity is said to be a location quantity if it is a summary
that involves one variable and adding a constant to or changing the scale of
the variable corresponds to the same change of the quantity. That is, if d is a
location quantity of X, then, for any given values (constants) a and b, ad+b is
the location quantity of the (linearly transformed) variable aX + b, formed by
changing each value Xi to aXi+b. This defining property of location quantities
is also referred to as invariance with respect to linear transformations. Apart
from the mean, the minimum and maximum are obvious location quantities.

The (population) median of a variable, or of a distribution, is defined as
the value that is exceeded by exactly half the members of the population.
For example, in a population that comprises N = 41 members, the median
is equal to the 21st highest value of the variable. When the population size
N is even, the median is not always unique. For example, any value between
the 20th and 21st highest value is a median in a population of 40 members.
If these two values coincide, then the median is unique. Otherwise, we may
choose as the median the mean of these two values. If either of these values
occurs more than once the weighted mean of the values may be used, with
weights equal to the frequencies. The median of the distribution in Figure
A.2 is 4.200; in this case it is a value that occurs in the population, for 131
members, so the median is unique, even though the population size N is even.

The upper quartile of a variable or distribution is defined as a value that
is exceeded by exactly 25% of the values, and the lower quartile as a value
exceeded by exactly 75% of the values. For the distribution in Figure A.2, these
quartiles are 1.218 and 5.915. Both values occur in the population multiply,
so both quartiles are unique.

More generally, for any number q between zero and unity, the q-quantile
is defined as a value Rq for which P(X < Rq) = q. In a more complete
notation, we would write Rq(X) instead of Rq , because the quantile depends
on the values of the variable. We drop the argument X only when there is
no ambiguity about the variable on which the quantile is evaluated. The p-
percentile is defined as the p/100-quantile. For example, an upper quartile is
a 0.75-quantile and a 75th percentile of the distribution. A particular quantile
may not be unique. When it is not, any point in the interval between two
consecutive values of the variable is this quantile, or a convention for averaging
or weighting of the adjacent values may be adopted. With any convention
that makes the quantiles unique we can refer to any particular quantile as the
quantile. The quantiles and percentiles are location quantities. They have a
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general invariance property that for any increasing function g, Rq{g(X)} =
g{Rq(X)}; swapping the operations ‘quantile’ and ‘function’ does not alter
the result.

A compact, though incomplete, description of a distribution is by the
values of the minimum, lower quartile, median, upper quartile, and the max-
imum, possibly supplemented by the mean. For example, these values for the
distribution in Figure A.2 are

(0.000, 1.218, 4.200, 5.915, 7.408)

and the mean is E(X) = 3.753. The minimum can be regarded as the 0-
quantile and the maximum as the 1-quantile of the distribution.

Dispersion Quantities

A population quantity, defined for a variable or a distribution, is called a dis-
persion quantity if it is unchanged when a constant is added to each value of
the variable and is multiplied by | b | when each value is multiplied by a con-
stant b. The difference of any two quantiles (higher quantile – lower quantile)
is a dispersion quantity, as is the range, the difference between the maximum
and minimum. The difference between the two quartiles, R0.75(X)−R0.25(X),
is called the interquantile range.

The population variance is defined as the mean squared distance of the
values from their mean:

var(X) = E
[{X − E(X)}2

]
;

compare this with the definition of the sampling variance in Section A.3. When
the context is insufficient to distinguish between the two kinds of variance the
notation can be supplemented by subscripts to indicate whether a variance
is over sampling or population, varS and varP , respectively. The square root
of the population variance,

√
varP(X), is called the standard deviation. The

standard deviation is a dispersion quantity.

Symmetry and Unimodality

A distribution is said to be symmetric if it coincides with its reflection across
the (suitably defined) median, that is, when the distributions of X and
2R0.50(X) − X coincide. An example of a symmetric distribution is given
in Figure A.4.

The mean and median of a symmetric distribution coincide; E(X) =
R0.50(X). Further, for any 0 ≤ q ≤ 1, the q- and (1− q)-quantiles are equidis-
tant from the median:

Rq(X) − R0.50(X) = R0.50(X) − R1−q(X) .
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Fig. A.4. Example of a symmetric distribution.

A distribution is said to have a mode at a value X∗ if both the nearest
value smaller than X∗ and the nearest value greater than X∗ have smaller
frequencies. Every distribution has a mode, but some distributions have sev-
eral modes. For example, the distribution in Figure A.4 has one mode, at its
median, but the distribution in Figure A.2 has numerous modes. The modes
of a symmetric distribution are located symmetrically around the median. If
X∗ is a mode, then so is 2R0.50(X) − X∗. A distribution with a single mode
is called unimodal, with two modes bimodal and, generally, with more than
one mode as multimodal.

A.4.2 Approximating the Distribution by a Histogram

The graphs of the distributions in Figures A.2 and A.4 are rather unwieldy
and contain too much detail that may not be relevant and would be better
omitted from a compact summary. One way of achieving this is by rounding
the values of the variable. The resulting variable can be regarded as a manifest,
or coarsened version of the original variable. The distribution of the coarse
variable is simpler because the variable has fewer possible values and these
(the support) are located regularly.

In general, a coarsening is defined by a set of cut points c0 < c1 < . . . < cK

and values d1 , . . . , dK , such that ck−1 ≤ dk ≤ ck , k = 1, . . . , K. If the original
value of X is in the range (ck−1 , ck] the value of the coarse variable is set to
dk . Instead of the coarse variable we can define a variable X† with values
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equal to the category k into which the original value falls: if ck−1 < X ≤ ck ,
then X† = k. When the original variable is equal to one of the cut points ck ,
coarsening can allocate it either to dk (category k) or to dk+1 (category k+1).
A coarsening with cut points c0 < c1 < . . . < cK is said to be coarser than
with cut points c′0 < c′1 < . . . < c′K′ if the set of values (c0 , c1 , . . . , cK) is a
subset of the set (c′0 , c′1 , . . . , c′K′). Necessarily, K < K ′. A coarsening can be
refined by introducing new cut points (and defining appropriate new values
dk), and made coarser by discarding one or several cut points ck (and defining
new values dk in the affected intervals).

For a given variable, such as the annual income of a household, we may
consider a few alternative ways of coarsening that are ordered according to
their coarseness. For example, the income could be rounded to units, tens,
hundreds, or thousands of £UK. The choice of the coarseness should be guided
by the purpose of the analysis (summary) to which the variable (income) is
to be subjected. For example, if the difference of several hundreds of £UK is
not important, rounding to thousands is appropriate. By a coarser rounding
we obtain a variable that is easier to handle, because is has fewer possible
values, but we may lose some detail in the process. In contrast, less coarse
(finer) rounding yields values that are closer to (or the same distance from) the
original values but may contain too much detail for an effective presentation
and study.

A (coarse) histogram of a variable can be identified with the distribution
of a coarsened version of the variable. The cut points of the coarsening applied
coincide with the limits of the bars. Figure A.3 gave an example of the impact
on coarsening of a continuous variable.

A.5 Sampling Design

When we cannot afford to enumerate the population, we establish the values
of the target variable only for a sample of subjects. Such an exercise is called
a survey. Every survey involves a sampling process by which subjects are se-
lected. Substantial advantages accrue when we can select the sampling process
purposefully. Such a sampling process is said to be controlled or planned and
is referred to as a sampling design.

A sampling design can be defined by its (unambiguous) description, such
as

1. Select a member completely at random.
2. Select one member completely at random from those not yet selected.
3. Repeat step 2 until the specified number of subjects has been selected.

More formally, a sampling design is defined as a way of assigning to
every subset of the population the probability that it would form the sample.
That is, the collection of all subsets of the population’s members, denoted by
exp(P), is regarded as a new population, and a probability in this population
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is interpreted by a reference to replications. This definition does not seem to
be constructive, because most populations have very many subsets, equal to
2N , where N is the population size. In a typical sampling design, most sub-
sets have zero probability of forming a sample. For instance, when the sample
size is set (prescribed or fixed) to be n the number of possible samples is(

N
n

)
= N !/ {n!(N − n)!}. The controlled nature of a sampling design rests

not on which member is selected into the sample but on how the selection is
conducted.

Sampling designs in which each member has the same probability p of
being included in the sample, each pair of members has the same probability
p(2), and so on, are called simple random. Of course, p �= p(2). A member
can be included in the sample several times. Sampling designs in which this
is possible are called designs with replacement, and designs in which this is
ruled out are called without replacement. The term replacement refers to the
description of the sampling design by a mechanism of drawing subjects into the
sample one by one. In designs with replacement, after being selected, a subject
is retained in the pool of candidates for being selected in subsequent draws.
Thus, in simple random sampling design with replacement, each member has
the same probability of being drawn as the first subject, equal to 1/N , but,
irrespective of who was drawn first, the probability of being drawn as the
second subject is also equal to 1/N for every member of the population. The
number of times a member of the population is included in the sample is
referred to as its multiplicity.

A sample is most conveniently specified as a list of its subjects. The order
of the subjects in such a list is immaterial; (i1 , i2 , i3 , i4) and (i1 , i4 , i3 , i2) are
identical samples, even when i2 �= i4 . However, multiplicity is an important
feature; when i2 �= i3 , (i1 , i2 , i3 , i3), (i1 , i2 , i3 , i2), and (i1 , i2 , i2 , i3 , i2) are
different samples, even though each of them comprises the same set of subjects,
i1 , i2 , and i3 .

From the sampling design, we can derive the probability that a given
member is included in the sample by adding up the probabilities of all the
subsets that contain the member:

pi =
∑

s∈exp(P)

I(i ∈ s)P(s;D) ,

where P denotes the probability as a function of the set s and design D and
I is the indicator function, equal to unity when its argument is true and to
zero otherwise. A sampling design D is called proper if each member has a
positive probability of being included in the sample. Members who have zero
probability of being included in the sample are, in effect, excluded from the
population that is studied because they are not considered in the sampling
process.



A.5 Sampling Design 413

A.5.1 Complex Sampling Designs

Stratification and clustering are two ways of defining a wide range of sam-
pling designs. For stratification, the population is divided into subpopula-
tions (groups) called strata, and a different sampling design is applied in each
stratum. The sampling processes in the strata are independent; the subsam-
ple drawn in one stratum has no impact on the subsample drawn in another.
Stratification has two important advantages. First, the unwieldy task of draw-
ing a sample from one large population is simplified to a number of simpler
tasks of drawing a sample from each of several smaller subpopulations, and
second, the design can exercise tighter control over the within-stratum sub-
samples. For example, the within-stratum sampling designs may sample much
more densely (with relatively greater subsample sizes) in some strata, at the
expense of sparser sampling in other strata.

In most large populations of practical importance, the members are re-
lated; such populations are said to be structured. The most common element
of the structure is clustering—members form small groups (such as families or
households), the groups are further clustered (say, to clusters at level 2, such
as neighbourhoods or classrooms), and these groups may be further clustered
(clusters at level 3, such as districts or schools). In a clustered sampling design,
a sampling design is applied to the clusters (at a particular level), and inde-
pendent sampling designs are then applied in each selected cluster. The design
applied in a cluster may itself be clustered. Such designs are called multistage
clustered. The clusters involved in the first round of clustering (say, districts)
are called primary sampling units, clusters in the next round (say, neighbour-
hoods) secondary sampling units, and so on. Subjects are the elementary-level
sampling units (elements), unless all members of the selected clusters at level
2 (or at another level) are included in the sample.

An advantage of clustered sampling design is that it is focussed; the sam-
pling in some (randomly selected) clusters is dense, at the expense of no
sampling in some other clusters. Dense sampling may provide more infor-
mation about the associations within the clusters, such as similarity of the
members’ values of the observed variables. In a clustered sampling design, we
have a cluster-level design for each level of clustering and within-cluster de-
signs. Clustered designs are in general easier to organise and manage. When
the cost of accessing a cluster is substantial it is more economic to collect
data in fewer clusters, but to do so from more (or all) subjects in the selected
clusters.

A.5.2 Sampling Frame

A sampling design can be constructed with purpose and implemented effec-
tively only when some basic information about the population is available.
The sampling frame is a list of all the members of the population. In ideal
circumstances, a sampling frame is complete, containing all members of the
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population (without any omissions); exclusive, containing no objects that do
not belong to the population; and nonredundant, containing no duplicates.
A sampling frame that satisfies these three conditions is said to be perfect.
For stratification and clustering, it would also identify the relevant strata and
clusters into which the members belong.

Construction of a perfect sampling frame for a large population is rarely
feasible. Commonly, a sampling frame of clusters is used, with some informa-
tion about the composition of each cluster. For instance, a sampling frame
may comprise the country’s districts, or smaller administrative units, and the
population size of each cluster may be available, usually subject to some ap-
proximation, for instance, because is it based on a population register that
is a few months out of date. When a clustered sampling design is planned,
construction of the sampling frame may be reduced to the selected clusters.
For example, clustering by schools is a practical proposition in a survey of
students. The school enrollments (sizes) may be available from a previous
year, informing the sampling design for the schools as clusters, and within-
school subsampling frames are obtained only from the schools that have been
selected into the sample.

A.5.3 The Planned and Realised Sampling Processes

The sampling design reduces the study of a population to operations applied
to a sample—eliciting information from the subjects and processing their re-
sponses (or information recorded about them) to make inferences about the
population. A sampling design is essential to ensure good representation (rep-
resentativeness) of the population by the sample. Good representation means
that, in replications of the designed sampling process, samples would tend to
have features similar to the population and, as a consequence, efficient infer-
ences could be made about the population quantities related to the observed
variables. The requirement of good representation has to be qualified by the
targets—the population quantities for which inferences are sought.

