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PREFACE

This book has much in common with our earlier book (Lutes and Sarkani,
1997). In fact, a few of the chapters are almost unchanged. At the same time, we
introduce several concepts that were not included in the earlier book and
reorganize and update the presentation on several other topics.

The book is designed for use as a text for graduate courses in random
vibrations or stochastic structural dynamics, such as might be offered in
departments of civil engineering, mechanical engineering, aerospace engineering,
ocean engineering, and applied mechanics. It is also intended for use as a
reference for graduate students and practicing engineers with a similar level of
preparation. The focus is on the determination of response levels for dynamical
systems excited by forces that can be modeled as stochastic processes.

Because many readers will be new to the subject, our primary goal is
clarity, particularly regarding the fundamental principles and relationships. At the
same time, we seek to make the presentation sufficiently thorough and rigorous
that the reader will be able to move on to more advanced work. We believe that
the book can meet the needs of both those who wish to apply existing stochastic
procedures to practical problems and those who wish to prepare for research that
will extend the boundaries of knowledge.

In the hopes of meeting the needs of a broad audience, we have made this
book relatively self-contained. We begin with a fairly extensive review of
probability, random variables, and stochastic processes before proceeding to the
analysis of dynamics problems. We do presume that the reader has a background
in deterministic structural dynamics or mechanical vibration, but we also give a
brief review of these methods before extending them for use in stochastic
problems. Some knowledge of complex functions is necessary for the
understanding of important frequency domain concepts. However, we also
present time domain integration techniques that provide viable alternatives to the
calculus of residues. Because of this, the book should also be useful to engineers
who do not have a strong background in complex analysis.

The choice of prerequisites, as well as the demands of brevity, sometimes
makes it necessary to omit mathematical proofs of results. We do always try to
give mathematically rigorous definitions and results even when mathematical
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details are omitted. This approach is particularly important for the reader who
wishes to pursue further study. An important part of the book is the inclusion of a
number of worked examples that illustrate the modeling of physical problems as
well as the proper application of theoretical solutions. Similar problems are also
presented as exercises to be solved by the reader.

We attempt to introduce engineering applications of the material at the
earliest possible stage, because we have found that many engineering students
become impatient with lengthy study of mathematical procedures for which they
do not know the application. Thus, we introduce linear vibration problems
immediately after the introductory chapter on the modeling of stochastic
problems. Time-domain interpretations are emphasized throughout the book,
even in the presentation of important frequency-domain concepts. This includes,
for example, the time history implications of bandwidth, with situations varying
from narrowband to white noise.

One new topic added in this book is the use of evolutionary spectral
density and the necessary time-domain and frequency-domain background on
modulated processes. The final chapter is also new, introducing the effect of
uncertainty about parameter values. Like the rest of the book, this chapter focuses
on random vibration problems. The discussion of fatigue has major revisions and
is grouped with first passage in an expanded chapter on the analysis of failure.

We intentionally include more material than can be covered in the typical
one-semester or one-quarter format, anticipating that different instructors will
choose to include different topics within an introductory course. To promote this
flexibility, the crucial material is concentrated in the early portions of the book.
In particular, the fundamentals of stochastic modeling and analysis of vibration
problems are presented by the end of Chapter 6. From this point the reader can
proceed to most topics in any of the other chapters. The book, and a modest
number of readings on current research, could also form the basis for a two-
semester course. It should be noted that Chapters 9–12 include topics that are the
subjects of ongoing research, with the intent that these introductions will equip
the reader to use the current literature, and possibly contribute to its future.

Loren D. Lutes
Shahram Sarkani
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Chapter 1
Introduction

1.1 Why Study Random Vibration?
Most structural and mechanical engineers who study probability do so
specifically so that they may better estimate the likelihood that some engineering
system will provide satisfactory service. This is often stated in the
complementary way as estimating the probability of unsatisfactory service or
failure. Thus, the study of probability generally implies that the engineer accepts
the idea that it is either impossible or infeasible to devise a system that is
absolutely sure to perform satisfactorily. We believe that this is an honest
acceptance of the facts in our uncertain world, but it is somewhat of a departure
from the philosophy of much of past engineering education and of the explicit
form of many engineering design codes. Of course, engineers have always
known that there was a possibility of failure, but they have not always made an
effort to quantify the likelihood of that event and to use it in assessing the
adequacy of a design. We believe that more rational design decisions will result
from such explicit study of the likelihood of failure, and that is our motivation for
the study of probabilistic methods.

The characterization of uncertainty in this book will always be done by
methods based on probability theory. This is a purely pragmatic choice, based on
the fact that these methods have been shown to be useful for a great variety of
problems. Methods based on fundamentally different concepts, such as fuzzy
sets, have also been demonstrated for some problems, but they will not be
investigated here.

The engineering systems studied in this book are dynamical systems.
Specifically, they are systems for which the dynamic motion can be modeled by a
differential or integral equation or a set of such equations. Such systems usually
consist of elements having mass, stiffness, and damping and exhibiting vibratory
dynamic behavior. The methods presented are general and can be applied to a
great variety of problems of structural and mechanical vibration. Examples will
vary from simple mechanical oscillators to buildings or other large structures,
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with excitations that can be either forces or base motion. The primary emphasis
will be on problems with linear models, but we will also include some study of
nonlinear problems. For nonlinear problems, we will particularly emphasize
methods that are direct extensions of linear methods.

Throughout most of this book, the uncertainty studied will be limited to
that in the excitation of the system. Only in Chapter 12 will we introduce the
topic of uncertainty about the parameters of the system. Experience has shown
that there are indeed many problems in which the uncertainty about the input to
the system is a key factor determining the probability of system failure. This is
particularly true when the inputs are such environmental loads as earthquakes,
wind, or ocean waves, but it also applies to numerous other situations such as the
pressure variations in the exhaust from a jet engine. Nonetheless, there is almost
always additional uncertainty about the system parameters, and this also can
affect the probability of system failure.

The response of a dynamical system of the type studied here is a time
history defined on a continuous set of time values. The field of probability that is
applicable to such problems is called stochastic (or random) processes. Thus, the
applications presented here involve the use of stochastic processes to model
problems involving the behavior of dynamical systems. An individual whose
background includes both a course in stochastic processes and a course in either
structural dynamics or mechanical vibrations might be considered to be in an
ideal situation to study stochastic vibrations, but this is an unreasonably high set
of prerequisites for the beginning of such study. In particular, we will not assume
prior knowledge of stochastic processes and will develop the methods for
analysis of such processes within this book. The probability background needed
for the study of stochastic processes is a fairly thorough understanding of the
fundamental methods for investigating probability and, especially, random
variables. This is because a stochastic process is generally viewed as a family of
random variables. For the benefit of readers lacking the necessary random
variable background, Chapters 2 and 3 give a relatively comprehensive
introduction to the topic, focusing on the aspects that are most important for the
understanding of stochastic processes. This material may be bypassed by readers
with a strong background in probability and random variables, although some
review of the notation used may be helpful, because it is also the notation of the
remainder of this book.

We expect the reader to be familiar with deterministic approaches to
vibration problems by using superposition methods such as the Duhamel
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convolution integral and, to a lesser extent, the Fourier transform. We will
present brief reviews of the principal ideas involved in these methods of vibration
analysis, but the reader without a solid background in this area will probably
need to do some outside reading on these topics.

1.2 Probabilistic Modeling and Terminology
Within the realm of probabilistic methods, there are several terms related to
uncertainty that warrant some comment. The term random will be used here for
any variable about which we have some uncertainty. This does not mean that no
knowledge is available but rather that we have less than perfect knowledge. As
indicated in the previous section, we will particularly use results from the area of
random variables. The word stochastic in common usage is essentially
synonymous with random, but we will use it in a somewhat more specialized
way. In particular, we will use the term stochastic to imply that there is a time
history involved. Thus, we will say that the dynamic response at one instant of
time t is a random variable X t( )  but that the uncertain history of response over a
range of time values is a stochastic process { ( )}X t . The practice of denoting a
stochastic process by putting the notation for the associated random variables in
braces will be used to indicate that the stochastic process is a family of random
variables—one for each t value. The term probability, of course, will be used in
the sense of fundamental probability theory. The probability of any event is a
number in the range of zero to unity that models the likelihood of the event
occurring. We can compute the probabilities of events that are defined in terms of
random variables having certain values, or in terms of stochastic processes
behaving in certain ways.

One can view the concepts of event, random variable, and stochastic
process as forming a hierarchy, in order of increasing complexity. One can
always give all the probabilistic information about an event by giving one
number—the probability of occurrence for the event. To have all the information
about a random variable generally requires knowledge of the probability of many
events. In fact, we will be most concerned with so-called continuous random
variables, and one must know the probabilities of infinitely many events to
completely describe the probabilities of a continuous random variable. As
mentioned before, a stochastic process is a family of random variables, so its
probabilistic description will always require significantly more information than
does the description of any one of those random variables. We will be most
concerned with the case in which the stochastic process consists of infinitely
many random variables, so the additional information required will be much



Random Vibrations4

more than for a random variable. One can also extend this hierarchy further, with
the next step being stochastic fields, which are families of stochastic processes.
Within this book we will use events, random variables, and especially stochastic
processes, but we will avoid stochastic fields and further generalizations.

********************************************************************************************

Example 1.1: Let t  denote time in seconds and the random variable X t( ) , for

any fixed t value, be the magnitude of the wind speed at a specified location at

that time. Furthermore, let the family of X t( )  random variables for all

nonnegative t  values be a stochastic process, { ( )}X t , and let A be the event

{ ( ) }X 10 5≤ m/s . Review the amount of information needed to give complete

probabilistic descriptions of the event A, the random variable X t( ) , and the

stochastic process { ( )}X t .

All the probabilistic information about the event A is given by one number—its

probability of occurrence. Thus, we might say that p P A= ( )  is that probability of

occurrence, and the only other probabilistic statement that can be made about A
is the almost trivial affirmation that 1− =p P Ac( ) , in which Ac  denotes the event

of A not occurring, and is read as “ A complement” or “not A.”

We expect there to be many possible values for X( )10 . Thus, it takes much

more information to give its probabilistic description than it did to describe A. In

fact, one of the simpler comprehensive ways of describing the random variable

X( )10  is to give the probability of infinitely many events like A. That is, if we

know P X u[ ( ) ]10 ≤  for all possible u  values, then we have a complete

probabilistic description of the random variable X( )10 . Thus, in going from an

event to a random variable we have moved from needing one number to needing

many (often infinitely many) numbers to describe the probabilities.

The stochastic process { ( ): }X t t ≥ 0  is a family of random variables, of which

X( )10  is one particular member. Clearly, it takes infinitely more information to

give the complete probability description for this stochastic process than it does

to describe any one member of the family. In particular, we would need to know

the probability of events such as [ ( ) , ( ) , , ( ) ]X t u X t u X t uj j1 1 2 2≤ ≤ ≤L  for all

possible choices of j, t t j1, ,L , and u u j1, ,L .

If one chooses to extend this hierarchy further, then a next step could be a

stochastic field giving the wind speed at many different locations, with the speed

at any particular location being a stochastic process like { ( )}X t .

********************************************************************************************

It should also be noted that there exist special cases that somewhat blur the
boundaries between the various levels of complexity in the common
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classification system based on the concepts of event, random variable, stochastic
process, stochastic field, and so forth. In particular, there are random variables
that can be described in terms of the probabilities of only a few events, or even
only one event. Similarly, one can define stochastic processes that are families of
only a few random variables. Within this book, we will generally use the concept
of a vector random variable to describe any finite family of random variables and
reserve the term stochastic process for an infinite (usually uncountable) family of
random variables. Finally, we will treat a finite family of stochastic processes as
a vector stochastic process, even though it could be considered a stochastic field.

********************************************************************************************

Example 1.2: Let the random variable X  denote the maintenance cost for an

antenna subjected to the wind, and presume that X = 0 if the antenna is

undamaged and $5,000 (replacement cost) if it is damaged. How much

information is needed to describe all probabilities of X ?

Because X  has only two possible values in this simplified situation, one can

describe all its probabilities with only one number— p P X P D= = =( , ) ( )5 000 , in

which D  denotes the event of antenna damage occurring. The only other

information that can be given about the random variable X  is P X( )= =0
P D pc( ) = −1 .

********************************************************************************************

Example 1.3: Let the random variable X  denote the maintenance cost for an

antenna structure subjected to the wind, and presume that there are two possible

types of damage. Event A denotes damage to the structure that supports the

antenna dish, and it costs $2,000 to repair, while event B denotes damage to the

dish itself, and costs $3,000 to repair. Let the random variable X  denote the total

maintenance cost. How much information is needed to describe all probabilities

of X ?

In this problem, X  may take on any of four values: zero if neither the structure or

the dish is damaged, 2 000,  if only the structure is damaged, 3 000,  if only the

dish is damaged, and 5 000,  if both structure and dish are damaged. Thus, one

can give all the probability information about X  with no more than the four

numbers giving the probability that X  takes on each of its possible values. These

are easily described by using the events A and B and the operations of

complement and intersection. For example, we might write p P X1 5 000= = =( , )
P A B( ) , p P X P A Bc

2 3 000= = =( , ) ( ) , p P X P A Bc
3 2 000= = =( , ) ( ) , and p4 =

P X P A Bc c( ) ( )= =0 . Even this is somewhat redundant because we also know
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that p p p p1 2 3 4 1+ + + = , so knowledge of only three of the probabilities, such as

p1, p2 , and p3 , would be sufficient to describe the problem.

********************************************************************************************

Example 1.4: Consider the permanent displacement of a rigid 10 meter square

foundation slab during an earthquake that causes some sliding of the underlying

soil. Let X , Y , and Z  denote the east-west, north-south, and vertical

translations of the center of the slab, and let θx , θy , and θz  be the rotations (in

radians) about the three axes. What type of probability information is required to

describe this foundation motion?

Because { , , , , , }X Y Z x y zθ θ θ  is a family of random variables, one could consider

this to be a simple stochastic process. The family has only a finite number of

members, though, so we can equally well consider it to be a vector random

variable. We will denote vectors by putting an arrow over them and treat them as

column matrices. Thus we can write 
r
V = ( , , , , ,X Y Z x y zθ θ θ )T , in which the T

superscript denotes the matrix transpose operation, and this column vector 
r
V

gives the permanent displacement of the foundation. Knowledge of all the

probability information about 
r
V  would allow us to write the probability of any

event that was defined in terms of the components of 
r
V . That is, we want to be

able to give P A( )  for any event A that depends on 
r
V  in the sense that we can

tell whether A has or has not occurred if we know the value of the vector 
r
V .

Clearly we must have information such as P X( )≤100mm  and P z( . )θ > 0 05rad ,

but we must also know probabil i t ies of intersections l ike

P X z( , .≤ <100 0 05mm rad,θ  θy < 0 1. )rad , and so forth.

********************************************************************************************

Example 1.5: Consider the permanent

deformation of a system consisting of a rigid

building 20 meters high resting on the

foundation of Example 1.4. Let a new random

variable W  denote the translation to the west of

a point at the top of the north face of the

building, as shown in the sketch. Show the

relationship between W  and the vector 
r
V  of

Example 1.4.

In order to describe the random variable W , we need to be able to calculate

probabilities of the sort P W( )≤ 200mm . We can see, though, that W  is related

to the components of our vector 
r
V  by W X z y= − + −5 20θ θ , so

P W P X z y( ) ( )≤ = − + − ≤200 5 20 200mm mmθ θ . It can be shown that one has

sufficient information to compute all such terms as this if one knows P X u( ,≤

X

Y
Z

W

10 m

20
 m

10
 m

N
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Y v Z w x y z≤ ≤ ≤ ≤ ≤, , , , )θ α θ β θ γ  for all values of the six parameters

( , , , , , )u v w α β γ .

********************************************************************************************

Example 1.6: For the same situation described in Example 1.4, consider the

foundation motion at any time during the earthquake. That is, rather than simply

considering permanent displacement, letr
V t X t Y t Z t t t tx y z T( ) [ ( ), ( ), ( ), ( ), ( ), ( )]= θ θ θ

Identify the appropriate probabilistic model for this problem.

Now the description of the motion at any one particular time t  has the same

complexity as the vector 
r
V  in Example 1.4. A complete description of the motion

at all times, though, is much more complicated and requires information about

events related to 
r
V t( )  for any t  value and/or to several t  values. This is a

problem in which we need the probabilistic description of the vector stochastic

process { ( )}
r
V t .

********************************************************************************************

1.3 Approach to the Study of Failure Probability
Unsatisfactory performance or “failure” of a structural or mechanical dynamical
system can usually be classified as being due to either “first passage” or
“fatigue,” and both of these failure modes will be studied within this book. Study
of first-passage failure is appropriate when we consider the system to have
performed unsatisfactorily if some measure of response has ever reached some
critical value. Thus, for example, first-passage failure might be considered to
have occurred if the stress or strain at some critical location had ever exceeded
the yield level or if the displacement had exceeded some preselected value
regarded as a boundary of a region of instability due to buckling.

In order to calculate the probability of first-passage failure during a given
time interval 0 ≤ ≤t T , we will need terms such as P X t xcritical[max ( ) ]> , in
which the maximum is over the set of values 0 ≤ ≤t T . Obviously, such
probabilistic analysis of the maximum of a time history requires considerable
knowledge about how the response X t j( )  at one time relates to the response at
some other time. In fact, we will need to consider the relationship of X t j( )  to X
at every other time within the interval of interest. Fatigue failure differs from first
passage inasmuch as it involves an accumulation of damage over a stress or
strain time history, rather than the maximum of that time history. It is similar to
first passage, though, in that one cannot calculate the accumulated fatigue
damage without knowing the relationship of the response X at any one time to X
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at every other time. As mentioned previously, analyzing how X t j( )  relates to X
at every other time necessitates our study of a stochastic process { ( )}X t  defined
on a continuous set of t values. We begin this study in Chapter 4, after a review
of the fundamentals of probability and random variables in Chapters 2 and 3.

Exercises
*****************************************************************
1.1 Assume that a given machine part may fail either due to gradual wear or due
to brittle fracture. Let X t( )  denote the amount of gradual wear at time t. Parts
(a)–(d) list various levels of detail that might be studied for this problem. For
each of these, indicate whether the required model would be an event, a scalar
random variable, a vector random variable, a scalar stochastic process, a vector
stochastic process, or a stochastic field. Give the answer that is the simplest
adequate model
(a) The likelihood that the part will fail during 10,000 hours of service
(b) The likelihood that there will be brittle fracture during 10,000 hours of

service
(c) The possible time histories of X t( )  on the set 0 10 000≤ ≤t , hours
(d) The set of possible values of X t( )  at t =10 000, hours
*****************************************************************
1.2 Let X tj ( )  for j = 1 to 20 denote the time history of the shear distortion in
story j of a 20-story building that is subjected to an earthquake. Let Yj  denote the
maximum value of X tj ( )  throughout the duration of the earthquake. Parts (a)–(f)
list various levels of detail that might be studied for this problem. For each of
these, indicate whether the required model would be an event, a scalar random
variable, a vector random variable, a scalar stochastic process, a vector stochastic
process, or a stochastic field. Give the answer that is the simplest adequate
model.
(a) The likelihood that X t5( )  will exceed 100 mm at any time during the

earthquake
(b) The likelihood that the translation at the top of the building will exceed 200

mm at any time during the earthquake
(c) The likelihoods of all the possible values for Y5
(d) The likelihoods of all the possible values for the combination of all Yj  terms
(e) The likelihoods of all the possible time histories of X t5( )
(f) The likelihoods of all the possible combinations of X tj ( )  time histories
*****************************************************************
1.3 Let X t u( , )  denote the bending moment in a cantilever beam at time t and a
distance u from the fixed end. Parts (a)–(g) list various levels of detail that might
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be studied for this problem. For each of these, indicate whether the required
model would be an event, a scalar random variable, a vector random variable, a
scalar stochastic process, a vector stochastic process, or a stochastic field. Give
the answer that is the simplest adequate model.
(a) The likelihood that the bending moment is exactly 3kN m⋅  when t = 5

seconds and u = 2 m
(b) The likelihood that the bending moment exceeds 2kN m⋅  when t = 3

seconds and u = 2 m
(c) The likelihoods of all the possible values of the bending moment when t = 5

seconds and u = 2 m
(d) The possible time histories on the set 0 5≤ ≤t  seconds of the bending

moment at u = 3 m
(e) The possible values of the set of bending moments at u = 0m, u =1m,

u = 2m, and u = 3m, all observed at t = 3 seconds
(f) The possible time histories on the set 0 5≤ ≤t  seconds of the bending

moments at u = 0m, u =1m, u = 2m, and u = 3m
(g) The possible time histories on the set 0 5≤ ≤t  seconds of the bending

moments at every u value for 0 3≤ ≤u m
*****************************************************************
1.4 Let X t( )  and Y t( )  denote the tensile stress and the temperature, respectively,
at time t at a given location in a critical element. Parts (a)–(g) list various levels
of detail that might be studied for this problem. For each of these, indicate
whether the required model would be an event, a scalar random variable, a vector
random variable, a scalar stochastic process, a vector stochastic process, or a
stochastic field. Give the answer that is the simplest adequate model.
(a) The likelihood that the tensile stress exceeds 70 MPa and the temperature

exceeds 300°C at time t =120  seconds
(b) The likelihoods of all the possible values of the tensile stress at time t =120

seconds
(c) The likelihoods of all the possible combinations of tensile stress and

temperature at time t =120  seconds
(d) The possible time histories of the temperature on the set of values 0 120≤ ≤t

seconds
(e) The possible combinations of time histories of the tensile stress and

temperature on the set of values 0 120≤ ≤t  seconds
(f) The likelihood that W t X t Y t( ) ( ) . ( )≡ + >0 2 200  at time t =120  seconds
(g) The possible time histories of W t( )  on the set of values 0 120≤ ≤t  seconds
*****************************************************************
1.5 Let X t( )  denote the load applied to a crane cable at time t and Y t( )  denote
the strength of the cable at that time. The strength is a decreasing function of
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time, because of wear on the cable.  Parts (a)–(e) list various levels of detail that
might be studied for this problem. For each of these, indicate whether the
required model would be an event, a scalar random variable, a vector random
variable, a scalar stochastic process, a vector stochastic process, or a stochastic
field. Give the answer that is the simplest adequate model.
(a) The likelihoods of all the possible combinations of load and strength at time

t =15 000,  hours
(b) The likelihoods of all possible values of the load at time t =15 000,  hours
(c) The likelihood that the load will exceed the strength prior to t =15 000,  hours
(d) The possible time histories of the load on the set of values 0 15 000≤ ≤t ,

hours
(e) The possible combinations of time histories of the load and strength on the

set of values 0 15 000≤ ≤t ,  hours
*****************************************************************
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Chapter 2
Fundamentals of Probability
and Random Variables

2.1 Use of Probability and Random Variable Theory
As mentioned in Chapter 1, most of the problems in this book are modeled using
the concept of stochastic processes. The concepts and definitions of stochastic
process theory, though, are extensions of the concepts of random variables, which
are, in turn, based on the fundamentals of probability theory. This chapter and
Chapter 3 give an introduction or review of the concepts that are essential for the
study of stochastic processes, which begins in Chapter 4. If the reader already has
a firm grounding in probability and random variable theory, then the primary
usefulness of this chapter will be to establish items of notation and nomenclature
that will be used throughout the book and to review mathematical concepts.

This chapter begins with a very brief review of the fundamentals of probability
theory, followed by a more extensive coverage of the concepts and mathematics of
random variables. There are two reasons for the difference in depth of the coverage
of the two areas. The primary reason is that a thorough understanding of random
variables is essential to the understanding of the presentation given here for
stochastic processes. Even though the probability of events is a more fundamental
concept, which forms the basis for random variable theory, essentially all of the
events of interest in this book can be formulated in terms of the values of random
variables or stochastic processes. The other reason that the fundamental theory of
the probability of events is given only cursory treatment here is the assumption
that the typical reader will come equipped with an understanding of set theory and
the fundamental concepts of probability.

The reader should always remember that there is a clear distinction between
probability theory and any particular physical problem being modeled. That is,
probability is a field of mathematics, not of physics. Probability theory alone can
never tell us the likelihood of a particular outcome of a physical problem. We must
always choose some particular probability model, including the values of certain
probabilities, in order to begin analyzing a problem. Probability theory then allows
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us to compute the likelihood of other events of interest, consistent with those initial
assumptions. The answers, of course, are generally no better than the initial
assumptions.

Many of the key terms in probability nomenclature are also used in common
conversation—for example, probability, expected value, and independence. This
presents both advantages and disadvantages for the student. The advantage is that
the mathematical term is generally closely related to an intuitive concept that is
already known. The disadvantage is the danger of concentrating on the intuitive
concept to the extent of ignoring the mathematical definition. Each of us may have
a slightly different understanding of a particular intuitive concept, but confusion
will result unless we all agree to use a unique mathematical definition of each
term.

2.2 Fundamental Concepts of Probability Theory
The basic concepts of probability theory are quite simple. In particular, one must
be able to define a space of all possible outcomes for some operation or experiment,
an acceptable family of events (i.e., sets) on the space of possible outcomes, and a
probability measure that assigns a probability to each of the events. The restrictions
on the events are minor and rarely present any difficulty in applications of
probability. In particular, the family of events must be Boolean, which means that
it is closed under the Boolean operations of union, intersection, and complement.

To be more specific, let ω j  denote the jth possible outcome and Ω  be the
space of all possible ω js. Any event A is then a particular subset of Ω . Often the
event is defined as the collection of all possible outcomes meeting some physically
meaningful condition, such as A = { :ω  wind speed ≤ 40 km/h}. Similarly, another
event might be defined as B = { :ω  wind direction is from the south}. The Bool-
ean restriction then means that for any such events A and B, one knows that
A B∪ , A B∩ , Ac , and Bc  are also events, in which A B∪ =
{ : , , }ω ω ω∈ ∈A B or  or both , A B A B∩ = ∈ ∈{ : }ω ω ω and , and Ac =
{ :ω ω ∉ A} . One can define a number of new events by using the Boolean
operations. For example, with the definitions of A and B suggested previously, the
event A Bc ∩ = { :ω  wind speed > 40 km/h and wind direction is from the south}.
We will commonly use a simplified notation for the intersection operation in which
the intersection sign is omitted in a mathematical expression and the word and is
replaced by a comma in a textual expression—for example, A Bc = { :ω  wind speed
> 40 km/h, wind direction is from the south}. No such simplified notation is used
for the union operation, except that and/or can be used in the textual definition—
for example, A Bc ∪ = { :ω  wind speed > 40 km/h and/or wind direction is from
the south}.
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Given a space of possible outcomes Ω  and a family of events on Ω , a
probability measure P( )⋅  is a function of the events meeting three conditions:

1. P A( ) ≥ 0  for any event A

2. P( )Ω =1

3. 

  

P A P Ai
i I

i
i I∈ ∈













= ∑U ( )  if A Ai j =φ  for all i j I and ∈ , in which φ  is the

empty set

These three conditions are called the axioms of probability. It is important to note
that Axiom 3 must apply for I containing either a finite or an infinite number of
terms. The condition of A Ai j =φ , which appears in Axiom 3, is also commonly
stated as either “ A Ai j and  are disjoint” or “ A Ai j and  are mutually exclusive.”
Also, it may be noted that φ =Ωc , so it definitely is included in any family of
events on Ω . Axiom 3 (which applies not only to probability but also to any other
mathematical measure of events) simply says that the measure of a union of events
is the sum of the measures of the individual events if there is no “overlap” between
the events. This often seems intuitively obvious to engineers, because they are
familiar with quantities such as area, volume, and mass, each of which is an example
of a mathematical measure.

Probability nomenclature includes calling Ω  the sure event and φ  the
impossible event, for obvious reasons. In some cases it is important to distinguish
between these terms and an almost sure event, which is one with unit probability,
and an almost impossible event, which is one with zero probability. For example, if
A is an almost sure event, then P A P( ) ( )= =Ω 1. This implies that P Ac( ) = 0 , so
the almost impossible event Ac  is a collection of ω  outcomes with zero probability.
At first glance, the distinction between sure and almost sure or impossible and
almost impossible may appear to be trivial, but this is often not the case. For example,
assume that all outcomes in Ω  are equally likely. That is, if Ω  contains a finite
number N of possible ω  outcomes, then there is a probability of 1/N assigned to
each ω  and φ  is the only event with probability zero. If N is allowed to tend to
infinity, however, the probability of any particular outcome tends to zero, so any
event containing only one ω  outcome (or any finite number of ω  outcomes) has
probability zero, although it is generally not an impossible event.

One of the most useful concepts in applied probability is that of conditional
probability. The mathematical definition of conditional probability is quite simple,
as illustrated by
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P B A
P AB

P A
( | )

( )

( )
≡ (2.1)

The left-hand side of this expression is read as “the conditional probability of B
given A” and the definition, as shown, is simply the probability of the intersection
of the two events divided by the probability of the “conditioning” or “given” event.
The only limitation on this definition is that P A( ) > 0 . If P A( ) = 0 , then the ratio is
undefined (zero over zero), so we say that P B A( | )  is undefined if A is an almost
impossible event. The intuitive concept of conditional probability relates to the
informational connection between two events. In particular P B A( | )  is the
probability that the outcome is in event B given that it is in event A. In applied
probability we often want to estimate the likelihood of some nonobservable event
based on one or more observable outcomes. For example, we want to estimate the
remaining load capacity of a structural member given that we have observed certain
cracks on its surface. In this case, of course, the remaining load capacity can be
said to be observable, but generally not without destroying the member.

Based on Eq. 2.1, one can write a product rule as

P AB P A P B A( ) ( ) ( | )=    or   P AB P B P A B( ) ( ) ( | )= (2.2)

Both of these expressions are true for any pair of events, provided that the conditional
probabilities are defined. That is, the first form is true provided that P A( ) ≠ 0  and
the second is true provided that P B( ) ≠ 0 . Such product rules are very useful in
applications, and they also form the basis for the definition of another important
concept. Events A and B are said to be independent if

P AB P A P B( ) ( ) ( )= (2.3)

Comparing this product rule with that in Eq. 2.2, we see that A and B are independent
if and only if P B A P B( | ) ( )=  if P A( ) ≠ 0  and also if and only if P A B P A( | ) ( )=  if
P B( ) ≠ 0. It is these latter relationships that give independence its important intuitive
value. Assume for the moment that P A( ) ≠ 0  and P B( ) ≠ 0 . We then say that A is
independent of B if knowledge that B has occurred gives us absolutely no new
information about the likelihood that A has occurred. That is, P A B( | )  (i.e., the
probability of A given that B has occurred) is exactly the same as the unconditional
P A( )  that applied before we had any information about whether the outcome was
in A or Ac . Furthermore, if B is independent of A, then A is also  independent of B,
so knowledge about the occurrence or nonoccurrence of B gives no new information
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about the likelihood of the occurrence of A. It should also be noted that disjoint
events are almost never independent. That is, if A and B have no outcomes in
common, then P AB( ) = 0, because the intersection is empty. This contradicts Eq.
2.3 except in the almost trivial special cases with P A( ) = 0 , or P B( ) = 0 , or both.

2.3 Random Variables and Probability Distributions
A real random variable is a mathematical tool that we can use to describe an entity
that must take on some real value but for which we are uncertain regarding what
that value will be.1 For example, in a structural dynamics problem, the uncertain
quantity of interest might be the force that will occur on a structure at some specified
future instant of time, or it might be some measure of response such as displacement,
velocity, or acceleration at the specified time. Because we are uncertain about the
value of the uncertain entity, the best description we can hope to find is one that
gives the probability of its taking on particular values or values in any particular
subset of the set of possible values. Thus, the description of a random variable is
simply a description of its probabilities. It should perhaps be noted that there is
nothing to be gained by debating whether a certain physical quantity truly is a
random variable. The more pertinent question is whether our uncertainty about the
value of the quantity can be usefully modeled by a random variable. As in all other
areas of applied mathematics, it is safe to assume that our mathematical model is
never identical to a physical quantity, but that does not necessarily preclude our
using the model to obtain meaningful results.

As presented in Section 2.2, probabilities are always defined for sets of
possible outcomes, called events. For a problem described by a single real random
variable X, any event of interest is always equivalent to the event of X belonging to
some union (finite or infinite) of disjoint intervals of the real line. In some problems
we are most interested in events of the type X u= , in which u is a particular real
number. In order to include this situation within the idea of events corresponding
to intervals, we can consider the event to be X Iu∈  with I u uu = [ , ] being a closed
interval that includes only the single point u. In other problems, we are more
interested in intervals of finite length. Probably the most general way to describe
the probabilities associated with a given random variable is with the use of the
cumulative distribution function, which will be written as FX ( )⋅ . The argument of
this function is always a real number, and the domain of definition of the function
is the entire real line. That is, for any real random variable the argument of the
cumulative distribution function can be any real number. The definition of the
FX ( )⋅  function is in terms of a probability of X being smaller than or equal to a

1Later we will also use complex random variables and vector random variables, but these
are unnecessary at this stage of the development.
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given number. Arbitrarily choosing u to denote the argument, we can write the
definition as

F u P X uX ( ) ( )≡ ≤ (2.4)

in which the notation on the right-hand side is somewhat of an abbreviation. In
particular, the actual event for which we are calculating the probability is more
accurately represented as { : ( ) }ω ωX u≤ , with X( )ω  representing a mapping from
the space Ω  of possible outcomes to the real line. For most of our problems, though,
one can use the alternative interpretation of considering Ω  to be the real line, so a
particular outcome ω  can be replaced by an outcome u on the real line. This
abbreviated notation will be used throughout this book.

Based on Eq. 2.4, F uX ( )  is exactly the probability of X being within the
semi-infinite interval to the left of u on the real line: F u P X uX ( ) ( , ]= ∈ −∞( ) ≡
P X u( )−∞< ≤ . Again, it should be kept in mind that u can be any real number on
the real line. Also, it should be kept in mind that u is not the random variable. It is
a given real number denoting one of the possible outcomes for X. The random
variable is X and our uncertainty about its value is represented by the values of the
function F uX ( )  for given values of u.

********************************************************************************************

Example 2.1: Consider X  to be a random variable that is the numerical value of
the result from a single roll of a standard gaming die. Thus, X  has six possible
values, { , , , , , }1 2 3 4 5 6 , and is equally likely to have any one of these values:

P X( )= =1 P X P X( ) ( )= = = =2 3 P X P X P X( ) ( ) ( ) /= = = = = =4 5 6 1 6 . Find the
cumulative distribution function for X .

The cumulative distribution function for this random variable is found simply by

summing outcomes that fall within the interval ( , ]−∞ u :

  

F u u

F u u

F u u

F u u

F u u

F u u

F u u

X

X

X

X

X

X

X

( )

( ) /

( ) /

( ) /

( ) /

( ) /

( ) /

= −∞< <

= ≤ <

= ≤ <

= ≤ <

= ≤ <

= ≤ <

= = ≤ <∞

0 1

1 6 1 2

2 6 2 3

3 6 3 4

4 6 4 5

5 6 5 6

6 6 1 6

for 

for 

for 

for 

for 

for 

for 
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Note that this F uX ( )  function is defined over the entire real line −∞< <∞u , even
though the random variable X  has a very limited set of possible values. For

example, FX ( ) / .π = =3 6 0 5 .
********************************************************************************************
Example 2.2: Let X  denote a real number chosen “at random” from the interval

[ , ]0 10 . Find the cumulative distribution function of X .

In this case there is a continuous set of possible values for the random variable, so

there are infinitely many values that the random variable X  might assume and it is
equally likely that X  will take on any one of these values. Obviously, this requires
that the probability of X  being equal to any particular one of the possible values

must be zero, because the total probability assigned to the set of all possible values
is always unity for any random variable (Axiom 2 of probability theory, also called
total probability). Thus, it is not possible to define the probabilities of this random

variable by giving the probability of events of the type { }X u= , but there is no
difficulty in using the cumulative distribution function. It is given by

  

F u u

F u u u

F u u

X

X

X

( )

( ) .

( )

= −∞< <

= ≤ <

= ≤ <∞

0 0

0 1 0 10

1 10

for 

for 

for 

For example, P X F FX X( ) ( ) ( ) .0 4 4 0 0 4≤ ≤ = − = .

********************************************************************************************

In both of the examples, note that the function F uX ( )  starts at zero for
u →−∞ and increases monotonically to unity for u →+∞. These limits of zero
and unity and the property of being monotonically increasing (or, more precisely,
“monotonically nondecreasing”) are characteristic of the cumulative distribution
function of any random variable. They follow directly from the axioms of probability
theory. In fact, one can define a random variable with a distribution function equal
to F u( )  for any real function F u( )  that approaches zero for u →−∞, approaches
unity for u →+∞, and is monotonically nondecreasing and continuous from the
right for all finite u values.

Example 2.1 is an illustration of the category of discrete random variables,
whereas Example 2.2 gives a continuous random variable. Precisely, a random
variable is discrete if it may assume only values within a discrete set. (It has zero
probability of being outside the discrete set.) The F uX ( )  function for a discrete
random variable is always of the “stairstep” form, with the magnitude of the
discontinuity at any particular point u being the probability that X u= . In Example
2.1 the number of possible values for X was finite, but this is not necessary for a
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discrete random variable. For example, P X j j( )= = −2  for j ∈  {set of positive
integers} gives a well-defined random variable X. In this case the steps in F uX ( )
become smaller and smaller as u becomes larger and larger, so F uX ( )  does approach
unity for u →∞. A random variable is said to be continuous if its cumulative
distribution function is continuous. Although the designations “discrete” and
“continuous” are useful, they are not comprehensive; that is, there are also random
variables that are neither discrete nor continuous. These are sometimes called mixed
random variables.

********************************************************************************************
Example 2.3: Let the random variable X  represent the DC voltage output from
some force transducer, and let the distribution be uniform on the set [ , ]−4 16  such

that F u uX ( ) . ( )= +0 05 4  for − ≤ ≤4 16u . Of course, F uX ( )  is zero to the left and
unity to the right of the [ , ]−4 16  interval. Now let another (mixed) random variable

Y  represent the output from a voltmeter that reads only from zero to 10 volts and

that has X  as the input. Whenever 0 10≤ ≤X  we will have Y X= , but we will get

Y = 0  whenever X < 0 , and Y =10  whenever X >10 . Find the cumulative
distribution function for Y .

From P Y u( )≤  we get

  

F u u

F u u u

F u u

Y

Y

Y

( )

( ) . ( )

( )

= <

= + ≤ <

= ≥

0 0

0 05 4 0 10

1 10

for 

for 

for 

This F uY ( )  function for this mixed random variable has discontinuities of 0.2 at

u = 0 and 0.3 at u =10 , representing the finite probabilities that Y  takes on these

two particular values.
********************************************************************************************

In describing cumulative distribution functions, it is often convenient to use
the simple discontinuous function called the unit step function.2 We will use the
notation U( )⋅  to denote this function and define it as

U x x

U x x

( )

( )

= <

= ≥

0 0

1 0

for 

for 
(2.5)

2This widely used function is sometimes called the Heaviside function or the Heaviside
step function.  More detail on the unit step function and its relationship to the Dirac delta
function is given in Appendix A.
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Using the unit step function, it is possible to define a “stairstep” function as a
summation. In particular, the cumulative distribution function for a discrete random
variable such as that given in Example 2.1 can be written as

F u p U u xX j j
j

( ) ( )= −∑ (2.6)

in which p j  is the magnitude of the discontinuity at u x j= . Note that for any u
value the summation in Eq. 2.6 is over all the possible values of j, whether that
number is finite or infinite. However, for a given u value, some of the terms may
contribute nothing. Specifically, there is no contribution to the summation for any
j value for which x uj > , because that corresponds to a U( )⋅  function with a negative
argument.

********************************************************************************************
Example 2.4: Use the unit step function to write a single expression for the
cumulative distribution function of the discrete random variable of Example 2.1,

having P X P X P X P X P X P X( ) ( ) ( ) ( ) ( ) ( ) /= = = = = = = = = = = =1 2 3 4 5 6 1 6 .

The summation in Eq. 2.6 is simply

F u U u U u U u U u U u U uX ( ) ( ) ( ) ( ) ( ) ( ) ( )= − + − + − + − + − + −[ ]1

6
1 2 3 4 5 6

********************************************************************************************
Example 2.5: Use the unit step function to write a single expression for the
cumulative distribution function for the mixed random variable Y  of Example 2.3,

having

  

F u u

F u u u

F u u

Y

Y

Y

( )

( ) . ( )

( )

= <

= + ≤ <

= ≥

0 0

0 05 4 0 10

1 10

for 

for 

for 

The discontinuous F uY ( )  is exactly given by
F u u U u U u U uY ( ) . ( ) ( ) ( ) ( )= + − − −[ ] + −0 05 4 0 10 10

or

F u u U u u U uY ( ) . ( ) ( ) ( . . ) ( )= + + − −0 05 4 0 8 0 05 10
********************************************************************************************

These examples illustrate how the unit step function can be used to write the
cumulative distribution function for a discrete or mixed random variable as a single
equation that is valid everywhere on the real line, rather than using a piecewise
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description of the function, as was done in Examples 2.1, 2.2, and 2.3. This is
strictly a matter of convenience, but it will often be useful. Note that the fact that
U( )⋅  was defined to be continuous from the right ensures that a cumulative
distribution function written according to Eq. 2.6 will have the proper value at any
point of discontinuity.

2.4 Probability Density Functions
For many of our calculations, it will be more convenient to describe the probability
distribution of a random variable X by using what is called the probability density
function p uX ( )  rather than the cumulative distribution function F uX ( ) . The
p uX ( )  function gives the probability per unit length along the line of possible

values for a continuous random variable. Using p uX ( ) is analogous to describing
the mass distribution of a nonuniform rod by giving the mass per unit length at
each location u, whereas using F uX ( )  is like describing the rod by telling how
much mass is located to the left of u for any particular u value. If F uX ( )  is
continuous and differentiable everywhere, then one can define the probability density
function as

p u
d

du
F uX X( ) ( )= (2.7)

The inverse of this relationship is

F u p v dvX X

u
( ) ( )=

−∞∫ (2.8)

because this gives both Eq. 2.7 and the limiting value of FX ( )−∞ = 0 . Equation
2.8 illustrates the fundamental nature of probability density functions—the integral
of p uX ( )  over an interval gives the probability that X lies within that interval. In
Eq. 2.8, of course, the interval is ( , ]−∞ u . A special case of Eq. 2.8 is that

p v dvX ( )
−∞

∞

∫ =1 (2.9)

This is equivalent to FX ( )∞ =1 and is another form of the axiom of total probability.
The probability of X being within any finite interval [ , ]a b  is generally given by
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P a X b p v dv F b F aXa

b

X X( ) ( ) ( ) ( )< ≤ = = −∫ (2.10)

Note that the expression in Eq. 2.10 actually excludes P X a( )= . This is identical
to the probability P X a b P a X b∈( ) ≡ ≤ ≤[ , ] ( ) for a continuous random variable,
though, because P X a( )=  is the magnitude of the discontinuity in F uX ( )  at u a= ,
and this must be zero for a continuous function. Equation 2.10 can also be used to
write an infinitesimal expression that may help illustrate the meaning of the
probability density function. In particular, if p uX ( )  is continuous on the
infinitesimal interval [ , ]u u du+ , then it can be considered to be constant across
the interval so that we have

P u X u du p w dw p u duX Xu

u du
( ] ( ) ( )≤ ≤ + = =

+∫ (2.11)

Thus, at any point u for which p uX ( ) is continuous, the probability density gives
the probability of X being in the neighborhood of u, in the sense that p u duX ( )  is
the probability of being in the infinitesimal increment of length du .

The fact that any cumulative distribution function is nondecreasing tells us
that any probability density function determined from Eq. 2.7 will be nonnegative.
In fact, nonnegativity and Eq. 2.9 are the only restrictions on a probability density
function. For any function p( )⋅  that satisfies these two conditions, one can define
a random variable having p( )⋅  as its probability density function. Note, in particular,
that there is no requirement that p( )⋅  be continuous. A discontinuity in p( )⋅
corresponds to an instantaneous change in the slope of F( )⋅ . As long as the number
of points of discontinuity is countable, one can show that probabilities of X are
uniquely defined by p uX ( ), even if that function is not uniquely defined at the
points of discontinuity.

********************************************************************************************

Example 2.6: Find the probability density function for the random variable X  of
Example 2.2, for which

  

F u u

F u u u

F u u

X

X

X

( )

( ) .

( )

= −∞< <

= ≤ <

= ≤ <∞

0 0

0 1 0 10

1 10

for 

for 

for 

Differentiating the cumulative distribution function, the probability density function
is found to be
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p u u

p u
X

X

( ) .

( )

= ≤ <

=

0 1 0 10

0

for 

otherwise

or, equivalently,

p u U u U uX ( ) . ( ) ( )= −0 1 10      or     p u U u U uX ( ) . ( ) ( )= − −[ ]0 1 10

Note that the final two forms differ only in their values at the single point u =10 .
Such a finite difference in a probability density function at a single point (or a finite

number of points) can be considered trivial, because it has no effect on the
cumulative distribution function, or any other integral of the density function.
********************************************************************************************

Example 2.7: Let the random variable X  have the Gaussian (or “normal”) distribution
with probability density function

p u
u

X ( )
( )

exp
/

= −
−























1

2

1

21 2

2

π σ

µ
σ

in which µ  and σ > 0 are constants. Find the cumulative distribution function
F uX ( ) .

Using Eq. 2.8 gives

F u p v dv e dw
u

X X
u wu

( ) ( )
( ) /

/( ) /
= = ≡

−







−∞

−
−∞

−∫ ∫1

2 1 2
22

π

µ
σ

µ σ
Φ

in which the change of variables w v= −( ) /µ σ  has been used, and the function
Φ( )⋅  is defined by the integral:

Φ( )
( ) /

/r e dwwr
≡ −

−∞∫
1

2 1 2
22

π

Note that Φ( ) ( )u F uX=  for the special case with µ = 0  and σ =1, so it has the
form of a cumulative distribution function. In particular, Φ( )−∞ = 0 , Φ( )∞ =1 , and

it is monotonically increasing. Also, Φ( ) .0 0 5= , because the probability density
function for this special case is p u eX u( ) ( ) / /= − −2 2 1 2 22πσ , which is symmetric
about u = 0. The Φ( )⋅  function is tabulated in many probability books, and it can

also be related to the error function by using the change of variables s w= / /21 2 :

Φ( )
( )

( / )
/

/ //

r e ds
rsr

≡ + =
+−∫1

2

1

2

1 2

21 2 0

2 1 221 2

π

erf

The error function is also tabulated in many mathematical handbooks (for example,

Abramowitz and Stegun, 1965). In addition, many types of computer software are
readily available for evaluating the Φ( )⋅  and erf( )⋅  functions.
********************************************************************************************
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Example 2.8: Let the random variable X  have a probability density function of

p u A au bu cX ( ) exp( )= − − −2

in which A , a , b , and c  are constants, with the limitations that a > 0, A > 0 , and

A has a value such that the integral of p uX ( )  over the entire real line is unity.
Show that X  is Gaussian, as in Example 2.7.

First let us rewrite the exponent in p uX ( )  as

( ) ( / ) /− − − = − + + −− −au bu c a u a b a b c2 1 2 1 22 4
Now if we choose µ = −a b1 2/  and σ = −( ) /2 1 2a  then we have

− + = −−a u a b u( / ) ( ) /( )1 2 2 22 2µ σ
which is the exponent in p uX ( )  in Example 2.7. This choice of µ  and σ  now

gives the p uX ( )  as

p u A
u b

a
cX ( ) exp exp= −

−





















 −













1

2 4

2 2µ
σ

Presuming that p uX ( )  in Example 2.7 is a legitimate probability density function,
then its integral over the entire real line is unity, so the p uX ( )  in the current example

is legitimate only if

A
b

a
cexp

( ) /

2

1 24

1

2
−











=

π σ

Thus, we have demonstrated that any random variable is Gaussian if its p uX ( )
has the form of a constant multiplying an exponential of a quadratic form of u . The
coefficient on the u2  term in the exponent (−a  in this example) must be negative

so that p uX ( ) has a finite integral over the real line.
********************************************************************************************

Any random variable X, such as that in Example  2.6, for which p uX ( )  has
a constant value over all the possible values of X, is said to have a uniform
distribution. Note that for any random variable, including one with a uniform
distribution, the p uX ( ) function is defined on the entire real line (except possibly
at points of discontinuity), even though it will be exactly zero at any u value that is
not a possible value of X. Note also that Example 2.6 illustrates the use of the unit
step function to simplify the form of the probability density function for a random
variable that would otherwise require the use of a piecewise description.

The definition of the probability density function according to Eqs. 2.7 and
2.8 is applicable only to continuous random variables, unless one extends the
boundaries of ordinary calculus. In particular, no bounded function p uX ( ) can
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satisfy Eq. 2.8 if F uX ( )  contains discontinuities, as occurs for a discrete or mixed
random variable. This limitation of the probability density function can be removed
by using the Dirac delta function δ( )⋅ , which is defined by the following properties:3

δ

δ

( )

( )

x x

x x

= ≠

=∞ =

0 0

0

for 

for 
(2.12)

and

δ δ
ε

ε
( ) ( ) ( ) ( ) ( )x x f x dx x x f x dx f x

x

x
− ≡ − =

−∞

∞

−

+

∫ ∫0 0 0
0

0
(2.13)

for any function that is finite and continuous at the point x x= 0. The δ( )⋅  function
can also be thought of as the formal derivative of the unit step function (see Appendix
A):

δ( ) ( )x
d

dx
U x= (2.14)

so it allows one to formulate the derivative of a cumulative distribution function
that contains discontinuities.

Using the Dirac delta function, one can formally describe any random variable
by using a probability density function. For a discrete random variable described
by Eq. 2.6, in particular, one obtains

p u p u xX j j
j

( ) ( )= −∑ δ (2.15)

The p j  multiplier of a term δ( )u x j−  in such a description of p uX ( ) for a discrete
or mixed random variable always gives the finite probability that X x j= .

********************************************************************************************

Example 2.9: Use the Dirac delta function to write an expression for the probability
density function of the discrete random variable X  of Examples 2.1 and 2.4,
having

P X P X P X P X P X P X( ) ( ) ( ) ( ) ( ) ( ) /= = = = = = = = = = = =1 2 3 4 5 6 1 6

This probability density function can be written as

3Strictly speaking, δ( )⋅  is not a function, but it can be thought of as a limit of a
sequence of functions, as considered in Appendix A.
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p u u u u u u uX ( ) ( ) ( ) ( ) ( ) ( ) ( )= − + − + − + − + − + −[ ]1
6

1 2 3 4 5 6δ δ δ δ δ δ

This expression is exactly the formal derivative of the cumulative distribution function
in Example 2.4.
********************************************************************************************

Example 2.10: Find the probability density function for the mixed random variable
Y  of Examples 2.3 and 2.5, having

F u u U u u U uY ( ) . ( ) ( ) ( . . ) ( )= + + − −0 05 4 0 8 0 05 10

Differentiating this cumulative distribution function gives

p u U u u u U u

u u
Y ( ) . ( ) . ( ) ( ) . ( )

( . . ) ( )

= + + − − +

− −

0 05 0 05 4 0 05 10

0 8 0 05 10

δ

δ

which can be rewritten as

p u U u U u u uY ( ) . ( ) ( ) . ( ) . ( )= − −[ ] + + −0 05 10 0 2 0 3 10δ δ

or

p u U u U u u uY ( ) . ( ) ( ) . ( ) . ( )= − + + −0 05 10 0 2 0 3 10δ δ

but these final forms require using some properties of the Dirac delta function. In
particular, 0 05 4 0 05. ( ) ( ) . ( )u u u+ =δ δ , because the terms are equal at u = 0
and both are zero everywhere else. Similarly, ( . . ) ( )0 8 0 05 10− − =u uδ  0 3 10. ( )δ u − ,

because they match at the sole nonzero point of u =10.
********************************************************************************************

Example 2.10 illustrates an important feature of Dirac delta functions. Any
term g x x x( ) ( )δ − 0  can be considered to be identical to g x x x( ) ( )0 0δ − , because
both are zero for x x≠ 0. A related property is that

g x x x( ) ( )δ − ≡0 0           if g x( )0 0= (2.16)

That is, g x x x( ) ( )0 0δ −  can be considered to be identically zero for all x values if
g x( )0 0= . Clearly g x x x( ) ( )0 0δ −  is zero for x ≠ 0 , but its value seems to be
indeterminate at x = 0 , because it is then the product of zero and infinity. However,
the integral of the expression is zero, by the definition of the Dirac delta function
in Eq. 2.12. Because Dirac delta functions are useful only as they contribute to
integrals, this demonstrates that g x x x( ) ( )0 0δ −  with g x( )0 0=  can never
contribute to any finite expression. Thus, it can be considered as identically zero
and dropped from calculations. A particular example of this is the term x xδ( ),
which can always be considered to be zero.
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2.5 Joint and Marginal Distributions
In many problems, we must use more than one random variable to describe the
uncertainty that exists about various outcomes of a given activity. Example 2.3
represents one very simple situation involving two random variables. In that
particular case, Y is a function of X, so if one knows the value of X, then one knows
exactly the value of Y. If one thinks of the ( , )X Y  plane, for this example, then all
the possible outcomes lie on a simple (piecewise linear) curve. In other problems,
there may be a less direct connection between the random variables of interest. For
example, the set of possible values and/or the probability of any particular value
for one random variable Y may depend on the value of another random variable X.

As with a single random variable, the probabilities of two or more random
variables can always be described by using a cumulative distribution function. For
two random variables X and Y, this can be written as

F u v P X u Y vXY ( , ) ( , )≡ ≤ ≤ (2.17)

in which the comma within the parentheses on the right-hand side of the expression
represents the intersection operation. That is, the probability denoted is for the
joint event that X u≤  and Y v≤ . The function F u vXY ( , ) is defined on the two-
dimensional space of all possible ( , )X Y  values, and it is called the joint cumulative
distribution function. When we generalize to more than two or three random
variables, it will often be more convenient to use a vector notation. In particular,
we will use an arrow over a symbol to indicate that the quantity involved is a
vector (which may also be viewed as a matrix with only one column). Thus, we
will write

  

r

M
X

X

X

Xn

=





















1

2 ,

  

r

M
u

u

u

un

=





















1

2

and use the notation

  

F u F u u u P X uX X X X n j j
j

n

n
r

L
r

L I( ) ( , , , ) (≡ ≡ ≤














=
1 2 1 2

1

(2.18)
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for the general joint cumulative distribution function of n random components.

As with a single random variable, one can convert from a cumulative
distribution function to a probability density function by differentiation. The
situation is slightly more complicated now, because we must use multiple partial
derivatives:

  
p u v

u v
F u v p u

u u u
F uXY XY X

n

n
X( , ) ( , ), ( ) ( )= =

∂
∂ ∂

∂
∂ ∂ ∂

2

1 2

r rr

L

r
(2.19)

To obtain probabilities from an n-dimensional joint probability density function,
one must use an n-fold integration such as

  
F u p w dw dwX X n

uun
r rr

L
r

L( ) ( )=
−∞−∞ ∫∫ 1

1
(2.20)

for the probability defined as the joint cumulative distribution function, or

P X Y A p u v du dvXY

A

( , ) ( , )∈[ ] = ∫∫ (2.21)

for the probability of ( , )X Y  falling within any arbitrary region A on the plane of
possible values for the pair.

********************************************************************************************

Example 2.11: Let the joint distribution of ( , )X Y  be such that the possible outcomes
( , )u v  are the points within the rectangle ( , )− ≤ ≤ − ≤ ≤1 2 1 1u v . Furthermore,
let every one of these possible outcomes be “equally likely.” Note that we are not

dealing with discrete random variables in this example, because the set of possible
values is not discrete. As with a single random variable on a continuous set of
possible values, the term equally likely denotes a constant value of the probability

density function. Thus, we say that

p u v CXY ( , ) =         for − ≤ ≤ − ≤ ≤1 2 1 1u v,

p u vXY ( , ) = 0          otherwise

in which C  is some constant. Find the value of the constant C  and the joint
cumulative distribution function F u vXY ( , )  for all values of ( , )u v .
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We find the value of C  by using the total probability property that ( , )X Y  must fall
somewhere within the space of possible values and that the probability of being

within a set is the double integral over that set, as in Eq. 2.21. Thus, we obtain
C =1 6/ , because the rectangle of possible values has an area of 6 and the joint
probability density function has the constant value C  everywhere in the rectangle:

1 1 2 1 1 6
1

2

1

1
= − ≤ ≤ − ≤ ≤ = =

−− ∫∫P X Y p u v du dv CXY( , ) ( , )

We may now calculate the joint cumulative distribution of these two random variables

by integrating as in Eq. 2.20, with the result that

  

F u v C u v u v u v

F u v C v v u v

F u v C u u u v

F u

XY

XY

XY

XY

( , ) ( )( ) ( )( ) / ,

( , ) ( ) ( ) / ,

( , ) ( ) ( ) / ,

(

= + + = + + − ≤ ≤ − ≤ ≤

= + = + > − ≤ ≤

= + = + − ≤ ≤ >

1 1 1 1 6 1 2 1 1

3 1 1 2 2 1 1

2 1 1 3 1 2 1

for 

for 

for 

,, ) ,

( , )

v C u v

F u vXY

= = > >

=

6 1 2 1

0

for 

otherwise
One can verify that this cumulative distribution function is continuous. Thus, the
random variables X  and Y  are said to have a continuous joint distribution. Clearly,
for this particular problem the description given by the density function is much

simpler than that given by the cumulative distribution function.
********************************************************************************************
Example 2.12: Let the joint probability density function of X  and Y  be equal to the

constant C  on the set of possible values, as in Example 2.11, but let the space of
possible values be a triangle in the ( , )u v  plane such that

    
  

p u v C v u

p u v
XY

XY

( , )    

( , )    

= ≤ ≤ ≤

=

for 

otherwise

1 5

0

A sketch of this joint probability density

function is shown. Find the value of the
constant C  and the joint cumulative
distribution function F u vXY ( , )  for all

values of ( , )u v .

Again we use total probability to find that
C =1 8/ , because the triangle of possible
values has an area of 8 and the density
function is constant on that triangle.

Integration gives the joint cumulative
distribution function as the continuous
function

pXY (u,v)

u

v

v = u

1

1

5

5
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F u v u v v v u

F u v u v u u

F u v v v v u

F u v u v

F u v

XY

XY

XY

XY

XY

( , ) ( )( ) /

( , ) ( ) / ,

( , ) ( )( ) / ,

( , ) ,

( , )

= − + − ≤ ≤ ≤

= − > ≤ ≤

= − − ≤ ≤ >

= > >

=

2 1 1 16 1 5

1 16 1 5

9 1 16 1 5 5

1 5 5

0

2

for 

for 

for 

for 

otherwise
********************************************************************************************
Example 2.13: Consider two random variables X  and Y  with the joint cumulative
distribution given by

F u v
e e e e

XY

u v u v
( , )

( )( ) ( )( )
=

− −
+

− −
+







− − − −1 1

2

1 1

4

4 4 4 3

( )( )
( ) ( )

1 1

4

3 4− − 





− −e e
U u U v

u v

in which the unit step function has been used to convey the information that the
nonzero function applies only in the first quadrant of the ( , )u v  plane. Find the joint
probability density function for X  and Y .

Taking the mixed partial derivative according to Eq. 2.19 gives

p u v e e e U u U vXY
u v u v u v( , ) ( ) ( )= + +( )− − − − − −8 3 34 4 4 3 3 4

Note that no δ( )u  or δ( )v  Dirac delta functions have been included in the derivative,
even though such terms do appear as derivatives of the U u( ) and U v( )  unit step

functions. However, it is found that each Dirac delta function is multiplied by an
expression that is zero at the single point where the Dirac delta function is nonzero,
so they can be ignored, as in Eq. 2.16.

********************************************************************************************

Some Properties of Joint Probability Distributions
It is left to the reader to verify that for any problem involving two random variables
X and Y, the joint cumulative distribution function and joint probability distribution
function must satisfy the following properties:

F F u vXY
u
v

XY( , ) lim ( , )−∞ −∞ ≡ =
→−∞
→−∞

0 (2.22)

F u F u vXY
v

XY( , ) lim ( , )−∞ ≡ =
→−∞

0 (2.23)
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F v F u vXY
u

XY( , ) lim ( , )−∞ ≡ =
→−∞

0 (2.24)

F F u vXY
u
v

XY( , ) lim ( , )∞ ∞ ≡ =
→∞
→∞

1 (2.25)

F u F u v F uXY
v

XY X( , ) lim ( , ) ( )∞ ≡ =
→∞

(2.26)

F v F u v F vXY
u

XY Y( , ) lim ( , ) ( )∞ ≡ =
→∞

(2.27)

p u vXY ( , ) ≥ 0  for all ( , )u v  values (2.28)

p u v dv p uXY X( , ) ( )
−∞

∞

∫ = (2.29)

p u v du p vXY Y( , ) ( )
−∞

∞

∫ = (2.30)

p u v du dvXY ( , )
−∞

∞

−∞

∞

∫∫ =1 (2.31)

These properties can also be extended to problems with any number of random
variables. A few of these extensions are:

  F u uX n
r L( , , , )−∞ =2 0 (2.32)

  FX
r L( , , )∞ ∞ =1 (2.33)

  
F u F uX X

r L( , , , ) ( )1 11
∞ ∞ = (2.34)

  
F u u F u uX X X

r L( , , , , ) ( , )1 2 1 21 2
∞ ∞ = (2.35)

  
L

r
Lrp u du duX n( ) 1 1

−∞

∞

−∞

∞

∫∫ = (2.36)
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L

r
Lrp u du du p uX n X( ) ( )2 11−∞

∞

−∞

∞

∫∫ = (2.37)

  
L

r
Lrp u du du p u uX n X X( ) ( , )3 1 21 2−∞

∞

−∞

∞

∫∫ = (2.38)

In problems involving more than one random variable, the one-dimensional
distributions of single random variables are commonly referred to as the marginal
distributions. Using this terminology, Eqs. 2.26, 2.27, 2.29, 2.30, 2.34, and 2.37
give formulas for deriving marginal distributions from joint distributions. Similarly,
Eqs. 2.35 and 2.38 can be considered to give two-dimensional marginal distributions
for problems involving more than two random variables.

********************************************************************************************
Example 2.14: Find the marginal distributions for X  and Y  for the joint probability
distribution of Example 2.11 with

p u vXY ( , ) /=1 6      for − ≤ ≤ − ≤ ≤1 2 1 1u v,

p u vXY ( , ) = 0         otherwise

Note that Eq. 2.29 gives p uX ( ) ≡ 0  for u < −1 or u > 2, because the integrand of
that formula is zero everywhere on the specified interval. For the nontrivial situation
of − ≤ ≤1 2u , the integral gives

p u
dv

X ( ) = =
−∫ 6

1

31

1

Thus, this marginal probability density function can be written as

p u U u U uX ( ) ( ) ( )= + −
1

3
1 2

We can now obtain the marginal cumulative distribution function of X  either by
integrating p uX ( ) or by applying Eq. 2.26 to the joint cumulative distribution function

given in Example 2.11. Either way, we obtain

F u
u

U u U u U uX ( ) [ ( ) ( )] ( )=
+







 + − − + −

1
3

1 2 2

Note that replacing [ ( ) ( )]U u U u− − −1 2  in this expression with the almost
equivalent form of  U u U u( ) ( )− −1 2  is unacceptable, because it would give

FX ( )2 2= , instead of the correct value of FX ( )2 1= . Proceeding in the same way
to find the marginal distribution of Y  gives

p v U v U vY ( ) ( ) ( )= + −
1
2

1 1
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and

F v
v

U v U v U vY ( ) [ ( ) ( )] ( )=
+







 + − − + −

1
2

1 1 1

********************************************************************************************

Example 2.15: Find the marginal distributions for X  and Y  for the probability
distribution of Example 2.12 with

  

p u v v u

p u v
XY

XY

( , ) /

( , )

= ≤ ≤ ≤

=

1 8 1 5

0

for 

otherwise

This p u vXY ( , )  function can be rewritten as

p u v U u U u U v U u vXY ( , ) ( ) ( ) ( ) ( ) /= − − − −1 5 1 8
which slightly simplifies the manipulations. First integrating p u vXY ( , )  with respect
to v , in order to apply Eq. 2.29, gives

p u
u

U u U uX ( ) ( ) ( )=
−







 − −

1

8
1 5

which gives a cumulative distribution of

F u
u

U u U u U uX ( )
( )

[ ( ) ( )] ( )=
−









 − − − + −

1

16
1 5 5

2

This can be shown to be exactly the same as is obtained by taking v = ∞ in
F u vXY ( , )  from Example 2.12, confirming Eq. 2.26. Similarly

p v
v

U v U vY ( ) ( ) ( )=
−







 − −

5
8

1 5

and

F v
v v

U v U v U vY ( )
( ) ( )

[ ( ) ( )] ( )=
−

−
−









 − − − + −

5 1

8

1

16
1 5 5

2

********************************************************************************************
Example 2.16: Find the marginal probability distribution for X  for the random

variables of Example 2.13 with

F u v
e e e e

XY

u v u v
( , )

( )( ) ( )( )
=

− −
+

− −
+







− − − −1 1

2

1 1

4

4 4 4 3

          
( )( )

( ) ( )
1 1

4

3 4− − 





− −e e
U u U v

u v
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Because F u vXY ( , ) is given in the original statement of the problem, it is convenient

to set v = ∞ in that equation and obtain F uX ( )  from Eq. 2.26 as

F u
e e e

U u
e e

U uX

u u u u u
( )

( ) ( ) ( )
( ) ( )=

−
+

−
+

−









 = − −













− − − − −1

2

1

4

1

4
1

3

4 4

4 4 3 4 3

Differentiating this expression gives

p u e
e

U uX
u

u
( ) ( )= +













−
−

3
3

4
4

3

It is left to the reader to verify that this agrees with the result of integrating p u vXY ( , )
from Example 2.13 with respect to v . We will not derive the marginal distribution
for Y , in this example, because we can see from symmetry that it will have the
same form as the marginal distribution for X .

********************************************************************************************
Example 2.17: Let the components of the random vector   

r
X  be jointly Gaussian,

which means that the probability density function can be written as

  

p u u uX n
Tr r r r r r

( )
( ) | |

exp ( ) ( )
/ /

= − − −








−1

2

1

22 1 2
1

π
µ µ

K
K

in which   
r
µ  is a vector of constants; K  is a square, symmetric, positive-definite

matrix of constants; and K−1 and | |K  denote the inverse and determinant,
respectively, of K . Show that any subset of the components of   

r
X  also is jointly

Gaussian.

First note that the exponent in 
  
p uX

r r
( )  is a quadratic form in all the u j  terms,

making this joint distribution consistent with the scalar Gaussian distribution
investigated in Examples 2.7 and 2.8—the probability density function is a constant
multiplying an exponential of a quadratic form. It can be shown that any joint

probability density function meeting this condition can be written in the standard
form given here.
Next let us find the probability density function of components X1 to Xn−1. To do

this we need to integrate 
  
p uX

r r
( )  over all possible values of Xn . This integration

will be easier if we first rearrange the exponent in 
  
p uX

r r
( )   as follows

  

− − − ≡ − − − =

− − − − − −

− −

==

−
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=
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( ) ( ) ( )( )

 ( ) ( ) ( ) (

r r r r
u u K u u

K
u u K u K u

T
jk

k

n

j

n

j j k k

nn
n n n n jn

k

n

j j jk
k

n

j

n

µ µ µ µ

µ µ µ

K

jj j k ku− −µ µ)( )
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in which the symmetry of K−1 (which follows from the symmetry of K ) has been
used to simplify the terms that are linear in ( )un n−µ . Note that Knn

−1 (as well as

each of the other K jj
−1 terms) must be greater than zero so that the probability

density function has a finite integral. Now one can use

σ µ µ µ= = − −
− −

−

=

−

∑1 1
1 2 1

1

1

1

K K
K u

nn
n

nn
jn

k

n

j j/
( ),     

and rewrite the exponent as

  

− − − = −
−







 + −













 −

− −

− −

=

−

−

=

−

=

−

∑

∑∑

1

2

1

2

1

2

1

2

1
2

2
1

1

1 2

1

1

1

1

1

( ) ( ) ( )

( )( )

r r r r
u u

u
K u

K u u

T n
jn

k

n

j j

jk
k

n

j

n

j j k k

µ µ
µ

σ σ
µ

µ µ

K

This separation of the terms depending on un  from the other terms allows the

desired probability density function to be written as

  

p u u C
u

du CX X n
n

nn1 1 1 1

2
1 21

2
2L L− − −∞

∞
= −

−





















 =∫( , , ) exp ( ) /µ

σ
π σ

in which the value of the integral has been determined by observation from

comparison with the probability density function of Example 2.7. Substituting for
the term C  then gives

  

p u u K u

K u u

X X n n jn
k

n

j j

jk
k

n

j

n

j j k k

n1 1 1 1

1 2

2 2
1

1

1 2

1

1

1

1

1

2

2

1

2

1

2

L L
− −

−

=

−

−

=

−

=

−

= −












 −









− −








∑

∑∑

( , , )
( )

( ) | |
exp ( )

( )( )

/

/
π σ

π σ
µ

µ µ

K

Note that the exponent in this probability density function is a quadratic form in all
the u j  terms for   j n= −1 1, ,L . This is sufficient, without further simplification, to

demonstrate that 
  
p u uX X nn1 1 1 1L L

− −( , , )  is a jointly Gaussian distribution. This
procedure can be extended to show that if X1 to Xn  are jointly Gaussian, then any
subset of those random variables is also jointly Gaussian, including the limiting

case that each individual random variable in the set is Gaussian. This is a very
important property of Gaussian distributions.
********************************************************************************************
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2.6 Distribution of a Function of a Random Variable
For any reasonably smooth function g( )⋅ , we can define a new random variable
Y g X= ( )  in terms of a given random variable X. We now want to consider how the
probability distribution of Y relates to that of X. First, let us consider the simplest
case of g being a monotonically increasing function. Then g has a unique inverse
g− ⋅1( ) , and the event { }Y v≤  is identical to the event { ( )}X g v≤ −1 . Thus,
F v F g vY X( ) [ ( )]= −1 , and taking the derivative with respect to v of both sides of
this equation gives the probability density function as

p v p g v
d

dv
g vY X( ) [ ( )] ( )= − −1 1

or

p v
p g v

dg u

du

Y
X

u g v

( )
[ ( )]

( )

( )

=










−

= −

1

1

for g monotonically increasing

Similarly, if g is decreasing, then { } { ( )}Y v X g v≤ = ≥ −1 , so F vY ( ) =
1 1− −F g vX [ ( )]  and

p v
p g v

dg u

du

Y
X

u g v

( )
[ ( )]

( )

( )

=

−










−

= −

1

1

for g monotonically decreasing

That the derivative of g is positive if g is monotonically increasing and negative if
g is monotonically decreasing allows these two probability density function results
to be combined as

 p v
p g v

dg u

du

Y
X

u g v

( )
[ ( )]

( )

( )

=
−

= −

1

1

if g is monotonic (2.39)

Note that the point X g v= −1( )  maps into Y v= . Thus, it is surely logical
that the probability of Y being in the neighborhood of v depends only on the
probability of X being in the neighborhood of g v−1( ) . The derivative of g appearing
in the probability density function reflects the fact that an increment of length du
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does not map into an increment dv of equal length. Thus, the expression in Eq. 2.39
must include the dv du/  ratio given in the denominator. An important special case
of the monotonic function is the linear relationship Y c bX= + , for which
p v p v c b bY X( ) [( ) / ] / | |= − .

For a general g function, there may be many inverse points u g v= −1( ) . In
this situation, Eq. 2.39 becomes

p v
p g v

d g u

du

Y
X j

u g v

j

j

( )
[ ( )]

( )

( )

=
−

= −

∑
1

1

(2.40)

with the summation being over all points X g vj= −1( )  that map into Y v= .

The results given here can also be generalized to situations involving vectors
  
r
X  and   

r r r
Y g X= ( ) . The situation corresponding to the monotonic scalar g function

is when   
r
g  has a unique inverse. This can happen only if the dimensions of   

r
X  and

  
r
Y  are the same, and in such cases one can obtain a result that resembles Eq. 2.39:

  

p v
p g v

d g u

du

Y
X

u g v

r
r

r r r

r
r r

r r

r

( )
[ ( )]

( )

( )

=
−

= −

1

1

     if the inverse is unique (2.41)

in which the derivative term in the denominator denotes a matrix

  

d g u

du

g u

u

g u

u

g u

u
g u

u

g u

u

g u

u

g u

u

g u

u

g u

u

n

n

n n n

n

r r

r

r r
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r

r r

L

r

M M O Mr r

L

r

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
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∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

1

1

1

2

1

2

1

2

2

2

1 2















(2.42)

and the double bars denote the absolute value of the determinant of the matrix. It
may also be noted that the determinant of the matrix is called the Jacobian of the
transformation, so the denominator in  Eq. 2.41 is the absolute value of the Jacobian.
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As with the scalar situation, the linear transformation is an important special case.
This can be written for the vectors as   

r r r
Y C X= + B , in which B is a square matrix. It

is then easily shown that the matrix in the denominator of Eq. 2.41 is exactly B, so

  

p v
p g v p v C

Y
X Xr
r rr

r r r r

( )
[ ( )] [ ( )]

= =
−− −1 1

B

B

B
     for   

r r r
Y C X= + B

provided that B is not singular.

There are, of course, also many situations in which we have a function of
multiple random variables, but in which the inverse is not unique. For example, we

might have a scalar random variable Y defined as   Y g X Xn= ( , , )1 L . In this case we
can use the same principle as was used in finding Eq. 2.39. That is, we can write

  

F v p u du duY
g u v

X n( ) ( )
( )

= ∫∫
≤

L
r

L
r

r
1

then find p vY ( )  by taking the derivative with respect to v.

********************************************************************************************
Example 2.18: Let X  have the probability density function

p u u U u U uX ( ) ( ) ( ) ( ) /= − + −1 1 1 2
and let Y X= 2. Find the p vY ( )  probability density function.

Clearly we can write Y g X= ( )  with g u u( ) = 2 . The inverse function then is double
valued, with u g v v= = ±−1 1 2( ) / , and the possible values of Y  are in the range of 0

to 1. For 0 1< ≤v , using Eq. 2.40 gives

p v
p v

v

p v

v

v

v

v

v v
Y

X X( )
( ) ( )/

/

/

/

/

/

/

/ /
= +

−
=

−
+

+
=

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2 1 22 2

1

4

1

4

1

2

so that p v v U v U vY ( ) /( ) ( ) ( )/= −1 2 11 2 . Note that p vY ( )  tends to infinity for

v →0, but it is integrable at this singularity.

********************************************************************************************
Example 2.19: Let the components of   

r
X  be jointly Gaussian, as in Example 2.17

with

  

p u u uX n
Tr r r r r r

( )
( ) | |

exp ( ) ( )
/ /

= − − −








−1

2

1

22 1 2
1

π
µ µ

K
K
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and let   
r r
Y X= B , in which B  is a nonsingular square matrix. Show that the

components of   
r
Y  are jointly Gaussian.

Because the transformation is linear, we can use Eq. 2.42 to obtain

  

p v
p v

v vY
X

n
Tr

rr
r

r r r r
( )

( )

( ) | |
exp ( ) ( )

/ /
= = − − −











−
− − −B

B K B
B K B

1

2 1 2
1 1 11

2

1

2π
µ µ

Without further calculation, we can note that 
  
p vY

r r
( )  has the form of a constant

multiplying an exponential of a quadratic form in the v j  components, and this is
sufficient to assure that   

r
Y  is Gaussian. This is an example of a very important

property of Gaussian distributions—a linear combination of jointly Gaussian random
variables is always Gaussian.
********************************************************************************************

2.7 Conditional Probability Distributions
Recall that the conditional probability of one event given another event is defined
as the probability of the intersection divided by the probability of the conditioning
event, as in Eq. 2.1. This has an intuitive interpretation as the likelihood that one
event will occur simultaneously with a known occurrence of the other event.

For random variable problems, we will usually be interested in conditioning
the probability distribution of one random variable based on certain events involving
the outcome for that same random variable or a different random variable. If this
conditioning event has a nonzero probability, then Eq. 2.1 provides an adequate
tool for defining the conditional distribution. For example, for a random variable X
having the entire real line as possible values, we can define a conditional cumulative
distribution function given X ≤10  as

F u X P X u X
P X u

P X

F u

FX
X

X
( | ) ( | )

[ min( , )]

( )

[min( , )]

( )
≤ ≡ ≤ ≤ =

≤
≤

=10 10
10

10

10

10

Thus,

F u X
F u

F
u

F u X u

X
X

X

X

( | )
( )

( )

( | )

≤ = ≤

≤ = >

10
10

10

10 1 10

for 

for 

The P X u( )≤  and P X( )≤10  terms can be evaluated directly from the unconditional
cumulative distribution function F uX ( ) , if that is known, or from integration of
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the unconditional probability density function p uX ( ) . One can then define a
conditional probability density function for X as

p u X
d

du
F u XX X( | ) ( | )≤ ≡ ≤10 10

giving

p u X
p u

F
u

p u X u

X
X

X

X

( | )
( )

( )

( | )

≤ = ≤

≤ = >

10
10

10

10 0 10

for 

for 

Similarly, in a problem involving the two random variables X and Y, one might
need to compute a conditional distribution for X given some range of outcomes for
Y. For example, one particular conditional cumulative distribution function is

F u Y P X u Y
P X u Y

P Y

F u

FX
XY

Y
( | ) ( | )

( , )

( )

( , )

( )
≤ ≡ ≤ ≤ =

≤ ≤
≤

=10 10
10

10

10

10

and the corresponding conditional probability density function is

p u Y
d

du
F u Y

F

d

du
F uX X

Y
XY( | ) ( | )

( )
( , )≤ ≡ ≤ =10 10

1

10
10

These procedures can easily be extended to situations with more than two random
variables. In summary, whenever the conditioning event has a nonzero probability,
the recommended procedure for finding the conditional probability distribution
for some random variable X is first to write the conditional cumulative distribution
according to Eq. 2.1, as was done in the two examples. After that, one can obtain
the conditional probability density function by taking a derivative:

F u B
P X u B

P B
P BX ( | )

{ }

( )
( )≡

≤ ∩( )
>for 0 (2.43)

and

p u B
d

du
F u B P BX X( | ) ( | ) ( )≡ >for 0 (2.44)
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********************************************************************************************
Example 2.20: Reconsider the random variables X  and Y  of Examples 2.11 and

2.14, with joint probability distribution

p u vXY ( , ) /=1 6 for − ≤ ≤ − ≤ ≤1 2 1 1u v, 

p u vXY ( , ) = 0 otherwise

Find the conditional cumulative distribution function and conditional density function
for the random variable X  given that Y ≥ 0 5. .

To calculate the conditional probability of any event A given the event Y ≥ 0 5. , we
need the probability of Y ≥ 0 5.  and the probability of the intersection of A  with

Y ≥ 0 5. . Thus, to compute the conditional cumulative distribution function for X ,
we need

P Y p u v du dv du dvXY( . ) ( , ) .
. .

> = =








 =

−∞

∞∞

−∫∫ ∫∫0 5
1

6
0 25

0 5 1

2

0 5

1

and

P X u Y p u v du dvXY

u
( , . ) ( , )

.
≤ > =

−∞

∞

∫∫0 5
0 5

which gives

P X u Y( , . )≤ > =0 5 0 for u < −1

P X u Y
u

( , . )≤ > =
+

0 5
1

12
for − ≤ ≤1 2u

P X u Y( , . )≤ > =0 5
1

4
for u > 2

Taking the ratio of probabilities, as in Eq. 2.43, gives the conditional cumulative
distribution function as

F u YX ( | . )> =0 5 0 for u < −1

F u Y
u

X ( | . )> =
+

0 5
1

3
for − ≤ ≤1 2u

F u YX ( | . )> =0 5 1 for u > 2

********************************************************************************************
Example 2.21: For the random variables of Example 2.12 for which the probability
density function may be written as

p u v U u U u U v U u vXY ( , ) ( ) ( ) ( ) ( ) /= − − − −1 5 1 8
find the conditional cumulative distribution function and conditional density function
for the random variable Y  given that X ≤ 3.
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Proceeding as in the previous example:

P X du dv
v

( )≤ =








 =∫∫−∞

∞
3

1
8

1
4

3

and

P X Y v( , )≤ ≤ =3 0 for v <1

P X Y v du dw
v v

w

v
( , )

( )( )
≤ ≤ =









 =

− −∫∫3
1
8

1 5
16

3

1 for 1 3≤ ≤v

P X Y v( , ) /≤ ≤ =3 1 4 for v > 3
so

F v XY ( | )≤ =3 0 for v <1

F v X v vY ( | ) ( )( ) /≤ = − −3 1 5 4 for 1 3≤ ≤v

F v XY ( | )≤ =3 1 for v > 3
Differentiating this expression gives the conditional probability density function as

p v X v U v U vY ( | ) [( ) / ] ( ) ( )≤ = − − −3 3 2 1 3
********************************************************************************************

A slightly different sort of conditioning arises in many random variable
problems. In particular, one may wish to condition by an event with zero probability,
and this requires a new definition, because Eq. 2.1 no longer applies. In particular,
one often is interested in the conditional distribution of one random variable given
a precise value of another random variable. If the conditioning random variable
has a continuous distribution, then this gives a conditioning event with zero
probability. The definition of the conditional distribution for the situation in which
X and Y have a continuous joint distribution is in terms of the conditional probability
density function:

p u Y v
p u v

p vX
XY

Y
( | )

( , )

( )
= ≡ (2.45)

which is defined only for v values giving p vY ( ) ≠ 0. Note that Eq. 2.45 is very
similar in form to Eq. 2.1, but the terms in Eq. 2.45 are all probability density
functions, whereas those in 2.1 are probabilities. Of course, Eq. 2.45 is consistent
with a limit of Eq. 2.1, and one can convert Eq. 2.45 into infinitesimal increments
of probability by multiplying the density terms by infinitesimal increments of length:

p u Y v du
p u v du dv

p v dvX
XY

Y
( | )

( , )
( )

= =
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which is essentially a statement that

P u X u du Y v
P u X u du v Y v dv

P v Y v dv
( | )

( , )

( )
< < + = =

< < + < < +
< < +

which is of the form of Eq. 2.1 for the infinitesimal probabilities. Because the
conditional distribution in this situation is defined by a conditional probability
density function, one must integrate if the conditional cumulative distribution
function is needed:

F u Y v p w Y v dwX X

u
( | ) ( | )= = =

−∞∫ (2.46)

********************************************************************************************
Example 2.22: Find the conditional probability distribution of X  given the event

Y v=  and the conditional distribution of Y  given X u=  for the joint probability
distribution of Examples 2.11 and 2.14 with

p u vXY ( , ) /=1 6 for − ≤ ≤ − ≤ ≤1 2 1 1u v,

p u vXY ( , ) = 0 otherwise

We note that p u Y vX ( | )=  is defined only for − ≤ ≤1 1v , because p vY ( )  is zero
otherwise. For − ≤ ≤1 1v  we use Eq. 2.45 and the marginal probability density
function derived in Example 2.14 to obtain

p u Y v
p u v

p v
U u U uX

XY

Y
( | )

( , )
( )

( ) ( )= = =








 + −

1
3

1 2

Integrating this expression gives the conditional cumulative distribution function
as

F u Y v
u

U u U u U uX ( | ) [ ( ) ( )] ( )= =
+







 + − − + −

1
3

1 2 2

Similarly,

p v X u
p u v

p v
U u U uY

XY

Y
( | )

( , )
( )

( ) ( )= = =








 + −

1
2

1 2

and

F v X u
v

U v U v U vY ( | ) [ ( ) ( )] ( )= =
+







 + − − + −

1

2
1 1 1

for − ≤ ≤1 2u , and the conditional distribution is undefined for other values of u .
********************************************************************************************
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Example 2.23: For the random variables of Examples 2.12 and 2.15 with

p u v U u U u U v U u vXY ( , ) ( ) ( ) ( ) ( ) /= − − − −1 5 1 8
find the conditional distribution of X  given the event Y v=  and the conditional
distribution of Y  given X u= .

In Example 2.15, we found that

p u u U u U uX ( ) ( ) ( ) ( ) / ,= − − −1 1 5 8      p v v U v U vY ( ) ( ) ( ) ( ) /= − − −5 1 5 8
Thus, we can now take the ratio of joint and marginal probability density functions,

according to Eq. 2.45, to obtain

p v X u
p u v

p u u
U v U u vY

XY

X
( | )

( , )

( )
( ) ( )= = =

−









 − −

1

1
1 for 1 5≤ ≤u

and

p u Y v
p u v

p v v
U u v U uX

XY

Y
( | )

( , )
( )

( ) ( )= = =
−









 − −

1
5

5 for 1 5≤ ≤v

These conditional density functions are shown in the sketches. They show that

when X u=  is known, the set of possible values of Y  is limited to the interval
[ , ]1 u , and [ , ]v 5  gives the set of possible values for X  when Y v=  is known. On
these sets of possible values, both of the conditional distributions are uniform

(each of the conditional density functions is a constant). Integrating these conditional
probability density functions gives the conditional cumulative distribution functions
as

F v X u
v

u
U v U u vY ( | ) ( ) ( )= =

−
−









 − −

1
1

1 for 1 5≤ ≤u

and

F u Y v
u v

v
U u v U uX ( | ) ( ) ( )= =

−
−









 − −

5
5 for 1 5≤ ≤v

These are also sketched.

1
u−1

u1

v

pY (v | X = u) p X (u |Y = v)

v
u

5

1
5− v
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********************************************************************************************
Example 2.24: Find the conditional distribution of X  given Y v=  for the probability

distribution of Examples 2.13 and 2.16 with

p u v e e e U u U vXY
u v u v u v( , ) ( ) ( )= + +( )− − − − − −8 3 34 4 4 3 3 4

We can use symmetry and the marginal probability density function derived in

Example 2.16 to write

p v e e U vY
v v( ) / ( )= +( )− −3 44 3

Then Eq. 2.45 gives

p u Y v
e e e

e e
U uX

u v u v u v

v v
( | )

/
( )= =

+ +( )
+( )

− − − − − −

− −

8 3 3

3 4

4 4 4 3 3 4

4 3
for v ≥ 0

As a more specific example,

p u Y e e U uX
u u( | ) . . ( )= = +( )− −4 3 91 0 06834 3

********************************************************************************************
Example 2.25: Let the components of   

r
X  be jointly Gaussian, as in Example 2.17

with

  

p u u uX n
Tr r r r r r

( )
( ) | |

exp ( ) ( )
/ /

= − − −








−1

2

1
22 1 2

1

π
µ µ

K
K

Show that the joint conditional distribution of X1 to Xn−1 given X un n=  has a
jointly Gaussian form.

In Example 2.17 we showed that the components are individually Gaussian, so we
can write

FY (v | X = u) FX (u |Y = v)

u1

v
v

u

5

1 1



Fundamentals of  Probability and Random Variables 45

p u
u

X n
n

n n

n
n

( )
( )

exp
/

= −
−

























1

2

1

21 2

2

π σ

µ
σ

Using this along with 
  
p uX

r r
( )  gives

  

p u u X u

K u u

u
X X n n n

jk
k

n

j

n

j j k k

n

n

n n

n

n1 1 1 1

1

11

2 1 2

1 2

2

1

2

2

2

1

2

L L− −

−

==
= =

− − −
















−
−























∑∑
( , , | )

exp ( )( )

( ) | |

( )
exp

/ /

/

µ µ

π

π σ

µ
σ

K

We now note that this conditional probability density function has the form of a
constant multiplying an exponential of a quadratic form in the u1 to un−1
components. This is sufficient to ensure that the conditional distribution is Gaussian.

This is an example of another general property of Gaussian distributions—if the
components of   

r
X are jointly Gaussian, then the conditional distribution of any subset

of these components is also Gaussian.

********************************************************************************************

It is important to remember that any conditional cumulative distribution
function or conditional probability density function has the same mathematical
characteristics as any other cumulative distribution function or probability density
function. Specifically, any conditional cumulative distribution function, such as
that given by Eq. 2.43 or 2.46, satisfies the condition of being monotonically
increasing from zero to unity as one considers all possible arguments of the function
(i.e., as u is increased from negative infinity to positive infinity). Similarly, any
conditional probability density function, such as that given by Eq. 2.44 or 2.45,
satisfies the conditions of nonnegativity and having a unit integral (Eq. 2.9), which
are necessary for any probability density function.

In many situations, it is convenient to give the initial definition of a problem
in terms of conditional distributions rather than in terms of joint distributions. We
can always rewrite Eq. 2.45 as

p u v p u Y v p vXY X Y( , ) ( | ) ( )= = (2.47)

or

p u v p v X u p uXY Y X( , ) ( | ) ( )= = (2.48)
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so if we know the marginal distribution for one random variable and the conditional
distribution for a second random variable given the value of the first, then we also
know the joint distribution.

********************************************************************************************

Example 2.26: Let a random variable X  be uniform on the set [ , ]0 10  so that its
probability density function is given by

p u U u U uX ( ) ( ) ( ) /= −10 10
Let another random variable Y  be uniform on the set [ , ]0 X ; that is, if we are given

the information that X u= , then Y  is uniform on [ , ]0 u :

p v X u
u

U v U u vY ( | ) ( ) ( )= =








 −

1

Find the joint probability density function of X  and

Y , and identify the domain on which this density
function is nonzero.

Substituting into Eq. 2.48 gives

    p u v
u

U u U u U v U u vXY ( , ) ( ) ( ) ( ) ( )=








 − −

1

10
10

and this function is nonzero on the triangular region
described by 0 10≤ ≤ ≤v u . This region is shown on

a sketch of the ( , )u v  plane.
********************************************************************************************
Example 2.27: Let the random variable X  again

be uniform with probability density function

p u U u U uX ( ) ( ) ( ) /= −10 10

Let Y  be a biased estimate of X  such that it is
always greater than X . In particular, let the

conditional distribution be of the exponential form

    p v X u be U v uY
b v u( | ) ( )( )= = −− −

v

u

0                   10

10

0

pY(v | X = u)

v
0             u

0

b

be
−b (v−u )

pX (u)

0

0.1

100

u

u
0

0

u−1
pY (v | X = u)
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in which b > 0 is a known constant. Find the joint

probability density function of X  and Y , and identify
the domain on which this density function is nonzero.

Multiplying the marginal and conditional probability
densities gives

p u v b e U u U u U v uXY
b u v( , ) ( / ) ( ) ( ) ( )( )= − −− −10 10

and this is nonzero on the semi-infinite strip shaded

in the sketch.
********************************************************************************************

It is also possible to use the idea of conditional and joint probability
distributions to describe a problem in which one random variable is a function of
another random variable. However, such functional relationships always give
degenerate conditional and joint distributions. For example, let Y be a function of
X, say Y g X= ( ) . Now if we are given the event X u= , then the only possible value
of Y is g u( ) . By using the Dirac delta function, though, we can write a conditional
probability density function as p v X u v g UY ( | ) [ ( )]= = −δ . This function is an
acceptable probability density function, because it does give unity when integrated
over the real line and it is nonzero only when v is equal to the possible value for Y.
By using Eq. 2.48, we can now obtain a joint probability density function as
p u v p u v g UXY X( , ) ( ) [ ( )]= −δ . Clearly this joint probability density function is

nonzero only on a one-dimensional subset of the two-dimensional ( , )u v  plane,
and it is infinite on this one-dimensional subset. This degeneracy is typical of what
one obtains when a joint distribution is used to describe the relationship between
one random variable and a function of that random variable. It is also possible to
use this relationship to find p vY ( )  for Y g X= ( ) , but this requires an additional
property of the Dirac delta function. To develop this property, note that

U v g u U g v u g g u

U v g u U u g v g g u

[ ( )] [ ( ) ] [ ( )]

[ ( )] [ ( )] [ ( )]

− = − ′ >

− = − ′ <

− −

− −

1 1

1 1

0

0

     if 

     if 

provided that the inverse is unique [i.e., that g( )⋅  is a monotonic function]. Taking
the derivative with respect to v then gives

δ δ
δ

[ ( )]
( )

[ ( ) ]
[ ( )]

| [ ( )] |
v g u

d g v

d v
g v u

u g v

g g v
− = − =

−

′

−
−

−

−

1
1

1

1 (2.49)

u

v =
 u

0 10
0

(10,10)

v
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Making this substitution in p u v p u v g UXY X( , ) ( ) ( )= −[ ]δ , then integrating with
respect to u, gives

p v
p g v

g g v
Y

X( )
[ ( )]

| [ ( )] |
=

′

−

−

1

1

which is identical with Eq. 2.39.

2.8 Independence of Random Variables
The concept of independent random variables is essentially the same as that of
independent events, as outlined in Section 2.1. The intuitive idea is that a random
variable Y is independent of another random variable X if knowledge of the value
of X gives absolutely no information about the possible values of Y, or about the
likelihood that Y will take on any of those possible values. Because conditional
probability has been defined precisely for the purpose of conveying this type of
informational connection between random variables, it would be natural to use
conditional probabilities in defining the concept of independence. However, there
are minor mathematical difficulties in using this approach for the definition. Thus,
we will use an alternative statement as the definition of independence, then show
that the definition is consistent with the intuitive concept. Specifically, we will say
that two random variables X and Y are defined to be independent if and only if

p u v p u p vXY X Y( , ) ( ) ( )=  for all u and v (2.50)

or, equivalently,

F u v F u F vXY X Y( , ) ( ) ( )=  for all u and v (2.51)

Thus, the definition is in terms of joint and marginal probability distributions rather
than conditional distributions.

Using Eq. 2.50 along with Eq. 2.45 to compute the conditional distributions
for independent X and Y gives

p v X u p vY Y( | ) ( )= =  provided that p uX ( ) ≠ 0 (2.52)
and

p u Y v p uX X( | ) ( )= =  provided that p vY ( ) ≠ 0 (2.53)
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One can also show that

F v X u F vY Y( | ) ( )= =  provided that p uX ( ) ≠ 0 (2.54)
and

F u Y v F uX X( | ) ( )= =  provided that p vY ( ) ≠ 0 (2.55)

and various other statements such as

p v X u p vY Y( | ) ( )≤ =  provided that P X u( )≤ ≠ 0 (2.56)
or

F u Y v F uX X( | ) ( )> =  provided that P Y v( )> ≠ 0 (2.57)

Equations 2.52–2.57 are examples of the intuitive idea of independence discussed
in the first paragraph of this section. Specifically, independence of X and Y implies
that knowledge of the value of X gives absolutely no information about the
probability distribution of Y, and knowledge of Y gives absolutely no information
about the distribution of X. Expressions such as Eqs. 2.52–2.55 have not been used
as the definition of independence simply because, for many problems, each of
these equations may be defined only for a subset of all possible ( , )u v  values,
whereas Eqs. 2.50 and 2.51 hold for all ( , )u v  values.

********************************************************************************************

Example 2.28: Reconsider the probability distribution of Examples 2.11, 2.14, 2.20,
and 2.22 with

p u v U u U u U v U vXY ( , ) ( ) ( ) ( ) ( ) /= + − + −1 2 1 1 6
Are X  and Y  independent?

We have already found the marginal distributions for this problem in Example 2.14,
so they can easily be used to check for independence. In particular, we can use

the previously evaluated functions p u U u U uX ( ) ( ) ( ) /= + −1 2 3  and

p v U v U vY ( ) ( ) ( ) /= + −1 1 2  to verify that for every choice of u  and v  we get

p u v p u p vXY X Y( , ) ( ) ( )= . Thus, Eq. 2.50 is satisfied, and X  and Y  are

independent.
We could, equally well, have demonstrated independence by using the joint and
marginal cumulative distribution functions to show that Eq. 2.51 was satisfied. We

can also use the conditional probabilities that have been derived for this problem
in Examples 2.20 and 2.22 to verify the intuitive idea of independence—that
knowledge of one of the random variables gives no information about the distribution

of the other random variable. For example, we found F u YX ( | . )> 0 5  in Example
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2.20, and it is easily verified that this is identical to the marginal cumulative
distribution function F uX ( )  for all values of u . Also, we found p u Y vX ( | )= , and

this is identical to p uX ( ) , provided that − ≤ ≤1 1v  so that the conditional distribution
is defined. These are two of many equations that we could write to confirm that
knowledge of Y  gives no information about either the possible values of X , or the

probability distribution on those possible values.
********************************************************************************************
Example 2.29: Determine whether X  and Y  are independent for the probability

distribution of Examples 2.12, 2.15, 2.21, and 2.23 with

p u v U u U u U v U u vXY ( , ) ( ) ( ) ( ) ( ) /= − − − −1 5 1 8

Using the marginal distributions derived for this problem in Example 2.15, we have

p u p v
u v

U u U u U v U vX Y( ) ( ) ( ) ( ) ( ) ( )=
−









−







 − − − −

1
8

5
8

1 5 1 5

and this is clearly not the same as p u vXY ( , ) . Thus, X  and Y  are not independent.
In comparing p u p vX Y( ) ( )  with p u vXY ( , ) , it is worthwhile to note two types of

differences. Probably the first discrepancy that the reader will note is that on the
domain where both are nonzero the functions are ( )( ) /u v− −1 5 64  and 1 8/ , and
these clearly are not the same functions of u  and v . One can also note, though,
that p u p vX Y( ) ( )  is nonzero on the square defined by 1 5≤ ≤u , 1 5≤ ≤v , whereas
p u vXY ( , )  is nonzero on only the lower right half of this square. This difference of

the domain of nonzero values of the functions is sufficient to prove that the functions
are not the same. This latter comparison is sometimes an easy way to show that
p u p v p u vX Y XY( ) ( ) ( , )≠  in a problem in which both the joint and marginal

probability density functions are complicated.
Recall also that in Examples 2.21 and 2.23 we derived conditional probability density

functions for this problem:

p v X
v

U v U vY ( | ) ( ) ( )≤ =
−







 − −3

3
2

1 3

and

p v X u
u

U v U u vY ( | ) ( ) ( )= =
−









 − −

1
1

1

If X  and Y  were independent, then both of these conditional probability density

functions for Y  would be the same as its marginal probability density function,
which we found in Example 2.15 to be

p v
v

U v U vY ( ) ( ) ( )=
−







 − −

5
8

1 5
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Clearly neither of these conditional functions is the same as the marginal. Showing

that any one conditional function for Y  given information about X  is not the same
as the corresponding marginal function for X  is sufficient to prove that X  and Y
are not independent. Knowing something about the value of X  (such as X u=  or

X ≤ 3) does give information about the distribution of Y  in this example. In particular,
the information given about X  restricts the range of possible values of Y , as well
as the probability distribution on those possible values. The following example will

illustrate a case in which the probabilities for one random variable are modified by
knowledge of another random variable, even though the domain is unchanged.
********************************************************************************************

Example 2.30: Determine whether X  and Y  are independent for the probability
distribution of Examples 2.13, 2.16, and 2.24 with

p u v e e e U u U vXY
u v u v u v( , ) ( ) ( )= + +( )− − − − − −8 3 34 4 4 3 3 4

Using the marginal distribution from Example 2.16, we have

p u p v e e e e U u U vX Y
u u v v( ) ( ) / / ( ) ( )= +( ) +( )− − − −9 4 44 3 4 3

This time we do find that the domain of nonzero values is the same for p u p vX Y( ) ( )
as for p u vXY ( , )  (i.e., the first quadrant), but the functions of u  and v  are not the

same. Thus, X  and Y  are not independent.
Looking at conditional probabilities, we found in Examples 2.16 and 2.24 that the
marginal distribution for X  could be described by

p u e e U uX
u u( ) / ( )= +( )− −3 44 3

and the conditional distribution had

p u Y v
e e e

e e
U uX

u v u v u v

v v
( | )

/
( )= =

+ +( )
+( )

− − − − − −

− −

8 3 3

3 4

4 4 4 3 3 4

4 3

Thus, the set of possible values of X  is the semi-infinite interval X > 0, and
knowledge of the value of Y  does not change this set. Knowledge of the value of

Y , though, does change the probability distribution on this set of possible values,
confirming that X  and Y  are not independent.
********************************************************************************************

Example 2.31: Let X1 to Xn  be independent and Gaussian with

p u
u

X j
j

j j

j
j
( )

( )
exp

/
= −

−



























1

2

1

21 2

2

π σ

µ

σ
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Show that 
  
p uX

r r
( )  is a special case of the jointly Gaussian distribution as given in

Example 2.17.

Because the components are independent we can write

  

p u p u
u

X X j

j

n

n
n

j j

jj

n

j
r r

L
( ) ( )

( )
exp

/
= = −

−





















= =

∏ ∑
1

2
1

2

1

1

2

1
2π σ σ

µ

σ

This, though, is identical to

  

p u u uX n
Tr r r r r r

( )
( ) | |

exp ( ) ( )
/ /

= − − −








−1

2

1
22 1 2

1

π
µ µ

K
K

if we take K  to be the diagonal matrix with K jj j=σ 2 terms on the diagonal, which

gives K−1  as the diagonal matrix with σ j
−2  terms on the diagonal and

  | |K =σ σ1
2 2L n .

********************************************************************************************

Example 2.32: Let X1 and X2  be independent and Gaussian with the identical

mean-zero probability density function

p u eX j
u

j
j( )

( ) /
/( )

=
−1

2 1 2
22 2

π σ

σ

Find the probability distribution of Y X X= +( ) /
1
2

2
2 1 2 .

As in Section 2.6, we write

F v p u u du du

e du du

Y

u u v

X X

u u v

u u

( ) ( , )

         ( ) /( )

=

=

∫∫

∫∫

+ ≤

+ ≤

− +

1
2

2
2 2

1 2

1
2

2
2 2

1
2

2
2 2

1 2 1 2

2
2

1 2
1

2πσ
σ

This integral is most easily evaluated by making a change of variables to polar

coordinates: u w1 = cos( )θ , u w2 = sin( )θ . Then we have

F v e w dw d eY
wv v( ) /( ) /( )= = −− −∫∫1

2
1

2
2

00

2 22 2 2 2

πσ
θσπ σ

Taking the derivative with respect to v then gives

p v
v e

Y

v
( )

/( )
=

− 2 22

2

σ

σ
This is called the Rayleigh distribution. It plays an important role in many
applications, and we will use it later in this book.
********************************************************************************************
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Exercises
*****************************************************************
Distribution of One Random Variable
*****************************************************************
2.1 Consider a random variable X with cumulative distribution function

F u u

F u u u

F u u

X

X

X

( )

( )         

( )

= <

= ≤ <

= ≥

0 0

0 1

1 1

3

for 

for 

for 

Find the probability density function for X.
*****************************************************************
2.2 Consider a random variable X with cumulative distribution function

F u u U uX ( ) ( / ) ( )= − −1 2 12

Find the probability density function for X.
*****************************************************************
2.3 Consider a random variable X with probability density function

p u u U uX ( ) [ /( ) ] ( )= +2 1 3

Find the cumulative distribution function for X.
*****************************************************************
2.4 Consider a random variable X with probability density function

p u u u U u U uX ( ) ( ) ( ) ( )=








 − −

3

4
2 2

Find the cumulative distribution function for X.
*****************************************************************
2.5 Let the Gaussian random variable X, denoting the wind velocity (in m/s) at
time t at a given location, have the probability density function

p u
u

X ( )
( )

exp
/

= −
−























1

5 2

1
2

10
51 2

2

π

Find the probability that X will exceed 25. [Hint: See Example 2.7.]
*****************************************************************
Joint and Marginal Distributions
*****************************************************************
2.6 Let X and Y be two random variables with the joint cumulative distribution
function

F u v e e u v e ue ve U u U vXY
u v u v u v( , ) ( )( ) ( ) ( ) ( )= − − + + − −









− − − − − −1 1

6
5

2 3 2 3 2 3
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(a) Find the joint probability density function p u vXY ( , ) .
(b) Find the marginal cumulative distribution functions F uX ( )  and F vY ( ) .
(c) Find the marginal probability density functions p uX ( )  and p vY ( ) , and verify

that they satisfy Eqs. 2.29 and 2.30, as well as Eq. 2.7.
*****************************************************************
2.7 Let X and Y be two random variables with the joint cumulative distribution
function

F u v u vXY ( , ) ( )= −3 21 for 0 ≤ u ≤ 1, 1 ≤ v ≤ 2

F u vXY ( , ) =1 for u > 1, v > 2

F u v uXY ( , ) = 3 for 0 ≤ u ≤ 1, v > 2

F u v vXY ( , ) ( )= −1 2 for u > 1, 1 ≤ v ≤ 2

F u vXY ( , ) = 0 otherwise

(a) Find the joint probability density function p u vXY ( , ) .
(b) Find the marginal cumulative distribution functions F uX ( )  and F vY ( ) .
(c) Find the marginal probability density functions p uX ( )  and p vY ( ) , and verify

that they satisfy Eqs. 2.29 and 2.30, as well as Eq. 2.7.
*****************************************************************
2.8 Let the joint probability density
function of two random variables X and
Y be given by

p u v CXY ( , ) =     for ( , )u v  inside
the shaded area on the sketch

p u vXY ( , ) = 0    otherwise
(a) Find the value of the constant C.
(b) Find both marginal probability

density functions: p uX ( )  and
p vY ( ) .

(c) Find FXY ( . , . )0 5 0 75 ; that is, find the
joint cumulative distribution function F u vXY ( , )  only for arguments of u = 0 5. ,
v = 0.75.

*****************************************************************
2.9 Let X and Y be two random variables with joint probability density function

p u v C v e U u U vXY
uv v( , ) ( ) ( )= − −2 5

(a) Find the value of the constant C.
(b) Find the marginal probability density function p uX ( ) .

u

v
(0,1)

(1,0)

(0,–1)

(–1,0)

v =
 u 

+ 1

v =
 u 

- 1
v = -u - 1

v = -u + 1
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(c) Find the joint cumulative distribution function F u vXY ( , ) . [Hint: It is easier to
do the integration in the X direction first.]

(d) Find the marginal cumulative distribution function F uX ( ) , and verify that it
satisfies Eq. 2.27, as well as Eqs. 2.7 and 2.8.

*****************************************************************
2.10 Let X and Y be two random variables with joint probability density function

p u v C e U u U v uXY
u v( , ) ( ) ( )= −− −4

(a) Find the value of the constant C.
(b) Find the marginal probability density function p uX ( ) .
(c) Find the joint cumulative distribution function F u vXY ( , ) .
(d) Find the marginal cumulative distribution function F uX ( ) , and verify that it

satisfies Eq. 2.27, as well as Eqs. 2.7 and 2.8.
*****************************************************************
2.11 Consider two random variables X and Y with the joint probability density
function

p u v
u v

XY ( , ) exp= −
−







 −

−























1

12

1

2

1

2

1

2

2

3

2 2

π

Find the marginal probability density functions: p uX ( )  and p vY ( ) .

[Hint: See Example 2.7.]

*****************************************************************
2.12 Consider two random variables with a joint probability density of

p u v
u v

uv
u v

XY ( , ) exp exp= − −










 + −





























1

2 2 2
1

21 2

2

1
2

2

2
2

2 2

πσ σ σ σ

(a) Find the marginal probability density functions p uX ( )  and p vY ( ) .
(b) Does X have the Gaussian distribution?
(c) Does Y have the Gaussian distribution?
(d) Are X and Y jointly Gaussian?

[Hint: Symmetry and antisymmetry can be used to simplify the integrals. Also
see Examples 2.7 and 2.17.]

*****************************************************************
2.13 Consider two random variables with a joint probability density of

p u v
u

v U u vXY ( , )
( )

exp | | ( )
/

= − −












1

2 21 2

2

1
2π σ
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(a) Find the marginal probability density functions p uX ( )  and p vY ( ) .
(b) Does X have the Gaussian distribution?
[Hint: Symmetry and antisymmetry can be used to simplify the integrals. Also
see Example 2.7.]
*****************************************************************
Conditional Distributions
*****************************************************************
2.14 Let X and Y be the two random variables described in Exercise 2.6 with

F u v e e u v e ue ve U u U vXY
u v u v u v( , ) ( )( ) ( ) ( ) ( )= − − + + − −









− − − − − −1 1

6
5

2 3 2 3 2 3

(a) Find the conditional cumulative distribution function F u AX ( | )  given the event
A Y= ≤ ≤{ }0 2 .

(b) Find the conditional probability density function p u AX ( | ) .
*****************************************************************
2.15 Let X and Y be the two random variables described in Exercise 2.7 with

F u v u vXY ( , ) ( )= −3 21 for 0 ≤ u ≤ 1, 1 ≤ v ≤ 2

F u vXY ( , ) =1 for u > 1, v > 2

F u v uXY ( , ) = 3 for 0 ≤ u ≤ 1, v > 2

F u v vXY ( , ) ( )= −1 2 for u > 1, 1 ≤ v ≤ 2

F u vXY ( , ) = 0 otherwise

(a) Find the conditional cumulative distribution function F v AY ( | )  given the event
A X= ≤ ≤{ . }0 0 75 .

(b) Find the conditional probability density function p v AY ( | ) .
*****************************************************************
2.16 Let X and Y be the two random variables described in Exercise 2.8, for which
we can write

p u v CU v u U u v U u U u

CU v u U u v U u U u
XY ( , ) ( ) ( ) ( ) ( )]

          ( ) ( ) ( ) ( )

= + + + − + − +

− + − − −

1 1 1

1 1 1

(a) Find the conditional cumulative distribution function F v AY ( | )  given the event
A Y= ≤{ . }0 5 .

(b) Find the conditional probability density function p v AY ( | ) .
*****************************************************************
2.17 Let X and Y be the two random variables described in Exercise 2.9 with

p u v C v e U u U vXY
uv v( , ) ( ) ( )= − −2 5

(a) Find the conditional cumulative distribution function F u AX ( | )  given the event
A X= ≥{ }3 .
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(b) Find the conditional probability density function p u AX ( | ) .
*****************************************************************
2.18 Let X and Y be the two random variables described in Exercise 2.8, for which
we can write

p u v CU v u U u v U u U u

CU v u U u v U u U u
XY ( , ) ( ) ( ) ( ) ( )]

          ( ) ( ) ( ) ( )

= + + + − + − +

− + − − −

1 1 1

1 1 1

(a) Find the conditional probability density function p v X uY ( | )= .
(b) Find the conditional cumulative distribution function F v X uY ( | )= .
*****************************************************************
2.19 Let X and Y be the two random variables described in Exercise 2.9 with

p u v C v e U u U vXY
uv v( , ) ( ) ( )= − −2 5

(a) Find the conditional probability density function p v X uY ( | )= .
(b) Find the conditional cumulative distribution function F v X uY ( | )= .
*****************************************************************
2.20 Let X and Y be the two random variables described in Exercise 2.10 with

p u v C e U u U v uXY
u v( , ) ( ) ( )= −− −4

(a) Find the conditional probability density function p v X uY ( | )= .
(b) Find the conditional cumulative distribution function F v X uY ( | )= .
*****************************************************************
2.21 Let X and Y be the two random variables described in Exercise 2.6 with

F u v e e u v e ue ve U u U vXY
u v u v u v( , ) ( )( ) ( ) ( ) ( )= − − + + − −









− − − − − −1 1

6
5

2 3 2 3 2 3

(a) Find the conditional probability density functions p u Y vX ( | )=  and
p v X uY ( | )= .

(b) Find the conditional cumulative distribution functions F u Y vX ( | )=  and
F v X uY ( | )= .

*****************************************************************
2.22 Let X and Y be the two random variables described in Exercise 2.7, for which
we can write

F u v U u U v u v U u U u U v U v

u U u U u U v v U u U v U v

XY ( , ) ( ) ( ) ( ) [ ( ) ( )][ ( ) ( )]

      [ ( ) ( )] ( ) ( ) ( )[ ( ) ( )]

= − − + − − − − − − +

− − − + − − − − −

1 2 1 1 1 2

1 2 1 1 1 2

3 2

3 2

(a) Find the conditional probability density functions p u Y vX ( | )=  and
p v X uY ( | )= .

(b) Find the conditional cumulative distribution functions F u Y vX ( | )=  and
F v X uY ( | )= .

*****************************************************************
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2.23 Consider the two random variables X and Y of Exercise 2.11 with the joint
probability density function

p u v
u v

XY ( , ) exp= −
−







 −

−























1
12

1
2

1
2

1
2

2
3

2 2

π

Find the p u Y vX ( | )=  and p v X uY ( | )=  conditional probability density functions.
*****************************************************************
2.24 Consider the random variables of Exercise 2.12 with

p u v
u v

u v
u v

XY ( , ) exp exp= − −












 + −



























1

2 2 2
1

21 2

2

1
2

2

2
2

2 2

πσ σ σ σ

Find the conditional probability density functions p u Y vX ( | )=  and p v X uY ( | )= .
*****************************************************************
2.25 Consider the random variables of Exercise 2.13 with

p u v
u

v U u vXY ( , )
( )

exp | | ( )
/

= − −












1

2 21 2

2

1
2π σ

Find the conditional probability density functions p u Y vX ( | )=  and p v X uY ( | )= .
*****************************************************************
Independence
*****************************************************************
2.26 Are the random variables X and Y of Exercises 2.6 and 2.21 independent?
*****************************************************************
2.27 Are the random variables X and Y of Exercises 2.7 and 2.22 independent?
*****************************************************************
2.28 Are the random variables X and Y of Exercises 2.8 and 2.18 independent?
*****************************************************************
2.29 Are the random variables X and Y of Exercises 2.9 and 2.19 independent?
*****************************************************************
2.30 Are the random variables X and Y of Exercises 2.10 and 2.20 independent?
*****************************************************************
2.31. Are the random variables X and Y of Exercises 2.11 and 2.23 independent?
*****************************************************************
2.32 Are the random variables X and Y of Exercises 2.12 and 2.24 independent?
*****************************************************************
2.33 Are the random variables X and Y of Exercises 2.13 and 2.25 independent?
*****************************************************************
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Chapter 3
Expected Values of Random
Variables

3.1 Concept of Expected Values
As noted in Chapter 2, any nontrivial random variable has more than one possible
value. In fact, there are infinitely many possible values for many random variables.
A complete description of a real random variable requires the probability of its
being within any finite or infinitesimal interval on the real line. In some cases this
is more information than we are able to obtain conveniently. In other situations,
this complete information can be obtained from knowledge of only a few parameters,
because the general form of the probability distribution is known or assumed. In
either of these instances, it is very valuable to give at least a partial characterization
of the random variable by using quantities that are averages over all the possible
values. The particular types of averages that we will be considering are called
expected values, and they form the basis for this chapter.

3.2 Definition of Expected Values
For any random variable X, the expected value is defined as

E X u p u duX( ) ( )≡
−∞

∞

∫ (3.1)

This expression can be viewed as a weighted average over all the possible values
of X. The weighting function is the probability density function. Thus, u represents

a particular value of X, p u duX ( )  is the probability of X being in the vicinity of u,
and the integration gives us a “sum” over all such terms. In a weighted integral we
usually expect to find an integral such as that in Eq. 3.1 normalized by an integral
of the weighting function. When the weighting function is a probability density,
though, that normalization integral is exactly unity, so it can be omitted. Thus, the
expected value  is the probability weighted average of all the possible values of X.
It is also called the expectation or, most commonly, the mean value of X.
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One must be careful to remember the meaning of E X( ) . The phrase expected
value could easily lead to the misinterpretation that E X( ) is something like the
most likely value of X, but this is generally not true; in fact, we will find in some
situations that E X( )  is not even a possible value of X.

********************************************************************************************
Example 3.1: Find the mean value of the random variable X  having the exponential
distribution with p u e U uX

u( ) ( )= −2 2 .

Applying Eq. 3.1 gives

E X u p u du ue duX
u( ) ( ) .= = =

−∞

∞ ∞
−∫ ∫2 0 5

0
2

One would generally say that the most likely value of this random variable is zero,

because p uX ( )  is larger for u = 0 than for any other u  value, indicating that there
is higher probability of X  being in the neighborhood of zero than in the neighborhood
of any other possible value. The fact that E X( ) .= 0 5, though, reinforces the idea

that E X( )  is an average of all the possible outcomes and need not coincide with
a large value of the probability density function.

********************************************************************************************
Example 3.2: Find the expected value of a random variable X  that is uniformly
distributed on the two intervals [ , ]− −2 1  and [ , ]1 2  so that the probability density

function is as shown on the sketch.

Integration of Eq. 3.1 gives

E X u p u du u du u duX( ) ( ) . .= = + =
−∞

∞

−

−

∫ ∫ ∫0 5 0 5 0
2

1

1

2

In this case, E X( )  is not within the set of possible values for X . It is, however, the
average of all the equally likely possible values. Similarly, for the discrete distribution

of Example 2.1 with P X( )=1  = P X( )= 2  = P X( )= 3  = P X( )= 4  = P X( )= 5  =
P X( ) /= =6 1 6 , we find that E X( ) .= 3 5 , which is surely not a possible value for
the outcome of a die roll but is the average of the six equally likely outcomes.

********************************************************************************************

pX (u)

u

–2                      –1                       0                       1                       2

0.5
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Similar to Eq. 3.1, we now define the expected value of any function of the
random variable X as

E g X g u p u duX[ ( )] ( ) ( )≡
−∞

∞

∫ (3.2)

As before, we have E g X[ ( )] as a weighted average of all the possible values of
g X( ) , because p u duX ( )  gives the probability of g X( )  being in the neighborhood
of g u( )  due to X being in the neighborhood of u. Integrating over all the possible
values of X gives g u( )  varying over all the possible values of g X( ) , and E g X[ ( )]
is the probability weighted average of g X( ) .

********************************************************************************************
Example 3.3: Find E X( )2  and E X[sin( )]3  for the random variable X  of Examples
2.2 and 2.6, for which the probability density can be written as

p u U u U uX ( ) . ( ) ( )= −0 1 10

Using the probability density function in the appropriate integrals, we have

E X u p u du u duX( ) ( ) . .2 2 2
0

10
0 1 33 3= = =

−∞

∞

∫ ∫
and

E X u p u du u duX[sin( )] sin( ) ( ) . sin( )
cos( )

3 3 0 1 3
1 30

300

10
= = =

−
−∞

∞

∫ ∫
********************************************************************************************

Because any function of a random variable is a random variable, we could
write Y g X= ( )  for the random quantity considered in Eq. 3.2 and derive the
probability distribution of Y from that of X. In particular, Eq. 2.40 gives p vY ( )  in
terms of p uX ( ) .  After having found p vY ( ) , we could use Eq. 3.1 to write

E g X E Y v p v dvY[ ( )] ( ) ( )≡ =
−∞

∞

∫ (3.3)

It can be shown that Eq. 3.2 will always give the same result as Eq. 3.3. The
difference between the two is that Eq. 3.3 prescribes calculation of the weighted
average by summing over all possible values of Y g X= ( )  in the order of increasing
Y, whereas Eq. 3.2 involves summing the same terms in the order of increasing X.
Both Eqs. 3.2 and 3.3 are exactly correct for calculating E g X[ ( )], but in many
situations we will find it easier to apply Eq. 3.2.
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********************************************************************************************
Example 3.4: For the random variables of Examples 2.3 and 2.10 one can write

F u u U u U u U uX ( ) . ( ) ( ) ( ) ( )= + + − + −0 05 4 4 16 16
and Y X U X U X U X= − − + −[ ( ) ( )] ( )10 10 10 . Find E Y( )  both by using Eq. 3.2 and
by using Eq. 3.3.

In Eq. 3.2 we need p uX ( ) , which is p u U u U uX ( ) . ( ) ( )= + −0 05 4 16 , along with

the function g u( )  given by g u u U u U u U u( ) [ ( ) ( )] ( )= − − + −10 10 10 . The integral
is then

E Y g u p u du du u du duX( ) ( ) ( ) ( ) ( . ) ( . ) ( ) ( . )= = + +
−∞

∞

−∫ ∫ ∫ ∫0 0 05 0 05 10 0 05
4

0

0

10

10

16

which gives E Y( ) .= 5 5.
In order to use Eq. 3.3, we use the probability density obtained for Y  in Example
2.10 to write

E Y v U v U v v v dv( ) [ . ( ) ( ) . ( ) . ( )]= − + + −
−∞

∞

∫ 0 05 10 0 2 0 3 10δ δ

giving

E Y v dv v v dv v v dv( ) . . ( ) . ( ) .= + + − =∫ ∫ ∫−∞

∞

−∞

∞
0 05 0 2 0 3 10 5 5

0

10
δ δ

Of course, the two results are identical.

********************************************************************************************

An important generalization of Eq. 3.2 is needed for the situation in which
the new random quantity is a function of more than one random variable, such as
g X Y( , ) . The idea of a probability weighted average over all possible values of the
function is maintained and the joint probability density of X and Y is used to write

E g X Y g u v p u v du dvXY[ ( , )] ( , ) ( , )≡
−∞

∞

−∞

∞

∫∫ (3.4)

For a function of many random variables, we can use the corresponding vector
notation

  
E g X g u p u du duX n[ ( )] ( ) ( )

r
L

r r
Lr≡

−∞

∞

−∞

∞

∫∫ 1 (3.5)

in which n is the number of components of the random vector   
r
X  and of the

deterministic vector   
r
u  representing possible values of   

r
X .
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********************************************************************************************
Example 3.5: Find E X( )2  and E XY( )  for the distribution of Examples 2.12 and

2.15, for which the probability density can be written as

p u v U u U u U v U u vXY ( , ) ( ) ( ) ( ) ( ) /= − − − −1 5 1 8

We have two ways to calculate E X( )2 . We can use Eq. 3.4 with g u v u( , ) = 2  and
the given joint density function p u vXY ( , ) , or we can use Eq. 3.1 with g u u( ) = 2

and the marginal probability density function p uX ( )  that we derived in Example
2.15. First, using Eq. 3.4, we have

E X u p u v du dv u du dvXY v
( ) ( , ) .2 2 2

5

1

51

8
14 33= = =

−∞

∞

−∞

∞

∫∫ ∫∫
The corresponding result from Eq. 3.1 is

E X u p u du u
u

du dvX( ) ( ) .2 2 2
1

5 1

8
14 33= =

−







 =

−∞

∞

∫ ∫
The result from Eq. 3.1 is simpler when the marginal probability density is known.

Equation 3.4 involves a double integration, and one can consider that one of these
integrations (the one with respect to v ) has already been performed in going from
p u vXY ( , )  to p uX ( ) . Thus, there is only a single integration (with respect to u )

remaining in applying Eq. 3.1.
For the function g X Y XY( , ) = , we naturally use Eq. 3.4 and obtain

E X Y u v p u v du dv u v du dvXY v
( ) ( , )= = =

−∞

∞

−∞

∞

∫∫ ∫∫1

8
9

5

1

5

********************************************************************************************

One very important property of expectation is linearity. This follows directly
from the fact that the expected value is defined as an integral, and integration is a
linear operation. The consequences of this are that E X Y E X E Y( ) ( ) ( )+ = +  and
E b X bE X( ) ( )=  for any random variables X and Y. It should be noted that we
cannot reverse the order of the expectation operation and nonlinear functions such
as squaring or multiplication of random variables. For example E X E X( ) [ ( )]2 2≠ ,
and E XY( )  generally does not equal E X E Y( ) ( ) . We are allowed to reverse only
the order of expectation and other linear operations.

********************************************************************************************

Example 3.6: Find E X X Y[ ( )]−  for the distribution of Examples 2.12 and 3.5 with

p u v U u U u U v U u vXY ( , ) ( ) ( ) ( ) ( ) /= − − − −1 5 1 8



64 Random Vibrations

We could do this directly from Eq. 3.4 by using g u v u u v( , ) ( )= − , but we can find
the result more simply by noting that E X X Y E X E XY[ ( )] ( ) ( )− = −2 . Using the
results obtained in Example 3.5 gives E X X Y[ ( )] . . .− = − =14 33 9 5 33
********************************************************************************************

Note that there is no assurance that E g X[ ( )] will exist in general. In particular,
if |X| is not bounded and p uX ( )  does not decay sufficiently rapidly, then the integral
of g u p uX( ) ( )  in Eq. 3.2 may not exist. We do know that p uX ( )  is integrable,
because it cannot be a probability density function unless its integral is unity, but
this does not ensure that g u p uX( ) ( )  will be integrable unless g u( )  is bounded.
For example, p u U u uX ( ) ( ) /= −1 2  is an acceptable probability density function,
but it gives an infinite value for E X( )  because the integrand does not decay fast
enough to give a finite value for the integral of u p uX ( ) . Also, E X( )2  and many
other expected values are infinite for this random variable.

3.3 Moments of Random Variables
The quantities called moments of a random variable are simply special cases of the
expectation of a function of the random variable. In particular, the jth moment of
X is defined to be E X j( ) , corresponding to a special case of E g X[ ( )]. We will
find it convenient to use a special name (mean) and notation ( µX ) for the first
moment, which is simply the expected value of the random variable:

mean value: µX XE X u p u du≡ =
−∞

∞

∫( ) ( ) (3.6)

The reason for this special treatment of the first moment is that it plays an especially
important role in many of our calculations. Similarly, the second moment E X( )2

is commonly called the mean-squared value of the random variable, but we will
not use any special notation for it.

One can also define cross moments of any pair of random variables ( , )X Y .
The term E X Yj k( )  is the cross moment of order ( , )j k . The most commonly studied
of these cross moments is E XY( ) . This cross moment of order (1,1) is called the
cross-product of the random variables.

In some situations it is more convenient to use a special form of the moments,
in which one first subtracts the mean of each random variable. These moments of
the form E X X

j[( ) ]−µ  and E X YX
j

Y
k[( ) ( ) ]− −µ µ  are called central moments.

Two of these central moments are given special names and notations. They are
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variance: σ µ µ µ µX X X X XE X E X E X E X2 2 2 2 2 22≡ − = − + = −[( ) ] [ ( ) ] ( ) (3.7)

and

covariance: K E X Y E XYXY X Y X Y≡ − − = −[( )( )] ( )µ µ µ µ (3.8)

The square root of the second moments of a random variable are also given special
names. In particular, [ ( )] /E X2 1 2  is called the root-mean-square value, or rms, of
X, and the standard deviation of X is σ X .

Note that Eqs. 3.7 and 3.8, in addition to giving the definitions of variance
and covariance as central moments, also show how these quantities can be evaluated
in terms of ordinary noncentral moments. It is easily shown that this sort of expansion
can be found for any central moment. Specifically, the central moment of order j
can be written as a linear combination of noncentral moments of order 1 to j, and
E X YX

j
Y

k[( ) ( ) ]− −µ µ  can be written as a linear combination of noncentral cross
moments involving orders 1 to j of X and orders 1 to k of Y. In some situations it is
useful to realize that the converse is also true—that noncentral moments can be
written as linear combinations of central moments of lower and equal order. For
the moments of X, the explicit relationships can be written as

E X
j

i j i
E XX

j
i

X
i j i

i

j

[( ) ]
( ) !
!( )!

( )− =
−

−
−

=
∑µ µ

1

0

or

E X
j

i j i
E X jX

j
i

X
i j i

i

j
j

X
j[( ) ]

( ) !
!( )!

( ) ( ) ( )− =
−

−
− − −−

=

−

∑µ µ µ
1

1 1
0

2

(3.9)

and

E X E X
j

i j i
E Xj

X X
j

X
i

X
j i

i

j

X
j( ) [( ) ]

!

!( )!
[( ) ]= − +( ) =

−
− +−

=

−

∑µ µ µ µ µ
0

2

(3.10)

One other form of the covariance deserves special attention. This form is
called the correlation coefficient and can be viewed either as a normalized form of
covariance or as a cross-product of a modified form of the original random variables.
It is defined as
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correlation coefficient:     ρ
σ σ

µ
σ

µ
σXY

XY

X Y

X

X

Y

Y

K
E

X Y
≡ =

−











−



















 (3.11)

This form of covariance information is commonly used, and its significance will
be investigated somewhat following Example 3.8. The random variables
( ) /X X X−µ σ  and ( ) /Y Y Y−µ σ  appearing in Eq. 3.11 are sometimes called
standardized forms of X and Y. The standardized form of any random variable,
obtained by subtracting the mean value then dividing by the standard deviation, is
a new random variable that is a linear function of the original random variable. The
linear function has been chosen such that the standardized random variable always
has zero mean and unit variance. The next two moments of the standardized random
variable are given special names

skewness:     E
X E XX

X

X

X

−
























=

−µ
σ

µ

σ

3 3

3
[( ) ]

(3.12)

and

kurtosis:  E
X E XX

X

X

X

−

























=
−µ

σ
µ

σ

4 4

4
[( ) ]

(3.13)

These quantities are used much less frequently than the first and second moments.

********************************************************************************************
Example 3.7: Let the random variable X  have the exponential distribution with
probability density function p u be U uX

bu( ) ( )= − , in which b  is a positive constant.

Find a general formula for E X j( ) .

We can simplify the integral

E X u p u du b u e duj j
X

j bu( ) ( )= =
−∞

∞ ∞
−∫ ∫0

by using the change of variables v bu= , giving

E X b v e dvj j j v( ) = −
∞

−∫0
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This gives us an integral that does not depend on the parameter b . Furthermore,
it is a common integral. It is called the gamma function and is commonly written as

Γ ( )a v e dva v= −
∞

−∫ 1
0

The gamma function is a continuous real function of a  on the range a > 0, and at
integer values of a  it is equal to the factorial for a shifted argument: Γ ( ) ( )!a a= −1 .
Thus, we have E X b jj j( ) ( )= −− Γ 1  and E X b jj j( ) != −  for j  = an integer.

Note that there is no difficulty with the existence of E X j( )  for any j  value: the
exponential decay of the probability density function assures the existence of all
moments of X .

********************************************************************************************
Example 3.8: Let the random variable X  have the Gaussian distribution with
probability density function

p u
u

X ( )
( )

exp
/

= −
−























1

2

1

21 2

2

π σ

µ
σ

in which µ  and σ  are constants. Find general formulas for µX  and the central
moments E X X

j[( ) ]−µ .

First we note that the probability density function is symmetric about the line u = µ ,
so we immediately know that µ µX =  and

E X u p u duX
j j

X[( ) ] ( ) ( )− = −
−∞

∞

∫µ µ

If j  is an odd integer, then ( )u j−µ  is antisymmetric about u = µ , so the integral
must be zero, giving E X X

j[( ) ]− =µ 0 for j  odd. For j  even, ( )u j−µ  is symmetric

about u = µ , so we can use only the integral on one side of this point of symmetry,
then double it:

E X u p u du jX
j j

X[( ) ] ( ) ( )− = −
∞

∫µ µ2
0

     for  even

Using the change of variables v u= −( ) /( )µ σ2 22  gives

E X v e dv
j

jX
j

j
j v

j
[( ) ]

( ) ( )/

/
( ) /

/

/
− = =

+







− −

∞

∫µ
σ

π

σ

π

2 2 1

2

2 2

1 2
1 2

0

2 2

1 2
Γ      for  even

in terms of the gamma function introduced in Example 3.7. Applying this relationship
will require knowledge of the gamma function for arguments that are half-integers.

All such terms can be obtained from the fact that Γ ( / ) /1 2 1 2= π  and then using a
general recursive property of the gamma function: Γ Γ( ) ( )a a a+ =1 . Thus,

  
Γ Γ Γ

j j j j j
j

+







=

−









−







=

− −



















1
2

1
2

1
2

1 3 1

2

1
22

 
( )( ) ( )

 
/

L
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or

  
Γ

j j j
j

+







=

− −









1

2

1 3 3 1

2 2
1 2( )( ) ( )( )

/
/L

π

and

  E X j jX
j j[( ) ] ( )( ) ( )( )− = − −µ σ1 3 3 1L    for j  even

Thus, j = 2  shows us that  the variance σ µX XE X2 2≡ −[( ) ] is equal to the

parameter σ 2 . Similarly, j = 4  gives E X X[( ) ]− =µ σ4 43 , which shows that

kurtosis = 3 for a Gaussian random variable. From knowledge of the mean and
variance we now know that we can write the probability density function of any

Gaussian random variable as

p u
u

X
X

X

X
( )

( )
exp

/
= −

−

























1

2

1
21 2

2

π σ

µ
σ

If we let the random variable Z  be the standardized form of X :

Z
X X

X
=

−µ
σ

then µZ = 0  and σZ =1. From Example 2.19 we know that this linear combination
is also Gaussian, so its probability density function can be written as

p w eZ
w( )

( ) /
/= −1

2 1 2
22

π

This is called the unit Gaussian random variable, and any Gaussian random variable
can be written in terms of such a unit Gaussian random variable as

X ZX X= +µ σ
********************************************************************************************

To illustrate the significance of covariance and correlation coefficient, we
will now investigate some results called Schwarz inequalities. Consider any two
random variables W and Z for which the joint probability distribution is known.
Now let b and c be two real numbers, and we will investigate the following mean-
squared value of a linear combination of the random variables

E bW c Z b E W bc E W Z c E Z[( ) ] ( ) ( ) ( )+ = + +2 2 2 2 22

 If E W( )2 0≠ , we can rewrite the equation as
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E bW c Z b E W c
E W Z

E W
c E Z

E W Z

E W
[( ) ] [ ( )]

( )

[ ( )]
( )

[ ( )]

( )

/
/

+ = +








 + −













2 2 1 2
2 1 2

2
2 2

2

2

Note that the first term in this expression can be made to be zero by an appropriate
choice of b and c but that E bW c Z[( ) ]+ ≥2 0 for all choices of b and c. Thus, we
also know that the last term in the equation must be nonnegative:

 E Z
E WZ

E W
( )

[ ( )]

( )

2
2

2
0− ≥           or           [ ( )] ( ) ( )E WZ E W E Z2 2 2≤

Furthermore, if we choose b c E WZ E W/ ( ) / ( )= − 2 , then E bW c Z[( ) ]+ =2 0  if and
only if [ ( )] ( ) ( )E WZ E W E Z2 2 2= .  For the situation with E W( )2 0≠ , this is a
proof of one form of the Schwarz inequality:

Schwarz Inequality I: For any two random variables W and Z

[ ( )] ( ) ( )E WZ E W E Z2 2 2≤ (3.14)

and equality holds if and only if there exist constants b and c, not both zero,
such that

E bW c Z[( ) ]+ =2 0 (3.15)

Note that Eq. 3.15 is simply a condition that all the probability of the joint distribution
of W and Z lies on the straight line described by ( )bW cZ+ = 0  so that there is a
simple linear functional relationship between W and Z. If E W( )2 0=  but E Z( )2 0≠ ,
then we prove the inequality by simply modifying this procedure to choose
c b E WZ E Z/ ( ) / ( )= − 2 . If both E W( )2 0=  and E Z( )2 0= , the result is trivial.

A more general form of the Schwarz inequality is found by letting W and Z
be standardized random variables. In particular, let

W
X

Z
YX

X

Y

Y
=

−
=

−µ
σ

µ
σ

,
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In terms of X and Y, the Schwarz inequality can be written as

Schwarz Inequality II: For any two random variables X and Y

ρXY
2 1≤ (3.16)

and equality holds if and only if there exist constants ã , b̃ , and c̃ , not all
zero, such that

E b X c Y a[( ˜ ˜ ˜) ]+ − =2 0 (3.17)

indicating a linear relationship between X and Y.

Note that the values of the coefficients in Eq. 3.17 can be related to those in Eq.
3.15 as ˜ /b b X= σ , ˜ /c c Y= σ , and ˜ ˜ / ˜ /a b cX X Y Y= +µ σ µ σ .

The correlation coefficient ρXY  (or perhaps ρXY
2 ) can be considered to give

the extent to which there is a linear relationship between the random variables X
and Y. The limits of the correlation coefficient are ρXY = ±1 (so that ρXY

2 1= ), and
at these limits there is a perfect linear functional relationship between X and Y of
the form ˜ ˜ ˜b X c Y a+ = . That is, in these limiting cases one can find a linear function
of X that is exactly equal to Y and/or a linear function of Y that is exactly equal to X.
The other extreme is when ρXY = 0, which requires that KXY = 0 . At this extreme,
X and Y are called uncorrelated random variables. One can say that there is no
linear relationship between uncorrelated random variables. For other values of ρXY
(i.e., 0 12< <ρXY ) one may say that there is a partial linear relationship between X
and Y, in the sense that some linear function of X is an imperfect approximation of
Y and some linear function of Y is an imperfect approximation of X. Linear regression
presents a slightly different way of looking at this matter. In linear regression of Y
on X, one compares Y with a linear function ( )a b X+ , with a and b chosen to
minimize E a b X Y[( ) ]+ − 2 . When this is done, it is found that the minimum value
of E a b X Y[( ) ]+ − 2  is σ ρY XY

2 21( )− , indicating that the mean-squared error in this
best linear fit is directly proportional to ( )1 2− ρXY . Again we see that ρXY

2  gives
the extent to which there is a linear relationship between X and Y.

The preceding paragraph notes that ρXY =1 and ρXY = −1 both give a perfect
linear relationship between X and Y, but it says nothing about the significance of
the sign of ρXY . Reviewing the proof of the Schwarz inequality, it is easily seen
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that the slope of the linear approximate relationship between Y and X or Z and W
has the same sign as E WZ( ) , which is the same sign as ρXY . Thus, ρXY > 0
indicates a positive slope for the linear approximation, whereas ρXY < 0 indicates
a negative slope. In particular, the slope of the linear regression of Y on X is
ρ σ σXY Y X/ .

It should be kept in mind that having random variables X and Y uncorrelated
does not generally mean that they are independent. Rather, ρXY = 0 (or KXY = 0)
implies only that there is not a linear relationship between X and Y. However, if X
and Y are independent, they must also be uncorrelated.  This is easily shown as
follows

E X Y u v p u v du dvXY( ) ( , )=
−∞

∞

−∞

∞

∫∫
so that

E X Y u p u du v p v dv E X E YX Y( ) ( ) ( ) ( ) ( )= =
−∞

∞

−∞

∞

∫∫

if X and Y are independent.  Thus, the covariance of X and Y is

K E X Y E X E YXY = − =( ) ( ) ( ) 0

if X and Y are independent. Independence of X and Y is generally a much stronger
condition than is their being uncorrelated. Independence implies no relationship of
any kind (linear or nonlinear) between X and Y.

********************************************************************************************

Example 3.9: Let the probability density of X  be uniform on [ , ]− −2 1  and [ , ]1 2 , as
shown in Example 3.2, and let Y  be a simple square of X : Y X= 2. Investigate

the correlation and dependence between X  and Y .

Clearly X  and Y  are not independent. In fact, the joint probability density of X
and Y  is degenerate with p u vXY ( , ) ≠ 0 only on the curve v u= 2 . Nonetheless,
E X( ) = 0  and E XY E X( ) ( )= =3 0 , so E X Y E X E Y( ) ( ) ( )= , proving that X  and

Y  are uncorrelated even though functionally dependent. They are uncorrelated

because there is no linear relationship between them that is even approximately
correct. Linear regression of Y  on X  for this problem can be shown to give a line
of zero slope, again affirming that Y  cannot be approximated (to any degree of

accuracy at all) by a linear function of X .
********************************************************************************************
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The engineering reader may find it useful to relate the concept of moments
of random variables to a more familiar topic of moments of areas or of rigid bodies.
In particular, the expression for finding the mean of a random variable is exactly
the same as that for finding the centroid of the area under the curve describing the
probability density function. In general, to find the centroid, one takes this first
moment integral and then divides by the total area. For a probability density function,
though, the area is unity, so the first moment is exactly the centroidal location. This
will often prove to be an easy way to detect errors in the evaluation of a mean
value. If it is obvious that the computed value could not be the centroid of the area
under the probability density curve, then a mistake has been made. Also, note that
if the probability density is symmetric about some particular value, then that point
of symmetry must be the mean value, just as it is the centroid of the area.

Similarly, for the second moments, E X( )2  is the same as the moment of
inertia of the area under the probability density curve about the line at u = 0, and
the variance σ X

2  is the same as the centroidal moment of inertia. Extending these
mechanics analogies to joint distributions shows that the point in two-dimensional
space u X= µ  and v Y= µ  is at the centroid of the volume under the joint probability
density function p u vXY ( , ) , and the cross-product E X Y( , )  and covariance KXY
are the same as products of inertia of the volume under the probability density
function.

We previously noted that it is convenient to use vector notation when we are
dealing with many random variables. Consistent with this, we can use a matrix to
organize all the information related to various cross-products and covariances of n
random variables. In particular, the expression

  

E X X E

X

X

X

X X XT

n

n( )
r r

M
L=





















[ ]























1

2
1 2

gives a square symmetric matrix in which the ( , )j k  component is the cross-product
of X j  and Xk . Similarly, if we let   

r
µX  denote   E X( )

r
, then

  
K XX X X

TE X X= − −( )( )( )
r r r r

µ µ (3.18)
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defines a square symmetric covariance matrix in which the ( , )j k  component  is the
covariance of X j  and Xk . Note that the diagonal elements of K XX  are simply the
variance values of the components. One can also show that the matrices   E X XT( )

r r

and K XX  both have the property of being nonnegative definite. This property says
that none of the eigenvalues of either matrix is negative. More directly relevant to
our purposes is the fact that K XX , for example, is nonnegative definite if the scalar

  
r r
v vT

XXK  is nonnegative for every vector   
r
v . It is easy to prove that K XX  has this

property because   
r r
v vT

XXK  is exactly the variance of a new scalar random variable
  Y v XT=

r r
 and variance is always nonnegative. Similarly, the nonnegative definite

property of   E X XT( )
r r

 follows from   
r r r r
v E X X v E YT T( ) ( )= ≥2 0. It may be noted

that for the special case of n = 2, the random variable Y is exactly equivalent to the
linear combination used in proving the Schwarz inequalities of Eqs. 3.14–3.17.

The reason for the double subscript on the  covariance matrix in Eq. 3.18 is
that we will sometimes also want to consider a matrix of covariances of different
vectors defined by

  
K XY X Y

TE X Y= − −( )( )( )
r r r r

µ µ (3.19)

Note that K XY  generally need not be symmetric, or even square.

********************************************************************************************

Example 3.10: Let   
r
X  be a general Gaussian random vector, for which

  

p u u uX n
Tr r r r r r

( )
( ) | |

exp ( ) ( )
/ /

= − − −








−1

2

1

22 1 2
1

π
µ µ

K
K

in which   
r
µ  is a vector of constants; K  is a square, symmetric, positive definite

matrix of constants; and K−1 and | |K  denote the inverse and determinant,
respectively, of K . Show that   

r
µ  and K  give the mean and covariance of   

r
X ; that

is,   
r r
µ µX =  and K KXX = .

A convenient way to do this is to let D  be a matrix with columns that are the unit

length, orthogonal eigenvectors of K, meaning that K D D= ΛΛ , in which ΛΛ  is a
diagonal matrix containing the eigenvalues of K . Then D D IT =  and D K DT = ΛΛ .
Manipulating these expressions also shows that D D− =1 T , D K DT − =1 ΛΛ−−11 , and

  | | | | / | | | |K D= = =ΛΛ ΛΛ22 Λ Λ11L nn . Now consider a new random vector   
r
Y  defined

as   
r r r
Y XT= −D ( )µ . Using Eq. 2.41 then gives
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p v v vY n
nn

T Tr r

L

r r
( )

( ) ( )
exp

/ /
= −









−1

2

1
22

11
1 2

1

π Λ Λ
D K D

Using the fact that D K DT − =1 ΛΛ−−11  is diagonal allows this to be expanded as

  

p v
v v e

Y
nn n

n
nn

v

jjj

n jj j
r r L

L
( )

exp[( , , ) / ]

( ) ( ) ( )/ /

/

/
=

− − −
=

− − −

=

−

∏
Λ Λ

Λ Λ Λ

Λ
11
1

1
2 1 2

2
11

1 2

2

1 2
1

2

2 2

1 2

π π

The fact that 
  
p vY

r r
( )  is a product of individual functions of v j  terms indicates that

the Yj  terms are independent with

p v
e

Y j

v

jj
j

jj j

( )
( )

/

/
=

− −Λ

Λ

1 2 2

1 22π

Noting that the ( , )j j  component of ΛΛ−1 is Λ Λjj jj
− =1 1/ , and comparing p vY jj

( )
with the standard form for a scalar Gaussian random variable, as in Example 2.7,
shows that

E Yj( ) = 0 ,     σY jj
j

2 = Λ

Thus, we can say that the mean vector and covariance matrix for   
r
Y  are   

r r
µY = 0

and   KYY
TE Y Y= ( )

r r
. The independence of the Yj  components, along with their

known variance values, gives KYY = ΛΛ . Next we note that the definition of    
r
Y

and the fact that D D− =1 T  imply that   
r r r
X Y= +µ D , so

  
r r
µ µX = ,     

  
K D K D D D KXX

T
YY

T TE X X≡ − −( ) = = =( ) ( )
r r r r

µ µ ΛΛ

Thus, the desired result is obtained without evaluating any expectation integrals
involving the jointly Gaussian probability density function.
********************************************************************************************

Example 3.11: Let   
r
X  be a Gaussian random vector with

  

p u u uX n
XX

X
T

XX X
r r r r r r

( )
( ) | |

exp ( ) ( )
/ /

= − − −








−1

2

1

22 1 2
1

π
µ µ

K
K

and   g X( )
r

 be a nonlinear function of the n components of   
r
X . Show that

  

E X g X E
g X

X

g X

XX XX
n

T

[( ) ( )]
( )

, ,
( )r r r

r

L

r

− =




























µ
∂
∂

∂
∂

K
1

for any g( )⋅  function such that 
  
g u p uX( ) ( )

r rr → 0  as the length of the   
r
u  vector tends

to infinity.

We begin by considering the expected value of one component of the derivative

vector:
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E
g X

X

g u

u
p u du du

g u
u

p u du du

j j
X n

j
X n

∂
∂

∂
∂

∂
∂

( ) ( )
( )

    ( ) ( )

r

L

r
r

L

L
r r

L

r

r











=

= −

−∞

∞

−∞

∞

−∞

∞

−∞

∞

∫ ∫

∫ ∫

1

1

in which the second form has been obtained by integration by parts, taking advantage
of the fact that 

  
g u p uX( ) ( )

r rr →0  at the limits of the integral. Expanding the exponent
in the probability density function as

  

( ) ( ) ( )[ ] ( )
r r r r
u u u uX

T
XX X j X

l

n

XX jl l Xj l
− − = − −−

=

−∑µ µ µ µK K1

1

1

now gives

  

∂
∂

µ
u

p u u p u
j

X k X XX jk
k

n

Xk
r rr r

( ) ( )[ ] ( )= − − −

=
∑ K 1

1

and substitution yields

  

E
g X

X
E X

j
k X XX jk

k

n

k

∂
∂

µ
( )

( )[ ]

r









= − −

=
∑ K 1

1

This, though, is exactly the jth row of the vector expression

  

E
g X

X

g X

X
E X g X

n

T

XX X
∂
∂

∂
∂

µ
( )

, ,
( )

[( ) ( )]

r

L

r
r r r

1

1



























= −−K

Multiplying this expression by K XX  provides the desired result.

The expression derived here will be used in Chapter  10 in the process of “equivalent”
linearization of nonlinear dynamics problems. It was apparently first used in this
context by Atalik and Utku (1976), but it was presented earlier by Kazakov (1965).

Falsone and Rundo Sotera (2003) have pointed out that, in addition to its use in
nonlinear dynamics, the expression can also be used to obtain recursive relationships
for the moments of Gaussian random variables. First, let us consider central moments

by letting

  
g X X XX n Xn

n( ) ( ) ( )
r

L= − −1 1
1µ µα α

The formula then gives

  

E X g X E
g X

Xj X l X X
l

n

l X
j j l

l

[( ) ( )]
( )

( )
− =

−













=
∑µ α

µ

r
r

K
1
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which allows computation of higher-order moment expressions from lower-order
moment expressions. In particular, the expression has ( )X j X j

−µ to the power

α j +1 on the left-hand side and each term on the right-hand side is either to its
original power or to a lower power. Repeated use of this relationship allows
computation of any order central moments from lower order moments, such as

mean and covariance. For the special case of n =1 we have

E X E XX X X[( ) ] [( ) ]− = −+ −µ ασ µα α1 2 1

For example,

E X E XX X X X[( ) ] [( ) ]− = − =µ σ µ σ4 2 2 43 3
and

E X E XX X X X[( ) ] [( ) ]− = − =µ σ µ σ6 2 4 65 15
These relationships agree exactly with those in Example 3.8.  Furthermore, given
the fact that the central moment of order unity is zero, the recursive relationship

also shows that all odd central moments are zero, as found in Example 3.8. This
recursive relationship can also be extended to noncentral moments by choosing
the nonlinear function as 

  
g X X Xn

n( )
r

L= 1
1α α . This gives

  

E X g X E g X Xj X l X X
l

n

lj j l
[( ) ( )] ( ) /− = ( )

=
∑µ α

r r
K

1
or

  

E X g X E g X E g X Xj X l X X
l

n

lj j l
[ ( )] [ ( )] ( ) /

r r r
= + ( )

=
∑µ α K

1

For the special case of n =1 we have

E X E X E XX X( ) ( ) ( )α α αµ ασ+ −= +1 2 1

For example,

E X E X E XX X X X( ) ( ) ( )2 1 2 0 2 2= + = +µ σ µ σ

E X E X E XX X X X X( ) ( ) ( )3 2 2 1 3 22 3= + = +µ σ µ µ σ

E X E X E XX X X X X X( ) ( ) ( )4 3 2 2 4 2 2 43 6 3= + = + +µ σ µ µ σ σ

and so forth. Clearly these recursive relationships can be very useful when higher-
order moments are needed for Gaussian random variables.
********************************************************************************************

Example 3.12: Find K XX  and a simplified form for 
  
p uX

r r
( )  for a Gaussian random

vector   
r
X  with only two components.
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The covariance matrix is written directly as

  

K XX
T X X X

X X X

E X X
K

K
≡ − −( ) =

















( ) ( )
r r r r

µ µ
σ

σ
1 1 2

1 2 2

2

2

or

K XX
X X X X X

X X X X X

=

















σ ρ σ σ

ρ σ σ σ
1 1 2 1 2

1 2 1 2 2

2

2

From this we find that | | ( )K XX X X X X= −σ σ ρ
1 2 1 2

2 2 21  and

K XX

X X

X X X X X

X X X X X

− =
−

−

−

















1
2

2

2
1

1

1

1
1 2

1 1 2 1 2

1 2 1 2 2
( )

/ /( )

/( ) /ρ

σ ρ σ σ

ρ σ σ σ

Substituting these expressions into the general form for 
  
p uX

r r
( )  for a Gaussian

random vector, then expanding the matrix multiplication, gives

  

p u
u

u u

X
X X X X X X

X

X

X X
X

X

X

X

r r
( )

( ) ( )
exp

( )

     

/
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−
−

−

−
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2 1

1

2 1

2
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1

1
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1

1
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1

2

1 2

π σ σ ρ ρ

µ

σ

ρ
µ

σ

µ

σ
++
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u X

X

2
2

2

2

µ

σ

********************************************************************************************
Example 3.13: Let   

r
X  be a Gaussian random vector, with uncorrelated components:

ρX Xj k
= 0  for all j  and k . Show that the components are also independent.

For the special case of n = 2, this is evident in Example 3.12. That is, for ρX X1 2
0= ,

the 
  
p uX

r r
( )  probability density becomes   

p u p u p uX X X
r r

( ) ( ) ( )=
1 21 2 , with p uX1 1( )

and p uX2 2( )  each having the standard scalar Gaussian form, as in Example 2.7.
The more general result is easily obtained by noting that K XX  and K XX

−1  are

diagonal for the uncorrelated components and that this results in

  
p u p u p uX X X nn

r r
L( ) ( ) ( )=

1 1 . As noted earlier, any random variables are
uncorrelated if they are independent, but it is a very special property of the Gaussian

distribution that jointly Gaussian random variables are uncorrelated if and only if
they are independent.
********************************************************************************************
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3.4 Conditional Expectation
For any given event A we will define the conditional expected value of any random
variable X given A, written E X A( | ) , to be exactly the expectation defined in Eq.
3.1, but using the conditional probability density function p u AX ( | )  in place of
p uX ( ) . Thus,

E X A u p u A duX( | ) ( | )=
−∞

∞

∫ (3.20)

Similarly

E g X A g u p u A duX[ ( ) | ] ( ) ( | )=
−∞

∞

∫ (3.21)

and

  
E g X A g u p u A du duX n[ ( ) | ] ( ) ( | )

r
L

r r
Lr=

−∞

∞

−∞

∞

∫∫ 1 (3.22)

The key idea is that a conditional probability density function truly is a probability
density function. It can be used in all the same ways as any other probability density
function, including as a weighting function for calculating expected values. The
conditional probability density function given an event A provides the revised
probabilities of all possible outcomes based on the known or hypothesized
occurrence of A. Similarly the expected value calculated using this conditional
probability density function provides the revised probability weighted average of
all possible outcomes based on the occurrence of A.

Recall the special case of independent random variables. We know that if X
and Y are independent, then the conditional distribution of Y given any information
about X is the same as the marginal distribution of Y—that is, it is the same as if no
information were given about X. Thus, if X and Y are independent, then the
conditional expectation of Y given any information about X will be the same as if
the information had not been given. It will be simply E Y( ) .

********************************************************************************************

Example 3.14: For the distribution of Examples 2.12, 2.21, and 2.23 with

p u v U u U u U v U u vXY ( , ) ( ) ( ) ( ) ( ) /= − − − −1 5 1 8

find E Y X( | )≤ 3 , E Y X( | )2 3≤ , and E Y X u( | )=  for all u  for which it is defined.

In Example 2.21 we found that p v X v U v U vY ( | ) [( ) / ] ( ) ( )≤ = − − −3 3 2 1 3 , so we

can now integrate to obtain
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E Y X v
v

dv( | )≤ =
−







 =∫3

3
2

5
31

3

and

E Y X v
v

dv( | )2 2
1

3
3

3
2

3≤ =
−







 =∫

We also know from Example 2.23 that the conditional distribution of Y  given X u=
is defined for 1 5≤ ≤u  and is given by

p v X u
u

U v U u vY ( | ) ( ) ( )= =
−









 − −

1
1

1

so we now obtain

  
E Y X u

v

u
dv

u
u

u
( | )= =

−









 =

+
≤ ≤∫

1

1

2
1 5

1
    for

Actually we could have used symmetry to write this last expected value without
performing integration. The p v X uY ( | )=  conditional probability density function is
uniform on the set [ , ]1 u , so the conditional mean must be at the center of this

range.
********************************************************************************************
Example 3.15: Find E X Y v( | )=  and E X Y v( | )2 =  for all v  values for which they

are defined for the random variables of Examples 2.13 and 2.24 with

p u v e e e U u U vXY
u v u v u v( , ) ( ) ( )= + +( )− − − − − −8 3 34 4 4 3 3 4

In Example 2.24 we found that

  

p u Y v
e e e

e e
U u vX

u v u v u v

v v
( | )

/
( )= =

+ +

+( )
≥

− − − − − −

− −

8 3 3

3 4
0

4 4 4 3 3 4

4 3
    for

so we now obtain

  

E X Y v u
e e e

e e
du

e

e
v

u v u v u v

v v

v

v
( | )

/ ( )
= =

+ +

+( )
=

+

+
≥

∞ − − − − − −

− −

−

−∫0

4 4 4 3 3 4

4 3

8 3 3

3 4

9 40

36 1 4
0  for

and

E X Y v u
e e e

e e
du

e

e

u v u v u v

v v

v

v
( | )

/ ( )

2 2
0

4 4 4 3 3 4

4 3

8 3 3

3 4

27 136

216 1 4
= =

+ +

+( )
=

+

+

∞ − − − − − −

− −

−

−∫

for v ≥ 0
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One can perform a simple check on these results by looking at the limiting case for
v  tending to infinity. In this situation we will have e ev v− −<<4 3 , so we can neglect

the e v−4  terms in the conditional probability density function, reducing it to 4 4e u− .
This is an exponential distribution for which the mean and mean-squared values
are 1 4/  and 1 8/ . It is easy to verify that our conditional expected values do tend to

these limits as v  tends to infinity so that the e v−  terms become negligible.
********************************************************************************************
Example 3.16: Let X  and Y  be jointly Gaussian. Find the conditional mean,

conditional variance, given X u= , and E Y X u( | )2 = .

From the definition of the conditional probability density function and the forms

given in Examples 2.17 and 3.12 we obtain

p v X u
u

u v v

Y
Y

X

X

X

X

Y

Y

Y

Y

( | )
( ) ( )

exp
( )/ /

= =
−

−
−

−
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1
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π σ ρ ρ

µ
σ

ρ
µ

σ
µ

σ
µ

σ
11

2

2
u X

X

−

















µ
σ

in which ρ ρ≡ XY . Defining new quantities as

˜ ( ) /σ σ ρY Y= −1 2 1 2
,     ˜ ( )µ µ ρ

σ
σ

µY Y
Y

X
Xu= + −

allows this to be rewritten as

p v X u
v

Y
Y

Y

Y
( | )

( ) ˜
exp

˜

˜/
= = −

−























1

2

1

21 2

2

π σ

µ
σ

Note that this expression shows that a jointly Gaussian distribution implies that the
components are conditionally Gaussian. Comparing this with the standard scalar
Gaussian form also shows that the conditional mean and variance are

E Y X u u Y X uY Y
Y

X
X Y Y( | ) ˜ ( ), ( | ) ˜ ( )= = = + − = = = −µ µ ρ

σ
σ

µ σ σ ρ   Var 2 2 21

We can now say that

E Y X u E Y X u Y X u( | ) [ ( | )] ( | )2 2 2= = = + =Var
or

E Y X u uY
Y

X
X Y( | ) ( ) ( )2

2
2 21= = + −









 + −µ ρ

σ
σ

µ σ ρ
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********************************************************************************************
Example 3.17: For the distribution of Examples 2.11, 2.14, and 2.22 with

p u v U u U u U v U vXY ( , ) ( ) ( ) ( ) ( ) /= + − + −1 2 1 1 6

find the conditional expected values E Y X u( | )=  and E X Y v( | )=  for all u  and v
for which they are defined; also find E X Y( | . )> 0 5 .

Because the random variables are independent, as shown in Example 2.28, we

know that E Y X u E Y( | ) ( )= =  and E X Y v E X( | ) ( )= =  for u  and v  values for
which they are defined. Similarly, E X Y E X( | . ) ( )> =0 5 . Using the marginal
probability density functions derived in Example 2.14 then gives E Y X u( | )= = 0
for − ≤ ≤1 2u , E X Y v( | ) .= = 0 5 for − ≤ ≤1 1v , and E X Y( | . ) .> =0 5 0 5 .

