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Preface

This volume brings together papers, which were first presented at the International
Conference on Rational Choice, Individual Rights and Non-Welfaristic Normative
Economics, held in honour of Kotaro Suzumura at Hitotsubashi University, Tokyo,
on 11–13 March 2006, and which have subsequently gone through the usual process
of review by referees. We have been helped by many individuals and institutions in
organizing the conference and putting this volume together. We are grateful to the
authors of this volume for contributing their papers and to the referees who reviewed
the papers. We gratefully acknowledge the very generous fundings by the Ministry
of Education, Culture, Sports, Science and Technology, Japan, through the grant for
the 21st Century Center of Excellence (COE) Program on the Normative Evaluation
and Social Choice of Contemporary Economic Systems, and by the Japan Society
for the Promotion of Science, through the grant for International Scientific Meetings
in Japan, and the unstinted effort of the staff of the COE Program at Hitotsubashi
University, without which the conference in 2006 would not have been possible. We
thank Dr. Martina Bihn, the Editorial Director of Springer-Verlag for economics and
business, for her advice and help.

Finally, we would like to mention that it has been a great pleasure and privilege
for us to edit this volume, which is intended to be a tribute to Kotaro Suzumura’s im-
mense intellectual contributions, especially in the theory of rational choice, welfare
economics, and the theory of social choice.

Riverside Prasanta K. Pattanaik
Tokyo Koichi Tadenuma
Atlanta Yongsheng Xu
Tokyo Naoki Yoshihara
2007
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Introduction

Kotaro Suzumura received his doctoral degree in economics from Hitotsubashi
University in 1980. He has taught at various institutions, including Hitotsubashi
University (1971–1973, 1982–2008), Kyoto University (1973–1982), London
School of Economics (1974–1976), Stanford University (1979–1980), University
of Pennsylvania (1987), University of Essex (1990–1991), and University of British
Columbia (1994). He has been a British Council Visiting Scholar at Cambridge
University (1973–1974), a Visiting Fellow at Australian National University (1986)
and at All Souls College, Oxford University (1988), a Fulbright Senior Research
Fellow at Harvard University (1993), a Nissan Visiting Fellow at St. Antony’s
College, Oxford University (1996), and a Visiting Fellow Commoner at Trinity
College, Cambridge University (2001).

Though Kotaro is well-known mainly as the author of many seminal contribu-
tions to social choice theory, welfare economics, and theoretical industrial organi-
zation, he started his academic career by working in the fields of economic growth
theory, general equilibrium in linear multisector models, and international trade.
His papers in these fields were published in Economic Studies Quarterly (Japanese
Economic Review) and Metroeconomica.

After completing his doctoral course work, Kotaro earnestly began to work on
the theory of rational choice, social choice, and welfare economics. Between 1976
and 1982, he published many influential papers in leading economic journals, in-
cluding Review of Economic Studies, Journal of Economic Theory, Economica, and
International Economic Review. Those papers constituted the basis of his first sem-
inal research monograph, Rational Choice, Collective Decisions, and Social Wel-
fare (Cambridge University Press, 1983), which has been referred to by numerous
researchers since its publication. He also launched his research project on compe-
tition and social welfare. His first major research work on competition and welfare
was published in Review of Economic Studies. This was followed by many influ-
ential articles on this subject in Journal of Public Economics, American Economic
Review, International Economic Review, and Economic Theory. These articles were
finally developed into his second important monograph, Competition, Commitment,
and Welfare (Oxford University Press, 1995).

P.K. Pattanaik et al. (eds.) Rational Choice and Social Welfare: Theory and Applications, 1
Studies in Choice and Welfare. c© Springer-Verlag Berlin Heidelberg 2008



2 Introduction

Kotaro’s recent research has spanned several important areas, including con-
sistent preferences and rationality of choice; welfare, rights, and social choice
procedures; economics of well-being and freedom; non-welfaristic foundations of
welfare economics; intergenerational equity and global warming. He has published
articles on these subjects in major professional journals such as American Economic
Review, Journal of Economic Theory, Economic Journal, Journal of Mathemati-
cal Economics, Social Choice and Welfare, and Economica. Jointly with Kenneth
J. Arrow and Amartya K. Sen, he edited Handbook of Social Choice and Welfare,
Volumes 1 and 2 (North-Holland, Armsterdam).

Kotaro has also been interested in and worked on issues relating to economic
policies in Japan. In particular, he has taken keen interest in the competition
and industrial policy in Japan, competition and regulation in telecommunications
and Japan’s Reform experience, and welfare policies in Japan. In these areas, he
has published many articles and has edited several books, including Yongsheng,
Prasanta, and Naoki; Industrial Policy of Japan (Academic Press, 1988), jointly
with R. Komiya and M. Okuno; The Economic Theory of Industrial Policy (Aca-
demic Press, 1991), jointly with M. Itoh, K. Kiyono, and M. Okuno-Fujiwara; and
Development Strategy and Management of the Market Economy (Oxford Univer-
sity Press, 1997), jointly with E. Malinvaud, J.-C. Milleron, M. Nabli, A.K. Sen,
A. Sengupta, N. Stern, and J.E. Stiglitz.