Without a sampling design, the sampling process may conspire to yield
samples that present a distorted image of the population. The image would
be distorted in many replications. The image (a feature) may be distorted
even in a sample drawn by a well-chosen sampling design because a distortion
cannot be ruled out. As an example, consider a population that comprises
N = 100 members and a binary variable, with values of zero and unity for 50
members each. A simple random sampling design without replacement and
with fixed sample size n = 10 may yield a sample in which each subject’s value
of the variable is equal to zero. The probability of this event is

(
50
40

)
/
(

100
90

)
=

(50× . . .× 41)/(100× . . .× 91) .= 0.0006. Thus, even an extreme distortion is
possible, but its probability is very small; it would be present in only a small
fraction of replicate samples.

Without a sampling design, such a ‘protection’ would not be available.
Some distortion in the sample may be introduced by the sampling design.



A.5 Sampling Design 415

For instance, by using a stratified sampling design, the smallest regions of the
country may be overrepresented in the sample. If these regions tend to have
high values of the observed variable the sample will tend to contain more high
values than what might be regarded as an appropriate representation of the
country. However, such a ‘misrepresentation’ can be taken into account when
the sampling process is known. Without a sampling design we do not know
how the sample is likely to have been distorted.

Suppose θ(X) is a population quantity of interest (a target). Here, θ can
be interpreted as a mathematical formula or a computer program. Good rep-
resentation can be interpreted that θ applied on the sample x, θ(x), would
be close to θ(X). Of course, an adjustment is necessary when θ is a total, but
this can be ‘built in’ to the definition of θ. At the outset, when the sampling
design is specified, the sample is not yet available; only the process by which
it is formed is specified. We say that at that point the sample is random. Any
sample quantity is also random at that point; its value is not known, but its
distribution could, in principle, be established, by replications. In particular,
it is meaningful to discuss how a population quantity would be estimated.

As a result of applying the sampling design, a sample is drawn. It is re-
ferred to as the realised sample. With it or, more precisely, with the values of
the relevant variable on the subjects, the selected estimator can be evaluated
and an estimate obtained. If the sampling design is implemented as prescribed
the survey is concluded by reporting the estimate. In practice, the analysis
(calculations made on the realised sample) is more extensive—several estima-
tors are evaluated and each estimator is associated with its estimated MSE.
Other forms of inference may be conducted, such as evaluating confidence
intervals; these are dealt with in Section A.20.

The good properties of an estimator are usually contingent on the sam-
pling design. In large populations, most sampling designs are impossible to
implement exactly as planned. The sampling frame is usually imperfect and
some of the selected subjects may not be available for an interview or may
exercise their right not to cooperate with the survey. As a result, the proba-
bilities of the samples that could be realised are altered. The sampling design
as a process is contaminated by an imperfection process. This ‘contaminated’
version of the sampling design is called the realised sampling process. We
cannot refer to it as a sampling design because it is not under our control.
Without a detailed description of the imperfection process, the probabilities
of the possible samples for a realised sampling process are not known.

The estimator selected at the planning stage may be efficient when the
planned and realised sampling processes coincide, but with the imperfections
its properties may have been altered somewhat. The estimator does not have
the properties it would have had had the planned sampling design been im-
plemented perfectly. When the realised process deviates from the plan only
slightly we can expect the ‘realised’ properties of the estimators to deviate
from the ‘planned’ properties also only slightly. Hence the strong incentive to
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reduce the difference between the planned and realised processes, even if it
cannot be eliminated altogether.

A.6 Measurement Processes

This section deals with describing measurement processes. In general, we in-
tend to make inferences about a variable X, but we can obtain or record
(measure, elicit, or the like) only the values of a related variable Y . The mea-
surement process can be motivated as the way in which a particular value
of the latent (underlying) variable X is ‘converted’ (distorted) to the value
of the manifest (observed or recorded) variable Y . The measurement process
can either be described by the mechanism that distorts the value of X in the
process of its measurement, or by the distribution of the differences Y − X.
Instead of these differences, the ratios Y/X, their logarithms, log(Y/X), or
the differences after some other monotone transformation, f(Y )− f(X), may
be considered. As an alternative, the distributions of Y may be described in
each of the subpopulations defined by the unique values of X. Of course, this
is not practical when X is continuous, unless these distributions have some
features in common.

When X is a categorical variable and Y is an attempt to recover the
value of X, we refer to a misclassification process. Such a process can be
described by the table of the probabilities P(X = x, Y = y) for each pair of
possible values x and y. A desirable property of a misclassification process
is that the probability of agreement, P(X = Y ), equal to the total of the
probabilities P(X = x , Y = x) over the possible values x, is close to unity.
When X is an ordinal categorical variable another desirable property is that
when disagreement occurs, X �= Y , it is frequently by only one point on the
scale. For instance, when the possible values of X are 1, 2, . . . , K, we prefer a
manifest variable Y for which P(|X − Y | ≥ 2) is small.

Apart from the latent value Xi , the manifest value Yi may depend on
the values of some other variables. For instance, if the task of measurement
is assigned to several judges, the identity of the judge assigned to assess a
particular subject is a relevant (categorical) variable. The manifest value Yi

may be influenced even by the values of some variables, including X, for other
subjects. For instance, a judge’s assessment may be influenced by the other
assessments made (recently) by the same judge, or by instructions received
(or made aware of) halfway through the assessment process. Of course, it is
wise to avoid such influences (by training and appropriately instructing the
judges), but the process of measurement is not always under our control and
training and instruction entail costs drawn from the same budget as the other
survey tasks.

If the value of X can be established we can learn about the distortion
Y −X directly, by applying the measurement process on a sample of subjects.
Otherwise, when the act of measurement alters the state of the subject at
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most temporarily (in particular, it does not destroy it) and is not costly, we
can learn about the measurement process by replicating it on subjects. Thus,
we observe two (or more) versions of the variable Y , Y (1) and Y (2); the pairs
may be observed on the entire sample of subjects, a subsample of the subjects,
or an entirely different sample drawn from the same population. These two
variables have identical distributions. Observations from other populations
have to be considered with care because the properties of the measurement
process may be specific to the population. By the same token, if repeated
observations are made on a subsample of subjects, this subsample (just like
the sample) should be representative of the population.

The variables Y (1) and Y (2) differ because they are affected by different
settings, such as the assigned judge, observed circumstances that are beyond
our control, such as the temperature and the environment in which the in-
terview is conducted, and other inexplicable influences (circumstances) that
defy our understanding. We may consider versions of Y associated with each
conceivable set of circumstances (moments or contexts). These contexts can
themselves be regarded as a population. Unlike populations considered so
far, they may be infinite. To draw a clearer distinction, we refer to the pop-
ulation that is the original target of our inferences, as the target population,
and to the contexts as an incidental or nuisance population. This qualifier
reflects our position—if the context had no impact on the measurement, or
indeed, if Y coincided with X, our task of making inferences about X would
be simpler.

The properties of a measurement process are described by the distribution
of the measurements on a member of the target population. The measurements
are taken in the population of contexts. For each member i of the target
population, we denote by Y

(m)
i the variable defined as the manifest value in

the population of contexts. The bias of the measurement B(m)
i is defined as

the expectation of the measurement deviations,

B(m)
i = E

(
Y

(m)
i | i

)
− Xi ,

taken over the population of contexts. We write i behind the bar | to indicate
that the expectation is taken with the member i fixed; the expectation is
conditional on and relates solely to member i. The expression for bias requires
a definition of the expectation, because E has so far been defined only for
finite populations. The expectation for an infinite population is defined as the
limit over sequences of increasing subpopulations, such that each member is
eventually included in a subpopulation. The details are postponed to Section
A.7. We considered similar limits in the context of replications of a sampling
process in Section A.3.

The measurement variance and mean squared error (MSE) are defined
similarly to the expectation:

var
(

Y
(m)
i

∣∣∣ i) = E
[{

Y
(m)
i − E

(
Y

(m)
i

)}2
∣∣∣∣ i] ,
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MSE
(

Y
(m)
i ; Xi

∣∣∣ i) = E
{(

Y
(m)
i − Xi

)2
∣∣∣∣ i} ;

they coincide for unbiased measurement processes, when B(m)
i = 0 for each

member i.
Conditioning on member i in these equations is essential. Without it the

measurement process would be replicated on a different member each time
and var(Y (1)

i ) would depend also on the dispersion of the values of X and on
the process used for selecting the member to be observed.

Just like the expectation, variance, and MSE, other features and properties
defined for a (finite) target population can be defined also for a population
of measurements. These features include symmetry, the median, and quan-
tiles (percentiles), except for minimum and maximum (the zero- and unity-
quantiles) that need not exist. The definition of the mode is also problematic.

Every feature defined for one subject or member of the population has an
obvious equivalent for every other member; after all, the ordering (labelling)
of the members of the population is immaterial. Description of the measure-
ment process by one or a few quantities for each member is impractical for a
population of moderate or large size. The ultimate simplification is attained
when the measurement process has the same properties for every member. Of
course, this is a very special case. For example, suppose X has possible values
0, 1, 2, . . . , 10, and its manifest version Y deviates by at most one unit in
either direction, with probability 0.1:

P(Y = X − 1 | 1 < X < 10) = P(Y = X + 1 | 1 < X < 10) = 0.1 ,

unless X = 0 or X = 10. When X = 0 or X = 10, only one kind of deviation
is possible: observing Y = 1 instead of X = 0 and observing Y = 9 instead
of X = 10. This measurement process is symmetric and unbiased, so long as
X �= 0 and X �= 10.

We prefer measurement processes that have smaller MSEs, and among
those with identical MSEs, those with smaller absolute bias |B | . Of course, it
may be difficult to compare measurement processes when their properties are
specific to the members of the population. The distribution of the deviations
Y − X may be the same within each subpopulation defined by a categori-
cal variable (such as men and women, or occupational categories in human
populations), or by the value of X itself.

An appealing property of a measurement process is that its distribution
depends on the observed subject only through the values of a limited set of
variables, and the identity of the observed member is irrelevant otherwise. A
measurement process is said to be impartial if the distribution of Y depends
only on the value of X. A measurement process is said to be additive if
the deviations Y − X have the same distribution for every member of the
population. Such a process can be described as

Y = X + ε ,
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where the distribution of ε is independent of the observed members’ values of
X. Additive processes for which ε is independent of the background variables
are impartial. Section 6.2 contains more details on impartiality and additivity.

Properties of a measurement process can be changed dramatically by a
transformation. By way of an example, suppose X is a monetary value, such
as the total value of a company’s liabilities. For many companies, their total
liabilities are not defined with precision because guesses have to be made
about some of its elements, and other elements may depend on the prices in
the near future. A plausible model for a particular measurement (assessment
or audit) process is that

Yi = Xi δi ,

where the distribution of δi does not depend on the company (i). Such a
measurement process is called multiplicative. The logarithms of the assessed
and ‘true’ liabilities satisfy an additive measurement model. For instance,
suppose a typical deviation from X is by 1%, and deviations in access of
2.5% are very rare. A deviation of 1% corresponds to £10 000 for a large
company with liabilities of £1 million, but only £100 for a small company
with liabilities of £10 000. After taking logarithms, such deviations correspond
to log-deviations of log(0.01) = 0.0095, irrespective of the underlying value of
the liabilities.

A.7 Infinite Populations

The distribution of a variable in an infinite population cannot be established
by counting the number of members with each specific value because these
counts may be infinite for some or all of the possible values. Even when the
counts are infinite it is meaningful to consider how much more frequently one
value occurs than another. For example, the distribution of the outcomes of
the single toss of a fair coin is given by the probabilities:

P(Y = head) = P(Y = tail) = 1
2 .

We could verify this by replicating the toss many times and observing that
about half the outcomes are heads. (The number of replications has to be
large and specified up front.)

The distribution of a general variable in an infinite population is de-
fined similarly. The distributions are considered for a sequence of samples
sh , h = 1, 2, . . ., such that each sample is a subsample of the following sam-
ple, that is, sh ⊂ sh+1 , and the union of all the samples coincides with the
population; every member i belongs to all samples sh for h ≥ hi ; the index
hi is specific to member i. The distribution of the variable is defined as the
limiting distribution as h increases above all bounds.

This definition requires two qualifications: how a limiting distribution is
defined and by what process the sequence of samples is constructed. For sim-
plicity, we consider first variables that have only a finite number of possible
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Table A.3. The observed counts of the outcomes in replicate draws from the distri-
bution with probabilities 0.08, 0.15, 0.27, 0.32, and 0.18 of the respective categories
1–5. The corresponding frequencies are plotted in Figure A.5.

Outcome

Replications 1 2 3 4 5

100 10 10 25 38 17

1000 79 155 250 334 182

10 000 798 1489 2694 3184 1837

100 000 7835 15 058 27 005 32 295 17 807

values. With the increasing sample size, the segments or bars of the histogram
become taller, even if their relative sizes are not changed radically. The effect
of the sample size can be removed by plotting the proportions of subjects
in each value category, while keeping the total length of the segments con-
stant, equal to unity. With such a standardisation, the limiting distribution is
defined by the limits of the proportions for each category.

An example of convergence in distribution is given in Figure A.5. The
numbers of replicates (sample sizes) on which the plotted distributions are
based are 100, 1000, 10 000 and 100 000, given in the subtitle of each panel.
The probabilities, 0.08, 0.15, 0.27, 0.32, and 0.18, of the respective categories
1–5 are marked in each panel by thin horizontal bars. On the scale used for
plotting, the five deviations of the sample proportions from the corresponding
probabilities are substantial for n = 100 in panel A and minute for n = 100 000
in panel D. Table A.3 gives the four distributions in tabular form, expressed
as counts for each category. In contrast to the proportions, the counts tend
to differ from their expectations by wider margins with more replications; for
instance, in 100 replications, outcome 1 was observed ten times, in two more
cases than expected, whereas in 100 000 replications, outcome 1 was observed
165 fewer times than the expected count of 8000. Convergence occurs for the
proportions, not for the counts.