********************************************************************************************

3.5 Generalized Conditional Expectation
To this point, our discussion of conditional expectation has involved the expectation
given some specific event. These conditional expectations are always deterministic,
being derived from integrals of conditional probability density functions. Now we
want to define a conditional expectation that is, itself, a random variable. The
uncertainty about the conditional expectation will be introduced by introducing
the idea of uncertainty about the given event. In order to be more specific about
this idea, let us consider the expected value of a random variable X given a value of
a random variable Y: E Y X u( | )= . In general, this conditional expectation will be
different for each value of the deterministic variable u. Thus, the conditional
expectation can be considered to define a function of u. For the moment, let us
write this as

f u E Y X u( ) ( | )≡ =

Now that we have the definition of this function, we might also consider the same
function with a random variable for an argument. In particular, we will be interested
in taking the random variable X to be the argument of f ( )⋅ . Now we can investigate
the expected value of f X( ) , just as we might for any other function of a random
variable. We write

E f X f u p u duX[ ( )] ( ) ( )=
−∞

∞

∫
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but we also know from its definition that f u( )  is given by

f u v p v X u dvY( ) ( | )= =
−∞

∞

∫

Substituting f u( )  into the integral for E f X[ ( )] gives

E f X v p v X u p u dv duY X[ ( )] ( | ) ( )= =
−∞

∞

−∞

∞

∫∫

but the product of probability density functions in this integrand is exactly the joint

probability density function for X and Y: p u v p u p v X uXY X Y( , ) ( ) ( | )= = . Thus,
the integral for E f X[ ( )] becomes exactly the same as one for evaluating E g X Y[ ( , )]
with g X Y Y( , ) = , and

E f X E Y[ ( )] ( )=

The usual notation for the conditional expectation random variable defined
earlier as f X( )  is simply E Y X( | ) . That is, E Y X( | )  is the function of u defined by
E Y X u( | )=  when the deterministic quantity u is replaced by the random variable
X. The result that we have just proved can then be written as

E E Y X E Y[ ( | )] ( )= (3.23)

which can be stated in words as follows: The expected value of the conditional
expected value is the unconditional expected value. This statement may sound
rather confusing, but the meaning of Eq. 3.23 should be quite understandable. The
left-hand side of Eq. 3.23 can be considered to depend on the joint distribution of
X and Y. Evaluating E Y X( | )  corresponds to finding the probability weighted
average over all possible values of Y for a given value of X, then the second
expectation gives the probability weighted average over all possible values of X.
Equation 3.23 can also be generalized to a form

E g X E h Y X E g X h Y( ) ( ) | [ ( ) ( )][ ]( ) = (3.24)

for any functions g and h for which the expectations exist. The definition of
E h Y X[ ( ) | ]  in Eq. 3.24 is precisely f X( )  with the function f ( )⋅  defined by
f u E h Y X u( ) [ ( ) | ]= = . One can verify Eq. 3.24 by substituting
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E h Y X u h v p v X u dvY[ ( ) | ] ( ) ( | )= = =
−∞

∞

∫
into

E g X E h Y X g u E h Y X u p u duX( ) ( ) | ( ) [ ( ) | ] ( )[ ]( ) = =
−∞

∞

∫

In some problems it will be found to be quite convenient to use Eqs. 3.23 and
3.24 to evaluate the expectations given on the right-hand sides of the equations. In
particular, using Eq. 3.23 may be simpler than finding and using p vY ( )  to find
E Y( ) , and using 3.24 may be simpler than finding and using p u vXY ( , )  to find
E g X h Y[ ( ) ( )] . Most important, there are situations in which Eq. 3.23 can be used
when one is given insufficient information to describe p vY ( ) , and others in which
3.24 can be used when one is given insufficient information to describe p u vXY ( , ) .

********************************************************************************************

Example 3.18: Find E Y( )  for the probability distribution of Example 2.26 with

p u U u U uX ( ) . ( ) ( )= −0 1 10

and

p v X u U v U u v uY ( | ) ( ) ( ) /= = −

From the fact that the conditional distribution of Y  given X u=  is uniform on the
set [ , ]0 u , we can immediately note that E Y X u u( | ) /= = 2 . Thus, E Y X X( | ) /= 2
is the conditional expectation random variable obtained by substituting X  for u  in

E Y X u( | )= . Now using Eq. 3.23 gives E Y E E Y X E X( ) [ ( | )] ( ) /= = 2. Using the
fact that the distribution of X  is uniform on the set [ , ]0 10  gives E X( ) = 5 , so we
have E Y( ) .= 2 5 without ever having evaluated p vY ( )  or explicitly worked with
p u vXY ( , ) .

One can, of course, do this problem by first evaluating p vY ( ) , but that is less
convenient. Using the joint probability density function we can write

p v p u v du
u

du U v U vY XY v
( ) ( , )

.
( ) ( )= =









 −

−∞

∞

∫ ∫ 0 1
10

10

giving

p v v U v U vY ( ) . log( / ) ( ) ( )= −0 1 10 10

The reader can verify that this probability density function does give E Y( ) .= 2 5,
but it seems clear that the approach using Eq. 3.23 is the simpler procedure for

evaluating the expectation.
********************************************************************************************
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Example 3.19: Let the random variable X  have an exponential distribution with

p u e U uX
u( ) ( )= −2 2

and let the conditional mean and mean-squared values of Y  be given as

E Y X u u( | )= = 3      and     E Y X u u u( | )2 210 2= = +

Find E Y( ) , E Y( )2 , and E X Y( )2 2 .

This is a situation in which there clearly is not enough information given to allow us
to write out p vY ( )  or p u vXY ( , ) . It is not unusual to have practical problems in
which one is given only partial information of this sort, particularly when the

information about the Y  random variable has been obtained strictly from statistical
analysis of measured data. We can use Eqs. 3.23 and 3.24, though. We can say
that E Y X X( | ) = 3  so that Eq. 3.23 gives E Y E X( ) ( )= 3 . Now using the distribution

of X  we find that E X( ) .= 0 5, so E Y( ) .=1 5. Similarly, E Y X X X( | )2 210 2= + , so

E Y E X E X( ) ( ) ( )2 210 2= + . From p uX ( )  we find that E X( ) .2 0 5= , and finally

E Y( )2 6= . This result for E Y( )2  can be considered either as an application of

Eq. 3.24 with g X( ) =1  and h Y Y( ) = 2  or as an application of Eq. 3.23 with the
second random variable being taken as Y 2  rather than the Y  that was written
previously.
For the final expectation we need to use Eq. 3.24 with g X X( ) = 2  and h Y Y( ) = 2 .

Substituting gives

E X Y E E X E Y X E X E X( ) ( ) ( | ) ( ) ( )2 2 2 2 4 310 2= [ ] = +

Integrals using p uX ( )  now give E X( ) .4 1 5=  and E X( ) .3 0 75= , so

E X Y( ) .2 2 16 5= .

********************************************************************************************

3.6 Characteristic Function of a Random Variable
The characteristic function provides an alternative form for giving a complete
description of a probability distribution. Recall that we have previously noted that
either the cumulative distribution function or the probability density function gives
such a complete description. We will now show that the function called the
characteristic function is also adequate because it gives all the information that is
included within the probability density function. The characteristic function for a
random variable X will be denoted by MX ( )θ  and is defined as

M E e e p u duX
i X i u

X( ) ( )θ θ θ≡ ( ) =
−∞

∞

∫ (3.25)



Expected Values of Random Variables 85

Thus, MX ( )θ  is the expected value of a complex function of X, and it can be
evaluated from an integral with a complex integrand. One can, of course, convert
this to the evaluation of two real integrals by using e u i ui uθ θ θ= +cos( ) sin( ) .
Those familiar with Fourier analysis will note that Eq. 3.25 gives the characteristic
function MX ( )θ  as a form of the Fourier transform of the probability density
function p uX ( ) .1 Noting that this is a Fourier transform allows us to use known
results to write the corresponding inverse Fourier transform formula, giving

p u e M dX
i u

X( ) ( )= −
−∞

∞

∫1
2π

θ θθ (3.26)

Actually, this inverse formula is an equality only at points where p uX ( )  is
continuous, but this is sufficient for our purposes. Changing the value of p uX ( )
only at points of discontinuity would not change the value of an integral containing
p uX ( )  in the integrand. Thus, knowledge of p uX ( )  everywhere except at a

countable number of points of discontinuity is sufficient to give the cumulative
distribution function, which is a complete description of the probability distribution.
This proves our earlier assertion that knowing MX ( )θ  gives all the information
necessary for a complete description of the probability distribution.

There are several reasons why one might choose to use the characteristic
function of a random variable. Many times, the motivation for using MX ( )θ  will
be that it simplifies some analytical development or proof. There is one property of
characteristic functions, though, that sometimes proves to be very useful for simple
calculations. This is the so-called moment generating property, and it is obtained
by differentiating Eq. 3.25 with respect to θ . In particular, if we take the jth derivative
we obtain

d

d
M i E X e

j

j X
j j i X

θ
θ θ( ) = ( )

and letting θ = 0  in this expression gives

E X i
d

d
Mj j

j

j X( ) ( )=












−

=θ
θ

θ 0

(3.27)

1Appendix B gives a brief introduction to Fourier analysis.
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Thus, if the characteristic function for a random variable is known, then the moments
of the random variable can be found by differentiating that characteristic function,
then evaluating the derivatives at θ = 0 . If many moments are needed, it may be
easier to find them this way instead of  by performing an integral for each moment
according to Eq. 3.2. Of course, if the probability distribution of X is given as
p uX ( ) , then the integration of Eq. 3.25 must be performed before one can begin to

evaluate moments according to Eq. 3.27. This is only one integration, though, rather
than one for each moment being calculated.

Some readers may be acquainted with the real function E e r X( )− , which is a
Laplace transform of p uX ( )  and is called the moment generating function. The
moment equations from this function are simpler than those from Eq. 3.27 inasmuch
as all terms are real, because E e r X( )−  is real for all real values of r. The disadvantage
of E e r X( )−  is that it does not exist for some probability density functions or for all
values of r for other probability density functions. The condition for the existence
of a Fourier transform, though, is simply that the original function be absolute
value integrable. This means that the characteristic function MX ( )θ  exists for all
values of θ  if

| ( ) |p u duX−∞

∞

∫ <∞

but this condition is met for any random variable. In fact, the integral shown is
exactly unity. Thus, one never needs to be concerned about the existence of the
characteristic function.

********************************************************************************************

Example 3.20: Find the characteristic function for the random variable with the
general exponential distribution with

p u be U uX
b u( ) ( )= −

and verify that the mean and mean-squared values obtained by taking derivatives
of MX ( )θ  agree with those obtained in Example 3.7 by integration of the probability
density function.

In Example 3.7 we used a change of variables of v bu=  to obtain

E X b ue du
b

v e dv
b

b u v( ) = = =−
∞

−
∞

∫ ∫0 0
1 1
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and

E X b u e du
b

v e dv
b

b u v( )2 2
0 2

2
20

1 2
= = =−

∞
−

∞

∫ ∫
Similarly, using v b i u= +( )θ  gives the characteristic function as

M b e e du
b

b i
e dvX

i u b u v
C

( )θ
θ

θ= =
−

−
∞

−∫ ∫0 1

The contour C1 in the final integral is the straight line shown in the sketch. The fact
that the contour is made up of complex v  values causes the evaluation of the

integral to be nontrivial. It can be found from the study of complex functions, though,
that for this integrand the integral over C1 is identical to the integral from zero to
infinity along the real axis.2 Thus, one obtains

M
b

b iX ( )θ
θ

=
−

Note that MX ( )0 1= , as is always the case. The

first two derivatives are

′ =
−

′′ =
−

M
i b

b i
M

i b

b i
X X( )

( )
,     ( )

( )
θ

θ
θ

θ2

2

3
2

giving ′ =M i bX ( ) /0  and ′′ =M i bX ( ) /0 2 2 2 .
Using Eq. 3.27 then gives E X b( ) /=1  and

E X b( ) /2 22= , confirming our results from integration.

********************************************************************************************
Example 3.21: Find the characteristic function and calculate the mean and mean-
squared values by taking derivatives of MX ( )θ  for the probability distribution of

Examples 2.1, 2.4, and 2.9 with

p u u u u u u uX ( ) ( ) ( ) ( ) ( ) ( ) ( ) /= − + − + − + − + − + −[ ]δ δ δ δ δ δ1 2 3 4 5 6 6

Using this probability density function, we obtain

M
e

u u u u u u duX

i u
( ) ( ) ( ) ( ) ( ) ( ) ( )θ δ δ δ δ δ δ

θ
= − + − + − + − + − + −[ ]−∞

∞

∫
6

1 2 3 4 5 6

which is easily integrated by the property of the Dirac delta function to give

b

θ

Real(v)

Imag(v)

C1

2The reader is cautioned that considerable care should be used in making changes
of variables or changing the contours of integration in problems involving complex
functions.  The complex analysis theorems governing these matters are not covered
in this book.
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M e e e e e eX
i i i i i i( )θ θ θ θ θ θ θ= + + + + +( )1

6
2 3 4 5 6

From this one obtains

′ = + + + + +( ) =M i i i i i i
i

X ( )0
1
6

2 3 4 5 6
7
2

and

′′ = + + + + +( ) =M i i i i i i
i

X ( ) ( ) ( ) ( ) ( ) ( ) ( )0
1
6

2 3 4 5 6
91

6
2 2 2 2 2 2

2

Thus, Eq. 3.27 gives E X( ) /= 7 2  and E X( ) /2 91 6= .

********************************************************************************************
Example 3.22: Find the characteristic function for a Gaussian random variable
with

p u
u

X
X

X

X
( )

( )
exp

/
= −

−























1

2

1
21 2

2

π σ

µ
σ

One of the simplest ways to do this is first to note that Y X X X= −( ) /µ σ  is a
Gaussian random variable with mean zero and unit variance. The characteristic

function for Y  is then

M E e i v v dvY
i Y( ) ( )

( )
exp( / )

/
θ

π
θθ≡ = −

−∞

∞

∫1

2
2

1 2
2

using the change of variables w v i= − θ  allows this to be rewritten as

M E e e
e

dwY
i Y

w

C
( ) ( )

( )

/
/

/
θ

π
θ θ≡ = −

−

∫
2

2

1

2
2

1 22

in which the contour C1 is from −∞− iθ  to +∞− iθ  along a line parallel to the real
axis in the space of complex w  values. From the theory of complex variables one

can show that the integral is the same as if it were along the real axis, though,
which requires that the integral is unity so that M eY ( )) /θ θ= − 2 2 .
Note the remarkable similarity between MY ( )θ  and p vY ( ) . Each is an exponential

of the square of the argument. Only for this “standardized” Gaussian probability
density function does the Fourier transform of the function have the same form as
the original function. Now we can use X YX X= +µ σ  to obtain

M E e e E e e M iX
i X i i Y i

Y X X
XX X X( ) ( ) ( ) ( ) expθ σ θ θµ

σ θθ θ µ θσ θ µ≡ = = = −












2 2

2
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Note that the characteristic function MX ( )θ  for any Gaussian random variable X
is an exponential of a quadratic form in the variable θ . In fact, this can be used as

a definition of a Gaussian random variable, in lieu of saying that the probability
density function p uX ( )  is a constant multiplying an exponential of a quadratic
form in u .

********************************************************************************************

One can easily generalize the characteristic function formulas to joint
distributions of random variables. Using vector notation, one can write

  
M E e e p u du duX

i X i u
X n

T T
r

r r r r
r

r
L

r
L( ) ( )θ θ θ=









=

−∞

∞

−∞

∞

∫∫ 1 (3.28)

in which the superscript T denotes the transpose of the vector so that   
r r
θ T X =

  ( )θ θ1 1X Xn n+ +L . The inverse formula is

  

p u e M d dX n
i u

X n
T

r
r r

rr
L

r
L( )

( )
( )= −

−∞

∞

−∞

∞

∫∫1

2
1

π
θ θ θθ (3.29)

and moments are found from formulas such as

  

E X X i Mj k j k
j k

j k X1 2
1 2 0

( ) =














− +
+

=

( ) ( )
∂

∂θ ∂θ
θ

θ

r

r r

r

or

  

E X X i Mj
n
j j j

j j

j
n
j X

n n
n

n1
1 0

1 1
1

1
L

L

r
L

L
r

r r
( ) =















− + +
+ +

=

( ) ( )
∂

∂θ ∂θ
θ

θ
(3.30)

A particularly convenient property of characteristic functions relates to the
finding of marginal distributions from joint distributions. It is easily shown that a
marginal characteristic function is found from a joint characteristic function simply
by setting one or more of the θ  arguments equal to zero. For example, if
M E e e eXYZ i X i Y i Z( , , ) ( )θ θ θ θ θ θ1 2 3 1 2 3≡ + +  is known, then MXY ( , )θ θ1 2 ≡
E e ei X i Y( )θ θ1 2+ = MXYZ ( , , )θ θ1 2 0 , MX ( )θ1 ≡ E ei X( )θ1 = MXYZ ( , , )θ1 0 0 , and so
forth.
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********************************************************************************************
Example 3.23: Find the characteristic function for a Gaussian random vector with

  

p u u uX n
XX

X
T

XX X
r r r r r r

( )
( ) || ||

exp ( ) ( )
/ /

=
( )

− − −








−1

2

1
22 1 2

1

π
µ µ

K
K

Recall the D  defined in Example 3.10, for which D D IT =  and D K DT = ΛΛ , in
which ΛΛ  is a diagonal matrix. Now let   

r r r
Y XT

X= −D ( )µ . From Example 3.10 we
know that the components of   

r
Y  are independent and Gaussian, with σY jj

j

2 = Λ .

The independence property allows us to write

  

M E e E i Y E e MY
i Y

j j
j

n
i Y

j

n

Y j
j

nT
j j

j
r

r rr
( ) ( ) exp [ ] ( )θ θ θθ θ

≡ =





























= =

= = =
∑ ∏ ∏

1 1 1

and using the results of Example 3.22 gives

  

MY Y j
j

n

jj j
j

n
T

j

r
r r r

( ) exp[ ] exp[ ] exp( )θ σ θ θ θ θ= − = − = −
= =
∏ ∏2 2

1

2

1

Λ ΛΛ

As shown in Example 3.10, ΛΛ == D K DT
XX , so this can be rewritten as

  
MY

T T
XX

r
r r r

( ) exp( )θ θ θ= − D K D

Using   
r r r
X YX= +µ D  now gives

  
M E e e E e e MX

i X i i Y i
Y

TT T
X

T T
Xr

r r r r r r r
r

r r
( ) ( ) ( ) ( )θ θθ θ µ θ θ µ≡ = =D D

or

  
M iX

T
X

Tr
r r r r r

( ) exp( )θ θ µ θ θ= − D DΛΛ ΤΤ

From the results in Example 3.10, D D KΛΛ ==T
XX , so we now have

  
M iX

T
X

T
XX

r
r r r r r

( ) exp( )θ θ µ θ θ= − K

Consistent with the results in Example 3.22, this shows that the characteristic
function for any Gaussian random vector is an exponential of a quadratic form of

the arguments. It may also be noted that this form of the Gaussian characteristic
function does not involve the inverse of K XX , so it can be written even in the
degenerate case with a singular covariance matrix.

********************************************************************************************

3.7 Power Series for Characteristic Function
Recall that Eq. 3.27 gives a simple relationship between the moments of a random
variable and the derivatives of its characteristic function when evaluated at the
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origin of θ  space. Thus, if all the moments of X exist, one can use them in a Taylor
series expansion for MX ( )θ  about the origin (i.e., a Maclaurin expansion):

M
j

d M

d

i

j
E XX

j j
X
j

j

j
j

j

( )
!

( ) ( )
!

( )θ
θ θ

θ

θ

θ

=










 =

=

∞

= =

∞

∑ ∑
0 0 0

(3.31)

This equation represents a very important property of many probability distributions.
Knowledge of all the moments of a random variable is usually sufficient information
to provide a complete description of its probability distribution. In particular, from
knowledge of all the E X j( )  terms, one can write MX ( )θ  according to Eq. 3.31,
then Eq. 3.26 allows determination of the probability density function. We are not
suggesting that this is a practical method for finding p uX ( )  in an applied problem.
Rather, it is an illustration of how much information is needed for a complete
description of most probability distributions. It should also be noted, though, that
this procedure does not always work. The log-normal distribution is probably the
most commonly used distribution for which knowledge of all the moments does
not uniquely define the probability distribution (Kendall and Stuart, 1977).

Sometimes it is convenient to work with the natural logarithm of MX ( )θ
instead of with MX ( )θ  itself. This function log[ ( )]MX θ  is called the log-
characteristic function. One can also expand the log-characteristic function as a
Taylor series like the one in Eq. 3.31, but the coefficients are different, of course.
Specifically, we will write

log[ ( )]
( )

!
( )M

i

j
XX

j

j
j

θ
θ

κ=
=

∞

∑
0

(3.32)

in which

κ
θ

θ
θ

j
j

j

j XX i
d

d
M( ) log[ ( )]≡













−

=0

(3.33)

The term κ j X( )  is called the jth cumulant of X. Note that κ0 0( )X = , so the first
term of the summation in Eq. 3.32 makes no contribution. We introduce the cumulant
terms because it is sometimes convenient to use them, rather than moments, to
describe a probability distribution.
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For joint distributions, one can use joint cumulants of the form

  

κ
∂

∂θ ∂θ
θ

θ

J

j

n n

j

J
J

j
n
j XX X X X i M

n

n
( , , , ) log[ ( )]1 1

1 01

1
L

1 24 34
L L

1 24 34 L

r
r

r r
≡















−

=

(3.34)

in which the order of the cumulant is   J j jn= + +1 L . This gives the series expansion

  

log[ ( )]
( ) ( )

! !
( , , , , , , )M

i i

j j
X X X XX

j

j
n

j

nj
J

j

n n

j

n

n n

r
r

L
L

L
L

1 24 34
L L

1 24 34
θ

θ θ
κ=

=

∞

=

∞

∑ ∑
1

1

1
0

1

10
1 1 (3.35)

just as the joint characteristic function can be expanded in terms of the joint moments
as

  

M
i i

j j
E X XX

j

j
n

j

nj

j
n
jn

n

nr
r

L
L

L
L( )

( ) ( )

! !
( )θ

θ θ
=

=

∞

=

∞

∑ ∑
1

1
1

0

1

10
1 (3.36)

Any particular cumulant of order J can be written in terms of the moments
up the Jth order. The procedure for doing this involves writing derivatives of the
log-characteristic function in terms of the characteristic function and its derivatives,
then using Eqs. 3.38 and 3.30. Alternatively, one can use Eqs. 3.33 and 3.27 for the
special case of a single random variable. Even though the procedure is
straightforward, the general relationship is quite complicated. The first few
cumulants are given by

κ µ1( ) ( )X E X X= = (3.37)

κ µ µ2 1 2 1 2 1 2 1 2
( , ) ( )X X E X X KX X X X= − = (3.38)

κ µ µ

µ µ µ µ

µ µ µ

3 1 2 3 1 2 3 1 3 1 3

1 2

1 2 3

1 2

3 1 2 3

1 2 3

2

( , , ) ( ) ( ) ( )

( )

[( ) ( ) ( )]

X X X E X X X E X X E X X

E X X

E X X X

X X

X X X X

X X X

= − − −

+

= − − −
(3.39)
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κ

µ µ

µ µ

4 1 2 3 4 1 2 3 4 1 2 3 4 1 3 2 4

1 4 2 3 2 3 4 1 3 4

1 2 4

1 2

3 4

( , , , ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

X X X X E X X X X E X X E X X E X X E X X

E X X E X X E X X X E X X X

E X X X E

X X

X X

= − − −

− − −

− − (( ) ( )

( ) ( ) ( )

( ) ( )

X X X E X X

E X X E X X E X X

E X X E X X

X X

X X X X X X

X X X X X X X X

1 2 3 3 4

2 4 2 3 1 4

1 3 1 2

2

2 2 2

2 2 6

1 2

1 3 1 4 2 3

2 4 3 4 1 2 3 4

+ +

+ + +

+ −

µ µ

µ µ µ µ µ µ

µ µ µ µ µ µ µ µ

or

κ µ µ µ µ4 1 2 3 4 1 2 3 41 2 3 4

1 2 3 4 1 3 2 4 1 4 2 3

( , , , ) [( ) ( ) ( ) ( )]X X X X E X X X X

K K K K K K

X X X X

X X X X X X X X X X X X

= − − − − −

− − (3.40)

For the special case of a single random variable, the final three equations simplify
to

κ µ σ2
2 2( ) [( ) ]X E X X X= − = (3.41)

κ µ σ3
3 3( ) [( ) ] ( )X E X skewnessX X= − = × (3.42)

and

κ µ σ σ4
4 4 43 3( ) [( ) ] ( )X E X kurtosisX X X= − − = × − (3.43)

One can also use the log-characteristic function to prove a property of joint
cumulants that is sometimes of considerable importance in applications. In particular,
we will prove that

  
κ κn n j j j n n jX X a Y a X X Y+ +∑ ∑( ) = ( )1 1 1 1, , , , , ,L L (3.44)

which can be considered a property of linearity and includes the distributive property.
To show this, we use Eq. 3.34 to write

  

κ
∂

∂θ ∂θ ∂φ
θ φ

θ
φ

n n j j n

n

n

i X i a YX X a Y
i

E e
T

j j
+ +

+
+

=
=

∑( ) = ∑



















1 1 1

1

1 0
0

1
, , , log ( )L

L

r r

r r

Performing the differentiation with respect to φ  gives
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κ
∂

∂θ ∂θ
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θ
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n n j j n

n

n

j j
i X i a Y

i X i a Y

X X a Y
i

E a Y e

E e

T
j j

T
j j

+

+

+

=
=

∑
∑

( ) =

∑









∑































1 1
1

0
0

1
, , ,L

L

r r

r r

r r

and setting φ = 0 , then rearranging terms allows this to be written as

  

κ
θ

θ
θ

n n j j n j
j

i X

i X
X X a Y

i
a

E Y e

E e

T

T+

=

∑ ∑( ) =

















1 1

0

1
, , ,

[ ]

[ ]
L

r r

r r

r r
(3.45)

This expression, though, is precisely what one would obtain by performing exactly
the same operations on each of the cumulant terms appearing on the right-hand
side of Eq. 3.44. Thus, Eq. 3.44 is proved to be true. One can also let some of the
X j  arguments in Eq. 3.44 be identical, in which case the expression applies to any
sort of joint cumulant term rather than being restricted to being first order in each
of the X j  arguments.

********************************************************************************************
Example 3.24: Find the log-characteristic function and all cumulants for a Gaussian

random vector   
r
X  with known mean vector   

r
µX  and covariance matrix K XX .

From Example 3.23 we know that 
  
M iX

T
X

T
XX

r
r r r r r

( ) exp( )θ θ µ θ θ= − K . Thus,

  
log[ ( )]M iX

T
X

T
XX

r
r r r r r
θ θ µ θ θ= − K

From Eq. 3.38 we then have

  

κ µ

κ

κ

1

2

1

1 1

0 21

( ) , ,

( , ) , , ; , ,

( , , )

X j n

X X K j n k n

X X J

j X

j k X X

J j j

j

j k

J

= =

= = =

= ≥

     for 

for  

     for 

L

L L

L

Of course, the first- and second-order cumulants agree with Eqs. 3.38 and 3.39. All
the higher-order cumulants are zero, because the log-characteristic function is a
quadratic in the θ  terms and a cumulant of order J involves a Jth order derivative.
In fact, a Gaussian random vector or scalar variable may be defined to be one that
has all zero cumulants beyond the second order.
********************************************************************************************
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3.8 Importance of Moment Analysis
In many random variable problems (and in much of the analysis of stochastic
processes), one performs detailed analysis of only the first and second moments of
the various quantities, with occasional consideration of skewness and/or kurtosis.
One reason for this is surely the fact that analysis of mean, variance, or mean-
squared value is generally much easier than analysis of probability distributions.
Furthermore, in many problems, one has some idea of the shape of the probability
density functions, so knowledge of moment information may allow evaluation of
the parameters in that shape, thereby giving an estimate of the complete probability
distribution. If the shape has only two parameters to be chosen, in particular, then
knowledge of mean and variance will generally suffice for this procedure. In addition
to these pragmatic reasons, though, the results in Eqs. 3.31, 3.32, 3.35, and 3.36
give a theoretical justification for focusing attention on the lower-order moments.
Specifically, mean, variance, skewness, kurtosis, and so forth, in that order, are the
first items in an infinite sequence of information that would give a complete
description of the problem. In most situations it is impossible to achieve the complete
description, but it is certainly logical for us to focus our attention on the first items
in the sequence.

Exercises

*****************************************************************
Mean and Variance of One Random Variable
*****************************************************************

3.1 Consider a random variable X with probability density function

p u C u U u U uX ( ) ( ) ( )= + −4 1 2

(a) Find the value of the constant C.
(b) Find the mean value µX .
(c) Find the mean-squared value E X( )2 .
(d) Find the variance σ X

2 .

*****************************************************************
3.2 Consider the random variable X of Exercise 2.4 with

p u u u U u U uX ( ) . ( ) ( ) ( )= − −0 75 2 2

(a) Find the mean value µX .
(b) Find the mean-squared value E X( )2 .
(c) Find the variance σ X

2 .

*****************************************************************
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3.3 Consider a random variable X with probability density function

p u a b uX ( ) /( )= + 6

in which a and b are positive constants. For what positive integer j values does
E X j( ) <∞ exist?
*****************************************************************
Moments of Jointly Distributed Random Variables
*****************************************************************
3.4 Let X and Y be the two random variables described in Exercise 2.8, for which
we can write

p u v CU v u U u v U u U u

CU v u U u v U u U u
XY ( , ) ( ) ( ) ( ) ( )

         ( ) ( ) ( ) ( )

= + + + − + − +

− + − − −

1 1 1

1 1 1

(a) Find E X( )  and E Y( ) .
(b) Find E X( )2  and E Y( )2 .
(c) Find the variances and covariance σ X

2 , σY
2 , and KXY .

(d) Are X and Y correlated?
*****************************************************************
3.5 Let X and Y be the two random variables described in Exercise 2.9 with

p u v C v e U u U vXY
u v v( , ) ( ) ( )= − −2 5

(a) Find E X( )  and E Y( ) .
(b) Find E X( )2  and E Y( )2 .
(c) Find the variances and covariance σ X

2 , σY
2 , and KXY .

(d) Are X and Y correlated?
*****************************************************************
3.6 Let X and Y be the two random variables described in Exercise 2.10 with

p u v C e U u U v uXY
u v( , ) ( ) ( )= −− −4

(a) Find E X( )  and E Y( ) .
(b) Find E X( )2  and E Y( )2 .
(c) Find the variances and covariance σ X

2 , σY
2 , and KXY .

(d) Are X and Y correlated?
*****************************************************************

3.7 Let two random variables (X,Y) be uniformly distributed on the set  X Y2 2 1+ ≤ :

p u v U u vXY ( , ) ( ) /= − −1 2 2 π
(a) Are X and Y uncorrelated?
(b) Are X and Y independent?
*****************************************************************
3.8 Let the probability density function of a random variable X be given by

p u CU u U uX ( ) ( ) ( )= −5
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and let the conditional probability density function of another random variable Y
be given by

p v X u B u U v U vY ( | ) ( ) ( ) ( )= = −2       for 0 5≤ ≤u

(a) Find the value of the constant C and the function B u( ) .
(b) Find the joint probability density function p u vXY ( , )  and indicate on a sketch

of the ( , )u v  plane the region on which p u vXY ( , ) ≠ 0.
(c) Find E X( )2 .
(d) Find E XY( ) .
(e) Are X and Y independent?
*****************************************************************
3.9 Consider a random variable X with probability density function

p u ue U uX
u( ) ( )= −

Let another random variable Y have the conditional probability density function

p v X u u U v U u vY ( | ) ( ) ( )= = −−1      for u ≥ 0

(a) Find the joint probability density function p u vXY ( , )  and indicate on a sketch
of the ( , )u v  plane the region on which p u vXY ( , ) ≠ 0.

(b) Find E X( )2 .
(c) Find E Y( ) .
(d) Find E X Y( )2 .
*****************************************************************
3.10 Let the random variables X and Y denote the displacement and the velocity of
response at a certain time t of a dynamic system. For a certain nonlinear oscillator
the joint probability density function is p u vXY ( , ) =  C u vexp( | | )− −α γ3 2 in which
C, α , and γ  are positive constants.
(a) Find the probability density function for X, including evaluation of C in terms

of α  and/or γ .
(b) Find E X( )2  in terms of α  and/or γ .
(Methods developed in Chapter 10 will show that this problem corresponds to the
response to Gaussian white noise of an oscillator with linear damping and a quadratic
hardening spring.)
*****************************************************************
3.11 Consider a discrete element model of a beam in which the random sequence

  { , , , }S S S1 2 3 L  represents normalized average slopes in successive segments of the
beam. Each segment is of unit length. The normalized deflections of the beam are
then given by

X S1 1= ,     X S S2 1 2= + ,     X S S S3 1 2 3= + + ,     and so forth
For j ≤ 3, k ≤ 3 it has been found that E S j( ) = 0 , E S j( )2 1= , and E S Sj k( ) .= 0 8
for j k≠ .
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(a) Find E X( )1
2 , E X( )2

2 , and their correlation coefficient ρX X1 2
.

(b) Let W S S1 2 1= −  and W S S2 3 2= −   (which are proportional to bending
moments in the beam). Find E W( )1

2 , E W( )2
2 , and their correlation coefficient

ρW W1 2
.

(c) Let V W W S S S2 2 1 3 2 12= − = − +  (proportional to shear in the beam). Find
E V( )2

2 .
*****************************************************************
3.12 Let X j  denote the east-west displacement at the top of the jth story of a four-
story building at some particular instant of time during an earthquake. Each
displacement is measured relative to the moving base of the building. Presume that
these story motions are mean-zero and that their covariance matrix is

  

K = =





















E X XT( )
r r

100 180 223 231

180 400 540 594

223 540 900 1080

231 594 1080 1600

2 mm

Find the standard deviation σY j  ( )j =1 to 4  of each story shear deformation,
Y X Xj j j= − −1 , in which X0 0≡ .
*****************************************************************
3.13 Consider two random variables with the joint probability density function

p u u A
u u u u

X X1 2 1 2
1

2
1 2 2

2
2

3

1

0 5

2

3

1

0 5

2

0 25

2

3

2

0 25
( , ) exp

. . . .
= −

−







 +

−









−







−

−























(a) Find the mean and variance values for both X1 and X2 .

(b) Find the ρX X1 2
 correlation coefficient.

(c) Find the value of the constant A.

(d) Find P X( . )2 2 5> .
[Hint: See Examples 3.12 and 2.7.]
*****************************************************************
3.14 Consider two random variables with the joint probability density function

p u u A
u u u u

X X1 2 1 2
1

2
1 2 2

2
8

15

2

2

4

15

2

2

3

4

8

15

3

4
( , ) exp= −

−







 −

−









−







−

−























(a) Find the mean and variance values for both X1 and X2 .

(b) Find the ρX X1 2
 correlation coefficient.

(c) Find the value of the constant A.

(d) Find P X( )2 13> .
[Hint: See Examples 3.12 and 2.7.]
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*****************************************************************
3.15 Consider the two random variables of Exercise 3.13 with the joint probability
density function

p u u A
u u u u

X X1 2 1 2
1

2
1 2 2

2
2
3

1
0 5

2
3

1
0 5

2
0 25

2
3

2
0 25

( , ) exp
. . . .

= −
−







 +

−









−







−

−























Let Y X X1 1 2= +  and Y X X2 1 23= + .

(a) Find the mean and variance values for both Y1  and Y2 .

(b) Find the ρY Y1 2
 correlation coefficient.

(c) Find the joint probability density function p v vY Y1 2 1 2( , ) .

[Hint: See Example 3.12.]
*****************************************************************
3.16 Consider the two random variables of Exercise 3.14 with the joint probability
density function

p u u A
u u u u

X X1 2 1 2
1

2
1 2 2

2
8

15

2

2

4

15

2

2

3

4

8

15

3

4
( , ) exp= −

−







 −

−









−







−

−























Let Y X X1 1 22= −  and Y X X2 1 23= + .

(a) Find the mean and variance values for both Y1  and Y2 .

(b) Find the ρY Y1 2
 correlation coefficient.

(c) Find the joint probability density function p v vY Y1 2 1 2( , ) .

[Hint: See Example 3.12.]
*****************************************************************
Conditional Expectations
*****************************************************************
3.17 Consider two random variables X and Y with the joint
probability density function

p u v e U v U u vXY
u( , ) ( ) ( )= −−

(a) Find both marginal probability density functions: p uX ( )
and p vY ( ) .

(b) Find the conditional probability density functions:
p u Y vX ( | )=  and p v X uY ( | )= .

(c) Find E Y X u( | )= .
*****************************************************************
3.18 Consider a random variable X with probability density function

p u U u U uX ( ) ( ) ( )= −1
Let another random variable Y have the conditional probability density function

u

v

v =
 u
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p v X u U v u U u v uY ( | ) ( ) ( )= = − + − ≤ ≤1 0 1   for 
(a) Find the joint probability density function p u vXY ( , )  and indicate on a sketch

of the ( , )u v  plane the region on which p u vXY ( , ) ≠ 0.
(b) Find p vY ( )  and sketch this probability density function versus v.
(c) Find the conditional expected value E Y X u( | )=  for 0 1≤ ≤u .
*****************************************************************
3.19 Consider a random variable X with probability density function

p u e U uX
u( ) ( )= −2 2

Let another random variable Y have the conditional probability density function

p v X u e U v U e v uY
u u( | ) ( ) ( )= = − ≥−    for 0

(a) Find the joint probability density function p u vXY ( , )  and indicate on a sketch
of the ( , )u v  plane the region on which p u vXY ( , ) ≠ 0.

(b) Find p vY ( )  and sketch this probability density function versus v.
(c) Find the conditional expected value E Y X u( | )=  for u ≥ 0.
(d) Find E Y( ) .
*****************************************************************
3.20 Consider a random variable X with probability density function

p u u u U u U uX ( ) . ( ) ( ) ( )= − −0 75 2 2
Let another random variable Y have the conditional probability density function

p v X u u U v U u v uY ( | ) ( ) ( )= = − ≤ ≤−1 0 2   for 
(a) Find the joint probability density function p u vXY ( , )  and indicate on a sketch

of the ( , )u v  plane the region on which p u vXY ( , ) ≠ 0.
(b) Find p vY ( )  and sketch this probability density function versus v.
(c) Find the conditional expected value E Y X u( | )=  for 0 2≤ ≤u .
(d) Find E X Y( )2 .
*****************************************************************
3.21  Consider a random variable X with probability density function

p u u U u U uX ( ) ( ) ( )]= −3 12

Let another random variable Y have the conditional probability density function

p v X u u U v U u v uY ( | ) ( ) ( )= = − ≤ ≤−1 0 1   for 
(a) Find the joint probability density function p u vXY ( , )  and indicate on a sketch

of the ( , )u v  plane the region on which p u vXY ( , ) ≠ 0.
(b) Find p vY ( )  and sketch this probability density function versus v.
(c) Find the conditional expected value E Y X u( | )=  for 0 1≤ ≤u .
(d) Find E Y( ) .
*****************************************************************
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3.22 Consider a random variable X with probability density function

p u u U u U uX ( ) ( ) ( )= −4 13

Let another random variable Y have the conditional probability density function

p v X u u U v U u v uY ( | ) ( ) ( )= = − ≤ ≤−2 2 0 1   for 
(a) Find the joint probability density function p u vXY ( , )  and indicate on a sketch

of the ( , )u v  plane the region on which p u vXY ( , ) ≠ 0.
(b) Find p vY ( )  and sketch this probability density function versus v.
(c) Find the conditional expected value E Y X u( | )=  for 0 1≤ ≤u .
(d) Find E Y( ) .
*****************************************************************
3.23 Consider a random variable X with probability density function

p u
u

U uX ( ) cos | |=








 −( )π π

4 2
1

Let another random variable Y have the conditional probability density function

p v X u
u

U v U
u

v uY ( | ) cos ( ) cos | |= =




























−









 ≤

−
π π
2 2

1
1

   for 

(a) Find the joint probability density function p u vXY ( , )  and indicate on a sketch
of the ( , )u v  plane the region on which p u vXY ( , ) ≠ 0.

(b) Find the conditional expected value E Y X u( | )=  for | |u ≤1.
(c) Find E Y( ) .
(d) Find p vY ( )  and sketch this probability density function versus v.
*****************************************************************
3.24 Consider the two random variables of Exercise 3.13 with the joint probability
density function

p u u A
u u u u

X X1 2 1 2
1

2
1 2 2

2
2

3

1

0 5

2

3

1

0 5

2

0 25

2

3

2

0 25
( , ) exp

. . . .
= −

−







 +

−









−







−

−























Find the conditional mean and variance: E X X( | )2 1 3=  and Var( | )X X2 1 3= .
[Hint: See Example 3.16.]
*****************************************************************
3.25 Consider the two random variables of Exercise 3.14 with the joint probability
density function

p u u A
u u u u

X X1 2 1 2
1

2
1 2 2

2
8

15
2

2
4

15
2

2
3

4
8

15
3

4
( , ) exp= −

−







 −

−









−







−

−























Find the conditional mean and variance: E X X( | )2 1 5=  and Var( | )X X2 1 5= .
[Hint: See Example 3.16.]
*****************************************************************
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General Conditional Expectation
*****************************************************************
3.26 Let X be uniform on [–1,1]: p uX ( ) .= 0 5 for | |u ≤1. Let E Y X u u( | )= = ,
E Y X u u( | )2 22= = , and Z X Y= .
Find the mean and variance of Z.
[Hint: Begin with E Z X u( | )=  and E Z X u( | )2 = , then find the unconditional
expectations.]
*****************************************************************
3.27 Let X be uniform on [–1,1]: p uX ( ) .= 0 5  for | |u ≤1. Let E Y X u u( | )= = 2 2 ,
E Y X u u u( | )2 4 24 2= = + , and Z X Y= .
Find the mean and variance of Z.
[Hint: Begin with E Z X u( | )=  and E Z X u( | )2 = , then find the unconditional
expectations.]
*****************************************************************
Characteristic Function
*****************************************************************
3.28 Let X have a distribution that is uniform on [ / , / ]c h c h− +2 2 :

p u h U u c h U c h uX ( ) ( / ) ( / )= − + + −−1 2 2
(a) Determine the mean and variance of X from integration of p uX ( ) .
(b) Find the characteristic function of X.
(c) Check the mean and variance of X by using derivatives of the characteristic

function.
*****************************************************************
3.29 Let the random variable X  have a discrete distribution with

p u a u a u a uX ( ) ( ) ( ) / ( ) /= − + − + −δ δ δ1 2 4 3 9

That is, P X k a k( ) /= = 2for k = 1, 2, and 3.
(a) Find the value of a.
(b) Find the mean and variance of X from integration of p uX ( ) .
(c) Find the characteristic function of X.
(d) Check the mean and variance of X by using derivatives of the characteristic

function.
*****************************************************************
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Chapter 4
Analysis of Stochastic
Processes

4.1 Concept of a Stochastic Process
As noted in Chapter 1, a stochastic process can be viewed as a family of random
variables. It is common practice to use braces to denote a set or collection of items,
so we write { ( )}X t  for a stochastic process that gives a random variable X t( )  for
any particular value of t. The parameter t may be called the index parameter for the
process, and the set of possible t values is then the index set. The basic idea is that
for every possible t value there is a random variable X t( ) . In some situations we
will be precise and include the index set within the notation for the process, such as
{ ( ) : }X t t ≥ 0  or { ( ) : }X t t0 20≤ ≤ . It should be kept in mind that such a specification
of the index set within the notation is nothing more than a statement of the range of
t for which X t( )  is defined. For example, writing a process as { ( ) : }X t t ≥ 0  means
that X t( )  is not defined for t < 0 . We will often simplify our notation by omitting
the specification of the possible values of t, unless that is apt to cause confusion. In
this book we will always treat the index set of possible t values as being continuous
rather than discrete, which is precisely described as a continuously parametered or
continuously indexed stochastic process. If we consider a set of X t( )  random
variables with t chosen from a discrete set such as 

  
{ , , , , }t t t j1 2 L L , then we will

use the nomenclature and notation of a vector random variable rather than of a
stochastic process.

Another useful way to conceive of a stochastic process is in terms of its
possible time histories—its variation with t for a particular observation of the
process. For example, any earthquake ground acceleration record might be thought
of as one of the many time histories that could have occurred for an earthquake
with the same intensity at that site. In this example, as in many others, the set of
possible time histories must be viewed as an infinite collection, but the concept is
still useful. This idea of the set of all possible time histories may be viewed as a
direct generalization of the concept of a random variable. The generalization can
be illustrated by the idea of statistical sampling. A statistical sample from a random
variable Y is a set of independent observations of the value of Y. Each observation
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is simply a number from the set of possible values of Y. After a sufficient number
of such observations, one will get an idea of the likelihood of various outcomes
and can estimate the probability distribution of Y and/or expected values of functions
of Y. For the stochastic process { ( )}X t , each observation will give an observed
time history rather than simply a number. Again, a sufficient number of observations
will allow us to estimate probabilities and expected values related to the process. A
collection of time histories for a stochastic process is typically called an ensemble.

Figure 4.1 illustrates the idea of a statistical sample, or ensemble, from a
stochastic process, using the notation X tj( )( )  for the jth sample time history
observed for the process. Of course, the ensemble shown in Fig. 4.1 is for illustration
only and is too small (i.e., it has too few time histories) to allow one to estimate
probabilities or expected values with any confidence. It shows six time histories
observed in separate, independent observations of the particular { ( )}X t  process. A
“section” across this ensemble at any particular time gives a statistical sample for
the random variable corresponding to that t value. Thus, we have observed a sample
of six values for X( )10 , a sample of six values for X( )20 , and so forth. The plot
illustrates the fact that there is a sort of “orthogonality” between the idea that a
stochastic process is characterized by an ensemble of time histories and the idea
that it is a family of random variables. A time history is a single observation including

Figure 4.1 Ensemble of time histories of {X( t)}.
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many values of t. Many observations at a single value of t give a statistical sample
of the random variable X t( ) .

In most practical problems, it is not feasible to describe a stochastic process
in terms of the probability of occurrence of particular time histories (although
Examples 4.1 to 4.3 will illustrate a few situations in which this is feasible).
However, we can always characterize the process by using information about the
joint probability distribution of the random variables that make it up. Nonetheless,
it is often useful to think of the process in terms of an ensemble (usually with
infinitely many members) of all its possible time histories and to consider the
characteristics of these time histories. The term ensemble average is often used for
statistical averages across an ensemble of observed time histories. Thus, one might
calculate the average value of X( )10  from the sample shown in Fig. 4.1 as

  [ ( ) ( )] /( ) ( )X X1 610 10 6+ +L , and this can be classified either as a statistical average
of the observed values for the random variable X( )10  or as an ensemble average of
the process { ( )}X t  at time t =10. It should also be noted that the term ensemble
average is also sometimes used to refer to mathematical expectation. This is
generally legitimate if one considers an average over an infinite ensemble. Basically,
we expect a statistical average to converge to the underlying expected value if we
can make our sample size infinitely large, and an ensemble average is simply a
statistical average for a stochastic process. One must always remember, though,
that actual numerical ensemble averages are always statistical averages across a
finite sample; they are not the same as expected values.

4.2 Probability Distribution
In order to have a complete probabilistic description of a stochastic process { ( )}X t ,
one must know the probability distribution for every set of random variables
belonging to that process. This can be simply stated as knowing the probability
distribution for every set   { ( ), ( ), , ( )}X t X t X tn1 2 L , for all possible n values, and all
possible choices of   { , , , }t t tn1 2 L  for each n value. Because the probability
distribution of a random variable or a set of random variables can always be given
by a probability density function (or a cumulative distribution function), the
necessary information can be written as

p u t uX t( )( )
1 1 1 1for all choices of  and 

p u u t t u uX t X t( ) ( )( , )
1 2 1 2 1 2 1 2for all choices of , , , and 

            M

  
p u u t t u uX t X t n n nn( ) ( )( , , ) , , , , ,

1 1 1 1L L L Lfor all choices of 

            M
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Note, though, that this list is redundant. If one knows the joint distribution of the
random variables   { ( ), , ( )}X t X tk1 L  corresponding to n k= , then the corresponding
information for any n value that is less than k is simply a marginal distribution that
can be easily derived from this joint distribution, as in Section 2.5. Thus, the function

  p u uX t X t kk( ) ( )( , , )1 1L L  contains all the information for p uX t( )( )1 1 ,
p u uX t X t( ), ( )( , )1 2 1 2 ,  L,   p u uX t X t kk( ) ( )( , , )1 1 1 1L L− − . All of these statements could

equally well be written in terms of cumulative distribution functions like

  
F u uX t X t nn( ) ( )( , , )

1 1L L , but there is no point in repeating them because the forms
would be the same.

The probability density p uX t( )( )  can be viewed as a function of the two
variables t and u, and it is sometimes written as p u tX ( , )  or p u tX ( ; ) , with similar
notation for the higher-order density functions. There is nothing wrong with this
notation, but we choose to keep any t variable explicitly stated as an index of X to
remind us that the sole function of t is to specify a particular random variable
X t( ) . Stated another way, we do not want a notation such as p u tX ( , )  to lead the
reader to consider this probability density function for the stochastic process { ( )}X t
to be somehow different from p uX ( )  for a random variable X. The probability
densities for a stochastic process must be identical in concept to those for random
variables, because they are simply the descriptions of the random variables that
make up the process. In some cases we will find it convenient to use alternative
notations that are simpler, such as X X tk k≡ ( ) ,   

r
LX X t X tn

T≡ [ ( ), , ( )]1 , and

  
p uX

r r
( ) ≡   

  
p u uX t X t nn( ) ( )( , , )

1 1L L , but we will always keep index parameters [such
as t in p uX t( )( ) ] specifying particular random variables separate from the dummy
variables denoting possible values of the random variables [e.g., u in p uX t( )( ) ].

We noted earlier that our discussion of stochastic processes will be limited
to the situation in which the index set of possible t values in { ( )}X t  is continuous.
This is very different from saying that the set of possible values for X t( )  is
continuous. In fact, we will usually be considering situations in which both the set
of t values and the set of u values in p uX t( )( )  is continuous, but our definitions
certainly allow the possibility of having { ( )}X t  defined on a continuous index set
of t values, but with each random variable X t( )  belonging to a discrete set. Example
4.1 is a very simple case of this situation; because in this example X t( )  has only
three possible values for any particular t value. Recall that a random variable X
may not be a continuous random variable even if it has a continuous set of possible
values. If a random variable X has a continuous set of possible values but a
discontinuous cumulative distribution on those values, then X has a mixed rather
than continuous distribution (like the random variable Y in Example 2.3). Similarly,
saying that the index set of possible t values is continuous does not imply that the



Analysis of Stochastic Processes                          107

stochastic process { ( )}X t  varies continuously on that set, either in terms of time
history continuity or some sort of probabilistic continuity. This issue of continuity
of { ( )}X t  over the continuous index set will be considered in Section 4.6.

In many problems we will need to consider more than one stochastic process.
This means that we will need information related to the joint distribution of random
variables from two or more stochastic processes. For example, to have a complete
probabilistic description of the two stochastic processes { ( )}X t  and { ( )}Y s , we
will need to know the joint probability distribution for every set of random variables

  { ( ), , ( ), ( ), , ( )}X t X t Y s Y sn m1 1L L  for all possible n and m values, and all possible
choices of   { , , , , , }t t s sn m1 1L L  for each ( , )n m  combination. Of course, this joint
distribution could be described by a probability density function like

  
p u u v vX t X t Y s Y s n mn m( ) ( ) ( ) ( )( , , , , , )

1 1 1 1L L L L . The concept can be readily
extended to more than two stochastic processes.

In summary, the fundamental definition of one or more stochastic processes
is in terms of the underlying probability distribution, as given by probability density
functions or cumulative distribution functions. Of course, we can never explicitly
write out all of these functions because there are infinitely many of them for
processes with continuous index sets. Furthermore, we will often find that we need
to write out few or none of them in calculating or estimating the probabilities of
interest for failure calculations. In many cases we can gain the information that we
need for stochastic processes from considering their moments (as in Chapter 3),
and the following section considers this characterization.

4.3 Moment and Covariance Functions
One can characterize any random variable X by moments in the form of mean
value, mean-squared value, variance, and possibly higher moments or cumulants
giving information like skewness and kurtosis, as in Section 3.7. Similarly, if we
have more than one random variable, then we can use cross-products, covariance,
and other moments or expected values involving two or more random variables.
The material presented here for a stochastic process { ( )}X t  is a direct application
of the concepts in Section 3.3 to the set of random variables that compose the
process.

For the mean value, or expected value, of a process we will use the notation

µX X tt E X t u p u du( ) [ ( )] ( )( )≡ =
−∞

∞

∫ (4.1)
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That is, µX t( )  is a function defined on the index set of possible values of t in
{ ( )}X t , and at any particular t value, this mean value function is identical to the
mean of the random variable X t( ) . Similarly, we define a function called the
autocorrelation function of { ( )}X t  as a cross-product of two random variables
from the same process

φXX X t X st s E X t X s u v p u v du dv( , ) [ ( ) ( )] ( , )( ) ( )≡ =
−∞

∞

−∞

∞

∫∫ (4.2)

and this function is defined on a two-dimensional space with t and s each varying
over all values in the index set for{ ( )}X t . The double subscript notation on φXX t s( , )
is to distinguish autocorrelation from the corresponding concept of cross-correlation
that applies when the two random variables in the cross-product are drawn from
two different stochastic processes as

φXY X t Y st s E X t Y s u v p u v du dv( , ) [ ( ) ( )] ( , )( ) ( )≡ =
−∞

∞

−∞

∞

∫∫ (4.3)

The cross-correlation function is defined on the two-dimensional space with t being
any value from the index set for { ( )}X t  and s being any value from the index set
for { ( )}Y t . These two index sets may be identical or quite different.

The reader should note that the use of the term correlation in the expressions
autocorrelation and cross-correlation is not consistent with the use of the term for
random variables. For two random variables the correlation coefficient is a
normalized form of the covariance, whereas autocorrelation and cross-correlation
simply correspond to cross-products of two random variables. This inconsistency
is unfortunate but well established in the literature on random variables and
stochastic processes.

We will also use the covariances of random variables drawn from one or two
stochastic processes and refer to them as autocovariance

K t s E X t t X s sXX X X( , ) [ ( ) ( )][ ( ) ( )]≡ − −( )µ µ (4.4)

and cross-covariance

K t s E X t t Y s sXY X Y( , ) [ ( ) ( )][ ( ) ( )]≡ − −( )µ µ (4.5)
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Of course, the two-dimensional domain of definition of K t sXX ( , )  is identical to
that for φXX t s( , ) , and for K t sXY ( , )  it is the same as for φXY t s( , ) . We can rewrite
these second central moment expressions for the stochastic processes in terms of
mean and cross-product values and obtain

K t s t s t sXX XX X X( , ) ( , ) ( ) ( )= −φ µ µ (4.6)
and

K t s t s t sXY XY X Y( , ) ( , ) ( ) ( )= −φ µ µ (4.7)

Note that we can also define a mean-squared function for the { ( )}X t
stochastic process as a special case of the autocorrelation function, and an ordinary
variance function as a special case of the autocovariance function:

E X t t tXX[ ( )] ( , )2 =φ (4.8)
and

σ X XXt K t t2 ( ) ( , )= (4.9)

One can also extend the idea of the correlation coefficient for random variables
and write

ρ
σ σXX

XX

X X

XX

XX XX

t s
K t s

t s

K t s

K t t K s s
( , )

( , )

( ) ( )

( , )

[ ( , ) ( , )] /
= =

1 2
(4.10)

and

ρ
σ σXY

XY

X Y

XY

XX YY

t s
K t s

t s

K t s

K t t K s s
( , )

( , )

( ) ( )

( , )

[ ( , ) ( , )] /
= =

1 2
(4.11)

Sometimes it is convenient to modify the formulation of a problem in such a
way that one can analyze a mean-zero process, even though the physical process
requires a model with a mean value function that is not zero. This is simply done
by introducing a new stochastic process { ( )}Z t  defined by Z t X t tX( ) ( ) ( )= −µ .
This new process is mean-zero [i.e., µZ t( ) ≡ 0], and the autocovariance function
for the original { ( )}X t  process is given by K t s t sXX ZZ( , ) ( , )=φ .

***********************************************************************************************************************

Example 4.1: Consider a process { ( ) : }X t t ≥ 0  that represents the position of a
body that is minimally stable against overturning. In particular, { ( )}X t  has only

three possible time histories:

X t( )( )1 0=
X t t( )( ) sinh( )2 =α β

X t t( )( ) sinh( )3 = −α β
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in which α  and β  are constants,

and the three time histories
represent “not falling,” “falling to the

right,” and “falling to the left.” Let

the probabilities be

P X t X t[ ( ) ( )] .( )= =1 0 50

P X t X t[ ( ) ( )] .( )= =2 0 25

P X t X t[ ( ) ( )] .( )= =3 0 25

Find:

(a) The first-order probability distribution of any random variable X t( )  from { ( )}X t
(b) The joint probability distribution of any two random variables X t( )  and X s( )
(c) The mean value function for { ( )}X t
(d) The covariance function for { ( )}X t  and the variance function σ σX X tt2 2( ) ( )≡
(e) The correlation coefficient relating the random variables X t( )  and X s( )

(a) At any time there are only three possible values for X t( ) , and the probability
distribution for such a simple discrete random variable can be given as the

probability of each possible outcome. Thus, we have

P X t P X t t P X t t[ ( ) ] . ,   [ ( ) sinh( )] . ,   [ ( ) sinh( )] .= = = = = − =0 0 50 0 25 0 25α β α β
By using the Dirac delta function, as in Section 2.4 (see also Appendix A), this can

be described by a probability density function of

p u u u t u tX t( )( ) . ( ) . [ sinh( )] . [ sinh( )]= + − + +0 50 0 25 0 25δ δ α β δ α β

(b) Clearly there are three possible values for X t( )  and three possible values for
X s( ) , but in this case these result in only three possible values for the pair. In

particular, for any t  and s  not equal to zero there is one point with

X t X t X s X s( ) ( ), ( ) ( )( ) ( )= =1 1 , one with X t X t X s X s( ) ( ), ( ) ( )( ) ( )= =2 2 , and one
with X t X t X s X s( ) ( ), ( ) ( )( ) ( )= =3 3 . The joint probability distribution of the two

random variables is completely given by

P X t X s[ ( ) , ( ) ] .= = =0 0 0 50

P X t t X s s[ ( ) sinh( ), ( ) sinh( )] .= = =α β α β 0 25

P X t t X s s[ ( ) sinh( ), ( ) sinh( )] .= − = − =α β α β 0 25
or as a joint probability density function as

p u v u v u t v s

u t v s

X t X s( ), ( )( , ) . ( ) ( ) . [ sinh( )] [ sinh( )]

. [ sinh( )] [ sinh( )]

= + − − +

+ +

0 50 0 25

0 25

δ δ δ α β δ α β

δ α β δ α β
(c) The mean value of the random variable is the probability weighted average

over the possible values, so

µ α β α βX t t t( ) ( . ) ( ) ( . )[ sinh( )] ( . )[ sinh( )]= + + − =0 50 0 0 25 0 25 0

t

t = 4 t = 5

X(j)(t)
X(2)(t)

X(1)(t)

X(3)(t)
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(d) Because the mean is zero, the covariance function is the same as the

autocorrelation function. Thus,

φ α β α β

α β α β
XX t s E X t X s t s

t s

( , ) [ ( ) ( )] ( . )( )( ) ( . )[ sinh( )][ sinh( )]  

          ( . )[ sinh( )][ sinh( )]

≡ = + +

− −

0 50 0 0 0 25

0 25

gives

K t s t s t sXX XX( , ) ( , ) . sinh( ) sinh( )= =φ α β β0 50 2

Choosing s t=  gives the variance and mean-squared values as

σ α βX t E X t t2 2 2 20 50( ) [ ( )] . sinh ( )= =
(e) The correlation coefficient of the two random variables is of the form

ρ
σ σ

α β β

α β α β
XX

XX

X t X s
t s

K t s t s

t s
( , )

( , ) . sinh( ) sinh( )

. [ sinh ( ) sinh( )]( ) ( )
/

= = =
0 50

0 50
1

2

2 2 2 1 2

Thus, we see that X t( )  and X s( )  are perfectly correlated. There is a perfect
linear relationship between them that can be written as

X s
s

t
X t( )

sinh( )

sinh( )
( )=

β
β

It should be noted that such a situation with only a few possible time histories is
not typical of most stochastic problems of interest.

***********************************************************************************************************************
Example 4.2: Consider a stochastic process { ( )}X t  that may have infinitely many

possible time histories, but with these time histories depending on only one random

variable—a random initial condition:

X t A t( ) cos( )= ω
in which ω  is a deterministic circular frequency and A is a random variable for

which the probability distribution is known. Find expressions for the mean value

function, the autocorrelation function, and the covariance function for { ( )}X t .

Because only A  is random in X t( ) , we know that

µ ω µ ωX At E X t E A t t( ) [ ( )] ( ) cos( ) cos( )≡ = ≡

φ ω ωXX t s E X t X s E A t s( , ) [ ( ) ( )] ( ) cos( ) cos( )≡ = 2

and

K t s t s t s E A t s

t s

XX XX X X A

A

( , ) ( , ) ( ) ( ) [ ( ) ]cos( ) cos( )

 cos( ) cos( )

= − = −

=

φ µ µ µ ω ω

σ ω ω

2 2

2

The number of possible time histories in this example depends entirely on the

number of possible values for the random variable A. If , for example, A has only
five possible values, then X t( )  has only five possible time histories. At the other

extreme, if A is a continuous random variable, then there are infinitely many (in

fact uncountably many) possible time histories for X t( ) . Even in this case, though,
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we know the shape of each time history because they are all cosine functions with

a given frequency. Furthermore, any two time histories are either exactly in phase
or 180° out of phase, but there are many possible amplitudes.

***********************************************************************************************************************

Example 4.3: Consider a stochastic process { ( )}X t  that has time histories
depending on only two random variables:

X t A t( ) cos( )= +ω θ
in which ω  is a deterministic circular frequency and A  and θ  are random variables

for which the joint probability distribution is known. In particular, let A and θ  be
independent and θ  be uniformly distributed on the range [ , ]0 2π . Find expressions

for the mean value function, the autocorrelation function, and the covariance function

for { ( )}X t .

Because A and θ  are independent, it can be shown that A and cos( )ω θt +  are

also independent. The gist of this idea can be stated as follows: Independence of

A  and θ  tells us that knowledge of the value of A will give no information about
the possible values or probability of θ , and this then guarantees that knowledge of

the value of A  will give no information about the possible values or probability of

cos( )ω θt + ; this is the condition of independence. Using this independence, we

can write

µ µ ω θX At E t( ) [cos( )]≡ +
but we can use the given uniform distribution for θ  to obtain

E t p t d t d[cos( )] ( ) cos( ) cos( )ω θ η ω η η
π

ω η ηθ

π
+ = + = + =

−∞

∞

∫ ∫ 1

2
0

0

2

Thus, µX t( ) = 0 regardless of the distribution of A, provided only that µA  is finite.
We use exactly the same ideas to find the other quantities asked for:

K t s t s E A E t sXX XX( , ) ( , ) ( ) [cos( ) cos( )]= = + +φ ω θ ω θ2

Using the identity cos( ) cos( ) [cos( ) cos( )] /α β α β α β= + + − 2 allows us to obtain

E t s t s d t s

t s

[cos( ) cos( )] cos[ ( ) )] cos[ ( )]

cos[ ( )]

ω θ ω θ
π

ω η η ω

ω

π
+ + = + + + −













= −

∫1

2

1

2
2

1

2

0

2

  

so that

K t s t s
E A

t sXX XX( , ) ( , )
( )

cos[ ( )]= = −φ ω
2

2
Note that in this problem, as in Example 4.2, the shape of each time history is a
cosine function with a given frequency. The distinguishing factor is that now the

phase difference between any two time histories can be any angle, and all possible

values are equally likely. Thus, for any distribution of A, there are infinitely many
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possible time histories. In fact, even if A has only one value [i.e., p u u AA ( ) ( )= −δ 0 ]

there are still infinitely many possible time histories but they differ only in phase
angle.

***********************************************************************************************************************

Example 4.4: Let { ( )}X t  be the stochastic process of Example 4.3, and let { ( )}Y t
be a process that also has trigonometric time histories. The time histories of { ( )}Y t ,
though, are 45° out of phase with those of { ( )}X t  and they are offset by a fixed
amount of 5:

Y t A t( ) cos( / )= + + +5 4ω θ π

Note that the same two random variables A  and θ  define { ( )}X t  and { ( )}Y t .
Find the cross-correlation function and the cross-covariance function for the

stochastic processes.

Because the mean value function of { ( )}X t  is exactly zero, Eq. 4.7 tells us that
the cross-covariance function is identical to the cross-correlation function. We find
this function as

K t s t s E A t A sXY XY( , ) ( , ) cos cos= = +( )[ ] + + +




























φ ω θ ω θ

π
5

4

or

K t s E A E t E A E t tXY ( , ) ( ) cos ( ) cos cos= +( )[ ] + +( ) + +






















5

4
2ω θ ω θ ω θ

π

or

K t s E A E t sXY ( , ) ( ) cos cos= +( ) + +
























2

4
ω θ ω θ

π

Using the identity cos( ) cos( ) [cos( ) cos( )] /α β α β α β= + + − 2 now gives

K t s
E A

E t s t sXY ( , )
( )

cos ( ) cos ( )= + + +








+ − −

























2

2
2

4 4
ω θ

π
ω

π

which reduces to

K t s t s
E A

t s

E A
t s t s

XY XY( , ) ( , )
( )

cos ( )

      
( )

cos ( ) sin ( )
/

= = − −










= −[ ] + −[ ]







φ ω
π

ω ω

2

2

3 2

2 4

2

***********************************************************************************************************************



114 Random Vibrations

4.4 Stationarity of Stochastic Processes
The property of stationarity (or homogeneity) of a stochastic process { ( )}X t  always
refers to some aspect of the description of the process being unchanged by any
arbitrary shift along the t axis. There are many types of stationarity depending on
what characteristic of the process has this property of being invariant under a time
shift.

The simplest type of stationarity involves only invariance of the mean value
function for the process. We say that { ( )}X t  is mean-value stationary if

µ µX Xt r t r( ) ( )+ =      for any value of the shift parameter (4.12)

Clearly this can be true only if µX t( )  is the same for all t values, so we can say that
{ ( )}X t  is mean-value stationary if

µ µX Xt( ) = (4.13)

in which the absence of a t argument on the right-hand side conveys the information
that the mean value is independent of time. Although the notation on the right-
hand side of Eq. 4.13 is the same as for the mean value of a random variable, Eq.
4.13 does refer to the mean value function of a stochastic process. Of course, having
the mean value be independent of t does not imply that the X t( )  random variables
are all the same at different values of t or that the probability distributions of these
random variables are all the same—only that they all have the same mean value.

As a next step in specifying more rigorous stationarity, let us say that { ( )}X t
is second-moment stationary if the second moment function (i.e., the autocorrelation
function) is invariant under a time shift:

E X t r X s r E X t X s r[ ( ) ( )] [ ( ) ( )]+ + =      for any value of the shift parameter  
or

φ φXX XXt r s r t s r( , ) ( , )+ + =      for any value of the shift parameter  (4.14)

Because Eq. 4.14 is specified to be true for any value of r, it must be true, in
particular, for r s= − ; using this particular value gives φ φXX XXt s t s( , ) ( , )= − 0 . This
shows that the autocorrelation function for a second-moment stationary process is
a function of only one time argument—the ( )t s−  difference between the two time
arguments in φXX t s( , ) . We will use an alternative notation of R in place of φ  for
such a situation in which autocorrelation can be written as a function of a single
time argument. Thus, we define R t s t sXX XX( ) ( , )− ≡ −φ 0  so that
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φXX XXt s R t s t s( , ) ( )= −      for any values of  and (4.15)

or, using τ = −t s

R t t E X t X t tXX XX( ) ( , ) [ ( ) ( )]τ φ τ τ τ= + ≡ +      for any values of  and (4.16)

We similarly say that two stochastic processes { ( )}X t  and { ( )}Y t  are jointly
second-moment stationary if

φ φXY XYt r s r t s r( , ) ( , )+ + =      for any value of the shift parameter (4.17)

and we define R t s t sXY XY( ) ( , )− ≡ −φ 0  so that

φXY XYt s R t s t s( , ) ( )= −      for any values of  and (4.18)
or

R t t E X t Y t tXY XY( ) ( , ) [ ( ) ( )]τ φ τ τ τ= + ≡ +      for any values of  and (4.19)

A slight variation on second-moment stationarity is obtained by using the
autocovariance and cross-covariance functions in place of autocorrelation and cross-
correlation functions. Thus, we say that a stochastic process is covariant stationary
if

K t s G t s t sXX XX( , ) ( )= −      for any values of  and (4.20)

or, equivalently,

G K t t tXX XX( ) ( , )τ τ τ= +      for any values of  and (4.21)

in which Eq. 4.21 gives the definition of the new stationary autocovariance function
GXX ( )τ . Similarly, { ( )}X t  and { ( )}Y t  are jointly covariant stationary if

K t s G t s t sXY XY( , ) ( )= −      for any values of  and (4.22)

and

G K t t tXY XY( ) ( , )τ τ τ= +      for any values of  and (4.23)

Note that one can also say that G RXX ZZ( ) ( )τ τ=  if { ( )}Z t  is defined as the mean-
zero shifted version of { ( )}X t : Z t X t tX( ) ( ) ( )= −µ .
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Clearly one can extend this concept to definitions of third-moment stationarity,
fourth-moment stationarity, skewness stationarity, kurtosis stationarity, and so forth.
We will look explicitly only at one generic term in the sequence of moment stationary
definitions. We will say that { ( )}X t  is jth-moment stationary if

  
E X t r X t r X t r E X t X t X tj j[ ( ) ( ) ( )] [ ( ) ( ) ( )]1 2 1 2+ + + =L L (4.24)

for all values of r and all values of   { , , , }t t t j1 2 L . Using the notation τ k k jt t= −
for k =1 to ( )j −1  allows this to be rewritten as

  
E X t X t X t E X t X t X t X tj j j j j j[ ( ) ( ) ( )] [ ( ) ( ) ( ) ( )]1 2 1 2 1L L= + + + −τ τ τ (4.25)

with the expression on the right-hand side being independent of t j . Thus, the jth
moment function of a jth-moment stationary process is a function of only the ( )j −1
time arguments 

  
{ , , , }τ τ τ1 2 1L j−  giving increments between the original time

values of 
  
{ , , , }t t t j1 2 L . Stationarity always reduces the number of necessary time

arguments by one. Of course, we had already explicitly demonstrated this fact for
first and second moments, showing that µX t( )  depends on zero time arguments (is
independent of time) and φXX t s( , )  depends on the one time argument τ = −t s .

Although a given stochastic process may simultaneously have various types
of moment stationarity, this is not necessary. One of the most commonly considered
combinations of moment stationarity involves the first and second moments. If a
process { ( )}X t  does have both mean-value and second-moment stationarity, then
it is easily shown from Eq. 4.6 that it is also covariant stationary. Often such a
process is described in the alternative way of saying that it is mean and covariant
stationary, and Eq. 4.6 then shows that it is also second-moment stationary.

There are also forms of stationarity that are not defined in terms of moment
functions. Rather, they are defined in terms of probability distributions being
invariant under a time shift. The general relationship is that { ( )}X t  is jth-order
stationary if

  
p u u p u uX t r X t r j X t X t jj j( ) ( ) ( ) ( )( , , ) ( , , )

1 11 1+ + =L LL L (4.26)

for all values of 
  
{ , , , , , }t t u uj j1 1L L  and the shift parameter r. This includes, as

special cases, { ( )}X t  being first-order stationary if

p u p uX t r X t( ) ( )( ) ( )+ = (4.27)
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for all values of t and u and the shift parameter r, and second-order stationary if

p u u p u uX t r X t r X t X t( ) ( ) ( ) ( )( , ) ( , )
1 2 1 21 2 1 2+ + = (4.28)

for all values of { , , , }t t u u1 2 1 2  and the shift parameter r.

There are strong interrelationships among the various sorts of stationarity.
One of the simplest of these involves the stationarities defined in terms of the
probability distribution, as in Eqs. 4.26–4.28. Specifically, from consideration of
marginal distributions it is easy to show that if { ( )}X t  is jth-order stationary, then
it is also first-order stationary, second-order stationary, and up to ( )j −1 -order
stationary. Note that the same hierarchy does not apply to moment stationarity. It is
quite possible to define a process that is second-moment stationary but not mean-
value stationary, although there may be little practical usefulness for such a process.
A slight variation on this is to have a process that is covariant stationary, but not
mean-value or second-moment stationary; this process certainly does approximate
various physical phenomena for which the mean value changes with time, but the
variance is constant.

It is also important to note that jth-order stationarity always implies jth-
moment stationarity, because a jth moment function can be calculated by using a
jth-order probability distribution. Thus, for example, second-order stationarity
implies second-moment stationarity. However, second-order stationarity also implies
first-order stationarity, and this then implies first-moment (mean-value) stationarity.
In general, we can say that jth-order stationarity implies stationarity of all moments
up to and including the jth.

When comparing moment and order stationarity definitions, it is not always
possible to say which is stronger. For example, consider the question of whether
second-moment or first-order stationarity is stronger. Because first-order stationarity
states that p uX t( )( )  has time shift invariance, it implies that any moment that can
be calculated from that probability density function also has time shift invariance.
Thus, first-order stationarity implies that the jth moment for the random variable
X t( )  at one instant of time has time shift invariance for any value of j. This seems
to be a form of jth-moment stationarity that is certainly not implied by second-
moment stationarity. On the other hand, first-order stationarity says nothing about
the relationship of X t( )  to X s( )  for t s≠ , whereas second-moment stationarity
does. Thus, there is no answer as to which condition is stronger. In general, jth-
order stationarity implies time shift invariance of moments of any order, so long as
they only depend on the values of X t( )  at no more than j different times. Similarly,
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kth-moment stationarity implies time shift invariance only of kth moment functions,
which may involve values of X t( )  at up to k different time values. For k j> , one
cannot say whether jth-order or kth-moment stationarity is stronger, because each
implies certain behavior that the other does not.

The most restrictive type of stationarity is called strict stationarity. We say
that { ( )}X t  is strictly stationary if it is jth-order stationary for any value of j. This
implies that any order probability density function has time shift invariance and
any order moment function has time shift invariance. In the stochastic process
literature, one also frequently encounters the terms weakly stationary and/or wide-
sense stationary. It appears that both of these terms are usually used to mean a
process that is both mean-value and covariant stationary, but caution is advised
because there is some variation in usage, with meanings ranging up to second-
order stationary. When we refer to a stochastic process as being stationary and give
no qualification as to type of stationarity, we will generally mean strictly stationary.
In some situations, though, the reader may find that some weaker form of stationarity
is adequate for the calculations being performed. For example, if the analytical
development or problem solution involves only second-moment calculations, then
strict stationarity will be no more useful than second-moment stationarity. Thus,
one can also say that the word stationary without qualifier simply means that all
moments and/or probability distributions being used in the given problem are
invariant under a time shift.

***********************************************************************************************************************

Example 4.5: Identify applicable types of stationarity for the stochastic process
with X t( )( )1 0= , X t t( )( ) sinh( )2 =α β , X t t( )( ) sinh( )3 = −α β ,

and P X t X t[ ( ) ( )] .( )= =1 0 50 , P X t X t P X t X t[ ( ) ( )] [ ( ) ( )] . .( ) ( )= = = =2 3 0 25

In Example 4.1 we found the first-order probability density function to be
p u u u t u tX t( )( ) . ( ) . [ sinh( )] . [ sinh( )]= + − + +0 50 0 25 0 25δ δ α β δ α β

Clearly this function is not invariant under a time shift because

sinh( ) sinh( )β β βt r t+ ≠ . Thus, { ( )}X t  is not first-order stationary, and this
precludes the possibility of its having any j th-order stationarity. However, we did

find that the mean value function for this process is a constant [ µX t( ) = 0], so it is

time shift invariant. Thus, the process is mean-value stationary. The autocorrelation
function φXX t s( , ) =  ( . ) sinh( ) sinh( )0 50 2α β βt s  determined in Example 4.1 clearly

demonstrates that the process is not second-moment stationary, because its

dependence on t  and s is not of the form ( )t s− .
***********************************************************************************************************************
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Example 4.6: Identify applicable types of stationarity for the stochastic process

with X t A t( ) cos( )= ω  in which ω  is a constant and A  is a random variable.

The mean value function µ µ ωX At t( ) cos( )=  and autocorrelation function
φXX t s( , ) =  E A t s( ) cos( ) cos( )2 ω ω  of this process were found in Example 4.2.
These functions clearly show that this is neither mean-value or second-moment

stationary.

We can investigate first-order stationarity by deriving the probability density function
for the random variable X t( ) . For any fixed t, this is a special case of X c A= , in

which c is a deterministic constant. This form gives F u F u cX A( ) ( / )=  for c > 0
and F u F u cX A( ) ( / )= −1  for c < 0. Taking a derivative with respect to u  then gives

p u c p u cX A( ) | | ( / )= −1 . Thus, for c t= cos( )ω  we have

p u
t

p
u

tX A( )
| cos( ) | cos( )

=










1
ω ω

and this is generally not invariant under a time shift. Thus, one cannot conclude

that the process is first-order stationary, or j th-order stationary for any j .

***********************************************************************************************************************

Example 4.7: Investigate mean-value, second-moment, and covariance stationarity
for the stochastic process with X t A t( ) cos( )= +ω θ  in which ω  is a constant and

A  and θ  are independent random variables with θ  being uniformly distributed on
the range [ , ]0 2π .

In Example 4.3 we found the mean value, covariance, and autocorrelation functions
for this stochastic process to be µX t( ) = 0  and K t s t sXX XX( , ) ( , )= =φ
E A t s( ) cos[ ( )] /2 2ω − . These functions are all invariant under a time shift, because

a time shift will change t  and s by an equal amount in the K  and φ  functions.
Thus, { ( )}X t  does have stationarity of the mean value, the second moment, and

the covariance functions. We can rewrite the autocorrelation and autocovariance

functions as

G R
E A

XX XX( ) ( )
( )

cos( )τ τ ωτ= =
2

2
***********************************************************************************************************************

Example 4.8: Consider the two stochastic processes { ( )}X t  and { ( )}Y t  defined

in Example 4.4 with

K t s t s
E A

t s t sXY XY( , ) ( , )
( )

cos[ ( )] sin[ ( )]
/

= = − + −( )φ ω ω
2

3 22
Are { ( )}X t  and { ( )}Y t jointly covariant stationary?
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The covariance function does have the time shift property, so { ( )}X t  and { ( )}Y t are

jointly covariant stationary. We can rewrite the cross-correlation and cross-
covariance functions as

G R
E A

XY XY( ) ( )
( )

cos( ) sin( )
/

τ τ ωτ ωτ= = +[ ]
2

3 22
***********************************************************************************************************************

4.5 Properties of Autocorrelation and Autocovariance
A number of properties of the autocorrelation and autocovariance functions apply
for any stochastic process in any problem. We will list some of those here, giving
both general versions and the forms that apply for stationary processes. Probably
one of the more obvious, but nonetheless significant, properties is symmetry:

φ φXX XXs t t s( , ) ( , )=      and     K s t K t sXX XX( , ) ( , )= (4.29)

Rewriting these equations for a process with the appropriate stationarity (second-
moment and covariant stationarity, respectively) gives

R RXX XX( ) ( )− =τ τ      and     G GXX XX( ) ( )− =τ τ (4.30)

Next we recall the nonnegative definite property described in Section 3.3 for
cross-product and covariance matrices for random variables. In particular,

  
r r r r
v E X X vT T( ) ≥ 0 and   

r r
v vT

XXK ≥ 0  for any real vector   
r
v , in which   

r
X  is a vector

of real scalar components. In order to apply this result to a stochastic process { ( )}X t ,
let

  

r

M
X

X t

X t

X tn

=





















( )

( )

( )

1

2

so that the   E X XT( )
r r

 and K XX  matrices have ( , )j k  components of φXX j kt t( , )
and K t tXX j k( , ) , respectively. The φXX  and KXX  functions, then, must be such
that these matrices are nonnegative definite for all values of n and all possible
choices of   { , , , }t t tn1 2 L . It can be shown that any real square matrix A of dimension
n is nonnegative definite if
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A A A

A A A

A A A

m

m

m m mm

11 12 1

21 22 2

1 2

0

L

L

M M M

L

≥

for all integers m in the range 1≤ ≤m n , in which the bars denote the determinant
of the submatrix shown. Because   E X XT( )

r r
 and K XX  must be nonnegative definite

for all values of n, we can say that

  

φ φ

φ φ

XX XX n

XX n XX n n

XX XX n

XX n XX n n

t t t t

t t t t

K t t K t t

K t t K t t

( , ) ( , )

( , ) ( , )

,

( , ) ( , )

( , ) ( , )

1 1 1

1

1 1 1

1

0 0

L

M M

L

L

M M

L

≥ ≥     (4.31)

for n ≥1. For n =1, Eq. 4.31 reduces to the rather obvious requirements that
φXX t t E X t( , ) [ ( )]1 1

2
1 0≡ ≥  and K t t tXX X( , ) ( )1 1

2
1 0≡ ≥σ . Expanding the

determinants for n = 2 gives

| ( , ) | [ ( , ) ( , )] /φ φ φXX XX XXt t t t t t1 2 1 1 2 2
1 2≤ (4.32)

and

| ( , ) | [ ( , ) ( , )] /K t t K t t K t tXX XX XX1 2 1 1 2 2
1 2≤ (4.33)

Note that Eqs. 4.32 and 4.33 are converted into the Schwarz inequalities in Eqs.
3.14 and 3.15, respectively, by writing φXX t s E X t X s( , ) [ ( ) ( )]=  and
K t s t s t sXX XX X X( , ) ( , ) ( ) ( )= ρ σ σ  with ρXX t t( , ) =1. Equations 4.32 and 4.33
provide bounds on the value of φXX t s( , )  and K t sXX ( , )  anywhere off the 45° line
of the ( , )t s  plane in terms of the values on that diagonal line. One particular
implication of this is the fact that | ( , ) |φXX t s <∞  everywhere if E X t[ ( )]2  is bounded
for all values of t, and | ( , ) |K t sXX <∞ everywhere if σ X t( ) <∞ for all t. The
standard nomenclature is that { ( )}X t  is a second-order process if its autocorrelation
function is always finite.1 If { ( )}X t  has the appropriate stationarity, these Schwartz
inequality relationships become

| ( ) | ( ) [ ],       | ( ) | ( )R R E X G GXX XX XX XX Xτ τ σ≤ = ≤ =0 02 2 (4.34)

1The reader is cautioned that the word order in this term refers only to the order of
the moment being considered and not to the order of the probability distribution,
as in our definition of jth order stationarity or ergodicity.
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The additional conditions that Eq. 4.31 must also apply for m ≥ 3 are equally
important, but less obvious.

We will next investigate certain continuity properties of the autocorrelation
and autocovariance functions. It is not necessary that these functions be continuous
everywhere, but there are some limitations on the types of discontinuities that they
can have. The basic result is that if either of the functions is continuous in the
neighborhood of a point ( , )t t  and in the neighborhood of a point ( , )s s , then it
must also be continuous in the neighborhood of the point ( , )t s . The first step in
clarifying this result is a statement of precisely what we mean by continuity for
these functions of two arguments. We say that φ( , )t s  is continuous at the point
( , )t s  if and only if

lim ( , ) ( , )
ε
ε

φ ε ε φ
1
2

0
0

1 2
→
→

+ + =t s t s (4.35)

meaning that we obtain the same limit as ε1 and ε2  both tend to zero along any
route in the two-dimensional space. A special case of this relationship is that φ( , )t s
is continuous at the point ( , )t t  if

lim ( , ) ( , )
ε
ε

φ ε ε φ
1
2

0
0

1 2
→
→

+ + =t t t t

The reader should carefully consider the distinction between this last statement
and the much weaker condition of φ ε ε( , )t t+ +  tending to φ( , )t t  as ε  tends to
zero, which corresponds only to approaching the point ( , )t t  along a 45° diagonal
in the ( , )t s  space. This seemingly minor issue has confused many students in the
past.

To derive conditions for the continuity of φ( , )t s  at the point ( , )t s , we write
the autocorrelation function as an expected value and look at the difference between
the value at ( , )t s  and at ( , )t s+ +ε ε1 2 :

φ ε ε φ ε εXX XXt s t s E X t X s X t X s( , ) ( , ) [ ( ) ( ) ( ) ( )]+ + − = + + −1 2 1 2

which can be rewritten as

φ ε ε φ ε ε

ε ε

XX XXt s t s E X t X t X s X s

X t X t X s X t X s X s

( , ) ( , ) [ ( ) ( )][ ( ) ( )]

         [ ( ) ( )] ( ) ( )[ ( ) ( )]

+ + − = + − + − +(
+ − + + − )

1 2 1 2

1 2 (4.36)
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Thus, we are assured of continuity of φ  at the point ( , )t s  if the expected value of
each of the three terms in the parentheses is zero. We can easily find sufficient
conditions for this to be true by using the Schwarz inequality. For example,

E X t X t X s E X t X t E X s[ ( ) ( )] ( ) [ ( ) ( )] [ ( )]
/

+ −( ) ≤ + −( ) ( )





ε ε1 1
2 2

1 2

and converting the right-hand side back into autocorrelation functions gives

E X t X t X s

t t t t t t s sXX XX XX XX

[ ( ) ( )] ( )

     [ ( , ) ( , ) ( , )] [ ( , )]/ /

+ −( ) ≤
+ + − + +

ε

φ ε ε φ ε φ φ

1

1 1 1
1 2 1 22

Now we can see that the first of these two square root terms tends to zero as ε1 0→
if φXX  is continuous at the point ( , )t t , regardless of whether it is continuous
anywhere else in the ( , )t s  plane. Thus, continuity of φXX  at the point ( , )t t  will
ensure that the second term in Eq. 4.36 goes to zero as ε1 0→ . One can show the
same result for the first term in Eq. 4.36 by exactly the same set of manipulations.
Similarly, the third term in Eq. 4.36 goes to zero as ε2 0→  if φXX  is continuous at
the point ( , )s s . The sum of these three results shows that Eq. 4.35 holds for the
function φXX  if it is continuous at both the point ( , )t t  and the point ( , )s s . That is,
if φXX  is continuous at both the point ( , )t t  and the point ( , )s s , then it is also
continuous at the point ( , )t s . Exactly the same result applies for the autocovariance
function: If KXX  is continuous at both the point ( , )t t  and the point ( , )s s , then it is
also continuous at the point ( , )t s .

We again emphasize that there is no requirement that φXX  or KXX  be
continuous. The requirement is that if either function is discontinuous at a point
( , )t s , then it must also be discontinuous at point ( , )t t  and/or point ( , )s s . One
implication of this result is that if φXX  or KXX  is continuous everywhere along the
( , )t t  diagonal of the ( , )t s  plane, it must be continuous everywhere in the plane.

The general continuity relationship just derived can be applied to the special
case of a stationary process by simply replacing φXX  and KXX  by RXX  and GXX
and noting that the points ( , )t t  and ( , )s s  both correspond to τ = 0. The result is
that continuity of RXX ( )τ  or GXX ( )τ  at τ = 0 is sufficient to prove that the function
is continuous everywhere. Alternatively, we can say that if RXX ( )τ  or GXX ( )τ  is
discontinuous for any value of the argument τ , then it must also be discontinuous
at τ = 0.
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***********************************************************************************************************************

Example 4.9: Consider a very erratic stochastic process { ( )}X t  that has
discontinuities in its time histories at discrete values of t :

X t A j t jj( ) ( )= ≤ < +for ∆ ∆1
or

X t A U t j U t jj
j

( ) [ ] [ ( ) ]= − − − +( )∑ ∆ ∆1

in which the random variables are independent and identically distributed with

mean zero and variance E A( )2 , and U( )⋅  is the unit step function (see Eq. 2.5).

The time histories of this process have discontinuities at the times t j= ∆  as the
process jumps from the random variable A j−1 to A j . Find the φXX t s( , )
autocorrelation function and identify the ( , )t s  points at which the function is

discontinuous.

Using the definition φXX t s E X t X s( , ) [ ( ) ( )]= , we find that

  

φ

φ
XX

XX

t s E A

t s

( , ) ( )      

( , )        

)=

=

2

0

if t and s are in the same time interval of length

otherwise

          (   ∆

This process is uncorrelated with itself at times
t  and s unless t  and s are in the same time

interval, varying from j∆  to ( )j +1 ∆ . The
accompanying sketch indicates the region in

which φXX t s( , ) ≠ 0 .

Clearly the function is discontinuous along the
boundaries of each of the size ∆  squares

shown. Any one of these boundaries

corresponds to either t  being an integer times

∆  or s  being an integer times ∆  (with the

corners of the squares having both t  and s
being integers times ∆ ). The location of these discontinuities is consistent with
the fact that along the 45° diagonal of the plane we have discontinuities of φXX t s( , )
at ( , )t t  whenever t  is an integer times ∆ .

This example illustrates a situation in which φXX t s( , )  is discontinuous at some
points ( , )t s , even though φXX t t E A( , ) ( )= 2  is a continuous one-dimensional

function everywhere along the line of possible values. The apparent discrepancy

between these two statements is simply due to the difference in definition of one-
dimensional and two-dimensional continuity. Looking at one-dimensional continuity

of φXX t t( , )  at t = 2∆, for example, corresponds to approaching ( , )2 2∆ ∆  along

the 45° diagonal of the plane, whereas the discontinuity of φXX t s( , )  at the point

1  2  3  4
–4 –3 –2 –1

4
3
2
1

–1
–2
–3
–4

s /∆

t /∆
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( , )2 2∆ ∆  is due to the fact that a different limit is achieved if the point is approached

along some other paths, such as along a line with a negative 45° slope.

***********************************************************************************************************************

Example 4.10: Consider an even more erratic stochastic process for which

E X t E A[ ( )] ( )2 2=
but

  E X t X s t s[ ( ) ( )]      = ≠0 if 
This process is the limit of the process in Example 4.9 as ∆  goes to zero. It is

second-moment stationary and is uncorrelated with itself at any two distinct times,

no matter how close together they are. Find the autocorrelation function and identify
points at which it is discontinuous.

Using the definition that R E X t X sXX ( ) [ ( ) ( )]τ τ= + , we have the stationary
autocorrelation function as

  R E AXX ( ) ( )τ τ= =2 if 0
and

  RXX ( )τ τ= ≠0 if 0
Clearly this function is discontinuous at the origin—at τ = 0. It is continuous

everywhere else. Note that this is the only possible type of RXX ( )τ  function with
discontinuity at only one point. Discontinuity at any point other than τ = 0 would

imply that there was also discontinuity at τ = 0. Discontinuity at τ = 0, though,

implies only the possibility (not the fact) of discontinuity at other values of τ . Stating
the result for this problem in terms of the general (rather than stationary) form of

autocorrelation function, we have the rather odd situation of a φXX t s( , )  function

that is discontinuous everywhere along the major diagonal t s=  and continuous
everywhere else; this is consistent with Example 4.9 as ∆→0 .

***********************************************************************************************************************

Example 4.11: Give a reason why each of the following φ( , )t s  and R( )τ  functions
could not be the autocorrelation function for any stochastic process. That is, there

could be no { ( )}X t  process with φ φXX t s t s( , ) ( , )=  or R RXX ( ) ( )τ τ= :

(a) φ( , ) ( )t s t s= − −2 2

(b) φ( , ) cos( )t s t s= − −2

(c) φ( , ) [ ( )]t s U t s= − +4 2 2

(d) R e( )τ τ τ= −2

(e) R e( ) ( )τ τ τ= − −1

(f) R U( ) ( | |)τ τ= −1
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The general conditions are symmetry, nonnegative definiteness, and the conditions

that φ( , )t s  must be continuous in the neighborhood of the point ( , )t s  if it is
continuous in the neighborhood of point ( , )t t  and in the neighborhood of point

( , )s s  and RXX ( )τ  must be continuous for all values of τ  if it is continuous at

τ = 0.

Note that there might be various possible violations of necessary conditions for a

particular candidate function, and it takes only one violation to prove that the function
cannot be an autocorrelation function. Nonetheless, we will investigate at least

two conditions for each of the six functions. In particular, we will investigate symmetry

and the Schwartz inequality for each suggested autocorrelation function. We will
investigate the continuity condition only for (c) and (f), because the other four are

clearly continuous everywhere—they contain no discontinuous terms. We will not

investigate the more complicated higher-order terms needed for proving
nonnegative definiteness.

(a) Checking symmetry: We have φ φ( , ) ( , )s t t s≠ ; therefore, this function violates

the symmetry required of an autocorrelation function, so φ( , )t s  cannot be an
autocorrelation function.

Checking the Schwartz inequality: We see that φ( , )t s  is unbounded whenever

s t= 2, but φ( , )t t  is bounded everywhere except at the single point t = 0 . Thus,

this function also violates the necessary condition of having φ( , )t s  bounded by

[ ( , ) ( , )] /φ φt t s s 1 2 . For example, φ φ φ( , ) [ ( , ) ( , )] //2 4 2 2 4 4 1 241 2=∞> = .

(b) Checking symmetry: Yes, φ φ( , ) ( , )s t t s= , so it does have the necessary

symmetry.
Checking the Schwartz inequality: We have φ φ( , ) ( , )t t s s= =1, but φ( , )t s >1 for

some ( , )t s  values. Thus, this function violates the necessary condition of having

φ( , )t s  bounded by [ ( , ) ( , )] /φ φt t s s 1 2 .

(c) Checking symmetry: Yes, φ φ( , ) ( , )s t t s= , so it does have the necessary

symmetry.
Checking the Schwartz inequality: We have φ( , ) ( ) ( )t t U t U t= − = −4 2 22 2  and

φ( , ) ( )s s U s= −2 2  so that [ ( , ) ( , )] /φ φt t s s 1 2 =
[ ( ) ( )] /U t U s2 22 2 1 2− − , which is unity on the square
shown in the sketch, and zero outside the square.

However, φ( , )t s =  U t s[ ( )]4 2 2− +  is unity on the

circle in the sketch, and zero outside the circle. We
have a situation with φ φ φ( , ) [ ( , ) ( , ) ] /t s t t s s> >1 1 2

whenever ( , )t s  is in one of the portions of the circle

that is outside the square. For example,

φ( . , ) ( . )1 8 0 0 76 1= =U , φ( . , . ) ( . )1 8 1 8 2 48 0= − =U ,

t

s

2
1/2

2
1/2

−2
1/2

−2
1/2
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and φ( , ) ( )0 0 4 1= =U . Thus, we have  φ φ φ( . , ) [ ( . , . ) ( , )] ,/1 8 0 1 1 8 1 8 0 0 01 2= > =  and

the Schwartz inequality is violated.
Checking the continuity condition: Clearly φ( , )t s  is discontinuous on the circle

t s2 2 4+ = . This gives discontinuity along the diagonal of the ( , )t s  plane only at

the points ( , )/ /2 21 2 1 2  and ( , )/ /− −2 21 2 1 2 . Clearly there are many points for which

φ( , )t s  is discontinuous even though the function is continuous at ( , )t t  and ( , )s s .

For example, ( , ) ( , )t s = 2 0  gives such a point. Thus, the discontinuity of this function

is not of the type allowed by the Schwarz inequality. Note that it might have been
more reasonable to start by checking to see whether the continuity condition was

satisfied, because this φ( , )t s  does have discontinuities.

 (d) Checking symmetry: Now we have a stationary form of R( )τ , so the necessary
symmetry condition is that R R( ) ( )− =τ τ . Clearly this is satisfied.

Checking the Schwartz inequality: We need | ( ) | ( )R Rτ < 0 . Clearly this is violated

because R( )0 0= , but R( )τ  is not zero everywhere.
(e) Checking symmetry: R R( ) ( )− ≠τ τ , so symmetry is violated.

Checking the Schwartz inequality: R( )0 1=  but R( )τ >1 whenever τ τ( )− <1 0 ,

which occurs for 0 1< <τ . Thus, R( )τ  does not meet the necessary condition of

| ( ) | ( )R Rτ < 0 .

 (f) Checking symmetry: R R( ) ( )− =τ τ , so symmetry is satisfied.
Checking the Schwartz inequality: We do have | ( ) | ( ) ,R Rτ ≤ =0 1  so there is no

problem with the Schwartz inequality.

Checking the continuity condition: R( )τ  is continuous at τ = 0, so the necessary
condition is that it be continuous everywhere. Clearly this is violated.

***********************************************************************************************************************

4.6 Limits of Stochastic Processes
The next two major issues with which we wish to deal are (1) ergodicity and (2)
differentiability of a process { ( )}X t . Both of these involve taking a limit of a
stochastic process as the index set approaches some value, and this is closely related
to the simpler idea of continuity of a process. In particular, continuity involves the
behavior of { ( )}X t  as t approaches some particular value t1 , ergodicity involves
evaluating an expected value of a function of the process from a limit of a time
average over a time history of length T and finding the derivative ˙( )X t  involves
taking a limit involving X t h X t( ) ( )+ −  as h →0 . Because continuity is probably
the easiest to visualize, we will use it in this section to illustrate the idea of the limit
of a stochastic process, even though the other two properties have more overall
importance to the application of stochastic process methods to vibration problems.
It should also be noted, though, that some sort of continuity of a process must be a
condition for differentiability.
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The concept of the limit of a deterministic function must be generalized
somewhat to handle situations in which one wishes to find a limit of a stochastic
process. The difficulty, of course, is that a stochastic process is a different random
variable at each value of the index argument, so the limit of a stochastic process is
like the limit of a sequence of random variables. There are a number of definitions
of convergence of a stochastic process, in all of which one expects the limit to be
some random variable. Rather than give a general discussion of this topic, we will
focus on the particular sort of convergence to a limit that we wish to use in the
three situations cited in the preceding paragraph.

We say that { ( )}X t  converges in probability to the random variable Y as t

approaches t1 if

lim | ( ) |
t t

P X t Y
→

− ≥[ ] = >
1

0 0ε ε     for any (4.37)

Note that the limit in Eq. 4.37 is on the probability of an event, so this is an
unambiguous deterministic limit. The well-known Chebyshev inequality provides
a very useful tool for any problem that requires bounding of the probability of a
random variable exceeding some particular value. This can be written in a quite
general form as

P Z b
E Z

b

c

c
(| | )

( | | )
≥ ≤ (4.38)

for any random variable Z and any nonnegative numbers b and c. Thus, condition
4.37 will be satisfied if

lim | ( ) |
t t

cE X t Y c
→

−( ) = >
1

0 0     for some (4.39)

Note that Eq. 4.39 is very general, with convergence in probability ensured
if Eq. 4.39 holds for any positive real exponent c. Unfortunately it is difficult to
use the relationship in Eq. 4.39 unless the exponent is an even integer such that the
power can be expanded in terms of moments of the random variables. Any even
integer will serve this purpose, but choosing c = 2 allows us to use the lowest
possible moments. Thus, we will generally choose a much more restrictive condition
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than Eq. 4.39 and say that we are assured of convergence in probability to Y if we
have mean-square convergence:

lim [ ( ) ]
t t

E X t Y
→

−( ) =
1

2 0 (4.40)

Turning now to the issue of continuity of { ( )}X t  at t t= 1 , we simply need to
replace the variable Y in the preceding equations and say that { ( )}X t  is continuous
in probability at t t= 1  if

lim | ( ) ( ) |
t t

cE X t X t c
→

−( ) = >
1

1 0 0for some (4.41)

and, in particular, if it is mean-square continuous, so

lim [ ( ) ( )]
t t

E X t X t
→

−( ) =
1

1
2 0

Expanding the quadratic expression inside the expected value allows us to rewrite
this condition for mean-square continuity as

lim[ ( , ) ( , ) ( , )]
t t

XX XX XXt t t t t t
→

− + =
1

2 01 1 1φ φ φ (4.42)

Clearly Eq. 4.42 is satisfied if φXX t s( , )  is continuous at the point ( , )t t1 1 . Thus, we
see that mean-square continuity of a process depends only on the continuity of the
autocorrelation function of the process. The process { ( )}X t  is mean-square
continuous at time t t= 1  if and only if φXX t s( , )  is continuous at ( , )t t1 1 .

It is easy to show that any process for which all time histories are continuous
will have mean-square continuity. However, the mean-square continuity condition
is considerably weaker than a requirement that all possible time histories of the
process be continuous. This will be illustrated in Example 4.13, but first we will
consider a simpler situation.

***********************************************************************************************************************
Example 4.12: Identify the t  values corresponding to mean-square continuity of

the process { ( )}X t  with X t A j( ) =  for j t j∆ ∆≤ < +( )1  with the random variables
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A j  being independent and identically distributed with mean zero and variance

E A( )2 .

We have already shown in Example 4.9 that φXX t s( , )  for this process is E A( )2

on the squares with dimension ∆  along the 45° line and is zero outside those

squares. Thus, this autocorrelation is discontinuous along the boundaries of those

squares and continuous elsewhere. This means that φXX t s( , )  is continuous at
( , )t t1 1  if t j1 ≠ ∆  for any j  value. The process is mean-square continuous except

at the times t j1 = ∆ . Note that t j1 = ∆  describes the instants of time when the

time histories of { ( )}X t  are almost sure to have discontinuities. Thus, in this
example, { ( )}X t  is mean-square continuous when the time histories are continuous

and it is mean-square discontinuous when the time histories are discontinuous.

***********************************************************************************************************************

Example 4.13: Let { ( ) : }X t t ≥ 0  be what is called a Poisson process defined by

X( )0 0=  and

  
P X t X s k

e b t s

k
k s t

b t s k k
[ ( ) ( ) ]

( )

!
, , ,

( )
− = =

−
= ∞ ≤ ≤

− −
for  and 0 1 0L

with [ ( ) ( )]X t X s−  being independent of [ ( ) ( )]X s X r−  for 0 ≤ ≤ ≤r s t . Note that
X t( )  is always integer valued. This distribution arises in many areas of applied
probability, with { ( )}X t  representing the number of occurrences (the count) of

some event during the time interval [ , ]0 t . It corresponds to having the number of

occurrences in two nonoverlapping (i.e., disjoint) time intervals be independent of
each other and with their being identically distributed if the time intervals are of the

same length. The parameter b  represents the mean rate of occurrence. Consider

the continuity of { ( )}X t .

Note that any time history of
this process is a “stairstep”

function. It is zero until the

time of first occurrence, stays
at unity until the time of

second occurrence, and so

forth, as shown in the
accompanying sketch of the

kth sample time history. We

can write

5

tT (k)
1 2T (k)

3T (k)
4T (k) T (k)

5

1

2

3

4

X (k)(t)
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X t U t Tj
j

( ) ( )= −
=

∞

∑
1

with the random variable Tj  denoting the time of j th occurrence. Clearly these

time histories are not continuous at the times of occurrence. Furthermore, any
time t  is a time of occurrence for some of the possible time histories, so there is no

time at which we can say that all time histories are continuous.

Let us now find the autocorrelation function for { ( )}X t . For s t≤  we can define
∆X X t X s= −( ) ( )  and write

φ µ µXX X Xt s E X s X X s E X s s( , ) [ ( ) ] ( ) ( ) ( )= +( ) = ( )+∆ ∆
2

in which the independence of ∆X  and X s( )  has been used. To proceed further we

need the mean value function of { ( )}X t :

µX t
k

b t k

k

k P X t k
e b t

k
b t( ) [ ( ) ]

( )

( )!
= = =

−
=

=

∞ −

=

∞

∑ ∑
0 1

1

Now we use the fact that the distribution of ∆X  is the same as that of X t s( )−  to

obtain

φXX
k

b s k

k

b s k

k

b s k

k

t s k P X s k b t s s k
e b s

k
b t s s

e b s

k

e b s

k
b t s s b s

( , ) [ ( ) ] ( )
( )

!
( )

      
( )

( )!

( )

( )!
( ) (

= = + − = + − =

−
+

−
+ − =

=

∞ −

=

∞

−

=

∞ −

=

∞

∑ ∑

∑ ∑

2

0

2 2

0

2 2

2 1

2 2

2 1
bb t +1)

for s t≤ . The general relationship can be written as φXX t s b t s b t s( , ) min( , ).= +2  It

is easily verified that this function is continuous everywhere on the plane of ( , )t s
values, so { ( )}X t  is mean-square continuous everywhere. This is despite the fact
that there is nowhere at which all its time histories are continuous, nor does it have

any continuous time histories, except the trivial one corresponding to no arrivals.

***********************************************************************************************************************
Example 4.14: Identify the t  values giving mean-square continuity of the process

{ ( )}X t  of Example 4.10 with the autocorrelation of φXX t s E A( , ) ( )= 2  for t s=
and φXX t s( , ) = 0 off this diagonal line.

Because φXX t s( , )  is discontinuous at every point on the 45° line, this { ( )}X t
process is not mean-square continuous anywhere.
***********************************************************************************************************************



132 Random Vibrations

4.7 Ergodicity of a Stochastic Process
The concept of ergodicity has to do with using a time average obtained from one
time history of a stochastic process as a substitute for a mathematical expectation.
The stochastic process is said to be ergodic (in some sense) if the two are the same.
Recall the idea of an ensemble of possible time histories of the process, as illustrated
in Fig. 4.1. As noted before, an expected value can be thought of as a statistical
average across an infinite ensemble of time histories, and this is an average on a
section orthogonal to a particular time history. Thus, there is no obvious reason
why the two should be the same, even though they are both averages across infinitely
many values of { ( )}X t . To illustrate the idea we begin with consideration of the
simplest expected value related to a stochastic process { ( )}—X t the mean value. A
truncated time average over sample j corresponding to the mean of the process can
be written as

1
2

2

T
X t dtj

T

T
( )

/

/
( )

−∫ (4.43)

We say that { ( )}X t  is ergodic in mean value if it is mean-value stationary and the
time average of expression 4.43 tends to µX E X t≡ [ ( )]  as T tends to infinity,
regardless of the value of j. We impose the stationarity condition, because taking a
time average like that in expression 4.43 could not possibly approximate the mean
value unless that value was independent of time. Similarly, we say that { ( )}X t  is
ergodic in second moment if it is second-moment stationary and

R E X t X t
T

X t X t dtXX
T

j j
T

T
( ) [ ( ) ( )] lim ( ) ( )( ) ( )

/

/
τ τ τ≡ + = +

→∞ −∫
1

2

2
(4.44)

There are as many types of ergodicity as there are stationarity. For any
stationary characteristic of the stochastic process, one can define a corresponding
time average, and ergodicity of the proper type will ensure that the two are the
same. The only additional type of ergodicity that we will list is the one related to
the first-order probability distribution of the process. We will say that { ( )}X t  is
first-order ergodic if it is first-order stationary and

F u E U u X t
T

U u X t dtX t
T

j
T

T

( )
( )

/

/
( ) [ ( )] lim [ ( )]≡ −( ) = −

→∞ −∫
1

2

2
(4.45)
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Note that the unit step function in the integrand is always zero or unity, such that
the integral gives exactly the amount of time for which X t uj( )( ) ≤  within the
interval [ / , / ]−T T2 2 . Thus, this type of ergodicity is a condition that the probability
that X t u( ) ≤  at any time t is the same as the fraction of the time that any time
history X tj( )( )  is less than or equal to u. We mention Eq. 4.45, both because it
illustrates an idea that is somewhat different from the moment ergodicity of
expression 4.43 and Eq. 4.44 and because it gives another property that one often
wishes to determine in practical problems.

The reason that people usually want to consider stochastic processes to be
ergodic really has to do with the issue of statistics rather than probability theory.
That is, they wish to determine information about the moments and/or probability
distribution of a process { ( )}X t  from observed values of the process. If a sufficiently
large ensemble of observed time histories is available, then one can use ensemble
averages and there is no need to invoke a condition of ergodicity. In most situations,
though, it is impossible or impractical to obtain a very large ensemble of observed
time histories from a given physical process. Thus, for example, one may wish to
determine moments and/or the probability distribution of the wind speed at
Easterwood Airport on April 27 from one long time history obtained on that date in
2003, rather than wait many years to obtain an ensemble of time histories, all
recorded on April 27. Furthermore, even if it is possible to obtain the many-year
sample, one may suspect that the process may not be stationary over such a long
time, so it may be necessary to consider each annual sample as being from a different
process or a process with different parameter values. Thus, the use of the ergodicity
property is almost essential in many situations involving data observed from physical
processes.

At least two cautions should be noted regarding ergodicity. The first is that
there may be some difficulty in proving that a physical process is ergodic. Once we
have chosen a mathematical model, we can usually show that it has a particular
form of ergodicity, but this avoids the more fundamental issue of whether this
ergodic model is the appropriate model for the physical problem. Furthermore,
even if we know that Eq. 4.45, for example, is satisfied, we will not have an infinite
time history available to use in evaluating the cumulative distribution function
from the time average. The best that we can ever hope for in a physical problem is
a long finite sample time history. If we could be sure that a process is ergodic in the
proper way, then we would probably feel more confident in using a time average
such as in expression 4.43, or Eq. 4.44 or 4.45 to estimate the corresponding expected
value, but it will still only be an estimate.
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To illustrate the idea of ergodicity theorems, consider the proof of convergence
of expression 4.43 to µX . What we wish to prove is convergence in probability:

lim | |
T

TP Q
→∞

≥( ) = >ε ε0 0for any (4.46)

in which

Q
T

X t dtT X T

T
= −

−∫µ
1

2

2
( )

/

/
(4.47)

As noted in Section 4.6, this is ensured if E QT
c[| | ]→0 as T →∞ for some c > 0,

and in particular if we have mean-square convergence

lim [| | ]
T

TE Q
→∞

=2 0 (4.48)

One can find conditions to ensure that Eq. 4.48 is true by rewriting QT
2  as

Q
T

X t t dt

T
X t t X t t dt dt

T XT

T

X XT

T

T

T

2
2

2 2

2 1 1 2 2 12

2
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∫
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/

µ

µ µ

Taking the expected value of this quantity, rewriting the
integrand as G t tXX ( )1 2− , and eliminating t1  by the
change of variables τ = −t t1 2 gives

E Q
T

G t t dt dt

T
G d dt

T XXT

T

T

T

XXT t

T t

T

T

( ) ( )

          ( )

/

/

/

/

/

/

/

/

2
2 1 2 12

2
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2

2 2

2
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2

1

1
2

2

= −

=

−−

− −

−

−

∫∫

∫∫ τ τ

The parallelogram in Fig. 4.2 shows the domain of
integration in the ( , )t2 τ  plane. We now replace this
integral by the one over the rectangle shown, minus the

Figure 4.2
Domain of
integration.

T

−T
−T /2 T /2

t2

τ
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integrals over the two triangular corners. Using the symmetry of GXX ( )τ , it is
easily shown that the two triangles give the same integral, so the result can be
written as

E Q
T

G d dt G d dtT XXT

T

T

T

XXT t

T

T

T
( ) ( ) ( )

/

/

//

/
2

2 22

2

2 22

21
2

2
= −











−− −−∫∫ ∫∫τ τ τ τ (4.49)

We now easily perform the integration with respect to t2  in the first term. We can
also reverse the order of integration in the second term and then perform its
integration with respect to t2  to obtain a sufficient condition for ergodicity in mean
value as

lim
| |

( )
T

XXT

T

T T
G d

→∞ −
= −









 =∫1

1 0
τ

τ τ (4.50)

Note that the development of Eq. 4.50 from 4.48 is exact. Thus, Eq. 4.50 is necessary
as well as sufficient for ergodicity in mean value to hold in the sense of convergence
in mean square. This does not imply, however, that Eq. 4.50 is necessary for
ergodicity in mean value to hold in the sense of convergence in probability.

As an alternative to performing the integration with respect to t2  in the second
term in Eq. 4.49, we can introduce the new variable t T t= −/2 2  to obtain a result
that can be written as

E Q
T

G d
T T

G d dtT XXT

T

XXT t

TT
( ) ( ) ( )

/
2

20
1 1 2

2
= −

− −∫ ∫∫τ τ τ τ

�om this form one can show that E QT( )2 0→  as T →∞ if��

( . 5 1 ) � �

 this also gives a sufficient condition for ergodicity in mean value. The condition
of Eq. 4.51 is certainly satisfied if the integral of GXX ( )τ  over the entire real line
is finite, but this is a somewhat more restrictive condition than Eq. 4.51. The essential
feature of the finiteness of the integrals, of course, relates to the behavior of



136 Random Vibrations

| ( ) |GXX τ  for large values of | |τ . To illustrate the difference between the
integrability of GXX ( )τ  and Eq. 4.51, note that the integral of GXX ( )τ  is finite if
| ( ) |GXX τ  tends to zero like | | ( )τ ε− +1  for some small ε > 0 , but Eq. 4.51 is satisfied
provided only that | ( ) |GXX τ  tends to zero in any fashion as | |τ  tends to infinity.

It may also be useful to note a situation that does not meet the conditions of
ergodicity in mean value. If GXX ( )τ  is a constant (other than zero) for all τ  values,
then the process violates the condition in Eq. 4.50, which is necessary for
convergence in mean square. Consider what it means, though, for a process to be
covariant stationary with a constant autocovariance function GXX ( )τ . This would
give X t( )+ τ  and X t( )  as being perfectly correlated, for any value of τ , and it can
be shown (see Section 3.3) that this implies that there is a linear relationship of the
form X t a b X t( ) ( )+ = +τ  for some constants a and b. Combining this condition
with covariant stationarity requires that each time history of { ( )}X t  be simply a
constant value. This is an almost trivial case of a stochastic process that is always
equal to a random variable. Each possible time history X tj( )( )  is a constant X j( )

independent of time, but each random sample may give a different value for that
constant. It should be no surprise that this process is not ergodic in mean value.
The time average in expression 4.43 is simply the constant X j( ) , and there is no
convergence to µX  as T tends to infinity. A necessary condition for ergodicity in
mean value is that the random variables X t( )+ τ  and X t( )  not be perfectly
correlated as τ →∞.

The condition for ergodicity in mean value can be extended to the ergodicity
in second moment of Eq. 4.44 by defining a new random process { ( )}Y t  as

Y t X t X t( ) ( ) ( )= + τ

for a particular τ  value. Then Eq. 4.44 holds for that particular τ  value if { ( )}Y t
is ergodic in mean value. The autocovariance for this { ( )}Y t  process can be written
in terms of the second and fourth moment functions of the { ( )}X t  process as

G s E X t s X t s X t X t RYY XX( ) [ ( ) ( ) ( ) ( )] ( )= + + + + −τ τ τ2 (4.52)

Thus, we can say that the { ( )}X t  process is ergodic in second moment if it is
fourth-moment stationary and the G sYY ( )  function satisfies a condition like Eq.
4.50 or 4.51, with the integration being over the variable s. Similarly, we can define
a { ( )}Z t  process as
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Z t U u X t( ) [ ( )]= −

with autocovariance function

G E U u X t U u X t F u

F u u F u

ZZ X

X t X t X

( ) [ ( )] [ ( )] ( )

( , ) ( )( ) ( )

τ τ

τ

= − + −( )−
= −+

2

2 (4.53)

for a given u value. The process { ( )}X t  is first-order ergodic (Eq. 4.45) if it is
second-order stationary and the GZZ ( )τ  function of Eq. 4.53 satisfies a condition
like Eq. 4.50.

We will not proceed further with proofs of ergodicity. Equations 4.48–4.51
illustrate that it is not necessarily difficult to perform the manipulations to obtain
conditions for convergence in mean square and that those conditions are not
generally very restrictive. Note, though, that applying Eqs. 4.50–4.52 to show
ergodicity in second moment requires conditions on the fourth-moment function
of { ( )}X t , and the corresponding relationship to show jth-moment ergodicity in
general would involve conditions on the (2j)th moment function of { ( )}X t . This
need for consideration of higher moments can be seen to follow directly from the
use of mean-square convergence. If one could derive simple conditions to show
E QT

c(| | )  tending to zero for an appropriate QT  error term and some c that is only
slightly greater than zero, then one could also prove ergodicity without consideration
of such high-moment functions. Unfortunately, such simple conditions are not
available.

It is our observation that in common practice people assume that processes
are ergodic unless there is some obvious physical reason why that would be
inappropriate. For example, if { ( )}X t  denotes the position of a body that has a
finite probability of instability, then no one time history will be representative of
the entire process because it will represent only one observation of either stable or
unstable behavior of the system. Example 4.1 is of this type. We previously saw
that the process used in that example is mean-value stationary, but it is clearly not
mean-value ergodic. In terms of checking the ergodicity conditions presented here,
one obvious difficulty is that the process is not covariant stationary.

Even for clearly nonstationary processes, it is sometimes necessary to use
time averages as estimates of expected values. For example, one might modify
expression 4.43 and use
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1
2

2

T
X s dsj

t T

t T ( )
/

/
( )

−

+∫

as an estimate of µX t( )  for a process that was known not to be mean-value
stationary. Intuitively, this seems reasonable if µX t( )  varies relatively slowly, but
we will not go into any analysis of the error of such an approximation.

4.8 Stochastic Derivative
Most deterministic dynamics problems are governed by differential equations. Our
goal is to analyze such systems when the deterministic excitation and response
time histories are replaced by stochastic processes. This means that we want to
analyze stochastic differential equations, but the first step in doing this must be the
identification of an acceptable concept of the derivative of a stochastic process
{ ( )}X t  with respect to its index parameter t:

˙( ) ( )X t
d

dt
X t=

At each t value X t( )  is a different random variable, so the idea of a Riemann
definition of the derivative gives ˙( )X t  as being like a limit as h goes to zero of

Y t h
X t h X t

h
( , )

( ) ( )
=

+ − (4.54)

with the numerator of the expression being a different random variable for each h
value. We will take a very simple approach and say that if any property of Y t h( , )
exists and has a limit as h →0 , then that property also describes ˙( )X t . That is, if
E Y t h[ ( , )] exists and has a limit as h →0 , then that limit is µ ˙ ( ) [ ˙( )]X t E X t≡ ; if
E Y t h Y s h[ ( , ) ( , )]  exists and has a limit as h →0 , then that limit is
φ ˙ ˙ ( , ) [ ˙( ) ˙( )]XX t s E X t X s≡ ; if the probability distribution of Y t h( , )  exists and has a
limit as h →0 , then that limit is the probability distribution of ˙( )X t ; and so forth.

Let us now investigate the moments of { ˙( )}X t  by evaluating those for Y t h( , ) .
For the mean value function we have

µ
µ µ

˙ ( ) lim ( , ) lim
( ) ( )

lim
( ) ( )

X h h h

X Xt E Y t h E
X t h X t

h

t h t

h
= [ ] =

+ −







=

+ −

→ → →0 0 0
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or

µ µ˙ ( ) ( )X Xt
d

dt
t= (4.55)

This important result can be stated in words as “the mean of the derivative is the
derivative of the mean.” This certainly sounds reasonable because expectation is a
linear operation and we want stochastic differentiation also to be linear, so as to be
consistent with the deterministic definition of the derivative. Because we are defining
the stochastic derivative by a limit of the linear operation in Eq. 4.54, though, we
are ensured of having this linearity.

Before proceeding to find the autocorrelation function for the derivative, let
us consider the intermediate step of finding the cross-correlation function between
{ ( )}X t  and { ˙( )}X t . We say that

φXX h h
t s E X t Y s h E X t

X s h X s

h
˙ ( , ) lim ( ) ( , ) lim ( )
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XX XX
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≡

→0
(4.56)

showing that this cross-correlation function is obtained by taking a partial derivative
of the autocorrelation function. Similarly, the autocorrelation function for the
derivative process

φ ˙ ˙ ( , ) lim ( , ) ( , ) lim
( ) ( ) ( ) ( )
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1 2

or

φ
∂

∂ ∂
φ˙ ˙ ( , ) ( , )XX XXt s

t s
t s=

2
(4.57)
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Conditions for higher-order moment functions could be derived in the same way.
Also, a first-order probability distribution for { ˙( )}X t  could be derived from the
second-order joint probability distribution for X t( )  and X t h( )+ , which governs
the probability distribution of Y t h( , ) .

Note that our approach implies that µ ˙ ( )X t  exists if and only if µX t( )  exists
and has a derivative at the point t. Furthermore, µX t( )  cannot be differentiable at
t unless it is continuous at that point. Similarly, existence of the cross-correlation
function φXX t s˙ ( , )  requires that φXX t s( , )  be continuous at ( , )t s  and that the partial
derivative exist at that point. The corresponding condition that φXX t s( , )  be twice
differentiable in order that the autocorrelation function φ ˙ ˙ ( , )XX t s  exist requires
that the first partial derivative of φXX t s( , )  be continuous at the point of interest.
This final point is sometimes slightly confusing and will be illustrated in Examples
4.16 and 4.17.

If the process { ( )}X t  is second-moment stationary, then one can rewrite the
conditions of Eqs. 4.56 and 4.57 in stationary notation. First note that using
φXX XXt s R t s( , ) ( )= −  gives

φ
∂
∂ τ

τ
τ

XX XX XX
t s

t s
s

R t s
d

d
R˙ ( , ) ( ) ( )= − = −











= −

and

φ
∂

∂ ∂ τ
τ

τ

˙ ˙ ( , ) ( ) ( )XX XX XX

t s

t s
t s

R t s
d

d
R= − = −













= −

2 2

2

These two equations show that φXX t s˙ ( , )  and φ ˙ ˙ ( , )XX t s , if they exist, are functions
only of the time difference τ = −t s . Thus, the derivative process is also second-
moment stationary and { ( )}X t  and { ˙( )}X t  are jointly second-moment stationary
so that one can also write the results as

R
d

d
RXX XX˙ ( ) ( )τ

τ
τ= − (4.58)

and

R
d

d
RXX XX˙ ˙ ( ) ( )τ

τ
τ= −

2

2
(4.59)
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Using the results given for the mean value function and correlation functions
involving the derivative of { ( )}X t , one can easily show that corresponding results
hold for the covariance functions describing { ˙( )}X t :

K t s
s

K t s G GXX XX XX XX˙ ˙( , ) ( , ), ( ) ( )= = −
∂
∂

τ
∂
∂ τ

τ (4.60)

K t s
t s

K t s G
d

d
GXX XX XX XX˙ ˙ ˙ ˙( , ) ( , ), ( ) ( )= = −

∂
∂ ∂

τ
τ

τ
2 2

2
(4.61)

Let us now consider the derivative of a function of a stochastic process.
Specifically, we will define a new stochastic process { ( )}Z t  by Z t g X t( ) [ ( )]=  and
investigate the derivative process { ˙( )}Z t . By the procedure of Eq. 4.54, the behavior
of ˙( )Z t  must be the same as that of

Z t h Z t

h

g X t h g X t

h

( ) ( ) [ ( )] [ ( )]+ −
=

+ −

in the limit as h goes to zero. In particular,

E Z t E
Z t h Z t

h

E g X t h E g X t

h

d

dt
E g X t

h h
[ ˙( )] lim

( ) ( )
lim

[ ( )] [ ( )]

            [ ( )]

=
+ −







=

+( )− ( )

≡ ( )

→ →0 0

provided that E g X t[ ( )]( )  is a differentiable function of t. This can be rewritten as

E
d

dt
g X t

d

dt
E g X t[ ( )] [ ( )]









= ( ) (4.62)

to emphasize the very important result that the order of differentiation and
expectation can generally be reversed. The results presented in Eqs. 4.55–4.62 can
be considered as special cases of this general relationship.
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The result in Eq. 4.62 will be very useful to us in our study of stochastic
vibrations, particularly in the method of state space analysis. The derivative of
g X t[ ( )] can be written out in the same way as for a deterministic function giving

d

dt
E g X t E X t g X t[ ( )] ˙( ) [ ( )]( ) = ′( ) (4.63)

in which ′ ⋅g ( )  denotes the derivative of g( )⋅  with respect to its total argument. For
example,

d

dt
E X t E X t X t t tXX[ ( )] [ ( ) ˙( )] ( , )˙

2 2 2= = φ (4.64)

and

d

dt
E X t j E X t X tj j[ ( )] [ ( ) ˙( )]= −1 (4.65)

These relationships become particularly simple when the processes involved
are stationary. Thus, if { ( )}X t  is second-moment stationary, we can say that
E X t[ ( )]2  is a constant and Eq. 4.64 then tells us that E X t X t[ ( ) ˙( )] = 0 . This
particular result could also be seen by noting that E X t X t RXX[ ( ) ˙( )] ( )˙= 0 , using
Eq. 4.58 to show that this is the negative of the slope of the RXX ( )τ  function at
τ = 0, and arguing that this slope at the origin must be zero (if it exists) because
RXX ( )τ  is a symmetric function. Equation 4.65 shows the somewhat less obvious
fact that E X t X tj[ ( ) ˙( )]− =1 0  for any process { ( )}X t  that is jth-moment stationary.
If { ( )}X t  is strictly stationary, then E g X t( [ ( )])  must be a constant for any function
g( )⋅  and Eq. 4.63 then requires that E X t g X t( ˙( ) [ ( )])′ = 0  for any function ′ ⋅g ( ) .

The procedure can also be extended to expected values involving more than
one stochastic process, giving expressions such as

d

dt
E X t Z t j E X t X t Z t k E X t Z t Z tj k j k j k[ ( ) ( )] [ ( ) ˙( ) ( )] [ ( ) ( ) ˙( )]= +− −1 1 (4.66)

which includes such special cases as

d

dt
E X t X t E X t E X t X t[ ( ) ˙( )] [ ˙ ( )] [ ( ) ˙̇ ( )]= +2
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and
d

dt
E X t X t E X t X t E X t X t[ ( ) ˙̇ ( )] [ ˙( ) ˙̇ ( )] [ ( ) ˙̇ (̇ )]= +

If the processes are second-moment stationary, then the derivatives of expected
values must be zero and these two equations give us E X t X t E X t[ ( ) ˙̇ ( )] [ ˙ ( )]= − 2

and E X t X t E X t X t[ ( ) ˙̇ (̇ )] [ ˙( ) ˙̇ ( )]= −  but this latter equation gives E X t X t[ ( ) ˙̇ (̇ )] = 0
because E X t X t[ ˙( ) ˙̇ ( )] is one-half of the derivative of E X t[ ˙ ( )]2 . Clearly, one can
derive many such relationships between different expected values, and those given
are only illustrative examples.

***********************************************************************************************************************
Example 4.15: Consider the differentiability of a stochastic process { ( )}X t  with

mean value and autocovariance functions of

µ τ τ τ
X

t
XX XXt e G K t t e( ) , ( ) ( , )= = + = −3 52

2

Both of these functions are differentiable everywhere, so there is no problem with
the existence of the mean and covariance of the derivative process { ˙( )}X t . The

mean value function is given by

µ µ˙ ( ) ( )X X
tt

d

dt
t e= = 3 3

Because { ( )}X t  is covariant stationary, we can use

K t t G
d

d
G eXX XX XX˙ ˙( , ) ( ) ( )+ = = − = −τ τ

τ
τ τ τ20 5 2

and

K t t G
d

d
G eXX XX XX˙ ˙ ˙ ˙( , ) ( ) ( ) ( )+ = = − = − −τ τ

τ
τ τ τ

2

2
2 520 1 10

2

Alternatively, we could have found the general autocorrelation function for { ( )}X t
as

φ µ µXX XX X X
t s t st s K t s t s e e( , ) ( , ) ( ) ( ) ( ) ( )= + = +− − +2 5 32

and used

φ
∂
∂

φXX XX
t s t st s

s
t s t s e e˙

( ) ( )( , ) ( , ) ( )= = − +− − +20 35 32

and

φ
∂

∂ ∂
φ˙ ˙

( ) ( )( , ) ( , ) [ ( ) ]XX XX
t s t st s

t s
t s t s e e= = − − +− − +

2
2 5 320 1 10 9

2

It is easy to verify that this gives
φ µ µXX XX X Xt s K t s t s˙ ˙ ˙( , ) ( , ) ( ) ( )= +
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and

φ µ µ˙ ˙ ˙ ˙ ˙ ˙( , ) ( , ) ( ) ( )XX XX X Xt s K t s t s= +

This is a confirmation of something that we know must be true, because these
relationships hold for any stochastic processes, as given in Eqs. 4.6 and 4.7.

***********************************************************************************************************************

Example 4.16: Consider the differentiability of a mean-zero stationary stochastic
process { ( )}X t  with autocorrelation function

R eXX
a( ) | |τ τ= −

in which a  is a positive constant.

Because µX t( ) = 0 everywhere, its derivative is also zero and we can say that

µ ˙ ( )X t = 0. Next, we can take the derivative of Eq. 4.58 and obtain

R e
d

d
a ae ae UXX

a a a
˙

| | | | | |( ) ( | |) ( ) ( )τ
τ

τ τ ττ τ τ= = = −[ ]− − −sgn 2 1

This shows that the cross-correlation of { ( )}X t  and { ˙( )}X t  exists (i.e., is finite) for
all τ  values. However, this first derivative is discontinuous at τ = 0, so the

autocorrelation for { ˙( )}X t

R e a aXX
a

˙ ˙
| |( ) ( )τ τ δ ττ= −( )− 2 2

is infinite for τ = 0. Note that the derivative process has an infinite mean-squared
value. This example illustrates that caution must be used in evaluating the second

partial derivative of Eq. 4.57. If we had simply investigated the situations with

τ < 0 and τ > 0, we would have found R a eXX
a

˙ ˙
| |( )τ τ= − −2  in both those regions.

Thus, we find that RXX˙ ˙ ( )τ  approaches the same limit as we approach from either

side toward the condition that should give mean-squared value. The fact that this

limit is negative (namely, −a2 ), though, is a sure indication that this could not be
the mean-squared value. The reader is urged to use considerable caution in

investigating the second moment properties of the derivatives of a stochastic

process, unless the autocorrelation function for the original process is an analytic
function, ensuring that all its derivatives exist.

***********************************************************************************************************************

Example 4.17: Consider the differentiability of the Poisson process { ( ) : }X t t ≥ 0
of Example 4.13, for which µX t b t( ) =  and

φXX t s b t s b t s b t s b sU t s b tU s t( , ) min( , ) ( ) ( )= + = + − + −2 2

Based on the mean-value function of { ( )}X t , we can say that the mean of the

derivative process exists and is equal to µ ˙ ( )X t b= . Similarly, the cross-correlation
of { ( )}X t  and { ˙( )}X t  should be given by
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φ
∂
∂

φ δXX XXt s
s

t s b t bU t s b t s s t˙ ( , ) ( , ) ( ) ( ) ( )= = + − + − −2

in which δ( )⋅  denotes the Dirac delta function (see Section 2.4). The last term of

this expression is always zero, though, so the cross-correlation always exists (i.e.,
is always finite) and is given by

φXX t s b t bU t s˙ ( , ) ( )= + −2

Note that this first derivative function is discontinuous along the line t s= , so the

second partial derivative of Eq. 4.57 does not exist. We can write it formally as

φ
∂

∂ ∂
φ δ˙ ˙ ( , ) ( , ) ( )XX XXt s

t s
t s b b t s= = + −

2
2

which again emphasizes that the autocorrelation of { ˙( )}X t  is finite only for t s≠ .

The mean-squared value of the derivative process, which is the autocorrelation

function for t s= , is infinite.
This example illustrates a situation in which the time histories of { ( )}X t  are not

differentiable, but one can still consider a derivative process { ˙( )}X t , with the

limitation that it has an infinite mean-squared value. As in Example 4.16, the second
derivative exists both for t s<  and for t s> , and the limit is the same (i.e., b2) as

one approaches t s=  from either side. Nonetheless, the second derivative does
not exist for t s= . A discontinuity in a function can always be expected to contribute

such a Dirac delta function term to the derivative of the function.

***********************************************************************************************************************
Example 4.18: Consider the differentiability of the stochastic process { ( )}X t  of

Example 4.9, which has X t( )  equal to some Aj  in each finite time interval, and

with the Aj  identically distributed, mean-zero, and independent.

Taking the expected value gives µ µX At( ) = , so we can say that µ ˙ ( )X t = 0, and in

Example 4.9 we found the autocorrelation function for { ( )}X t , which can be written
as

φXX
j

t s E A U t j U t j U s j U s j( , ) ( ) [ ] [ ( ) ] [ ] [ ( ) ]= − − − +( ) − − − +( )∑2 1 1∆ ∆ ∆ ∆

This function is discontinuous on the boundaries of the dimension ∆  squares along

the diagonal. Thus, the φXX t s˙ ( , )  cross-correlation function is infinite for some

( , )t s  values:

φ δ δXX
j

t s E A U t j U t j s j s j˙ ( , ) ( ) [ ] [ ( ) ] [ ] [ ( ) ]= − − − +( ) − − − +( )∑2 1 1∆ ∆ ∆ ∆

In particular, it is infinite for s k= ∆  for any integer k , if ( ) ( )k t k− < < +1 1∆ ∆  (i.e.,

along the boundaries of the dimension ∆  squares along the diagonal). Similarly,
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φXX t s˙ ( , )  is infinite along all the t k= ∆  boundaries of the same squares along the

diagonal. Everywhere, except on the boundaries of these squares, one obtains
φXX t s˙ ( , ) = 0  and φ ˙ ˙ ( , )XX t s = 0, reflecting the fact that this process has a zero

derivative except at certain discrete times at which the derivative is infinite. This

agrees with the behavior of the time histories of the process.

***********************************************************************************************************************

Example 4.19: Consider the differentiability of the stochastic process { ( ) : }X t t ≥ 0
of Example 4.1 with X t( )( )1 0= , X t t( )( ) sinh( )2 =α β , X t t( )( ) sinh( )3 = −α β , and

P X t X t[ ( ) ( )] .( )= =1 0 50 , P X t X t P X t X t[ ( ) ( )] [ ( ) ( )] .( ) ( )= = = =2 3 0 25 .

In Example 4.1 we showed that φ α β βXX t s t s( , ) ( . ) sinh( ) sinh( )= 0 50 2  and
µX t( ) = 0. Thus, we can now take derivatives of these functions to obtain

µ φ α β β β˙ ˙( ) ,       ( , ) ( . ) sinh( )cosh( )X XXt t s t s= =0 0 50 2

and

φ α β β β˙ ˙ ( , ) ( . ) cosh( )cosh( )XX t s t s= 0 50 2 2

Inasmuch as the functions are analytic everywhere on the domain for which { ( )}X t
is defined, there is no problem of existence of the moments of the derivative.
This { ( )}X t  was defined in terms of its time histories, so one can also differentiate

those time histories and obtain corresponding time history relationships for the

derivative process { ˙( )}X t . This should give the same results as shown for the
moments of { ˙( )}X t . If the results are not consistent, it must mean that our definition

of the stochastic derivative is defective. Checking this, we find that

˙ ( ) ,       ˙ ( ) cosh( ),       ˙ ( ) cosh( )( ) ( ) ( )X t X t t X t t1 2 30= = = −α β β α β β

which gives

µ α β β α β β˙ ( ) [ ˙( )] ( . )( ) ( . )[ cosh( )] ( . )[ cosh( )]X t E X t t t≡ = + + − =0 50 0 0 25 0 25 0

φ α β α β β α β α β βXX t s t s t s˙ ( , ) ( . ) [ sinh( )][ cosh( )] [ sinh( )][ cosh( )]= + − −( )0 25

φ α β β α β β α β β α β β˙ ˙ ( , ) . [ cosh( )][ cosh( )] [ cosh( )][ cosh( )]XX t s t s t s= + − −( )0 25

These results agree exactly with those obtained from differentiating the moment

functions of { ( )}X t , confirming that our definition of the stochastic derivative is
consistent.

***********************************************************************************************************************

Example 4.20: For the stochastic process { ( )}X t  of Example 4.2 with

X t A t( ) cos( )= ω  in which A is a random variable, find µ ˙ ( )X t , φXX t s˙ ( , ) , and

φ ˙ ˙ ( , )XX t s . Confirm that differentiating the moment functions for { ( )}X t  and

analyzing the time histories of the derivative process { ˙( )}X t  give the same results.



Analysis of Stochastic Processes                          147

From Example 4.2, we know that φ ω ωXX t s E A t s( , ) ( ) cos( ) cos( )= 2  and
µ µ ωX At t( ) cos( )= . Taking derivatives of these functions gives

µ µ ω ω φ ω ω ω˙ ˙( ) sin( ),       ( , ) ( ) cos( ) sin( )X A XXt t t s E A t s= − = − 2

and

φ ω ω ω˙ ˙ ( , ) ( ) sin( ) sin( )XX t s E A t s= 2 2

The relationship for the time histories of { ˙( )}X t  is
˙( ) sin( )X t A t= − ω ω

and it is obvious that this relationship gives the same moment functions for { ˙( )}X t
as were already obtained by differentiating the moment functions for { ( )}X t .

***********************************************************************************************************************

In many cases, analysts choose to use a definition of stochastic derivative
that is more precise but also more restrictive than the one we use here. In particular,
if

lim ˙( ) ( , )
h

E X t Y t h
→

−[ ]







=

0

2
0 (4.67)

then { ˙( )}X t  is said to be the mean-square derivative of { ( )}X t . Expanding this
expression, one can show that the mean-square derivative exists if Eqs. 4.56 and
4.57 are both satisfied. In general, one must say that the mean-square derivative
does not exist if E X t[ ˙ ( )]2  is infinite. This situation is illustrated in Examples 4.16
and 4.17, in which the mean-square derivative does not exist for any t value, and in
Example 4.18, in which the same is true for certain t values. These examples
demonstrate that it may be overly restrictive to limit attention only to the mean-
square derivative.

Note that we have considered only the first derivative { ˙( )}X t  of a stochastic
process { ( )}X t , whereas our dynamics equations will usually require at least two
derivatives. In particular, we will usually need to include displacement, velocity,
and acceleration terms in our differential equations, and these can be modeled as
three stochastic processes { ( )}X t , { ˙( )}X t , and { ˙̇ ( )}X t . This presents no difficulty,
though, because we can simply say that { ˙̇ ( )}X t  is the derivative of { ˙( )}X t , reusing
the concept of the first derivative. In this way, one can define the general jth-order
derivative of { ( )}X t  by j applications of the derivative procedure.

Finally, it should also be noted that the various expressions given here for
autocorrelation or cross-correlation functions could equally well be written in terms
of autocovariance or cross-covariance functions. This follows directly from the
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fact that an autocovariance or cross-covariance function is identical to an
autocorrelation  or cross-correlation function for the special situation in which the
mean-value functions are zero. One cross-covariance result of particular significance
is the fact that the random variables X t( )  and ˙( )X t  are uncorrelated at any time t
for a covariant stationary { ( )}X t  process, which is the generalization of
E X t X t[ ( ) ˙( )] being zero for a second-moment stationary process.

4.9 Stochastic Integral
To complete our idea of stochastic calculus, we need to define stochastic integrals.
In fact, we will consider three slightly different types of stochastic integrals that
we will use in applications. The conditions for existence of a stochastic integral are
usually easier to visualize than for a stochastic derivative, which is basically the
same as for deterministic functions. Whereas existence of a derivative depends on
smoothness conditions on the original function, an integral generally exists if the
integrand is bounded and tends to zero sufficiently rapidly at any infinite limits of
integration.

The simplest integral of a stochastic process { ( )}X t  is the simple definite
integral of the form

Z X t dt
a

b
= ∫ ( ) (4.68)

For constant limits a and b, the quantity Z must be a random variable. We can
follow exactly the same approach that we used for derivatives and define a Riemann
sum that approximates Z, then say that the moments and/or other properties of Z
are the limits of the corresponding quantities for the Riemann sum. For example,
we can say that

Y t X a j tn
j

n

= +
=
∑∆ ∆( )

1

with ∆ t b a n= −( ) / . Then,

µ µ µZ
n

n
n

X
j

n

Xa

b
E Z E Y t a j t t dt≡ = = + =

→∞ →∞
=
∑ ∫( ) lim ( ) lim ( ) ( )∆ ∆

1

(4.69)



Analysis of Stochastic Processes                          149

E Z E Y t a j t a k t

t s dt ds

n
n

n
XX

k

n

j

n

XXa

b

a

b

( ) lim ( ) lim ( ) ( , )

     ( , )

2 2 2

11

= = + +

=

→∞ →∞
==
∑∑

∫∫

∆ ∆ ∆φ

φ (4.70)

and so forth. Thus, we will say that µZ  exists if the integral of µX t( )  from a to b
exists and that E Z( )2  exists if the integral of φXX t s( , )  over the square domain
exists. Clearly, these integrals will exist for finite values of a and b if the first and
second moments of { ( )}X t  are finite.

The next integral that we will consider is the stochastic process that can be
considered the antiderivative:

Z t X s ds
a

t
( ) ( )= ∫ (4.71)

with a being any constant. Equations 4.69 and 4.70 now generalize to give the
mean value function and autocorrelation function for the new process { ( )}Z t  as

µ µZ Xa

t
t E Z t s ds( ) [ ( )] ( )≡ = ∫ (4.72)

φ φXZ XXa

t
t t E X t Z t t s ds( , ) [ ( ) ( )] ( , )1 2 1 2 1 2 2

2
≡ = ∫ (4.73)

and

φ φZZ XXa

t

a

t
t t E Z t Z t s s ds ds( , ) [ ( ) ( )] ( , )1 2 1 2 1 2 1 2

12
≡ = ∫∫ (4.74)

Again, we will generally have no problem with the existence of these moments.
Also note that Eqs. 4.72–4.74 are exactly the inverse forms of the relationships in
Eqs. 4.55–4.57, confirming that { ˙( )} { ( )}Z t X t= , which is the desired inverse of
Eq. 4.71. The idea of the compatibility of our concepts of stochastic derivative and
stochastic integral will be essential in our study of dynamic systems. For example,
we will need to be able to use the usual deterministic ideas that velocity is the
derivative of displacement, and displacement is the integral of velocity when both
displacement and velocity are stochastic processes.
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There is no assurance that a stationary process { ( )}X t  will give a stationary
integral process { ( )}Z t . For example, { ( )}X t  being mean-value stationary only
ensures that µX  is independent of t; Eq. 4.72 then gives the nonstationary mean
value µ µZ Xt t( ) =  for { ( )}Z t . Similarly, a stationary autocorrelation function for
{ ( )}X t  may not give a stationary autocorrelation function for { ( )}Z t , as will be
illustrated in Example 4.21.

The third type of stochastic integral that we will use is a generalization of
Eq. 4.68 in a slightly different way. This time we will keep the limits of integration
as constants, but the integral will be a stochastic process because of the presence of
a kernel function in the integrand:

Z X t g t dt
a

b
( ) ( ) ( , )η η= ∫ (4.75)

For any particular value of the new variable η , this integral is a random variable
exactly like Eq. 4.68, and for any reasonably smooth kernel function g t( , )η , this
new family of random variables can be considered a stochastic process { ( )}Z η ,
with η  as the index parameter. From Eqs. 4.69 and 4.70, we have

µ η µ ηZ Xa

b
t g t dt( ) ( ) ( , )= ∫ (4.76)

and

φ η η φ η ηZZ XXa

b

a

b
t s g t g s dt ds( , ) ( , ) ( , ) ( , )1 2 1 2= ∫∫ (4.77)

Other properties can be derived as needed. This type of stochastic process is needed
for the study of dynamics. In the time domain analysis of Chapter 5, η  represents
another time variable, and η  is a frequency parameter in the Fourier analysis of
Chapter 6.

***********************************************************************************************************************

Example 4.21: Consider the integral process { ( ) : }Z t t ≥ 0  defined by

Z t X s ds
t

( ) ( )= ∫0

for { ( )}X t  being a mean-zero stationary stochastic process with autocorrelation
function R eXX ( ) | |τ α τ= − , in which α  is a positive constant. Find the cross-

correlation function of { ( )}X t  and { ( )}Z t  and the autocorrelation function for

{ ( )}Z t .
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From Eq. 4.73 we have

φ φ α
XZ XX

t

XX

t
t s

t
t t t s ds R t s ds e ds( , ) ( , ) ( ) |
1 2 1 2 20 1 2 20 20

2 2
1 2

2
= = − =∫ ∫ ∫ − −

For t t2 1≤  this gives

φ
α α

α α α
α α α

XZ
t s

t
t

t t t t
t t e e

e e e
( , )

( )

1 2 0
1 2

2
1

2 1 2 11
= =

−
=

−− + −
− − −

∫
and for t t2 1>  the integral must be split into two parts, giving

φ

α α

α α α α

α
α

α
α α

XZ
t s

t
t s

t

t

t
t

t
t t

t t e ds e ds

e
e

e
e e

( , )

   

1 2 20 2
1 2

1
1 2

1

2

1
1

1
2 11

= +

=
−

+
−
−

− + −

−
− −

∫ ∫

or

φ
α

α α

XZ

t t t
t t

e e
( , )

( )

1 2
2 1 2 1

=
− −− − −

The autocorrelation of { ( )}Z t  can now be found as

φ φZZ XZ

t
t t s t ds( , ) ( , )1 2 1 2 10

1
= ∫

For t t2 1≤  we find that

φ
α α

α α α

α α α
α

α α α α α

ZZ

s t st t
s

t

t

t t t t t

t t
e e

ds
e

e ds

t
e e e e e

( , )

               
( )( ) ( )( )

               [

( )

1 2 10 1

2

2 1

1
2

1 1 1

2

1 2 12 2
1

2

1

2 2 2 1 2

=
− −

+
−

= −
+ −

+
− −

−













=

− − −
−

− − −

∫ ∫

αα αα α αt e e et t t t
2

21 2 1 2 1− + + −− − − −( ) ] /

and for t t2 1>

φ
α α α α

α α

α α α α α

α α α

ZZ

s t st t t t

t t t t

t t
e e

ds t
e e e

t e e e

( , )
( )

   [ ] /

( )

( )

1 2 10 1

1
2

2 1
2

1 1

2 1

1 2 11 1 2 1

2 1 1 2

=
− −

= −
−

−
−

−











= − + + −

− − − − −

− − − −

∫

Note that this function can be combined as

φ α αα α α
ZZ

t t t tt t t t e e e( , ) [ min( , ) ] /| |
1 2 1 2

22 12 1 1 2= − + + −− − − −

for any values of t1  and t2 . In this form it is obvious that the function does have

the necessary symmetry, φ φZZ ZZt t t t( , ) ( , )1 2 2 1= . Note that { ( )}Z t  is not second-



152 Random Vibrations

moment stationary and it is not jointly second-moment stationary with { ( )}X t ,

even though { ( )}X t  is second-moment stationary.
***********************************************************************************************************************

Example 4.22: Consider the integral process { ( ) : }Z t t ≥ 0  defined by

Z t X s ds
t

( ) ( )= ∫0

for X t( )  equal to some random variable Aj  in each time increment

j t j∆ ∆≤ ≤ +( )1 , and with the Aj  being identically distributed, mean-zero, and

independent. Find the mean value function of { ( )}Z t , the cross-correlation function

of { ( )}X t  and { ( )}Z t , and the autocorrelation function for { ( )}Z t .

Because µ µX At( ) = = 0, we have µ µZ At t( ) = = 0. In Example 4.9 we found that

the autocorrelation function for { ( )}X t  is equal to E A( )2  in squares of dimension

∆  along the 45° line of the plane and zero elsewhere. To simplify the presentation

of the results, we define a new integer time function as the number of full time

increments included in [ , ]0 t :

k t t j j t j( ) ( / )  ( )= = ≤ < +Int if∆ ∆ ∆1
This allows us to classify more simply any point into one of three sets: points

within the squares of dimension ∆  along the 45° line of the ( , )t t1 2  plane are
described by k t k t( ) ( )1 2= , by k t t k t( ) [ ( ) ]1 2 1 1∆ ∆≤ < + , or by k t t( )2 1∆ ≤ <
[ ( ) ]k t2 1+ ∆ ; points below the squares are described by k t k t( ) ( )1 2> , by
t k t2 1< ( )∆ , or by t k t1 2 1≥ +[ ( ) ]∆ ; and points above the squares are described
by k t k t( ) ( )1 2< , by t k t2 1 1≥ +[ ( ) ]∆ , or by t k t1 2< ( )∆ .

Then using

φ φXZ XX

t
t t t s ds( , ) ( , )1 2 1 2 20

2
= ∫

gives

φXZ t t k t k t( , ) ( ) ( )1 2 1 20= >if 

φXZ t t E A t k t k t k t( , ) ( )[ ( ) ]  ( ) ( )1 2
2

2 1 1 2= − =∆ if 

φXZ t t E A k t k t( , ) ( )      ( ) ( )1 2
2

1 2= <∆ if 

The function φXZ t t( , )1 2  versus t2  grows linearly from zero to E A( )2 ∆  as t2
varies from k t( )1 ∆  to [ ( ) ]k t1 1+ ∆ . The same function versus t1  is a stairstep that

is constant at the level E A( )2 ∆  for t k t1 2< ( )∆ , at the level E A t k t( )[ ( ) ]2
2 1− ∆

for k t t k t( ) [ ( ) ]2 1 2 1∆ ∆≤ < + , and at zero for t k t1 2 1≥ +[ ( ) ]∆ .
Now

φ φZZ XZ

t
t t s t ds( , ) ( , )1 2 1 2 10

1
= ∫
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gives

  φZZ t t E A t k t k t( , ) ( )         ( ) ( )1 2
2

1 1 2= <∆ if 

  
φZZ t t E A k t t k t t k t k t k t( , ) ( ) ( ) [ ( ) ][ ( ) ]  ( ) ( )1 2

2
1

2
2 1 1 2 1 2= + − −( ) =∆ ∆ ∆    if

  φZZ t t E A t k t k t( , ) ( )    ( ) ( )1 2
2

2 1 2= <∆ if 
Note that if ∆  is small compared with t1  and t2  then one can say that φZZ t t( , )1 2 ≈
E A t t( ) min( , )2

1 2∆ . This expression is exact for k t k t( ) ( )1 2≠  and has an error of

order ∆2  for k t k t( ) ( )1 2= .

***********************************************************************************************************************
Example 4.23: Consider the integral process { ( )}Z t  defined by

Z t X s ds
t

( ) ( )=
−∞∫

for X t( )  equal to some random variable A  in the time increment 0 ≤ ≤t ∆ , and

equal to zero elsewhere. Find the mean-value function of { ( )}Z t , the cross-
correlation function of { ( )}X t  and { ( )}Z t , and the autocorrelation function for

{ ( )}Z t .

First we note that the { ( )}X t  process has a mean-value function and autocorrelation

function given by

µ µX At U t U t( ) ( ) ( )= −∆
and

φXX t t E A U t U t U t U t( , ) ( ) ( ) ( ) ( ) ( )1 2
2

1 1 2 2= − −∆ ∆
Now

µ µZ X

t
t s ds( ) ( )=

−∞∫
gives

µ µ µZ A At tU t U t U t( ) ( ) ( ) ( )= − + −∆ ∆ ∆

which grows linearly from zero to µA ∆  on the interval 0 ≤ ≤t ∆. Similarly,

φ φXZ XX

t
t t t s ds( , ) ( , )1 2 1 2 2

2
=

−∞∫
gives

φXZ t t E A U t U t t U t U t U t( , ) ( ) ( ) ( )[ ( ) ( ) ( )]1 2
2

1 1 2 2 2 2= − − + −∆ ∆ ∆ ∆
which is E A t( )2

2  within the square 0 1≤ <t ∆ , 0 2≤ <t ∆ , is E A( )2 ∆  for
0 1≤ <t ∆  and t2 > ∆ , and is zero elsewhere. Finally

φ φZZ XZ

t
t t s t ds( , ) ( , )1 2 1 2 1

1
=

−∞∫



154 Random Vibrations

 gives

φXZ t t E A t U t U t U t

t U t U t U t

( , ) ( )[ ( ) ( ) ( )]  

      [ ( ) ( ) ( )]
1 2

2
1 1 1 1

2 2 2 2

= − + − ×

− + −

∆ ∆ ∆

∆ ∆ ∆

which is E A t t( )2
1 2 within the square 0 1≤ <t ∆  and 0 2≤ <t ∆ , is E A t( )2

1 ∆  for
0 1≤ <t ∆  and t2 > ∆ , is E A t( )2

2 ∆  for t1 > ∆  and 0 2≤ <t ∆ , is E A( )2 2∆  for
t1 > ∆ , t2 > ∆ , and is zero elsewhere.

***********************************************************************************************************************

4.10 Gaussian Stochastic Processes
The definition of a Gaussian stochastic process is extremely simple. In particular,
{ ( )}X t  is said to be a Gaussian stochastic process if any finite set

  { ( ), ( ), , ( )}X t X t X tn1 2 L  of random variables from that process is composed of
members that are jointly Gaussian. Thus, understanding the special properties of
Gaussian processes requires only knowledge of the properties of jointly Gaussian
random variables, a number of which are covered in Examples 2.17, 2.19, 2.25,
2.32, 3.10–3.13, 3.16, and 3.23. The jointly Gaussian probability density function
for the vector   

r
LV X t X t X tn

T= [ ( ), ( ), , ( )]1 2  is

  

p u u uV n
VV

V
T

VV V
r r r r r r

( )
( )

exp ( ) ( )
/ /

= − − −








−1

2

1

22 1 2
1

π
µ µ

K
K (4.78)

and the characteristic function is

  
M iV

T
V

T
VV

r
r r r r r

( ) expθ θ µ θ θ= −( )K (4.79)

In addition (see Example 2.17), the jointly Gaussian distribution implies that each
of the components is a scalar Gaussian random variable with

p u
t

u t

tX t j
X j

j X j

X j
j( ) /

( )
( ) ( )

exp
( )

( )
= −

−



























1

2

1

21 2

2

π σ

µ

σ
(4.80)

and

M i t tX t j j X j j X jj( )( ) exp ( ) ( )θ θ µ θ σ= −( )2 2 (4.81)
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One of the key features of the Gaussian distribution is the relatively simple
form of its probability density functions and characteristic functions, with the
components of a jointly Gaussian set   { ( ), ( ), , ( )}X t X t X tn1 2 L  depending only on
the mean-value vector and the covariance matrix for the set. For a single scalar
random variable X, this reduces to dependence on only the mean value and the
variance. In addition, the form of the Gaussian probability density function often
allows analytical evaluation of quantities of interest. For example, all the moments
of a Gaussian random variable X can be described by simple relationships (see
Example 3.8). Also important is the fact that the Gaussian probability density
function p uX ( )  converges to zero sufficiently rapidly for |u| tending to infinity
that one is assured that the expectation of many functions of X will exist. For
example, E ea X( )  exists for all values of the parameter a, and that is not true for
many other unbounded random variables X.

Particularly important for application to vibration analysis is the fact that
any linear combination of jointly Gaussian random variables is itself Gaussian,
and jointly Gaussian with other such linear combinations (see Example 2.19). This
ensures that linear operations on a Gaussian stochastic process will yield other
Gaussian processes and that these new processes are jointly Gaussian with the
original process. In particular, the derivative ˙( )X t  defined in Section 4.8 is a limit
of a linear combination of the X t( )  and X t h( )+  random variables. This results in
{ ˙( )}X t  being a Gaussian stochastic process. Furthermore, { ˙( )}X t  is jointly Gaussian
with { ( )}X t , meaning that any set of random variables from the two processes,
such as   { ( ), ( ), , ( ), ˙( ), ˙( ), , ˙( )}X t X t X t X s X s X sn m1 2 1 2L L , is described by a jointly
Gaussian distribution. Similarly, the various integrals defined in Section 4.9 are
limits of linear combinations of X t j( )  random variables. Thus, if { ( )}X t  is a
Gaussian process, then any integral of { ( )}X t  is either a Gaussian random variable
or a Gaussian process and it is jointly Gaussian with the original { ( )}X t  process.

Gaussian stochastic processes play an extremely important role in practical
engineering applications. In fact, the majority of applications of stochastic methods
to the study of dynamic systems consider only Gaussian processes, even though
Gaussian is only one special case out of infinitely many that could be studied.
Similarly, the Gaussian special case occupies a very important, although not quite
so dominant, position in other engineering application of random variable and
stochastic process methods.

There are at least two fundamentally different, important reasons why the
Gaussian distribution is used so extensively in applied probability. One is
convenience, as illustrated in the preceding paragraphs. The second reason that the
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Gaussian distribution is often chosen in modeling real problems is that it often
provides quite a good approximation to measured statistical data. Presumably, this
is because of the central limit theorem. A very loose statement of this important
theorem is that if a random variable X is the sum of a large number of separate
components, then X is approximately Gaussian under weak restrictions on the joint
distribution of the components. More precisely, if X j  is the sum of the terms

  
{ , , , }Z Z Z j1 2 L , then the probability density function for the standardized random
variable ( ) /X j X Xj j−µ σ tends to a Gaussian form as j tends to infinity under weak
restrictions on the distribution of the Zk  components. One adequate set of restrictions
on the Zk  components is that they all be independent and identically distributed,
but neither the condition of identical distribution or that of independence of all the
Zk  terms is essential for the proof of the central limit theorem. In practical modeling
situations, one generally cannot prove that the central limit theorem is satisfied
inasmuch as one rarely has the information that would be needed about the joint
probability distribution of the Zk  components contributing to the quantity of interest.
On the other hand, the theorem does provide some basis for expecting a random
variable X to be approximately Gaussian if many factors contribute to its
randomness. Experience seems to confirm that this is a quite good assumption in a
great variety of situations in virtually all areas of applied probability, including
stochastic structural dynamics.

It should be noted, though, that the Gaussian distribution does have significant
limitations that may make it inappropriate for some particular problems. Most
obvious is the fact that p uX ( )  is symmetric about u X= µ  for any Gaussian random
variable. One consequence of this is that all odd central moments are zero. In
particular, the skewness (see Eq. 3.12) is zero. Similarly, the even central moments
can all be written in terms of the variance σ X

2 . For example, the fourth central
moment is 3 4σ X , so the kurtosis (see Eq. 3.13) has a value of exactly 3. It is common
to use skewness and kurtosis as additional parameters in approximating distributions
that cannot be adequately approximated as being symmetric with probability density
tails that decay like an exponential of a quadratic. Grigoriu (1995) has a complete
book on the use of non-Gaussian processes.

********************************************************************************************

Example 4.24: Consider a covariant stationary stochastic process { ( )}X t  for which

the joint probability density function of X t( )  and the derivative ˙( )X t  at the same

instant of time is given by
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p u v
u

u
v

u
X t X t( ) ˙ ( ) /

( , ) exp= − −












1

2 21 2
2

2

2π

Find the marginal probability density function p uX t( )( )  and the conditional

probability density function for the derivative, p v X t uX t˙ ( )[ | ( ) ]= . Determine whether

X t( )  is a Gaussian random variable and whether { ( )}X t  is a Gaussian stochastic

process.