Kotaro has made a vast contribution to the profession through his involvement
in various academic associations and conferences and also as an editor of several
journals. He served as the editor of the Journal of the Japanese and International
Economies in 1992–1994, and as an editor of the Japanese Economic Review in
1995–1998. In 1990, he was elected a Fellow of the Econometric Society. He was
the President of the Japanese Economic Association (1999–2000) as well as of the
Society for Social Choice and Welfare (2000–2001). Since October 2006, he has
served as a Vice-President of the Science Council of Japan.

He received the Nikkei Prize twice, first in 1984 for Rational Choice, Collective
Decisions, and Social Welfare (Cambridge University Press, 1983) and second in
1988 for Economic Analysis of Industrial Policy (Academic Press, 1988). In 2004,
he was awarded the Medal with Purple Ribbon for his contributions to theoretical
economics. In 2006, he received the Japan Academy Award for his contributions to
welfare economics and social choice theory.

It is not possible to represent in one volume all the varied interests that mark
Kotaro Suzumura’s work. We have therefore decided to restrict attention to the in-
tersection of our research interests with his.

Part I Arrovian Social Choice Theory and its Developments

The first part of the volume consists of four papers on Arrovian social choice theory
and its developments.



Introduction 3

Maurice Salles’ “Limited rights as partial veto and Sen’s impossibility theorem,”
deals with individual rights and social choice, a subject to which Kotaro has made
important contributions. Salles considers a weakening of Sen’s well-known condi-
tion of minimal liberalism. Sen’s original condition of minimal liberalism required
the existence of at least two individuals, each of whom is locally decisive. In con-
trast, Salles requires the existence of at least two individuals each of whom is only
locally semi-decisive. Salles shows that even this weaker condition does not pro-
vide an escape route from Sen’s famous paradox of a Paretian liberal if we replace
Sen’s social decision function by a social welfare function or any other aggregation
function that may lie “between” these two in terms of the “rationality” of social
preferences.

Nick Baigent’s paper on “Harmless homotopic dictators” considers the possibil-
ity of continuous Paretian social welfare functions. It was Chichilnisky (1982) who
first showed that, for all continuous Paretian social welfare functions, there must
be a homotopic dictator. Baigent presents a reappraisal of the intuitive content of
Chichilnisky’s theorem insofar as he shows that the existence of the homotopic dic-
tator does not entail an undesirable concentration of decisive powers in the hands
of such a person. Baigent demonstrates that, even if there is a homotopic dictator,
one can construct social preferences arbitrarily close to the preferences of the other
agents whenever their preferences are not “opposite” to that of the dictator.

One of Kotaro’s recent research interests is the intergenerational social choice
problems, in which the size and composition of populations may naturally differ
between social states, which arise at different points of time. Derek Parfit (1976,
1982, 1984) was the first to address the issue of “population ethics,” and to crit-
icize classical utilitarianism for its repugnant conclusion. In a series of papers
and a monograph, Blackorby, Bossert, and Donaldson have studied the possibil-
ity of generalized utilitarian principles that avoid this repugnant conclusion. How-
ever, Arrhenius (2003) recently proposed a more serious problem, called the very
repugnant conclusion. In his paper, “Remarks on population ethics,” Tomoichi
Shinotsuka investigates what happens to Blackorby, Bossert, and Donaldson’s re-
sults on generalized utilitarianism in population ethics if the axiom of avoidance
of the repugnant conclusion is replaced by the axiom of avoidance of the very
repugnant conclusion.

Naoki Yoshihara’s paper, “On non-welfarist social ordering functions,” discusses
extended social ordering functions (ESOFs), each of which yields a social order-
ing over alternative combinations of a resource allocation and an allocation rule
(visualized as a game form). Yoshihara shows the possibility of reasonable non-
welfarist ESOFs, which meet the condition of individual autonomy, a non-welfarist
principle of distributive justice, and the welfarist Pareto principle, using a weaker
lexicographic application method. It may be recalled that Kotaro, together with
Prasanta Pattanaik, initiated the study of the framework of extended social ordering
functions in the context of individual rights and social welfare, and, together with
Reiko Gotoh and Naoki Yoshihara, applied this framework to resource allocation
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problems. Yoshihara’s paper is an attempt to treat appropriately the values of proce-
dural fairness and non-consequentialism in the context of social choice of rules and
social institutions.

Part II Social Choice and Fair Allocations

The second part of the volume consists of four papers on fair allocations. Among
various principles or concepts of fairness, these papers basically focus on fairness
as no-envy, monotonicity, solidarity, and the maximin criterion.

In his paper, “Monotonicity and solidarity axioms in economics and game the-
ory,” Yves Sprumont provides an excellent survey of contributions that use soli-
darity and monotonicity principles in fair division problems and transferable utility
cooperative games. In each of the fair division problems and cooperative games,
Sprumont introduces resource monotonicity and its variants, and surveys the works
on the compatibility of these axioms with other ethical principles such as efficiency
and its stronger variant, core principle, as well as no-envy and its weaker variant,
equal split lower bound. Then, he introduces population monotonicity and its vari-
ants, and surveys the works on the compatibility of these axioms with other ethical
principles mentioned above.