Control over the sampling process is essential to avoid distortions such
as overrepresentation of a category. To simplify matters, we define simple
random sampling from an infinite population by a sequence of replications
of drawing a single subject without any prejudice for or against any of the
members’ attributes. This sounds like a circular definition, but we cannot
define a sampling process by probabilities because the probability of any one
member being drawn is equal to zero.

The distributions drawn in Figure A.5 are called sampling distributions
because they depend on the sample (of occasions) drawn. Their limit is called
the population distribution. The adjectives sampling and population are used
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Fig. A.5. Illustration of convergence in distribution. The sample size for each dis-
tribution is given in the subtitle of each panel. The limiting frequencies are marked
by horizontal bars.

in the same way as for quantities or sets of quantities derived from them. A
distribution can be regarded as a collection of quantities.

A.7.1 Continuous Distributions

The possible values of some variables cover the entire continuum or an in-
terval of real numbers, and so, without rounding, each value may be unique.
The distribution of such a variable cannot be described as a limit of sampling
distributions, because each (finite) sampling distribution is full of spikes corre-
sponding to the values of the individual subjects. Yet the density of the spikes
informs us about the ranges in which values are more or less frequent. Such
features are more succinctly depicted by a coarsened histogram. It is practical
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Fig. A.6. Illustration of the convergence in distribution for a continuous variable.
The sample size for each distribution is given in the title of each panel.

to plot the standardised histogram, in which the area covered by the bars is
equal to a set value, such as unity. The distribution of a continuous variable
in an infinite population is defined as the limit of the standardised histograms
for random samples with sample sizes increasing beyond all bounds, while the
bars of the histograms get narrower (the coarsening is refined) as the sample
size increases.

An illustration paralleling Figure A.5 is given in Figure A.6. In the limiting
distribution, each bar has the same (unit) height. For the sample size n = 100,
this could not be anticipated, but for n = 100 000 it is obvious, although one
may argue that the limit could still have an irregular pattern. The limiting
histogram, with the bar widths converging to zero, is called the density of
the distribution, if the limit is well defined. A distribution that has a density
is called absolutely continuous. We drop the qualifier ‘absolutely’ because we
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very rarely come across variables or distributions that are continuous but not
absolutely continuous.

A distribution with a constant density on its support is called uniform. The
standard uniform distribution is the uniform distribution with the support on
(0, 1). Its density is f(x) = 1 for x ∈ (0, 1) and f(x) = 0 otherwise. The
limiting distribution in Figure A.6 is standard uniform.

For any continuous distribution, the area under the density is equal to
unity: ∫ +∞

−∞
f(x) dx = 1 .

A density defines a unique distribution by the identity

P(c < X < d) =
∫ d

c

f(x) dx

for any pair of real numbers c < d.
For a variable X or its distribution, the distribution function is defined as

F (x) = P(X ≤ x) ,

a function in (−∞,+∞). It is nondecreasing, with limits of zero and unity
at −∞ and +∞, respectively. The distribution function and the density of a
continuous distribution are related by the identity

f(x) = F ′(x)

(the derivative of F at x). Therefore, the distribution function of a continuous
distribution is differentiable.

Strictly speaking, it cannot be proven that the limiting distribution in
Figure A.6 is the uniform or any other distribution. To justify the uniform
as the limit, we have to supplement the evidence based from sampling with
the conjecture, or appeal to ‘good reason’, that the density is smooth. In
the case of Figure A.6, it may be difficult to argue why the density should
deviate from a constant (unity) according to no apparent pattern. In practice,
it is often much more difficult to integrate the information extracted from the
data and obtained from other sources, such as descriptions of the studied
setting and relevant findings made by other parties, and conclude with a
simple description of the sought distribution and its properties.

A.7.2 Superpopulations: Models

Although finite, many human populations are large, with several million mem-
bers, and the distributions of variables defined for them are often very close to
continuous distributions with densities that contain no sharp edges or sudden
changes. Such densities are called smooth. Formally, a density f(x) is said to
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be smooth in an interval if it is differentiable at each point of the interval and
its derivative, denoted by f ′(x), is a continuous function. Note that a smooth
density f corresponds to an ‘even smoother’ distribution function F ; since
f(x) = F ′(x), F is twice continuously differentiable.

Using a continuous distribution has several advantages; continuous distri-
butions tend to be easier to describe, by a mathematical formula or graph,
and various operations with them are easier to execute. The use of such a dis-
tribution may be justified by a reference to an infinite-size superpopulation.
This is a hypothetical (nonexistent) population from which the studied popu-
lation is assumed to have been drawn as a random sample. For instance, in a
different context, such as the same survey conducted at a different time point
and using slightly different questions, the survey would be conducted on a dif-
ferent population, but the population would have been realised by the same
sampling process applied to the same superpopulation. We may even make
inferences about the superpopulation, regarding its features as more stable
(less transient) than the features of the population. After all, the population,
regarded as a simple random sample, is, by definition, a faithful miniature of
the superpopulation.

Superpopulation and its description (by a distribution) are an example of a
model, an analyst’s construct. A model is a stylised (simplified) description of
a studied population using one or several variables defined on it. For instance,
a model may provide a description of how the values of several variables are
related in a population. The price of the simplification is a loss of precision
and detail, but it may well be worth it if the result is greater insight and
better understanding of the studied population.

A.8 Distributions

Any sequence of values v1 , v2 , . . ., of finite or infinite length, and a corre-
sponding sequence of positive numbers p1 , p2 , . . . that add up to unity, forms
a discrete distribution, by prescribing for a random variable X that

P(X = vk) = pk .

Any nonnegative function f† that has a finite area underneath it,∫
f†(u) du < +∞ ,

defines a continuous distribution by the density obtained by standardising f†,
that is, by defining

f(x) =
f†(x)∫
f†(u) du

.

For example, the exponential distribution is defined by the density
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f(x) = θ exp(−θx) , (A.2)

for x > 0 and f(x) = 0 otherwise; θ is a positive constant. The distribution
function is obtained from the density by integration:

F (x) =
∫ x

−∞
f(x) dx ,

and the density is obtained from the distribution by differentiation: f(x) =
F ′(x). The distribution function of the exponential distribution given by (A.2)
is

F (x) = P(X ≤ x) = 1 − exp(−θx) ,

for x > 0. We use the singular distribution for the density f(x) in (A.2)
with a specific parameter θ, and the plural distributions for the collection of
distributions, for θ in the entire range (0,+∞) or its subset.

The exponential distributions are a special case of the gamma distributions
given by the densities

f(x) =
1

Γ (b)
θbxb−1 exp(−θx) ,

for x > 0 and f(x) = 0 otherwise; b and θ are positive constants and Γ is the
gamma function; see Section A.12 for more details.

An important role in statistics is played by the normal distributions. They
are defined by the densities

f(x) =
1√

2πσ2
exp
{
− (x − µ)2

2σ2

}
, (A.3)

where µ is a real and σ2 a positive constant. We denote this distribution
by N (µ, σ2). The normal distribution with µ = 0 and σ2 = 1 is called the
standard normal distribution.

For continuous distributions, we can define various features similarly to
their counterparts for discrete distributions, with probabilities P(X = xk)
replaced by the values of the density f(x). A continuous distribution is said to
be symmetric around a value c if f(c − ∆) = f(c + ∆) for every constant ∆.
For example, the normal distribution N (µ, σ2) is symmetric around µ. A
continuous distribution is said to have a mode at value c if its density has
a local maximum at c. The distribution is said to be unimodal (bimodal,
trimodal, and so on), if it has one (two, three, or more) modes.

The expectation of a continuous distribution with density f(x) is defined
as

E(X) =
∫ +∞

−∞
xf(x) dx ,

if the integral is well defined. Equivalently, the expectation can be defined
as the limit of the expectations of a sequence of discrete distributions that
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converge to the distribution with density f , so long as the limit exists and the
integral is well defined. The variance of a continuous distribution with density
f(x) is defined as

var(X) = E
[
{X − E(X)}2

]
if the integrals involved are well defined. Equivalently, we have

var(X) = E
(
X2
)− {E(X)}2

,

so long as E
(
X2
)

is well defined. If it is, then so is E(X). For example, the
mean of the normal distribution N (µ, σ2) is µ, and its variance is equal to σ2.

The q-quantile of a continuous distribution with density f(x) is the value
u for which

P(X < u) =
∫ u

−∞
f(x) dx = q . (A.4)

This probability, the distribution function, in fact, is a continuous nondecreas-
ing function of u, and so the equation in (A.4) always has a solution, for every
q ∈ (0, 1); the solution either is unique or is any point in an interval. In the
latter case, a sensible convention is to declare the centre of the interval as the
quantile.

Earlier we defined sampling processes for finite populations. Sampling from
a continuous distribution or a related superpopulation requires a new defini-
tion, because the probability of any particular real value is equal to zero. We
define a random draw from the standard uniform distribution by the process
of drawing a single value in the range (0, 1) without any prejudice. A practical
implementation of this can rely on a sequence of independent draws from the
discrete uniform distribution on (0, 1, . . . , 9). Let these draws be (l1 , l2 , . . .).
Then the draw from the standard uniform distribution is

∞∑
h=1

10−hlh ,

that is, lh is the digit in the decimal place h. A random draw from a contin-
uous distribution is defined as the q-quantile of this distribution, where q is
a random draw from the standard uniform distribution. A random sample of
size n is defined as a sequence of n replicate (independent) random draws from
a distribution. Note that this definition confers a pivotal role on the standard
uniform distribution. From a random sample X = (X1 , X2 , . . . , Xn) from
the standard uniform distribution we obtain a random sample from a con-
tinuous distribution with distribution function F by the elementwise quantile
transformation

F−1(X) =
{
F−1(X1), F−1(X2), . . . , F−1(Xn)

}
.

A distribution is given by a set of probabilities, a density, a distribution
function, or the like. Frequently we consider a class of distributions; they are a
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finite or infinite set of distributions that have a common (or similar) functional
form and are distinguished by the values of one or several parameters.

For example, the set of all exponential distributions, given by the density
f(x) = θ exp(−θx), where θ is in the range (0,+∞), is a class of distributions.
The distributions in this class are characterised by the value of one parameter,
θ. Such a class is said to be single-parameter. The class of all the normal
distributions N (µ, σ2), where µ ∈ (−∞,+∞) and σ2 ∈ (0,+∞), is a two-
parameter class of distributions. In principle, any collection of distributions
can be regarded as a class, and they need not have a description in terms of
one or a few parameters.

A.8.1 Simulations

With a considerable simplification, a typical problem in statistics can be de-
scribed as follows. The values of a variable are available for a random sample
drawn from an infinite population, and the population distribution of the
variable is known to belong to a given class of distributions. The task is to
estimate this distribution or its summary. Ideally, we would like to identify it,
but that is rarely possible. For a one-parameter class, the quantity of interest
may be the value of the characterising parameter, such as θ for the exponen-
tial distributions given by (A.2). The key assumption made is that the process
that generates the values of the studied variable is well described by one of
the distributions in the posited class. We can simulate (mimic) the process of
generating a random sample from an infinite population (distribution) on the
computer.

Figure A.7 displays the histogram of a computer-generated random sample
of size 50 000 drawn from the standard normal distribution. The density of the
normal distribution, suitably scaled, is superimposed. The distribution of the
computer-generated values is called empirical. Any summary of the empirical
distribution, such as its mean and variance and, in relation to an estimator,
bias and MSE, are also called empirical.

The histogram shows that with a large sample size the empirical and popu-
lation distributions differ only slightly and have essentially the same features,
except for a modicum of roughness of the empirical distribution. For instance,
unlike the population distribution, the empirical distribution may have more
than one mode. The symmetry is not reproduced, but the empirical distribu-
tion is very close to symmetry.

The term (computer) simulation refers to replications of the assumed data-
generating process (on a computer). In principle, any device could be used for
simulation, but the modern computer has no practical competitor, especially
when a large number of replicates and a nontrivial amount of computing are
required. By simulation, we can generate replicates fast and at a fraction of the
cost of replicates generated by the studied processes (‘real life’) and can assess
the properties and, more generally, learn about the posited distributions. To
this process, we can attach estimation, using several (candidate) estimators,
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Fig. A.7. Histogram of a computer-generated random sample of size 50 000 from
the standard normal distribution, with the density of N (0, 1) superimposed.

and compare their properties, efficiency in particular. In this way, we can
engage in an informed planning of a study in which observations are expensive
(as regards finance, labour, ethics or any form of undesirable destruction), and
decide how to strike a balance between the conflicting goals of high precision
in estimating a target and low expenditure.

A.9 Classes of Distributions and Models

Simulations can use the computing power as a replacement for the analyt-
ical ability to derive properties of estimators. Sampling and measurement
processes can be explored similarly. In practice, we face a task much more
difficult than simulation because only one replication of a process, governed
by a distribution that is not known to us, is available. When we know, or as-
sume, that the sought distribution belongs to a particular class, we might look
for the member of the class that resembles the observed values more closely
than any other. For this, we have to define a metric for ‘resemblance’ but also
develop approaches to identifying suitable classes of distributions based on
the information about the studied processes.

If we had a perfect understanding of how a particular process operates, we
could anticipate what kind of values it would produce. In a typical setting,
our understanding is far from complete but is not totally hollow. We study
a process to enhance or supplement our partial understanding of it. We can
entice the process to run its course and yield values of one or several key
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variables on a sample of subjects or occasions (observational units). From this
output, commonly referred to as data, we want to estimate certain population
quantities related to the process. We can interpret this problem as an inverse
task to simulations. While in simulations we can implement a process and
obtain output (data), the task in practice is to infer from the data obtained
some properties (details) of the underlying process.