To find the marginal probability density function we must integrate with respect to
v :

p u
e

u
e dv

e e

u
dvX t

u
v u

u v u

( ) /
/( )

/

/( )

/
( )

( )
= =

−
−

−∞

∞ − −

−∞

∞

∫ ∫
2

2 2
2 2 2

2 21 2
2

1 2

2

1 2π π π

Note that the integrand in the final expression is exactly of the form of a Gaussian
distribution with mean zero and variance u2 . Thus, the integral over all values of

v  must be unity and

p u
e

X t

u

( ) /
( ) =

− 2

1 2π
Comparing this with Eq. 4.80 shows that the random variable X t( )  is a Gaussian

random variable with mean zero and variance σ X t( ) /2 1 2= . The conditional

distribution can now be found as

p v X t u
p u v

p u u

v

u
X t

X t X t

X t
˙ ( )

( ) ˙ ( )

( )
/

[ | ( ) ]
( , )

( ) ( )
exp= = = −













1

2 21 2

2

2π

This conditional distribution also is seen to be of the Gaussian form, with mean

zero and conditional variance u2 . This is not enough information to conclude that

the unconditional distribution of ˙( )X t  is Gaussian, though. We can conclude that

{ ( )}X t  is not a Gaussian stochastic process, even though X t( )  is a Gaussian

random variable for every t  value. In particular, we note that a Gaussian process

and its derivative are jointly Gaussian, but the given p u vX t X t( ) ˙ ( )( , )  does not have
the jointly Gaussian form of Eq. 4.78 (which is also written out more explicitly for

two random variables in Example 3.12). Specifically, p u vX t X t( ) ˙ ( )( , )  is not a

constant multiplying an exponential of a quadratic form in u  and v . We can also
conclude that { ˙( )}X t  is not a Gaussian process by noting that the integral of a

Gaussian process is also a Gaussian process. Thus, it is not possible to have

{ ˙( )}X t  be a Gaussian process since { ( )}X t  is not a Gaussian process.
********************************************************************************************
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Exercises
*******************************************************************************
Time Histories of Stochastic Processes
*******************************************************************************
4.1 Let a stochastic process { ( ) : }X t t ≥ 0  be defined by X t Ae Bt( ) = −  in which A
and B are independent random variables with µA  and σ A

2  known and the probability
density function of B being p u b bu U uB ( ) exp( ) ( )= −  in which b > 0 is a constant.
Find the mean value function µX t( )  and the autocorrelation function φXX t s( , ) .
*******************************************************************************
4.2 Let a stochastic process { ( ) : }X t t ≥ 0  be defined by X t Ae Bet t( ) = +− −3  in
which A and B are random variables with the joint probability density function

p u v U u U u U v U vAB ( , ) ( ) ( ) ( ) ( )= − −1 1
Find the mean value function µX t( )  and the autocorrelation function φXX t s( , ) .
*******************************************************************************
4.3 Let { ( )}X t  be a stochastic process that depends on three random variables
( , , )A B C : X t A Bt C t( ) = + + 2 . To simplify the description of the random variables
let them be written as a vector   

r
V  so that the mean values are also a vector   

r
µV  and

the mean-squared values and cross-products can be arranged in a matrix   E V VT( )
r r

.
Specifically, let

  

r r r r r
V

A

B

C

E V E V VV
T=

















≡ =

















=

−

−

















, ( ) , ( )µ

1

2

3

4 1 6

1 9 0

6 0 19

(a) Find the mean value function µX t( ) .
(b) Find the autocorrelation function φXX t s( , ) .
(c) Find the mean squared value E X t[ ( )]2 .
(d) Find the variance σ X t2 ( ) .
*******************************************************************************
4.4 Let the second-moment stationary processes { ( )}X t1  and { ( )}X t2  represent
the motions at two different points in a complex structural system. Let the correlation
matrix for { ( )}X t1  and { ( )}X t2  be given by

  

R r r
r r

XX
TE X t X t

g g g g

g g g g
( ) [ ( ) ( )]

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
τ τ

τ τ τ τ

τ τ τ τ
≡ + =

+ −

− +













2 2 2

2 2 4 2

in which g e bb( ) [cos( ) ( / ) sin( | |)]| |τ ω τ ω ω ττ= +−
0 0 0  for constants b and ω0. Let

{ ( )}Z t  denote the relative motion between the two points: Z t X t X t( ) ( ) ( )= −2 1 .
(a) Find the cross-correlation function R E X t Z tX Z1 1( ) [ ( ) ( )]τ τ≡ + .
(b) Find the autocorrelation function of Z: R E Z t Z tZZ ( ) [ ( ) ( )]τ τ≡ + .
*******************************************************************************
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Stationarity
*******************************************************************************
4.5 For each of the following autocorrelation functions, tell whether the stochastic
process { ( )}X t  is second-moment stationary.

(a) φXX t s
t s

( , )
( )

=
+ −

1

1 2

(b) φXX t s
t s

U t U s( , )
( )

( | |) ( | |)=
+ −

− −
1

1
1 1

2

(c) φXX t s t s( , ) /( )= + +1 1 2 2

(d) φXX
t st s e( , ) = − −2 2

*******************************************************************************
4.6 For each of the following autocorrelation functions, tell whether the stochastic
process { ( )}X t  is second-moment stationary.

(a) φXX t s t s t s( , ) cos( ) cos( ) sin( ) sin( )= +

(b) φXX t s
t s

t s
( , )

cos( )

( )
=

−

+ −1 2

(c) φXX t s t s( , ) ( ) ( )= − −1 1

(d) φXX
t st s e U t U s( , ) ( | |) ( | |)( )= − −− − 2

1 1

*******************************************************************************
4.7 Consider a stochastic process { ( )}X t  with autocorrelation function

φXX t s
t s

t s s t s t
( , )

( )
=

+ + − +

2 2

2 2 2 21 1 2

(a) Find E Y t[ ( )]2  for t ≥ 0  and sketch it versus t.
(b) Use the limit as t →∞ of φ τXX t t( , )+  to show that { ( )}X t  tends to become

second-moment stationary in that limiting situation.

*******************************************************************************
Properties of Mean and Covariance Functions
*******************************************************************************
4.8 It is asserted that none of the following φ( , )t s  functions could be the
autocorrelation function for any stochastic process. That is, there is no stochastic
process { ( )}X t  such that E X t X s t s[ ( ) ( )] ( , )=φ . For each of the φ  functions, give
at least one reason why the assertion must be true.
[Note: The Schwarz inequality is the only condition you should need to check for
nonnegative definiteness.]
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(a) φ( , )
( ) ( )

t s
s t

=
+ +

1

1 22 2

(b) φ( , )
( )

( )
t s

s t

s t
=

−

+ −

2

21

(c) φ( , ) ( ) ( )( ) ( )t s e U t s e U s ts t s t= − + −− − − −2 22

(d) φ( , ) ( ) ( )( ) ( )t s e U t s e U t ss t s t= + + − −− − − −2 22

(e) φ( , ) ( ) ( )t s s t e s t= − − −2 2

*******************************************************************************
4.9 It is asserted that none of the following φ( , )t s  functions could be the
autocorrelation function for any stochastic process. That is, there is no stochastic
process { ( )}X t  such that E X t X s t s[ ( ) ( )] ( , )=φ . For each of the φ  functions, give
at least one reason why the assertion must be true.
[Note: The Schwarz inequality is the only condition you should need to check for
nonnegative definiteness.]

(a) φ( , )
( ) ( )

t s
s

s t
=

+ +1 12 2

(b) φ( , ) ( )t s e s t= − − −1
2

(c) φ( , ) ( ) ( )( )t s U t s e U t ss t= − − + + −− −1 12 2 2 22

(d) φ( , ) /( )t s t s= +1 1 2 4

(e) φ( , ) ( ) cos( )t s s t s t= − −2

*******************************************************************************
4.10 It is asserted that none of the following R( )τ  functions could be the
autocorrelation function for any stochastic process. That is, there is no stochastic
process { ( )}X t  such that E X t X s R t s[ ( ) ( )] ( )= − . For each of the R functions, give
at least one reason why the assertion must be true.
[Note: The Schwarz inequality is the only condition you should need to check for
nonnegative definiteness.]

(a) R e U( ) ( )τ ττ= − 2

(b) R( ) /( )τ τ τ= +2 41

(c) R e U( ) ( )τ ττ= −−2 22
1

(d) R e( ) sin( )τ ττ= −2 2
5
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*******************************************************************************
4.11 Assume that for a stationary process { ( )}X t  you know a conditional probability
density function of the form p v X t uX t( )[ | ( ) ]+ =τ . Furthermore, assume that

lim [ | ( ) ] ( )( ) ( )
τ

τ
→∞

+ = =p v X t u p vX t X t  for any u and t values.

Give an integral expression for the RXX ( )τ  autocorrelation function in terms of
the conditional probability density function.
(It will be shown in Chapter 9 that a conditional probability density function of this
type can sometimes be derived from a Fokker-Planck equation.)
*******************************************************************************
Continuity
*******************************************************************************
4.12 For each of the following φXX t s( , )  autocorrelation functions, identify any t
values at which { ( )}X t  is not mean-square continuous.

(a) φXX t s
t s

U t U s( , )
( )

( | |) ( | |)=
+ −

− −
1

1
1 1

2

(b) φXX t s
t s

( , ) =
+ +

1

1 2 2

(c) φ
π π

XX t s t s U t U s( , ) cos( ) cos( ) | | | |= −








 −











2 2

*
*****************************************************************************
4.13 For each of the following φXX t s( , )  autocorrelation functions, identify any t
values at which { ( )}X t  is not mean-square continuous.

(a) φXX t s t s U t U s( , ) ( ) ( ) ( ) ( )= − − − −1 1 1 12 2 2 2

(b) φXX t s t s t s( , ) cos( ) cos( ) sin( ) sin( )= +

(c) φ π πXX t s t s U t U s( , ) cos( ) cos( ) | | | |= −( ) −( )
*******************************************************************************
Derivatives
*******************************************************************************
4.14 For each of the following φXX t s( , )  autocorrelation functions, determine
whether there exist φXX t s˙ ( , )  and/or φ ˙ ˙ ( , )XX t s  functions that are finite for all ( , )t s
values. Identify the ( , )t s  values for which a finite value of either of the functions
does not exist. Also give the value of E X t[ ˙ ( )]2  for all t values for which it is finite.

(a) φXX
t st s e( , ) | |= − −

(b) φXX
t st s e U t s( , ) ( )( )= − − 2

(c) φXX t s t s U t U s( , ) ( ) ( ) ( ) ( )= − − − −1 1 1 12 2 2 2
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*******************************************************************************
4.15 For each of the following φXX t s( , )  autocorrelation functions, determine
whether there exist φXX t s˙ ( , )  and/or φ ˙ ˙ ( , )XX t s  functions that are finite for all ( , )t s
values. Identify the ( , )t s  values for which a finite value of either of the functions
does not exist. Also give the value of E X t[ ˙ ( )]2  for all t values for which it is finite.

(a) φXX
t st s e U t U s

U t U s

t s
( , ) ( ) ( )

[ ( )][ ( )]

( )

( )= +
− −

+ −

− − 2 1 1

1 2

(b) φXX
t st s t sU t U t U s U s e U t U s( , ) ( ) ( ) ( ) ( ) [ ( )][ ( )]| |= − − + − − − −− −1 1 1 1 1 1

*******************************************************************************
4.16 Consider the derivative of the { ( )}X t  process of Exercise 4.7 with

φXX t s
t s

t s s t s t
( , )

( )
=

+ + − +

2 2

2 2 2 21 1 2
Find the limit  as t →∞ of E X t[ ˙ ( )]2 , the mean-square value of the derivative.
*******************************************************************************
4.17 For each of the following RXX ( )τ  stationary autocorrelation functions,
determine whether there exist RXẊ ( )τ , RXX˙ ˙ ( )τ , RXX˙ ˙̇ ( )τ , and RXX˙̇ ˙̇ ( )τ  functions
that are finite for all τ  values. Identify the τ  values for which a finite value of any
of the R functions does not exist. Also give the values of E X t[ ˙ ( )]2  and E X t[ ˙̇ ( )]2

if they are finite. In each case, a and b are real constants and a > 0.

(a) R eXX
a( )τ τ= − 2

(b) R e bXX
a( ) cos( )| |τ ττ= −

(c) R a eXX
a( ) ( | |) | |τ τ τ= + −1

*******************************************************************************
4.18 For each of the following RXX ( )τ  stationary autocorrelation functions,
determine whether there exist RXẊ ( )τ , RXX˙ ˙ ( )τ , RXX˙ ˙̇ ( )τ , and RXX˙̇ ˙̇ ( )τ  functions
that are finite for all τ  values. Identify the τ  values for which a finite value of any
of the R functions does not exist. Also give the values of E X t[ ˙ ( )]2  and E X t[ ˙̇ ( )]2

if they are finite. In each case, a and b are real constants and a > 0.
(a) R b bXX ( ) /( )τ τ= +2 2 2

(b) R eXX
a( )

| | | |τ
τ τ= −









 −1

2
(c) R aXX ( ) sin( ) /τ τ τ=
*******************************************************************************
4.19 Consider the second-order stochastic process { ( )}X t  of Exercise 4.13(a) with
µX t( ) ≡ 0, and autocorrelation function

φXX t s t s U t U s( , ) ( ) ( ) ( ) ( )= − − − −1 1 1 12 2 2 2

(a) Find φ ˙ ˙̇ ( , )XX t s  for all ( , )t s  values for which it exists and identify any ( , )t s
values for which it does not exist.
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(b) Find φ ˙̇ ˙̇ ( , )XX t s  for all ( , )t s  values for which it exists and identify any ( , )t s
values for which it does not exist

*******************************************************************************
4.20 Consider the stochastic process { ( )}X t  of Exercise 4.1 with X t Ae Bt( ) = − , in
which A and B are independent random variables with µA  and σA

2  known and
p u b bu U uB ( ) exp( ) ( )= −  with b > 0.

(a) Find the µ ˙ ( )X t  mean-value function of the derivative process { ˙( )}X t .
(b) Find the φXX t s˙ ( , )  cross-correlation function between { ( )}X t  and the derivative

process.
(c) Find the φ ˙ ˙ ( , )XX t s  autocorrelation function of the derivative process.
(d) Confirm that µ ˙ ( )X t , φXX t s˙ ( , ) , and φ ˙ ˙ ( , )XX t s  are the same whether determined

from derivatives of the moment functions for { ( )}X t  or by analyzing the time
histories of the { ˙( )}X t  derivative process.

*******************************************************************************
4.21 Consider the stochastic process { ( )}X t  of Exercise 4.2 with
X t Ae Bet t( ) = +− −3 , in which A and B are random variables with the joint
probability density function p u v U u U u U v U vAB ( , ) ( ) ( ) ( ) ( )= − −1 1 .

(a) Find the µ ˙ ( )X t  mean-value function of the derivative process { ˙( )}X t .
(b) Find the φXX t s˙ ( , )  cross-correlation function between { ( )}X t  and the derivative

process.
(c) Find the φ ˙ ˙ ( , )XX t s  autocorrelation function of the derivative process.
(d) Confirm that µ ˙ ( )X t , φXX t s˙ ( , ) , and φ ˙ ˙ ( , )XX t s  are the same whether determined

from derivatives of the moment functions for { ( )}X t  or by analyzing the time
histories of the { ˙( )}X t  derivative process.

*******************************************************************************
4.22 Consider the stochastic process { ( )}X t  of Exercise 4.3 with
X t A Bt C t( ) = + + 2 , in which the random variables ( , , )A B C  are arranged in a
vector with

  

r r r r r
V

A

B

C

E V E V VV
T=

















≡ =

















=

−

−

















, ( ) , ( )µ

1

2

3

4 1 6

1 9 0

6 0 19

(a) Find the µ ˙ ( )X t  mean-value function of the derivative process { ˙( )}X t .
(b) Find the φXX t s˙ ( , )  cross-correlation function between { ( )}X t  and the derivative

process.
(c) Find the φ ˙ ˙ ( , )XX t s  autocorrelation function of the derivative process.
(d) Confirm that µ ˙ ( )X t , φXX t s˙ ( , ) , and φ ˙ ˙ ( , )XX t s  are the same whether determined

from derivatives of the moment functions for { ( )}X t  or by analyzing the time
histories of the { ˙( )}X t  derivative process.

*******************************************************************************
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4.23 Consider a stochastic process { ( )}Y t  used to model the ground acceleration
during an earthquake. This { ( )}Y t  is formed by multiplying a stationary process
{ ( )}X t  by a specified time function. In particular, Y t X t a t e U tb t( ) ( ) ( )= −  in which
a and b are positive constants. Presume that the constant standard deviations σ X
and σ Ẋ  are known and that µX = 0 .
(a) Find E Y t[ ( )]2 .
(b) Find E Y t[ ˙ ( )]2 .
(c) Find E Y t Y t[ ( ) ˙( )].
*******************************************************************************
4.24 Consider a stochastic process { ( )}X t  with mean µX t( )  and variance σ X t2 ( )
at any time t. Let the conditional distribution of the derivative of the process be
given by

p v X t u v buX t˙ ( )[ | ( ) ] ( )= = −δ

in which b is some positive constant and δ( )⋅  is the Dirac delta function.
(a) Find E X t X t u[ ˙( ) | ( ) ]= , E X t X t X t u[ ( ) ˙( ) | ( ) ]= , and E X t X t u[ ˙ ( ) | ( ) ]2 = .
(b) Find E X t[ ˙( )], E X t X t[ ( ) ˙( )], and E X t[ ˙ ( )]2  as functions of µX t( )  and σ X t2 ( ) .
(c) Is it possible for { ( )}X t  to be mean-value stationary? That is, is the given

information consistent with µX t( )  being constant and µ ˙ ( )X t  being zero?
(d) Show that it is not possible for { ( )}X t  to be second-moment stationary by

showing that the information found in solving part (c) is inconsistent with
E X t[ ( )]2  and E X t[ ˙ ( )]2  being constant.

*******************************************************************************
4.25 Let { ( )}X t  be a stationary stochastic process with known values of E X t[ ( )]2 ,
E X t[ ˙ ( )]2 , and E X t[ ˙̇ ( )]2 . Find E X t X t[ ˙̇ ( ) ˙̇ (̇ )], E X t X t[ ˙( ) ˙̇ (̇ )], and E X t X t[ ( ) ˙̇ (̇ )] in
terms of the known quantities. (Each dot denotes a derivative with respect to t.)
********************************************************************************************

4.26 Let { ( )}X t  be a stationary stochastic process with known values of E X t[ ( )]2 ,

E X t[ ˙ ( )]2 , E X t[ ˙̇ ( )]2 , and E X t[ ˙̇˙ ( )]2 . Find E X t X t[ ˙̇ (̇ ) ˙̇̇̇ ( )] , E X t X t[ ˙̇ ( ) ˙̇̇̇ ( )] ,

E X t X t[ ˙( ) ˙̇̇̇ ( )], and E X t X t[ ( ) ˙̇̇̇ ( )] in terms of the known quantities. (Each dot denotes

a derivative with respect to t.)
*******************************************************************************
Integrals
*******************************************************************************
4.27 Let { ( ) : }X t t ≥ 0  have the autocorrelation function φXX

c t tt t be( , ) ( )
1 2

1 2= − +

with b and c being positive constants, and let{ ( ) : }Z t t ≥ 0  be defined by

Z t X s ds
t

( ) ( )= ∫0

Find the φXZ t t( , )1 2  and φZZ t t( , )1 2  functions.
*******************************************************************************
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4.28 Let { ( ) : }X t t ≥ 0  have φXX t t b t t U t U c t U t U c t( , ) ( ) ( ) ( ) ( )1 2 1 2 1 1 2 2= − −  with
b and c being positive constants, and let{ ( ) : }Z t t ≥ 0  be defined by

Z t X s ds
t

( ) ( )= ∫0

Find the φXZ t t( , )1 2  and φZZ t t( , )1 2  functions.
*******************************************************************************
4.29 Let { ( ) : }X t t ≥ 0  have φXX t t b t c t c( , ) ( ) ( )1 2 1

2
2

2= + +− −  with b and c being
positive constants, and let{ ( ) : }Z t t ≥ 0  be defined by

Z t X s ds
t

( ) ( )= ∫0

Find the φXZ t t( , )1 2  and φZZ t t( , )1 2  functions.
*******************************************************************************

4.30 Let { ( )}X t  have the autocorrelation function φXX
c t tt t be( , ) (| | | |)

1 2
1 2= − +

with b and c being positive constants, and let { ( )}Z t  be defined by

Z t X s ds
t

( ) ( )=
−∞∫

Find the φXZ t t( , )1 2  and φZZ t t( , )1 2  functions.
*******************************************************************************
4.31 Let { ( )}X t  have φXX t t b c t c t U c t U c t( , ) ( | |) ( | |) ( | |) ( | |)1 2 1 2 1 2= − − − −  with
b and c being positive constants, and let { ( )}Z t  be defined by

Z t X s ds
t

( ) ( )=
−∞∫

Find the φXZ t t( , )1 2  and φZZ t t( , )1 2  functions.
*******************************************************************************
4.32 Let { ( )}X t  have the autocorrelation function

 φXX
c t t a t tt t be( , ) (| | | |) | |

1 2
1 2 1 2= − + − −

with a, b and c being positive constants, and let { ( )}Z t  be defined by

Z t X s ds
t

( ) ( )=
−∞∫

Find the φXZ t t( , )1 2  function.
*******************************************************************************
Gaussian Processes
*******************************************************************************
4.33 Consider a covariant stationary stochastic process { ( )}X t  for which the joint
probability density function of the process and its derivative is given by

p u v
u u v

X t X t( ) ˙ ( )( , )
| |

exp
( )

= −
+









2

1

2

2 2

π
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(a) Find the marginal probability density function p uX t( )( ) . Is it Gaussian?
(b) Find the conditional probability density function for the derivative,

p v X t uX t˙ ( )[ | ( ) ]= . Is it Gaussian?
(c) Find the conditional mean and variance of ˙( )X t , given the event X t u( ) = .
(d) Is either { ( )}X t  or { ˙( )}X t  a Gaussian process? Briefly explain your answer.
[Hint: See Example 4.24.]
*******************************************************************************
4.34 Consider a covariant stationary stochastic process { ( )}X t  for which the joint
probability density function of the process and its derivative is given by

p u v
u

eX t X t
u u v

( ) ˙ ( )

/
| |( , )

| |
= − −2 1 2

2 22 2

π
(a) Find the marginal probability density function p uX t( )( ) . Is it Gaussian?
(b) Find the conditional probability density function for the derivative,

p v X t uX t˙ ( )[ | ( ) ]= . Is it Gaussian?
(c) Find the conditional mean and variance of ˙( )X t , given the event X t u( ) = .
(d) Is either { ( )}X t  or { ˙( )}X t  a Gaussian process? Briefly explain your answer.
[Hint: See Example 4.24.]
*******************************************************************************
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Chapter 5
Time Domain Linear Vibration
Analysis

5.1 Deterministic Dynamics
Before beginning our study of stochastic dynamics, we will review some of the
fundamental ideas of deterministic linear time domain dynamic analysis. For the
moment, we will consider our linear time-invariant system to have one scalar
excitation f t( )  and one scalar response x t( ) . In Chapter 8, we will use the idea
of superposition to extend this analysis to any number of excitation and response
components. Treating the excitation as the input to our linear system and the
response as its output gives a situation that can be represented by the schematic
diagrams in Fig. 5.1.

The function h tx ( )  in Fig. 5.1 is defined as the response of the system to
one particular excitation. In particular, if f t t( ) ( )= δ  then x t h tx( ) ( )= , in which
δ( )⋅  is the Dirac delta function, as introduced in Section 2.4 and explained more
fully in Appendix A. We will investigate how to find the h tx ( )  function in the
following section, but first we want to emphasize that this single function is
adequate to characterize the response of the system to any excitation f t( ) . The
steps shown in Fig. 5.1 illustrate this idea. We derive the result by superposition,
first writing f t( )  as a superposition of Dirac delta functions (see Appendix A).
In particular, we write f t( )  as the convolution integral:

f t f s t s ds f t r r dr( ) ( ) ( ) ( ) ( )= − ≡ −
−∞

∞

−∞

∞∫ ∫δ δ (5.1)

in which the first integral is illustrated in Fig. 5.1(c), and the final form is
obtained by the change of variables r t s= − . (Both of the two equivalent forms
are given because either may be more convenient for use in a particular
situation.) Now we note that our definition of the h tx ( ) function ensures that the
excitation component δ( )t s−  will induce a response h t sx ( )−  or, equivalently,
that δ( )r  will induce h rx ( ) . Multiplying these delta function pulses of excitation
by their amplitudes from Eq. 5.1 and superimposing the responses gives
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x t f s h t s ds f t r h r drx x( ) ( ) ( ) ( ) ( )= − ≡ −
−∞

∞

−∞

∞∫ ∫ (5.2)

Either of the integrals in Eq. 5.2 is called the Duhamel convolution integral for
the linear system, and the function h tx ( )  is called the impulse response function
for response x of the system.

It should be noted that the definition of h tx ( )  as the x t( )  response to
f t t( ) ( )= δ  includes the condition that h tx ( )  is the response when there has never

been any other excitation of the system except the pulse at time t = 0 . In
particular, h tx ( )  is the response when the initial conditions on the system are
such that x t( )  and all of its derivatives are zero at time t → −∞ . A system is said
to be causal if h tx ( ) ≡ 0  for t < 0 . This simply means that the response to an

Figure 5.1 Schematic of general linear system.

t

x(t) =
−∞

∞

∫ f(s)hx(t-s)ds

s

x(t)

hx(t)

x(t)

s

f(t)

δ(t)

f(s)δ(t–s)

f(t)

LINEAR SYSTEM
hx(t)

(a) General input-output relationship

LINEAR SYSTEM
hx(t)

(b) Definition of impulse response function

LINEAR SYSTEM
hx(t)

(c) Component of total response 

LINEAR SYSTEM
hx(t)

(d) Total response by superposition 
−∞

∞

∫ f(s)δ(t-s)dsf(t) =

t

t

t

t t

t

t

f(s)hx(t-s)
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excitation f t t( ) ( )= δ  does not begin to appear until time t = 0 , which we would
certainly expect to be true for a physical system. We do not expect the response
to precede the excitation, but one should keep in mind that this is a condition of
physics and cannot be proved mathematically. For a causal system, note that the
limits of integration in Eq. 5.2 can be modified as

x t f s h t s ds f t r h r drx
t

x( ) ( ) ( ) ( ) ( )= − ≡ −
−∞

∞∫ ∫0
(5.3)

The term f s h t sx( ) ( )−  in the first integral of Eq. 5.3 gives the response at time t
due to an excitation pulse f s t s( ) ( )δ −  at time s for s t≤ . Similarly,
f t r h rx( ) ( )−  in the second integral gives the response at time t to an excitation

pulse f t r r( ) ( )− δ  at time ( )t r−  for r ≥ 0. For reasons of convenience we will
use the –∞ to ∞ limits of Eq. 5.2 in general, with the causal nature of h tx ( )  being
taken into account as needed in specific examples.

It is also instructive to consider the steady-state response to a static
excitation f t( )  that has a constant value f0  for all t. Equation 5.2 gives this
steady-state response as x t f hx static( ) ,= 0 , with

h h r drx static x, ( )≡
−∞

∞∫ (5.4)

Thus, the system has a static steady-state x response to this static excitation if and
only if hx static,  is finite. Of course, the condition for h rx ( )  to be integrable so
that | |,hx static < ∞ is that h rx ( )  tends to zero faster than r−1 as r goes to infinity.
We will find it convenient in the following discussions to classify any linear
system as having a bounded or infinite static response based on whether
| |,hx static < ∞ or | |,hx static = ∞, respectively.

In some situations it is more convenient to consider the response of the
linear system to be a superposition of the effects of some initial conditions at a
fixed time t0  and the effects of the part of the excitation occurring after time t0 .
That is, if a sufficient set of initial conditions is known at time t0 , then we do not
need to know the excitation prior to time t0  in order to find the dynamic
response after time t0 . The response of the system caused by excitation after
time t0  is found by limiting the range of integration in the convolution integrals
of Eqs. 5.2 or 5.3 to include only s t≥ 0  or r t t≤ − 0 , and the additional term
giving the response due to the initial conditions is found by considering the
homogeneous system with f t( ) = 0 .
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Note that the equations presented so far have been restricted to linear
systems that do not vary with time. It is also possible to use the basic formulation
presented here for linear systems with time-varying properties. The basic change
is to replace h t sx ( )−  with an h t sxf ( , )  function of two time parameters. The
fundamental convolution integral of Eq. 5.2 then becomes

x t f s h t s dsxf( ) ( ) ( , )=
−∞

∞∫ (5.5)

Substituting f s s t( ) ( )= −δ 0  into this equation gives x t h t txf( ) ( , )= 0 , which
reveals the meaning of h t sxf ( , ) . Precisely, h t sxf ( , )  is the x t( )  response at time
t due to an excitation that consists only of a Dirac delta function at time s. For the
time-invariant situation this, of course, reduces to the h t sx ( )−  function that we
have been using.

The definition in Eq. 5.5 can also be extended to give

˙( ) ( ) ( , )˙x t f s h t s dsxf=
−∞

∞∫

for the derivative of x t( ) , but this quantity can also be obtained by
differentiating Eq. 5.5, giving

˙( ) ( ) ( , )x t f s
t

h t s dsxf=
−∞

∞∫ ∂
∂

Thus,

h t s
t

h t sxf xf˙ ( , ) ( , )=
∂
∂

(5.6)

which includes the special case of h t h tx x˙ ( ) ( )= ′  for the time-invariant system.

In this book we will generally restrict our attention to time-invariant
systems, but there will be some situations in which it will be useful to consider
the time-varying formulation of Eq. 5.5.

5.2 Evaluation of Impulse Response Functions
We will be primarily concerned with analysis of the dynamics of systems
governed by differential equations. A general form of such an nth-order linear
constant-coefficient differential equation can be written as
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a
d x t

dt
f tj

j

j
j

n ( )
( )

=
∑ =

0

(5.7)

By its definition, the impulse response function for such a system must satisfy the
corresponding differential equation

a
d h t

dt
tj

j
x
j

j

n ( )
( )

=
∑ =

0

δ (5.8)

subject to the boundary condition that h tx ( )  and all of its derivatives tend to zero
as t → −∞ . An obvious difficulty with Eq. 5.8 is the fact that the right-hand side
is not truly a function. The nature of the Dirac delta function, though, turns out to
be a definite advantage. In particular, we know that h tx ( )  is identically zero for
t < 0 , so we need to be concerned only with the differential equation for values
of t that are greater than or equal to zero. Clearly, we must be very careful at
t = 0 , but for t > 0  the differential equation is homogeneous:

a
d h t

dt
tj

j
x
j

j

n ( )

=
∑ = >

0

0 0for (5.9)

To have a unique solution to this nth-order differential equation, we must have n
initial conditions or boundary conditions. We will use initial values of h tx ( )  and
its first ( )n −1  derivatives immediately after time zero. In particular, we will
write hx ( )0+  for the limit of h tx ( )  as t tends to zero from the positive side.
Thus, the initial information we need can be described as the values of h tx ( )  and
its first ( )n −1  derivatives at time t = +0 . We must derive these initial conditions
from the behavior of Eq. 5.8 in the neighborhood of t = 0 .

Inasmuch as δ( )t  is infinite for t = 0 , Eq. 5.8 tells us that at least one of the
terms on the left-hand side of the equation must also be infinite at t = 0 . Let us
presume for the moment that it is the jth-order term that is infinite. In particular,
we will assume that

d h t

dt
b t

j
x
j
( )

( )= δ

for some b value. This causes difficulties, though, unless j n= . In particular, we
now have
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d h t

dt
b

d t

dt
b t

j
x

j

+

+
= ≡ ′

1

1
( ) ( )

( )
δ

δ

As explained in Appendix A, the precise definition of δ( )t  is in terms of
the limit of a sequence involving bounded functions. For example, if we consider
δ( )t  to be the limit as ∆ → 0  of [( | | / ) / ] ( | |)1− −t U t∆ ∆ ∆ , as shown in Fig. 5.2,
then we have ′δ ( )t  as a limit of [ ( ) / ] ( | |)− −sgn t U t∆ ∆2  so that | ( ) | / ( )′ → ∞δ δt t
as ∆ → 0 . This same result holds true for any sequence that we might consider as
tending to ′δ ( )t . Thus, we must consider the magnitude of ′δ ( )t  to be infinitely
larger than that of δ( )t , so we cannot satisfy Eq. 5.8 in the neighborhood of the
origin if the jth derivative of h tx ( )  is like δ( )t  and the ( )j +1 st  derivative also
appears in the equation. On the other hand, if we say that the nth derivative of
h tx ( )  in the neighborhood of the origin is b tδ( ) , then all the other terms on the
left-hand side of Eq. 5.8 are finite, so the equation can be considered satisfied at
the origin if b an= −1. Using

d h t

dt
a t t

n
x
n n
( )

( ) | |= −1δ      for very small (5.10)

now gives us the initial conditions for Eq. 5.9 at time t = +0 . In particular, the
integral of Eq. 5.10 gives

d h t

dt
a U t t

n
x

n n

−

−
−=

1

1
1( )

( ) | |     for very small 

Figure 5.2 Possible approximations for the Dirac delta function and its derivative.

′δ (t)δ( t)

−∆ −∆

−
1

∆2

1

∆2

1
∆

t t
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in which U t( )  is the unit step function (see Eqs. 2.5 and 2.14). Thus,

d h t

dt
a

n
x

n
t

n

−

−
=

−










 =

+

1

1
0

1( )
(5.11)

Further integrations give continuous functions, so

d h t

dt
j n

j
x
j

t

( )









 = ≤ −

= +0

0 2     for (5.12)

This now provides adequate conditions to ensure that we can find h tx ( )  as a
unique solution of Eq. 5.9.

Inasmuch as determination of the impulse response function involves
finding the solution to an initial condition problem, it is closely related to the
general problem mentioned at the end of Section 5.1 regarding finding the
response of a system with given initial conditions. In general, we expect initial
conditions to be given as values of x t( )0  and the derivatives x tj( )( )0  for
j n= −1 1, ,L . We have already found that h tx ( )  is exactly the solution to the

problem with the initial conditions given in Eqs. 5.11 and 5.12. Thus, the
response resulting from having the ( )n −1 st-order derivative be x tn( )( )−1

0  at
time t0 , instead of an

−1 at time 0+, is simply [ ( ) / ] ( )( )x a h t tn
n x

− + − −1 1
00 . The

responses to other initial conditions at time t0  can also be found by first placing
the initial value at time 0+, then shifting the time axis of the response by the
amount t0 .

We will now derive the impulse response functions for some example
problems, each of which is described by a constant-coefficient differential
equation. We will also list one physical system that is described by each of the
differential equations. It should be kept in mind, though, that the impulse
response function characterizes the dynamic behavior of any system governed by
the given differential equation and not only the particular physical example that
is given. Inasmuch as the class of systems governed by any given differential
equation is much broader than any particular example that we might give, it is
useful to consider the examples to be defined by the differential equations, not by
the physical examples cited.
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********************************************************************************************

Example 5.1: Consider a linear system governed by the first-order differential

equation

c x t k x t f t˙( ) ( ) ( )+ =
The accompanying sketch shows one

physical system that is governed by this

differential equation, with k  being a spring

stiffness, c  a dashpot value, and f t( )  an

applied force. Find the impulse response

function h tx ( )  such that Eq. 5.2 describes

the solution of the problem.

Rewriting Eqs. 5.9 and 5.11 gives

c
dh t

dt
k h t tx

x
( )

( )+ = >0 0for 

with h cx ( )0 1+ −= . Taking the usual approach of trying an exponential form for

the solution of a linear differential equation, we try h t a ex
b t( ) = . This has the

proper initial condition if a c= −1, and it

satisfies the equation if c b k+ = 0 , or

b k c= − / , so the answer is

h t c e U tx
k t c( ) ( )/= − −1

Taking the derivative of this function gives

′ = − + = − +− − − − − − −h t k c e U t c e t k c e U t c tx
k t c k t c k t c( ) ( ) ( ) ( ) ( )/ / /2 1 2 1δ δ

in which the last term has been simplified by taking advantage of the fact that

e k t c− =/ 1 at the one value for which δ( )t  is not zero. Substitution of h tx ( )  and
′h tx ( )  confirms that we have, indeed, found the solution of the differential

equation c h t k h t tx x′ + =( ) ( ) ( )δ .

Note also that

h h r dr kx static x, ( )≡ = < ∞
−∞

∞ −∫ 1

so the response for this system has a bounded static value. For the physical

model shown, it is fairly obvious that the static response to force f0  should be

f k0 / , so it should be no surprise that h kx static, = −1

********************************************************************************************

Example 5.2: Consider a linear system governed by the differential equation
m x t c x t f t˙̇ ( ) ˙( ) ( )+ =

The accompanying sketch shows one

physical system that is governed by this

differential equation, with c  being a

dashpot value and f t( )  the force applied

to the mass m . Find the impulse function

c–1
hx(t)

t

f (t)

x(t)

c

k

f (t)

c

x(t)

m
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h tx ( )  such that Eq. 5.2 describes the solution of the problem.

This time we obtain

m
d h t

dt
c

dh t

dt
tx x

2

2
0 0

( ) ( )
+ =      for >

with ′ =+ −h mx ( )0 1 and hx ( )0 0+ = . Proceeding as before, we find that the

homogeneous equation is satisfied by a eb t  with m b c b2 0+ = . Thus, b = 0 and

b c m= − /  are both possible, and we must consider the general solution to be the

linear combination of these two terms: h t a a ex
ct m( ) /= + −

1 2 . Meeting the initial

conditions at t = +0  then gives − = −a c m m2
1/  and a a1 2 0+ = , so

a a c1 2
1= − = −  and the impulse response function is

h t c e U tx
c t m( ) ( ) ( )/= −− −1 1

Note that hx static, = ∞ for this system, so the

static response of x t( )  is infinite, which

agrees with what one would anticipate for the

physical model shown.

One may also note a strong similarity

between Examples 5.1 and 5.2. In particular, if we rewrite Example 5.2 in terms

of y t x t( ) ˙( )= , then the equation is
m y t c y t f t˙( ) ( ) ( )+ =

which is identical to the equation for x t( )  in Example 5.1 if c  is replaced by m
and k  is replaced by c , showing that h ty ( ) = m e U tct m− −1 / ( ) . However, the

impulse response for y t( )  should be exactly the derivative of that for x t( ) , so

the solution to Example 5.1 gives us

′ = = − −h t h t m e U tx y
c t m( ) ( ) ( )/1

which does agree with the h tx ( )  that we derived directly for this problem. Also,

this shows that the static response of ˙( )x t  for this system is finite, even though

that of x t( )  is infinite.

********************************************************************************************

Example 5.3: Consider a linear system governed by the differential equation
m x t c x t k x t f t˙̇ ( ) ˙( ) ( ) ( )+ + =

The accompanying sketch shows one

physical system that is governed by this

differential equation, with m  being a mass,

k  being a spring stiffness, and c  being a

dashpot value. This system is called the

single-degree-of-freedom system and will play a key role in our study of

stochastic dynamics, but at this point it is simply one more example of a relatively

simple dynamical system. Find the impulse function h tx ( )  such that Eq. 5.2

describes the solution of the problem.

hx(t)

t

c–1

f (t)

x(t)

m

k

c
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Provided that m ≠ 0 , we can divide the equation by m  to obtain another common

form of the governing equation as

˙̇ ˙ ( ) /x x x f t m+ + =2 0 0
2ζ ω ω

in which ω0
1 2≡ ( / ) /k m  and ζ = c k m/[ ( ) ]/2 1 2  are called the undamped natural

circular frequency and the fraction of critical damping, respectively, of the

system. In the same way as we analyzed Examples 5.1 and 5.2, we find that the

response h tx ( )  to f t t( ) ( )= δ  must satisfy

d h t

dt

dh t

dt
h t tx x

x

2

2 0 0
22 0 0

( ) ( )
( )+ + = >ζ ω ω for 

with ′ =+ −h mx ( )0 1 and hx ( )0 0+ = . We will present results only for the situation

with | |ζ <1, because that is the situation that is usually of most practical interest.1

For | |ζ <1 the general solution to the homogeneous equation can be written as

h t e A t B tx
t

d d( ) [ cos( ) sin( )]= +−ζω ω ω0 , in which ω ω ζd = −0
2 1 21( ) /  is called

the damped natural circular frequency. Applying the initial conditions at time

t = +0  then gives

h t
e

m
t U tx

t

d
d( ) sin( ) ( )=

−ζ ω

ω
ω

0

The shape of this function is

shown in the accompanying sketch

for the special case of ζ = 0 05. .

The exponential envelope shown

dashed in the figure simply omits

the sinusoidal term of h tx ( ) .

Based on the physical model

shown, we can predict that the static response of this equation will be bounded

with hx static, = −k 1, as in Example 5.1, and integration of h tx ( )  confirms that this

is true.

********************************************************************************************

Note that the examples included here have been restricted to time-invariant
systems. In general, it is more difficult to find the h t sxf ( , )  function applying to a
time-varying system. If the linear system is governed by a differential equation
with time-varying coefficients, then the principle for finding h t sxf ( , )  is the same
as for the time-invariant situation. In particular, h t sxf ( , )  is the solution of the
homogeneous equation with zero response prior to time s and initial conditions at
time s resulting from f t t s( ) ( )= −δ . The difficulty in practice, though, is in
finding a general analytical homogeneous solution for a variable-coefficient

                                                  
1The reader is asked to investigate situations with | |ζ >1 in Exercises 5.1 and
5.2.

h(t)

604020 ω0 t
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equation. Handbooks of mathematical functions (e.g., Abramowitz and Stegun,
1965) do provide a number of special cases for which solutions are defined as
special functions (e.g., Bessel functions, Legendre functions), but each such
time-varying equation is a special case that requires careful study. Stated another
way, the time-invariant situation, for which the solution is composed of
exponential terms, is itself a special case, albeit a common one. The diversity of
special cases with time-varying parameters makes it infeasible to study them
here.

5.3 Stochastic Dynamics
The simplest formulation of stochastic linear dynamics is simply to replace the
deterministic functions f t( )  and x t( )  in Eq. 5.2 by stochastic processes { ( )}F t
and { ( )}X t , giving

X t F s h t s ds F t r h r drx x( ) ( ) ( ) ( ) ( )= − ≡ −
−∞

∞

−∞

∞∫ ∫ (5.13)

which can be considered as a special case of the stochastic convolution integral
defined in Eq. 4.75. Note, in particular, that Eq. 5.13 must be true for every time
history of excitation and response. We can now learn much about the
characteristics of the { ( )}X t  process by studying expectations obtained from Eq.
5.13. The first such result is that

µ µ µX F x F xt E X t s h t s ds t r h r dr( ) [ ( )] ( ) ( ) ( ) ( )≡ = − ≡ −
−∞

∞

−∞

∞∫ ∫ (5.14)

which follows directly from reversing the order of integration and expectation, as
in Chapter 4. Note that Eq. 5.14 is of exactly the same form as Eq. 5.2, which
describes deterministic dynamics. This means that finding the mean value of the
stochastic response is always just the same as solving a deterministic problem
with excitation µF t( ) .

In the same way we can write the autocorrelation function for the response
as

φXX

x x

t t E X t X t

E F s h t s F s h t s ds ds

( , ) [ ( ) ( )]

   ( ) ( ) ( ) ( )

1 2 1 2

1 1 1 2 2 2 1 2

≡

= − −






−∞

∞

−∞

∞ ∫∫



Random Vibrations178

and taking the expectation inside the integrals gives

φ φXX FF x xt t s s h t s h t s ds ds( , ) ( , ) ( ) ( )1 2 1 2 1 1 2 2 1 2= − −
−∞

∞

−∞

∞ ∫∫ (5.15)

or

φ φXX FF x xt t t r t r h r h r dr dr( , ) ( , ) ( ) ( )1 2 1 1 2 2 1 2 1 2= − −
−∞

∞

−∞

∞ ∫∫ (5.16)

Clearly, this idea can be extended to any moment function. The general jth
moment function of the response can be written as

     
E X t X t X t

E F s F s h t s h t s ds ds

j

j x x j j j

[ ( ) ( ) ( )]

[ ( ) ( )] ( ) ( )

1 2

1 1 1 1

L

L L L L

=

− −
−∞

∞

−∞

∞ ∫∫
(5.17)

Again, all of these results follow directly from using the Duhamel convolution
integral and reversing the order of integration and expectation.

Similarly, one can consider more than one dynamic response. Thus, if
some other response of interest is given by

Y t F s h t s dsy( ) ( ) ( )= −
−∞

∞∫

then one can derive cross-product terms such as the cross-correlation function

φ φXY FF x yt t E X t Y t s s h t s h t s ds ds( , ) [ ( ) ( )] ( , ) ( ) ( )1 2 1 2 1 2 1 1 2 2 1 2≡ = − −
−∞

∞

−∞

∞ ∫∫
(5.18)

for the stochastic responses { ( )}X t  and { ( )}Y t  caused by a stochastic excitation
{ ( )}F t .

Note that the presentation to this point has been very general, with no
limitation on the type of response that the stochastic processes { ( )}X t  and/or
{ ( )}Y t  represent. Usually we will use { ( )}X t  to represent a displacement, but the
preceding mathematical expressions certainly do not require that. If { ( )}X t  is a
displacement, then { ˙( )}X t  and { ˙̇ ( )}X t , respectively, will denote the velocity and
acceleration of response, and we will often be interested in these quantities as
well.
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Recall our definition of h tx ( )  as the response x t h tx( ) ( )=  when
f t t( ) ( )= δ . For x t( )  being response displacement, this gives us ˙( ) ( )x t h tx= ′  and
˙̇ ( ) ( )x t h tx= ′′  when f t t( ) ( )= δ . Thus, the impulse response functions giving the

velocity and acceleration responses, respectively, to the Dirac delta function
pulse of excitation are h t h tx x˙ ( ) ( )= ′  (as in Eq. 5.6) and h t h tx x˙̇ ( ) ( )= ′′ . These
expressions can then be used to obtain moments of { ˙( )}X t  and { ˙̇ ( )}X t  in forms
that are exactly parallel to Eqs. 5.14–5.17. Two of the more important of these
expressions are

φ
∂

∂
φ φXX XX FF x xt t

t
t t s s h t s h t s ds ds˙ ( , ) ( , ) ( , ) ( ) ( )1 2

2
1 2 1 2 1 1 2 2 1 2= = − ′ −

−∞

∞

−∞

∞ ∫∫
(5.19)

and

φ
∂ φ

∂ ∂
φ˙ ˙ ( , )

( , )
( , ) ( ) ( )XX

XX
FF x xt t

t t

t t
s s h t s h t s ds ds1 2

2
1 2

1 2
1 2 1 1 2 2 1 2= = ′ − ′ −

−∞

∞

−∞

∞ ∫∫
(5.20)

In addition, one can obtain an integral expression for any desired higher-order
cross-product term, such as

E X t X t X t E F s F s F s

h t s h t s h t s ds ds dsx x x

[ ( ) ˙( ) ˙̇ ( )] [ ( ) ( ) ( )]

( ) ( ) ( )

1 2 3 1 2 3

1 1 2 2 3 3 1 2 3

= ×

− ′ − ′′ −
−∞

∞

−∞

∞

−∞

∞ ∫∫∫

Other forms of moment information, such as central moments or
cumulants, can also be obtained from the moments given here. For example,
using K t t t t t tXX XX X X( , ) ( , ) ( ) ( )1 2 1 2 1 2= −φ µ µ  gives the autocovariance function
for { ( )}X t  as

K t t s s h t s h t s ds ds

t h t s ds t h t s ds

XX FF x x

F x F x

( , ) ( , ) ( ) ( )

     ( ) ( ) ( ) ( )

1 2 1 2 1 1 2 2 1 2

1 1 1 1 2 2 2 2

= − − −

− −

−∞

∞

−∞

∞

−∞

∞

−∞

∞

∫∫

∫ ∫

φ

µ µ

or

K t t K s s h t s h t s ds dsXX FF x x( , ) ( , ) ( ) ( )1 2 1 2 1 1 2 2 1 2= − −
−∞

∞

−∞

∞ ∫∫ (5.21)

One important aspect of the dynamics of linear systems is the “uncoupling”
of the moments of response. That is, the jth moment function of the response
depends only on the jth moment function of the excitation. Thus, one can
compute the mean-value function of the stochastic response even if the only



Random Vibrations180

information given about the excitation is its mean value function. Similarly,
knowledge of only the autocorrelation function for the excitation is sufficient to
allow calculation of the autocorrelation function for the response, or calculation
of the cross-product of two response measures such as { ( )}X t  and { ˙( )}X t . Also,
covariance functions for the response depend only on the autocovariance function
for the excitation.

If we are given a complete set of initial conditions2 at some time t0 , then
we will find it convenient to modify the convolution integral of Eq. 5.13 to
include only excitation after time t0  and to add terms representing the response
to the initial conditions. Because these initial conditions may be random, we will
write the results as

X t Y g t t F s h t s dsj j
j

t x( ) ( ) ( ) ( )= − + −∑ ∫ ∞
0

0

in which the Yj  random variable denotes the jth initial condition value and the
g t tj ( )− 0  term represents the response due to a unit value of that one initial
condition at time t t= 0 . The expressions for the mean-value and autocovariance
functions of the response can then be written as

µ µ µX Y j
j

Ft xt g t t s h t s ds
j

( ) ( ) ( ) ( )= − + −∑ ∫ ∞
0

0
(5.22)

and

     

K t t K g t t g t t

K g t t h t s h t s ds

K s s h t s h t s

XX Y Y j j
jj

Y F s j x xt
j

FF xt x

j j

j

( , ) ( ) ( )

( )[ ( ) ( )]

( , ) ( ) ( )

( )

1 2 1 0 2 0

1 0 1 2

1 2 1 1 2 2

1 2 1 2

21

0

0

= − − +

− − + − +

− −

∑∑

∫∑

∫

∞

∞
dsds ds

t 1 2
0

∞∫

(5.23)

A similar expression can be written out for the response autocorrelation function.
In many situations, of course, the excitation after time t0  may be independent of
the initial conditions at time t0 . If this is true, then the K t tXX ( , )1 2  result is
simplified because the KY F sj ( ) cross-covariance in the second expression is

                                                  
2By “a complete set of initial conditions” we mean that enough conditions are
given at time t0  to ensure that the solution for t t> 0  is unique.
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zero, eliminating this term. Another simplified situation that may arise is when
there is no stochastic excitation, in which case the dynamic response is due only
to the random initial conditions. Finally, in the special case in which the initial
conditions are deterministic, all the covariance terms involving the initial
conditions are zero, but the mean value and autocorrelation functions for the
response are still affected by the initial conditions.

One can also use a conditional probability distribution for the { ( )}X t
process in Eq. 5.13 to obtain conditional versions of the mean value,
autocovariance function, and autocorrelation function. This is possible for any
type of conditioning event, but we will be particularly interested in the situation
in which the given event, which will be denoted by A, includes a complete set of
deterministic initial conditions at time t0 . We can then write the conditional
mean and covariance in the same form as Eqs. 5.22 and 5.23 with the random
initial condition Yj  replaced by a deterministic y j  whose value is known when A
is known. The conditional mean value of the response then depends on the initial
conditions and the conditional mean of the excitation as

E X t A y g t t E F s A h t s dsj j
j

t x[ ( ) | ] ( ) [ ( ) | ] ( )= − + −∑ ∫ ∞
0

0
(5.24)

The conditional covariance of the response is

Cov Cov[ ( ), ( ) | ] [ ( ), ( ) | ] ( ) ( )X t X t A F s F s A h t s h t s ds dsxt xt1 2 1 2 1 1 2 2 1 2
00

= − −
∞∞ ∫∫

(5.25)

which depends only on the conditional covariance of the excitation.

5.4 Response to Stationary Excitation
Consider now the special case in which the excitation process { ( )}F t  has existed
since time t = −∞ and is stationary. First, if { ( )}F t  is mean-value stationary, then
µ µF Ft r( )− =  is a constant in Eq. 5.14, so

µ µ µX F x F x statict E X t h r dr h( ) [ ( )] ( ) ,≡ = =
−∞

∞∫ (5.26)

using hx static,  defined in Eq. 5.4. This shows that µX t( )  is not a function of t in
this case. There are, however, two distinct possibilities. Either hx static,  is infinite,
so µX t( )  does not exist, or µ µX Xt( ) =  is a constant. In particular, if a system
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has a finite static response and the excitation is mean-value stationary, then the
stochastic response is mean-value stationary. If the system has an infinite static
response and µF ≠ 0 , then the stochastic response has an infinite mean value.

Similarly, if the excitation is second-moment stationary then
φFF FFt r t r R t r t r( , ) ( )1 1 2 2 1 1 2 2− − = − − +  in Eq. 5.16 and this gives

φXX FF x xt t R t t r r h r h r dr dr( , ) ( ) ( ) ( )1 2 1 2 1 2 1 2 1 2= − − +
−∞

∞

−∞

∞ ∫∫

If this second moment of the response φXX t t( , )1 2  is finite, then it is a function
only of the difference between the two time arguments ( )t t1 2− , showing that
{ ( )}X t  is second-moment stationary. Thus, we can write τ = −t t1 2 to get the
stationary autocorrelation function as

R R r r h r h r dr drXX FF x x( ) ( ) ( ) ( )τ τ= − +
−∞

∞

−∞

∞ ∫∫ 1 2 1 2 1 2 (5.27)

Second-moment stationarity of { ( )}F t  is also sufficient to ensure that the cross-
correlation of two responses { ( )}X t  and { ( )}Y t  has the stationary form of

R R r r h r h r dr drXY FF x y( ) ( ) ( ) ( )τ τ= − +
−∞

∞

−∞

∞ ∫∫ 1 2 1 2 1 2 (5.28)

including as a special case

R R r r h r h r dr drXX FF x x˙ ( ) ( ) ( ) ( )τ τ= − + ′
−∞

∞

−∞

∞ ∫∫ 1 2 1 2 1 2 (5.29)

Also, Eqs. 5.27–5.29 are equally valid if the stationary R  functions are all
replaced by stationary autocovariance and cross-covariance G functions.

Let us now consider the issue of whether RXX ( )τ  and GXX ( )τ  will be
bounded for a system with a stationary excitation. From the Schwarz inequality
we know that RXX ( )τ  is bounded by the mean-squared value of X, and GXX ( )τ
is bounded by the variance of X: | ( ) |RXX τ ≤ E X( )2  and | ( ) |GXX τ ≤ σ X

2 . Thus,
RXX ( )τ  and GXX ( )τ  are bounded for all τ  if and only if E X( )2  and σ X

2 ,
respectively, are bounded. As already noted, µX  will be infinite if µF ≠ 0  and
the system is such that it does not have a finite static response (i.e., if
| |,hx static = ∞). The fact that E X( )2 = +µ σX X

2 2  tells us, then, that E X( )2  is also
infinite in that situation, even if the variance is finite.
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It is possible for the response variance to be infinite even if h tx ( )  or µF  is
such that µX  is finite, and it is also possible for the variance to be finite when the
mean is infinite. In order to investigate the boundedness of the variance, we will
rewrite Eq. 5.27 for the stationary covariance of the response and set τ = 0 to
obtain the response variance as

σ X FF x x FF xG r r h r h r dr dr G r h r dr2
2 1 1 2 1 2 3 3 3= − =

−∞

∞

−∞

∞

−∞

∞∫∫ ∫( ) ( ) ( ) ( ) ( ),var

(5.30)
in which

h h s h s dsx x x, ( ) ( ) ( )var τ τ≡ −
−∞

∞∫ (5.31)

is a characteristic of the linear system, and we have used the change of variables
r r r3 2 1= − . The absolute value of hx,var ( )τ  can be bounded as

h h h s dsxx,var x,var( ) ( ) ( )τ ≤ =
−∞

∞∫0 2

Thus, we can bound the variance of the response as

σ X FFh G r dr2
3 30≤

−∞

∞

∫x,var ( ) ( ) (5.32)

Note, also, that hx,var ( )0  will be finite if h tx ( )  is bounded and the system has a
finite static response ( hx static, < ∞). In particular, h h hx,var x,max x,static( )0 ≤  with
h h txx,max ≡ max | ( ) |. Thus, we see that the system must have a finite variance of
stationary response if it has a finite static response and the excitation is such that
its autocorrelation function is absolute value integrable. It should be noted that,
although these conditions are sufficient to ensure a finite stationary response
covariance, they do not preclude the possibility of covariant stationary response
under different conditions.

********************************************************************************************

Example 5.4: Investigate the boundedness of the first and second moments of

stationary stochastic response of the system m X t c X t F t˙̇ ( ) ˙( ) ( )+ = , for which the

impulse response function was derived in Example 5.2 as

h t c e U tx
c t m( ) ( ) ( )/= −− −1 1

Because the static response value for this system is infinite ( hx static, = ∞), we

know that the mean value and autocorrelation function of the { ( )}X t  response

will generally not exist for an { ( )}F t  process that is mean-value and second-
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moment stationary. In particular, µ µX F x statich= ,  is finite only if µF = 0 , in which

case µX = 0  also. Because µX  is infinite if µF ≠ 0 , we also know that

φXX t t( , )1 2  is infinite for this situation. In addition, though, φXX t t( , )1 2  may be

infinite even if µF = 0 . In particular, the response variance may be infinite

because hx,var ( )0  is infinite. This does not prove that σ X
2 = ∞, and we will later

see (Example 6.4) that σ X
2  is infinite for some excitations and finite for others.

Recall that the derivative response for this problem does have a finite static

value, because its impulse response function of h t h t m e U tx x
c t m˙ /( ) ( ) ( )= ′ = − −1

gives h cx static˙ , = −1. Thus, the mean value and autocorrelation of stationary

{ ˙( )}X t  response generally do exist for this system, even though those for

{ ( )}X t  may not.

********************************************************************************************

Example 5.5: Investigate the behavior of the first and second moments of

stochastic response of the system c X t k X t˙( ) ( )+ = 0 , for which the impulse

response function was derived in Example 5.1 as h t c e U tx
k t c( ) ( )/= − −1 . In

particular, investigate µX t( ) , K t tXX ( , )1 2 , and φXX t t( , )1 2  for this situation with

no excitation process, but with a random variable initial condition of X t Y( )0 =
with µY  and σY  known.

We can use Eqs. 5.22 and 5.23 if we know the value of the g t( )  function. Note

that one needs only one initial condition for this first-order system, so the given

value of X t( )0  is sufficient to describe a unique solution. Furthermore, Example

5.1 shows that the impulse response function h t c e U tx
k t c( ) ( )/= − −1  is the

response of the system to an initial condition of X c( )0 1= − , so we have

g t c h t tx( ) ( )= − =0 e k t t c− −( ) /0 U t t( )− 0 . Thus, for t t> 0  we have

µ µ µX Y Y
k t t ct g t t e( ) ( ) ( ) /= − = − −

0
0

and

K t t g t t g t t eXX Y Y
k t t t c( , ) ( ) ( ) ( ) /

1 2
2

1 0 2 0
2 21 2 0= − − = − + −σ σ

Putting these two together gives the autocorrelation function of the response as

φXX
k t t t ct t E Y g t t g t t E Y e( , ) ( ) ( ) ( ) ( ) ( ) /

1 2
2

1 0 2 0
2 21 2 0= − − = − + −

By letting t t t1 2= = , one can also find the response variance as σ X t2 ( ) =
σY

2 e k t t c− −2 0( ) / , and the mean-squared value is given by a similar expression.

********************************************************************************************

All the results and examples in Sections 5.3 and 5.4 to this point have been
for time-invariant systems. Most of the general results, such as Eqs. 5.14, 5.15,
5.17, 5.18, and 5.21, can be converted for the time-varying situation by replacing
h t sx ( )−  with h t sxf ( , ) . The situation treated in the current section, with { ( )}F t
being a stationary process, is particularly significant in practice. The response of
a time-varying system to a stationary excitation is a particular type of
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nonstationary process. Such processes are called “modulated” or “evolutionary”
processes, and their properties have been studied in some detail. One particular
way in which modulated processes are used is as models of nonstationary
excitation processes. For example, one might model an { ( )}F t  process as the
modulated process with

F t F s h t s dsS fS( ) ( ) ( , )=
−∞

∞∫  (5.33)

in which { ( )}F tS  is a stationary process. If { ( )}X t  represents the response of a
linear system excited by { ( )}F t , then we can write

X t F u h t u du F s h t s dsxf S xS( ) ( ) ( , ) ( ) ( , )= =
−∞

∞

−∞

∞∫ ∫

in which

h t s h t u h u s duxS xf fS( , ) ( , ) ( , )=
−∞

∞∫ (5.34)

so { ( )}X t  is also a modulated process for the excitation { ( )}F tS  with a
combined impulse response function h t sxS ( , )  that is a convolution of hFS  and
hxf . A very special case of the modulated process is that which arises when
h t sFS ( , )  has the form h t sfS ( , ) = ĥ ( ) ( )t t sδ − , so F t( ) = ĥ ( ) ( )t F tS . In this
special case, { ( )}F t  is called a uniformly modulated process. The combined
impulse response function is

h t s h t u h u u s du h t s h sxS xf xf( , ) ( , ) ˆ( ) ( ) ( , ) ˆ( )= − =
−∞

∞∫ δ

and the response { ( )}X t  to the excitation { ( )}F t  then has

X t F s h s h t s dsS xf( ) ( ) ˆ( ) ( , )=
−∞

∞∫

so it is the same as for an excitation { ( )F tS ĥ ( )}t .

Consider now a response problem in which the excitation is modeled as
F t W t U t( ) ( ) ( )= , in which { ( )}W t  is a stationary process and U t( )  is the unit
step function. Clearly this may be viewed as a modulated excitation, with
ĥ ( ) ( )t U t= . On the other hand, it may also be viewed as an expression of the
conditional properties of the response for t > 0  given that the system is at rest at
time t = 0 . Thus, no special techniques are necessary to analyze the response of a
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time-invariant system to such a uniformly modulated excitation, and the variance
of the response can be written from Eq. 5.23 as

σ X FF x xt G s s h t s h t s ds ds2
1 2 1 1 1 200

( ) ( ) ( ) ( )= − − −
∞∞ ∫∫

or

σ X FF x x
tt

t G r r h r h r dr dr2
2 1 1 2 1 2( ) ( ) ( ) ( )= −

−∞−∞ ∫∫

which is identical to the first form in Eq. 5.30 except for the time-dependent
limits of integration. Using the change of variables of r r r3 2 1= −  allows this to
rewritten as

σ X FF xt G r h r t dr2
3 3 30

2( ) ( ) ( , ),=
∞∫ var (5.35)

in which

h t h s h s dsx x x
t

, ( , ) ( ) ( )var τ τ= −
−∞∫ (5.36)

Clearly the final form of Eq. 5.30 and Eq. 5.31 are the special cases of Eqs. 5.35
and 5.36 for t → ∞.

Note that using ĥ ( ) ( )t U t=  gives a particularly simple uniformly
modulated process. Analysis of more complicated modulated processes is
commonly done in the frequency domain, so this issue will be reconsidered in
Chapter 6. The meanings of the terms “modulated” and “uniformly modulated”
will also be clearer in the frequency domain.

5.5 Delta-Correlated Excitations
There are a number of important physical problems in which the excitation
process { ( )}F t  is so erratic that F t( )  and F s( )  are almost independent unless t
and s are almost equal. For a physical process there generally is some
dependence between F t( )  and F s( )  for t  and s  sufficiently close, but this
dependence may decay very rapidly as the separation between t and s grows. To
illustrate this idea, let Tc  denote the time difference t s−  over which F t( )  and
F s( )  are significantly dependent, making F t( )  and F s( )  essentially independent
if | |t s Tc− > . Then if Tc  is sufficiently small compared with other characteristic
time values for the problem being considered, it may be possible to approximate
{ ( )}F t  by the limiting process for which F t( )  and F s( )  are independent for
t s≠ . This limiting process is called a delta-correlated process. The motivation
for using a delta-correlated process is strictly convenience. Computing response
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statistics for a delta-correlated excitation is often much easier than for a nearly
delta-correlated one.

We now wish to investigate the details of how a delta-correlated { ( )}F t
excitation process must be defined in order that it will cause a response { ( )}X t
that approximates that for a physical problem with a nearly delta-correlated
excitation. We will do this by focusing on the covariance functions of { ( )}F t
and { ( )}X t , starting with the covariant stationary situation. Independence of
F t( )  and F s( ) , of course, implies that the covariance K t sFF ( , )  is zero, as well
as corresponding relationships involving higher moment functions of the
process.3 Thus, a covariant stationary delta-correlated { ( )}F t  would have
GFF ( )τ = 0  for τ ≠ 0. Recall that Eq. 5.32 gave a bound on the response
variance as hx, ( )var 0  multiplied by the integral of the absolute value of GFF ( )τ ,
with hx, ( )var 0  being a characteristic of the linear system. The integral of the
absolute value of GFF ( )τ , though, will be zero if we choose GFF ( )τ  for our
delta-correlated process to have a finite value at τ = 0 and to be zero for τ ≠ 0.
Thus, our delta-correlated excitation process will not give any response unless we
allow GFF ( )τ  to be infinite for τ = 0. This leads us to the standard form for the
covariance function of a stationary delta-correlated process

G GFF ( ) ( )τ δ τ= 0 (5.37)

which is a special case of the covariance function for a nonstationary delta-
correlated process

K t s G t t sFF ( , ) ( ) ( )= −0 δ (5.38)

One should note that Eqs. 5.37 and 5.38 ensure only that F t( )  and F s( )  are
uncorrelated for t s≠ , whereas we defined the delta-correlated property to mean
that F t( )  and F s( )  are independent for t s≠ . That is, the lack of correlation
given in Eqs. 5.37 and 5.38 is necessary for a delta-correlated process, but it is
not the definition of the process.4

                                                  
3Precisely, one can say that F t( )  and F s( )  are independent if and only if all the
cross-cumulant functions are zero, whereas covariance is only the second cross-
cumulant function. Some discussion of cumulants is given in Section 3.7.

4The term white noise is commonly used to refer to processes of the general type
of our delta-correlated process. Sometimes, though, white noise implies only Eq.
5.38 rather than the more general independence property of a delta-correlated
process.
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The convenience of using a delta-correlated excitation in studies of
dynamic response can be illustrated by substituting Eq. 5.37 for the stationary
covariance function of the excitation into Eq. 5.27, giving the response
covariance as

G G r r h r h r dr drXX x x( ) ( ) ( ) ( )τ δ τ= − +
−∞

∞

−∞

∞ ∫∫ 0 1 2 1 2 1 2

The presence of the Dirac delta function now allows easy evaluation of one of the
integrals, with the result that the response covariance GXX ( )τ  is given by a
single (rather than a double) integral

G G h r h r drXX x x( ) ( ) ( )τ τ= +
−∞

∞∫0 (5.39)

A special case of this formula is the variance of the response given by

σ X XX xG G h r dr G h2
0

2
00 0= = ≡

−∞

∞∫( ) ( ) ( )x,var (5.40)

This shows that when the excitation is delta-correlated, the variance actually
equals the bound given in Eq. 5.32. This also shows that the response to delta-
correlated excitation is always unbounded if the hx, ( )var 0  integral of the square
of the impulse response function is infinite.

In the same way, we can substitute Eq. 5.38 into Eq. 5.21 to obtain the
covariance of response to a nonstationary delta-correlated excitation as

K t t G s s s h t s h t s ds dsXX x x( , ) ( ) ( ) ( ) ( )1 2 0 1 1 2 1 1 2 2 1 2= − − −
−∞

∞

−∞

∞ ∫∫ δ

which simplifies to

K t t G s h t s h t s dsXX x x( , ) ( ) ( ) ( )1 2 0 1 1 1 2 1 1= − −
−∞

∞∫ (5.41)

The variance in this situation is given by

σ X XX x xt K t t G s h t s ds G t r h r dr2
0

2
0

2( ) ( , ) ( ) ( ) ( ) ( )= = − = −
−∞

∞

−∞

∞∫ ∫ (5.42)
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which is seen to be exactly in the form of a convolution of the function giving the
intensity of the excitation and the square of the impulse response function for the
dynamic system.

Delta-correlated excitations have another convenient feature when one
considers the conditional distribution of the response, as in Eqs. 5.24 and 5.25.
For a causal system, one can say that the response at any time t0  is a function of
the excitation F t( )  only for t t≤ 0 . For a delta-correlated excitation we can say
that F t( )  for t t> 0  is independent of F t( )  for t t≤ 0 , and this implies that F t( )
for t t> 0  is independent of the response of the system at time t0 . Thus, if the
conditioning event A involves only the value of the excitation and the response at
time t0 , then we can say that F t( )  for t t> 0  is independent of A. This makes
Eqs. 5.24 and 5.25 depend on the unconditional mean and covariance of the
excitation, and gives

E X t A y g t t s h t s dsj j
j

Ft x[ ( ) | ] ( ) ( ) ( )= − + −∑ ∫ ∞
0

0
µ (5.43)

and

Cov[ ( ), ( ) | ] ( ) ( ) ( )X t X t A G s h t s h t s dsxt x1 2 0 1 2
0

= − −
∞∫ (5.44)

Note that the final equation is of exactly the same form as the unconditional
covariance in Eq. 5.41, except that it has a different limit of integration.

A disadvantage of using a delta-correlated excitation should also be noted.
In particular, modeling the excitation as having an infinite variance always
results in some response quantity also having an infinite variance. For example,
the general nth order system of Eq. 5.7 will have an infinite variance for the nth
order derivative when the excitation is a delta-correlated { ( )}F t . This follows
from Eq. 5.40 and the fact that the impulse response function for d x t d tn n( ) /( )
behaves like δ( )t  for t near the origin.

********************************************************************************************

Example 5.6: Show that one particular delta-correlated process is the stationary

“shot noise” defined by

F t F t Tj j( ) ( )= −∑ δ

in which { , , , , }T T Tj1 2 L L  with 0 1 2≤ ≤ ≤ ≤T T TjL  are the random arrival times

for a Poisson process { ( )}Z t  (see Example 4.13), and { , , , , }F F Fj1 2 L L  is a

sequence of identically distributed random variables that are independent of each
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other and of the arrival times. Also show that the process is not Gaussian and

evaluate the cumulant functions for { ( )}F t .

The nature of the Poisson process is such that knowledge of past arrival times

gives no information about future arrival times. Specifically, the interarrival time

T Tj j+ −1  is independent of { , , }T Tj1 L . Combined with the independence of the

Fj  pulse magnitudes, this ensures that F t( )  must be independent of F s( )  for

t s≠ . For s t< , knowledge of F s( )  may give some information about past arrival

times and pulse magnitudes, but it gives no information about the likelihood that

a pulse will arrive at future time t  or about the likely magnitude of such a pulse if

it does arrive at time t . Thus, { ( )}F t  must be delta-correlated.

In order to investigate the cumulants, we first define a process { ( )}Q t  that is the

integral of { ( )}F t :

Q t F s ds F U t T
t

j j( ) ( ) ( )= = −∫ ∑0

then we will use these results in describing { ( )} { ˙( )}F t Q t= . The cumulant

functions are an ideal tool for determining whether a stochastic process is

Gaussian, because the cumulants of order higher than two are identically zero for

a Gaussian process.  Thus, we will proceed directly to seek the cumulant

functions of { ( )}Q t  and { ( )}F t .  It turns out that this is fairly easily done by

consideration of the log-characteristic function of { ( )}Q t , as in Section 3.7.

The nth-order joint characteristic function of { ( )}Q t  for times { , , }t tn1 L  can be

written as

M E i Q tQ t Q t n j j
j

n

n( ) ( )( , , ) exp ( )
1 1

1
L Lθ θ θ≡





























=

∑

We can take advantage of the delta-correlated properties of shot noise by

rewriting Q t j( )  as

Q t Q Q Q t Q tj l
l

j

l l l( ) ,       ( ) ( )= ≡ −
=

−∑∆ ∆
1

1with       

in which t t t tn0 1 2< < < <L  and t0 0= , so Q t( )0 0= . Now we can rewrite the

characteristic function as

M E i Q E i QQ t Q t n j
l

j

l
j

n

j
j l

n

l
l

n

n( ) ( )( , , ) exp exp
1 1

11 1
L Lθ θ θ θ=































=




























== ==

∑∑ ∑∑∆ ∆

The fact that F t( )  and F s( )  are independent random variables for t s≠  allows

us to say that { , , , }∆ ∆ ∆Q Q Qn1 2 L  is a sequence of independent random

variables.  This allows us to write the characteristic function as
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M E i Q MQ t Q t n l j
j l

n

l

n

Q l n
l

n

n l( ) ( )( , , ) exp ( )
1 1

1 1
L L Lθ θ θ θ θ=































= + +
== =
∑∏ ∏∆ ∆

Thus, we can find the desired joint characteristic function from the characteristic

function of ∆Ql .

For simplicity, we will derive the characteristic function for the increment from

time zero to time t1 , that is, for the random variable ∆Q Q t1 1≡ ( ) .  This can most

easily be evaluated in two steps.  First, we evaluate the conditional expected

value

E i Q t Z t r E i F E e e Mj
j

r
i F i F

F
rrexp[ ( )]| ( ) exp ( )θ θ θθ θ

1
1

1=( ) =






























= ( ) =
=
∑ L

in which the final form follows from the fact that { , , , , }F F Fj1 2 L L  is a sequence

of independent, identically distributed random variables, and MF ( )θ  is used to

designate the characteristic function of any member of the sequence.  Using the

probability values for the Poisson process from Example 4.13 then gives the

characteristic function of interest as

M E i Q t Z t r P Z t r M
t

r
eQ

r
F
r Z

r
t

r

Z
∆ 1

1
1 1 1

1

1

1

( ) exp[ ( )]| ( ) [ ( ) ] ( )
( )

!
( )θ θ θ

µ µ= =( ) = =
=

∞
−

=

∞

∑ ∑

The result can be simplified as

M e
r

M t t M tQ
t

F Z
r

r
Z F Z

Z
∆ 1

1 1
1

1
1 1( )

!
[ ( ) ( )] exp[ ( ) ( ) ( )]( )θ θ µ µ θ µµ= = − +−

=

∞

∑

because the summation is exactly the power series expansion for the exponential

function.  The log-characteristic function of ∆Q1 is then
log[ ( )] log[ ( )] ( )[ ( ) ]( )M M t MQ Q t Z F∆ 1 1 1 1θ θ µ θ≡ = −

The corresponding function for any arbitrary increment ∆Ql  is obtained by

replacing µZ t( )1  with µ µZ l Z lt t( ) ( )− −1 .

The log-characteristic function for ∆Q Q t1 1≡ ( )  provides sufficient evidence to

prove that { ( )}F t  is not Gaussian.  In particular, we can find the cumulants of

{ ( )}Q t  by taking derivatives of log[ ( )]( )MQ t θ  and evaluating them at θ = 0 .

Inasmuch as

d

d
M t

d

d
M

j

j Q t Z

j

j F
θ

θ µ
θ

θlog[ ( )] ( ) ( )( ) =

though, this relates the cumulants of Q t( )  to the moments of F , because the

derivatives of a characteristic function evaluated at θ = 0  always give moment

values (see Section 3.7).  It is not possible for the higher-order even-order

moment values of F , such as E F( )4 , to be zero, so we can see that the higher-

order even cumulants of Q t( )  are not zero.  This proves that Q t( )  is not a
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Gaussian random variable, which then implies that { ( )}Q t  cannot be a Gaussian

stochastic process.  If { ( )}Q t  is not a Gaussian process, though, then its

derivative, { ( )}F t , is also not a Gaussian process.
Using the preceding results, we can evaluate the joint log-characteristic function
for { ( )}Q t  as

log[ ( , , )] [ ( ) ( )][ ( ) ]( ) ( )M t t MQ t Q t n Z l Z l F l n
l

n

n1 1 1
1

1L L Lθ θ µ µ θ θ= − + + −−
=
∑

The joint cumulant function for { ( ), , ( )}Q t Q tn1 L  is then

κ
∂

∂θ ∂θ
θ θ

θ θ
n n

n
n

n
Q t Q t nQ t Q t i M

n

n

[ ( ), , ( )] log[ ( , , )]( ) ( )1
1

1

0
1

1

L
L

LL

L

=












−

= = =

However, there is only one term in our expression for the log-characteristic

function that gives a nonzero value for the mixed partial derivative.  In particular,

only the first term , with l =1, contains all the arguments ( , , )θ θ1 L n . Thus, only it

contributes to the cumulant function, and we have

κ µ
∂

∂θ ∂θ
θ θ

µ

θ θ
n n

n
Z

n

n
F n

Z
n

Q t Q t i t M

t E F

n

[ ( ), , ( )] ( ) ( )

   ( ) [ ]

1 1
1

1

0

1

1

L
L

L

L

= + +












=

−

= = =

Recall that the only way in which t1  was distinctive in the set ( , , )t tn1 L  was that

it was the minimum of the set.  Thus, the general result for { ( )}Q t  is

κ µn n Z n
nQ t Q t t t E F[ ( ), , ( )] (min[ , , ]) [ ]1 1L L=

The linearity property of cumulants (see Eq. 3.44) then allows us to write the

corresponding cumulant function for the { ( )}F t  process as

κ
∂

∂ ∂
µ

∂
∂ ∂

µ

n n
n

n

n
Z n

n
n

n
Z j l j

l
l j

n

j

n

F t F t E F
t t

t t

E F
t t

t U t t

[ ( ), , ( )] [ ] (min[ , , ])

    [ ] ( ) ( )

1
1

1

1 11

L
L

L

L

=

= −
=
≠

=
∏∑

After performing the differentiation and eliminating a number of terms that cancel,

this expression can be simplified to

κ µ δn n
n

Z n l n
l

n

F t F t E F t t t[ ( ), , ( )] [ ] ˙ ( ) ( )1
1

1
L = −

=

−

∏

which confirms the fact that { ( )}F t  is a delta-correlated process.  One may also

note that choosing n = 2 in this expression gives the covariance function for shot

noise as

K t s F t F s E F t t sFF Z( , ) [ ( ), ( )] [ ] ˙ ( ) ( )≡ = −κ µ δ2
2
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One could have derived this covariance function without consideration of

characteristic functions, but it would be very difficult to do that for all the higher-

order cumulants.

********************************************************************************************

Example 5.7: Determine the covariance function for the response { ( )}X t  of a

linear system described by c X t k X t F t˙( ) ( ) ( )+ =  with X( )0 0= . For t > 0 ,

{ ( )}F t  is a mean-zero, nonstationary delta-correlated process with

φ δα
FF

tt t G e t t( , ) ( ) ( )1 2 0 1 21 1= − −− .

From Example 5.1 we know that h t c e U tx
k t c( ) ( )/= − −1 , and the fact that

µF t( ) = 0 gives K t t t tFF FF( , ) ( , )1 2 1 2= φ . Using this information in Eq. 5.21 gives

K t t K s s h t s h t s ds ds

G

c
e s s e ds ds

XX FF x x

s k t t s s ctt

( , ) ( , ) ( ) ( )

    ( ) ( ) ( ) /

1 2 1 2 1 1 2 2 1 2

0
2 1 2 1 200

1 1 1 2 1 212

= − −

= − −

−∞

∞

−∞

∞

− − + − −

∫∫

∫∫ α δ

which can be integrated to give

K t t
G e

c
e e ds

G e

c

c e

k

c e

k

XX

k t t c
s k s ct t

k t t c k t t c k c t t

( , ) ( )

    
[ ] [ ]

( ) /
/min( , )

( ) / min( , ) / ( / )min( , )

1 2
0

2
2

20

0
2

2 2

1 2
2 21 2

1 2 1 2 1 2

1

1
2

1
2

= −

=
−

+
−

−

− +
−

− + − −

∫ α

α

αα c













Using the fact that t t t t t t1 2 1 2 1 22+ − = −min( , ) | | allows this to be simplified

somewhat to give

K t t
G e

c k

e

k c

G e

k k cXX

k t t c t t k t t c
( , )

( )

| |/ min( , ) ( ) /

1 2
0 0

1 2 1 2 1 21

2 2 2 2
= −

−











+

−

− − − − +α

α
α

α

As a special case one can let t t t1 2= =  to obtain the response variance as

σ
α

α
α

α

X

t k t c
t

G

c k

e

k c

G e

k k c
2 0 0

21

2 2 2 2
( )

( )

/
= −

−











+

−

− −

and the stationary limit as t tends to infinity is σ X t2 ( ) = G k c0 2/( ) .

********************************************************************************************

5.6 Response of Linear Single-Degree-of-Freedom Oscillator
Most of the remainder of this chapter will be devoted to the study of one
particular constant-coefficient linear system subjected to stationary delta-
correlated excitation. In a sense this constitutes one extended example problem,
but it warrants special attention because it will form the basis for much of what
we will do in analyzing the stochastic response of other dynamical systems. The
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system to be studied is the “single-degree-of-freedom” (SDF) oscillator
introduced in Example 5.3.

The SDF oscillator may be regarded as the prototypical vibratory system,
and it has probably been studied more thoroughly than any other dynamical
system. Essentially, it is the simplest differential equation that exhibits
fundamentally oscillatory behavior. In particular, as we saw in Example 5.3, its
impulse response function is oscillatory if damping is small, and this is a basic
characteristic of vibratory systems. For both deterministic and stochastic
situations, the dynamic behavior of the linear SDF system can be regarded as
providing the fundamental basis for much of both the analysis and the
interpretation of results for more complicated vibratory systems. In particular, the
response of more complicated (multi-degree-of-freedom) linear systems is
typically found by superimposing modal responses, each of which represents the
response of an SDF system, and the dynamic behavior of a vibratory nonlinear
system is usually interpreted in terms of how it resembles and how it differs from
that of a linear system.

In a somewhat similar way, the delta-correlated excitation can be
considered prototypical, inasmuch as it is simple and the nature of any other
excitation process is often interpreted in terms of how it differs from a delta-
correlated process. This idea will be investigated in more detail in Chapter 6.

The differential equation for stochastic motion of the SDF system is
commonly written as either

m X t c X t k X t F t˙̇ ( ) ˙( ) ( ) ( )+ + = (5.45)

or

˙̇ ( ) ˙( ) ( ) ( ) / ˙̇ ( )X t X t X t F t m Z t+ + = = −2 0 0
2ζ ω ω (5.46)

in which ω0 ≡ ( / ) /k m 1 2  and ζ = c k m/[ ( ) ]/2 1 2  are called the undamped natural
circular frequency and the fraction of critical damping, respectively, of the
system. The usual interpretation of this equation for mechanical vibration
problems is that m , k, and c denote the magnitudes of a mass, spring, and
dashpot, respectively, attached as shown in Fig. 5.3. For the fixed-base system of
Fig. 5.3(a), the term F t( )  is the force externally applied to the mass, and X t( )  is
the location of the mass relative to its position when the system is at rest. When
the system has an imposed motion { ( )}Z t  at the base, as in Fig. 5.3(b),
X t Y t Z t( ) ( ) ( )= −  is the change in the location of the mass relative to the moving
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base and F t( )  is the product of the mass and the negative of the base
acceleration.5 In this physical model we expect m, k, and c all to be nonnegative.

First we will consider the nonstationary stochastic response that results
when the SDF oscillator is initially at rest and the delta-correlated excitation is
suddenly applied to the system at time t = 0  and then is stationary for all later
time. Mathematically this condition can be described by treating the { ( )}F t
excitation process as a uniformly modulated delta-correlated process

F t W t U t( ) ( ) ( )=

in which { ( )}W t  is a stationary delta-correlated process and the unit step U t( )  is
included to eliminate excitation prior to t = 0 , and thereby ensure that the system
is at rest at time t = 0 . Using K t s G t sWW ( , ) ( )= −0 δ  to denote the covariance
function of { ( )}W t  gives

K t s G t s U tFF ( , ) ( ) ( )= −0 δ

with G0  being a constant. We will first investigate the general nonstationary
response of this oscillator, then consider the limiting behavior for t tending to
infinity. Also, Example 5.8 will investigate the other limiting situation of t nearly
zero.

                                                  
5Alternatively, one can apply the term SDF to any system that is governed by a
single second-order differential equation like Eq. 5.45.

m

k

c

m

k

c

(a) Force excitation

(b) Base motion excitation

Figure 5.3 Single-degree-of-freedom oscillator

X( t)

F(t)

Y( t)Z( t)

.
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Recall that the impulse function of Eq. 5.45 was found in Example 5.3 to
be h t m e t U tx d

t
d( ) ( ) sin( ) ( )= − −ω ωζ ω1 0  with ω ω ζd = −0

2 1 21( ) / . We will find
the nonstationary covariance of the response of Eq. 5.45 by substitution of this
h tx ( )  and K t sFF ( , )  into Eq. 5.21, giving

K t t
G

m
s s U s e t s

U t s e t s U t s ds ds

XX
d

t s
d

t s
d

( , ) ( ) ( ) sin[ ( )]

( ) sin[ ( )] ( )

( )

( )

1 2
0

2 2 1 2 1 1 1

1 1 2 2 2 2 1 2

0 1 1

0 2 2

= − − ×

− − −

− −
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∞

−∞

∞

− −

∫∫
ω

δ ω

ω

ζ ω

ζ ω

Taking advantage of the unit step functions and the Dirac delta function in the
integrand, one can rewrite this expression as

K t t
G

m
e t s t s ds

U t U t

XX

d

t t s
d

t t
d( , ) sin[ ( )]sin[ ( )]  

        ( ) ( )

( )min( , )
1 2

0
2 2

2
10 2

1 2

0 1 21 2= − − ×− + −∫
ω

ω ωζ ω

One simple way to evaluate this integral is to use the identity
sin( ) ( ) /( )α α α= − −e e ii i 2  for each of the sine terms, giving the integrand as the
sum of four different exponential functions of s, each of which can be easily
integrated. After substituting the fact that t t t t t t1 2 1 2 1 22+ − = −min( , ) | | and
performing considerable algebraic simplification, the result can be written as

K t t
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U t U t e t t

t t e t t
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(5.47)

The rather lengthy expression in Eq. 5.47 contains a great deal of information
about the stochastic dynamic behavior of the SDF system. We will use it to
investigate a number of matters of interest.

In many situations it is also important to study the response levels for
derivatives of X t( ) . The covariance functions for such derivatives could be
obtained in exactly the same way as Eq. 5.47 was obtained. For example, we
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could find h t h tx x˙ ( ) ( )= ′  and substitute it instead of h tx ( )  into Eq. 5.21 to obtain
a covariance function for the { ˙( )}X t  process. Rather than performing more
integration, though, we can use expressions from Chapter 4 to derive variance
properties of derivatives of { ( )}X t  directly from Eq. 5.47. For example, Eq. 4.60
gives the cross-covariance of { ( )}X t  and { ˙( )}X t  as

K t t
K t t

tXX
XX

˙ ( , )
( , )

1 2
1 2

2
=

∂
∂

and Eq. 4.61 gives the covariance function for { ˙( )}X t  as

K t t
K t t

t tXX
XX

˙ ˙ ( , )
( , )

1 2

2
1 2

1 2
=

∂
∂ ∂

Substituting from Eq. 5.47 into these expressions gives
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(5.48)
and
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Next let us consider the variance of the { ( )}X t  response by letting
t t t1 2= =  in Eq. 5.47, giving
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(5.50)

This important expression was published by Caughey and Stumpf in 1961. It is
plotted in a nondimensional form in Fig. 5.4 for several values of the damping
parameter ζ . Figure 5.4 also includes a curve for ζ = 0, which cannot be
obtained directly from Eq. 5.50. Rather, one must take the limit of the equation as
ζ  approaches zero, obtaining

σ
ω

ω ω ζX t
G

m
t t U t2 0

2
0
3 0 0

4
2 2 0( ) sin( ) ( )= −[ ] =     for (5.51)

Note that for any damping value other than zero, σX t2 ( )  tends to an
asymptote as t tends to infinity. In fact, Eq. 5.50 gives σX t2 ( ) → G m0 4 2/( ζ ω0

3)
for t → ∞, which agrees exactly with the bound of Eq. 5.32 for any excitation of
this system. This confirms the general result derived in Eq. 5.40, that the variance
bound of Eq. 5.32 is identical to the true response variance for a stationary delta-
correlated excitation process.
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Figure 5.4 Nonstationary growth of variance.
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The form of Fig. 5.4 emphasizes the important fact that the response
variance grows more rapidly when damping is small. On the other hand, it
appears that the initial rate of growth is approximately independent of damping.
We will examine this aspect in more detail in Example 5.8, when we consider the
limiting behavior for t near zero. The form of normalization used in Fig. 5.4
gives the asymptote for each curve as ( )4 1ζ −  for t → ∞. The fact that the
asymptote is different for each curve rather obscures the information about the
rate at which each curve approaches its asymptote and how this rate depends on
damping. In order to illustrate this aspect more clearly, Fig. 5.5 shows plots of
the response variance normalized by the asymptote for several nonzero values of
damping. In this form of the plots, each curve tends to unity as t becomes large,
and it is clear that the asymptotic level is reached much more quickly in a system
with larger damping.

Because response variance is a very important quantity in practical
applications of stochastic dynamics, we will also consider some simple
approximations and bounds of Eq. 5.50. One possible approximation is to note
that the oscillatory terms in Figs. 5.4 or 5.5 seem to be relatively unimportant
compared with the exponential approach of the variance to its asymptotic value.
This leads to the idea of replacing the oscillatory sine and cosine terms by their
average value of zero in Eq. 5.50 and obtaining the averaged expression of
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Figure 5.5 Approach of nonstationary variance to asymptote
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The actual variance value oscillates about this smooth curve, with the amplitude
of the oscillation decaying exponentially. Alternatively, one can obtain a simpler
result that is almost identical to this for small damping values by neglecting the
ζ 2  term and writing

σ
ζ ω

ζ ω
X

tt
G

m
e U t2 0

2
0
3

2

4
1 0( ) ( )≈ −( )− (5.52)

In some situations one may wish to obtain a rigorous upper bound on the
nonstationary variance expression of Eq. 5.50. This can be obtained by using the
amplitude of the sum of the two oscillatory terms as
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Replacing the oscillatory terms by the negative of the amplitude gives the bound
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Figure 5.6 compares the exact response variance of Eq. 5.50 with the smooth
approximation of Eq. 5.52 and the bound of Eq. 5.53 for the special case of
ζ = 0 10. . Even for this case with rather large damping it is seen that the curves
are all relatively near each other, and for smaller damping they are much closer.
It should be noted, though, that the smooth exponential approximation never
adequately describes the response growth for very small values of time, such as
ω π0 4t < / . As previously indicated, this small time situation will be examined
in more detail in Example 5.8.

The exponential forms of Eqs. 5.52 and 5.53 are valuable if one needs an
approximation of the time that it takes for the response variance to reach some
specified level. Solving Eq. 5.52 for t shows that σ X t2 ( )  reaches a specified level
B when
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Similarly, the bound gives σ X t B2 ( ) ≤  for
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Such an approximation or bound of the response variance is an important part of
the estimation or bounding of the reliability for structural systems that are
susceptible to failure due to excessive deformation or stress.

In the same way, we can investigate the variance of { ˙( )}X t  by taking
t t t1 2= =  in Eq. 5.49. The result can be written as
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(5.54)

The similarity between this equation and that for σ X t2 ( )  in Eq. 5.50 is striking.
The only differences are a multiplication of Eq. 5.50 by ω0

2 and a change of sign
of one term. Given this similarity in the equations, it is not surprising to find that
σ ˙ ( )X t2  and σ X t2 ( )  grow in a very similar manner. This is shown in Fig. 5.7,
wherein the result of Eq. 5.54 is normalized and superimposed upon the results

ω0 t
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Figure 5.6 Approximation and bound of nonstationary variance for ζ = 0.10
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Eq. 5.51

Eq. 5.45
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from Fig. 5.6. This figure shows that the primary difference between σ ˙ ( )X t2  and
σ X t2 ( )  is the phase difference caused by the change of sign on the sin( )2ωd t
term. This difference has little significance except for small values of t. Figure
5.7 also shows that Eqs. 5.52 and 5.53, when multiplied by ω0

2, provide a smooth
approximation and a bound, respectively, on σ ˙ ( )X t2 . Note that for smaller values
of damping the growth of σ X t2 ( )  and σ ˙ ( )X t2  will be even more similar than for
the case shown in Fig. 5.7 with ζ = 0 10. .

Finally, we note that by taking t t t1 2= =  in Eq. 5.48 we can find the cross-
covariance of the two random variables X t( )  and ˙( )X t  denoting the response
and its derivative at the same instant of time. The result can be written as
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(5.55)

Figure 5.8 shows a plot of this function for ζ = 0 10. . Two key features of this
cross-covariance are that it tends to zero as t becomes large and it is exactly zero
at times t that are an integer multiple of π ω/( )2 d . Thus, X t( )  and ˙( )X t  are
uncorrelated twice during each period of response of the oscillator. Furthermore,
K t tXẊ ( , )  is always relatively small. For a lightly damped system (i.e., for ζ <<1)
we can say that the maximum cross-covariance is approximately equal to the
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Figure 5.7 Variance of             compared with results of Fig. 5.6 for { ˙ X ( t)} ζ = 0.10
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bound of G m0 22/( ωd
2) . Note that this bound does not depend on ζ , whereas the

covariances of { ( )}X t  and { ˙( )}X t  both vary like ζ −1, and therefore become very
large when ζ <<1. This, then, implies that the correlation coefficient

ρ
σ σXX

XX

X X

t t
K t t

t t
˙

˙

˙
( , )

( , )

( ) ( )
≡

is generally small for the response of the SDF system. The exception is when t is
small, because in that situation σ X t( )  and σ ˙ ( )X t  in the denominator of the
correlation coefficient are also small.

It may be instructive to note that one can also obtain Eq. 5.55 from Eq.
5.50, rather than using Eq. 5.47. In particular, Eq. 4.64 states that

d
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and this gives

φ
φ

XX
XXt t

d t t

d t
˙ ( , )

( , )
=

1
2

ω0 t
0                                         2                      3                     4π π π π

0.5

0

0.1

0.2

0.3

0.4

m
2ω 0

2

G0
KX ˙ X (t ,t)

Figure 5.8 Covariance of             and             for { ˙ X ( t)} ζ = 0.10{X( t)} .
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Using this along with the fact that E X t[ ˙( )]  is the derivative of E X t[ ( )] gives the
covariance relationship as

K t t
d

d t
tXX X˙ ( , ) ( )=

1
2

2σ (5.56)

Substituting from Eq. 5.50 into this expression gives exactly Eq. 5.55.

It should be noted that the equations developed in this section may also be
used to describe the conditional covariance of the response of the SDF system
when one is given the values of X t( )0  and ˙( )X t0 at some specified time t0 . In
particular, the response at time t due to the portion of a delta-correlated excitation
occurring after time t0  is exactly the same as the response at time t t− 0  of a
system at rest at time t = 0 . Thus, Eqs. 5.44 and 5.47 give the conditional
covariance of the response as
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provided that t1  and t2  are both greater than t0 . From this relationship one can
find the conditional variance of X t( )  and ˙( )X t , their cross-covariance, and so
forth. Similarly, the conditional mean of Eq. 5.43 can be written as

E X t X t u X t v u g t t v m h t t s h t s dsx Ft x[ ( ) | ( ) , ˙( ) ] ( ) ( ) ( ) ( )0 0 0 0
0

= = = − + − + −
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(5.58)
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is the deterministic response to a unit displacement initial condition at time zero,
and m h tx ( )  is the response to a unit velocity initial condition at time zero.

We have not commented on the behavior of the response acceleration of
the SDF system with delta-correlated excitation, but that can also be investigated
by the same procedures. Taking more derivatives of Eq. 5.49 shows that
K t tXX˙ ˙̇ ( , )1 2  is discontinuous at t t1 2= , so K t tXX˙̇ ˙̇ ( , )1 2  is infinite along that line.
Thus, σ ˙̇ ( )X t2 = K t tXX˙̇ ˙̇ ( , ) = ∞. This is consistent with the comment in Section 5.5
that a delta-correlated excitation always gives an infinite response variance for
some response quantity. For the SDF system with delta-correlated excitation, the
response acceleration always has infinite variance.

5.7 Stationary SDF Response to Delta-Correlated Excitation
In the preceding section we analyzed the response of the SDF system to a delta-
correlated excitation that was identically zero for t < 0  and was the same as a
stationary process for t ≥ 0 . Note that a simple shift along the time axis will give
us corresponding results for a problem in which the excitation begins to become
effective at some time t0  instead of at zero. That is, replacing t with t t− 0  in any
of the response equations in the preceding section gives the corresponding
response measure for this new loading situation with F t W t U t t( ) ( ) ( )= − 0 . One
particular situation that we might consider is the one in which t0 → −∞  so that
the excitation has always been effective. In this situation we expect the response
to be stationary, and the fact that t t− → ∞0  shows that the stationary response
levels are the same as asymptotes for t → ∞ of the nonstationary response from
the previous section. Stated differently, the nonstationary response from the
previous section tends to stationary response at times long after the instant when
the excitation first became active. This simple result will hold true for any linear
system with a stationary excitation, if a stationary response exists for the
problem.

If we had not already investigated nonstationary levels of K t tXX ( , )1 2  for
the SDF oscillator, then the easiest way to find the covariance function for
stationary response would be to use Eq. 5.27 written for covariance with
G GFF ( ) ( )τ δ τ= 0  to obtain
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Evaluation of the hx, ( )var τ  integral (introduced in Eq. 5.31) is somewhat simpler
than the determination of Eq. 5.47, because the limits of integration are simpler.
However, inasmuch as we already have Eq. 5.47 we can obtain exactly the same
stationary response covariance by letting t1  and t2  both go to infinity in that
equation while holding τ = −t t1 2 to a finite level. The result is
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(5.60)

Similarly, the cross-covariance of { ( )}X t  and { ˙( )}X t  and the covariance of
{ ˙( )}X t  can be obtained either from covariance equations of the form of Eqs. 5.27
and 5.28 with G GFF ( ) ( )τ δ τ= 0 , or from the large t limits of Eqs. 5.48 and 5.49.
The results are
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Figure 5.9 shows normalized versions of these three stationary covariance results
for the situation with ζ = 0 10. . Note that Eqs. 5.60 and 5.62 are even functions of
τ , thereby satisfying the necessary symmetry condition for an autocovariance
function. The cross-covariance of Eq. 5.61, however, is an odd function of τ .
Comparing Eqs. 5.60 and 5.62 shows that the covariance of { ˙( )}X t  differs from
that of { ( )}X t  only by the inclusion of an ω0

2 factor in the multiplier in front and
by the sign of the sin( | |)ω τd  term. Because this latter term is multiplied by the
small parameter ζ , it is not surprising that the normalized plots of GXX ( )τ  and
GXX˙ ˙ ( )τ  in parts (a) and (c) of Fig. 5.9 are almost the same. The difference
between the shapes of the GXX ( )τ  and GXX˙ ˙ ( )τ  plots is significant only when τ
is very small. At τ = 0 the slope of the GXX˙ ˙ ( )τ  plot is discontinuous while
GXX ( )τ  is smooth.

The stationary response variance values can now be obtained either by
choosing τ = 0 in Eqs. 5.60 and 5.62 or by letting t tend to infinity in the
nonstationary response expressions in Eqs. 5.52 and 5.54, giving
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(a) Covariance of {X( t)}

(b) Cross-covariance of             and{X( t)} { ˙ X ( t)}

(c) Covariance of { ˙ X ( t)}

Figure 5.9  Stationary covariance for SDF with ζ = 0.10.
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σ
ζ ω
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ζ ωX X

G
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m

2 0
2

0
3
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04 4
= =                  ˙and (5.63)

Similarly, either Eq. 5.61 or 5.55 shows that the covariance of the two random
variables X t( )  and ˙( )X t  is zero at any instant of time during stationary response.
Note that the two stationary variance values given in Eq. 5.63 are exactly the
multipliers that have appeared on all the nonstationary and stationary variance
values derived for the { ( )}X t  and { ˙( )}X t  processes. One can also rewrite these
important values in terms of the original parameters of the physical model shown
in Fig. 5.3, obtaining

σ σX X

G

k c

G

m c
2 0 2 0

2 2
= =                  ˙and  (5.64)

These expressions reveal the possibly surprising facts that the stationary variance
of the displacement { ( )}X t  is unaffected by the mass of the system and that the
stationary variance of the velocity { ˙( )}X t  is unaffected by the stiffness of the
system.

********************************************************************************************

Example 5.8: Analyze the response covariance for the SDF of Eq. 5.45 with c = 0
and k = 0 .

Rather than looking for limits of the general expressions as c  and k  tend to zero,

let us directly analyze the response of the simplified equation m X t F t˙̇ ( ) ( )= .

Inasmuch as ˙̇ ( ) ( ) /X t F t m= , we can directly write the expression for the

covariance function of the acceleration as

K t s
m

K t s
G

m
t s U t U sXX FF˙̇ ˙̇ ( , ) ( , ) ( ) ( ) ( )= = −

1
2

0
2

δ

Repeatedly integrating this expression gives

K t s
G

m
U t s U t U sXX˙ ˙̇ ( , ) ( ) ( ) ( )= −0

2

K t s
G

m
t s U t U s

G

m
t s t U t s U t U sXX˙ ˙ ( , ) min( , ) ( ) ( ) ( ) ( ) ( ) ( )= = + − −[ ]0

2
0
2

K t s
G

m
t t s U t s U t U sXẊ ( , ) ( ) ( ) ( ) ( )= − − −[ ]0

2
2 2

2
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and

K t s
G

m
s t s U t s t s t U t s U t U s

G

m
t s t s t s U t U s

XX ( , ) ( ) ( ) ( )[ ( )] ( ) ( )

  [max( , )] [ max( , ) min( , )] ( ) ( )

= − − + − − −[ ]
= −

0
2

2 2

0
2

2

6
3 3 1

6
3

By letting s t=  in the K t sXX˙ ˙ ( , )  and K t sXX ( , )  expressions we can find the

response variances as

σ σ˙ ( ) ( )          ( ) ( )
X Xt

G

m
tU t t

G

m
t U t2 0

2
2 0

2
3

3
= =and         

showing that application of the delta-correlated excitation to a mass with no

restoring force gives a velocity variance that grows linearly with time and a

displacement variance that grows cubicly. Similarly, the cross-covariance of

displacement and velocity at time t  is

K t t
G

m
t U tXẊ ( , ) ( )= 0

2
2

2

which gives their correlation coefficient as ρ σ σXX XX X XK t t˙ ˙ ˙( , ) /( )≡ = 3 21 2/ / .

One can go one step further with this type of analysis and notice that the cross-

covariance function for velocity and acceleration is finite but has a discontinuity at

s t= . We have K t s GXX˙ ˙̇ ( , ) /= 0 m2 for s t< , and this covariance is zero for s t> .

Although the mass with no restoring force may seem to be a very impractical

system, its response actually does describe an important situation. In particular, it

is the same as the limit of the response of the general SDF system of Eq. 5.45

immediately after the application of the delta-correlated excitation. The key

reason for this is that at t = 0 , both X t( )  and ˙( )X t  in Eq. 5.45 are zero. Thus,

we know that the restoring force c X t k X t˙( ) ( )+  starts at zero when t = 0 .

Furthermore, we have found that the variance of X t( )  and ˙( )X t  grow

continuously, so there must be a small range of t  values for which the restoring

force remains small. During this range of t  values, one can approximate Eq. 5.45

by the simplified expression of this example. In fact, it can be shown that all the

variance and covariance functions we have derived here agree exactly with the

t → 0 limits of power series expansions of the corresponding expressions for the

SDF system.

One implication of these results is that the variance of velocity and displacement

of the SDF system initially grow like G t m0
2/  and G t m0

3 23/( ) , respectively.

These rates of growth ensure that for small t , the values of displacement are

relatively much smaller than those of velocity, and one can see that this initial

behavior shows quite clearly for the SDF response in Fig. 5.7. For the simple

mass, the linear and cubic growth, respectively, of velocity and displacement

variance will eventually cause displacement levels to be relatively large
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compared with velocity, as both grow toward infinity. For the SDF system the

large time behavior is quite different, though, because the spring and dashpot

become effective. In particular, both displacement and velocity variance grow in

the same manner toward stationary values, as illustrated in Fig. 5.7. For both the

simple mass and the SDF system, the variance of acceleration is infinite for all

time during which a delta-correlated excitation is applied.

********************************************************************************************

5.8 Nearly Delta-Correlated Processes
As stated previously, no physical process is truly delta-correlated, even though
delta-correlated processes are often used in practical problems to approximate
excitations that are nearly independent of themselves at distinct times t and s.
Equations 5.37 and 5.38 illustrate that one must somehow choose G0  (either as a
constant or a function of time) in order to define the covariance function of the
approximating delta-correlated process. For a covariant stationary process, one
logical way to do this is on the basis of the variance bound in Eq. 5.32. In
particular, if one chooses G0  for the delta-correlated process to be the same as
the integral of the absolute value of GFF ( )τ  for the physical process

G G r drFF0 =
−∞

∞∫ ( ) (5.65)

then Eq. 5.32 will give the same bound on the response variance for the idealized
approximation of the excitation as for the physical process excitation.

In order to generalize Eq. 5.65 to a situation with a nonstationary
K s sFF ( , )1 2 , let us introduce new time variables as τ = −s s1 2  and
t s s= +( ) /1 2 2 . The first of these variables is the time difference, and the second
is a symmetric function of s1 and s2  that becomes time s in the limit of
s s s1 2= = . We then have

K s s K t tFF FF( , ) ,1 2 2 2
= + −











τ τ

For a nearly delta-correlated process it is clear that this covariance function must
decay rapidly as τ  increases. The generalization of Eq. 5.65 is then to choose

G t K t t dFF0 2 2
( ) ,= + −









−∞

∞∫ τ τ
τ (5.66)
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One may note that Eq. 5.65 is the stationary special case of Eq. 5.66.

The choice of G0  will be given more consideration in Chapter 6, when we
consider frequency decompositions of processes. It will be found that, in some
applications, we can identify choices for G0  that are better than Eq. 5.66.

********************************************************************************************
Example 5.9: Choose G0  for a delta-correlated approximation of a stochastic

process with autocovariance function

G AeFF
c( ) | |τ τ= −

From Eqs. 5.65 and 5.40 we see that choosing G A c0 2= /  will give the response

variance of any linear oscillator with the delta-correlated excitation to be the

same as the bound of Eq. 5.32 for the response variance for { ( )}F t  excitation.

Of course { ( )}F t  is nearly delta-correlated only if c  is large, and we can also

note that GFF ( )τ  can be considered to tend to ( / ) ( )2 A c δ τ  in the limit as

c → ∞.
********************************************************************************************

5.9 Response to Gaussian Excitation
All the results in this chapter have involved calculating the first and second
moments of response of a linear system by writing that response as a convolution
integral of the excitation and an impulse response function. As noted in Section
4.10, any integral of a Gaussian process is also a Gaussian process. Thus, any
linear system with a Gaussian excitation also has Gaussian responses.
Furthermore, different responses, including { ( )}X t  and { ˙( )}X t , are jointly
Gaussian.

Knowledge that a response is a Gaussian process is very useful information
in practice, because the complete probability density function for any Gaussian
random variable or vector is determined by the values of the appropriate first and
second moments. For example, knowledge of the µX t( )  and σ X t( )  functions
allows one to compute probabilities such as P X t a[ ( ) ]>  or P a X t b[ ( ) ]< <  for
any t value. Similarly, knowledge of the µX t( )  and K t tXX ( , )1 2  functions allows
one to compute probabilities of events involving two or more times such as
P X t a X t b X t c[ ( ) , ( ) , ( ) ]1 2 3< < < . Furthermore, knowledge that X t( )1  and ˙( )X t2
are jointly Gaussian allows one to write their joint probability density function in
terms of the functions µX t( ) , µ ˙ ( )X t , and K t tXẊ ( , )1 2 , which can, in turn, be
written in terms of µX t( )  and K t tXX ( , )1 2 .
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In summary, the calculation of the first and second moments of response is
performed in exactly the same way whether the excitation is Gaussian or non-
Gaussian. The only difference between the two situations is that knowledge of
these first two moments gives complete probability information about a Gaussian
response but only partial information about a non-Gaussian response, such as
would result from a non-Gaussian excitation.

Exercises
*****************************************************************
Impulse Response Functions
*****************************************************************
5.1 Consider a linear system for which the response x t( )  to an excitation f t( )  is
governed by the differential equation

˙̇ ( ) ˙( ) ( ) ( )x t x t x t f t+ + =5 6

Find the impulse response function h tx ( )  by considering f t t( ) ( )= δ . Sketch
your answer.
*****************************************************************
5.2 Consider a linear system for which the response x t( )  to an excitation f t( )  is
governed by the differential equation

˙̇ ( ) ˙( ) ( ) ( )x t x t x t f t+ + =7 10

Find the impulse response function h tx ( )  by considering f t t( ) ( )= δ . Sketch
your answer.
*****************************************************************
5.3 Consider a linear system for which the response x t( )  to an excitation f t( )  is
governed by the third-order differential equation

d

d t
x t

d

d t
x t

d

d t
x t f t

3

3 0

2

2 0
22( ) ( ) ( ) ( )+ + =ζ ω ω

with 0 1< <ζ . Find the impulse response function h tx ( )  by considering
f t t( ) ( )= δ . Specifically:

(a) Find three different functions that each solve the homogeneous third-order
equation.

(b) Identify the three necessary initial conditions on h tx ( )  at t = +0 .
(c) Solve for the constants in the homogeneous solution.
*****************************************************************
5.4 Consider a linear system for which the response x t( )  to an excitation f t( )  is
governed by the third-order differential equation

d

d t
x t c

d

d t
x t f t

3

3

2

2
( ) ( ) ( )+ =
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with c > 0. Find the impulse response function h tx ( )  by considering f t t( ) ( )= δ .
Specifically:
(a) Find three different functions that each solve the homogeneous third-order

equation.
(b) Identify the three necessary initial conditions on h tx ( )  at t = +0 .
(c) Solve for the constants in the homogeneous solution.
*****************************************************************
First-Order System
*****************************************************************
5.5 Consider the response { ( )}X t  of a linear system described by

 c X t k X t F t˙( ) ( ) ( )+ =
for which the impulse response function was derived in Example 5.1 as
h tx ( ) = c e U tk t c− −1 / ( ) .
(a) Find expressions for µX t( )  and µ ˙ ( )X t  for response to a general { ( )}F t

excitation.
(b) Find expressions for φXX t t( , )1 2 , φXX t t˙ ( , )1 2 , and φ ˙ ˙ ( , )XX t t1 2  for a general

{ ( )}F t  excitation.
(c) Find simplified expressions for µX  and RFF ( )τ  for an { ( )}F t  process that is

mean-value and second-moment stationary.
*****************************************************************
5.6 Let A be a random variable with µA = 0  and σ A

2 1= . Let this random variable
be taken as the initial condition at time zero [ X A( )0 = ] of a linear system
governed by ˙( ) ( )X t b X t= , in which b is a constant.
(a) Find expressions for φXX t t( , )1 2 , φXX t t˙ ( , )1 2 , and φ ˙ ˙ ( , )XX t t1 2 .
(b) Are E X t[ ( )]2  and E X t[ ˙ ( )]2  finite for all t > 0? What, if any, restrictions on

the value of b are required?
(c) Can { ( )}X t  tend to a covariant stationary process as t goes to infinity?
*****************************************************************
5.7 Consider the response { ( )}X t  of the linear system of Example 5.2 described
by m X t c X t F t˙̇ ( ) ˙( ) ( )+ =  in which m and c are positive constants and { ( )}F t  is a
stationary stochastic process. Under what conditions will either of the mean-
squared responses E X t[ ( )]2  and E X t[ ˙ ( )]2  be stationary and finite?
*****************************************************************
5.8 Consider the response { ( )}X t  of the linear system of Exercise 5.4 described
by

d

d t
X t c

d

d t
X t F t

3

3

2

2
( ) ( ) ( )+ =

in which c is a positive constant and { ( )}F t  is a stationary stochastic process.
Under what conditions will any of the mean-squared responses E X t[ ( )]2 ,
E X t[ ˙ ( )]2 , and E X t[ ˙̇ ( )]2  be stationary and finite?
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*****************************************************************
5.9 Consider the response { ( )}X t  of a linear system described by

˙( ) ( ) ( ) ( )X t a X t W t U t+ =
in which { ( )}W t  is delta-correlated process with µW t( ) = 0 and
φ δWW t t G t t( , ) ( )1 2 0 1 2= − . Note that the unit step causes { ( )}W t  to be applied to
the oscillator only for t ≥ 0 . The system is initially at rest: X( )0 0= .
(a) Find µX t( )  and φXX t t( , )1 2  for all time values.
(b) Find E X t[ ( )]2  for all t > 0 .
(c) Find the stationary autocorrelation function: R t tXX

t
XX( ) lim ( , )τ φ τ= +

→∞
.

*****************************************************************
5.10 Consider the response { ( )}X t  of a linear system described by

c X t k X t F t˙( ) ( ) ( )+ =
with the deterministic initial condition X x( )0 0= . For t > 0 , { ( )}F t  is a mean-
zero, nonstationary delta-correlated process with µF t( ) = 0 and φFF t t( , )1 2 =
G e t tt

0 1 21 1( ) ( )− −−α δ .
(a) Find the µX t( )  mean-value function of { ( )}X t .
(b) Find the K t tXX ( , )1 2  covariance of { ( )}X t .
(c) Find E X t[ ( )]2 .
*****************************************************************
5.11 Consider a linear system whose response { ( )}X t  to an excitation { ( )}F t  is
governed by ˙̇ ( ) ˙( ) ( )X t c X t F t+ = , in which c > 0 is a constant. The excitation
{ ( )}F t  is a delta-correlated process modulated by the unit step function.
Specifically,

K t t G t t U t U tFF ( , ) ( ) ( ) ( )1 2 0 1 2 1 2= −δ
(a) Find the variance of { ( )}X t .
(b) Find the variance of { ˙( )}X t .
(c) Discuss the behavior of the response variances as t tends to +∞.
*****************************************************************
5.12 Consider the response { ( )}X t  of a linear system described by

˙( ) ( ) ( ) ( ) ( )X t a X t W t U t U T t+ = −
in which T > 0 and { ( )}W t  is a stationary delta-correlated process with
µW t( ) = 0 and φ δWW t t G t t( , ) ( )1 2 0 1 2= − . Note that the unit step causes { ( )}W t
to be applied to the oscillator only for 0 ≤ ≤t T . The system is initially at rest:
X( )0 0= .
(a) Find µX t( )  and φXX t t( , )1 2  for all time values.
(b) Sketch E X t[ ( )]2  versus t (for all t > 0).
*****************************************************************
5.13 Consider a linear system governed by the first-order differential equation

˙( ) ( ) ( )X t a X t F t t+ = ≥for 0
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in which a is a constant, with 0 1< <a . Let { ( )}X t  have the random initial
condition X Y( )0 =  and let the forcing function consist of one random impulse at
time t a= −( )4 1: F t Z t a( ) [ /( )]= −δ 1 4 , in which Y and Z are random variables
with µ µY ZE Y E Z E Y Z= = = = =1 2 0 5 1 52 2, ( ) , , ( ) , ( ) . .
(a) Find µX t( )  for all t ≥ 0 .
(b) Find E X t[ ( )]2  for all t ≥ 0 .
(c) Sketch your answers to (a) and (b) versus t.
*****************************************************************
5.14 Consider a linear system governed by the first-order differential equation

˙( ) ( ) ( )X t a X t F t+ =
The excitation { ( )}F t  is a stationary random process with a nonzero mean value,
µF b= , and an autocovariance function K t t G eFF

c( , ) | |+ = −τ τ
0  for all t and τ .

The terms a, b, and c are constants with a > 0 and c > 0.
(a) Find the µX  mean value of the { ( )}X t  response.
(b) Find the E X( )2  mean-squared value of the { ( )}X t  response.
*****************************************************************
5.15 Let the random process { ( )}Z t  denote the ground acceleration during an
earthquake. One possible model is a segment from a stationary process described
by

˙( ) ( ) ( )Z t b Z t bW t+ =
in which { ( )}W t  is a mean-zero delta-correlated process with K t sWW ( , ) =
G t s0 δ( )− .
(a) Find the stationary value of E Z( )2 .
(b) Data for North American earthquakes indicate that b = 6 π rad/s  (i.e., 3 Hz) is

a reasonable choice. Using this b value, find the value of G0  such that the
stationary standard deviation of { ( )}Z t  is σZ = 0 981.  m/s2 (i.e., 0.1 g). Also
give your units for G0 .

*****************************************************************
5.16 Consider a causal linear system for which the h tx ( )  impulse response
function is known. That is, if the input is F t( )  then the response is

X t F s h t s dsx( ) ( ) ( )= −
−∞

∞∫
(a) Find the general integral expression relating the E X t X t X t[ ( ) ( ) ( )]1 2 3  third

moment of response to the corresponding E F t F t F t[ ( ) ( ) ( )]1 2 3  input
expression.

(b) Simplify the integral in part (a) for the special case of a stationary delta-
correlated excitation with E F t F t F t Q t t t t[ ( ) ( ) ( )] ( ) ( )1 2 3 0 1 3 2 3= − −δ δ .

(c) For the special case of h t e U tx
at( ) ( )= −  and the delta-correlated excitation

of part (b), find the stationary value of E X( )3 .
*****************************************************************
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SDF System
*****************************************************************
5.17 Consider the response { ( )}X t  of a linear SDF system described by

˙̇ ( ) ˙( ) ( ) ( )X t X t X t F t+ + =2 0 0
2ζ ω ω

with the deterministic initial conditions X( )0 0= , ˙( )X v0 0= . For t > 0 , { ( )}F t  is
a stationary delta-correlated process with µF t( ) = 0 and φFF t t( , )1 2 =
G t t0 1 2δ( )− . G0  and ω0 are positive constants and 0 1< <ζ .
(a) Find the µX t( )  mean-value function of the { ( )}X t  response for t ≥ 0 .
(b) Find the variance of { ( )}X t  for t ≥ 0 .
(c) Find E X t[ ( )]2  for t ≥ 0 .
Give all answers in terms of the parameters G0 , ω0, ζ , and ω ωd = −0 1( ζ0

2 ) /1 2.

*****************************************************************

5.18 Consider the response { ( )}X t  of a linear SDF system described by

˙̇ ( ) ˙( ) ( ) ( )X t X t X t F t+ + =2 0 0
2ζ ω ω

with random initial conditions of X Y( )0 = , ˙( )X 0 0= . The forcing function
consists of one random impulse at time T: F t Z t T( ) ( )= −δ  in which T > 0 is a
constant and Y and Z are random variables with

E Y E Y E Z E Z E YZ( ) , ( ) , ( ) , ( ) , ( ) .= = = = =1 2 0 5 1 52 2
0
2

0    ω ω

 (a) Find µX t( )  for all t ≥ 0 .
(b) Find E X t[ ( )]2  for all t ≥ 0 .
(c) Sketch your answers to (a) and (b) versus ω0t  for ω0 10T = .

*****************************************************************

5.19 Assume that you are concerned about the possibility of collision between
two buildings during wind-excited vibration. The east-west clearance between
the buildings is 35 mm. Model each building as an SDF system:

˙̇ ( ) ˙ ( ) ( ) ( )X t X t X t F tj j j j j j j+ + =2 2ζ ω ω

in which X j =  displacement (to the east) of the top of building j. The building
parameters are

Building A: ω π ζA A= =2  rad/s,  0.01
Building B: ω π ζB B= = rad/s,  0.01

The critical condition is with the wind blowing from the north, so you can
neglect any static deflection of the buildings. Model the east-west excitation of
each building (due to vortex shedding, etc.) as a delta-correlated process:
K t s G t sF F jj j ( , ) ( )= −δ . Noting that F tj ( )  is the force per unit mass in each
SDF system, consider the excitation intensities to be GA = 40  (mm /s )2 3  and
GB = 80  (mm /s )2 3 .
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(a) Find the standard deviation σ X j  for the stationary displacement response at
the top of each building.

(b) Let Y XB B= /2  denote the displacement of the taller building B at the level
of the top of building A and Z t X t Y tA B( ) ( ) ( )= −  be the relative displacement
at the top of building A . Estimate the value of the stationary standard
deviation σZ  by assuming that { ( )}X tA  and { ( )}X tB  are independent
random processes.

(c) Presume that you wish to reduce the probability of collision by adding
damping to one of the structures. To which structure would you add the
damping? Briefly explain your answer.

*****************************************************************
5.20 Assume that you are concerned about the possibility of collision between
two buildings during an earthquake. The two buildings are of the same height and
north-south clearance between them is 20 cm. Model each building as an SDF
system:

˙̇ ( ) ˙ ( ) ( ) ˙̇ ( )X t X t X t Z tj j j j j j+ + = −2 2ζ ω ω

in which X tj ( )  is the north-south displacement at the top of building j and
{ ˙̇ ( )}Z t  is the north-south ground acceleration. The building parameters are

Building A: ω π ζA A= =2  rad/s,  0.01
Building B: ω π ζB B= =3  rad/s,  0.01

Presume that the earthquake has such a long duration that the critical portion of
the { ˙̇ ( )}Z t  excitation and the { ( )}X tj  responses may all be modeled as
stationary processes. Let { ˙̇ ( )}Z t  be modeled as a delta-correlated process with
K t sZZ˙̇ ˙̇ ( , ) = ( . ) ( )0 1 m /s2 3 δ t s− .
(a) Find the standard deviation σ X j  for the displacement response at the top of

each building.
(b) Let Z t X t X tA B( ) ( ) ( )= −  be the relative displacement at the top of the

buildings. Estimate the value of the stationary standard deviation σZ  by
assuming that { ( )}X tA  and { ( )}X tB  are independent random processes.

(c) Presume that you wish to reduce the probability of collision by adding
damping to one of the structures. To which structure would you add the
damping? Briefly explain your answer.

*****************************************************************
5.21 Consider approximating an earthquake ground acceleration of 30-second
duration by using a mean-zero, delta-correlated { ˙̇ ( )}Y t  process with

K t s t s U t U tYY˙̇ ˙̇ ( , ) ( . ) ( ) ( ) ( )= − −1 5 30 m /s2 3 δ

in which t is time in seconds. Let the ground velocity have an initial value of
zero: ˙( )Y 0 0= . Evaluate E Y t[ ˙ ( )]2  and sketch this mean-squared value versus t
over the range of 0 50≤ ≤t .
*****************************************************************
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5.22 Consider approximating an earthquake ground acceleration by using a
nonstationary mean-zero, delta-correlated { ˙̇ ( )}Y t  process with

K t s e e t s U tYY
t t

˙̇ ˙̇
/ /( , ) ( ) ( ) ( ) ( )= − −− −6 10 5 m /s2 3 δ

in which t is time in seconds. Let the ground velocity have an initial value of
zero: ˙( )Y 0 0= . Evaluate E Y t[ ˙ ( )]2  and sketch this mean-squared value versus t.
*****************************************************************
5.23 Let the random process { ( )}Z t  denote the earthquake ground acceleration
model proposed in Exercise 5.15 with

˙( ) ( ) ( )Z t b Z t bW t+ =
in which { ( )}W t  is a delta-correlated process. Let { ( )}X t  represent the response
of an SDF structural model excited by this ground motion

m X t c X t k X t m Z t˙̇ ( ) ˙( ) ( ) ( )+ + = −
Substitute Z t( )  from the second equation into the first equation to obtain one
ordinary differential equation relating { ( )}X t  and { ( )}W t .
*****************************************************************
Response to Gaussian Excitation
*****************************************************************
5.24 Let the stationary, mean-zero process { ( )}X t  denote the stress in a
particular member of a linear system responding to a Gaussian stochastic
excitation. Let the standard deviation of X t( )  be σ X = 75 MPa . Find
P X t[ ( ) ≥ 350 MPa]  for any particular time t.
*****************************************************************
5.25 Let the stationary process { ( )}X t  denote the deflection at the top of a linear
offshore structure responding to a Gaussian stochastic sea. Let the mean and
standard deviation of X t( )  be µX = 3 m and σ X = 2 m. Find P X t[ ( ) ≥10 m]  for
any particular time t.
*****************************************************************
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Chapter 6
Frequency Domain Analysis

6.1 Frequency Content of a Stochastic Process
The Fourier transform provides the classical method for decomposing a time
history into its frequency components (see Appendix B for brief background
information on Fourier analysis). For any time history f t( ) , we will denote the
Fourier transform by ˜(f ω) and define it as

˜( ( )f f t e dti tω
π

ω) =
−∞

∞ −∫1

2
(6.1)

The inverse relationship is then

f t f e di t( ) ˜(= )
−∞

∞∫ ω ωω (6.2)

The interpretation of the Fourier transform as a frequency decomposition is based
on Eq. 6.2. Inasmuch as an integral may be viewed as the limit of a summation,
Eq. 6.2 shows that the original time history f t( )  is essentially a summation of
harmonic terms, with ˜(f dω ω)  being the amplitude of the ei tω  component
having frequency ω . This amplitude is generally complex, as shown by Eq. 6.1,
so one must consider its absolute value to determine how much of the total f t( )
time history is contributed by frequency ω . A condition ensuring the existence of
the Fourier transform ˜(f ω) is that f t( )  be absolute-value integrable:

| ( ) |f t dt
−∞

∞∫ < ∞ (6.3)

Equation 6.2 then produces exactly the original f t( )  function at all points of
continuity of f t( ) . At a point of finite discontinuity of f t( ) , Eq. 6.2 gives a
value midway between the left-hand and right-hand limits at the point.

We now wish to apply the Fourier transform idea to a stochastic process
{ ( )}X t . Simply using a stochastic integrand in Eq. 6.1 gives
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˜ ( ( )X X t e dti tω
π

ω) =
−∞

∞ −∫1

2
(6.4)

which is a stochastic integral of the form of Eq. 4.75. This defines a new
stochastic process { ˜( )}X ω  on the set of all possible ω  values. Taking the
expectation of Eq. 6.4 shows that the mean-value function for { ˜( )}X ω , if it
exists, can be written as

µ ω
π

µ µ ωω
˜ ( ( ) ˜ (X X

i t
Xt e dt) = = )

−∞

∞ −∫1

2
(6.5)

The purpose of the last term in Eq. 6.5 is to emphasize that the mean-value
function for the Fourier transform of { ( )}X t  is exactly the Fourier transform of
the mean-value function for { ( )}X t .

Next, we consider the second moments of the { ˜( )}X ω  process, but we
slightly modify the definition of the second-moment function because { ˜( )}X ω  is
not real. For a complex stochastic process, we will use the standard procedure of
defining the second-moment function with a complex conjugate (denoted by the
superscript *) on the second term:

φ ω ω ω ω˜ ˜
*( , ) [ ˜ ( ˜ ( ]XX E X X1 2 1 2= ) ) (6.6)

Note that this is identical to Eq. 4.2 for a real process. One reason for the
inclusion of the complex conjugate is so that φ ω ω˜ ˜ ( , )XX 1 2  will be real along the
line ω ω ω2 1= = . In particular, we have φ ω ω˜ ˜ ( , )XX = E X[ | ˜ ( |]2 ω) . Using this
definition and Eq. 6.4 gives

φ ω ω
π

φ ω ω
˜ ˜

( )( , )
( )

( , )XX XX
i t tt t e dt dt1 2 2 1 2 1 2

1

2
1 1 2 2=

−∞

∞ − −
−∞

∞ ∫∫ (6.7)

The corresponding definition of the autocovariance function is

K E X XXX X X˜ ˜ ˜ ˜
*( , ) [ ˜ ( ( )][ ˜ ( ( )]ω ω ω µ ω ω µ ω1 2 1 1 2 2= )− )−( )

and this is easily shown to be

K K t t e dt dtXX XX
i t t

˜ ˜
( )( , )

( )
( , )ω ω

π
ω ω

1 2 2 1 2 1 2
1

2
1 1 2 2=

−∞

∞ − −
−∞

∞ ∫∫ (6.8)
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Expressions for higher moment functions can, obviously, also be derived.

One major difficulty in applying the Fourier transform procedure to many
problems of interest is the fact that the expressions just written will not exist if
{ ( )}X t  is a stationary stochastic process. In particular, Eqs. 6.3 and 6.5 show that
µ ω˜ (X )  may not exist unless µX t( )  is absolute value integrable, and this requires
that µX t( )  tend to zero as | |t  tends to infinity. In general, µ ω˜ (X )  exists for a
mean-value stationary process only if the process is mean-zero, in which case
µ ω˜ (X )  is also zero. Similarly, Eqs. 6.7 and 6.8 show that φ ω ω˜ ˜ ( , )XX 1 2  and
KXX˜ ˜ ( , )ω ω1 2  may not exist unless φXX t t( , )1 2  and K t tXX ( , )1 2 , respectively,
tend to zero as t1  and t2  tend to infinity. These conditions cannot be uniformly
met for a stochastic process that is second-moment stationary or covariant
stationary, respectively. In particular, we have φXX XXt t R t t( , ) ( )1 2 1 2= −  and
K t tXX ( , )1 2 = G t tXX ( )1 2−  for a stationary process, so t1  and t2  tending to
infinity with a finite value of ( )t t1 2−  would not give φXX t t( , )1 2  or K t tXX ( , )1 2
tending to zero and the integrals might not exist. Thus, we will modify the
Fourier transform procedure to obtain a form that will apply to stationary
processes.

6.2 Spectral Density Functions for Stationary Processes
To avoid the problem of existence of the Fourier transforms, consider a new
stochastic process { ( )}XT ω  that is a truncated version of our original stationary
process { ( )}X ω :

X t X t U t T U T tT ( ) ( ) ( / ) ( / )= + −2 2 (6.9)

in which U( )⋅  denotes the unit step function (see Eq. 2.5). The Fourier transform
of XT ( )ω  is sure to exist because the process is defined to be zero if | | /t T> 2 ,
as illustrated in Fig. 6.1. In particular, the moment integrals in Eqs. 6.5–6.8 will
exist, because the limits of integration will now be bounded. Of course, we must
consider the behavior as T goes to infinity or we will not have a description of the
complete { ( )}X t  process, and we know that the integrals in Eqs. 6.5–6.8 may
diverge in that situation. Thus, we must find a way of normalizing our results in
such a way that a limit exists as T goes to infinity.

We really need not give any more attention to the mean-value function of
the Fourier transform for a stationary process. If { ( )}X t  is mean-value stationary
and µX ≠ 0 , then the Fourier transform of µX t( )  contains only an infinite spike
at the origin: µ ω µ δ ω˜ ( ) ( )X X= . The more interesting situation involves the
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second moments of the process. Specifically, we will consider { ( )}X t  to be
stationary, so

φ ω ω
π

ω ω
˜ ˜ /

/ ( )
/

/
( , )

( )
( )X X XXT

T i t t
T

T

T T
R t t e dt dt1 2 2 1 22

2
12

2
2

1

2
1 1 2 2= −

−
− −

− ∫∫
(6.10)

and

K G t t e dt dtX X XXT

T i t t
T

T

T T
˜ ˜ /

/ ( )
/

/
( , )

( )
( )ω ω

π
ω ω

1 2 2 1 22

2
12

2
2

1

2
1 1 2 2= −

−
− −

− ∫∫
(6.11)

In most applications, we will find that two of the random variables that make up
a stochastic process are independent if they correspond to observation times that
are infinitely far apart. That is, X t( )+ τ  becomes uncorrelated with X t( )  as | |τ
becomes very large. This causes GXX ( )τ  to tend to zero and RXX ( )τ  to tend to
( )µX

2  as | |τ  tends to infinity. One consequence of this behavior is the fact that
as T tends to infinity the integral in Eq. 6.10 may grow much more rapidly than
the one in Eq. 6.11. Thus, we will focus on the case with better behavior and
restrict our attention to covariance only. If the stationary mean value is zero, then
this is the same as the second moment of the process. If µX t( )  does not equal
zero, then analysis of covariance gives us information about how X t( )  varies
from this deterministic mean value.

We will now analyze the covariance function of the Fourier transform of
the truncated stochastic process { ( )}XT ω  when { ( )}X t  is a covariant stationary
process. The integral in Eq. 6.11 can be rearranged by using exactly the same
changes of variables and other manipulations as were used in deriving the
ergodicity condition in Eq. 4.50, although the presence of the exponential term
makes things a little more complicated this time. The result can be written as
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K
T

G e d

T G d

X X XXT

T i

XX
T

T T
˜ ˜ ( , )

( )

sin[( ) / ]
( )

( )

cos[( ) / ] ( )
sin( ) sin( )

( )

sin[(

ω ω
π

ω ω
ω ω

τ τ

ω ω τ
ω τ ω τ

ω ω
τ

ω

ω τ
1 2 2

1 2

1 2

1 2
1 2

1 2
0

1

1

2

2 2

2 2

2
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−
−




 −

−
−
−













+

−

−
−∫

∫

ωω
ω ω

τ ω τ ω τ τ2

1 2
1 20

2) / ]
( )

( ) cos( ) cos( )
T

G dXX
T

−
−[ ]




∫

(6.12)

Note that this expression is quite well behaved if ω1 and ω2 are not nearly equal.
In particular, if we impose the condition that the autocovariance function is
absolutely integrable

| ( ) |G dXX τ τ
−∞

∞∫ < ∞ (6.13)

then it is clear that we have KX XT T
˜ ˜ ( , )ω ω1 2  bounded for any T value, including

T → ∞, for ω ω1 2≠ . The situation is not as good, though, when ω1 and ω2 are
nearly equal. Letting ω ω2 =  and ω ω ω1 = + ∆ , then taking the limit as ∆ω → 0
so that ω1 and ω2 approach a common value, gives sin( ) sin( )ω τ ωτ1 ≈ +
∆ω τ ωτcos( )  and cos( ) cos( ) sin( )ω τ ωτ ω τ ωτ1 ≈ − ∆ . Substituting these
expressions into Eq. 6.12, along with sin( )∆ ∆ω τ ω τ≈ , shows that the final term
in Eq. 6.12 drops out and the other two terms give

K T G e d G dX X XXT

T i
XX

T
T T

˜ ˜ ( , )
( )

( ) ( ) cos( )ω ω
π

τ τ τ τ ω τ τω τ= −






−

−∫ ∫1

2
2

2 0

Clearly, the first term in this expression will grow proportionally with T as T
goes to infinity, under the condition of Eq. 6.13. It is not immediately obvious
how the second term will behave, but it can be shown that it grows less rapidly
than the first, so the first term always dominates in the limit.1 Thus, we can say
that

                                                  
1We will not include a proof of the general case, but it is very easy to verify the
special case in which | ( ) |G cXX τ τ ε≤ − −1  for some positive constants c and ε .
Then, the absolute value of the second integral in the equation is bounded by
c T 1−ε  as T goes to infinity, so the second term becomes less significant than the
first term.
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K
T

G e d TX X XX
i

T T
˜ ˜ ( , )

( )
( )ω ω

π
τ τω τ→ → ∞

−∞

∞ −∫
2 2

   as (6.14)

Because Eq. 6.14 grows proportionally with T for large T values, we can
define a normalized form that will exist for T → ∞ by dividing KX XT T

˜ ˜ ( , )ω ω1 2
by T. Note, though, that this normalized autocovariance of the Fourier transform
will go to zero as T goes to infinity if ω ω1 2≠  because the unnormalized form
was finite in that situation. Thus, all the useful information that this normalized
form can give us about the stationary process is included in the special case
KX XT T

˜ ˜ ( , )ω ω , corresponding to ω ω ω1 2= = . Therefore, we define the new
function of frequency as

S
T

K

T
E X X

XX
T X X

T
T X T X

T T

T T

( ) lim ( , )

lim [ ˜ ( ) ( )][ ˜ ( ) ( )]

˜ ˜

˜ ˜
*

ω
π

ω ω

π
ω µ ω ω µ ω

=

≡ − −( )
→∞

→∞

2

2
(6.15)

in which the inclusion of the factor of 2π  is arbitrary, but traditional. An
equivalent form is

S
T

E XXX
T

T XT
( ) lim [| ˜ ( ) ˜ ( ) | ]ω

π
ω µ ω= −

→∞

2 2 (6.16)

Noting the fact that ˜ ( ) ˜ ( )*X XT T− =ω ω  for a real X t( )  allows us to rewrite this
expression as

S
T

E X XXX
T

T X T XT T
( ) lim [ ˜ ( ) ˜ ( )][ ˜ ( ) ˜ ( )]ω

π
ω µ ω ω µ ω= − − − −( )

→∞

2
(6.17)

We will call SXX ( )ω  the autospectral density function of { ( )}X t . Other terms
that are commonly used for it are power spectral density or simply spectral
density. Many authors define the spectral density slightly differently, using the
autocorrelation function rather than the autocovariance function. The difficulty
with that approach is that it gives a spectral density that generally does not exist
if the Fourier transform of µX t( )  does not exist, as when { ( )}X t  is mean-value
stationary and µX ≠ 0 . This problem is then circumvented by looking at the
spectral density of a mean-zero process defined as Y t X t tX( ) ( ) ( )= − µ . The
definition used here gives exactly the same result in a more direct manner.
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Comparing Eqs. 6.14 and 6.15 shows a very important result:

S G e dXX XX
i( ) ( )ω

π
τ τω τ=

−∞

∞ −∫1

2
 (6.18)

The SXX ( )ω  autospectral density function is exactly the Fourier transform of the
GXX ( )τ  autocovariance function. Furthermore, this implies that the inverse must
also be true:

G S e dXX XX
i( ) ( )τ ω ωω τ=

−∞

∞∫ (6.19)

We know that this Fourier transform pair will exist for a process { ( )}X t
satisfying Eq. 6.13. Note also, the similarity of Eqs. 6.18 and 6.8. Equation 6.8
defines KXX˜ ˜ ( , )ω ω1 2  as the double Fourier transform of the general K t tXX ( , )1 2
covariance function, one transform with respect to t1  and one with respect to t2 .
For the covariant stationary process we know that K t tXX ( , )1 2  can be replaced by
a function GXX ( )τ  of the one time argument τ = −t t1 2, and Eq. 6.18 shows that
the autospectral density function is the Fourier transform of this function with
respect to its single time argument.

Similar to Eq. 6.15, one can define a cross-spectral density function for two
jointly covariant stationary stochastic processes { ( )}X t  and { ( )}Y t  as

S
T

K

T
E X Y

XY
T X Y

T
T X T Y

T T

T T

( ) lim ( , )

lim [ ˜ ( ) ˜ ( )][ ˜ ( ) ˜ ( )]

˜ ˜ω
π

ω ω

π
ω µ ω ω µ ω

=

= − − − −( )
→∞

→∞

2

2
(6.20)

and show that it is the Fourier transform of the cross-covariance function of the
processes

S G e dXY XY
i( ) ( )ω

π
τ τω τ=

−∞

∞ −∫1

2
(6.21)

There is another alternative to the truncated Fourier transforms used here to
characterize the frequency decomposition of a stationary stochastic process. In
this alternative form one uses the Lebesque integral to write

X t e di t( ) ( )=
−∞

∞∫ ω ωΞ
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Note that the increment of the new complex, frequency-domain stochastic
process { ( )}Ξ ω  replaces ˜ ( )X dω ω  in the Fourier transform formulation. The
spectral density relationship is then written in terms of this increment of { ( )}Ξ ω
as E d d S d dXX[ ( ) ( )] ( ) ( )Ξ Ξω ω ω δ ω ω ω ω1 2 1 1 2 1 2= + . In this book we have
chosen to use the truncated Fourier transform approach because it seems easier to
comprehend and to relate to physical observations.

6.3 Properties of Spectral Density Functions
First we note three physical features of the autospectral density function. Directly
from the definition in Eq. 6.15 or 6.16, we see that for any stochastic process
{ ( )}X t  we must have all of the following:

SXX ( )ω  is always real for all values of ω

SXX ( )ω ≥ 0  for all values of ω

S SXX XX( ) ( )− =ω ω  for all values of ω

The fact that SXX ( )ω  is real and symmetric can also be immediately verified
from Eq. 6.18, keeping in mind that GXX ( )τ  is real and symmetric. Confirming
that Eq. 6.18 also implies that SXX ( )ω  is nonnegative requires use of the fact that
GXX ( )τ  is a nonnegative definite function (see Section 3.3).

Possibly the most important feature of the various spectral density
functions is that each of them gives all the information about a corresponding
covariance (or cumulant) function. In particular, the usual autospectral density
function of Eqs. 6.15–6.19 gives all the information about the autocovariance
function of the { ( )}X t  process, and the cross-spectral density function of Eqs.
6.20 and 6.21 gives all the information about the cross-covariance of { ( )}X t  and
{ ( )}Y t . We know that this must be true because the inverse Fourier transform
formula (as in Eq. 6.19) allows us to compute the covariance function from
knowledge of the spectral density function. Combined with the fundamental idea
of the Fourier transform, this shows that a spectral density function is a complete
frequency decomposition of a stationary covariance function. For example,
SXX ( )ω  can definitely be considered as a single-frequency component inasmuch
as its definition depends only on the frequency ω  part of the Fourier transform
(i.e., the frequency decomposition) of { ( )}X t , and knowledge of all the SXX ( )ω
frequency components is sufficient information to recreate the covariance
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function. These are precisely the characteristics of a frequency decomposition of
any quantity.

Another important property of autospectral density functions is obtained
from the special case corresponding to setting τ = 0 in Eq. 6.19, giving

σ ω ωX XX XXG S d2 0= =
−∞

∞∫( ) ( ) (6.22)

This shows that the variance of a covariant stationary process can always be
found from the area under its autospectral density function. This property is
frequently used for calculation of variance values in stochastic dynamic analysis.

The symmetry of autospectral density has also led to the use of an
alternative form called the single-sided autospectral density. One argument for
using this representation is that all the information is contained within the half of
the function corresponding to 0 ≤ ≤ ∞ω , so why bother with the other half. To
retain the property that variance is given by an integral of autospectral density, as
in Eq. 6.22, the single-sided autospectral density is typically taken to be
2 SXX ( )ω . It should also be noted that there are other normalizations of the
autospectral density in common usage, so one must be careful in interpreting the
meaning of any quoted value for the quantity. In particular, some prefer to
replace Eq. 6.22 with an integral over frequency in Hz (cycles per second) rather
than radians per second, and this requires a modification of autospectral density
by a factor of 2π . Furthermore, this variation may be found in conjunction with
either the two-sided SXX ( )ω  that we use or the single-sided version, giving four
different possibilities. Throughout this book we will use only the two-sided
autospectral density function defined by Eq. 6.15, because use of various forms
seems to add unnecessary possibilities for confusion.

Next we will use Eq. 6.19 to evaluate the derivatives of the autocovariance
function, as

d G

d
i S e d

j
XX

j
j j

XX
i( )

( ) ( )
τ

τ
ω ω ωω τ=

−∞

∞∫

and substitute these expressions into relationships between derivatives of
autocovariance functions and covariance functions involving the stochastic
derivative of a process, as given in Eqs. 4.60 and 4.61. Thus, the cross-
covariance of { ( )}X t  and { ˙( )}X t  is given by



Random Vibrations228

G
d G

d
i S e dXX

XX
XX

i
˙ ( )

( )
( )τ

τ
τ

ω ω ωω τ= − = −
−∞

∞∫

and the autocovariance of { ˙( )}X t  is

G
d G

d
S e dXX

XX
XX

i
˙ ˙ ( )

( )
( )τ

τ

τ
ω ω ωω τ= − =

−∞

∞∫
2

2
2

Comparing these two results with Eq. 6.19 shows that the spectral densities
involving { ˙( )}X t  are simply related to those for { ( )}X t . For example, the
expression for GXẊ ( )τ  is precisely in the form of an inverse Fourier transform of
( ) ( )−i SXXω ω . The uniqueness of the Fourier transform then tells us that

S i SXX XX˙ ( ) ( )ω ω ω= − (6.23)

Similarly, the expression for GXX˙ ˙ ( )τ  tells us that

S SXX XX˙ ˙ ( ) ( )ω ω ω= 2 (6.24)

In addition, if we write { ( )}( )X tj  for the jth-order stochastic derivative with
respect to t of { ( )}X t , then we can obtain the general result that

S i S
X X

k j k j k
XXj k( ) ( ) ( ) ( ) ( ) ( )ω ω ω= − + +1 (6.25)

which includes the special case of

S S
X X

j
XXj j( ) ( ) ( ) ( )ω ω ω= 2

for the autospectral density function of the jth derivative process.

6.4 Narrowband Processes
We will now investigate the relationship between the shape of an autospectral
density function and the nature of the possible time histories for the stochastic
process that it describes. We will begin this investigation with consideration of
so-called narrowband processes. A process { ( )}X t  is said to be narrowband if the
autospectral density SXX ( )ω  is very small except within a narrow band of
frequencies. Because SXX ( )ω  is an even function, this really means that the band
of significant frequencies appears both for positive and negative ω  values. We
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can state this narrowband condition as SXX ( )ω ≈ 0  unless | |ω ω≈ c  for some
given characteristic frequency ωc . To illustrate this idea more clearly, let us
choose the example with SXX ( )ω  equal to a constant value S0  if ω  is within a
distance b of either +ωc  or −ωc , and identically zero for all other frequencies, as
shown in Fig. 6.2. Mathematically, this can be written as

S S U b U bXX c c( ) [| | ( )] [( ) | |]ω ω ω ω ω= − − + −0

We can now use the inverse Fourier transform of Eq. 6.19 to find the
corresponding autocovariance function

G S e d S e d S dXX
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b

b i
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b

b
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c
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c( ) cos( )τ ω ω ωτ ωωτ
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G S
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sin[( ) ] sin[( ) ] cos( ) sin( )
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ω τ ω τ
τ

ω τ τ
τ

=
+ − −

=2 40 0

Letting τ → 0  in this expression gives the variance of the process as σX
2 = 4 0bS ,

which could also have been found from the area under the autospectral density
curve, as given in Eq. 6.22. We can use this variance as a normalization factor
and write the autocovariance function in a convenient form as

G
b

bXX X c( ) cos( )
sin( )

τ σ ω τ
τ

τ
= 2

For this process to be classified as narrowband, it is necessary that the parameter
b be small in some sense. In particular, if b c<< ω , then the oscillations of the
sin( )bτ  term are very slow compared with those at frequency ωc . In this case,
one can consider sin( ) /( )b bτ τ  to provide a slowly varying envelope for the
σX

2 cos( )ω τc  term. Figure 6.3 shows a sketch of this behavior for b c= ω /10 . It is

Figure 6.2 Ideal narrowband process

SXX(ω)

S0

2 b2 b

ω
ωc−ωc

.
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seen that GXX ( )τ  is well approximated by σX
2 cos( )ω τc  for small values of τ

but the amplitude of this cosine function decays as τ  increases. This is a
fundamental characteristic of any narrowband process and is the feature by which
a process can be identified as being narrowbanded based only on knowledge of
the autocovariance function.

The ultimate narrowband process is the process considered in Example 4.3,
for which the autocovariance function was exactly given as
GXX ( )τ = σX

2 cos( )ω τc , with no decay of the amplitude of GXX ( )τ . The
autospectral density for this example is SXX ( )ω = σX

2 [ ( )δ ω ω+ +c  δ ω ω( )]− c ,
showing that there are variance contributions only from components at the
discrete frequencies ±ωc . This is not too surprising, though, inasmuch as the
time histories of this process are exactly cosine waves with frequency ωc  and
amplitude and phase that are random variables. That is, any particular time
history is a simple harmonic function with frequency ωc  and fixed amplitude and
phase, although different time histories generally have different values for
amplitude and phase. Thus, we see that a more general narrowband process, with
an autocovariance function similar to that shown in Fig. 6.3, must be somewhat
similar to the process having harmonic time histories. We will examine this idea
more carefully because it provides a way to relate the frequency domain concept
of a narrowband process directly to the characteristics of the time histories of the
process.

The key idea that we want to emphasize is that if any process has an
autocovariance function that approximates σX

2 cos( )ω τc , then the quantity
Y t X t tX( ) [ ( ) ( )]≡ − µ  for almost all of its time histories must closely approximate
a harmonic function with frequency ωc . That is, one can write

Figure 6.3 Autocovariance function for a narrowband process

sin(bτ )
b τ

−2

−1

GXX(τ )

σ X
2

1

21−1

−
sin(bτ )

b τ

b τ

.
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X t t A t t tX c( ) ( ) ( ) cos[ ( )]= + +µ ω θ (6.26)

in which the amplitude A t( )  and phase θ( )t  are slowly varying. More precisely,
if GXX ( )τ ≈ σX

2 cos( )ω τc  over some range | |τ ≤ T0 , then a segment of length
T0  of a time history of Y t( )  will almost surely be well approximated by the
harmonic function with frequency ωc . The reasoning is simply that if
E Y t Y t[ ( ) ( )]+ ≈τ E Y c( ) cos( )2 ω τ , then one can say with probability one that
Y t( )+ ≈τ Y t c( ) cos( )ω τ . But this condition is true for a range of t and τ  values
only if Y t( )  has the prescribed harmonic form. Thus, we see that for any
narrowband process we should expect a typical segment of a time history of Y t( )
to approximate a segment from a harmonic function, as illustrated in Fig. 6.4.
Conversely, if the time histories of Y t X t tX( ) [ ( ) ( )]≡ − µ  do have the form of
harmonic functions with a fixed frequency ωc  and slowly varying amplitude and
phase, then we know that { ( )}X t  will have a narrowband autospectral density
function. Furthermore, σX

2 ≈ E A t[ ( )] /2 2 , and neglecting ˙( )A t  and ˙( )θ t  for this
nearly harmonic time history gives σ ωẊ c

2 2≈ E A t[ ( )] /2 2 , which implies that the
characteristic frequency ωc  for any narrowband process may be approximated by

ω
σ

σc
X

X
2 ≡

˙
(6.27)

The “2” in the subscript of ωc2  is to distinguish this definition of characteristic
frequency from alternate forms that will be introduced in Chapter 7. The ideas of
amplitude and phase of a stochastic process are also investigated in much more
detail in Chapter 7, but without the requirement that { ( )}X t  be narrowbanded in
nature.

X( t)

t

A(t)

−A(t)

≈
2 π
ωc

Figure 6.4 Typical time history of a narrowband process.
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6.5 Broadband Processes and White Noise
As noted in the preceding section, a narrowband process is one for which the
variance is all contributed by components in the vicinity of a single frequency ωc
and its reflection −ωc . At the opposite extreme is a process for which all
components contribute equally, such that the spectral density is the same for all
ω  values. Let us investigate a process { ( )}X t  of this type with S SXX ( )ω = 0 . The
first thing that one may notice about this autospectral density function is that it is
not integrable. Thus, Eq. 6.22 gives σX

2
= ∞ , showing that no physically

meaningful process has precisely this autospectral density. Nonetheless, let us
investigate the process further, because we will find that it can be used to
approximate meaningful processes. Because SXX ( )ω  is not integrable, the
inverse Fourier transform takes the degenerate form of a Dirac delta function,
giving the autocovariance function as GXX ( )τ = 2 0π δ τS ( ) , which does satisfy
the forward Fourier transform of Eq. 6.18. Thus, we see that the autocovariance
function for this process is the same as for the stationary delta-correlated process
introduced in Section 5.5. Conversely, we can say that a delta-correlated process
will always give an autospectral density that is a constant. Clearly, the
relationship between the autospectral density level S0  and the covariance
parameter G0  used in Eq. 5.37 is simply G S0 02= π .

A process with a constant value of SXX ( )ω  is commonly referred to as
white noise, by analogy with white light, which supposedly contains equal
contributions from all visible frequency components. The basic difference
between the terms delta-correlated and white noise in defining a stochastic
process is that the former term focuses attention on the time-domain
characterization of the process, whereas the latter focuses attention on the
frequency domain. A process { ( )}X t  that is so erratic that X t( )1  and X t( )2  are
independent of each other for any two distinct times ( t t1 2≠ ) also contains all
frequencies equally in the frequency decomposition of its covariance.2 The time
histories of any delta-correlated process, of course, must be extremely erratic. In
fact, if the time histories had any finite probability of being continuous at some
value of t1 , then X t( )1  and X t( )2  could not be independent if t2  were near t1 .
Thus, a truly delta-correlated process is so erratic as to preclude the drawing of
sample time histories. Because a truly constant autospectral density gives the
unbounded Dirac delta function as the autocovariance function, it is useful also to

                                                  
2The frequency decompositions of higher-order cumulants, as represented by
bispectra, trispectra, and so forth, are also made up of equal contributions from
all frequencies.
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examine physically realizable processes that approach this delta-correlated
process in the limit. Examples 6.1 and 6.2 present two such situations.

********************************************************************************************

Example 6.1: Let { ( )}X t  be a covariant

stationary process with autospectral

density function given by

S S eXX ( ) | |ω γ ω= −
0

Find the autocovariance function for the

process, and verify that it tends to that of a delta-correlated process in the limit as

γ → 0.

The inverse Fourier transform of SXX ( )ω , as in Eq. 6.19, gives

G S e e d

S e d S e d

XX
i

i i

( ) | |

( ) ( )

τ ω

ω ω

γ ω ω τ

γ τ ω γ τ ω

=

= +

−
−∞

∞

+
−∞

− +∞

∫

∫ ∫

0

0
0

0 0
or

G S
i i

S
XX ( )τ

γ τ γ τ
γ

γ τ
=

+
+

−









=

+
0

0
2 2

1 1 2

Note that sett ing τ = 0 g ives

σX
2 = =G SXX ( ) /0 2 0 γ . Now if we let γ

tend to zero for any τ ≠ 0, we see that

GXX ( )τ  tends to zero, as it should for a

delta-correlated process. On the other

hand, for τ = 0, we have GXX ( )0 → ∞
as γ  tends to zero, which again is characteristic of a delta-correlated process.

The only remaining issue to check in verifying that this autocovariance is that of a

delta-correlated process regards the question of whether its integral with respect

to τ  exists and is equal to a constant G0 . However, we know without any further

explicit integration that the Fourier transform of this autocovariance function is

S e0
−γ ω| | . Setting ω = 0 in this Fourier transform shows that the integral of the

autocovariance function exists and has a value of 2 0π S . This confirms that

setting G S0 02= π  does make GXX ( )τ  tend to the form G0 δ τ( )  of Eq. 5.37 as

γ → 0.

********************************************************************************************

Example 6.2: Let { ( )}X t  be a covariant stationary process with autospectral

density function given by

S SXX ( )ω
α

α ω
=

+
0

2

2 2

S0
SXX(ω)

ω

2 S0 /γ
GXX(τ )

τ
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Find the autocovariance function for the process, and verify that it tends to that of

a delta-correlated process in the limit as α → ∞.

One must be slightly more creative in finding the inverse Fourier transform of

SXX ( )ω  in this example

G S
e

dXX

i
( )τ α

α ω
ω

ω τ
=

+−∞

∞∫0
2

2 2

For someone familiar with the theory of complex variables, the most

straightforward approach is to note that the integrand has poles at ω α= ± i  and

use the calculus of residues to evaluate the integral. Alternatively, one might look

in a table of Fourier transforms to find the same result. In the present situation,

we can avoid doing either of these things by comparing this integral with the

results in Example 6.1. In particular, the Fourier transform giving the autospectral

density as a function of the autocovariance in that example is

S S e G e d
S

e dXX XX
i i( ) ( )| |ω

π
τ τ

π
γ

γ τ
τγ ω ω τ ω τ= = =

+

− −
−∞

∞ −
−∞

∞∫ ∫0
0

2 2
1

2
1

2
2

which gives

e
d e

i−

−∞

∞ −

+
=∫

ω τ
γ ω

γ τ
τ

π
γ2 2

| |

A change of variables then gives

e
d e

iω τ
α τ

α ω
ω

π
α2 2+

=
−∞

∞ −∫ | |

Applying this result to the current problem gives G S eXX ( ) | |τ π α α τ= −
0 . Clearly,

this satisfies the conditions of GXX ( )τ → 0  as α → ∞ for τ ≠ 0 and

GXX ( )0 → ∞ as α → ∞. Furthermore, the integral of e−α τ| | from −∞ to ∞ is

2 /α , confirming that the limit of GXX ( )τ  can be written as 2 0π δ τS ( ) .

********************************************************************************************

6.6 Linear Dynamics and Harmonic Transfer Functions
In Chapter 5, we formulated time-domain expressions for stochastic dynamics of
linear systems directly from the deterministic Duhamel convolution integral.
Now we will pursue a parallel development, using the common deterministic
frequency domain formulation of linear dynamics to give us information about
stochastic response. Using the Fourier transform, one can describe the input and
output, respectively, of a time-invariant linear system either as f t( )  and x t( )  or
as ˜( )f t  and ˜( )x t , as shown in Fig. 6.5.



Frequency Domain Analysis 235

The function H x ( )ω  in Fig. 6.5 is called the harmonic transfer function,
and it is defined to be the x t f t( ) / ( )  ratio when f t( )  is the pure harmonic ei tω .
That is, if f t ei t( ) = ω , then x t H ex

i t( ) ( )= ω ω . Using superposition, then, one
can say that an excitation ˜( )f ei tω ω  induces a response of H f ex

i t( ) ˜( )ω ω ω , so a
time history of input of

f t f e di t( ) ˜( )=
−∞

∞∫ ω ωω

causes a time history of response of

x t H f e dx
i t( ) ( ) ˜( )=

−∞

∞∫ ω ω ωω (6.28)

Comparing this equation with the standard inverse Fourier transform shows that

˜( ) ( ) ˜( )x H fxω ω ω= (6.29)

Equation 6.29 is generally regarded as the standard form of the frequency-
domain input-output relationship for linear dynamics, but it should be
remembered that it also implies the time-domain relationship of Eq. 6.28.

Before proceeding to stochastic structural dynamics, it is useful to note the
relationship between the harmonic transfer function H x ( )ω  and the impulse
response function h tx ( )  used in the time-domain formulation. One easy way of
identifying this relationship is to use the harmonic function f t ei t( ) = ω  as the
input in the convolution integral of Eq. 5.2. This gives

x t f t r h r dr e h r dr e e h r drx
i t r

x
i t i r

x( ) ( ) ( ) ( ) ( )( )= − = =
−∞

∞ −
−∞

∞ −
−∞

∞∫ ∫ ∫ω ω ω

The fact that this response must be x t H ex
i t( ) ( )= ω ω , from the definition of the

harmonic transfer function, shows that H x ( )ω  is exactly 2π  times the Fourier
transform of h tx ( )

Hx(ω)
LINEAR SYSTEM x( t)f (t)

f̃ (ω) x̃(ω)

Figure 6.5 Schematic of general linear system.
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H h e h r drx x
i r

x( ) ( ) ( )ω π ω ω= = −
−∞∫2 (6.30)

Switching to stochastic processes { ( )}F t  and { ( )}X t  for input and output
of the linear system now gives us the relationship of ˜ ( ) ( ) ˜( )X H Fxω ω ω=  for the
stochastic Fourier transform processes { ˜( )}F ω  and { ˜( )}X ω , just as Eq. 6.29
described the deterministic situation. Taking the expectation of this relationship
shows that the Fourier transform of the mean-value function of the output can be
written as ˜ ( ) ( ) ˜ ( )µ ω ω µ ωX x FH= . Furthermore, for the special case of covariant
stationary processes, the definition of autospectral density in Eqs. 6.15–6.17
gives

S H H S H SXX x x FF x FF( ) ( ) ( ) ( ) | ( ) | ( )ω ω ω ω ω ω= − = 2 (6.31)

This is the fundamental frequency-domain relationship regarding the
autocovariance of the response of a linear dynamic system. It can be viewed as a
frequency-domain form of Eq. 5.25, which gave the second-moment function of
the stationary response. A major difference is that finding the response second-
moment or covariance function from Eq. 5.25 involves a double integral in the
time domain, whereas Eq. 6.31 gives us the response autospectral density from
simply a multiplication of functions in the frequency domain.

After the response autospectral density is found, one can obtain the
response variance from a single frequency-domain integration, as in Eq. 6.22, as
an alternative to the double convolution integral of Eq. 5.25. Thus, it is
sometimes easier to use frequency-domain manipulations to find the response
variance rather than using the time-domain relationships. There is one
complication with this approach, though. For many problems, the form of the
spectral densities is such that one must use the theory of residues from complex
variable analysis in order to evaluate conveniently the integral over ω  values.
The reader who is not proficient with complex analysis should keep in mind that
the time-domain integration will always give the same results and may actually
be easier to perform. The choice between time-domain and frequency-domain
calculations of variance is often primarily a matter of personal preference of the
analyst.