Fairness as no-envy is one of the prominent notions of fair allocations, but it
is well-known that envy-free allocations are hard to achieve in the context of the
“compensation problem.” It was Suzumura (1981a, b, 1983) who first systemati-
cally studied the ranking of social states on the basis of fairness as no-envy. In his
paper, “To envy or to be envied? Refinements of the envy test for the compensa-
tion problem,” Marc Fleurbaey explores further the possibility of a systematic use
of rankings based on the notion of no-envy. In addition to the rankings based on the
number of envy relations proposed by Suzumura (1983), Fleurbaey introduces two
criteria for rankings based on the idea of undominated diversity (van Parijs, 1990,
1995), as well as three criteria for rankings based on the notion of envy intensity.
Then, he examines whether allocation rules, which are respectively derived from
the rankings based on the above mentioned criteria, satisfy some variants of the ba-
sic principles of responsibility and compensation for the two types of compensation
problems.

Koichi Tadenuma’s “Choice-consistent resolution of the efficiency-equity trade-
off” deals with the social choice of equitable and efficient allocations. Tadenuma
adopts a choice-theoretic approach to the issue of the efficiency-equity trade-off,
and formulates the two contrasting principles, the equity-first and efficiency-second
principle and the efficiency-first and equity-second principle, in the form of axioms
on social choice correspondences. As equity notions, he considers both equity as
no-envy and equity as egalitarian-equivalence. Then, he examines whether various
social choice correspondences derived from either the equity-first principle or the
efficiency-first principle can satisfy certain consistency properties of choice, such
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as path independence and contraction consistency. Tadenuma also discusses the
relationships of his paper to Kotaro’s seminal work (Suzumura, 1981a,b).

In contrast to the above three papers, which are devoted to the study of in-
tragenerational equity, Koichi Suga and Daisuke Udagawa contribute to the issue
of intergenerational equity. They consider problems of social choice over infi-
nite consumption paths in a simple dynamic economy à la Arrow (1973) and
Dasgupta (1974a,b). They focus on the Rawlsian social choice function in this
context, and provide a characterization of it. In an earlier contribution to the choice-
theoretic approach to intergenerational equity, Asheim, Bossert, Sprumont, and
Suzumura (2006) provided characterizations of all infinite-horizon choice functions
by means of efficiency and time-consistency. Since the Rawlsian choice function
does not satisfy time-consistency, the analysis of Suga and Udagawa may be seen as
independent of, but complementary to, Asheim, Bossert, Sprumont, and Suzumura
(2006).

Part III Rational Choice, Individual Welfare, and Games

The third part of the volume consists of four papers on the rationality of individual
choice in single-person and/or multi-person decision problems and the welfare of
individuals.

Rational choice theory constitutes the foundation for economic theory in gen-
eral, and is applied to problems of individual choices as well as problems of social
choice and welfare economics. In the field of rational choice theory, Kotaro Suzu-
mura has made important contributions by providing and analyzing the notion of
Suzumura Consistency (S-Consistency). S-Consistency is an axiom imposed on bi-
nary relations, and it is a necessary and sufficient condition for the existence of an
ordering extension of a binary relation. Although this notion was first introduced
by Kotaro more than 30 years ago, it still provides us with a variety of interesting
research agendas. Walter Bossert’s paper, “Suzumura consistency,” provides a sur-
vey of recent works on S-Consistency. Bossert reviews how this notion can be used
in a variety of applications, and provides some new observations to emphasize the
importance of this axiom.

In market economies, money is doubtlessly irreplaceable by any other com-
modities. It was Cagan (1956) who introduced the “demand for money function,”
to explain the demand for money in inflationary environments. An extensive lit-
erature, both theoretical and empirical, has used his functional form in analyzing
hyperinflation and the associated problem of “inflation tax.” However, the use of
Cagan’s demand for money function has been “ad-hoc” and no attempt has been
made to rationalize it in terms of “utility maximizing” behavior. Rajat Deb, Kaushal
Kishore, and Tae Kun Seo’s “On the microtheoretic foundations of Cagan’s demand
for money function,” studies this unexplored but conceptually important issue of
rationalizability. Deb, Kishore, and Seo assume that individuals are rational, that
money is both a medium of exchange and a store of value, and that the demand
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for money is a result of intertemporal consumption smoothing. Then, they ask the
question whether Cagan’s demand function for money can be generated from some
underlying process of utility maximization.