A powerful general approach to addressing this problem is by specifying a
model for the studied (target) process. This model is a collection of processes,
and we assume that one of them is the studied process. For instance, if we
believe that the process generates values drawn at random from one of a class
of distributions, then this class forms the model. Suppose the class comprises
all the normal distributions, N (µ, σ2), with unknown values of µ and σ2, and
it would be valuable to know the values of these parameters, µ and σ2. The
target process may be more complex than one of the model distributions, but
the simplicity in the model specification may be rewarded by a better choice
of an estimator or, more importantly, a better understanding of the studied
process.

For models or classes of distributions in general, we can define a partial
ordering. Model A is said to be narrower than model B if every distribution
in model A is also contained in model B. A model with a narrower class of
distributions has the advantage that we have fewer candidates for the tar-
get process, so the search among them is, in principle, easier. On the other
hand, if we choose a wider class of distributions we do not reduce the possibil-
ity that this class contains the target distribution or contains a distribution
that is close to the target distribution. This balancing act between specificity
(narrowness) and validity (containing the ‘true’ distribution) is one of the
principal unresolved problems in statistics. A model that contains the target
distribution is called valid. In later chapters we will also find that estimation
based on narrower models is more efficient, if the model is valid.

A.10 Normal Distributions

The class of normal distributions appears in many theoretical derivations as
well as in practical applications. It has some very useful properties which make
it a popular choice for a model. From its density given by (A.3), we can easily
deduce that the normal distribution N (µ, σ2) is symmetric and has a single
mode at µ. These properties imply that its mean, if it exists, is equal to µ.
This can be verified by evaluating the integral

E(X) =
∫ +∞

−∞

x√
2πσ2

exp
{
− (x − µ)2

2σ2

}
dx

= µ

∫ +∞

−∞

1√
2π

exp
(
−y2

2

)
dy +

1√
2π

∫ +∞

−∞
y exp

(
−y2

2

)
dy = µ ,
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after the transformation y = (x − µ)/σ, and realising that the first integrand
in the second line is the density of the standard normal distribution. The
second integrand is symmetric and has the primitive function − exp(−y2/2),
so its integrals over (−∞, 0) and (0,+∞) are well defined and add up to
zero. Similarly, it can be shown that the variance of the normal distribution
N (µ, σ2) is equal to σ2. A more elegant proof of this is provided after deriving
another property of the class of normal distributions.

If X has the distribution N (µ, σ2), then Y = (X −µ)/σ has the standard
normal distribution N (0, 1). This can be derived by expressing the distribution
of Y by the probabilities

P(Y < c) = P(X < µ + cσ) ,

and expressing this as

P(X < µ + cσ) =
1√

2πσ2

∫ µ+cσ

−∞
exp
{
− (x − µ)2

2σ2

}
dx

=
1√
2π

∫ c

−∞
exp
(− 1

2y2
)

dy ,

which is the distribution function of the standard normal distribution. The
variance of the standard normal distribution is equal to

1√
2π

∫ ∞

−∞
y2 exp

(− 1
2y2
)

dy = 1 ,

derived by integrating by parts, using the primitive function − exp(−y2/2) for
y exp(−y2/2). As the standard deviation is a dispersion quantity, the standard
deviation of N (µ, σ2) is equal to σ and the variance to σ2.

We can declare each constant µ the (degenerate) normal distribution
N (µ, 0). With this convention, any linear transformation of a normally distrib-
uted variable is normally distributed. We say that the normal distributions
are closed with respect to linear transformations. Any normal distribution
can be formed by a linear transformation of the standard normal distribu-
tion, and any normal distribution N (µ, σ2) with positive variance σ2 can be
transformed linearly, as from X to (X−µ)/σ, to become the standard normal.
The application of this transformation, g(X) = (X − µ)/σ, is referred to as
standardisation.

Owing to the closure of the normal distribution with respect to linear
transformations, an arbitrary quantile of any normal distribution can be de-
rived straightforwardly from the corresponding quantile of the standard nor-
mal distribution. Denote by Φ the distribution function of N (0, 1), so that its
inverse Φ−1(q) is the quantile as a function of the probability q. As every quan-
tile is a location quantity, the q-quantile of N (µ, σ2) is equal to µ + σΦ−1(q).
Many estimators encountered in practice are approximately normally distrib-
uted with the approximation being very close when the sample size is large.
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A.10.1 Log-Normal Distributions

Many variables are expressed in physical units, such as degrees Fahrenheit,
miles, or degrees of latitude, which have alternatives, such as degrees Celsius,
kilometres, and radians, respectively. A class of distributions would have a
strong appeal if, among other conditions, it would be equally well suited for
either of the scales defined by the alternative units. When the units are linearly
related, as in the listed examples, the normal distribution has the obvious
advantage because it is closed with respect to linear transformations.

In practice, we often encounter variables for which classes that are closed
with respect to multiplication would be suitable. For example, a natural op-
eration for values defined in monetary units is multiplication, often expressed
in terms of percentages. By taking logarithms, multiplication converts to ad-
dition, a linear transformation. Some laws of physics involve multiplication
(or division) and units that imply multiplication. Area and volume are cases
in point, and speed and shape involve division. By taking logarithms, length,
area, and volume are expressed in identical units, such as ‘log-meter’.

These examples motivate the log-normal distribution. A variable X is
said to have a log-normal distribution if its logarithm has a normal distri-
bution. If a variable X is distributed according to N (µ, σ2), then its ex-
ponential (the inverse of logarithm) has mean exp(µ + 1

2σ2) and variance
exp(2µ) exp(σ2)

{
exp(σ2) − 1

}
. To prove this, we evaluate E{exp(kX)} for

k = 1 and k = 2. By reorganising the terms in the arguments of the exponen-
tials we obtain

E {exp(kX)} =
1√

2πσ2

∫ +∞

−∞
exp(kx) exp

{
− (x − µ)2

2σ2

}

=
1√

2πσ2
exp
{
− µ2

2σ2
+

(µ + kσ2)2

2σ2

}∫ +∞

−∞
exp

[
−
{
x − (µ + kσ2)

}2
2σ2

]
= exp

(
kµ + 1

2k2σ2
)

,

exploiting the fact that the density of N (µ + k2σ2, σ2
)

integrates to unity.
The expression for the mean follows directly (k = 1), and the variance is
derived from the identity

var{exp(X)} = E{exp(2X)} − [E{exp(X)}]2.
The normal and log-normal distributions provide an effective illustration

that nonlinear transformations and expectation E do not commute. We have

E{exp(X)} ≥ exp{E(X)} ,

with equality only when σ2 = 0. The finite-sample version of this inequality
is equivalent to the statement that the geometric mean of a set of positive
numbers never exceeds the arithmetic mean:
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n

√√√√ n∏
i=1

xi ≤ 1
n

n∑
i=1

xi ,

with equality only when all n values xi coincide.

A.11 Uniform Distributions

The uniform distribution was introduced in Section A.7.1. In this section,
we explore it in greater detail. The class of continuous uniform distributions
is given by the densities f(x) = 1/(θ2 − θ1) for x ∈ (θ1 , θ2) and f(x) = 0
elsewhere; θ1 < θ2 are the two parameters that define a distribution. We
denote the uniform distribution on (θ1 , θ2) by U(θ1 , θ2). Although θ1 has to
be smaller than θ2 , it is expedient to regard the constant θ as the (degen-
erate) uniform distribution U(θ, θ). For θ1 < θ2 , the distribution function of
U(θ1 , θ2) is piecewise linear: F (x) = 0 for x < θ1 , F (x) = (x − θ1)/(θ2 − θ1)
for x ∈ [θ1 , θ2] and F (x) = 1 for x > θ2 .

Similarly to the standard normal distribution, the standard uniform dis-
tribution is obtained from an arbitrary nondegenerate distribution U(θ1 , θ2),
with θ1 < θ2 , by the linear transformation g(X) = (X − θ1)/(θ2 − θ1). Con-
versely, any uniform distribution is obtained from the standard uniform by
the transformation θ1+(θ2−θ1)X. The class of uniform distributions is closed
with respect to linear transformations.

The distribution U(θ1 , θ2) is symmetric, with mean (θ1 − θ2)/2 and vari-
ance (θ1 − θ2)2/12. The latter expression is obtained by integration (for the
standard uniform distribution),∫ 1

0

(
x − 1

2

)2 dx = 1
12 ,

and using the fact that the standard deviation is a dispersion quantity. The
class of uniform distributions defines a model for randomness in a variety of
settings. By a number randomly drawn from a given range, such as (0, 100),
we mean a random draw from the distribution U(0, 100). The condition of ‘no
prejudice’ for or against any particular value in the support is interpreted as
a constant density of the distribution from which a draw (selection) is to be
made. It implies that the probability of a draw falling to any particular interval
depends solely on the length of the interval; P(a < X < b) = (b−a)/(θ2−θ1),
so long as θ1 ≤ a ≤ b ≤ θ2 .

The standard uniform distribution has the role of a pivot among all the
continuous distributions. Suppose variable X has a continuous distribution
with distribution function F (x), strictly increasing throughout its support
(ξ1 , ξ2); either bound ξ1 or ξ2 may be infinite. Then F (X), the distribution
function applied as a transformation, has the standard uniform distribution.
This follows immediately from the identity
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P {F (X) < u} = u

for u = F (x) = P(X < x).
Suppose continuous variable X has distribution function F (x) and G(x) is

another distribution function with a density. Then the variable G−1{F (X)}
has the distribution function G(x). Thus, a continuous variable can be trans-
formed to have any other continuous distribution. In particular, we can con-
struct (by simulations) a variable with any conceivable continuous distribu-
tion.

Polynomial and Other Distributions Derived from Uniform

A polynomial distribution is derived by taking a power of a variable with uni-
form distribution. We focus here on polynomial distributions with support on
(0, 1); distributions with supports on other intervals are derived straightfor-
wardly. Suppose variable X has uniform distribution on (0, 1), X ∼ U(0, 1),
so that P(X < x) = x for any x ∈ (0, 1). Then the variable Y = Xk has
the distribution function P(Y < x) = k

√
x, density k−1x1/k−1, expectation

1/(k + 1) and standard deviation k/(k + 1)/
√

2k + 1.
The exponential distribution is obtained as the negative logarithm of

the uniform distribution. If X ∼ U(0, 1), then the distribution function of
− log(X) is P{− log(X) < x} = P{X > exp(−x)} = 1 − exp(−x). Note
that while E(X) = 1

2 , E{− log(X)} = 1, different from exp(1
2 ); exponentia-

tion and expectation cannot be exchanged. An arbitrary exponential distrib-
ution is obtained by the transformation −θ−1 log(X) from X ∼ U(0, 1) for a
positive θ.

A.12 Beta and Gamma Distributions

The class of beta distributions is defined by the densities

f(x) =
Γ (a + b)
Γ (a)Γ (b)

xa−1(1 − x)b−1 (A.5)

for x ∈ (0, 1) and positive constants a and b. The gamma function Γ (a) is
defined for positive arguments a as

Γ (a) =
∫ +∞

0

xa−1e−x dx .

For integers a, Γ (a) = (a − 1)! = 2 × 3 × . . . × (a − 1). The beta density
with parameters a and b is denoted as B(a, b). Its expectation is a/(a + b)
and its variance is ab/

{
(a + b)2(a + b + 1)

}
. The expectations of the beta

distributions are in the entire range (0, 1) and their variances in the range
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{0, µ(1 − µ)} where µ is the expectation. Beta distributions with mean equal
to 1

2 , when a = b, are symmetric.
The gamma distributions are defined by the densities

f(x) =
1

Γ (α)
θαxα−1 exp (−θx) ,

where α and θ are arbitrary positive constants and x > 0. The mean and vari-
ance of a gamma distribution are α/θ and α/θ2, respectively. The parameter
α is referred to as the shape and θ as the scale. Exponential distributions are
a special case (a subclass) of gamma, with shape α = 1. A gamma distribution
with shape parameter equal to integer α can be derived as the distribution of
the sum of α independent variables each with the exponential distribution
with the same parameter θ; see Section 2.2.

A.13 Classes of Discrete Distributions

The simplest nontrivial discrete distribution is the binary distribution, also
known as the Bernoulli distribution. It has probabilities 1−p and p, 0 < p < 1,
on the two points of its support, 0 and 1, respectively. Its expectation is p and
variance p(1 − p), obtained directly from the corresponding definitions for a
general discrete distribution.

A binomial distribution is defined as the number of successes in a sequence
of n independent trials, each of which has the same probability p of yielding
a successful outcome. Thus, it is a sum of n independent and identically
distributed binary variables. Its distribution is given by the probabilities

P(X = k) =
(n

k

)
pk(1 − p)n−k. (A.6)

Its expectation and variance are np and np(1−p), respectively. They are both
n-multiples of the Bernoulli distribution from which the binomial is generated.
This is not a coincidence; see Section A.17. Every binomial distribution is
either unimodal or its highest probability is attained at two consecutive points.
The latter is the case when k = p(n + 1) is an integer, and then the highest
probabilities are attained at k − 1 and k. Otherwise it is unimodal, with
mode either at the integer part of p(n + 1) − 1, denoted by [p(n + 1) − 1], or
at the following integer, [p(n + 1)]. Every binomial distribution with p = 1

2
is symmetric, but no other binomials are, unless we define the degenerate
binomial distributions with p = 0 and p = 1.

A Poisson distribution can be derived as the limit of binomial distributions
as the probability p converges to zero and the number of trials diverges to
infinity at such a speed that np converges to a finite constant λ. The Poisson
distributions are given by the probabilities

P(X = k) =
e−λλk

k!
,
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for k = 0, 1, . . . and parameter λ > 0. The expectation and variance of this
distribution are both equal to λ. Every Poisson distribution is either unimodal,
with mode at one of the integers next to λ, or, when λ is an integer, the highest
probability is shared by the points λ − 1 and λ.