One can also use Eq. 6.30 to give frequency-domain interpretations of the
bounding quantities hx static,  and hx, ( )var 0  introduced in Chapter 5. In particular,
one can see directly from Eq. 6.30 that
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h h t dt Hx static x x, ( ) ( )≡ =
−∞

∞∫ 0

To find the other quantity of interest we can substitute Eq. 6.30 into an integral to
give

H H d h r h r e d dr drx x x x
i r r

( ) ( ) ( ) ( )
( )

ω ω ω ω
ω

−∞

∞ − −
−∞

∞

−∞

∞

−∞

∞∫ ∫∫∫− = 1 2 1 2
1 2

and evaluate the integral with respect to ω  as 2 1 2π δ( )r r− , so

H H d h r drx x x( ) ( ) ( )ω ω ω π
−∞

∞

−∞

∞∫ ∫− = 2 2
1 1

or

h H H dx x x, ( ) ( ) ( )var 0
1

2
= −

−∞

∞∫
π

ω ω ω

Note that the situation with hx, ( )var 0 = ∞ is characterized by neither h tx ( )  nor
| ( ) |H x ω  being squared-integrable.

Similar to Eq. 6.31, one can write the cross-spectral density for two
response processes { ( )}X t  and { ( )}Y t  as

S H H S H H SXY x y FF x y FF( ) ( ) ( ) ( ) ( ) ( ) ( )*ω ω ω ω ω ω ω= − = (6.32)

and the cross-spectral density between the excitation and the response is

S H SXF x FF( ) ( ) ( )ω ω ω=

We can also confirm the corresponding relationships involving derivatives, as
given in Eqs. 6.23–6.25, by noting that if x t H x( ) ( )= ω ei tω  then ˙( )x t =
i H xω ω( ) ei tω , so the harmonic transfer function for the derivative response is
simply H i Hx x˙ ( ) ( )ω ω ω= . Because an integral of a cross-spectral density
function always gives a cross-covariance term, these cross-covariances can also
be evaluated from the frequency-domain analysis.

One other advantage of frequency-domain analysis involves the ease with
which the harmonic transfer functions can be evaluated for a system governed by
a linear differential equation. For example, if we consider the general nth-order
system (as in Eq. 5.7)
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a
d x t

d t
f tj

j

j
j

n ( )
( )

=
∑ =

0

then substitution of f t ei t( ) = ω  and x t H x( ) ( )= ω ei tω  gives

H a ix j
j

j

n

( ) ( )ω ω=














=

−

∑
0

1

(6.33)

Thus, one needs use only algebra to find the harmonic transfer function for the
system, whereas finding the corresponding time-domain impulse response
function involves solution of an initial value problem for the differential
equation.

The input-output autospectral density relationship in Eq. 6.31 shows that
any linear system has the effect of shaping autospectral density, in the sense that
the autospectral density of the output is | ( )H x ω | 2 times that of the input.
Systems specifically designed to produce a particular shape of output
autospectral density are commonly called filters, and Eq. 6.31 shows that any
linear system can be regarded as a linear filter. Three common categories of such
filters are called low-pass, high-pass, and band-pass filters, depending on
whether the output autospectral density is dominated by low-frequency
components, high-frequency components, or some band of frequency
components. It should be noted, though, that not all linear systems fall into these
three categories because one can design a linear system to approximate any
desired harmonic transfer function.

The frequency-domain analysis procedures for dynamic response are
applied to two simple nonoscillatory systems in the following two examples. The
much more important situation with oscillatory response is investigated in
Section 6.8.

********************************************************************************************

Example 6.3: Consider a linear system governed by the differential equation

c x t k x t f t˙( ) ( ) ( )+ = , for which the impulse response function was found in

Example 5.1 as h tx ( ) = c e U tk t c− −1 / ( ) . Find the harmonic transfer function from

the Fourier transform of h tx ( ) , as in Eq. 6.30, and compare with the result from

Eq. 6.33. Also find the autospectral density and the variance of the response
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{ ( )}X t  for the situation when f t( )  is replaced by a white noise (or delta-

correlated) process { ( )}F t  with S SFF ( )ω = 0 .

From Eq. 6.30 we have

H e h r dr c e e dr c i k c

k i c

x
i r

x
i r k r c( ) ( ) ( / )

           ( )

/ω ω

ω

ω ω= = = +

= +

−
−∞

∞ − − −∞ − −

−

∫ ∫1
0

1 1

1

which is identical to what Eq. 6.33 gives.

The autospectral density of the response is now given by Eq. 6.31 as

S H S
S

k c
XX x FF( ) | ( ) | ( )ω ω ω

ω
= =

+
2 0

2 2 2

The most direct method to evaluate the

response variance from this autospectral

density is to note that SXX ( )ω  has poles at

ω = ± i k c/  and use the calculus of residues.3

Thus, if we evaluate the integral along the real

axis of the complex ω  space by closing the

contour in the upper half-space, we get the

integral as being equal to 2π i  times the residue at ω = + i k c/

σ
ω

ω π
ω

ω ω

π
ω

X
ik c

S

k c
d i

S ik c

c ik c ik c

S

c k
2 0

2 2 2
0

2
02=

+
=

−

− +
=

−∞

∞

→
∫ ( ) lim

( / )

( / )( / )/

Having a delta-correlated excitation also simplifies the time-domain evaluation of

the response variance from Eq. 5.30 or 5.40. The result, of course, is identical to

that obtained here.

********************************************************************************************

Example 6.4: Find the harmonic transfer function for the linear system governed

by the differential equation m x t c x t f t˙̇ ( ) ˙( ) ( )+ = , for which the impulse response

function was found in Example 5.2 as h t c e U tx
c t m( ) ( ) ( )/= −− −1 1 . Also consider

the autospectral density and variance of the stochastic response of this system

for a stochastic excitation with autospectral density SFF ( )ω .

Strictly speaking, the Fourier transform of h tx ( )  does not exist for this problem

because h tx ( )  is not integrable, which is the same condition as hx static, = ∞ (as

was pointed out in Example 5.2). Thus, one cannot directly apply Eq. 6.30. There

is no difficulty, though, in using Eq. 6.33 to write

H
i c m

x ( )ω
ω ω

=
−

1
2

                                                  
3The details of this technique are included in any introductory textbook on
complex analysis.

x

xi k
c

−
i k
c

Re(ω)

Im(ω)
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Thus, the autospectral density of covariant stationary stochastic response will be

S
S

c m
XX

FF( )
( )

ω
ω

ω ω
=

+2 2 4 2

Note that the denominator of this expression tends to zero as ω  tends to zero. In

particular, it behaves like ω 2 for small values of ω , and this ensures that the

integral of the autospectral density will not exist if SFF ( )0 0≠ . Thus, this system

has infinite response covariance for most stationary stochastic excitations, which

agrees with our observation in Example 5.4 that hx, ( )var 0 = ∞. We do see,

though, that if SFF ( )ω  is zero and behaves like | |ω b  with b >1 at ω ≈ 0 , then

the response variance will be finite. This shows that, for some excitations, a

system can have a finite response variance even though it has hx, ( )var 0 = ∞.

********************************************************************************************

Example 6.5: Estimate the autospectral density SXX c( )ω  based only on a single

long time history of the process { ( )}X t  and the results obtained from an ideal

bandpass filter that transmits only those Fourier components with ω ω≈ ± c . In

particular, the harmonic transfer function can be written as H ( )ω =
U Uc c( | | ) ( | |)ω ω ε ω ε ω− + + − .

Let { ( )}Z t  be the output from the filter when { ( )}X t  is the input. This then gives

us S SZZ XX( ) ( )ω ω=  within the

pass band and SZZ ( )ω = 0
otherwise, as shown in the

accompanying sketch. The

{ ( )}Z t  process will be mean-

zero because the stationary

mean value of { ( )}X t  is a

component at frequency zero

and this component is blocked by the filter. Thus, the variance and mean-

squared value of { ( )}Z t  are both given by

E Z t S d S d S dZZ ZZ XX
c

c[ ( )] ( ) ( ) ( )2
0

2 2= = =
−∞

∞ ∞

−

+∫ ∫ ∫ω ω ω ω ω ω
ω ε
ω ε

and if ε  is small enough that SXX ( )ω  is nearly linear across the range of

integration, then we have

E Z t SXX c[ ( )] ( )2 4≈ ε ω
Thus, E Z t[ ( )] /( )2 4ε  can be used as an estimate of the unknown SXX c( )ω .

Assuming covariance ergodicity of { ( )}Z t , the value of E Z t[ ( )]2  can be

estimated from a time average, giving

S
T

Z s dsXX c
T

( ) ( )ω
ε

≈ ∫1

4
2

0

SXX(ω)

SZZ (ω)
2ε

ωωc−ωc
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for a large value of T . Note that the finite bandwidth 2ε  tends to smooth the

measured autospectral density, which results in a peak in SXX ( )ω  being almost

lost if it is not wider than 2ε . Based on this fact, it may appear that one would

want to choose ε  as small as possible to minimize this error due to variation of

SXX ( )ω  across the pass band. On the other hand, it can be shown that the

convergence of the time average of Z t2( )  to its expected value is slower when

the bandwidth is smaller. Thus, if one uses a very small ε  value, then it is

necessary also to have a very large T  value, which may not be feasible in some

situations.

To estimate the entire SXX ( )ω  autospectral density function in this way, one

must have a filter with a variable center frequency ωc  (and possibly a variable

ε ), and repeat the procedure for different ωc  values until the function is defined

with sufficient resolution. This technique for estimating SXX ( )ω  has been quite

important in the past, but it would not be commonly used now, in an age of

inexpensive digital computation. Section 6.9 discusses the approach that is

usually used now to estimate SXX ( )ω  from recorded data.

********************************************************************************************

6.7 Evolutionary Spectral Density
The results in this chapter have, up until now, been limited to time-invariant
linear systems. If the system is time-varying, then one must expect the harmonic
transfer function to vary with time. This function will be written as H txf ( , )ω  and
will be defined such that Eq. 6.28 can be generalized to the form

x t H t f e dxf
i t( ) ( , ) ˜( )=

−∞

∞∫ ω ω ωω (6.34)

An interpretation of H txf ( , )ω  can be found by considering the special case with
f t e i t( ) = ω0 , for which ˜( ) ( )f ω δ ω ω= − 0 . Performing the integration then shows

that an excitation of f t e i t( ) = ω0  gives a response of H txf ( , )ω0 e i tω0 . Thus,
H txf ( , )ω  can be given the same interpretation as the H x ( )ω  defined in the
preceding section—it is the amplitude of the e i tω  harmonic response when the
f t( )  excitation is a pure harmonic e i tω . One must be careful with this idea,

though, because the H txf ( , )ω e i tω  response is not a pure harmonic, due to
H txf ( , )ω  varying with time t.

One should also recall that ˜( )f ω  exists only if f t( )  is absolute-value
integrable. Thus, Eq. 6.34 does not apply to all situations, and it is advantageous
to give a more general definition of H txf ( , )ω . This may be done by relating it to
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the time-varying impulse response function introduced in Section 5.1. In
particular, letting f t ei t( ) = ω  in the time-domain integral of Eq. 5.5, gives

x t e h t s dsi s
xf( ) ( , )=

−∞

∞∫ ω

We have already shown, though, that this excitation gives a response of
x t H txf( ) ( , )= ω e i tω . Thus, we can say that

H t e e h t s ds e h t t r drxf
i t i s

xf
i r

xf( , ) ( , ) ( , )ω ω ω ω= = −−
−∞

∞ −
−∞

∞∫ ∫ (6.35)

Equation 6.35 can be considered the general definition of H txf ( , )ω , even though
Eq. 6.34 gives a more intuitive interpretation of the term. For the special case of a
time-invariant system, h t t r h rxf x( , ) ( )− = , so Eq. 6.35 becomes identical to Eq.
6.30.

Let us now evaluate the time-varying harmonic response function for the
˙( )x t  derivative. We begin by differentiating Eq. 6.35 to give

∂
∂

ω ω ω ω ω

t
H t i H t e e h t s dsxf xf

i t i s
xf( , ) ( , ) ( , )˙= − + −

−∞

∞∫

in which the final term has been simplified by noting that Eq. 5.6 gives
h t s h t s txf xf˙ ( , ) ( , ) /= ∂ ∂ . Comparing the final term of this equation with Eq. 6.35
shows that it is exactly H txf˙ ( , )ω . Thus, we can rearrange terms to obtain

H t
t
H t i H txf xf xf˙ ( , ) ( , ) ( , )ω

∂
∂

ω ω ω= + (6.36)

Consider now a case in which the { ˜( )}f ω  Fourier transform exists for
the f t( )  input to the time-varying system. Equation 6.34 then gives the response
as

x t H t f e dxf
i t( ) ( , ) ˜( )=

−∞

∞∫ ω ω ωω

or
˜( ) ( , ) ˜( )x H t fxfω ω ω= (6.37)

Thus, H txf ( , )ω  “modulates” { ( )}F t  by giving a time-varying alteration of the
magnitude of each harmonic component. Recall the special case of uniform
modulation introduced in Section 5.4, for which h t s t t sxF h( , ) ( ) ( )ˆ= −δ . For this



Frequency Domain Analysis 243

situation, Eq. 6.35 gives H t h txf ( , ) ( )ω = , so every frequency component in Eq.
6.37 is modulated by the same ˆ( )h t  function. This explains the choice of the
term uniformly modulated for this special case.

For a modulated (also called evolutionary) stochastic process, the
excitation is a stationary { ( )}F tS  process, for which the Fourier transform does
not exist. The time-varying spectral density of this process is called an
evolutionary spectral density and is defined by a modification of Eq. 6.31
(Priestly, 1988):

S t H t H t S H t SXX xS xS F F xS F FS S S S
( , ) ( , ) ( , ) ( ) | ( , ) | ( )ω ω ω ω ω ω= − = 2 (6.38)

The notation H txS ( , )ω  is introduced to indicate that this function relates { ( )}X t
to the stationary { ( )}F tS  process, and not to some other { ( )}F t  excitation that
may itself be a modulated process. Similar to Eq. 6.38, an evolutionary cross-
spectral density for two modulated processes depending on the same stationary
{ ( )}F tS  can be defined by a modification of Eq. 6.32 as

S t H t H t S H t H t SXY xS yS F F xS yS F FS S S S
( , ) ( , ) ( , ) ( ) ( , ) ( , ) ( )*ω ω ω ω ω ω ω= − =

(6.39)

For example, using Eq. 6.36 gives

S t H t H t S

H t
t
H t i H t S

H t
t
H t S i S

XX xS xS F F

xS xS xS F F

xS xS F F XX

S S

S S

S S

˙ ˙( , ) ( , ) ( , ) ( )

 ( , ) ( , ) ( , ) ( )

 ( , ) ( , ) ( ) (

ω ω ω ω

ω
∂
∂

ω ω ω ω

ω
∂
∂

ω ω ω ω

= −

= − − −










= − − ))

(6.40)

The final term of the equation agrees with Eq. 6.23 for a time-invariant system,
whereas the preceding term reflects an effect of the time variation of the
frequency content of the { ( )}X t  process.

One can now use Eq. 5.5 to write the auto-covariance or cross-covariance
of the response to a stationary stochastic excitation { ( )}F tS . In particular,

K t t K s s h t s h t s ds dsXY F F xS ySS S
( , ) ( , ) ( , ) ( , )1 2 1 2 1 1 2 2 1 2=

−∞

∞

−∞

∞ ∫∫ (6.41)
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Because { ( )}F tS  is covariant stationary, though, one can say that

K s s G s s S e dF F F F F F
i s s

S S S S S S
( , ) ( ) ( ) ( )

1 2 1 2
1 2= − = −

−∞

∞∫ ω ωω

Substituting this relationship into Eq. 6.41 then gives

K t t S h t s e ds

h t s e ds d

XY F F xS
i s

yS
i s

S S
( , ) ( ) ( , )

( , )

1 2 1 1 1

2 2 2

1

2

=
















−∞

∞

−∞

∞

−
−∞

∞

∫∫

∫

ω

ω

ω

ω

and using Eq. 6.35 allows this to be rewritten as

K t t S H t H t dXY FF xS yS( , ) ( ) ( , ) ( , )1 2 1 2= −
−∞

∞∫ ω ω ω ω

An important special case is when t t t1 2= = , for which the left-hand side
becomes K t tXY ( , )  and the integrand becomes S H t H tFF xS yS( ) ( , ) ( , )ω ω ω− ≡
S tXY ( , )ω . Thus,

K t t S t dXY XY( , ) ( , )=
−∞

∞∫ ω ω

which demonstrates that the definition of the evolutionary spectral density
preserves the usual property that the single-time covariance of the response can
be found from an integral of the appropriate spectral density. Letting Y X=  gives
variance of the response as

σ ω ωX XXt S t d2 ( ) ( , )=
−∞

∞∫

A special case of some interest is that of modulated white noise, in which
{ ( )}F tS  is white, and therefore has a constant spectral density. From Eq. 6.37
one can then see that the resulting modulated process is quite general inasmuch
as it can have a frequency content that varies with time, as well as a magnitude
that varies with time. As a result, modulated white noise can be used to
approximate many physical processes.
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6.8 Response of Linear SDF Oscillator
We will now present an extended example, applying our frequency-domain
analysis procedures to investigate the response of the linear single-degree-of-
freedom (SDF) system described by Eqs. 5.45 and 5.46

m X t c X t k X t F t˙̇ ( ) ˙( ) ( ) ( )+ + =
or

˙̇ ( ) ˙( ) ( ) ( ) /X t X t X t F t m+ + =2 0 0
2ζ ω ω

As pointed out in Section 5.6, this system plays a key role in our analysis of
oscillatory systems, as distinguished from the simpler systems of Examples 6.3
and 6.4 that have oscillatory response only if they have oscillatory excitation.

First we can find the harmonic transfer function from Eq. 6.33 as

H
k i c m m i

x ( )
( ) ( )

ω
ω ω ω ζ ω ω ω

=
+ −

=
+ −

1 1

22
0
2

0
2

(6.42)

We could also check this expression by finding the Fourier transform of the
impulse response function, which was derived in Example 5.3 as h tx ( ) =
( ) sin( )m e td

t
dω ωζ ω− −1 0 , in which ωd = ω ζ0

2 1 21( ) /− .

For { ( )}F t  being a covariant stationary process, we can use Eq. 6.42 to
write the autospectral density of the response of the SDF system as

S S H
S

m
XX FF x

FF( ) ( ) | ( ) |
( )

[( ) ( ) ]
ω ω ω

ω

ω ω ζ ω ω
= =

− +

2
2

0
2 2 2

0
22

(6.43)

Figure 6.6 shows a plot of m2 ω0
4 | ( ) | | ( ) |H k Hx xω ω2 2 2≡  versus the

normalized frequency ω ω/ 0  for several values of the damping ratio ζ . Most
structural and mechanical vibration problems involve systems with damping
values even smaller than the smallest value of ζ = 0 05.  shown in Fig. 6.6. In fact,
values of ζ  of 0.01 or even smaller are not uncommon. The larger damping
values in Fig. 6.6 are included to illustrate the effect of damping, rather than
because they are typical. If damping is increased still further, the peak of
| ( ) |H x ω  eventually completely disappears. In particular, if ζ ≥ −2 1 2/ , then
SXX ( )ω  simply decays monotonically from its value at ω = 0.
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From Eq. 6.43 and Fig. 6.6, one can identify three key frequency ranges in
the response of the SDF system. For ω ≈ 0 , the response autospectral density
SXX ( )ω  is closely approximated by SFF ( )ω  at that frequency divided by
m2 ω0

4 ≡ k2. Thus, the low-frequency response of the system is dependent only
on the stiffness of the oscillator, behaving in the same way as if the response
were pseudostatic. These low-frequency components are almost the same as they
would be for a system without mass or damping, being governed by
k X t F t( ) ( )= . At the other extreme, one finds that for | |ω ω>> 0 , SXX ( )ω  is
approximated by S mFF ( ) /( )ω ω2 4 . This implies that, at these frequencies, the
autospectral density of the response acceleration has S S mXX FF˙̇ ˙̇ ( ) ( ) /ω ω≈ 2 .
Thus, the high-frequency response components are almost the same as they
would be for a system without a spring or damping, being governed by
m X t F t˙̇ ( ) ( )= . More important in most applications is the intermediate situation.
If ζ  is small, then the “resonant” response components for ω ω≈ ± 0 are greatly
amplified, so SXX ( )ω  is much greater than SFF ( )ω . In this situation, the
contributions to Eq. 6.43 depending on m  and k nearly cancel out, making the
response have S S mXX FF( ) ( ) /(ω ω ζ ω≈ 2 0 ω)2 = SFF ( )ω /( )c2 2ω  or SXX˙ ˙ ( )ω ≈
SFF ( )ω /c2, which corresponds to a governing equation of c X t F t˙( ) ( )= . Thus,
each of the terms in the governing differential equation plays a key role. The
k X t( )  term dominates the low-frequency response, the m X t˙̇ ( )  term dominates
the high-frequency response, and the c X t˙( )  term dominates the resonant-
frequency response, giving the height of the resonant peak of SXX ( )ω . It is
important to remember that the stochastic response process { ( )}X t  generally
consists of a superposition of all frequency components from zero to infinity, all

25

20

15

10

5

–2 –1 0 1 2

ω /ω0

Figure 6.6 |H x(ω) | 2  for ζ = 0.05, 0.10,  and 0.20.
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occurring simultaneously. The comments in this paragraph are merely
interpretations of the magnitudes of those various components, not discussions of
different dynamic problems.

The plot in Fig. 6.6 shows that for small values of ζ  the SDF system acts
as a bandpass filter, giving substantial amplification only to components of
{ ( )}F t  that are near ±ω0. In fact, unless SFF ( )ω  is much larger for some other
frequencies than it is for ω ω= 0 , it is clear that the SXX ( )ω  response autospectral
density will be dominated by the frequencies near ±ω0. This leads to the
common situation in which the stochastic response of the SDF system can be
considered a narrowband process, which sometimes results in significant
analytical simplifications. The excitation { ( )}F t , on the other hand, can often be
considered a broadband process or even approximated by an “equivalent” white
noise, as explained in the following paragraph.

The justification for the approximation of { ( )}F t  by an “equivalent white
noise” can be seen in Fig. 6.7. Because SXX ( )ω  is the product of SFF ( )ω  and
| ( ) |H x ω 2  and the most significant portion of SXX ( )ω  comes from the near-
resonant frequencies with ω ω≈ ± 0, we can see that SXX ( )ω  would not be
changed very significantly if the actual SFF ( )ω  were replaced by some other
broadband function that agreed with SFF ( )ω  for ω ω≈ ± 0. The simplest such
approximation is the white noise with constant autospectral density
S SFF0 0= ( )ω . The most common usage for this approximation is in the
computation of the response variance, for which the approximation gives

Figure 6.7 Equivalent white noise excitation

|H x(ω) |2

SFF(ω0)

ω

SFF(ω)

ω 0

.
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σ ω ω ω ω ω ω ω ωX XX FF x FF xS d S H d S H d2 2
0

2= = ≈
−∞

∞

−∞

∞

−∞

∞∫ ∫ ∫( ) ( ) | ( ) | ( ) | ( ) |

(6.44)

One can compute the value of this response variance by performing the
frequency-domain integration in the last term of Eq. 6.44, but the result, of
course, must be the same as was found from time-domain integration in Eq. 5.63
for the response to a delta-correlated excitation.4 Taking the G0  for the delta-
correlated process to be 2 0π ωSFF ( )  gives the approximation of the SDF
response variance as

σ
π ω

ζ ω

π ω
X

FF FFS

m

S

c k
2 0

2
0
3

0

2
≈ =

( ) ( )
(6.45)

This approximation will generally be quite adequate as long as SXX ( )ω  is
sharply peaked so that its magnitude is much smaller for other frequencies than it
is for ω ω≈ ± 0. That is, the approximation can generally be used if { ( )}X t  is
narrowband. Although this is a common situation, it should be kept in mind that
this condition is not always met. Figure 6.8 illustrates one such situation in which
the approximation is not very good for ζ = 0 10. , although it does appear to be
acceptable for ζ = 0 02. . Note that the excitation in this example is not very
broadband, having a clear peak near ω = 0 8. .

One can also use the concept of a modulated process to consider
nonstationary response problems, including the one treated in Section 5.6. In
particular, taking F t W t U t( ) ( ) ( )= , with { ( )}W t  being a stationary process
makes { ( )}F t  a uniformly modulated process with a modulation function of
ˆ( ) ( )h t U t= . The response { ( )}X t  is then also a modulated process with a

combined modulation function obtained from Eq. 5.33 as

h t s h t u U u u s du h t s U sxS xf x( , ) ( , ) ( ) ( ) ( ) ( )= − = −
−∞

∞∫ δ

in which the h t sxf ( , )  term has been rewritten as h t sx ( )−  to reflect the fact that
the SDF system is time invariant.

We can now find the combined time-varying harmonic response function
from Eq. 6.35 as

                                                  
4Alternatively, one can perform the frequency domain integration by noting that

| ( ) |H x ω 2  has poles at ω ω ζ ω= ± ±d i 0  and using the calculus of residues.
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(c) Autospectral density of the response, ω0 = 2, ζ = 0.10;
      inadequate approximation

(b) Autospectral density of the response, ω0 = 2, ζ = 0.02;
      adequate approximation

Figure 6.8 Satisfactory and unsatisfactory approximation
                   by equivalent white noise.

0 1 2 3

SFF(ω)

ω

0 1 2 3

SFF(ω) |Hx(ω) |2

SXX(ω)

ω

0 1 2 3ω

SFF(ω) |Hx(ω) |2

SXX(ω)

(a) Autospectral density of the excitation
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H t e h r U t r dr e h r drxS
i r

x
i r

x
t

( , ) ( ) ( ) ( )ω ω ω= − =−
−∞

∞ −
−∞∫ ∫

and using h t mx d( ) (= ω ) sin( ) ( )− −1 0e t U tt
d

ζ ω ω , as derived in Example 5.3,
allows H txS ( , )ω  to be calculated. The result can be written as

H t H e g t i m h txS x
i t

x x( , ) ( ) [ ( ) ( )]ω ω ωω= − +( )−1 (6.46)

in which H x ( )ω  is the same as in Eq. 6.42 and g t e tx
t

d( ) [cos( )= +−ζ ω ω0

( / ) sin( )]ζ ω ω ω0 d dt  is the displacement response due to a unit displacement
initial condition, as in Eq. 5.61. Using SFF ( )ω  for the spectral density of the
stationary excitation now allows the evolutionary spectral density for { ( )}X t
from Eq. 6.38 to be written as

S t S H t

S H g t t

m h t t g t m h t

XX FF xS

FF x x

x x x

( , ) ( ) | ( , ) |

  ( ) | ( ) | ( ) cos( )

( ) sin( ) ( ) ( )

ω ω ω

ω ω ω

ω ω ω

=

= − −(
+ + )

2

2

2 2 2 2

1 2

2

(6.47)

Similarly, one can use Eqs. 6.36 and 6.46 to evaluate the time-varying
harmonic response function for the velocity response as

H t H i e g t i m h txS x
i t

x x˙ ( , )  ( ) [ ( ) ( )]ω ω ω ωω= − ′ + ′( )− (6.48)

so that one can calculate the spectral densities

S t S H t H tXX FF xS xS˙ ˙( , ) ( ) ( , ) ( , )ω ω ω ω= − (6.49)

and

S t S H tXX FF xS˙ ˙ ˙( , ) ( ) | ( , ) |ω ω ω= 2 (6.50)

The time-varying response quantities σ X t( ) , K t tXẊ ( , ) , and σ ˙ ( )X t  can then be
found by integrating Eqs. 6.47, 6.49, and 6.50, respectively, with respect to ω .
The result for variance of response from integration of Eq. 6.47 can be shown to
be identical with the result of the time-domain integration in Eq. 5.35. In some
situations, though, the frequency-domain integration will be easier to perform
accurately. In particular, if the excitation is narrowband, then its covariance
function will be oscillatory, giving the integrand in Eq. 5.35 as the product of two
oscillatory functions, which can cause difficulties in numerical integration. The
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spectral density in Eq. 6.47, however, is generally not oscillatory, thereby
avoiding this difficulty. For the special case of white noise excitation, the
frequency-domain integrals can be evaluated by the calculus of residues, but that
will not be done here. We already know the answers for that special case from
the time-domain analysis in Section 5.6.

For S SFF ( )ω = 0 , one may note that the evolutionary spectral densities in
Eqs. 6.47, 6.49, and 6.50 all behave as ω−2 for | |ω → ∞. This is in distinction to
the stationary situation in which SXX ( ) ~ω ω−4  and SXẊ ( ) ~| |ω ω −3 , and it
results in some integrals not existing for the evolutionary spectral densities, even
though they are finite for the stationary situation.

6.9 Calculating Autospectral Density from a Sample Time History
In Example 6.5, we presented one method of calculating the autospectral density
of a process by filtering a time history but noted that it is not the approach that is
now commonly used. We will now present the usual method, which is based
directly on the definition of spectral density in terms of a Fourier transform.

The concept of ergodicity discussed in Section 4.7 is very important when
one needs to derive properties of a process by using measured data. In particular,
if the process has the appropriate type of ergodicity, then one can use a time
average over a single long time history to approximate an expected value, rather
than needing an ensemble average over a large number of time histories. This
property is usually assumed to hold unless there is evidence to the contrary. For
autospectral density, however, we can show that ergodicity never holds in as
strong a form as we might wish. Note that the definition of autospectral density
in Eq. 6.15 involves both an expectation and a limit as the time interval T tends to
infinity. It would be very desirable if ergodicity held in such a form that the
expectation was unnecessary, and the calculation using a single time history of
length T converged to the expected value as T → ∞. Unfortunately, this is not
true. We will now demonstrate that fact and indicate how the matter can be
remedied so that a useful estimate of the autospectral density can be obtained
from a single time history.

The relationships appearing in Eq. 6.15 can be rewritten in a compact form
by defining a new frequency-domain stochastic process { ( )}QT ω  by

Q
T

Y Y
T

Y t Y t e dt dtT T T
i t t

T

T

T

T
( ) ˜ ( ) ˜ ( ) ( ) ( ) ( )

/

/

/

/
ω

π
ω ω

π
ω= − ≡ − −

−− ∫∫2 1

2 1 2 1 22

2

2

2
1 2
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in which ˜ ( )YT ω  is the truncated Fourier transform of Y t X t tX( ) ( ) ( )≡ − µ . The
definition of autospectral density is then simply S E QXX T( ) [ ( )]ω ω= . If the
variance of this QT ( )ω  random variable went to zero as T → ∞, then we could
be confident that QT ( )ω  calculated from a long time history would have a high
probability of being a good approximation of SXX ( )ω . Thus, we wish to
investigate the variance of QT ( )ω , which can be found from its first and second
moments. The second moment is given by

E Q
T

E Y t Y t Y t Y t

e dt dt dt dt

T T

T

T

T

T

T

T

T

i t t t t

[ ( )]
( )

[ ( ) ( ) ( ) ( )]
/

/

/

/

/

/

/

/

( )

2
2 1 2 3 42

2

2

2

2

2

2

2

1 2 3 4

1

2

1 2 3 4

ω
π

ω

= ×
−−−−

− − + −

∫∫∫∫

(6.51)

We can use Eq. 3.40 to evaluate the fourth moment term in the integrand. In
particular, the fact that { ( )}Y t  is mean-zero reduces this to

E Y t Y t Y t Y t G t t G t t G t t

G t t G t t G t t X t X t X t X t
XX XX XX

XX XX XX

[ ( ) ( ) ( ) ( )] ( ) ( ) ( )

( ) ( ) ( ) [ ( ) , ( ), ( ) , ( )]
1 2 3 4 1 2 3 4 1 4

3 2 1 3 2 4 4 1 2 3 4

= − − + − ×

− + − − +κ
(6.52)

in which κ4  denotes the fourth cumulant. One can now show that the
contribution to E QT[ ( )]2 ω  of the G t t G t tXX XX( ) ( )1 3 2 4− −  term on the right-
hand side of Eq. 6.52 tends to zero as T → ∞ because of the signs in the
exponential of Eq. 6.51. Also, the contribution of the final term tends to zero
provided that the fourth cumulant function of { ( )}X t  meets the sort of
restrictions required for second-moment ergodicity (see Section 4.7). Thus, we
need be concerned only with the behavior of the first two terms on the right-hand
side of Eq. 6.52. The quadruple integral of each of these two terms can be
separated into the product of two double integrals: grouped as ( , )t t1 2  and ( , )t t3 4
for the first term and as ( , )t t1 4  and ( , )t t2 3  for the second term. Furthermore,
each of these double integrals is exactly of the form of E QT[ ( )]ω . Substituting
this result into the expression for E QT[ ( )]2 ω  and taking the limit as T tends to
infinity gives

lim [ ( )] ( )
T

T XXE Q S
→∞

=2 22ω ω

from which we find that the variance of QT ( )ω  tends to SXX
2 ( )ω . Thus, the

standard deviation of QT ( )ω  tends to the same limit as the mean value, namely
SXX ( )ω . Clearly, this gives no basis for expecting a sample value of QT ( )ω  to
have a high probability of being near the desired, but unknown, SXX ( )ω .
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The approach that is typically used to avoid the sampling difficulty is to
replace QT ( )ω  by a smoothed version. We will illustrate this idea by using the
simplest sort of smoothing, which is a simple average over an increment of
frequency

Q
T

Y Y dT T T( ) ˜ ( ) ˜ ( )ω
π

ε
ω ω ω

ω ε
ω ε

= −
−

+∫2 1
2 1 1 1 (6.53)

or

Q
T

Y t Y t e d dt dtT
i t t

T

T

T

T
( ) ( ) ( ) ( )

/
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/
ω

π ε
ωω

ω ε
ω ε

= − −
−

+
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4 1 2 1 1 22

2

2

2
1 1 2

The expected value of QT ( )ω , of course, is not exactly SXX ( )ω  but rather an
average of this autospectral density over the range [ , ]ω ε ω ε− + . This is generally
not a significant problem if ε  is chosen to be sufficiently small. The inclusion of
this averaging, though, substantially changes the behavior of the mean-squared
value, as can be verified by writing out E QT([ ( )] )ω 2  in the same way as Eq.
6.51
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E Y t Y t Y t Y t

e d e d
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∫ εε∫



dt dt dt dt1 2 3 4

The change comes from the fact that the second term of the expansion in Eq. 6.52
behaves very differently for E QT[ ( )]2 ω  than for E QT[ ( )]2 ω . After performing the
integration with respect to frequency on this second term, one obtains an
integrand for the fourfold time integration of G t tXX ( )1 4− ×
G t tXX ( ) /3 2− [( )( )]t t t t1 2 3 4− −  multiplied by a sum of four harmonic
exponential terms. One can easily verify that this integrand goes to zero as any of
the time arguments goes to infinity except in the special case when they all tend
to infinity with t t t t1 2 3 4≈ ≈ ≈ . This behavior causes the fourfold time integral
to give a term that grows like T as T → ∞, but the division by T 2  then ensures
that this term contributes nothing to E QT[ ( )]2 ω  in the limit.

The first term of the expansion of Eq. 6.52, however, behaves basically as
it did for E QT[ ( )]2 ω . In particular, it gives the integrand of the time integration as
G t t G t t t t t tXX XX( ) ( ) /[( )( )]1 2 3 4 1 2 3 4− − − − , and this term does not decay as
time arguments go to infinity on the two-dimensional set t t1 2≈ , t t3 4≈ , with no
restriction that the first pair of time arguments be close to the second pair. Thus,
the integral of this term grows like T 2 . In fact, it can be shown that its
contribution to E QT[ ( )]2 ω  is exactly ( [ ( )])E QT ω 2 , so the variance of QT ( )ω
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does tend to zero as T → ∞. This guarantees that the QT ( )ω  value obtained from
a single sample time history has a high probability of being close to E QT[ ( )]ω  if
T is sufficiently large. It is interesting that this limiting result holds no matter
how small ε  is chosen in the frequency averaging. Of course, the rate at which
the variance of QT ( )ω  tends to zero does depend on the value of ε .

The usual approach to estimation of SXX ( )ω  from recorded data is, then,
represented by Eq. 6.53, although a more sophisticated form of frequency
averaging may be used in place of that shown. By taking the Fourier transform of
a single time history of long duration and performing this averaging over a band
of frequencies one can obtain an estimate of SXX ( )ω . The bandwidth for the
frequency averaging ( 2ε  in Eq. 6.53) is often adjusted empirically to obtain an
appropriately smooth estimate of SXX ( )ω . This presumes, though, that one has
some idea of the form of SXX ( )ω  before the estimate is obtained. It must always
be kept in mind that if the true SXX ( )ω  function has a narrow peak that has a
width not significantly exceeding 2ε , then the averaging in Eq. 6.53 will
introduce significant error by greatly reducing that peak. Thus, considerable
judgment should be exercised in estimating spectral densities.

It should also be noted that records of measured data are always of finite
length. Furthermore, they represent observations only at discrete values of time
rather than giving continuous time histories. This mandates that the integral
Fourier transform considered here be replaced by the discrete Fourier transform
(DFT), which is essentially a Fourier series in exponential form (see Appendix
B). Efficient numerical schemes, including use of the fast Fourier transform
(FFT) algorithm, have been developed to expedite implementation of the basic
ideas presented. More detail on the problems of spectral estimation, including
extensions to more complicated situations, are given in books on signal
processing, such as Bendat and Piersol (1966), Marple (1987), and Priestly
(1988).

6.10 Higher-Order Spectral Density Functions
For a non-Gaussian stochastic process, the spectral density analysis presented so
far is important but gives only a partial description of the process. For example,
one can, in principle, take the inverse Fourier transform of the autospectral
density of any covariant stationary process { ( )}X t  and thereby find the
autocovariance function of the process. If the process is Gaussian, then this



Frequency Domain Analysis 255

autocovariance function along with the mean-value function gives complete
information about the probability density functions of any random variables
{ ( ), ( )}X t X tn1 L  from the process. For example, any higher-order moment
functions of { ( )}X t  have simple relationships to the mean and autocovariance
functions. If { ( )}X t  is non-Gaussian, then the second-moment information given
by the autospectral density is still equally valid, but it gives much less
information about the probability distributions of the process because the process
is no longer completely determined by its mean and autocovariance functions.
Higher-order spectral density functions provide a way to analyze this higher-
moment (or cumulant) information in the frequency domain.

The higher-order spectral density functions are most conveniently defined
in terms of Fourier transforms of higher-order cumulant functions, either for a
single stochastic process or for several processes. We will write out some explicit
results for the so-called bispectrum, which relates to the third cumulant function.
(See Section 3.7 for more general information on cumulant functions.) We will
write the result for three jointly stationary processes { ( )}X t , { ( )}Y t , and { ( )}Z t ,
because that includes the simpler cases with two or all of the processes being the
same. The definition of the bispectrum is related to the Fourier transforms of the
processes at three different frequency values

S
T

E X Y

Z

XYZ
T

T X T Y

T Z

T T

T

( , ) lim [ ˜ ( ) ˜ ( )][ ˜ ( ) ˜ ( )]

[ ˜ ( ) ˜ ( )]

ω ω
π

ω µ ω ω µ ω

ω ω µ ω ω

1 2 1 1 2 2

1 2 1 2

2
= − −(

− − − − − )
→∞

(6.54)

Note that the sum of the three frequency arguments in the right-hand side of Eq.
6.54 is zero. It can be shown that the corresponding expectation of the product of
j Fourier transforms is generally bounded as T goes to infinity if the sum of the
frequency arguments is not zero but unbounded when the sum of the frequency
arguments is zero. Thus, the useful information contained within the jth cumulant
function normalized by T is given only by the special case with the sum of the
frequency arguments equal zero. Equations 6.17 and 6.20 are also special cases
of this general result. Another higher-order spectrum that is sometimes
encountered in practical analysis of non-Gaussian processes is called the
trispectrum and is related to the Fourier transforms of processes at four frequency
values that sum to zero.
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From Eqs. 6.54 and 3.39 one can show that

S X t Y t Z t e d dXYZ
i i( , ) [ ( ), ( ), ( )]ω ω

π
κ τ τ τ τω τ ω τ

1 2 2 3 1 2 1 2
1

4
1 1 2 2= + +

−∞

∞ − −
−∞

∞ ∫∫

This demonstrates that the bispectrum is exactly the second-order Fourier
transform of the stationary third cumulant function, just as the ordinary
autospectral density function is the Fourier transform of the autocovariance
function. This same relationship also extends to higher-order spectral densities.
In particular, the trispectrum is the third-order Fourier transform of the stationary
fourth-order cumulant function.

*****************************************************************
Example 6.6: Find the higher-order autospectral density function for a general

stationary delta-correlated process { ( )}F t  and for the { ( )}F t  shot noise of

Example 5.6 when the mean arrival rate is a constant b .

We will say that the general stationary delta-correlated process { ( )}F t  has

higher-order cumulants given by
κ δ δ δn n n n n n nF t F t G t t t t t t[ ( ), , ( )] ( ) ( ) ( )1 1 2 1L L= − − −−

This includes Eq. 5.37 as the special case with n = 2, except that we used the

notation G0  rather than G2  in that equation. We now write the n th-order

autospectral density function as the (n–1)th-order Fourier transform of this

cumulant. Thus, the general relationship that

S F t F t F t

i d d

n n n n n

n n n

( , , )
( )

[ ( ), , ( ), ( )]

        exp[ ( )]

ω ω
π

κ τ τ

ω τ ω τ τ τ

1 1 1 1 1

1 1 1 1 1 1

1

2
L L L

L L

− − −∞

∞
−−∞

∞

− − −

= + + ×

− + +

∫ ∫

gives S Gn n n
n( , , ) /( )ω ω π1 1

12L −
−= . Autospectral density functions of all orders

are constants for a stationary delta-correlated process.

For the shot noise of Example 5.6 we found that the nth-order cumulant was

κ δ δ δn n
n

n n n nF t F t E F b t t t t t t[ ( ), , ( )] [ ] ( ) ( ) ( )1 1 2 1L L= − − −−
in which we have now replaced the nonstationary arrival rate ˙ ( )µZ t  with the

constant b . Thus, we see that G E F bn
n= [ ]  and the spectral density is

S E F bn n
n n( , , ) [ ] /( )ω ω π1 1

12L −
−= .

*****************************************************************
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Exercises
*****************************************************************
Spectral Density and Variance
*****************************************************************
6.1 Let { ( )}X t  be a covariant stationary stochastic process with autospectral
density function S eXX ( ) | |ω ω ω= − 2 .
(a) Find the variance of the { ( )}X t  process.
(b) Find the variance of the { ˙( )}X t  derivative process.
*****************************************************************
6.2 Consider a covariant stationary stochastic process { ( )}X t  with autospectral
density function S eXX ( ) /ω ω= − 2 2.
(a) Find the variance of the { ( )}X t  process.
(b) Find the variance of the { ˙( )}X t  derivative process.
*****************************************************************
6.3 Let { ( )}X t  be a covariant stationary stochastic process with autospectral
density function

S S U S UXX

c c

( ) ( | |) (| | )ω
ω
ω

ω ω
ω
ω

ω ω= − + −0
0

0 0
0

0

in which S0 , ω0, and c are positive constants.
(a) Find the variance of the { ( )}X t  process.
(b) Find the variance of the { ˙( )}X t  derivative process.
(c) Note any restrictions on c required for your answers to parts (a) and (b).
*****************************************************************
6.4 Let { ( )}X t  be a mean-zero covariant stationary stochastic process with
autospectral density function S S eXX ( ) | |ω ω= −

0 .
(a) Find E X t[ ( )]2 .
(b) Find E X t[ ˙ ( )]2 .
(c) Find E X t X s[ ( ) ˙( )].
*****************************************************************
6.5 Consider a covariant stationary process { ( )}X t  with autospectral density

S S U S UXX ( ) ( | |) ( | | )ω ω ω
ω
ω

ω ω ω= − + − − >0 0 0
0

4

0 0 0       with 

(a) Find the variance of the { ( )}X t  process.
(b) Find the variance of the { ˙( )}X t  derivative process.
*****************************************************************
6.6 As a first step in modeling an earthquake ground motion, you wish to find a
stationary stochastic process { ( )}Z t  simultaneously satisfying the following
three conditions:

I: E Z( ˙̇ ) . ( )2 21 0= m/sec2 , II: E Z( ˙ ) . (2 1 0= m/sec)2 , and III: E Z( )2 < ∞
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Consider each of the three following autospectral density curves as candidates for
this modeling. For each autospectral density, state whether it is possible to
choose real, positive constants a and b such as to satisfy conditions I, II, and III.
If it is not possible to satisfy any particular condition, then explain the difficulty
encountered. [Note: Evaluation of a or b  is not required, only determination of
whether solutions exist.]
(a) S aU bZZ˙̇ ˙̇ ( ) ( | |)ω ω= −

(b) SZZ˙̇ ˙̇ ( )ω = ω ω4 8/( )a b+

(c) SZZ ( )ω = ( )a b+ −ω4 1

*****************************************************************
Narrowband and Broadband Processes
*****************************************************************
6.7 Let { ( )}X t  be a covariant stationary stochastic process with autospectral
density function

S S SXX ( ) exp | | exp | |ω γ ω ω γ ω ω ω= − +( )+ − −( ) >0 0 0 0 0 0       with 
(a) Find the GXX ( )τ  autocovariance function.
(b) Show that γ >>1  gives a narrowband process with

ρ τ τ σ ω τXX XX XG( ) ( ) / cos( )≡ ≈2
0

(c) Show that γ → 0 gives GXX ( )τ → 0  for τ ≠ 0, and GXX ( )0 → ∞ so that the
autocovariance of { ( )}X t  tends to that for a delta-correlated process.

*****************************************************************
6.8 Let { ( )}X t  be a covariant stationary stochastic process with autospectral
density function

S S e S eXX ( ) ( ) ( )ω γγ ω ω γ ω ω= + >− + − −
0 0

0
2

0
2

0       with 
(a) Find the GXX ( )τ  autocovariance function.
(b) Show that γ >>1  gives a narrowband process with

ρ τ τ σ ω τXX XX XG( ) ( ) / cos( )≡ ≈2
0

(c) Show that γ → 0 gives GXX ( )τ → 0  for τ ≠ 0, and GXX ( )0 → ∞ so that the
autocovariance of { ( )}X t  tends to that for a delta-correlated process.

[Hint: Example 3.22 involves evaluation of a similar integral.]
*****************************************************************
Dynamic Response
*****************************************************************
6.9 Consider a linear system whose response { ( )}X t  to an excitation { ( )}F t  is
governed by the differential equation ˙̇ ( ) ˙( ) ( )X t c X t F t+ = , in which c > 0 is a
constant. Let { ( )}F t  be covariant stationary with autospectral density

S S U cFF ( ) ( | | )ω ω= −0 10

(a) Find the autospectral densities of { ( )}X t  and { ˙( )}X t .
(b) Are the variances of { ( )}X t  and { ˙( )}X t  finite? Briefly explain your answer.
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*****************************************************************
6.10 Consider a linear system governed by the first-order differential equation

˙( ) ( ) ( )X t a X t F t a+ = ≤ ≤       with 0 1

The excitation { ( )}F t  is covariant stationary with nonzero mean µF b=  and
autocovariance function K t t e tFF ( , ) | |+ = −τ ττ  for all  and .

 (a) Find the autospectral density of { ( )}F t .
(b) Find the autospectral density of { ( )}X t .
*****************************************************************
6.11 Consider a building subjected to a wind force { ( )}F t . The building is
modeled as a linear SDF system, m X t c X t k X t F t˙̇ ( ) ˙( ) ( ) ( )+ + = , with
m = 200 000,  kg, c = ⋅8 0.  kN s/m, and k = 3 200,  kN/m. The force { ( )}F t  has a
mean of µF = 20 kN  and an autospectral density of

S eFF ( ) | | /( )/ω ω ωω= −500
2 2 (kN) rad/s        for all 2

(a) Find E F( )2 , the mean-squared force on the building.
(b) Find µX E X≡ ( ) .
(c) Estimate the standard deviation of { ( )}X t  by replacing { ( )}F t  by a constant

force of 20 kN plus an “equivalent” white noise excitation.
(d) A delicate instrument is to be mounted in the building. Find the autospectral

density of its base acceleration SXX˙̇ ˙̇ ( )ω .

*****************************************************************

6.12 Consider a linear system whose response { ( )}X t  is governed by the
differential equation ˙̇ ( ) ˙( ) ( ) ( )X t X t X t F t+ + =5 6 . The excitation { ( )}F t  is a
mean-zero stationary white noise with autospectral density S0 .

 (a) Find the H x ( )ω  harmonic transfer function.
(b) Find the SXX ( )ω  autospectral density of the response. Sketch your answer.

*****************************************************************

6.13 Consider the response of two structures to an anticipated earthquake. The
strong motion portion of the ground acceleration will be modeled as a mean-zero
stationary process with autospectral density

SFF ( )
)

ω
ω

=
+

6

400 2

2
 
(m/s

rad/s

2

Each structure will be modeled as an SDF system
˙̇ ( ) ˙( ) ( ) ( )X t X t X t F tj j j j+ + =2 2ζ ω ω

with X j  representing the displacement at the top of structure j.

Structure number 1 has ω ζ1 10 0 01= = rad/s and 1 . . Structure number 2 is to be
built near the first structure and is expected to have ω ζ2 15 0 005= = rad/s and 2 . .
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(a) Use the concept of an equivalent white noise to estimate the stationary
standard deviation of response of each structure.

(b) Let b = static clearance between the two structures. This gives the clearance
between the two structures during the earthquake as Y b X X= − +1 2
(assuming that both are of the same height). Find stationary values of µY  and
σY  by assuming that X1 and X2  are independent.

*****************************************************************
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Chapter 7
Frequency, Bandwidth, and
Amplitude

7.1 General Concepts
Several concepts introduced in Chapters 5 and 6 warrant more detailed analysis.
In particular, characteristic frequency, amplitude, and phase of a stochastic
process were used for narrowband processes, but no precise definitions were
given that would allow the concepts to be extended to broadband situations.
Furthermore, no measure of bandwidth was given to allow us to establish
standards for judging whether or not a process is narrowband. One reason that we
need such a concept is that some approximate methods of analysis of stochastic
vibration and stochastic fatigue are based on the assumption that some process is
narrowband, and a bandwidth parameter can help define what that means. It may
be noted that dynamic analysis is not needed for the current chapter, so this
material could be considered an extension of Chapter 4 on the general
characteristics of stochastic processes. All of these concepts arose in the
consideration of dynamic response in Chapters 5 and 6, however.

We will begin with time-domain analysis that specifically relates to the
ideas of characteristic frequency and bandwidth; then we will consider common
frequency-domain characterization of these quantities. Finally, we will study
ways in which the concepts of amplitude and phase can be applied to broadband
and narrowband processes and how they relate to the ideas of characteristic
frequency and bandwidth.

7.2 Characteristic Frequency and Bandwidth from Rates of Occurrence
If one is studying a time history from a stochastic process, it is natural to consider
the characteristic frequency to be related to the frequency of occurrences of
certain events. Perhaps most obvious would be to look at the occurrences of local
maxima, which we shall simply call peaks, or local mimima, which we shall call
valleys. Not quite so obvious, but often more useful, is a study of the occurrences
of crossings of the level µX t( )  by the X t( )  time history. In particular, this
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crossing rate is easier to determine because it is less affected by the possible
presence of small “wiggles” due to high-frequency components in the time
history. It turns out that it is also slightly easier to give a mathematical
description of the rate of crossings. Thus, we begin with the general topic of the
rate of occurrence of crossings.

Let ν X u t+ ( , )  denote the expected rate of occurrence of the event X t u( ) =
with ˙( )X t > 0 , and let ν X u t− ( , )  denote the expected rate for the event X t u( ) =
with Ẋ ( )t < 0 . Commonly these are called the rate of upcrossings and the rate of
downcrossings, respectively, of the level X u= , as shown in Fig. 7.1. The
expected number of upcrossings during any time interval of finite length, for
example, is then the integral of ν X u t+ ( , )  over the interval. Particularly for a
nonstationary process, the rate of upcrossings can probably be more clearly
understood by relating it to the probability of occurrence of an upcrossing during
a small time increment. The basic definition of the expected rate of occurrence of
any event can be written as

lim
(

∆

∆
∆t

E t t t

t→0

number of occurrences in [ , + ])

During any infinitesimal time interval [ , + ]t t t∆ , though, we expect there to be
either one or zero occurrences so that the expected number of occurrences is the
same as the probability of an occurrence. Thus, we can write the expected rate of
upcrossings as

ν X t
u t

P u t t t

t
+

→
=( , ) lim

(

∆

∆
∆0

an upcrossing of  in [ , + ])
(7.1)

Figure 7.1 Crossings of the level X( t) = u

u

X(t)

= upcrossing
= downcrossing

t

.
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The probability of an upcrossing during an infinitesimal interval can be
investigated intuitively by considering the phase diagram shown in Fig. 7.2. In
particular, we can argue that there can only be an upcrossing of the level u within
the interval [ , + ]t t t∆  if X t( )  at the beginning of the interval is less than u, but
close to u, and has a positive derivative. In particular, inasmuch as ∆ t  is
infinitesimal, we might consider the derivative to be constant at the value Ẋ ( )t
throughout the time interval and conclude that there will be an upcrossing within
the interval only if 0 < − <u X t X t t( ) ˙( ) ∆ , which translates into
u X t t X t u− < <˙( ) ( )∆ . This event is shown shaded on the space of possible
values of X t( )  and Ẋ ( )t  in Fig. 7.2. The probability of this event can now be
found by integrating the joint probability density of X t( )  and Ẋ ( )t  over the
shaded region:

P u t t t p w v dw dvX t X tu v t

u
( ( , )( ), ˙ ( )an upcrossing of  in [ , + ])∆

∆
≈

−

∞ ∫∫0

We now once again use the fact that ∆ t  is infinitesimal to argue that the w
variable of integration is always almost the same as u. Replacing p w vX Xt t( ) ( )˙ ( , )
with p u vX Xt t( ) ( )˙ ( , )  in the integrand allows easy evaluation of the integral with
respect to w, and gives

P u t t t v t p u v dvX t X t( ( ) ( , )( ) ˙ ( )an upcrossing of  in [ , + ])∆ ∆≈
∞∫0

Substituting this expression into Eq. 7.1 now gives the expected rate of
upcrossing as

Figure 7.2 Phase diagram showing the event of upcrossing
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ν X X t X tu t v p u v dv+ ∞
= ∫( , ) ( , )( ) ˙ ( )0

(7.2)

This derivation of Eq. 7.2 illustrates the ideas involved but is not very
rigorous, particularly if the Ẋ ( )t  derivative is unbounded. That is, if the
probability density function allows the possibility that ˙( )X t  has arbitrarily large
values, then one cannot precisely claim that the range of the w integration from
u X t t− ˙( ) ∆  to u is small, as we did in replacing w with u in the integrand. In fact,
for any given value of ∆ t , this distance of ˙( )X t t∆  tends to infinity as ˙( )X t
tends to infinity. It is possible to prove that the limiting process is legitimate
despite this difficulty, but rather than pursue that approach we will give an
alternative derivation of Eq. 7.2 that relies more on algebra and less on geometry.

Because ν X u t+ ( , )  is the expected rate of upcrossings, we will take the point
of view that it is the mean value of the derivative of a counting process N u tX

+ ( , )
that gives the number of upcrossings since time zero.1 Figure 7.3 illustrates this
idea. First we define a process Z t U X t u( ) [ ( ) ]≡ −  that steps back and forth
between the level zero and unity, depending on whether X t( )  is less than or
greater than u, respectively, as shown in part (b) of Fig. 7.3. The derivative of
this process is always zero or infinity, but it can be written formally as

˙( ) [ ( ) ] ˙( )Z t X t u X t≡ −δ

Each of the Dirac delta function pulses in ˙( )Z t  is shown in Fig. 7.3(c) as an
arrow, pointing toward either plus infinity or minus infinity, depending on the
sign of ˙( )X t . Of course, the integral across any one of these delta functions is a
step of unit magnitude, because the integral of ˙( )Z t  is Z t( ) . By eliminating the
delta functions with negative multipliers and then integrating, we can obtain a
process that counts the number of upcrossings. This elimination of negative
pulses is easily done by multiplying by U X t[ ˙( )] , as shown in Fig. 7.3(d). The
resulting counting process, as shown in part (e) of the figure, is N u tX

+ ( , ) , which
starts at zero and proceeds to increase by unit step values, because it contains all
the positive steps and none of the negative steps of Z t( ) .

We can now say that ν X u t+ ( , )  is the expected value of the derivative of
N u tX

+ ( , ) . Thus, it is the expected value of the ˙( ) [ ˙( )]Z t U X t  process illustrated in
part (d) of the figure. Thus, we merely need to substitute for ˙( )Z t  to obtain

                                                  
1We can expect that this derivative of a counting process may have a finite mean
value, but an infinite mean-squared value, as was true for the Poisson process in
Example 4.1.
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ν δX u t E Z t U X t E X t u X t U X t+ = ( ) = −( )( , ) ˙( ) [ ˙( )] [ ( ) ] ˙( ) [ ˙( )]

or

ν δX X t X tu t p w v w u vU v dw dv+
−∞

∞

−∞

∞
= −∫∫( , ) ( , ) ( ) ( )( ) ˙ ( )

Performing the integration with respect to w gives

ν X X t X t X t X tu t p u v vU v dv v p u v dv+
−∞

∞ ∞
= =∫ ∫( , ) ( , ) ( ) ( , )( ) ˙ ( ) ( ) ˙ ( )0

Figure 7.3 Counting the  upcrossings

uX(t)

t

1

1

2

3

t

t

t

t

(a)

(b)

(c)

(d)

(e)

Ż( t)

Ż( t)U[ Ẋ( t)]

Ż( s)U[ Ẋ(s)]0
t∫ ds

NX
+(u,t) =

Z( t) ≡ U[X( t) − u]

.
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which is identical to Eq. 7.2. Alternatively, we can factor the joint probability
density function as a product of a marginal and conditional density function and
write

ν X X t X tu t p u v p v X t u dv+ ∞
= =∫( , ) ( ) [ | ( ) ]( ) ˙ ( )0

(7.3)

The relationships in Eqs. 7.2 and 7.3 are very general, applying to any stationary
or nonstationary process with any probability distribution. It should be noted,
though, that the value obtained may be infinite if the conditional probability
density function of ˙( )X t  does not decay sufficiently rapidly. In particular, if
E X t t X t u[ ˙( ) |( ) | ( ) ]=  does not exist then ν X u t+ ( , )  may be infinite.

To obtain the downcrossing rate, we can essentially reverse the sign of
˙( )X t  to obtain

ν X X t X t X t X tu t v p u v dv p u v p v X t u dv−
−∞ −∞

= − = =∫ ∫( , ) ( , ) ( ) | | [ | ( ) ]( ) ˙ ( ) ( ) ˙ ( )
0 0

(7.4)

From Eqs. 7.2 and 7.4, we can also see that if the { ( )}X t  process is second-order
stationary then the crossing rates will be independent of time t. In this special
case, we can drop the t argument and write ν X u+ ( )  and ν X u− ( )  for the upcrossing
and downcrossing rates.

********************************************************************************************

Example 7.1: Find the expected rate of upcrossings for a covariant stationary

Gaussian process { ( )}X t .

For a covariant stationary process, we know that the random variables X t( )  and
˙( )X t  are uncorrelated. In addition, we know that Gaussian random variables are

uncorrelated if and only if they are independent. Thus, we know that X t( )  and
˙( )X t  are independent for the present situation. This allows us to use the

unconditional distribution of ˙( )X t  in place of the conditional distribution in Eq.

7.3, giving

ν
π σ

µ

σX X t

X

X

X
u t p u

v v t
dv+ ∞

= −
−

























∫( , ) ( )
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˙
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21 2

2

0

which can be integrated to give

ν µ
µ

σ

σ

π

µ

σ
X X t X

X

X

X X
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u t p u t
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+
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or

ν
π σ

µ
σ

µ
µ

σ

σ

π

µ

σ

X
X

X

X

X
X

X

X X

X

u t
u t

t
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+ = −
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+
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2
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in which Φ( )⋅  denotes the cumulative Gaussian distribution function. Note that

µX  and µẊ  are written as functions of time, because covariant stationarity does

not imply mean-value stationarity.

Next consider the special case in which { ( )}X t  is also mean-value stationary

and thereby strictly stationary. In this case we know that µX  is a constant and

µẊ = 0 , so our expression can be simplified to

ν
σ

π σ
µ

σX
X

X

X

X
u

u+ = −
−

























( ) exp
˙

2
1
2

2

   (for mean and covariant stationary)

Recall that one definition of characteristic frequency of a narrowband process

was given in Eq. 6.27 as ω σ σc XX2 = ˙ / . Thus, we can extend this definition of

ωc2  to apply to any stochastic process and say that

ν
ω

π
µ

σX
c X

X
u

u+ = −
−

























( ) exp2
2

2
1
2

The maximum value of this crossing rate occurs when u X= µ  and it is simply

ν µ ω πX X c
+ =( ) /( )2 2 . Thus, we see that the rate of upcrossings of u X= µ  by a

stationary Gaussian process is simply the energy-based average frequency

divided by 2π . The factor of 2π , of course, comes from the fact that ωc2
represents a frequency in radians per second, while the rate of mean-

upcrossings represents a frequency in cycles per second, or Hz. The interesting

thing is that these two quite distinct definitions of process frequency are exactly

equivalent for a stationary Gaussian process.

********************************************************************************************

Example 7.2: Find the expected rate of upcrossings for a Gaussian process

{ ( )}X t  that is mean-zero and has a nonstationary covariance.

The conditional Gaussian probability density function of ˙( )X t  can be written in

the usual Gaussian form (see Example 2.25). In particular, we can write

p v X t u
t

v t

tX t˙ ( ) /
*

*

*
[ | ( ) ]

( ) ( )
exp

( )
( )

= = −
−

























1

2

1
21 2

2

π σ

µ
σ
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in which µ* ( )t  and σ* ( )t  are the conditional mean and standard deviation of
˙( )X t  and are given by

µ ρ
σ

σ
σ σ ρ*

˙
˙

˙
* ˙ ˙

/( )
( , )

( , )
( , )

( )

( )
( ) ( )[ ( , )]t

K t t

K t t
u t t

t

t
u t t t tXX

XX
XX

X

X
X XX

= = = −,       1 2 1 2

Because the conditional distribution of ˙( )X t  is the usual Gaussian form, the
integral in Eq. 7.3 is basically the same as in Example 7.1:
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which can be rewritten as
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Note that setting the correlation coefficient equal to zero in this expression gives

the same result as in Example 7.1. We may also note that a symmetric

probability distribution for X t( )  and Ẋ ( )t , as in this example, gives the rate of

downcrossings to be the same as the rate of upcrossings.

Setting u = 0 in the previous expression gives the rate of zero-upcrossings or

mean-upcrossings as

ν ν µ
ρ

π

σ

σ

ρ

π
ωX X X

XX X

X

XX
ct t

t t t

t
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+ += =

−
=
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˙ ˙
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0
1

2

1

2

2 1 2 2 1 2

2

showing that a correlation between X t( )  and ˙( )X t  results in a lowering of the

process frequency, as measured by this upcrossing rate.

********************************************************************************************

Example 7.3: Find the rate of upcrossings for the stationary dynamic response of

a linear SDF oscillator excited by mean-zero stationary Gaussian white noise.

This is a special case of Example 7.1, because the { ( )}X t  response process is

Gaussian and covariant stationary. Furthermore, the response is also mean-

value stationary. Thus, the key parameters needed are the stationary standard

deviations of X t( )  and ˙( )X t . From the results in Sections 5.7 and 6.8, we can

write these as

σ
π

ζω
σ

π
ζωX X

S S
=
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˙
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Thus, we obtain

ν
ω

π
µ

σX
X

X
u

u+ = −
−

























( ) exp0
2

2
1
2

with a maximum value of ω π0 2/( ) . The expected frequency of mean-

upcrossings for this process is exactly the nominal undamped frequency of the

oscillator in Hz. If the excitation is not white noise or is not stationary, then this

very convenient result will no longer be strictly true.

********************************************************************************************

Example 7.4: Find the approximate expected rate of crossings of the mean-value

level of a narrowband process { ( )}X t  for which the joint probability density of

X t( )  and ˙( )X t  is unknown.

For a narrowband process we can approximate ν µX X t t+ [ ( ), ]  without knowledge

of p u vX Xt t( ) ( )˙ ( , ) , even though our general formula for calculating the rate of

upcrossings depends on the term. This follows directly from the nearly harmonic

time history behavior of a narrowband process, as discussed in Section 6.4. For

X t t A t t tX c( ) ( ) ( ) cos[ ( )]≈ + +µ ω θ  with slowly varying amplitude and phase, the

crossings of the level µX t( )  must occur with an approximate period of 2π ω/ c,

as illustrated in Fig. 6.3. Thus, we must have an approximate expected rate of

upcrossings of ν µ ω πX X ct t+ ≈[ ( ), ] /2 .

********************************************************************************************

The examples illustrate the usefulness of ν µX X t+ ( , )  as a measure of the
characteristic frequency (in Hz) of a stochastic process. For a narrowband
process it is consistent with the physical notion of the frequency of a nearly
harmonic time history, and for a Gaussian process it is exactly in agreement with
the ωc2  defined in Eq. 6.27 for a stationary Gaussian process.

Because a peak of X t( )  occurs whenever ˙( )X t = 0  and ˙̇ ( )X t < 0 , we can
say that the rate of occurrence of peaks of { ( )}X t  is exactly the rate of
downcrossings of the level zero by { ˙( )}X t :

ν νP X X t X t

X t X t

t t w p w dw

p w p w X t dw

( ) ( , ) | | ( , )

           ( ) | | ( | ˙( ) )

˙ ˙ ( ), ˙̇ ( )

˙ ( ) ˙̇ ( )

≡ =

= =

−
−∞

−∞

∫

∫

0 0

0 0

0

0
(7.5)

Similarly, the rate of occurrence of valleys of { ( )}X t  is νV t( ) ≡ ν
Ẋ
+ ( , )0 t .
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Next we note that knowledge of the rate of occurrence of peaks and
crossing rates can be used to define a measure of bandwidth of a stochastic
process. One can easily verify that any sufficiently long continuous time history
of a process must have at least as many peaks as it has upcrossings of any level.
Specifically, at least one peak (and one valley) must occur between any two
upcrossings of the same level u . From this fact, we can conclude that
ν νP Xt u t( ) ( , )≥ +  for any u  for any process with continuous time histories. The
rate of occurrence of peaks of a narrowband process, however, is expected to be
only slightly larger than the rate of upcrossings of the mean, based on the
similarity of a narrowband time history to a harmonic function with slowly
varying amplitude and phase (as discussed in Chapter 6). This property is
commonly used to provide a measure of bandwidth that can readily be estimated
from a time history. It is called the irregularity factor and is defined as

IF t tX X P= +ν µ ν( , ) / ( ) (7.6)

The range of possible values of IF is from zero to unity, with IF tending to unity
for a narrowband process. We will also use this normalization for other
bandwidth measures introduced in the following sections.

********************************************************************************************

Example 7.5: Find the rate of peak occurrences and the irregularity factor for a

Gaussian process { ( )}X t  that is mean-value stationary and covariant stationary.

We can obtain the rate of occurrences of peaks by rewriting the results in

Example 7.1 so that they apply to the { ˙( )}X t  process. In particular, we know that

µẊ = 0  because µX  is stationary, and we know that the rate of upcrossings is

the same as the rate of downcrossings. Thus, we deduce from Example 7.1 that

the rate of peak occurrences is ν σ π σP X X= ˙̇ ˙/( )2 . The irregularity factor is then

easily written as

IF
NX X

P

X

X X

= =
+ ( ) ˙

˙̇

µ
ν

σ

σ σ

2

One needs to know only the standard deviations of X t( ) , ˙( )X t , and ˙̇ ( )X t  to

evaluate IF  for any stationary Gaussian stochastic process.

********************************************************************************************

Example 7.6: Find the rate of peak occurrences and the irregularity factor for the

{ ( )}X t  response of a linear SDF oscillator excited by Gaussian white noise.

As in the previous example, we can rewrite the results in Examples 7.1 and 7.2

so that they apply to the { ˙( )}X t  process. When we do this, we find that ν ˙ ( , )X u t−
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for a Gaussian process depends on σ ˙̇ ( )X t , the standard deviation of the

acceleration. We know, though, that σ ˙̇ ( )X t  is infinite for the response of the SDF

oscillator to white noise excitation. Thus, we find that the νP t( )  rate of peak

occurrences is infinite for the response of any linear SDF oscillator excited by

Gaussian white noise. Correspondingly, the IF  irregularity factor is zero for the

response process.

********************************************************************************************

The result in Example 7.5 illustrates an important feature of the occurrence
rate for peaks. In particular, it was found that the peak occurrence rate is finite
for a Gaussian process if and only if σ ˙̇X  is finite. We do not have a
correspondingly simple rigorous result for non-Gaussian processes, but it is clear
from Eq. 7.5 that the existence of a finite peak occurrence rate is dependent on
the manner in which p wXX˙ ˙̇ ( , )0  converges to zero as w tends to infinity. In any
problem in which σ ˙̇X  is infinite, we should anticipate the possibility that the
peak occurrence rate may also be infinite. Similarly, if σ Ẋ  is infinite then there is
the possibility that the crossing rates will be infinite, and this is easily shown to
be a rigorous relationship for a Gaussian process.

The response of an SDF oscillator to white noise excitation is one
important example in which σ ˙̇X  is not finite, so the peak occurrence rate is
infinite if the excitation and response are Gaussian. This finding of infinite
occurrence rates of peaks in a model of an important physical problem may seem
somewhat surprising. That is, we certainly expect the number of peaks in a time
history of a physical phenomenon to be finite, and we believe that many physical
phenomena are approximated by the response of linear SDF oscillators excited
by broadband stochastic excitations. This reveals a shortcoming in our modeling
of the excitation as white noise. If we replaced the white noise excitation with an
{ ( )}F t  that had a finite variance, then we would find that σ ˙̇X  would be finite
and the peak occurrence rate would be finite. As explained in Sections 5.5 and
6.5, the use of a delta-correlated or white noise excitation always involves an
approximation of the physical problem of interest. This approximation gives us
many useful results about the response of an oscillator, but it fails to give us the
rate of occurrence of peaks. The rate of occurrence of peaks depends quite
heavily on the behavior of the high-frequency portion of the autospectral density,
and for the SDF oscillator this is approximated by S S mXX FF( ) ( ) /( )ω ω ω≈ 2 4  or
S S mXX FF˙̇ ˙̇ ( ) ( ) /ω ω≈ 2 , as discussed in Section 6.3. To find the peak occurrence
rate for the system, one must know how SFF ( )ω  decays as | |ω  becomes large.
One can show that the same conclusion applies to any problem in which a
broadband force is applied to a finite mass within a system made up of masses,
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springs, and dashpots, because such a system will always give a linear
relationship between SXX˙̇ ˙̇ ( )ω  and SFF ( )ω  in the high-frequency region.

7.3 Frequency-Domain Analysis
Probably the most direct frequency-domain method of defining a bandwidth
parameter was introduced by Vanmarcke (1972), who noted that the time-
invariant SXX ( )ω  autospectral density from ω = 0 to ω = ∞ can be likened to a
probability density function. In particular, it is a nonnegative function and it has a
bounded integral if the { ( )}X t  process has bounded variance. A probability
density function might be considered narrow if the associated random variable
has a small variance. More precisely, the dimensionless coefficient of variation,
giving the ratio of the standard deviation to the mean of the random variable,
gives a measure of how much the random variable is likely to differ from its
mean. Similarly, one can define moments of the autospectral density function
and, from these, calculate a parameter that gives the relative width of the
autospectral density in the same way that the coefficient of variation of a random
variable gives the relative width of its probability density function. We will
define these spectral moments as

λ ω ω ω ω ω ωj
j

XX
j

XXS d S d= =
−∞

∞ ∞∫ ∫| | ( ) ( )2
0

(7.7)

For a very narrowband process concentrated at frequencies ±ωc , we see that
λ ω λj c j≈ ( ) 0 .

Note that in order to have a good analogy with a probability density
function, we need to consider a form of autospectral density that has a unit
integral, and SXX ( ) /ω λ0  has this property. Furthermore, the jth moment of
SXX ( ) /ω λ0  is simply λ λj / 0 . Note that the first spectral moment of
SXX ( ) /ω λ0 , corresponding to a mean value in the probability density analogy, is
a reasonable description of the characteristic frequency of the process. We will
write this as

ω
λ
λc1

1

0
≡ (7.8)

in which the subscript “1” is introduced to distinguish this parameter from the
characteristic frequency introduced in Eq. 6.27, which can be rewritten as
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≡ =
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(7.9)

The bandwidth parameter directly corresponding to coefficient of variation is
thus

s =
−

= −












[( / ) ( / ) ]
/

/ /
λ λ λ λ

λ λ
λ λ

λ
2 0 1 0

2 1 2

1 0

0 2

1
2

1 2

1

The parameter s tends to zero for the limiting narrowband process, and it is
always greater than zero for any other situation. It has no general upper limit.
Rather than using this parameter directly, though, it is conventional to convert it
to a parameter that is always in the range of zero to unity and that tends to unity
for a narrowband process. The commonly-used parameter having this
normalization is

α
λ

λ λ
1

1

0 2
1 2

=
( ) /

(7.10)

which is easily shown to be α1 = ( ) /s2 1 21+ − . The fact that s2 is nonnegative
demonstrates that 0 11≤ ≤α .

 A slight variation on Eq. 7.10 can be used to define a more general family
of bandwidth parameters, each of which has properties similar to α1, but with
some differences. In particular, let

α
λ

λ λ
j

j

j

=
( ) /

0 2
1 2

(7.11)

The normalization of α j  is the same as that of α1 inasmuch as α j  is always in
the unit interval. That it is nonnegative follows directly from its definition in
terms of spectral moments, and one can show that α j ≤1 by demonstrating that
( )λ j 2≤ λ λ0 2 j . This latter bound follows from the fact that

( / ) ( )/
/

λ λ ω ω ω λ λ
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∞∫
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and this quantity must be greater than or equal to zero because the integrand is
nonnegative. Furthermore, consideration of λ ω λj jc≈ ( ) 0  shows that α j  also
tends to unity for a narrowband process. Note that one can also introduce a new
definition of characteristic frequency that depends only on λ j  and λ0 :

ω
λ

λcj
j

j

≡










0

1/

with ωc1 and ωc2  of Eqs. 7.8 and 7.9 being special cases. For a narrowband
process, all these definitions of characteristic frequency will be nearly the same,
but they will give differing values for a broadband process. In a loose sense one
can say that the ωcj  characteristic frequency is consistent with the α j  bandwidth
parameter.

Note that there is little restriction on the quantity j in the definition of the
α j  bandwidth parameter or the ωcj  characteristic frequency. In fact, it need not
even be an integer. One effect of the choice of j is the determination of the types
of autospectral density functions for which α j = 0 . In particular, α j = 0  if the
high-frequency autospectral density decays sufficiently slowly that λ 2 j = ∞. For
example, if SXX ( )ω  decays like | |ω −6, then λ 2 j = ∞ for j ≥ 2 5. . One advantage
of the α1 parameter is the fact that it goes to zero only if the autospectral density
does not decay more rapidly than | |ω −3, which covers quite a wide variety of
practical situations. Out of the entire group of α j  parameters, the one in addition
to α1 that is widely used in practice corresponds to choosing j = 2 . One
disadvantage of α2, as compared with α1, is its increased sensitivity to high-
frequency components of the autospectral density, resulting in its being zero if
the spectral density does not decay more rapidly than | |ω −5. In Example 7.9 we
will consider a problem of practical interest that fails to meet this criterion.

Probably the primary reason that investigators often choose to use the α2
parameter has to do with certain special properties of the even-integer spectral
moments. In particular, it is easy to verify that the three spectral moments used in
defining α2 each corresponds to a variance term: λ0 = σX

2 , λ2 = σ Ẋ
2 , and

λ4 = σ ˙̇X
2 . Thus, one can write

α
λ

λ λ

σ

σ σ2
2

0 4
1 2

2

= =
( ) /

˙

˙̇

X

X X

(7.12)
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Similarly, ω σ σc XX2 = ˙ / , as first defined in Eq. 6.27. Note that for the special
case of a stationary Gaussian process, the α2 result in Eq. 7.12 is identical to the
IF that was derived in Example 7.5.

Of course, the sequence of even-order spectral moment relationships can
also be extended, showing that λ2 j  corresponds to the variance of the jth
derivative of { ( )}X t  whenever j is a nonnegative integer. When j is not an even
integer, though, there is not such an easy physical interpretation of λ j . In
particular, the λ1 spectral moment entering into the definition of α 1 is not easily
identified with the variance of any physical quantity. If one knows the
autospectral density function, then there is generally no difficulty in evaluating
any of the bandwidth measures, but one can also find the value of α2 and ωc2
without knowledge of the complete autospectral density function if the
appropriate variances are known.

The α2 bandwidth parameter also has another interpretation that may help
illuminate its significance as a meaningful parameter of the stochastic process. In
particular, note that the cross-covariance function for displacement and velocity
at time t can be written as GXẊ ( )0 . The derivative of this expression with respect
to time t is GXẊ̇ ( )0 + σ Ẋ

2 . For a covariant stationary process, though, this
derivative must be zero, because all the covariance terms must be constant. Thus,
we have

G K t tXX X XX X
˙̇ ˙ ˙̇ ˙( )           ( , )0 02 2+ = = −σ σor

From this we find that the correlation coefficient of X t( )  and ˙̇ ( )X t  is exactly

ρ
σ σ

σ

σ σ
αXX

XX

X X

X

X X

K t t
˙̇

˙̇

˙̇

˙

˙̇

( , )
≡ = − = −

2

2 (7.13)

The α2 bandwidth parameter is precisely the negative of the correlation
coefficient between the process and its second derivative. Inasmuch as the time
histories of a narrowband process are nearly harmonic and the second derivative
of any harmonic function is proportional to the negative of the original function,
we should certainly expect X t( )  and ˙̇ ( )X t  to have almost perfect negative
correlation in the narrowband situation. It seems somewhat fortuitous that the
magnitude of the correlation coefficient is exactly α2, but this does provide one
more confirmation that having α2 1≈  always implies that the time histories are
nearly harmonic.
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********************************************************************************************

Example 7.7: Find the values of the ωc1 and ωc2  characteristic frequency

parameters and the α1 and α2 bandwidth parameters for the covariant

stationary process { ( )}X t  of Section 6.4, with autospectral density function given

by
S S U b U bXX c c( ) [| | ( )] [( ) | |]ω ω ω ω ω= − − + −0

The j th spectral density for this SXX ( )ω  is easily evaluated as
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For a narrowband situation with b c<< ω , one can use power series expansions

to simplify these relationships to

ω ω ω ω
ω
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26
1
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3
= ≈ + ≈ − ≈ −,       ,       ,       

Thus, we see that ωc2  tends to ω ωc c1 =  and both α1 and α2 tend to unity as b
tends to zero. We also see, though, that α1 and α2 approach unity at quite

different rates, with ( )1 2−α  being four times as large as ( )1 1−α .

The most broadband situation we can investigate with this particular autospectral

density function is the one with b c= ω , so SXX ( )ω  is flat from −2ωc to +2ωc. In

this situation, ω ωc c2 7 6= ( / )  and the bandwidth parameters are

α1
1 23 4 0 866= ≈( / ) ./  and α2

1 25 3 0 745= ≈/ / . . One notes that these bandwidth

parameters are not very near zero, even though this would usually be considered

to be quite a broadband autospectral density. In general, the bandwidth

parameters approach zero only for autospectral densities with slowly decaying

tails, and the values obtained here are representative of apparently broadband

spectral densities on a bounded set of frequencies.

********************************************************************************************
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Example 7.8: Find the values of the ωc1 and ωc2  characteristic frequency

parameters and the α1 and α2 bandwidth parameters for a covariant stationary

process { ( )}X t  with autospectral density function given by S S eXX ( ) | |ω γ ω= −
0 ,

as in Example 6.1.

The jth spectral moment can be evaluated in terms of the gamma function (see

Example 3.7 for definition), or the factorial if j is an integer:

λ ω ω
γ γ γ

γ ω
j

j
j

j u
j j

S e d
S

u e du
S

j
S j

= = = + =−∞
+

−∞
+ +∫ ∫2

2 2
1

2
0 0

0
1 0

0
1

0
1

Γ ( )
!

Thus, λ γ0 0
12= −S ,  λ γ1 0

22= −S ,  λ γ2 0
34= −S ,  and λ γ4 0

548= −S .

Substituting these expressions into the definitions for ωc1, ωc2 , α1, and α2
gives

ω γ ω γ α αc c1
1

2
1

1 20 707 0 707 0 408= ≈ ≈ ≈− −,     ,      . . ,     .

Note that the discrepancy between ωc1 and ωc2  is unaffected by the value of the

parameter γ . Also the values of α1 and α2 are unaffected by the value of the γ ,

which seems somewhat surprising. For γ  tending to zero we see that the

stochastic process tends to white noise, whereas for large values of γ  it has

significant autospectral density only near frequency zero. This latter situation

might be considered narrowband in a sense, but it is a different sense than we

have been discussing. In particular, this process does not have nearly harmonic

time histories because it does not have spectral density concentrated at some

nonzero frequency ωc , as in the other narrowband processes we have

considered.

Because neither the α1 nor the α2 bandwidth parameter can give us information

about the effect of the γ  parameter, this example illustrates an important point.

Namely, it is very difficult to make definite statements about the behavior of time

histories based only on a bandwidth parameter. Knowledge of the complete

autospectral density function will always give much more comprehensive

information than will a bandwidth parameter.

********************************************************************************************

Example 7.9: Find the values of the ωc1 and ωc2  characteristic frequency

parameters and the α1 and α2 bandwidth parameters for the covariant

stationary response { ( )}X t  of an SDF oscillator excited by white noise.

Two of the four spectral moments of interest can be obtained almost trivially. In

particular, λ0  is the response variance, so Eq. 6.45 gives

λ σ
π

ζ ω

π
0

2 0
2

0
3

0

2
= = =X

S

m

S

c k



Random Vibrations278

in which S0  is the autospectral density of the excitation. Similarly, λ2  is the

variance of the derivative of the response, and this can be found from Eq. 5.63

as

λ σ
π

ζ ω

π
2

2 0
2

0

0

2
= = =

Ẋ

S

m

S

m c

The λ1 spectral moment is not a variance quantity, but it can be evaluated as

λ ω ω ω ω ω ω

ω ω

ω ω ζ ω ω

1 0 0
2

0

0
2 2

0
2 2

0
20

2 2

2

2

= =

=
− +

∞ ∞

∞

∫ ∫

∫

S d S H d

S

m

d

XX x( ) | ( ) |

    
( ) ( )

This integral over ω  from zero to infinity is not appropriate for evaluation by the

calculus of residues, which is useful for most of our frequency-domain integrals,

but it can be shown that the integrand is the differential of an arctangent function.

The result can be written as

λ
ζ ω ω

π ζ

ζ ζ

ζ ω ω
π

ζ

ζ

1
0

2
0

1
2

2 1 2

0
2

0

1
2 1 2

2 2

1 2

2 1

2
2

1

= +
−

−



























= −
−

























−

−

S

m

S

m

d

d

tan
( )

    tan
( )

/

/

in which the slightly simpler final form has been derived by use of trigonometric

identities. The λ4  spectral moment is somewhat more of a problem. In particular,

| ( ) |H x ω 2  behaves like ω−4  for | |ω  tending to infinity, and this shows that

ω ω4 2| ( ) |H x  is not integrable. Actually, this is not surprising inasmuch as

λ4 = σ ˙̇X
2 , and we noted in Section 5.6 that the variance of ˙̇ ( )X t  is infinite for the

SDF system excited by a delta-correlated process. Thus, we have λ4 = ∞. From

these spectral moments, we can write the characteristic frequency parameters as

ω
ω

ζ π
ζ

ζ
ω ωc c1

0
2 1 2

1
2 1 2 2 0

1
1

2

1
=

−
−

−























 =−

( )
tan

( )/ /
,       

One may note that, in general, ωc1 is less than the resonant frequency ω0 for

the oscillator, and for ζ <<1 it tends to ω0 like ω ω ζ πc1 0 1 2≈ −( / ) , while ωc2  is

identical to the resonant frequency. Similarly, the bandwidth parameters are

α
ζ π

ζ

ζ
α1 2 1 2

1
2 1 2

1

1
1

2

1
0=

−
−

−























 =−

( )
tan

( )/ /
,       2

Clearly, this is a problem for which the two bandwidth parameters give very

different results. In fact, the α2 parameter fails to give any useful information,

because it gives α2 = 0 , suggesting a broadband { ( )}X t  process regardless of

the value of ζ . We anticipate, though, that ζ <<1 will be a narrowband situation,

based on the shape of the S S HXX x( ) | ( ) |ω ω= 0
2  function. The α1 parameter
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does behave as we might expect. In particular, it tends to unity as ζ  tends to

zero, indicating that the response process is narrowband in this situation. For

ζ <<1, the limiting behavior is linear in ζ  with α ζ π1 1 2≈ − / .

According to Eq. 7.13, α2 is also the negative of the correlation coefficient ρXẊ̇ .

The fact that α2 = 0  for the SDF response to white noise then means that X t( )
and ˙̇ ( )X t , at the same instant of time t , are uncorrelated for this system. This

follows directly, though, from the fact that the cross-covariance KXẊ̇  is finite

while the variance of ˙̇ ( )X t  is infinite.

********************************************************************************************

Another way of interpreting the spectral moment functions is in terms of
integrals of cross-spectral density functions of the type given by Eqs. 6.23–6.25.
For example, one can use the knowledge that S i SXX XX˙ ( ) ( )ω ω ω= −  and
S SXX XX˙ ˙ ( ) ( )ω ω ω= 2  to write

λ ω ω ω1 =
−∞

∞∫i S dXXsgn( ) ( )˙

and

λ ω ω2 =
−∞

∞∫ S dXX˙ ˙ ( )

It should be noted that these relationships are not unique. For example, one could
use −SXX˙ ( )ω  in place of SXẊ ( )ω  in the expression for λ1. There is even more
ambiguity about which spectral density to use for other spectral moments. For
example, S SXX XX˙̇ ˙ ˙( ) ( )ω ω= − , so λ2  can be rewritten as

λ ω ω2 = −
−∞

∞∫ S dXX˙̇ ( )

For λ4  there are three distinct options:

λ ω ω ω ω ω ω4 = = − =
−∞

∞

−∞

∞

−∞

∞∫ ∫ ∫S d S d S d
XX XX XX˙̇̇̇ ˙̇ ˙˙ ˙̇ ˙̇( ) ( ) ( )

For a stationary { ( )}X t  process, all of these forms are equivalent, so it makes no
difference whether one uses Eq. 7.7 or some of the alternative forms given here
to evaluate the spectral moments. If { ( )}X t  is a modulated process, though, we
have defined the various evolutionary spectral density functions according to
Eqs. 6.38 and 6.39, so it is possible to extend the idea of spectral moments to this
situation also. Furthermore, the results do depend on the choice of which formula
to extend. For example, using



Random Vibrations280

λ ω ω ω1( ) sgn( ) ( , )˙t i S t dXX=
−∞

∞∫ (7.14)

λ ω ω σ2
2( ) ( , ) ( )˙ ˙ ˙t S t d tXX X

= =
−∞

∞∫ (7.15)

and

λ ω ω σ4
2( ) ( , ) ( )˙̇ ˙̇ ˙̇t S t d tXX X

= =
−∞

∞∫ (7.16)

does not give the same values as using

ˆ ( ) | | ( , )λ ω ω ω1 t S t dXX=
−∞

∞∫ (7.17)

ˆ ( ) ( , )λ ω ω ω2
2t S t dXX=

−∞

∞∫ (7.18)

and
ˆ ( ) ( , )λ ω ω ω4

4t S t dXX=
−∞

∞∫

In fact, there are situations in which ˆ ( )λ1 t  and ˆ ( )λ2 t  have been shown to give
infinite values (Corotis et al., 1972), whereas Eqs. 7.14 and 7.15 give finite
values for λ1( )t  and λ2( )t  (Michaelov et al., 1999b). Note that there does seem
to be only one logical definition for the nonstationary λ0( )t  spectral moment:

λ ω ω σ0
2( ) ( , ) ( )t S t d tXX X= =

−∞

∞∫ (7.19)

Using the time-varying spectral moments of Eqs. 7.14, 7.15, 7.16, and 7.19
allows one to extend the characteristic frequency and bandwidth parameters
defined in Eqs. 7.8, 7.9, 7.10, and 7.12 to be functions of time.

The method of introducing the time-varying spectral moments presented
here is that used by Michaelov et al. (1999a), but the moments are identical to
those introduced earlier by Di Paola (1985) using the so-called pre-envelope
process.

********************************************************************************************

Example 7.10: Find the time-varying values of the ωc t1( )  and ωc t2( )
characteristic frequency parameters and the α1( )t  and α2( )t  bandwidth

parameters for the response { ( )}X t  of an SDF oscillator excited by uniformly

modulated white noise: F t W t U t( ) ( ) ( )= , in which { ( )}W t  is stationary white

noise.
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Using Eqs. 7.15, 7.16, and 7.19, the even-order spectral moments are given as

response variances: λ σ0( ) [ ( )t tX= ]2 , λ σ2( ) [ ( )˙t tX= ]2 , and λ σ4 ( ) [ ( )˙̇t tX= ]2 .

The values of the variances have already been investigated in Section 5.6. One

of the simplest observations is that λ4 ( )t = ∞  for all values of t whereas λ0( )t
and λ2( )t  are finite. Thus, α λ λ λ2 2 0 4

1 2 0( ) ( ) /[ ( ) ( )] /t t t t≡ =  for all time.

Clearly, the α2( )t  bandwidth parameter is of no more use for this modulated

response than it was for the stationary response in Example 7.9.

To evaluate the α1( )t  parameter, it is necessary to obtain λ1( )t  by integrating

S tXẊ ( , )ω . This evolutionary cross-spectral density can be written from Eqs. 6.46,

6.48, and 6.49 as

S t S H t H t

S H e g t i m h t

i e g t i m h t

XX xS xS

x
i t

x x

i t
x x

˙ ˙( , ) ( , ) ( , )  

 | ( ) | [ ( ) ( )]

[ ( ) ( )]

ω ω ω

ω ω

ω ω

ω

ω

= −

= − +( )×

− − ′ − ′( )

−

0

0
2 1

Thus,

λ ω ω ω

ω ω ω

ω

ω

1 0
2 1( ) | ( ) | sgn( ) [ ( ) ( )]

[ ( ) ( )]

t i S H e g t i m h t

i e g t i m h t d

x
i t

x x

i t
x x

= × − +( )×

− − ′ − ′( )
−∞

∞
−∫

Expanding the multiplication, substituting e t i ti t± = ±ω ω ωcos( ) sin( ) , using

symmetry and antisymmetry, and simplifying gives

λ ω ω ω ω ω

ω ω ω ω ω ω ω ω

ω

ζ ω ω

ζ ω

1 0
2 2

0
1

0
2 2

0
2 2

0

2 1

2

0 0

0

( ) [ ] | ( ) |   sin( )

      | ( ) | sin( ) | ( ) | sin( )

  cos(

t S e H d e t

H t d H t d

e

t
x d

t
d

x x

t

= + + ×






+











−

−
∞

− −

∞ ∞

−

∫

∫ ∫

dd xt H t d) | ( ) | cos( )ω ω ω ω2
0

∞

∫






Note that the first integral in this

expression is the one evaluated in

Example 7.9 for the stationary response.

It is also possible to evaluate the other

three integrals analytically, but the

results are rather cumbersome. The

accompanying sketch shows numerical

values for m t S2
0

2
1 0( ) ( ) /ω λ  plotted

versus ω0t  for ζ = 0 1. . 0 5 10 15 20
0

5

10

15
m2ω0

2λ1(t) / S0

ω0 t

ζ = 0.10
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The λ0( )t  and λ2( )t  spectral moments can be taken directly from Eqs. 5.50 and

5.54 as

λ σ
π

ζ ω

ω

ω

ζ ω
ω

ω
ζ ω

ω
ωζ ω

0
2 0

2
0
3

2 0
2

2
0

2
0
2

22
1 2 20( ) ( ) sin( ) cos( )t t

S

m
e t tX

t

d d
d

d
d= = − + −



























−

and

λ σ
ζ ω

ω

ω

ζ ω
ω

ω
ζ ω

ω
ωζω

2
2 0

2
0

2 0
2

2
0

2
0
2

24
1 2 20( ) ( ) sin( ) cos( )˙t t

G

m
e t t

X
t

d d
d

d
d= = − − −



























−

The two characteristic frequency parameters are now evaluated as

ω λ λc t t t1 1 0( ) ( ) / ( )=  and ωc t2( ) = [ ( ) / ( )] /λ λ2 0
1 2t t . The accompanying

sketches show numerical values if these quantities and of the bandwidth

parameter α λ λ λ1 1 0 2( ) ( ) /[ ( ) ( )t t t t≡ ] /1 2  for ζ = 0 1. .

One can observe that ωc t1( )  and ωc t2( )  behave in a similar manner, with both

beginning at infinity, then converging to ω0 as time becomes large. The α1( )t
bandwidth parameter begins quite small, indicating that the response is initially

quite broadband, then it converges to the stationary value of 0.94 as time grows.

For these results with ζ = 0 10. , the convergence to stationarity is reasonably

close within one period of dynamic response—ω π0 2t = .

Note that Eq. 6.47 gives the time-varying S tXX ( , )ω  for the response of this

oscillator and shows that this spectral density decays like ω−2 as | |ω  tends to

infinity. Thus, the alternate time-varying spectral moments, λ̂ 1( )t  and λ̂ 2( )t ,

from Eqs. 7.17 and 7.18 do not exist, as noted by Corotis et al. (1972).

********************************************************************************************

7.4 Amplitude and Phase of a Stationary Stochastic Process
In our discussion of narrowband processes, we used the concepts of amplitude
and phase of a stochastic process without giving any precise definition of the
terms. If a process does not have time histories that closely resemble harmonic
functions, then such an intuitive idea of amplitude and phase is of little use.
Furthermore, it is helpful to have a precise definition of the terms even for

0 5 10

4

2

0 ω0 t
0 5 10

1.0

0.5

0 ω0 t

α1(t)

stationary

ζ = 0.10

ζ = 0.10ωc2 /ω0

ωc1 /ω0
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narrowband situations. This can be done in more than one way. We will begin
with what we consider the most obvious approach, then look at alternative
definitions.

Let { ( )}X t  be any differentiable, covariant stationary stochastic process.
The first requirement for the two new stochastic processes { ( )}A t  and { ( )}θ t  is
that they give

Y t A t t ta( ) ( ) cos[ ( )]= +ω θ (7.20)

in which { ( )}Y t  is a mean-zero process defined as Y t X t tX( ) ( ) ( )= − µ  and ωa is
an average frequency. In particular, the definition of ωa should ideally be chosen
such that E[θ̇ ( )]t = 0 , because a nonzero value for E t[ ˙( )]θ  should, in itself, be a
contribution to the average frequency of the { ( )}Y t  process. Taking the
derivative of Eq. 7.20, then, gives

˙( ) ( )[ ˙( )]sin[ ( )] ˙( ) cos[ ( )]Y t A t t t t A t t ta a a= − + + + +ω θ ω θ ω θ (7.21)

However, we now choose to impose the restriction that

˙( ) ( ) sin[ ( )]Y t A t t ta a= − +ω ω θ (7.22)

which can be accomplished by satisfying the equation

˙( ) cos[ ( )] ( ) ˙( ) sin[ ( )]A t t t A t t t ta aω θ θ ω θ+ = + (7.23)

It is important to note that Eqs. 7.20 and 7.22 may be viewed as two
simultaneous equations that define the new stochastic processes { ( )}A t  and
{ ( )}θ t  in terms of the original stochastic processes { ( )}Y t  and { ˙( )}Y t .
Specifically, Eqs. 7.20 and 7.22 give the explicit expressions for the amplitude
and phase processes as

A t Y t Z t( ) ( ) ( )
/

= +( )2 2
1 2

(7.24)

and

θ ω( ) tan
( )

( )
t

Z t

Y t
ta= −









−−1 (7.25)

in which Z t( ) = ˙( )Y t / ( ) sin[ ( )]ω ω θa aA t t t= − + . Note, in particular, that
A t( ) ≥ 0 .
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Equations 7.24 and 7.25 give definitions of amplitude and phase for any
differentiable stochastic process { ( )}X t , whether or not it is narrowband. This is
in sharp contrast to the development in Section 6.4 in which we argued that Eq.
6.26, which is equivalent to Eq. 7.20, should hold for a narrowband process as
sketched in Fig. 6.4. In the particular case with { ( )}X t  being narrowband, we do
anticipate that { ( )}A t  and { ( )}θ t  in Eqs. 7.24 and 7.25 will be slowly varying so
that the time histories of { ( )}Y t  will have the almost harmonic behavior that we
identified in Section 6.4 as being appropriate for a narrowband process.
Variations in A t( ) , of course, will be evident in a time history plot such as Fig.
6.4 as changes in the magnitude of the excursions of Y t( )  or X t( ) . Variations in
θ( )t  are not quite so readily apparent in a time history, but they are related to
changes in the time interval between zero crossings. That is, because Y t( ) = 0
whenever ω θa t t+ ( )  is an odd multiple of π /2 , the zero crossings will be
exactly uniformly spaced at intervals of π ω/ a if θ( )t  has no variation. Any
observed variations in the spacing will provide evidence that ˙( )θ t ≠ 0 , so θ( )t  is
not constant. Of course, { ( )}A t  and { ( )}θ t  can be considered slowly varying
processes if ˙( )A t  and ˙( )θ t  are small, so we will expect narrowband processes to
have small values of these derivatives.

Before we explicitly investigate the derivatives of { ( )}A t  and { ( )}θ t , we
want to generalize their definitions. Even though the amplitude, or envelope,
defined in Eqs. 7.24 and 7.25 has the desired characteristics, it turns out that it is
only one of the possible choices. That is, there are other possible definitions of
the amplitude of a process that will also closely agree with the intuitive concept
of amplitude in the narrowband situation, and at least one of these has certain
mathematical advantages.2 We will begin investigating this general idea of
amplitude of a stochastic process by looking at the crucial features of { ( )}A t  for
a narrowband process. Switching to truncated time histories allows us to use
Fourier transforms, as we did in Section 6.2. In particular, the inverse Fourier
transform relationship for Z tT ( )  is

Z t Z e d i Y e dT T
i t

a
T

i t( ) ˜ ( ) ˜ ( )= =
−∞

∞

−∞

∞∫ ∫ω ω
ω
ω

ω ωω ω

                                                  
2The idea of the existence of many definitions of amplitude, each with certain
bandwidth implications, was investigated by Winterstein and Cornell in 1985,
although this was certainly not the first study of alternative definitions of
amplitude [e.g., see Cramer and Leadbetter (1967)].
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For a { ( )}Y t  process that is narrowband with average frequency ωa, the ˜ ( )YT ω
function will be nearly zero except in the neighborhood of the two points ±ωa.
At ω ω≈ + a it will give ˜ ( ) ˜ ( )Z i YT Tω ω≈ , and at ω ω≈ − a the relationship will be
˜ ( ) ˜ ( )Z i YT Tω ω≈ − . These two relationships, then, are the key features of the

{ ( )}Z t  process because other frequencies contribute very little to its behavior.
Thus, if we choose some different “auxiliary” { ( )}Z t  process for which the
Fourier transform has this same behavior in the neighborhood of ω ω= ± a , then
we can be assured that A t Y t Z t( ) [ ( ) ( )] /= +2 2 1 2  will still behave like the
amplitude of a narrowband Y t( )  process. There are many { ( )}Z t  processes that
meet this general condition. In particular, using

˜ ( ) ( ) ˜ ( )Z i g YT Tω ω ω= (7.26)

for any odd g( )⋅  function with g a( )ω =1 makes

Z t i g Y e dT T
i t( ) ( ) ˜ ( )=

−∞

∞∫ ω ω ωω

be a real function and ˜ ( )ZT ω  have the desired behavior in the neighborhood of
ω ω= ± a . Using g a( ) /ω ω ω= , as in Eqs. 7.20 and 7.22, is only one of infinitely
many choices.

Based on Eq. 7.26 we can now investigate the spectral density functions
and covariance values related to the new auxiliary process { ( )}Z t . In particular,
the autospectral density definition in Eq. 6.15 gives

S g S g SZZ YY XX( ) ( ) ( ) ( ) ( )ω ω ω ω ω= ≡2 2

so

G g S e dZZ XX
i( ) ( ) ( )τ ω ω ωωτ=

−∞

∞

∫ 2

Similarly,

S i g S G i g S e dXZ XX XZ XX
i( ) ( ) ( ) ( ) ( ) ( )ω ω ω τ ω ω ωωτ= − = −

−∞

∞∫     and     

Taking derivatives of the GZZ ( )τ  and GXZ ( )τ  functions then gives the
covariance properties of the derivatives, and setting τ = 0 gives various
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covariance relationships that will be useful in analyzing the behavior of the
amplitude. Specifically,

σ ω ω ωZ ZZ XXG g S d2 20= =
−∞

∞∫( ) ( ) ( ) (7.27)

K G i g S dXZ XZ XX= = − =
−∞

∞∫( ) ( ) ( )0 0ω ω ω  (7.28)

K K G g S dXZ XZ XZ XX˙ ˙ ˙ ( ) ( ) ( )= − ≡ = −
−∞

∞∫0 ω ω ω ω (7.29)

K G i g S dXZ XZ XX˙ ˙ ˙ ˙ ( ) ( ) ( )≡ = − =
−∞

∞∫0 02ω ω ω ω (7.30)

K G i g S dZZ ZZ XX˙ ˙ ( ) ( ) ( )≡ = − =
−∞

∞∫0 02ω ω ω ω (7.31)

and

σ ω ω ω ω˙ ˙ ˙ ( ) ( ) ( )
Z ZZ XXG g S d2 2 20= =

−∞

∞∫ (7.32)

in which the various covariance values all refer to responses at the same instant
of time. In addition, of course, we know that σX

2  is the integral of SXX ( )ω , σ Ẋ
2  is

the integral of ω ω2SXX ( ) , and KXẊ = 0. Note that for any odd g( )ω  function we
have ( , )X Z  and ( ˙ , ˙)X Z  being uncorrelated pairs, in addition to ( , ˙)X X  and ( , ˙)Z Z
being uncorrelated pairs. Within the set of four random variables
{ ( ), ˙( ), ( ), ˙( )}X t X t Z t Z t , the only nonzero correlations are for the pairs ( , ˙)X Z  and
( ˙ , )X Z  and these two covariances are of equal absolute value.

Note that we define A t( )  and θ( )t  according to Eqs. 7.24 and 7.25 for any
choice of g( )ω  in the definition of Z t( ) . Furthermore, this implies that Eq. 7.20
holds and

Z t A t t ta( ) ( ) sin[( ) ( )]= − +ω θ (7.33)

for any choice of the { ( )}Z t  process. Equations 7.22 and 7.23, however, hold
only for the special case of Z t Y t a( ) ˙( ) /= ω . For the more general case one must
use Eq. 7.21 for ˙( )X t , and the corresponding relationship for ˙( )Z t  is

˙( ) ( )[ ˙( )]cos[( ) ( )] ˙( ) sin[( ) ( )]Z t A t t t t A t t ta a a= − + + − +ω θ ω θ ω θ (7.34)

We will use the notation A t2( )  for the special case of Z t Y t a( ) ˙( ) /= ω  to
distinguish this amplitude from other possibilities. This A t2( )  is commonly
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called the energy-based amplitude, because it involves a sum of X t2( )  and
˙ ( )X t2 , which may be related to the potential energy and the kinetic energy in an

oscillator.
We now wish to investigate the properties of the newly defined quantities

A t( )  and θ( )t  and their derivatives, ˙( )A t  and ˙( )θ t . We wish to show that ˙( )A t
and ˙( )θ t  will be small for a narrowband { ( )}X t  process, but we also wish to
investigate the probability distributions of the various quantities. First we note
that Eqs. 7.24 and 7.25 give

˙( )
( ) ˙( ) ( ) ˙( )

( )
( ) ˙( ) ( ) ˙( )

[ ( ) ( )] /
A t

Y t Y t Z t Z t

A t

Y t Y t Z t Z t

Y t Z t
=

+
=

+

+2 2 1 2
(7.35)

and

˙( )
( ) ˙( ) ( ) ˙( )

( )

( ) ˙( ) ( ) ˙( )

( ) ( )
θ ω ωt

Z t Y t Y t Z t

A t

Z t Y t Y t Z t

Y t Z t
a a=

−
− =

−

+
−

2 2 2
(7.36)

but these expressions are rather cumbersome for direct investigation of the
distributions of ˙( )A t  and ˙( )θ t . Rather, we will look at the probability distribution
of the set ( , ˙, , ˙) { ( ), ˙( ), ( ), ˙( )}A A A t A t t tθ θ θ θ≡ . For a special case we will show that
we can write this probability distribution explicitly, then we will proceed to give
approximate results for the more general case.

Note that Eqs. 7.20, 7.21, 7.33, and 7.34 are four simultaneous equations
giving a unique relationship between the vector 

r
V Y Y Z Z T≡ [ , ˙, , ˙]  and the vectorr

U A A T≡ [ , ˙, , ˙]θ θ , in which all components of 
r

U  and 
r
V  are evaluated at the same

instant of time. In particular, if we say that 
r
q( )⋅  is a nonlinear vector function

such that 
r
V =

r
q A A( , ˙, , ˙)θ θ , then Eq. 2.41 gives

p u v J p q u vAA V q u v V˙ ˙ ( , , , )( , , , ) | | [ ( , , , )]θθ ξ ψξ ψ ξ ψ= =
r r r r

in which the Jacobian J is the determinant of the matrix giving the partial
derivatives of all components of 

r
V  with respect to each component of 

r
U . These

derivatives are found from Eqs. 7.20, 7.21, 7.33, and 7.34, and substitution and
simplification gives J A= 2 . Thus, p u vAȦ ˙( , , , )θθ ξ ψ  is found by evaluating the
function A2 p y y z zYYZZ˙ ˙ ( , ˙, , ˙)  at y u= cos( )η , ˙ ( ) sin( ) cos( )y u va= − + +ω ψ η η ,
z u= − sin( )η , ˙ ( ) cos( ) sin( )z u va= − + −ω ψ η η , in which η ω ξ= +at . This
expression applies in general, but it is most useful when { ( )}Y t  and { ( )}Z t  are
such that p y y z zYYZZ˙ ˙ ( , ˙, , ˙)  has a relatively simple form. In particular, it is very
useful when the joint distribution is Gaussian.
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Note that if { ( )}X t  is a Gaussian process, then { ( )}Y t , { ˜ ( )}YT ω ,
{ ˜ ( )}ZT ω , and { ( )}Z t  are all jointly Gaussian processes, because they are
obtained from linear operations on { ( )}X t . For { ( )}Y t  and { ( )}Z t  being jointly
Gaussian processes, though, we know that ( , ˙, , ˙)Y Y Z Z  are jointly Gaussian
random variables. As shown in Example 3.13, uncorrelated jointly Gaussian
random variables are also independent, so the ( , ˙)Y Z  pair is independent of
( ˙, )Y Z : p y y z z p y z p y zYYZZ YZ YZ˙ ˙ ˙ ˙( , ˙, , ˙) ( , ˙) ( ˙, )= . Using the Gaussian probability
density function from Example 3.10 or 3.12 then gives

p y y z z p y z p y z

y y z z

YYZZ YZ YZ

X X Z Z XZ XZ

XZ X
XZ

X Z

˙ ˙ ˙ ˙

˙ ˙ ˙
/

˙
/

˙
˙

˙ ˙

( , ˙, , ˙) ( , ˙) ( ˙, )

        
( ) ( )

exp
( )

˙ ˙

=

=
− −

×

−

−
− +

1

2 1 1

1

2 1
2

2 1 2 2 1 2

2

2

2

2

π σ σ σ σ ρ ρ

ρ σ
ρ

σ σ σ
ZZ

XZ X
XZ

X Z Z

y y z z

2

2

2

2

2

2
1

2 1
2
















−








−
− +






















( )

˙ ˙

˙ ˙
˙

˙ρ σ
ρ

σ σ σ

(7.37)

in which ρ σ σXZ XZ X ZK˙ ˙ ˙/( )=  and ρ σ σ σ σ˙ ˙ ˙ ˙ ˙/( ) /( )XZ XZ X Z XZ X ZK K= = − . The
desired probability density is then found by evaluating this at y u= cos( )η ,
˙ ( ) sin( ) cos( )y u va= − + +ω ψ η η , z u= − sin( )η , and ˙ ( ) cos( )z u a= − + −ω ψ η
v sin( )η .

Before proceeding to a specific choice of the g( )ω  function, which gives a
precise definition of A t( )  and θ( )t , let us note a fairly general property of the
distribution of A t( ) . From Example 2.32 we know that A defined according to
Eq. 7.24 will have the Rayleigh distribution if Y and Z are independent and have
identical mean-zero Gaussian distributions. For the current situation we have
established that they are independent, mean-zero, and Gaussian, but they have
identical distributions only if σ σZ X= . For a narrowband process, Eq. 7.27 does
indicate that this condition is approximately satisfied, because g a

2 1( )± =ω  and
the variances will come almost entirely from these frequencies. Thus, A t( )  will
be approximately Rayleigh distributed for a narrowband Gaussian { ( )}X t
process. For a more broadband { ( )}X t  process, though, we will have the
Rayleigh distribution only for certain g( )ω  functions that give σ σZ X= . We will
investigate two specific examples that do meet this condition.
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First let us use g a( ) /ω ω ω=  so that the auxiliary process is Z Y a= ˙ /ω  and
A is the energy-based amplitude A2. We will denote the corresponding phase
angle as θ2. As noted previously, the ωa parameter should be chosen such that
E[ ˙ ]θ2 0= . In order to accomplish this it would be reasonable to leave ωa
unspecified until we have an expression for E[ ˙ ]θ2 , but doing this gives rather
cumbersome expressions for the joint probability density. Rather than do this, we
will guess that ω ω σ σa c X X= =2 ˙ / , then later verify that this does give
E[ ˙ ]θ2 0= . Note that Eq. 7.27 gives σ σ λZ X= = ( ) /

0
1 2, so we do know that A2

has the Rayleigh distribution. In addition, Eqs. 7.28–7.32 give σ λ˙ ( ) /
X = 2

1 2  and
σ λ λ λ˙ ( / ) /

Z = 0 4 2
1 2 . Also, we note that ˙ ˙̇ /Z Y a= ω , so ρ ρXZ XX˙ ˙̇= , which was

found in Eq. 7.13 to be − = −α λ λ λ2 2 0 4
1 2/( ) / . The additional term in the

probability density, though, is ρẊZ =1, which causes some difficulty. In
particular, having Z Y a= ˙ /ω  gives a degenerate probability distribution that has
all the probability assigned to a three-dimensional subset of the four-dimensional
space. This can be written as

p y y z z p y z p y z yYYZZ YZ Y a˙ ˙ ˙ ˙( , ˙, , ˙) ( , ˙) ( ˙) ( ˙ / )= −δ ω

or

p y y z z
z y

y y z z y

YYZZ
a

X X Z XZ

XZ X
XZ

X Z Z X

˙ ˙
˙ ˙ ˙

/

˙

˙
˙ ˙ ˙

( , ˙, , ˙)
( ˙ / )

( )

exp
( )

˙ ˙ ˙

=
−

−
×

−

−
− +
















−








δ ω

π σ σ σ ρ

ρ σ
ρ

σ σ σ σ

2 1

1

2 1
2

1
2

2 1 2

2

2

2

2

2

2

2








Substituting for z and ẏ  in δ ω( ˙ / )z y a−  gives

δ ω δ
ψ η η

ω
ω

η
δ ψ

η
η

( ˙ / )
sin( ) cos( )

| sin( ) |
cos( )
sin( )

z y
u v

u

v

u
a

a

a− =
−







= −











in which the final form has been obtained by using Eq. 2.49. Thus, the
probability density is nonzero only when ψ η η= v ucos( ) /[ sin( )] in the
exponential of the joint probability density function. Making this substitution and
using the expressions for y, ẏ , ż , σ X , σ Ẋ , σ Ż , ρXŻ , and ωa gives, after
considerable simplification,

p u v u p q u vA A YYZZ2 2 2 2
2˙ ˙ ˙ ˙( , , , ) [ ( , , , )]θ θ ξ ψ ξ ψ=
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or
p u v

u
v

u

u v

A A2 2 2 2

2
1 2

2

0

2
2

0 4 2
2 2

3 2
0 0 4 2

2 1 2

2 2

2

˙ ˙

/

/ /

( , , , )

cos( )
sin( )

exp
( ) sin ( )

( ) ( ) | sin( ) |

θ θ ξ ψ

λ δ ψ
η
η λ

λ

λ λ λ η

π λ λ λ λ η

=

−








 − −

−













−

(7.38)

The particular form of Eq. 7.38 allows some simplification. In particular, it
can be factored into

p u v p u p v p A u A vA A A A2 2 2 2 2 2 2 2 2 2 2˙ ˙ ˙ ˙( , , , ) ( ) ( , ) ( | , ˙ , )θ θ θ θξ ψ ξ ψ θ ξ= = = =

in which

p u
ue

A

u

2

2
0

0
( )

/
=

− λ

λ
(7.39)

p v

v

Ȧ

/

/ /
( , )

exp
( ) sin ( )

( ) ( ) | sin( ) |2 2

2
1 2 2

2

0 4 2
2 2

3 2
0 4 2

2 1 2

2

2θ ξ

λ
λ

λ λ λ η

π λ λ λ η
=

−
−













−
(7.40)

and

p A u A v
v

u
˙ ( | , ˙ , )

cos( )
sin( )θ ψ θ ξ δ ψ

η
η2 2 2 2= = = = −









 (7.41)

First we note that Eq. 7.39 confirms that A t2( )  has the Rayleigh distribution, as
already noted. In addition, A t2( )  is independent of ˙ ( )A t2  and θ2( )t , because
p u vA A2 2 2˙ ( , , )θ ξ  can be factored into p u p vA A2 2 2( ) ( , )˙ θ ξ . Also, Eq. 7.41 tells us

that we can consider ˙ ( )θ2 t  to be a function of the other three random variables:

˙ ( )
˙ ( ) cos[ ( )]

( ) sin[ ( )]
θ

ω θ
ω θ2

2 2

2 2
t

A t t t

A t t t
a

a
=

+
+

Next we note that the Gaussian form of Eq. 7.40 allows us easily to
integrate it with respect to v to give

pθ ξ π π ξ π
2

2 1( ) ( )= − ≤ ≤−      for 
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so θ2 has a uniform distribution on its set of possible values. The conditional
distribution of Ȧ2 given θ2 is now

p v

v

Ȧ

/

/ /
( | )

exp
( ) sin ( )

( ) ( ) | sin( ) |2
2

2
1 2 2

2

0 4 2
2 2

1 2
0 4 2

2 1 2

2

2
θ ξ

λ
λ

λ λ λ η

π λ λ λ η
= =

−
−













−

which has a Gaussian form. Thus, we find that

E A E A( ˙ | ) , ( ˙ | )
( ) sin ( )

2 2 2
2

2
0 4 2

2 2

2
0θ ξ θ ξ

λ λ λ η
λ

= = = =
−

     

and multiplying by pθ ξ π2 2 1( ) ( )= −  and integrating with respect to ξ  or η  gives

E A E A d( ˙ ) , ( ˙ ) sin ( )2 2
2 0 4 2

2

2

2 0 4 2
2

2
0

2 2
= =

−
=

−
−∫     

λ λ λ

π λ
η η

λ λ λ

λπ

π

The zero mean value of Ȧ2 is no surprise and follows directly from the fact that
{ ( )}A t2  is a stationary process. The variance is more interesting though,
inasmuch as it relates to the bandwidth of the process. The result can be rewritten
as

E A X( ˙ ) ( )
˙

2
2 0 4

2
2
2

2

2
22

1
2

1
1= − = −













λ λ
λ

α
σ

α
(7.42)

showing that E A( ˙ )2
2 0→  as α2 1→ . This does confirm that { ( )}A t2  is a slowly

varying process if it is narrowband on the basis of α2 1≈ .

Next we consider the properties of θ̇2. Rewriting the Dirac delta function
in Eq. 7.38 according to Eq. 2.49 as

δ ψ
η
η

η
η

δ
η

ψ η ψ
δ

η
ψ η

−








= −









= −











v

u

u

v
u

v u
u

vcos( )
sin( )

sin( )
cos( )

cos( )
sin( )

cos( )
sin( )

2

allows one to write p ˙ ( )θ ψ
2

 as a triple integral of this joint probability density
function, then perform the integrations with respect to u and v, yielding
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p d˙
/ /

/
( )

( ) cos ( )

[ ( ) cos ( ) ]
θ

π
ψ

λ λ λ α

π
η

λ λ α η λ λ ψ
η

2
0
3 2

2
1 2

4 2
2 2

0 4 2
2 2

0 2
2 3 20

21

2 1
=

−

− +
∫

Note that the symmetry of this expression with respect to ψ  gives E( ˙ )θ2 0= .
This confirms that our choice of ω ωa c= 2  was correct for the A2 definition of
amplitude. We also note that

E p d( ˙ ) ( )˙θ ψ ψ ψθ2
2 2

2
= = ∞

−∞

∞∫

because p ˙ ( )θ ψ
2

 only decays like | |ψ −3  as | |ψ → ∞, and this is true for any
nonzero value of α2. Thus, we cannot say that { ( )}θ t  is a slowly varying process
in the sense of having a small value of E( ˙ )θ2

2 . We can note, though, that
p ˙ ( )θ ψ2 0→  as α2 1→  for all ψ ≠ 0 , and p ˙ ( )θ2 0 = ∞ for any value of α2

(including α2 1≈ ). This may be considered a weaker definition of the condition
that θ̇2 is small for a narrowband process according to the α2 bandwidth
parameter. That is, it implies that p ˙ ( ) ( )θ ψ δ ψ2 →  for α2 1→ .

Next we turn our attention to a different g( )ω  function, giving us an
alternative specific definition of A t( )  and θ( )t . In particular, let g( ) ( )ω ω= ≡sgn
U U( ) ( )ω ω− − . In fact, the Z t( )  auxiliary process defined in this way has a
special name, being called the Hilbert transform of Y t( ) .3 One of the special
features of the { ( )}Z t  Hilbert transform process is that it has the same
autospectral density as { ( )}Y t , because it has g2 1( )ω =  everywhere. Among the
implications of this are the fact that σ σ λZ X= = ( ) /

0
1 2 and σ σ λ˙ ˙ ( ) /

Z X= = 2
1 2 . In

addition, Eq. 7.29 gives the nonzero cross-covariance term of interest as

K S dXZ XX˙ ( ) ( )= − ≡ −
−∞

∞∫ ω ω ω ω λsgn 1 (7.43)

so
ρ ρ λ λ λ αXZ XZ˙ ˙ /( ) /= − = − = −1 0 2

1 2
1

The amplitude, or envelope, defined using the Hilbert transform of Y t( )
was apparently first introduced by Cramer and Leadbetter in 1967 and is
sometimes called the Cramer and Leadbetter amplitude. We will denote it by the
symbol A t1( )  and use θ1( )t  for the corresponding phase angle. We will try using
ω ω λ λa c= =1 1 0/ , then verify that this does give E( ˙ )θ1 0= . Note that we again
have σ σZ X= , so we know that A t1( )  also has the Rayleigh distribution.
                                                  
3A time domain representation of the Hilbert transform is given by the rather ill-

behaved integral Z t Y s s t ds( ) [ ( ) /( )]= −−
−∞

∞∫π 1 .
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As before, we use Eq. 7.37 to obtain the joint distribution of A1, Ȧ1, θ 1,
and θ̇ 1 for Gaussian { ( )}X t  and { ( )}Z t  processes. The result can be written as

p u v p u p p vA A A A1 1 1 1 1 1 1 1θ θ θ θξ ψ ψ ξ˙ ˙ ˙ ˙( , , , ) ( , ) ( ) ( )=

in which

pθ ξ
π

π ξ π
1

1

2
( ) = − ≤ ≤     for 

p v
v

Ȧ / / /
( )

( ) ( )
exp

( )1

1

2 1 2 11 2
1
2 1 2

2
1 2

2

1
2

2

=
−

−

−











π α λ α λ

(7.44)

and

p u
u u

A1 1

2

1 2
0
1 2

0 2 1
2 1 2

2

0

0
2

0 2 1
22 2

1
˙ / / /

( , )
( ) ( )

expθ ψ
π λ λ λ λ λ

λ ψ

λ λ λ
=

−
− +

−



























(7.45)

Thus, θ 1( )t  is independent of A t1( ) , ˙ ( )A t1 , and θ̇ 1( )t , and it is uniformly
distributed on [ , ]−π π . Similarly, ˙ ( )A t1  is independent of A t1( ) , θ 1( )t , and
θ̇ 1( )t , and it has a Gaussian distribution with

E A t E A t t
X

[ ˙ ( )] , [ ˙ ( )] ( ) ( ) ( )˙1 1
2

1
2

2 1
2 20 1 1= = − = −     α λ α σ (7.46)

Clearly E A t[ ˙ ( )]1
2 0→  as α1 1→ , confirming that { ( )}A t1  is a slowly varying

process if it is narrowband as measured by the value of α1.

The A t1( )  amplitude and the rate of change of the θ 1( )t  phase are
dependent. Integrating Eq. 7.45 with respect to ψ  gives

p u
u

eA
u

1

2
0

0

2( ) /( )= −

λ
λ

confirming that A t1( )  has the same Rayleigh distribution as A t2( ) . Similarly,
integrating Eq. 7.45 with respect to u gives

p ˙ /

/

/
( )

( )

( )

( )

[ ( ) ]
θ ψ

λ λ λ λ

λ λ λ λ ψ

λ λ α

λ α λ ψ1

0 0 2 1
2

0 2 1
2

0
2 2 3 2

0
1 2

2 1
2

2 1
2

0
2 3 2

1

1
=

−

− +
=

−

− +
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As for θ̇2, the symmetry of the probability distribution gives E( ˙ )θ1 0= ,
confirming that ωc1 was the proper choice for ωa for this definition of amplitude
and phase. As before, p ˙( )θ ψ  only decays like | |ψ −3  as | |ψ → ∞, so
E[( ˙ ) ]θ1

2 = ∞. Again, though, p ˙ ( ) ( )θ ψ δ ψ1 →  as α1 1→ , confirming that θ̇1 is
small for a narrowband process according to the α1 bandwidth parameter.

From Eqs. 7.42 and 7.46 we can see a significant difference between the
two definitions of amplitude for a broadband process. In particular, Eq. 7.46
shows that the mean-squared value of Ȧ1 is always less than the variance of Ẋ ,
because 0 11≤ ≤α . Thus, we can say that the Cramer and Leadbetter amplitude
A t1( )  varies less rapidly than X t( ) , even for a broadband process. On the other
hand, Eq. 7.42 shows that the A t2( )  energy-based amplitude varies less rapidly
than X t( )  only if ( ) /α2

2 1 3> , which is not satisfied for some broadband
processes.

The Cramer and Leadbetter amplitude also provides an example of an
important distinction between Gaussian processes and more general processes
also consisting of Gaussian random variables. In particular, recall that Eq. 7.44
shows that ˙ ( )A t1  is a Gaussian random variable at every time t. On the other
hand, we know that { ˙ ( )}A t1  is not a Gaussian process, because the integral of a
Gaussian process is also a Gaussian process, and we know that A t1( )  does not
have the Gaussian distribution. The explanation of this apparent dilemma is that a
set of random variables { Ȧ 1 1( ),t Ȧ 1 2( ), ,t L Ȧ 1( )}tn  is not generally jointly
Gaussian, even though each of the random variables has a Gaussian marginal
distribution. This rather confusing type of stochastic process consisting of a
family of marginally Gaussian, but not jointly Gaussian, random variables arises
in various areas of application. We shall encounter it again in Chapter 10 when
we study the dynamics of nonlinear systems.

We will now turn our attention to the more general situation in which
{ ( )}X t  is not a Gaussian process. Without a specific probability distribution for
{ , ˙, , ˙} { ( ), ˙( ), ( ), ˙( )}Y Y Z Z Y t Y t Z t Z t≡ , of course, we will not be able to give such a
detailed analysis of { , ˙, , ˙} { ( ), ˙( ), ( ), ˙( )}A A A t A t t tθ θ θ θ≡  as before, but we will be
able to make some limited observations.

First we note that we can multiply Eq. 7.35 by A to obtain

E A A E Y Y Z Z E Y Y E Y Y Z Z E Z Z( ˙ ) [( ˙ ˙) ] ( ˙ ) ( ˙ ˙) ( ˙ )2 2 2 2 2 2 22= + = + +
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Similarly multiplying Eq. 7.36 by A2 gives

E A E Z Y Y Z E A Z Y Y Z E Aa a( ˙ ) [( ˙ ˙) ] [ ( ˙ ˙)] ( )4 2 2 2 2 42θ ω ω= − − − +

or

E A E Y Z E Y Y Z Z E Y Z E Y Y Z

E Y Z E Y Z E Y Z Z

E Y E Y Z E Z

a

a a a

a a a

( ˙ ) ( ˙ ) ( ˙ ˙) ( ˙ ) ( ˙ )

( ˙) ( ˙ ) ( ˙)

( ) ( ) ( )

4 2 2 2 2 2 2

3 3 2

2 4 2 2 2 2 4

2 2

2 2 2

θ ω

ω ω ω

ω ω ω

= − + − +

− + +

+ +

Within the fourth-order cross-product terms that appear in these expressions, we
also know that Y and Ẏ  are uncorrelated, that Z and Ż  are uncorrelated, that X
and Z are uncorrelated, and that Ẋ  and Ż  are uncorrelated. Without the Gaussian
condition we cannot say that these zero correlations imply independence, but we
can anticipate that this condition may be approximately satisfied in many
situations. In particular, we can write each of the fourth-order cross-products
using Eq. 3.40, which for mean-zero random variables gives

E R R R R K K K K

K K R R R R

R R R R R R R R

R R R R

( )

( , , , )

1 2 3 4

4 1 2 3 4

1 2 3 4 1 3 2 4

1 4 2 3

= + +

+κ

in which the various κ4  fourth cumulants in the equations are exactly zero for
jointly Gaussian processes and will be smaller than the other terms in most
practical non-Gaussian situations. Substituting for all the fourth-moment terms
and simplifying gives

E A A K fX X XZ Z Z
( ˙ ) ( )˙ ˙ ˙

2 2 2 2 2 2 2
1 42= − + +σ σ σ σ κ (7.47)

and

E A K K

f

Z X XZ X Z a XZ X Z

a X X Z Z

( ˙ ) ( )

( ) ( )

˙ ˙ ˙ ˙
4 2 2 2 2 2 2 2 2

2 4 2 2 4
2 4

6 8

3 2 3

θ σ σ σ σ ω σ σ

ω σ σ σ σ κ

= + + + +

+ + + +
(7.48)

in which f1 4( )κ  and f2 4( )κ  denote the combined effects of all fourth cumulant
contributions to the two equations.

For the ( , , )A c2 2 2θ ω  definition of ( , , )A aθ ω  introduced earlier we know
that σ σ λX Z= = ( ) /

0
1 2, σ λ˙ ( ) /

X = 2
1 2 , σ λ λ λ˙ ( / ) /

Z = 0 4 2
1 2 , and KXŻ =

−( ) /λ λ0 2
1 2 . Substituting and simplifying gives
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E A A f( ˙ ) ( / )( ) ( )2
2

2
2

0
2

4 2 2
2

1 41= − +λ λ λ α κ (7.49)

and

E A f( ˙ ) ( / )( ) ( )2
4

2
2

0
2

4 2 2
2

2 41θ λ λ λ α κ= − + (7.50)

Note that Eq. 7.49 is completely in agreement with Eq. 7.42 that we derived for
the Gaussian special case, in which A2 and Ȧ2 are independent with
E A( )2

2 2 0= λ  and κ4 0= . Because we anticipate that the κ4  term will be much
smaller than ( ) /λ λ λ0

2
4 2  in most practical non-Gaussian situations, we see that

Eq. 7.49 does indicate that E A A( ˙ )2 2
2 2  is small if α2 1≈ . Furthermore, because A2

2

is not generally small, we can take this as an indication that Ȧ2
2 is small for a

process that is narrowband based on the value of α2. The same logic can be used
to argue that Eq. 7.50 indicates that θ̇2

2 is also small for a process that is
narrowband based on the value of α2.

Similarly, the ( , , )A c1 1 1θ ω  definition of ( , , )A aθ ω  gives σ σZ X= =
( ) /λ0

1 2 , σ σ λ˙ ˙ ( ) /
X Z= = 2

1 2 , and KXŻ = −λ1, which yields

E A A f( ˙ ) ( ) ( ) ( )1
2

1
2

0 2 1 0 2 1
2

1 42 2 1= − = − +λ λ λ λ λ α κ
and

E A f( ˙ ) ( ) ( )2
4

2
2

0 2 1
2

2 42 1θ λ λ α κ= − +

Again, we can argue that this indicates that Ȧ1
2  and θ̇1

2  are small for a process
that is narrowband based on the value of α1.

Note that we found that ρ αXŻ1 1= −  for the Cramer and Leadbetter
amplitude, just as ρ αXŻ2 2= −  for the energy-based amplitude. This suggests that
it may be reasonable to use −ρXŻ  as the bandwidth parameter for any choice of
the auxiliary function in the definition of the amplitude.

********************************************************************************************

Example 7.11: Investigate the rates of change of the amplitude and phase of the

covariant stationary { ( )}X t  response of an SDF oscillator excited by white noise

using both the energy-based and the Cramer and Leadbetter definitions of the

terms.

Because the quantities of interest are directly related to spectral moments and

bandwidth parameters, we can simply use the results obtained in Example 7.9.

Inasmuch as the rates of change of the energy-based amplitude and phase are

directly related to the value [ ( ) ]1 2
2− α , the fact that α2 0=  for the SDF

response to white noise indicates that even when damping is very small the
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A t2( )  amplitude and the θ2( )t  phase are not slowly varying. This seems

surprising, inasmuch as sample time histories of { ( )}X t  for this small damping

situation surely do resemble slowly varying harmonic functions of time.

Nonetheless, the energy-based amplitude and phase are defined in such a way

that they are affected too much by the high-frequency components of { ( )}X t ,

and they do not accurately reflect the narrowband nature of the autospectral

density in the vicinity of the resonant peak for this particular system. The A t1( )
amplitude and the θ1( )t  phase according to the Cramer and Leadbetter

definitions, however, do vary slowly for the small ζ  situations for which sample

time histories resemble slowly varying harmonic functions, because [ ( ) ]1 1
2− α

goes to zero in this situation.
********************************************************************************************
Example 7.12: Find the expected rate of upcrossings for the Cramer and
Leadbetter amplitude of a stationary Gaussian process that is mean-zero.

From Eq. 7.3, the rate of upcrossings for A t1( )  is

νA A t A tu p u v p v A t u dv
1 1 1

10
+ ∞

= =∫( ) ( ) [ | ( ) ]( ) ˙ ( )

However, we know that A t1( )  and ˙ ( )A t1  are independent, so the conditioning in

the integrand can be ignored. Furthermore, we know that A t1( )  has the Rayleigh

distribution of Eq. 7.39 and that ˙ ( )A t1  is Gaussian with mean-zero and variance

σ α σ˙ ˙[ ( ) ] /
A X= −1 1 2 1 2 . Thus, we can write

ν
σ σ π σ σ σ

σ

π

σ

A
X X

v

A X X

Au
u u v e

dv
u uA

1

2 2

2

2

2

2

1 20 2

2

2 1 22 2 2 2

+
−

∞
=

−























 =

−























∫( ) exp

( )
exp

( )

/( )

/
˙

˙

/

˙

or

ν
σ σ

σ

σ
α
πA

X X

X

X
u

u u
U u

1

2

2
1
2 1 2

2

1

2
+ =

−



































−









( ) exp

˙
/

( )

Note that the first expression on the right-hand side is a dimensionless quantity

giving the form of the dependence on u . The upcrossing rate tends to zero as u
approaches zero, which is consistent with the fact that A t1( )  is almost always

above such a small u  value.
********************************************************************************************
Example 7.13: Find the expected rate of upcrossings for the energy-based

amplitude of a Gaussian process that is mean-zero.

At first glance this calculation seems more difficult than the one in Example 7.12,

because we do not have a closed-form solution for the probability density

function for the derivative of the A t2( )  energy-based amplitude. We do, however,

know that A t2( )  and ˙ ( )A t2  are independent and that the probability density of

the latter quantity is obtained from Eq. 7.40 as the integral
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p v
v

dȦ

/

/ /
( )

( ) ( ) | sin( ) |
exp

( ) sin ( )2

2
1 2

3 2
0 4 2

2 1 2
2

2

0 4 2
2 20

2

2 2
=

−
−

−











∫ λ

π λ λ λ η

λ

λ λ λ η
η

π

By reversing the order of integration we can integrate first with respect to v , then

with respect to η , to obtain

v p v dv dA

X X

X

˙

/

/ /

/

/ /

˙̇
/

/
˙

( )
( )

( )
| sin( ) |

( )

( )

           
( )

( )

20
0 4 2

2 1 2

3 2
2
1 2 0

2 0 4 2
2 1 2

3 2
2
1 2

2
2 1 2

3 2

2

4

2

4 1

2

∞∫ ∫=
−

=
−

=
−

λ λ λ

π λ
η η

λ λ λ

π λ

σ σ α

π σ

π

so

ν
σ σ α

π σ σ σ

σ

σ
α

πA A
X X

X X X

X

X

u t p u
u u

2 2

4 1

2 2

4 1

2

2
2 1 2

3 2

2

2
2
2 1 2

3 2
+ =

−
=

−





































−









( , ) ( )

( )

( )
exp

( )

( )

˙̇
/

/
˙

˙̇

˙

/

/

for u > 0. Note that the u  dependence is the same as in Example 7.4 for A t1( ) ,

but the basic frequency of occurrence is now proportional to

( / )( )˙̇ ˙
/σ σ αX X 1 2

2 1 2− , as compared with ( / )( )˙
/σ σ αX X 1 1

2 1 2−  for A t1( ) .

********************************************************************************************

7.5 Amplitude of a Modulated Stochastic Process
In some situations it is also desirable to define an amplitude and phase for a
modulated process, with an evolutionary spectral density. Based on Eqs. 5.33 and
6.34 we can write a modulated process { ( )}X t  as

X t F s h t s ds H t F e dS xS
T

xF S T
i t

S
( ) ( ) ( , ) lim ( , ) ˜ ( ),= =

−∞

∞

→∞ −∞

∞∫ ∫ ω ω ωω  (7.51)

in which { ( )}F tS  is a stationary process and

˜ ( ) ( ), /

/
F e F t dtS T

i t
ST

T
ω

π
ω= −

−∫
1

2 2

2

If { ( )}Z tS  is now a stationary auxiliary process for { ( )}F tS  defined according to
Eq. 7.26 so that

˜ ( ) ( ) ˜ ( ), ,Z i g FS T S Tω ω ω=

then an appropriate nonstationary auxiliary process for { ( )}X t  can be written as
the modulated form of { ( )}Z tS
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Z t Z s h t s ds H t Z e dS xS
T

xS S T
i t( ) ( ) ( , ) lim ( , ) ˜ ( ),= =

−∞

∞

→∞ −∞

∞∫ ∫ ω ω ωω

or

Z t i g H t F e d
T

xS S T
i t( ) lim ( ) ( , ) ˜ ( ),=

→∞ −∞

∞∫ ω ω ω ωω (7.52)

and an appropriate amplitude for the modulated { ( )}X t  process is again given by
Eq. 7.24.

Comparing Eqs. 7.51 and 7.52 shows that the time-varying harmonic
response function for the modulated auxiliary process is

H t i g H tzS xS( , ) ( ) ( , )ω ω ω=

Similarly,
H t i g H tzS xS˙ ˙( , ) ( ) ( , )ω ω ω=

and H txS˙ ( , )ω  is given by Eq. 6.36 as

H t
t
H t i H txS xS xS˙ ( , ) ( , ) ( , )ω

∂
∂

ω ω ω= +

Expressions for the various evolutionary spectral densities relating { ( )}X t ,
{ ˙( )}X t , { ( )}Z t , and { ˙( )}Z t  can now be found from Eqs. 6.38 and 6.39. In fact,
all the evolutionary spectral density relationships for ( , ˙ , , ˙)X X Z Z  can be shown to
agree in form with the corresponding stationary relationships involving SXX ( )ω ,
SXẊ ( )ω , and SXX˙ ˙ ( )ω .

Consider now the special case of { ( )}X t  being a uniformly modulated
process for which h t sxS ( , ) = ĥ ( ) ( )t t sδ − . This gives X t( ) = ĥ ( ) ( )t F tS  and
Z t( ) = ĥ ( ) ( )t Z tS , so Eq. 7.24 gives A t( ) = ĥ ( ) ( )t A tS , with A tS ( )  denoting the
amplitude of { ( )}F tS . Thus, for the particular case of uniform modulation, the
amplitude of the modulated process is exactly the modulation of the amplitude of
the stationary process. This is not true in general, though. In particular,
substitution of Y t( )  and Z t( )  for the general situation gives

A t Y s Y s Z s Z s h t s h t s ds dsS S S S xS xS( ) ( ) ( ) ( ) ( ) ( , ) ( , )
/

= +[ ]





−∞

∞

−∞

∞ ∫∫ 1 2 1 2 1 2 1 2

1 2

in which Y t F t tS S FS
( ) ( ) ( )= − µ . This expression is significantly more

complicated than a simple modulation of A tS ( ) . This form of evolutionary
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amplitude was used by Yang in 1972 for the Cramer and Leadbetter definition of
amplitude, and it has been used in various studies since that time.

Michaelov et al. (1999b) have investigated the probability distributions of
A t1( ) , ˙ ( )A t1 , θ1( )t , and ˙ ( )θ1 t  for the special case with { ( )}X t  being a Gaussian
process. The details will not be repeated here, but the general procedure is the
same as was used for the stationary process in Section 7.4. The results also are
similar to the stationary case. In particular, A t1( )  has a Rayleigh distribution and
˙ ( )A t1  has a conditional distribution that is Gaussian:

p u
u

t

u

t
A t

X X
1

1 1
2

2

22
( )( )

( )
exp

( )
= −













σ σ

(7.53)

and

p v A t u
v

A t˙ ( ) /
[ | ( ) ]

( ) *
exp

*

*1
1 1 2

2
1

2

1

2
= = −

−





















π σ

µ
σ

(7.54)

with

µ ρ
σ

σ
* [ ˙ ( ) | ( ) ] ( )

( )

( )
˙

˙
≡ = =









E A t A t u t

t

t
uXX

X

X
1 1 (7.55)

and

σ σ ρ α* [ ˙ ( ) | ( ) ] ( ) ( ) ( )˙ ˙

/
≡ = = − −( )Var A t A t u t t tX XX

1 1 2
1
2

1 2
1 (7.56)

It has also been shown that obtaining E[ θ̇ 1 0( )]t =  requires that

ω
σ σ

ω ω

σ
ω ω ω

λ

λ

c
X X

XZ

X
XX

t
K t t

t t
S t d

i

t
g S t d

t

t

XZ
1 2 2

2
1

0

1
( )

( , )

( ) ( )
( , )

         
( )

( ) ( , )
( )

( )

˙
˙

˙

= − = −

= =

−∞

∞

−∞

∞

∫

∫
(7.57)

in which the final form has been written by using Eq. 7.14. Similarly, it has been
shown that an appropriate bandwidth parameter is −ρXZ t t˙ ( , ) . All of these results
are in complete agreement with those in Section 7.4 for the stationary situation.
It should also be noted that letting the −ρXZ t t˙ ( , )  bandwidth parameter tend to
unity does not imply that ˙ ( )A t1  becomes zero, because the variation of A t1( )
also depends on the time-variation of H txS ( , )ω .
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********************************************************************************************

Example 7.14: Find the expected rate of upcrossings for the Cramer and

Leadbetter amplitude of a modulated Gaussian process that is mean-zero.

As in the stationary situation of Example 7.12, the rate of upcrossings for A t1( )
is

νA A t A tu t p u v p v A t u dv
1 1 1 10

+ ∞
= =∫( , ) ( ) [ | ( ) ]( ) ˙ ( )

and the necessary probability distributions are given in Eqs. 7.53–7.56. The

result is slightly more complicated than in the stationary situation because the

conditional distribution of ˙ ( )A t1  is not mean-zero in the current situation. Using

Eq. 7.54 gives the integral over v  in exactly the same form as in Example 7.1:

v p v A t u dvA t˙ ( ) /
[ | ( ) ] *

*

*

*

( )
exp

( *)

( *)1
10 1 2

2

22 2
= =









+ −













∞∫ µ
µ
σ

σ

π

µ

σ
Φ

so

ν
σ σ

σ

σ

ρ

σ

ρ

σ ρ α

A
X X

X

X

XX

X

XX

X XX

u t
u

t

u

t
U u

t

t

t u

t

t u

t t t

1

2

2

2
1
2 1 2

2

1

1

+ = −










 ×

− −
















+









−

( , )
( )

exp
( )

( )
( )

( )

( )

( )

( )

( )[ ( ) ( )]

˙

˙ ˙

˙
/

Φ

ρρ α

π

ρ

σ ρ α
XX XX

X XX

t t t u

t t t

˙

/

˙

˙

( ) ( )
exp

( )

( )[ ( ) ( )]

2
1
2 1 2 2 2

2 2
1
22

1

2 1

−















−
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Note that this result is consistent with Example 7.12 in that letting ρXX t˙ ( )  tend to

zero does give exactly the stationary result.

********************************************************************************************

Exercises
*****************************************************************
General Upcrossing Rates
*****************************************************************
7.1 Each of the formulas gives the joint probability density of X t( )  and ˙( )X t  for
a particular { ( )}X t  process at a particular time t. For each process, find the

expected rate of upcrossings ν X u t+ ( , )  for all u values.

(a) p u v u v U u U u U v U vX t X t( ) ˙ ( )( , ) ( ) ( ) ( ) ( )= − −9 1 12 2
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(b) p u v
u

b

v
U u U b uX t X t( ) ˙ ( ) /

( , )
( )

exp ( ) ( )= −












 −

2

2 21 2 2
2

2

2
2π σ σ

(c) p u v
u v

U uX t X t( ) ˙ ( ) /
( , )

( )

( )
exp ( | |)=

−
−













 −

3 1

2 2 2
1

2

1 2
2

2

2
2π σ σ

(d) p u v u
v

U uX t X t( ) ˙ ( ) /
( , )

( )
exp ( )= − −















λ

π σ
λ

σ2 21 2
2

2

2
2

*****************************************************************
7.2 Each of the formulas gives the joint probability density of X t( )  and ˙( )X t  for
a particular covariant stationary stochastic process { ( )}X t . For each process, find
the expected rate of upcrossings ν X u+ ( )  for all u values.

(a) p u v
a

U a u vX t X t( ) ˙ ( )( , ) ( )= − −
1

2
2 2 2

π

(b) p u v
b

v
U b uX t X t( ) ˙ ( ) /

( , )
( )

exp ( | |)= −












 −

1

2 2 21 2
2

2

2
2π σ σ

(c) p u v
u v

X t X t( ) ˙ ( )( , ) exp= − −














1

2 2 21 2

2

1
2

2

2
2π σ σ σ σ

(d) p u v eX t X t
u v

( ) ˙ ( )

/ /
| |( , )

( / )
=









 − −3

2 1 3

1 3 1 2
3 2α γ

π
α γ

Γ
*****************************************************************
7.3 The stationary response { ( )}X t  for a certain nonlinear oscillator is
characterized by

p u v A u
v

X t X t( ) ˙ ( )( , ) exp | |= − −












λ

σ

2

2
22

(a) Find the value of the constant A, in terms of λ  and σ2.
(b) Find ν X u+ ( )  for all u values.

(c) Compare ν X u+ ( )  with νY u+ ( )  for a stationary Gaussian process { ( )}Y t  with

the same mean and autocovariance function as { ( )}X t .
*****************************************************************
7.4 The stationary response { ( )}X t  for a certain nonlinear oscillator is
characterized by

p u v A u
v

X t X t( ) ˙ ( )( , ) exp= − −












α

σ
4

2

2
22

(a) Find the value of the constant A, in terms of α  and σ2.
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(b) Find ν X u+ ( )  for all u values.
(c) Compare ν X u+ ( )  with νY u+ ( )  for a stationary Gaussian process { ( )}Y t  with

the same mean and autocovariance function as { ( )}X t .
[Hint: Γ ( / ) .1 4 3 6256≈  and Γ ( / ) .3 4 1 2254≈ .]
*****************************************************************
Upcrossing Rates for Narrowband Processes
*****************************************************************
7.5 Let { ( )}X t  be a mean-zero covariant stationary stochastic process with an
autospectral density function of

S SXX ( ) [exp( | |) exp( | |)]ω γ ω ω γ ω ω= − + + − −0 0 0

in which S0 , ω0, and γ  are positive constants. Under what limitations on S0 ,
ω0, and/or γ  can you use this information to approximate ν X

+ ( )0  without further
information about the probability distribution of { ( )}X t ? Find this
approximation, and explain your answer.
*****************************************************************
7.6 Let { ( )}X t  be a mean-zero covariant stationary stochastic process with an
autospectral density function of S A eXX

b c( ) | | | |ω ω ω= − , in which A, b, and c are
positive constants. Under what limitations on A, b, and/or c can you use this
information to approximate ν X

+ ( )0  without further information about the
probability distribution of { ( )}X t ? Find this approximation, and explain your
answer.
*****************************************************************
7.7 Let { ( )}X t  have a mean-value function and the covariant stationary
autospectral density function introduced in Section 6.4:

S S U b U bXX c c( ) [( | | ( )] [( ) | |]ω ω ω ω ω= − − + −0

in which S0 , ωc , and b are positive constants. Under what limitations on S0 , ωc ,
and/or b can you use this information to approximate ν µX X t+ [ ( )]  without further
information about the probability distribution of { ( )}X t ? Find this
approximation, and explain your answer.
*****************************************************************
Upcrossing Rates for Gaussian Processes
*****************************************************************
7.8 Let { ( )}X t  be the mean-zero, covariant stationary stochastic process of
Exercise 7.5, but with the additional stipulation that it is Gaussian.

(a) Find ν X u+ ( )  for all u values.
(b) Find the value of the irregularity factor IF.
*****************************************************************
7.9 Let { ( )}X t  be the mean-zero, covariant stationary stochastic process of
Exercise 7.6, but with the additional stipulation that it is Gaussian.

(a) Find ν X u+ ( )  for all u values.
(b) Find the value of the irregularity factor IF.
*****************************************************************
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7.10 Let { ( )}X t  be the mean-zero, covariant stationary stochastic process of
Exercise 7.7, but with the additional stipulation that it is Gaussian.

(a) Find ν X u+ ( )  for all u values.
(b) Find the value of the irregularity factor IF.
*****************************************************************
7.11 Let { ( )}X t  be a covariant stationary Gaussian stochastic process with a
mean-value function µX t( )  and an autospectral density of

S S UXX ( )
| |

( | |)ω
ω
ω

ω ω= −0
0

0

(a) Find ν X u+ ( )  for all u values.
(b) Find the value of the irregularity factor IF.
*****************************************************************
7.12 Let { ( )}X t  be a covariant stationary Gaussian stochastic process with a
constant mean value µX  and an autospectral density of

S eXX ( ) | |ω ω ω= −5 2

(a) Find ν X u+ ( )  for all u values.
(b) Find the value of the irregularity factor IF.
*****************************************************************
7.13 Let { ( )}X t  be a covariant stationary Gaussian stochastic process with a
constant mean value µX  and an autospectral density of

S eXX ( ) | |ω ω ω= − 2

(a) Find ν X u+ ( )  for all u values.
(b) Find the value of the irregularity factor IF.
*****************************************************************
7.14 Let { ( )}X t  be a mean-zero covariant stationary Gaussian stochastic process
with an autocovariance function of

G e a cXX
c( ) cos( )τ ττ= >− 2

0     with 

(a) Find ν X u+ ( )  for all u values.
(b) Find the value of the irregularity factor IF.
*****************************************************************
7.15 Let { ( )}X t  be a mean-zero covariant stationary Gaussian stochastic process
with an autocovariance function of

G a c cXX ( ) cos( ) /(τ τ τ= + >1 02)     with 

(a) Find ν X u+ ( )  for all u values.
(b) Find the value of the irregularity factor IF.
*****************************************************************
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Frequency-Domain Analysis
*****************************************************************
7.16 Let { ( )}X t  be the covariant stationary stochastic process of Exercise 7.5
with

S S SXX ( ) exp | | exp | |ω γ ω ω γ ω ω= − +( )+ − −( )0 0 0 0

in which S0 , ω0, and γ  are positive constants.
(a) Find the λ0 , λ1, λ2 , and λ4  spectral moments.
(b) Find the ωc1 and ωc2  characteristic frequencies.
(c) Find the α1 and α2 bandwidth parameters.
(d) Discuss the behavior of the autospectral density, the bandwidth parameters,

and the characteristic frequencies both for γ → ∞ and for γ → 0.
*****************************************************************
7.17 Let { ( )}X t  be the covariant stationary stochastic process of Exercise 6.3
with

S S U S UXX

c c

( ) ( | |) (| | )ω
ω
ω

ω ω
ω
ω

ω ω= − + −0
0

0 0
0

0

in which S0 , ω0, and c are positive constants.
(a) Find the λ0 , λ1, λ2 , and λ4  spectral moments.
(b) Find the ωc1 and ωc2  characteristic frequencies.
(c) Find the α1 and α2 bandwidth parameters.
(d) Discuss the behavior of the autospectral density, the bandwidth parameters,

and the characteristic frequencies both for c → ∞ and for c → 0 .
*****************************************************************
7.18 Let { ( )}X t  be a covariant stationary stochastic process with autospectral
density function S A eXX

b c( ) | | | |ω ω ω= −  in which A , b, and c are positive
constants.
(a) Find the λ0 , λ1, λ2 , and λ4  spectral moments.
(b) Find the ωc1 and ωc2  characteristic frequencies.
(c) Find the α1 and α2 bandwidth parameters.
(d) For what values of b and/or c is { ( )}X t  a narrowband process? What is the

dominant frequency of this narrowband process?
*****************************************************************
7.19 Consider the covariant stationary process { ( )}X t  of Exercise 6.5 with

S S U S UXX ( ) ( | |) ( | | )ω ω ω
ω
ω

ω ω ω= − + − − >0 0 0
0

4

0 0 0       with 
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(a) Find the λ0 , λ1, λ2 , and λ4  spectral moments.
(b) Find the ωc1 and ωc2  characteristic frequencies.
(c) Find the α1 and α2 bandwidth parameters.
*****************************************************************
7.20 Let { ( )}X t  be a covariant stationary process with autocovariance function

G e a cXX
c( ) cos( )τ ττ= >− 2

0       with 

(a) Find the ωc2  characteristic frequency.
(b) Find the α2 bandwidth parameter.
(c) Under what conditions on the parameters a  and c might { ( )}X t  be

considered a narrowband process?
*****************************************************************
7.21 Let { ( )}X t  be a covariant stationary process with autocovariance function

G a c cXX ( ) cos( ) /( )τ τ τ= + >1 02        with 
(a) Find the ωc2  characteristic frequency.
(b) Find the α2 bandwidth parameter.
(c) Under what conditions on the parameters a and c might { ( )}X t  be

considered a narrowband process?
*****************************************************************
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Chapter 8
Matrix Analysis of Linear
Systems

8.1 Generalization of Scalar Formulation
We have used matrices, to this point, to organize arrays of information, such as
all the possible covariances within a set of scalar random variables. We will now
do the same thing for the properties of dynamic systems, leading to matrix
equations of dynamic equilibrium. Such matrix analysis is necessary for most
practical problems, and there are several methods for using matrix formulations
within stochastic analysis. We will look at some of the characteristics of each.

Recall that Chapters 5 and 6 began with very general deterministic
descriptions of the response of a linear system. In Chapter 5 this gave the time
history of a single response as a Duhamel convolution integral of an impulse
response function and the time history of a single excitation, and in Chapter 6 the
Fourier transform of the response time history was found to be a simple product
of a harmonic transfer function and the Fourier transform of the excitation. We
now wish to extend those presentations to include consideration of systems with
multiple inputs and multiple outputs.

Let nX  be the number of response components in which we are interested,
and let nF  be the number of different excitations of the system. We will denote
the responses as { ( )}X tj  for j nX=1, ,L  and the excitations as { ( )}F tl  for
l nF=1, ,L , and begin by considering evaluation of the jth component of the
response. In many situations the excitations may be components of force and the
responses may be components of displacement, as illustrated in Fig. 8.1, but this
is not necessary. The formulation is general enough to include any definitions of
excitation and response, except that we will consider the system to be causal in
the sense that the responses at time t are caused only by the excitations at prior
times.

For the time domain formulation we use Eq. 5.2 to give the response due to
the lth component of the excitation, and using superposition we can say that the
total response is the sum over l of these components. Thus, we have
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X t h t s F s dsj jl l
l

nF

( ) ( ) (= − )
−∞

∞

=
∫∑

1

(8.1)

in which the impulse response function h tjl ( )  is defined to be the response
component X tj ( )  due to a Dirac delta function excitation with F t tl ( ) ( )= δ  and
F tr ( ) = 0  for r l≠ . This equation, though, is simply the jth row of the matrix
equation

r r
X t t s F s ds( ) ( ) (= − )

−∞

∞

∫ h (8.2)

Thus, Eq. 8.2 is a very convenient representation of the set of nX  equations that
describe the nX  responses in terms of the nF  excitations. Each component of the
rectangular matrix of dimension n nX F×  is defined as stated. Alternatively, this
information can be organized so that an entire column of the h( )t  matrix is
defined in one equation. Namely,

r
LX t h t h tl n l

T
X

( [ ( ), , ( )]) = 1

is the response to

r
L123 L123F t t

l n l

T

F

( [ , , , ( ), , , ]) =
− −

0 0 0 0
1

δ

and we define the entire matrix by considering different l values.

Figure 8.1 Selected components of force and displacement for an airplane wing

X1( t)

X2( t)
X3( t)

X j( t)

X j+1(t)
X j+2(t)

Fl +2 (t)

Fl +1(t)

Fl (t)F1(t)

F2 (t)

F3 (t)

.
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In a similar way we can use Eq. 6.29 to give the Fourier transform of the
jth response due to the lth excitation component, and use superposition to obtain

˜ ( ) ( ) ˜ ( )X H Fj jl l
l

nF

ω ω ω=
=
∑

1

(8.3)

or
˜ ( ) ( ) ˜( )
r r
X Fω ω ω= H (8.4)

in which the lth column of the harmonic transfer matrix is defined such that

r
LX t H H el n l

T i t
X

( [ ( ), , ( )]) = 1 ω ω ω

is the response to
r

L123 L123F t e

l

i t

n l

T

F

( [ , , , , , , ]) =
− −

0 0 0 0
1

ω

Of course, we can show that any component of the impulse response function
matrix and the corresponding component of the harmonic transfer function
matrix satisfy a Fourier transform relationship like Eq. 6.30 for the scalar case.
The collection of all these relationships can be written in matrix form as

H h( ) ( )ω ω= −
−∞

∞

∫ t e dti t

meaning that the scalar Fourier transform integral is applied to each component
of the matrix in the integrand.

We can now use Eqs. 8.2 and 8.4 in writing matrix versions of various
expressions in Chapters 5 and 6 that describe the stochastic response in terms of
the excitation. The mean-value relationships are obtained by simply taking the
expectations of the two equations; they take the form

r r
µ µX Ft t s s ds( ) ( ) (= − )

−∞

∞

∫ h (8.5)

and
˜ ( ) ( ) ˜ ( )
r r
µ ω ω µ ωX F= H (8.6)

with the jth components of these equations being exactly equivalent to
summations over l of Eqs. 5.14 and 6.29, respectively, written to give the jth



Random Vibrations310

component of response due to the lth component of excitation. Similarly, we can
write the autocorrelation function for the response as

φφ φφXX
T

FF
Tt s E X t X s t u u v s v du dv( , ) [ ( ) ( )] ( ) ( , ( )≡ = − ) −

−∞

∞

−∞

∞

∫∫
r r

h h

(8.7)

and the autocovariance as

K

h K h

XX XX X X
T

FF
T

t s t s t s

t u u v s v du dv

( , ) ( , ) ( ) ( )

  ( ) ( , ( )

= −

= − ) −
−∞

∞

−∞

∞

∫∫

φφ
r r
µ µ

(8.8)

For the special case of stationarity, these relationships can be rewritten in
any of several slightly simpler forms, including

R h R hXX FF
Tu u v v du dv( ) ( ) ( ( )τ τ= − + )

−∞

∞

−∞

∞

∫∫ (8.9)

and

G h G hXX FF
Tu u v v du dv( ) ( ) ( ( )τ τ= − + )

−∞

∞

−∞

∞

∫∫ (8.10)

Similarly, the autospectral density for the covariant stationary situation is
described by

S H S HXX FF
T( ) ( ) ( ) ( )*ω ω ω ω= (8.11)

The jth diagonal components of Eqs. 8.7–8.11 are exactly equivalent to
summations over l of the expressions in Chapters 5 and 6 giving autocorrelation,
autocovariance, and autospectral density of the jth response due to the lth
component of excitation. Similarly, the off-diagonal components of these matrix
equations give the cross-correlation, cross-covariance, and cross-spectral density
functions for different components of response.

Note that if the 
r
X ( )t0 =

r
Y  value of the response at time t0  is known, then

one can write Eq. 8.2 in the alternative form of

r r r
X t t t Y t s F s ds

t

t
( ) ( ) ( ) (= − + − )∫g h0

0
(8.12)
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in which the vector 
r
Y  contains a complete set of initial conditions at time t0 , and

g( )t  is a matrix that gives the time histories of free vibration (i.e., the
homogeneous solution) to unit values of the possible initial conditions. Using this
form of the time history solution makes it possible to write vector analogies of
Eqs. 5.22 and 5.23, which describe the input and output in the corresponding
scalar situation. Vector versions of Eqs. 5.24 and 5.25 giving the conditional
mean and conditional covariance of the response can also be obtained.

8.2 Multi-Degree-of-Freedom Systems
One of the most commonly encountered situations involving a linear system with
multiple inputs and multiple outputs is the so-called multi-degree-of-freedom
(MDF) system. As a simple generalization of Eq. 5.45, the MDF equation of
motion can be written as

m c k
r r r r˙̇
( )

˙
( ) ( ) ( )X t X t X t F t+ + = (8.13)

in which m, c, and k are square matrices of dimension n n×  and the location and
orientation of the components of 

r
F t( )  are identical to those of 

r
X t( ) .1 Often we

have problems of this type in which the elements of the m , c, and k matrices
represent physical masses, dashpots, and springs, respectively, but this is not
always the case. In our examples, it will always be true that m , c, and k will
represent inertia terms, energy dissipation terms, and restoring force terms, but
the exact meaning of any component will depend on the set of coordinates used
in describing the problem. One can write certain energy expressions, however,
that are true for any choice of coordinates. In particular, the kinetic energy, the
potential energy, and the rate of energy dissipation (power dissipation),
respectively, are given by

KE t X t X tT( )
˙

( )
˙
( )=

1

2

r r
m (8.14)

PE t X t X tT( ) ( ) ( )=
1

2

r r
k (8.15)

                                                  
1For example, if X tj ( )  is the absolute displacement of node j of a system, then

F tj ( )  is the external force at that node, but if X tj ( )  is a relative displacement
between two nodes, then F tj ( )  is the difference between the two applied nodal
forces.
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and

PD t X t X tT( )
˙

( )
˙
( )=

r r
c (8.16)

Also, it is always true that m , c, and k are symmetric matrices. Note that the
nonnegativity of the kinetic and potential energy in Eqs. 8.14 and 8.15 make it
mandatory that m  and k , respectively, not have any complex or negative
eigenvalues. For example, if m had a negative eigenvalue, then Eq. 8.14 would
give a negative value of kinetic energy if 

r
( )X t  happened to be parallel to the

corresponding eigenvector. Also, Eq. 8.16 requires that c have no negative
eigenvalues if this matrix represents the effect of components like dashpots that
can never, even for an instant, add energy to the system.