As exact measures of individual welfare change, the Hicksian compensating and
equivalent variations are well-established, but the validity of these measures de-
pends on the absence of uncertainty. Under uncertainty, the validity of expected
versions of the Hicksian compensating and equivalent variations is restricted. Some
papers, such as Helms (1984, 1985), characterized the restrictions on preferences,
for which the expected compensating variation is a valid measure of individual wel-
fare change when only one price is uncertain. However, Helms’ framework is quite
restrictive, since it is often the case that the incomes of consumers, as well as one or
more prices, are also uncertain. The paper, “Hicksian surplus measures of individual
welfare change when there is price and income uncertainty,” by Charles Blackorby,
David Donaldson, and John A. Weymark extend Helms’ framework by considering
the case where the consumer’s income and some or all of the prices are uncertain,
and identifies the circumstances in which the Hicksian compensating variation is a
valid measure of individual welfare change.

The three papers discussed above basically study the problems of single-person
decision-making and individual welfare. The last paper in this section, “Beyond
normal form invariance: first mover advantage in two-stage games with or without
predictable cheap talk,” by Peter Hammond, however, considers multiperson deci-
sion problems in the context of non-cooperative games. It will be recalled that von
Neumann (1928) was a strong believer in normal form invariance, which implies
that the reduction of an extensive form game to the corresponding normal form
game involves no loss of generality, and which has been a key assumption of the
standard paradigm in the theory of non-cooperative games. In contrast, it has been
recognized in experimental economics that there is a first mover advantage in Battle
of the Sexes and similar games, which seems to indicate that normal form invari-
ance is invalid. Hammond explores this critical view against the position of von
Neumann, and introduces a “sophisticated” refinement of Nash equilibrium, which
is capable of explaining the first mover advantage. This refinement depends on the
extensive form of the game, and so it violates normal form invariance.

Part IV Social Welfare and the Measurement of Unemployment
and Diversity

The fourth part of the volume consists of two papers, one on the measurement of
unemployment and the other on the measurement of diversity. While the papers do
not deal with social choice and welfare directly, they deal with phenomena which
have indirect links with the notion of social welfare.

Kaushik Basu and Patrick Nolen’s “Unemployment and vulnerability: A class of
distribution sensitive measures, its axiomatic properties and applications,” develops
a way of measuring effective unemployment. Aggregate measures of unemployment
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have been recently criticized for ignoring vulnerability (the existence of people un-
der the risk of becoming unemployed in the near future). In contrast, Basu and Nolen
argue that the issue of vulnerability is not relevant for the underestimation of the
pain of unemployment, but rather for the inequality of the pain of unemployment.
They develop a class of distribution-sensitive unemployment measures, which take
account of their normative stance regarding this issue. Basu and Nolen present a
class of unemployment measures that satisfy several attractive axioms. They also
provide a full characterization of the class of such measures, and apply them to data
for the USA and for South Africa.

Prasanta K. Pattanaik and Yongsheng Xu’s, “Ordinal distance, dominance, and
the measurement of diversity,” characterizes a class of rules for comparing sets of
objects in terms of the degrees of diversity. Some previous works, such as Weitzman
(1992, 1993, 1998) and Weikard (2002), developed cardinal measures of diversity.
Pattanaik and Xu, however, use an ordinal notion of distance between objects and
develop a notion of dominance between sets of objects. The class of rules for ranking
sets of objects that they define and characterize is the class of rules that constitute
extensions of this dominance relation.

Prasanta K. Pattanaik
Koichi Tadenuma

Yongsheng Xu
Naoki Yoshihara
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and its Developments



Limited Rights as Partial Veto and Sen’s
Impossibility Theorem

Maurice Salles

1 Introduction

The origin of the tremendous development of studies on rights and freedom within
social choice theory and normative economics can be traced back to the famous
short paper of Amartya Sen published in 1970 (Sen, 1970b); see also his book
published the same year (Sen, 1970). In this paper, it is shown in the framework
of aggregation procedures that there is a conflict between collective rationality (in
terms of properties of choice functions or in terms of a transitivity-type of the social
preference property – in fact, acyclicity of the asymmetric part of the social pref-
erence), Paretianism (a unanimity property) and some slight violation of neutrality
(neutrality meaning that the names of options or social states are not to be taken
into account) possibly combined with some slightly unequal distribution of power
among individuals interpreted as an individual liberty property. Although, since
then, rights have been considered within another paradigm, viz. game forms (see
for instance Gärdenfors (1981, 2005), Gaertner, Pattanaik, and Suzumura (1992),
Peleg (1998a,b) and Suzumura (2008)), and freedom has been mainly analyzed in
the context of opportunity sets following the pioneering paper of Pattanaik and Xu
(1990) (see also the survey by Barberà, Bossert, and Pattanaik (2004)), some authors
(for instance Igersheim (2006) and Saari and Pétron (2006)) have recently revisited
the foundational framework of Sen and Gibbard (1974) either by studying the infor-
mational structure of the aggregation procedure or by examining the consequences
of taking a Cartesian structure to define the set of social states, consequences that
take the form of a restriction of individual preferences. The purpose of this paper is
different. I wish to formally study a weakening of the conditions associated with the
notion of individual liberty. I have always considered that this condition was rather

M. Salles
CREM, Université de Caen, 14032 Caen cedex, France, and Institute for SCW, BP 1, 14111
Louvigny, France
e-mail: maurice.salles@unicaen.fr
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12 M. Salles

strong in Sen’s original paper. In fact, the condition is quite strong in the mathemat-
ical framework and only the interpretation, to my view, makes it not only acceptable
but obvious. In his comments to a paper by Brunel (now Pétron) and Salles (1998),
Hammond (1998) writes:

In the social choice rule approach ..., local dictatorship becomes a desideratum, provided
that the ‘localities’ are appropriate. Our feelings of revulsion should be reserved for non-
local dictatorships, or local dictatorships affecting issues that should not be treated as
personal.