A geometric distribution is derived as the number of failures prior to the
first success in a sequence of independent binary trials. Let q = 1 − p be the
probability of failure; q ∈ (0, 1). Then

P(X = k) = pqk,

for a geometrically distributed variable X. The expectation of this variable is
q/p and variance q/p2. To prove this, we differentiate both sides of the identity

∞∑
k=0

p(1 − p)k = 1 ;

∞∑
k=0

(1 − p)k −
∞∑

k=1

kp(1 − p)k−1 = 0 . (A.7)

The first summation, the total of a geometric sequence, is equal to 1/p and
second to the 1/q-multiple of the expectation; hence E(X) = q/p. Another
differentiation of (A.7) yields the identity

−2
∞∑

k=1

k(1 − p)k−1 +
∞∑

k=2

k(k − 1)p(1 − p)k−2 = 0 ,

and by relating the two summations to E(X) and E{X(X − 1)}, respectively,
we obtain the identity

E {X(X − 1)} =
2q2

p2
,

from which the result for var(X) = E{X(X − 1)} + E(X) − {E(X)}2 follows
immediately.

A.13.1 Discrete Uniform Distributions

The class of discrete uniform distributions is defined by equal probabilities on
each possible outcome. For example, the toss of a fair coin is represented by
the uniform distribution on the set (H,T), head and tail of the coin. Casting
a die corresponds to the uniform distribution on its six faces, or on the digits
1, . . . , 6. Similarly, by drawing a random digit, we mean drawing one member
from the population (0, 1, . . . , 9) with probability equal to 0.1 for each digit.
Lottery and games of chance provide further examples (and applications) of
discrete uniform distributions.

The distributions supported on a finite number of values are called multi-
nomial. The discrete uniform and binomial are their subclasses. A discrete
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distribution that is supported on infinitely many values can be approximated
with arbitrary precision by a distribution that has the same probabilities on
a suitably selected finite subset of the support, and the remaining probability
is gathered in a single point. This sequence of subsets can be set to the n
values that have the highest probabilities, with an arbitrary way of resolving
ties, and letting n diverge to infinity.

A.14 Discrete Bivariate Distributions

So far, we have considered in detail only distributions defined on the real num-
bers, (−∞,+∞), or its subsets, such as finite-length intervals and integers.
We refer to such distributions as univariate. However, distributions can be
defined in any space. In this section, we consider distributions on I2 = I ×I,
where I is the set of integers 0, 1, . . . . They are essential for dealing with
pairs of univariate variables and for studying how they are associated.

A discrete bivariate distribution is derived from a pair of random variables,
X1 and X2 ; it is given by the probabilities

P(X1 = x1 and X2 = x2) ,

for all integers x1 and x2 . The two variables are said to be independent if

P(X1 = x1 and X2 = x2) = P(X1 = x1) P(X2 = x2) (A.8)

for all x1 and x2 . Independence is a special case of association. A trivial case
of dependence (the negation of independence) is the association of the variable
with itself; the identity

P(X = x) = {P(X = x)}2
,

required for independence, holds only when P(X = x) is equal to zero or unity,
so a variable is independent with itself only when it is degenerate (supported
by a single value x). As a nontrivial example of dependence, consider a single
cast of a die and denote by X1 and X2 the dichotomous variables that indicate
whether the outcome is even (2, 4 or 6), and whether it exceeds 3. Both
variables have binary distributions on (Yes, No), with identical distributions
given by P(X1 = Yes) = P(X2 = Yes) = 1

2 . However,

P(X1 = Yes and X2 = Yes) = 1
3 ,

different from P(X1 = Yes) × P(X2 = Yes) = 1
4 .

A probability that involves both variables X1 and X2 is called joint, and
a probability that involves only one of them is called marginal. These terms
are motivated by the table of the (joint) probabilities in Table A.4.

In general, we have the identity



A.14 Discrete Bivariate Distributions 437

Table A.4. Joint and marginal probabilities (an example).

X2

X1 Yes No Margin

Yes 1
3

1
6

1
2

No 1
6

1
3

1
2

Margin 1
2

1
2

P(X1 = x1) =
∑

x

P(X1 = x1 and X2 = x) ,

where the summation is over the support of X2 . From the joint distribution
(probabilities) we can derive the marginal distributions, but these are not
sufficient for recovering the joint distribution of a pair of variables. If we
know that X1 and X2 are independent, then their joint distribution is easily
reconstructed from the marginal distributions according to (A.8).

A.14.1 Conditional Distributions

A conditional distribution is defined for a variable and a condition. A simple
example is drawn from Table A.4. The conditional distribution of X1 , given
that the outcome of casting a die exceeds 3 (X2 is equal to ‘Yes’), is defined
by

P(X1 = Yes |X2 = Yes) = 2
3 .

This is derived by reducing our attention to the outcomes that satisfy the
condition stated behind the vertical bar | . The probability is derived from
the first column of the table as 1

3 /
(

1
3 + 1

6

)
or, in general, as

P(X1 = x1 |X2 = x2) =
P(X1 = x1 and X2 = x2)

P(X2 = x2)
.

This may be easier to motivate by replacing the probabilities in the table
by counts. It corresponds to multiplying each entry in the table by a large
number, but it has no impact on the ratio.

The roles of the two variables in the probability P(X1 = x1 |X2 = x2)
differ substantially. In general,

P(X1 = x1 |X2 = x2) �= P(X2 = x2 |X1 = x1)

even though P(X1 = Yes |X2 = Yes) = P(X2 = Yes |X1 = Yes) = 2
3 in

Table A.4. The following example confirms this rule. Let X1 be the higher
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outcome of the two casts of a die and X2 the sum of the two outcomes.
The conditional probability that X1 = 6, given that the total is X2 = 8, is
P(X1 = 6 |X2 = 8) = 2

5 , whereas the conditional probability that X2 = 8
given that six has come up at least once is P(X2 = 8 |X1 = 6) = 2

11 . A
conditional probability is well defined only when the condition itself has a
positive probability.

The two sets of probabilities are connected by the identity

P(X1 = x1 |X2 = x2) =
P(X2 = x2 |X1 = x1) P(X1 = x1)

P(X2 = x2)
(A.9)

(assuming that P(X2 = x2) and P(X1 = x1) are both positive), called the
Bayes theorem. Further, the denominator in (A.9) can be expressed as

P(X2 = x2) =
∑

x

P(X2 = x2 |X1 = x) P(X1 = x) ,

where the summation is over the (finite) support of X1 .
Let pkh = P(X1 = k and X2 = h), k = 1, . . . , K and h = 1, . . . , H, be

the two-way table of the joint probabilities (rows k and columns h) associated
with discrete variables X1 and X2 . Then the conditional distribution of X1

given X2 = h is derived by standardising column h of the table, that is,
dividing its entries by the column total (so that they add up to unity):

P(X1 = k |X2 = h) =
pkh

p1h + p2h + · · · + pKh
.

It is useful to introduce the notation pk+ and p+h for the marginal probabil-
ities, as they are derived by summing up over the index that is replaced by
the summation sign ‘+’. The conditional distribution of X2 given X1 = k is
derived by interchanging the roles of the rows and columns:

P(X2 = h |X1 = k) =
pkh

pk+
.

Of course, we assume that none of the margins (row or column totals) vanish;
otherwise the row or the column concerned could be deleted.

Variables X1 and X2 are independent when none of the conditional prob-
abilities P(X1 = k |X2 = h) depend on the condition and all are equal to
P(X1 = k). This follows immediately from the definition of independence.
When the conditional probabilities P(X1 = k |X2 = h) do not depend on h for
any h in the support of X2 , the conditional probabilities P(X2 = h |X1 = k)
do not depend on the condition either. Independence is a symmetric property,
but conditional probabilities are not symmetric.

A.15 Bivariate Continuous Distributions

Most of the definitions and theory of bivariate discrete distributions carry
directly over to bivariate continuous distributions, with the various probabil-
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ities replaced by densities. A pair of continuous random variables X1 and X2

is said to have a continuous joint distribution when the limit

lim
δ→0+

P(|X1 − x1| < δ and |X2 − x2| < δ)
δ2

(A.10)

exists for every x1 and x2 in the respective supports of X1 and X2 . The limit
is called their joint density and is denoted by f(x1 , x2). When any ambiguity
might arise, we indicate the variables as subscripts of the density function,
such as fX1 , X2 for the density of (X1 , X2).

Even though every (univariate) continuous distribution has a density, not
every pair of continuous distributions has a (bivariate) joint density. As an
example, suppose X1 has the standard uniform distribution and let X2 =
1 − X1 . It is easy to show that the limit in (A.10) is either equal to zero
(when x1 +x2 �= 1) or diverges to +∞. Therefore the joint distribution of the
pair (X1 , X2) is not continuous.

Two continuous distributions are independent when they have a joint den-
sity f(x1 , x2) and it is equal to the product of the (marginal) densities of the
(univariate) component variables: f(x1 , x2) = fX1(x1) fX2(x2). This defini-
tion is equivalent to the natural definition of independence, requiring that

P(X1 ∈ U1 and X2 ∈ U2) = P(X1 ∈ U1) P(X2 ∈ U2)

for any pair of intervals U1 and U2 .
The marginal densities are obtained from the joint density of a pair of

variables by integration:

fX1(x1) =
∫ +∞

−∞
f(x1 , x) dx

and similarly for X2 .
The conditional density of X1 , given a value of X2 , is defined as

fX1(x1 |X2 = x2) =
f(x1 , x2)
fX2(x2)

,

so long as the denominator is positive. In parallel with conditional proba-
bilities, in general, fX1(x1 |X2 = x2) �= fX2(x2 |X1 = x1). The two sets of
conditional distributions are connected by the Bayes theorem for conditional
densities,

fX1(x1 |X2 = x2) =
fX2(x2 |X1 = x1) fX1(x1)

fX2(x2)
,

and fX2(x2) =
∫

fX2(x2 |X1 = x) fX1(x) dx; compare with (A.9).
Two continuous random variables are independent when the conditional

distribution of one, given a value of the other, does not depend on the value,
that is, when fX1(x1 |X2 = x2) = fX1(x1) for all x1 and x2 in the respective
supports of X1 and X2 .
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A bivariate distribution is defined for any two random variables, and these
may be of different types, such as one continuous and one discrete. A practical
way of defining their joint distribution is by the set of (continuous) conditional
distributions fX1(x1 |X2 = x2) given category x2 of the discrete variable X2 .
The marginal density of X1 is

fX1(x1) =
∑

x

fX1(x1 |X2 = x) P(X2 = x) ,

where the summation is over the (discrete) support of X2 . The distribution
of X1 is called a discrete mixture (of the conditional distributions given the
categories of X2). When X2 is supported by a finite set of values, the mixture
is said to be finite. A natural mechanism (process) for generating a draw from
such a distribution is by drawing first a value of X2 , which determines the
distribution from which X1 is to be drawn next. A finite mixture of variables
can be expressed as

X = I1X1 + I2X2 + · · · + IKXK ,

where Ik is the indicator of category k: Ik = 1 if category k is realised and
variable Xk used, so that X = Xk , and Ik = 0 otherwise. It is assumed
that I1 , . . . , IK are independent of all the constituent variables X1 , . . . , XK .
However, they are correlated among themselves, as I1 + · · · + IK = 1.

A.16 Operating with Bivariate Distributions

The expectations, medians, quantiles, variances, and the like, are defined for
bivariate distributions componentwise, that is, separately for each variable
(component), so they entail no new definitions. An important quantity that
describes the association of two variables X1 and X2 is the covariance, de-
noted by cov(X1 , X2). It is defined as

cov(X1 , X2) = E [{X1 − E(X1)} {X2 − E(X2)}]

so long as all three expectations (including those of X1 and X2) are well
defined. Simple operations yield the identity

cov (X1 , X2) = E (X1 X2) − E(X1) E(X2) , (A.11)

if the expectations are well defined. Variance is a special case of covariance—it
is the covariance of a variable with itself: var(X) = cov(X,X).

It is expedient to use a single symbol for the pair of variables; X =
(X1 , X2)�, so that X is a 2 × 1 column vector. A clash with the notation
introduced in the context of sample surveys in Section A.3 is unavoidable.
Later we will use boldface symbols for vectors of arbitrary (unspecified) finite
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length. We write E(X) = {E(X1), E(X2)}�, and define the variance matrix
var(X) as the matrix

var(X) =

(
var(X1) cov(X1 , X2)

cov(X1 , X2) var(X2)

)
.

For an arbitrary 2 × 1 vector a, E
(
a�X

)
= a�E(X) and var

(
a�X

)
=

a�var (X)a, so long as each element of E(X) and var(X) is well defined.
The latter identity implies that var(X) is a nonnegative definite matrix, and
hence

{cov(X1 , X2)}2 ≤ var(X1) var(X2) , (A.12)

with equality only when X1 and X2 are linearly dependent (and when a�X
is equal to a constant for a nonzero vector a).

The correlation of two variables X1 and X2 that have well-defined (finite)
positive variances is defined as

cor(X1 , X2) =
cov(X1 , X2)√

var(X1)
√

var(X2)
.

The inequality in (A.12) implies that −1 ≤ cor(X1 , X2) ≤ 1. Further,
cor(X1 , X2) = ±1 only when X1 and X2 are linearly dependent. In such
a case, X1 and X2 are said to be perfectly correlated ; cor(X1 , X2) = 1 when
X1 − cX2 is constant for a positive constant c, and cor(X1 , X2) = −1 when
X1 − cX2 is constant for a negative constant c.