The meaning of the m, c, and k matrices is particularly simple when all the
mass in the system is in n discrete masses, and the coordinates, denoted by the
components of 

r
X t( ) , each represent one component of displacement of a mass

relative to a fixed frame of reference. (If multidimensional motion of any mass is
possible, then we will presume that orthogonal coordinates are used to describe
the total motion.) In this case the m matrix is diagonal, because the total kinetic
energy of Eq. 8.14 is simply a sum of quadratic terms, each depending on the
magnitude of one mass and the square of a component of velocity of that mass.
The terms of k and c can then be described as follows. The lth column of k,
which can be written as [ , , ]k kl nl

T
1 L , gives the vector of forces in the n

coordinates that will result in a unit static displacement in coordinate X tl ( )  along
with zero displacement in every other coordinate. Similarly, a set of static forces
[ , , ]c cl nl

T
1 L  would give a unit velocity in coordinate X tl ( )  along with zero

velocity in every other coordinate, if k were set equal to zero. In this situation
with the coordinates representing displacement relative to a fixed frame of
reference, −k jl  usually represents a physical spring connecting the masses at
nodes j and l, and k jj  represents the sum of all springs attached to the mass at
node j. In a corresponding way, the elements of c correspond to dashpots
connected to the masses. These statements are strictly true only if the springs and
dashpots are aligned with the directions of the orthogonal coordinates.

********************************************************************************************

Example 8.1: Find the m , k , and c  matrices for the two-degree-of-freedom

(2DF) system shown in the accompanying  sketch.

The equations of motion for the two masses are

m X t c X t c X t X t k X t k X t X t F t1 1 1 1 2 1 2 1 1 2 1 2 1
˙̇ ( ) ˙ ( ) [ ˙ ( ) ˙ ( )] ( ) [ ( ) ( )] ( )+ + − + + − =
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and
m X t c X t X t k X t X t F t2 2 2 2 1 2 2 1 2

˙̇ ( ) [ ˙ ( ) ˙ ( )] [ ( ) ( )] ( )+ − + − =
These equations exactly agree with Eq. 8.13 with

m k c=








 =

+ −

−









 =

+ −

−











m

m

k k k

k k

c c c

c c
1

2

1 2 2

2 2

1 2 2

2 2

0

0
,       ,       

********************************************************************************************

8.3 Uncoupled Modes of MDF Systems
The most common solution of Eq. 8.13 uses the eigenvectors and eigenvalues of
the system. In particular, we will presume that m is positive definite (i.e., has no
zero eigenvalues), which ensures that its inverse exists. We will then let the
matrix θθ, of dimension n n× , have columns that are the eigenvectors of m k−1 .
This means that

m k− =1 θθ θθλλ (8.17)

in which λλ  is a diagonal matrix of dimension n n× , with the ( , )j j  element
being the eigenvalue corresponding to the eigenvector located in column j of θθ.
Let us now define two new symmetric matrices as

m̂ m≡ θθ θθT (8.18)

k̂ k≡ θθ θθT (8.19)

An important property of θθ is easily obtained by rewriting Eq. 8.17 as
k mθθ θθλλ=  and multiplying this equation by θθT  on the left to give k̂ = m̂λλ . The
transpose of this equation is k̂ = λλ m̂, because k̂ , m̂ , and the diagonal matrix λλ
are all symmetric. From these two equations we see that ˆ ˆm mλλ λλ= , showing that
the matrices m̂  and λλ  commute. Provided that m̂ ≠ 0  and the diagonal elements
of λλ  are distinct, this condition can be satisfied only if m̂  is diagonal. If m k−1

has one or more repeated eigenvalues (i.e., the elements of λλ  are not all distinct),
then it is not required that m̂  be exactly diagonal, but it is possible to choose the
eigenvectors such that m̂  is diagonal. Thus, we will presume that m̂  is diagonal.

mm

k1 k2

c2c1

X1( t) X2( t)

F2 (t)
F1(t)
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Furthermore, the fact that k̂ = m̂λλ  shows that k̂  is also diagonal. It is also
significant that the λλ  and θθ matrices are real for feasible m and k matrices.

To simplify the MDF equation of motion, we now write 
r
X t( )  as a linear

expansion in terms of the eigenvectors of m k−1 . That is, we define a vector 
r
Z t( )

such that

r r
X t Z t( ) ( )= θθ (8.20)

giving the jth component of 
r
Z t( )  as being the projection of 

r
X t( )  on the jth

eigenvector. Note that the component θ jl  now gives the magnitude of the X tj ( )
response component resulting from a unit magnitude of Z tl ( ) . In the usual
terminology, the lth eigenvector (i.e., column l of θθ) is the lth mode shape and
Z tl ( )  is the lth modal amplitude. Substituting Eq. 8.20 into Eq. 8.13 and
multiplying the equation on the left by θθT  gives

θθ θθ θθ θθ θθ θθ θθT T T TZ t Z t Z t F tm c k
r r r r˙̇
( )

˙
( ) ( ) ( )+ + =

which can be rewritten according to Eqs. 8.18 and 8.19 as

r r r r˙̇
( )

˙
( ) ( ) ˆ ( )Z t Z t Z t F tT+ + = −ββ λλ θθm 1 (8.21)

in which the new matrix ββ  is defined such that

ˆ ˆc c m≡ =θθ θθ ββT (8.22)

Although one can always rewrite the MDF equation of motion in the form
of Eq. 8.21, this formulation is not particularly useful unless some limitations are
placed on the c damping matrix. In particular, the formulation is very useful
when ββ  is diagonal, in which case the jth row of the equation has the simple
form

˙̇ ( ) ˙ ( ) ( )
ˆ

( )Z t Z t Z t
m

F tj jj j jj j
jj

lj l
l

n

+ + =
=
∑β λ θ

1

1

(8.23)

Various terms are used to designate this special case in which ββ  is diagonal.
Caughey (1960a) called it the situation with classical normal modes, and other
terms meaning the same thing include classical damping and uncoupled modes.
The last term emphasizes the key fact shown in Eq. 8.23—that one can solve for



Matrix Analysis of Linear Systems 315

Z tj ( )  from an equation that is completely uncoupled from the similar equations
governing the behavior of Z tl ( )  for l j≠ .

For the situation with uncoupled modes, we see from Eq. 8.23 that the
behavior of any Z tj ( )  modal amplitude is governed by a scalar, second-order,
differential equation that is essentially the same as the SDF equation we have
previously considered. In fact, if we define the modal frequency ω j  and the
modal damping ζ j  such that ω λj jj= ( ) /1 2 and 2ζ ω βj j jj= , then Eq. 8.23 takes
exactly the form of Eq. 5.46:

˙̇ ( ) ˙ ( ) ( )
ˆ

( )Z t Z t Z t
m

F tj j j j j j
jj

lj l
l

n

+ + =
=
∑2

12

1

ζ ω ω θ (8.24)

Thus, modal analysis reduces the MDF problem to the solution of a set of SDF
problems plus matrix algebra, provided that the system does have uncoupled
modes.

We will now look at the conditions under which the modal equations do
uncouple, giving Eq. 8.24 as the modal equation of motion. First we note that if
the matrix ββ  is diagonal, then it commutes with the diagonal matrix λλ ; that is
λλ ββ ββ λλ= . Furthermore, if all the elements of λλ  are distinct, then λλ ββ ββ λλ=  only
if ββ  is diagonal. Now we investigate the restrictions on m , c, and k that will
result in λλ ββ ββ λλ= . Solving k̂ = m̂ kλλ == θθ θθT  for λλ  and Eq. 8.22 for ββ  gives their
products as λλ ββ θθ θθ θθ θθ= − −ˆ ˆm k m c1 1T T  and ββ λλ θθ θθ θθ θθ= − −ˆ ˆm c m k1 1T T . From Eq.
8.18 we can note that m̂ m− − −=1 1 1θθ θθT , and substitution of this relationship
gives λλ ββ ββ λλ=  if and only if k m c c m k− −=1 1 . Thus, we can be assured of
having uncoupled modal equations if the coefficient matrices in the original
equation of motion satisfy this condition. Alternatively, it can be stated that the
modal equations uncouple if and only if m c−1  and m k−1  commute. If this
condition is not met, then the ββ  matrix will not be diagonal and different modal
equations will be coupled by the damping terms, requiring simultaneous solution
of the equations. It is possible to solve the problem when the uncoupling
condition is not met, but it is necessary to use some different method. Two
methods that do not require any restriction on the m , c, and k matrices are
presented in Sections 8.5 and 8.6. Nonetheless, the most common method of
solving the MDF problem is by uncoupling the equations, as presented here, or
some equivalent variation of this method.

The general condition of k m c c m k− −=1 1  for uncoupled modal equations
was presented by Caughey and O’Kelley in 1965. A much less general condition
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that is sufficient to ensure the existence of uncoupled modes, but is not necessary
for their existence, is called the Rayleigh condition, which is given by c m= +a1
a2 k  for some scalar constants a1 and a2. It is easy to verify that the Rayleigh
condition is a special case of k m c c m k− −=1 1 . One can also show (Caughey,
1960a) that other sufficient conditions can be written as

c m m k= −

=
∑a j

j

j

J

( )1

0

(8.25)

which is sometimes called a generalized Rayleigh condition. It can be shown that
if the upper limit J of the summation is chosen to be greater than or equal to
n −1, then this condition is equivalent to the general condition of k m c− =1

c m k−1 , but Eq. 8.25 is a more restrictive condition for any smaller value of J.

It seems somewhat surprising that it has been possible to model a great
variety of physical systems by using the rather restrictive version of the MDF
equations with uncoupled modes. One reason that this is true is that we often
have little information about the precise form for the c damping matrix, so we are
free to choose it in a way that simplifies the analysis. This is in contrast to the m
and k matrices, whose elements typically are well approximated by calculations
of physical mass and stiffness terms. In most cases the energy dissipation in real
structures occurs in complicated, usually nonlinear, and poorly understood
phenomena such as friction and local yielding. What is best known about the
energy dissipation is its overall level; the details of precisely where and how it
occurs are ill defined. One of the most common ways of modeling the energy
dissipation does not even begin with a choice of a c matrix, but rather with the
choice of the ζ j  modal damping values. Knowing the λ j  values from analysis of
m and k, one can then find a diagonal ββ  matrix from β ζ ωj j j= 2 . If desired, one
can also solve Eq. 8.22 for c m= − −( ) ˆθθ ββθθT 1 1, which can be rewritten using Eq.
8.18 as c m m m= −θθββ θθˆ 1 T . Often, though, there is no need to know the values of
the terms of c, so this calculation is not performed.

********************************************************************************************

Example 8.2: Consider the system of Example 8.1 with: m m1 2= , m m2 = ,

k k k1 2= = , and c c c1 2= = , in which m, k, and c are positive scalar constants.

Show that the system does have uncoupled modes, and find the θθ, λλ , m̂ , and

ββ  matrices and the values of the modal frequencies and damping values.

Substituting the parameter values into m , k , and c  from Example 8.1 gives



Matrix Analysis of Linear Systems 317

m k c=








 =

−

−









 =

−

−









m k c

2 0

0 1

2 1

1 1

2 1

1 1
,       ,       

Inverting m  is almost trivial, and matrix multiplication then gives

k m c c m k− −= =
−

−











1 1 3 2

2 1 5
kc

m .

The equality of k m c−1  and c m k−1  assures us that uncoupled modes do exist.

Eigenanalysis of m k−1  gives

θθ == λλ ==
1 1

1 414 1 414

0 2929 0

0 1 707. .
,       

.

.−





















k

m

Note that the columns of θθ are the eigenvectors of m k−1  and their ordering is

arbitrary. We have followed the common convention of putting the lower

frequency mode in the first column. Note also that although the “directions” of the

eigenvectors are unique, their “lengths” are arbitrary. A different scaling of these

eigenvectors will affect the values of the components of m̂ , but not of ββ . Using

θθ as written gives

ˆ ,       
.

.
m == ββ ==m

c

m

4 0

0 4

0 2929 0

0 1 707





















Taking the square root of the elements of λλ  gives the modal frequencies as

ω1 1 20 5412= . ( / ) /k m  and ω2 1 21 307= . ( / ) /k m . Dividing the elements of ββ  by

2ω j  gives the modal damping values as ζ1 = 0 2706 1 2. /( ) /c k m  and ζ2 =
0 6533 1 2. /( ) /c k m .

It may also be noted that one could have performed this latter analysis without

checking to see if k m c−1  and c m k−1  were equal. That is, one can perform the

eigenanalysis to find θθ, then evaluate ββ  regardless of whether the system has

uncoupled modes. The form of ββ , in fact, then provides the information about the

existence of uncoupled modes. A diagonal ββ  matrix is sufficient evidence of

uncoupled modes. Checking to see whether k m c c m k− −=1 1  allows one to

avoid doing the eigenanalysis if the equations will not uncouple anyway.

********************************************************************************************

Example 8.3: Show that the system of Example 8.1 with m1 1000=  kg ,

m2 500=  kg, k k1 2 500= =  kN/m, c1 0 5= .  kN/(m/s) , and c2 2 0= .  kN/(m/s)
does not have uncoupled modes.

Substituting the parameter values into m , k , and c  from Example 8.1 gives

m k c=








 = − ×

− × ×











 =

−

−











⋅1000 0

0 500
10 5 10

5 10 5 10

2500 2000

2000 2000

6 5

5 5
kg,     

N
m

N s
m

,     
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From these matrices, we find that

c m k k m c− −=
−

−









×

⋅
=

−

−









×

⋅
1 6 1 64 5 3 25

4 0 3
10

4 5 4 0

3 25 3
10

. .

.
,       

. .

.

N

m

N

m

2 2

s s

This shows that the system does not meet the condition necessary for uncoupled

modes. If we had not performed this check and had proceeded to find θθ, which is

the same as in Example 8.2, then we would find that

ββ ==
0 4216 0 7071

0 7955 6 078

. .

. .

−

−









rad/s

The fact that this matrix is not diagonal also shows that uncoupled modes do not

exist.

********************************************************************************************

Example 8.4: Consider the system of Example 8.1 with m m1 2 100= =  kg , k1 =
k2 500=  N/m. Find the values of dashpots in the system that will give uncoupled

modes with 10% damping in the lower-frequency mode and 1% damping in the

higher-frequency mode.

Using

m k=








 =

−

−











100 0

0 100

200 100

100 100
 kg,        

N
m

gives

θθ == λλ == ==
1 1

1 618 0 618

0 3820 0

0 2 618

361 8 0

0 138 2
2

. .
,     

.

.
,     ˆ

.

.−





























 (rad/s)  kgm

Setting ω λj j= ( ) /1 2  and β ζ ωj j j= 2 , with ζ1 0 10= .  and ζ2 0 01= . , gives

ββ ==
0 1236 0

0 0 0324

.

.









 rad/s

Solving Eq. 8.22 for c  gives c m= − −( ) ˆθθ ββθθ1 1T . Rather than invert a matrix that

is not diagonal, we can now solve Eq. 8.18 for the inverse as θθ θθ− −=1 1m̂ mT  and

use this to obtain

c m m m= =










−θθββ θθˆ
. .

. .
1 5 758 4 081

4 081 9 839
T

(This technique for finding θθ−1 is not particularly important for a 2DF but can

save significant computational time for large matrices.) Using m k c, , and  now

gives the scalar equations of motion as
100 5 758 4 081 200 1001 1 2 1 2 1

˙̇ ( ) . ˙ ( ) . ˙ ( ) ( ) ( ) ( )X t X t X t X t X t F t+ + + − =
and

100 4 081 9 839 100 1002 1 2 1 2 2
˙̇ ( ) . ˙ ( ) . ˙ ( ) ( ) ( ) ( )X t X t X t X t X t F t+ + − + =
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The accompanying sketch shows

an arrangement of dashpots that

will give these equations of

motion. Note, in particular, that

the value of the dashpot

connecting the two masses is

negative. Obviously, a negative dashpot is not a physical element, but that is the

result obtained any time that an off-diagonal element of c  is found to be positive.

Furthermore, it is not unusual for such a procedure of assigning values of modal

damping to result in a model that does not correspond to physical dashpots. This

anomaly does not cause any difficulty in the mathematical analysis or any

pathological behavior in the dynamic response, despite its apparent lack of

logical explanation. One should always keep in mind, though, that even when it

corresponds to positive dashpots, the linear damping matrix c  usually represents

no more than a crude approximation of the actual energy losses that limit the

dynamic response of a real system.

********************************************************************************************

8.4 Time-Domain Stochastic Analysis of Uncoupled MDF Systems
There are two different approaches that one can now use in performing a time-
domain analysis of the MDF system described by Eq. 8.13, with uncoupled
modal responses described by Eq. 8.24. The results, of course, are the same, but
the manipulations are somewhat different. The first approach is to use the results
of Section 8.3 strictly for the deterministic analysis that gives the h( )t  matrix of
impulse response functions needed in order to use the stochastic analysis of
Section 8.1. The second approach is to consider the equations of Section 8.3 to be
stochastic and to use them directly in finding such things as the mean and
covariance of the 

r
X t( )  response process. We will look briefly at each approach.

To find the h( )t  matrix, we must consider the response of the MDF system
of Eq. 8.13 to excitations that consist solely of a single Dirac delta function
pulse. As noted in Section 8.1 the l th column of h( )t , written as
[ ( ), , ( )]h t h tl nl

T
1 L , is the 

r
X t( )  response vector when the only excitation isr

F tl ( ) = δ( )t . We can now use Eq. 8.23 or 8.24 to obtain the excitation of the jth
modal equation as θ δ γlj jjt( ) / . Thus, one finds that the modal responses to this
Dirac delta function excitation at node l are Z tj lj( ) = θ ĥ jj t( )  in which ĥ jj t( )
represents the impulse response function of the jth modal equation, and from our
study of the SDF system this is known to be

−4.081

m1 m2

9.839

13.92
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ˆ ( )
ˆ

sin( ) ( )h t
m

e t U tjj
jj dj

t
dj

j j=
−1

ω
ω

ζ ω
(8.26)

with the damped modal frequency given by ω ω ζdj j j≡ −[ ( ) ] /1 2 1 2 . Note that m̂ jj

in this equation is analogous to the mass m in the SDF formula of Example 5.3.
Thus, m̂ jj  can be considered the modal mass. Using these modal impulse
responses in Eq. 8.20 gives any element of column l of h( )t  as

h t X t Z t h trl r rj j
j

n

rj lj jj
j

n

( ) ( ) ( ) ˆ ( )= = =
= =
∑ ∑θ θ θ

1 1

(8.27)

From this equation for a typical element of the h( )t  matrix, we can write the
entire relationship in matrix form as

h h( ) ˆ ( )t t T= θθ θθ (8.28)

in which ĥ ( )t  denotes a diagonal matrix of the modal impulse response
functions given in Eq. 8.26.

These equations show that it is quite straightforward to obtain the MDF
impulse response function matrix from the analysis of uncoupled equations. The
largest computational effort in the procedure is the eigenanalysis to find θθ and
λλ . The other operations involve only arithmetic. Note that our original MDF
equation allowed the possibility of an exciting force at each of the n coordinate
points, and we have chosen to include all of the coordinates in our definition of
h( )t . Obviously this gives a square h( )t  matrix. If we wish to perform our
stochastic analysis only for a subset of the coordinate points, then we can
consider r in Eq. 8.27 to vary only over that subset, thereby obtaining a
rectangular h( )t  matrix appropriate for those points. Once the h( )t  matrix is
determined, the mean-value vector for the stochastic response can be found from
Eq. 8.5, the autocorrelation matrix is given by Eq. 8.7 or 8.9, and the
autocovariance matrix is given by Eq. 8.8 or 8.10.

Now we will consider the alternative of doing stochastic analysis directly
on the equations of Section 8.3, rather than using those equations to obtain the
h( )t  matrix. From Eq. 8.20 we can write the mean-value vector of the response
as 

r r
µ µX Zt t( ) ( )= θθ , the autocorrelation matrix as φφXX t s( , ) = θθφφ θθZZ Tt s( , ) , and

the autocovariance matrix as K XX ZZ Tt s t s( , ) ( , )= θθΚΚ θθ . The time histories of the
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components of the stochastic 
r
Z t( )  vector of modal responses are obtained from

Eq. 8.23 as

Z t h t s F s dsj kj jj k
k

n

( ) ˆ ( ) ( )= −
−∞

∞

=
∫∑θ

1

(8.29)

or in matrix form as

r r
Z t t u F u duT( ) ˆ ( ) ( )= −

−∞

∞

∫ h θθ (8.30)

Thus, the mean-value vector for the response is

r r r
µ µ µX Z

T
Ft t t u u du( ) ( ) ˆ ( ) ( )= = −

−∞

∞

∫θθ θθ θθh (8.31)

and the autocorrelation matrix for { ( )}
r
Z t  is

φφ θθ φφ θθZZ
T

FF
Tt s t u u v s v du dv( , ) ˆ ( ) ( , ) ˆ ( )= − −

−∞

∞

−∞

∞

∫∫ h h (8.32)

which gives the corresponding result for { ( )}
r
X t  as

φφ θθ θθ φφ θθ θθXX
T

FF
T Tt s t u u v s v du dv( , ) ˆ ( ) ( , ) ˆ ( )= − −

−∞

∞

−∞

∞

∫∫ h h (8.33)

Similarly the autocovariance matrices are

K h K hZZ
T

FF
Tt s t u u v s v du dv( , ) ˆ ( ) ( , ) ˆ ( )= − −

−∞

∞

−∞

∞

∫∫ θθ θθ (8.34)

and

K h K hXX
T

FF
T Tt s t u u v s v du dv( , ) ˆ ( ) ( , ) ˆ ( )= − −

−∞

∞

−∞

∞

∫∫θθ θθ θθ θθ (8.35)

It must be remembered that the expressions in Eqs. 8.32–8.35 are called
autocorrelation and autocovariance matrices because each refers to only one
response vector process, either { ( )}

r
Z t  or { ( )}

r
X t . At the same time, most of the

elements of these φφ  and K matrices are cross-correlation and cross-covariance
terms of the scalar components of the response vectors. Only the diagonal terms
of the matrices are autocorrelation and autocovariance terms of the scalar
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components. For example, the typical term of Eq. 8.34 can be written as
[ ( )] ( ) ( )K t s KZZ jl t sZ Zj l,, ≡ .

One can learn much about the relative importance of the various modal
contributions to the response by considering the special case of response at time t
due to a white noise excitation process { ( )}

r
F t . In particular, we will consider the

case with 
r
F t( )  and 

r
F s( )  being uncorrelated vectors for t s≠ , so that

K SFF t s t s( , ) ( )= −2 0π δ , in which the autospectral density matrix S0 is
generally a full square matrix. This allows the various components of 

r
F t( )  to be

correlated at any one instant of time t, even though they are uncorrelated at
distinct times. Substituting this relationship into Eq. 8.35 for the case of t s=
gives the matrix of response variance and covariance values as

K h S hXX
T T Tt t t u t u du( , ) ˆ ( ) ˆ ( )= − −

−∞

∞

∫2 0π θθ θθ θθ θθ

so the typical component can be written as

K S qX t X t jr
r

n

r

n

r r r r r r lr
r

n

r

n

r rj l( ) ( ) [ ]=
====

∑∑∑∑2
1

43

2 1 2 3 3 4 4

21

1 4
11

0
11

π θ θ θ θ (8.36)

in which

q h t u h t u du h v h v dvr r r r r r r r r r1 4 1 1 4 4 1 1 4 40
≡ − − =

−∞

∞ ∞

∫ ∫ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )

One can now substitute Eq. 8.26 into this integrand and perform the integration
to obtain

q
m m

r r
r r r r

r r r r r r r r r r r r r r r r
1 4

1 1 4 4

1 1 4 4 1 4 1 4 1 1 4 4 1 4 4 1

2

42 2 2
=

+

− + + +

( )

ˆ ˆ [( ) ( )( )]

ζ ω ζ ω

ω ω ω ω ζ ω ζ ω ζ ω ζ ω

(8.37)

Setting r r4 1=  in this expression gives the result for the special case as

q
m

r r

r r r r
1 1

1 1 1 1

1

4 2 3
=

ˆ ζ ω
(8.38)

which agrees exactly with the SDF result in Eq. 5.63.
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Note that Eq. 8.38 is proportional to modal damping raised to the –1
power, so it is quite large for the commonly considered systems with small
damping values. Furthermore, Eq. 8.37 is of the order of modal damping to the
+1 power, provided that ω r1  and ω r4  are well separated. Thus, if all modal
frequencies are well separated, then the “off-diagonal” terms with r r4 1≠  in Eq.
8.36 are much smaller than are the “on-diagonal” terms with r r4 1= . In
particular, the ratio between the off-diagonal and on-diagonal terms is of order
damping squared. For modal damping values of less than 10%, for instance, one
can expect the off-diagonal terms to contribute relatively little to the covariance
of the 

r
X t( )  responses. Thus, in many situations it is possible to neglect the terms

from Eq. 8.36 with r r4 1≠  and approximate Eq. 8.35 by considering only the
r r4 1=  terms, giving

K u v qX t X s jr r r FF r r r r lr r r
r

n

r

n

r

n

j l( ) ( ) [ ( , )]≈
===

∑∑∑ θ θ θ θ
1 2 1 2 3 3 1 1 1 1

321 111

K (8.39)

Furthermore, one notes from Eq. 8.38 that the q r r1 1  modal contributions are
proportional to the modal frequency raised to the –3 power, so high-frequency
modes will generally contribute much less to the response than will low-
frequency modes. This leads to the possibility of further approximating Eq. 8.39
by limiting the range of r1 to include only the lower-frequency modes.

Although the approximations in the preceding paragraph have been
justified by consideration of the response to white noise, they can also be
considered appropriate for other broadband excitations. It is important to notice
that if two modes have nearly equal frequencies, then the approximation in Eq.
8.39 is not valid. For example, if ω ωl j−  is of the order of the damping, then the
denominator in Eq. 8.37 is of the order of damping squared, so q jl  may be
equally as significant as q jj  and qll . Thus, one must exercise some caution in
deciding whether to use the simplification of Eq. 8.39. For situations with closely
spaced modal frequencies, it is sometimes convenient to rewrite Eqs. 8.37 and
8.38 in the form of the correlation coefficient for the modal responses:
ρ r r r r r r r rq q q1 4 1 4 1 1 4 4= ( ) −1 2/ . Numerical investigations (Der Kiureghian, 1980)
have shown that this correlation coefficient is approximately correct for nonwhite
broadband excitations, and this has formed the basis for a complete-quadratic-
combination (CQC) method for accurately computing the response of MDF
systems, even if they have closely spaced modal frequencies (Wilson et al.,
1981). It should also be noted that some continuous structures are very likely to
have closely spaced modal frequencies. Elishakoff (1995) has particularly noted
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this fact for shells. The cross-correlation of modal responses should generally be
expected to be important in these situations.

********************************************************************************************

Example 8.5: Find the h( )t  impulse response function matrix for the 2DF model

of Example 8.2, with m = 500 kg , k = 500 kN/m, and c = 500 N/(m/s) , for which

m k c=








 = − ×

− × ×











 =

−

−











⋅1000 0

0 500
10 5 10

5 10 5 10

1000 500

500 500

6 5

5 5
kg,     

N
m

N s
m

,     

It was found in Example 8.2 that this system has uncoupled modes, and the

results there give ˆ ˆm m11 22 2000= =  kg, ω 1 17 11= .  rad/s , ω 2 41 32= .  rad/s ,

ζ1 0 00856= . , and ζ2 0 02066= . . Thus, Eq. 8.26 gives

ˆ ( )

sin( . )
.

sin( . )
.

( )

.

.
h t

e t

e t
U t

t

t
=



















−

−
1

2000

17 11
17 11

0

0
41 31

41 31

0 1464

0 8536

Using Eq. 8.28 with

θθ ==
1 1

1 414 1 414. .−











then gives the elements of h( )t  as

h t h t h t

e t e t U tt t

11 11
2

11 12
2

22

5 0 1464 5 0 85362 922 10 17 11 1 210 10 41 31

( ) ˆ ( ) ˆ ( )

        [ . sin( . ) . sin( . )] ( ). .

= +

= × + ×− − − −

θ θ

h t h t h t h t

e t e t U tt t

12 21 11 21 11 12 22 22

5 0 1464 5 0 85364 132 10 17 11 1 712 10 41 31

( ) ( ) ˆ ( ) ˆ ( )

        [ . sin( . ) . sin( . )] ( ). .

= = +

= × − ×− − − −

θ θ θ θ

h t h t h t h t

e t e t U tt t

22 21 21
2

11 22
2

22

5 0 1464 5 0 85365 843 10 17 11 2 421 10 41 31

( ) ( ) ˆ ( ) ˆ ( )

        [ . sin( . ) . sin( . )] ( ). .

= = +

= × + ×− − − −

θ θ

********************************************************************************************

Example 8.6: Find E X( )1
2

for the stationary response

of the oscillator shown here

when the base acceleration

{ ˙̇ ( )}Y t  is mean-zero white

noise with autospectral

density S0 0 1= .  (m/s )/(rad/s)2 .

m
500
kg

500 kN/m 500 kN/m

0.5 kN.s/m 0.5 kN.s/m

1000
kg

Y( t) Y( t) + X1(t) Y( t) + X2 (t)
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The system is described by Eq. 8.13 with m , k , and c  as given in Example 8.5,

F t m Y t1 11( ) ˙̇ ( )= − , and F t m Y t2 22( ) ˙̇ ( )= − . One approach is to write

X t m h m h Y t d1 11 11 22 120
( ) [ ( ) ( )] ˙̇ ( )= − + −

∞

∫ τ τ τ τ

Using E Y u Y v S u v[ ˙̇ ( ) ˙̇ ( )] ( )= −2 0π δ  and substituting the h s11( )  and h s12( )
impulse response functions found in Example 8.5 then gives

E X S m h s m h s ds

S e s ds

e s s ds

e

s

s

s

( ) [ ( ) ( )]

          . sin ( . )

. sin( . ) sin( . )

. sin (

.

.

.

1
2

0 11 11 22 12
2

0

0
3 0 2929 2

0

4 1 0
0

5 1 707 2

2

2 2 488 10 17 11

3 536 10 17 11 41 31

1 257 10

= +

= ×




 +

× +

×

∞

− −
∞

− −
∞

− −

∫

∫

∫

π

π

4141 31
0

. )s ds
∞

∫






Performing the integration then reduces this to

E X S( ) ( . . . )

           .

1
2

0
3 7 6

3

2 4 246 10 2 498 10 3 680 10

2 671 10

= × + × + ×

= ×

− − −

−

π

 m2

Note that the first term in this form is due to the first mode of the system, the

second term is cross-modal, and the final term is due to the second mode.

Clearly the cross-modal term and the second mode term are both much smaller

than the first mode term, as discussed in conjunction with Eq. 8.39. The

insignificance of the second mode is exaggerated in this example by the fact that

the excitation has F t1( )  in phase with F t2( ) , and this distribution of forces is not

effective in exciting the second mode, which has X t1( )  180° out of phase with

X t2( ) .

Alternatively, one can investigate the mean-squared modal responses, then use

these in finding E X( )1
2 . For the excitation given, the modal equations of Eq. 8.21

can be written as

ˆ ˙̇
( ) ˆ ˙

( ) ˆ ( ) ˙̇ ( )
.

˙̇ ( )m m m
r r r
Z t Z t Z t

m

m
Y t Y tT+ + = −









 = −









ββ λλ θθ 11

22

1707

292 9

and this gives the modal responses as

E Z
S

m
S( )

ˆ
( ) ( )( . )1

2 0

11
2

1 1
3

2
0

3

2
1707 2 4 246 10= = × −π

ζ ω
π

and

E Z
S

m
S( )

ˆ
( . ) ( ) ( . )2

2 0

22
2

2 2
3

2
0

6

2
292 9 2 3 680 10= = × −π

ζ ω
π
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The cross-modal response from Eq. 8.37 is

E Z Z
S

m m

S

( )
( )( )( . )

ˆ ˆ [( ) ( )( )]

( )( . )

1 2
0 1 1 2 2

11 22 1
2

2
2 2

1 2 1 1 2 2 1 2 2 1

0
7

4 1707 292 9

4

2 1 249 10

=
+

− + + +

= × −

π ζ ω ζ ω

ω ω ω ω ζ ω ζ ω ζ ω ζ ω

π

Using the fact that X t Z t Z t1 11 1 12 2( ) ( ) ( )= +θ θ  then gives

E X E Z E Z Z E Z

S

( ) ( ) ( ) ( )

          ( )( . . . )

          .

1
2

11
2

1
2

11 12 1 2 12
2

2
2

0
3 7 6

3

2

2 4 246 10 2 498 10 3 680 10

2 671 10

= + +

= × + × + ×

= ×

− − −

−

θ θ θ θ

π

 m2

Note that exactly the same individual terms are summed in the two approaches

to solving the problem. The difference is simply in the order of performance of the

operations.

********************************************************************************************

Example 8.7: Consider the system of Example 8.2 for the special case in which

F t2 0( ) ≡  and F t1( )  is mean-zero white noise with an autospectral density of

S0 . Find the autocorrelation function of the { ( )}X t1  response component. That

is, find R E X t X tX X1 1 1 1( ) [ ( ) ( )]τ τ≡ + .

Using modal superposition, we note that R RXX ZZ( ) ( )τ τ= θθ θθT , so

R R R R RX X Z Z Z Z Z Z Z Z1 1 1 1 1 2 2 1 2 211
2

11 12 12
2( ) ( ) [ ( ) ( )] ( )τ θ τ θ θ τ τ θ τ= + + +

The uncoupled modal equations of motion can be written as
r r r r˙̇
( )

˙
( ) ( ) ˆ ( )Z t Z t Z t F tT+ + = −ββ λλ θθm 1

or
˙̇ ( ) ˙ ( ) ( ) ( ) /Z t Z t Z t F t1 11 1 11 1 11 1 11+ + =β λ θ γ
˙̇ ( ) ˙ ( ) ( ) ( ) /Z t Z t Z t F t2 22 2 22 2 12 1 22+ + =β λ θ γ

The responses of these equations can be written by Duhamel integrals as

Z t
m

F t s
e

s ds
s

d
d1

11

11
1

1
0 1

1 1
( )

ˆ
( ) sin( )= −

−∞

∫θ
ω

ω
ζ ω

Z t
m

F t s
e

s ds
s

d
d2

12

22
1

2
0 2

2 2
( )

ˆ
( ) sin( )= −

−∞

∫θ
ω

ω
ζ ω

The RZ Z1 1 ( )τ  and RZ Z2 2 ( )τ  terms are easily found, because they are

essentially the same as the autocorrelation function of the response of an SDF

system. The cross-modal terms, though, are new and must be evaluated.

Multiplying appropriate versions of the two modal response integrals and taking

the expected value gives
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R E Z t Z t
m m

R t s t s

e e
s s ds ds

Z Z F F

s s

d d
d d

1 2 1 1

1 1 1 2 2 2

1 2
11 12

11 22
1 200

1 2
1 1 2 2 1 2

( ) [ ( ) ( )]
ˆ ˆ

( , )

    sin( ) sin( )

τ τ
θ θ

τ

ω ω
ω ω

ζ ω ζ ω

≡ + = + − − ×
∞∞

− −

∫∫

Substituting the relationship R t s t s S s sF F1 1 1 2 0 1 22( , ) ( )+ − − = − +τ π δ τ  for

white noise now reduces this to a single integral:

R
m m

S
e e

s s ds

Z Z
d d

s

d d

1 2
1 1 1 1 2 2 211 12

11 12

0

1 2
0

1 2 2 2 2

2
( )

ˆ ˆ

sin[ ( )]sin( )

( )
max( , )

τ
θ θ π

ω ω

ω τ ω

ζ ω τ ζ ω ζ ω
τ

= ×

+

− − +
−

∞

∫

For τ > 0, the result of integration and simplification can be written as

R
m m

S
eZ Z

d

d d d d d

1 2
1 111 12

11 22

0

1

1 1 1 2 2 1 1 1 2 2
2

2
2

1
2

1

1
2

2
2 2

1 2 1 1 2 2 1

2

2

4

( )
ˆ ˆ

      
( ) cos( ) [( ) ]sin( )

( ) ( )(

τ
θ θ π

ω

ω ζ ω ζ ω ω τ ζ ω ζ ω ω ω ω τ

ω ω ω ω ζ ω ζ ω ζ ω

ζ ω τ= ×

+ + + + −

− + +

−

22 2 1+ζ ω )

while τ < 0 gives

R
m m

S
eZ Z

d

d d d d d

1 2
2 211 12

11 22

0

2

2 1 1 2 2 2 1 1 2 2
2

1
2

2
2

2

1
2

2
2 2

1 2 1 1 2 2 1 2

2

2

4

( )
ˆ ˆ

      
( ) cos( ) [( ) ]sin( )

( ) ( )(

τ
θ θ π

ω

ω ζ ω ζ ω ω τ ζ ω ζ ω ω ω ω τ

ω ω ω ω ζ ω ζ ω ζ ω

ζ ω τ= ×

+ − + + −

− + + ++ζ ω2 1)

It should now be noted that stationarity allows us to write
R E Z t Z t E Z t Z t RZ Z Z Z2 1 1 22 1 2 1( ) [ ( ) ( )] [ ( ) ( )] ( )τ τ τ τ≡ + = − = −

so RZ Z2 1 ( )τ  can be found from the expressions already derived.

By modifying Eq. 5.60 to apply to our modal equations, we find the other two

necessary terms as

R
m

S
eZ Z d

d
d1 1

1 111
2

11
2

0

1 1
3 1

1 1

1
1

2
( )

ˆ
cos( ) sin( | |)| |τ

θ π

ζ ω
ω τ

ζ ω
ω

ω τζ ω τ= +










−

and

R
m

S
eZ Z d

d
d2 2

2 212
2

22
2

0

2 2
3 2

2 2

2
2

2
( )

ˆ
cos( ) sin( | |)| |τ

θ π

ζ ω
ω τ

ζ ω
ω

ω τζ ω τ= +










−

so RX X1 1 ( )τ  can be found by superposition.

If damping values are small and the modal frequencies are well separated, it is

unlikely that RZ Z1 2 ( )τ  and RZ Z2 1 ( )τ  will contribute significantly to the value of

RX X1 1 ( )τ . The argument is the same as was given in regard to Eqs. 8.37 and

8.38. Namely, the RZ Z1 2 ( )τ  and RZ Z2 1 ( )τ  terms are of the order of damping,

whereas RZ Z1 1 ( )τ  and RZ Z2 2 ( )τ  are much larger because they are of the order

of damping to the –1 power. Thus, one may often neglect the cross-modal terms,
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which is equivalent to assuming that the modal responses are independent of

each other. Furthermore, if one modal frequency is much larger than the other

then the presence of the frequency cubed term in the denominators of RZ Z1 1 ( )τ
and RZ Z2 2 ( )τ  may cause the higher-frequency mode to contribute very little to

the autocorrelation function, just as was previously noted for the covariance

matrix for any single value of time.

********************************************************************************************

8.5 Frequency-Domain Analysis of MDF Systems
As with time-domain analysis, there are two ways to proceed with the frequency-
domain analysis of MDF systems. In the first approach one uses deterministic
analysis of the MDF equation of motion to obtain the H( )ω  harmonic transfer
matrix and then uses the equations of Section 8.1 for the stochastic analysis. The
second approach consists of direct stochastic analysis of the MDF equations.
Within the first approach, though, we will consider two different possible
techniques for finding H( )ω .

If the MDF system has uncoupled modes, one can first use Eq. 8.24 to find
an Ĥ ( )ω  harmonic transfer matrix describing the modal responses to a harmonic
excitation and then use that in finding an H( )ω  that describes the 

r
X t( )  response

vector. In particular, using an excitation that consists of only one harmonic
component F t el

i t( ) = ω  in Eq. 8.24 gives

˙̇ ( ) ˙ ( ) ( )
ˆ

Z t Z t Z t
m

ej j j j j j
lj

jj

i t+ + =2 2ζ ω ω
θ ω

and the fact that the response is defined to be Z tj ( ) = ˆ ( )H jl ω ei tω  gives the ( , )j l
element of the harmonic transfer matrix as

ˆ ( )
ˆ ( )

H
m i

jl
lj

jj j j j

ω
θ

ω ω ζ ω ω
=

− +2 2 2

Alternatively, this can be written in matrix form as

ˆ ( ) ˆ [ ]H m Iω ω ω= − +− −1 2 1λλ ββ θθi T (8.40)
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in which the inverse operations are essentially trivial, because they are for
diagonal matrices. One can now use Eq. 8.20 to find the 

r
X t( )  responses to the

single harmonic excitation component, thereby obtaining the H( )ω  matrix as

H H m I( ) ˆ ( ) ˆ [ ]ω ω ω ω= = − +− −θθ θθ θθ λλ ββ θθT Ti1 2 1 (8.41)

One can also derive the H( )ω  matrix without using the modal equations.
In particular, one can take the Fourier transform of Eq. 8.13, giving

[ ] ˜ ( ) ˜( )k m c− + =ω ω ω ω2 i X F
r r

then solve this equation for

˜ ( ) [ ] ˜( )
r r
X i Fω ω ω ω= − + −k m c2 1

Comparing this with Eq. 8.4 shows that

H k m c( ) [ ]ω ω ω= − + −2 1i (8.42)

A little matrix manipulation shows that Eqs. 8.41 and 8.42 are exactly equivalent.
In fact, Eq. 8.41 can be considered the version of Eq. 8.42 that results from using
eigenanalysis to simplify the problem of inverting the matrix. In Eq. 8.41 the
inversion is an almost trivial operation inasmuch as the matrix is diagonal,
whereas the inversion in Eq. 8.42 is of a general square matrix and will generally
be done numerically unless the dimension n is quite small. Use of Eq. 8.41,
however, involves significant computation in the determination of θθ and λλ  from
eigenanalysis. If one wants H( )ω  for only a single frequency, there is no
particular advantage of one approach over the other. In general, though, one
wants to know H( )ω  for many frequencies, and in this situation Eq. 8.41 is more
efficient because the eigenanalysis needs to be performed only once, whereas the
matrix to be inverted in Eq. 8.42 is different for each frequency value. If n is
sufficiently small, one can perform the inversion in Eq. 8.42 analytically as a
function of ω , and this is a very practical approach to solving the problem.

There is one major advantage to Eq. 8.42, as compared with Eq. 8.41;
namely, Eq. 8.42 does not require the existence of uncoupled modes. Thus, one
can use this approach for almost any m, c, and k matrices. Exceptions do exist,
such as when ω  is equal to a modal frequency of m k−1  and c is such that it gives
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no damping in that particular mode; but these pathological cases are not of great
practical interest.

One should note that Eq. 8.42 also gives us an alternative method for
finding the matrix h( )t  of impulse response functions. In particular, the inverse
Fourier transform of Eq. 8.42 gives

h k m c( ) [ ]t i e di t= − + −
−∞

∞

∫1
2

2 1

π
ω ω ωω (8.43)

If the system of interest has uncoupled modes, then Eq. 8.43 will generally not be
as efficient as the procedure in Section 8.4; however, Eq. 8.43 does provide a
possible method for finding h( )t  for a system that does not have uncoupled
modes. A more commonly used alternative method will be presented in Section
8.6.

In Section 8.4, we use the properties of the impulse response functions to
show that terms involving the interaction of modes often contribute much less to
response covariance than do terms involving only a single mode. Consideration
of the harmonic transfer functions confirms this result and illustrates it in a rather
graphic way. As in deriving Eqs. 8.36–8.38, we limit our attention to the special
case of a stationary white noise excitation with KFF t s( , ) = 2 0π δS ( )t s− . The
autospectral density of the response from Eq. 8.11 is then given by

S H S H

m I S I m

XX
T

T Ti i

( ) ( ) ( )

            ˆ [ ] [ ] ˆ

*ω ω ω

ω ω ω ω

=

= − + − −− − − −
0

1 2 1
0

2 1 1θθ λλ ββ θθ θθ λλ ββ θθ

in which the final form has been obtained by use of Eq. 8.41. Using the notation
λ ωjj j= ( )2  and β ζ ωjj j j= 2  then allows us to write the frequency domain
equivalent of Eq. 8.36 as

S S
w w

m mX X jr r r r r r r lr
r

n

r

n

r

n

r

n r r

r r r r r r r r
j l

( ) [ ]
( ) ( )

ˆ ˆ
ω θ θ θ θ

ω ω

λ λ
=

−

====
∑∑∑∑ 1 2 1 2 3 3 4 4

4321

1 4

1 1 4 4 1 1 4 4

0
1111

in which

w
i

ir
r r

r r r r r

r
r

1

1 1

1 1 1 1 1

1
1

2

2

2

1

1 2( )ω
λ

λ ω ω β

ω

ω
ζ

ω
ω

=
− +

= − +

















−
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Note that the wr ( )ω  functions have the form of the harmonic transfer function
for an SDF system, because they result from the modal harmonic responses.
When damping is small, the absolute values of these functions have very narrow
peaks, as was shown in Figure 6.6. When ωr1

 and ωr4
 are not nearly equal, as

illustrated in Fig. 8.2, the product of wr1 ( )ω  and wr4 ( )−ω  must generally be
very small in comparison with | ( )wr1 ω | 2 and | ( )wr4 ω | 2. Only if ω ωr r1 4−  is of
the order of the modal damping will the peaks overlap to such an extent that the
contribution from w wr r1 4( ) ( )ω ω−  will be significant. This confirms our finding
in Section 8.4 that if the damping in the system is small and the modal
frequencies are well separated, then the contributions of “cross-modal” terms are
much smaller than contributions from single modes.

********************************************************************************************

Example 8.8: Find the H( )ω  harmonic transfer matrix for the 2DF system of

Example 8.5 with

m k c=








 = − ×

− × ×











 =

−

−











⋅1000 0

0 500
10 5 10

5 10 5 10

1000 500

500 500

6 5

5 5
kg,     

N
m

N s
m

,     

and investigate the pole locations for H( )ω .

From the results in Examples 8.2 and 8.5, we have

θθ == λλ ==
1 1

1 414 1 414

292 9 0

0 1707
2

. .
,       

.

.−



















(rad/s)

Figure 8.2 Cross-modal contributions to autospectral density.

ωr1
ωr4

| wr1

2 (ω) | | wr4

2 (ω) |

ω

| wω r1
(ω)wω r4

(ω) |
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and this choice of θθ gives

ˆ
.

.
m == ββ ==

2000 0

0 2000

0 2929 0

0 1 707



















kg,       rad/s

Thus, we can obtain the harmonic transfer matrix from Eq. 8.41 as

H m( ) ˆ . .

.
ω ω ω

ω ω
= − +

− +













−
−

θθ θθ1
2

2

1
292 9 0 2929 0

0 1707 1 707

i

i

T

The components are

H
H

i i
11

22
4

2

4

22
5 10

292 9 0 2929

5 10

1707 1 707
( )

( )

. . .
ω

ω

ω ω ω ω
= =

×

− +
+

×

− +

− −

and

H H
i i

12 21

4

2

4

2
7 071 10

292 9 0 2929

7 071 10

1707 1 707
( ) ( )

.

. .

.

. .
ω ω

ω ω ω ω
= =

×

− +
−

×

− +

− −

Alternatively, one can use Eq. 8.42 without eigenanalysis to find

H( ) . ( )

. ( ) . ( )

        
( )

ω ω ω ω

ω ω ω

ω ω ω

ω ω ω

= − + − +

− + − +













= − + +

+ − +













−
10 1000 1000 0 5 10 1000

0 5 10 1000 0 5 10 1000 1000

1 1000 1000

1000 2 1000

6 2 6

6 6 2

1

2

2

i i

i i

D
i i

i i

in which the denominator is D i i= − − + + ×1000 2 2000 5 1000 5 104 3 2 5( . )ω ω ω ω ,

or D i i= − + − +1000 292 9 0 2929 1707 1 7072 2( . . ) ( . )ω ω ω ω . The reader can

confirm that the two versions of H( )ω  are identical.

Recall that one could choose to evaluate the h( )t  impulse response function

matrix by using the inverse Fourier transform of H( )ω . To do this, one would

probably use the calculus of residues, giving the integral as a sum of terms

coming from the poles of H( )ω ; that is, from the values of complex ω  at which

H( )ω  is infinite. Obviously these pole locations are the solutions of D = 0 . The

four pole locations can be found by solving the two complex quadratic equations

ω ω2 0 2929 292 9 0− − =. .i  and ω ω2 1 707 1707 0− − =. i . The solutions are

± +17 11 0 1465. . i  and ± +41 31 0 8535. . i . These values are a particular example

of the general relationship that the poles of H( )ω  are located at

± −ω ζj j[ (1 ) ] /2 1 2 +i j jζ ω . It is observed that the real values of the pole

locations are the damped natural frequencies of the system, and the imaginary

values are one-half the β j  modal damping values. The fact that the imaginary

parts are always positive is necessary in order that the system satisfy the

causality condition of h( )t = 0  for t < 0 .

********************************************************************************************
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Example 8.9: Find the autospectral density matrix for the stationary response of

the system of Examples 8.5, 8.6, and 8.8 with stationary, mean-zero, white noise

base acceleration with S0 = 0.1 (m/s )/(rad/s)2 .

The autospectral density matrix of the 
r
F t( )  excitation process is

SFF S
m m m

m m m
S( )

.
ω =











= ×

× ×











0

11
2

11 22

11 22 22
2 0

6 5

5 5
10 5 10

5 10 2 5 10

so using H( )ω  from Example 8.8 gives the S SXX FF T( ) ( ) ( ) ( )*ω ω ω ω= H H
response autospectral density from Eq. 8.11 as

S

D

i

i
0
2

6
4 2 6 4 3 2 6

4 3 2 6 4 2 6
10 2998 2 25 10 0 5 3497 3 10

0 5 3497 3 10 3996 4 10
( ) . .

.

ω ω ω ω ω

ω ω ω ω ω

− + × + − + ×

+ − + × − + ×













in which D i i= − − + + ×1000 2 2000 5 1000 5 104 3 2 5( . )ω ω ω ω , as given in

Example 8.8. Note that the value of E X( )1
2  found in Example 8.6 could also be

evaluated from the integral of SXX ( )ω  from −∞ to ∞.

********************************************************************************************

Example 8.10: Find the H( )ω  harmonic transfer matrix for the 2DF system of

Example 8.3 with

m k c=








 =

−

−









 =

−

−











⋅1000 0

0 500

1000 500

500 500

2 5 2 0

2 0 2 0
kg,     

kN
m

kN s
m

,     
. .

. .

We know that this system does not have uncoupled modes, so we use Eq. 8.42

to obtain

H k m c( ) [ ]

         .

. .

         

ω ω ω

ω ω ω

ω ω ω

ω ω ω

ω ω ω

= − +

= + − − −

− − + −













= + − +

+ + −













−

−

2 1

2

2

1

2

2

1000 1000 2 5 500 2

500 2 500 2 0 0 5

1 1000 4 1000 4

1000 4 2000 5 2

i

i i

i i

D
i i

i i

in which D i i= × + − − +1000 5 10 2500 2002 6 55 2 3 4( . )ω ω ω ω .

Note that the h( )t  impulse response function matrix can now be found as the

inverse Fourier transform of H( )ω . Solving D = 0  gives the location of the four

poles of H( )ω  as ω = ± +17 12 0 2106. . i  and ω = ± +41 20 3 039. . i , and the

inverse Fourier transform integral can be evaluated by the calculus of residues.

Rather than performing this operation, we will derive the impulse response

functions for this system by an alternative method in Example 8.14.

********************************************************************************************
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8.6 State-Space Formulation of Equations of Motion
We will now introduce a formulation that can be used for the MDF system but
that can also be used for more general problems. In particular, it is possible to
write the equations of motion for any linear system of order nY  as a set of nY
first-order differential equations, or a single first-order differential equation for a
vector with nY  components:

A B
r r r˙
( ) ( ) ( )Y t Y t Q t+ = (8.44)

in which 
r
Y t( )  contains only expressions describing the response, A and B are

matrices determined from the coefficients in the original equations of motion,
and the 

r
Q t( )  vector involves only excitation terms in the original equations of

motion. The 
r
Y t( )  vector is called the state vector, and its components are called

state variables. Knowledge of 
r
Y ( )t0  for some particular time t0  gives a

complete set of initial conditions for finding a unique solution for 
r
Y t( )  for t t> 0 .

For a problem in which we begin with a coupled set of equations of motion
that involve J variables { ( ), , ( )}X t X tJ1 L  with derivatives up to order n j  in the
variable X tj ( ) , the order of the system, and the dimension of the arrays in Eq.
8.46, will be

n nY j
j

J

=
=
∑

1

(8.45)

In this case, the components of the state vector 
r
Y t( )  will generally be taken as

X tj ( )  and its first n j −1 derivatives, for j J=1, ,L . For example, the MDF
system of Eq. 8.13 with matrices of dimension n n×  is of order n nY = 2 , and the
state variables are usually taken as the components of 

r
X t( )  and 

ṙ
X ( )t : 

r
Y tT ( ) =

[ ( ),
r
XT t

ṙ
X T t( )] . One way of converting Eq. 8.13 into the form of Eq. 8.44 is to

rewrite it as 
ṙ̇
X ( )t + −m c1

ṙ
X ( ) ( ) ( )t t tX F+ =− −m k m1 1

r r
 and put this into the

second “row” of Eq. 8.44, along with the trivial equation 
ṙ
X ( )t −

ṙ
X ( )t =

r
0  in the

top row, giving

A I
I

I
B

I

m k m c m
= =









 =

−







 =









− − −2 1 1 1

0
n

n

n

n Q t
F t

0

0

0
,       ,       ( )

( )

r
r

r

in which I j  denotes the j j×  identity matrix. Note that each “element” shown in
A  and B is a submatrix of dimension n n×  and each “element” of 

r
Q t( )  is a

vector of dimension n. In general, though, the choice of A , B, and 
r
Q t( )  is not

unique, and there is some advantage in using the alternative form of
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A
k

m
B

k

k c
=

−







 =









 =











0

0

0
,       ,       ( )

( )

r
r

rQ t
F t

0
(8.46)

in which both A  and B  are symmetric. The mathematical advantages of
symmetry will be pursued in solving problems. The state-space formulation of
the MDF problem is commonly called the Foss method.

********************************************************************************************

Example 8.11: Find definitions of 
r
Y t( ) , A , B, and 

r
Q t( )  such that Eq. 8.44

describes the system with the equation of motion

a
d X t

dt
F tj

j

j
j

n ( )
( )

=
∑ =

0

We note that the order of the system is n , and as suggested, we take the state

variables to be X t( )  and its first n −1 derivatives, so

r
LY t X t X t X t

d X t

dt

n

n

T

( ) ( ), ˙( ), ˙̇ ( ), ,
( )

=












−

−

1

1

The original equation of motion then relates ˙ ( )Yn t  to the components of 
r
Y t( )

and the excitation F t( ) . The other n −1 scalar equations come from the fact that

the derivative of each of the other state variables is itself a state variable:

Ẏ j t( ) =  Y tj+1( )  for j n= −1 1, ,L . Thus, the most obvious way to obtain Eq. 8.44

for the equation of motion is to choose

A I B= =

−

−

−

























=





















−

n

n n n

n

n

n
a

a

a

a

a

a

a

a

Q t
a

F t

,       ,       ( )

( )

0 1 0 0

0 0 1

0

0 0 0 1

1

0

0

0
0 1 2 1

L

O M

M O O O

L

L

r
M

An alternative choice with symmetric A  and B matrices is

A B=

−

− −

− − −























=










− − − −

− −

0 0 0

0 0

0

0 0 0

0 0 0

0 0

0

0

0

0 1

0 3 2

0

0 1

0 3 2

0 1 2 1

L

L

M O M M M

L

L

L

O

M O M M

L

L

a

a a

a a a

a

a

a a

a a a

a a a a
n n

n

n n

n n

,     














with 
r

LQ t F t T( ) [ , , , ( )]= 0 0 .

********************************************************************************************
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Example 8.12: Define terms

such that the oscillator

shown here is described by

Eq. 8.44.

First we write the differential

equations of motion in terms

of the variables X t1( )  and

X t2( )  shown in the accompanying sketch. One such form is

m X t c X t k X t k X t F t˙̇ ( ) ˙ ( ) ( ) ( ) ( )1 1 1 1 1 2 2+ + + =
and

k X t c X t X t2 2 2 1 2( ) [ ˙ ( ) ˙ ( )]= −
Because these equations involve up to the second derivative of X t1( )  but only

the first derivative of X t2( ) , we can define the state vector as 
r
Y t( ) =

[ ( ), ( ), ( )]˙X t X t tX T
1 2 1 . The first equation can then be written as

m Y t c Y t k Y t k Y t F t˙ ( ) ( ) ( ) ( ) ( )3 1 3 1 1 2 2+ + + =  and the second equation as k Y t2 2( ) =
c Y t tY2 3 2[ ( ) ( )]˙− . The third equation that will be needed is the general

relationship that ˙ ( ) ( )Y t Y t1 3=  for this state vector. Putting these three equations

directly into the standard form of Eq. 8.44 gives

A I B= =

−

−

















=

















3 2 2

1 2 1

0 0 1

0 1
1

0

0,       /

/ / /

,       ( )

( )

k c

k m k m c m

Q t
m

F t

r

A symmetric alternative form is

A B=

−

−

















= −

















=

















k

k

m

k

k c k

k k c

Q t

F t

1

2

1

2
2

2 2

1 2 1

0 0

0 0

0 0

0 0

0

0

0,     / ,     ( )

( )

r

********************************************************************************************

The fact that Eq. 8.44 involves only first-order derivatives allows its
solution to be easily written in terms of the matrix exponential function. In
particular, the homogeneous solution of Eq. 8.44 can be written asr
X t t( ) exp[ ]= − −A B1  in which the matrix exponential is defined as

exp( )
!

A A=
=

∞

∑ 1

0
j

j

j

(8.47)

for any square matrix A, and with A0  defined to be the identity matrix of the
same dimension as A, and A A Aj j= −1 for j ≥1. This relationship gives the

X1( t)

X2( t)

F(t)k1

k2

m

c1

c2
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derivative with respect to t of exp[ ]− −t A B1  as − −− −A B A B1 1exp[ ]t , so the
solution of Eq. 8.44 has the same form as for a scalar equation. Similarly, the
general inhomogeneous solution can be written as the convolution integral

r r
Y t t s Q s ds

t
( ) exp[ ( ) ] ( )= − − − −

−∞∫ A B A1 1 (8.48)

Although the solution in Eq. 8.48 is mathematically correct, it is not very
convenient for numerical computations. Simplified numerical procedures result
from diagonalizing A B−1  by the use of eigenanalysis. We will use the notation
of λλ  and θθ for the matrices of eigenvalues and eigenvectors of A B−1 , just as we
did for m k−1  in Section 8.3. Thus, we have A B− =1 θθ θθλλ  or A B− −=1 1θθλλ θθ . We
can readily verify that ( )A B− −=1 1j jθθλλ θθ  for any jth power of the matrix, and
this establishes that exp[ ] exp[ ]− = −− −t tA B1 1θθ λλ θθ . Thus, the general solution in
Eq. 8.48 can be written as

r r
Y t t s Q s ds

t
( ) exp[ ( ) ] ( )= − − −

−∞∫ θθ λλ θθ−−1 1A (8.49)

in which exp[ ( ) ]− −t s λλ  is a diagonal matrix involving only the scalar
exponential function. In particular, exp[ ( ) ]− −t s jjλ  is the ( , )j j  element of this
diagonal matrix exponential. Unfortunately, the eigenvalues and eigenvectors of
A B−1  are generally not real, so one must perform complex mathematics.

The form in Eq. 8.49 is much simpler than that in Eq. 8.48, inasmuch as the
exponential function is now evaluated only for scalar quantities. It involves the
inverse of the θθ matrix, however, and calculating inverses is not easy for large
matrices, especially when they are complex. One solution to this problem is to
perform the eigenanalysis for ( ) ( )A B B A− −=1 1T T T  finding the matrix ηη such
that ( )A B−− ηη == ηηλλ1 T , because ( )A B−1 T  and A B−1  have the same eigenvalues.
One then finds that ηη θθT  is diagonal, so it is easy to calculate the inverse as
θθ == ηη θθ ηη− −1 1( )T T . The penalty in using this technique is the cost of performing a
second eigenanalysis. For the special case in which A and B are symmetric, there
exists a much simpler approach. In particular, we follow exactly the same
approach as we used for the eigenanalysis of m k−1  to show that Â = θθ θθT A  is a
diagonal matrix. Simple algebra then shows that θθ θθ− −=1 1Â AT . Thus, in this
situation one needs only to evaluate the diagonal matrix Â = θθ θθT A  by matrix
multiplication, invert that diagonal matrix, and use matrix multiplication to
evaluate θθ θθ− −=1 1Â AT . Using this symmetric form in Eq. 8.49 gives
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r r
Y t t s Q s dsT

t
( ) exp[ ( ) ] ˆ ( )= − − −

−∞∫ θθ λλ θθA 1 (8.50)

The ensuing equations will be written using the θθ−1 notation, but the simplified
ways of calculating this matrix can be very useful in solving problems. In
particular, it should be kept in mind that using the symmetric form of A and B, as
shown in Eq. 8.46, allows simple evaluation of θθ−1 for any MDF system.

There are several possible approaches to performing the stochastic analysis
of Eq. 8.44, just as there were in Sections 8.4 and 8.5 for the equations
considered there. One approach is to use Eq. 8.49 only in finding the h( )t  and
H( )ω  matrices, for use in the equations of Section 8.1. For example, we can say
that 

r
Y ( ) [ ( ), , ( )]t h t h tl n l T

Y= 1 L  when the excitation is a single Dirac delta
function pulse in the Q tl ( )  component of excitation, and Eqs. 8.48 and 8.49 then
give

h A B A A( ) exp[ ] ( ) exp[ ] ( )t t U t t U t= − = −− − − −1 1 1 1θθ λλ θθ (8.51)

Similarly, 
r
Y ( ) [ ( ), , ( )]t H H el n l T i t

Y= 1 ω ω ωL  when the excitation is a single
harmonic term in the Q tl ( )  component of excitation, and Eq. 8.44 directly gives
[ ] ( )i nYω ωA B H I+ = , so

H A B I A B A I A( ) [ ] [ ] [ ]ω ω ω ω= + = + +− − − − − − −i i i1 1 1 1 1 1 1== θθ λλ θθ (8.52)

The alternative of direct stochastic analysis of Eq. 8.48 or 8.49 gives the
mean-value vector as

r r

r

µ µ

µ

Y Q

t

Q

t

t t s s ds

t s s ds

( ) exp[ ( ) ] ( )

         exp[ ( ) ] ( )

= − −

= − −

− −
−∞

− −
−∞

∫

∫

A B A

A

1 1

1 1θθ λλ θθ

(8.53)

and the autocorrelation matrix as

φφ φφYY QQ
T

ts

T T

t s t u u v

s v du dv

( , ) exp[ ( ) ] ( , ) ( )

  exp[ ( ) ( ) ]

= − − ×

− −

− − −
−∞−∞

−

∫∫ A B A A

B A

1 1 1

1
(8.54)
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or

φφ θθ λλ θθ φφ

θθ λλ θθ

YY QQ

ts
T

T T

t s t u u v

s v du dv

( , ) exp[ ( ) ] ( , ) ( )

( ) exp[ ( ) ]

= − − ×

− −

− −
−∞−∞

−

−

∫∫ 1 1 1

1

A A
(8.55)

Similarly, the autocovariance is

K A K AYY QQ

ts
T

T T

t s t u u v

s v du dv

( , ) exp[ ( ) ] ( , ) ( )

( ) exp[ ( ) ]

= − − ×

− −

− −
−∞−∞

−

−

∫∫ θθ λλ θθ

θθ λλ θθ

1 1 1

1
(8.56)

These expressions all agree with what one would obtain from Eqs. 8.6–8.8 in
Section 8.1. The autospectral density matrix for covariant stationary response is
most easily obtained from Eq. 8.11 as

S A B S A B

I A S A I

YY QQ
T T

QQ
T T T

i i

i i

( ) [ ] ( )[ ]

[ ] ( ) ( ) ( ) [ ]* *

ω ω ω ω

ω ω ω

= + − +

= + − +

− −

− − − − − −

1 1

1 1 1 1 1 1θθ λλ θθ θθ λλ θθ∗∗
(8.57)

Let us now consider the response after given initial conditions. As
previously noted, 

r
Y ( )0  gives the complete initial condition vector for the system.

In addition, the initial value response matrix g( )t  of Eq. 8.12 is g h A( ) ( )t t≡ .
Thus, A and the h( )t  matrix described by Eq. 8.51 give all the system properties
involved in using Eq. 8.12:

r r r
Y t t t Y t t s Q s ds

t

t
( ) exp[ ( ) ] ( ) exp[ ( ) ] (= − − + − − )− − −∫0

1
0

1 1

0
A B A B A (8.58)

Direct stochastic analysis of this equation gives

r r r
µ µ µY Y Qt

t
t t t t t s s ds( ) exp[ ( ) ] ( ) exp[ ( ) ] (= − − + − − )− − −∫0

1
0

1 1

0
A B A B A (8.59)

and if the 
r
Q s( )  excitation for s t> 0  is independent of the Y t( )0  initial condition,

then the covariance reduces to
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K A B K B A

A B A K A B A

YY YY
T T

QQ
T T T

t

t

t

s

t s t t t t s t

t u u v s v du dv

( , ) exp[ ( ) ] ( , ) exp[ ( ) ( ) ]

exp[ ( ) ] ( , ) ( ) exp[ ( ) ( ) ]

= − − − −

+ − − − −

− −

− − − −∫∫

0
1

0 0 0
1

1 1 1 1

00

(8.60)

The corresponding expressions for the conditional mean and covariance,
analogous to Eqs. 5.57 and 5.58 for the scalar problem, are

E Y t Y t w t t w

t s E Q s Y t w ds
t

t

[ ( ) | ( ) ] exp[ ( ) ]

exp[ ( ) ] [ ( ) | ( ) ]

r r r r

r r r

0 0
1

1 1
0

0

= = − − +

− − =

−

− −∫

A B

A B A
(8.61)

and

K A B A

K A B A

[ ( ), ( ) | ( ) ] exp[ ( ) ]

[ ( ), ( ) | ( ) ]( ) exp[ ( ) ( ) ]

r r r r

r r r r

Y t Y s Y t w t u

Q u Q v Y t w s v du dv

t

t

t

s

T T T

0
1 1

0
1 1

00
= = − − ×

= − −

− −

− −

∫∫

(8.62)

For the special case of a delta-correlated excitation, of course, many of
these relationships are somewhat simplified. For example, if we use the notation
that K SQQ u v u u v( , ) ( ) ( )= −2 0π δ , then the autocovariance of the response can
be written as a single, rather than double, integral as

K A B A S A

B A

YY
T

t s

T T

t s t u u

s u du

( , ) exp[ ( ) ] ( )( )

exp[ ( ) ( ) ]

min( , )
= − − ×

− −

− − −
−∞

−

∫2 1 1
0

1

1

π
(8.63)

or

K A B K B A

A B A S A B A

YY YY
T T

T T T
t

t s

t s t t t t s t

t u u s u du

( , ) exp[ ( ) ] ( , ) exp[ ( ) ( ) ]

exp[ ( ) ] ( ) ( ) exp[ ( ) ( ) ]
min( , )

= − − − −

+ − − − −

− −

− − − −∫

0
1

0 0 0
1

1 1
0

1 12
0

π

(8.64)

and the conditional mean and conditional variance expressions are

E Y t Y t w t t w

t s s dsQt

t

[ ( ) | ( ) ] exp[ ( ) ]

exp[ ( ) ] ( )

r r r r

r

0 0
1

1 1

0

= = − − +

− −

−

− −∫

A B

A B A µ
(8.65)
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and

Var[ ( ), ( ) | ( ) ] exp[ ( ) ]

( ) ( ) exp[ ( ) ( ) ]

r r r r
Y t Y s Y t w t u

u s u du

t

t

T T T

0 1 1

0 1 1

2
0

= = − − ×

− −

− −

− −

∫π A B A

S A B A

(8.66)

Each of these expressions can be diagonalized by use of θθ and θθ−1.

********************************************************************************************

Example 8.13: Find the state-space formulations of the h( )t  impulse response

matrix and the H( )ω  harmonic transfer matrix for the 2DF system of Examples

8.5 and 8.8 using the state-space vector 
r
Y t X t X t X t X t T( ) [ ( ), ( ), ˙ ( ), ˙ ( )]= 1 2 1 2 .

Using Eq. 8.46 and the m , c , and k  matrices from Example 8.5, we find that

A =

− ×

× − ×





















10 5 10 0 0

5 10 5 10 0 0

0 0 1000 0

0 0 0 500

6 5

5 5

and

B =

− ×

− × ×

− × −

− × × −





















0 0 10 5 10

0 0 5 10 5 10

10 5 10 1000 500

5 10 5 10 500 500

6 5

5 5

6 5

5 5

Eigenanalysis of A B−1  yields

θθ =

− − − + − + − −

− − − + − − − +

− −





















0 3536 41 32 0 3536 41 32 0 3536 17 11 0 3536 17 11

0 5 58 43 0 5 58 43 0 5 24 20 0 5 24 20

707 1 707 1 707 1 707 1

1000 1000 1000 1000

. . . . . . . .

. . . . . . . .

. . . .

i i i i

i i i i

and the nonzero elements of λλ  and Â  are λ11 0 1464 17 11= −. . i , λ λ22 11= * ,

λ33 0 8536 41 31= −. . i , λ λ44 33= * , Â 11 9 72 000 10 1 711 10= × − ×. . i , Â 22= Â 11
* ,

Â 33 999 4 131= × − ×1 10 109 7. . i , and Â 44 = Â 33
* . Note that the eigenvalues of

A B−1  are ± − +i j j j jω ζ ζ ω[ ( ) ] /1 2 1 2 . That is, the imaginary parts of the

eigenvalues are the same as the damped frequencies of the uncoupled modes,

and the real parts are the same as the corresponding elements of the ββ  modal

damping matrix. This, then, shows that the absolute values of the eigenvalues

are like undamped natural frequencies. These general relationships will be found

to be true for any MDF system with uncoupled modes.
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The impulse response matrix can now be obtained from h( )t =
θθ θθλλe U tt− − − =1 1A ( ) θθ λλe t− Â −1θθT U t( ) , in which the nonzero elements of e t− λλ

are given by e t jj− λ  on the diagonal. The harmonic transfer matrix can be

obtained from H I A I( ) [ ] [ ]ω ω ω= + = +− − − −θθ λλ θθ θθ λλi i1 1 1 1 Â −1θθT , in which the

nonzero elements of [ ]iω I+ −λλ 1 are given by 1/( )i jjω λ+  on the diagonal.

For example, the X t1( )  response to a Dirac delta function in Q t F t3 1( ) ( )=  is

h t i e i e

i e i e U t

i t i t

i t i t

13
0 1464 17 11 5 0 1464 17 11

0 8536 41 31 0 8536 41 31 6

14 61 14 61 10

6 052 6 052 10

( ) [ . .

. . ] ( )

( . . ) ( . . )

( . . ) ( . . )

= − ×

− + ×

− − − − +

− + − − −

or

h t e t e t U tt t
13

0 1464 0 8536 629 22 17 11 12 10 41 31 10( ) [ . sin( . ) . sin( . )] ( ). .= + ×− − −

The corresponding harmonic transfer term giving the magnitude of the X t1( )
response to a unit amplitude harmonic function in Q t F t3 1( ) ( )=  is

H
i

i i
13

2

5 2 3 4
1 0 001 0 001

5 10 1000 2000 5 2
( )

. .

.
ω

ω ω

ω ω ω ω
=

+ −

× + − − +

These expressions are in perfect agreement with the results in Examples 8.5 and

8.8 for the X t1( )  response to given Dirac delta and unit harmonic functions for

F t1( ) . For this matrix of dimension 4 4× , it is also feasible to obtain the

expressions for H( )ω  by analytically inverting [ ]iω A B+  without using

eigenanalysis. This approach is generally not feasible, though, if the dimension of

the problem is not quite small.

********************************************************************************************

Example 8.14: Find the state-space formulations of the h( )t  impulse response

matrix and the H( )ω  harmonic transfer matrix for the 2DF system of Examples

8.3 and 8.10 using the state-space vector 
r
Y t X t X t X t X t T( ) [ ( ), ( ), ˙ ( ), ˙ ( )]= 1 2 1 2 .

The approach is the same as in Example 8.13, but some of the results are

different because this system does not have uncoupled modes. From Eq. 8.46

and the m , c , and k  matrices from Exercise 8.3, we find that

 A =

− ×

× − ×





















10 5 10 0 0

5 10 5 10 0 0

0 0 1000 0

0 0 0 500

6 5

5 5

and

B =

− ×

− × ×

− × −

− × × −





















0 0 10 5 10

0 0 5 10 5 10

10 5 10 2500 2000

5 10 5 10 2000 2000

6 5

5 5

6 5

5 5
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Eigenanalysis of A B−1  yields

θθ =

− + − +

− + − − − − − +

− − − + + −









1 994 16 932 1 994 16 932 0 2396 41 35 0 2396 41 35

1 781 24 14 1 781 24 14 0 7189 58 42 0 7189 58 42

703 6 30 68 703 6 30 68 707 7 12 81 707 7 12 81

1000 1000 1000 1000

. . . . . . . .

. . . . . . . .

. . . . . . . .

i i i i

i i i i

i i i i












and the nonzero elements of λλ  and Â  are λ11 3 039 41 20= +. . i , λ λ22 11= * ,

λ33 0 2106 17 12= −. . i , λ λ44 33= * , Â 11= × ×1.972 10 +2.320 109 8i , Â 22= Â 11
* ,

Â 33= × ×2.001 10 +1.169 109 7i , and Â 44 = Â 33
* .

Now the impulse response function is given by h( )t = θθ θθλλe U tt− − − =1 1A ( )
θθ λλe t− Â −1θθT U t( ) . For example, the X t1( )  response to a Dirac delta function in

Q t F t3 1( ) ( )=  is

h t i e

i e i e

i e U t

i t

i t i t

i t

13
3 039 41 20

3 039 41 20 0 2106 17 12

0 2106 17 12 7

2 641 60 42

2 641 60 42 2 641 146 3

2 641 146 3 10

( ) [ ( . . )

       ( . . ) ( . . )

     ( . . ) ] ( )

( . . )

( . . ) ( . . )

( . . )

= − + −

− + + +

− ×

− +

− − − −

− + −

or

h t e t e t

e t e t U t

t t

t t

13
7 0 2106 3 039

5 0 2106 5 3 039

5 282 10 17 12 41 20

2 925 10 17 12 1 208 10 41 20

( ) . [ cos( . ) cos( . )]

   . sin( . ) . sin( . )] ( )

. .

. .

= × − +

× + ×

− − −

− − − −

Note the presence of cosine terms in these impulse response functions. Such

terms never appear in the impulse response functions for a system with

uncoupled modes, because they do not appear in the impulse response function

for an SDF system. The primary effect of a damping matrix that does not allow

the modes to be uncoupled is a change in phase of the motions. Note that the

imaginary parts of the eigenvalues play the role in the impulse response function

of the damped natural frequency ωd  in the SDF system and the real parts of the

eigenvalues are like ζ ω0  values. As when the system does have uncoupled

modes, the absolute values of the eigenvalues are like undamped natural

frequencies. In fact, one can show that they are precisely the square roots of the

eigenvalues of m k−1  for this problem.

The corresponding harmonic transfer function is given by H( )ω =
θθ λλ θθ[ ]iω I A+ =− − −1 1 1 θθ λλ[ ]iω I+ −1 Â−1θθT . The term giving the magnitude of the

X t1( )  response to a unit amplitude harmonic function in Q t F t3 1( ) ( )=  is

H
i

i i
13

2

5 2 3 4
1 0 004 0 001

5 10 2500 2002 6 5
( )

. .

.
ω

ω ω

ω ω ω ω
=

+ −

× + − − +

and

H
i

i i
14 5 2 3 4

1 0 004

5 10 2500 2002 6 5
( )

.

.
ω

ω

ω ω ω ω
=

+

× + − − +
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gives the magnitude of the X t1( )  response to a unit amplitude harmonic in

Q t F t4 2( ) ( )= . Again, these results are in perfect agreement with the results in

Example 8.10. One may also note that the poles of the harmonic response

function that were found in Example 8.10 are the same as i  times the

eigenvalues of A B−1 , emphasizing the similarity between the two approaches.

Note that there is considerable redundancy in the state-space formulation of the

eigenanalysis for an MDF system. In particular, the complex conjugates of the

eigenvalues and eigenvectors are also eigenvalues and eigenvectors,

respectively (unless the damping values are very large). This fact can be used in

reducing the amount of computation required (Igusa et al., 1984; Veletsos and

Ventura, 1986).

********************************************************************************************

Example 8.15: Find the autospectral density function and the mean-squared

value of the stationary { ( )}X t1  response of the system of Examples 8.3, 8.10,

and 8.14 when it is subjected to the mean-zero white noise base acceleration

excitation of Examples 8.6 and 8.9 with S0 0 1= .  (m/s )/(rad/s)2 .

From Eq. 8.46 we see that the excitation vector in the state-space formulation isr
Q ( )t = − ˙̇Y ( )[ , , , ]t m m T0 0 1 2 . The autospectral density matrix for this excitation is

then

SQQ S
m m m

m m m

S=





















=
×

× ×





















0
1
2

1 2

1 2 2
2

0 6 5

5 5

0 0 0 0

0 0 0 0

0 0

0 0

0 0 0 0

0 0 0 0

0 0 10 5 10

0 0 5 10 2 5 10.

and Eq. 8.11 gives S H SYY QQ( ) ( ) ( )ω ω ω= H* ( )T ω  for the H( )ω  determined in

Example 8.14. Substituting gives Eq. 8.57, and symmetry allows this also to be

rewritten as

S I A S A IYY
T

QQ
Ti i( ) [ ] ˆ ( ) ˆ [ ]* * * *ω ω ω ω= + − +− − − −θθ λλ θθ θθ λλ θθ1 1 1 1

The ( , )11  component of this expression is

[ ( )]
[ ]

( ) ˆ ˆ ( )

* *

* *
S

S
YY

j j j QQ j j j j j

j j j j j j j jjjjj i A A i
ω

θ θ θ θ

ω λ ω λ
11

1 1

1

4

1

4

1

4

1

4
1 2 1 2 3 3 4 4

1 1 1 1 4 4 4 44321

=
+ − +====

∑∑∑∑

which can be written as

[ ( )]
( . )

( . . )( . )
SYY

S
ω

ω ω

ω ω ω ω
11

4 2 6
0

4 2 4 4 2 6
2964 2 25 10

585 4 8 584 10 3376 2 912 10
=

− + ×

− + × − + ×

Although [ ( )]SYY ω 11 does have peaks in the vicinities of both natural

frequencies of the undamped system, the high-frequency peak is so small that it

is not very significant. As in Example 8.6, the insignificance of the higher mode is

exaggerated by the phase of the excitation components. The following sketches
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show the two peaks of the autospectral density for S0 0 1= . . Note, though, that

the vertical scale is greatly different in the two sketches.

The response covariance for this stationary, mean-zero problem can be found

from Eq. 8.63, which can be rewritten as

K A B A S A B AYY QQ
T T Tt t u u du( , ) exp[ ] ( ) exp[ ( ) ]= − −− − −

∞
−∫2 1 1 1

0
1π

or

K A S AYY
T

QQ
Tt t u u du( , ) exp[ ] ˆ ˆ exp[ ]= − −− −

∞

∫2 1 1
0

π θθ λλ θθ θθ λλ θθ

The ( , )11  component is then

E X t t

A A
e du

YY

j j j QQ j j j j j

j j j jjjjj

u

j j j

j j j j

( ) [ ( , )]

 
( )
ˆ ˆ

 
(

( )

1
2

11

1 1

1

4

3

4

3

4

1

4

0

1

2

2

1 2 1 2 3 3 4 4

1 1 4 44321

1 1 4 4

1 2 1

= =

=

====

− +∞

∑∑∑∑ ∫

K

S

S

π
θ θ θ θ

π
θ θ

λ λ

QQQQ j j j j j

j j j j j j j jjjjj A A

)
ˆ ˆ ( )

.2 3 3 4 4

1 1 4 4 1 1 4 44321

1

1

4

3

4

3

4

1

4
31 860 10

θ θ

λ λ+
= ×

====

−∑∑∑∑ m2

********************************************************************************************

Exercises
*****************************************************************
Response Modes and Impulse Response Functions
*****************************************************************
8.1 Let the vector process { ( )}

r
X t  be the response of a system with the equation

of motion
r r r˙̇
( )

. .

. .

˙
( ) ( )

( )

( )
X t X t X t

F t

F t
+

−

−









 +

−

−









 =











0 10 0 02

0 02 0 10

26 10

10 26
1

2

(a) Demonstrate that this system has uncoupled modes.
(b) Find the h( )t  impulse response function matrix.

10−3

0
16 18 20

[SYY (ω)]11
2 ×10−7

0
30 40 50

[SYY (ω)]11

ω rad/s ω rad/s
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*****************************************************************
8.2 Consider the 2DF system shown in Example 8.1 with m1 400= kg ,
m2 300= kg , k1 1200= N/m, k2 600= N/m, c1 100= ⋅N s/m, and c2 50= ⋅N s/m.
(a) Demonstrate that this system has uncoupled modes.
(b) Find the h( )t  impulse response function matrix.
*****************************************************************
8.3 Find the h( )t  impulse response function matrix for the 2DF system of
Example 8.4.
*****************************************************************
8.4 Consider the 2DF system shown in Example 8.1 with m m m1 2= = , k k1 2= ,
k k2 = , c c1 3= , and c c2 = , in which m, k, and c are scalar constants.
(a) Find the m, k, and c matrices such that this system is described by Eq. 8.13.
(b) Show that the system does not have uncoupled modes.
*****************************************************************
8.5 Consider a three-degree-of-freedom system for which the
mass matrix is m I= m 3, with m being a scalar constant and
I3  being the 3 3×  identity matrix. The modes are uncoupled
and the mode shapes, natural frequencies, and damping values
are given by

   [ , , ] ,                 [ , , ] ,                [ , , ]

( / ) ,       ( / ) ,       ( / )

 . ,                  . ,                  .

/ / /

3 5 6 2 0 1 1 3 2

2 3

0 05 0 05 0 05
1

1 2
2

1 2
3

1 2

1 2 3

T T T

k m k m k m

− −

= = =

= = =

ω ω ω

ζ ζ ζ
in which k is another scalar constant.
(a) Find the k stiffness matrix.
(b) Find the c damping matrix.
(c) On a sketch of the model, such as the one shown, indicate

the values of the individual springs and dashpots.
*****************************************************************
8.6 Consider a three-degree-of-freedom system for which the mass matrix is
m I= m 3, with m being a scalar constant and I3  being the 3 3×  identity matrix.
The modes are uncoupled and the mode shapes, natural frequencies, and damping
values are given by

  [ , , ] ,                 [ , , ] ,                [ , , ]

( / ) ,       ( / ) ,       ( / )

 . ,                  . ,                  .

/ / /

2 5 9 9 0 2 2 17 9

3 5

0 01 0 01 0 02
1

1 2
2

1 2
3

1 2

1 2 3

T T T

k m k m k m

−

= = =

= = =

ω ω ω

ζ ζ ζ
in which k is another scalar constant.

m

m

m
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(a) Find the k stiffness matrix.
(b) Find the c damping matrix.
(c) On a sketch of the model, such as the one shown in Exercise 8.5, indicate the

values of the individual springs and dashpots.

*****************************************************************

8.7 Let the stationary processes { ( )}X t1  and { ( )}X t2  represent the motions at
two different points in a complicated system. Let the correlation matrix for
{ ( )}X t1  and { ( )}X t2  be given by

RXX
TE X t X t

g g g g

g g g g
( ) [ ( ) ( )]

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
τ τ

τ τ τ τ

τ τ τ τ
≡ + =

+ −

− +











r r 2 2 2

2 2 4 2

in which g e bb( ) [cos( ) ( / ) sin( | |)]| |τ ω τ ω ω ττ= +−
0 0 0  for positive constants b

and ω0. Let { ( )}Y t  denote the relative motion between the two points:
Y t X t X t( ) ( ) ( )= −2 1 .
(a) Find the mean-squared value of Y t( ) .
(b) Find the R E X t Y tX Y˙ ( ) [ ˙ ( ) ( )]1 1τ τ≡ +  cross-correlation function.

*****************************************************************
Harmonic Transfer Functions
*****************************************************************
8.8 Consider the 2DF system of Exercise 8.1.
(a) Find the H( )ω  harmonic transfer function matrix.
(b) Show that H( )ω  has poles at ω  values of ± − +ω ζ ζ ωj j j ji[ ( ) ] /1 2 1 2 .

*****************************************************************
8.9 Consider the 2DF system of Exercise 8.2.
(a) Find the H( )ω  harmonic transfer function matrix.
(b) Show that H( )ω  has poles at ω  values of ± − +ω ζ ζ ωj j j ji[ ( ) ] /1 2 1 2 .

*****************************************************************
8.10 Consider the 2DF system of Example 8.4 and Exercise 8.3.
(a) Find the H( )ω  harmonic transfer function matrix.
(b) Show that H( )ω  has poles at ω  values of ± − +ω ζ ζ ωj j j ji[ ( ) ] /1 2 1 2 .

*****************************************************************
8.11 Consider the 2DF system of Exercise 8.4 with m =1 0.  kg, k = 50 kN/m, and
c = ⋅1 0.  N s/m.
(a) Find the H( )ω  harmonic transfer function matrix.
(b) Locate the poles of H( )ω , and use this information to identify appropriate

values of the modal parameters ω j  and ζ j .

*****************************************************************
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MDF Response
*****************************************************************
8.12 For the 2DF system of Exercises 8.1 and 8.8, let F t1 0( ) ≡  and { ( )}F t2  be a
stationary, mean-zero white noise with autospectral density of S0 10 0= . .
(a) Find the SX X1 1 ( )ω  autospectral density function for the { ( )}X t1  stationary

response component.
(b) Approximate the RX X1 1 ( )τ  autocorrelation function for the stationary

{ ( )}X t1  response component by treating the modal responses as though they
were independent.

(c) Approximate the E X[( ) ]1 2  mean-squared value for the stationary { ( )}X t1
response component by using the same simplification as in part (b).

*****************************************************************
8.13 For the 2DF system of Exercise 8.2, let { ( )}F t1  and { ( )}F t2  be independent
stationary white noise processes with mean-value vector and autospectral density
matrix of

r
µ ωF FF=









 =











⋅4

6

1 0 0

0 1 5
N,       

N s

rad

2
S ( )

.

.

(a) Find the 
r
µX  mean-value vector for the stationary response.

(b) Find the SX X2 2 ( )ω  autospectral density function for the { ( )}X t2  stationary
response component.

(c) Approximate the GX X2 2 ( )τ  autocovariance function for the stationary
{ ( )}X t2  response component by treating the modal responses as though they
were independent.

(d) Approximate the E X( )2
2  mean-squared value for the stationary { ( )}X t2

response component by using the same simplification as in part (b).
*****************************************************************
8.14 Consider the 2DF system of Examples 8.5 and 8.9, with an excitation
having F t2 0( ) ≡  and { ( )}F t1  being a stationary, mean-zero process with
autospectral density of SF F1 1 ( )ω = 10 18 20 0 5− − ⋅ω ωe . | | N s/rad .
Find the autospectral density of the stationary { ( )}X t1  response component, and
show a sketch of it.
*****************************************************************
8.15 Consider a 2DF linear system that has modes with natural circular
frequencies of ω 1 3=  rad/s  and ω 2 8=  rad/s  and damping values of ζ1 0 01= .
and ζ2 0 02= . . The excitation is a broadband Gaussian process. Analysis has
shown that the stationary modal responses are mean-zero and have standard
deviation values of σZ1 20=  mm and σZ2 10=  mm. The response of primary
interest is X t Z t Z t( ) ( ) ( )= +1 2 .
(a) Estimate the σ X  standard deviation of stationary response.
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(b) Estimate the σ Ẋ  standard deviation of velocity of stationary response.
(c) Approximate the rate of upcrossings of the level zero by the stationary

{ ( )}X t  process.
[Note: If you find that insufficient information is given, then use reasonable
approximations and explain your reasoning.]
*****************************************************************
8.16 A linear structure has been studied by modal analysis.  It has been
determined that only four modes contribute significantly to the dynamic
response. The undamped natural frequencies and damping ratios of these modes
are as given:

ω ω ω ω

ζ ζ ζ ζ
1 2 3 43 5 8 12

0 01 0 01 0 02 0 03

= = = =

= = = =

rad/s     rad/s     rad/s     rad/s

                                    1 2 3 4. . . .

The process { ( )}X t  represents a critical distortion in the structure, and it is
written as the sum of the four modal contributions: X t Y t Y t Y t( ) ( ) ( ) ( )= + + +1 2 3
Y t4 ( ) . The excitation is modeled as a broadband, zero-mean, Gaussian process,
and analysis of the dynamic response of the structure has given σY1 20=  mm,
σY2 10=  mm, σY3 2=  mm, and σY4 0 5= .  mm.
(a) Estimate the σ X  standard deviation of stationary response.
(b) Estimate the σ Ẋ  standard deviation of velocity of stationary response.
(c) Approximate the rate of upcrossings of the level zero by the stationary

{ ( )}X t  process.
[Note: If you find that insufficient information is given, then use reasonable
approximations and explain your reasoning.]
*****************************************************************
State-Space Formulation
*****************************************************************
8.17 Consider the 2DF system of Exercises 8.1 and 8.8.
(a) Find symmetric A and B matrices and the 

r
Q t( )  vector such that this system

is described by Eq. 8.44 with 
r
Y t X t X t X t X t T( ) [ ( ), ( ), ˙ ( ), ˙ ( )]= 1 2 1 2 .

(b) Verify that the eigenvalues of A B−1  are ± − +i j j j jω ζ ζ ω[ ( ) ]) /1 2 1 2 . That is,
show that the values λ ω ζ ζ ω= ± − +i j j j j[ ( ) ] /1 2 1 2  satisfy the eigenvalue
relationship | |A B I− − =1

4 0λ .
*****************************************************************
8.18 Consider the 2DF system of Exercises 8.2 and 8.9.
(a) Find symmetric A and B matrices and the 

r
Q t( )  vector such that this system

is described by Eq. 8.44 with 
r
Y t X t X t X t X t T( ) [ ( ), ( ), ˙ ( ), ˙ ( )]= 1 2 1 2 .

(b) Verify that the eigenvalues of A B−1  are ± − +i j j j jω ζ ζ ω[ ( ) ]) /1 2 1 2 . That is,
show that the values λ ω ζ ζ ω= ± − +i j j j j[ ( ) ] /1 2 1 2  satisfy the eigenvalue
relationship | |A B I− − =1

4 0λ .
*****************************************************************
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8.19 Consider the 2DF system of Example 8.4 and Exercises 8.3 and 8.10.
(a) Find symmetric A and B matrices and the 

r
Q t( )  vector such that this system

is described by Eq. 8.44 with 
r
Y t X t X t X t X t T( ) [ ( ), ( ), ˙ ( ), ˙ ( )]= 1 2 1 2 .

(b) Verify that the eigenvalues of A B−1  are ± − +i j j j jω ζ ζ ω[ ( ) ]) /1 2 1 2 . That is,
show that the values λ ω ζ ζ ω= ± − +i j j j j[ ( ) ] /1 2 1 2  satisfy the eigenvalue
relationship | |A B I− − =1

4 0λ .
*****************************************************************
8.20 Consider the 2DF system of Exercise 8.11.
(a) Find symmetric A  and B matrices and the corresponding 

r
Q t( )  vector such

that this system is described by Eq. 8.44 with a state vector ofr
Y t X t X t X t X t T( ) [ ( ), ( ), ˙ ( ), ˙ ( )]= 1 2 1 2 .

(b) Verify that the eigenvalues of A B−1  are λ ω= p i/ , with ω p  denoting the
pole locations found in Exercise 8.11.

*****************************************************************
8.21 Consider the system of Example 8.12 with k k k1 2= = , c k m1 0 01= . ( )1/2,
and c c2 150= , in which m and k are positive scalar constants.
(a) Find the eigenvalues and eigenvectors of the state-space matrix A B−1 . (Two

eigenvalues are complex and one is real.)
(b) Find the H( )ω  harmonic transfer matrix for the state-space vectorr

Y t X t X t X t T( ) [ ( ), ( ), ˙ ( )]= 1 2 1 .
*****************************************************************



351

Chapter 9
Direct Stochastic Analysis
of Linear Systems

9.1 Basic Concept
In this chapter we will study linear stochastic vibration problems by using
techniques that are fundamentally different from those we have used so far.
These “direct” stochastic analysis techniques provide an alternative to the
“indirect” time-domain and frequency-domain approaches that were introduced
in Chapters 5 and 6. The sense in which the time-domain and frequency-domain
analyses are indirect is that both begin with a deterministic solution for the linear
problem, then consider the effect of replacing the deterministic excitation with a
stochastic process. In the approaches presented in this chapter, the stochastic
analysis comes first. In particular, deterministic differential equations are derived
in which the unknowns are statistical properties of the stochastic response rather
than the time history of response. The derivation of these equations is
accomplished directly from the stochastic differential equation of motion
governing the system, not from solutions of the equation of motion. Solution of
these deterministic differential equations, then, directly gives the evolution over
time of one or more particular response properties.

One advantage of the direct methods over the indirect methods is that they
have more potential for nonlinear problems, because they do not begin with an
initial assumption of linearity. Superposition methods, such as the Duhamel
convolution integral and the Fourier transform, may be used in solving the
deterministic differential equations when they are linear, but they are not used in
deriving the equations. Use of direct methods for nonlinear problems will be
explored in Chapter 10. Even for linear systems, though, the direct methods are
sometimes more convenient than the indirect methods, and/or they can provide
information that is not readily available from the indirect methods.

There are two basic types of response quantities that will be considered
here. In the simplest situation one derives ordinary differential equations that
govern the evolution of particular moments of the response. These are called
state-space moment equations, because it is always necessary to consider a
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coupled set of equations governing the evolution of moments of all the state
variables. A slight variation on state-space moment analysis involves using
equations that govern the evolution of coupled sets of cumulants of the response
state variables. The more complicated situation involves a partial differential
equation governing the evolution of the probability density function of the state
variables. This is called the Fokker-Planck or Kolmogorov equation. We will
consider all these situations, but we will give more emphasis to the simpler
equations involving moments or cumulants. In all situations it will be found that
the problem is simplified if the quantity being studied is stationary so time
derivatives disappear. This is particularly significant for state-space moment or
cumulant equations, because this results in the reduction of ordinary differential
equations to algebraic equations.

It is usually easiest to apply the methods presented in this chapter by using
the state-space formulation of the equations of motion, as introduced in Section
8.6. However, this is definitely not essential, and we illustrate this idea in
Example 9.1 by deriving moment equations for the second moments of a single-
degree-of-freedom (SDF) oscillator directly from the original form of the
equation of motion. The important point to be remembered is that the state-space
formulation of the equations of motion and the direct methods of analysis of state
variables are separate concepts that can be efficiently used together but that can
also be used separately.

********************************************************************************************

Example 9.1: Let { ( )}X t  denote the response of the SDF oscillator governed by

the equation of motion

m X t c X t k X t F t˙̇ ( ) ˙( ) ( ) ( )+ + =

For such a second-order differential equation it is customary to designate X t( )
and ˙( )X t  as state variables and to seek equations involving the moments of

these variables. To do this we begin by multiplying each side of the equation of

motion by X t( ) , then taking the expected value. This gives

m E X t X t c E X t X t k E X t E X t F t[ ( ) ˙̇ ( )] [ ( ) ˙( )] [ ( )] [ ( ) ( )]+ + =2

Note that the second and third terms involve only moment functions of the state

variables, but the first term involves ˙̇ ( )X t , which is not a state variable. This first

term can be rewritten, though, in terms of moment functions involving X t( )  and
˙( )X t  as

E X t X t
d

dt
E X t X t E X t[ ( ) ˙̇ ( )] [ ( ) ˙( )] [ ˙ ( )]= − 2
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Thus, the equation becomes

m
d

dt
E X t X t m E X t c E X t X t k E X t E X t F t[ ( ) ˙( )] [ ˙ ( )] [ ( ) ˙( )] [ ( )] [ ( ) ( )]− + + =2 2

This involves only moment functions of the state variables and the term

E X t F t[ ( ) ( )] , which involves excitation as well as a state variable. Similarly, one

can multiply the original equation of motion by ˙( )X t  and take the expected value

to obtain

m E X t X t c E X t k E X t X t E X t F t[ ˙( ) ˙̇ ( )] [ ˙ ( )] [ ( ) ˙( )] [ ˙( ) ( )]+ + =2

and this can be rewritten in terms of the three moment functions of the state

variables as
m d

dt
E X t c E X t k E X t X t E X t F t

2
2 2[ ˙ ( )] [ ˙ ( )] [ ( ) ˙( )] [ ˙( ) ( )]+ + =

Note also that the general relationship
d

dt
E X t E X t X t[ ( )] [ ( ) ˙( )]2 2=

gives a third equation involving only the moment functions of the state variables.

If we can somehow find the values of E X t F t[ ( ) ( )]  and E X t F t[ ˙( ) ( )] , then this

will give us three simultaneous linear differential equations that can be solved to

find the three moment functions E X t[ ( )]2 , E X t X t[ ( ) ˙( )], and E X t[ ˙ ( )]2 . In

vector form these equations can be written as

m
d

dt

E X t

E X t X t

E X t

m

k c m

k c

E X t

E X t X t

E X t

E X t F t

[ ( )]

[ ( ) ˙( )]

[ ˙ ( )]

[ ( )]

[ ( ) ˙( )]

[ ˙ ( )]

[ ( ) ( )]

2

2

2

2

0 2 0

0 2 2

0

2


















+

−

−



































=

EE X t F t[ ˙( ) ( )]

















A tremendous simplification in this equation results for the special case of

second-moment stationary response of the oscillator. In particular, if E X t[ ( )]2 ,

E X t X t[ ( ) ˙( )], and E X t[ ˙ ( )]2  are all independent of time, then the derivative

terms completely drop out of the equations and E X t X t[ ( ) ˙( )] = 0 . In the original

scalar form of the equations, this gives − + =m E X t k E X t E X t F t[ ˙ ( )] [ ( )] [ ( ) ( )]2 2

and c E X t E X t F t[ ˙ ( )] [ ˙( ) ( )]2 =  as the two algebraic equations governing the

values of E X t[ ( )]2  and E X t[ ˙ ( )]2 .

********************************************************************************************

Several important general properties of state-space moment analysis are
illustrated by Example 9.1. First, we note that no assumptions or approximations
were made in deriving the moment equations, other than the assumed existence
of the various expected values. Thus, the equations will be true for almost any
{ ( )}F t  excitation of the oscillator. In addition, we find that we cannot derive one
moment equation that governs the behavior of only one moment function. In
particular, we found in the example that three simultaneous equations governed
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the behavior of the three possible second-moment functions of the state variables.
This coupling of all moments of the same order is typical of the method. For
linear systems, though, it is also typical that the moment equations of one order
are uncoupled from those of any other order. For instance, no mean-value terms
or third moment terms appear in the second-order moment equations of Example
9.1. Furthermore, the property that one need solve only algebraic equations,
rather than differential equations, when evaluating stationary moments of the
state variables is also a general feature of the method. Finally, we note that
Example 9.1 illustrates the fact that in order to make the moment equations
useful, we must find a way to evaluate certain cross-product values involving
both the excitation and the response. We will begin to address this problem in
Section 9.4, after introducing a systematic procedure for deriving state-space
moment equations.

It may be noted that there is no particular reason for the methods of direct
stochastic analysis to follow the time-domain and frequency-domain methods of
indirect analysis presented in Chapters 5, 6, and 8. The method does typically
involve matrix equations, so some of the material in Chapter 8 is relevant here;
other than that, however, this chapter could have come directly after Chapter 4.
In fact, in a Russian book in 1958 (Lebedev), the author begins with state-space
moment equations as the fundamental tool for analyzing stochastic response. At
least within the United States, the method has been much less frequently used
than the indirect methods, but that is changing somewhat in recent years.

9.2 Derivation of State-Space Moment and Cumulant Equations
Let the { ( )}X t  process be the response of a general linear system excited by a
stochastic process { ( )}F t . A state-space moment equation results any time that
we multiply a governing differential equation of motion by some power of X t( )
and take the expected value of both sides of the resulting equation. For example,
if the equation of motion can be written as

a
d X t

d t
F tj

j

j
j

n ( )
( )

=
∑ =

0

(9.1)

and we multiply both sides of this equation by X tk ( )  and then take the expected
value, we obtain
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a E X t
d X t

d t
E X t F tj

k
j

j
j

n
k( )

( )
[ ( ) ( )]











=

=
∑

0

(9.2)

We call this a moment equation, because each term is of the form of a cross-
product of { ( )}X t  and either { ( )}F t  or a derivative of { ( )}X t . Other moment
equations can be obtained by multiplying Eq. 9.1 by different terms. For
example, a multiplier that is the kth power of the same process at some other time
s gives

a E X s
d X t

d t
E X s F tj

k
j

j
j

n
k( )

( )
[ ( ) ( )]











=

=
∑

0

Similarly, we could multiply by a power of some derivative of { ( )}X t , such as

a E X t
d X t

d t
E X t F tj

k
j

j
j

n
k˙ ( )

( )
[ ˙ ( ) ( )]











=

=
∑

0

or we could multiply by a term involving some different process, including
{ ( )}F t

a E F t
d X t

d t
E F tj

k
j

j
j

n
k( )

( )
[ ( )]











=

=

+∑
0

1

Each of these procedures gives a moment equation, as does any combination of
the procedures.

We can obtain cumulant equations in the same way. Specifically, recall the
linearity property of cumulants given in Eq. 3.44:

κ κn n j j j n n jW W a Z a W W Z+ +∑ ∑( ) =1 1 1 1, , , ( , , , )L L (9.3)

for any set of Wl  and Z j  random variables. This shows that the joint cumulant
having one argument that is a linear combination of random variables can be
written as a linear combination of joint cumulants. In our state-space analysis we
are generally dealing with equations of motion that have the form of linear
combinations of random variables. The linearity property of cumulants allows us
to deal with joint cumulants of such equations of motion and other random
variables. For example, if we take the joint cumulant of Eq. 9.1 and X tk ( )  we
obtain
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a X t
d X t

d t
X t F tj

k
j

j
j

n
kκ κ2

0
2( ),

( )
( ), ( )











= ( )

=
∑ (9.4)

which is the cumulant version of the moment equation in Eq. 9.2. Each of our
other moment equations can also be rewritten as a cumulant equation by simply
replacing each moment term by the corresponding cumulant term.

Clearly it is not difficult to derive moment or cumulant equations. In fact,
we can easily derive any number of such equations. The significant issues that
must be addressed relate to the identification of sets of equations that can be
solved and to the simplification of the cross-product or cross-cumulant terms
involving both the response and the excitation, such as the right-hand side of Eqs.
9.2 and 9.4.

As mentioned in Section 9.1, it is usually easier to implement the state-
space analysis techniques by using the state-space formulation of the equations of
motion. Thus, we will direct our attention to systems governed by the equation

A B
r r r˙
( ) ( ) ( )Y t Y t Q t+ = (9.5)

in which 
r
Y t( )  is the state vector of dimension nY  describing the response, A and

B are constant square matrices, and the 
r
Q t( )  vector describes the excitation. As

shown in Section 8.6, this form of the equations can be applied to all systems for
which the original equations of motion are linear ordinary differential equations.
Even though use of this form of the equations is somewhat arbitrary, it is
standard for direct stochastic analysis and it emphasizes the similarity of the
various problems, regardless of the original form of the equations. As in Section
8.6, mathematical manipulations will sometimes be significantly simplified if A
and B can be chosen to be symmetric.

9.3 Equations for First and Second Moments and Covariance
We now wish to identify the sets of moment equations governing the behavior of
the response moments of a particular order. To do this, we must find moment
equations including only those particular moments and their derivatives with
respect to time. In this section we look only at the mean-value function, the
second-moment autocorrelation function, and the second-cumulant covariance
function, which is also the second-order central moment function. First- and
second-moment information, of course, gives a complete description of a
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Gaussian process, so one reason for emphasizing first- and second-moment
analysis is the fact that many problems can be modeled by stochastic processes
that are Gaussian or nearly Gaussian. Furthermore, as for random variables, first-
and second-moment information can be considered the first two steps, and
usually the most important steps, in a more accurate description of a non-
Gaussian process. In this chapter, as in Chapters 5–8, it is important to remember
that the analysis of first and second moments or cumulants is in no way limited to
the Gaussian problem. That is, the analysis of mean and covariance, for example,
is carried out in exactly the same way for Gaussian and non-Gaussian processes;
the difference in the two situations is whether this first- and second-cumulant
information gives a complete or a partial description of the process of interest.

The simplest, and almost trivial, case of state-space moment analysis is for
the first moment, or mean-value function, which is also the first cumulant.
Simply taking the expected value of both sides of Eq. 9.5 gives the first-order
moment equation as

A B
r r r˙ ( ) ( ) ( )µ µ µY Y Qt t t+ = (9.6)

in which we have used the standard notation 
r r
µY t E Y t( ) [ ( )]≡  and 

r
µQ t( ) ≡

E Q t[ ( )]
r

. Thus, the mean values of the state variables are governed by a first-
order vector differential equation that has the same form as Eq. 9.5. There is a
major difference, though, in that Eq. 9.6 is not a stochastic equation. That is,
neither 

r
µY t( )  or 

r
µQ t( )  is stochastic, so this is a set of ordinary deterministic

differential equations.

Next we consider the derivation of equations involving the second
moments of the state variables. Inasmuch as the state variables are the nY
components of the state vector 

r
Y t( ) , it is convenient to write the second

moments as the matrix φφYY Tt t E Y t Y t( , ) [ ( ) ( )]≡ . This matrix contains all the
second-moment terms, with the ( , )j l  component being E Y t Y tj l[ ( ) ( )] . Note that
the matrix is symmetric, so that there are n nY Y( ) /+1 2 , rather than ( )nY 2

distinct scalar moment functions to be determined in the second-order moment
analysis. The state-space analysis of these second moments will involve finding
and solving a matrix differential equation governing the behavior of the φφYY t t( , )
matrix. This differential equation must involve the derivative of the matrix with
respect to time, and this can be written as

d

dt
t t E Y t Y t E Y t Y tYY

T Tφφ ( , ) [
˙
( ) ( )] [ ( )

˙
( )]= +

r r r r
(9.7)
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An equation involving the first term on the right-hand side of Eq. 9.7 is easily
obtained by multiplying Eq. 9.5 by 

r
Y tT ( )  on the right and A−1 on the left, then

taking the expected value, giving

E Y t Y t t t E Q t Y t t tT
YY

T
QY[

˙
( ) ( )] ( , ) [ ( ) ( )] ( , )

r r r r
+ = ≡− − −A B A A1 1 1φφ φφ

Similarly, the transpose of this relationship describes the behavior of the final
term in Eq. 9.7. Using the fact that φφYY t t( , )  is symmetric, this is

E Y t Y t t t E Y t Q t t tT
YY

T T T
YQ

T[ ( )
˙

( )] ( , ) ( ) [ ( ) ( )]( ) ( , ) ( )
r r r r

+ = ≡− − −φφ φφA B A A1 1 1

Adding these two equations and using Eq. 9.7, then gives

d

dt
t t t t t t

t t t t

YY YY YY
T

QY YQ
T

φφ φφ φφ

φφ φφ

( , ) ( ) ( , ) ( , ) ( )

( , ) ( , ) ( )

+ + =

+

− −

− −

A B A B

A A

1 1

1 1
(9.8)

This is a compact form of the general set of equations for the second moments of
the state variables. The left-hand side of the equation involves the φφYY t t( , )
matrix of unknowns, its first derivative, and the system matrices A and B. The
right-hand side involves cross-products of the response variables and the
excitation terms. Use of Eq. 9.8 for the study of moments is commonly called
Lyapunov analysis.

The matrix differential equation derived for the second moments is, of
course, equivalent to a set of simultaneous scalar differential equations. In
particular, the ( , )j l  component of Eq. 9.8 is

d

dt
E Y t Y t A B E Y t Y t E Y t Y t B A

A E Q t Y t E Y t Q t

j l jr
s

n

rs s l
r

n

j r
s

n

sr ls
r

n

jr
r

n

r l j r
r

n

YY YY

Y Y

[ ( ) ( )] [ ( ) ( )] [ ( ) ( )]

[ ( ) ( )] [ ( ) ( )]

+ + =

+

−

== =

−

=

−

= =

∑∑ ∑∑

∑

1

11 1

1

1

1

1 1
∑∑ −Alr

1

The symmetry of the equation makes the ( , )l j  component identical to this ( , )j l
component, so the total number of unique scalar differential equations is
n nY Y( ) /+1 2 . Thus, the number of equations is equal to the number of
unknowns, and a solution is possible if the cross-products on the right-hand side
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are determined. Uniqueness of the solution will be ensured by knowledge of
n nY Y( ) /+1 2  initial conditions, such as the initial values of all components of
φφYY t t( , ) . Note that Example 9.1 was a special case of second-moment analysis
with nY = 2, giving the number of equations and unknowns as 3.

Equations 9.6 and 9.8 both confirm the fact that if the moments of interest
are stationary, then one needs to solve only algebraic equations rather than
differential equations. This is quite possibly the most important feature of state-
space analysis. Neither the time-domain analysis of Chapter 5 nor the frequency-
domain analysis of Chapter 6 gives such a tremendous simplification for the
stationary problem.

********************************************************************************************

Example 9.2: Find coupled scalar equations for the first- and second-order

moments for the third-order system of Example 8.12 governed by the equations

m X t c X t k X t k X t F t˙̇ ( ) ˙ ( ) ( ) ( ) ( )1 1 1 1 1 2 2+ + + =
and

k X t c X t X t2 2 2 1 2( ) [ ˙ ( ) ˙ ( )]= −
In Example 8.12 we showed that this system is governed by Eq. 9.5 with

r r
Y t

X t

X t

X t

k

k

m

k

k c k

k k c

Q t

F t

( )

( )

( )
˙ ( )

,  ,  / ,  ( )

( )

=

















=

−

−

















= −

















=

















1

2

1

1

2

1

2
2

2 2

1 2 1

0 0

0 0

0 0

0 0

0

0

0A B

Using Eq. 9.6 for the equations for the first-order moments gives three first-order

differential equations as
− + =k t k tY Y1 11 3

0˙ ( ) ( )µ µ

− − − =k t k c t k tY Y Y2 2
2

2 22 2 3
0˙ ( ) ( / ) ( ) ( )µ µ µ

and
m t k t k t c t tY Y Y Y F˙ ( ) ( ) ( ) ( ) ( )µ µ µ µ µ

3 1 2 31 2 1+ + + =

Alternatively, one can simply take the expected values of the original coupled

equations of motion, giving two equations, with one of them involving a second

derivative:
m t c t k t k t tX X X X F˙̇ ( ) ˙ ( ) ( ) ( ) ( )µ µ µ µ µ

1 1 1 21 1 2+ + + =

and
k t c t tX X X2 22 1 2

µ µ µ( ) [ ˙ ( ) ˙ ( )]= −

Given that nY = 3, we see that it is possible to use symmetry to reduce the

problem to six simultaneous scalar equations governing six second-moment

terms. One can use either the upper triangular portion or the lower triangular

portion of Eq. 9.8 to give these six equations. Evaluating A B−1  as
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A B− =

−

−

















1
2 2

1 2 1

0 0 1

0 1k c

k m k m c m

/

/ / /

and proceeding through the lower triangular components of Eq. 9.8 in the order

(1,1), (2,1), (2,2), (3,1), (3,2), (3,3) gives the equations as
d

dt
E Y t E Y t Y t[ ( )] [ ( ) ( )]1

2
1 32 0− =

d

dt
E Y t Y t

k

c
E Y t Y t E Y t Y t E Y t Y t[ ( ) ( )] [ ( ) ( )] [ ( ) ( )] [ ( ) ( )]1 2

2

2
1 2 1 3 2 3 0+ − − =

d

dt
E Y t

k

c
E Y t E Y t Y t[ ( )] [ ( )] [ ( ) ( )]2

2 2

2
2
2

2 32 2 0+ − =

d

dt
E Y t Y t

k

m
E Y t

k

m
E Y t Y t

c

m
E Y t Y t E Y t

m
E F t Y t

[ ( ) ( )] [ ( )] [ ( ) ( )]

[ ( ) ( )] [ ( )] [ ( ) ( )]

1 3
1

1
2 2

1 2

1
1 3 3

2
1

1

+ + +

− =

d

dt
E Y t Y t

k

m
E Y t Y t

k

m
E Y t

k

c

c

m
E Y t Y t E Y t

m
E F t Y t

[ ( ) ( )] [ ( ) ( )] [ ( )]

[ ( ) ( )] [ ( )] [ ( ) ( )]

2 3
1

1 2
2

2
2

2

2

1
2 3 3

2
2

1

+ + +

+








 − =

and
d

dt
E Y t

k

m
E Y t Y t

k

m
E Y t Y t

c

m
E Y t

m
E F t Y t

[ ( )] [ ( ) ( )] [ ( ) ( )]

[ ( )] [ ( ) ( )]

3
2 1

1 3
2

2 3

1
3
2

3

2 2

2
2

+ + +

=

Note that it is also possible to write these relationships as one matrix equation of

the form
r r r˙
( ) ( ) ( )V t V t t+ =G ψ

with a vector of unknowns of
r
V t E Y t E Y t Y t E Y t E Y t Y t E Y t Y t E Y t

T
( ) [ ( )], [ ( ) ( )], [ ( )], [ ( ) ( )], [ ( ) ( )], [ ( )]= ( )1

2
1 2 2

2
1 3 2 3 3

2

and a 6 6×  matrix of coefficients. Clearly, this version of the second-moment

equations has the same form as the vector equation of motion in Eq. 9.5, or the

vector first-moment equation in Eq. 9.6. Alternative ways of finding the solutions

of Equation 9.8 will be discussed in Section 9.5.

********************************************************************************************

In many cases, we will find it to be more convenient to use state-space
covariance analysis rather than second-moment analysis. This is primarily
because of simplifications that result in the cross-product terms involving both
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the excitation and the response, as on the right-hand side of Eq. 9.8. In addition,
if the process of interest is Gaussian, the mean-value and covariance functions
give us the elements needed for the standard form of the probability density
function. It turns out to be very simple to derive a state-space covariance
equation similar to Eq. 9.8. One approach is to substitute Eqs. 9.6 and 9.8 into the
general relationship describing the covariance matrix as KYY t t( , ) =
φφYY Y Y Tt t t t( , ) ( )[ ( )]−

r r
µ µ , which shows that KYY t t( , )  is governed by an

equation that is almost identical in form to Eq. 9.8:

d

dt
t t t t t t

t t t t

YY YY YY
T

QY YQ
T

K A B K K A B

A K K A

( , ) ( ) ( , ) ( , ) ( )

( , ) ( , ) ( )

+ + =

+

− −

− −

1 1

1 1
(9.9)

Alternatively, Eq. 9.9 can be derived by using the relationships for
cumulants, without consideration of first and second moments. First, we note that
the cross-covariance matrix for any two vectors can be viewed as a two-
dimensional array of the possible second-order cross-cumulants of the
components of the vectors, so we can write KQY t s Q t Y s( , ) [ ( ), ( )]= κ2 , for
example. The linearity property of cumulants, as given in Eq. 9.3, can then be
used to show that the derivative of KYY t t( , )  can be written as

d

dt
t t t t t tYY YY YYK K K( , ) ( , ) ( , )˙ ˙= +

which is the cumulant version of Eq. 9.7. Furthermore, Eq. 9.3 allows us to take
the joint cumulant of 

r
Y t( )  and Eq. 9.5 and write the result as

K A B K A K˙ ( , ) ( , ) ( , )YY YY QYt t t t t t+ =− −1 1

Adding this equation to its transpose gives exactly Eq. 9.9. The advantage of this
second derivation is that it can also be directly generalized to obtain higher-order
cumulant equations that will be considered in Section 9.7.

9.4 Simplifications for Delta-Correlated Excitation
We now investigate the right-hand side of our state-space equations, beginning
with the simplest situation. In particular, we begin by looking at the state-space
covariance equation in which the { ( )}

r
Q t  excitation vector stochastic process is

delta-correlated. We do not impose any stationarity condition, nor do we assume
that different components of 

r
Q t( )  be independent of each other at any time t. We
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do require, though, that 
r
Q t( )  and 

r
Q s( )  are independent vector random variables

for t s≠ , meaning that knowledge of the values of 
r
Q t( )  gives no information

about the possible values of 
r
Q s( )  or about the probability distribution on those

possible values. For this situation, the covariance matrix of the excitation process
is given by

K SQQ t s t t s( , ) ( ) ( )= −2 0π δ (9.10)

in which S0( )t  is the nonstationary autospectral density matrix for { ( )}
r
Q t .

As the first step in simplifying the right-hand side of Eq. 9.9, we writer
Y t( )  in the form

r r r
Y t Y t Y u du

t

t
( ) ( )

˙
( )= + ∫0

0

in which t0  is any time prior to t. We can now solve Eq. 9.5 for 
ṙ
( )Y u  and

substitute into this expression, giving

r r r r
Y t Y t Q u du Y u du

t

t

t

t
( ) ( ) ( ) ( )= + −− −∫ ∫0

1 1

0 0
A A B (9.11)

Transposing this equation and substituting it into KQY t t( , )  gives

K K K A K A BQY QY QQt

t
T QYt

t
Tt t t t t u du t u du( , ) ( , ) ( , ) ( ) ( , ) ( )= + −∫ ∫− −0 1 1

0 0

(9.12)

We will show, though, that only one of the terms on the right-hand side of this
equation contributes to KQY t t( , )  when { ( )}

r
Q t  is a delta-correlated process.

First, we note that because 
r
Q t( )  is independent of 

r
Q u( )  for u t< , we can

also argue from the principle of cause and effect that 
r
Q t( )  is independent ofr

Y ( )t0  for t t> 0 . That is, the response at time t0  is due to the portion of the
excitation that occurred at times up to time t0 , but 

r
Q ( )t  is independent of that

portion of the excitation. Thus, 
r
Q ( )t  is independent of 

r
Y ( )t0 . This

independence, of course, implies that KQY t t( , )0 0= , eliminating the first term
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on the right-hand side of Eq. 9.12. Furthermore, this same property allows the
last term in Eq. 9.12 to be written as

K KQYt

t

QYt t

t
t u du t u du( , ) ( , )

0
∫ ∫=

−∆

in which the time increment ∆ t  can be taken to be arbitrarily small. We note,
though, that if KQY t t( , )  is finite, then this term is an integral of a finite
integrand over an infinitesimal interval, so it also is equal to zero. Thus, if the
second term on the right-hand side of Eq. 9.12 is finite, then it is exactly equal to
KQY t t( , ) , inasmuch as the other terms on the right-hand side of the equation are
then zero.

Simply substituting the Dirac delta function autocovariance of Eq. 9.10
into the integral in the second term on the right-hand side of Eq. 9.12
demonstrates that the term is finite, but leaves some ambiguity about its value. In
particular, we can write an integral similar to, but more general than, the one of
interest as

K S SQQt

s

t

s
t u du t t u du t U s t( , ) ( ) ( ) ( ) ( )

0 0
2 20 0∫ ∫= − = −π δ π

For s t<  this integral is zero, and for s t>  it is 2 0π S ( )t . We are interested in the
situation with s t= , though, for which the upper limit of the integral is precisely
aligned with the Dirac delta pulse of the integrand. This is the one value for the
upper limit for which there is uncertainty about the value of the integral. We
resolve this problem in the following paragraph, but for the moment we simply
write

K K AQY QQt

t
Tt t t u du( , ) ( , ) ( )= ∫ −

0

1 (9.13)

Note that the transpose of this term also appears in Eq. 9.9, and we write it in
similar fashion as

K A KYQ QQt

t
t t u t du( , ) ( , )= − ∫1

0
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so Eq. 9.9 can be written as

d

dt
t t t t t t

t u du u t du

YY YY YY
T

QQt

t

QQt

t T

K A B K K A B

A K K A

( , ) ( ) ( , ) ( , ) ( )

     ( , ) ( , ) ( )

+ + =

+












− −

− −∫ ∫

1 1

1 1

0 0

(9.14)

To resolve the ambiguity about the value of the right-hand side of Eq. 9.14,
we note that the Dirac delta form of the autocovariance in Eq. 9.10 gives

K S SQQt

t

t

t

t

t

t

t
u v du dv v U t v dv v dv( , ) ( ) ( ) ( )

00 0 0
2 20 0∫∫ ∫ ∫= − =π π (9.15)

for any t t0 < . Taking the derivative with respect to t of each side of this equation
gives

K K SQQt

t

QQt

t
t v dv u t du t( , ) ( , ) ( )

0 0
2 0∫ ∫+ = π (9.16)

Note, though, that the left-hand side of this equation is exactly the same as the
term on the right-hand side of Eq. 9.14. Thus, we find that the state-space
covariance equation can be written as

d

dt
t t t t t t tYY YY YY

T TK A B K K A B A S A( , ) ( , ) ( , ) ( ) ( ) ( )+ + =− − − −1 1 1
0

12π (9.17)

for the special case when the { ( )}
r
Q t  excitation is delta-correlated with

nonstationary autospectral density matrix S0( )t .

Similarly, we can simplify the right-hand side of Eq. 9.8 describing the
second moments of the state variables by noting that

A A A K K A

A A

−− −− −− −−

−− −−

φφ φφ1 1 1 1

1 1

QY YQ
T

QY YQ
T

Q Y
T

Y Q
T T

t t t t t t t t

t t t t

( , ) ( , ) ( ) ( , ) ( , ) ( )

( ) ( ) ( ) ( ) ( )

+ = + +

+
r r r r
µ µ µ µ
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so we have

d

dt
t t t t t t

t t t t t

YY YY YY
T

T
Q Y

T
Y Q

T T

φφ φφ φφ

−− −−

( , ) ( , ) ( , ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

+ + =

+ +

− −

− −

A B A B

A S A A A

1 1

1
0

1 1 12π µ µ µ µ
r r r r

(9.18)

for the autocorrelation matrix of the response to the nonstationary delta-
correlated excitation. This equation is somewhat less convenient than Eq. 9.17,
because it involves both the mean-value vector and the autospectral density
matrix of the excitation. This is the first demonstration of any significant
difference between moment equations and cumulant equations. The difference in
complexity between moment and cumulant equations becomes more substantial
when the terms considered are of higher order.

9.5 Solution of the State-Space Equations
First we reiterate that the stationary solutions of Eqs. 9.6 and 9.17 are found from
algebraic equations. In particular, if 

r
µQ  and S0 are independent of time and we

seek only stationary values of 
r
µY  and KYY , we have equations of

B
r r
µ µY Q= (9.19)

and

A B K K A B A S A− − − −+ =1 1 1
0

12YY YY
T T( ) ( )π  (9.20)

Obviously, the solution of Eq. 9.19 for the stationary mean value can be written
as

r r
µ µY Q= −B 1 (9.21)

but the solution of Eq. 9.20 for the stationary covariance matrix is not so obvious.
We will return to this matter after writing the solutions for the nonstationary
response quantities.

The solution of Eq. 9.6 for the nonstationary mean vector is very simple. In
fact, it is exactly the same as was given in Section 8.6 for time-domain analysis
of the state-space formulation of the equations of motion:

r r r
µ µ µY Y Qt

t
t t t t t s s ds( ) ( ) exp[ ( ) ] exp[ ( ) ] ( )= − − + − −− − −∫0 0

1 1 1

0
A B A B A (9.22)
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in which 
r
µY t( )0  is presumed to be a given initial condition. Similarly, the formal

solution of Eq. 9.17 for the nonstationary KYY t t( , )  covariance matrix can be
written as

K A B A K A A B

A B A S A A B

YY YY
T T

t

t
T T

t t t t t t t t

t s s t s ds

( , ) exp[ ( ) ( )] ( , ) ( ) exp[ ( ) ( ) ]

    exp[ ( ) ( )] ( ) ( ) exp[ ( ) ( ) ]

= − − − − +

− − − −

− − − −

− − − −∫

0
1 1

0 0
1

0
1

1 1
0

1 12
0

π

(9.23)

Note that taking S0  to be a constant and ignoring the initial conditions in Eq.
9.23 gives a stationary solution of

K A S AA B A B
YY

r T r
T

e e dr
T

= − −
∞

− −− −

∫2
1 11

00
1π ( ) ( )

This is a form of solution of Eq. 9.20, but it is rather awkward for a stationary
solution. Of course, none of these formal solutions involving matrix exponentials
is very useful until a method is used for diagonalizing the A B−1  matrix.

As outlined in Section 8.6, the λλ  and θθ matrices of eigenvalues and
eigenvectors are found from the equation A B− =1 θθ θθλλ , in which λλ  is diagonal.
Using a change of variables of

r r
Y t Z t( ) ( )= θθ (9.24)

then allows Eq. 9.5 to be rewritten as

r r r˙
( ) ( ) ( )Z t Z t P t+ =λλ (9.25)

in which

r r
P t Q t( ) ( )= − −θθ 1 1A (9.26)

Consider now the response quantities for the new vector 
r
Z t( ) . The stationary

mean value, as in Eq. 9.21, is given by

r r r
µ µ µZ P Q= =− − − −λλ λλ θθ1 1 1 1A (9.27)

Similarly, the equation for the stationary covariance, as in Eq. 9.20, is
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λλ λλ θθ θθK K S A S AZZ ZZ
T

PP
T+ = = − − − −2 2 1 1

0
1 1π π ( )

This equation can be solved for any scalar component as

[ ]
[ ]

K
S

ZZ jl
PP jl

j l
=

+

2π

λ λ
(9.28)

Using Eq. 9.24, it is possible to use Eqs. 9.27 and 9.28 to write the corresponding
quantities for { ( )}

r
Y t  as

r r r r
µ µ µ µY Z Q Q YY

T= ≡ = =− − − −θθ θθλλ θθ θθ θθΖΖΖΖ
1 1 1 1A B K K,       (9.29)

The first equation is identical to Eq. 9.21, and the second provides a usable
solution of Eq. 9.20.

Similarly, we can obtain expressions corresponding to Eqs. 9.22 and 9.23
for the uncoupled equations for { ( )}

r
Z t  for the nonstationary situation

r r r
µ µ µZ Z Pt

t
t t t t t s s ds( ) ( ) exp[ ( ) ] exp[ ( ) ] ( )= − − + − −∫0 0

0
λλ λλ (9.30)

and
K K

S

ZZ ZZ

PPt

t

t t t t t t t t

t s s t s ds

( , ) exp[ ( ) ] ( , ) exp[ ( ) ]

    exp[ ( ) ] ( ) exp[ ( ) ]

= − − − − +

− − − −∫

0 0 0 0

2
0

λλ λλ

λλ λλπ
(9.31)

As for the stationary situation, Eq. 9.29 is used to convert these expressions into
the ones for { ( )}

r
Y t . Note that the matrix exponential terms in Eqs. 9.30 and 9.31

are almost trivial, because exp[ ]−t λλ  is diagonal with e t jj− λ  being its ( , )j j
element.

It should also be recalled that if A  and B  are both symmetric, then
computations are considerably simplified. In particular, one can find θθ−1 by
using very simple operations, because θθ θθ− −=1 1Â AT , in which Â ≡ θθ θθT A  is
almost trivial to invert inasmuch as it is a diagonal matrix.

********************************************************************************************

Example 9.3: Using state-space analysis, find the variance of the response of the

system, in which { ( )}F t  is stationary with autospectral density S0 .
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Putting the equation of motion into the form of Eq.

9.5, we have

c X t k X t F t˙( ) ( ) ( )+ =

so nY =1 and the state "vector" is the scalar

X t( ) . The "matrices" A  and B have dimension

(1,1) and are c  and k , respectively, and the "vector" 
r
Q t( )  is the scalar F t( ) .

The covariance "matrix" in Eq. 9.17 is then the scalar variance K tXX ( ) ≡ σX t2 ( ) ,

and the relationship is

d

dt
t

k

c
t

S

c
X Xσ σ

π2 2 0
2

2
2

( ) ( )+ =

For the special case of stationary response, the variance is found by setting the

derivative term equal to zero and solving the algebraic equation to obtain

σ
π

X
S

k c
2 0=

If we are given an initial condition of σX
2 ( )t0  for some particular time, then the

solution of the differential equation can be written as

σ σ
π

σ
π

X X
k t c k t s c

t

t

X
k t c k t t c

t t e
S

c
e ds

t e
S

k c
e

2 2
0

2 0
2

2

2
0

2 0 2

2

1

0

0

( ) ( )

         ( ) [ ]

/ ( ) /

/ ( ) /

= +

= + −

− − −

− − −

∫

as in Eq. 9.22. For the common situation in which the system is at rest at time

t = 0 , we have

σ
π

X
k t ct

S

k c
e2 0 21( ) [ ]/= − −

All of these results, of course, are exactly the same as one would obtain by the

time-domain and frequency-domain analysis techniques of Chapters 5 and 6,

respectively. Their determination by state-space analysis, though, is somewhat

simpler, particularly for the stationary situation.

********************************************************************************************

Example 9.4: Find the response variance and covariance values for an SDF

oscillator with a mean-zero, stationary, delta-correlated excitation with

autospectral density S0 .

The symmetric state-space description of the system is Eq. 9.5 with nY = 2:
r r
Y t

X t

X t

k

m

k

k c
Q t

F t
( )

( )
˙( )

,     ,     ,     ( )
( )

=








 =

−







 =









 =









A B

0

0

0 0

Thus, the state-space equation for the covariance, from Eq. 9.17, is

k

c

X( t)

F(t)
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d

dt
t t

k m c m
t t t t

k m

c m

S

m
YY YY YYK K K( , )

/ /
( , ) ( , )

/

/
+

−







 +

−









=











0 1 0

1
2 0 0

0 1
0

2
π

Using the change of variables of k m= ω0
2 , c m= 2 0ζ ω , and ωd = ω ζ0 2 1 21( ) /− ,

eigenanalysis of A B−1  gives eigenvalues of λ ζ ω ω11 0= − i d  and λ λ22 11= * ,

with the matrix of eigenvectors being

θθ ==
1 1

11 22− −









λ λ

Also, Â ≡ θθ θθT A  has nonzero elements of Â 11 112= − i m dω λ  and

Â 22 222= i m dω λ  and

θθ == θθ− − =
− −









1 1 22

112

1

1
Â AT

d

i

ω

λ

λ

Using the transformation 
r r
Y t Z t( ) ( )= θθ  and 

r r
P t Q t( ) ( )= − −θθ 1 1A  from Eqs. 9.24

and 9.26 allows us to use Eqs. 9.28, 9.29, and 9.31 for the response covariance.

The excitation spectral density matrix in the { ( )}
r
Z t  equations is

SPP
T

d

S

m

S

m
=









 =

−

−











− −0
2

1 1 0
2 2

0 0

0 1 4

1 1

1 1
θθ θθ( )

ω
For stationary response we use Eq. 9.28 to obtain

KZZ
d

S

m
=

−

−











π

ω

λ ζ ω

ζ ω λ
0

2 2
11 0

0 224

1 1 2

1 2 1

/ /( )

/( ) /

and

K KYY ZZ
T S

m
S

c k

c m
= =











=









θθ θθ

π ζ ω

ζ ω
π0

2
0
3

0
0

2

1 0

0 1

1 0

0 1
/( )

/( )

/( )

/( )

The (1,1) and (2,2) elements, respectively, confirm the values obtained in

Chapters 5 and 6 for σ X  and σ Ẋ , and the off-diagonal terms confirm the known

fact that X t( )  and ˙( )X t  are uncorrelated random variables in stationary

response.

Because the dimension of the system is small, it is also feasible to obtain these

results without uncoupling the equations. In particular, the (1,1), (2,1), and (2,2)

elements of the equation A B K K A B A− − −+ =1 1 1 02YY YY Tt t t t S( , ) ( , ) ( ) π  are
− =2 0K t tXẊ ( , )

− + + =K t
k

m
K t

c

m
K tXX XX XX˙ ˙ ˙( ) ( ) ( ) 0

2 2
2 0

2
k

m
K t

c

m
K t

S

m
XX XX˙ ˙ ˙( ) ( )+ =

π

and solution of these three simultaneous equations gives the results obtained by

matrix manipulation.

Let us now presume that we are given an initial condition of KYY t t( , )0 0  at some

specific time t0 . This will result in a nonstationary KYY t t( , )  matrix, and in order
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to find this nonstationary solution we will need to use the matrix exponential.

Using the diagonalized equations for Z t Y t( ) ( )= −θθ 1  and the information that

SPP  is independent of time, we find from Eq. 9.31 that

[ ( , )] exp[ ( ) ( )] [ ( , )]

           [ ] exp[ ( ) ( )]

K K

S

ZZ jl j l ZZ jl

PP jl j lt

t

t t t t t t

t s ds

= − − + +

− − +∫

0 0 0

2
0

λ λ

π λ λ

Note that K KZZ YY Tt t t t( , ) ( , ) ( )0 0 1 0 0 1= − −θθ θθ  in this expression. The integration

may now be performed to obtain

[ ( , )] exp[ ( ) ( )] [ ( , )]

           [ ]
exp[ ( ) ( )]

K K

S

ZZ jl j l ZZ jl

PP jl
j l

j l

t t t t t t

t t

= − − + +

− − − +

+

0 0 0

02
1

λ λ

π
λ λ

λ λ

The real parts of both eigenvalues are positive, giving each element of KZZ t t( , )
an exponential decay of its initial condition, plus an exponential growth toward its

previously found stationary value of 2π λ λ[ ] /( )SPP jl j l+ . Both the decaying and

the growing terms, though, also contain trigonometric terms because of the

imaginary parts of the eigenvalues.

For the special case in which the initial condition is KYY ( , )0 0 = 0 , the results are

σ

π

ζ ω

ω

ω

ζ ω
ω

ω
ω

ω
ωζ ω

X YY

t

d d
d

d
d

t K t t

S

m
e t t

2
11

0
2

0
3

2 0
2

2
0 0

2

22
1 2 20

( ) [ ( , )]

         sin( ) cos( )

=

= − + −


























−

Cov[ ( ), ˙( )] [ ( , )] cos( )X t X t K t t
S

m
e tYY

d

t
d= = −[ ]−

12
0

2 2
2

2
1 20π

ω
ωζ ω

and

σ

π

ζ ω

ω

ω

ζ ω
ω

ω
ω

ω
ωζ ω

˙ ( ) [ ( , )]

         sin( ) cos( )

X YY

t

d d
d

d
d

t K t t

S

m
e t t

2
22

0
2

0

2 0
2

2
0 0

2

22
1 2 20

=

= − − −


























−

These results are identical to those in Chapter 5, where they were obtained by

the indirect method of using the Duhamel integral time-domain solution of the

original equation of motion.

********************************************************************************************

Example 9.5: Find the mean and variance of the X t( )  response for an SDF

oscillator with m =100kg , k =10kN/m, and c = ⋅40 N s/m. The excitation is a

nonstationary delta-correlated process having a mean value of µ µ αF tt t e( ) = −0
with µ0 1= kN/s  and α = −0 8 1. s  and a covariance function of K t sFF ( , ) =
2 0π δαS t e t s U tt− −( ) ( )  with S0 1000= N rad2 / . The system is initially at rest.
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The state-space description of the system has the same form as in Example 9.4.

Thus, the equation for the mean value of the response is

A B
r r r˙ ( ) ( ) ( ) ( )µ µ µ µ α
Y Y F

tt t t te U t+ = =












−
0

0

1

or

−









 +











 =













−10 0

0 100

0 10

10 40
10

0

1

4 4

4
0 8r r˙ ( ) ( ) ( ).µ µY Y

tt t te U t

Its solution can be written as

r
µ

µ α
Y

s
t

s
t

t
m

t s se ds

t s se ds

( ) exp[ ( ) ]

         exp[ ( ) ] .

= − −












= − −












− −

− −

∫

∫

0 1
0

1 0 8
0

0

1

10
0

1

A B

θθ λλ θθ

in which θθ is the 2 2×  matrix with columns that are the eigenvectors of A B−1 ,

and λλ θθ θθ= − −1 1A B  is the diagonal matrix of eigenvalues. Eigenanalysis yields

λ ζω ω11 0 0 2 9 998= − = −i id . . , λ ζω ω22 0 0 2 9 998= + = +i id . .  and

θθ =
− −












=

− + − −













1 1 1 1

0 2 9 998 0 2 9 99811 22λ λ . . . .i i

The diagonal matrix Â = θθ θθT A  has elements Â 11 19992 399 9= − − . i  and Â 22=
− +19992 399 9. i , and

θθ θθ− −= =
− −

+











1 1 0 5 0 01002 0 05001

0 5 0 01002 0 05001
ˆ . . .

. . .
A AT i i

i i

The first term of the 
r
µY t( )  vector is the mean of X t( ) , and it is given by

µ θ θ λ α
X r r

r

t s
t

st e se dsrr( ) ( )= −

=

− − −∑ ∫10 1 2
1

1

2

0

which reduces to

µX
t

t

t t e

e t t

( ) ( . . )

[ . cos( . ) . sin( . )]

.

.

= + −

+

−

−

0 001192 0 09968

0 001192 9 9980 0 009899 9 9980

0 8

0 09899

This resul t  is

shown here, along

w i t h  µF t k( ) / ,

which is the static

response that one

would obtain by

neglect ing the

dynamics of the

system.
0              1              2              3              4              5
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µX (t)
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For the covariance analysis we can use the results derived in Example 9.4, for

which our parameters give

SPP

t

d

tS t e

m
t e=

−

−









= − × ×

× − ×













−
−

− −

− −
0

2 2
0 8

4 4

4 44

1 1

1 1
2 501 10 2 501 10

2 501 10 2 501 10

α

ω
. . .

. .

Equation 9.31 then gives the components of KZZ t t( , ) , which can be written as

[ ( , )] [ ( , )]

      . ( )

( ) ( )

.

K SZZ jl PP jl

t t s

t t

t t s s e ds

e e t

jj ll=

= ± × − +

∫ − + −

− − −
0

4 0 8 22 501 10 1

λ λ

ββ β
in which β λ λ= − −0 8. jj ll . The covariance matrix for 

r
Y t( )  is then found from

K KYY YY Tt t t t( , ) ( , )= θθ θθ , and the (1,1) component is

σ X
t

t

t t e

e t

t

2 2 3 0 8

0 4 2 6

7

1 965 10 7 854 10

1 964 10 7 851 10 20 00

3 142 10 20 00

( ) ( . . )

[ . . cos( . )

. sin( . )]

.

.

= − × − × +

× + × −

×

− − −

− − −

−

The accompanying sketch compares this result with a “pseudostationary”

approximation based only on stationary analysis. This approximation is simply

π S t kc0( )/( ) , in which K t t S tFF ( , ) ( )+ =τ π δ τ2 0 ( )  gives S t S t e t0 0( ) = =−α

1000 0 8t e t− . . The pseudostationary approximation is obtained by substituting the

nonstationary autospectral

density of the excitation

into the formula giving the

response variance for a

stationary excitation. This

approximation is good for

problems in which S t0( )
varies slowly, but it is not surprising that it fails for the present problem.

********************************************************************************************

Example 9.6: Consider the 2DF system shown with m1 1000= kg , m2 500= kg,

k k1 2 55 10= = × N/m, c c1 2 500= = ⋅N s/m. Find the stationary covariance matrix

for the response to a white noise base acceleration a t( )  with autospectral

density Saa = 0 1. (m/s )/(rad/s)2 . The X tj ( )  coordinates denote motion relative to

the base.

The equation governing

this system is A
r
( )Y t +

B
r r
Y t Q t( ) ( )=  in which

nY = 4  and symmetric

A  and B matrices are

given by Eq. 8.46:

0            1            2           3             4           5

0.003

0.002

0.001

0

π S0(t) /(kc)

σX
2 ( t)

X1( t) X2( t)

F2 (t)
F1(t)

k1 k2

c2

m2m1

c1

a( t)
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r
Y t

X t

X t

X t
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˙ ( )
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=
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=

− ×

− × ×

− ×

1

2

1

2

6 5

5 5

6 5

5 5

6

10 5 10 0 0

5 10 5 10 0 0

0 0 1000 0

0 0 0 500

0 0 10 5 10

0 0 5 10 5 10

10 5 10

A

B
55

5 5
1

2

1000 500

5 10 5 10 500 500

0

0

−
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−
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,     ( )
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( )
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m a t

m a t

The spectral density matrix for the { ( )}
r
Q t  excitation vector is

SQQ
aa aa

aa aa

m S m m S

m m S m S

=





















=
×

× ×





















⋅

0 0 0 0

0 0 0 0

0 0

0 0

0 0 0 0

0 0 0 0

0 0 10 5 10

0 0 5 10 2 5 10
1
2

1 2

1 2 2
2

5 4

4 4.

N s/rad2

From Eq. 9.17 we see that the stationary covariance matrix is the solution of

A B K K A B A S A− − − −+ =1 1 1 12YY YY T QQ Tt t t t( , ) ( , ) ( ) ( )π .

This equation can now be solved by performing the eigenanalysis of A B−1 . In

particular, using θθ as the matrix of eigenvectors of A B−1  gives Â = θθ θθT A  as a

diagonal matrix and θθ− =1 Â −1 θθT A. The diagonal eigenvalue matrix is then

given by λλ θθ θθ= − −1 1A B . Using 
r
Y ( )t = θθ

r
Z ( )t  gives

λλ λλ θθ θθK K S A S AZZ ZZ PP QQ
T Tt t t t( , ) ( , ) ( ) ( )+ = ≡ − − − −2 2 1 1 1 1π π

so the ( , )j l  component of KZZ t t( , )  is given by
[ ( , )] [ ] /( )K SZZ jl PP jl jj llt t = +2π λ λ

After calculating all elements of KZZ t t( , ) , the evaluation of KYY t t( , )  involves

only K KZZ ZZ Tt t t t( , ) ( , )= θθ θθ . The result is

KYY t t( , )

. . .

. . .

. . .

. . .

=

× × ×

× × ×

× ×

×





















− − −

− − −

− −

−

2 67 10 3 77 10 0 1 57 10

3 77 10 5 34 10 1 57 10 0

0 1 57 10 7 85 10 1 10

1 57 10 0 1 10 1 57

3 3 4

3 3 4

4 1

4

Note that the diagonal elements give the variances of the components of 
r
Y t( ) ,

and the off-diagonal elements give covariances of those components. The (1,1)

element gives the variance of X t1( )  as 2 67 10 3. × − m2, which agrees exactly with

the result in Example 8.6 for the solution of this same problem by conventional

time-domain methods. Note that the (1,3), (3,1) elements of the matrix are zero,

confirming the fact that Cov[ ( ), ˙ ( )]X t X t1 1 0=  for stationary response. Similarly,

the (2,4), and (4,2) elements are zero because they are Cov[ ( ), ˙ ( )]X t X t2 2 0= .

********************************************************************************************
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Example 9.7: Consider the stationary response of an SDF oscillator with

m =100kg , k =10 000, N/m, and c = ⋅40 N s/m. The excitation is a stationary

delta-correlated process having a mean value of µ µF t( ) = =0 1000 N  and a

covariance function of K t s S t s t sFF ( , ) ( ) ( ) ( )= − = ⋅ −2 2 10000π δ π δ N s/rad2 .

Find the conditional mean and variance of the X t( )  and ˙( )X t  responses for

t > 5s given that X( ) .5 0 05= m and ˙( )X 5 0= .

This oscillator has the same parameters as the one considered in Example 9.5,

so we can use basically the same state-space equations as were developed

there—only the excitation and the initial conditions are different. Thus, the

conditional mean value of the response is found from the solution of

d

dt
E Y t Y E Y t YT T

r r r r
( ) | ( ) [ . , ] ( ) | ( ) [ . , ]5 0 05 0 5 0 05 0

0 0

10
1 1

0
=( )+ =( ) =












=













− −A B A
µ

The result for t > 5s can be written as

E Y t Y t t s dsT
tr r

( ) | ( ) [ . , ] exp[ ( ) ]
.

exp[ ( ) ]5 0 05 0 5
0 05

0

0

10
1 1

5
=( ) = − −












+ − −













− −∫A B A B
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E Y t Y t

t

t

T
r r
( ) | ( ) [ . , ] exp[ ( ) ]

.

( ) exp[ ( ) ]

exp[ ( ) ]
.
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0 05
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5
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5
0 05

0

0

1

1 1
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1 1 1

=( ) = − −











+

− − −( )
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+

−

− −
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A B

A B I A

θθ λλ θθ θθλλ θθ
1010

5
0

10
1 1










− − −













− −θθλλ λλ θθexp[ ( ) ]t

Using the 2 ×2 θθ and λλ  matrices from Example 9.5 gives

E X t X X

e t tt

[ ( ) | ( ) . , ˙( ) ]

. . cos[ . ( )] sin[ . ( )]. ( )

5 0 05 5 0

0 1 0 05 9 998 5 10 9 998 50 2 5 3

= =

= − − + −( )− − −

and

E X t X X e tt[ ˙( ) | ( ) . , ˙( ) ] . sin[ . ( )]. ( )5 0 05 5 0 0 5001 9 998 50 2 5= = = −− −

The values are shown in the following sketches.

For the conditional analysis of covariance, we first note that the given

deterministic initial conditions at t = 5  imply that the covariance matrix is zero at

that time. This gives the solution as K KYY ZZ Tt t t t( , ) ( , )= θθ θθ  with

K SZZ PP

t
t t t s t s ds( , ) exp[ ( ) ] exp[ ( ) ]= − − − −∫2

5
π λλ λλ
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in which

S A S A A APP QQ
T T

S
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− − − − − − − −θθ θθ θθ θθ1 1 1 1 1 1
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− + −2
1

5π

λ λ
λ λ

The numerical result for the (1,1) and (2,2) elements of KYY t t( , )  give

Var[ ( ) | ( ) . , ˙( ) ] [ ( , )]

. . . cos[ . ( )]

    . sin[ . ( )]
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X t X X t t

e t
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0 05001 20 00 5

1 1
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= = = =

−[ − − +(

− )]

− −

K

π

Var[ ˙( ) | ( ) . , ˙( ) ] [ ( , )]

. . . cos[ . ( )]

   . sin[ . ( )]

. ( )

X t X X t t

e t

t

YY

t

5 0 05 5 0

10
2 5 2 501 0 001 20 00 5

0 05001 20 00 5

22

0 4 5

= = =

−[ − −( −

− )]

− −

K

π

These results are not sketched here because they have exactly the same form

as the zero-start variances shown in Fig. 5.7.

********************************************************************************************

9.6 Energy Balance and Covariance
Although we have derived the state-space moment equations in Sections 9.3 and
9.4 without explicit consideration of energy, it turns out that in many situations
the equations for second moments can also be viewed as energy balance
relationships. This is not surprising inasmuch as potential energy and kinetic
energy are second-moment properties of displacement and velocity, respectively,
in spring-mass systems. Furthermore, a rate of energy addition or dissipation is a
cross-product of a force and a velocity. We illustrate this idea by consideration of
the SDF oscillator.

5.0        5.5        6.0        6.5        7.0
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5.0        5.5        6.0        6.5        7.0
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E[X (t) | X(5) = 0.05, Ẋ(5) = 0] E[ Ẋ (t) | X(5) = 0.05, Ẋ(5) = 0]

t t
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First let us consider the equation of motion for the SDF oscillator rewritten
as

m X t F t c X t k X t˙̇ ( ) ( ) ˙( ) ( )= − −

The terms on the right-hand side of this equation are the forces on the mass,
which is moving with velocity ˙( )X t . Thus, if we multiply the equation by ˙( )X t ,
we will obtain an equation involving the power into the mass from these three
terms:

m X t X t F t X t c X t X t k X t X t

PA t PD t k X t X t

˙( ) ˙̇ ( ) ( ) ˙( ) [ ˙( )] ˙( ) [ ( )] ˙( )

     ( ) ( ) ( ) ˙( )

= − −

= − −
(9.32)

in which we have used the notation PA t( )  for the power added by the force F t( )
and PD t( )  for the power dissipation in the dashpot. The final term in the
equation is the rate of energy transfer from the spring to the mass, and not
surprisingly it is the same as the rate of decrease of the potential energy
PE t k X t( ) ( ) /= 2 2  in the spring

k X t X t
d

d t
PE t( ) ˙( ) ( )=

Similarly, the term on the left-hand side of Eq. 9.32 is the rate of change of the
kinetic energy KE t m( ) = Ẋ 2 2( ) /t  in the mass

m X t X t
d

d t
KE t˙( ) ˙̇ ( ) ( )=

Thus, one can rearrange the terms of Eq. 9.32 to give

d

d t
KE t PE t PD t PA t( ) ( ) ( ) ( )+[ ] + =

which simply states that the power added is the sum of the power dissipated and
the rate of change of the energy in the system. This confirms the well-known fact
that Newtonian mechanics (force equals mass times acceleration) results in
conservation of energy. The expectation of this energy balance relationship is one
of our state-space equations for the SDF system. Precisely this equation appears
in our investigation of the SDF system in Example 9.1, and when Eq. 9.18 is
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used to give the second moments of the system, this energy-balance relationship
is the (2,2) component scalar equation.

It is particularly interesting to study the PA t( )  term for the special case in
which the excitation of an SDF or MDF system is mean-zero, white noise. That
is, we want to find terms like E F t X tj j[ ( ) ( )] with F tj ( )  being a force applied to
a mass m j  and ( )X tj  being the velocity of the mass. Let n be the number of
degrees of freedom of the system so that n nY = 2  is the dimension of the state
vector. Using the symmetric state-space formulation of Eq. 8.46 with

r
L L

r
L LY t X t X t X t X t Q t F t F tn n

T
n

T( ) [ ( ), , ( ), ˙ ( ), , ˙ ( )] ,     ( ) [ , , , ( ), , ( )]= =1 1 10 0

the mean-zero white noise condition can be written as

φφQQ QQt s t s t t s( , ) ( , ) ( ) ( )= = −K S2 0π δ

with

S0
11 1

1

0 0 0 0

0 0 0 0

0 0

0 0

( )
( ) ( )

( ) ( )

t
S t S t

S t S t

n

n nn

=



























L L

M M M M

L L

L L

M M M M

L L

(9.33)

Note that S tjl ( )  is the nonstationary cross-spectral density of the F tj ( )  and
F tl ( )  force components, and it is the ( , )n j n l+ +  component of S0( )t .

Our notation now gives the expected rate of energy addition by the jth
component of force in the MDF system as

E PA t E F t X t E Q t Y tj j j n j n j[ ( )] [ ( ) ˙ ( )] [ ( ) ( )]≡ = + +

Thus, it is a diagonal term from the matrix E Q t Y t t tT QY[ ( ) ( )] ( , )= K  or its
transpose, E Y t Q t t tT YQ[ ( ) ( )] ( , )= K . We can find the value of such terms,
though, from Eqs. 9.13 and 9.16. In particular, those equations give

K A A K K K SQY
T

YQ QQt

t

QQt

t
t t t t u t du t v dv t( , ) ( , ) ( , ) ( , ) ( )+ = + =∫ ∫

0 0
2 0π

(9.34)
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The symmetric form of A contains the mass matrix m in the lower-right portion,
and this m  matrix is diagonal for the coordinates we are using. Thus, the
( , )n j n j+ +  term of K AQY Tt t( , )  and of A KYQ t t( , )  is m E Q t Y tj n j n j[ ( ) ( )]+ + ,
giving

m E Q t Y t t S tj n j n j n j n j jj[ ( ) ( )] [ ( )] ( ),+ + + += =π πS0

and

E PA t
S t

mj
jj

j
[ ( )]

( )
=

π
(9.35)

From Eq. 9.35 we note the rather remarkable property that the rate of
energy addition to the MDF system by a mean-zero, delta-correlated force
depends only on the autospectral density of the force and the magnitude of the
mass to which it is applied. It is unaffected by the magnitudes of any springs or
dashpots in the system and of any other masses or forces in the system.
Furthermore, it does not depend on the level of response of the system. For
example, if a stationary excitation of this type is applied to a system that is
initially at rest, then the rate of energy addition does not change as the response
builds up from zero to its stationary level. This property of E PA tj[ ( )]  also
extends to the situation in which the excitation of the system is a mean-zero,
delta-correlated base motion, rather than a force. When the base of an MDF
system is moved with acceleration { ( )}a t  and { ˙( )}X t  represents motion relative
to the base, then we know that the equations of motion have the same form as
usual, but with excitation components of F t m a tj j( ) ( )= − . For this situation, Eq.
9.35 gives the rate of energy addition by F tj ( )  as E PA t m S tj j aa[ ( )] ( )= π .
Again, this rate depends only on the autospectral density of the excitation and the
magnitude of the m j  mass and is unaffected by response levels or by other
parameters of the system.

It should be noted that Eq. 9.35 is generally not true if the processes
involved are not mean-zero. In particular, the rate of energy addition to a mass
m j  by a delta-correlated force { ( )}F tj  with a nonzero mean is

E PA t
S t

m
t tj

jj

j
F Xj j

[ ( )]
( )

( ) ( )˙= +
π

µ µ

In this situation we see that the rate of energy addition generally does depend on
the response and may vary with time even if the excitation is stationary.
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In addition to the energy balance, we can note that Eq. 9.34 gives important
general relationships regarding the covariance of force and response components
of an MDF system. For example, for j and l not exceeding n, the ( , )n j n l+ +
component of Eq. 9.34 gives

m K m K S tj F t X t l X t F t jl
j l j l( ) ˙ ( ) ˙ ( ) ( ) ( )+ = 2π (9.36)

which includes the special case of

K
S t

mF t X t
jj

jj j( ) ˙ ( )

( )
=

π
(9.37)

for the covariance, at any instant of time, between a particular component of
force and the velocity of the mass to which it is applied. Considering the
( , )n j l+  component of Eq. 9.34 gives a similar, and even simpler, result
regarding the covariance of F tj ( )  and any component of response X tl ( )  at the
same instant of time. Noting that Q tj ( ) ≡ 0  and that Eq. 9.33 gives
[ ( )] ,S0 0t n j l+ =  also, we obtain

K KF t X t Q t Y tj l n j l( ) ( ) ( ) ( )≡ =
+

0 (9.38)

Thus, we see that F tj ( )  is uncorrelated with any component of response X tl ( )  at
the same instant of time, including the X tj ( )  component giving the motion at the
point of application of the force.

It should be emphasized that the covariance relationships in Eqs. 9.36–9.38
apply only for a delta-correlated force applied directly to a mass. If a delta-
correlated force is applied at some other point in a system or to a system with no
mass, as in Example 9.3, then the relationships generally do not hold.

********************************************************************************************

Example 9.8: Verify that the rate of energy addition of Eq. 9.35 is consistent with

the expressions derived in Section 5.6 for the nonstationary variance values of

displacement and velocity for the response of the SDF system with a stationary

delta-correlated excitation.
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We can write the response variance values of Eqs. 5.50 and 5.54 as

σ
ω

ω

ζ ω
ω

ω
ζ ω

ω
ωζ ω

X
t

d d
d

d
dt

G

k c
e t t U t2 0 2 0

2

2
0

2
0
2

22
1 2 20( ) sin( ) cos( ) ( )= − + −
























−

and
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ζ ω
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ω
ζ ω
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ωζ ω
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for a system that is at rest at time t = 0  and has an excitation { ( )}F t  with

autocovariance of K t s G t s U tFF ( , ) ( ) ( )= −0 δ . Letting the mean values be zero,

we use these expressions in calculating the total energy in the oscillator as
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k t m t
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The fact that the ( / ) sin( )ζω ω ω0 2d dt  term, which appears in both σX t2 ( )  and

σ ˙ ( )X t2 , does not appear in the total energy expression shows that this term

represents a transfer of energy back and forth between potential energy and

kinetic energy, with no net energy addition. Taking the derivative of the expected

total energy, and noting that 2 0ζ ω = c m/ , gives the rate of energy growth in the

system as

d

dt
E PE t KE t
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m
e t

t U t

t

d d
d

d
d

[ ( ) ( )] sin( )

     cos( ) ( )
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ω
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ω
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Adding this expression to c tXσ ˙ ( )2 , which is the expected rate of energy

dissipation in the system, gives the rate of energy addition as

E PA t G m U t[ ( )] /( ) ( )= 0 2 . Recalling that the relationship between G0  and the

autospectral density is G S0 02= π  confirms Eq. 9.35.

Similar verification is given by Example 5.8, in which a delta-correlated force is

applied to a mass that has no restoring force elements. In this case we found that

the variance of ˙( )X t  grows linearly with time as σ ˙ ( )X t2 = ( / ) ( )G m t U t0 2 . When

the mean of velocity is zero, this indicates a linear growth of kinetic energy.

Inasmuch as this particular system has no potential energy or energy dissipation,

the rate of growth of the kinetic energy is the rate of energy addition by the force.

The value found is G m0 2/( ) , which again confirms Eq. 9.35.

 *******************************************************************************************
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Example 9.9: Verify that Eq. 9.35 gives the rate of energy addition by a mean-

zero shot noise force applied to a mass m  that is connected to some springs and

dashpots.

As in Example 5.6, we will write the shot noise force as

F t F t Tl l( ) ( )= −∑ δ

in which { , , , , }T T Tl1 2 L L  is the sequence of arrival times for a Poisson process

and { , , , , }F F Fl1 2 L L  is a sequence of identically distributed random variables

that are independent of each other and of the arrival times. We will first consider

the energy added to the mass by the single pulse F t Tl lδ( )− . Let the mass have

displacement and velocity X Tl( )−  and ˙( )X Tl
− , respectively, immediately prior to

the pulse. Because the forces from attached springs and dashpots will be finite,

they will cause no instantaneous changes in X t( )  or ˙( )X t , but the pulse of

applied force will cause an instantaneous change in ˙( )X t . Thus, the state of the

mass immediately after the impulse will be X T X Tl l( ) ( )+ −= , and ˙( )X Tl
+ =

˙( ) /X T F ml l
− + . Because displacement is continuous, there will be no change in

the potential energy of the system during the instant of the excitation pulse, but

the kinetic energy will instantaneously change by an amount

∆KE
m

X T X T m X T F
F

ml l l l
l= − = ++ − −

2 2
2 2

2
[ ˙ ( ) ˙ ( )] ˙( )

We know that Fl  is independent of the past excitation, and this ensures that it is

also independent of ˙( )X Tl
− . In conjunction with the fact that E Fl( ) = 0  for a

mean-zero process, this gives E X T Fl l[ ˙( ) ]− = 0. Thus, the expected value of the

energy added by the pulse F t Tl lδ( )−  can be written as E F m( ) /( )2 2 . Even

though the energy added by any one individual pulse does depend on the

velocity of the mass at the time of the pulse, this term may be either positive or

negative and its expected value is zero. The expected rate of energy addition per

unit time by the force on mass m  is then E F m( ) /( )2 2  multiplied by the

expected rate of arrival of the pulses. We can find the autospectral density of this

shot noise process from the results in Example 5.6, and it again confirms that the

expected rate of energy addition is as given in Eq. 9.35.