I entirely share this opinion, but there is nothing in the basic mathematical frame-
work that guarantees this personal aspect (in contrast with a suitable Cartesian
product structure). In this basic framework, it is, however, possible to weaken local
dictatorships. Unfortunately, I will show that this weakening does not offer a very
interesting escape route from Sen’s negative result. From a formal point of view,
I believe that there is a sort of analogy that can be made between a family of Sen’s
impossibility theorems and Arrovian impossibility theorems.

After introducing general definitions and recalling Sen’s theorems, I will present
new Sen-type impossibility theorems, then will make a comparison with Arrovian
impossibility theorems, commenting on similarities and obvious differences.

2 Basic Definitions and Sen’s Theorem

Let X be the set of social states. Nothing specific is assumed for this set. A binary
relation, a preference, over X is a subset of X ×X . It will be denoted by �. I will
write x� y rather than (x,y) ∈�. All binary relations considered in this chapter are
supposed to be complete (for all x and y ∈ X , x � y or y � x) and, consequently,
reflexive (for all x ∈ X , x � x). The asymmetric part of �, denoted � is defined
(since � is complete) by x � y if ¬y � x. The symmetric part of � is defined by
x ∼ y if x � y and y � x. Intuitively, x � y will mean ‘x is at least as good as y’,
x � y will mean ‘x is preferred to y’ and x ∼ y will mean ‘there is an indifference
between x and y’. A preference � is transitive if for all x, y and z ∈ X , x � y and
y � z⇒x � z. The asymmetric part of �, �, is transitive if for all x, y and z ∈ X ,
x � y and y � z ⇒ x � z. The symmetric part of �, ∼, is transitive if for all x, y
and z ∈ X , x ∼ y and y ∼ z⇒x ∼ z. If � is transitive, � and ∼ are transitive too.
We will say that � is quasi-transitive if � is transitive (then ∼ is not necessarily
transitive), and that � is acyclic if there is no finite subset of X , {x1, . . . ,xk}, for
which x1 � x2, x2 � x3, . . . , xk−1 � xk and xk � x1. A complete and transitive binary
relation is a complete preorder (sometimes called ‘weak ordering’). Let B denote
the set of complete binary relations over X , P denote the set of complete preorders
over X , Q denote the set of complete and quasi-transitive binary relations over X ,
and A denote the set of complete binary relations over X whose asymmetric part
is acyclic.

Let N be the set of individuals. Nothing specific will be assumed for this set
unless it is clearly indicated that it is finite. Individual i ∈ N has her preference
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given by a complete preorder �i over X . A profile π is a function from N to P
′,

π : i �→�i, where P
′ ⊆ P with P

′ �= /0 . Let Π ′ be the set of profiles when the �i’s
are in P

′ and Π be the set of all profiles (when the �i’s are in P). When N is finite
and #N = n, a profile is a n-list (�1, . . . ,�n) with each �i in P

′. Then Π ′ = P
′n and

Π = P
n (P′n and P

n are n-times Cartesian products of P
′ and P).

Definition 1. An aggregation function is a function f :Π ′ → B.

An aggregation function associates a unique complete binary relation, a social
preference, denoted by �S, to individual preferences (one preference for each
individual).

Given an aggregation function f , and two (distinct) social states x and y ∈ X ,1

we will say that individual i ∈ N is (x,y)-decisive if for all π ∈Π ′, x�i y⇒ x�S y,
where �S is the asymmetric part of �S = f (π).

Definition 2. An individual who is (x,y)-decisive and (y,x)-decisive will be said to
be {x,y}-decisive or a {x,y}-dictator.

I can now define Sen’s two liberalism conditions. Let f be an aggregation
function.

Definition 3. (Liberalism, general 2-D+) For all i ∈ N, there exist ai and bi ∈ X
such that i is a {ai,bi}-dictator.

It should be noticed that P
′ must be large enough to have a non-trivial satisfaction

of general 2-D+: for each individual i it must be possible to have both ai �i bi
and bi �i ai. Also, it should be outlined that the condition is rather fair since each
individual is endowed with the same kind of power. The theorem can be proved by
using a weaker form of the foregoing condition.

Definition 4. (Minimal liberalism, minimal 2-D+) There exist two individuals i and
j ∈ N, and a, b, c, d ∈ X such that i is a {a,b}-dictator and j is a {c,d}-dictator.