Variables X1 and X2 are said to be uncorrelated when cov(X1 , X2) = 0.
When X1 and X2 are independent they are also uncorrelated. To prove this,
we evaluate first E(X1 X2). The distribution of the product Y = X1 X2 is in
general given by the density

fY(y) =
∫

fX1

(
y

x2

∣∣∣∣ X2 = x2

)
fX2(x2) dx2 ,

obtained by conditioning on X2 . Hence, discarding the condition (owing to
independence),

E(X1 X2) =
∫

y

∫
fX1

(
y

x2

)
fX2(x2) dx2 dy ,

and the change of variables x1 = y/x2 yields the identity

E(X1 X2) =
∫

x1f(x1) dx1

∫
x2f(x2) dx2 ,

that is, E(X1) E(X2). Now, cov(X1 , X2) = 0, according to (A.11), and so also
cor(X1 , X2) = 0. The proof carries over to discrete variables, by replacing
each integral with the corresponding summation.
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Table A.5. Example of a pair of variables that are uncorrelated but dependent.

X1

X2 −2 −1 1 2

1 0 1
4

1
4

0

2 1
4

0 0 1
4

Note however, that absence of correlation does not imply independence.
The following is a simple example of two dependent uncorrelated discrete vari-
ables. Variable X1 is uniformly distributed on (−2,−1, 1, 2), that is, each value
in its support has probability 1

4 . Variable X2 is equal to the absolute value of
X1 , so it is uniformly distributed on (1, 2); see Table A.5. The two variables are
dependent because P(X1 = 1 and X2 = 2) = 0 whereas P(X1 = 1) = 1

4 and
P(X2 = 2) = 1

2 , yet they are uncorrelated because E(X1 X2) = E(X1) = 0.
Independence is maintained by transformations. If X1 and X2 are inde-

pendent variables, then so are their transformations g1(X1) and g2(X2). Of
course, the transformed variables g1(X1) and g2(X2) may be independent
when the original variables X1 and X2 are not. Further, if X1 and X2 are
both independent of X3 , then any function of X1 and X2 is also independent
of X3 .

The covariance has the following ‘quadratic’ property. If cov(X1, X2) is
well defined for a pair of variables X1 and X2 , then

cov(a1X1 + c1 , a2X2 + c2) = a1a2 cov(X1 , X2)

for arbitrary constants a1 , a2 , c1 , and c2 . Hence

cor(a1X1 + c1 , a2X2 + c2) = sign(a1 a2) cor(X1 , X2) ,

where sign is the function equal to +1 for positive, −1 for negative arguments,
and sign(0) = 0; the absolute value of the correlation is unaffected by (non-
trivial) linear transformations. Recall that var(aX + b) = a2var(X), since
standard deviation is a dispersion quantity.

For any two variables with finite variances,

var(X1 + X2) = var(X1) + var(X2) + 2cov(X1 , X2) ;

the covariance is well defined, so long as any two variances in this expression
are. For independent variables X1 and X2

var(X1 + X2) = var(X1) + var(X2) . (A.13)

This is a key identity for working with random samples, sequences of inde-
pendent and identically distributed random variables.
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For expectations, we have an identity similar to (A.13), except that it
holds even when X1 and X2 are correlated;

E(X1 + X2) = E(X1) + E(X2) , (A.14)

so long as two of the expectations are well defined. This result is derived
similarly to its counterpart for the product of two independent variables:

E (X1 + X2) =
∫ ∫

yfX1(y − x2 |X2 = x2) fX2(x2) dx2 dy

=
∫

xfX1(x) dx +
∫

x2fX2(x2) dx2

= E(X1) + E(X2) ,

after the change of variables x = y − x2 .

A.17 Random Samples

A single observation of a process, yielding a random draw from a distribu-
tion, is rarely of much use because it conveys little information. Much more
commonly we work with a sequence of independent realisations of the studied
process and the resulting random sample from a distribution. This section
summarises the properties of random samples.

Suppose X1 , X2 , . . . , Xn is a random sample from a distribution with
finite mean µ and finite variance σ2. Then the mean of the sample, X̄ =
(X1 + · · · + Xn)/n has the expectation µ and variance σ2/n. This result,
derived from (A.14), supports the estimation of the (finite) expectation of
a distribution. It can be rephrased as follows: if the population mean µ is
finite, then the sample mean of a random sample is an unbiased estimator of
µ and, if the population variance is finite, its sampling variance converges to
zero as the sample size increases above all bounds. That is, greater sample
size is rewarded by greater precision, confirming the intuition that more data
amounts to more information and yields better inference (about µ).

The sample mean is unbiased for the population mean even when the
observations are correlated. However, independence is essential for the result
about the variance, var

(
X̄
)

= σ2/n. In fact, absence of any correlation among
Xj would suffice, but the additional generality is of little practical importance.
When any pair of observations Xj have the same positive correlation ρ, then

var
(
X̄
)

=
σ2

n

(
1 +

n − 1
n

ρ

)
,

so inferences are profoundly handicapped vis-à-vis independent observations
with the same sample size.
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It might seem that the variance σ2 would also be estimated without bias
naively, as

σ̂2
† =

1
n

n∑
j=1

(
Xj − X̄

)2
.

That is not the case;

E
(
σ̂2
†
)

=
1
n

n∑
j=1

E
{

(Xj − µ)2
}
− E
{(

X̄ − µ
)2}

= σ2 − var
(
X̄
)

=
n − 1

n
σ2 ,

and so

σ̂2 =
1

n − 1

n∑
j=1

(
Xj − X̄

)2
is unbiased for σ2. The unity subtracted from the divisor for σ̂2 is interpreted
as a degree of freedom lost due to estimating a parameter, in this case µ.
Indeed, if µ were known, the estimator

σ̂2 =
1
n

n∑
j=1

(Xj − µ)2

would be unbiased.
In many settings, the sample mean X̄ is efficient, or nearly so, but that

is not always the case. For example, for a uniform distribution U(θ1 , θ2), the
sample mean is a very inefficient estimator of the population mean 1

2 (θ1 + θ2);
the average of the extremes, 1

2 (max xj + min xj), is much more efficient. In
contrast, the sample mean of a normally distributed random sample is efficient
for the population mean, and the average of its extremes is very inefficient.

A.18 Regression

Regression of one variable, Y , on another, X, is the term used for the condi-
tional expectation of Y given a value of X, E (Y |X = x), treated as a function
of the value x. It provides a description, alternative or additional to covari-
ance and correlation, for the association of the two variables. For example,
when X and Y are independent, E (Y |X = x) = E(Y ), and regression of Y
on X is constant. The conditional variance var (Y |X = x), as a function of
x, is called the residual variance.

The regression can be interpreted as the contribution made by X to the
information about Y . When we know the distribution of Y but we do not
observe Y , its expectation E(Y ) is a reasonable estimate (prediction) of the
value of Y that would or might be observed in the future, especially when
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the distribution of Y is symmetric. By definition, E(Y ) is unbiased for the
realisation of Y , and its variance is var(Y ). If we know the value of X that
accompanies Y , we should be able to predict the value of Y more efficiently
(with smaller MSE)—the additional information, in the form of the value of
X, should not be detrimental to our efforts at predicting the value of Y . The
logic of this statement does not hold up all the time, certainly not when the
expectation or the variance of Y is not defined, but a weaker result is obtained
from the identity

var(Y ) = EX {var(Y |X = x)} + varX {E(Y |X = x)} ,

in which the ‘outer’ expectation and variance, with the subscript X, are over
the distribution of X, that is, over all possible conditions X = x. This identity
implies that var(Y ) ≥ EX {var(Y |X = x)}, and equality occurs only when the
regression E (Y |X = x) is constant, that is, when X and Y are uncorrelated.
Therefore, by using the regression X helps us in predicting Y on average.

A.19 Multivariate Distributions

For a vector of more than two variables, some but not all of the defin-
itions for bivariate distributions are extended straightforwardly. Let X =
(X1 , . . . , XK)� be a vector of K variables. Its expectation is defined com-
ponentwise,

E(X) = {E(X1), . . . ,E(XK)}� ,

and its variance matrix is defined as the matrix of the variances and covari-
ances of its components,

var(X) =

⎛⎜⎜⎜⎜⎝
var(X1) cov(X1 , X2) . . . cov(X1 , XK)

cov(X2 , X1) var(X2) . . . cov(X2 , XK)
...

...
. . .

...
cov(XK , X1) cov(XK , X2) . . . var(XK)

⎞⎟⎟⎟⎟⎠ .

Commonly, the following notation is used: Σ = var(X), with diagonal el-
ements σ2

k = var(Xk), and σkh = cov(Xk , Xh), with the convention that
σkk = σ2

k .
The correlation matrix of X is defined as the matrix of the pairwise cor-

relations cor(Xk , Xh), with unities on the diagonal. Let σ = diag(k)(σk) be
the diagonal matrix with the standard deviations of X on its diagonal; then
cor(X) = σ−1Σσ−1. The variables in X are said to be uncorrelated if they
are pairwise uncorrelated, so that the correlation and variance matrices of X
are diagonal. Recall that the correlation of two variables is not defined if one
of them has zero variance or its variance is not defined.
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The variables in X are said to be mutually independent if each variable Xk

is independent of any transformation g (X−k) that involves the variables in
X except for Xk . Mutual independence is a stricter condition than pairwise
independence.

A multivariate distribution, say of a vector X, has univariate marginals,
the distributions of X1 , X2 , . . . , XK , bivariate marginals, the joint distri-
butions of any pair of components Xk and Xh of X (k �= h), and so on,
(K − 1)-variate marginals, the distributions of X−k, k = 1, . . . , K, obtained
by dropping one of the components of X.

A.19.1 Multivariate Normal Distributions

A random vector X is said to have multivariate normal distribution if any
linear combination of its components, a�X, has a univariate normal distri-
bution. This definition may appear a bit awkward, but a vector comprising
normally distributed variables as its components may not satisfy this defini-
tion, and it is desirable to exclude such (joint) distributions. The joint density
of the multivariate normal distribution is

f(x) =
1(√
2π
)K det(Σ)−

1
2 exp

{
−1

2
(x − µ)�Σ−1(x − µ)

}
,

where µ and Σ are a vector of length K and a K × K symmetric positive
definite matrix, respectively. It turns out that E(X) = µ and var(X) = Σ;
this can be verified directly by integration. We denote a K-variate normal
distribution by NK(µ,Σ); the subscript K will be dropped whenever the
dimension K is immaterial or is obvious from the context (e.g., when the
length of µ is specified).

Any marginal distribution of N (µ,Σ) is also (multi- or univariate) nor-
mal with its mean vector and variance matrix obtained as the corresponding
subvector of µ and submatrix of Σ. The proof of this is immediate from the
definition of N (µ;Σ), since any linear combination of a subvector is also a
linear combination of the original vector. More generally, let A be a H × K
matrix of constants of full rank H (H ≤ K). Then X ∼ N (µ,Σ) implies
that AX ∼ N (Aµ,AΣA�). For a choice of A such that AA� = Σ−1,
A(X − µ) ∼ N (0, I), where 0 is the vector of zeros (of length K) and I the
K × K identity matrix. A vector with the distribution NK(0, I) can be con-
structed from K independent standard normal variates, variables distributed
identically according to N (0, 1).

The class of multivariate normal distributions is complete in the sense that
a distribution can be constructed for any vector of means µ and any positive
definite matrix Σ of compatible dimensions. The class of multivariate normal
distributions can be extended by attaching to a vector X ∼ N (µ,Σ) linear
combinations of the components of X, and permuting the resulting vector. The
variance matrix of this vector is not positive definite, but it has no negative
eigenvalues—it is nonnegative definite.
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The class of multivariate log-normal distributions is formed by component-
wise log-transformations of vectors with multivariate normal distributions.
Other classes of distributions, with prescribed univariate marginals can be
formed by componentwise transformations, using the standardized uniform
distribution as a pivot.

A.19.2 Regression with Normally Distributed Variables

A common task in statistics is concerned with the (joint) distribution of a
vector or variable constructed by mathematical operations. In most cases,
the solution involves expressions that are not analytic and can at best be
evaluated only approximately. Some exceptions from this ‘rule’ involve the
class of normal distributions.

Suppose (X,Y ) have bivariate normal distribution with the vector of ex-
pectations (µX , µY), variances σ2

X and σ2
Y and covariance σXY . We derive the

regression of Y on X. First, we require the conditional distribution of Y given
X, which we denote by (Y |X). Its density is given by the ratio f(x, y)/fX(x),
and this is equal to

σX√
2π det (Σ)

exp

{
−1

2

(
x − µX

y − µY

)�
Σ−1

(
x − µX

y − µY

)
+

(x − µX)2

2σ2
X

}
,

where Σ is the variance matrix of (X,Y ). Its inverse is

Σ−1 =
1

σ2
X σ2

Y − σ2
XY

(
σ2

Y −σXY

−σXY σ2
Y

)
.

Hence, after simplifying the argument of the exponential, we obtain

(Y |X = x) ∼ N
{

µY +
σXY

σ2
X

(x − µX), σ2
Y − σ2

XY

σ2
X

}
.

Several aspects of this result are remarkable. First, the normal distribution
is ‘closed’ with respect to conditioning; if (X,Y ) is (bivariate) normally dis-
tributed, then (Y |X = x) is also normally distributed. Next, the regression
of Y on X is linear, with slope equal to σXY/σ2

X . And finally, the residual
variance is constant, not depending on the value of X in the condition. The
ratio σ2

XY/σ2
X is the reduction of the variance due to knowing the value of X.

The squared correlation

ρ2 =
σ2

XY

σ2
X σ2

Y

, (A.15)

is the fraction of the variance of Y by which the variance of the prediction
of the value of Y is reduced when we know the value of X. Prediction with
smaller MSE and, when the prediction is unbiased, with smaller variance
is preferred, so variables X for which ρ2 is high are particularly valuable,
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Fig. A.8. Example of ordinary regression.

especially when their observation is easy and inexpensive. When X and Y
are strongly associated and observing X is much cheaper than observing Y ,
we may observe only X and pay a small ‘penalty’ of uncertainty due to the
positive residual variance.