 *******************************************************************************************

9.7 Higher Moments and Cumulants Using Kronecker Notation
One difficulty in investigating higher moments or cumulants of the state
variables is the choice of an appropriate notation. We found that the first
moments could be written as the vector 

r
µY t( )  and the second moments could be

written as the matrix φφYY t t( , ) . Continuing with this approach gives the third
moments as constituting a third-order tensor, the fourth moments as a fourth-
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order tensor, and so forth. There is no problem with writing expressions for
components such as the ( , , , )j k l m  component of the fourth-order tensor as
E Y t Y t Y t Y tj k l m[ ( ) ( ) ( ) ( )] , but there is some difficulty with the presentation of
general relationships for the higher moments, comparable to Eqs. 9.6 and 9.8 for
the first and second moments, as well as with the organization of the large
amount of information involved. That is, 

r
µY t( ) , φφYY t t( , ) , and KYY t t( , )  provide

very convenient one- and two-dimensional arrays when that is needed, but we
have not defined a notation or appropriate algebra for arrays with dimension
higher than two. Because Kronecker notation provides one convenient way to
handle this matter, we now present its basic concepts.

The fundamental operation of Kronecker algebra is the product denoted by
⊗ and defined as follows: If A  is an n rA A×  rectangular matrix and B is an
n rB B×  rectangular matrix, then C A B= ⊗  is a rectangular matrix of dimension
n n r rA B A B×  with components C A Bj n j l r l j l j lA B B A B B A A B B( ) ,( )− + − + =1 1 . This
relationship can also be written as

C

B B B

B B B

B B B

=





















A A A

A A A

A A A

r

r

n n n r

A

A

A A A A

11 12 1

21 22 2

1 2

L

L

M M M

L

(9.39)

Note that the Kronecker product is much more general than matrix multiplication
and requires no restrictions on the dimensions of the arrays being multiplied. One
can easily verify that the definition gives

( ) ( )A B C D A C A D B C B D+ ⊗ + = ⊗ + ⊗ + ⊗ + ⊗ (9.40)
and

A B C A B C⊗ ⊗ = ⊗ ⊗( ) ( )  (9.41)

for any arrays A , B , C , and D, showing that the operation is distributive and
associative. On the other hand, B A A B⊗ ≠ ⊗ , so the operation is not
commutative. A simplified notation is used for the Kronecker product of a matrix
with itself. In particular, we define Kronecker powers as A A A[ ]2 = ⊗  and
A A A[ ] [ ]j j= ⊗ −1  for j > 2 . Note that in the particular case in which A and B
each have only one column, we find that A B⊗  also has only one column. That
is, the Kronecker product of two vectors is a vector and the Kronecker power of a
vector is a vector. This situation will be of particular interest in our state-space
analysis. Because our equations of motion contain matrix products, we also need
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a general relationship involving the combination of matrix products and
Kronecker products. This formula is

( ) ( ) ( ) ( )A B C D A C B D⊗ = ⊗ ⊗  (9.42)

provided that the dimensions of the arrays are such that the matrix products A B
and C D  exist.

Even though we found the matrix formulation to be very convenient for the
equations governing the second moments of the state variables, we now rewrite
those expressions using the Kronecker notation to illustrate its application. The
array of second-moment functions is given by the vector E Y t[ ( )][ ]

r
2 ≡

E Y t Y t[ ( ) ( )]
r r

⊗ . Note that this vector contains every element of the φφYY t t( , )
matrix that we previously considered. The only difference is that the elements are
now arranged as a vector of length ( )nY 2  instead of in a matrix of dimension
n nY Y× . The derivative of the Kronecker power is given by

d

d t
E Y t E Y t Y t E Y t Y t[ ( )] [

˙
( ) ( )] [ ( )

˙
( )][ ]

r r r r r
2 = ⊗ + ⊗

The terms on the right-hand side of this differential equation governing the
second moments can be obtained by taking the Kronecker product of 

r
Y t( )  with

the equation of motion in Eq. 9.5 rewritten as 
ṙ
( )Y t + −A B1

r
Y t( ) = −A 1

r
Q t( ) , then

taking the expected value. This gives

E Y t Y t E Y t Y t E Q t Y t[
˙
( ) ( )] [ ( ) ( )] [ ( ) ( )]

r r r r r r
⊗ + ⊗ = ⊗− −A B A1 1

and

E Y t Y t E Y t Y t E Y t Q t[ ( )
˙
( )] [ ( ) ( )] [ ( ) ( )]

r r r r r r
⊗ + ⊗ = ⊗− −A B A1 1

and adding these expressions gives

d

dt
E Y t E Y t Y t E Y t Y t

E Q t Y t E Y t Q t

[ ( )] [ ( ) ( )] [ ( ) ( )]

[ ( ) ( )] [ ( ) ( )]

[ ]
r r r r r

r r r r

2 1 1

1 1

+ ⊗ + ⊗ =

⊗ + ⊗

− −

− −

A B A B

A A

(9.43)

We can simplify this relationship by noting that [A B−1
r
Y t( )] ⊗ ≡

r
Y t( )

[A B−1
r
Y t( )] ⊗[I

r
Y t( )] , in which I I≡ nY  is the identity matrix. Based on Eq.

9.40, though, this is the same as ( )A B I− ⊗1
r
Y [ ]( )2 t . Performing this same

operation for E[
r r
Y t Y t( ) ( )⊗ −A B1 ]  E[

r
Y ( )t ⊗ −A B1

r
Y ( )]t  gives
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d

dt
E Y t E Y t

E Q t Y t E Y t Q t

[ ( )] [( ) ( )] [ ( )]

[ ( ) ( )] [ ( ) ( )]

[ ] [ ]
r r

r r r r

2 1 1 2

1 1

+ ⊗ + ⊗ =

⊗ + ⊗

− −

− −

A B I I A B

A A

(9.44)

This equation governing the second moments of the state variables is exactly
equivalent to Eq. 9.8. In fact, the ( , )j l  component of Eq. 9.8 is identical to the
( )n j lY − +1  component of Eq. 9.44. As noted before, symmetry causes the ( , )l j
component of Eq. 9.8 to be identical to the ( , )j l  component. Similarly, the
( )n l jY − +1  and the ( )n j lY − +1  components of Eq. 9.44 are identical.

Inasmuch as Eqs. 9.44 and 9.8 have identical components, there is really no
advantage in using the Kronecker notation for the second-moment equations.
This new notation is easily extended to higher dimensions, however, whereas the
matrix notation is not so easily extended. The array of third moments of the state
variables, for example, can be written as E Y t[ ( )][ ]

r
3  and its derivative is

d

dt
E Y t E Y t Y t Y t E Y t Y t Y t

E Y t Y t Y t

[ ( )] [ ( ) ( )
˙
( )] [ ( )

˙
( ) ( )]

[
˙
( ) ( ) ( )]

[ ]
r r r r r r r

r r r

3 = ⊗ ⊗ + ⊗ ⊗ +

⊗ ⊗

Substituting for 
ṙ
( )Y t  from the equation of motion, arranging terms, and

simplifying according to Eq. 9.42 then gives

d

dt
E Y t

E Y t

E Y t Y t Q t E Y t Q t Y t

E Q t Y

[ ( )] [( ) ( )

            ( )] [ ( )]

[ ( ) ( ) ( )] [ ( ) ( ) ( )]

       [ ( )

[ ]

[ ]

r

r

r r r r r r

r r

3 1 1

1 3

1 1

1

+ ⊗ ⊗ + ⊗ ⊗ +

⊗ ⊗ =

⊗ ⊗ + ⊗ ⊗ +

⊗

− −

−

− −

−

I I A B I A B I

A B I I

A A

A (( ) ( )]t Y t⊗
r

or

d

dt
E Y t E Y t

E Y t Q t E Y t Q t Y t E Q t Y

[ ( )] [( ) ( ) ( )] [ ( )]

      [ ( ) ( )] [ ( ) ( ) ( )] [ ( )

[ ] [ ] [ ] [ ]

[ ] [

r r

r r r r r r r

3 2 1 1 1 2 3

2 1 1 1

+ ⊗ + ⊗ ⊗ + ⊗ =

⊗ + ⊗ ⊗ + ⊗

− − −

− − −

I A B I A B I A B I

A A A 22]( )]t

In this way one can write the general expression for the jth moments as

d

dt
E Y t E Y t tj j[ ( )] [ ( )] ( )[ ] [ ]

r r r
+ =C ψ (9.45)
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in which

C I I A B I I I A B I= ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ = ⊗ ⊗
−=

−

−

−

=

− −∑ ∑L1 24 34 L1 24 34
ll

j

j l

l

l

j
j l

11

1 1

1

1[ ] [ ] (9.46)

and

r r
L

r

1 244 344

r r
L

r

1 244 344

r r r

ψ( ) [ ( ) ( ) ( ) ( ) ( )]

       [ ( ) ( ) ( )][ ] [ ]

t E Y t Y t Q t Y t Y t

E Y t Q t Y t

ll

j

j l

l

l

j
j l

= ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
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−=
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−

−

=

− −

∑

∑

11

1

1

1

1

A

A

(9.47)

The equations for higher-order cumulants are essentially identical to those
of Eq. 9.45 for higher moments. In fact, the only complication in going from
moments to cumulants is in the definition of a cumulant notation corresponding
to the Kronecker products and powers. This can be done, though, by analogy
with the product terms. In particular, we will define an array of cumulant terms
that is organized in exactly the same way as the elements of the corresponding
Kronecker product moments. For the general situation in which we have matrices
( , , , )M M M1 2 L j  of random variables, we note that any particular component of
the jth-order moment matrix E j( )M M M1 2⊗ ⊗ ⊗L  is a product of one
element each from the matrices in ( , , , )M M M1 2 L j . We now define the
corresponding component of the matrix κ j

⊗ ( , , , )M M M1 2 L j  to be the jth-order
joint cumulant of those same j elements, one from each of the matrices in
( , , , )M M M1 2 L j . The linearity property of the cumulants, as given in Eq. 9.3,
then allows us to rewrite Eq. 9.45 as

d

dt
Y t Y t Y t Y t

Y t Y t Q t Y t Y t

j j

j

ll

j

j l

κ κ

κ

⊗ ⊗

⊗

−=

−

−

+ =

∑

[ ( ), , ( )] [ ( ), , ( )]

[ ( ), , ( ), ( ), ( ), , ( )]

r
L

r r
L

r

r
L

r

1 244 344

r r
L

r

1 244 344

C

A
11

1
(9.48)

in which the matrix C is as defined in Eq. 9.46.

Let us now consider the special case in which the { ( )}
r
Q t  excitation vector

process is delta-correlated. By this we mean that

κ π δ δj j
j

j j j j jQ t Q t S t t t t t⊗ −
−= − −[ ( ), , ( )] ( ) ( ) ( ) ( )

r
L

r r
L1

1
1 12 (9.49)
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in which 
r
S j t( )  is a vector of dimension ( )nY j . Its components are spectral

density terms that give the nonstationary intensity of the jth cumulants of ther
Q t( )  excitation. The elements of 

r
S 2( )t  are ordinary autospectral and cross-

spectral densities, the elements of 
r
S 3( )t  are bispectral densities, and so forth.

Using Eq. 9.49 one can write a generalization of Eq. 9.15 as

L
r

L
r

L
r

κ πj jt

t

t

t

j
j

jt

t
Q t Q t dt dt S v dv⊗ −∫∫ ∫=[ ( ), , ( )] ( ) ( )1 1

1

00 0
2

for any t t0 < . The derivative with respect to t of this expression is

L
r

L
r r r

L
r

L L
r

κ

π

j kt

t

t

t

k

j

k j

k k j
j

j

Q t Q t Q t Q t Q t

dt dt dt dt S t

⊗
−

=
+

− +
−

∫∫∑ ×

=

[ ( ), , ( ), ( ), ( ), , ( )]

( ) ( )

1 1
1

1

1 1 1
1

00

2

and substituting the form of Eq. 9.11 for the response terms in the right-hand side
of Eq. 9.48 gives exactly the left-hand side of this expression premultiplied by
( ) [ ][ ]A A A− − −≡ ⊗ ⊗1 1 1j L . Thus, Eq. 9.48 becomes

d

dt
Y t Y t Y t Y t S tj j

j j
jκ κ π⊗ ⊗ − −+ =[ ( ), , ( )] [ ( ), , ( )] ( ) ( ) ( )[ ]

r
L

r r
L

r r
C A2 1 1 (9.50)

This generalization of Eq. 9.17 describes all jth-order cumulants of the response
process { ( )}

r
Y t  resulting from the delta-correlated excitation process { ( )}

r
Q t .

The general solution of Eq. 9.50, of course, can be written as

κ πj
j t u j

j

t
Y t Y t e S u du⊗ − − − −

−∞
= ∫[ ( ), , ( )] ( ) ( ) ( )( ) [ ]

r
L

r r
2 1 1C A (9.51)

and the corresponding array of conditional cumulants given 
r
Y ( )t y0 =

r
 at some

particular time is

κ πj
j t u j

jt

t
Y t Y t Y t y e S u du j⊗ − − − −= = >∫[ ( ), , ( ) | ( ) ] ( ) ( ) ( )  ( ) [ ]
r

L
r r r r

0
1 12 2

0

C A for 

(9.52)

Note that Eq. 9.52 gives the conditional cumulants as being zero at time t t= 0 , in
agreement with the fact that all cumulant components of order higher than unity
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are zero for any deterministic vector, such as 
r
y . Similar solutions can be written

for stochastic initial conditions.

Because the matrix exponential in the integrands of Eqs. 9.51 and 9.52 are
not convenient for computation, let us consider a form giving uncoupled
equations. As before, let 

r
Y t( ) = θθ

r
Z t( ) , with θθ being the matrix of eigenvectors

giving A B− =1 θθ θθλλ , in which λλ  is the diagonal matrix of eigenvalues. Using the
ṙ
Z ( )t +λλ

r
Z t( ) = − −θθ 1 1A

r
Q t( )  equation of motion for 

r
Z t( ) , one now finds the

equation for cumulants of 
r
Z t( )  as

d

dt
Z t Z t Z t Z t S tj j

j j
jκ κ π⊗ ⊗ − − −+ =[ ( ), , ( )] ˆ [ ( ), , ( )] ( ) ( ) ( )[ ]

r
L

r r
L

r r
C A2 1 1 1θθ

(9.53)
in which

ˆ [ ] [ ]C I I= ⊗ ⊗−

=

−∑ l

l

j
j l1

1

λλ (9.54)

It is easy to verify that the Kronecker product of two diagonal matrices is itself a
diagonal matrix, and this is sufficient to demonstrate that Ĉ is diagonal,
confirming that the components in Eq. 9.53 are uncoupled. Thus,

κ πj
j t u j

j

t
Z t Z t e S u du⊗ − − − − −

−∞
= ∫[ ( ), , ( )] ( ) ( ) ( )( ) ˆ [ ]

r
L

r r
2 1 1 1C Aθθ (9.55)

in which e t u− −( )Ĉ  is a diagonal matrix with e t u Cll− −( ) ˆ  as its ( , )l l  component.
After evaluating κ j

⊗ [ ( ), , ( )]
r

L
r

Z t Z t  from the uncoupled equations, one finds the
result for 

r
Y t( )  as

κ κj
j

jY t Y t Z t Z t⊗ ⊗=[ ( ), , ( )] [ ( ), , ( )][ ]
r

L
r r

L
r

θθ (9.56)

Note that the dimension of the vectors E Y tj[ ( )][ ]
r

 and κ j
⊗ [ ( ), , ( )]

r
L

r
Y t Y t  of

unknowns in Eqs. 9.45 and 9.50, respectively, is ( )nY j , but the number of
distinct moments or cumulants of order j is much less than this. For example,r
Y tj[ ]( )  includes all j! permutations of the terms in Y Y Yl l l j1 2 L  for distinct
values of ( , , )l l j1 L , but all of these permutations are identical. Exactly the same
symmetry applies to the cumulants. Of course, the j! equations governing these
different representations of the same term are also identical. Thus, Eqs. 9.45 and
9.50 contain much redundant information. This is exactly the same situation as
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was found in Eqs. 9.8 and 9.9 for the state-space equations for the autocorrelation
and autocovariance matrices. The symmetry of these matrices of unknowns
resulted in all the off-diagonal terms being included twice in Eqs. 9.8 and 9.9.
For higher-order moments or cumulants, the amount of redundancy is much
greater, though. The actual number of unique moments or cumulants of order j is
given by the binomial coefficient ( )!/[( )! !]n j n jY Y+ − −1 1 . One particular way
to take account of this symmetry in order to consider only unique cumulants of a
given order was presented by Lutes and Chen (1992), but its implementation is
somewhat cumbersome.

It should be noted that higher-order moment equations are significantly less
convenient than cumulant equations for delta-correlated excitations. Some
indication of this fact was given in Eq. 9.18, using the autocorrelation matrix
notation for the second moments of response. It can be illustrated more clearly by
considering the simple situation of higher moments of a stationary scalar process.
In particular, if the vectors 

r
Y t( )  and 

r
Q t( )  have dimension one, then the

excitation in Eq. 9.45 becomes

ψ( ) ( / ) [ ( ) ( )]t j A E Y t Q tj= −1

and rewriting Y t Y t Y( ) ( )= +0 ∆  with

∆Y Q u B A Y u du
t

t
= −∫ [ ( ) ( / ) ( )]

0

as in Eq. 9.11, one obtains

Y t
j

l j l
Y t Yj

l

j
j l l−

=

− −=
−

− −
∑1

1
0

11
1

( )
( )!

( )!( )!
( ) ( )∆

and

E Y t Y Q t E Y t E Y Q t

E Y t E Q u Q u Q t du du

j l l j l l

j l
t

t
lt

t
l

[ ( ) ( ) ( )] [ ( )] [( ) ( )]

[ ( )] [ ( ) ( ) ( )]

− − − −

−
− −

= =

∫ ∫
0

1
0

1

1 1 1 1
0 0

∆ ∆

L L L

in which E Y tj l[ ( )]− 0  has been replaced with E Y tj l[ ( )]−  because of stationarity
and some negligible terms have been omitted, as was done in deriving Eq. 9.13.
Next we note that
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L L L
t

t
lt

t
lE Q u Q u Q t du du

0 0
1 1 1 1∫ ∫ − − =[ ( ) ( ) ( )]

1 2
0 0

1 1

1

l

d

dt
E Q u Q u du du

l
S

t

t
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t
l

l

lL L L∫ ∫ =
−

[ ( ) ( )]
( )π

in which Sl  is the order-l spectral density of { ( )}Q t . Thus

ψ π( )
!

! ( )!
[ ( )]( )t

A

j

l j l
E Y t Sj l

l

j
l

l=
−

−

=

−∑1
2

1

1 (9.57)

showing that the excitation for the jth moment equation involves all orders of
spectral density of { ( )}Q t  up to order j.

An additional difficulty that arises for higher-order moments of a vector
{ ( )}

r
Y t  process can be demonstrated by consideration of the 

r
ψ( )t  vector for

j = 3:

r r r r r r r

r r r
ψ( ) [ ( ) ( ) ( )] [ ( ) ( ) ( )]

[ ( ) ( ) ( )]

t E Q t Y t Y t E Y t Q t Y t

E Y t Y t Q t

= ⊗ ⊗ + ⊗ ⊗ +

⊗ ⊗

− −

−

A A

A

1 1

1

Substituting 
r
Y ( )t =

r
Y ( )t0 + ∆

r
Y  in this expression expands each of these three

terms into four terms, giving a total of 12. For example,

E Y t Q t Y t E Y t Q t Y t E Y t

Q t Y E Y Q t Y t E Y Q t Y

[ ( ) ( ) ( )] [ ( ) ( ) ( )] [ ( )

( ) ] [ ( ) ( )] [ ( ) ]

r r r r r r r

r r r r r r r r
⊗ ⊗ = ⊗ ⊗ + ⊗

⊗ + ⊗ ⊗ + ⊗ ⊗

− −

− − −

A A

A A A

1
0

1
0 0

1 1
0

1∆ ∆ ∆ ∆

Not only does each of the terms make a contribution, but some of them are also
awkward to handle. For example, consider the first term on the right-hand side of
the equation. Independence of 

r
Q t( )  and 

r
Y ( )t0  can be used to give

E[
r
Y ( )t0 1⊗ −A

r
Q ( )t ⊗

r
Y ( )] [t E0 =

r
Y ( ) ( )t tQ0 1⊗ ⊗−A

r
µ

r
Y ( )]t0 . A component

of this array is made up of the product of one component from A−1 r
µQ t( )  and

one component from E[
r
Y ( )t0 ⊗

r
Y ( )]t0 , but the ordering of the terms, due to

A−1 r
µQ t( )  being in the middle of the Kronecker product, precludes direct

factoring of the expression. A Kronecker algebra operation to handle such
difficulties by using a so-called permutant matrix (Di Paola et al., 1992) does
exist, but this further complicates the equation. Overall, it seems preferable in
many situations to find the response cumulants from solution of Eq. 9.50 and
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then find any needed response moments from these quantities rather than to work
directly with higher-order moment equations.

One may note that the results presented thus far in this chapter have all
been limited to situations with delta-correlated excitations. The general form of
Eq. 9.45 does apply for any form of stochastic excitation, as do the special cases
of Eqs. 9.8, 9.9, and 9.44. However, the right-hand side of each of those
equations contains terms that depend on both the unknown dynamic response and
the known excitation. It is only for the delta-correlated situation that these
equations are reduced to a form that can be solved. This limitation of state-space
analysis can be eased if the excitation can be modeled as a filtered delta-
correlated process. That is, for many problems it is possible to model the { ( )}

r
Q t

process as the output from a linear filter that has a delta-correlated input. If this
can be done for the excitation of Eq. 9.5, then it is possible to apply state-space
moment or cumulant analysis to the system of interest, as well as to the linear
filter. The procedure is to define a composite linear system that includes both the
filter and the system of interest. The excitation of this composite system is the
input to the filter, and the response includes { ( )}

r
Q t  as well as { ( )}

r
Y t .

 *******************************************************************************************
Example 9.10: Consider the third-order cumulants of the response of the SDF

oscillator with a stationary, delta-correlated excitation. Find expressions for the

stationary values of the response cumulants.

The state-space description of the system is as in Example 9.4, with nY = 2,
r r
Y t

X t

X t
k

m k m c m
Q t

F t
( )

( )
˙( )

,    ,     
/ /

,     ( )
( )

=








 = −









 =

−







 =











−
−

−
−A A B1

1

1
10

0

0 1 0

The vector giving the Kronecker representation of the third-order cumulants is

V t Y t Y t Y t( ) [ ( ), ( ), ( )]≡ ⊗κ3 , which can be written out explicitly asr
V t X t X t X t X t X t X t X t X t X t

X t X t X t X t X t X t X t X t X t

X t X t

( ) [ ( ), ( ), ( )], [ ( ), ( ), ˙( )], [ ( ), ˙( ), ( )],

[ ( ), ˙( ), ˙( )], [ ˙( ), ( ), ( )], [ ˙( ), ( ), ˙( )],

[ ˙( ), ˙(

= (κ κ κ

κ κ κ

κ

3 3 3

3 3 3

3 ),), ( )], [ ˙( ), ˙( ), ˙( )]X t X t X t X t
T

κ3 )
The right-hand side of the  equation

r r r˙
( ) ( ) ( ) ( )[ ]V t V t S+ = −C A2 2 1 3 3π

 is very simple. In fact, it is easily shown that it has only one nonzero

component— ( ) /2 2 3 3π S m  in the eighth position, in which the scalar S3
represents the bispectrum of the { ( )}F t  process:

κ π δ δ3 1 2 3
2

3 1 3 2 32[ ( ), ( ), ( )] ( ) ( ) ( )F t F t F t S t t t t= − −
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Expansion of the matrix C A B I I A B I I A B= ⊗ + ⊗ ⊗ + ⊗− − −1 2 1 2 1[ ] [ ]  gives

C =

− − −

− −

− −

−

− −

−

−

0 1 1 0 1 0 0 0

0 1 0 1 0 0

0 1 0 0 1 0

0 2 0 0 0 1

0 0 0 1 1 0

0 0 0 2 0 1

0 0 0 0 2 1

0 0 0 0 3

k m c m

k m c m

k m k m c m

k m c m

k m k m c m

k m k m c m

k m k m k m

/ /

/ /

/ / /

/ /

/ / /

/ / /

/ / / cc m/



































Solving C A
r r
V t S( ) ( ) ( )[ ]= −2 2 1 3 3π  then gives the third cumulants of the

stationary response as

r
V

S

m

m

c k k m

m

c km

m

c km

m

c km

cm

c km

T

=
+ + +







+ +







( )
, , , , , ,

,

2 2

6 3
0 0

6 3
0

6 3

6 3

2

6 3

2
3

3

3

2 2

2

2

2

2

2

2

2

2

π

Note that the fourth, sixth, and seventh components of 
r
V  are identical. We could

tell that this must be true, though, by the fact that the definition of the 
r
V  vector

gives each of these components to be the joint cumulant of X t( ) , ˙( )X t , and
˙( )X t . Similarly, the second, third, and fifth components of 

r
V  are all equal to the

joint cumulant of X t( ) , X t( ) , and ˙( )X t . These components not only are

identical but also are identically zero in the stationary situation. This follows from

the fact that

κ κ3 3
1

3
[ ( ), ( ), ˙( )] [ ( ), ( ), ( )]X t X t X t

d

dt
X t X t X t=

just as

E X t X t
d

dt
E X t[ ( ) ˙( )] [ ( )]2 31

3
=

********************************************************************************************

9.8 State-Space Equations for Stationary Autocovariance
We have derived equations governing the behavior of the moments and
cumulants of 

r
Y t( )  at any time t by considering joint moments or joint cumulants,

respectively, of 
r
Y t( )  and the equation of motion at time t. These equations

usually constitute the most useful form of state-space analysis, but Spanos (1983)
has demonstrated that the method can also be generalized to give equations
governing autocorrelation or autocovariance functions. These more general
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relationships can be derived by considering joint moments or cumulants of eitherr
Y s( )  or 

r
Q s( )  and the equation of motion at time t, with no restriction of s being

equal to t. We illustrate this idea only for one of the simplest situations involving
the second-moment autocorrelation and cross-correlation functions. In principle,
the method can also be applied to higher-order moments or cumulants, but the
calculations become more complex. To obtain an equation for a cross-correlation
function we simply multiply Eq. 9.5 on the right by 

r
Q sT ( )  and then take the

expected value, namely

A Bφφ φφ φφ˙ ( , ) ( , ) ( , )YQ YQ QQt s t s t s+ = (9.58)

Because the first term in this equation represents a partial derivative of φφYQ t s( , ) ,
this is a partial differential equation governing the behavior of this cross-
correlation function between the { ( )}

r
Y t  and { ( )}

r
Q t  processes. Rather than

pursue this general relationship, though, we will simplify the presentation by
restricting our attention to the situation with a stationary cross-product
φφYQ YQt s t s( , ) ( )= −R . In this case we have the ordinary differential equation

A R B R R′ + =YQ YQ QQ( ) ( ) ( )τ τ τ (9.59)

in which the prime denotes a derivative with respect to τ . The solution can be
written as

R A B A RYQ QQu u du( ) exp[ ( ) ] ( )τ τ
τ

= − − −
−∞

−∫ 1 1 (9.60)

Similarly, when we multiply the equation of motion at time t by 
r
Y sT ( )  on

the right, we obtain an equation for the autocorrelation function as

A R B R R′ + =YY YY QY( ) ( ) ( )τ τ τ (9.61)

and the solution can be written as

R A B A RYY QYu u du( ) exp[ ( ) ] ( )τ τ
τ

= − − −
−∞

−∫ 1 1 (9.62)

The “excitation” in this expression, though, is almost the same as the term given
in Eq. 9.60. In particular, noting that R RQY YQ T( ) [ ( )]τ τ= −  and making a
change of variables of v u= −  in the integral allows us to rewrite Eq. 9.60 as
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R R A A BQY QQ
T Tv v dv( ) ( ) ( ) exp[( )( ) ]τ τ

τ
= −− −

∞

∫ 1 1 (9.63)

Substitution of Eq. 9.63 into 9.62 then gives

R A B A R A

A B

YY QQ
T

u

T

u v

v u dv du

( ) exp[ ( ) ] ( ) ( )

exp[ ( )( ) ]

τ τ
τ

= − − ×

− −

− − −
∞

−∞
−

∫∫ 1 1 1

1
(9.64)

Alternatively, one could rewrite Eq. 9.61 to obtain R R AYQ YY T( ) ( )τ τ= − ′ +
R BYY T( )τ  and substitute this into Eq. 9.59 to give a second-order differential
equation of

A R A B R A A R B B R B R′′ + ′ − ′ − = −YY
T

YY
T

YY
T

YY
T

QQ( ) ( ) ( ) ( ) ( )τ τ τ τ τ

then verify that this equation is satisfied by Eq. 9.64.

One can, of course, also rewrite all these expressions in terms of cross-
covariance rather than cross-product terms and obtain the results corresponding
to Eqs. 9.63 and 9.64 as

G G A A BQY QQ
T Tv v dv( ) ( ) ( ) exp[( )( ) ]τ τ

τ
= −− −

∞

∫ 1 1 (9.65)

and

G A B A G A

A B

YY QQ
T

u

T

u v

v u dv du

( ) exp[ ( ) ] ( ) ( )

exp[ ( )( ) ]

τ τ
τ

= − − ×

− −

− − −
∞

−∞
−

∫∫ 1 1 1

1
(9.66)

Consider now the special case with { ( )}
r
Q t  being a stationary white noise

process with G SQQ ( ) ( )τ π δ τ= 2 0 . Substituting this expression into Eqs. 9.65
and 9.66 gives

G S A A BQY
T T U( ) ( ) exp[ ( ) ] ( )τ π τ τ= −− −2 0

1 1 (9.67)

and

G A B A B A S A

A B

YY
T

T

u

u du

( ) exp[ ] exp[ ] ( )

exp( ( ) )

min( , )
τ π τ

τ
= − ×− −

−∞
− −

−

∫2 1 1
0

1
0

1

1
(9.68)
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These results are consistent with those obtained in Section 9.5 for the special case
of τ = 0. Although the discontinuity in Eq. 9.67 at τ = 0 leaves some doubt about
the value of K GQY QYt t( , ) ( )≡ 0 , Eq. 9.68 does allow evaluation of
K GYY YYt t( , ) ( )≡ 0  without ambiguity, and the result is consistent with Eq. 9.23.

Note that the results in this section require knowledge only of the
autocorrelation or autocovariance function for the { ( )}Q t  excitation. Thus, for
example, the results in Eqs. 9.67 and 9.68 are based only on the white noise
property that Q t( )  and Q s( )  are uncorrelated for s t≠ . If we wish to obtain
similar results for higher-order cumulant functions, we will need to consider the
corresponding higher-order moment or cumulant functions of the excitation. In
particular, results comparable to Eqs. 9.67 and 9.68 would require that { ( )}Q t
satisfy other portions of the general delta-correlated relationship. We will not
investigate these more general and complicated problems, though. Note that any
higher-order cumulant function will depend on more than one time argument, so
the formulation would involve partial differential equations. Only the stationary
second moment and second cumulant (autocorrelation and autocovariance)
involve only a single time argument and are therefore governed by ordinary
differential equations.

It may also be noted that the results in this section are more general than
those in the earlier portions of the chapter inasmuch as they include solutions for
excitations that are not delta-correlated. In particular, Eqs. 9.60 and 9.64 describe
characteristics of the response to an excitation that has the autocorrelation
function RQQ ( )τ , rather than being delta-correlated.

 *******************************************************************************************
Example 9.11: Use Eq. 9.68 to find the autocovariance functions of { ( )}X t  and

{ ˙( )}X t  for the response of an SDF oscillator excited by a stationary delta-

correlated force with autospectral density of S0 .

Using the eigenvectors and eigenvalues of A B−1 , we first rewrite Eq. 9.68 as

G A S AYY
T Tu

u du

( ) exp[ ] exp[ ] ( ) ( )

exp( )

min( , )
τ π τ

τ
= − ×

−∞
− −∫2

0
1

0
1θθ λλ λλ θθ θθ

λλ θθ

-1 -1

T

and write out the expression for the ( , )j l  term as

[ ( )] [ ( ) ]

( )min( , )

G SYY jl jr
rrrr

r r
T

r r

r r lr
u

e A A

e du

r r

r r r r

τ π θ θ

θ θ

λ τ

λ λτ

= ×∑∑∑∑

∫

− − − −

− +

−∞

2
1

4321

1 1

1 2 2 3

4 3 4
1 1 4 4

1 1
0

1

1 0
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The state-space formulation of the SDF oscillator as given in Example 9.4 hasr
Q t F t T( ) [ , ( )]= 0 , A A12 21 0= = , and A m22 = . This gives

S A S A0 0
1

0
1 0

2
2

0 0

0 1
2 0 0

0 1
=









 =











− −π
π

S
S

m

T,     ( )

Thus, the only contributions to [ ( )]GYY jlτ  come from terms with r r2 3 2= = .

Using this fact, performing the integration with respect to u , and simplifying gives

[ ( )]
, min( , ) min( , )

GYY jl jr
rr

r r lr
r r r r

S

m

e e
r r r r

τ
π

θ θ θ θ
λ λ

λ τ λ τ

=
+

==

− −
−

∑∑2 0
2

1

2

1

2

2
1

2
1

0 0

1

41
1 4 4

1 1 4 4

1 1 4 4

in which λ ζ ω ω11 0 2 1 22 1 4= − = − −i c m i k m c k md /( ) ( / )[ /( )] /  and λ λ22 11= * .

The eigenvector matrix for A B−1  is as given in Example 9.5, and its inverse is

easily found:

θθ θθ=
− −









 =

− − −









−1 1 1
2

1

111 22

1 22

11λ λ ω

λ

λ
     

i d

We then find the desired covariance functions by performing the summation over

r1 and r4 . The results from the diagonal elements are

G
S

m
eXX YY d

d
d( ) [ ( )] cos( ) sin( | |)| |τ τ

π

ζ ω
ω τ

ζ ω
ω

ω τζ ω τ= = +










−G 11
0

2
0
3

0

2
0

and

G
S

m
eXX YY d

d
d˙ ˙

| |( ) [ ( )] cos( ) sin( | |)τ τ
π

ζ ω
ω τ

ζ ω
ω

ω τζ ω τ= = −










−G 22
0

2
0

0

2
0

These two expressions are identical to the results in Eqs. 5.60 and 5.62,

obtained using the Duhamel convolution integral. Similarly, the [ ( )]GYY τ 12
element can be shown to be identical to the GXẊ ( )τ  function given in Eq. 5.61.

********************************************************************************************

9.9 Fokker-Planck Equation
Note the general approach that has been used in deriving the various state-space
moment and cumulant equations. We chose a moment or cumulant of interest,
took its derivative with respect to time, then used this information in deriving a
differential equation that governs the evolution over time of the particular
quantity. This same general procedure will now be used in deriving a differential
equation that governs the evolution of the probability density of a nonstationary
process. We will give the full derivation of the equations for a scalar { ( )}Y t
process, because that significantly simplifies the mathematical expressions, then
indicate the generalization to a vector { ( )}

r
Y t  process.
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Formally we can write the derivative of a nonstationary probability density
function as

∂
∂ t

p u
t

p u p uY t
t

Y t t Y t( ) ( ) ( )( ) lim ( ) ( )= −[ ]
→

+
∆

∆∆0

1
(9.69)

We now need to rewrite this expression in terms of conditional moments of the
increment ∆ ∆Y Y t t Y t≡ + −( ) ( )  of { ( )}Y t , because it turns out that in many
problems we can find these conditional moments directly from the stochastic
equation of motion. There are several ways of proceeding, but we will present
only one. Stratonovich (1963) used a conditional characteristic function of ∆Y ,
and the approach used here is similar, but without explicit use of the
characteristic function. First, we write the probability density for Y t t( )+ ∆  as a
marginal probability integral of the joint probability density of Y t( )  and
∆ ∆Y Y t t Y t≡ + −( ) ( ) :

p u p v u dv p v p u v Y t v dvY t t Y t Y t t Y t Y( ) ( ) ( ) ( )( ) ( , ) ( ) [ | ( ) ]+ +−∞

∞

−∞

∞
= = − =∫ ∫∆ ∆ ∆

(9.70)

We now rewrite the conditional probability density function for ∆Y  as

p u v Y t v p w Y t v w u v dwY Y∆ ∆[ | ( ) ] [ | ( ) ] ( )− = = = − +
−∞

∞

∫ δ

in order to introduce a range of ∆Y  values that can be used in obtaining the
moments of the increment. The Dirac delta function in the preceding expression
is now written as an inverse Fourier transform integral:

δ
π

θ
π

θ
θθ θ θ( )

( )

!
( ) ( )w u v e e d

i w

j
e di w i u v

j

j

i u v− + = =
−∞

∞
− −

=

∞

−∞

∞
− −∫ ∑∫1

2

1

2
0

(9.71)

The power series expansion of the ei wθ  allows us now to perform the integration
with respect to w to obtain the desired moments of the increment,1 giving

                                                  
1Performing this integration without the power series expansion would give the
characteristic function used by Stratonovich.
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p u v Y t v e
i

j
E Y Y t v dY

i u v
j

j

j
∆ ∆[ | ( ) ]

( )

!
[( ) | ( ) ]( )− = = =− −

=

∞

−∞

∞

∑∫1

2
0

π
θ

θθ

(9.72)

Substituting Eq. 9.72 into Eq. 9.70 allows us to write the unconditional
probability density for Y t t( )+ ∆  as

p u p u

p v e
i

j
E Y Y t v d dv

Y t t Y t

j
Y t

i u v
j

j

( ) ( )

( )
( )

( ) ( )

         ( )
( )

!
[( ) | ( ) ]

+

=

∞

−∞

∞
− −

−∞

∞

= +

=∑ ∫ ∫

∆

∆
1

2
1

π
θ

θθ

(9.73)

in which the term with j = 0  has been separated from the summation and
simplified by again using the integral relationship in Eq. 9.71, but with v u−  in
place of w u v− + . The reason for separating this one term is so that it will cancel
the first term in Eq. 9.69, giving

∂
∂ π

θ
θθ

t
p u p v e

i

j
C v t d dvY t

j
Y t

i u v
j

j
( ) ( )

( ) ( )( ) ( )
( )

!
( , )=

=

∞

−∞

∞
− −

−∞

∞

∑ ∫ ∫1

2
1

(9.74)

in which we have introduced a new notation of

C v t
t
E Y Y t vj

t

j( )( , ) lim [( ) | ( ) ]≡ =
→∆ ∆

∆
0

1
(9.75)

presuming that these limits exist. Repeated integration by parts with respect to v
now allows us to rewrite Eq. 9.74 as

∂
∂ π

∂

∂
θθ

t
p u

j
e

v
C v t p v d dvY t

j

j
i u v

j

j
j

Y t( )
( ) ( )

( )( )
( )

!
[ ( , ) ( )]=

−

=

∞

−∞

∞
− −

−∞

∞

∑ ∫ ∫1

2

1

1

and integration with respect to θ  using Eq. 9.71 gives a Dirac delta function in
the argument so that the integration with respect to v is almost trivial and gives

∂
∂

∂

∂t
p u

j u
C u t p uY t

j

j

j

j
j

Y t( )
( )

( )( )
( )

!
[ ( , ) ( )]=

−

=

∞

∑ 1

1

(9.76)



Random Vibrations398

This is the Fokker-Planck equation for the scalar process { ( )}Y t . It is also
sometimes called the Kolmogorov forward equation. The qualifier “forward” in
the latter terminology is to distinguish this equation from a similar partial
differential equation called the Kolmogorov backward equation. The backward
equation involves derivatives with respect to t0  and u0 of a conditional
probability density function, p u Y t uY t( )[ | ( ) ]0 0= .

Note that Eq. 9.76 is very general, applying to the probability density
function of virtually any scalar stochastic process. In particular, we have not used
any equation of motion in the derivation of Eq. 9.76. If we can now find the
values of the C u tj( )( , )  terms that are appropriate for a particular { ( )}Y t  process,
then we will have a partial differential equation that must be satisfied by the
nonstationary probability density function. For an important class of dynamic
problems, it turns out that we can derive the C u tj( )( , )  terms from direct use of
the stochastic equation of motion. This is quite logical, inasmuch as these terms
are moments of the increment of the { ( )}Y t  process, and we can expect that a
procedure similar to state space moment analysis should yield values for such
moments. One term that is used for the C u tj( )( , )  coefficients is derivate
moments. Lin (1967) attributes this terminology to Moyal in 1949. Stratonovich
(1963) calls them intensity functions.

For the scalar equation of motion

AY t BY t Q t˙( ) ( ) ( )+ =

we can see that

∆ ∆
∆ ∆ ∆

Y Y t t Y t Y s ds
A

Q s ds
B

A
Y s ds

t

t t

t

t t

t

t t
= + − = = −

+ + +

∫ ∫ ∫( ) ( ) ˙( ) ( ) ( )
1

so

C u t
t A

E Q s Y t u ds
B

A
E Y s Y t u ds

t t

t t

t

t t
( )( , ) lim [ ( ) | ( ) ] [ ( ) | ( ) ]1

0

1 1
= = −





 =





→

+ +

∫ ∫
∆

∆ ∆

∆

Provided that Y t( )  is continuous in the vicinity of time t, we can say that
E Y s Y t u u[ ( ) | ( ) ]= ≈  in the final integral. Similarly, we presume that
E Q s Y t u[ ( ) | ( ) ]=  is continuous in the first integral, giving
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C u t A E Q t Y t u A Bu( )( , ) [ ( ) | ( ) ]1 1 1= = −− − (9.77)

In a similar fashion

C u t
t A

E Q s Q s Y t u ds ds

B

A
E Q s Y s Y t u ds ds

B

A
E Y s Y s

t t

t t

t

t t

t

t t

t

t t

( )( , ) lim [ ( ) ( ) | ( ) ]

[ ( ) ( ) | ( ) ]

[ ( ) (

2

0 2 1 2 1 2

2 1 2 1 2

2

2 1

1 1

2

= =




 −

= +

→

++

++

∫∫

∫∫

∆

∆∆

∆∆

∆

22 1 2) | ( ) ]Y t u ds ds
t

t t

t

t t
=
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The double integrals in this expression will all be of order ( )∆ t 2 , so they can
contribute nothing to C u t( )( , )2  unless their integrands are infinite. Thus, the last
term will contribute nothing provided that E Y s Y s Y t u[ ( ) ( ) | ( ) ]1 2 =  is finite, and
the second term will contribute nothing provided that E Q s Y s Y t u[ ( ) ( ) | ( ) ]1 2 =  is
finite. We have shown in Section 9.4, though, that φ YY s s( , )1 2  and φQY s s( , )1 2
are finite even when the { ( )}Q t  excitation is delta-correlated. Thus, we find that
only the first term may make a contribution. Exactly the same arguments can be
made for the higher-order integrals that occur in C u tj( )( , )  for j > 2 , with the
result that

C u t
A t

E Q s Q s Y t u ds dsj
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for j ≥ 2     (9.78)

Note that Eq. 9.76 depends on the A and B coefficients from the equation of
motion only through their effect on the C u t( )( , )1  coefficient.

The derivation of a Fokker-Planck equation for a vector process { ( )}
r
Y t

can be accomplished by the method given for the scalar situation of Eq. 9.76. We
will not repeat the details, but the key difference between the scalar and vector
situations is that the expansion of the Dirac delta function, as in Eq. 9.71, must be
performed for each component of the vector, giving
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In the subsequent simplification, similar to Eq. 9.73, it is only the one term with
j jnY1 0= = =L  from the multiple summation that is separated out as p uY t

r
( )( ) .

Thus, all the other terms remain in the final equation, which can be written as
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(9.79)

with

C u t
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E Y Y Y t u
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j
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1L r
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r r
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→∆ ∆
∆ ∆ (9.80)

This is the general form for the Fokker-Planck equation for a vector process. Of
course, Eqs. 9.75 and 9.76 are simply the special cases of Eqs. 9.80 and 9.79,
respectively, with nY =1.

For a system governed by the vector state-space equation of motion

A B
r r r˙
( ) ( ) ( )Y t Y t Q t+ =

one can derive the analogs of Eqs. 9.77 and 9.78 as

r r r r r r
C u t E Q t Y t u u( )( , ) [ ( ) | ( ) ]1 1 1= = −− −A A B (9.81)

and
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(9.82)

The components of 
r r
C u t( )( , )1  in Eq. 9.81 give only the C u tj jnY( , , )( , )1 L r

 terms
with j jnY1 1+ + =L . In particular, the lth component of 

r r
C u t( )( , )1  is

C u tj jnY( , , )( , )1 L r
 for jl =1 and all other jr = 0 . All other C u tj jnY( , , )( , )1 L r

 terms
are evaluated from Eq. 9.82.
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The development up to this point has been very general, but practical
application of the partial differential equation in Eq. 9.79 generally is limited to
the special case in which { ( )}

r
Y t  is a so-called Markov process. The defining

property of a Markov process can be written as

p v Y s u Y s u p v Y s uY t l l Y t l l
r rr r r

L
r r r r r

( ) ( )[ | ( ) , , ( ) ] [ | ( ) ]1 1= = = =

if s s s tl1 2≤ ≤ ≤ ≤L . That is, knowing several past values 
r
Y ( ) , ,s u1 1=

r
Lr

Y ( )s ul l=
r

 of the process gives no more information about likely future values
than does knowing only the most recent value 

r
Y ( )s ul l=

r
. This property can also

be given by the statement that the future of the process is conditionally
independent of the past, given the present value. The response of our causal
linear state-space equation does have the Markov property in the special case
when the excitation is delta-correlated. The easiest way to see this is to consider
the Duhamel integral, as in Eq. 8.58, in which 

r
Y t( )  for t t> 0  is written as a

function of 
r
Y ( )t0   plus an integral involving 

r
Q s( )  for s t≥ 0 . If { ( )}

r
Q t  were not

delta-correlated, then knowing additional values of 
r
Y ( )τ  for τ < t0  might give

additional information about the probable values of 
r
Y t( )  by giving information

about probable values of 
r
Q s( )  for s t≥ 0 . When { ( )}

r
Q t  is delta-correlated,

though, 
r
Q s( )  for s t≥ 0  is independent of 

r
Q( )τ  for τ ≤ t0  and therefore it is

conditionally independent of 
r
Y ( )τ  for τ < t0 . Thus, we would learn nothing

more about the probable values of 
r
Y t( )  by knowing additional values of 

r
Y ( )τ

for τ < t0 . This is the Markov property. For such a Markov process one can
eliminate the conditioning in Eq. 9.80, giving the coefficients for Eq. 9.79 as
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because ∆
r
Y  is independent of 

r
Y t( ) .

Clearly, the Markov property allows us to eliminate the conditioning from
Eqs. 9.81 and 9.82 for the response of a linear system to a delta-correlated
excitation, giving

r r r r
C u t t uQ

( )( , ) ( )1 1 1= −− −A A Bµ (9.84)
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and
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In addition, though, the property of delta-correlation also allows us to evaluate
the integral in Eq. 9.85 so that we know all the coefficients in Eq. 9.79. In this
situation there is the possibility of finding the nonstationary p uY t

r
( )( )  probability

density function by solving that partial differential equation.

In order to describe precisely the delta-correlated excitation, we will use
the notation
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(9.86)

for the Jth-order cross-cumulant, with J j jnY= + +1 L . This is a component
version of the higher-order spectral density representation given in Kronecker
notation in Eq. 9.49. Now we must consider the relationship between the Jth-
order moments in Eq. 9.85 and the cumulants in Eq. 9.86. In principle one can
always write a Jth-order moment for any set of random variables as a function of
cumulants up to that order, but these general relationships are not simple when J
is large. In our situation, though, the delta-correlation property allows us to solve
the problem in a simple way. In particular, we note that the integral in Eq. 9.85 is
over a volume of size ( )∆ t J , and the only way that an integral over this volume
can be linear in ∆ t  is if the integrand behaves like a product of J −1 Dirac delta
functions. Thus, when we relate the Jth-order moment in Eq. 9.85 to cumulants
we need consider only terms that have a product of J −1 Dirac delta functions
coming from Eq. 9.86. Fortunately, there is only one such term in Eq. 9.85, and it
is exactly the Jth-order cumulant of the terms in the Jth-order moment. To
illustrate this fact in a relatively simple situation, consider the special case of Eq.
9.85 with j J1 =  and j jnY2 0= = =L . The first few terms in the expansion of
the Jth-order moment in terms of cumulants are
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The first term on the right-hand side of the equation does include a product of
J −1 Dirac delta functions, but each of the other terms shown includes only J − 2
Dirac delta functions and therefore contributes only a term of order ( )∆ t 2  to the
integral of Eq. 9.85. Other terms not written out contribute even less-significant
terms. For example, there are terms that correspond to subdividing
{ ( ), , ( )}Q s Q sJ1 1 1L  into three subgroups, then taking the cumulant of each of
these subgroups. Each of these terms gives a contribution of order ( )∆ t 3  to the
integral.

Using the fact that only the Jth-order cumulant term makes an order ∆ t
contribution to Eq. 9.85 and using Eq. 9.86 in evaluating this contribution gives

C u t S t
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j j
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, ,( , ) ( ) ( )1

1
2 1L

L
r

= −π (9.87)

for the higher-order coefficients in the Fokker-Planck equation for the response
of the linear system to a nonstationary delta-correlated excitation.

The situation is considerably simplified in the special case when the
{ ( )}

r
Q t  excitation is Gaussian. The fact that all cumulants beyond the second

order are identically zero for a Gaussian process means that most of the terms
given by Eq. 9.87 are also zero. In particular, one needs to use only second-order
coefficients in this situation. Furthermore, Eq. 9.87 shows that the second-order
coefficients are simply related to the components of the autospectral density
matrix for the excitation process as
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with the usual definition of the autospectral density matrix such that KQQ t s( , ) =
2 0π δS ( ) ( )t t s−  for the delta-correlated process. The Fokker-Planck relationship
of Eq. 9.79 can then be written as
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(9.90)

with C u tj
( )( , )1 r

 given by Eq. 9.84. Of course, finding solutions of the problem also
requires consideration of appropriate initial conditions and boundary conditions.
It may be noted that Stratonovich (1963) reserved the term Fokker-Planck
equation for the Gaussian situation of Eq. 9.90 rather than using it for the more
general forward Kolmogorov equation.

Using the formulas given, it is relatively easy to find the coefficients in the
Fokker-Planck equation for the situations with a delta-correlated excitation. The
problem of solving this partial differential equation may be quite difficult,
though, particularly if the excitation is not Gaussian so that higher-order
coefficients are nonzero. The problem is simpler if the excitation is Gaussian, but
there is also less reason to use the Fokker-Planck approach in that situation. We
already know that the response is Gaussian for a linear system with a Gaussian
excitation, and a Gaussian distribution is completely defined in terms of its first
and second moments or cumulants. Thus, for a Gaussian problem it is usually
easier to use state-space analysis of mean and variance and then substitute these
values into a Gaussian probability density function rather than to solve the
Fokker-Planck equation to find that probability density function directly.
Examples 9.12 and 9.13 will illustrate the derivation of the Fokker-Planck
coefficients in a few situations, and the verification of the Gaussian solution for
simple cases with Gaussian excitations.

It should be noted that it is also possible to derive state-space moment or
cumulant equations from the Fokker-Planck equation. This will be illustrated in
Example 9.14 for the second moment of a very simple system. There seems to be
no obvious advantage to derivation of the moment or cumulant equations in this
way, though, because they can be derived by the methods of Sections 9.3 and 9.4
without consideration of a partial differential equation.

As with state-space moment or cumulant analysis, practical application of
the Fokker-Planck equation is typically limited to problems with delta-correlated
excitations. In the case of the Fokker-Planck equation there is no such limitation
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on the equation itself, but evaluation of the coefficients requires the Markov
property. Furthermore, this property is dependent on delta-correlation of the
excitation. Just as in moment or cumulant analysis, though, the results can be
extended to include any problem in which the excitation can be modeled as a
filtered delta-correlated process.

********************************************************************************************

Example 9.12: Let { ( )}X t  denote the response of

a dashpot with coefficient c  subjected to a

nonstationary Gaussian white noise force { ( )}F t
with mean µF t( )  and autospectral density S t0( ) .

Find the coefficients in the Fokker-Planck equation and find its solution for the

situation with X( )0 0= .

The equation of motion can be written as c X t F t˙( ) ( )= , which is the special case

of Eq. 9.5 with nY =1, 
r
Y t X t( ) ( )= , A = c , B = 0 , and 

r
Q t( ) =  F t( ) . Because the

excitation is Gaussian, we can use Eq. 9.90 for the Fokker-Planck equation. The

first-order coefficient in the Fokker-Planck equation is found from Eq. 9.84 as

C u t t cF( )( , ) ( ) /1 = µ , and Eq. 9.89 gives the second-order coefficient as

C u t S t c( )( , ) ( ) /2 0 22= π . Thus, the Fokker-Planck equation is
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Note that this equation is particularly simple because C u t( )( , )1 , as well as

C u t( )( , )2 , is independent of u .

Rather than seeking a solution of this partial differential equation in a direct

manner, we will take the simpler approach of using our prior knowledge that the

response should be Gaussian and simply verify that the equation is solved by the

Gaussian probability density function. That is, we will substitute
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into the Fokker-Planck equation and verify that the equation is satisfied if µX t( )
and σ X t( )  are chosen properly. For the scalar Gaussian probability density

function, the three needed derivative terms can be written as
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and

∂
∂

σ
σ

µ
σ

µ
σ

µ
σ

∂
∂

σ

t
p u

t

t

u t

t

t

t

u t

t
p u

u
t

X t
X

X

X

X

X

X

X

X
X t

X

( ) ( )( )
˙ ( )

( )

( )

( )

˙ ( )

( )

( )

( )
( )

      ( ) ˙

=
−







 −
















+

−

























=

2

1

σσ
∂

∂
µX X t X X tt

u
p u t p u( ) ( ) ˙ ( ) ( )( ) ( )−











Substitution of these relationships into the Fokker-Planck equation gives
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The term in the parentheses is zero for | |u = ∞ because of the nature of the

probability density function. Thus, it must be zero everywhere because its

derivative is zero everywhere. Furthermore, the only way that the term can be

zero for all u  values is for the coefficients of both p uX t( )( )  and its derivative to

be zero. Thus, we find that µX t( )  and σ X t( )  are governed by the equations
d

dt
t

t

c

d
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S t
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Xµ
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π
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( )
= =2 0
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The solutions of these ordinary differential equations, of course, depend on the

initial conditions on the problem. For our stated initial condition of X( )0 0= , we

know that µX ( )0 0=  and σ X ( )0 0= , so the solutions are

µ µ σ
π

X F

t

X

t
t

c
s ds t

c
S s ds( ) ( ) ,       ( ) ( )= =∫ ∫1 2

0
2

2 00

Note that we have verified only that the Gaussian probability density function with

these parameter values is one solution of the Fokker-Planck equation with the

given initial conditions. In fact, it is the unique solution of the problem for the

given initial conditions. The values of the nonstationary mean and variance of

{ ( )}X t , of course, can be confirmed through other methods of analysis.

********************************************************************************************

Example 9.13: Let { ( )}X t  denote the response of

the system shown when subjected to a

nonstationary Gaussian white noise force { ( )}F t
with mean µF t( )  and autospectral density S t0( ) .

Find the coefficients in the Fokker-Planck equation,

verify that it has a Gaussian solution, and find the

k

c
F(t)

X( t)
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equations governing the evolution of the mean and variance in that Gaussian

solution.

Proceeding in the same way as in Example 9.12, the equation of motion is Eq.

9.5 with nY =1, 
r
Y t X t( ) ( )= , A = c , B = k , and 

r
Q t F t( ) ( )= . The coefficients in

the Fokker-Planck equation are found from Eqs. 9.84 and 9.87 as
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Thus, the Fokker-Planck relationship from Eq. 9.90 is
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Substituting the relationships given in Example 9.12 for the derivatives of a

Gaussian probability density function converts this equation into
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This expression includes only terms that are linear in u  and terms that are

independent of u . Obviously, both must be zero to ensure that the equation is

satisfied for all u  values. Thus, we have
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Combining these two equations gives
d
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t
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c
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t

cX X
Fµ µ

µ
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as the ordinary differential equation governing the evolution of the mean-value

function in the Gaussian probability density function. Rearranging the first of the

two equations gives
d
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X Xσ σ

π2 2 0
2

2
2

( ) ( )
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+ =

as the corresponding equation for the variance. Note that the Gaussian

assumption used here includes the implicit assumption that the given initial
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condition on p uX t( )( )  can be described by a Gaussian probability density

function (possibly with zero initial variance, as in Example 9.12). The Fokker-

Planck equation will be the same for other initial conditions as well, but the

solution will be different from the one given here.

********************************************************************************************

Example 9.14: Give the complete Fokker-Planck

equation for the 2DF building model shown when

the excitation is an { ( )}a t  base acceleration that

is a nonstationary shot noise. The terms k1 and

k2 represent the total stiffness of all columns in

the stories, and X t1( )  and X t2( )  are motions

relative to the base of the structure.

The equation of motion is Eq. 9.5 with nY = 4 ,

and
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The first-order coefficients in the Fokker-Planck equation are found from Eq.

9.84, which can be written as
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which can be further simplified by noting that µ µ µa F Zt t( ) ˙ ( )=  for the

nonstationary shot noise, in which F  denotes a typical pulse of the shot noise,

and ˙ ( )µZ t  is the expected arrival rate for the pulses (see Example 5.6). Because

the excitation is a non-Gaussian delta-correlated process, the nonzero higher-

order coefficients are found from Eq. 9.87, with S tj j j j1 2 3 4 ( )  being the ( )j j3 4+ -

a( t)

X1( t)

X2( t)

c1

c2

k2

k1

m1

m2
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order autospectral density of { ( )}−a t  if j j1 2 0= =  and being zero otherwise. In

Example 6.6 we found that the Jth-order autospectral density of the shot noise is

E F tJ Z J( ) ˙ ( ) /( )µ π2 1− . Thus, Eq. 9.87 gives

C E F t j jj j j j j j
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+ µ for 

otherwise

Using the simplified notation of p u( )
r

 for p u u u uX t X t X t X t1 2 1 2 1 2 3 4( ) ( ) ˙ ( ) ˙ ( )( , , , ) , the

Fokker-Planck relationship from Eq. 9.79 is

 ( ) [ ( )] [ ( )]

 ˙ ( ) ( )

 

∂
∂

∂
∂

∂
∂

∂
∂

µ µ

∂
∂

µ

t
p u

u
u p u

u
u p u

u
t

k k

m
u

k

m
u

c c

m
u

c

m
u p u

u

F Z

F

r r r

r

= − − − − −

− +
+

− +
+

−




















−

−

1
3

2
4

3

1 2

1
1

2

1
2

1 2

1
3

2

1
4

4
˙̇ ( ) ( )

 ( ) ˙ ( ) ( ) ( ) ( )

µ

µ
∂

∂

∂
∂ ∂

∂

∂

Z

Z

t
k

m
u

k

m
u

c

m
u

c

m
u p u

E F t
u

p u
u u

p u
u

p u

+ − + −




















+

+ +











2

2
1

2

2
2

2

2
3

2

2
4

2
2

3
2

2

3 4

2

4
2

1
2

1
2

r

r r r
+

+ + +










+ ( ) ˙ ( ) ( ) ( ) ( ) ( )E F t

u
p u

u u
p u

u u
p u

u
p uZ

3
3

3
3

3

3
2

4

3

3 4
2

3

4
3

1
6

1
2

1
2

1
6

µ
∂

∂

∂

∂ ∂

∂

∂ ∂

∂

∂

r r r r
L

or
∂
∂

∂
∂

∂
∂

µ µ
∂

∂

µ

t
p u u

u
p u u

u
p u

c c

m
p u

c

m
p u

t
k k

m
u

k

m
u

c c

m
u

c

m
u

u
p uF Z

( ) ( ) ( ) ( ) ( )

˙ ( ) ( )

r r r r r

r

= + −
+

+ −

− +
+

− +
+

−








 −

−

3
1

4
2

1 2

1

2

2

1 2

1
1

2

1
2

1 2

1
3

2

1
4

3

FF Z

Z J

J l

J

l J l

t
k

m
u

k

m
u

c

m
u

c

m
u

u
p u

t E F
J

J l l u u
p u

˙ ( ) ( )

˙ ( ) ( )
!

( )! !
( )

µ
∂

∂

µ
∂

∂ ∂

+ − + −








 +

−
=

∞

=
−∑ ∑

2

2
1

2

2
2

2

2
3

2

2
4

4

2 0

2

3 4

r

r

********************************************************************************************

Example 9.15: For the system of Example 9.13, but with µF t( ) = 0, derive the

state-space equation for the mean-squared value of X t( )  by using the Fokker-

Planck equation.

Setting µF t( ) = 0 in the Fokker-Planck equation we found in Example 9.13 gives
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Multiplying this equation by u2  and integrating over all possible u  values gives
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The left-hand side of the equation is easily simplified by reversing the order of

integration and differentiation to give an integral that is exactly the derivative with

respect to time of E X t[ ( )]2 . The other two integrals can be evaluated by

integrating by parts—once in the first integral on the right-hand side of the

equation and twice in the other term. This gives
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which can be rewritten as
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Note that this is identical in form to the variance equation obtained in Example

9.3 directly from the equation of motion.

********************************************************************************************

It should be noted that this introduction to Fokker-Planck analysis is quite
elementary in nature and omits many advanced topics. More detailed analyses,
such as those given by Ibrahim (1985), Soong and Grigoriu (1993), and Lin and
Cai (1995), extend its application to problems in which the parameters of the
system vary stochastically. In this situation, which is considered to have an
internal or multiplicative excitation, one must use care in interpreting the
meaning of a stochastic differential equation. There are two common
interpretations, called Itô calculus and Stratonovich calculus, of the differential
of the response process. If the parametric excitation is Gaussian white noise, for
example, the Itô and Stratonovich results differ by a quantity called the Wong-
Zakai correction term. More recent results show that both the Itô and
Stratonovich results can be considered to be approximations of an “exact”
interpretation of the differential (Caddemi and Di Paola, 1997; Lutes, 2002).
These issues of interpretation of the differential do not arise for the problems
considered here because we consider the stochastic excitation always to be
applied externally, which is also referred to as an additive excitation. For the
external excitation, all interpretations of the stochastic differential become
identical and the simplified procedures presented here are applicable.



Direct Stochastic Analysis of Linear Systems 411

Exercises
*****************************************************************
First and Second Moments and Covariance
*****************************************************************
9.1 Consider a building subjected to a wind force { ( )}F t . The building is
modeled as a linear SDF system with m = 200,000kg, c = ⋅8kN s/m, and
k = 3 200, kN/m in m X t c X t k X t F t˙̇ ( ) ˙( ) ( ) ( )+ + = . The force { ( )}F t  is modeled
as a stationary process having a mean value of µF = 20kN  and an autospectral
density of SFF ( ) .ω = 0 5(kN) /(rad/s)2  for all ω . Solve the appropriate state-space
cumulant equations to find:
(a) The stationary mean value of the displacement response.
(b) The stationary variance of the displacement response.
*****************************************************************
9.2 Perform second-moment state-space
analysis of the system shown. The
excitation is a mean-zero, stationary white
noise with autospectral density of
S SFF ( )ω = 0  for all ω .
(a) Using nY = 2 and 

r
Y t X t X t T( ) [ ( ), ˙( )]= , solve the state-space equation to find

the stationary variance of velocity { ˙( )}X t .
(b) Show that the equation of part (a) fails to give a stationary solution for the

variance of { ( )}X t .
(c) Show that one can also solve for the variance of { ˙( )}X t  by using the state-

space equation with nY =1 and 
r
Y t X t( ) ˙( )= .

*****************************************************************
9.3 Consider a linear system governed by the following third-order differential
equation:

˙̇ (̇ ) ˙̇ ( ) ˙( ) ( ) ( )X t a X t b X t c X t F t+ + + =
with a > 0, b > 0, c > 0, and ab c> , where each overdot denotes a derivative
with respect to time. Let { ( )}F t  be a stationary white noise process with
E F t[ ( )] = 0  and E F t F s S t s[ ( ) ( )] ( )= −2 0π δ .
(a) Using a state vector of 

r
Y t X t X t X t T( ) [ ( ), ˙( ), ˙̇ ( )]= , formulate the state-space

moment equations for the second moments of the response.
(b) Find the stationary values of E X( )2 , E X( ˙ )2 , and E X( ˙̇ )2  by solving the

state-space moment equations.
*****************************************************************
9.4 Consider a linear system governed by the following fourth-order differential
equation:

˙̇̇̇ ( ) ˙̇ (̇ ) ˙̇ ( ) ˙( ) ( ) ( )X t a X t a X t a X t a X t F t+ + + + =3 2 1 0

c

X( t)

F(t)
m
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with a0 0> , a1 0> , a2 0> , a3 0> , and a a a a a a1 2 3 1
2

0 3
2> + , where each overdot

denotes a derivative with respect to time. Let { ( )}F t  be a stationary white noise
process with E F t[ ( )] = 0  and E F t F s S t s[ ( ) ( )] ( )= −2 0π δ .
(a) Using a state vector of 

r
Y t X t X t X t X t T( ) [ ( ), ˙( ), ˙̇ ( ), ˙̇ (̇ )]= , formulate the state-

space moment equations for the second moments of the response.
(b) Find the stationary values of E X( )2 , E X( ˙ )2 , E X( ˙̇ )2  and E X( ˙̇˙ )2  by solving

the state-space moment equations.
*****************************************************************
9.5 Consider the state-space cumulant equations derived in Example 9.2 for the
third-order system with m X t c X t k X t k X t F t˙̇ ( ) ˙ ( ) ( ) ( ) ( )1 1 1 1 1 2 2+ + + =  and
k X t c X t X t2 2 2 1 2( ) [ ˙ ( ) ˙ ( )]= − . Let the excitation be a mean-zero stationary white
noise with autocovariance function K t t S tFF ( , ) ( )+ =τ π δ τ2 0 ( ) . Formulate and
solve the stationary state-space equations to find expressions for all the second-
moment quantities included in the matrix φφYY t t( , )  for a state vector ofr
Y t X t X t X t T( ) [ ( ), ( ), ˙ ( )]= 1 2 1 .
*****************************************************************
9.6 For the structure and excitation of Exercise 9.1, solve the appropriate state-
space equations in order to find:
(a) The conditional mean of { ( )}X t  given X( )0 10= mm as an initial condition.
(b) The conditional variance of { ( )}X t  given an initial condition of

X( )0 10= mm.
*****************************************************************
9.7 Consider a building subjected to an earthquake ground acceleration { ( )}a t .
The building is modeled as a linear SDF system:

m X t c X t k X t m a t˙̇ ( ) ˙( ) ( ) ( )+ + = −
with m = 200,000kg, c = ⋅32kN s/m, and k = 3 200, kN/m. The ground
acceleration { ( )}a t  is modeled as a nonstationary, mean-zero, delta-correlated
process having an autocovariance function of

K t t e e U taa
t t( , ) . /( ( .+ = ⋅ − −τ δ τ0 04 0 2 0 25m rad s ) - ) ( ) ( )2 3 .

(a) Use state-space cumulant equations to find the response standard deviations
σ X t( )  and σ ˙ ( )X t .

(b) Compare the exact value of σ X t( )  from part (a) with the “pseudostationary”
result of [ ( ) /( ) ] /π S t m kc0 2 1 2 , in which S t0( )  is defined by
K t t S tFF ( , ) ( )+ =τ π δ τ2 0 ( )  for F t m a t( ) ( )= −  (see Example 9.5).

*****************************************************************
Energy Balance
*****************************************************************
9.8 Consider the system of Exercise 9.2.
(a) Use the variance result to find the rate of energy dissipation in the system.



Direct Stochastic Analysis of Linear Systems 413

(b) Confirm that this rate of energy dissipation equals the rate of energy addition
calculated from Eq. 9.35.

*****************************************************************

9.9 Let the excitation processes { ( )}F t1  and { ( )}F t2  in Example 9.6 both be
mean-zero.
(a) Use the variance and covariance results to find the rate of energy dissipation

in the system.
(b) Confirm that this rate of energy dissipation equals the rate of energy addition

calculated from Eq. 9.35.

*****************************************************************

9.10 You wish to approximate the response levels at the top of a multistory
building. Past experience shows that this response is usually dominated by the
fundamental mode, so you choose to develop an equivalent SDF model based
only on that mode. For your structure, the fundamental mode has a natural
frequency ω0 rad/sec, damping ζ , and an approximately linear mode shape:
X t X t y LT( ) ( ) /= , in which X is the displacement at height y, L is the height of
the building, and XT  is the top displacement. Assume that the total mass M is
uniformly distributed over the height (M/L per meter).
(a) Find an expression for the kinetic energy (KE) in the structure in terms of the

top velocity ẊT .
(b) Assume that an earthquake gives the base of the building a mean-zero white

noise acceleration with an autospectral density of S0 . Find the expected
value of the rate at which energy is added to the structure: E PA( ) .

(c) Let PD denote the rate at which energy is dissipated by the structure, and
assume that in stationary response E PD E KE( ) ( )= 4 0ζ ω  (as for an SDF
system). Using the results of (a) and (b), find the mean-squared values of the
top velocity and displacement for stationary response.

*****************************************************************
Kronecker Formulation
*****************************************************************
9.11 Write out all four component equations of expression 9.44 for the second
moments of the response of an SDF oscillator using the A and B matrices given
in Example 9.4. Verify that these expressions are identical to those from Eq. 9.8.
*****************************************************************
9.12 Write out all nine component equations of expression 9.44 for second
moments using the A and B matrices for the third-order system of Example 9.2
and Exercise 9.5. Verify that these expressions are identical to those from Eq.
9.8.
*****************************************************************
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Fokker-Planck Equation
*****************************************************************
9.13 Let { ( )}X t  be the response of an SDF oscillator with an excitation that is a
mean-zero, Gaussian, stationary white noise with an autospectral density of S0 .
(a) Give the complete Fokker-Planck equation for the system.
(b) Verify that this equation is satisfied by a stationary Gaussian probability

density function with second moments given by Eq. 5.64 of Chapter 5.
*****************************************************************
9.14 Let { ( )}X t  be the response of the third-order system of Exercise 9.3 with an
excitation that is a mean-zero, Gaussian, stationary white noise with an
autospectral density value of S0 .
(a) Give the complete Fokker-Planck equation for the system.
(b) Verify that this equation is satisfied by a stationary Gaussian probability

density function with the second-moment values found in Exercise 9.3.
*****************************************************************
9.15 Give the complete Fokker-Planck equation for the fourth-order system of
Exercise 9.4 with a stationary Gaussian white noise excitation that has a mean
value of µF  and an autospectral density value of S0 .
*****************************************************************
9.16 Give the complete Fokker-Planck equation for the third-order system of
Example 9.2 and Exercises 9.5 and 9.12 in the situation in which the stationary,
mean-zero, white noise excitation is also Gaussian.
*****************************************************************
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Chapter 10
Introduction to Nonlinear
Stochastic Vibration

10.1 Approaches to the Problem
Exact analytical solutions have been found for only relatively few problems of
nonlinear stochastic dynamics. Thus, much of the analysis of such problems
relies on various approximate techniques. The existing analytical solutions are
important, though, in at least two ways. Most obvious is the situation in which
some important nonlinear system can be adequately approximated by a different
nonlinear model for which an analytical solution is known so that the solution
can be used directly. Systems with exact analytical solutions can also be used in
validating the assumptions of some approximate technique prior to its application
to another problem for which no analytical solution is known.

In this brief introduction to nonlinear stochastic vibration, we will focus on
two aspects of the problem. We will review some exact analytical formulations
of nonlinear problems, along with the corresponding solutions for some
significant special cases. In addition, we will present the most commonly used
category of approximate methods, called equivalent linearization. Even though it
involves the most difficult equations of any of our methods, Fokker-Planck
analysis will be presented first. The reason for this seemingly odd choice is that
Fokker-Planck analysis provides exact analytical solutions to certain problems.
These relatively limited exact results can then be used as a basis for judging the
value and the shortcomings of simpler approximate solutions.1 Before presenting
the details of either exact or approximate solutions, though, we will discuss some
basic ideas of nonlinear analysis.

Probably the greatest obstacle to analysis of nonlinear problems is the fact
that superposition is generally not applicable. Because almost all of our linear
                                                  
1There is no difficulty in proceeding directly from Section 10.1 to Section 10.3,
in case the reader wishes to bypass the Fokker-Planck analysis of nonlinear
systems. This is certainly recommended for anyone who has not become
familiar with the material in Section 9.9.
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 analysis techniques are based on the concept of finding a general solution by
superimposing particular solutions, it is necessary that we find alternative
formulations for nonlinear problems. The time-domain and frequency-domain
analysis methods of Chapters 5, 6, and 8 are particularly limited for nonlinear
problems because they both invoke the concept of superposition at the very
outset of the analysis procedure. For example, the Duhamel convolution integral
of Chapter 5 can be viewed as giving the X t( )  response at time t as a
superposition of the responses at that time due to F u( )  excitation contributions
at all earlier times. Similarly, the fundamental idea in Chapter 6 is that for any
given frequency ω , the ˜ ( )X ω  Fourier transform of the response is the same as
the response to the ˜( )F ω  Fourier transform of the excitation, and this result is
valid only if superposition applies.

The derivation of state-space moment/cumulant equations as introduced in
Chapter 9, on the other hand, does not depend on superposition or any other
property associated with linearity. Thus, one can also derive these equations for
nonlinear systems. In this regard, though, it is important to distinguish between
the derivation and the solution of the state-space equations. For example, the
state-space moment and cumulant equations that we derived in Chapter 9 were
linear, so we used superposition, in the form of convolution integrals, in writing
their solutions. For nonlinear systems, we will find that the state-space moment
and cumulant equations are also nonlinear. Thus, the form of the solutions of
these equations will be different from that in Chapter 9, even though the method
of derivation is unchanged. The situation is somewhat different for the Fokker-
Planck equation, because it has variable coefficients that may be nonlinear
functions of the state variables, even for a linear system. Nonetheless, the
increased complexity associated with nonlinear analysis still applies. For
example, a nonlinear system with a Gaussian excitation has a non-Gaussian
response, and the simple Fokker-Planck solutions demonstrated in Chapter 9
were only for Gaussian processes.

The most commonly used approach for seeking approximate answers to
nonlinear dynamic problems is to somehow replace the nonlinear system with a
linear system. We will consider the term equivalent linearization to apply to all
such methods, regardless of the technique used to choose the form or parameters
of the linear substitute system. Statistical linearization is the most commonly
used term to describe techniques for choosing the linearized system on the basis
of minimum mean-squared error, but equivalent linearization can also be applied
to minimization of some other probabilistic measure of discrepancy between the
nonlinear and linear systems.
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The primary reason for using equivalent linearization techniques, of
course, is their simplicity. The contents of this book up until this point are an
example of the extensive literature that exists on the stochastic dynamics of linear
systems. If a nonlinear system can be replaced by a linear one, then all the
techniques for linear systems can be applied to give approximate predictions
regarding the response of the nonlinear problem. Interpretation, as well as
prediction, though, can be a basis for considering linearization. Even if we have
in some way determined the true response levels for a nonlinear system, we may
find it useful to seek a linear system with similar response behavior so that we
can interpret our results based on our experience with linear dynamics.

It should be emphasized that the concept of “equivalence” between any
linear and nonlinear systems is always limited in scope. For example, we can
sometimes find a linear system that matches certain mean and variance values of
a nonlinear system, but there are always other statistics that are not the same for
the two systems. Probably the simplest and most significant difference between
linear and nonlinear models has to do with the Gaussian probability distribution.
As previously noted, any linear system with a Gaussian excitation also has a
Gaussian response. This allows the prediction of various response probability
values based only on knowledge of the mean and variance of the response
process. For a nonlinear system this relationship no longer holds. That is, a
nonlinear system with a Gaussian excitation has a non-Gaussian response. Thus,
even if an equivalent linearization scheme gives us good approximations of the
mean and variance of the response of a nonlinear system, this will generally not
allow us to compute accurately the probability of some rare event. Various
techniques do exist for obtaining improved estimates of such probabilities, but
this requires knowledge of more than mean and variance. Thus, one must always
be careful to remember the limitations of any linearization and not to make
erroneous conclusions based on inappropriate analogies with linear response.
Despite these limitations, equivalent linearization can often give very useful
approximations of the response of a nonlinear system.

The state-space moment/cumulant equations and equivalent linearization
methods presented here are probably the most commonly used techniques for
nonlinear stochastic analysis. Nonetheless, it should be kept in mind that there
are a number of other approaches, and they continue to be developed. For
example, perturbation provides a straightforward and general approach for a
system that deviates only slightly from linear behavior (for example, see Lin,
1967; Nigam, 1983). We have chosen to emphasize linearization rather than
perturbation for several reasons. These include the following facts: First-order
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perturbation usually agrees with linearization; it is difficult to find higher-order
perturbation terms; perturbation sequences do not necessarily converge for finite
nonlinearities; and interpretation is generally simpler for linearization than for
perturbation models.

Stochastic averaging is another important technique that is not considered
here. Although not a fundamentally different approach to the problem, this
technique is useful inasmuch as it reduces the order of a problem by using time
averages of certain slowly varying quantities (Lin and Cai, 1995; Roberts and
Spanos, 1986). Mention was also made at the beginning of this section of the
possibility of seeking an equivalence between a given nonlinear system and a
substitute nonlinear system for which the solution is known. This method has
been used with some success, even when implemented with relatively crude
concepts of equivalence (for example, by Chen and Lutes, 1994), and some work
has been done on techniques for improving the equivalent nonlinearization
procedure by using mean-squared error minimization (Caughey, 1986; Cai and
Lin, 1988; Zhu and Yu, 1989; To and Li, 1991). The usefulness of the method is
limited in practice, though, by the relatively small number of models for which
exact solutions are known [see Lin and Cai (1995) for a summary]. Another
approach that has received considerable attention in recent years extends the
time- and frequency-domain integrals of Chapters 5 and 6 by using the Volterra
series (Schetzen, 1980; Rugh, 1981). Truncating this series has given useful
approximate results for some problems, particularly those involving polynomial
nonlinearities (Choi et al., 1985; Naess and Ness, 1992; Winterstein et al., 1994).
The approach has also been combined with equivalent nonlinearization to give a
technique of first replacing the problem of interest with one having a polynomial
nonlinearity, then using the approximate solution for the substitute system
(Spanos and Donley, 1991; Kareem et al., 1995; Li et al., 1995). Further
developments can certainly be expected in the future.

10.2 Fokker-Planck Equation for Nonlinear System
The general Fokker-Planck equation for the probability density of any vector
process { ( )}
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Y t  was given in Eq. 9.79 as
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j j u u
Y t

jj

j j

j j

n

j j

j
n
j

nY

nY

nY

Y

nY

Y

nY

r

L

L L
r

L

1 244 344
L L

( )

)

( )
( )

! !
=

−
×

=

∞

=

∞

= = =

+ + + +

∑∑
00

0

1
11

1

1 1

1

1

(except 

[ ( , ) ( )]( , , )
( )C u t p uj j

Y t
nY1 L rr r

(10.1)
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This equation applies equally well to the response of a nonlinear system and a
linear system. Stated in another way, the equation applies to the probability
density function of the vector process independent of whether that process is
related to any dynamics problem. Thus, we may also find the equation useful in
analyzing nonlinear vibration problems if we can determine the C u tj jnY( , , )( , )1 L r

coefficients for the situation in which 
r
Y t( )  is the vector of state variables for a

nonlinear system.

We will now consider a very general formulation of nonlinear dynamics
problems with a state vector 

r
Y t( )  described by

r r r r˙
( ) [ ( )] ( )Y t g Y t Q t+ = (10.2)

Note that this equation is identical to Eq. 9.5, except that the linear restoring
force A B−1

r
Y t( )  has now been replaced by the nonlinear vector function

r
g[

r
Y t( )] , and the excitation has been simplified by replacing A−1

r
Q t( )  withr

Q t( ) . In particular, each component of 
r
g[

r
Y t( )]  is a scalar nonlinear function of

the state variables: g j [ ( )]
r
Y t ≡ =g Y t Y t j nj n YY[ ( ), , ( )] , ,1 1L L for .

Using the same procedure as in Section 9.9, we can say that

∆
∆ ∆ ∆

Y Y s ds Q s ds g Y s dsj jt

t t
jt

t t
jt

t t
= = −

+ + +∫ ∫ ∫˙ ( ) ( ) [ ( )]
r

so the vector of first-order coefficients, corresponding to Eq. 9.81, is

r r r r r r r r r
C u t

t
E Y Y t u E Q t Y t u g u

t

( )( , ) lim [ | ( ) ] [ ( ) | ( ) ] ( )1

0

1
= = = = −

→∆ ∆
∆

Provided that E Q s g Y s Y t uj l( ( ) [ ( )] | ( ) )1 2
r

=  is finite for all choices of j and l, we
can say that the coefficients based on higher-order moments of the increments of
{ ( )}

r
Y t  must depend only on terms like the integral of Q sj ( )  appearing on the

right-hand side of Eq. 10.2. Furthermore, these integrals are identical to those for
a linear system, so these higher-order coefficients are identical to those given by
Eq. 9.82 for the linear system.

If we now restrict the excitation process { ( )}
r
Q t  to be delta-correlated so

that 
r
Q t( )  is independent of 

r
Q s( )  for s t≠ , we can say that { ( )}

r
Y t  has the

Markov property and the Fokker-Planck coefficients are given by
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r r r r r
C u t t g uQ

( )( , ) ( ) ( )1 = −µ (10.3)

and

C u t
t
E Y Y Y t u

S t

j j

t

j
n

j

J
j j

nY
Y

nY

nY

( , , )

, ,

( , ) lim [( ) ( ) | ( ) ]

( ) ( )

1 1

1

0
1

1

1

2

L

L

r
L

r r
≡ =

=

→

−

∆ ∆
∆ ∆

π

(10.4)

in which J j jnY
= + +1 L  and S tj jnY1, , ( )L  is a nonstationary spectral density of

order J for the delta-correlated process { ( )}
r
Q t . Clearly Eq. 10.3 is the obvious

nonlinear generalization of Eq. 9.84, and Eq. 10.4 is actually identical to Eq.
9.87. These two equations then give the coefficients in the Fokker-Planck
relationship of Eq. 10.1 for a nonlinear system with a delta-correlated excitation.
In the special case in which the excitation is also Gaussian, the higher-order
cumulants of the excitation are zero so that C u t Jj jnY( , , )( , )1 0 2L r

= > for  and

C u t t j l

j nY l

jl
( , , , , , , , , , )( , ) [ ( )]0 0 1 0 0 1 0 0

0

1

2L
678

L L
678

r
− −

= ≠π S  for (10.5)

and

C u t t

j nY j

jj
( , , , , , , )( , ) [ ( )]0 0 2 0 0

0

1

2L
678

L
678

r
− −

= π S (10.6)

in which S0( )t  is defined by the covariance relationship KQQ t s( , ) =
2 0π δS ( ) ( )t t s− .

We now turn our attention to certain special cases for which solutions of
Eq. 10.1 have been found for nonlinear systems. We start with the simplest
situation of a system with a first-order differential equation of motion:

˙( ) [ ( )] ( )X t f X t F t+ ′ = (10.7)

in which ′f u( )  is the derivative of a nonlinear function f u( )  satisfying
f u( ) → ∞  as | |u → ∞ and the excitation { ( )}F t  is a mean-zero, stationary

Gaussian white noise with autospectral density S0 . This equation could describe
the behavior of a linear dashpot and a nonlinear spring attached in parallel or a
mass attached to a nonlinear dashpot, although the latter model would require
that { ( )}X t  represent the velocity of the system.

From Eqs. 10.3 and 10.6 we have the first- and second-order coefficients in
the Fokker-Planck equation for the system of Eq. 10.7 as
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C u t g u f u( )( , ) ( ) ( )1 = − = − ′

and

C u t t( )( , ) ( )2
02= π S

Substituting these expressions into the Fokker-Planck equation gives

∂
∂

∂
∂

π
∂

∂

∂
∂

π
∂

∂

t
p u

u
f u p u S

u
p u

u
f u p u S

u
p u

X t X t X t

X t X t

( ) ( ) ( )

( ) ( )

( ) [ ( ) ( )] ( )

     ( ) ( ) ( )

= − − ′ +

= ′ +












0

2

2

0

It is easy to verify that a stationary solution of this equation is

p u A
f u

SX t( )( ) exp
( )

=
−







π 0

(10.8)

so
∂

∂ πu
p u

f u

S
p uX t X t( ) ( )( )

( )
( )= −

′

0

and the term in the brackets of the Fokker-Planck equation is identically zero,
giving

∂
∂ t

p uX t( )( ) = 0

as it must be for a stationary process. The definition of p uX t( )( )  given in Eq.
10.8 is completed by evaluating the constant A from

A
f u

S
du−

−∞

∞
=

−







∫1

0
exp

( )
π

(10.9)

********************************************************************************************

Example 10.1: Let { ( )}X t  denote the response of the system with the equation

of motion
˙( ) ( ) ( ) ( )X t k X t k X t F t+ + =1 3

3

with k k1 30 0≥ ≥, , and {F(t)}  being a mean-zero, stationary Gaussian white

noise with autospectral density S0 . Find the probability distribution and the

variance of the stationary { ( )}X t  response.
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Using ′ = +f u k u k u( ) 1 3 3  gives f u k u k u( ) / /= +1 2 3 42 4  so that Eqs. 10.8 and

10.9 give

p u
S

k u k u

S

k v k v
dv

X t( )( )

exp

exp

=

−
+



























−
+

























−∞
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1
2 4

1
2 4

0

1
2

3
4

0

1
2

3
4

π

π

It is not convenient to find a closed-form expression for the integral in the

denominator of this expression or of the integral of u p uX t2 ( )( ) that is needed in

the evaluation of the variance σX
2 . Thus, numerical integration will be used to

provide sample results. First, though, it is convenient to introduce a normalizing

constant of σ π0
2

0 1= S k/ , which is the variance of X t( )  for the limiting linear

case of k3 0= . Using a change of variables of u w= σ0 then gives the

probability density function as

p w

w w

v v
dv

X t( )( )

exp

exp

σ

α

α
0

2 4

2 4

2 4

2 4

=

− −












− −










−∞

∞∫

in which α σ= ( / )k k3 10
2 . The following sketch shows how the variance of X t( )

depends on the dimensionless parameter α . Also, another sketch shows a

common measure of the non-Gaussianity of the response of the nonlinear

system. In particular, we have numerically evaluated the fourth moment E X( )4

so that we can plot kurtosis E X= ( )4 /σX
4 . Note that the fourth moment and

kurtosis have been used to illustrate non-Gaussianity because the third moment

and skewness are zero due to the symmetry of the problem. The kurtosis, of

course, is 3.0 for a Gaussian process, and this limit is reached at α = 0.

Next we show the probability density function for X t( )  for two particular values of

the α  nonlinearity parameter. In each case a Gaussian probability density

α

1.0

0.5

0
0                      1.0                     2.0

σ
X
2

σ 0
2

α

3.0

2.6

2.2

0                      1.0                     2.0

Kurtosis
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function with the same variance as the non-Gaussian one is shown for

comparison.

As previously noted, the limiting case of k3 0=  gives a Gaussian response with

variance σ 0
2. For the other limiting case of k1 0=  it is also possible to evaluate

the integrals in closed form. In particular, the integrals of interest can all be

written in terms of gamma functions (see Example 3.7) as

exp( )
( . )

.
.

.− = ≈
∞ −∫ a u du

a
a4

0 0 25
0 250 25

4
0 9064

Γ

u a u du
a

a2 4
0 0 75

0 750 75

4
0 3064exp( )

( . )
.

.
.− = ≈

∞ −∫ Γ

and

u a u du
a a

a4 4
0 1 25 1 25

1 251 25

4

0 25

16
0 2266exp( )

( . ) ( . )
.

. .
.− = = ≈

∞ −∫ Γ Γ

Substitution gives σ πX S k2 0 6760 0 3
1 2≈ . ( / ) /  and kurtosis ≈ 2 188. .

********************************************************************************************

Example 10.2: Let { ( )}X t  denote the response of the system with the equation

of motion

˙( ) | ( ) | [ ( )] ( )X t k X t X t F tb+ =sgn
with { ( )}F t  being a mean-zero, stationary Gaussian white noise with

autospectral density S0 . Find the probability distribution and the variance of the

stationary { ( )}X t  response.

Using ′ = = −f u k u u k u ub b( ) | | ( ) | | ( )sgn 1  gives f u k u bb( ) | | /( )= ++1 1  so that

Eqs. 10.8 and 10.9 give
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Using the change of variables w k u n Sn= ++1 01/[ ( ) ]π  allows A to be

evaluated as follows:

A
k u

b S
du e

w

b

b S

k
dw

b
w

b b b
−

+∞ −
− + +

∞
=

−
+











 =

+
+





















∫ ∫1

1

0
0

1
0

1 1

0
2

1
2

1

1
exp

( )

( )/( ) /( )

π
π

and

A
k

b S

b

b

b

=
+











+









+





















+ −

( )

/( )

1

1

2

1

10

1 1 1

π
Γ

The variance of { ( )}X t  is then given by
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********************************************************************************************

One of the more general second-order differential equations for which a
solution is known involves a stochastic process { ( )}X t  with an equation of
motion of

m X t f H X t X t X t f X t F t˙̇ ( ) [ ( ), ˙( )] ˙( ) [ ( )] ( )+ ′ ( ) + ′ =2 1 (10.10)

in which ′ ⋅f1( )  and ′ ⋅f 2( )  are the derivatives of nonlinear functions satisfying
u f u′ ≥1 0( )  for all u , f u1( ) → ∞  for | |u → ∞, ′ ≥f u2 0( )  for all u ≥ 0,
f u2( ) → ∞  for u → ∞, and H is a nonnegative term that represents the energy in

the system. Note that the ′f H X t X t2( [ ( ), ( )])  term of Eq. 10.10 is a nonlinear
damping term, because it corresponds to a force that opposes the direction of the
velocity of the mass. Similarly, ′f X t1[ ( )] is a nonlinear spring term, giving a
restoring force that opposes the displacement of the mass from equilibrium.

The term f u1( )  is exactly the potential energy in the nonlinear system,
because it is the integral of the nonlinear restoring force. Thus, the total energy in
the system is
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H X t X t f X t
m

X t[ ( ), ˙( )] [ ( )] ˙ ( )= +1
2

2

Using 
r
Y t X t X t T( ) [ ( ), ˙( )]=  as the state vector gives the terms in Eq. 10.2 as

r r
g Y t

X t

f X t m f H X t X t X t m
[ ( )]

˙( )

[ ( )] / [ ( ), ˙( )] ˙( ) /
=

−

′ + ′ ( )










1 2

and 
r
Q ( ) [ , ( ) / ]t F t m T= 0 . We will restrict the excitation { ( )}F t  to be mean-zero,

stationary, Gaussian white noise so that it is delta-correlated and the first-order
coefficients in the Fokker-Planck equation are

r r r r
C u t g u

u

f u m f H u u u m
( )( , ) ( )

( ) / [ ( , )] /
1 2

1 1 2 1 2 2
= − =

− ′ − ′









 (10.11)

Note that K SQQ t s t s( , ) ( )= −2 0π δ  gives only one nonzero element in the S0
matrix. That element is the autospectral density of { ( ) / }F t m , which we will
denote by the scalar S m0 2/ . This gives the only nonzero higher-order coefficient
in the Fokker-Planck equation as

C u t S m( , )( , ) [ ] /0 2
0 22 0

22 2
r

= =π πS (10.12)

Substituting Eqs. 10.11 and 10.12 into Eq. 10.1 gives the Fokker-Planck
equation for the system of Eq. 10.10 as
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∂
∂

∂
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(10.13)

No exact nonstationary solution of this equation has been found, but Caughey
(1965) demonstrated that it has a stationary solution of

p u A
S

f H u uY t
r r

( )( ) exp [ ( , )]=
−









1

0
2 1 2π

(10.14)
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in which

A
S

f H u u du du−
−∞
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−∞

∞
=
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0
2 1 2 1 2

1
exp [ ( , )]

π

so that the integral of p uY t
r r

( )( )  is unity.

To verify that Eq. 10.14 satisfies the Fokker-Planck equation, we can note
that
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and substituting this into Eq. 10.13 gives

∂
∂

∂
∂

∂
∂t

p u
u

u p u
m u

f u p uY t Y t Y t
r r rr r r

( ) ( ) ( )( ) [ ( )] [ ( ) ( )]= − + ′
1

2
2

1 1
1

Evaluation of the two derivatives on the right-hand side of this expression then
gives

∂
∂ t

p uY t
r r

( )( ) = 0

confirming that Eq. 10.14 is a stationary solution of Eq. 10.13.

Note that the ′f X t1[ ( )] nonlinear spring term in Eq. 10.10 has a very
natural form and describes many cases that may be of practical interest, several
of which had been investigated prior to Caughey’s presentation of the general
solution. Simple examples include odd polynomials, such as the cubic function in
the common Duffing oscillator. The ′f H X t X t X t2( [ ( ), ( )]) ( )  nonlinear damping
term, on the other hand, seems rather unnatural. Clearly the form was chosen to
give a Fokker-Planck equation that could be solved rather than to provide direct
modeling of common physical problems. The model does serve the purpose,
though, of giving exact solutions for a class of examples having nonlinear
damping. Furthermore, a model with the ′f 2  damping coefficient varying as a
function of the energy in the system may be just as reasonable as either of the
more obvious choices of having the damping force (and also the damping
coefficient) depend only on the ˙( )X t  value or having the damping coefficient
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depend on | ( ) |X t . In many physical problems we have so little information about
the true nature of the energy dissipation that we would have difficulty
determining which of these models would be more appropriate. For narrowband
motion with a given dominant frequency, we could use the model of Eq. 10.10 or
either of the other two models suggested to represent any reasonable nonlinear
relationship between the energy loss per cycle and the amplitude of the motion.

An important special case of Eq. 10.10 arises when ′f H X t X t2( [ ( ), ( )])  is a
constant, which we will denote by c. In this situation, Eq. 10.14 gives

p u A
c H u u

S
A

c f u

S

m c u

SY t
r r

( )( ) exp
( , )

exp
( )

exp=
−







=
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1 2
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1 1

0

2
2

02π π π
(10.15)

The fact that this stationary probability density function can be factored into the
product of a function of u1 and a function of u2 shows that X t( )  and ˙( )X t  are
independent random variables, for any given t value. Furthermore, the form of
the dependence on u2, which is the dummy variable for ˙( )X t , shows that ˙( )X t
is a Gaussian random variable with a variance of

σ
π

˙ ( )
X

t
S

m c
2 0= (10.16)

One can easily verify that this value is identical to that obtained in Chapters 5
and 6 for the response of a linear SDF system to white noise excitation. Of
course, this result could have been predicted, inasmuch as Eq. 10.10 with

′ =f H u u c2 1 2[ ( , )]  includes the linear SDF system as the special case when
′ =f u k1 1( ) . Nonetheless, it seems somewhat surprising that the probability

distribution and the variance of ˙( )X t  are not affected by the presence of
nonlinearity in the spring of the SDF oscillator.

It should be noted that { ˙( )}X t  is not a Gaussian process even though ˙( )X t
is a Gaussian random variable for every value of t for the system with ′ =f c2 .
This is easily proved as follows. If { ˙( )}X t  were a Gaussian process, then its
integral { ( )}X t  would also be a Gaussian process, as discussed in Section 4.10.
However, Eq. 10.15 shows that p uX t( )( )  has the form

p u A
c f u

SX t( )( ) ˆ exp
( )

=
−









1 1

0π
(10.17)



Random Vibrations428

with Â = A X( ) / ˙2 1 2π σ , and this clearly is not a Gaussian distribution unless
′ =f u k u1 1 1( ) . Thus, { ( )}X t  is not a Gaussian process, and this proves that

{ ˙( )}X t  is not a Gaussian process. Even though ˙( )X t  is a Gaussian random
variable for every value of t in the situation with linear damping, it appears that
random variables such as ˙( )X t  and ˙( )X s  are not jointly Gaussian, as is required
for a Gaussian process.

********************************************************************************************

Example 10.3: Let { ( )}X t  denote the response of the nonlinear oscillator with

the equation of motion

m X t c X t k X t k X t F t˙̇ ( ) ˙( ) ( ) ( ) ( )+ + + =1 3
3

with k k F t1 30 0≥ ≥ and  and { ( )} being a mean-zero, stationary Gaussian white

noise with autospectral density S0 . Find the probability distribution and the

variance of the stationary { ( )}X t  and { ˙( )}X t  responses.

Using ′ =f u c2( )  and f u k u k u1 1 3 3( ) = +  gives

H u u
k u k u m u

( , )1 2
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2 4 2
= + +
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2 4 2

Factoring this expression, as in Eqs. 10.15 and 10.17, gives ˙( )X t  as being

Gaussian with variance σ π˙ /( )X S c m2
0=  and X t( )  as having a non-Gaussian

probability density function of

p u A
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S

k u k u
X t X( )

/
˙( ) ( ) exp1

1 2
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1 1
2

3 1
4

2
2 4

=
−
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π σ

π

One may note that this probability distribution has the same form as that of X t( )
in Example 10.1. The only difference in the exponent is the presence of the c
term in the present problem. The multiplier in front of the exponential, of course,

is simply the value that assures that the integral of the probability density function

is unity. If we let σ 0
2 denote the response variance for the limiting linear case of

k3 0= , σ π0
2

0 1= S c k/( ) , then the change of variables u w= σ0 gives the

probability density function as

p w

w w

v v
dv

X t( )( )

exp

exp

σ

α

α
0

2 4

2 4

2 4

2 4

=

− −
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∞∫
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with α σ= ( / )k k3 10
2 . This expression is identical to that found in Example 10.1.

Thus, the plots of probability density function, variance, and kurtosis shown in

Example 10.1 also apply to the X t( )  response in this oscillator problem.

********************************************************************************************

Example 10.4: Let { ( )}X t  denote the response of the nonlinear oscillator with

the equation of motion

m X t c X t k m X t X t k X t F t˙̇ ( ) [ ˙ ( ) ( / ) ( ) ˙( )] ( ) ( )+ + + =1
3 2

with { ( )}F t  being a mean-zero, stationary Gaussian white noise with

autospectral density S0 . Find the probability distribution and the variance of the

stationary { ( )}X t  and { ˙( )}X t  responses.

Because this system has a linear spring the energy term is simply

H X t X t m[ ( ), ˙( )] [= Ẋ2 ( )t k+ X t2 2( )] / . Thus, the equation of motion agrees with

Eq. 10.10 if we choose ′ =f u k u1( )  and ′ =f u c u m2 12( ) / . This gives

f u c u m2 1 2( ) /=  so that Eq. 10.14 becomes

p u u A
c m u k u

m SX t X t( ) ˙ ( )( , ) exp
( )

1 2
1 2

2
1
2 2

04
=

− +









π

This joint probability density function does not factor into a function of u1
multiplied by a function of u2, which is an indication that X t( )  and ˙( )X t  are not

independent random variables for this problem. The most direct way to find the

marginal probability density functions for X t( )  and ˙( )X t  is to integrate over all

u2 and u1 values, respectively. For example

p u A
c m u k u

m S
duX t( )( ) exp

( )
1

1 2
2

1
2 2

0
24

=
− +









−∞

∞∫
π

with A evaluated from the fact that the integral of the probability density function

with respect to u1 must be unity. Further integration then gives the variance

values for X t( )  as

σ
πX X tA u p u du A u

c m u k u

m S
du du2

1
2

1 1 1
2 1 2

2
1
2 2

0
2 14

= =
− +









−∞

∞

−∞

∞

−∞

∞∫ ∫∫( )( ) exp
( )

However, one can make some conclusions about the relative magnitudes and

the probability distributions of X t( )  and ˙( )X t  without any integration. In

particular, if a normalized version of ˙( )X t  is introduced as Z t X t( ) ˙( ) /= ω0  with

ω0
1 2= ( / ) /k m , then we have

p u u A
c k u u

m SX t Z t( ) ( )( , ) exp
( )

1 2 0
1

2
2
2

1
2 2

04
=

− +









ω

π

The symmetry of this relationship shows that p u p uX t Z t( ) ( )( ) ( )= =
ω ω0 0p uX t˙ ( )( ) . Thus, the probability distribution of Z t X t( ) ˙( ) /= ω0  is identical to
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that of X t( ) . Among other things, this shows that σ ω σẊ X= 0 . It also shows that

the kurtosis of ˙( )X t  is the same as that of X t( ) .

For this particular problem one can obtain exact results for the value of A, the

variance of the response, and so forth, by converting the double integral with

respect to u1 and u2 into polar coordinates. Specifically, if we let u r1 = cos( )θ
and u r2 = sin( )θ  then

A
c k r

m S
r dr d− ∞

=
−









∫∫1

0
1

2 4

0
00

2

4
ω

π
θ

π
exp

which can be evaluated as

A
c k r

m S
r dr

m S

c k

S

kc
− ∞

=
−









 =











 =









∫1

0
1

2 4

0
0 0

0

1
2

1 2
2 0

1

1 2

2
4

2
1 2
4

4
π ω

π
π ω

π
πexp

( / )
/ /

Γ

because Γ ( / ) /1 2 1 2= π . Similarly,

σ ω
π

θ θ
π

X A
c k r

m S
r dr d2

0
1

2 4

0

3 2
00

2

4
=

−











∞∫∫ exp cos ( )

or

σ π ω
π

π ω
π

X A
c k r

m S
r dr

A
m S

c k k

m S

c

2 0
1 2 4

0

3
0

0
0

1 2
0

1

1 2

4

1

=
−









= =










∞∫ exp

     
/

From the fact that σ ω σẊ X= 0 , we can

also write ( ) [ /( )]˙ /σX S m c2 0 1 1 2= . The

accompanying sketch shows numerical

values for the marginal probability density function of X t( ) , because there is not

a simple analytical solution for this function. A Gaussian distribution is also

shown for comparison.

********************************************************************************************

It should be kept in mind that this discussion of Fokker-Planck analysis of
nonlinear systems is very introductory in nature and is included largely for the
purpose of presenting exact solutions to a few nonlinear problems. Stochastic
averaging is often used to reduce the order of problems, and other special
techniques have been developed for investigating the stability and bifurcation of
solutions. A summary of some of these results, including references to
experimental and numerical simulation studies, has been given by Ibrahim
(1995).

4

3

2

1

0
0                1                 2                3

Gaussian

u1 /σ X

pX ( t) (u1)
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10.3 Statistical Linearization
The simplest linearization situation involves finding the coefficients in a linear
function such that it approximates a given nonlinear function g X t[ ( )]. The usual
approach for doing this in a stochastic problem involves minimizing the mean-
squared error. We will write the linear function as b b X t tX0 1+ −[ ( ) ( )]µ  and
choose b0  and b1 to minimize E tE([ ( )])ˆ 2  in which the error ˆ( )E t  is defined as

ˆ( ) [ ( ) ( )] [ ( )]E t b b X t t g X tX= + − −0 1 µ

Setting the derivatives with respect to b0  and b1 equal to zero gives the two
equations

0 2 2 2
0

2

0
0= ( ) =











= = − ( )[ ]d

d b
E E t E E t

dE t

d b
E E t b E g X t[ ˆ ( )] ˆ( )

ˆ( )
[ ˆ( )] [ ( )]

and

0 2 2

2 2

1

2

1

1
2

= ( )










= −( )

= − ( )

d

d b
E E t E E t

dE t

d b
E E t X t t

b t X t g X t

X

X

[ ˆ ( )] ˆ( )
ˆ( ) ˆ( )[ ( ) ( )]

  ( ) ( ), [ ( )]

µ

σ Cov

Determining b0  and b1 is precisely a problem in classical linear regression,
which is discussed very briefly in Section 3.3. The general solution is

b E g X t0 = ( )[ ( )] (10.18)

and

b
X t g X t

tX
1 2

=
( )Cov ( ), [ ( )]

( )σ
(10.19)

If { ( )}X t  is mean-zero, which can always be achieved by appropriate definition
of the process, then Eq. 10.19 can be rewritten as

b
E X t g X t

E X t
tX1 2

0=
( )

=
( ) [ ( )]

[ ( )]
( )     for µ (10.20)

If one knows the probability distribution of X t( ) , then it is possible, at
least in principle, to solve Eq. 10.18 and either Eq. 10.19 or 10.20 to find the
optimal values of b0  and b1. One difficulty of using this procedure in a dynamics
problem, though, is that one may not know the necessary probability distribution
of X t( ) . For example, if { ( )}X t  is the response of a nonlinear dynamic system,
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in which g X t[ ( )] is a nonlinear restoring force, then the probability distribution
of X t( )  will be unknown. In this situation it is necessary to make some
approximation. Another limitation of the procedure regards its accuracy. Even if
one can exactly satisfy Eqs. 10.18 and 10.19, that does not ensure that the linear
function is a good approximation of g X t[ ( )]. The fitting procedure has only
minimized the second moment of the ˆ( )E t  error term and has not even
considered other measures of error. Despite these facts, it is often possible to get
very useful results from statistical linearization.

The Gaussian distribution is most commonly used to approximate an
unknown probability distribution of { ( )}X t . One justification for this approach is
based on the common assumption that many naturally occurring excitations are
approximately Gaussian, along with the consequences of linearization.
Specifically, if the excitation of a nonlinear system is Gaussian, then the dynamic
response of a linearized substitute system is also Gaussian, so this is used as the
approximation of the distribution of { ( )}X t . Stated another way, if the excitation
is Gaussian and the system nonlinearity is not very severe, then linearization
should work well and the response of the nonlinear system is expected to be
approximately Gaussian. In most applications of linearization, though, it is not
feasible to demonstrate that the Gaussian assumption is valid. Fortunately, the
choice of the b0  and b1 linearization parameters requires only estimates of
certain first- and second-moment terms, as shown in Eqs. 10.18 and 10.19. It is
quite possible for the Gaussian approximation to give acceptable estimates of
these moments even when it does not accurately match the tails of the
distribution of { ( )}X t .

Now we generalize the statistical linearization procedure to include the
case of a nonlinear function g tX[ ( )]

r
 of a number of random variables arranged as

the components of the vector process { ( )}
r
X t . In this case we write the linear

approximation as

g X t b b X t tj j
j

n

X j
[ ( )] [ ( ) ( )]

r
≈ + −

=
∑0

1

µ (10.21)

and choose the values of the coefficients b b bn0 1, , ,L  so as to minimize the mean-
squared value of the error written as

ˆ( ) [ ( ) ( )] [ ( )]E t b b X t t g X tj j
j

n

X j
= + − −

=
∑0

1

µ
r



Introduction to Nonlinear Stochastic Vibration 433

The result can be written as

b E g X t0 = ( )[ ( )]
r

(10.22)

and
r r r r r r
b t t X t g X t t t E X t t g X tXX XX X= ( ) = −( )− −K K1 1( , ) ( ), [ ( )] ( , ) [ ( ) ( )] [ ( )]Cov µ

(10.23)

in which 
r
b = [ , , ]b bn T1 L  and Cov(

r
X ( ), [t g

r
X ( )]t )  is a vector containing the

covariance of the scalar g[
r
X ( )]t  with each component of 

r
X t( ) . These

equations, of course, include Eqs. 10.18 and 10.19 as the special case with n =1.

When it is presumed that { ( )}
r
X t  has the Gaussian distribution, it is

possible to rewrite Eqs. 10.22 and 10.23 in an alternative form that is sometimes
more convenient to use. In particular, it was shown in Example 3.11 that the
jointly Gaussian distribution gives

E X t t g X t E
g X

X

g X

XX XX
n

T

[ ( ) ( )] [ ( )]
( )

, ,
( )r r r

r

L

r

−( ) =




























µ
∂
∂

∂
∂

K
1

and substitution of this result into Eq. 10.23 gives

b E
g X t

X tj
j

=












∂
∂

[ ( )]

( )

r

(10.24)

For n ≥ 2, the use of Eq. 10.24 will usually be somewhat simpler than use
of Eq. 10.23. Each formulation requires the evaluation of n expectations of
nonlinear functions of 

r
X t( ) . However, the expectations in Eq. 10.23 directly give

the components in K XX
r
b , so determination of 

r
b  generally requires the solution

of simultaneous equations. On the other hand, the expectations in Eq. 10.24
directly give the components of 

r
b . Equation 10.24, of course, also applies for the

special case of n =1. In that case, though, it is not necessarily any easier to use
Eq. 10.24 than Eq. 10.19 for finding the value of b1.

The methods of equivalent linearization have also been extended by
Falsone and Rundo Sotera (2003) to a class of non-Gaussian distributions for
X t( ) . In particular, if X t( )  has a Type A Gram-Charlier distribution, then one
can use Gaussian relationships in evaluating the expectations in Eqs. 10.18 and
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10.20. This follows from the fact that the Gram-Charlier probability density
function is a Gaussian form multiplied by a polynomial. Falsone and Rundo
Sotera have also modified Eq. 10.24 to apply to the Gram-Charlier situation. It
should be noted that linearization of a dynamics problem with a non-Gaussian
response cannot model any non-Gaussianity induced by the nonlinearity of the
original problem. That is, the non-Gaussianity in the response of a linearized
problem can come only from the non-Gaussianity of the excitation.

10.4 Linearization of Dynamics Problems
We will now demonstrate the use of statistical linearization for some relatively
simple dynamics problems that contain either scalar or vector nonlinear terms
g X t[ ( )], g[

r
X ( )]t , or 

r
g[

r
X ( )]t , in which { ( )}X t  or { ( )}

r
X t  denotes the response

process of the system. The basic approach in each situation is quite
straightforward. Each nonlinear term is replaced by its linear approximation,
according to the formulas in Section 10.3. This gives the linearization parameters
as functions of various expectations that depend, in turn, on the statistics of the
response process. The response of the linearized system is then found from the
methods of linear analysis, using time-domain integration, frequency-domain
integration, or state-space moment/cumulant methods, according to the
preference of the analyst. This step gives the response parameters as functions of
the linearization parameters. Thus, we generally now have simultaneous
equations, some giving the linearization parameters as functions of the response
levels, and others giving the response levels as functions of the linearization
parameters. The final step is to solve these equations to find the response levels
as functions of the excitation and the parameters of the nonlinear system. In most
situations this solution can be found only by iteration. Using assumed values of
the linearization parameters gives initial estimates of the response levels and
using the estimated response levels gives improved estimates of the linearization
parameters, and so forth. In some situations, though, it is possible to solve the
simultaneous equations by analytical methods. We will illustrate a few of these
situations, and then we will give an example in which the iterative approach is
used. Finally, we will outline the application of the method to general multi-
degree-of-freedom problems with nonstationary response, although we will not
devote the space necessary to work such advanced examples. Much more
extensive investigations of statistical linearization are given by Roberts and
Spanos (1990).
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We begin with the nonlinear first-order system described by

˙( ) [ ( )] ( )X t g X t F t+ = (10.25)

which is identical to Eq. 10.7 with the nonlinear term rewritten as g( )⋅  instead of
′ ⋅f ( ) . For simplicity, we take g( )⋅  to be an odd function and the { ( )}F t

excitation process to be a mean-zero, stationary, Gaussian white noise with an
autocorrelation function of R SFF ( ) ( )τ π δ τ= 2 0 .

Based on the antisymmetry of g X t[ ( )], we can see that µX = 0  and
E g X t[ ( )]( ) = 0 . Thus, using Eqs. 10.18 and 10.20 for the linearization of g X t[ ( )]
gives Eq. 10.25 as being replaced by

˙( ) ( ) ( )X t b X t F t+ =1 (10.26)

with the b1 coefficient given by Eq. 10.20. Thus, Eq. 10.20 gives the dependence
of the linearization parameter b1 on the response levels of the process. That is, if
the probability distribution of { ( )}X t  were known, then Eq. 10.20 would give us
the value of b1. The converse relationship giving the dependence of the statistics
of X t( )  on b1 is found by linear stochastic analysis of Eq. 10.26. In particular,
one can use the methods of Chapters 5, 6, or 9 to show that the stationary
solution of Eq. 10.26 has

E X t
S

b
[ ( )]2 0

1
=

π
(10.27)

Eliminating b1 between Eqs. 10.20 and 10.27 gives

E X t g X t S( ) [ ( )]( ) = π 0 (10.28)

as a necessary condition of linearization. One can then use this equation to find
σX E X t2 2≡ [ ( )], provided that one can relate E X t g X t( ( ) [ ( )])  to σX

2  for the given
g( )⋅  function. As noted in the preceding section, this is usually done by assuming
that X t( )  is Gaussian. The assumption that X t( )  is Gaussian also allows us the
alternative of using Eq. 10.24 in place of Eq. 10.20 for relating a1 to the response
values, giving
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E g X t
S

E X t
′( ) =[ ( )]

[ ( )]

π 0
2

(10.29)

as being equivalent to Eq. 10.28. In this form it appears that Eq. 10.28 may be
slightly simpler than Eq. 10.29.

********************************************************************************************

Example 10.5: Let { ( )}X t  denote the response of the system of Example 10.1

with an equation of motion of
˙( ) ( ) ( ) ( )X t k X t k X t F t+ + =1 3

3

in which { ( )}F t  is a mean-zero, stationary, Gaussian, white noise with

autospectral density S0 . Using statistical linearization, find the value of the b1
parameter of Eqs. 10.26 and 10.27, and estimate the value of σX

2  for stationary

response.

Using the approximation that X t( )  is Gaussian and mean-zero gives

E g X t( [ ( )]) = 0 and

E X t g X t k E X t k E X t k kX X( ) [ ( )] [ ( )] [ ( )]( ) = + = +1
2

3
4

1
2

3
43σ σ

so that Eq. 10.18 confirms that b0 0=  and Eq. 10.20 gives

b
E X t g X t

E X t
k k X1 2 1 3

23=
( )

= +
( ) [ ( )]

[ ( )]
σ

Equivalently, we could have obtained this latter result by using Eq. 10.24 to write

b E
g X t

X t
E k k X t k k X1 1 3

2
1 3

23 3=








= + = +

∂
∂

σ
[ ( )]

( )
[ ( )]

Either Eq. 10.28 or 10.29 shows that the result of using this expression in

conjunction with Eq. 10.27 gives k k SX X1 3 0
2 3 4σ σ π+ =  which has a solution of

σ
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X
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k S
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/

Using the notation of σ π0
2

0 1= S k/  for the variance of the system in the limiting

case of k3 0= , as was done in Example

10.1, this can be rewritten as

σ

σ σ

σX k

k

k

k

2

0
2

1

3 0
2

3 0
2

1

1 2

6
1

12
1= +













−

















/

The accompanying sketch compares this

result with the exact solution obtained in

Example 10.1, using α σ= ( / )k k3 10
2 . It is 0                  1.0                  2.0

1.0

0.5

0

Exact (Example 10.1)

Approximation

α

σ X
2 /σ 0

2
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obvious that statistical linearization gives a very good approximation of the

response variance for this nonlinear problem.

Recall that it was shown in Example 10.1 that the kurtosis of X t( )  varies from

3.0 down to less than 2.4 for the range of α  values shown in the sketch. Thus,

this example shows a situation in which statistical linearization gives a good

estimate of variance even though the response is significantly non-Gaussian. It

must be kept in mind, though, that this statistical linearization procedure does not

give us any estimate of the non-Gaussianity of the response, and using a

Gaussian approximation for X t( )  could give very poor estimates of the

probability of occurrence of rare events. For example, letting α = 2 in the exact

solution of Example 10.1 gives P X t tX[ ( ) ( )]> =3σ 3 21 10 5. × − , whereas a

Gaussian distribution gives this probability as 1 35 10 3. × − , or almost two orders of

magnitude larger than the exact value. Statistical linearization is surprisingly

accurate in predicting the variance, but caution is necessary in using the

linearization results for other purposes.

********************************************************************************************

Example 10.6: Let { ( )}X t  denote the response of the system of Example 10.2

with the equation of motion
˙( ) | ( ) | [ ( )] ( )X t k X t X t F ta+ =sgn

with { ( )}F t  being a mean-zero, stationary Gaussian white noise with

autospectral density S0 . Using statistical linearization, find the value of the b1
parameter of Eqs. 10.26 and 10.27, and estimate the value of σX

2  for stationary

response.

Using the approximation that { ( )}X t  is Gaussian and mean-zero gives

E g X t[ ( )]( ) = 0  and

E X t g X t k E X t k
u u

du

k w e dw
k a
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X

X

X
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so that Eq. 10.18 confirms that b0 0=  and Eq. 10.20 gives

b
E X t g X t
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Equivalently, we could have obtained this latter result by using Eq. 10.24 to write

b E
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Either Eq. 10.28 or 10.29 shows that the result of using this expression in

conjunction with Eq. 10.27 gives

k a
a

S
a

X
a2

2 2

2

1 2
1

0

/

/( )π
σ πΓ









 =+

which has a solution of
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π π

X
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The accompanying sketch compares this

result with the exact solution obtained in

Example 10.2 by giving values of the ratio

R X equiv lin

X exact
=

[ ]

[ ]
. .σ

σ

2

2

For this system it is clear that statistical

linearization gives a good approximation of

the response variance only when a  is

relatively near unity.

********************************************************************************************

Next we consider the linearization of an oscillator with a nonlinear
restoring force, which may depend on both X t( )  and ˙( )X t :

m X t f X t X t F t˙̇ ( ) [ ( ), ˙( )] ( )+ = (10.30)

The nonlinear function is then linearized according to Eq. 10.21 to give

m X t b X t b X t b F t˙̇ ( ) ˙( ) ( ) ( )+ + + =2 1 0 (10.31)

with b0  being found from Eq. 10.22 as

b E f X t X t0 = ( )[ ( ), ˙( )]

The b1 and b2  coefficients can be found by using Eq. 10.23, which gives two
simultaneous equations:

b t b t t t X t f X t X tX X X1
2

2σ ρ σ σ( ) ( ) ( ) ( ) ( ), [ ( ), ˙( )]˙+ = ( )Cov (10.32)

and

b t t t b t X t f X t X tX X X1 2
2ρ σ σ σ( ) ( ) ( ) ( ) ˙( ), [ ( ), ˙( )]˙ ˙+ = ( )Cov (10.33)
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in which ρ σ σ( ) ( ) ( )˙t t tX X  denotes the covariance of X t( )  and ˙( )X t .

If we restrict our attention to the special case in which { ( )}X t  is a
stationary process, then we know that ρ( )t = 0  and µ ˙ ( )X t = 0, so Eqs. 10.32 and
10.33 uncouple to give

b
X t f X t X t

tX
1 2

=
( )Cov ( ), [ ( ), ˙( )]

( )σ
(10.34)

and

b
X t f X t X t

t

E X t f X t X t

E X t
X

2 2 2
=

( )
=

( )Cov ˙( ), [ ( ), ˙( )]

( )

˙( ) [ ( ), ˙( )]

[ ˙ ( )]˙σ
(10.35)

If we make the further restriction that µX t( ) = 0, we can rewrite Eq. 10.34 as

b
E X t f X t X t

E X t
1 2

=
( )( ) [ ( ), ˙( )]

[ ( )]

One situation that will lead to this special case of X t( )  being mean-zero is for
{ ( )}F t  to have a probability distribution that is symmetric about zero, and f ( , )⋅ ⋅
to be odd in the sense that f u u f u u( , ) ( , )1 2 1 2= − − − .

Let us now consider the special case in which { ( )}F t  is mean-zero,
stationary, white noise with autospectral density S0 . For this excitation we know
that the response of the linearized SDF oscillator described by Eq. 10.31 is
stationary, has a mean value of µX b b= − 0 1/ , and has variance values of

σ
π

σ
π

X X

S

b b
E X

S

m b
2 0

1 2

2 2 0

2
= = =,       ˙ [ ˙ ]

One can now use these two equations in conjunction with Eqs. 10.34 and 10.35
and eliminate b1 and b2  to obtain necessary conditions for stationary response as

Cov X t f X t X t m t m E X t
X

( ), [ ( ), ˙( )] ( ) [ ˙ ( )]˙( ) = =σ 2 2 (10.36)

and

Cov ˙( ), [ ( ), ˙( )] ˙( ) [ ( ), ˙( )] /X t f X t X t E X t f X t X t S m( ) = ( ) = π 0 (10.37)
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If the { ( )}F t  process is Gaussian, then we also have the choice of using
Eq. 10.24 in place of Eq. 10.23. This gives

b E
X t

f X t X t b E
X t

f X t X t1 2=








 =











∂
∂

∂
∂( )

[ ( ), ˙( )] ˙( )
[ ( ), ˙( )],       

so Eqs. 10.34 and 10.35 give necessary equations for the stationary response as

E
X t

f X t X t
m

E
X t

f X t X t
S

m
X

X X

∂
∂

σ

σ

∂
∂

π

σ( )
[ ( ), ˙( )] ˙( )

[ ( ), ˙( )]
˙

˙









=









=

2

2
0
2

,     (10.38)

For the case of Gaussian response, these expressions are equivalent to Eqs. 10.36
and 10.37, but they are not necessarily any simpler than those equations.

It is also instructive to consider the special case in which the nonlinearity
of Eq. 10.30 corresponds to a linear damping and a nonlinear spring. Following
the notation of Eqs. 10.15–10.17, we write this as

f X t X t c X t f X t[ ( ), ˙( )] ˙( ) [ ( )]= + ′1

Now we can use the fact that Cov[ ( ), ˙( )] [ ( ) ˙( )]X t X t E X t X t= = 0  for stationary
response to obtain

Cov CovX t f X t X t X t f X t( ), [ ( ), ˙( )] ( ), [ ( )]( ) = ′( )1 (10.39)

Similarly, we can use the fact that

E X t f X t
d

dt
E f X t˙( ) [ ( )] [ ( )]′( ) ≡ ( )1 1 (10.40)

must be zero for stationary response to say that

E X t f X t X t c E X c
X

˙( ) [ ( ), ˙( )] [ ˙ ] ˙( ) = =2 2σ (10.41)
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From Eqs. 10.34 and 10.35 we now find that

b
X t f X t

b c
X

1
1

2 2=
′( )

=
Cov

,       
( ), [ ( )]

σ
(10.42)

We also know that
b E f X t0 1= ′( )[ ( )] (10.43)

because ˙( )X t  is mean-zero for stationary response.

In fact, we could have obtained the results in Eqs. 10.42 and 10.43 by using
a slightly simpler approach. Because the c X t˙( )  term in our f X t X t[ ( ), ˙( )]
function is linear, there really is no need to include it in our linearization
procedure. That is, we can say that our equation of motion for the oscillator is

m X t c X t f X t F t˙̇ ( ) ˙( ) [ ( )] ( )+ + ′ =1 (10.44)

and the only linearization required is of the term ′ = +f X t b b X t1 0 1[ ( )] ( ) . This
one-dimensional linearization then gives exactly Eqs. 10.42 and 10.43,
respectively, for b1 and b0 , and the fact that Eq. 10.42 gives b c2 =  demonstrates
that either of these formulations of statistical linearization gives the same
linearized system. This illustrates a general property of statistical linearization. If
a linear term is somehow included within the nonlinear function that is being
linearized, then that linear term will appear unchanged in the results of the
linearization.

Substituting Eq. 10.41 into Eq. 10.37 now gives us the linearization
estimate of σ Ẋ

2  as π S c m0 /( ) . This result of the approximate method, though, is
identical to the exact result presented in Eq. 10.16 for the special case in which
the white noise excitation is also Gaussian. Thus, if the excitation is Gaussian,
then statistical linearization gives an exact value for σ Ẋ

2  for the system with
linear damping and a nonlinear spring. A formula related to the corresponding
estimate of σX

2  is obtained by substituting Eq. 10.39 and σ Ẋ
2  into Eq. 10.36,

giving

Cov X t f X t S c( ), [ ( )] /′( ) =1 0π (10.45)
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Actual determination of σX
2  from this formula requires an assumption about the

probability distribution of X t( ) . If X t( )  is assumed to be Gaussian and mean-
zero, then one also has the alternative of using Eq. 10.38 to write

σ πX E f X t S c2
1 0′′( ) =[ ( )] / (10.46)

which is then equivalent to Eq. 10.45.

********************************************************************************************

Example 10.7: Let { ( )}X t  denote the response of the oscillator of Example 10.3

with an equation of motion of

m X t c X t k X t k X t F t˙̇ ( ) ˙( ) ( ) ( ) ( )+ + + =1 3
3

in which { ( )}F t  is a mean-zero, stationary Gaussian white noise with

autospectral density S0 . Using statistical linearization, find the value of the b1
and b2  parameters of Eqs. 10.31, 10.34, and 10.35, and estimate the value of

σX
2  and σ Ẋ

2  for stationary response.

Because this equation of motion is a special case of Eq. 10.44, we know that

b c2 =  and σ π˙ /( )X S c m2
0= . Using the notation of Eq. 10.44 we can then write

the nonlinear term as ′ = +f u k u k1 1 1 1 3( ) u1
3  so Eq. 10.42 gives

b
E X t f X t k E X k E X

k k E X
X X

X1
1

2
1

2
3

4

2 1 3
4 2=

′( )
=

+
= +

( ) [ ( )] [ ] [ ]
[ ] /

σ σ
σ

Using the assumption that X t( )  is Gaussian now gives b k k X1 1 33 2= + σ . Note

that this expression for b1 is identical to the results of Eq. 10.24, involving the

expected value of the partial derivative of ′f X t1[ ( )].

Using Eq. 10.45 now gives

3 3
4

1
2 2 0k k m

S

cX X X
σ σ σ

π
+ = =˙

The variance of X t( )  is found by solving this quadratic equation to give

σ
π

X
k

k

k S

ck

2 1

3

3 0

1
2

1 2

6
1

12
1= +













−

















/

Using the notation σ π0
2

0 1= S c k/( )  for the variance in the limiting case of k3 0= ,

as was done in Example 10.3, allows the σX
2  result to be written in normalized

form as

σ

σ σ

σX k

k

k

k

2

0
2

1

3 0
2

3 0
2

1

1 2

6
1

12
1= +













−

















/
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Note, though, that this expression is identical to the one obtained and plotted in

Example 10.5. Thus, the plot shown in that example also demonstrates that

statistical linearization gives good variance approximations for X t( )  in the

current problem.

********************************************************************************************

Example 10.8: Let { ( )}X t  denote the response of the oscillator with an equation

of motion of

m X t c X t c X t X t k X t F t˙̇ ( ) ˙ ( ) ( ) ˙( ) ( ) ( )+ + + =1
3

2
2

in which { ( )}F t  is a mean-zero, stationary Gaussian white noise with

autospectral density S0 . Using statistical linearization, find the value of the

linearization parameters, and estimate the value of σX
2  and σ Ẋ

2  for stationary

response.

As in Eqs. 10.44–10.46, there is no need to include a linear term in our

linearization. Thus, we can write the problem as

m X t f X t X t k X t F t˙̇ ( ) [ ( ), ˙( )] ( ) ( )+ + =

with the linearization problem being the determination of b1 and b2  in

f u u c u c u u b u b u( , )1 2 1 2
3

2 1
2

2 1 1 2 2= + ≈ +
No b0  term is included because the symmetry of the problem gives

E f X t X t( [ ( ), ˙( )]) = 0. Using Eq. 10.23 and noting that X t( )  and ˙( )X t  are

uncorrelated for stationary response gives

b
E X t f X t X t

E X t

c E X t X t c E X t X t c E X t X t

X X
1 2

1
3

2
3

2
1

3

2
=

( )
=

+
=

( ) [ ( ), ˙( )]

[ ( )]

[ ( ) ˙ ( )] [ ( ) ˙( )] [ ( ) ˙ ( )]

σ σ

and

b
E X t f X t X t

E X t

c E X t c E X t X t

X

2 2
1

4
2

2 2

2
=

( )
=

+
˙( ) [ ( ), ˙( )]

[ ˙ ( )]

[ ˙ ( )] [ ( ) ˙ ( )]

˙σ

Note that the expression for b1 has been simplified by using the information that

E X t X t[ ( ) ˙( )]3 0=  for stationary response. The other expectations in these

expressions are unknown, except that we can approximate them by using a

simplifying assumption for the probability distribution of X t( )  and ˙( )X t . In

particular, if we assume that X t( )  and ˙( )X t  are jointly Gaussian, then they are

also independent, which implies that E X t X t[ ( ) ˙ ( )]3 0= , E X t[ ˙ ( )]4 3= σ Ẋ
4 , and

E X t X t[ ( ) ˙ ( )]2 2 = σ σX X
2 2

˙ . This gives the linearization coefficients as b1 0=  and

b c2 13= σ Ẋ
2 +c2 σX

2 . Thus, the linearized system is

m X t c c X t k X t F t
X X

˙̇ ( ) ( ) ˙( ) ( ) ( )˙+ + + =3 1
2

2
2σ σ
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We know that the response of this linearized system has

σ
π

σ σ
X

X X

S

k c c

2 0

1
2

2
23

=
+[ ]˙

and σ Ẋ
2 = ( / )k m Xσ 2 . Substituting this latter relationship into the former one and

solving for σX
2  gives

σ
π

X
S

c k

m
c k

2 0
1 2

1
2

2

1 2
3

=

+












( ) /

/

For the special case in which c c k m2 1= / , this nonlinear system is the same as

the one studied in Example 10.4. Thus, we have an exact solution for that special

case, and we can use it as a basis of comparison to determine the accuracy of

the approximate result obtained here. For this particular value of c2, the

approximate result becomes

σ
π

X k

m S

c
2 0

1

1 2
1

2
=











/

and this is 11% lower than the exact variance value for this particular problem.

This same error also applies to σ Ẋ
2 , because the approximate result gives

σ σ˙ / /X X k m2 2 = , just as was true in the exact solution. It should be kept in mind,

as well, that this problem is quite significantly non-Gaussian, as was shown in

Example 10.4.

********************************************************************************************

Example 10.9: Let { ( )}X t  denote the response of the nonlinear oscillator of

Examples 10.3 and 10.7 with the equation of motion of

m X t c X t k X t k X t F t˙̇ ( ) ˙( ) ( ) ( ) ( )+ + + =1 3
3

but with { ( )}F t  being a mean-zero, stationary Gaussian process with a nonwhite

autospectral density of

S S UFF ( ) ( . | |)ω ω ω= −0 00 7
 in which ω0 is defined as ω0 1

1 2= ( / ) /k m . That is, S SFF ( )ω = 0  for | | .ω ω< 0 7 0
and equals zero otherwise. Using statistical linearization, estimate the variance of

the stationary { ( )}X t  and { ˙( )}X t  responses for the special case of

k ck S3 02 1
2= /( )π  and ζ ω0 02 0 05≡ =c m/( ) . .

For this excitation we are not able to use simple closed-form analytical solutions

of the linearized system. Thus, we use iteration in finding a solution. We can

directly use the linearized model found in Example 10.7:
m X t c X t b X t F t˙̇ ( ) ˙( ) ( ) ( )+ + =1

with b k k E X1 1 3 4= + ( ) / σX
2 . We also use the assumption that X t( )  is

approximately Gaussian to convert this into b k k X1 1 33 2= + σ . We do not have a
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closed-form solution for the response variance for this linearized problem, so we

use the harmonic transfer function of H b m i cx ( ) [ ]ω ω ω= − + −1 2 12  and

integrate this to obtain

σ ω ω
ω

ω ωω
ω ω

X xS H d S
d

b m c

2
0

2
0 7

0 7
0

1
2 2 20

0 7

0

0 02
2

= =
− +−∫ ∫| ( ) |

( ) ( ).

. .

For convenience, we use a nondimensional frequency of η ω ω= / 0  to obtain

σ
ω η ξ η

ηX
S

b

k

b

k

b
d2 0 0

1
2

1
2

1

2
1 0

1

2
1

0

0 72
1

2
= −













 +





























−

∫ .

To begin the iterative process we simply neglect the k3 term, taking b k1 1=  and

numerically evaluating the integral to obtain σ ωX S k2
1
22 1 1140 0= ( / ) ( . ) . Using this

value along with the given value of k3 gives an estimate of

b k k kX1 1 3 13 1 1422= + =σ ( . ) . Using this value in a new evaluation of the

frequency integral gives an improved estimate of the response variance as σX
2 =

( / )( . )2 1 0290 0 1
2S kω . This, in turn, gives an improved estimate of the linearization

parameter of b k k kX1 1 3 13 1 1312= + =σ ( . ) . Carrying out two more steps of the

iteration gives σ ωX S k2
1
22 1 0340 0= ( / ) ( . )  and b k k kX1 1 3 13 1 1322= + =σ ( . )  then

σ ωX S k2
1
22 1 0330 0= ( / ) ( . )  and b k k kX1 1 3 13 1 1322= + =σ ( . ) . This represents

convergence, so our estimate of the response variance is

σ
ω

X
S

k

S

k m

2 0 0

1
2

0

1
3 1 2

2
1 033

2 067
= =( . )

.

( ) /

For this linear system we know that σ σ˙ ( / )X a m X
2 2

1= , so our estimate of σ Ẋ
2  is

σ ˙ / /
. .

( )

.

( )X

k

m

S

k m

S

k m

2 1 0

1
3 1 2

0

1
3 1 2

1 132 2 067 2 340
=




















=

********************************************************************************************

We can also use statistical linearization for the general formulation of the
nonlinear dynamics problem given in Eq. 10.2. In particular, if the equation of
motion is

r r r r˙
( ) [ ( )] ( )Y t g Y t Q t+ =

then the linearization will consist of using an approximation of the form

r r r r r
g Y t b t t Y t tY[ ( )] ( ) ( )[ ( ) ( )]≈ + −B µ (10.47)

The linearization parameters in the vector 
r
b t( )  and the matrix B( )t  of this

relationship are found from Eqs. 10.22 and 10.23 to be given by
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r r r
b t E g Y t( ) [ ( )]= ( ) (10.48)

and the solution of

K B KYY
T

Ygt t t t t( , ) ( ) ( , )= (10.49)

in which KYg t t( , )  denotes the cross-covariance matrix Cov(
r
Y ( ), [t g

r r
Y t( )]) .

That is,

KYg
T

Y
Tt t E Y t g Y t t E g Y t( , ) ( ) [ ( )] ( ) [ ( )]= ( )− ( )

r r r r r r
µ (10.50)

Using the linearization of Eq. 10.47 gives the substitute linear equation of
motion as

r r r r r˙
( ) ( ) ( )[ ( ) ( )] ( )Y t b t t Y t t Q tY+ + − =B µ

This relationship can be put into a more useful form by noting that the expected
value of the original nonlinear equation of motion gives

r r r r
µ µ˙ ( ) [ ( )] ( )Y Qt E g Y t t+ ( ) =

and combining this with Eq. 10.48 gives

r r r
b t t tQ Y( ) ( ) ( )˙= −µ µ (10.51)

This allows the linearized equation of motion to be rewritten as

d

d t
Y t t t Y t t Q t tY Y Q[ ( ) ( )] ( )[ ( ) ( )] [ ( ) ( )]
r r r r r r

− + − = −µ µ µB (10.52)

Note that this equation involves only the deviation of 
r
Y t( )  away from its mean

value. Thus, it can tell us about the covariance and higher-order cumulants of the
response, but it does not govern the behavior of 

r
µY t( ) . This first-moment

behavior is given by Eq. 10.51, which can be rewritten as

r r r
µ µ˙ ( ) ( ) ( )Y Qt t b t= − (10.53)
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One can analyze Eq. 10.52 by using any method appropriate for linear
systems. In particular, one can use state-space analysis to write cumulant
equations as in Chapter 9. The covariance of the response, in particular, is
governed by a slightly simplified form of Eq. 9.9:

d

dt
t t t t t t t t t t t tYY YY YY

T
QY YQK B K K B K K( , ) ( ) ( , ) ( , ) ( ) ( , ) ( , )+ + = + (10.54)

and if the excitation is delta-correlated this can be reduced to

d

dt
t t t t t t t t tYY YY YY

TK B K K B S( , ) ( ) ( , ) ( , ) ( ) ( )+ + = 2 0π (10.55)

which is a special case of Eq. 9.17. It should also be noted that if the { ( )}
r
Q t

excitation is a Gaussian process, then the response from Eq. 10.54 will also be
Gaussian. Furthermore, if this result is anticipated in the evaluation of the
linearization parameters, then one can use Eq. 10.24 in place of Eq. 10.23, giving

B t E
Y t

g Y tjl
l

j( )
( )

[ ( )]=










∂
∂

r

as being equivalent to Eq. 10.49. This formulation can sometimes simplify the
evaluation of the linearization coefficients.

By switching to Kronecker notation (as in Section 9.7), we could also write
the expressions for higher-order cumulants in the same fashion. Note that if the
excitation and response processes are stationary, then 

r
b  and B are independent of

t so that our linearized cumulant equations have constant coefficients as in the
simpler examples considered earlier in this section.

10.5 Linearization of Hysteretic Systems
Oscillators having a hysteretic restoring force represent a special category of
nonlinear systems that are often of practical importance. By a hysteretic force we
mean that the force at a particular time t t= 1  depends not only on the values of
state variables such as X t( )1  and ˙( )X t1  at that instant of time but also on the
time history of { ( )}X t  for t t< 1 . We use a notation of g X t[{ ( )}] for such a
hysteretic term. Some of the simplest hysteretic models are obtained by
introducing idealized Coulomb friction in conjunction with spring elements. For
example, simply placing the Coulomb slider in series with a linear spring as in
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Fig. 10.1(a) gives the hysteretic restoring force shown in Fig. 10.1(b). In addition
to representing the system with friction, this model with a force that is always
bounded by constant values, designated here as ± k xy , approximates the  Fig.
10.1(a) gives the hysteretic restoring force shown in Fig. 10.1(b). In addition to
representing the system with friction, this model with a force that is always
bounded by constant values, designated here as ± k xy , approximates the force-
deflection behavior for a uniaxially loaded member made of a material with an
elastoplastic stress-strain relationship. Because of this latter fact, the model is
commonly called the elastoplastic nonlinearity. The time history behavior is very
simple, with the slope of the force-deflection relationship being k whenever
| [{ ( )}] |g X t k xy< .

By adding another spring in parallel with the elastoplastic element of Fig.
10.1, we can obtain a system with so-called bilinear hysteretic behavior. When
we add a mass and a dashpot, we obtain the bilinear hysteretic oscillator shown
in Fig. 10.2. There are two important reasons for adding the parallel spring,
designated as k2 in Fig. 10.2, to the bilinear hysteretic oscillator. The first reason
is based on the physical fact that most real systems do not lose all their stiffness
at the first onset of yielding. That is, the restoring force in a real system usually
does continue to increase somewhat after the inception of yielding. The second
reason for giving k2 a nonzero value is that the variance of X t( )  grows without
bound as t increases for the oscillator with k2 0= . Thus, the system with k2 0=
presents some mathematical difficulties inasmuch as it never has a stationary
response to a stationary excitation. In a sense, these two justifications for k2 0≠
can be related by the argument that at least one reason that designers avoid the
possibility of having a system that is completely elastoplastic is its inherent lack
of stability, which is also what leads to the absence of a stationary stochastic
solution.

Figure 10.1 System with elastoplastic hysteresis

Coulomb slider:
force when sliding =

X( t)

X( t)
g[{X (t)}]

g[{X (t)}]

k

±k xy

k xy

−k xy

−xy
xy

(a) Physical model with hysteresis (b) Hysteretic restoring force

.
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Real physical systems, of course, often have much more complicated
hysteretic nonlinearities than the bilinear behavior represented by Figs. 10.1 and
10.2. The linearization methods that we present here can be applied to a system
with any form of hysteresis loop, but we limit our attention to nondeteriorating
systems, in the sense that a periodic time history for X t( )  leads to a periodic time
history for g X t[{ ( )}].

We now consider the dynamics of an oscillator including a hysteretic
nonlinear element in series with a linear spring and dashpot. This hysteretic
element can be elastoplastic as shown in Fig. 10.1 or of some other form. The
equation of motion for the oscillator is

m X t c X t k X t g X t F t˙̇ ( ) ˙( ) ( ) [{ ( )}] ( )+ + + =2 (10.56)

The first method that we will present follows quite closely the general procedure
used in Section 10.3. In particular, we use a linear approximation of

g X t b b X t b X t[{ ( )}] ( ) ˙( )≈ + +0 1 2  (10.57)

Note that the inclusion of ˙( )X t  in this linearization may seem somewhat
arbitrary, inasmuch as it does not appear explicitly in the nonlinear g X t[{ ( )}]
term. There are several ways that one can justify the inclusion of the ˙( )X t  term
in Eq. 10.57, but the consideration of energy dissipation is probably the simplest.
We know that the area of the hysteresis loop of a nonlinear spring represents an
amount of energy dissipation during one cycle of motion across the spring
element. Because energy dissipation has a very important influence on the level
of dynamic response in most stochastic vibration problems, it is clear that we
should not use a linearized model that lacks the ability to account for this

force when sliding = ± k1 xy

Force from springs
X( t)

X( t)

k2

k1
c m

F(t) xy

−xy

k1x y + k2X( t)

−k1xy + k2 X(t)

Figure 10.2 Oscillator with bilinear hysteresis.
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hysteretic energy dissipation. Including the ˙( )X t  term in Eq. 10.57 amounts to
introducing an additional viscous damping term into the equation of motion,
which does provide for possible matching of the energy dissipation in the original
nonlinear system.

The mean-squared error in the approximation of Eq. 10.57 is minimized by
using Eqs. 10.22 and 10.23 to find the linearization coefficients, just as in the
nonhysteretic situation. We simplify this, though, by limiting our attention to the
situation in which the excitation and the restoring force have symmetry such that
X t( )  and g X t[{ ( )}] are mean-zero. This then gives b0 0= , from Eq. 10.22, and
the other coefficients are found from Eq. 10.23 as

b
E X t g X t

E X t
1 2

=
( )( ) [{ ( )}]

[ ( )]
(10.58)

and

b
E X t g X t

E X t
2 2

=
( )˙( ) [{ ( )}]

[ ˙ ( )]
(10.59)

The hysteretic nature of the nonlinearity complicates the evaluation of the
terms in the numerators of Eqs. 10.58 and 10.59. We can make an assumption
about the probability distribution of X t( ) , just as we did in Sections 10.3 and
10.4, but that is still not enough information to allow evaluation of
E X t g X t( ( ) [{ ( )}])  and E X t g X t( ˙( ) [{ ( )}]) . The difficulty, of course, is that
g X t[{ ( )}] also depends on the past time history of X t( ) , so one also needs some
assumption about the nature of the possible time histories. The usual approach is
to assume that { ( )}X t  is a narrowband process. In particular, we assume that we
can write

X t A t t ta( ) ( ) cos[ ( )]= +ω θ (10.60)

with θ( )t  being uniformly distributed on the interval from zero to 2π  and
{ ( )}A t  and { ( )}θ t  being independent processes that vary slowly. That is, we
assume that θ̇ ( )t  is generally small compared with the average frequency ωa,
and Ȧ ( )t  is generally small compared with ωaA t( ) . With these assumptions we
can always say that A t( )  and θ( )t  have been at approximately their present
values throughout the previous cycle. If this is true, then we know that g X t[{ ( )}]
lies on the perimeter of the hysteresis loop with the amplitude A t( ) . Furthermore,
we can find the distribution of g X t[{ ( )}] around that perimeter by using the
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uniform probability distribution of θ( )t . In particular, we can write the
conditional expectation of X t g X t( ) [{ ( )}]  as

E X t g X t A t u u g uc( ) [{ ( )}]| ( ) ( ) /=( ) = 2

with

g u g u dc( ) cos( ) [ cos( )]= ∫1
0

2

π
ψ ψ ψ

π
(10.61)

in which the integral is evaluated with g u[ cos( )]ψ  following the perimeter of the
hysteresis loop of amplitude u. Taking the unconditional expectation by using an
appropriate probability distribution for A t( )  then gives

E X t g X t
E A t g A t

u g u p u duc
c A t( ) [{ ( )}]

( ) [ ( )]
( ) ( )( )( ) =

( )
=

∞∫
2

1

2 0
(10.62)

One can also use Eq. 10.60 to rewrite the denominator of Eq. 10.58 as
E X t[ ( )]2 =  E A t[ ( )] /2 2 , giving

b
E A t g A t

E A t

c
1 2

=
( )( ) [ ( )]

[ ( )]
(10.63)

The expected value of ˙( ) [{ ( )}]X t g X t  is evaluated in a directly parallel
fashion. In particular, the derivative of the narrowband process is approximated
as

˙( ) ( ) sin[ ( )]X t A t t ta a= − +ω ω θ (10.64)

which gives E X t[ ˙ ( )]2 = ωa
2 E A t[ ( )] /2 2 . Again presuming that g X t[{ ( )}] is on

the perimeter of the hysteresis loop of amplitude A t( )  gives

E X t g X t A t u u g ua s
˙( ) [{ ( )}]| ( ) ( ) /=( ) = −ω 2

with

g u g u ds( ) sin( ) [ cos( )]= ∫1
0

2

π
ψ ψ ψ

π
(10.65)

so

E X t g X t E A t g A t u g u p u dua
s

a
s A t

˙( ) [{ ( )}] ( ) [ ( )] ( ) ( )( )( ) =
− ( ) =

− ∞∫ω ω
2 2 0

(10.66)
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and

b
E A t g A t

E A ta

s
2 2

1
= −

( )
ω

( ) [ ( )]

[ ( )]
(10.67)

One can also simplify this result a little by noting that a change of variables of
w u= cos( )ψ  in Eq. 10.65 gives

g u
u

g w dw
u

us loop
( ) ( ) (=

−
=

−
×∫1 1

π π
Area of Hysteresis Loop with Amplitude )

It should be noted that the linearization presented here is essentially the same as
that given by Caughey (1960b), although his justification of Eqs. 10.61 and 10.65
is slightly different. In particular, he considers these integrals to represent a time
average over one cycle of oscillator response, as in the Krylov-Bogoliubov
method for linearization of deterministic problems. This interpretation, which can
be considered an application of stochastic averaging, makes Eqs. 10.62 and 10.66
become combination averages—expected values of time averages.

It is now necessary to make some assumption about the probability
distribution of the A t( )  amplitude in order to evaluate the expectations in Eqs.
10.62 and 10.66 and thus obtain the values of the b1 and b2  linearization
coefficients from Eqs. 10.63 and 10.67. The usual assumption is to say that the
narrowband { ( )}X t  process is nearly Gaussian, and this implies that the Rayleigh
distribution can be used for A t( ) . This is essentially the same argument as was
used in Section 7.4, where A t( )  for a Gaussian process had exactly the Rayleigh
probability distribution when it was defined such as to exactly satisfy Eqs. 10.60
and 10.64. Using the Rayleigh probability distribution (or some other known
function) for p uA t( )( )  then gives b1 and b2  as functions of σ X . Overall, it may
be seen that when the narrowband assumption is used for { ( )}X t , the difficulty
in linearizing a hysteretic function of { ( )}X t  is only slightly greater than in
linearizing a nonhysteretic function of X t( )  and ˙( )X t .

After the linearization coefficients have been evaluated, one can substitute
b X t b X t1 2( ) ˙( )+  in place of g X t[{ ( )}] in Eq. 10.56. This gives the approximate
equation of motion as

m X t c b X t k b X t F t˙̇ ( ) ( ) ˙( ) ( ) ( ) ( )+ + + + =2 2 1

from which it is obvious that b1 represents an additional stiffness term and b2
represents additional damping. That is, this linearization procedure replaces the
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elastoplastic element with a spring and a dashpot in parallel. If this linearized
system does have a narrowband response, then its average frequency must be
approximately

ωa
k b

m
=

+







2 1
1 2/

(10.68)

because that is the resonant frequency of the new equation of motion.
Furthermore, we can use the usual expression for the variance of the response of
the linear SDF oscillator to say that

σ
π

X
S

c b k b
2 0

2 2 1
=

+ +( ) ( )
(10.69)

The variance of ˙( )X t , of course, is approximated by ω σa X
2 2 . Numerical results

are obtained by simultaneously solving Eqs. 10.63, 10.67, 10.68, and 10.69.

Note that it is reasonable to expect the accuracy of this linearization
procedure to depend on the adequacy of two particular approximations: the
narrowband assumption used in obtaining Eqs. 10.61 and 10.65 and the
probability distribution assumed for the A t( )  amplitude of the narrowband
response. If the system is nearly linear, then the narrowband assumption should
be appropriate. Also, if the excitation of the system is Gaussian and the
nonlinearity is small, then the response should be nearly Gaussian so that a
Rayleigh approximation for the amplitude is justified.

********************************************************************************************

Example 10.10: Find the linearization parameters and the mean-squared

response levels for the bilinear hysteretic oscillator shown in Fig. 10.2 when the

{ ( )}F t  excitation is a stationary, mean-zero, Gaussian white noise with

autospectral density S0 .

The system is described by Eq. 10.56 with g X t[{ ( )}] as given in Fig. 10.1.

Recall that the symmetry of the situation gives b0 0= . To evaluate b1 and b2  we

need to evaluate the g uc( )  and g us( )  functions defined by Eqs. 10.61 and

10.65. First we note that for u xy< , the elastoplastic term is g u[ cos( )]ψ =
k u1 cos( )ψ , so g u k u g u u xc s y( ) ( )= = <1 0,  for . For u xy> , we split the

integration with respect to ψ  in Eq. 10.61 into four parts, corresponding to the

four straight segments of the hysteresis loop. The result is
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g u k x u d k x d

k x u d k x d

c y y

y y

( ) cos( ) [ ( cos )] cos( )( )

   cos( ) [ ( cos )] cos( )( )

*

*

*

*

= − − + − +




− + − +




∫ ∫

∫ ∫+

+

1
1

1

10 1

1 1
2

π
ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ

ψ
ψ
π

π
π ψ

π ψ
π

 in which ψ* cos [( ) / ]= −−1 2u x uy , as shown in the following sketch. After

simplification, this becomes

g u
k u k u x

u
x u x u xc

y
y y y( )

*
[ ( )] /= −

−







 − >1 1 1 22 2ψ

π π
     for 

One can obtain g us( )  either by performing a

similar integration around the loop or by finding

the area of the hysteresis loop in Fig. 10.1.

The result is

g u
k x u x

u
u xs

y y
y( )

( )
= −

−
>

4 1

π
     for 

Presuming that the response is narrowband

and Gaussian, we now use the Rayleigh

probability density function for A t( ) :

p u
u u

A t
X X

( )( ) exp=
−









σ σ2

2

22

and evaluate the expectations of Eqs. 10.63 and 10.67. The integral in Eq. 10.63

has the form

b k u
u u

du
k u u x

u

k u x

u
x u x

u u

X X X

x y
x

y
y y

X X

y

y
1 2 1

2
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2

20
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=
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∫ ∫ −∞
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π σ σ

exp cos

[ ( )] exp/

















du

and Caughey (1960b) showed that it can be converted into

b k
z

x

z
z

x z
dzy

X

y

X
1 1 3

2

2
1 2

2 2

21
1

8 1

2
1

2
= − +













 −

−



























∞∫
π σ σ

( ) exp/

No closed form has been found for this integral, but it can be easily evaluated

numerically if one first chooses a value for the dimensionless ratio σ X yx/ . Note

that σ X yx/  can viewed as a root-mean-square (rms) ductility ratio, because it

represents the rms response displacement divided by the yield displacement.

The evaluation of b2  is somewhat easier. Writing out the integral for the expected

value in Eq. 10.67 gives

Force

X( t)

ψ = π

ψ = ψ *

ψ = π +ψ *

ψ = 0, 2π
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b
k

x u x
u

u du
a X

y y
X

Xxy
2

1
2 2

2 28
2= − −

∞∫
πω σ σ

σ( ) exp[ /( )]

and this reduces to

b
k x

xy

a X
y X2

1 2
12

1=








 −( )π ω σ

σ
/

( / )Φ

in which Φ( )⋅  denotes the cumulative distribution function for a standardized

Gaussian random variable and is related to the error function (see Example 2.7).

The following sketches show normalized values of b1 and b2  for a fairly wide

range of σ X yx/  values.

The decay of b1 from its initial value of k1 for σ X yx<<  to its final value of zero

for σ X yx>>  corresponds to ωa
2 varying from ( ) /k k m1 2+  to k m2 / . If the

excitation is very small, then σ X yx<<  and the elastoplastic element

experiences little or no yielding, so the k1 spring does contribute effectively to the

system stiffness. If the excitation is very large so that σ X yx>> , then the force

added by the elastoplastic element is relatively small, so the total stiffness

approaches k2. The damping effect of the elastoplastic element has a rather

different characteristic. The dashpot effect is the greatest when σ X yx≈1 5.  and

is near zero for both very large and very small values of σ X yx/ . Of course, the

energy dissipated per cycle does continue to grow as σ X  increases beyond

1 5. xy , even though the value of the “equivalent” dashpot coefficient b2
decreases.

One can use an iterative procedure to find the solution of Eqs. 10.63, 10.67,

10.68, and 10.69 for given values of the system parameters m c k k xy, ,  , , and 1 2 ,

and the excitation level S0 . Alternatively, one can consider fixed values of some

parameters and plot the results versus other parameters. We include three plots

of this form, in which σ σX F
/ * is plotted versus σ

F
xy* / , with σ

F
* defined as

( * )
( )

σ
ω

F

S

k k

2 0 0

1 2
2

2
=

+

0.1 1.0 10

1.0

0.8

0.6

0.4

0.2

0
0.1 1.0 10

0.12

0.08

0.04

0

b1
k1

b2ωa
k1

σ X / xy σ X / xy
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with ω0 1 2
1 2= +[( ) / ] /k k m  = resonant frequency for the linear system that results

when xy  is infinite. For each curve the values of k k2 1/  and

ζ0 1 2
1 22≡ +c k k m/( [( ) ] )/  are held constant. Note that for given system

parameters, σ
F
* is a measure of the level of the excitation. Thus, any curve of

the type given can be considered to represent response normalized by the

excitation plotted versus the excitation normalized by the yield level. The curves

were obtained by choosing a value of σ X yx/ , evaluating b k1 1/  and ωa b k2 1/  as

for the preceding plots, using Eq. 10.68 for the ωa term in the latter of these

expressions, and finally using Eq. 10.69 to give the response variance.

The plots include three different values of k k2 1/ , to represent three different

situations. For k k2 1 9/ = , it is reasonable to consider the nonlinearity to be small

so that the assumptions used in the linearization procedure should be

appropriate. For k k2 1 1/ =  the system can lose up to half of its stiffness due to

yielding and there is considerable hysteretic energy dissipation, so it is

questionable whether the narrowband and Gaussian assumptions are

appropriate for { ( )}X t . The situation with k k2 1 0 05/ .=  goes far beyond the

range in which it is reasonable to expect the assumptions to be valid. Numerical

data for the response levels of the bilinear hysteretic oscillator with k k2 1 1/ =  and

k k2 1 0 05/ .=  were presented by Iwan and Lutes (1968), and some of these data

are reproduced in the plots. In particular, the plots include data for ζ0 0=  and

ζ0 0 01= .  for k k2 1 1/ =  and for ζ0 0=  and ζ0 0 05= .  for k k2 1 0 05/ .= .

Somewhat surprisingly, the data show that the linearization results are generally

quite good for k k2 1 1/ = , even though this is hardly a situation with a small

amount of nonlinearity. For k k2 1 0 05/ .= , on the other hand, there are

sometimes significant discrepancies between the results from the bilinear

hysteretic system and those from linearization.

********************************************************************************************

Note that the narrowband assumption used in the preceding analysis
imposes some limitations on the technique. It may be appropriate for most SDF
systems, but it is surely not appropriate for an MDF system in which more than
one mode contributes significantly to the response. Also, it could be

k2/k1 = 9 k2/k1 = 1 k2/k1 = 0.05
10

1
0.01   0.1        1         10           0.1         1        10            0.1        1          10

ζ 0 = 0 ζ 0 = 0.05ζ 0 = 0.01

σF* / xy σF* / xy σF* / xy

σ X
σF*
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inappropriate for an SDF problem in which the response spectral density is
bimodal because of a dominant frequency in the excitation that is different from
the resonant frequency of the oscillator.

For some hysteretic systems, it is possible to approach the problem of
linearization in a different way that eliminates the need for the narrowband
approximation used in obtaining Eqs. 10.62 and 10.66. This approach involves
the introduction of one or more additional state variables such that the g X t[{ ( )}]
restoring force can be written as a nonhysteretic function of the new set of state
variables. This idea is easily illustrated for the elastoplastic element that
contributes the hysteresis to the bilinear oscillator of Example 10.10. An
appropriate additional state variable for this example is shown as Z t( )  in Fig.
10.3. Using this variable allows one to express the force across the elastoplastic
element as

ˆ[ ( ), ˙( ), ( )] ( )g X t X t Z t k Z t= (10.70)

One notes that the state variables X t( )  and ˙( )X t  do not appear explicitly in this
equation for the force but that they are necessary if one is to determine the rate of
change of the force:

ˆ̇[ ( ), ˙( ), ( )] ˙( )g X t X t Z t k Z t=
with

˙( ) ˙( ) [ ( ) ] [ ˙( )] [ ( ) ] [ ˙( )]Z t X t U Z t x U X t U Z t x U X ty y= − − − − − −( )1 (10.71)

That is, when Z t( )  reaches the level ± xy , we know that ˙( )Z t  changes from
˙( )X t  to zero, so Z t( )  remains unchanged until ˙( )X t  reverses its sign. When this

sign reversal occurs for ˙( )X t , the value of ˆ[ ( ), ˙( ), ( )]g X t X t Z t  begins to move
back from ± k xy  toward zero.