Of course, the fairness property disappeared. The options are to be ‘interpreted’
as being specific to the concerned individual, i.e., a and b are specific to individ-
ual i; a and b can even be ‘interpreted’ as perfectly identical social states except
for some features that are personal to individual i. Clearly general 2-D+ implies
minimal 2-D+.

As mentioned earlier, the domain of the aggregation function f must be rich
enough. This will be taken care of (with some excess) by the following condition U.

Definition 5. (Universality, U) Let f be an aggregation function. Universality re-
quires that P

′ = P.

This means that an individual preference can be any complete preorder. There is
no restriction imposed by some kind of upper rationality or the existence of inter-
individual constraints. The last condition (condition P) is a weak form of unanimity
(Pareto principle).

1 They have to be distinct so that saying it is superfluous since we consider that x �i y and �i is
asymmetric.
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Definition 6. (Pareto principle, P) Let f be an aggregation function, π ∈ Π ′ and
x, y ∈ X .2 If for all i ∈ N, x �i y, then x �S y where �S is the asymmetric part of
�S = f (π).

Sen’s theorem is obtained within a large class of aggregation functions (Sen
called them social decision functions).

Definition 7. A A-valued aggregation function (or social decision function) is a
function f :Π ′ → A.

The collective rationality imposed in this case is rather weak. It has an interesting
consequence on the non-emptiness of the set of maximal elements in any finite sub-
set of X (or since we are considering complete binary relations on the non-emptiness
of maximum elements or choices).

Theorem 1. If there are at least two individuals and if #X ≥ 2, there is no A-valued
aggregation function satisfying minimal 2-D+, U and P.

An immediate corollary is:

Corollary 1. If there are at least two individuals and if #X ≥ 2, there is no A-valued
aggregation function satisfying general 2-D+, U and P.

3 Partial Veto and Sen-Type Theorems

It is in reading Pattanaik’s paper (Pattanaik (1996)) that I got the impetus to work
on this topic. In particular in this paper, Pattanaik discusses Sen’s possible views
regarding a distinction between a conception of rights as the ability to prevent some-
thing and a conception of rights as the obligation to prevent something which seems
to be endowed in the liberalism conditions. Although I wished to devote some time
to introduce modal theoretic techniques to deal with this distinction, I will be in this
chapter more modest and will consider a weakening of the liberalism conditions. It is
however obvious that this weakening is not a real response to the ability-obligation
problem. Nevertheless, at least from a semantical point of view, having a (partial)
veto corresponds rather well to the idea of an ability to prevent something. I will
then introduce the notion of partial veto and will show how robust Sen’s theorem is.

Given an aggregation function f , and two (distinct) social states x and y ∈ X , we
will say that individual i∈N is (x,y)-semi-decisive if for all π ∈Π ′, x�i y⇒ x�S y,
where �S = f (π).

Definition 8. An individual who is (x,y)-semi-decisive and (y,x)-semi-decisive
will be said to be {x,y}-semi-decisive or a {x,y}-vetoer.

As can be seen, the difference between a {x,y}-vetoer and a {x,y}-dictator is
the difference between x �S y and x �S y. A {x,y}-vetoer’s power amounts to the

2 Again, x and y are necessarily distinct.
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assurance that y will not be ‘ranked’ before x in the social preference.3 I can now
define weak versions of liberalism.

Definition 9. (Weak liberalism, general 2-V+) For all i∈N, there exist ai and bi ∈X
such that i is a {ai,bi}-vetoer.

Definition 10. (Minimal weak liberalism, minimal 2-V+). There exist two individ-
uals i and j ∈ N, and a, b, c, d ∈ X such that i is a {a,b}-vetoer and j is a {c,d}-
vetoer.4

One of the possible Pareto extension functions (based on the weak form of the
Pareto principle of condition P) that will be discussed later, indicates that having
weak liberalism will not make�S non-quasi-transitive. Consequently, problems can
be met only for the transitivity of social preference, or, as will be seen, for binary
relations which are, in some sense, between preorders and quasi-transitive binary
relations. We will define two of these ‘intermediate’ relations, interval orders and
semiorders. These definitions can be stated as properties of the asymmetric part of
the complete binary relation � over X .

Definition 11. A binary relation � on X is an interval order if for all w, x, y, and
z ∈ X , w� y and x� z⇒ w� z or x� y.

The set of interval orders over X will be denoted by I.

Definition 12. A binary relation � on X is a semiorder if it is an interval order and
if for all w, x, y, and z ∈ X , w� x and x� y⇒ w� z or z� y.

The set of semiorders will be denoted by S. These two concepts have mainly been
introduced in measurement theory to deal with possible intransitive indifference.
Although indifference is not necessarily transitive contrary to what is the case with
preorders, it should be noted that, for both concepts, � is transitive (see Fishburn
(1985) and Suppes, Krantz, Luce, and Tversky (1989)).

My first result is for social welfare functions.

Definition 13. A P-valued aggregation function (or social welfare function) is a
function f :Π ′ → P.

Theorem 2. If there are at least two individuals, there is no P-valued aggregation
function satisfying U, P and minimal 2-V+, provided that, in the definition of mini-
mal 2-V+, {a,b} �= {c,d}.