The regression of Y on X can be obtained also as the linear transformation
a + bX that differs from Y least, that is, by minimising E

{
(Y − a − bX)2

}
.

This expectation is equal to

var(Y − bX) + {E(Y − a − bX)}2 = σ2
Y − 2bσXY + b2σ2

X + (µY − a − bµX)2 ,

a quadratic function of a and b. Its minimum is attained when a = µY + bµX

and bσ2
X − σXY = 0. Hence b = σXY/σ2

X .
A geometric interpretation of regression of Y on X is that in the plot

of the values of X against Y , the points are scattered around the straight
(regression) line with intercept a = µY + bµX and slope σXY/σ2

X ; hence the
terms regression slope for b = σXY/σ2

X and regression line for a + bx. The
dispersion of the points around the regression line, measured vertically, is
equal to the residual variance. See Figure A.8 for an illustration.

A.20 Formulating Inferences

The starting point of a statistical analysis is to specify the target—the popu-
lation quantity that we would like, in ideal circumstances, to determine. This
goal is reduced to estimation, based on the values of the key (and maybe some
other) variables on a sample of subjects. The outcome of the analysis is an
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estimate of the target. It is an established practice in statistics to indicate the
precision of the estimator that was applied, to inform how much faith can be
placed in the estimate. The MSE is commonly adopted as a measure of the
precision. It is equal to the sampling variance when the estimator is unbiased.
Usually the MSE cannot be determined and has to be estimated. Thus, the
estimation task comprises two parts:

• estimation of the target θ, by evaluating an estimator θ̂;
• estimation of MSE(θ̂; θ), by evaluating an estimator M̂SE

(
θ̂; θ
)
.

Since efficient estimation is valued, the analyst’s reward should be inversely
proportional to MSE(θ̂; θ) and the analyst has an obvious incentive to present
the estimate in as good a light as possible. One unfair means of doing this is
by estimating MSE(θ̂; θ) with a negative bias (underestimating the MSE). In
contrast, overestimating the MSE is comparable to underselling the product
of the analyst’s effort—understating the quality of the analysis.

Commonly, the term estimation is used for generating a statement of the
form {θ̂, M̂SE(θ̂; θ)} for a target θ. We say that such an estimation is dishonest
if the MSE is underestimated. Note that underestimation does not mean that
M̂SE(θ̂; θ) < MSE(θ̂; θ), because the realised value of M̂SE may exceed the
MSE even when it does not do so in expectation (on average in replications).
A more appropriate, although rather cumbersome, term for underestimation
might be ‘dishonest in the long run’, standing for E{M̂SE(θ̂; θ)} ≤ MSE(θ̂; θ).

A.20.1 Confidence Intervals

The ‘honestly’ estimated root-MSE indicates how far we can expect the es-
timate to be from the target on average, if we replicated the sampling and
estimation processes many times. An alternative formulation of the inference
is by a confidence interval. The confidence interval is defined as an interval
(CL , CH) delimited by sample quantities CL and CH that satisfy the inequal-
ity

P(CL < θ and CH > θ) ≥ α , (A.16)

where α, called the level of confidence, is a prescribed (a priori set) value in
the range (0, 1). Practical choices for α are values close to unity, so that the
interval with the data-dependent (random) bounds CL and CH is very likely
to contain the target, an unknown constant. As a convention, α = 0.95 and
α = 0.99 are often used, allowing an error rate (probability of not covering the
target by the confidence interval) of not more than 5% and 1%, respectively.
We may set out to obtain a confidence interval with a particular level of
confidence, but as a result of errors, incorrect assumptions, or approximations,
we end up with a level of confidence that does not satisfy the condition in
(A.16). The probability on the left-hand side of (A.16) is called the coverage
rate. It may depend on some parameters, even on the target itself.
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In analogy with honest estimation, we say that a confidence interval is
honest if condition (A.16) is satisfied; that is, if the coverage rate does not
fall short of the (intended) level of confidence. For the confidence intervals
for a specified target and level of confidence, we can define a partial ordering.
Confidence interval A is said to be narrower than confidence interval B, if A is
a subset of B. Note that both A and B are data-dependent, so the lengths of
A and B, as random variables, may overlap even when A is narrower than B.

For a given target and confidence level, there may be several alternative
confidence intervals. We should discard all dishonest intervals and compare
the honest ones by their length or expected length. Shorter (narrower) confi-
dence intervals are preferred because they narrow down the range of plausible
values of the target. Suppose confidence interval A has coverage rate 95%,
equal to the level of confidence, and has constant length 2.7. Suppose another
confidence interval, B, has coverage rate 96.5% and length constant 2.5. Con-
fidence interval B is preferred because it is shorter. The fact that it could, in
principle, be improved by reducing it so that its coverage rate would match
the level of confidence is beside the point; there may be a confidence inter-
val better than B, but it is not A. The length of a confidence interval is a
sample quantity, so it may be random. This makes the comparison of con-
fidence intervals more difficult than this example may suggest. Comparison
of the realisations of the two confidence intervals is not sufficient, although
it may happen that one confidence interval is longer than another for every
replication (with probability equal to one).

In some settings, only confidence intervals of the form (−∞, CH) are of
interest. Such intervals, as well as intervals of the form (CL ,+∞) are called
one-sided . We can adopt any function of the pair (CL , CH) as the criterion
for what we regard an optimal confidence interval among the intervals with
the prescribed level of confidence. However, only three criteria are of any
practical relevance: minimum width of the interval, preferring intervals that
are symmetric around the estimate (CL = θ̂− ξ and CC = θ̂ + ξ for a suitably
defined sample quantity ξ), and using only one-sided intervals (either CL =
−∞ and preferring small CH or CH = +∞ and preferring large CL). And
finally, instead of confidence intervals, we may consider confidence regions,
which may be any subsets of real numbers. We need to do this very rarely,
most often to consider a pair of intervals symmetric around zero, such as
(−a,−b) ∪ (a, b) for some positive numbers a < b, when

(
a2, b2

)
would be a

confidence interval for the square of the parameter.
A confidence interval (or region) is interpreted as a range of plausible val-

ues of a parameter. Naturally, it is often corrupted to the range of possible
values. We should bear in mind that the confidence limits are sample quanti-
ties and a ‘surprise’, in the form of θ /∈ (CL , CH), has a positive probability.
When several confidence intervals are considered, the probability of such a
surprise in connection with at least one of the intervals may be much greater
than the error rate associated with a single interval.
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Problems and Exercises

A.1. Formulate for your country the current definitions of

(a) the citizen;
(b) the resident.

Consult the appropriate sources for the legal definitions. Discuss elements or
clauses in these definitions that might be ambiguous or contentious.

A.2. Describe the population of all applications to study at a university in
your country in a recent year. Relate it to the population of all applicants
in the year, to all functioning universities and their departments, and to the
population of all eligible persons. Define some variables and structures (divi-
sions into clusters) for these populations. Describe the variables by type and
specify their supports.

A.3. On the web site of a national statistical institute, such as the Of-
fice for National Statistics (ONS, www.ons.gov.uk) or the Catalan Statis-
tical Institute (IDESCAT, www.idescat.es), find summaries of basic socio-
demographic and economic indicators for a recent year and determine which
of them were established by enumeration and which by a survey. Identify
some consumers of such information and how they would draw benefit from
them. For any sample quantity you come across, identify its target and look
for any information about its precision. Are these sample quantities estimates
or estimators? What about their precision?

A.4. In the training of assessors (graders) of essays in a particular academic
subject, the trainees are presented essays as typical examples that should be
marked with a particular score. The trainees are not informed about these
scores. In one such exercise, copies of an essay that is supposed to be marked
75 are distributed and the twelve trainees mark it, without conferring, as 72,
70, 83, 79, 76, 76, 75, 69, 73, 80, 70, and 75. In another scheme, the trainees
discuss an essay that is supposed to be marked 62 and collectively come to
the conclusion that it should be marked 65. In a third scheme, the trainees
are presented an essay that is supposed to be marked 95, are informed about
this score, and are asked to agree or raise objections to the score. Discuss the
merits and drawbacks of each scheme for essay marking and for assessment of
the accuracy of the marking in the case when each essay is marked only by
one person assigned at random from the pool of qualified assessors.

A.5. In a particular context, the sampling variance of an estimator is 2.6 and
its bias for a given target θ is 1.2. An alternative estimator of the same target
θ is unbiased, with the sampling variance 3.5. Which estimator of θ is more
efficient? Could your choice, when applied to a dataset, be more distant from
the target than the other estimate?
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Fig. A.9. Plot of the MSEs of four estimators of θ as functions of θ. For Exercise
A.9.

A.6. In a population of households in a region, the percentage of those with
per capita income below a certain level is of interest. A simple random sample
of households is selected and their size (number of members of the household)
and income in the last year, rounded to hundreds of $US, are established.
Define the naive estimator of the sought percentage. Consider how different
it would be if the income were established with greater or smaller precision.

A.7. Derive the identity in (A.1)

(a) from the definitions of expectation and variance;
(b) from the definition of replications.

Suppose the square root of the MSE (root-MSE) is equal to the bias. What
can be said about the sampling variance?

A.8. Calculate the mean and variance of the variable defined on a population
of 22 members by their values:

3, 7, 11, 11, 13, 4, 7, 8, 11, 12, 2, 7, 9, 15, 18, 6, 6, 9, 12, 12, 10, 15 .

Find the interquantile range of this variable. Present these values in a way
that is more informative about the distribution of the variable.

A.9. Figure A.9 is a plot of the MSEs of four estimators of the same target θ
as functions of the parameter θ in the interval (0, 1). Is any of the estimators
uniformly more efficient than one of the others? Describe the strengths and
weaknesses of the four estimators. Suppose we can reduce our attention to θ
in the interval

(
0, 1

2

)
. Would your answer be different?
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A.10. Which of the following summaries of a variable X are location quanti-
ties?

median; maxi Xi ; the standard deviation of X; the value for member
1, X1 ; the interquantile range; sum of squares of the values of X; the
number of positive values of X; the distribution of X.

Which are dispersion quantities?

A.11. What is the mode of a distribution with support on the digits 0, 1, . . . ,
9, if the value 0 is attained for more than 60% of the population? Is there a
distribution with the same support that has mode at 5 and the frequency of
this value is 15%? Give an example of a symmetric trimodal distribution with
this support.

A.12. Construct a without-replacement sampling design that is different from
the simple random sampling design and in which every member has the same
probability of being included in the sample. On a population of small size,
say, N = 4, construct a sampling design in which each pair has the same
probability of being included in the sample but each member has a different
probability.

A.13. Summarise the advantages of designs with stratification and clustering
in a national survey of individuals or households. Find in the literature or on
the Web an example of a national survey with a stratified clustered sampling
design and discuss its details and what information about the design is not
given.

A.14. A market research company engages interviewers who are assigned to
be at particular locations in the centres of some cities and large shopping
areas of the UK or United States at selected times of the day (lunchtime, the
afternoon rush hour, Saturday morning, and the like). They collect responses
to a questionnaire about a car brand from a given number (quota) of adult
English-speaking passersby. Comment on the difficulties in making population
inferences based on the collected data.

A.15. Construct a small population with the values of one variable and design
a sampling scheme for this population. Replicate the sampling design in this
population and record the values of an estimator based on the sample drawn.
Compare the replicate values of the estimator with the target and estimate
the bias and MSE of the estimator.
This exercise can be conducted on paper, with a device for random selection,
e.g., based on a table of random numbers, but it is much more effective when
executed on a computer using a more extensive population.

A.16. Generate at least 100 values of the discrete manifest variable Y for a
latent variable X according to the matrix of probabilities P(Y = k,X = h)
for k = 1, 2, 3, 4 (rows) and h = 1, 2, 3, 4 (columns)
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Find the marginal distributions of X and Y from this matrix and estimate
the latter from the generated values of Y .
For each value k = 1, 2, 3, and 4 of X, find the bias, measurement variance,
and MSE of the misclassification process given by this matrix. How can it be
verified using computer-generated values of X and Y ?

A.17. Relate what is commonly understood by the term ‘impartial jury’ in
the criminal justice system, ‘impartial assessment’ in educational testing, and
‘impartial referee’ in a sport event to the definition of impartiality in Section
A.6. How is impartiality related to the frequency of incorrect decisions in these
examples?

A.18. Replicate the example in Figure A.5 and Table A.3 in your own com-
putational environment with probabilities and numbers of replications of your
choice.

A.19. Revise the rules for integration of continuous functions on finite in-
tervals and how integration and differentiation are associated. When can the
order of integration and differentiation be exchanged, that is,

∂

∂x

∫ 1

0

f(u, x) du =
∫ 1

0

∂f(u, x)
∂x

du ?

Under what conditions do we have the identity

∂

∂x

∫ x

0

f(u) du = f(x)

for a continuous function f?

A.20. Find the distribution function F (x) = P(X < x) of a continuous vari-
able with support on (−1, 1) and density f(x) = C(x+1)(x+2) for a suitable
constant C. Sketch the density and describe the properties of this distribution.
What is the probability of a positive value of X?

A.21. For a random sample from the uniform distribution on (θ1 , θ2), consider
the following estimators of the population mean:

(a) the sample mean;
(b) the sample median;
(c) the average of the first and third sample quartiles;
(d) the average of the maximum and minimum of the sample.
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Compare these estimators by simulation. That is, set a sample size n (say,
n = 150) and the limits θ1 < θ2 , and replicate many (say, K = 1000) times
the following steps:

(A) draw a random sample of size n from U (θ1 , θ2);
(B) evaluate the estimators a,–d, on this sample.