Figure 10.3 Nonhysteretic description of the elastoplastic force

k

Coulomb slider:
force when sliding = ±k xy

Z(t) X(t)

ĝ[X (t), Ẋ( t),Z( t)]

.
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Because Eq. 10.70 is already linear, there is no reason to apply statistical
linearization to it; however, definition of an appropriate linear model in this
formulation involves replacing Eq. 10.71 with a linear relationship of the form

˙( ) ( ) ˙( ) ( )Z t b b X t b X t b Z t≈ + + +0 1 2 3 (10.72)

We will now make the major assumption that { ( )}X t  and { ( )}Z t  can be
approximated as being mean-zero and jointly Gaussian processes. This makes
X t X t Z t( ), ˙( ) ( ) , and  jointly Gaussian random variables, so we can conveniently
use Eq. 10.24 in evaluating the coefficients of linearization. The results are

b E Z t0 0= =[ ˙( )] (10.73)

b E
Z t

X t1 0=








=

∂
∂

˙( )
( )

(10.74)

b E
Z t

X t
E U Z t x U X t E U Z t x U X ty y2 1=









= − −( )− − − −( )∂

∂

˙( )
˙( )

[ ( ) ] [ ˙( )] [ ( ) ] [ ˙( )]

and

b E
Z t

Z t
E X t Z t x U X t E X t Z t x U X ty y3 =









= − −( )+ − − −( )∂

∂
δ δ

˙( )
( )

˙( ) [ ( ) ] [ ˙( )] ˙( ) [ ( ) ] [ ˙( )]

which yield

b p v w dv dwX t Z txy
2 0

1 2= −
∞∞ ∫∫ ˙ ( ) ( )( , ) (10.75)

and

b v p v x dvX t Z t y3 0
2= −

∞∫ ˙ ( ) ( )( , ) (10.76)

In addition to Eqs. 10.73–10.76 relating the values of the linearization
coefficients to the response levels, it is necessary to have other equations relating
the response levels to the linearization parameters. These equations come from
stochastic analysis of the equation of motion of a system containing this
linearized elastoplastic element. This can be illustrated by considering the
bilinear hysteretic system of Example 10.10. Using Eq. 10.70 to linearize the
elastoplastic element in this system gives an equation of motion of



Introduction to Nonlinear Stochastic Vibration 459

m X t c X t k X t k Z t F t˙̇ ( ) ˙( ) ( ) ( ) ( )+ + + =2 1 (10.77)

and the fact that b0  and b1 are zero allows the auxiliary relationship of Eq. 10.72
to be written as

˙( ) ˙( ) ( )Z t b X t b Z t= +2 3 (10.78)

One can find the response levels of this system as functions of the parameters
m c k k b b, ,  , , and 1 2 2 3,  by any of the methods appropriate for a linear system. If
the { ( )}F t  excitation is stationary white noise, then it is particularly convenient
to use the state-space moment or cumulant methods of Chapter 9 to derive
simultaneous algebraic equations giving the response variances and covariances.
In particular, one can take the state vector as 

r
Y t X t X t Z t T( ) [ ( ), ˙( ), ( )]=  so that the

response variances and covariances are given by the components of a symmetric
matrix of dimension 3 3× . One of the six simultaneous equations turns out to be
trivial, simply giving the well-known fact that the covariance of X t( )  and ˙( )X t
is zero. The other five equations can be solved simultaneously with Eqs. 10.75
and 10.76 in order to find not only the five remaining terms describing the
response levels but also the b2  and b3  coefficients.

********************************************************************************************

Example 10.11: Find the linearization parameters and the mean-squared

response levels predicted by Eqs. 10.70–10.76 for stationary response of the

bilinear hysteretic oscillator shown in Fig. 10.2 with an { ( )}F t  excitation that is a

stationary, mean-zero, Gaussian white noise with autospectral density S0 .

As previously noted, the system is described by Eqs. 10.77 and 10.78 and the b2
and b3  linearization parameters are related to the response levels by Eqs. 10.75

and 10.76. Writing these two expressions as integrals of the jointly Gaussian

probability density function gives

b
e

r dr
r

x X Z XZy Z
2

2

1 2
2 1 21 2

2
1

2

= − −( )
−∞∫

/

// ˙ , ˙
/

( )
/[ ]

π
ρ ρ

σ
Φ

and

b bX

Z
3 32= −

σ

σ
˙ ˆ



Random Vibrations460

with
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/

˙
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Note that b2  and b̂ 3 are dimensionless quantities that depend only on the two

parameters ρẊZ  and xy Z/σ , whereas b2  has units of frequency and depends

on the value σ σ˙ /X Z .

To evaluate parameters and response levels, we must use expressions giving

the response levels of the linearized system of Eqs. 10.77 and 10.78. We will do

this by using the state-space formulation of the covariance equations, as given in

Section 9.5. Thus, we rewrite the equations of motion in the form ofr
Y ( )t + B

r
Y ( )t =

r
Q t( ) , with 

r
Y t X t X t Z t T( ) [ ( ), ˙( ), ( )]= , 

r
Q t F t m T( ) [ , ( ) / , ]= 0 0 , and

B =

−

− −

















0 1 0

0
2 1

2 3

k m c m k m

b b

/ / /

Because we are interested only in stationary response, we can simplify Eq. 9.18

to be

B K K B SYY YY
T+ = 2 0π

with the only nonzero element of the S0 matrix being the scalar S m0
2/  in the

( , )2 2  position. After some very minor simplification, the six distinct components

of this relationship can be written as
KXẊ = 0

c K k K k K m KXX XZ XX XX˙ ˙ ˙+ + − =1 2 0

b K b K KXX XZ XZ2 3 0˙ ˙+ + =

k K c K k K S mXX XX XZ2 1 0˙ ˙ ˙ ˙ /+ + = π
k K c b m K b m K k KXZ XZ XX ZZ2 3 2 1 0+ − − + =( ) ˙ ˙ ˙

and
− − =b K b KXZ ZZ2 3 0˙

The first of these equations is simply a well-known property of any stationary

process, and this can be used to give a slight simplification in the second, third,

and fourth equations. Similarly, Eq. 10.78 shows that the sixth equation is the

corresponding condition that KZŻ = 0. Using the linearization condition of

b X Z3 2= − ( / )˙σ σ b̂ 3 along with this stationarity condit ion gives
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− +b XZ2 2ρ ˙ b̂ 3 0=  as a necessary condition for the joint probability density

function of ˙( )X t  and Z t( ) . One can use this relationship along with the

expressions for b2  and b̂ 3 to derive a unique relationship between ρẊZ  and

xy Z/σ . In particular, for a selected value of xy Z/σ  one can use an initial guess

for ρẊZ , evaluate estimates of b2  and b̂ 3, reevaluate ρẊZ , and so on. After

finding these values for the selected xy Z/σ  value, one can use the third

response equation to write

K K b b bXZ XZ XZ Z Z= − = =˙ ˙/ /( ˆ ) /3
2

3
2

22ρ σ σ

Rewriting KXX˙ ˙  and KZZ  as σ Ẋ
2  and σZ

2 , respectively, allows relatively simple

solution of the fourth and fifth response equations to find these quantities. The

second response equation then gives the value of KXX X≡ σ 2 . Although there are

multiple solution branches for these equations, there seems to be only one

solution that gives real positive values of σ σ σX ZX
2 2 2, , and ˙  for any given value of

xy Z/σ . The following sketches show the results of this linearization for the

situations with k k2 1=  and k k2 10 05= . . The form of the plots is the same as in

Example 10.10. For k k2 10 05= .  and intermediate values of σF yx* / , it is

observed that the fit of this linearization to the numerical data is significantly
better than for the linearization of Example 10.10. For larger values of σF yx* / ,

though, this linearization is less accurate than the one of Example 10.10, for
either value of k k2 1/ .

********************************************************************************************

Another version of the linearization of the elastoplastic element was
offered by Asano and Iwan (1984), who noted that Eq. 10.70 allows the
possibility of the absolute value of the restoring force exceeding k xy , whereas

that should be impossible. To avoid this situation they replaced the right-hand
side of Eq. 10.70 with an expression that truncates the restoring force at the
levels ± k xy . This can be written as

σ X
σF*

0.01      0.1           1            10    0.01      0.1           1            10
1

10
k2 /k1 =1 k2 /k1 = 0.05

ζ0 = 0 ζ0 = 0.01 ζ0 = 0.05

σF* / xy σF* / xy
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ˆ[ ( ), ˙( ), ( )] ( ) [ ( ) ] [ ˙( )] [ ( ) ] [ ˙( )]

    [ ( ) ] [ ˙( )] [ ( ) ] [ ˙( )]

g X t X t Z t k Z t U Z t x U X t U Z t x U X t

k x U Z t x U X t U Z t x U X t

y y

y y y

= − − − − − −( )+

− − − − −( )
1

 (10.79)

Note that Eq. 10.79 is identical to Eq. 10.70 whenever | ( ) |Z t xy≤ . Furthermore,
the behavior of the truly elastoplastic element never allows the system to enter
the region of | ( ) |Z t xy> , where Eqs. 10.70 and 10.79 differ from each other.
Thus, both Eq. 10.70 and Eq. 10.79 exactly describe truly elastoplastic behavior.
When one linearizes the equations in the usual way, though, the results are not
identical. In particular, one must consider Eq. 10.79 to give a nonlinear
relationship between the elastoplastic force and the state variables. Linearization
of this model, then, involves not only using Eq. 10.78 in place of Eq. 10.71 but
also using an approximation of

ˆ[ ( ), ˙( ), ( )] ( ) ˙( ) ( )g X t X t Z t a a X t a X t a Z t≈ + + +0 1 2 3 (10.80)

in place of Eq. 10.79. Using the jointly Gaussian assumption for the state
variables gives the coefficients as

a E g X t X t Z t0 0= ( ) =ˆ[ ( ), ˙( ), ( )] (10.81)

a E
g X t X t Z t

X t1 0=








=

∂
∂

ˆ[ ( ), ˙( ), ( )]
( )

(10.82)

a E
g X t X t Z t

X t

k E Z t X t U Z t x U Z t x

k x E X t U Z t x U Z t x

y y

y y y

2 =










= − − + − −( )[ ] +

− + − −( )[ ]
=

∂
∂

δ

δ

ˆ[ ( ), ˙( ), ( )]
˙( )

    ( ) [ ˙( )] [ ( ) ] [ ( ) ]
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One may also note that Eqs. 10.84 and 10.75 give a3 as being identical to k b2 .

It is somewhat disturbing to find that Eqs. 10.70 and 10.79 are both exact
descriptions of the elastoplastic nonlinearity, but they give different results when
analyzed by statistical linearization. For this system there is not a unique answer
even when one adopts the standard procedure of minimizing the mean-squared
error and uses the standard assumption that the response quantities have a jointly
Gaussian probability distribution. By using a different linearization procedure or
by assuming a different probability distribution, of course, it is possible to obtain
any number of other results, but there is some ambiguity even within the standard
procedure. In this particular instance, the additional ambiguity arose because the
new Z t( )  state variable was bounded, so it was undefined on certain regions of
the state space. The Gaussian assumption, though, does assign probability to the
entire state space, so the linearization results are affected by assumptions about
behavior in the regions that really should have zero probability. One way to avoid
this particular difficulty is to analyze only models that have a finite probability
density everywhere. This is one of the advantages of a smooth hysteresis model
that has gained popularity in recent years. In this model the new Z t( )  state
variable is proportional to the hysteretic portion of the restoring force, as in Eq.
10.77, and its rate of change is governed by the differential equation

˙( ) [ | ˙( ) ( ) | ( )] | ( ) | ˙( )Z t c X t Z t Z t c Z t X tc c= − −−
1

1
2

3 3

for some parameters c c c1 2 3, , and . This gives Z t( )  as unbounded, so there is
not any region of zero probability. This form is a generalization by Wen (1976)
of a model used by Bouc (1968) with c3 1= . Wen achieved generally good
results using statistical linearization for this hysteretic system, and the model
seems to be capable of approximating many physical problems.

In some problems it is not as obvious how to avoid having regions of zero
probability in the state space. For example, when modeling damaged structures it
may be desirable to consider the tangential stiffness at time t to be a function of
the maximum distortion of the structure at any time in the past. This can be
accommodated by defining a state variable Y t( )  that is the maximum absolute
value of the X t( )  displacement at any prior time. This new Y t( )  variable is not
bounded, but there should be zero probability on the regions X t Y t( ) ( )>  and
X t Y t( ) ( )< − . Statistical linearization has been used for such problems
(Senthilnathan and Lutes, 1991), but the difficulties and ambiguities involved are
similar to those for elastoplastic behavior.
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********************************************************************************************

Example 10.12: Find the linearization parameters and the mean-squared

response levels predicted by Eqs. 10.80–10.84 for stationary response of the

bilinear hysteretic oscillator shown in Fig. 10.2 with an { ( )}F t  excitation that is a

stationary, mean-zero, Gaussian white noise with autospectral density S0 .

The procedure is the same as in Example 10.11. In addition to the b2  and b3
parameters evaluated there, the linearization now also uses a k b3 1 2=  and the

parameter a2 from Eq. 10.83, which can be rewritten as a k aZ X2 1 22= − ( / ) ˆ˙σ σ
with

ˆ
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Note that â2, like b2  and b̂ 3, is a function only of ρẊZ  and xy Z/σ , so it can be

evaluated independently from the analysis of the dynamics of the oscillator.

Substituting Eq. 10.80, with a a a k b0 1 3 1 20 0= = =,  and ,  into Eq. 10.56, gives

the equation of motion for the linearized system as
m X t c a X t k X t k b Z t F t˙̇ ( ) ( ) ˙( ) ( ) ( ) ( )+ + + + =2 2 1 2

This equation must be solved in conjunction with Eq. 10.78, giving the rate of

change of Z t( ) . Note that the new equation of motion has the same form as Eq.

10.77, but it has different stiffness and damping values. In particular, the

presence of b2 , which is a number between zero and unity, results in a reduced

stiffness for this linearization of the problem. Similarly, a2 is a negative quantity,

so it causes a reduction in the damping of the system. Thus, we can anticipate

that the response of this linear model will be greater than that for Eq. 10.70. The

details of the state-space analysis to find the response quantities as functions of

the linearization parameters will be omitted, because the procedure is

fundamentally the same as in Example 10.11. The σ σX F/ * results are shown in

the following plot.

k2/k1 = 1 k2/k1 = 0.05

1

10

0.01     0.1             1           10   0.01       0.1           1            10
σF* / xy σF* / xy

σ X
σF*

ζ0 = 0.05ζ0 = 0.01ζ0 = 0
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It is observed that this linearization does a better job of fitting the numerical

simulation data than does the method of either Example 10.10 or 10.11. The

difference between the linearization shown here and that of Example 10.11 is

most obvious for relatively high values of σF yx* / , because this is the situation

where Eqs. 10.70 and 10.79 are most significantly different.

********************************************************************************************

10.6 State-Space Moment and Cumulant Equations
We will now consider how the state-space methods of Chapter 9 can be applied
to nonlinear problems. For this purpose we presume that the nonlinear equation
of motion is written as in Eq. 10.2:

r r r r˙
( ) [ ( )] ( )Y t g Y t Q t+ = (10.85)

This general equation is adequate for analysis of nonlinear systems without
hysteresis. However, with the introduction of additional state variables, as
illustrated by Z t( )  in Eqs. 10.70 and 10.71, it can also be applied to many
problems that are generally classified as hysteretic.

The procedure of Section 9.3 can now be used to derive state-space mean
and covariance equations. The mean-value equation of

r r r r˙ ( ) [ ( )] ( )µ µY Qt E g Y t t+ ( ) = (10.86)

results from simply taking the expectation of Eq. 10.85. Recalling that

d

dt
t t t t t tYY YY YYK K K( , ) ( , ) ( , )˙ ˙= +

we can take cross-covariances involving terms of Eq. 10.85 and the state vector
to give

d

dt
t t t t t t t t t tYY gY Yg QY YQK K K K K( , ) ( , ) ( , ) ( , ) ( , )+ + = + (10.87)

in which KYg t t( , )  is as defined in Eq. 10.50, and KgY t t( , )  is its transpose.

One use of the exact mean and covariance relationships given in Eqs. 10.86
and 10.87 is to provide valuable information about the assumptions of the
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statistical linearization procedure introduced in Section 10.4. In particular, a
comparison of Eq. 10.86 and the approximate linearization result given in Eq.
10.53 shows that integrating the two expressions will give exactly the same
r
µY t( )  values if 

r
b t( )  is identically the same as E g Y t( [ ( )])

r r
. This latter

relationship, though, is exactly the linearization condition given in Eq. 10.48.
Similarly, one can compare Eqs. 10.54 and 10.87 and note that they are identical
if B K K( ) ( , ) ( , )t t t t tYY gY= , which is exactly equivalent to the linearization
condition given in Eq. 10.49. Thus, if one can manage to choose 

r
b t( )  and B( )t

in such a way that the conditions of Eqs. 10.48 and 10.49 are exactly satisfied,
then statistical linearization will give exact values of the mean and covariance of
response of the nonlinear system. In one sense, this provides a justification for
use of the statistical linearization procedure that is much stronger than any
argument that we were able to make in Section 10.4. On the other hand, one must
realize that it is generally impossible to satisfy Eqs. 10.48 and 10.49. To satisfy
these linearization conditions it would be necessary to know the probability
distribution of the response vector 

r
Y t( ) , but this probability distribution is

precisely the unknown quantity in the problem. Nonetheless, it is useful to know
that any mean and covariance error of statistical linearization lies entirely in the
evaluation of the linearization coefficients, and not in the difference between the
linearized equation and the original nonlinear equation. For higher-order
cumulants, of course, the situation is more complicated. For example, if { ( )}

r
Q t

is Gaussian then the linearized system will give { ( )}
r
Y t  as also being Gaussian,

so its higher-order cumulants are zero. Obviously, this is not true for the
nonlinear problem.

Returning to consideration of the nonlinear state-space equations, note that
the right-hand side of Eq. 10.87 is essentially the same as that of Eq. 9.9. In
particular, the right-hand side of the equation is not affected by the nonlinearity
that has been introduced into the system. Furthermore, the methods used in
Section 9.4 to simplify this right-hand side are not in any way dependent on the
system being linear. Thus, if the { ( )}

r
Q t  excitation vector is delta-correlated with

a nonstationary covariance of K SQQ t s t t s( , ) ( ) ( )= −2 0π δ , then one can write
the nonlinear version of Eq. 9.17 as

d

dt
t t t t t t tYY gY YgK K K S( , ) ( , ) ( , ) ( )+ + = 2 0π (10.88)

By switching to Kronecker notation we can also give the corresponding
equations for higher-order cumulants. The general relationship that is analogous
to Eq. 9.48 for the linear problem is
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d

dt
Y t Y t Y t Y t g Y t Y t Y tj j

ll
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j l
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(10.89)

For the special case of a delta-correlated excitation, we will write, as in Section
9.7, the jth-order cumulant array for the excitation as κ j

⊗ [ ( ), , ( )]LQ t Q t j1 =
( ) ( ) ( ) ( )2 1 1 1π δ δj j j j j jS t t t t t− −− −L , which allows Eq. 10.89 to be rewritten as

d

dt
Y t Y t Y t Y t g Y t Y t Y t S tj j

ll

j

j l

j
jκ κ π⊗ ⊗

−= −

−+ =∑[ ( ), , ( )] [ ( ), , ( ), [ ( )], ( ), , ( )] ( ) ( )
r

L
r r

L
r

1 244 344
r r

L
r

1 244 344

r

11

12

(10.90)

The state-space cumulant relationships of Eqs. 10.87 and 10.89 give exact
descriptions of the general situation in which the excitation of the nonlinear
system is not delta-correlated, but they are less useful than the expressions in
Eqs. 10.88 and 10.90 for delta-correlated excitations. This, of course, is because
of the difficulty in evaluating the terms on the right-hand side of Eq. 10.89 for a
general stochastic excitation. If the excitation can be modeled as a filtered delta-
correlated process, then useful cumulant equations can be formulated by using
the technique of analyzing the filter and the nonlinear system of interest as one
composite system, as was mentioned in Chapter 9 for linear problems.

The difficulty in using Eq. 10.86, 10.88, or 10.90 to estimate response
levels is in finding adequate approximations for cumulants involving 

r
Y t( )  and

the nonlinear function 
r
g [ ( )]

r
Y t . Not surprisingly, if { ( )}

r
Q t  is a Gaussian process

then it is common to approximate { ( )}
r
Y t  as also being Gaussian. This is called

Gaussian closure.2 With this assumption, the mean and cross-covariance terms
involving 

r
g [ ( )]

r
Y t  can be written as functions of the mean and covariance ofr

Y t( ) , so it is possible to find solutions to the equations. In fact, these mean and
covariance solutions obtained by considering { ( )}

r
Y t  to be Gaussian are identical

to those obtained by statistical linearization with the same assumption about the
distribution of { ( )}

r
Y t . For example, in state-space analysis the value of

E g(
r

[ ( )])
r
Y t  is taken as the coefficient in Eq. 10.86; in statistical linearization it is

used as the value of the vector 
r
b t( )  of linearization coefficients, but using this

                                                  
2The term closure comes from consideration of systems with polynomial
nonlinearities, which are discussed in the following paragraphs.



Random Vibrations468

value for 
r
b t( )  makes Eq. 10.53 identical to Eq. 10.86. Similarly, the KgY  and

KYg matrices can be taken either as the coefficients in the state-space
formulation of Eq. 10.88 or as the values of B K( ) ( , )t t tYY  and K BYY Tt t t( , ) ( ) ,
which are the corresponding coefficients in Eq. 10.55 for statistical linearization.
Thus, state-space cumulant analysis and statistical linearization are completely
equivalent when both are applied with the Gaussian assumption. This is despite
the fact that there seem to be more assumptions involved in the statistical
linearization approach.

In many nonlinear problems it is possible to write, at least approximately,
the nonlinear function as a polynomial of the state variables. For example, one
can do this by writing a power series expansion for the nonlinearity. Such a
polynomial nonlinearity leads to an infinite set of coupled state-space equations
governing the response cumulants or moments. To illustrate this situation in the
simplest possible situation, we will consider the moment equations when the state
vector of Eq. 10.85 is a scalar and the nonlinear function g Y t[ ( )] is a polynomial.
The equation of motion is then

˙( ) ( ) ( )Y t a Y t Q tk
k

k

K

+ =
=
∑

0

(10.91)

and the moment equations can be found by multiplying this equation by powers
of Y t( )  and then taking the expected value. In particular, multiplying by Y tj−1( )
gives

E Y t Y t a E Y t E Q t Y tj
k

k j

k

K
j[ ( ) ˙( )] [ ( )] [ ( ) ( )]− + −

=

−+ =∑1 1

0

1

which can be rewritten as

1 1

0

1

j

d

dt
E Y t a E Y t E Q t Y tj

k
k j

k

K
j[ ( )] [ ( )] [ ( ) ( )]+ =+ −

=

−∑ (10.92)

The derivative term in Eq. 10.92 demonstrates that this equation governs
the evolution of the jth moment of Y t( ) . The summation, though, includes
moments up to the order ( )K j+ −1 , where K is the highest-order term included
in the polynomial of Eq. 10.91. Taking j =1 shows that the behavior of the
mean-value term E Y t[ ( )]

r
 depends on the values of E Y t E Y tK[ ( )], , [ ( )]2 L .
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Similarly, using j = 2  shows that the evolution of E Y t[ ( )]2  depends on the
values of E Y t E Y tK[ ( )], , [ ( )]L +1 , and so forth. Because the evolution of any
moment term depends on the values of still higher moment terms, the set of
coupled equations continues without limit. Methods for truncating this infinite set
of equations are commonly called closure methods.

Gaussian closure is the most common technique for truncating the set of
equations that result from consideration of a polynomial nonlinearity. For the
scalar situation of Eq. 10.92, this involves assuming that any moment of Y t( )
can be written in terms of the mean and variance in the same way as for a
Gaussian random variable. In particular, it is assumed that

E Y t
m

r m r
r t tm

Y
m r

Y
r

r

m

[ ( )]
!

!( )!
( )( ) ( ) ( ) ( )

, ,

[ ]

=
−

− −

=
∑ 1 3 1
0 2 4

L µ σ (10.93)

in which [m] denotes either m  or m −1, depending on which is an even integer
(see Eq. 3.10 and Example 3.8). With this assumption, µY t( )  and σY t( )  are the
only unknowns in Eq. 10.92. Furthermore, by choosing two particular values of j
in this equation, one can obtain two simultaneous equations from which, in
principle, one can solve for the values of µY t( )  and σY t( ) . One must expect that
the values obtained for the unknowns will depend on the choices of j, because the
other moment equations will generally not be satisfied. The usual procedure in
applying such a closure method is to use the lowest-order moment equations that
will serve the purpose. Thus, Gaussian closure for the scalar problem involves
using Eq. 10.92 with j =1 and with j = 2 , giving the equations that directly
govern the evolution of µY t( )  and σY t( ) . If symmetry dictates that µY t( )  is
zero for the problem of interest, then the equation for j =1 is trivial and the
equation for j = 2  gives the evolution of the variance.

It may be noted that Gaussian closure of the state-space moment equations
with a Gaussian excitation gives exactly the same results as simply assuming that
{ ( )}Y t  is a Gaussian process, even though the formulation of the assumption is
slightly different. In particular, Gaussian closure is often presented as an
assumption that certain moments of Y t( )  are the same as they would be if Y t( )
were Gaussian, rather than as an assumption that Y t( )  truly is Gaussian, but the
results are the same. Furthermore, we have demonstrated that the nonlinear state-
space moment or cumulant equations are exactly the same as those for the system
obtained by statistical linearization when { ( )}Y t  is assumed to be Gaussian in
both approaches. Thus, we see that the most straightforward implementations of
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Gaussian closure and statistical linearization make the two methods exactly
equivalent when the excitation is Gaussian.

A more general method to close the infinite set of moment equations for a
problem with a polynomial nonlinearity is to assume that all cumulants of Y t( )
beyond some specified order are so small that they can be neglected (Crandall,
1980; Wu and Lin, 1984). If one chooses to consider only the first J cumulants of
Y t( ) , for example, then it is necessary to consider only the moment expressions
from Eq. 10.92 for j J=1, ,L , because there are only J  unknowns to be
evaluated. When J is chosen to be 2, this general cumulant neglect closure
approach reduces to Gaussian closure. Cumulant neglect closure with J > 2
generally provides better approximations of the mean and the variance of the
response and also gives at least crude approximations of other cumulants up to
order J. The method does not necessarily converge as J is made larger, however.
The reason seems to be related to the fact that it is not possible for a stochastic
process to have zero values for all cumulants beyond order J unless J =1 or 2.3

Gaussian closure can be viewed as approximating { ( )}Y t  by a Gaussian process,
but it is not possible to view any higher-order cumulant neglect closure scheme
as corresponding to use of such a substitute process.

A more promising closure method is called quasi-moment or Hermite-
moment closure. It is based on approximating the probability distribution of the
dynamic response with a truncated type A Gram-Charlier series. In principle, it is
possible to exactly represent any probability distribution for a random variable Y
in the form

p u p u a H
u

Y YG l l
Y

Yl

( ) ( )= +
−

























=

∞

∑1
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µ
σ

(10.94)

in which p uYG ( )  is a Gaussian approximation of the probability density for Y
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(10.95)

The Hl ( )⋅  term is the lth order Hermite polynomial, which can be written as

                                                  
3Kendall and Stuart (1977) attribute this result to Marcinkiewicz in 1938.
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in which the expectation term is sometimes called the lth Hermite moment of Y.
Thus, truncating the series to an upper limit of L amounts to neglecting all
Hermite moments above order L. Because the lth quasi-moment of Y is simply
l a l X l! ( )σ , this truncation is identical to quasi-moment neglect closure.

Note that there are L unknown values in p uY ( ): µ σY Y La a, , 3, ,L . These
values can be found for a nonlinear dynamics problem from simultaneous
solution of a set of L moment equations for the system. In particular, for a scalar
equation of motion of ˙( ) [ ( )] ( )Y t g Y t Q t+ = , the jth moment equation
corresponding to Eq. 10.89 is

d

dt
E Y t j E Y t g Y t j E Y t Q tj j j[ ( )] ( ) [ ( )] [ ( ) ( )]+ ( ) =− −1 1

in which the right-hand side is identical to the ψ( )t  in Eq. 9.57 for the
corresponding linear problem. Using a truncated form of Eq. 10.94 for the
probability density of Y t( )  converts each of the expectations on the left-hand
side to a series of expectations in terms of the Gaussian form of Eq. 10.95. An
interesting and valuable property of this system of moment equations is that they
are linear in the a aL3, ,L  unknown Hermite coefficients, even though they are
nonlinear in the unknown µ σY Y and  terms. This has been used to give
simplified solution procedures for the L equations. Cacciola et al. (2003) used
simulated time histories of the dynamic response to estimate µ σY Y and , then
solved the linear equations for the other unknowns, and Falsone and Rundo
Sotera (2003) used an iterative approach in which estimated values of
µ σY Y and  were updated after solving for the other unknowns. Falsone and
Rundo Sotera specifically used this closure method for the same non-Gaussian
problems that they investigated by equivalent linearization. They achieved
significantly improved results by using the closure approach, which included
non-Gaussian effects due to the nonlinearity as well as due to the excitation.
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An undesirable aspect of the truncated type-A Gram-Charlier
approximation is that it can give negative values for the approximation of the
probability density function. Also, it may be necessary to include 10 to 20 terms
in the summation to obtain a good approximation of a significantly non-Gaussian
distribution. One method of avoiding these difficulties is to use a similar
approach with a truncated type-C Gram-Charlier series in which

p u b H
u

Y l l
Y

Yl

L

( ) exp≈
−

























=
∑ µ

σ
0

Muscolino et al. (1997) found that good approximations could be achieved for
quite small values of L in this approach; however, evaluation of the unknown
coefficients is more difficult than for Eq. 10.94. Also it is necessary that L be
even and that bL < 0 in order for the approximate probability density to converge
to zero for | |u → ∞. Note that the type-C series amounts to a polynomial
approximation of log[ ( )]p uY , which is an approach that has been investigated in
a somewhat different way by Di Paola et al. (1995). Development of accurate and
efficient closure methods is an area of ongoing research.

The generalization to a vector process of the polynomial nonlinearity of
Eq. 10.91 has the form

r r r˙
( ) ( ) ( )[ ]Y t Y t Q tk

k

k

K

+ =
=
∑A

0

in which 
r
Y tk[ ]( )  is a Kronecker power of the vector and Ak  is a matrix of

dimension n nY Y
k× . Equation 10.90 then becomes
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which can be rewritten (see Eqs. 9.3 and 9.42) as
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The corresponding moment equation is similar but has a more complicated right-
hand side:
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The primary difficulty in using Eq. 10.96 concerns the fact that the Kronecker
cumulant term on the left-hand side of the equation includes the Kronecker
product 

r
Y tk[ ]( ) , in addition to 

r
Y t( )  terms. Use of cumulant neglect closure with

Eq. 10.97 is somewhat more complicated, because the relationship between
moments and cumulants becomes somewhat complicated for higher-order terms,
in addition to the complexity of the right-hand side, even if the { ( )}Q t  excitation
is delta-correlated. Despite the difficulties, procedures have been developed for
the implementation of cumulant neglect closure for both the moment analysis of
Eq. 10.97 (Di Paola and Muscolino, 1990; Di Paola et al., 1992; Di Paola and
Falsone, 1993) and the cumulant analysis of Eq. 10.96 (Papadimitriou and Lutes,
1994; Papadimitriou, 1995).

At least one other general approach has also been used to find approximate
solutions to Eq. 10.90 or 10.96. This approach is based on the fact that one can
often anticipate not only that certain state variables will have non-Gaussian
distributions but also the general sense in which these distributions will differ
from Gaussian. In particular, one can often predict that some variable will have a
greater than Gaussian or a smaller than Gaussian probability of large excursions.
In such a situation, it may be possible to assume a particular non-Gaussian form
for the probability distribution of the state variable. One of the easiest ways to do
this is to assume a Gaussian distribution for a new variable that is defined as a
nonlinear function of the non-Gaussian state variable. This method was used by
Iyengar and Dash (1978), who rewrote a state variable Z t( )  that was bounded by
±b  as Z t b Z t( ) ( / ) tan [ ˆ( )]= −2 1π , and then assumed that ˆ( )Z t  was Gaussian. In
essence, this amounts to rewriting the equation of motion for the system in terms
of a new state variable ˆ( )Z t  in place of Z t( ) , then using Gaussian closure. In
fact, Iyengar and Dash referred to the technique as Gaussian closure, even though
it can also be considered a method of non-Gaussian closure for the problem
formulated in terms of the original state variables. In a somewhat similar vein, it
has been shown (Lutes, 2000) that improved results for the bilinear hysteretic
system of Example 10.10 can be obtained by modifying Caughey’s procedure to
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assume that it is the hysteretic restoring force g X t[{ ( )}], rather than X t( )  itself,
that is a narrowband, Gaussian process. It should be noted, though, that use of the
narrowband approximation limits the applicability of this particular technique, as
it did in Caughey’s original method. The general method of assuming a Gaussian
distribution for some auxiliary process does seem to have considerable potential
for use, and it avoids a major difficulty of cumulant neglect and quasi-moment
neglect closure schemes. That is, the new state variable, as illustrated by ˆ( )Z t  or
g X t[{ ( )}], is a physically meaningful quantity, whereas a random variable with
only J  nonzero cumulants or quasi-moments generally is not physically
meaningful. No general procedures have as yet been formulated, though, for
achieving non-Gaussian closure in this way.

********************************************************************************************

Example 10.13: Let { ( )}X t  denote the response of the system of Examples 10.1

and 10.5 with an equation of motion
˙( ) ( ) ( ) ( )X t k X t k X t F t+ + =1 3

3

in which { ( )}F t  is a mean-zero, stationary, delta-correlated process with

autospectral density S0 . Write the state-space equation for the second moment

of the system response, verify that the result agrees with that of statistical

linearization, and apply Gaussian closure to simplify the equation.

This scalar system is described by Eq. 10.85 with 
r
Y t X t( ) ( )= , g Y t k X t[ ( )] ( )

r
= +1

k X t3
3( ) , and 

r
Q t F t( ) ( )= . Because the system is symmetric and the excitation

has a mean value of zero, the response gives both X t( )  and g X t[ ( )] as also

being mean-zero. The state-space covariance relationship of Eq. 10.88 can then

be written as
d

dt
E X t E X t g X t S[ ( )] ( ) [ ( )]2

02 2+ ( ) = π

or
d

dt
E X t k E X t k E X t S[ ( )] [ ( )] [ ( )]2

1
2

3
4

02 2 2+ + = π

One may note that this equation is also identical to the result of simply multiplying

X t( )  times each term of the equation of motion and then taking the expected

value, because
d

dt
E X t E X t X t[ ( )] [ ( ) ˙( )]2 2=

and E F t X t S[ ( ) ( )] = π 0 . One always has the option of deriving state-space

moment or cumulant equations by this direct procedure. The advantage of Eq.

10.88 is that it may help clarify exactly which expressions are needed for the

evaluation of given moments or cumulants in a more complicated problem.
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Recall that in Example 10.5 we introduced a term b1 that can be written as

b
E X t g X t

E X t
k k

E X t

E X t
1 2 1 3

4

2
=

( )
= +

( ) [ ( )]

[ ( )]

[ ( )]

[ ( )]
If we now introduce that term into our current analysis of the nonlinear system,

the moment equation takes the form
d

dt
E X t b E X t S[ ( )] [ ( )]2

1
2

02 2+ = π

This relationship, though, is identical to the second-moment state-space equation

for the linear system described by ˙( ) ( ) ( )X t a X t F t+ =1 , which is the linearized

model in Example 10.5. Inasmuch as no approximations have been used in

deriving this state-space relationship for the nonlinear problem, it exactly

describes the second moment of the response. Thus, this example confirms the

fact that statistical linearization also gave an exact relationship for the second

moment of the nonlinear response. The difficulty in practice, of course, is that

one cannot exactly evaluate the b1 linearization coefficient, because it involves

another moment of the response. The approximate stationary solution based on

a Gaussian assumption was given in Example 10.5.

To implement Gaussian closure, we now evaluate all the terms in the state-space

moment equations in terms of the unknown variance (or second moment) of the

response. We do this by assuming that all expected values are the same as they

would be if X t( )  were Gaussian. In our state-space moment equations for the

current problem, E X t[ ( )]4  is the only term that is not already written in terms of

the second moment of the response. Thus, we use the Gaussian assumption to

obtain E X t E X tX[ ( )] ( [ ( )])4 2 23 34= =σ . With this result, the state-space moment

equation becomes

d

dt
E X t k E X t k E X t S[ ( )] [ ( )] [ ( )]2

1
2

3
2

2

02 6 2+ + ( ) = π

One could numerically solve this nonlinear differential equation to find an

approximation of the nonstationary E X t[ ( )]2 . For the special case of stationary

response, the equation becomes algebraic and the solution is as found in

Example 10.5.

********************************************************************************************

Example 10.14: Let { ( )}X t  denote the response of the oscillator of Example 10.8

with an equation of motion

m X t c X t c X t X t k X t F t˙̇ ( ) ˙ ( ) ( ) ˙( ) ( ) ( )+ + + =1
3

2
2

in which { ( )}F t  is a mean-zero, delta-correlated process with autospectral

density S0 . Write the general state-space equations for the second moments of

the system response, verify that the results agree with those of nonstationary

statistical linearization, and apply Gaussian closure to simplify the equations.
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Using the usual state vector of 
r
Y t X t X t T( ) [ ( ), ˙( )]= , the component equations of

motion are
˙ ( ) ( )Y t Y t1 2 0− =

and

m Y t c Y t c Y t Y t k Y t F t˙ ( ) ( ) ( ) ( ) ( ) ( )2 1 2
3

2 1
2

2 1+ + + =

This agrees with Eq. 10.85 if we write the nonlinear restoring force as

r r
g Y t

Y t

c m Y t c m Y t Y t k m Y t
[ ( )]

( )

( / ) ( ) ( / ) ( ) ( ) ( / ) ( )
=

−

+ +











2

1 2
3

2 1
2

2 1

and the excitation as 
r
Q t F t m T( ) [ , ( ) / ]= 0 . Because the mean values are equal to

zero, the cross-covariances are the same as cross-products and the KYg t t( , )
matrix in Eq. 10.88 is

KYg t t
E Y t Y t

c

m
E Y t Y t

c

m
E Y t Y t

k

m
E Y t

E Y t
c

m
E Y t

c

m
E Y t Y t

k

m
E Y t Y t

( , )
[ ( ) ( )] [ ( ) ( )] [ ( ) ( )] [ ( )]

[ ( )] [ ( )] [ ( ) ( )] [ ( ) (
=

− + +

− + +

1 2
1

1 2
3 2

1
3

2 1
2

2
2 1

2
4 2

1
2

2
2

1 2 )])]



















Of course, KgY t t( , )  is the transpose of this expression. The S0( )t  matrix is

simply

S0
0

2
0 0

0
( )

/
t

S m
=











Thus, the three distinct component equations from Eq. 10.88 can be written as
d

dt
E X t E X t X t[ ( )] [ ( ) ˙( )]2 2 0− =

d

dt
E X t X t

c

m
E X t X t

c

m
E X t X t

k

m
E X t E X t

[ ( ) ˙( )] [ ( ) ˙ ( )] [ ( ) ˙( )]

[ ( )] [ ˙ ( )]

+ + +

− =

1 3 2 3

2 2 0

and
d

dt
E X t

c

m
E X t

c

m
E X t X t

k

m
E X t X t

S

m
[ ˙ ( )] [ ˙ ( )] [ ( ) ˙ ( )] [ ( ) ˙( )]2 1 4 2 2 2 0

2
2 2 2

2
+ + + =

π

Note that the first of these three state-space moment equations is trivial, because

it states only a well-known property of the derivative. Furthermore, the second

and third equations could have been derived in an alternative direct manner. In

particular, we can obtain two related equations by multiplying the original

equation of motion by X t( )  and ˙( )X t , respectively, and then taking the expected

value of the products. These equations are

m E X t X t c E X t X t c E X t X t k E X t[ ( ) ˙̇ ( )] [ ( ) ˙ ( )] [ ( ) ˙( )] [ ( )]+ + + =1
3

2
3 2 0

and

mE X t X t c E X t c E X t X t kE X t X t
S

m
[ ˙( ) ˙̇ ( )] [ ˙ ( )] [ ( ) ˙ ( )] [ ( ) ˙( )]+ + + =1

4
2

2 2 02π
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Noting that
d

dt
E X t X t E X t X t E X t

d

dt
E X t E X t X t[ ( ) ˙( )] [ ( ) ˙̇ ( )] [ ˙ ( )] [ ˙ ( )] [ ˙( ) ˙̇ ( )]= + =2 2 2,     

allows these expressions to be converted into the two state-space moment

equations already obtained. The right-hand sides of the equations, of course,

have been simplified by using the relationships given in Section 9.4 for delta-

correlated excitations.

As in Example 10.8, the linearized equation can be written as m X t b X t˙̇ ( ) ˙( )+ +2
( ) ( ) ( )b k X t F t1 + = . The values of b1 and b2  for stationary response were

obtained in Example 10.8, but more general results are required for comparison

with the general nonstationary state-space equations. From Eq. 10.23, the

general linearization relationship of g X t c X t c X t X t[ ( )] ˙ ( ) ( ) ˙( )
r

= +1 3 2 2  can be

written as

K XX b X t g X t
c X t X t c X t X t X t

c X t X t c X t X t X t

r r r
= ( ) ≡ +

+











Cov

Cov[ Cov[

Cov[ Cov[
( ), [ ( )]

( ), ˙ ( )] ( ), ( ) ˙( )]
˙( ), ˙ ( )] ˙( ), ( ) ˙( )]

1
3

2
2

1
3

2
2

Because the processes are mean-zero, though, the component equations can be

written as

b E X t b E X t X t c E X t X t c E X t X t1
2

2 1
3

2
3[ ( )] [ ( ) ˙( )] [ ( ) ˙ ( )] [ ( ) ˙( )]+ = +

and

b E X t X t b E X t c E X t c E X t X t1 2
2

1
4

2
2 2[ ( ) ˙( )] [ ˙ ( )] [ ˙ ( )] [ ( ) ˙ ( )]+ = +

The state-space equations for the linearized system are
d

dt
E X t X t E X t

b

m
E X t X t

b k

m
E X t[ ( ) ˙( )] [ ˙ ( )] [ ( ) ˙( )] [ ( )]− + +

+
=2 2 1 2 0

and
d

dt
E X t

b

m
E X t

b k

m
E X t X t

S

m
[ ˙ ( )] [ ˙ ( )] [ ( ) ˙( )]2 2 2 1 0

2
2 2

2
+ +

+
=

π

and substituting from the equations for b1 and b2  makes these equations

identical to the component equations derived for the nonlinear system.

As in Example 10.13, we note that no approximations have been used in deriving

these state-space relationships of the nonlinear problem, so they exactly

describe the moments of the response. Thus, this example also confirms the fact

that statistical linearization gives exact relationships for the second moments of

the nonlinear response, but with the practical limitation that one cannot exactly

evaluate the b1 and b2  linearization coefficients. The approximate stationary

solution based on a Gaussian assumption was given in Example 10.8.

To obtain the Gaussian closure approximation of the nonstationary nonlinear

state-space moment equations, we also use relationships that would be true if

X t( )  and ˙( )X t  were mean-zero and jointly Gaussian. In particular, this gives

E X t X t E X t X t E X t[ ( ) ˙ ( )] [ ( ) ˙( )] [ ˙ ( )]3 23=
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E X t X t E X t X t E X t[ ( ) ˙( )] [ ( ) ˙( )] [ ( )]3 23=

E X t E X t[ ˙ ( )] [ ˙ ( )]4 2
2

3= ( )
and

E X t X t E X t E X t E X t X t[ ( ) ˙ ( )] [ ( )] [ ˙ ( )] [ ( ) ˙( )]2 2 2 2 2
2= + ( )

Substituting these relationships gives the state-space equations as
d

dt
E X t E X t X t[ ( )] [ ( ) ˙( )]2 2 0− =

d

dt
E X t X t

c

m
E X t X t E X t

c

m
E X t X t E X t

k

m
E X t E X t

[ ( ) ˙( )] [ ( ) ˙( )] [ ˙ ( )]

[ ( ) ˙( )] [ ( )] [ ( )] [ ˙ ( )]

+ +

+ − =

3

3
0

1 2

2 2 2 2

and

d

dt
E X t

c

m
E X t

c

m
E X t E X t

c

m
E X t X t

k

m
E X t X t

S

m

[ ˙ ( )] [ ˙ ( )] [ ( )] [ ˙ ( )]

[ ( ) ˙( )] [ ( ) ˙( )]

2 1 2
2

2 2 2

2 2 0
2

6 2

4
2

2

+ ( ) +

+ ( ) + =
π

In principle, one can now solve these three simultaneous differential equations

for the three unknown second-moment terms: E X t E X t[ ( )] [ ˙ ( )]2 2, , and

E X t X t[ ( ) ˙( )]. The problem is made somewhat complicated, of course, by the

fact that two of the equations are nonlinear.

Restricting attention to the special case of stationary response simplifies the

situation by making all the derivative terms in the equations be zero and gives

E X t X t[ ( ) ˙( )] = 0 . The values of E X t E X t[ ( )] [ ˙ ( )]2 2 and  are then exactly as

found in Example 10.8.

********************************************************************************************

Example 10.15: Consider the nonlinear oscillator described by
˙̇ ( ) ˙( ) exp[ ( )] ( ) ˙ ( ) ( )X t c X t a X t k X t X t F t+ − + =2 3 2

in which { ( )}F t  is a mean-zero, stationary, delta-correlated process with

autospectral density S0 . Write the general state-space moment equations for the

system, and find the approximate stationary solution that results from Gaussian

closure.

Using the alternative approach presented in Example 10.14, we can obtain

appropriate state-space moment equations by multiplying the equation of motion

by the components of the 
r
Y t X t X t T( ) [ ( ), ˙( )]≡  state vector, then taking the

expected values. The resulting equations are

E X t X t c E X t X t a X t k E X t X t E X t F t[ ( ) ˙̇ ( )] ( ) ˙( ) exp[ ( )] [ ( ) ˙ ( )] [ ( ) ( )]+ −( )+ = =2 4 2 0
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and

E X t X t c E X t a X t k E X t X t E X t F t S[ ˙( ) ˙̇ ( )] ˙ ( ) exp[ ( )] [ ( ) ˙ ( )] [ ˙( ) ( )]+ −( )+ = =2 2 3 3
0π

For stationary response, though, we can use the simplifications that

E X t X t[ ˙( ) ˙̇ ( )] = 0 , E X t X t E X t[ ( ) ˙̇ ( )] [ ˙ ( )]= − 2 , and E X t X t a X t( ( ) ˙( ) exp[ ( )])− =2 0.

The last of these three relationships follows from the fact that the term has the

form E X t f X t( ˙( ) [ ( )])′ , which is exactly the derivative with respect to t  of

E f X t( [ ( )]) . Using these conditions gives the exact state-space equations for

stationary response as

− + =E X t k E X t X t[ ˙ ( )] [ ( ) ˙ ( )]2 4 2 0
and

c E X t a X t k E X t X t S˙ ( ) exp[ ( )] [ ( ) ˙ ( )]2 2 3 3
0−( )+ = π

Now we introduce the Gaussian assumption to further simplify the equations. In

particular, we presume that X t( )  and ˙( )X t  are jointly Gaussian, which requires

that they also be independent inasmuch as they are uncorrelated. This gives

E X t X t E X t E X t X X
[ ( ) ˙ ( )] [ ( )] [ ˙ ( )] ˙

4 2 4 2 4 23= = σ σ

E X t X t E X t E X t[ ( ) ˙ ( )] [ ( )] [ ˙ ( )]3 3 3 3 0= =
and

E X t a X t E X t E a X t˙ ( ) exp[ ( )] [ ˙ ( )] exp[ ( )]2 2 2 2−( ) = −( )
and the Gaussian distribution allows the final term to be evaluated as

E a X t u
a

du

a
e dw

a

X

X

X

X

w

X

exp[ ( )]
( )

exp

( ) ( ) ( )

/

/ /
/

/

−( ) = −
+

























=
+

=
+

−∞

∞

−
−∞

∞

∫

∫

2
1 2

2
2 2

2

1 2 2 2 1 2
2

2 2 1 2

1

2

2 1

2

1

2 2 1

1

2 1

2

π σ

σ

σ

π σ σ

Thus, the state-space equations become

− + =σ σ σ˙ ˙X X X
k2 4 23 0

and

c

a
SX

X

σ

σ
π

˙

/( )

2

2 2 1 2 0
2 1+

=

From the first of these equations, we determine that σX k2 3 1 2= −( ) / ; the second

equation then gives

σ
π

σ
π

˙
/

/

/

( )
( )X X

S

c
a

S

c

a

k
2 0 2 2 1 2 0

2

1 2

1 2

2 1
2

3
1= + = +











********************************************************************************************
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Exercises
*****************************************************************
Fokker-Planck Equation
*****************************************************************
10.1 Consider the response of the nonlinear system governed by the first-order
differential equation

˙( )
( )

| ( ) |
( )X t a

X t

X t
F t+ =

in which { ( )}F t  is a mean-zero, Gaussian, white noise process with an
autospectral density of S0 .

(a) Give the Fokker-Planck equation governing the probability density of the
first-order Markov process { ( )}X t , and evaluate the two nonzero coefficients
in that equation:

C u
t
E X X t u C u

t
E X X t u

t t

( ) ( )( ) lim [ | ( ) ] ( ) lim [( ) | ( ) ]1

0

2

0

21 1
= = = =

→ →∆ ∆∆
∆

∆
∆,     

(b) Verify that the Fokker-Planck equation is satisfied by the stationary
probability density function

p u A
a u

S
X t( )( ) exp

| |
= −









π 0

and evaluate A for this density function.

(c) Evaluate the variance and the kurtosis of X t( )  for this stationary response.

*****************************************************************

10.2 Consider the response of the nonlinear system governed by the first-order
differential equation

˙( ) ( ) ( )X t a X t F t+ =5

in which { ( )}F t  is a mean-zero, Gaussian, white noise process with an
autospectral density of S0 .
(a) Give the Fokker-Planck equation governing the probability density of the

first-order Markov process { ( )}X t , and evaluate the two nonzero coefficients
in that equation: C u C u( ) ( )( ) ( )1 2 and .

(b) Verify that the Fokker-Planck equation is satisfied by the stationary
probability density function

p u A
a u

S
X t( )( ) exp= −











6

06π

and evaluate A for this density function.
(c) Evaluate the variance and the kurtosis of X t( )  for this stationary response.
*****************************************************************
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10.3 Consider the response of the nonlinear system governed by the first-order
differential equation

˙( ) ( ) ( ) ( )X t k X t k X t F t+ + =1 5
5

in which { ( )}F t  is a mean-zero, Gaussian, white noise process with an
autospectral density of S0 .
(a) Give the Fokker-Planck equation governing the probability density of the

first-order Markov process { ( )}X t , and evaluate the two nonzero coefficients
in that equation: C u C u( ) ( )( ) ( )1 2 and .

(b) Verify that the Fokker-Planck equation is satisfied by the stationary
probability density function

p u A
S

k
u

k
u

X t( )( ) exp= − +
























1

2 60
1

2
5

6

π

in which A is a constant chosen to make the integral of the expression with
respect to u be unity. [You need not evaluate A.]

*****************************************************************
10.4 Consider the nonlinear system governed by the second-order differential
equation

m X t c X t k
X t

X t
F t˙̇ ( ) ˙( )

( )

| ( ) |
( )+ + =

in which { ( )}F t  is a mean-zero, Gaussian, white noise process with an
autospectral density of S0 .
(a) Using the state vector 

r
Y t X t X t T( ) [ ( ), ˙( )]= , give the Fokker-Planck equation

governing the probability density p uY t
r r

( )( )  for the vector Markov process
{ ( )}

r
Y t  and evaluate the first-order and second-order coefficients in that

equation:

C u
t
E Y Y t u C u

t
E Y Y t u

C u
t
E Y Y t u C u

t t

t

1
1

0
1

2 0

0
1

2
1

0
2

0 2

1 1

1

( ) ( , )

( ) ( , )

( ) lim [ | ( ) ] ( ) lim [( | ( ) ]

( ) lim [ | ( ) ] ( )

r r r r r r

r r r r

= = = =

= =

→ →

→

∆ ∆

∆

∆
∆

∆
∆

∆
∆

,     )

,     

2

== =

= =

→

→

lim [( | ( ) ]

( ) lim [ | ( ) ]( , )

∆

∆

∆
∆

∆
∆ ∆

t

t

t
E Y Y t u

C u
t
E Y Y Y t u

0
2

1 1

0
1 2

1

1

)2
r r

r r r

(b) Verify that the Fokker-Planck equation has a stationary solution of

p u A
c

S
k u

m u
Y t
r r

( )( ) exp | |= − +
























π 0

1
2
2

2

and evaluate A in that expression.
(c) Find stationary variance values for X t( )  and ˙( )X t .
(d) Find stationary values of the kurtosis of X t( )  and ˙( )X t .
*****************************************************************
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10.5 Consider the nonlinear system governed by the second-order differential
equation

m X t c X t k X t X t F t˙̇ ( ) ˙( ) | ( ) | ( ) ( )+ + =

in which { ( )}F t  is a mean-zero, Gaussian, white noise process with an
autospectral density of S0 .

(a) Using the state vector 
r
Y t X t X t T( ) [ ( ), ˙( )]= , give the Fokker-Planck equation

governing the probability density p uY t
r r

( )( )  for the vector Markov process
{ ( )}

r
Y t , and evaluate the first-order and second-order coefficients in that

equation.

(b) Verify that the Fokker-Planck equation has a stationary solution of

p u A
c

S

k u m u
Y t
r r

( )( ) exp
| |

= − +
























π 0

1
3

2
2

3 2

and evaluate A in that expression.

(c) Find stationary variance values for X t( )  and ˙( )X t .

(d) Find stationary values of the kurtosis of X t( )  and ˙( )X t .

*****************************************************************

10.6 Consider the nonlinear system governed by the second-order differential
equation

m X t c X t X t k X t k X t F t˙̇ ( ) | ˙( ) | ˙( ) ( ) ( ) ( )+ + + =2 1 5
5

in which { ( )}F t  is a mean-zero, Gaussian, white noise process with an
autospectral density of S0 . Using the state vector 

r
Y t X t X t T( ) [ ( ), ˙( )]= , give the

Fokker-Planck equation governing the probability density p uY t
r r

( )( )  for the
vector Markov process { ( )}

r
Y t , and evaluate the first-order and second-order

coefficients in that equation.

*****************************************************************

10.7 The Fokker-Planck equation for a certain vector Markov process { ( )}
r
Y t  has

the form
∂
∂

∂
∂

∂
∂

π
∂

∂

t
p u u

u
p u bu u c u u p u

bu u c u u
u

p u S
u

p u

Y t Y t Y t

Y t Y t

r r r

r r

r r r

r r

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

+ − +( ) −

+( ) =

2
1

1 2 1
2

2
2

1 2
2

1
2

2
3

2
0

2

2
2
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Furthermore, this { ( )}
r
Y t  process is the state vector [ ( ), ( )]˙X t tX T  for the solution

of a differential equation ˙̇ ( ) [ ( ), ˙( )] ( )X t g X t X t F t+ =  in which { ( )}F t  is a mean-
zero, Gaussian, white noise process with an autospectral density of S0 . Find the
appropriate g X t X t[ ( ), ˙( )]  function in this equation of motion.
*****************************************************************
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Statistical Linearization
*****************************************************************
10.8 Let { ( )}X t  denote the response of the system of Exercise 10.1 with an
equation of motion

˙( )
( )

| ( ) |
( )X t a

X t

X t
F t+ =

in which { ( )}F t  is a mean-zero, Gaussian, white noise process with an
autospectral density of S0 .
(a) Using statistical linearization, find an expression for the b1 parameter of Eqs.

10.26 and 10.27.
(b) Evaluate b1 in terms of σX

2  using the assumption that { ( )}X t  is a stationary
Gaussian process.

(c) Verify that this stationary value of b1 agrees with the results of Eq. 10.24.
(d) Estimate the value of σX

2  for stationary response.
*****************************************************************
10.9 Let { ( )}X t  denote the response of the system of Exercise 10.2 with an
equation of motion

˙( ) ( ) ( )X t a X t F t+ =5

in which { ( )}F t  is a mean-zero, Gaussian, white noise process with an
autospectral density of S0 .
(a) Using statistical linearization, find an expression for the b1 parameter of Eqs.

10.26 and 10.27.
(b) Evaluate b1 in terms of σX

2  using the assumption that { ( )}X t  is a stationary
Gaussian process.

(c) Verify that this stationary value of b1 agrees with the results of Eq. 10.24.
(d) Estimate the value of σX

2  for stationary response.
*****************************************************************
10.10 Let { ( )}X t  denote the response of the system of Exercise 10.3 with an
equation of motion

˙( ) ( ) ( ) ( )X t k X t k X t F t+ + =1 5
5

in which { ( )}F t  is a mean-zero, Gaussian, white noise process with an
autospectral density of S0 .
(a) Using statistical linearization, find an expression for the b1 parameter of Eqs.

10.26 and 10.27.
(b) Evaluate b1 in terms of σX

2  using the assumption that { ( )}X t  is a stationary
Gaussian process.

(c) Verify that this stationary value of b1 agrees with the results of Eq. 10.24.
(d) Find a cubic algebraic equation that could be solved to obtain an estimate of

the value of σX
2  for stationary response. [You need not solve this equation.]

*****************************************************************
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10.11 Let { ( )}X t  denote the response of the system of Exercise 10.4 with an
equation of motion

m X t c X t k
X t

X t
F t˙̇ ( ) ˙( )

( )

| ( ) |
( )+ + =

in which { ( )}F t  is a mean-zero, Gaussian, white noise process with an
autospectral density of S0 .
(a) Using statistical linearization, find expressions for the b1 and b2  parameters

of Eqs. 10.31, 10.34, and 10.35.
(b) Evaluate b1 and b2  in terms of σX

2  and σ Ẋ
2  using the assumption that { ( )}X t

is a stationary Gaussian process.
(c) Verify that these stationary values of b1 and b2  agree with the results of Eq.

10.24.
(d) Estimate the values of σX

2  and σ Ẋ
2  for stationary response.

*****************************************************************
10.12 Let { ( )}X t  denote the response of the system of Exercise 10.5 with an
equation of motion

m X t c X t k X t X t F t˙̇ ( ) ˙( ) | ( ) | ( ) ( )+ + =
in which { ( )}F t  is a mean-zero, Gaussian, white noise process with an
autospectral density of S0 .
(a) Using statistical linearization, find expressions for the b1 and b2  parameters

of Eqs. 10.31, 10.34, and 10.35.
(b) Evaluate b1 and b2  in terms of σX

2  and σ Ẋ
2  using the assumption that { ( )}X t

is a stationary Gaussian process.
(c) Verify that these stationary values of b1 and b2  agree with the results of Eq.

10.24.
(d) Estimate the values of σX

2  and σ Ẋ
2  for stationary response.

*****************************************************************
10.13 Let { ( )}X t  denote the response of the system of Exercise 10.6 with

m X t c X t X t k X t k X t F t˙̇ ( ) | ˙( ) | ˙( ) ( ) ( ) ( )+ + + =2 1 5
5

in which { ( )}F t  is a mean-zero, Gaussian, white noise process with autospectral
density of S0 .
(a) Using statistical linearization, find expressions for the b1 and b2  parameters

of Eqs. 10.31, 10.34, and 10.35.
(b) Evaluate b1 and b2  in terms of σX

2  and σ Ẋ
2  using the assumption that { ( )}X t

is a stationary Gaussian process.
(c) Verify that the stationary values of b1 and b2  agree with the results of Eq.

10.24.
(d) Estimate the value of σ Ẋ

2  for stationary response, and find a cubic algebraic
equation that could be solved to obtain a corresponding estimate of the value
of σX

2 . [You need not solve this equation.]
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*****************************************************************
State-Space Moment Equations
*****************************************************************
10.14 Let { ( )}X t  denote the response of the system of Exercises 10.1 and 10.8
with an equation of motion

˙( )
( )

| ( ) |
( )X t a

X t

X t
F t+ =

in which { ( )}F t  is a mean-zero, Gaussian, white noise process with an
autospectral density of S0 .
(a) Derive an exact state-space equation for the second moment of the response.
(b) Verify that the state-space moment equation in part (a) is the same as that for

the linearized system of Exercise 10.10.
(c) Use Gaussian closure to estimate the value of σX

2  for stationary response.
*****************************************************************
10.15 Let { ( )}X t  denote the response of the system of Exercises 10.2 and 10.9
with an equation of motion

˙( ) ( ) ( )X t a X t F t+ =5

in which { ( )}F t  is a mean-zero, Gaussian, white noise process with an
autospectral density of S0 .
(a) Derive an exact state-space equation for the second moment of the response.
(b) Verify that the state-space moment equation in part (a) is the same as that for

the linearized system of Exercise 10.11.
(c) Use Gaussian closure to estimate the value of σX

2  for stationary response.
*****************************************************************
10.16 Let { ( )}X t  denote the response of the system of Exercises 10.3 and 10.10
with an equation of motion

˙( ) ( ) ( ) ( )X t k X t k X t F t+ + =1 5
5

in which { ( )}F t  is a mean-zero, Gaussian, white noise process with an
autospectral density of S0 .
(a) Derive an exact state-space equation for the second moment of the response.
(b) Verify that the state-space moment equation in part (a) is the same as that for

the linearized system of Exercise 10.13.
(c) Use Gaussian closure to find a cubic algebraic equation that could be solved

to obtain an estimate of the value of σX
2  for stationary response. [You need

not solve this cubic equation.]
*****************************************************************
10.17 Let { ( )}X t  denote the response of the system of Exercises 10.4 and 10.11
with an equation of motion

m X t c X t k
X t

X t
F t˙̇ ( ) ˙( )

( )

| ( ) |
( )+ + =
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in which { ( )}F t  is a mean-zero, Gaussian, white noise process with an
autospectral density of S0 .
(a) Derive exact state-space equations for the second moments of the response of

the system.
(b) Verify that the state-space moment equations in part (a) are the same as those

for the linearized system of Exercise 10.14.
(c) Use Gaussian closure to estimate the values of σX

2  and σ Ẋ
2  for stationary

response.
*****************************************************************
10.18 Let { ( )}X t  denote the response of the system of Exercises 10.5 and 10.12
with an equation of motion

m X t c X t k X t X t F t˙̇ ( ) ˙( ) | ( ) | ( ) ( )+ + =
in which { ( )}F t  is a mean-zero, Gaussian, white noise process with an
autospectral density of S0 .
(a) Derive exact state-space equations for the second moments of the response of

the system.
(b) Verify that the state-space moment equations in part (a) are the same as those

for the linearized system of Exercise 10.15.
(c) Use Gaussian closure to estimate the values of σX

2  and σ Ẋ
2  for stationary

response.
*****************************************************************
10.19 Let { ( )}X t  denote the response of the system of Exercises 10.6 and 10.13
with an equation of motion

m X t c X t X t k X t k X t F t˙̇ ( ) | ˙( ) | ˙( ) ( ) ( ) ( )+ + + =2 1 5
5

in which { ( )}F t  is a mean-zero, Gaussian, white noise process with an
autospectral density of S0 .
(a) Derive exact state-space equations for the second moments of the response of

the system.
(b) Verify that the state-space moment equations in part (a) are the same as those

for the linearized system of Exercise 10.16.
(c) Use Gaussian closure to estimate the value of σ Ẋ

2  for stationary response,
and to find a cubic algebraic equation that could be solved to obtain an
estimate of the corresponding value of σX

2 . [You need not solve this cubic
equation.]

*****************************************************************
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Chapter 11
Failure Analysis

11.1 Modes of Failure
One can generally separate the various modes of failure of structural or
mechanical systems into two broad categories. The first category can be called
first-passage failure, because failure is anticipated the first time that stress or
displacement exceeds some critical level. Brittle fracture and buckling are two
modes of failure that can be approximated in this way. The other broad category
of failure is fatigue, in which failure occurs due to an accumulation of damage,
rather than due to first passage of a critical level. The intent in this chapter is to
introduce some of the more common methods for estimating the likelihood of
either type of failure when the dynamic response is a stochastic process.

Clearly the occurrence of failure typically is related to the occurrence of
large stresses or displacements, so a stochastic analysis of failure requires study
of the extreme values of a process. In fact, two different types of extreme
problems are relevant. The two types of extremes might be classified as “local”
and “global,” although we mean global in a somewhat limited sense in this
instance. As in Chapter 7, we will use the term peak to refer to the purely local
extrema of a time history—the points where the first derivative of the time
history is zero and the second derivative is negative. The more global sort of
extreme problem that we will consider involves the extreme value of some
stochastic process { ( )}X t  during a fixed time interval, such as 0 ≤ ≤t T .
Henceforth, we will use the term extreme distribution to refer only to the
probabilities for this more global problem, and not for the probability distribution
of peaks.

Clearly the prediction of first-passage failure is related to the occurrence of
large global extrema, whereas the accumulation of fatigue damage is generally
approximated as depending only on the sequence of local extrema of the stress or
strain process. Note that we have not analyzed the probability distribution of
either local or global extrema in the preceding chapters; hence we must begin
with this analysis here. We will develop exact expressions describing the peak
distribution for some problems, but we will generally not be able to obtain such
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expressions for the joint probability distribution of all the peaks and valleys of a
process, as would be desirable for fatigue analysis. We will also consider
approximations for the extreme probability distribution, because it is generally
not feasible to find an exact expression for it either.

We will not consider dynamic equations of motion in this chapter. That is,
we will assume that the failure analysis can be uncoupled from the dynamic
analysis, first using methods from Chapters 6–10 to find the characteristics of the
response process { ( )}X t , then performing a failure analysis based on those
characteristics. This, of course, is an approximation, because it neglects the
possibility that the system dynamics may be influenced by an occurrence of a
large extremum or an accumulation of damage. It should be kept in mind, though,
that failure generally only means unsatisfactory performance. Thus, we might
consider a structure to have failed in the first-passage sense if the displacement or
stress reached a value that we consider unsafe, even if no fracture or buckling has
yet occurred, or to have failed in fatigue as soon as a crack has been observed.
This provides a stronger basis for neglecting the interaction of failure and
dynamics, because the dynamic characteristics of a structure generally do not
change drastically until very considerable damage has occurred.

11.2 Probability Distribution of Peaks
The probability distribution of the peaks of { ( )}X t  can be found by a procedure
that is basically the same as that used in Section 7.2 in deriving the rates of
occurrence of crossings or peaks. That is, we will derive the probability
distribution from consideration of occurrence rates. First we define
νP t X t u[ ; ( ) ]≤  as the expected rate of occurrence of peaks not exceeding the
level u. Next we recall that for an infinitesimal time interval ∆ t , we can say that
the expected number of occurrences in the interval is the same as the probability
of one occurrence in the interval, because we can neglect the probability of two
or more occurrences. Thus, we say that

νP t X t u t P u t t t[ ; ( ) ]≤ = ≤( )∆ ∆peak   during [ , + ] (11.1)

just as

νP t t P t t t( ) ∆ ∆= ( )peak during [ , + ] (11.2)

in which νP t( )  is the total expected rate of peak occurrences, which is the limit
as u goes to infinity of νP t X t u[ ; ( ) ]≤ . Furthermore, we can say that
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P u t t t

P t t t P u t t t

peak   during [ , + ]

peak during [ , + ] peak  peak during [ , + ]

≤( ) =

( ) ≤( )
∆

∆ ∆|

The final, conditional probability, term in this expression is precisely what we
consider to be the cumulative distribution function for a peak at time t:

F u P u t t tP t( )( ) |≡ ≤( )peak  peak during [ , + ]∆

From Eqs. 11.1 and 11.2 we then solve for this cumulative distribution function
as

F u
t X t u

tP t
P

P
( )( )

[ ; ( ) ]

( )
=

≤ν
ν

(11.3)

Thus, we see that determining the probability distribution of the peaks
depends on finding the rate of occurrence of peaks below any level u, and this is
relatively straightforward. First, we note that U X t[ ˙( )]−  is a process that has a
positive unit step at each peak of X t( )  and has a negative unit step at each valley
of X t( ) . Thus, the − −˙̇ ( ) [ ˙( )]X t X tδ  derivative of this process has positive and
negative unit Dirac delta functions at the peaks and valleys, respectively. By
multiplying by U X t[ ˙̇ ( )]− , we can eliminate the negative Dirac delta functions in
order to count only peaks. Similarly, we can multiply by U u X t[ ( )]−  in order to
eliminate all peaks above the level u. In this way, we obtain the rate of
occurrence of peaks not exceeding the level u as

ν δP t X t u E X t X t U X t U u X t[ ; ( ) ] ˙̇ ( ) [ ˙( )] [ ˙̇ ( )] [ ( )]≤ = − − − −( ) (11.4)

Substituting into Eq. 11.3 gives

F u
E X t X t U X t U u X t

E X t X t U X t
P t( )( )

˙̇ ( ) [ ˙( )] [ ˙̇ ( )] [ ( )]

˙̇ ( ) [ ˙( )] [ ˙̇ ( )]
=

− − − −( )
− − −( )
δ

δ

which can be rewritten in terms of joint probability density functions as

F u
z v U z U u w p w v z dw dv dz

z v U z p v z dv dz
P t

X t X t X t

X t X t

( )
( ) ˙ ( ) ˙̇ ( )

˙ ( ) ˙̇ ( )

( )
( ) ( ) ( ) ( ) ( , , )

( ) ( ) ( ) ( , )
=

− − − −

− − −

−∞

∞

−∞

∞

−∞

∞

−∞

∞

−∞

∞

∫∫∫
∫∫

δ

δ
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or

F u
z p w z dw dz

z p z dz
P t

X t X t X t
u

X t X t

( )
( ) ˙ ( ) ˙̇ ( )

˙ ( ) ˙̇ ( )

( )
| | ( , , )

| | ( , )
= −∞−∞

−∞

∫∫
∫

0

0

0

0
(11.5)

Taking a derivative with respect to u now gives the probability density function
for the peak distribution as

p u
z p u z dz

z p z dz
P t

X t X t X t

X t X t

( )
( ) ˙ ( ) ˙̇ ( )

˙ ( ) ˙̇ ( )

( )
| | ( , , )

| | ( , )
= −∞

−∞

∫
∫

0

0

0

0
(11.6)

Either Eq. 11.5 or 11.6 describes the probability distribution of any peak
that occurs within the vicinity of time t. The probability that the peak is within
any given interval can be found directly from Eq. 11.5 or from integration of Eq.
11.6, and Eq. 11.6 is also convenient for evaluating other quantities such as the
mean value

µP P tt E P t u p u du( ) [ ( )] ( )( )≡ =
−∞

∞∫

the mean-squared value

E P t u p u duP t[ ( )] ( )( )
2 2=

−∞

∞∫

the variance, [ ( )] [ ( )] [ ( )]σ µP Pt E P t t2 2 2= − , and so forth. A word of caution
about the notation may be in order at this point. We write the various equations
describing P t( )  in exactly the same way as we do for a continuously
parametered process, but there is no continuously parametered { ( )}P t  process.
We presume that it is possible for a peak to occur at any t value, but there may or
may not actually be a peak in the vicinity of a particular t. What we have derived
is the conditional probability distribution and conditional moments of a peak
P t( )  in the vicinity of t, given that such a peak exists.

From Eqs. 11.5 and 11.6 we note that in order to find the probability
distribution of the peak P t( ) , one must know the joint probability distribution of
X t X t X t( ) ˙( ) ˙̇ ( ), , and . This is as expected, because the occurrence of a peak P t( )
at level u requires the intersection of the events X t u X t X t( ) ˙( ) ˙̇ ( )= = <, , and 0 0.
The need for the joint probability distribution of three random variables, though,
can make these expressions a little more difficult than most of the expressions we
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have considered so far. One special case in which the expressions are relatively
simple is that in which the { ( )}X t  process is Gaussian and stationary. In
particular, we note (just as we did in Section 7.4) that ˙( )X t  is independent of the
pair [ ( ) ˙̇ ( )]X t X t, . Thus, the only parameters in the joint distribution of the three
Gaussian random variables are the three standard deviations and the correlation
coefficient between X t X t( ) ˙̇ ( ), and . We found in Section 7.3, though, that this
correlation coefficient is exactly the negative of the α2 bandwidth parameter.
Thus, we see that α2, in addition to its other interpretations, is a parameter
governing the distribution of the peaks of { ( )}X t . The details of the peak
distribution for a stationary Gaussian process are worked out in Example 11.1.

********************************************************************************************
Example 11.1: Find the cumulative distribution function and the probability

density function for the peaks of a stationary Gaussian process { ( )}X t .

˙( )X t  is independent of [ ( ) ˙̇ ( )]X t X t, , so we can factor pX t˙ ( )( )0  out of both the

numerator and the denominator of Eq. 11.6, giving

p u
z p u z dz

z p z dz
z p u z dzP

XX

X X
XX( )

| | ( , )

| | ( )

( )
| | ( , )

˙̇

˙̇

/

˙̇
˙̇= =−∞

−∞
−∞

∫
∫

∫
0

0

1 2 02π
σ

Using a conditional probability density function, this can be rewritten as

p u p u z p z X u dzP
X

X X( )
( )

( ) | | ( | )
/

˙̇
˙̇= =

−∞∫2 1 2 0π
σ

We know that the conditional probability distribution is also Gaussian, so we can

write it as

p z X u
z

Ẋ̇ /
*

*

*
[ | ]

( )
exp= = −

−

























1

2

1
21 2

2

π σ

µ
σ

in which the conditional mean and standard deviation of ˙̇ ( )X t  are

µ ρ
σ

σ
µ α

σ

σ
µ* ( ) ˙̇ ( )

˙̇ ˙̇
[ ˙̇ ( ) | ( ) ] ( ) ( )≡ = =









 − = − −E X t X t u u uX t X t

X

X
X

X

X
X2

and

σ σ ρ σ α* ˙̇
( ) ˙̇ ( )

/
˙̇

/( )= −






 = −X X t X t X1 12
1 2

2
2 1 2

Substitution of this Gaussian form gives

p u p u z
z

dzP
X

X( ) ( ) exp
˙̇ *

*

*
=

−
−

−























−∞∫1 1

2

2
0

σ σ
µ

σ
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which can written as

p u p uP X
X X

( ) ( ) exp ( )*

˙̇

*

*

/ *

˙̇

*

*
= −












− −



























σ
σ

µ

σ
π

µ
σ

µ
σ

2

2
1 2

2
2 Φ

or

p u p u
u

u u

P X
X

X

X

X

X

X

( ) ( ) ( ) exp
( )

( )
 

( )
( ) ( )

( )

/

/
/

= − −
−

−













+







− −

−




















1
2 1

2
1

2
2 1 2 2

2 2

2
2 2

1 2 2 2

2
2 1 2

α
α µ

α σ

π
α µ

σ
α µ

α σ
Φ

Finally, substituting the Gaussian form for p uX ( )  gives the probability density

function as

p u
u

u u u

P
X

X

X

X

X

X

X

X

X

( )
( )

( )
exp

( )

( )
 

 
( )

exp
( ) ( )

( )

/

/

/

=
−

−
−

−











 +

−
−

−











−

−









1

2 2 1

2 1

2
2 1 2

1 2
2
2 2

2
2 2

2
2

2

2
2

2
2 1 2

α

π σ

α µ

α σ

α µ

σ

µ

σ

α µ

α σ
Φ





The corresponding cumulative distribution function can be written in the slightly

simpler form of

F u
u u u

P
X

X

X

X

X

X

( )
( )

exp
( ) ( )

( )/ /
=

−

−











− −

−











−

−











Φ Φ

µ

α σ
α

µ

σ

α µ

α σ1 2 12
2 1 2 2

2

2
2

2
2 1 2

These formulas are commonly referred to as the S.O. Rice distribution, in

recognition of Rice’s pioneering work on this problem in 1945.

The limiting forms of this distribution for α2 1=  and α2 0=  yield interesting

results regarding the peak distribution. For the narrowband situation with α2
approaching unity, we see that some of the arguments in p uP ( )  and F uP ( )  tend

to infinity. For the Φ( )⋅  function we must take proper account of the sign of the

infinite argument, because Φ( )∞ =1  and Φ( )−∞ = 0 . Thus, we obtain quite

different results for u X> µ  than we do for u X< µ . For α2 1= , we obtain

p u
u u

U uP
X

X

X

X
X( )

( )
exp

( )
( )=

−
−

−









 −

µ

σ

µ

σ
µ

2

2

22
and

F u
u

U uP
X

X
X( ) exp

( )
( )= − −

−























 −1

2

2

2
µ

σ
µ

In the special case when µX = 0 , this is exactly the Rayleigh distribution that in

Section 7.4 we found to describe the amplitude of the Gaussian process. When

µX ≠ 0 , we see that the peak distribution has the same shape as the Rayleigh
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amplitude distribution, but it is shifted to make µX  be the smallest possible peak

value. The agreement of the peak distribution and the amplitude distribution of

the limiting narrowband process is consistent with our prior observations that a

narrowband process can be considered a harmonic function with slowly varying

amplitude and phase. Because the narrowband amplitude varies slowly, we can

say that each peak of the narrowband process is equal to the amplitude of the

process at that instant of time, so it is not surprising that the two quantities have

the same probability distribution.

For the opposite extreme situation with α2 0= , the probability distribution of the

peaks becomes

p u
u

F u
u

P
X

X

X
P

X

X
( )

( )
exp

( )
( )

/
= −

−









 =

−









1

2 21 2

2

2π σ

µ

σ

µ
σ

,       Φ

which is simply the Gaussian distribution of X t( ) . In this broadband situation, we

find that the distribution of peaks is the same as the distribution of the process

itself. This may seem to be a surprising result, but it is consistent with the result

we have previously obtained for the rate of occurrence of peaks. In particular, it is

consistent with the fact found in Section 7.3, that α2 is the same as the

irregularity factor for a Gaussian process. Thus, if α2 0=  and the process has

finite crossing rates, then the rate of occurrence of peaks is infinite, as was

shown in a particular case in Example 7.6. However, if the rate of occurrence of

peaks is infinite, then it is reasonable to think that there may be peaks

everywhere along the

process, which should

be expected to give the

distribution of peaks to

be the same as the

distribution of X t( ) . The

sketch at the right shows

the probability density

function for peaks for

several values of α2.
A more common form of
the S.O. Rice distribution
is with µX = 0  in the

preceding expressions, which can be considered to be the distribution for P X− µ
if µX ≠ 0 .

A convenient feature of the normalized S.O. Rice distribution is that it also

describes a random variable R R R= + −α α2 1 2 2 1 2 21[ ( ) ] / , in which R R1 2 and 
are independent random variables with R1 having the Rayleigh distribution of the

amplitude of X t X( ) − µ  and R2 having the Gaussian distribution of X t X( ) − µ .
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********************************************************************************************
Example 11.2: Find the probability that any peak of a stationary { ( )}X t  process

is below the level µX , provided that the distribution of X t( )  is symmetric about

the level µX .

Simply substituting u X= µ  into Eq. 11.5 gives an expression for this probability,

but we can also present the information in a somewhat different way. In

particular, based on consideration of any continuous time history, we can say

that any valley of X t( )  below the level µX  is followed either by a peak below µX
or by an upcrossing of the level µX . Thus, the rates of occurrence of these three

events must satisfy the following relationship:

ν µ ν µ ν µV X P X X XX X( ) ( ) ( )< = < + +

Because ν µ ν µP X P XX P P t( ) [ ( ) ]< = <  and ν µV XX( )< = ν µV XP V t[ ( ) ]< , in

which V t( )  denotes a valley of X t( ) , and also ν νV P= , we can divide by νP  to

obtain

P V t P P t IFX X[ ( ) ] [ ( ) ]< = < +µ µ

The specified symmetry of the distribution of X t( )  now gives P V t X[ ( ) ]< =µ
P P t P P tX X[ ( ) ] [ ( ) ]> = − <µ µ1 , so

P P t F
IF

X P X[ ( ) ] ( )< ≡ =
−

µ µ
1

2
Somewhat surprisingly, it is possible to obtain this one point on the cumulative

distribution function for P t( )  from knowledge only of the occurrence rates for

crossings and peaks. Of course, we find that the probability that a peak is below

the mean value of X t( )  is nearly zero for a narrowband process with IF ≈1 .
********************************************************************************************

The distribution of peaks of a narrowband process is sometimes
approximated by a function that can be obtained from knowledge only of the
crossing rates of X t( ) . The rationale is that in the narrowband case we can ignore
the possibility of peaks below µX  or valleys above µX . With this simplification,
we can say that a peak occurs within the interval [ , ]u u u+ ∆  if and only if there is
an upcrossing of the level u that is not followed by an upcrossing of the level
u u+ ∆ . This approximation then implies that the expected number of peaks
within an interval [ , ]u u u+ ∆  is the difference between the number of
upcrossings of the level u and the number of upcrossings of the level u u+ ∆ , and
the expected rate of occurrence of peaks in the interval is the difference between
the upcrossing rates

ν ν νP X Xu X u u u u u( ) ( ) ( )≤ ≤ + ≈ − ++ +∆ ∆
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Saying that p u uP t( )( ) ∆  is approximately ν νP Pu X u u( ) /≤ ≤ + ∆ , then taking
the limit as ∆ u  tends to zero, gives

p u
d u

du
U uP t

P

X
X( )( )

( )
( )≈

−
−

+1
ν

ν
µ

Integrating this equation over the set of possible values, though, does not
generally give unity, so the function cannot truly be a probability density
function. This problem is easily remedied, however, by noting that our choice to
neglect peaks below µX  and valleys above µX  is consistent with saying that the
rate of peak occurrences is the same as the rate of upcrossings of the level µX .
This gives

p u
d u

du
U uP t

X X

X
X( )( )

( )

( )
( )=

−
−

+

+1

ν µ

ν
µ (11.7)

which is properly normalized for a probability density function.

For the special case of a stationary Gaussian process, one can use ν X u+ ( )
from Example 7.1 to evaluate the p uP ( )  approximation in Eq. 11.7. The result is
exactly the Rayleigh distribution that was shown in Example 11.1 to be the true
answer in the limiting case with α2 1= . Thus, the approximation does give the
correct answer for the limiting narrowband process, but we can also see from the
plot in Example 11.1 that the approximation can be in significant error for
processes that still seem to be quite narrowband, such as when α2 0 9= . . The
most notable error of the approximation may be the neglect of the peaks below
the level µX , which was shown in Example 11.2 to be ( ) /1 2− IF  for a
symmetric distribution. Thus, for a Gaussian process with α2 0 9= . , one should
have 5% of the peaks occurring below the level µX , and these are neglected in
the approximation. For a non-Gaussian process, as well, we can anticipate that
Eq. 11.7 will be asymptotically correct for α2 approaching unity but may be
significantly inaccurate for other situations.

11.3 Extreme Value Distribution and Poisson Approximation
A simple way to formulate the extreme value problem is to define a new
stochastic process { ( )}Y t  that is the extreme value of { ( )}X t  during the past.
Specifically, we let

Y t X s
s t

( ) max ( )=
≤ ≤0

(11.8)
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The extreme value distribution for { ( )}X t  is then simply the distribution of the
Y t( )  random variable. Note that even for a stationary { ( )}Y t  process, one must
expect that { ( )}Y t  will be nonstationary, because larger and larger values of
X t( )  will generally occur if we extend the period of our observation. Letting
L u tX ( , )  denote the cumulative distribution function of Y t( )  gives

L u t F u P Y t u P X s u s tX Y t( , ) ( ) [ ( ) ] [ ( ) : ]( )= ≡ ≤ ≡ ≤ ≤ ≤0 (11.9)

in which the notation on the final term means that the X s u( ) ≤  inequality holds
for all the given s values. This L u tX ( , )  is sometimes called the probability of
survival, which is certainly appropriate if u denotes a critical value for { ( )}X t
corresponding to some failure mode of the system. The probability density
function for the extreme value, of course, is simply the derivative

p u
u

L u tY t X( )( ) ( , )=
∂

∂
(11.10)

and from this information one can also calculate the mean, variance, and so forth,
of the extreme value.

An alternative problem that is almost equivalent to extreme value analysis
involves the random quantity called first-passage time. Let T uX ( )  denote the first
time (after time zero) at which X t( )  has an upcrossing of the level u. That is,
X T u u X T uX X[ ( )] ˙[ ( )]= >, 0 , and there has been no upcrossing in the interval
0 ≤ <t T uX ( ) . For any given u value, this T uX ( )  quantity is a random variable,
and one can consider the family of all such variables to constitute a form of
stochastic process { ( )}T uX , although the index set u is not time or frequency in
this instance, as it has been in our other stochastic processes.

The relationship between the first-passage time and the extreme value
distribution becomes evident when we consider the event { ( ) : }X s u s t≤ ≤ ≤0
that appears in Eq. 11.9. We see that this event can also be written as
{ ( ) , ( ) }X u T u tX0 ≤ ≥ , because X s( )  can be less than u throughout the time
interval only if it starts below u and does not have an upcrossing during the time
interval. Taking probabilities then gives

L u t P X u P T u t X u

L u P T u t X u
X X

X X

( , ) [ ( ) ] [ ( ) | ( ) ]

( , ) [ ( ) | ( ) ]

= ≤ ≥ ≤

= ≥ ≤

0 0

0 0
(11.11)

and the final term is related to a conditional form of the cumulative distribution
of T uX ( ) . In many practical problems, we can further simplify the relationship



Failure Analysis 497

by completely neglecting the conditioning on this final term. For example, in
some problems of interest we may have P X u[ ( ) ]0 1≤ = , such as when the
system is known to start at X( )0 0= , and conditioning by a sure event can always
be neglected. In other situations we may not have any specific information that
the distribution of T uX ( )  is independent of X( )0 , but we anticipate that the
effect of the conditioning will be significant only for small values of time.

Taking the derivative of Eq. 11.11 with respect to t gives

p t X u
L u t

L u tT
X

XX
[ | ( ) ]

( , )
( , )0

1

0
≤ =

− ∂
∂

(11.12)

which, along with Eq. 11.10, shows that the function governs the conditional
distribution of the first-passage time and the distribution of the extreme value in
very similar ways. The primary difference is that one probability density function
involves a partial derivative with respect to u while the other involves a partial
derivative with respect to t. The reader is cautioned that this close relationship
between the extreme value problem and the first-passage problem is not always
mentioned in the literature, with some authors using only one terminology and
some using only the other. It should also be mentioned that we are omitting one
advanced method of analysis that specifically relates to the first-passage
formulation of the problem. In particular, the moments of T uX ( )  for some simple
systems can be found by recursively solving a series of differential equations,
called the generalized Pontryagin equations (Lin and Cai, 1995).

It is often convenient to write the probability of survival as some sort of
exponential function of time. In particular, we use the form

L u t L u u s dsX X X
t

( , ) ( , ) exp ( , )= −






∫0

0
η (11.13)

Clearly it is always possible to find a function ηX u s( , )  such that one can write
Eq. 11.13, even though it is not immediately obvious why this is desirable.
However, we will now derive an interpretation of ηX u s( , )  that will motivate
some useful approximations of the problem. First, we note that the derivative of
Eq. 11.13 gives

∂
∂

η
t
L u t L u t u tX X X( , ) ( , ) ( , )= −
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which can be solved for ηX u t( , )  as

η
∂
∂X

X
X

t

X X

X
u t

L u t t
L u t

t

L u t L u t t

L u t
( , )

( , )
( , ) lim

( , ) ( , )
( , )

=
−

=
− +

→

1 1

0∆ ∆
∆

This can then be written in terms of probabilities of first passage as

ηX
t

X

X
u t

t

P t T u t t X u

P T u t X u
( , ) lim

[ ( ) | ( ) ]
[ ( ) | ( ) ]

=
≤ < + ≤

≥ ≤→∆ ∆
∆

0

1 0
0

(11.14)

Now we note that the numerator of Eq. 11.14 relates to the event that the
first upcrossing is in the specified time interval. This event, though, is the
intersection of the event that there is no upcrossing prior to t and the event that
there is an upcrossing in the interval:

{ ( ) } { ( ) } { , }t T u t t T u t t t tX X≤ < + = ≥ ∩ +∆ ∆upcrossing in [

Inasmuch as the denominator of Eq. 11.14 is the probability of one of these two
events, we can see that the ratio is the conditional probability

ηX
t

u t
t
P t t t X u t( , ) lim | ( ) ,= ≤( )

→∆ ∆
∆

0

1
0upcrossing in [ , + ] no upcrossing prior to 

or

ηX
t

u t
t

E t t t X u t

( , ) lim

| ( ) ,

= ×

≤( )
→∆ ∆

∆

0

1

0number of upcrossings in [ , + ] no upcrossing prior to 

(11.15)

Thus, ηX u t( , )  can be regarded as an occurrence rate. It is the conditional rate of
upcrossings of the level u, given the initial condition and the fact that there has
been no prior upcrossing. If exceedance of the level u is considered to correspond
to a “failure” of the system, then ηX u t( , )  is what is called the hazard function in
reliability theory.

Unfortunately, it is not easy to calculate the ηX u t( , )  conditional rate of
upcrossings. In fact, we have no rigorous relationship between ηX u t( , )  and
unconditional probability density functions for X t( )  and ˙( )X t  random
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variables.1 One can use a conditional probability density function to write an
expression for the conditional crossing rate ηX u t( , )  in the same way as we
previously did for the unconditional crossing rate ν X u t( , ) . In particular,

ηX X t X tu t v p u v X u t dv( , ) , |( ) ˙ ( )= ≤( )∞∫ ( ) , no upcrossings in [ , ]0 0
0

but this expression is not very useful for calculating values of ηX u t( , ) , because
the necessary conditional probability density function is generally unknown.
Nonetheless, we will use it to gain some general information about the behavior
of ηX u t( , ) .

First we note that most physical processes have only a finite memory, in
the sense that X t( )  and X t( )− τ  can generally be considered independent if
τ > T  for some large T value. In this case, one can argue that

p u v X u t

p u v t T t

X t X t

X t X t

( ) ˙ ( )

( ) ˙ ( )

( , |

( , |

( ) , no upcrossings in [ , ])

no upcrossings in [ , ])

0 0≤ ≈

−

for t T> . Some conditioning events are ignored in the second form, but they
occurred prior to time t T−  and are out of the memory of X t( ) . If { ( )}X t  is a
stationary process, though, this new form of conditional probability density is
stationary, because it is independent of the choice of the origin of the time axis,
except for the restriction that t T> . This means that ηX u t( , )  tends asymptot-
ically to a stationary value ηX u( )  as p u v X uX t X t( ) ˙ ( )( , | ( ) ,0 ≤  no upcrossings in
[0,t]) tends to p u v tX t X t( ) ˙ ( )( , | no upcrossings in [ , ])0 . This asymptotic behavior of
ηX u t( , ) , then, implies that one can approximate L u tX ( , )  as

L u t L e tX
u tX( , ) ( )≈ −

0
η      for large (11.16)

This limiting behavior for large t will also apply if { ( )}X t  is a nonstationary
process that has finite memory and that becomes stationary with the passage of
time.

The value L0 in Eq. 11.16 is related to the behavior of ηX u t( , )  for small
values of t. One extreme situation arises when { ( )}X t  is a nonstationary “zero-

                                                  
1The inclusion-exclusion series in Section 11.5 rigorously describes the effect of
the conditioning by the event of no prior upcrossings, but it ignores the initial
condition at time zero.



Random Vibrations500

start” process with X( )0 0=  and ˙( )X 0 0= . This is the case, for example, if
{ ( )}X t  represents the response of an oscillator that starts from a condition of
rest. In this case, we can see that ηX u( , )0 0= , and ηX u t( , )  increases from this
initial value as σ X t( )  and σ ˙ ( )X t  grow, especially if µX t( )  also grows. Another
limiting condition is the “stationary-start” problem in which { ( )}X t  is stationary
for all time t. This stationary initial condition will usually give ηX u t( , )  for small
time as being greater than the stationary value ηX u( ) , because the unconditional
p u vX t X t( ) ˙ ( )( , )  is larger than the stationary conditional probability density
p u v t T tX t X t( ) ˙ ( )( , | no upcrossings in [ , ])− . Thus, for the zero-start problem
ηX u t( , )  will generally grow from zero toward its stationary value, and for the
stationary-start problem it will generally decay toward the stationary value. This
behavior gives the L0 multiplier in Eq. 11.16 as being greater than unity for the
zero-start problem and as being less than L u P X uX ( , ) [ ( ) ]0 0= ≤  for the
stationary-start problem, as illustrated in Fig. 11.1.

It is not easy to calculate the ηX u t( , )  conditional rate of upcrossings, so
we must use approximations in solving practical problems. We will present the
most commonly used approximation here and discuss methods giving somewhat
better estimates in the following section.

Inasmuch as ηX u t( , )  is a conditional upcrossing rate of the level u, we
obviously expect it to be related to the unconditional upcrossing rate ν X u t+ ( , )
that we studied in Section 7.2. In fact, the most widely used approximation of the
extreme distribution problem results from simply neglecting the conditioning
event in ηX u t( , )  and replacing it with ν X u t+ ( , ) :

η νX Xu t u t( , ) ( , )≈ + (11.17)

LX (u,0)

Figure 11.1 Effect of initial conditions on L0 for Eq. 11.16

t

1.0

t

LX (u,t)

LX (u,t)L0

L0

(a) Zero start (b) Stationary start

.
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giving

L u t L u u s dsX X X
t

( , ) ( , ) exp ( , )≈ −






+∫0

0
ν (11.18)

and if { ( )}X t  is a stationary process, this becomes

L u t L u u tX X X( , ) ( , ) exp[ ( ) ]≈ − +0 ν      for stationary process (11.19)

which is exactly of the form of Eq. 11.16. The approximation of Eqs. 11.17,
11.18, and 11.19 is commonly called the Poisson approximation of the extreme
value, or first-passage, problem. This name comes from the fact that if the
crossing rate is independent of the past history of the process, then the lengths of
time between upcrossings will be independent; this makes the integer-valued
process that counts the number of upcrossings a Poisson process.

From Eqs. 11.12 and 11.19, one can see that use of the Poisson
approximation gives an exponential distribution for the first-passage time of a
stationary { ( )}X t  process:

p t u u tT X XX
( ) ( ) exp[ ( ) ]≈ −+ +ν ν      for stationary process (11.20)

The mean of this exponentially distributed random variable is

E T u uX X[ ( )] [ ( )]≈ + −ν 1     for stationary process (11.21)

and the standard deviation also has this same value. One of the characteristics of
the Poisson process is that the time between occurrences is exponentially
distributed, and the Poisson approximation of the extreme value problem gives
the same exponential distribution for the first-passage time as for the time
between upcrossings for a stationary { ( )}X t  process. (Example 4.13 gives more
information on the Poisson process.)

The Poisson approximation is most seriously in error when the { ( )}X t
process is very narrowband. In that situation, an upcrossing of level u at time t is
very likely to be associated with another upcrossing approximately one period
later, due to the slowly varying amplitude of { ( )}X t . Such a relationship between
the upcrossing times is inconsistent with the Poisson approximation that the
times between upcrossings are independent. On the other hand, when u is very
large it is found that the independence assumption seems to be better. It is
difficult to find general results that apply to all { ( )}X t  processes, but for
Gaussian processes it has been demonstrated that ηX u t( , )  does tend
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asymptotically to ν X u t+ ( , )  as u  tends to infinity.2 Thus, the Poisson
approximation is best when the { ( )}X t  process is very broadband and/or the
level u is very large. In some other situations, it may be significantly in error.

From the form of Eq. 11.13 it is clear that an overestimation of ηX u t( , )
will result in an underestimation of L u tX ( , ) . An error of this type is usually
considered to be conservative, because it overestimates the probability of failure
due to large excursions. Furthermore, it is usually assumed that
η νX Xu t u t( , ) ( , )≤ + , so the Poisson approximation will underestimate L u tX ( , ) .
There are situations, though, in which this is not true, so some caution is
required. In particular, we can see that if the level u is so small that P X t u[ ( ) ]<
is very small, but we are given the initial condition that X u( )0 < , then it is very
likely that X t( )  will quickly have an upcrossing of u. Mathematically this
requires that L u tX ( , )  approach zero as u → −∞, for any finite t value. This is
ensured for any choice of L uX ( , )0 , though, only if ηX u t( , )  tends to infinity for
u → −∞, at least for t ≈ 0. This unbounded behavior of ηX u t( , )  surely violates
the usual assumption that η νX Xu t u t( , ) ( , )≤ + . On the other hand, the usual
assumption does seem to be justified for the larger u values that are usually of
primary importance.

In some problems, failure may occur due to large excursions of X t( )  in
either the positive or negative direction, whereas all the development up until
now has been concerned only with the probability that X t( )  remains below +u .
However, the event of X t( )  remaining between −u u and +  is exactly the same
as the event of | ( ) |X t  remaining below the level u, and this allows us to apply
the results to the new problem. Thus, we can write

L u t L u u s dsX X X
t

| | | | | |( , ) ( , ) exp ( , )= −






∫0

0
η (11.22)

for the new probability. Particularly in the study of first-passage time, the terms
double-barrier problem and single-barrier problem are often used to distinguish
between the consideration of upcrossings by | ( ) |X t  and X t( ) , respectively. Of
course, one can also consider double-barrier problems in which the levels of
interest are not symmetric, or even problems in which the constant level u is
replaced by a given function u t( ) . The Poisson approximation of the symmetric
double-barrier problem of Eq. 11.22 is simply to replace η | |( , )X u s  with
ν | |( , )X u s+ = ν X

+ ( , ) ( , )u s u sX+ −−ν . If the distribution of X t( )  and ˙( )X t  is

                                                  
2Nigam (1983) attributes this result to Cramer (1966).
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symmetric, this then gives ν ν| |( , ) ( , )X u s u sX
+ += 2 , indicating that the decay of L

with increasing t is twice as fast as for the single-barrier problem.

Note that very little information is needed to estimate the probability of
first-passage failure by using the Poisson approximation. In particular, Eqs. 10.18
and 10.19 show that for the single-barrier problem one needs only the
nonstationary or stationary unconditional rate of upcrossings and the initial
condition of L u F uX X( , ) ( )( )0 0≡ . Using Eq. 10.22, or its stationary version, for
the double-barrier problem requires the same information for | ( ) |X t .

********************************************************************************************

Example 11.3: Use the Poisson approximation to estimate the probability of first-

passage failure of a linear oscillator excited by stationary, Gaussian, white noise

that is mean-zero and has autospectral density S0. The oscillator has resonant

frequency ω0 and damping ζ = 0 01. , and failure occurs if X t( )  exceeds the

level 4 4 20 1 2 2σ π ζstat S m= ( ) /(/ ω0
3 ) /1 2 within the time interval 0 2500≤ ≤ω t .

We begin by considering the { ( )}X t  response process to have zero initial

conditions. This provides a slight simplification inasmuch as it makes

L uX ( , )0 1= , but it requires consideration of a nonstationary rate of upcrossings

in Eq. 11.18. In particular, Example 7.2 gives
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and the time-varying response quantities in this expression are given in Eqs.

5.50, 5.54, and 5.55. Rather than use these rather complicated expressions,

though, we simplify the problem by using the approximation of Eq. 5.52 and a

corresponding nonoscillatory approximation for the velocity:

σ
π

ζ ω
σ

π

ζ ω
ζ ω ζ ω

X
t

X
tt

S

m
e t

S

m
e2 0

2
0
3

2 2 0
2

0

2

2
1

2
10 0( ) , ( )˙≈ −( ) ≈ −( )− −     

The covariance of X t( )  and ˙ ( )X t  is given in Eq. 5.55. If we ignore the oscillatory

term in this expression, as well as for the variance terms, we have

K t t
S

m
e t t

e

e
XX

d

t
XX

t

t˙ ˙( , ) ( , )≈ ≈
−

−
−

−
π

ω
ρ

ζζ ω
ζ ω

ζ ω
0

2 2
2

2

22 1
0

0

0
,     

This is a reasonable approximation of the correlation coefficient except that it

tends to infinity for small values of t . In Example 5.8 we found that the initial
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value of the correlation coefficient is 3 21 2/ / , so we will truncate the correlation

coefficient at that value, giving

ρ ρ
ζ ζ ω

ζ ωXX

t

t
t t t

e

e
˙

/
( , ) ( ) min , ≈ ≡

−













−

−
3

2 1

1 2 2

2

0

0

With the approximations of the time-varying terms in ν X u t+ ( , ) , one can substitute

into Eq. 10.18 and integrate numerically to obtain L u( , / ) .250 0 99390ω = ,

indicating that the probability of first-passage failure is Pf ≈ 0 0061. .

We can also easily obtain the result for  a stationary { ( )}X t  process. In this

situation we use Eq. 11.19, with the stationary crossing rate of

ν
ω

πX u e+ − −= = ×( ) ./0 4 2 5

2
5 34 10

2

This then gives L u( , / ) ( )50 40ω =Φ e X u− +
=250 0 9867ν ( ) .  as the probability of

survival, and Pf ≈ 0 0133. . This is a problem for which the initial condition on

{ ( )}X t  has a major effect on the prediction of the probability of failure.

********************************************************************************************

11.4 Improved Estimates of the Extreme Value Distribution
First we will consider a modification of the usual Poisson estimate to account, in
an approximate way, for the effect of the given information that X u( )0 ≤ . This
modification will improve our estimate of ηX u t( , )  for small values of u but will
have little effect for large u values. In particular, the modification will address
the difficulty noted in Section 11.3 for situations in which u is so low that the
average time between upcrossings may be large, but this does not give a good
estimate of the time until the first upcrossing. Recall that the usual Poisson
assumption gives the probability distribution of the first-passage time T uX ( )  for
a stationary process as being the same as that of a random variable TCR
representing the time interval between successive upcrossings of the level u.
However, the time interval TCR  is composed of two segments: the time T1
between the upcrossing and the following downcrossing and the time T2  between
the downcrossing and the next upcrossing. Of these two segments, only T2  is
spent below the level u. Inasmuch as T uX ( )  is also a time interval spent below u,
it seems more appropriate to approximate it by T2  instead of TCR . Obviously,
this will reduce our estimate of the time until first passage and give more
conservative estimates of failure probabilities.

If we consider T2  to be governed by a Poisson process, then the only
parameter needed to describe its distribution is its arrival rate. Furthermore, we
know that the arrival rate is the inverse of E T( )2 , as in Eq. 11.21, and because
T2  represents the portion of TCR  spent below the level u, we can say that
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E T E T P X uCR( ) ( ) ( )2 = < . Unfortunately, we do not have an exact result for
E TCR( )  in this situation. If TCR  were governed by a Poisson process, then we
would know that E TCR( )  was the same as the [ (ν X u+ )]−1  value, but the
assumption that T2  is governed by a Poisson process precludes the possibility
that TCR  also has this Poisson property. Nonetheless, we will use this value as an
approximation of E TCR( )  in order to obtain E T uX( ) [ (2 = +ν )] ( )− <1P X u .
Approximating ηX u( )  by the arrival rate for T2  then gives
η νX X Xu u F u( ) ( ) / ( )= +  for a stationary process, and a consistent modification for
a nonstationary { ( )}X t  is

η
ν

X
X

X t
u t

u t

F u
( , )

( , )

( )( )
≈

+
(11.23)

Clearly this approximation is almost identical to Eq. 11.17 for large values of u,
because F uX t( )( )  is almost unity in that situation. For low values of u, however,
it gives ηX u t( , )  as having a very large value and ensures that L u tX ( , )  tends to
zero as u tends to negative infinity, as desired. It may also be noted that the
approximation of Eq. 11.23 was obtained by Ditlevsen (1986) by a somewhat
different method of reasoning.

Next we will consider modifications to the Poisson approximation based
directly on the narrowband limitation we previously noted. In particular, for a
narrowband process with a slowly varying amplitude { ( )}A t , a single upcrossing
of the level u by µX t A t( ) ( )+  is likely to be associated with several (almost
uniformly spaced) upcrossings of u by X t( ) . Because this is inconsistent with a
Poisson assumption that the times between upcrossings are independent, a better
approximation is desirable. The narrowband approximations that we will
consider are based on consideration of the behavior of the { ( )}A t  process.

Note that the developments until now have placed little restriction on the
probability distribution of { ( )}X t . In particular, there has been no restriction that
it be mean-zero. Now, though, we are going to consider models based on the
behavior of { ( )}A t , and this amplitude is associated with the deviation of X t( )
from its mean value. Thus, it is more convenient to switch to a mean-zero
random process, and henceforth we assume that µX t( ) = 0. Some information
about a more general { ( )}Y t  process can be obtained by writing it as
Y t X t tY( ) ( ) ( )= + µ . If { ( )}Y t  is mean-value stationary, then it is simple to
account for the constant µY . In particular, we can say that the extreme of Y t( )  is
simply µY  plus the extreme of X t( ) . If µY t( )  is not a constant, then care must
be used, because we have P Y s u s t[ ( ) : ]≤ ≤ ≤ =0 P X s u s s tY[ ( ) ( ): ]≤ − ≤ ≤µ 0 ,
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which amounts to a problem with a variable barrier level. We will not explicitly
address this more complicated problem.

The simplest extreme value approximation based on the amplitude process
amounts to assuming that the extreme value of the mean-zero { ( )}X t  process is
the same as that of { ( )}A t , giving

L u t L u t L u u s dsX A A A
t

( , ) ( , ) ( , ) exp ( , )≈ = −






∫0

0
η (11.24)

Because X t A t( ) ( )≤ , we know that L u t L u tX A( , ) ( , )≥  for all u and t. Thus, using
Eq. 11.24 will always be conservative in the sense that it overestimates the
probability of large extreme values. Of course we still have the problem of
determining L u tA ( , ) , but it is generally assumed that the Poisson assumption is
much better for { ( )}A t  than for { ( )}X t , and using it gives

η νA Au t u t( , ) ( , )≈ + (11.25)

The integration in Eq. 11.24, of course, is almost trivial if νA u+ ( )  is stationary.

It is also reasonable to apply an initial condition correction to νA u t+ ( , ) ,
similar to what we did in obtaining Eq. 11.23. That is, if u is very small, then the
initial condition of A u( )0 <  implies that the time until first passage by A t( )  is
likely to be short. By exactly the same reasoning as was used in obtaining Eq.
11.23, we say that

η
ν

A
A

A t
u t

u t

F u
( , )

( , )

( )( )
≈

+
(11.26)

This correction seems to be much more significant in this case than it was in Eq.
11.23, though. In particular, the F uA t( )( )  term approaches zero as u approaches
zero. Thus, the correction in Eq. 11.26 is evident at values of u that may be of
practical importance.

It should be noted that using the Poisson amplitude crossings model of Eqs.
11.24–11.26 is not exactly the same as introducing a new estimate of ηX u t+ ( , )  in
the general extreme value formula of Eq. 11.13. In particular, the multiplier of
L u P X uX ( , ) [ ( ) ]0 0≡ ≤  in Eq. 11.13 has been replaced by P A u[ ( ) ]0 ≤ . We will
now investigate the implication of this difference. Consider an ensemble of
possible time histories of { ( )}X t . The term P X u[ ( ) ]0 ≤  represents the fraction
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of the ensemble that is below the level u at time t = 0 , excluding only samples
with X u( )0 > , while P A u[ ( ) ]0 ≤  also excludes samples with A u( )0 > , even if
X u( )0 ≤ . For a narrowband process, though, we can see that it is very likely that
the samples with A u( )0 >  and X u( )0 ≤  will have an upcrossing of u during the
first cycle of the process. That is, if the narrowband process has average
frequency ωc , then it is very likely that an X t( )  sample with A u( )0 >  will
exceed u prior to time 2π ω/ c . Using an initial condition of P A u[ ( ) ]0 ≤  on the
probability distribution of the extreme values is equivalent to counting these time
histories that are particularly likely to cross u during the first cycle as having
crossed at time zero. This discrepancy should be significant only if one is
particularly interested in the details of the first cycle. The ηX u t( , )  true
conditional rate of upcrossings is particularly large during the first cycle of a
narrowband process, due to these samples that started with A u( )0 >  having
upcrossings, then it settles down to a lower value. By using an initial condition of
P A u[ ( ) ]0 ≤ , one can obtain an approximate extreme value distribution that is
good for t c≥ 2π ω/ , without explicit consideration of the high early value of
ηX u t( , ) . Because the Poisson approximation ignores this high early value of the
upcrossing rate, it seems appropriate that it should be used with an initial
condition of P A u[ ( ) ]0 ≤  if { ( )}X t  is narrowband.

********************************************************************************************

Example 11.4: Compare the ηX u( )  values from Eqs. 11.17, 11.23, 11.25, and

11.26 for a stationary, mean-zero, Gaussian, narrowband process with

α1 0 995= . . (One particular process with this value of α1 is the response to white

noise of an SDF oscillator with approximately 0.8% of critical damping.)

The basic upcrossing rate ν X u+ ( )  for this process was found in Example 7.1 to

be

ν
ω

π σ
X

c

X

u
u+ =

−









( ) exp2

2

22 2

in which ω σ σc X X2 = ˙ / . This, then, is the approximation of ηX u( )  for Eq. 11.17.

Because this is the most commonly used approximation, we will present our

comparisons for each of the other three approximations as the ratio

η νX Xu u( ) / ( )+ . (This normalization of the results has been commonly used since

Crandall et al. in 1966.) The η νX Xu u( ) / ( )+  ratio for Eq. 11.23, of course, is

simply [ ( )]F uX −1, which is [ ( / )]ΦX Xu σ −1 for a mean-zero Gaussian process.

The amplitude upcrossing rates for this process were found in Examples 7.12

and 7.13, respectively, for both the Cramer and Leadbetter and the energy-based

definitions. The result for the energy-based amplitude, though, depends on α2,

which is not given in the statement of this problem and cannot be determined
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from the given value of α1. (Recall, for example, that α2 0=  for the response of

any SDF oscillator excited by white noise.) The Cramer and Leadbetter result for

Eq. 11.25 is

η

ν

ν

ν σ
π α

σ
X

X

A

X X X

u

u

u

u

u u( )

( )

( )

( )
[ ( )] ./

+

+

+
= = − ≈1 2 1 0 2501

2 1 2

Because the amplitude has the Rayleigh distribution, the additional term needed

to obtain the approximation of Eq. 11.26 is

F u
u

A
X

( ) exp= −
−









1

2

2

2σ

The accompanying sketch shows the

values of η νX Xu u( ) / ( )+  versus u X/σ
for Eqs. 11.17 and 11.23, and for Eqs.

11.25 and 11.26 using the Cramer and

Leadbetter amplitude.

From the plot we see that the

approximations give quite different

results for small values of u , which may

not be of too much practical significance because failure is generally related to

large values of u . We also see, though, that the X  crossing and the amplitude-

crossing results behave very differently for the crucial region with large values of

u . In particular, the ν νA Xu u+ +( ) / ( )  ratio grows linearly with u , so the amplitude-

crossing result eventually becomes more conservative (i.e., predicts larger

probabilities of upcrossings) than the original Poisson approximation.

********************************************************************************************

For very large u values, it is generally found that many of the upcrossings
of u by A t( )  are not accompanied by upcrossings by X t( ) . This leads to νA u t+ ( , )
being much larger than ν X u t+ ( , ) , as was found in Example 11.4 for the special
case of a Gaussian process. On the other hand, we know that the ηX u t( , )
conditional crossing rate tends to ν X u t+ ( , )  as u becomes very large, so there must
be limits to the usefulness of Eqs. 11.25 and 11.26 for large u values. An
improved approximation of the extreme value distribution can be obtained by
estimating the fraction of the upcrossings by A t( )  that are accompanied by
upcrossings by X t( ) . The ηX u t( , )  conditional crossing rate can then be taken to
represent the rate of occurrence of this subset of the amplitude upcrossings.
Vanmarcke introduced such a scheme in 1972, and the following paragraph uses
some of his approximations in deriving a very similar result, although the
derivation given here follows that of Madsen et al. (1986) much more closely

Eq. 11.25

Eq. 11.26 Eq. 11.17

Eq. 11.23

2.0

1.5

1.0

0.5

0
0               2               4               6u /σ X

η X (u) /ν X
+ (u)
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than it does that of Vanmarcke. It should also be noted that extensions of the
scheme were presented by Corotis et al. in 1972 and by Vanmarcke in 1975.

Using the same notation as we used before for the { ( )}X t  process, let the
random variable T1  denote the time between an upcrossing of u by A t( )  and the
subsequent downcrossing by A t( ) . Then T1  represents the duration of an interval
with A t u( ) > . If T1  is large, then it seems almost certain that X t( )  will have an
upcrossing of u within the interval, but if T1  is small, then it seems quite likely
that no upcrossing by X t( )  will occur. Following Vanmarcke, we approximate
this relationship by

P X t T t U tX X[ ( ) | ] [ ( , ) ] [ ( , ) ]no upcrossing by 1 1 0 1 0= ≈ − −+ +τ ν τ ν τ (11.27)

Considering [ ( , )]ν X t+ −0 1 to represent the period of an average cycle of the
{ ( )}X t  process, this approximation amounts to saying that an upcrossing by
X t( )  is sure if T1  exceeds the period, and the probability of its occurrence grows
linearly with T1  for T1  less than the period. Clearly this is a fairly crude
approximation, but it should be substantially better than simply assuming that an
upcrossing by X t( )  occurs in connection with every upcrossing by A t( ) . To
calculate the unconditional probability of an upcrossing in the T1  interval, it is
necessary to have a probability distribution for T1 . Consistent with the arrival
times in the Poisson process, we use Vanmarcke’s approximation that this is the
exponential distribution

p
e

E TT

E T

1

1

1
( )

( )

/ ( )
τ

τ
=

−

and we also use the approximation that E T E T P A t uCR( ) ( ) [ ( ) ]1 = > ≈
P A t u u tA[ ( ) ] / ( , )> +ν , with TCR  being the time between successive upcrossing of
u by A t( ) . This gives
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P A t u t

u t
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and taking η νX Au t u t P X t T( , ) ( , ) [ ( ) ]≈ + upcrossing by  during 1  gives
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0 1

0
 (11.28)

Note that as u tends to zero, the results of Eq. 11.28 approach those of Eq.
11.25 based on considering each upcrossing by A t( )  to correspond to a crossing
by X t( ) . The limiting behavior for large values of u may be of more interest. In
this case we find that P A t u[ ( ) ]>  is very small, so νA u t+ >>( , )
P A t u tX[ ( ) ] ( , )> +ν 0  and Eq. 11.28 gives η νX Xu t P A t u t( , ) [ ( ) ] ( , )≈ > + 0 . For the
special case of a Gaussian process it can be shown that this is identical to
ν X u t+ ( , ) , so the approximation agrees with the results from the assumption of
Poisson crossings by X t( ) . For a non-Gaussian process, these two results for
large u values may not be identical, although they are expected to be quite
similar.

As in our other approximations, we can expect to obtain better results for
small u values by including the effect of the initial condition. Because this
estimate of ηX u t( , )  is a modified version of the amplitude-crossing rate, we do
this by dividing by P A t u[ ( ) ]< . This gives
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(11.29)

and it is easily verified that Eq. 11.29 agrees with Eq. 11.26 in the limit for u near
zero.

It should be noted that for a general non-Gaussian { ( )}X T  process, Eqs.
11.28 and 11.29 are not identical to Vanmarcke’s results and that his derivation
uses somewhat more sophisticated assumptions about the behavior of { ( )}X T .
For the special case of the Gaussian process, though, it can be shown that
P A t u t u tX X[ ( ) ] ( , ) ( , )1 0> =+ +ν ν , so Eq. 11.29 with the Cramer and Leadbetter
definition of amplitude does become identical to Vanmarcke’s form of

η ν
ν

ν

ν

ν
X X

A

X

X

X

u t u t
u t

u t

u t

t
( , ) ( , ) exp

( , )

( , )

( , )

( , )
≈ −

−































−












+
+

+

+

+

−

1 1
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1

1

(11.30)

It can be expected that the two approximations will also give similar results for
other processes that do not differ greatly from the Gaussian distribution.
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********************************************************************************************

Example 11.5: Compare the ηX u( )  values from Eqs. 11.28–11.30 with those

obtained by other methods in Example 11.4 for a stationary, mean-zero,

Gaussian, narrowband process with α1 0 995= . .

Using the Gaussian relationships and the Cramer and Leadbetter definition of

amplitude in Eq. 11.28 gives
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and Eq. 11.29 and 11.30 give identical results of
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The plot confirms that for very large

values of u , Eqs. 11.28 and 11.29

(or the identical Eq. 11.30) both tend

to the original Poisson approximation

of Eq. 11.17, whereas for small u
values, Eq. 11.28 tends to Eq. 11.25

and Eq. 11.29 (or 11.30) tends to

Eq. 11.26.

********************************************************************************************

We indicated in Eq. 11.22 how the original Poisson crossings
approximation should be applied to the double-barrier problem, in which one is
concerned with the probability distribution of the extreme value of | ( ) |X t . Now
we need to consider the same issue for the various modifications of the Poisson
model that have been introduced in this section. Note that replacing X by |X| has
no effect at all on Eqs. 11.25 and 11.26, because these approximations are wholly
based on the occurrence of amplitude crossings. That is, for the mean-zero
process, the extreme distribution of A t( )  can be considered an approximation of
the extreme distribution of | ( ) |X t , just as we previously assumed that it
approximated the extreme distribution of X t( ) . In fact, it seems likely that the
approximation will be better for | ( ) |X t  than for X t( ) .

Eq. 11.17

Eq. 11.25
Eq. 11.23

Eq. 11.26

Eq. 11.28

Eq.
11.29
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The approximations of Eqs. 11.23 and 11.28–11.30 are all affected by the
change from single to double barrier, because these expressions all include
probability or crossing rate information regarding X t( ) . Looking first at the
initial condition effect approximated by Eq. 11.23, we see that for the double-
barrier problem we should use

η
ν

| |
| |( , )

( , )
[| ( ) | ]X

Xu t
u t

P X t u
≈

≤

+
(11.31)

The modification of the numerator is as in the original Poisson approximation of
Eq. 11.22, but the change in the denominator is also significant. In particular,
P X t u[| ( ) | ]≤  will tend to zero for u approaching zero, so this approximation will
give η | |( , )X u t  tending to infinity in this situation. Thus, consideration of the
| ( ) |X u0 ≤  condition gives small u behavior that resembles that of Eq. 11.26 with
the initial condition of A u( )0 ≤ .

One must give a little more thought to the modification of Eqs.
11.28–11.30 to describe the double-barrier problem. Recall that these equations
were designed to include the probability that an upcrossing by A t( )  is
accompanied by an upcrossing by X t( ) . For the double-barrier problem, then, we
must approximate the probability that an upcrossing by A t( )  is accompanied by
an upcrossing by | ( ) |X t . Just as we assumed that there would be an upcrossing
by X t( )  during T1  if T X1 > +[ν ( , )]0 1t −  = one period of the process, we will now
assume that there will be an upcrossing by | ( ) |X t  during T1  if T1 >
[ ( , )] /ν X t+ −0 21  = one-half period of the process. Thus, we replace ν X

+ ( , )0 t  in Eq.
11.27 with 2ν X

+ ( , )0 t , and this gives exactly the same replacement in Eqs. 11.28
and 11.29:
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neglecting the initial condition at t = 0, and
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when the initial condition is included. The corresponding modification of
Vanmarcke’s formula in Eq. 11.30 is
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(11.34)

For the case of a mean-zero Gaussian { ( )}X t  process, using the Cramer and
Leadbetter amplitude in Eq. 11.33 gives a result that is identical to Eq. 11.34.
This is consistent with the results obtained for the single-barrier situation.

For the special case of a stationary, mean-zero, Gaussian { ( )}X t  process,
Vanmarcke (1975) has also offered an empirical correction that improves the
approximation of the conditional crossing rate. For this situation, the ratio
ν νA Xu u+ +( ) / ( )  of Eq. 11.30 is given by
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in which the term ( )1 1
2−α  introduces the effect of the bandwidth of the process.

Similarly, the ν νA Xu u+ +( ) / ( )| |  ratio of Eq. 11.34 is one-half this amount. As an
empirical correction for effects not included in the derivation of these equations,
Vanmarcke has suggested replacing the ( )1 1

2−α  term with ( )1 1
2−α 1 2. . This

gives the modified Vanmarcke approximations as
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(11.35)

for the single-barrier and double-barrier problems, respectively.

If one chooses to use the modified Vanmarcke approximation for the
stationary situation, then it is desirable also to modify the nonstationary
approximation to achieve consistent results. The modification amounts to a
reduction in the bandwidth of the process, and the bandwidth parameter α  enters
into first passage calculation only as it affects the νA u t+ ( , )  rate of upcrossings by
the envelope. For the nonstationary situation, we have seen in Example 7.14 that
the ( )1 1

2−α  term in the stationary upcrossing rate by A t1( )  is replaced by
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( )˙1 1
2 2− −α ρXX . One can obtain a consistent modified version of the nonstationary

crossing rate by applying the power 1.2 either to ( )1 1
2−α  or to ( )˙1 1

2 2− −α ρXX  in
the expression for the upcrossing rate. Both of these options converge to
Vanmarcke’s modified result in the stationary situation, in which the correlation
coefficient is zero, and it is not completely clear which is better. Inasmuch as the
correlation coefficient is not a measure of bandwidth, though, it seems more
appropriate to modify the bandwidth effect by applying the power 1.2 only to
( )1 1

2−α .

11.5 Inclusion-Exclusion Series for Extreme Value Distribution
Finally, we will derive the infinite series called the inclusion-exclusion
relationship between ηX u t( , )  and probability density functions for X t( )  and
˙( )X t  random variables.3 This cumbersome equation rigorously includes the fact

that ηX u t( , )  is conditioned by the event of no prior upcrossings of the level u by
X t( ) . It ignores the additional conditioning in Eq. 11.15 by the event of
X u( )0 ≤ , however. To emphasize this distinction, we use the notation ˆ ( , )ηX u t
for the conditional rate of upcrossings given only the fact that there have been no
prior upcrossings. The presentation is simplified by introducing a notation for
upcrossing events as follows: B t( )  = {event of an upcrossing of level u occurring
in [ , ]t t t+ ∆ } and B t*( )  = {event of the first upcrossing of u occurring in
[ , ]t t t+ ∆ }, giving B t*( )  as a subset of B t( ) . We also introduce new terms
ν X

+ ( , , , , )u t s s j1 L  and ˆ ( , , , , )ηX ju t s s1 L  that give the probabilities of
intersections of these events as

P B t B s B s u t s s t s sj X j j[ ( ) ( ) ( )] ( , , , , )1 1 1L L L= +ν ∆ ∆ ∆ (11.36)

and
P B t B s B s u t s s t s sj X j j[ ( ) ( ) *( )] ˆ ( , , , , )1 1 1L L L=η ∆ ∆ ∆  (11.37)

in which s s s tj j≤ ≤ ≤ ≤−1 1L . In the first relationship there is no requirement
that there has not been an upcrossing (or many upcrossings) prior to time s j , but
the second relationship does include this restriction. If the first upcrossing is not
at time s j , then it must be at some time s j+1 that is prior to s j , so we can say

ν η ηX j X j X j j j
s

u t s s u t s s u t s s s dsj+
+ += + ∫( , , , , ) ˆ ( , , , , ) ˆ ( , , , , , )1 1 1 1 10

L L L

                                                  
3The inclusion-exclusion relationship is attributed to S.O. Rice in 1944, but the
derivation given here is due to Madsen et al. in 1986.
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or

    ˆ ( , , , , ) ( , , , , ) ˆ ( , , , , , )η ν ηX j X j X j j j
s

u t s s u t s s u t s s s dsj
1 1 1 1 10

L L L= −+
+ +∫ (11.38)

The corresponding relationship for j = 0  is

ˆ ( , ) ( , ) ˆ ( , , )η ν ηX X X
t

u t u t u t s ds= −+ ∫ 1 10
(11.39)

describing the fact that the occurrence of an upcrossing at time t implies that the
first upcrossing is either at t or at some time s t1 < . Now we can substitute for
ˆ ( , , )ηX u t s1  in Eq. 11.39 from Eq. 11.38 with j =1 to give

ˆ ( , ) ( , ) ( , , ) ˆ ( , , , )η ν ν ηX X X X
st

u t u t u t s u t s s ds ds= − −






+ + ∫∫ 1 1 2 20 10

1

into which we can substitute for ˆ ( , , , )ηX u t s s1 2  from Eq. 11.38 with j = 2 .
Repetition of this procedure gives

ˆ ( , ) ( , ) ( ) ( , , , , )η ν νX X
j

X j j
sst

j

u t u t u t s s ds ds dsj= + −+ +

=

∞
−∫∫∫∑ 1 1 2 1000

1

11L L L

(11.40)
which is the general inclusion-exclusion relationship.

To use the inclusion-exclusion relationship, of course, one must have
knowledge of the rate of multiple upcrossings term ν X

+ ( u t s s j, , , , )1 L  defined in
Eq. 11.36. It is not difficult to write an integral expression for this term. In fact, a
simple generalization of Eq. 7.2 gives

ν X j j

X s X s X s X s X t X t j j

u t s s v v v

p u v u v u v dv dv dv
j j

+ ∞∞∞
= ×∫∫∫( , , , , ) ( )

( , , , , , , )( ), ˙ ( ), , ( ), ˙ ( ), ( ), ˙ ( )

1 1000

1 1
1 1

L L L

L LL

(11.41)

Unfortunately, it is usually difficult to carry out the integration in Eqs. 11.40 and
11.41 unless j is quite small.

It should be noted that using only the first term ( )j = 0  in Eq. 11.40 gives
exactly the Poisson approximation. Furthermore, the alternating signs of the
terms in Eq. 11.40 show that each truncation of the series gives either an upper or
a lower bound on ˆ ( , )ηX u t . Thus, the Poisson approximation of ν X u t+ ( , )  is an



Random Vibrations516

upper bound on ˆ ( , )ηX u t ; including only the j =1 term from the summation in
Eq. 11.40 gives a lower bound; and so on. It should be kept in mind, though, that
we are not assured that the truncations of Eq. 11.40 will provide upper and lower
bounds on the original ηX u t( , ) , because ˆ ( , )ηX u t  omits conditioning by the
event X u( )0 ≤ . In fact, we have already argued that ν X u t+ ( , )  surely does not
give an upper bound on ηX u t( , )  for very low u values.

11.6 Extreme Value of Gaussian Response of SDF Oscillator
Inasmuch as we have no exact solution for the extreme value distribution, it is
appropriate to use simulation data to verify which, if any, of the various
approximate solutions may give accurate estimates. We will present this
comparison only for the particular problem of stationary response of the SDF
oscillator excited by mean-zero, Gaussian, white noise. We will consider the
double-barrier problem, related to crossings of the level u by | ( ) |X t . One reason
for the choice of this particular problem is the existence of multiple sets of
simulation data that can be considered to provide reliable estimates of the true
solution of the problem. The other reason is that this is a mathematical model
often used in the estimation of first-passage failure in practical engineering
problems.

Figure 11.2 shows analytical and simulation results for the situation of an
oscillator with 1% of critical damping, which gives α1 0 9937≈ . . The plot
includes the double-barrier versions of most of the analytical approximations we
have considered for η | |( , ) /X u t ν X u t+ ( , ) . It is seen that the simulated values of
this ratio are smaller than the predictions from any of the approximations, except
when u is less than about 1 2. σ X . Also, the simulation data clearly show that the
ratio has a minimum value when u is approximately 2σ X . Of all the
approximations, it appears that the analytical form due to Vanmarcke comes
closest to fitting the simulation data. In particular, the modified Vanmarcke form
of Eq. 11.35 gives a minimum value of η | |( , ) /X u t ν X u t+ ( , )  at approximately the
right u value, and the values it gives for the ratio in this vicinity are better than
those of any of the other approximations that have reasonable behavior for
smaller u values. Nonetheless, it must be noted that there is sometimes a
significant discrepancy between Vanmarcke’s formula and the simulation data.
For u X= 2σ , for example, the approximation is about 70% above the value of
0.10 or 0.11 obtained from simulation, even though the modified approximation
agrees almost perfectly with the data point from simulation for u X= 4σ . Any
overestimation of η | |( , )X u t  gives L u tX ( , )  values that decay more rapidly with
increasing t than do the values from simulation. For u X= 2σ  and large values of
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time, Vanmarcke’s formula will significantly overpredict the probability that
| ( ) |X t  has ever reached the level u. This discrepancy, though, is smaller when u
is large, and this is often the region of primary interest in predicting failure.

Simulation data also exist for larger values of damping in the SDF system,
and Fig. 11.3 presents some of these values. The only analytical result shown for
comparison is Vanmarcke’s modified formula given in Eq. 11.35, because this
seems to be better than any of the other approximate methods that we have
considered. It is noted that for ζ ≥ 0 05.  the Vanmarcke approximation fits the
simulation data very well, and the error consistently increases as the damping is
decreased below this level. In all cases it appears that the Vanmarcke
approximation is significantly better than the value of unity predicted by
assuming that a Poisson process describes the crossings of the level u by | ( ) |X t .

********************************************************************************************

Example 11.6: Use the modified Vanmarcke approximation to estimate the

probability of first-passage failure of the linear oscillator considered in Example

11.3. It has resonant frequency ω0 and damping ζ = 0 01. , and it is excited by

stationary, Gaussian, white noise with mean zero and autospectral density S0.
Failure occurs if X t( )  exceeds the level 4 4 20 1 2 2σ π ζstat S m= ( ) /(/ ω0

3 ) /1 2

within the time interval 0 2500≤ ≤ω t .

Eq. 11.25

Eq. 11.26
Eq. 11.35

Eq. 11.32

Eq. 11.22

Eq. 11.31

Figure 11.2 Simulation and various approximations
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Considering { ( )}X t  to have zero initial conditions requires that we use the

nonstationary ηX u t( , )  from Eq. 11.30. In addition to the nonstationary crossing

rate for { ( )}X t , we must now use the corresponding crossing rate for { ( )}A t1 .

This was given in Example 7.14, but we now modify it for the current purpose by

adding a power of 1.2 to the ( )1 1
2−α  term, as discussed in Section 11.4, giving
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Most of the time-varying terms in this expression were given in Example 11.3 and

are the same here. The new information that is needed is the nonstationary

bandwidth parameter α1( )t , which was investigated in Example 7.10. Evaluation

of α λ λ λ1 1 0 2( ) ( ) /[ ( ) ( )t t t t= ] /1 2  requires a formula for λ 1( )t , and the

expression for this term was given in Example 7.10 as

Figure 11.3 Simulation and Vanmarcke’s approximation
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Using this formula along with the approximations in Example 11.3 allows

evaluation of the conditional rate of upcrossings in Eq. 11.30:
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Numerical integration of Eq. 11.13 then gives L u( , / ) .250 0 996630ω = , and the

probability of survival is Pf ≈ 0 0034. . This value is approximately 55% of that

obtained in Example 11.3 by the Poisson approximation.

Comparison of ηX u t( , )  and ν X u t+ ( , )  reveals a possible simplified approximation

of this problem. In particular, the

accompanying sketch shows that ηX u t( , )  is

almost proportional to ν X u t+ ( , ) . Thus, one

might use an approximation of ηX u t( , ) ≈
ν η νX X Xu t u u+ +∞ ∞( , )[ ( , ) / ( , )] . For the current

problem the ratio of stationary crossing rates

is 0.5166, so η νX Xu t u t( , ) . ( , )≈ +0 5166   and

Eq. 11.13 yields

L L PVanm Poisson f Vanm≈ = ≈( ) . .. ,0 5166 0 9968 0 0032,      

in which we have used the Poisson result from Example 11.3.The result is seen

to be quite accurate, and it can be obtained with the much simpler integration of

the unconditional nonstationary crossing rate, in place of the conditional rate.

********************************************************************************************

The results in Example 11.6 indicate that it is sometimes acceptable to
approximate the nonstationary Vanmarcke result for the response of the linear
oscillator by using

η
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in which ν X u+ ( )  and ηX Vanm u, ( )  denote the stationary values resulting for large
time. This approximation then gives

P Pf Vanm f Poisson
u uX Vanm X

, ,
( ) / ( )( ) ,≈ − −

+
1 1 η ν (11.42)

In the example this approximation is about 6% lower than the value obtained
using Vanmarcke’s modified formula for the nonstationary conditional rate of
upcrossings. It can also be shown that this error depends on c t m t/ ≡ 2 0ζ ω . In
fact, the error is approximately proportional to ( / )c t m −2 . It is not surprising that
the error is small when t is very large, because that is a situation in which the
{ ( )}X t  process is stationary throughout most of the time until failure. What is
possibly surprising is that the error is only 6% for the situation in Example 11.6,
in which ν X u+ ( )  and ηX u( )  are clearly nonstationary. It should be noted that the
approximation of Eq. 11.42 is nonconservative, in the sense that it predicts a
smaller value for the probability of failure than is obtained directly from
Vanmarcke’s formulation. Nonetheless, it may be found useful, because it greatly
simplifies the mathematical computations for a nonstationary process.

It can be expected that the approximation of Eq. 11.42 may also be used for
some other problems, in addition to the response of the SDF oscillator. Crucial
requirements for its application, of course, are that { ( )}X t  is tending to a
stationary process and that the time until failure is sufficiently large that
stationarity is nearly achieved.

11.7 Accumulated Damage
Analysis of fatigue is typically based on the concept of a function D t( )  that
represents the accumulated damage due to stresses and strains occurring prior to
time t. This function is presumed to increase monotonically, and failure is
expected when the accumulated damage reaches some critical level. Usually the
damage function is normalized so that it reaches unity at failure— D T( ) =1  if T
is time of failure. This reasonable concept is very compatible with stochastic
modeling, with { ( )}D t  becoming a stochastic process when stresses are
stochastic. The problem of predicting time of failure then becomes one of
studying the Ḋ ( )t  rate of growth of { ( )}D t .

The practical difficulty in implementing the accumulated damage model is
that D t( )  is not observable by currently available means. D t( )  is known at only
two points; it is presumed to be at least approximately zero for a specimen that
has not yet been subjected to loads and it is unity when failure occurs. For a
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specimen that has been subjected to loads but has not yet failed, we have no
method of measuring the amount of accumulated damage or its rate of growth.
The nonobservability of damage is probably most relevant prior to the formation
of an observable crack but also can be considered to be true during crack growth.
Even if crack size is observable, there is no inherent reason to assume that D t( )
is proportional to that size. For example, if crack size is denoted by s, then
D t( )could equally well be proportional to sa, in which a is any positive number.
Some analysts consider the initial phase of crack formation simply to be the
microscopic portion of the crack growth, whereas others make a greater
distinction between the crack initiation and the crack propagation phases. In this
introductory discussion we will use the term fatigue to describe both of the
mentioned situations, and the concept of accumulated damage measured by a
damage function D t( )  will be used to denote progress toward failure whether or
not a crack has formed. It should also be noted that there are many definitions of
the term failure in common usage. These vary from “appearance of a visible
crack” to “complete fracture.”

The rational analysis of fatigue is further complicated by the fact that there
is generally a very considerable scatter in fatigue data. That is, apparently
identical specimens will give greatly varying failure times when tested with
identical loadings. In fact, it is not unusual to have the largest failure time be as
much as 5 to 10 times greater than the smallest value from a set of identical tests.
This variability is presumably due to microscopic differences between apparently
identical specimens. Although this is surely a problem amenable to probabilistic
analysis, it does not fall within the scope of the present study of the effect of
stochastic loadings on failure prediction.

Current fatigue analysis methods are based on various approximations and
assumptions about the D t( )  function. The goal in formulating such
approximations is to achieve compatibility with the results of experiments. These
experiments are sometimes performed with quite complicated time histories of
loading, but they more typically involve simple periodic (possibly harmonic)
loads in so-called constant-amplitude tests. It is presumed that each period of the
motion contains only one peak and one valley. In this situation, the number of
cycles until fatigue failure is usually found to depend primarily on the amplitude
of the cycle, although this is usually characterized with the alternative
nomenclature of stress range, which is essentially the double amplitude, being
equal to a peak value minus a valley value. There is a secondary dependence on
the mean stress value, which can be taken as the average of the peak and valley
stresses. The exact shape of the cycle of periodic loading has been found not to
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be important. Neither is the frequency of loading important, except for either
very high frequencies or situations of corrosion fatigue.

We will use the notation Sr  to denote the stress range of a cycle and let N f
designate the number of cycles until failure in a constant-amplitude test.4 A
typical experimental investigation of constant-amplitude fatigue for specimens of
a given configuration and material involves performing a large number of tests
including a number of values of Sr , then plotting the ( , )S Nr f  results. This is
called an S/N curve, and it forms the basis for most of our information and
assumptions about D t( ) . We will emphasize the dependence of fatigue life on
stress range by writing N Sf r( )  for the fatigue life observed for a given value of
the stress range. In principle, the S/N curve of N Sf r( )  versus Sr  could be any
nonincreasing curve, but experimental data commonly show that a large portion
of that curve is well approximated by an equation of the form

N S K Sf r r
m( ) = − (11.43)

in which K  and m  are positive constants whose values depend on both the
material and the geometry of the specimen. This S/N form plots as a straight line
on log-log paper. If Sr  is given either very small or very large values, then the
form of Eq. 11.43 will generally no longer be appropriate, but fatigue analysis
usually consists of predicting failure due to moderately large loads, so Eq. 11.43
is often quite useful.

Because of the considerable scatter in S/N data, it is necessary to use a
statistical procedure to account for specimen variability and choose the best
N Sf r( )  curve. For the common power law form of Eq. 11.43, the values of K
and m are usually found from so-called linear regression, which minimizes the
mean-squared error in fitting the data points. It should be noted that this linear
regression of data does not involve any use of a probability model, so is distinctly
different from the probabilistic procedure with the same name, which was
discussed briefly in Section 3.3.

As noted, the fatigue life also has a secondary dependence on the mean
stress. Although this effect is often neglected in fatigue prediction, there are

                                                  
4It should be noted that Sr  is a completely different concept from spectral
density, although the symbol S is used for both. It is hoped that the subscript r
on the stress range will assist in avoiding confusion about the notation.
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simple empirical formulas that can be used to account for it in an approximate
way. The simplest such approach is called the Goodman correction, and it
postulates that the damage done by a loading x t( )  with mean stress xm  and
stress range Sr  is the same as would be done by an “equivalent” mean-zero
loading with an increased stress range of Se, given by S S x xe r m u= −/( / )1 , in
which xu  denotes the ultimate stress capacity of the material. The Gerber
correction is similar, S S x xe r m u= −/[ ( / ) ]1 2 , and has often been determined to
be in better agreement with empirical data. Note that use of the Goodman or
Gerber correction allows one to include both mean stress and stress range in
fatigue prediction while maintaining the simplicity of a one-dimensional S/N
relationship.

11.8 Stochastic Fatigue
As previously noted, our fundamental problem in stochastic analysis of fatigue is
to define a stochastic process { ( )}D t  to model the accumulation of damage
caused by a stochastic stress time history { ( )}X t . Some rather mathematically
sophisticated formulations have been postulated for this purpose. Among these is
one in which { ( )}D t  is modeled as a Markov process, such that the increment of
damage during any “duty cycle” at time t is a random variable that depends on
both D t( )  and the stress X t( )  but is independent of prior values (Bogdanoff and
Kozin, 1985). This is a general approach, but it has been found to be very
difficult to identify the conditional probability distribution of the damage
increment based on experimental data (Madsen et al., 1986; Sobczyk and
Spencer, 1992).

Other approaches to modeling damage focus exclusively on crack growth,
treating crack size as an observable D t( )  function. Experimental data have been
used, for example, in developing models in which the rate of crack growth
depends on the values of prior overloads, which cause residual stresses affecting
the state of stress and strain at the crack tip (see Sobczyk and Spencer, 1992). In
many practical situations, though, a specimen may have very little remaining
fatigue life after the first appearance of a visible crack. Furthermore, it is not
obvious whether the models that describe visible crack growth also apply to
earlier parts of the fatigue process. Clearly, there is limited benefit in having an
accurate model of visible crack growth if that is only a small fraction of the total
fatigue life. Overall, it seems that most predictions of fatigue life in practical
problems are based on simpler models in which information about the
accumulated damage is obtained from the constant-amplitude S/N curve. This is
the approach that we will present here.
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Because experimental fatigue data are typically characterized by the
number of cycles to failure rather than time, we will define the accumulated
damage to be the sum of a number of discrete quantities:

D t D j
j

N t

( )
( )

=
=
∑∆

1

in which ∆ D j  denotes the increment of damage during cycle j and N t( )  is the
number of applied cycles of load up to time t. Furthermore, let T = failure time so
that N N Tf = ( )  is the number of cycles to failure. This gives D T( ) =1 , so

1
1

=
=
∑∆ D j

j

N T( )

(11.44)

This model is very reasonable for the constant-amplitude situation, although it
does require devising a method to relate the magnitude of ∆ D j  to the
characteristics of the stress time history. Applying it to a stochastic problem also
requires a method for defining cycles within a complicated time history of stress.
Both of these problems are addressed with fairly crude approximations.

First we note that Eq. 11.44 indicates that the average value of ∆ D j  over
an entire constant-amplitude fatigue test at constant stress level Sr  is 1/ ( )N Sf r .
Let us now assume that the conditional expected value of ∆ D j  for all the cycles
of stress level Sr  within a complicated or stochastic time history will have this
same average level of damage per cycle: E D S u N ur f( | ) / ( )∆ = =1 . This then
gives the expected value of damage per cycle for any cycle, with random stress
range Sr , within the time history as

E D p u E D S u du E N SS r rr f( ) ( ) ( | ) [ / ( )]∆ ∆= = =
∞∫0

1 (11.45)

and the expected number of cycles to failure is given by

E N T E N Sf r[ ( )] / [ / ( )]=1 1 (11.46)

Note that Eqs. 11.45 and 11.46 are identical to the results that one would
obtain by assuming that the damage caused by any cycle of range Sr  was exactly
1/ ( )N Sf r , whether that cycle was in a constant-amplitude or a stochastic time
history. However, our derivation of the relationship does not require such a
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drastic assumption. It requires only that the damage due to cycles of range Sr
distributed throughout a stochastic time history be similar to that for cycles of the
same range distributed throughout a constant-amplitude time history. The results
in Eqs. 11.45 and 11.46 are also equivalent to the common Palmgren-Miner
hypothesis that

1 1

1

= −

=
∑ [ ( )],

( )

N Sf r j
j

N T

(11.47)

When D t( )  is approaching unity, we expect the number N t( )  of cycles to
be large, because it approaches the fatigue life N T( )  in the limit. Furthermore, it
is generally true that σ µD Dt t( ) / ( )  decays like [ ( )] /N t −1 2  as N t( )  becomes
large, in which σD t( )  represents only the uncertainty about damage due to the
uncertainty about the stochastic time history. Precisely, the necessary condition
for this decay is that the damage increments ∆ D j  and ∆ Dk  become
uncorrelated when j and k are well separated such that

Cov[ ]∆ ∆D Dj j l
l

+
=−∞

∞

∑ < ∞

which can also be stated as the requirement that the sequence of values be
ergodic in mean value (see Section 4.7). Under these conditions, the variations of
the random ∆ D j  values tend to average out so that D  has relatively less
uncertainty than do the individual ∆ D j  values. This has also been verified by
much more rigorous techniques (see Crandall and Mark, 1963). As in constant-
amplitude testing, there is considerable uncertainty about T, and the gist of the
statement that σ µD Dt t( ) ( )<<  for stochastic time histories is simply that having
a stochastic time history results in very little increase in the uncertainty about T,
compared with a constant-amplitude situation. In fact, experimental data often
suggest that there is less statistical scatter in stochastic fatigue than in
deterministic fatigue.

The fact that σ µD Dt t( ) / ( )  becomes very small as t approaches T in most
fatigue problems assures us that σ µT T/  is also very small, which allows us to
use the approximation

E D T[ ( )]µ ≈1 (11.48)
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That is, we say that mean time to failure, µT , is approximately the time at which
the mean value of damage, µD t( ) , reaches unity. Furthermore, we have little
need to estimate σD t( )  or the probability density function if σ µD Dt t( ) ( )<< .
Any random variable with σ µ<<  is almost deterministic at the value µ . Thus,
we will concentrate on estimating µT  as approximated by Eq. 11.48.

The remaining problem in developing the model is to divide a complicated
time history into cycles and to predict the rate of occurrence of those cycles. One
of the most obvious cycle identification schemes is to consider the segment of a
stress time history x t( )  between any two subsequent local extrema (from a peak
to a valley or from a valley to a peak) to be a half cycle. In this scheme, the
number of cycles is the same as the number of peaks. Another simple scheme
ignores all but the largest extrema between any two subsequent upcrossings of
zero, then proceeds as discussed. This generally gives a significantly smaller
number of cycles—namely, the number of upcrossings of the level zero. Neither
of these schemes, though, seems to give appropriate answers in some quite
simple situations. In particular, consider the effect of adding a high-frequency
component to a basically low-frequency time history, as shown in Fig. 11.4.
Using the subsequent peaks and valleys identifies the half cycles shown in part
(b) of the figure. This gives a large number of cycles, but no large half cycles are
identified, because there are many peaks and valleys between any high peak and
any low valley of the original time history shown in part (a). Using only the
largest peaks and valleys does give large half cycles but completely ignores most
of the effect of the high-frequency component, as illustrated in part (c) of the
figure. Thus, it becomes apparent that more elaborate techniques are needed for
identifying cycles within a complicated time history.

Figure 11.4 Inadequate cycle identification schemes

x(t)

t
t

t

(a) Original time history (b) Half - cycles based on
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      largest extrema
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Clearly, for identifying cycles within a complicated time history one would
like to use a scheme that does count all the cycles but that does not lose the large
cycles that happen to be interrupted by small cycles. The most commonly
adopted cycle identification scheme of this type is called the rainflow method.5

When a rainflow analysis is complete, every segment of x t( )  belongs to exactly
one of the identified half cycles, and there is one half cycle terminating and
another beginning at each extremum (peak or valley) of the time history.
Furthermore, the peaks and valleys are paired in such a way as to give the largest
possible half cycle, then the largest possible remaining half cycle, and so forth. If
one assumes that the stress-strain behavior is slightly nonlinear and satisfies
Masing’s hypothesis (Masing, 1926),6 then a rainflow cycle can be identified
with a closed stress-strain hysteresis loop. Various other interpretations and
several algorithms for rainflow analysis of given time histories have been
published, with one of the simplest and most efficient algorithms being that of
Downing and Socie (1982).

Figure 11.5 illustrates the cycles identified by the rainflow method for the
time history of Fig. 11.4 and also illustrates the concept of relating rainflow
cycles with closed hysteresis loops for a nonlinear stress-strain relationship.
Although the plot shows a very pronounced nonlinearity, this is only for purposes
of illustration. It is presumed that the material really behaves in an almost linear
manner, but an accurate plot of this type would hide the hysteresis loops that we
seek to illustrate. The hysteresis loops are shown with x t( )  being the stress time
                                                  
5This method is generally attributed to Matsuishi and Endo in 1968. It was
thoroughly studied by Dowling (1972) and is available in standard reference
books such as the one by Fuchs and Stephens (1980).

6This hypothesis states that either half of any closed hysteresis loop has the same
shape as the initial loading curve for the specimen, but it is magnified by a
factor of 2.

Figure 11.5 Rainflow cycle identification scheme

t

x(t) Stress

Straint

(a) Original time history (b) Rainflow cycles (c) Hysteresis loops

.
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history, but for a material that is almost linear it makes little practical difference
whether x t( )  is associated with the stress or the strain axis in the plot.

Because the rainflow method gives one cycle for each peak of the time
history, it is easy to calculate the rate of occurrence of rainflow cycles by using
the formula for νP  from Eq. 7.5. The other necessary calculation is the
evaluation of E N Sf r[ / ( )]1  in Eq. 11.46. If the S/N curve is taken to have the
power law form of Eq. 11.43, though, then Eq. 11.46 reduces to

1 1

E N T
E D K E Sr

m

[ ( )]
( ) ( )≡ = −∆ (11.49)

so the crucial step in estimating the expected value of the fatigue life is simply
the evaluation of the mth moment of the stress range. It should be kept in mind,
though, that m may not be an integer, because it is determined on the basis of
obtaining a best fit of experimental data.

Ideally, we would next evaluate E Sr
m( )  for rainflow cycles. Lindgren and

Rychlik (1987) have derived the relationship between the probability distribution
of the rainflow cycles and that of the sequence of extrema of the stress process.
The difficulty, though, is in finding or estimating the joint probability distribution
of the extrema. Formulas for the marginal distributions were given in Section
11.2, but it is generally not feasible to obtain the joint distributions. Rychlik
(1989) has presented an approximate result based on the assumption that the
extrema of the stress process form an n-step Markov chain with a finite number
of states, and he has presented some numerical results for the cases of n =1 and
n = 2. However, this involves using a numerical procedure to derive the needed
conditional probability distributions of the extrema of a given time history.

Thus, the problem of finding a closed-form solution or simple
approximation for the probability distribution of rainflow ranges remains
unsolved. Nonetheless, there are certain limiting cases in which one can evaluate
the mth moment of Sr  for rainflow cycles. The most notable of these is when the
{ ( )}X t  process is Gaussian and very narrowband, and this situation will be
investigated in the following section. It should also be noted that one always has
the option of studying stochastic fatigue by simulating long time histories of
samples from { ( )}X t  and then performing deterministic rainflow analysis of
these samples. This, however, is somewhat awkward for use as a routine design
tool. More easily implemented approximate methods are discussed in the
following two sections.
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11.9 Rayleigh Fatigue Approximation
Several analytical approximation techniques exist whereby one can estimate the
stochastic fatigue life based only on the knowledge of the autospectral density
function of the stress process. In particular, these methods typically make use of
the values of certain spectral moments, as defined in Section 7.3. These
techniques are classified as spectral methods. The first spectral method that we
will discuss, called the Rayleigh approximation method, is one of the simplest
and most widely used analytical techniques for stochastic fatigue analysis. This
method was originally developed to predict the fatigue life under a narrowband
Gaussian loading.

For a very narrowband { ( )}X t  stress process with µX t( ) = 0, it is
reasonable to say that the value of the stress range Sr  is twice the value of either
the peak or amplitude of the process. Of course, the peak and amplitude
distributions are essentially identical for such a very narrowband mean-zero
process. Furthermore, the number of cycles per unit time of the process can be
taken as either the rate of occurrence of peaks or the rate of occurrence of
upcrossings of the mean value of { ( )}X t . Calculation of the mth moment of Sr
in this situation is particularly simple if { ( )}X t  is also Gaussian, because the
amplitude then has the Rayleigh distribution. Neglecting any effect of mean
stress, one finds that (Miles, 1954)

E D K E S K
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m m
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in which Γ ( )⋅  is the gamma function and λ 0 denotes the zero-order spectral
moment. The simplest form for the appropriate rate of cycle occurrence for this
mean-zero narrowband process is given by the rate of upcrossings of the mean
value, ν µX X

+ ( ) . Because the process is Gaussian (see Example 7.1), this is given
by σ πσ˙ /( )X X2 , so the estimate of failure time can be written as
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If µX ≠ 0  is constant throughout the loading process, one can correct for this fact
by using the Goodman or Gerber correction to obtain an equivalent stress range,
which merely introduces a constant scale factor for each range.

The so-called Rayleigh approximation of fatigue damage consists of using
Eqs. 11.50 and 11.51 to predict E T( ) . Its simplicity is, no doubt, one of the
strong motivations for its widespread use. To predict E T( )  by using this method,
one needs to find only σ X  and ν µX X

+ ( )  for the { ( )}X t  process. Furthermore,
these two characteristics are easily evaluated either from an autospectral density
curve, by using the λ 0 and λ 2 spectral moments, or from a representative
sample time history. In addition, it should be noted that the results of the
Rayleigh approximation tend to those of rainflow analysis in the limiting
situation of a very narrowband Gaussian process. A common approach is to take
the rainflow results as the basis of comparison for other approximate techniques,
and on this basis the Rayleigh method becomes perfect in the limit as the
bandwidth of a Gaussian stress process tends to zero.

Although Eqs. 11.50 and 11.51 were obtained from narrowband
assumptions, they are also very commonly used to predict the fatigue life for
stress processes that are not narrowband. In fact, the Rayleigh approximation is
probably the most widely used analytical method for predicting fatigue life for
any sort of stochastic stress process. It must be kept in mind, though, that the
assumptions in the Rayleigh method are not necessarily appropriate for
broadband processes, and simulation results confirm that Rayleigh predictions
can differ significantly from rainflow predictions when stress processes are not
narrowband. This is true for stress processes with broadband autospectral
densities, but it is much more noticeable for a so-called bimodal autospectral
density, having two narrowband peaks at different frequency values (Wirsching
and Light, 1980; Ortiz and Chen, 1987; Lutes and Larsen, 1990).

Using Eqs. 11.50 and 11.51 for a stress process that is not narrowband may
be viewed as finding the damage for an “equivalent narrowband process.” That
is, rather than attempting to define cycle ranges in { ( )}X t , it is presumed that the
damage done by { ( )}X t  is the same as would be done by a narrowband Gaussian
process with the same rate of upcrossings of its mean value. It is difficult to
assess the validity of this choice of an “equivalent” process. Using the ν µX X

+ ( )
rate of mean crossings as the rate of cycle occurrence seems to neglect the effect
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of high-frequency components. Using Sr  as twice the value of the peaks of the
narrowband process, however, gives unduly large magnitudes of the ranges for
many time histories, such as ones similar to those in Figs. 11.4 and 11.5. Thus,
the two errors in the Rayleigh approximation at least partially cancel each other.

********************************************************************************************

Example 11.7: Compare the Rayleigh and rainflow predictions of the fatigue life

for the special case of a stationary, mean-zero, Gaussian stress process and an

S/N curve given by Eq. 11.43 with m =1.

From Eqs. 11.50 and 11.51 the Rayleigh approximation for m =1 can be written

as
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The situation with m =1 is a special case in which we can also exactly evaluate

the rainflow prediction of the fatigue life. In particular, Eqs. 11.43 and 11.47 give

the failure condition as

1 1
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However, we can rewrite this summation of Sr  values by noting the contributions

to the summation from each time increment of length dt . In particular, there is an

excursion | ˙( ) |X t dt  during the time increment, and this increment of excursion

becomes a part of some Sr j,  stress range. Thus, it adds directly to the

summation of all those stress ranges, and we can say that
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in which the factor of 1/2 comes from the fact that a full cycle with range Sr
corresponds to a total excursion of 2Sr . Substituting this relationship and taking

the expected value gives 2 1= −K E T E X t( ) ( | ˙( ) | ) . For the Gaussian process, we

find that
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This, however, is identical to the result of the Rayleigh approximation. Note, also,

that we have used no assumption that the stress is narrowband. This is the only

situation in which the Rayleigh approximation is in perfect agreement with

rainflow analysis regardless of the form of the autospectral density of the stress.

********************************************************************************************

Example 11.8: A particular mechanical bracket has been subjected to constant-

amplitude fatigue tests at the single level of Sr =150 MPa , and the observed

fatigue life was N f =106 cycles. Based on experience with similar devices, it is

estimated that the parameter m  of the S/N curve is in the range of 3 5≤ ≤m .

Based on this limited information, it is necessary to choose a level for the

standard deviation σ X  of the narrowband, mean-zero, Gaussian stress that will

be applied to the bracket in actual service. Using the limiting values of m = 3 and

m = 5 , find the level of σ X  meeting each of two possible design situations:

E N T[ ( )] =106  and E N T[ ( )] =108 .

Beginning with m = 3 we find the value of K  in the S/N curve of Eq. 11.43 such

that 10 1506 3= K /( ) , giving K = ×3 375 1012. . For E N T[ ( )] =106 , Eq. 11.50 then

gives 10 2 3 46 1 4 5 3 1 2− −= K X
. /( ) ( / )σ π . Solving this gives the answer of

σ X = 48 2.  MPa . Similarly, E N T[ ( )] =108  gives σ X =10 4.  MPa .

For m = 5 , we proceed in the same way and find that K = ×7 594 1016. . For

E N T[ ( )] =106 , Eq. 11.50 becomes 10 26 1 7 5− −= K . ( σ X ) ( / )/5 1 215 8π , which

gives σ X = 41 7.  MPa , and E N T[ ( )] =108  gives σ X =16 6.  MPa .

Given the uncertainty about the value of m , the safe choice is to use

σ X = 41 7.  MPa  for a design condition of E N T[ ( )] =106  and σ X =10 4.  MPa  for

a design condition of E N T[ ( )] =108 . That is, one should use the smaller stress

for the given design condition, to avoid failure due to uncertainty about the value

of m .

Note that one must be cautious in choosing conservative approximations for this

type of problem. In particular, one cannot conclude that either choice of m value

is generally more conservative than the other. For the design condition of

E N T[ ( )] =106 , it is more conservative to assume that m = 5 , because this gives

an allowable stress that is smaller than the value one would obtain by using

m = 3. For the alternative design condition of E N T[ ( )] =108 , though, it is more

conservative to assume that m = 3, because this gives the smaller allowable

stress value. In general, one must consider the range of possible m  values when

dealing with such limited experimental data rather than simply using the largest

possible or smallest possible m  value.

********************************************************************************************
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11.10 Other Spectral Fatigue Methods for Gaussian Stress
One attempt to improve on the Rayleigh approximation technique can be

called the peak-approximation method. The fundamental idea of this approach is
to estimate the probability distribution of the stress ranges according to the
probability distribution for the peaks of a Gaussian { ( )}X t  process, as given in
Example 11.1, and to calculate the number of cycles according to the rate of
occurrence of peaks. For a process that is not very narrowband, these
assumptions sound more plausible than the amplitude distribution and the mean
crossing rate used in the Rayleigh approximation. Actually both of these peak-
approximation assumptions are slightly altered in practice, because some peaks
of { ( )}X t  are negative, and these peaks cannot correspond to values of the
nonnegative Sr  quantity. The modification to neglect the negative peaks consists
of using an appropriate conditional probability distribution. It was shown in
Example 11.2 that the fraction of negative peaks for any continuous { ( )}X t
process is ( ) /1 2− IF , in which IF is the irregularity factor, so the relevant
conditional probability density function for positive peaks for a mean-zero
process becomes

p u P t
IF

p u U uP t P t( ) ( )( | ( ) ) ( ) ( )≥ =
+









0

2

1
(11.52)

One cannot generally perform a simple analytical evaluation of E P tm[ ( )]  with m
not being an integer for this distribution because of the Gaussian cumulative
distribution function that appears in p uP t( )( ) , but numerical integration can be
used fairly easily. Also, various analytical approximations can be obtained by
curve fitting the results of numerical integration. One such simple approximation
was given by Lutes et al. (1984):
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This equation agrees exactly with the results of Eq. 11.52 for the special cases of
IF = 0  and IF =1, for any positive m value. Furthermore, it is within 3% of
results from numerical integration for all IF values for m values varying from one
to nine.

Because the peak-approximation method for stress ranges is based only on
positive peaks, it is natural to use the rate of occurrence of positive peaks as the
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rate of occurrence of cycles in this approach. Thus, ( ) /1 2+ IF nP  becomes the
rate of occurrence of stress ranges in this approximation, and one can also use the
fact that ν ν µP X X IF= + ( ) / . The final result of using these expressions in
conjunction with S P tr = 2 ( )  for nonnegative peaks can be written as
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Equations 11.53 and 11.54 can then be used to obtain results for the peak-
approximation method. The information required about { ( )}X t  is the value of the
irregularity factor, in addition to the σ X  and σ Ẋ  values that are needed for the
Rayleigh approximation. In terms of spectral moments, one now needs λ 0, λ 2,
and λ 4 , because IF for a Gaussian process is the same as α2, which is computed
from these three spectral moments (see Eq. 7.12).

The basic concept of the peak-approximation method seems to be very
sound for a narrowband process. Using the conditional distribution for P t( )
seems to be somewhat more reasonable than using the Rayleigh distribution, and
using the rate of occurrence of positive peaks gives a correction for the inherent
underestimation of the number of cycles when only crossings of the mean value
are counted. Numerical results show, though, that these two corrections mostly
cancel out for a narrowband process with IF ≈1 , so E T( )  is changed very little.
Using the more accurate probability distribution for Sr  reduces the value for
E Sr

m( ) , and this almost offsets the effect of the increased rate of cycle
occurrence. For a narrowband process the peak-approximation method is
reasonable, but it gives the same results as the simpler Rayleigh approximation.
For some other problems, the peak-approximation method and the Rayleigh
approximation may give very different results, but one cannot generally conclude
that one is better than the other. Examples 11.10 and 11.11 will illustrate two
such situations.