3 I use quotation marks for ‘ranked’ since a ranking can only be meaningful for X being finite with
a (some) social state(s) ranked first, etc.
4 Although I suspected that the notion of weak liberalism was not new, it is in reading (Sen, 1982)
that I discovered that it had been first proposed in a different form by Karni (1974) in a working
paper that is still unpublished. In Karni’s paper the condition applies to subsets of alternatives.
This working paper also includes important comments about the Cartesian product structure and
unconditional preferences.
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Proof. Let f be an aggregation function. i is a {a,b}-vetoer and j is a {c,d}-vetoer.
{a,b} �= {c,d}. Note that #X ≥ 3. Let us assume first that {a,b}∩{c,d} �= /0. With-
out loss of generality, assume that b = c. Let π be a profile such that a�i b, b� j d,
and for all k ∈ N, d �k a. Then, we have for i, d �i a �i b and for j, b � j d � j a.
Since i is a {a,b}-vetoer, we have a �S b, and since j is a {b,d}-vetoer, we have
b�S d. If f were P-valued, by transitivity, we should have a�S d, but by condition P,
we have d �S a, a contradiction.

Consider now the case where {a,b} ∩ {c,d} = /0. Let π be a profile such that
a�i b, c� j d and for all k ∈ N, b�k c and d �k a. Then, we have d �i a�i b�i c
and b � j c � j d � j a. By condition P, we have b �S c and d �S a. Since j is a
{c,d}-vetoer, we have c �S d. If f were P-valued, b �S c and c �S d and d �S a
would imply b�S a. But a�S b since i is a {a,b}-vetoer, a contradiction. ��

Although one can obtain a cycle with two options (a �S b and b �S a), three
options are necessary for an intransitivity. Now, I will consider the case of interval
orders.

Theorem 3. If there are at least two individuals, there is no I-valued aggregation
function satisfying U, P and minimal 2-V+, provided that, in the definition of mini-
mal 2-V+, {a,b}∩{c,d}= /0.

Proof. Let f be an aggregation function. Obviously, #X ≥ 4. Let π be a profile such
that a�i b, c� j d, and for all k ∈N, b�k c and d �k a. Observe that d �i a�i b�i c
and b� j c� j d � j a. Since b�S c and d �S a by condition P, we should have if�S
were an interval order, i.e., if f were I-valued, b�S a or d �S c. But we have (a�S b
and c �S d) since i is a {a,b}-vetoer and j is a {c,d}-vetoer, a conjunction that is
the negation of the disjunction (b�S a or d �S c) (given completeness of �S). ��

If #X = 3, the condition given in Definition 11 is reduced to the transitivity of�S.
Then, the Pareto extension function based on the weak form of the Pareto princi-
ple given in condition P is a counter-example. Let me define this Pareto extension
function.

Definition 14. Let π ∈ Π ′ and x, y ∈ X . f is the weak Pareto extension function if
x�S y⇔∀k ∈ N x�k y, and y�S x otherwise.

One can easily see that�S is transitive and that each individual i is a {x,y}-vetoer
for all {x,y} ⊆ X .

Semiorders are ‘between’ preorders and interval orders. Can we expect to have
some progress? In fact, one obtains, as could be expected, a theorem ‘between’
Theorem 2 and 3, although the refinement is quite modest.

Theorem 4. If there are at least two individuals, there is no S-valued aggregation
function satisfying U, P and minimal 2-V+, provided that, in the definition of mini-
mal 2-V+, {a,b} �= {c,d} and provided that #X ≥ 4.

Proof. Let f be an aggregation function. Suppose first that {a,b} �= {c,d}, but
{a,b}∩{c,d} �= /0. Without loss of generality, assume that a = d. Consider a profile
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π such that a�i b, c� j a, and for all k ∈ N, b�k e and e�k c, where e is a fourth
social state. Note that a �i b �i e �i c and b � j e � j c � j a. Then, by condition P,
b�S e and e�S c. If �S were a semiorder, i.e., if f were S-valued, we should have
(b �S a or a �S c). But we have (a �S b and c �S a), since i is a {a,b}-vetoer and
j is a {a,c}-vetoer, a conjunction that is the negation of the disjunction (b �S a or
a�S c), a contradiction.

If {a,b}∩{c,d}= /0, the proof is of course similar to the proof of Theorem 3. ��

Theorems 2–4 have obvious corollaries (omitted) when minimal weak liberalism
is replaced by weak liberalism.

This hierarchy of results is reminiscent of the family of Arrovian impossibility
theorems. In Sect. 4, I will present a parallel between these two families of impossi-
bility results.

4 Comparing Sen-Type Impossibilities with Arrovian
Impossibilities

I will very briefly state Arrovian theorems with their necessary supplementary def-
initions. For all these theorems N is supposed to be finite with #N = n. In all the
definitions of this section, we suppose that f is an aggregation function.