Finally, calculate the empirical biases, variances, and MSEs of these estima-
tors. Explain why the study can focus on the standard uniform distribution,
setting θ1 = 0 and θ2 = 1, so that the target is 1

2 .
If you have difficulties with this question, repeat the study for several settings
of θ1 and θ2 and compare the results. As an alternative, you could conduct
the separate studies within a single simulation study by linearly transforming
each sample from U(0, 1) to be a sample from U(θ1 , θ2).

A.22. Repeat the study in the previous exercise, with the normal distribution
in place of the uniform. Explain why this study can focus on the standard
normal distribution.

A.23. For revision. How is the integral of a function over an infinite interval
defined? Revise the calculus of infinite sequences and sums, in particular the
principal results about their convergence.
Let pk = 1/k−1/(k+1) for k = 1, 2, . . . . Do these values define a distribution
on the integers? If not, do Cpk for a positive constant C?

A.24. Show that when the expectation of the square of a distribution, E
(
X2
)
,

is well defined, then so is the expectation E(X). Find a distribution for which
E(X) is well defined, but var(X) is not.
Hint: Consider the functions f(x) = x−k on (0, 1) and (1,+∞) for k > 0.

A.25. Show that when a discrete distribution on the integers 0, 1, . . . has
an expectation, then the summation

∑∞
k=1 Fk , where Fk = p0 + · · · + pk ,

converges and its limit is equal to the expectation.

A.26. Generate the empirical distribution of the continuous uniform distrib-
ution on (0, 1) and the negative logarithm, − log(X), of the values. Compare
the latter with the empirical distribution of the exponential distribution with
parameter θ = 1.

A.27. Carry out a simulation study to compare estimators of your choice for
the expectation of the distribution with density f(x) = 2x for x ∈ (0, 1).
Include the trimmed mean among the estimators. The p%-trimmed mean
is defined as the mean of the subsample formed by discarding 1

2p% of the
smallest and 1

2p% of the largest observations.

A.28. Derive E
(
Xk
)

for a centred normally distributed random variable X
and integer k. Derive var{(X − µ)2} for an arbitrary distribution N (µ, σ2).
Hint: Apply integration by parts.
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A.29. Asymptotic normality. For an estimator of your choice, show empiri-
cally that its distribution approaches normality as the sample size increases.
Hint: Conduct separate simulations of the estimator for samples of sizes 10,
30, 100, 300, 1000, or similar, and draw the empirical distributions. Each
simulation should be based on the same number of replications.

A.30. Derive the moments E
(
Xk
)

for X with distribution U(0, 1). Confirm
that

− log
{
E(Xk)

}
< E

{− log(Xk)
}

both analytically and by simulations. Check that

var
(
Xk
)

=
k2

(k + 1)2(2k + 1)
.

Derive an expression for E{Xk − 1/(k + 1)}3.

A.31. Check the expressions for the expectations and variances of the beta
and gamma distributions given in Section A.12. Prove the identity

E
{
(X − µ)3

}
= E

(
X3
)− 3µ var(X) − µ3

for any distribution with expectation µ and finite third moment E(X3).

A.32. Derive the probability in (A.6) and prove the statements about the
modes of binomial distributions made in Section A.13.
Hint: Consider the ratios of P(X = k)/P(X = k + 1) for integers k and
variable X with binomial distribution.

A.33. Prove that for every fixed integer k the probability P(X = k ; n, p) for
a binomial variable B(n, p) converges to the probability P(Y = k;λ) for a
Poisson-distributed variable when n and p are such that npn → λ as n → ∞.

A.34. Devise a way of drawing a random sample from a binomial distribution
using a source of independent draws from a uniform distribution.
Describe how a random sample from a discrete uniform distribution could be
generated using a source of independent draws from the standard uniform
distribution. How about a random sample from a multinomial distribution?

A.35. Show that for an exponentially distributed variable X, its conditional
distribution given that X > t is also exponential for every real constant t.
Show that no binomial distribution B(n, p) with n > 2 has this property for
any k < n. What about the geometric distributions?

A.36. Table A.6 gives the conditional probabilities P(X1 = k |X2 = h) for
h = 0, 1, . . . , 9. Marginally, X2 has the binomial distribution B(9, 0.4). Find
the marginal distribution of X1 . Construct the table of conditional probabil-
ities P(X2 = h |X1 = k).
Note: This exercise is intended not for pencil and paper but for computer
programming.
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Table A.6. The conditional distributions of X1 given values of X2. The entries of
the table are P(X1 = k |X2 = h), h = 0, 1, . . . , 9 and k = 0, 1, 2.

X2

X1 0 1 2 3 4 5 6 7 8 9

0 0.70 0.60 0.55 0.50 0.40 0.40 0.35 0.30 0.25 0.15

1 0.20 0.20 0.20 0.20 0.25 0.30 0.35 0.40 0.40 0.45

2 0.10 0.20 0.25 0.30 0.35 0.30 0.30 0.30 0.35 0.40

A.37. Show that independence is maintained by transformations. That is,
if X1 and X2 are independent, then so are g1(X1) and g2(X2) for any two
functions g1 and g2 . Show by example that the converse does not apply. That
is, find transformations g1 and g2 and variables X1 and X2 such that X1 and
X2 are not independent, but g1(X1) are g2(X2) are.
Hint: Focus on discrete variables with few categories.

A.38. Explore the variety of distributions that can be generated as mixtures of
two or three univariate normal distributions. Write a programme for plotting
the densities of such distributions and execute it for a range of trinomial proba-
bilities (p1 , p2 , p3), expectations (µ1 , µ2 , µ3), and variances

(
σ2

1 , σ2
2 , σ2

3

)
. Ex-

plain why no generality is lost by setting µ1 = 0 and σ2
1 = 1. Present the

conditional and the mixture densities in a suitable graph.

A.39. For a discrete mixture of a set of continuous distributions with densities
f1 , f2 , . . . , fK , derive the conditional distribution of the category given the
realised value of the mixture.

A.40. Find a class of distributions that are closed with respect to mixing.
That is, if K distributions belong to this class, then so does their finite mixture
with any multinomial distribution.

A.41. Revise the following topics: matrix calculus, including inverse and de-
terminant; properties of (symmetric) positive and nonnegative definite matri-
ces; and eigenvalue and other decompositions.

A.42. Show that if variable X is a mixture of variables X1 , . . . , XK , each of
them with finite variance, then

E(X) =
K∑

k=1

pk E (Xk) ,

cov (X,Xk) = pk var (Xk) ,

var(X) =
K∑

k=1

pk

[
var(Xk) + {E(Xk)}2

]
− {E(X)}2,
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where pk is the probability of category k.

A.43. Derive the covariance and correlation of a pair of indicators Ik and Ih

in a multinomial distribution. The indicator for category k is defined as Ik = 1
if component k is realised and Ik = 0 otherwise.

A.44. Derive the distributions of the sum and product of two independent
uniformly distributed variables. Check your results by simulations.

A.45. Suppose a set of identically distributed variables X1 , X2 , . . ., XK is
such that each pair of them has the same correlation ρ = cor(Xk1 , Xk2). Find
the highest lower bound for ρ.
Hint: Consider the variance of the sample mean.
Relate this result to the correlation of the K-nomial distribution with equal
probabilities 1/K.

A.46. Construct a symmetric matrix with unities on its diagonal and all other
entries in the range (−1, 1) that is not a correlation matrix. Interpret this
matrix as an example that its symmetry and all correlations in the range
[−1, 1] are not sufficient for it to be a variance matrix.

A.47. Compare the regressions E(X |Y ) and E(Y |X) for a vector (X,Y ) with
bivariate normal distribution and relate them to the correlation cor(X,Y ).
Explain why the product of the regression slopes is not equal to unity when
the two variables are not perfectly correlated.

A.48. Explore how the regression E(Y |X) for a vector (X,Y ) with bivariate
normal distribution is altered when Y is replaced by Y +ξ, where ξ ∼ N (0, σ2)
is independent of of both X and Y . What change is brought about by replacing
X with X + ξ?

A.49. Suppose (CL , CH) is an honest confidence interval for a population
quantity µ. Find honest confidence intervals for exp(µ) and µ2. Discuss the
advantages and drawbacks of constructing confidence intervals for σ2, log(σ),
and

√
σ for a population variance σ2.
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heteroscedasticity, 19
histogram, 400, 405
homoscedasticity, 8
Horvitz–Thompson estimator, 69
hot deck, 150, 223
hypothesis testing, 54

idempotent matrix, 11
ignorable, 141
impartiality, 168
importance sampling, 111
improper prior, 106
imputation, 131, 135

deterministic, 136
hot-deck, 150, 223
multiple (MI), 144, 177
nearest-neighbour, 150
single (SI), 146
stochastic, 136

incomplete data, 130
statistic, 131

independence, 399, 436
mutual, 446

indicator of selection, 67
inference, 398
information matrix

expected, 39, 143
observed, 39

informative, 139

intermediate variable, 203
interpolation, 25
interquantile range, 409
invariance, 408
iterative reweighting, 309

Laplace approximation, 324
latent variable, 153, 163, 402
level of nesting, 287
leverage, 18
likelihood, 37

maximum
(ML), 37, 270, 303, 307
restricted (REML), 276

ratio, 57, 311
test, 57

Likert scale, 187
linear model, 7

generalised, 301
linear predictor, 302
link function, 302

canonical, 304
listwise deletion, 135
location quantity, 408
logit link, 302
longitudinal analysis, 293

manifest variable, 153, 163, 402
Markov property, 340
match, 30
matching, 213, 218

caliper, 224
maximum likelihood (ML), 37, 270, 303,

307
mean squared error (MSE), VII, 403
measurement

error, 165
impartial, 168, 418
process, 163

additive, 418
biased, 165
multiplicative, 419

median, 408
meta-analysis, 371

multivariate, 387
meta-design, 377
metric, 396
MI estimator, 145
minimax estimation, 243
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misclassification, 163, 175, 416
missing

at random (MAR), 138
completely at random (MCAR), 138
information, fraction of, 142
not at random (NMAR), 139
value, 131

mixture, 152, 153, 310, 356, 440
mode, 410
model, 424, 429

selection, 51
multistage, 52

uncertainty, 3
valid, 429

moments, method of, 63, 94, 190
monotone response patterns, 134, 148
Monte Carlo Markov chain (MCMC),

113
moving average (MA), 343
multifeature, 21
multilevel model, 266, 287
multiple imputation (MI), 144, 177
multiplicative deviations, 327
multiplicity, 412

naive estimator, 6, 403
Newton method, 255
Newton–Raphson algorithm, 307
nonignorable, 139
nonresponse

item, 133
mechanism, 130, 138
section-level, 133
unit, 133

nuisance population, 417

ordinary least squares (OLS), 10, 40
origin, 396
outcome, 2, 202

potential, 202, 235
outlier, 17, 155
overdispersion, 309

panel, 348
rotating, 348

parameter, 425
partial record, 132
pattern-mixture model, 140
Pearson residuals, 315

percentile, 408
permutation test, 66
personalisation, 291
placebo, 28
plausible

distribution, 146
estimate, 145
parameter value, 137
value, 137, 146

pointwise unbiased, 165
Poisson distribution, 65, 306, 434
population, 67, 395

distribution, 420
nuisance, 417
quantity, 399
size, 402
target, 417

posterior
distribution, 103

predictive, 122
poststratification, 81, 160
potential outcome, 202, 235
power

of a test, 235
of selection, 53

precision, 374
prediction, 12
prior

distribution, 104, 258
predictive, 122

improper, 106
noninformative, 105

probability, 405
joint, 436
marginal, 436
proportional to size, 76

probit link, 302
process, data-generating, 427
projection matrix, 11
promotion process, 291
pseudo-observation, 106
publication bias, 380

quantile, 408
quantity

dispersion, 409
location, 408
population, 399
sample, 399



Index 473

sampling-process, 404
quartile, 408
quota sampling, 98

raking, 82
random

draw, 426
sample, 426
start, 74

random coefficients, 265
GLMs with (GLMrc), 318

randomisation, 27, 204, 234
range, 409
Rao–Blackwell theorem, 45
ratio estimator, 88
recipient, 150
regression, 444

logistic, 303
ordinary, 8, 39

regression part, 267
regularity conditions, 41
rejection sampling, 112
replication, 399

hypothetical, 400
representativeness, 414
residual, 11

deviance, 316
Pearson, 315

response
distribution, 132
indicator, 131
stability, 132

sample, 67, 398
quantity, 399

sampling
clustered, 77

multistage, 77
design, 411

planned, 80
proper, 69
realised, 80

distribution, 420
frame, 71, 413
mechanism, 68
process, 67

quantity, 404
realised, 415

simple random (SRS), 68, 72

stratified, 76
weights, 69

score, 39
test, 57

selection
indicator of, 67
mechanism, 140
model, 140

semi-systematic sampling design, 100
sensitivity analysis, 149
shrinkage, 42, 51, 82
simulation, 427
simulation–extrapolation (SimEx), 184
size

population, 402
sample, 398

small print, 396
small-area estimation, 92, 292
specificity, 429
standard deviation, 409
standardisation, 430
stem-and-leaf, 22
step length, 74
stochastic process, 399
stratification, 76, 413
subject, 398
submodel, 49
sufficient statistics, 44

linear, 45, 141
minimal, 45

supermodel, 49
superpopulation, 424
support, 396
survey, 411
survival analysis, 194
SUTVA, 207
symmetry plot, 21
systematic review, 372

target, VII, 398
population, 417

time series, 342
autoregressive (AR), 343

moving average (ARMA), 344
moving average (MA), 343
stationary, 343

tolerance interval, 104
treatment, 26, 202

heterogeneity, 29
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trimming, 81
two-level data, 289

balanced, 296
two-level model, 266

utility, 253

validity, 169, 429
variable, 395
variance

components, 267

function, 306

population, 409

residual, 444

sampling, 403

variation

part, 267

pattern of, 267

wave, 348

white noise, 165



(continued from p. ii)
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