Another simple spectral technique is called the single-moment method
(Lutes and Larsen, 1990). It is particularly easy to apply when one is given an
autospectral density curve, because it depends on only one spectral moment. It
has the general form of E T c a

b( ) ( )= λ , in which a, b , and c are positive
constants that may depend on the specimen but not on the autospectral density.
One way to determine the appropriate values for a, b, and c is on the basis of
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making this formula agree with the rainflow and Rayleigh methods for the
limiting situation of a very narrowband process. In particular, consider an
autospectral density of

SXX
X( ) [ ( ) ( )]ω

σ
δ ω ω δ ω ω= + + −

2

0 02

so that the λa  spectral moment is given by λ σ ωa X
a= ( ) ( )2

0  and the single-
moment approximation gives

E T c X
b ab( ) = σ ω2

0

Equations 11.50 and 11.51 give the Rayleigh approximation for this autospectral
density, as
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Thus, the single-moment method agrees with the Rayleigh method in the
narrowband situation only if
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With these parameter values, the single-moment method can be written as
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The development of Eq. 11.55 ensures that the single-moment expression
agrees with the Rayleigh approximation for a narrowband process, and we know
that this also assures agreement with the rainflow method for this type of
autospectral density. The rather surprising fact is that the results of Eq. 11.55 also
are in relatively good agreement with simulation results from the rainflow
method for a great variety of autospectral densities. Some of the data that support
this conclusion are included in Example 11.11. It should be noted that 2 /m  is
generally not an integer, so this method uses a noninteger spectral moment.
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Although this may seem unusual, it is consistent with the fact that simulation data
have indicated that rainflow damage seems to be more closely related to
noninteger spectral moments than to integer spectral moments such as λ 1, λ 2,
and so on. (Lutes et al., 1984).

Ortiz and Chen (1987) have presented another spectral method using
noninteger spectral moments and have demonstrated that it gives very good
results for some spectral densities. It may be written as
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which is slightly more complicated to use than the single-moment method
because it involves four spectral moments. Rainflow results from simulation have
shown that this method is sometimes more accurate than the single-moment
method but that in the worst case its error is substantially greater than for any
situation with the single-moment method. This is illustrated in Examples 11.8
and 11.9.

Recall that the Rayleigh approximation is simple and widely known and
involves assumptions that are reasonable for a narrowband process. Thus, it may
be helpful to characterize any other method for analyzing a broadband process in
terms of how much its fatigue life prediction differs from that of the Rayleigh
approximation. For this purpose, we define a Rayleigh ratio term as

RR
E T

E T
=

( )

( )

 by alternative approximation

 by Rayleigh approximation
(11.57)

An idea of this type was apparently first introduced by Wirsching and Light
(1980), who characterized the difference between the Rayleigh approximation
and the rainflow method by using a correction factor CF of the form
CF RR= −( ) 1.

The Rayleigh ratio may be viewed as a method of interpreting results, but
if this RR factor for the rainflow method were known as a function of some
bandwidth parameter, then it would also provide a simple method of estimating
the fatigue life. One could find the rainflow prediction of E T( )  by calculating
the Rayleigh approximation and then multiplying by RR. In addition to the
problem of predicting R R, though, there is no simple way to know what
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bandwidth parameter will work best for this purpose. Wirsching and Light
obtained empirical correction factor values by simulating time histories of
response, performing rainflow analysis, and plotting the results versus the IF
irregularity factor. For their autospectral density curves and m values of 3, 4, 5,
and 6, they found that their simulation results gave values of CF that could be
approximated by

CF a a IF
b

= + − − −( )( ) [ ( ) ] /1 1 1 2 1 2 (11.58)

in which
a m b m= − = −0 926 0 033 1 587 2 323. . . .,     (11.59)

This relationship implies that different spectral density curves having nearly the
same value of IF give CF values that are approximately the same, but Wirsching
and Light found that this approximation was not accurate for m =10. In
particular, their CF values for m =10 were found to show considerable scatter
when plotted versus IF. Examples 11.10 and 11.11 demonstrate other situations
in which the empirical relationship is not adequate.

For very narrowband processes, there is complete agreement between the
results of all of the spectral prediction methods that we have discussed. This, of
course, is appropriate. Our Palmgren-Miner approach involves making stochastic
fatigue predictions based on the results of constant-amplitude tests, and the very
narrowband process is the stochastic process that most closely resembles a
constant-amplitude loading. It has been found, though, that there are sometimes
significant differences between the results of the various fatigue prediction
methods for stress processes that are not narrowband. The following three
examples provide limited comparisons among the predictions of the various
approximation schemes.

********************************************************************************************

Example 11.9: Let the mean-zero, Gaussian stress process { ( )}X t  have an

autospectral density function of S S UXX ( ) ( | |)ω ω ω= −0 0 . For a specimen with

m = 4 , compare the fatigue lives predicted by the Rayleigh approximation, the

peak-approximation method, the single-moment method, the formula of Ortiz and

Chen, and the formula of Wirsching and Light.

For this spectral density, we find that the spectral moments are given by

λ ωj
jS j= ++2 10 0

1( ) /( )

From Eqs. 11.50 and 11.51 we obtain the Rayleigh approximation as
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The irregularity factor is IF = =λ λ λ2 0 4

1 2 1 25 3/( ) // / , and Eqs. 11.53 and 11.54

then give the result of the peak-approximation method as

E T K Speak( ) /( . )≈ 47 15 0
2

0
3ω

Similarly, Eqs. 11.58 and 11.59 give a b≈ ≈0 794 4 025. ., , and RR CF= ≈−( ) 1

1 256. . To evaluate the single-moment approximation, we first find λ 2/m =
λ ω1 2 0 04/ (= S ) //3 2 3; Eq. 11.55 then gives

E T K Ssm( ) /( . )≈ 36 22 0
2

0
3ω

Finally, we also evaluate λ λ2 2 5 2 04+ = =/ /m S ( ) //ω0
7 2 7 , and Eq. 11.56 gives

the Ortiz and Chen approximation as

E T K Soc( ) /( . )≈ 38 18 0
2

0
3ω

Comparing the results, we see that the peak-approximation method predicts a

fatigue life that is 0.2% smaller than the Rayleigh approximation. The single-

moment method, the approximation of Ortiz and Chen, and the Wirsching and

Light correction factor all predict a fatigue life that is greater than the Rayleigh

prediction, with the increases being 30%, 23%, and 26%, respectively. The

spectral density used here is of a type considered by Wirsching and Light in

developing their empirical correction factor from rainflow simulation data, so their

formula should be expected to be quite accurate for this problem. Thus, it is safe

to conclude that the Rayleigh and peak-approximation approximations

significantly underpredict the failure time for this problem, as compared with the

rainflow method.

********************************************************************************************

Example 11.10: Let the mean-zero, Gaussian stress process { ( )}X t  be the

response of an SDF oscillator excited by white noise. For a specimen with

m = 4 , compare the fatigue lives predicted by the Rayleigh approximation, the

peak-approximation method, the single-moment method, the formula of Ortiz and

Chen, and the formula of Wirsching and Light.

From the results in Section 6.8, we can write the autospectral density for { ( )}X t
as

S S mXX ( ) [ ] [ ]ω ω ω ζ ω ω= − +( )−
−

0
2

0
2 2 2

0
2

1
2

in which ω0 and ζ  are the resonant frequency and the damping of the oscillator

and S0  is the autospectral density of the white noise excitation. From the results

in either Chapter 5 or 6, we know the values of λ 0 and λ 2 to be
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Using these two spectral moments in Eqs. 11.50 and 11.51 with m = 4  gives the

Rayleigh approximation result as

E T
K K m

S
Ray

X

( )
( )

= =
2

2 3 166 4
0

4 2
0
5

0
2

π

σ ω

ζ ω

πΓ

It is not possible to apply some of the other spectral methods to this particular

problem. In particular, this SXX ( )ω  gives λ 4 = ∞, as was noted in Example 7.9.

Thus, we have IF = 0 , for which Eq. 11.54 gives E Tpeak( ) = 0 , and Eq. 11.58

gives RR CF a= = ≈− −( ) .1 1 1 26 for the approximation of Wirsching and Light.

Similarly, Eq. 11.56 gives E Toc( ) = 0  for the Ortiz and Chen approximation,

because λ 4 = ∞ and the other pertinent spectral moments are finite.

To apply the single-moment method to a situation with m = 4 , we must calculate

the λ λ2 0 5/ .m =  spectral moment. For our autospectral density, this can be

written as

λ ω ω ω
ω ζ

0 5
1 2

0
0

2
0
5 2

1 2

2 2 20
2

2

1 2
.

/
/

/
( )

( ) ( )
= =

− +

∞ ∞∫ ∫S d
S

m

d
XX

Ω Ω

Ω Ω
in which the dimensionless variable Ω  is ω ω/ 0. This integral can be evaluated

numerically to obtain values that can be used in Eq. 11.55 to give single-moment

results. One convenient way to present these numerical results is as the RR
Rayleigh ratio of Eq. 11.57. These RR  values have been computed for ζ  values

varying from zero to unity, and it is found that they agree with RR = +1 ζ , which

implies that

λ
π

ω ζ ζ
0 5

0
2

0
5 2 1 22 1

. / /( )
=

+

S

m

For IF = 0 , the Wirsching and Light

formulas give a value of RR  that

depends only on m , not on the

properties of the autospectral density

function. This empirical approximation,

thus, gives the rather unusual

prediction that the rainflow fatigue life

will be 26% greater than the Rayleigh

approximation, regardless of the

amount of damping in the oscillator.

This value of RR  agrees with the

single-moment result only for ζ ≈ 0 26. . The various results are sketched versus

damping value.

This is an example in which the single-moment method is the only one of the

alternative spectral methods that gives what one might consider to be a

bandwidth correction for the Rayleigh approximation. That is, the bandwidth of

0.01                    0.1                      1.0ζ
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the oscillator response is generally considered to depend on ζ , and only the

single-moment method gives an RR  value that depends on ζ .

********************************************************************************************

Example 11.11: Let the mean-zero, Gaussian stress process { ( )}X t  be the sum

of two very narrowband processes, such that { ( )}X t  has a bimodal autospectral

density. For a specimen with m = 3, compare the fatigue lives predicted by the

Rayleigh approximation, the peak-approximation method, the single-moment

method, the formula of Ortiz and Chen, and the formulas of Wirsching and Light.

We write the { ( )}X t  stress process as X t X t X t( ) ( ) ( )= +1 2 , with { ( )}X t1  and

{ ( )}X t2  being independent processes with autospectral densities of S1( )ω  and

S2( )ω , respectively. For simplification we also choose S2( )ω  to have the form

S b r S r2 1( ) ( / ) ( / )ω ω=  so that it has the same shape as S1( )ω . The parameters

r  and b  are the relative frequency and the relative variance of S2( )ω  as

compared with S1( )ω . That is, if { ( )}X t1  is narrowband at a frequency of ω0 and

has variance σ 0
2, then { ( )}X t2  is narrowband at frequency rω0  and has

variance bσ 0
2 . This gives any spectral moment of { ( )}X t  as having the form

λ λj j
jb r= +( ) ( )0 1 , in which ( )λ j 0  denotes the corresponding spectral

moment of { ( )}X t1 . The spectral method comparisons can be made even

simpler by letting the autospectral density of { ( )}X t1  be the limiting narrowband

function, giving

S brj
j j

1 0
2

0 0 0
2

02 1( ) ( / )[ ( ) ( )] ( )ω σ δ ω ω δ ω ω λ σ ω= + + − = +,     

One can now use these spectral moments in finding all the spectral predictions of

E T( ) , and the Rayleigh ratio values for the other three methods.

Note that the bimodal autospectral density reduces to a narrowband unimodal

shape if b  is either very small or very large, and also if r ≈1. As expected, one

can show that the RR  values do tend to unity in these limiting situations.

Furthermore, we also know that the Rayleigh approximation will be a good

approximation of the rainflow analysis for these narrowband situations. For more

general values of b  and r , for which the autospectral density is bimodal, there

can be notable differences in the various predictions. The peak-approximation

method always predicts a shorter fatigue life than does the Rayleigh

approximation. The single-moment method and the Wirsching and Light

formulas, however, consistently predict that the fatigue life should be greater than

the Rayleigh approximation. The Ortiz and Chen predictions are sometimes

above and sometimes below the Rayleigh results. In fact, the primary difference

between the results of Ortiz and Chen and those of the single-moment method is

that the RR  values are sometimes less than unity for the former method.

Although the Wirsching and Light and single-moment results agree to the extent
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that they always give RR  greater than unity, there are major differences in the

numerical values. It is found that the differences among the various

approximations become more pronounced when r  takes on larger values.

The comparison of the various spectral methods, of course, does not necessarily

demonstrate which method is most accurate. This assessment is usually based

on the results of rainflow analysis of simulated time histories. One of the more

extensive such studies (Larsen and Lutes, 1991) has included 180 bimodal

autospectral densities, and we can compare Rayleigh ratio values from these

results to those from the spectral approximations. We will do this, though, only for

the largest r  value included in the bimodal simulations, because this gives the

greatest differences between the various predictions. Thus, for our situation with

m = 3, we plot RR  values

versus b  for r =15 . The

plot at the right includes

curves for all the spectral

methods and the Wirsching

and Light approximation, as

well  as data points

obtained from rainflow

analysis.

Clearly, the single-moment

predictions are in the best

agreement with the rainflow

values. In particular, RR  values less than unity, as predicted by the peak-

approximation method and the Ortiz and Chen approximation, are not found by

the rainflow method. Also, the rainflow RR  values do substantially exceed the

maximum value of 1 20.  predicted by Wirsching and Light.

********************************************************************************************

These three examples cover only a small fraction of the possible spectral
density functions that one could investigate, but they do illustrate the similarities
and critical differences that have been found among the various spectral methods.
Example 11.9 is typical of problems in which the autospectral density is
unimodal and limited to a finite frequency range. In such situations one generally
finds that the predictions of the single-moment method, Ortiz and Chen’s
formula, and Wirsching and Light’s formula are in reasonably good agreement,
predicting fatigue life values that are somewhat above the Rayleigh prediction,
whereas the result of the peak-approximation method is quite close to the
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Rayleigh value.7 The autospectral densities in Examples 11.10 and 11.11
emphasize the differences among the various methods. In particular, Example
11.10 removes the limitation of a bounded frequency range, and Example 11.11
introduces a bimodal autospectral density. Both of these situations must be
considered common occurrences, so the differences revealed by these examples
have serious implications regarding the reliability of the various spectral
methods.

The peak-approximation method differs significantly from the Rayleigh
approximation only for IF values smaller than about 0.5, but the difference can
be significant for these nonnarrowband processes. However, the idea of using
S P tr = 2 ( )  with P t( )  representing every positive peak in a nonnarrowband
process is not very reasonable. For a stochastic time history resembling Fig.
11.4(a), for example, it is obvious that IF <<1 and most of the additional peaks
correspond to fairly small oscillations in the time history, not to completely
reversed cycles with S P tr = 2 ( ) . For such a process with a broadband or bimodal
autospectral density, it is not surprising that the peak-approximation method
significantly overpredicts the rate of damage accumulation. Overall, the peak-
approximation has never been found to be an improvement over the Rayleigh
method, and in some broadband situations it is much less satisfactory than the
Rayleigh method.

The major difficulty with the Ortiz and Chen procedure is that it sometimes
predicts RR values that are significantly less than unity, whereas simulation has
never demonstrated this to be true for the rainflow method. In Example 11.11 it
was seen that the Ortiz and Chen prediction of E T( )  for m = 3 was sometimes
only about 40% of the rainflow value for bimodal spectral densities, and
Example 11.10 illustrated a situation in which the Ortiz and Chen prediction of
E T( )  was zero. Thus, this formula can give major errors in the predicted fatigue
life. The Wirsching and Light formula does always give RR values greater than
unity, but these values are sometimes in significant disagreement with rainflow
results, as shown in Example 11.11. Furthermore, its RR prediction for the SDF
system of Example 11.10 is independent of the damping in the oscillator,
whereas the bandwidth of the response process is generally acknowledged to
vary with damping. The Wirsching and Light prediction that E T( )  is 26%
greater than the Rayleigh value even if the damping tends to zero is not only
inaccurate but also unconservative.

                                                  
7It should be noted that an example of this type is also given by Wirsching et al.
(1995).
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Example 11.10 showed that the single-moment method is the only one of
the considered spectral techniques that is capable of providing a consistent
bandwidth correction to the Rayleigh approximation for the unimodal response of
an SDF oscillator excited by white noise. Similarly, Example 11.11 showed that
it is the only one that is consistent with rainflow analysis of bimodal time
histories. Although there can be significant discrepancies between the single-
moment method and rainflow analysis, these errors are much smaller than the
maximum error for any of the other spectral methods. Overall, the single-moment
method is particularly attractive, based on simplicity, general consistency with
the idea of bandwidth, and agreement with rainflow analysis of simulated time
histories.

Based on the available data, it appears that one should avoid using high-
order spectral moments in any attempt to find a better spectral approximation
method. In particular, a small high-frequency component in the autospectral
density can cause a significant increase in the λ 4  spectral moment that enters
into the Ortiz and Chen formulation. Furthermore, the major error of this method
in Examples 11.8 and 11.9 occurs in situations in which there is a small high-
frequency component that is contributing substantially to λ 4  and thereby
reducing the predicted value of E T( ) . The rainflow fatigue calculations, on the
other hand, are not very sensitive to small high-frequency components, and the
single-moment method, which uses only λ 2/m , also seems to avoid such
difficulties. Inasmuch as the irregularity factor for a Gaussian process also
depends on λ 4 , one can anticipate difficulty when using any method that
predicts fatigue life based on the IF value.

11.11 Non-Gaussian Fatigue Effects
Because fatigue damage is a significantly nonlinear function of stress, we
anticipate that it may be sensitive to variations in the probability distribution of
that stress. For example, if the stress process { ( )}X t  has a greater-than-Gaussian
probability of taking on large values, then this is likely to cause large stress
ranges and these may cause significantly accelerated fatigue damage. We will
summarize one simple approach for approximating this non-Gaussian effect for a
narrowband stress process.

One method that has proved useful for modeling a non-Gaussian process
{ ( )}X t  is that of using

X t t t g Y tX X( ) ( ) ( ) [ ( )]= +µ σ (11.60)
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in which { ( )}Y t  is a mean-zero, Gaussian process and g( )⋅  is a monotonic
nonlinear function with g( )0 0= . The restrictions placed on the g( )⋅  function
assure that the peaks, valleys, and mean-value crossings of X t( )  will be at the
same time values as those of Y t( ) . This can be considered as giving a very loose
equivalence between the frequency content of the two processes. In particular, it
ensures that they have the same values of ν µX X

+ ( ) , νP , and irregularity factor
IF. In principle, it is always possible to choose the g( )⋅  function so that X t( )  has
any desired probability distribution, but this condition is often only approximated
in practice. In particular, g( )⋅  may be chosen to give the correct values only for
the first few moments of X t( ) .

We will now use Eq. 11.60 to estimate the fatigue damage accumulation
for the non-Gaussian { ( )}X t  process. In particular, we will use this idea to
generalize the Rayleigh approximation method. In the Rayleigh approximation,
we calculate the expected fatigue damage per cycle by taking the stress range as
S A tr = 2 ( ) , in which { ( )}A t  is the amplitude of { ( )}X t . Recall, though, that this
involves the observation that the probability distribution of A t( )  is essentially the
same as that of a peak P t( )  for a mean-zero, narrowband process. If we now let
P tX ( )  and P tY ( )  designate the peaks of { ( )}X t  and { ( )}Y t , respectively, then
we can say that

P t t t g P tX X X Y( ) ( ) ( ) [ ( )]= +µ σ

because g( )⋅  is a monotonic function. Similarly, the relationship between the
corresponding valleys of the processes is

V t t t g V tX X X Y( ) ( ) ( ) [ ( )]= +µ σ

We now impose the condition that { ( )}Y t  is narrowband, which gives
P t A tY Y( ) ( )=  and V t A tY Y( ) ( )= − . Of course, the peak and valley do not occur
simultaneously, but the narrowband assumption implies that A t( )  varies slowly,
so we can consider it to have the same value at the times of the peak and the
valley. This gives

S P t V t t g A t g A tr X X X X Y Y, ( ) ( ) ( ) [ ( )] [ ( )]= − = − −( )σ

Because { ( )}Y t  is Gaussian and narrowband, we know that its amplitude A tY ( )
has the Rayleigh distribution, so we can write the following integral for the
expected damage per cycle:
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E D K E g A g A

K g u g u ue du
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− −∞∫
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1
0

2 2
0

2

σ

λ
(11.61)

This can be used with Eq. 11.51 to give an estimate of the expected fatigue life.
Consider now the special case in which the g( )⋅  function is antisymmetric so that
g u g u( ) ( )− = − . This further simplifies Eq. 11.61 to give

E D K g u ue dum m m u( ) ( )/ /∆ = − −∞∫2 1
0

2 2
0

2
λ (11.62)

There are many possible choices for the g( )⋅  function (e.g., Lutes et al.,
1984; Sarkani et al., 1994), but we limit our attention to cubic Hermite
polynomial forms studied by Winterstein (1988):

X t b H Y t kurtosisX j j
j

( ) [ ( )]= >
=
∑σ

1

3
3     for (11.63)

and

Y t c H X t kurtosisj j X
j

( ) [ ( ) / ]= <
=
∑ σ

1

3
3     for (11.64)

in which H j ( )⋅  denotes the order j Hermite polynomial, as was briefly
introduced in Section 10.6. It may be noted that Eq. 11.63 gives g( )⋅  as a cubic
function, whereas Eq. 11.64 actually gives a cubic form for the inverse of the
g( )⋅ . The distinction is necessary in order to have g( )⋅  be monotonic for the full
range of kurtosis values.

Winterstein showed that the coefficients in Eqs. 11.63 and 11.64 can be
approximated with the simplified relationships of

b b b b b1 2
2

3
2 1 2
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Of course, it is necessary to invert Eq. 11.64 before we can use it to calculate the
expected value of the damage increment in Eq. 11.61. One form in which the
inverse can be written is
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Numerical integration can then be used for the evaluation of E D( )∆ .

To illustrate the effect of non-Gaussianity on fatigue, we introduce a
Gaussian ratio term defined as

GR
E T

E T
=

( )

( )

 for alternative distribution

 for Gaussian distribution
(11.65)

Note that this is very similar in concept to the Rayleigh ratio RR introduced to
present the effect of the autospectral density. Fig. 11.6 shows numerical values of

Figure 11.6 Non-Gaussian effect for narrowband process—Eq. 11.62.
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GR for the symmetric situation with skewness = 0  and c2 0= . In addition to the
results from numerical integration of Eq. 11.62, we include some results obtained
from rainflow analysis of simulated time histories (Lutes et al., 1984). It should
be noted that the simulation results represent the average of the results for several
different stress processes, not all of which were very narrowband. Thus, the
simulation data may show some effect of bandwidth as well as of kurtosis.
Nonetheless, they do confirm that Eq. 11.62 gives the proper trend in predicting
the non-Gaussian effect, particularly for kurtosis > 3.

Winterstein (1985, 1988) also offered a simplification whereby ( )GR −1  is
approximated as a linear function of the kurtosis, matching the slope of the curve
from Eq. 11.62 at the point kurtosis = 3. It has been found, though, that this
approximation seems to overestimate GR for small kurtosis values and that the
simulation data are better approximated by taking GR as a linear function of the
kurtosis in that situation. Thus, a reasonable approximation seems to be

GR
m m kurtosis

kurtosis

GR
m m kurtosis

kurtosis

= +
− −







 >

= +
− −

<

−

1
1 3

24
3

1
1 3

24
3

1
( )( )

( )( )

     for 

           for 

(11.66)

Figure 11.7 shows that this approximation is in very good agreement with the
simulation data. Rather surprisingly, it seems that these particular data are better
fitted by Eq. 11.66 than by Eq. 11.62. There is no obvious reason to expect this to

Figure 11.7 Non-Gaussian effect for narrowband process—Eq. 11.66.
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be true in general, but it does appear that the simple formulas in Eq. 11.66 may
be adequate for predicting the non-Gaussian effect for moderately non-Gaussian
processes.

One practical situation in which stress processes are known to be non-
Gaussian relates to the stresses in offshore structures subjected to wave loadings.
The nonlinear relationship between water velocity and the hydrodynamic loading
can cause the stress process to have significantly elevated kurtosis values, even if
the water waves are assumed to be Gaussian (Lutes and Wang, 1993). The
skewness of the stress process has also been investigated for this offshore
problem, but it appears that skewness is much less significant than kurtosis for
predicting fatigue values (Wang and Lutes, 1993). These offshore investigations
have also provided some evidence that if the stress is neither Gaussian nor
narrowband, it is sometimes acceptable to use correction factors for both the
autospectral density effect and the non-Gaussian effect. This approximation gives
the final estimate of E T( )  as the Rayleigh approximation multiplied by
( ) ( )RR GR .

It should be noted that at least one recent study found that applying the GR
correction of Eq. 11.66 to the results of the single-moment method did not
always give accurate results for a problem with a significantly non-Gaussian, but
relatively narrowband, stress process (Yang et al., 2003). The authors made a
detailed study of the distribution of peaks of their { ( )}X t  process and derived an
improved non-Gaussian approximation for fatigue. Their results can be
summarized by the statement that if the probability density of { ( )}X t  was written
in the form p u C G uX ( ) exp[ ( )]= −1 , then an improved fatigue analysis involves
using S Ar = 2  with p u C G u G u U uA ( ) ( ) exp[ ( )] ( )= ′ −2 . It may be noted for the
special case of a quadratic G u( ) , these p uX ( )  and p uA ( )  relationships become
exactly Gaussian and Rayleigh, respectively. The authors also corrected the
frequency ν0 of occurrence of fatigue cycles. Instead of using the value of
σ π σ˙ /( )X X2  that is appropriate for a Gaussian process, they considered the
special case of m =1 and chose ν0 to make E T K E Sr( ) /[ ( )]= ν0  match the
exact result of E T K E X( ) / (| ˙ |)= 2  (see Example 11.7). This latter calculation
was simplified by the fact that their { ( )}X t  process represented the response of
an oscillator with linear damping and a nonlinear spring, for which ˙( )X t  is
Gaussian (see Eq. 10.15). Very good results were obtained for this problem by
using the single-moment method with a GR value based on the derived p uA ( )
distribution and ν0 value. Further study is needed to determine the range of
problems for which this approach may be better than Winterstein’s
approximations.
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********************************************************************************************

Example 11.12: Consider the fatigue life of a structural joint for which the S/N

curve has been found to be N K Sf r= −( ) 4 . In actual use, the joint will be

subjected to a narrowband stochastic stress { ( )}X t  that is mean-zero and has

standard deviation σ X . This narrowband stress can be written as

X t A t t tc( ) ( ) cos[ ( )]= +ω θ , with A t( )  and θ( )t  being independent and θ( )t
uniformly distributed on the set of possible values. Rather than being Rayleigh

distributed, it is believed that A t( )  has the one-sided Gaussian distribution

p u
u

U uA t
X X

( ) /
( ) exp ( )=

−











1

41 2

2

2π σ σ

Compare the fatigue life predicted by the Rayleigh approximation, the use of

S A tr = 2 ( )  and p uA t( )( )  in Eq. 11.49, and the use of Eq. 11.66.

Before starting on the fatigue computation, it is appropriate to check for

consistency of the model. In particular, we find that

E A t u p u duA t X[ ( )] ( )( )
2 2

0
22= =

∞∫ σ

so the narrowband process gives E X t E A t[ ( )] [ ( )] /2 2 2= = σ X
2  (see Example

4.3). Thus, the model is consistent with σ X  being the standard deviation of the

stress. Now we note that the Rayleigh approximation from Eqs. 11.50 and 11.51

is E T KRay( ) /[ ( ) ( ) ]/ /= π λ λ64 0 3 2 2 1 2 , as in Example 11.9. For this narrowband

process we can say that λ 2 = ωc
2 λ 0, and we also know that λ 0 = σ X

2 . This

allows the Rayleigh approximation to be rewritten as

E T KRay c X( ) /( )= π ω σ64 4

Using S A tr = 2 ( )  in Eq. 11.49 gives

E D K E S K u p u du Kr A t X( ) ( ) ( )( )∆ = = =− − ∞ −∫1 4 4 1 4
0

1 42 192 σ

and Eq. 11.51 then gives the expected fatigue life as E T K c X( ) /[ ( ) ]= π ω σ96 4 .

Thus, this gives a prediction of E T( )  that is 33% smaller than the Rayleigh

approximation.

In order to use Eq. 11.66, we must find the kurtosis of the stress process. To do

this, we first integrate over the possible values for θ( )t  to find that

E X t E A t d E A t[ ( )] [ ( )]
cos ( )

[ ( )]4 4
4

0

2 4

2

3

8
= =∫ ψ

π
ψ

π

From the integral used in the previous step, we find that E A t[ ( )]4 = 12 4σ X , so

E X t[ ( )]4 = 4 5 4. σ X . Thus this process has kurtosis = 4 5. , and Eq. 11.66 then

gives GR = + ≈24 24 12 1 5 0 571/[ ( . )] . , which predicts a 43% reduction in fatigue

life as compared with the Rayleigh approximation (which would be appropriate

for a Gaussian process). This value is relatively consistent with the 33%

reduction calculated in the previous step. To neglect the non-Gaussian effect
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would be a more serious error, because it would result in a fatigue life prediction

that was significantly too large.

********************************************************************************************

Exercises
*****************************************************************
Peak Distribution
*****************************************************************
11.1 Let { ( )}X t  be a covariant stationary mean-zero Gaussian process with
standard deviation σ X , energy-based characteristic frequency ωc2 , and
irregularity factor IF = 0 5. .
(a) Evaluate P P t b X[ ( ) ]> σ  for b = –1, 1, 3, and 5, in which P t( )  is any peak of

X t( ) .
(b) Compare the values in part (a) with those that would apply for the limiting

cases of IF = 0  and IF =1.
(c) Find the expected rate of occurrence of peaks with value greater than 3σ X .
(d) Find the expected rate of occurrence of peaks with value less than −σ X .
*****************************************************************
11.2 Let { ( )}X t  be a covariant stationary mean-zero Gaussian process with
standard deviation σ X , energy-based characteristic frequency ωc2 , and
irregularity factor IF = 0 6. .
(a) Evaluate P P t b X[ ( ) ]> σ  for b = –1.5, 1.5, 3, and 4, in which P t( )  is any

peak of X t( ) .
(b) Compare the values in part (a) with those that would apply for the limiting

cases of IF = 0  and IF =1.
(c) Find the expected rate of occurrence of peaks with value greater than 3σ X .
(d) Find the expected rate of occurrence of peaks with value less than −1 5. σ X .
*****************************************************************
Extreme Value Distribution—Poisson Approximation
*****************************************************************
11.3 Each of the four formulas gives the joint probability density of X t( )  and
˙( )X t  for a particular covariant stationary stochastic process { ( )}X t . For each

process, estimate L u tX ( , )  by using the Poisson approximation. Also give a
qualitative sketch showing the shape of L u tX ( , )  versus u, both for t = 0  and for
some t > 0 . [Note: The upcrossing rates for these problems were found in
Exercise 7.2.]

(a) p u v
a

U a u vX t X t( ) ˙ ( )( , ) ( )= − −
1

2
2 2 2

π
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(b) p u v
b

v
U b uX t X t( ) ˙ ( ) /

( , )
( )

exp ( | |)= −












 −

1

2 2 21 2
2

2

2
2π σ σ

(c) p u v
u v

X t X t( ) ˙ ( )( , ) exp= − −
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2
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(d) p u v eX t X t
u v

( ) ˙ ( )

/ /
| |( , )

( / )
=









 − −3

2 1 3

1 3 1 2
3 2α γ

π
α γ

Γ
*****************************************************************
11.4 Consider the stationary { ( )}X t  process of Exercise 7.3 with

p u v A u
v

X t X t( ) ˙ ( )( , ) exp | |= − −












λ

σ

2

2
22

Use the Poisson approximation to estimate the values of L tX X( , )3σ  and
L tY X( , )3σ  for { ( )}X t  and the stationary Gaussian process { ( )}Y t  with the same
mean value and autocovariance function as { ( )}X t .
*****************************************************************
11.5 Consider the stationary { ( )}X t  process of Exercise 7.4 with

p u v A u
v

X t X t( ) ˙ ( )( , ) exp= − −












α

σ
4

2

2
22

Use the Poisson approximation to estimate the values of L tX X( , )3σ  and
L tY X( , )3σ  for { ( )}X t  and the stationary Gaussian process { ( )}Y t  with the same
mean value and autocovariance function as { ( )}X t .
*****************************************************************
11.6 Let { ( )}X t  be a covariant stationary, Gaussian process with the autospectral
density function of Exercises 7.6 and 7.9, with b = 8:

S A eXX
c( ) | | | |ω ω ω= −8

(a) Use the Poisson approximation to obtain an estimate of the probability that
the energy-based amplitude A t2( )  will ever cross the level u X= 4σ  during a
time interval of length 50 8c / .

(b) Perform the same calculation for the Cramer and Leadbetter amplitude
A t1( ) .

*****************************************************************
11.7 Let { ( )}X t  be a covariant stationary, Gaussian process with the autospectral
density function of Exercise 7.19:

S S U S UXX ( ) ( | |) ( | | )ω ω ω
ω
ω

ω ω ω= − + − − >0 0 0
0

4

0 0 0       with 
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(a) Use the Poisson approximation to estimate the probability that the Cramer
and Leadbetter amplitude A t1( )  will ever cross the level u X= 4σ  during a
time interval of length 100 0/ω .

(b) Is it feasible to perform the same calculation for the energy-based amplitude
A t2( )? Briefly explain your answer.

*****************************************************************
11.8 Let { ( )}X t  represent the dynamic response of an oscillator governed by

˙̇ ( ) ˙( ) ( ) ( )X t X t X t F t+ + =20 100ζ
with { ( )}F t  being mean-zero, Gaussian white noise with autospectral density
SFF ( ) /ω π= 400  for all ω .
Use the Poisson approximation to estimate L u tX ( , )  for the following three
situations:
(a) ζ = =0 20 4. ,     u
(b) ζ = =0 20 2. ,     u
(c) ζ = =0 05 4. ,     u
(d) For which of the three situations {(a), (b), or (c)} does the Poisson

approximation give the best estimate?
(e) For which of the three situations {(a), (b), or (c)} does the Poisson

approximation give the worst estimate?
(f) Briefly explain your answers to parts (d) and (e).
*****************************************************************
11.9 Let { ( )}X t  be a mean-zero Gaussian process with autospectral density
given by

 S U b U bXX ( ) ( | | ) ( | |)ω ω ω= − + + −4 10 10  mm /(rad/s)2

Use the Poisson approximation to estimate L u tX ( , )  for the following three
situations:
(a) b u= =4 32 rad/s,      mm
(b) b u= =4 16 rad/s,      mm
(c) b u= =1 16 rad/s,      mm
(d) For which of the three situations {(a), (b), or (c)} does the Poisson

approximation give the best estimate?
(e) For which of the three situations {(a), (b), or (c)} does the Poisson

approximation give the worst estimate?
(f) Briefly explain your answers to parts (d) and (e).
*****************************************************************
11.10 Consider the problem of predicting the probability of structural yielding
during a wind storm that has been modeled as a stationary segment of Gaussian
stochastic force. It has been determined that the critical response is the X t( )
distortion in the first story and that yielding will occur if | ( ) |X t ≥ 60 mm. The
unyielded structural response { ( )}X t  can be modeled as the response of a linear
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SDF system with a 1 second period (ω π0 2=  rad/s ) and 2% of critical damping,
and the stationary response has been found to have µX = 0  and σ X =11 mm.
The duration of the wind storm is 2 hours. Estimate the probability that yielding
will occur during the 2-hour wind storm by using the Poisson approximation for
the double-barrier problem.
*****************************************************************
11.11 You wish to estimate the probability that two buildings will collide during
an earthquake. Let X t1( )  be the response at the top of building 1 (the shorter
building), X t2( )  be the response of building 2 at the level of the top of building
1, and Z t X t X t( ) ( ) ( )= −1 2 . Collision will occur if Z t( ) > 20 mm (i.e., there is 20
mm clearance in the static position). For your design earthquake, you find that
the standard deviations and average frequencies of the individual stationary
responses are:

σ X1 2 5= . mm, ν
X

t
1

0 1 0+ =( , ) .  zero-upcrossings/s

σ X2 5 0= . mm, and ν
X

t
2

0 0 25+ =( , ) .  zero-upcrossings/s

Consider { ( )}X t1  and { ( )}X t2  to be mean-zero, independent, Gaussian
processes.
(a) Find the standard deviation and the average frequency of zero-upcrossings by

{ ( )}Z t .
(b) Find the rate of upcrossings by { ( )}Z t  of the level Z = 20 mm .
(c) Assume that the probability of collision is the probability of at least one

upcrossing of Z = 20 mm  during 20 seconds of stationary response. Estimate
this probability by using the Poisson approximation.

*****************************************************************
Extreme Value Distribution—Vanmarcke’s Approximation
*****************************************************************
11.12 Let { ( )}X t  be a covariant stationary Gaussian stochastic process with zero
mean value and the autospectral density of Exercise 7.12:

S eXX ( ) | |ω ω ω= −5 2

(a) Estimate L u tX| | ( , )  for u =10  and t =10 by using the Poisson approximation.
(b) Estimate L u tX| | ( , )  for u =10  and t =10 by using Vanmarcke’s modified

approximation (Eq. 11.35).
*****************************************************************
11.13 Let { ( )}X t  be a covariant stationary Gaussian stochastic process with zero
mean value and the autospectral density of Exercise 7.13:

SXX ( ) | |exp( )ω ω ω= − 2

(a) Estimate L u tX| | ( , )  for u = 3 and t = 75  by using the Poisson approximation.
(b) Estimate L u tX| | ( , )  for u = 3 and t = 75  by using Vanmarcke’s modified

approximation (Eq. 11.35).
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*****************************************************************
Rayleigh Fatigue Approximation
*****************************************************************
11.14 Use the Rayleigh approximation to estimate the expected number of cycles
until failure for a mean-zero stress process { ( )}X t  with σ X = 25 MPa , using
each of the following S/N curves.

(a) N Sf r= ( , / ) .13 000 3 3

(b) N Sf r= ( , / ) .7 000 4 0

 [Note: Properties of the gamma function are given in Example 3.7.]
*****************************************************************
11.15 For a material with an ultimate stress of xu = 516 MPa , use the Rayleigh
approximation to estimate the expected number of cycles until failure for a stress
process { ( )}X t  with µX =100 MPa  and σ X = 25 MPa , using the Gerber
correction and the following S/N curves:

(a) N Sf r= ( , / ) .13 000 3 3

(b) N Sf r= ( , / ) .7 000 4 0

*****************************************************************
11.16 A structural joint has been subjected to constant-amplitude fatigue tests at
the single level of Sr = 200 MPa , and the observed fatigue life was N f = 4 105×
cycles. Based on experience with similar joints, it is estimated that the m
parameter of the S/N curve is in the range of 3 5 4 5. .≤ ≤m . Based on this limited
information, choose acceptable levels for the standard deviation σ X  of the
narrowband, mean-zero, Gaussian stress that will be applied to the joint in actual
service. You need consider only the two limiting values of m = 3 5.  and m = 4 5. ,
not all the possible m values. Solve the problem for the design conditions of:

(a) E N T[ ( )] =106 cycles

(b) E N T[ ( )] =108 cycles
*****************************************************************
11.17 A machine part has been subjected to constant-amplitude fatigue tests at
the single level of Sr =100 MPa , and the observed fatigue life was N f = 5 106×
cycles. Based on experience with similar parts it is estimated that the m
parameter of the S/N curve is in the range of 3 0 4 5. .≤ ≤m . Based on this limited
information, choose acceptable levels for the standard deviation σ X  of the
narrowband, mean-zero, Gaussian stress that will be applied to the joint in actual
service. You need consider only the two limiting values of m = 3 0.  and m = 4 5. ,
not all the possible m values. Solve the problem for the design conditions of:

(a) E N T[ ( )] =107 cycles

(b) E N T[ ( )] =109 cycles
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*****************************************************************
11.18 The S/N curve for a particular connection has been found to be N f =
( , / ) .10 000 3 5Sr . In service it is subjected to a stress process { ( )}X t  that is mean
zero and has σ X =12 MPa . Furthermore, { ( )}X t  can be modeled as the response
of an SDF oscillator subjected to a Gaussian white noise excitation. The natural
frequency and damping ratio of the oscillator are ω0 3= rad/s and ζ = 0 02. . Use
the Rayleigh approximation to estimate the expected hours of service prior to
fatigue failure.

*****************************************************************
Single-Moment Fatigue Method
*****************************************************************
11.19 Let the mean-zero, Gaussian stress process { ( )}X t  have an autospectral
density function of S SXX ( ) exp( | |)ω β ω= −0 . For a specimen with m = 3,
compare the fatigue lives predicted by the Rayleigh approximation and the
single-moment method.

*****************************************************************
11.20 Let the mean-zero, Gaussian stress process { ( )}X t  have an autospectral
density function of

S S U UXX ( )
| |

( | | ) ( | |)ω
ω
ω

ω ω ω ω= − −




















 − −0

0
0 01

1
5

1 6

For a specimen with m = 4 , compare the fatigue lives predicted by the Rayleigh
approximation and the single-moment method.

*****************************************************************
11.21 Let the mean-zero, Gaussian stress process { ( )}X t  have an autospectral
density function of

S S U S UXX ( ) ( | |)
| |

( | | )ω ω ω
ω
ω

ω ω= − +








 −0 0 0

0
4

0

For a specimen with m = 3, compare the fatigue lives predicted by the Rayleigh
approximation and the single-moment method.

*****************************************************************
11.22 Let the mean-zero, Gaussian stress process { ( )}X t  represent the response
of a 2DF system with lightly damped modes. In particular, the fundamental mode
has damping ζ1 0 01= .  and frequency ω1 6= rad/s, and the second mode has
ζ2 0 02= .  and frequency ω2 80= rad/s . The standard deviations of the modal
stress values are σ X1

100= MPa  and σ X2
7 5= . MPa . Make an approximate

comparison of the fatigue lives predicted by the Rayleigh approximation and the
single-moment method for a specimen with m = 4 . Do this by considering the
two modal responses to be independent and concentrated at their natural
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frequencies ω1 and ω2 so that the autospectral density can be approximated by
the form used in Example 11.11.
*****************************************************************
Non-Gaussian Fatigue Effects
*****************************************************************
11.23 Consider the fatigue life of a structural joint for which the S/N curve has
been found to be N f = K Sr( )−3 . In actual use the joint will be subjected to a
non-Gaussian narrowband stochastic stress { ( )}X t  that is mean zero and has a
standard deviation σ X . This narrowband stress can be written as X t( ) =
A t t tc( ) cos[ ( )]ω θ+ , with A t( )  and θ( )t  being independent, θ( )t  being
uniformly distributed on the set of possible values, and A t( )  having an
exponential distribution: p u u U uA t X X( )( ) ( ) exp( / ) ( )= −−σ σ1 . Evaluate the
fatigue life predicted by:
(a) using the Rayleigh approximation.
(b) using S A tr = 2 ( ) and p uA t( )( )  in Eq. 11.49.
(c) using Eq. 11.66.
*****************************************************************
11.24 Consider the fatigue life of a structural joint for which the S/N curve has
been found to be N f = K Sr( )−4 . In actual use the joint will be subjected to a
non-Gaussian narrowband stochastic stress { ( )}X t  that is mean zero and has a
standard deviation σ X . This narrowband stress can be written as X t( ) =
A t t tc( ) cos[ ( )]ω θ+ , with A t( )  and θ( )t  being independent, θ( )t  being
uniformly distributed on the set of possible values, and A t( )  having a Weibull
distribution of the form

p u
u u

U uA t
X X

( )( ) exp ( )=












−











π

σ

π

σ

3

4

4

44 16

Evaluate the fatigue life predicted by:
(a) using the Rayleigh approximation.
(b) using S A tr = 2 ( ) and p uA t( )( )  in Eq. 11.49.
(c) using Eq. 11.66.
*****************************************************************
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Chapter 12
Effect of Parameter Uncertainty

12.1 Basic Concept
All the preceding chapters have been based on the presumption that the equation
of motion of the dynamic system is described deterministically. The only source
of randomness has been the stochastic excitation. In most cases the systems
considered have had constant coefficients, but even when we considered the
parameters to vary with time, that variation was deterministic. It is rather obvious
that this is a major simplifying assumption in many practical situations, because
there may be considerable uncertainty about the parameter values in many
problems, especially structural engineering problems. Taking the multi-degree-
of-freedom (MDF) system as the prototypical problem, there may be uncertainty
about the appropriate values of the m , c, and k matrices during a particular
dynamic event, even though it may be appropriate to consider them not to vary
throughout the dynamic analysis. Similarly, in the state-space formulation of the
equations of motion in Section 8.6 and Chapter 9, there is often uncertainty about
the appropriate values for the A and B matrices in the equation of motion.

We have previously noted that there is almost always uncertainty about the
energy dissipation during dynamic motion of a mechanical or structural system,
so the components of the c matrix may vary significantly from their “design”
values. The mass of a system is generally known much more accurately, and the
same is generally true for the stiffness of a mechanical system. There may be
significant uncertainty about both mass and stiffness, though, in structural
engineering systems, particularly buildings. The mass magnitude and distribution
within a building depend on the details of the usage of the building. While a
building is in use, the mass distribution can surely be ascertained reasonably well
by careful study of the contents, but this can be time-consuming and costly. If
one wishes to do a post mortem of a building after a disaster, such as an
earthquake, there may be much more uncertainty about the mass matrix.
Probably the greatest uncertainty about the stiffness matrix for a structure has to
do with the effect of “nonstructural” components. Testing has shown that
partitions within a building do add significant stiffness, at least during small
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deflections, even though they are not considered load-bearing components. Thus,
both k and m must also be considered uncertain in many practical problems.

One of the first issues is to decide what one wishes to learn about the effect
of parameter uncertainty. To be more specific, let Q denote the response quantity
of interest and a vector 

r
r  contain all the uncertain parameters. A complete

description of the problem, then, may be considered to be the finding of Q as a
function of 

r
r . If 

r
r  has only one or two components, for example, then one could

plot Q r( )
r

. If 
r
r  has many components, though, this may be too much

information. Furthermore, the Q r( )
r

 function may be so complicated that even
numerical evaluation is prohibitive. For practical purposes, one often needs some
simplified formulation that quantifies the effect of parameter uncertainty without
direct consideration of the full Q r( )

r
 function. Such simplified formulations are

the focus of this chapter.

First consider the problem of determining how the response would be
altered if a single parameter were changed by a small amount. Approximating
this as a linear problem gives the key factors as being the so-called sensitivity
coefficients, defined as first derivatives:

β
∂
∂l

l r r

Q

r
≡













=
r r

0

(12.1)

in which 
r
r0 is the original design point in parameter space. Roughly speaking,

one can say that a ∆ rl  change in parameter rl  will cause a change of βl lr∆  in
the value of Q. Of course, this proportionality may not hold for finite changes in
the parameter if Q  depends on rl  in a significantly nonlinear way. This
sensitivity analysis has been carried out for a number of deterministic problems,
in particular in connection with stability studies. In this chapter we are
particularly interested in focusing on problems of stochastic response, and we
also wish to consider more than infinitesimal amounts of uncertainty about the
parameters. Nonetheless, the sensitivity coefficients in Eq. 12.1 will play a key
role.

The most common approach for modeling uncertainty about the parameters
of a problem is to use probability analysis, in which each uncertain parameter is
treated as being a random variable. There are other approaches, such as fuzzy
sets, but we will not consider these here. At first glance it may seem that we are
now introducing a new problem for which none of our previous work will be
applicable. Fortunately, though, the situation is not this bad. In particular, any
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analysis using deterministic values of the parameters may be considered to give a
conditional solution, given those specific parameter values. For example, let MM ,
CC , and KK  be matrices of random variables denoting the uncertain mass,
damping, and stiffness, respectively, of an MDF system. Then it can be said that
each analysis with fixed values of the m , c, and k matrices gives a solution
conditioned on the event that MM = m, CC = c , and KK = k . Thus, the analyses
from the preceding chapters are not irrelevant, but they are inadequate for a
complete description of the problem. The new problem is to find the effect of
variations of the parameters away from the deterministic values we have used in
our analyses.

Rather than beginning with a modeling of MM , CC , and KK , it is often
convenient to consider there to be a random vector 

r
R  of uncertain parameters

with MM , CC , and KK  each being functions of 
r

R . This can be particularly useful
when the components of 

r
R  can be considered to be independent random

variables, whereas MM , CC , and KK  do not have independent components and may
not be independent of each other. For example, if a building owner installs
additional nonstructural walls within the building, this modification will almost
surely increase both the mass and the stiffness of the structure and will probably
also increase the damping. In principle, introducing the new parameter vector 

r
R

does add much additional complication to the problem. If one knows the
probability distribution for the vector 

r
R  and knows how MM , CC , and KK  each

depends on 
r

R , then one can find the probability distribution of MM , CC , and KK .
In practice, this step is simple if the dependence on 

r
R  is linear, and less so if it is

nonlinear. Approximations are often used.

Before proceeding further it is worthwhile to identify the notation that will
be used. The symbols 

r
r , m , c, k, and so on, will denote general values of

parameters and may be considered as variables in our problems. The specific
values 

r
r0, m0 , c0 , k0, and so forth, will denote the “design point” used when

uncertainty is ignored. Finally, 
r

R , MM , CC , KK , and so on, will denote random
variables defined on the selected ranges for 

r
r , m, c, k, and so forth. Throughout

the following analysis we will adopt a common convention in which the
uncertain parameters are modeled such that the mean value of the vector 

r
R  is the

design point 
r
r0. This choice is certainly not essential, but it does sometimes

simplify both the results and the comparisons with the solutions without
parameter uncertainty.

Modeling the parameters as random variables gives the response quantity
Q Q= ( )

r
R  as also being a random variable. Thus, one might consider the



Random Vibrations560

probability distribution of Q to be a complete probabilistic description of the
effect of random parameter uncertainty. This general problem of finding the
probability distribution of a function of random variables was studied in Section
2.6, but it can become very complicated for the problems of interest here. A less
complete, but more practical, approach is to study the mean and variance of Q.
Roughly speaking, knowledge of the first moment of Q provides information
about the extent to which consideration of parameter uncertainty may shift the
most likely value of the response to a higher or lower value than predicted from
the design point. Similarly, the variance, or standard deviation, of Q indicates the
extent to which the actual value of Q may differ significantly from its own mean
value.

The general problem of finding the moments of a function of random
variables was considered in Section 3.3. In principle, one can always find the
moments of Q( )

r
R  by either analytical or numerical integration over the chosen

probability distribution of 
r

R . We will include such “exact” results in some
examples presented in this chapter. The practical difficulty is that the functional
relationship is sometimes quite complicated, making it necessary to use
approximate methods of analysis that will simplify computations. Another
approach, which we will not pursue here, is the so-called Monte Carlo method, in
which independent samples of 

r
R  are simulated and the value of Q is found for

each of these (Astill and Shinozuka, 1972; Shinozuka, 1972; Chang and Yang,
1991; Zhang and Ellingwood, 1995). Statistical averages over the resulting
samples of Q give estimates of the moments or probability distribution of Q. The
difficulty with the Monte Carlo method, as with direct evaluation of the
quantities from integration and differentiation, is the time and cost involved in
the procedures when the Q( )

r
R  relationship is complicated.

Much of the presentation here, as in the research work on this problem,
will focus on so-called perturbation methods based on derivatives of Q  with
respect to the uncertain parameters, including the sensitivity coefficients
(Contreras, 1980; Ghanem and Spanos, 1991; Kleiber and Hien, 1992). The
primary purpose in the perturbation approaches is to reduce the computational
task as compared with direct evaluation of the moments and/or probability
distribution of Q. A secondary benefit of perturbation is the derivation of some
approximate formulas for finding moments of Q  without selection of a
probability distribution for the uncertain parameters.

It should be noted that the effect of uncertain parameters applies to each of
the types of dynamic analysis that we have considered. For example, the impulse
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response function used in traditional time-domain analysis will become random
when the input parameters are random, as will the frequency response function
used in traditional frequency-domain analysis. The response moments or
cumulants will then be random, whether determined from time-domain,
frequency-domain, or direct analysis. Furthermore, the probabilities of first-
passage or fatigue failure will also have uncertainty due to the uncertain
parameters. Note also that the uncertainty about response values is not limited to
random vibration problems, or even to dynamic problems. Within this chapter,
though, we will focus on the random vibration topics that form the basis of this
book.

12.2 Modeling Parameter Uncertainty
The analyst rarely has much empirical evidence available to indicate an
appropriate probability distribution for physical parameters such as MM , CC , and
KK  or the parameters in 

r
R  that affect MM , CC , and KK . One response to this

situation is to use the “maximum-entropy” principle to choose probability
distributions that are consistent with this ignorance. In particular, Jaynes (1957)
gave results for choosing a one-dimensional probability distribution that is
consistent with a given set of constraints while maximizing Shannon’s measure
of uncertainty about the random variable. The basic idea is that maximizing the
uncertainty minimizes the biases introduced by the modeling process. The
simplest situation for this approach is that in which the constraints are a smallest
possible and a largest possible value for the random variable, for which the
maximum-entropy distribution is uniform on this set of possible values. When
mean and variance, as well as smallest and largest values are known, the solution
is a truncated Gaussian distribution on the set of possible values. The uniform
and truncated Gaussian distributions have commonly been used in studying the
effect of parameter uncertainty (Udwadia, 1987).

One difficulty with using the uniform and truncated Gaussian distributions
may be the choice of the smallest and largest possible values of the parameters.
These extreme values are generally not well known. Furthermore, these two
distributions (particularly the uniform) assign significant probability of being
near these limiting values, so the results may be sensitive to the choice of
smallest and largest values. In the extreme, one might consider that the smallest
and largest values are unknown but that the mean and variance are known. In this
case it seems reasonable to use the usual untruncated Gaussian distribution, but
this may cause significant difficulty. For example, it is known that mass damping
and stiffness must all be nonnegative, but using a Gaussian distribution for any of
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them allows the possibility that the quantity will take on negative values. Another
difficulty arises if the response quantity of interest varies inversely with the
parameter being modeled. For example, if the response is inversely proportional
to R  and R  has the Gaussian distribution, then the moments of the response will
not exist because the probability density giving the likelihood of R −1 being in
the vicinity of v will decay only as v−2  as | |v → ∞. Thus, use of the uniform or
Gaussian distribution to model the uncertainty about many parameters does
require the knowledge or estimation of smallest and largest possible values.

One way in which the Gaussian distribution can be used is to assume that it
applies to the logarithms of the parameters. In particular, if one considers the
logarithms of the parameters to be the uncertain quantities of interest, then one
can consider them to be Gaussian. For example, if log( )R  is considered
Gaussian, then R  has what is called the log-normal distribution. The probability
distribution can be written in terms of the mean and variance of log( )R  or in
terms of the mean and variance of R . Using the log-normal distribution for R
gives it as nonnegative, and R −1 also has a log-normal distribution. Another
advantage of the log-normal model has to do with “symmetry” with respect to the
uncertainty. For example, modeling R  as having a symmetric distribution seems
to imply that 1 5. µR  has the same likelihood as 0 5. µR . It sometimes seems more
logical, though, to assume that 2µR  and µR /2  have the same likelihood,
representing a symmetric uncertainty about the percentage error. This latter type
of symmetry is provided by considering log( )R  to have a symmetric distribution,
as in the log-normal modeling. For very small ranges of uncertainty, there is no
practical difference between considering R  or log( )R  to be symmetric, but the
difference is significant when the uncertainty is large. Which is correct, of
course, depends on the particular problem being considered and the given
information about the parameters.

12.3 Direct Perturbation Method
One of the simplest approaches to calculating the effect of parameter uncertainty
is to approximate the response as a polynomial in the uncertain parameter, or in
some parameter that can be used to define the magnitude of the uncertainty. This
polynomial is generally a Taylor series about the mean value of the parameters.
For example, if the vector 

r
R  has components that are all the uncertain

parameters and the response of interest is Q Q= ( )
r

R , then the first-order
approximation is
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Q Q
Q r

rlin
l rl

R

l l
= +
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in which R is the number of uncertain parameters. Note that the first-order
approximation gives a linear relationship between Qlin  and each of the uncertain
parameters. Similarly, a quadratic approximation is obtained by using the second-
order polynomial

Q Q
Q r

r rquad lin
l k rk
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Higher-order approximations are easily written but are generally difficult to use.
The linear relationship is often used in practice because of its simplicity.

We now introduce into the approximation formulas the restriction that 
r
µR

is the design point 
r
r0. This makes the first-order derivatives in the linear

approximation be exactly the β l  sensitivity coefficients defined in Eq. 12.1. For
convenience we also use the same symbol with a double subscript to denote the
second derivatives at the design point:

β
∂

∂ ∂lk
l k r r

Q

r r
≡













=

2

0
r r

(12.2)

With this notation we can rewrite the linear and quadratic approximations as

Q Q rlin l

l

R

l l= + −
=
∑0

1

0β ( ),R (12.3)

and

Q Q r rquad lin lk
k

R

l l
l

R

k k= + − −
==
∑∑1

2
1

0
1

0β ( )( ), ,R R (12.4)

in which we have also used the notation Q Q r0 0≡ ( )
r

.

For the linear relationship of Eq. 12.3, the mean value and variance of Q
are
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E Q Q Qlin lin l k
k

R

l

R

l k[ ] [ ] , ]= =
==
∑∑0

11

,     Var Cov[β β R R (12.5)

whereas the quadratic approximation gives

E Q E Qquad lin lk
k

R

l

R

l k[ ] [ ] , ]= +
==
∑∑1

2
11

β Cov[R R (12.6)

and
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[( )( )( )(
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, , , ,
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E r r r r
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j

R
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R

l

R

l l k k j j

ji lk
i

R

j

R
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R
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R

l l k k j j i i
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===

====
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111
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1111
0 0 0

1
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R R R R 00]

, ] , ]

−(

)Cov[ Cov[R R R Rl k j i

(12.7)

The results are considerably simplified if the components of 
r

R  are
independent and therefore uncorrelated. In particular, Eqs. 12.5–12.7 become

E Q Q Qlin lin l
l

R

l
[ ] [ ]= =

=
∑0

2

1

2,     Var β σR (12.8)

E Q E Qquad lin ll
l

R

l
[ ] [ ]= +

=
∑1

2
1

2β σR (12.9)

Var Var[ ] [ ] [( ) ]

[( ) ]

,

,

Q Q E r
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R
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ll
l

R

l l lk
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= + − +
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β σ β σ σ

1
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2

1
0

4 4 2

1

1

1

2 21
4

R

R R R R

(12.10)

Note that including the quadratic term in the variance calculation requires
knowledge of the third and fourth cumulants of the input parameters. If one
presumes a given probability distribution for the uncertain parameters, then these
quantities can be calculated, but one usually has relatively little confidence in the
estimates of these skewness and kurtosis values for an uncertain parameter. One
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way of avoiding this difficulty is to use a somewhat inconsistent approach (e.g.,
see Benajamin and Cornell, 1970) in which the first-order approximation of Eq.
12.5 or 12.8 is used for the variance and the second-order approximation of Eq.
12.6 or 12.9 is used for the mean. In this way, both estimates are based only on
the first and second moments of the uncertain parameters. We will call this a
mixed-order perturbation method.

One major advantage of the first-order and mixed-order approximations is
that one can estimate the mean and variance of the response quantity without
choosing a specific probability distribution for the uncertain parameters.
Calculation of the probability distribution of the response quantity, however,
generally does require choice of a specific probability distribution for the
uncertain parameters. Furthermore, this calculation may become complicated
even for relatively simple distributions of the uncertain parameters, such as
uniform distributions. One alternative approach might be the selection of a form
for the probability distribution of the response quantity, then a fitting of this form
to moments calculated from perturbation. If the response quantity must be
nonnegative, then the previously mentioned log-normal distribution or a gamma
distribution may be reasonable. On the other hand, this is not always appropriate.
For example, the probability of failure must always be between zero and unity, so
a beta distribution might be more appropriate for modeling this response
quantity.

It should also be noted that one can sometimes simplify the differentiation
required within the perturbation method by using the chain rule. For example,
assume that an eigenvalue of the system is given as λ = g r( )  and the response
quantity of interest is given as Q f r= ( , )λ . Then one can write

d Q

d r

f

r

f
g r= + ′∂

∂
∂
∂ λ

( )

This sort of procedure can be carried on for as many steps as necessary. Taking
the derivative of this expression gives a relationship for the second derivative
with respect to r, if that is desired.

It is often helpful to normalize the Q  and 
r

R  terms in the analysis. One
convenient way of doing this is to divide each uncertain quantity by its value
obtained when uncertainty is ignored. For example, if one takes R Kl k= / 0  with
E k( )K = 0 , then E l( )R =1. Similarly, if Q  is equal to a physical response
quantity divided by the conditional value when 

r r
R R= =E r( ) 0 , then Q0 1=  and
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deviations of E Q( )  from unity indicate the extent to which the response quantity
is affected by nonlinear relationships between Q  and 

r
R . Also, these

normalizations give dimensionless sensitivity coefficients that give the
percentage change in the response due to a small change in the uncertain
parameter. These ideas will be illustrated in the applications in subsequent
sections.

The major shortcoming of the perturbation approach is that the linear
approximation may not adequately capture the nonlinear relationship between the
response and the input parameter (Igusa and Der Kiureghian, 1988; Katafygiotis
and Beck, 1995; Gupta and Joshi, 2001). This is particularly true when the
uncertainty is large. In principle, one can improve the method by using the
quadratic or higher-order polynomial approximations, but this is not necessarily
an improvement. Including higher-order terms does give a better fit near the
point of expansion of the Taylor series, but this does not ensure a better fit for
large variations in the parameter. In addition, there is the difficulty of having the
mean and variance of the response quantity depend on the details of the assumed
probability distribution of the parameter, as was mentioned regarding the
variance computed from the quadratic model.

12.4 Logarithmic Perturbation Method
We will now consider an alternative approximation in which we consider log( )Q
as a function of the log( )R l  variables and use a perturbation method on the
logarithms. In general, we want our approximation to match Q at the design point
used in an analysis with no parameter uncertainty. That is, we want a perfect fit
at the point 

r
R = E(

r
R ) =

r
r0. This suggests that our logarithmic perturbation

should be about the point log( ) log( )
r r
r r= 0 , rather than the point log( )

r
r =

E[log(
r

R )] .

Let the linear approximation in logarithmic space be written as

[log( )] log( ) ( ) )],Q Q rlin l
l

R

l l= + −
=
∑0

1
0χ [log log(R (12.11)

in which χ l  is the derivative of log( )Q  with respect to log( )rl , evaluated at the
design point. Similarly, a quadratic approximation can be written as
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[log( )] [log( )] ( ) )] ( ) )], ,Q Q r rquad lin lk

k

R

l

R

l l k k= + − −
==
∑∑1

2
11

0 0χ [log log( [log log(R R

(12.12)

in which χ lk  is the mixed second derivative in the logarithmic variables. The
logarithmic derivatives can be evaluated by the chain rule to give
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∂
∂
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∂
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Q
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Q

r
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Q

Q
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l

l
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k

l

l
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l k
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l k
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=










=













= −










+

This allows the χ  coefficients to be written in terms of the β  coefficients
defined in Eqs. 12.1 and 12.2 as

χ β χ δ β β β βl
l

l lk
l

lk l
l k

l k
l k

lk
r

Q

r

Q

r r

Q

r r

Q
= = − +, , , , , ,,0

0

0

0

0 0

0
2

0 0

0
      (12.13)

in which δlk  is unity if l k=  and zero otherwise (the Kronecker delta).

The linear approximation in the logarithmic space gives a simple power-
law form for the dependence of Q on 

r
R :

Q Q
r

l

R
l

l

l

log lin- =












=
∏0

1 0

R

,

χ

(12.14)

and the quadratic approximation gives a more complicated form that can be
written as

Q Q
r

l

R

k

R
l

l

rlk k k

log quad log lin- -=










= =
∏ ∏

1 1 0

20R
R

,

log( / ) /,χ

(12.15)
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Finding the mean and variance of Q from either Eq. 12.14 or 12.15 requires use
of a particular probability distribution for the uncertain R l  parameters, inasmuch
as one must find the expected values of powers of the parameters. This is a
disadvantage of the logarithmic formulation as compared with perturbation
without logarithms. The logarithmic approximations, however, include forms that
are not well approximated by the linear and quadratic approximations in the
original variables. Of course, one can use numerical integration to obtain
response moments for Q using the logarithmic approximations, and analytical
evaluations are also easy for Eq. 12.14 if the components of 

r
R  have uniform

distributions.

Another situation in which it is convenient to use the logarithmic linear
approximation is that in which one assumes that the R l  terms are independent
and log-normal, which requires that the log( )R l  terms are independent and
Gaussian. The linear approximation of Eq. 12.11 then gives log( )Q  as also being
Gaussian, so Q has the log-normal distribution given by

p u
u Q

u E Q

Q
U uQ ( )

( )]
exp

log( ) ( )]

( )]
( )

/
=

( )
−

−( )













1

2 21 2

2

π Var[log

[log

Var[log
(12.16)

The relationships between the moments of log-normal quantities and their
Gaussian logarithms are relatively simple (see, e.g., Benjamin and Cornell,
1970), and using them along with Eq. 12.11 gives

µ
σ

σ µ
σ

χ

χ χ χ

Q l
ll

R

Q Q
ll

R

Q r
r r

l l

l l

l

l
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0
2

1 2

1

2 2
2

0
2

1

1 1 1

2

,
,

( ) /

,

R R
,     

(12.17)

Note, also, that these expressions become much simpler when one uses a
normalization that gives Q0 1=  and each rl,0 1= .

Thus, it is quite easy to obtain approximations for the mean value,
variance, and probability distribution of the response quantity if one uses the
logarithmic-linear approximation along with the assumptions that the uncertain
parameters are independent and log-normal. Analytical expressions for the mean
and variance of Q can also be obtained for the logarithmic-quadratic expansion
with the independent and log-normal assumption for the parameters. These
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expressions, though, are quite long and complicated and will be omitted here. Of
course, numerical integration can be used to find moments of Q  using the
logarithmic-quadratic approximation of Q r( )

r
 and any chosen distribution for the

uncertain parameters.

The gamma distribution has also been used for modeling uncertain
parameters (Katafygiotis and Beck, 1995). It has the form

p u
b

a
u e U u

l

l
l ll

a

l

a b u
R ( )

( )
( )= − −

Γ
1 (12.18)

in which the a l  and bl  constants can be written in terms of the mean and
variance of the parameters as a l l l= ( /µ σR R )2 and bl l l= µ σR R/( )2. This
distribution works particularly well with the logarithmic-linear perturbation of
Eq. 12.14 inasmuch as it gives

E Q Q
a n

a r b

n n l l

l l l
n

l

R

l
( )

( ),

=
+( )

( )=
∏0

01

Γ

Γ

χ
χ

(12.19)

from which it is easy to compute the mean and the variance of Q.

12.5 Stationary Response Variance for Delta-Correlated Excitation
The simplest stochastic problem we can consider is the variance of the { ( )}X t
response of an SDF system with a delta-correlated force excitation. As shown in
Eqs. 5.63 and 5.64, the conditional variance of the displacement given m, c, and k
is

σ
π

ζ ω

π
X

S

m

S

k c
2 0

2
0
3

0

2
= = (12.20)

in which we have used G S0 02= π  based on the results in Section 6.5. Note that
this equation is for the force excitation, with S0  being the autospectral density of
the exciting force. Similarly, the results for a base acceleration with constant
autospectral density Saa is given by

σ
π

ζ ω

π
X

aa aaS m S

k c
2

0
3

2

2
= = (12.21)
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One can now generalize this to the situation with uncertain parameters by
replacing m, c, and k with random variables M , C , and K . One has the choice
of performing the analysis of parameter uncertainty either by using the first
forms, written in terms of M , ζ , and ω0, or the second forms, written in terms
of M , C , and K . If one does use ζ  and ω0, then they must be considered as
random variables given by

ζ ω= C
K M

K
M2 1 2

1 2

( ) /

/

,     0 =








 (12.22)

We will now analyze the case of Eq. 12.21, rewritten as

σ
π

ζ ω

π
X

aa aaS S2

0
3

2

2
= =

M
K C

(12.23)

We choose this base-excited case because it can be considered the more general
of the two. In particular, general results for Eq. 12.23 can be applied to the force-
excited problem by letting M = m  have no uncertainty and replacing the constant
m Saa

2  with S0 . We will consider M , C , and K  to be independent and to have
mean values of m, c, and k, respectively.

We now introduce dimensionless random variables for the parameter
uncertainties as

R M R C R K1 0 2 0 3 0= = =/ / /m c k,     ,     (12.24)

Similarly, the nondimensional response quantity will be the random result of Eq.
12.23 divided by the deterministic value of Eq. 12.21. The simplest form is

Q
S k c

m S
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X
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= = = − −σ

σ

π

π

2

2
0

2
0 0

0
2 1

2
2

1
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1

( )

M
K C

R R R (12.25)

but one also has the option of using a form written in terms of ζ  and ω0, as
defined in Eqs. 12.22:

Q
S k c

m S

k c

m
X

X

aa
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= = =
σ

σ
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ζ ω π ζ ω

2

2
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3
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0
2

0
32 2

1

( )
(12.26)
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The form in Eq. 12.26 is introduced only to illustrate the use of the chain-
rule differentiation for the perturbation method. For example, using this equation
we can write

∂
∂ ζ ω
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Differentiating Eq. 12.22 gives
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Of course, this result could have been obtained more easily by using Eq. 12.25,
which gives all the first derivatives as
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Similarly, the second derivatives are
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Substituting Q0 1=  and the first derivatives into the linear perturbation
approximation of Eq. 12.8 gives
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E Q Q
m c k

( ) ( )≈ ≈ + + = + +1 4 4
1 2 3

2 2 2
2
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,     Var σ σ σ
σ σ σ

R R R
M C K (12.27)

In the same way, the second-order perturbation approximation for the mean value
is

E Q
m c k

( ) ≈ + + + = + + +1 1
1 2 3

2 2 2
2

0
2

2

0
2

2

0
2

σ σ σ
σ σ σ

R R R
M C K (12.28)

As previously noted, one cannot compute the second-order approximation of the
variance without first choosing probability distributions for M , C , and K .

Next let us consider the common choice of using a uniform distribution for
each of the uncertain parameters. This can be written in terms of M , C , and K ,
but it is equally easy to work directly with the R l  components. Because each of
these components has a unit mean value, an appropriate uniform distribution is
on the set 1 1− ≤ ≤ +γ γl l lR . This gives

σ γ µ µ γR R RR R
l l ll l l lE E2 2 3 4 43 0 5= − = − =/ [( ) ] [( ) ] /,     ,     (12.29)

and the second-order approximation of the variance with these uniform
distributions can be written as

Var( ) ( )Q ≈ + + + + + + + +
4

3

1

3

1

3

4

45

4

9

4

9

1

91
2

2
2

3
2

1
4

2
4

3
4

1
2

2
2

1
2

3
2

2
2

3
2γ γ γ γ γ γ γ γ γ γ γ γ

(12.30)

Alternatively, one may wish to choose a given value for the variance of R l , then
find an appropriate value for γ l . In particular, this gives

γ σ µ σl l
l l l

E2 2 4 43 9 5= − =R R RR,     [( ) ] / (12.31)

For the first-order approximation, in particular, it is also relatively easy to
find an approximation of the probability distribution for Q for this problem once
one has chosen values for γ 1, γ 2, and γ 3. In addition, the form of Q and the
uniform distribution for the uncertain parameters make it feasible to find the
exact probability distribution of Q . Both of these ideas will be illustrated in
Examples 12.1 and 12.2.
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Consider now the logarithm of Eq. 12.25:

log( ) log( ) log( ) log( )Q = − −2 1 2 3R R R

Note that this equation is exactly linear in the log( )R l  terms, so the first-order
form of Eq. 12.11 is exact. That is, no perturbation is necessary. Of course, this is
not true for most problems. If we also assume that the log( )R l  random variables
are independent and Gaussian, then the mean, variance, and probability density
function of Q are found from Eqs. 12.16 and 12.17.

********************************************************************************************

Example 12.1: Consider the stationary response to delta-correlated excitation of

a simplified problem in which the mass and stiffness are considered

deterministic, but the damping has a uniform distribution on the set

( ) ( )1 10 0− ≤ ≤ +γ γc cC .

This problem can be considered a special case of the general formulation, with

σ σ σ γR R R1 3 2

2 2 2 20 3= = =,     /

Equation 12.27 then gives the first-order perturbation approximations as

µ σ σ γQ Q≈ ≈ =1 32 2 2
2

,     R /

and Eqs. 12.28 and 12.30 give the second-order approximations as
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For this uniform distribution of C  it is also easy to evaluate the exact moments

as
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from which the exact variance can be calculated as E Q( 2) − (µQ )2.

For the log-normal approximation we use χ β2 2 1= = −  in Eq. 12.17 to obtain

µ γ σ
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The accompanying sketches show the various

calculations of mean value and variance for a

range of γ  values. 0.2 0.40
1.00

1.04

1.08

E(Qlin )

E(Qquad )
E(Qlog-norm )

γ

E(Quniform )
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From the sketches we see that all but one of the

curves are quite close to each other for γ ≤ 0 3. .

The one exception is the first-order perturbation

estimate of the mean value. For larger values of γ ,

we see some deviation. For this problem, the log-

normal result for the mean value is identical to that

of the second-order perturbation, and these results

are quite close to the exact value for a uniform distribution of C , even for

relatively large values of γ . The variance value from the log-normal method is

closer to the exact value for the uniform distribution than is either of the

perturbation results. It should be kept in mind that the log-normal results are

actually exact under the condition that the uncertain parameter has a log-normal

distribution. Comparing the log-normal results with the exact results for a uniform

distribution of the uncertain parameter is a comparison of the effect of the choice

of model, not of the accuracy of the results. It is seen that the choice of model

does not have a great effect on the mean value and variance results for this

particular problem.

It is also easy to investigate the probability distribution of Q for this problem with

a uniform distribution for the uncertain parameter. The exact result is

p u
u

p u
u

U u U uQ ( ) ( ) [ ] [ ]= = − +( ) − −( )− − −1 1
1 1

2
1

2
1 1

2R γ γ

The linear first-order perturbation relationship predicts the same type of
probability distribution for Q as for R2. Thus, the uniform distribution for R2
gives

p u U u U uQ ( ) [ ] [ ]≈
−









 − +( ) − −( )− −1

2
1 1

2
1 1γ

γ
γ γ

The log-normal probability density function

is given by Eq. 12.16.

The sketch to the right compares these

three results for the case of γ = 0 3. . The

results for the uniform distribution of C
show that the first-order approximation may

not be an adequate approximation of the

probability distribution when the uncertainty

is relatively large. The comparison of the

exact results for the uniform and log-normal situations shows that the probability

distribution can be quite sensitive to the assumption about the distribution of the

uncertain parameter, even when the mean and variance are in reasonable

agreement.
********************************************************************************************
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Example 12.2: Consider the stationary response to delta-correlated force

excitation of a system in which there is uncertainty about mass, stiffness, and

damping parameters. The uncertainty is greatest for the damping, and least for

the mass, with σ σK C/ . /k c0 00 5=  and σ σM C/ . /m c0 00 25= . The mass,

damping, and stiffness are independent with mean values of m0 , c0, and k0.

Because the response variance to delta-correlated force excitation does not

depend on the magnitude of M , we can use a dimensionless response quantity

of the form

Q
S k c

S
X

X

= = = − −σ

σ

π
π

2

2
0

0 0 0

0
2

1
3

1

( ) K C
R R

We will begin by choosing the pertinent parameters to be uniformly distributed

with 1 1− ≤ ≤ +γ γl l lR . The given restriction on the standard deviations then

requires that γ γ3 20 5= . . Eq. 12.27 gives the first-order approximations as
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and Eqs. 12.28 and 12.30 give the second-order approximation as
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For the uniform distribution of C  and K  it is also easy to evaluate the exact

moments as
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from which the exact variance can be calculated

as E Q( 2) − (µQ )2.

For the log-normal approximation we use Eq.

12.17, along with the sensitivity values of β1 0=
and β β2 3 1= = −  to obtain
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The accompanying sketches show the values of

mean value and variance for a range of γ2  values.
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These results are very similar to those in Example 12.1. In the current problem

the E Q( )  values from the log-normal approximation and the second-order

perturbation are not identical, but they are almost indistinguishable on the plot.

The curve for the log-normal distribution is slightly higher. Again, both are quite

close to the exact curve for the uniform distribution. The other variance values

are all below, but relatively close to the exact values for the uniform distribution.

The variance values for the first-order and second-order perturbations are quite

close to each other, indicating that a mixed-order perturbation method is almost

as good as the second-order method.

The exact probability distribution of Q, for uniform distributions of R2 and R3,

can be found most easily by first considering the cumulative distribution

P Q u P u( ) ( )≤ = ≥ −R R2 3
1

then differentiating to find the probability density function. For the given ranges of

R2 and R3 this gives three distinct ranges that must be investigated separately.

For (1 2+γ )−1 ( /1 22+γ )−1 ≤ ≤ +u (1 2γ )−1 ( /1 22−γ )−1 we have
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and for (1 2−γ )−1 ( /1 22+γ )−1 ≤ ≤u (1 2−γ )−1 ( /1 22−γ )−1, the result is

P Q u
dv

dw
u wu

( )
/

( )
≤ = −

−−

− − −− −

∫∫1
2 2

211 2

1

2

1 1

2

2
1 1

γγγ
γ

p u
u

dw

w u
uQ

u
( ) log[( ) ( / ) ]

/

( )
= = − −

−

− − − −
− −

∫1

2

1

2
1 1 2

2
2 2 1 2

1

2
2 2 2

1
2

1 1
2

2
1 1

γ γ
γ γ

γ
γ

Proceeding in the same way with the linear model of Q ≈ − − −1 11( )R
( )R R R2 1 21 3− = − −  gives P Q u P u( ) ( )≤ = + ≥ −R R1 2 3 . After integrating

over R 2  and R 3 , then differentiating with respect to u, one obtains
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Finally, the probability density function of

the log-normal model is given by Eq.

12.16. These various results are

compared in the accompanying sketch for

the special case of γ2 0 4= . .

We see that the probability density

function of the response quantity is not

well approximated by the linearized form

of the dependence on the uncertain

parameters. In particular, the approximation does not accurately predict the

largest possible value of Q.

Recall that there is no reason that the log-normal curve should agree with the

other curves in the figure, inasmuch as it is based on a different set of

assumptions about the distribution of C  and K . It is seen, however, that the log-

normal result is better than the linear approximation in fitting the exact distribution

for the uniform problem. This may be viewed as evidence that a logarithmic

approximation may be better than a linear one in some problems even when the

uncertain parameters are not necessarily log-normal. It should also be kept in

mind, though, that this particular problem is especially appropriate for application

of the log-normal approach, because using log-normal parameters gives the Q
response quantity as having exactly a log-normal distribution. This is not true in

most problems.

********************************************************************************************

Example 12.3: Consider the stationary response to delta-correlated base

excitation of a system in which there is uncertainty about mass, stiffness, and

damping parameters. The uncertainty is greatest for the damping, and least for

the mass, with σ σK C/ . /k c0 00 5=  and σ σM C/ . /m c0 00 25= . The mass,

damping, and stiffness are independent with mean values of m0 , c0, and k0.

First we will consider the perturbation method. In the preceding section we found

that the quadratic approximation of the variance was little better than the linear.

On the other hand, it was significantly better than the linear model for predicting

the mean value. Thus, we will use the mixed-perturbation method, with the

quadratic approximation of Eq. 12.9 for the mean value and the linear

approximation of Eq. 12.8 for the variance. This gives

µ σ σ σ σ

σ σ σ σ σ

Q ≈ + + + = +

≈ + + =

1 1
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For log-normal distributions for the uncertain parameters, Eq. 12.17 with the

sensitivity coefficients of β1 2= , β β2 3 1= = −  gives

µ σ σ σQ = + + +( / ) ( )( / )1 16 1 1 4
2 2 2

2 2 2
R R R

σ σ σ σ
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For a uniform distribution we use Eq. 12.31 to find γ l  for each R l  and obtain
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The following sketches show the various calculations of mean value and variance

for a range of σR 2  values. Again we see that the perturbation and log-normal

results are in good agreement, and both are smaller than the exact results for a

uniform distribution.

********************************************************************************************

12.6 Nonstationary Response Variance for Delta-Correlated Excitation
Consider the linear SDF system with a stationary, mean-zero, delta-correlated
excitation force suddenly applied at time t = 0 :

m X t c X t k X t F t U t˙̇ ( ) ˙( ) ( ) ( ) ( )+ + =

0.20
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The general result for the variance was given in Eq. 5.50 as
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 (12.32)

in which S0  is the autospectral density of { ( )}F t . Recall, though, that except for
t ≈ 0, this expression is well approximated by the much simpler Eq. 5.52, which
can be rewritten as

σ
π

X
ct mt

S

k c
e U t2 0 1( ) ( )/≈ −( )− (12.33)

We use the simpler form and define our dimensionless response quantity as
the value from using Eq. 12.33 with random parameters M , C , and K  divided
by the value with deterministic m0 , c0, and k0:
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Because Q depends only on t and the deterministic parameters in the form of
c t m t0 0 02/ ≡ ζ ω , we simplify the equations by introducing a normalized time
of the form

T c t m= 0 0/ (12.34)

which gives
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We also use the common simplification that µM = m0 , µC = c0 , and µK = k0 , so
E( )

r
R = ( , , )1 1 1 T .
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For the perturbation method we need the derivatives with respect to each of
the uncertain parameters, which we take to be independent. The derivatives with
respect to R 3  are simple (and the same as in the preceding section):
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but the derivatives with respect to r1 and r2 are somewhat more complicated. In
particular,
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Thus, the first-order approximation for the variance is
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and the second-order approximation for the mean value is
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The situation with the logarithmic model is not as desirable as in Section
12.5. In particular, we note from Eq. 12.35 that log( )Q  is now a nonlinear
function of log( )R1  and log( )R2 , although it is linear with respect to log( )R3 .
Thus, we must use a perturbation approximation in the logarithmic variables, in
contrast to the situation in Section 12.5. If we assume log-normal distributions
for the parameters, then our estimates of the mean and variance of Q will still be
given by Eq. 12.17, but these will be only approximately correct, even if the
uncertain parameters truly have log-normal distributions, due to the
approximation of the linear model in the logarithmic quantities.

********************************************************************************************

Example 12.4: Consider the nonstationary response to delta-correlated force

excitation of a system in which there is uncertainty about mass, stiffness, and

damping parameters. The uncertainty is greatest for the damping, and least for

the mass, with σ σK C/ . /k c0 00 5=  and σ σM C/ . /m c0 00 25= . The mass,

damping, and stiffness are independent with mean values of m0 , c0, and k0.

The following sketches show numerical values from Eqs. 12.36 and 12.37 for

direct mixed-order perturbation and for the log-normal model with first-order

perturbation of log ( )Q  on the log ( )R l  components. The results are plotted

versus T c t m= 0 0/  for σR 2 0 3= . .

The log-normal form gives a higher value than direct perturbation for both the

mean and the variance of Q for this problem. It should be kept in mind that both

are approximations. That is, neither is exact for any particular probability

distribution of the uncertain parameters.

To find the mean or variance of σX
2  one simply reverses the procedure used in

defining Q to obtain
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********************************************************************************************

Consider now the possibility of using the exact variance expression in Eq.
12.32 instead of the smooth approximation in Eq. 12.33. Of course, the first thing
one notes is that the exact expression is much more complicated. This will be a
problem if derivatives are evaluated “by hand,” but not if a symbolic processor is
used to allow a computer to perform the task. Beyond the matter of work, though,
the presence of the sine and cosine terms in the expression will lead to additional
uncertainty. In particular, uncertainty about the values of m  and k will lead to
uncertainty about ω0 and ωd . Even a small change in ωd  can cause a large
change in the sin( )2ωdt  and cos( )2ωdt  terms as t grows. That is, a small change
in mass or stiffness can cause these terms to be anywhere in the range of –1 to 1,
at any particular large value of t. Unless t is quite small, this additional
uncertainty is not large for Eq. 12.32 because of the exponential decay of the
harmonic terms, but it is one of the more difficult issues in some forms of
dynamic analysis with uncertain parameters.

12.7 Stationary Response Variance for General Stochastic Excitation
If the excitation of a linear system is not delta-correlated, one can find the
response variance either from Eq. 5.30 or Eqs. 6.22 and 6.31 giving expressions
of

σ τ τ τX FF xG h d2 =
−∞

∞∫ ( ) ( ),var (12.38)

and

σ ω ω ω ω ωX XX FFS d S H d2 2= =
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For an SDF system the necessary functions are found from Eqs. 5.60 and 6.43 as
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In principle, there is no particular difficulty in applying the perturbation
method to Eq. 12.38 or 12.39. For example, one can find the jth derivative with
respect to an uncertain input parameter rl  as either

∂

∂
σ τ

∂

∂
τ τ

j

l
j X FF

j

l
j x

r
G

r
h d2 =

−∞

∞∫ ( ) ( ),var (12.40)

or

∂

∂
σ ω

∂

∂
ω ω

j

l
j X FF

j

l
jr

S
r

H d2 2=
−∞

∞∫ ( ) | ( ) | (12.41)

Thus, applying the perturbation method requires that an integral must be
performed for the evaluation of each derivative term. Essentially, this means that
there is as much effort involved (either analytically or numerically) in evaluating
each derivative as there is in evaluating the conditional value of the response
variance given deterministic input parameters. Once the derivatives are
evaluated, the procedure is identical to that for the problems studied in Sections
12.5 and 12.6.

The time-domain expression in Eqs. 12.38 and 12.40 are analytically
equivalent to the frequency-domain results in Eqs. 12.39 and 12.41, but the latter
form is generally preferred for numerical calculations. This is because both
GFF ( )τ  and hx, ( )var τ  are generally oscillating functions, whereas SFF ( )ω  and
| ( ) |H ω 2  are usually somewhat better behaved. This leads to more accurate
numerical integration in the frequency domain.

A difficulty with the perturbation approach to this problem is that there are
situations in which the response variance is very sensitive to changes in the
physical parameters. The formulation in Eq. 12.40 is most useful for visualizing
this phenomenon. For typical values of damping, we know that | ( ) |H ω 2  has a
sharp peak near the resonant frequency and that uncertainty about the values of m
and k, in particular, will give uncertainty about the location of this peak. If the
excitation has a broadband autospectral density, then this does not cause any
serious difficulty. That is, an uncertainty about the value of ω0 will not introduce
much uncertainty about SFF ( )ω0  if the spectral density has little variation. The
delta-correlated situation considered in Sections 12.5 and 12.6 is the prototypical
case of this type. If the autospectral density of { ( )}F t  has one or more sharp
peaks, however, the response variance can be quite sensitive to uncertainty about
m and k due to uncertainty about whether or not | ( ) |H ω 2  is “tuned” to a peak in
SFF ( )ω . This problem is never as severe for a stochastic excitation, though, as it
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is for a harmonic excitation, which may be considered the ultimate narrowband
excitation. The following examples will explore this problem numerically.

********************************************************************************************

Example 12.5: Consider the response variance for a lightly damped SDF system

with a relatively narrowband excitation that is perfectly tuned with the oscillator.

In particular, let the oscillator have nominal natural frequency ω0 and damping

ζ = 0 01.  and the excitation have an autospectral density of

S S
b

FF ( ) exp
( | | )

ω
ω ω

ω
=

− −









0

0
2

2
0
22

with b = 0 1. . The autospectral density and autocorrelation functions for the

excitation are shown in the  accompanying sketch.

Note that any discrepancy between the true value of

M  or K  and the nominal value of m0  or k0,

respectively, will result in a detuning. Thus, this is a

situation that is likely to be quite sensitive to

variations in the parameters. Discrepancies between

the true damping C  and the nominal value c0 will

also have an effect on the response, but little effect

on detuning.

We use the frequency domain formulation with the

uncertain frequency response function term as
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H
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2
2 2 2
1

=
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and choose 
r

R M C K= [ / , / , / ]m c k T0 0 0 , with m0 ,

c0, and k0 being the expected values of the three uncertain parameters. We will

take the response random variable Q to be the value of σX
2  calculated from Eq.

12.38 with parameters M , C , and K  divided by the value for m0 , c0, and k0
so that Q0 1= .

Before considering any random variation of R 1, R 2 , and R 3 , we investigate the

sensitivity of Q to variations in each of these parameters. In each case we will

compare the Q values with those obtained from linear and quadratic

approximations of the form of Eqs. 12.3 and 12.4, but with only one uncertain

parameter at a time. The derivatives needed for the linear and quadratic

approximations have been numerically evaluated from Eq. 12.41, and the

sensitivity coefficients have been found to be β 1 0 0356= . , β11 23 12= − . ,

β2 1 076= − . , β22 2 160= . , β 3 0 9600= − . , and β 33 21 22= − . . The βlk
coefficients for k l≠  have not been evaluated, because they do not enter into

calculation of moments by a mixed-order perturbation method. The following
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sketches show numerical results for both the linear and quadratic

approximations, along with direct numerical evaluation of Q for situations with

only one uncertain parameter at a time.

From the sketches it is clear that the linear approximation is close to the

computed value for Q only for very small variations in m  or k , although it is

significantly better for variations in c . This is in agreement with the prior

observation that either positive or negative variations in m  or k  can cause

considerable reduction of the response variance, due to detuning, and also with

the large values of the second-order sensitivity coefficients β11 and β 33 . The

dependence of the response variance on c , though, is monotonic. The quadratic

approximations are seen to be reasonably good for a much broader range of

parameters, especially for m  and k . Nonetheless, they seriously overpredict the

response reduction due to large changes in mass or stiffness, especially when

the change is positive.

Let us now consider perturbation results for simple cases with only one random

parameter. First we will take the damping and stiffness to be known and the

mass to be uniformly distributed: R R2 3 1= =  and R1 uniformly distributed on

1 11− ≤ ≤ +γ γR . Next the mass and damping are held constant, and stiffness is

taken to be uniformly distributed: R R1 2 1= = , 1 13− ≤ ≤ +γ γR . Mean and

standard deviation results have been obtained for three different γ  values. Also,

the results from a logarithmic linear perturbation and a log-normal parameter

distribution (labeled Qlog-lin ) have been obtained by using Eq. 12.17 and the

sensitivity coefficients from the Qquad  formulas. Results from direct integration,

the mixed-order direct perturbation, and the linear log-normal perturbation are

shown in the following table.

The results for the quadratic approximation of the mean value of Q are quite

good for γ ≤ 0 2. , and are reasonable approximations for γ = 0 3. , when compared

with the results of numerical integration with a uniform parameter distribution.

The log-normal approximation of the mean is generally quite close to the value of

unity that would be obtained by a direct linear perturbation. These values are

generally acceptable only for very small amounts of uncertainty. The results for

the variance of Q are in reasonable agreement between the three methods for

an uncertain K  but show major discrepancies for uncertain M . This is not

surprising based on the plot of Q versus R 1. The β1 sensitivity coefficient is

Q
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very small because Q is near a maximum at the design point of R 1 1= . A linear

approximation cannot capture the dependence of Q on R 1.

The logarithmic-linear formulation of this problem provides little benefit because

of the form of the nonlinear dependence of Q on K  and M . In particular, the

dependence does not even vaguely resemble that of a power of the uncertain

parameters.

γγ µµQ σσQ µµQquad σσQlin µµQlog-lin σσQlog-lin

MM 0.3 0.7338 0.2243 0.6531 0.0062 0.9995 0.0061

MM 0.2 0.8623 0.1239 0.8458 0.0041 0.9998 0.0041

MM 0.1 0.9625 0.0340 0.9615 0.0021 0.9999 0.0021

KK 0.3 0.7505 0.2141 0.6817 0.1663 1.0282 0.1709

KK 0.2 0.8733 0.1318 0.8585 0.1109 1.0125 0.1122

KK 0.1 0.9656 0.0587 0.9646 0.0554 1.0031 0.0556

The poor fit of Q versus R 1 for any of the distributions considered so far

prompts consideration of the logarithmic-quadratic approximation of Eqs. 12.12

and 12.15. The following sketch shows that this approximation is almost

indistinguishable from Q for the same range of R 1 as was used before. The

mean and standard deviation of Qlog-quad  have also been evaluated using the

uniform distribution for R 1. The answers of

µQlog-quad = 0 7343.  and σQlog-quad = 0 2187.  are

seen to be very close to those evaluated directly

from Q. Note that this is only a use of the

logarithmic-quadratic form for curve fitting and is not

a log-normal approximation. It does illustrate some

of the versatility of this form, though.

********************************************************************************************

Example 12.6: Consider the same lightly damped system as in Example 12.5, but

with an excitation that is less narrowband. In particular, the oscillator has

parameters ω0 and ζ = 0 01.
and the excitation has an

autospectral density of

S S
b

FF ( ) exp
( | | )

ω
ω ω

ω
=

− −
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with b = 0 5. . The autospectral
density and autocorrelation functions for the excitation are shown in the
preceding sketch.
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Proceeding as in the prior example, we find the sensitivity coefficients as

β 1 0 00848= . , β11 1 008= − . , β2 1 016= − . , β22 2 033= . , β 3 0 9921= − . , and

β 33 0 9774= . .

The following sketches show numerical results for the linear and quadratic

approximations, along with direct numerical evaluation of Q, and the table that

follows shows the mean and standard deviations obtained for Q for the uniform

distributions, the mixed-order direct perturbation, and the logarithmic linear

perturbation.

γγ µµQ σσQ µµQquad σσQlin µµQlog-lin σσQlog-lin

MM 0.5 0.9471 0.0685 0.9580 0.0024 0.9997 0.0024

MM 0.2 0.9930 0.0071 0.9933 0.0010 0.9999 0.0010

KK 0.5 1.0436 0.3012 1.0407 0.2864 1.0823 0.3099

The M  and C  results are much like those in Example 12.5, except that M  now

has an even smaller linear sensitivity coefficient, which leads to larger

discrepancies in predicting the standard deviation of Q. The K  result is much

more nearly linear than it was in Example 12.5. Again the mean values are

predicted quite well by the quadratic perturbation, and the linear logarithmic

model provides little improvement over a direct linear perturbation. As shown in

the sketch at the right, using the logarithmic-quadratic

form of Eqs. 12.12 and 12.15 provides an improved

approximation, as it did in Example 12.5. The mean

and standard deviation values computed in this way

for a uniform distribution on [0.5, 1.5] are 0.9538 and

0.0508, which agree quite well with the direct

computation for γ = 0 5. .

********************************************************************************************

Example 12.7: Consider the same lightly damped system and narrowband

excitation as in Example 12.5, but with some detuning between the excitation

and oscillator. In particular, the oscillator has nominal natural frequency ω0 and

damping ζ = 0 01.  and the excitation has an autospectral density of
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with b = 0 1. . The autospectral density for the

excitation is shown in the sketch to the right.

Proceeding as in the prior examples, we find the

sensitivity coefficients as β 1 4 570= − . , β11 4 682= . , β2 1 046= − . , β22 2 093= . ,

β 3 3 616= . , and β 33 10 55= − . .

The sketches that follow show numerical results for the linear and quadratic

approximations, along with direct numerical evaluation of Q. The following table

shows the mean and standard deviations obtained for Q for the uniform

distributions of the parameters and for the direct mixed-order perturbation and

the first-order logarithmic perturbation.

γγ µµQ σσQ µµQquad σσQlin µµQlog-lin σσQlog-lin

MM 0.5 0.6594 0.5288 1.1951 1.3193 0.9997 0.0024

MM 0.2 0.9973 0.4266 1.0312 0.5277 0.9999 0.0010

MM 0.1 1.0055 0.2512 1.0078 0.2639 1.0000 0.0005

KK 0.5 0.6947 0.4722 0.5603 1.0438 1.0823 0.3099

KK 0.2 0.9344 0.3484 0.9296 0.4175 1.0132 0.1161

The results for uncertain M  (or R 1) demonstrate an undesirable behavior not

previously noted. For a large uncertainty such as γ 1 0 5= . , the preceding sketch

shows that the quadratic approximation for Q may be considered less accurate

than the linear approximation. In particular, the second derivative of Q with

respect to R 1 is positive at R 1 1= , giving the quadratic approximation a positive

curvature. This, however, completely misses the negative curvature associated

with the peak of Q at R 1 0 8≈ . . This problem is also reflected in the value of

E Qquad( )  in the table for γ 1 0 5= . . For γ 1 0 1= . , however, the peak at R 1 0 8≈ .
has little effect and the quadratic approximation gives good results. Neither of the

perturbation methods gives very good results when the uncertainty about M  or

K  is large.
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Because the dependence of Q on R 1 and R 3  has not been reasonably

approximated, consider again the logarithmic-quadratic form used in Examples

12.5 and 12.6. The accompanying sketches show

that it does give a much better fit than was obtained

from any of the other forms, even though it does

have some error. The mean and variance of Q were

also computed both for R 1 uniformly distributed on

[0.5, 1.5] and for R 3  with the same distribution. For

R 1 variation, the mean and standard deviation

values are 0.7377 and 0.5643, respectively, and for

R 3  variation they are 0.7470 and 0.5201. Again,

these do provide reasonable approximations of

those obtained from direct evaluation, even for

these very nonlinear functions and wide ranges of

the parameters.

********************************************************************************************

The preceding examples illustrate that the usual perturbation methods may
not give good results for this problem unless the uncertainty is small. This
difficulty can be anticipated in any problem in which the response quantity has a
highly nonlinear dependence on the uncertain parameters. In some instances the
quadratic approximation is appropriate for such nonlinear situations, but this is
not always the case, as illustrated by the R 1 and R 3  dependence of Q  in
Example 12.7. In these examples, numerical integration was used to evaluate the
mean and variance of Q  based on the actual nonlinear dependence on the
uncertain parameters and an assumed probability distribution, but this can be a
somewhat costly procedure when there are multiple uncertain parameters. The
logarithmic-quadratic perturbation has been shown to give a reasonable
approximation of some nonlinear relationships that cannot be approximated with
simpler methods. Its disadvantage is that it requires numerical integration for
evaluation of the moments of Q, which may be somewhat inconvenient for some
choices of the distribution of the uncertain parameters.

Recall that the only difference between the problem considered in this
section and that for force-excitation in Section 12.5 is the change of the
autospectral density of { ( )}F t  to be variable rather than constant. That is, if we
let S SFF ( )ω0 0=  in this section, then we would reduce the problem to that of
Section 12.5, in which there was no dependence on M  (or R1). Thus, using a
more broadband excitation in the current problem should give Q as having less
dependence on R1. This is confirmed by the results in Examples 12.5 and 12.6,
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which are identical except for the bandwidth of { ( )}F t . For example, using
γ1 0 2= .  for the narrowband excitation in Example 12.5 gave µQ  as being 14%
below that for deterministic R1 and σQ  as being 0.12, whereas the
corresponding situation with the more broadband excitation of Example 12.6
gave µQ  as only 0.7% below that for deterministic R1 and σQ  as 0.007.
Nonetheless, the plot of Q versus R1 in Example 12.6 shows that there is still
considerable dependence on R1 when it varies significantly from the
deterministic value of 1.0.

It should also be noted that the examples have considered extremely large
uncertainties for k and m—up to ±50%. These are not anticipated values for
practical problems but are included to emphasize the difficulties that can occur
due to very nonlinear relationships between the response quantity and the
uncertain parameters. Perturbation analyses generally work better when
uncertainties are smaller, but one must always be aware that they can fail to give
acceptable answers in particular problems.

A somewhat more complicated problem that will not be explored here is a
combination of Sections 12.6 and 12.7—the nonstationary response variance for
an excitation that is not delta-correlated. The basic formula for this situation can
be taken as either the time-domain integral of Eq. 5.35 or the integral of the
evolutionary spectral density in Eq. 6.47. The latter equation is the same as Eq.
12.39, but with a modulating term reflecting the fact that the oscillator response
begins at zero. One can anticipate that the major difficulty will relate to the
matter of tuning/detuning between the oscillator and excitation, as in the current
section. The effect of time-variation, as shown in Section 12.6, is less severe and
is better modeled by perturbation.

12.8 First-Passage Failure Probability
In studying the effect of uncertain parameters on the probability of first-passage
failure, we will focus on the response of an SDF oscillator. We consider the
excitation to be a mean-zero, stationary, Gaussian white noise force. The
oscillator is taken to be initially at rest, so it must start below the failure level u,
and Eq. 11.13 gives the failure probability as

P t u s dsf X
t

( ) exp ( , )= − −






∫1

0
η (12.42)
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Consider first the Poisson approximation of η νX Xu t u t( , ) ( , )= + , which is found
from Example 7.2 as

ν
σ

σ σ

ρ

π σ

ρ

ρ σ

ρ

X
X

X X

XX

X

XX

XX
X

XX

u t
t

t

u

t

t t u

t

t t u

t t t
+ =

−









 −













+








−

( , )
( )

( )
exp

( )

( , )

( ) ( )

( , )

[ ( , )] ( )

      
[

˙ ˙

/

˙

˙
/

˙

2

2 1 2 2 1 2

2

2 2 1

1

Φ

(( , )]
exp

( , )

[ ( , )] ( )

/
˙

˙

t t t t u

t t t
XX

XX X

1 2 2 2

2 22 2 1π

ρ

ρ σ

−

−






















We use the nonoscillatory approximations for the growth of the variances of
{ ( )}X t  and { ˙( )}X t :
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as we did for the variance of { ( )}X t  in Section 12.5. Also, the nonoscillatory
approximation of their correlation coefficient, as used in Example 11.3, is used:
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Note that all of the preceding expressions are written in terms of m, c, and
k in order to reveal more clearly the dependence of the probability of failure on
these parameters. It is relatively easy to evaluate directly and plot Pf  versus m, c,
or k using the given expressions, as was done in Examples 12.5–12.7. One can
also evaluate the derivatives needed for a perturbation approximation. For
example, if we let r denote m , c, or k, then we find that the derivative of Eq.
12.42 is
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The derivatives of η νX Xu t u t( , ) ( , )= + , for the Poisson approximation, then
involve derivatives of σ X t( ) , σ ˙ ( )X t , and ρXX t t˙ ( , ) . The first two of these are
obviously straightforward, as is the third after one notes that
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In obtaining numerical results for a given set of parameters, it is useful to note
that one can first perform a numerical integration of Eq. 12.42 to obtain the value
of Pf  at the design point, then perform the numerical integration of Eq. 12.43 to
obtain the first derivative, and finally do the same for Eq. 12.44 to obtain the
second derivative. Thus, the effort required for a second-order or mixed-order
perturbation approximation is essentially the same as for evaluating Pf  for three
sets of parameters. That is, it involves only three numerical integrations over t.
The linear log-normal approximations can also be found from the first-order
derivatives.

********************************************************************************************

Example 12.8: Investigate the effects of uncertain parameters on the probability

of first-passage failure for a linear oscillator by using the Poisson approximation.

The oscillator is the same as the one considered in Example 11.3, with resonant

frequency ω0 and damping ζ = 0 01. . The oscillator has zero initial conditions,

and it is excited by stationary, Gaussian, white noise with mean zero and

autospectral density S0. Failure occurs if X t( )  exceeds the level

4 4 0 1 2 0 0σ πstat S c k= ( ) /( )/  within the time interval 0 2500< ≤ω t .

Letting 
r

R M C K= [ / , / , / ]m c k T0 0 0 , as in the preceding examples, numerical

results have been obtained for Q P P m c kf f= ( , , ) / ( , )M C K ,0 0 0 , as well as for

the first and second derivatives with respect to each parameter. The sensitivity

coefficients are found as β 1 1 565= − . , β11 2 374= . , β2 7 277= − . , β22 51 92= . ,

β 3 0 4972= . , and β 33 0 2486= − . .

Note that Pf  is very sensitive to changes in C . In particular, a 1% increase in C
results more than a 7% decrease in Pf . The logarithmic approximation from Eq.

12.14 is also easily obtained for each single-parameter variation as Q l= (R )βl .
The following sketches show the numerical evaluations of Q for rather large

parameter variations. The logarithmic-linear curve is omitted for K  variation

because it is essentially indistinguishable from the curve from direct evaluation.
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It is seen that the dependence of Pf  on C  is far from linear. This, though, was

quite predictable, inasmuch as the linear approximation would predict Q being

negative for R2 1 14> . , which is obviously impossible. The sketch does reveal,

though, that Pf  is greatly reduced by increasing C . For C .=1 5 0c , the

probability of failure is only 2.3% of the value for C = c0 . The dependence of Pf
on M  and K  is much simpler and is quite well approximated by the linear or

quadratic functions. The logarithmic-linear approximation is not generally better

than the others, but it does give the proper behavior for large C  values. The

logarithmic-quadratic approximation was not found to be significantly better than

the logarithmic-linear one for this problem.

The following table gives sample values of the mean and variance computed

from direct numerical integration with the uniform parameter distribution, the

mixed-order perturbation, and the logarithmic approximation with the log-normal

parameter distribution.

γγ µµQ σσQ µµQquad σσQlin µµQlog-lin σσQlog-lin

MM 0.5 1.1062 0.4963 1.0989 0.4518 1.1743 0.5466

CC 0.2 1.3748 1.0723 1.3461 0.8403 1.4902 1.5025

KK 0.5 0.9890 0.1468 0.9896 0.1435 0.9900 0.1400

For the M  and K  dependence, the approximations are in reasonable

agreement even for γ = 0 5. . The plots have already shown that the C
dependence is not well approximated over this wide range, so the results shown

are for γ = 0 2. . Even for this more reasonable level of uncertainty, the mean and

variance values computed from the logarithmic-linear approximation with log-

normal variables are significantly higher than for the uniform distribution. Also,

the first-order variance approximation in the mixed-order perturbation is

significantly low.

********************************************************************************************

Next we consider the approximation for the probability of first passage as
given by Eq. 11.42:

P Pf Vanm f Pois
u uX Vanm X

, ,
( ) / ( )( ) ,≈ − −

+
1 1 η ν (12.45)
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in which Pf Pois,  is computed exactly as before, using η νX Xu t u t( , ) ( , )= + . Using

Vanmarcke’s modified bandwidth effect, the exponent is given in Eq. 11.35 as
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ν
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The other quantity needed is the stationary α 1, which was given in Example 7.9:
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with ζ = c k m/[ ( ) ]/2 1 2 .

To find the βl  and βll  sensitivity parameters for this formulation, one can
use
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The new derivatives of the η νX Vanm Xu u, ( ) / ( )+  term in these expressions do not
involve integrals over time, and the derivatives of Pf Pois,  are the same as one
would use for perturbation analysis using the Poisson approximation.
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In principle, one can proceed in the same way for the complete
nonstationary Vanmarcke approximation of the first-passage failure, as explored
in Example 11.6. The derivative expressions needed for perturbation, though, are
very lengthy. The key to such evaluations seems to be the use of an appropriate
mix of analytical and numerical operations in order to achieve reasonable
efficiency in the calculations. Direct numerical evaluation of Vanmarcke’s
approximation of Pf  over a range of parameters is also feasible, and numerical
differentiation can give estimates of the perturbation relationships. Similarly,
numerical integration can give direct estimates of the mean and variance of Pf

for a given distribution of the uncertain parameters.

********************************************************************************************

Example 12.9: Find the linear and quadratic perturbation formulas for

Vanmarcke’s modified approximation of the probability of first-passage failure for

the oscillator of Example 12.8. The oscillator has 1% of critical damping,

stationary, white noise excitation, and zero initial conditions.

The numerical results from the preceding formulas with the approximation of Eq.
12.45 give β1 1 769= − . , β11 3 233= . , β2 6 548= − . , β22 40 87= . , β3 0 2964= . ,

and β33 0 2320= − . .

One notes that the values of the sensitivity parameters are generally similar to

those from the Poisson perturbation formulas in Example 12.8.  This in contrast

to the probability of failure, which is reduced by 48%, from 6 1 10 3. × −  for the

Poisson approximation to 3 2 10 3. × −  for the modified Vanmarcke formula.

Clearly the sensitivity to parameter uncertainty is less affected by the choice of

analysis method than is the actual estimate of Pf .

********************************************************************************************

Note that the results in this section show that the probability of first-
passage failure is very sensitive to changes in the damping value in the system, as
indicated by the large values of β 2 and β 22 . In a sense this might be anticipated,
inasmuch as changes in damping directly influence the level of response
variance, which is crucial in predicting the probability of first passage. The
probability of first passage, however, is much more sensitive than the response
variance to uncertainty in the damping. Also, the response variance, for white
noise excitation, is as sensitive to changes in stiffness as to changes in damping,
and this is clearly not true for the probability of first-passage failure.

If one considers a nonwhite excitation of the SDF oscillator, then the
sensitivity of first-passage failure to uncertain parameters becomes much more
complicated. Sections 12.5 and 12.7 illustrate this for the simpler problem of
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studying stationary response variance, and the same general effects must be
anticipated for the study of first-passage failure. If uncertainty about mass or
stiffness can affect the tuning/detuning of the oscillator and a peak in the
excitation autospectral density, then this uncertainty will have a major effect on
the probability of first-passage failure. Although the method of analysis is the
same for this more general excitation, it is clear that the computations become
much more involved.

12.9 Fatigue Life
The results in Eqs. 11.54 and 11.55 give the most commonly used estimate of
stochastic fatigue life as

E T
K

m
Ray m

X
m

X

( )
( / )/

˙
=

+−
2

2 1 23 2 1
π

σ σ
( ( (

Γ
(12.46)

in which K and 
(
m  are parameters from constant-amplitude fatigue tests. (Note

that the brev has been added over the symbol m used in Chapter 11 to avoid
confusion with mass, which appears in various applications in this chapter.) The
approximation In Eq. 12.46 is generally considered appropriate when the { ( )}X t
stress process is narrowband and Gaussian. To include bandwidth effects and
non-Gaussianity, this result was modified by RR  and GR  factors, respectively.
For the present study we will focus only on the single-moment method for the
RR  term and Winterstein’s approximations for GR , giving
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in which κ  denotes the kurtosis of { ( )}X t . The spectral moment in RR is given
by
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∞∫ (12.48)

Analysis of the prediction including the correction factors can be simplified by
rewriting the failure time as
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K GR
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Two of the major sources of uncertainty about the expected fatigue life in
Eqs. 12.46–12.49 may be considered to be the two parameters K and 

(
m  of the

S/N curve. At best these parameters are based on experiments with specimens
similar to the prototype of interest, and in other situations they may be
extrapolated from tests of rather different components. The effect of uncertainty
about mass, damping, and stiffness in the prototype enters into Eq. 12.46 with
GR correction as uncertainty about the kurtosis and standard deviation of stress
and about the standard deviation of the derivative of stress. Uncertain structural
parameters affect Eq. 12.49 by introducing uncertainty about the stress kurtosis
and the value of the λ2/

(
m  spectral moment. It is not easy, though, to give any

general relationships between these quantities in the fatigue equation and the
structural parameters. In principle, one can generally consider the { ( )}X t  process
to be proportional to the dynamic response of a linear or nonlinear dynamic
equation, but the details of the response will depend strongly on the form of the
excitation process. In many situations, that excitation will have a predominant
frequency that is not near the resonant frequency of the structure. This situation
commonly leads to the autospectral density of the response being multimodal,
having peaks both at the dominant frequency of the excitation and at one or more
resonant frequencies of the structure. Furthermore, non-Gaussianity of the stress
process may be due to non-Gaussianity of the excitation, nonlinearity of the
equation of motion, or both.

Taking the derivative of Eq. 12.49 with respect to the fatigue parameter K
is essentially trivial, because E T( )  is proportional to K. The derivative with
respect to 

(
m , though, is more interesting:
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in which

∂
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Finally, Eq. 12.48 gives
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Another sensitivity that may be of interest is that due to an uncertainty
about κ  for which
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The second derivatives needed for a quadratic approximation can be
obtained by the same procedures. Not all the details will be written out here, but
the two terms involving derivatives of integrals are
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and
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Note that the evaluation of the sensitivity of λ2/
(
m  with respect to 

(
m  treats

the spectral density SXX ( )ω  as given. If one wishes also to evaluate the
sensitivity of E T( )  to uncertainty about the spectral density, then it is necessary
to express the spectral density as a function of a finite number of parameters. For
example, one might use an approximation of SXX ( )ω = Σ a fj j ( )ω , with given
f j ( )ω  functions and uncertain a j  coefficients, then investigate the sensitivity to

the uncertain coefficients. In this approach it is essential that the f j ( )ω  functions
be chosen such that

ω ω ω2
0

/ ( )
(
m

jf d
∞∫ < ∞

exists for each j value. If the a j  coefficients can be related to the mass, damping,
and stiffness of the structure, then this gives a method for investigating the
effects on E T( )  of those parameters. For example, if the structure is modeled as
a SDF system and if the dominant frequency of the excitation is well separated
from the resonant frequency of the structure, then one might use a crude
approximation of f1( )ω  being | ( ) |H ω 2  at the design point for the structure and
a 1 being proportional to k c− −1 1, inasmuch as response variance is proportional
to this quantity. The other portion of the spectral density would then come from
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an f 2( )ω  that has the form of the autospectral density of the excitation. If the
dominant frequency of the excitation is lower than the resonant frequency of the
structure, then one might consider a 2  to be proportional to k−1. Similarly, a
dominant frequency of the excitation that is higher than the resonant frequency
would give a 2  approximately proportional to m−1.

The examples here will focus on the sensitivity of E T( )  to the parameters
that appear explicitly in Eqs. 12.46–12.49 rather than on mass, damping, and
stiffness, because there are so many ways that the spectral density could depend
on those structural parameters.

********************************************************************************************

Example 12.10: Find the sensitivity coefficients for the effect of the (
m  and κ

parameters on the expected fatigue life using the fatigue prediction of Eq. 12.49.

The nominal values of the parameters are 
(
m0 3=  and κ0 4= , and the

autospectral density of the { ( )}X t  stress is one for which it has been shown in

Example 11.11 that the single-moment method gives E T( )  values significantly

greater than those from the Rayleigh approximation. In particular, it has a limiting

bimodal form of

S B BXX ( ) [ ( ) ( )] ( / )[ ( ) ( )]ω δ ω ω δ ω ω δ ω ω δ ω ω= + + − + + + −0 0 0 010 15 15

We let A  and 
(

M  be random variables denoting uncertainty about the values of

κ  and 
(
m , respectively, and define dimensionless parameters as R A1 0= /κ  and

R2 =
(

M  /
(
m0. Also we define the normalized response quantity Q as the ratio of

E T( )  for parameters A  and M  to the value for parameters κ0 and 
(
m0 .

Note that the simplified autospectral density for { ( )}X t  reduces the need for

some numerical integration, because it gives λ ω2 0 2 22 1 15 10/ / /( ) [ / ]( ( (
m m mB= + .

Carrying through the formulas now gives β1 0 8= − . , β11 1 28= . , β2 5 402= − . ,

and β22 26 58= . .

Thus, in this problem the fatigue life is quite

sensitive to the value of 
(
m  but only moderately

sensitive to κ . The accompanying sketch shows

the dependence of Q on 
(
m  for a relatively wide

range of the parameter. The shape of the plot is

quite similar to that in Example 12.8 for the

dependence of the first-passage probability on the

amount of damping in the system. As in that problem, none of the simple

perturbation approximations match the actual value very well for such a wide

range of the parameter.

********************************************************************************************

R 2Qquad
Qlin

Q

0.5 1.51.0

4

8
Qlog- lin
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12.10 Multi-Degree-of-Freedom Systems
The specific situations considered in Sections 12.5–12.8 have involved the
dynamic response of SDF systems, even though the methods introduced in the
earlier sections and used here are general. For more complex systems the
computational effort is considerably greater, and there are additional factors to
consider. Some of these items will be discussed in this section, although it is not
feasible to give as much detail as was provided for the SDF problems.

One of the most common ways of reducing the effort for dynamic analysis
of MDF systems is to use truncated modal summations, as mentioned in Section
8.4. Typically, the truncation is to include only the modes with the lowest
resonant frequencies. Furthermore, exactly the same concept can be used in the
state-space formulation of the equations, since the imaginary parts of the
eigenvalues represent frequencies. The effect of uncertain parameters in such
modal analysis studies is most easily analyzed by first considering the effect of
the parameters on the eigensolutions that give modal frequencies and mode
shapes, then investigating the effect of the uncertainties in eigensolutions on
modal responses.

Relatively straightforward procedures have been developed for evaluating
the first and second derivatives of eigenvalues and eigenvectors in terms of the
derivatives of the m  and k  matrices for an MDF system or in terms of the
derivatives of the corresponding A and B matrices in the state-space formulation.
These results have been particularly used in perturbation studies of finite element
models, which typically yield MDF equations of motion (Ghanem and Spanos,
1991; Kleiber and Hien, 1992). The simplest form of the uncertain eigenvalue
problem (Fox and Kapoor, 1968) will be outlined here. We will use the m and k
matrices, but exactly the same procedure can be used for A  and B  matrices
provided that they are both symmetric. Recall the notation of Chapter 8 in which
the eigenvectors of m k−1  are the columns of a matrix θθ and the eigenvalues are
the elements of a diagonal matrix λλ , so m k−1 θθ == θθλλ  or k mθθ == θθλλ . Writing
out only the jth column of this result gives k m

r r
θ θ λj j jj==  or

( )k m− λ θjj j
r r

== 0

Let r denote an uncertain parameter, for which we wish to find the sensitivity
coefficient. Taking the derivative gives

∂
∂
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Premultiplying by ( )θ j T  makes the last term zero, though, because
( ) ( ) [( ) ]

r r
θ λ λ θj T jj jj j T Tk m k m− = − == 0 . Using the notation m̂  for the diagonal

matrix θθ θθT m  then gives the derivative of the jth eigenvalue as

∂ λ

∂
θ

∂
∂

λ
∂
∂

θjj

jj
j
T jj j

r m r r
= −











1
ˆ

r rk m
(12.51)

Finding the derivative of the eigenvector is a little more difficult. From Eq.
12.50 we see that we want the solution of the equation

( )k m
k

m
m

− = − −
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∂θ

∂
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∂ λ

∂
λ

∂
∂

θjj
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jj j
r r r r

r
r

−− (12.52)

in which all the terms on the right-hand side are now presumed to be known. The
problem, of course, is that the ( )k m− λ jj  matrix on the left-hand side is singular,
so its inverse does not exist. An equation of the type A

r r
x y=  with | |A = 0

presents two difficulties. The first is that there is no solution for 
r
x  for most 

r
y

vectors. The fact that | |A = 0 implies that one can write A Anl j jl= Σα  in which
the summation is over j, but with j n≠ . That is, the last row (or any specific
row) can be written as a linear combination of the other rows. It is easily shown,
then, that a solution exists only if y yn j j= Σα . This is not really an issue with
our problem, because we know that Eq. 12.52 must have a solution, so it must
meet this condition. The remaining difficulty is that the solution of the equation
is not unique. We know that ( )k m− =λ θjj j

r r
0, so if 

r
v  represents one solution of

Eq. 12.52, then 
r r
v b j+ θ  is also a solution for any value of the scalar b . The

problem now is first to find a solution 
r
v , then find a condition to give us a

unique value of b in the form

∂θ

∂
θ

r
r rj

j
r

v b= + (12.53)

Nelson (1976) has presented a very useful way to handle this problem.
First one selects a value of one component of 

r
v  and deletes one row from Eq.

12.52 to give a reduced equation with a unique solution for the other components
of 

r
v . Using a subscript [R] to denote reduced matrices with any one row

removed then gives a particular solution
r
v  of Eq. 12.52 as the selected element

combined with the elements of the reduced vector solution of
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The problem of finding a unique value for the derivative of the eigenvector is
similar to the basic eigenvalue problem, for which the eigenvectors are not
unique unless one stipulates some normalization condition. Various
normalizations are possible and in use. One approach is to require that the
diagonal matrix m̂ m≡ θθ θθT  be the identity matrix. Probably a more common
choice is to say that θθ θθ ==T I. Whatever the chosen normalization, we now want
it also to apply to 

r r
θ θj jd+ , so the derivative of the normalization condition with

respect to r must be zero. Using θθ θθ ==T I gives

r
r r

r
θ

θ θ
θ

∂

∂

∂

∂j
T j

T
j

j
r r

+ = 0

Substituting 
r r
v b j+ θ  for the derivative then gives

r r r r r r
θ θ θ θj

T v b vT b j
T

j j( ) ( )+ ++ = 0

from which one can find that b vT j= −
r r

θ . For other normalizations of the
eigenvectors the result for b is slightly less simple, but straightforward.

This procedure for the derivative of the eigenvector has an advantage in
common with the Fox and Kapoor evaluation of the derivative of the eigenvalue
in Eq. 12.51. Namely, both derivatives can be found without knowledge of any
other eigenvalues or eigenvectors. This is in contrast to some other techniques in
which one uses expansions of the eigenvector derivative in terms of other
eigenvectors (Adelman and Haftka, 1986). Thus, one can use these formulas in a
truncated modal summation approach without evaluating other eigenvalues or
eigenvectors.

Consider now the relatively general problem in which the stationary
variance of response at a particular point in an MDF system is written as a
truncated modal summation:

σ σX X
j

J

j
2 2

1

=
=
∑ (12.54)
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in which J is the number of modes being included. For example, let X t( )  be
taken as X tl ( )  for a system with uncoupled modes so that using 

r
X = θθ

r
Y

converts

m c k
r r r r˙̇ ˙
X X X F+ + =

into
r r r r˙̇ ˙
Y Y Y G+ + =γγ λλ

with γγ  and λλ  being diagonal. If the damping is small and the spectral density of
the excitation is smooth in the neighborhood of the resonant frequency
ω λj jj= ( ) /1 2, then one can approximate the variance of the Yj  response as

σ
π ω

γ λY
GG j

jj jj jj
j

S

m

2
2

≈
( )

ˆ

Provided that the modal frequencies are well separated, one can neglect modal
correlations and higher-frequency modes to obtain

σ θ σX lj
j

J

Yl j

2 2

1

2≈
=
∑

so the modal contribution in Eq. 12.54 is
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Note that the jth modal contribution involves only the jth eigenvector and
jth eigenvalue. Thus, one can write
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in which θ jl  is the lth component of the jth eigenvector. The evaluation of the
derivatives of the eigenvalue and eigenvector has already been presented, so the
remaining issue is the derivative of the modal responses with respect to the
eigenvalue and eigenvector. Each of these modal responses, though, is like the
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response of an SDF system and is therefore similar to the problems considered in
Sections 12.5–12.7. The parameters considered in the earlier sections were mass,
damping, and stiffness, but there is no particular difficulty in adapting that
coverage to the current situation. It must be kept in mind that m̂ jj , γ jj , and
SGG ( )ω  all depend on the eigenvectors because of their definitions: m̂ m= θθ θθT ,
m̂ cγγ θθ θθ= T , and 

r
G = −m̂ 1θθT

r
F . Nonetheless, the problem is basically the same

as for the SDF system, and similar results can be expected for such broadband
excitations as were assumed in deriving Eq. 12.55.

Recall that the major difficulty for the perturbation method for the SDF
system was in Section 12.7, in which the excitation was not broadband. One must
anticipate that this same difficulty will appear for MDF systems if there are peaks
in the spectral density of the excitation. In fact, the problem may be somewhat
more complicated than in the SDF situation, because now there will be a number
of resonant frequencies that can be affected by tuning/detuning due to variations
in the parameters. This difficulty is particularly severe when there is a
nonmassive “secondary” system attached to a massive “primary” system, because
small changes in parameters can have major effects on the tuning/detuning of the
primary-secondary system (Igusa and Der Kiureghian, 1988; Jensen and Iwan,
1992).  In these situations with complicated and very nonlinear dependence of
the response on the input parameters, it may also be difficult or costly to obtain
results from direct calculation of the response at various parameter values,
particularly when there are many uncertain parameters, as there typically are in
an MDF system. Approximate methods can sometimes be used to obtain
acceptable results for these complicated situations.

Jensen and Iwan (1992) formulated one simplified approach for studying
the parameter dependence of MDF systems and other higher-order linear systems
described by the state-space equations of Chapter 9. In particular, they studied
response variance, which in state-space analysis must be found as a component
of a matrix K  of response covariances. As shown in Eq. 9.17, the response
covariance is found from solution of a first-order matrix differential equation
involving A and B matrices that depend on system parameters. Simplifying their
presentation to the situation of a single uncertain parameter, denoted by R , it
was assumed that the response covariance could be written as a series of the form
K K= Σ j jt H( ) ( )R . The H j ( )R  were taken as functions that are orthonormal
with respect to the probability density of R , so E H j([ ( )] )R 2 1=  and
E H Hj k[ ( ) ( )]R R = 0 . In this way they found uncoupled differential equations
for the K j t( )  coefficient matrices in the expansion. They obtained good results
with only a few terms in the expansion when considering two uncertain
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parameters having uncertainty levels characterized by σR  being 30% and 40% of
µR .

Katafygiotis and Beck (1995) have also presented an approach for studying
the dependence of the response variance on uncertainty about the damping and
stiffness matrices in an MDF system. They concluded that the perturbation
approach was adequate for predicting the effect of parameter uncertainty on the
modal damping and frequency but not for predicting the dependence of response
variance on these modal parameters. They used the Duhamel convolution form
for the response of each mode and the fast Fourier transform to evaluate
efficiently the convolution integrals. They also used gamma distributions to
model the uncertainty of the modal parameters, matching the mean and variance
determined from perturbation analysis. The gamma distribution allowed
analytical evaluation of certain integrals, avoiding the cost of numerical
integration, and providing a very efficient method of analysis.

Research continues on the development of efficient and general methods
for analyzing the effect of many uncertain parameters in situations where the
nonlinearity of the response dependence makes perturbation results inaccurate.

Exercises
*****************************************************************
Stationary Response Variance for Delta-Correlated Excitation
*****************************************************************
12.1 Let { ( )}X t  be the stationary response of an SDF system with white noise
excitation: m X t X t X t F t˙̇ ( ) ˙( ) ( ) ( )+ + =C K , with S SFF ( )ω = 0 . The uncertain
damping and stiffness coefficients are independent random variables with mean
values µC = c0  and µK = k0  and standard deviations σC = 0 2 0. c  and
σK = 0 1 0. k . Let the normalized response be Q c k= 0 0 σX

2 /( )π S0  and the
normalized parameters be R C2 0= /c  and R K3 0= /k .
(a) Find the estimates of the mean and variance of Q based on mixed-order

perturbation.
(b) Find the mean and variance of Q based on the assumption that C  and K

have uniform distributions.
(c) Find estimates of the mean and variance of Q based on the logarithmic-linear

perturbation and the assumption that C  and K  have log-normal
distributions.

*****************************************************************
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12.2 Let { ( )}X t  be the stationary response of an SDF system with white noise
excitation: m X t X t X t F t˙̇ ( ) ˙( ) ( ) ( )+ + =C K , with S SFF ( )ω = 0 . The uncertain
damping and stiffness coefficients are independent random variables with C
uniformly distributed on 0 7 1 30 0. .c c≤ C ≤  and K  uniformly distributed on
0 75 0 250 0. .k k≤ K ≤ .  Let the normalized response be Q c k= 0 0 σX

2 /( )π S0  and
the normalized parameters be R C2 0= /c  and R K3 0= /k .

(a) Find the mean and variance of Q.

(b) Find the estimates of the mean and variance of Q based on mixed-order
perturbation.

(c) Estimate the mean and variance of Q  by using the logarithmic-linear
perturbation and replacing the uniform distributions of C  and K  with log-
normal distributions.

*****************************************************************
12.3 Let { ( )}X t  be the stationary response of an SDF system with white noise
base acceleration: M C K˙̇ ( ) ˙( ) ( ) ( )X t X t X t m a t+ + = − , with Saa( )ω  being a
constant. The uncertain mass, damping, and stiffness coefficients are independent
random variables with µM = m0 , µC = c0 , µK = k0 , σM = 0 1 0. m , σC = 0 2 0. c ,
and σK = 0 1 0. k . Let the normalized parameters be R M1 0= /m , R C2 0= /c , and
R K3 0= /k  and the normalized response be Q c k= 0 0 σX

2 /( )π S0 .
(a) Find the estimates of the mean and variance of Q based on mixed-order

perturbation.
(b) Find the mean and variance of Q based on the assumption that M , C , and K

have uniform distributions.
(c) Find estimates of the mean and variance of Q based on the logarithmic-linear

perturbation and the assumption that M , C , and K  have log-normal
distributions.

*****************************************************************
Nonstationary Response Variance for Delta-Correlated Excitation
*****************************************************************
12.4 Let { ( )}X t  be the nonstationary response of an SDF system with zero initial
conditions and white noise excitation: M C K˙̇ ( ) ˙( ) ( ) ( )X t X t X t F t+ + = , with
S SFF ( )ω = 0 . The uncertain mass, damping, and stiffness coefficients are
independent random variables with µM = m0 , µC = c0 , µK = k0 , σM = 0 1 0. m ,
σC = 0 2 0. c , and σK = 0 1 0. k . The damping and frequency at the nominal values
of the parameters are ω0 0 0 1 2 10= =( / ) /k m rad/s and ζ = =c k m0 0 0 1 22/[ ( ) ]/

0 05. . Let the normalized parameters be R M1 0= /m , R C2 0= /c , and
R K3 0= /k , and let Q be the ratio of [ ( )]σ X s4 2 for parameters M , C , and K
to its value for parameters m0 , c0, and k 0 .
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(a) Find the estimates of the mean and variance of Q based on mixed-order
perturbation.

(b) Find the estimates of the mean and variance of Q based on the logarithmic-
linear perturbation and the assumption that M , C , and K  have uniform
distributions.

(c) Find estimates of the mean and variance of Q based on the logarithmic-linear
perturbation and the assumption that M , C , and K  have log-normal
distributions.

*****************************************************************

12.5 Let { ( )}X t  be the nonstationary response of an SDF system with zero initial
conditions and white noise excitation: M C K˙̇ ( ) ˙( ) ( ) ( )X t X t X t F t+ + = , with
S SFF ( )ω = 0 . The uncertain mass, damping, and stiffness coefficients are
independent random variables with µM = m0 , µC = c0 , µK = k0 , σM = 0 05 0. m ,
σC = 0 25 0. c , and σK = 0 1 0. k . The damping and frequency at the nominal values
of the parameters are ω0 0 0 1 2 6= =( / ) /k m rad/s  and ζ = =c k m0 0 0 1 22/[ ( ) ]/

0 01. . Let the normalized parameters be R M1 0= /m , R C2 0= /c , and
R K3 0= /k , and let Q be the ratio of [ ( )]σ X s50 2  for parameters M , C , and K
to its value for parameters m0 , c0, and k 0 .

(a) Find the estimates of the mean and variance of Q based on mixed-order
perturbation.

 (b) Find estimates of the mean and variance of Q based on the logarithmic-linear
perturbation and the assumption that M , C , and K  have log-normal
distributions.

(c) Find estimates of the mean and variance of Q based on the logarithmic-linear
perturbation and the assumption that M , C , and K  have uniform
distributions.

*****************************************************************
Stationary Response Variance for Nonwhite Stochastic Excitation
*****************************************************************

12.6 Let { ( )}X t  be the stationary response of the oscillator considered in
Example 12.5. The oscillator has resonant frequency ω 0  and damping ζ = 0 01. .
The excitation has autospectral density S SFF ( ) exp[ ( ) /( . )]ω ω ω ω= − −0 0 2 20 02 .
The uncertain mass, damping, and stiffness coefficients are independent random
variables with µM = m0 , µC = c0 , µK = k0 , σM = 0 1 0. m , σC = 0 3 0. c , and
σK = 0 1 0. k . Let the normalized parameters be R M1 0= /m , R C2 0= /c , and
R K3 0= /k , and let Q  be the ratio of σX

2  for parameters M , C , and K  to its
value for parameters m0 , c0, and k 0 .
(a) Find the estimates of the mean and variance of Q based on mixed-order

perturbation.
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(b) Find the estimates of the mean and variance of Q based on the logarithmic-
linear perturbation and the assumption that M , C , and K  have uniform
distributions.

(c) Find estimates of the mean and variance of Q based on the logarithmic-linear
perturbation and the assumption that M , C , and K  have log-normal
distributions.

*****************************************************************
12.7 Let { ( )}X t  be the stationary response of the oscillator considered in
Example 12.6. The oscillator has resonant frequency ω 0  and damping ζ = 0 01. .
The excitation has autospectral density S SFF ( ) exp[ ( ) /( . )]ω ω ω ω= − −0 0 2 20 5 .
The uncertain mass, damping, and stiffness coefficients are independent random
variables with µM = m0 , µC = c0 , µK = k0 , σM = 0 1 0. m , σC = 0 3 0. c , and
σK = 0 2 0. k . Let the normalized parameters be R M1 0= /m , R C2 0= /c , and
R K3 0= /k , and let Q  be the ratio of σX

2  for parameters M , C , and K  to its
value for parameters m0 , c0, and k 0 .
(a) Find the estimates of the mean and variance of Q based on mixed-order

perturbation.
(b) Find estimates of the mean and variance of Q based on the logarithmic-linear

perturbation and the assumption that M , C , and K  have log-normal
distributions.

(c) Find estimates of the mean and variance of Q based on the logarithmic-linear
perturbation and the assumption that M , C , and K  have uniform
distributions.

*****************************************************************
12.8 Let { ( )}X t  be the stationary response of the oscillator considered in
Example 12.7. The oscillator has frequency ω 0  and damping ζ = 0 01. . The
excitation has autospectral density S SFF ( ) exp[ ( . ) /( . )]ω ω ω ω= − −0 0 2 21 1 0 02 .
The uncertain mass, damping, and stiffness coefficients are independent random
variables with µM = m0 , µC = c0 , µK = k0 , σM = 0 1 0. m , σC = 0 2 0. c , and
σK = 0 1 0. k . Let the normalized parameters be R M1 0= /m , R C2 0= /c , and
R K3 0= /k , and let Q  be the ratio of σX

2  for parameters M , C , and K  to its
value for parameters m0 , c0, and k 0 .
(a) Find the estimates of the mean and variance of Q based on mixed-order

perturbation.
(b) Find estimates of the mean and variance of Q based on the logarithmic-linear

perturbation and the assumption that M , C , and K  have log-normal
distributions.

(c) Find the estimates of the mean and variance of Q based on the logarithmic-
linear perturbation and the assumption that M , C , and K  have uniform
distributions.
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*****************************************************************
First-Passage Failure Probability
*****************************************************************

12.9 Let { ( )}X t  be the stationary response of the oscillator considered in
Examples 12.8 and 12.9. The oscillator has frequency ω 0 , damping ζ = 0 01. ,
and zero initial conditions. The excitation is white noise with autospectral density
S0 . The uncertain mass, damping, and stiffness coefficients are independent
random variables with µM = m0 , µC = c0 , µK = k0 , σM = 0 1 0. m , σC = 0 1 0. c ,
and σK = 0 1 0. k . Let the normalized parameters be R M1 0= /m , R C2 0= /c , and
R K3 0= /k , and let Q be the ratio of the probability of first-passage failure for
parameters M , C , and K  to its value for parameters m0 , c0, and k 0 , in which
failure occurs if X t( )  exceeds the level 4 0 1 2 0 0( ) /( )/π S c k  within the time
interval 0 2500< ≤ω t .

(a) Find the estimates of the mean and variance of Q based on mixed-order
perturbation and the Poisson approximation of first-passage probability.

(b) Find estimates of the mean and variance of Q based on the logarithmic-linear
perturbation and the assumption that M , C , and K  have log-normal
distributions with the Poisson approximation of first-passage probability.

(c) Find the estimates of the mean and variance of Q based on mixed-order
perturbation and the approximation of Eq. 11.42 for the probability of first
passage.

(d) Find estimates of the mean and variance of Q based on the logarithmic-linear
perturbation and the assumption that M , C , and K  have log-normal
distributions with the approximation of Eq. 11.42 for the probability of first
passage.

*****************************************************************

12.10 Let { ( )}X t  be the stationary response of the oscillator considered in
Examples 12.8 and 12.9. The oscillator has frequency ω 0 , damping ζ = 0 01. ,
and zero initial conditions. The excitation is white noise with autospectral density
S0 . The uncertain mass, damping, and stiffness coefficients are independent
random variables with µM = m0 , µC = c0 , µK = k0 , σM = 0 05 0. m , σC = 0 1 0. c ,
and σK = 0 05 0. k . Let the normalized parameters be R M1 0= /m , R C2 0= /c ,
and R K3 0= /k , and let Q be the ratio of the probability of first-passage failure
for parameters M , C , and K  to its value for parameters m0 , c0, and k 0 , in
which failure occurs if X t( )  exceeds the level 4 0 1 2 0 0( ) /( )/π S c k  within the time
interval 0 2500< ≤ω t .

(a) Find the estimates of the mean and variance of Q based on mixed-order
perturbation and the Poisson approximation of first-passage probability.
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(b) Find estimates of the mean and variance of Q based on the logarithmic-linear
perturbation and the assumption that M , C , and K  have log-normal
distributions with the Poisson approximation of first-passage probability.

(c) Find the estimates of the mean and variance of Q based on mixed-order
perturbation and the approximation of Eq. 11.42 for the probability of first
passage.

(d) Find estimates of the mean and variance of Q based on the logarithmic-linear
perturbation and the assumption that M , C , and K  have log-normal
distributions with the approximation of Eq. 11.42 for the probability of first
passage.

*****************************************************************
Fatigue Life
*****************************************************************
12.11 Let { ( )}X t  be the stationary stress process considered in Example 12.10. It
consists of two very narrowband frequency components with their dominant
frequencies differing by a factor of 15. The low-frequency component
contributes 10 times as much to the variance as does the high-frequency
component. The uncertain parameter of the stress process is its kurtosis, which is
a random variable A  with µ κA = 0  and σ κA = 0 2 0. . The uncertain parameters of
the S/N curve are independent random variables 

(
M  and K  with µ ( (

M = m0 ,
µK = K0 , σ ( (

M = 0 1 0. m , and σK = 0 5 0. K . Let the normalized parameters be
R A1 0= /κ , R M2 0=

( (
/m , and R K3 0= /K , and let Q be the ratio of the expected

fatigue life for parameters A , M , and K  to its value for parameters κ0, 
(
m0 , and

K 0 .
(a) Find the estimates of the mean and variance of Q based on mixed-order

perturbation.
(b) Find estimates of the mean and variance of Q based on the logarithmic-linear

perturbation and the assumption that A , 
(

M , and K  have log-normal
distributions.

(c) Find the estimates of the mean and variance of Q based on the logarithmic-
linear perturbation and the assumption that A , 

(
M , and K  have uniform

distributions.
*****************************************************************
12.12 Let { ( )}X t  be the stationary stress process considered in Example 12.10. It
consists of two very narrowband frequency components with their dominant
frequencies differing by a factor of 15. The low-frequency component
contributes 10 times as much to the variance as does the high-frequency
component. The uncertain parameter of the stress process is its kurtosis, which is
a random variable A  with µ κA = 0  and σ κA = 0 1 0. . The uncertain parameters of
the S/N curve are independent random variables M  and K  with µ ( (

M = m0 ,
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µK = K0 , σ ( (
M = 0 1 0. m , and σK = 0 3 0. K . Let the normalized parameters be

R A1 0= /κ , R M2 0=
( (

/m , and R K3 0= /K , and let Q be the ratio of the expected
fatigue life for parameters A , 

(
M , and K  to its value for parameters κ0, 

(
m0 , and

K 0 .
(a) Find the estimates of the mean and variance of Q based on mixed-order

perturbation.
(b) Find estimates of the mean and variance of Q based on the logarithmic-linear

perturbation and the assumption that A , 
(

M , and K  have log-normal
distributions.

(c) Find the estimates of the mean and variance of Q based on the logarithmic-
linear perturbation and the assumption that A , 

(
M , and K  have uniform

distributions.
*****************************************************************
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Appendix A
Dirac Delta Function

The fundamental properties of the so-called Dirac delta function are

 δ( )x x= ≠0 0     for    (A.1)
and

δ( ) ( ) ( )x x f x dx f x− =
−∞

∞∫ 0 0 (A.2)

for any function f ( )⋅  that is finite and continuous at the point x x= 0 . Strictly
speaking, δ( )x  is not a function, because it is not finite at one point on the real
line. Of course, saying that δ( )0 = ∞  is not an adequate definition of the behavior
of the function at the origin, inasmuch as infinity is not a number. For example,
∞ ∞/  can have any value from zero to infinity. The definition of the critical
property of δ( )⋅  at the origin is given by Eq. A.2. We will use Dirac delta
functions only in situations where the quantity of real interest is to be obtained
from an integral involving the δ( )⋅  function rather than from the value of δ( )⋅  at
any single argument.

Another way of viewing the Dirac delta function is as the formal derivative
of the unit step function. This interpretation follows directly from the
fundamental properties of δ( )⋅ . In particular, let a function U x( )  be defined as
the integral of δ( )x :1

U x u du
x

( ) ( )=
−∞∫ δ (A.3)

with an initial condition of U( )−∞ = 0 . Based on Eqs. A.1 and A.2, we then
obtain

U x x U x x( ) , ( )= < = >0 0 1 0   for           for 

                                                  
1The reader is reminded of the equivalence of the indefinite integral of f x( )  and
the definite integral of f ( )⋅  with x appearing only as the upper limit of the
integral.
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This specification of U x( ) , though, is identical to that given in Section 2.3 for
the unit step function, except for uncertainty about the value of U x( )  at the point
x = 0.2 If the derivative of Eq. A.3 existed, then it would be given by

dU

d x
x= δ( ) (A.4)

The difficulty with this procedure, of course, is that the unit step function is not
truly differentiable at the point x = 0, because it is discontinuous at that point.

To define δ( )x  precisely it is necessary to consider a sequence of
functions, because δ( )x  is not truly a function. One way to do this is to consider
a sequence of functions that asymptotically approach the condition of Eq. A.1,
with each member satisfying Eq. A.2. For example,

δ δ δj
j

j
j

j
j jx x x x x x( ) ( ) ( ) |= ≤ − = ≥ = <− − − −0 2 0 2 2 21 for ,      for ,      for |

(A.5)
or

δ δ δj
j

j
j

j
j j jx x x x x x x( ) ( ) ( ) |= ≤ − = ≥ = <− − −0 2 0 2 2 1 2 2 for ,   for ,  ( - | |) for |

(A.6)

Clearly, each member of these sequences of rectangles and triangles does exactly
satisfy Eq. A.2, and as j increases toward infinity, either sequence comes closer
and closer to meeting the condition of Eq. A.1. The term generalized function is
sometimes used for a relationship like δ( )x , which is singular but can be
approached asymptotically by a sequence of functions.

It may be noted that each sequence that asymptotically approaches δ( )x
can be integrated, term by term, to give a sequence that converges to U x( ) ,
except possibly at the point x = 0. For the two preceding sequences, the U xj ( )
integrals are exactly 1/2 at x = 0. This can be remedied by shifting the “pulses”
to the left of the origin, such as replacing Eq. A.5 by

δ δ δj
j

j j
j jx x x x x x( ) ( ) ( )= ≤ − = ≥ = − < <− + − − +0 2 0 0 2 2 01 1 1 for ,   for ,   for 

                                                  
2In Section 2.3 we defined U x( )  to be continuous from the right, because this
simplifies its usage in the description of cumulative distribution functions. This
choice, though, is somewhat arbitrary.
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(A.7)
but this also has certain disadvantages. In particular, the Dirac delta function is
inherently symmetric [ ( ) ( )]δ δ− =x x , whereas the sequence in Eq. A.7 is always
asymmetric for any finite j. The integral of Eq. A.5 or A.7 gives a sequence of
piecewise linear functions that tend to the unit step function, whereas integration
of Eq. A.6 gives a corresponding sequence that is piecewise quadratic. If needed,
one can go so far as to use a sequence of analytic (i.e., infinitely differentiable)
functions that asymptotically approaches δ( )x . One example is

δ
π

j

j
jx x( )

( )
exp

/
= −( )−2

2
2

1 2
2 1 2 (A.8)

Term-by-term differentiation of such a sequence can be used also to provide a
precise generalized function definition of the derivatives of a Dirac delta
function. It is good to know that such a definition is possible, because there are
situations in which it is convenient to use this derivative concept.
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Appendix B
Fourier Analysis

The basic idea of Fourier analysis is to represent a function x t( )  as a sum, or
linear combination, of harmonic components in order to simplify its analysis. The
simplest such situation occurs when x t( )  is defined only on a finite region. We
take this region to be of length T, and we take it to be symmetric about the origin,
− ≤ ≤T t T/ /2 2, because this symmetry will lead to some simplifications later. In
this case one can write

x t a
j t

T
b

j t

Tj
j

j
j

( ) cos sin=








+











=

∞

=

∞

∑ ∑2 2

0 1

π π
(B.1)

Note that the frequencies of the harmonic terms have been taken such that each
term contains an integer number of cycles of oscillations during the interval
− ≤ ≤T t T/ /2 2. Also, note that the a0 term is simply a constant, so the equation
could equally well be written as

x t a a
j t

T
b

j t

Tj
j

j
j

( ) cos sin= +








+











=

∞

=

∞

∑ ∑0
1 1

2 2π π

The problem, now, is to evaluate all the a j  and bj  coefficients in Eq. B.1.
This task is made quite easy, though, by the orthogonality of the harmonic terms
included. In particular,

cos cos

             /  

             

/

/ 2 2
0

2 0

0

2

2 π πj t

T

k t

T
dt j k

T j k

T j k

T

T 

















 = ≠

= = ≠

= = =

−∫ for 

for 

for 

sin sin

            /

/

/ 2 2
0

2 0

2

2 π πj t

T

k t

T
dt j k

T j k

T

T 

















 = ≠

= = ≠

−∫ for 

for 
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and

cos sin
/

/ 2 2
0

2

2 π πj t

T

k t

T
dt

T

T 

















 =

−∫

First we multiply Eq. B.1 by cos( / )2π k t T , for any integer k, then integrate both
sides of the equation from t T= − /2  to t T= /2 :

x t
k t

T
dt

k t

T
a

j t

T
b

j t

T
dt

T

T

T

T
j

j
j

j

( ) cos

cos cos sin

/

/

/

/

−

−
=

∞

=

∞

∫

∫ ∑ ∑









 =



















 +



























2

2

2

2

0 1

2

2 2 2

π

π π π

The order of summation and integration can be reversed on the right-hand side of
this equation, and the orthogonality relationships cause all but one of these
integral terms to be zero. In particular, the only nonzero term is the one
cos( / )2π j t T  term with j k= . Thus, one finds that

x t
k t

T
dt a

T
k

T

T
k( ) cos

/

/

−∫








 =









 ≠

2

2 2

2
0

π
     for 

x t dt a T
T

T
( )

/

/

−∫ =
2

2
0

Rewriting these expressions with an index variable of j, instead of k, gives

a
T

x t dt
T

T
0 2

21
=

−∫ ( )
/

/
(B.2)

a
T

x t
j t

T
dt jj T

T
=









 ≠

−∫
2 2

0
2

2
( ) cos

/

/ π
     for (B.3)

This gives the values for all the a j  coefficients in Eq. B.1. Performing the same
operations using a multiplier of sin( / )2π k t T  gives

b
T

x t
j t

T
dt jj T

T
=









 ≠

−∫
2 2

0
2

2
( ) sin

/

/ π
     for (B.4)

for the bj  coefficients in Eq. B.1.
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The usefulness of the Fourier series represented in Eqs. B.1–B.4 depends
on the fact that the series does converge, so a truncated series of the form

x t a
j t

T
b

j t

TN j
j

N

j
j

N

( ) cos sin=








+











= =
∑ ∑2 2

0 1

π π
(B.5)

can be used as an approximation of x t( ) . In particular, the truncated series
converges to x t( )  as N goes to infinity at every point t where x t( )  is continuous.
If x t( )  is discontinuous at the value t, then the truncated series converges to the
average of the limits from the right and the left. The fact that Eq. B.1 can be used
to represent any continuous function on − ≤ ≤T t T/ /2 2 can be viewed as a
statement that the harmonic functions form a complete basis for the space of
these continuous functions. Thus, Eqs. B.1–B.4 give a complete representation of
x t( )  as a sum of harmonic components. Alternatively, one can say that Eq. B.1 is
the harmonic decomposition of x t( ) .

Sometimes it is more convenient to use an alternative form of Eq. B.1,
based on the complex exponential representation of the harmonic functions. In
particular, if one uses the identities

cos sin
/ / / /2

2
2

2

2 2 2 2π ππ π π πj t

T

e e j t

T

e e

i

i j t T i j t T i j t T i j t T







=

+ 







=

−− −
,     

then Eqs. B.1–B.4 become

x t c ej
i j t T

j

( ) /=
=−∞

∞

∑ 2π (B.6)

with

c
T

x t e dtj T

T i j t T=
−

−∫1
2

2 2( )
/

/ /π (B.7)

in which c a0 0=  and

c
a b

i

a i b
c

a b

i

a i b
jj

j j j j
j

j j j j= + =
−

= − =
+

>−2 2 2 2 2 2
0,          for ( )

The validity of this exponential form is also easily confirmed by direct evaluation
of the coefficients in Eq. B.6. That is, rather than using Eqs. B.2–B.4 to find the
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coefficients in Eq. B.6, one can use the orthogonality of the complex exponential
functions, which can be written as

e e dt j k

T j k

i j t T i k t T
T

T 2 2
2

2
0 0

0

π π/ /
/

/

  
−∫ = + ≠

= + =

for 

for 

Thus, multiplying Eq. B.6 by exp( / )2π i k t T  and integrating directly gives the
coefficient values given in Eq. B.7.

It should be noted that the Fourier series representation converges to x t( )
only within the interval − ≤ ≤T t T/ /2 2. In fact, it was assumed in Eqs. B.1, B.5,
and B.6 that x t( )  was defined only on that finite region. In some situations x t( )
is actually defined on a broader domain, but the series converges only within the
[ / , / ]−T T2 2  interval used in evaluating the coefficients according to Eqs.
B.2–B.4 or Eq. B.7. In fact, the functions of Eqs. B.1, B.5, and B.6 are periodic.
For example, x t T x tj j( ) ( )± = , so the series repeats itself with period T. This
finite period representation is not adequate for many problems in which we wish
to consider x t( )  to be aperiodic and to extend from –∞ to ∞. A direct way of
extending our Fourier analysis to include this situation is to let the period T tend
to infinity. In investigating this limiting situation, we will use the exponential
form of Eqs. B.6 and B.7, because it is somewhat simpler than the form using
sine and cosine representations of the harmonic components.

First, we introduce a notation for the frequency of the j term in Eqs. B.6
and B.7:

ω ω ω πj j T= =∆ ∆,     2 /

so that the equations can be written as

x t c e c x t e dtj
i t

j

j T

T i tj j( ) ( )
/

/
= =

=−∞

∞

−
−∑ ∫ω ωω

π
,     

∆
2 2

2

Letting T tend to infinity now gives ∆ω ω→ d  and the summation tending to an
integral, so one can introduce a renormalized function ˜( ) /x cj jω ω= ∆  and write

x t x e di t( ) ˜( )=
−∞

∞∫ ω ωω (B.8)
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with

˜( ) ( )x x t e dti tω
π

ω=
−∞

∞ −∫1
2

(B.9)

We will call the function ˜( )x ω  given in Eq. B.9 the Fourier transform of x t( ) ,
and Eq. B.8 is then the inverse Fourier transform formula. Other terms, such as
integral Fourier transform, exponential Fourier transform, and so forth, are also
used for Eq. B.9. Note that the frequency decomposition of the aperiodic, infinite
period x t( )  function generally contains all frequencies. That is, the Fourier
transform ˜( )x ω  is defined for all ω  values, and Eq. B.8 is a superposition of
˜( )x ei tω ω  terms for all ω  values.

One also has the option of deriving Eq. B.9 directly, without any
consideration of the Fourier series introduced earlier. In particular, if one
assumes that an ˜( )x ω  transform exists such that it is possible to write Eq. B.8,
then one can use the orthogonality of the complex exponential functions to derive
Eq. B.9. In particular,

e dti tψ π δ ψ
−∞

∞∫ = 2 ( ) (B.10)

so multiplying Eq. B.8 by ei tη  and integrating gives

x t e dt x e e dtd

x d x

i t i t i t( ) ˜( )

          ˜( ) ( ) ˜( )

−∞

∞

−∞

∞

−∞

∞

−∞

∞

∫ ∫∫

∫

=

= + = −

η η ωω ω

π ω δ η ω ω π η2 2

which is easily rewritten as Eq. B.9. The orthogonality relationship of Eq. B.10
appears quite frequently in applications of Fourier analysis. It can be viewed as
the Fourier transform of the function f t( ) =1. Written in the usual notation with
ω , rather than η , representing frequency, this gives ˜( ) ( )f ω δ ω= , showing that
the only harmonic component of a constant is the term with zero frequency.
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generalized, 81

Conditional probability, 13, 38
Gaussian, 44

Continuity of a process, 129
Convergence of a process, 128

Correlation coefficient, 66
and regression, 70
and Schwarz inequality, 69

Covariance function, 108
and autocorrelation, 109
matrix, 72, 310
properties, 120
and spectral density, 225

Covariant stationary, 115
Cross-modal contributions (see

Modal superposition)
Cross-spectral density, 225
Crossing rate (see Rate of

occurrence)
Cumulants, 91
Cycle identification (see Fatigue)

Damage accumulation (see Fatigue)
Damping

critical, 176
hysteretic, 447

Delta-correlated process, 186, 232
shot noise, 189

Derivate moments, 398
Derivative of a process, 138
Dirac delta function, 24, 171, 613
Double-barrier crossing, 502, 512
Duhamel integral, 168, 308

Energy balance, 375
Envelope (see Amplitude)
Equivalent linearization (see

Statistical linearization)
Ergodicity, 131
Evolutionary process (see

Modulated process)
Evolutionary spectral density (see

Spectral density)
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Extreme value, 495
Gaussian response of SDF

system, 516
inclusion-exclusion series, 514
Poisson approximation, 500
Vanmarcke approximation, 508,

510, 513

Failure probability, 487
Fatigue failure

accumulated damage, 520
and bandwidth, 533
cycle identification, 526
and non-Gaussianity, 543
Palmgren-Miner hypothesis, 525
rainflow cycles, 527
Rayleigh approximation, 529
S/N curve, 522

First-passage time (see Extreme
values)

Fokker-Planck equation, 395
nonlinear system, 418

Fourier transform, 617
of covariance function, 225
of probability density, 84
of process, 220

Gamma distribution, 569, 606
Gamma function, 66
Gaussian

processes, 154
variables, 22, 51, 67, 80, 88
vectors, 33, 37, 44, 73, 90, 94

Gaussian closure (see Closure
methods)

Gram-Charlier series, 433, 470, 472

Harmonic transfer function, 235
coupled modal equations, 329
and impulse response function,

236
matrix, 310
state-space formulation, 338
time-dependent, 241

uncoupled modal equations, 328
Heaviside step function (see Unit

step function)
Hermite polynomials, 470
Higher mode contributions (see

Modal superposition)
Hilbert transform, 292
Hysteretic system, 447

Impulse response function, 168, 170
coupled modal equations, 329
and harmonic response function,

236
matrix, 308
state-space formulation, 338
time-dependent, 185
uncoupled modal equations, 320

Independence, 14, 48
Integral of a process, 148
Irregularity factor, 270

Gaussian process, 275

Jacobian, 36
Jointly Gaussian, 33, 37, 44, 73, 90,

94

Kolmogorov equation, 398
Kronecker algebra, 381, 466
Kurtosis, 66

fatigue effect, 545

Level crossing (see Rate of
occurrence)

Linearization (see Statistical
linearization)

Log-characteristic function, 91
Log-normal distribution, 568

Markov process, 401
Mean-square continuous, 129
Mean-square derivative, 147
Mean-value stationary, 114
Miner hypothesis (see Palmgren-

Miner hypothesis)
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Modal superposition, 320, 322, 328,
330

Modulated process, 185, 242
harmonic response function, 241
impulse response function, 185
as response, 185
spectral density, 241

and variance, 244
uniformly modulated, 185, 242

Multi-degree-of-freedom, 311
and state-space equations, 334

Narrowband process, 228
Non-Gaussian closure (see Closure

methods)
Nonlinear system

closure methods, 467, 469
Fokker-Planck analysis, 418
state-space equations, 465
statistical linearization, 431

Nonnegative definite, 73, 120, 226
Normal distribution (see Gaussian)

Occurrence rate (see Rate of
occurrence)

Palmgren-Miner hypothesis, 525
Parameter uncertainty

and fatigue, 596
and first passage, 590
log-normal approximation, 568
modeling uncertainty, 561
perturbation, 562

logarithmic, 566
and response variance, 569, 578,

582
Peak, 269

distribution, 490
Gaussian process, 491
occurrence rate, 269

Perturbation, 562, 566
Phase of a process, 282

rate of change, 287

Poisson extreme-value
approximation, 500

Poisson process, 130
Power spectral density (see Spectral

density)

Rainflow analysis (see Fatigue)
Rate of occurrence

crossings, 262
first crossing, 498
peaks and valleys, 269

Rayleigh distribution, 52
Rayleigh fatigue approximation, 529
Rice distribution of peaks, 490

Schwarz inequality, 69, 121
Second-moment stationary, 116
Shot noise, 189
Single-barrier crossing, 502
Skewness, 66
S/N fatigue curve, 522
Spectral density, 221

broadband, 232
and covariance, 225
evaluation, 251
evolutionary, 241
higher-order, 254
matrix, 310
narrowband, 228
properties, 226
and variance, 227

Spectral moments, 272
time-dependent, 280

State-space formulation, 333
harmonic response function, 338
impulse response function, 338

State-space moments/cumulants,
354

closure methods, 468
Kronecker notation, 466
solutions, 365
stationary covariance, 391

Stationarity, 114
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Statistical linearization, 431
and Gaussian closure, 470
hysteretic system, 447

Trispectrum, 256

Uncertain parameters (see
Parameter uncertainty)

Uncoupled modes, 313
Unit step function, 18, 613

Valley occurrence rate, 269
Vanmarcke extreme-value

approximation, 508

Weakly stationary, 118


	front cover
	copyright
	table of contents
	front matter
	PREFACE
	body
	Chapter 1 Introduction
	Chapter 2 Fundamentals of Probability and Random Variables
	Chapter 3 Expected Values of Random Variables
	Chapter 4 Analysis of Stochastic Processes
	Chapter 5 Time Domain Linear Vibration Analysis
	Chapter 6 Frequency Domain Analysis
	Chapter 7 Frequency, Bandwidth, and Amplitude
	Chapter 8 Matrix Analysis of Linear Systems
	Chapter 9 Direct Stochastic Analysis of Linear Systems
	Chapter 10 Introduction to Nonlinear Stochastic Vibration
	Chapter 11 Failure Analysis
	Chapter 12 Effect of Parameter Uncertainty
	back matter
	Appendix A Dirac Delta Function
	Appendix B Fourier Analysis
	References
	Author Index
	index