Definition 15. (Independence-binary form, I) Let π and π ′ ∈ Π ′ with π : i �→�i
and π ′ : i �→�′i. Consider any x, y ∈ X . If �i |{x,y}= �′i |{x,y} for all i ∈ N, then
�S |{x,y}=�′S |{x,y}where�S= f (π) and�′S = f (π ′). (�S |{x,y} is the restriction
of �S to {x,y}.)

Definition 16. A dictator is an individual who is a {x,y}-dictator for all {x,y} ⊆ X .

Definition 17. (Condition D−, non-dictatorship) There is no dictator.

Theorem 5. (Arrow, 1950, 1951, 1963) If n ≥ 2 and #X ≥ 3, there is no P-valued
aggregation function (social welfare function) satisfying U, P, I and D−.

The Pareto extension function is a counter-example to a theorem which would
be similar to Arrow’s theorem except that P-valuedness would be replaced by Q-
valuedness. However, if non-dictatorship is replaced by a no-vetoer condition, the
result is restaured.

Definition 18. A vetoer is an individual who is a {x,y}-vetoer for all {x,y} ⊆ X .

Definition 19. (Condition V−, no-vetoer) There is no vetoer.

Theorem 6. (Gibbard, 1969) If n≥ 2 and #X ≥ 3, there is no Q-valued aggregation
function satisfying U, P, I and V−.
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There is more in the original Gibbard’s paper, since Gibbard shows that if f is a
Q-valued aggregation function satisfying U, P, I, there exists an oligarchy, a group
of individuals having full power if they act unanimously and whose members are all
vetoers. For n = 2, majority rule gives a quasi-transitive social preference, but, in
this case, each of the two individuals is a vetoer.

If one considers A-valued aggregation function (social decision function), one
can still get an impossibility provided that the aggregation function is increasing
(this property is often called strict monotonicity or positive responsiveness).

Definition 20. (Increasing aggregation function, IF) An aggregation function f is
an increasing aggregation function if for all π , π ′ ∈ Π ′, and all x, y ∈ X , if for all
i ∈ N, (x�i y⇒ x�′i y and x∼i y⇒ x�′i y), and there exists j ∈ N such that (y� j x
and x �′j y) or (x ∼ j y and x �′j y), then x �S y⇒ x �′S y, where �S = f (π) and �′S
is the asymmetric part of �′S = f (π ′).

Intuitively this condition means that if option x does not decrease vis-à-vis option
y in all individual preferences, and if x increases vis-à-vis y in at least one individual
preference, then, this increase must be reflected at the social level, when possible.

Theorem 7. (Mas-Colell and Sonnenschein, 1972) If n ≥ 4 and #X ≥ 3, there is
no A-valued increasing aggregation function (increasing social decision function)
satisfying U, P, I,and V−.

A rather confidential result offers a refinement of this theorem.

Definition 21. A quasi-dictator is an individual i who is a vetoer such that for all
π ∈ Π ′, and all x, y ∈ X , x �i y and x ∼S y⇒ for all j �= i, y � j x, where ∼S is the
symmetric part of �S = f (π).

A quasi-dictator is then nearly exactly similar to the Arrovian dictator except in
the case where all other individuals have a strict preference that is the inverse of his
strict preference.5

Definition 22. (Condition Q-D−, non-quasi-dictatorship) There is no quasi-
dictator.

Theorem 8. (Bordes & Salles, 1978) If n ≥ 4 and #X ≥ 3, there is no A-valued
increasing aggregation function (increasing social decision function) satisfying U,
P, I, and Q-D−.

Surprisingly, Arrovian theorems regarding semiorder-valued (or interval order-
valued) aggregation functions appeared later. It was, however, quite important to
know that Arrow’s theorem could be obtained without postulating that the social
preference be a complete preorder. These important and somewhat neglected results
are due to Blair and Pollack (1979) and Blau (1979) (in fact their papers appeared
in the same issue of the Journal of Economic Theory).

5 I prefer to use ‘his’ rather than ‘her’ for this sort of people! I hope that this is not politically
incorrect.
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Table 1 Comparing Arrovian and Sen-type impossibility theorems

Impossibility theorems

Aggregation function Arrovian (with U+I+P) Sen-Type (with U+P)

P-valued D− Minimal 2-V+

S-valued D− Minimal 2-V+

I-valued D− Minimal 2-V+

Q-valued V− Minimal 2-D+

A-valued (V− or Q-D−)+IF minimal 2-D+

Theorem 9. (Blair and Pollack, 1979; Blau, 1979) If n≥ 4 and #X ≥ 4, there is no
S-valued aggregation function or no I-valued aggregation function satisfying U, P,
I and D−.

To the best of my knowledge and contrary to the case of Sen-type impossibility
theorems, there is no way to make a distinction between S-valued and I-valued ag-
gregation function. Of course, for three options, the properties of interval orders and
of semiorders are both reduced to quasi-transitivity and then the Pareto extension
function gives an appropriate counter-example.

Table 1 provides a useful summary of the preceding results and establishes a sort
of parallel.

What this table shows is the connection between D− and 2-V+, and between V−

and 2-D+. However, as shown in the next section, this parallel should not be taken
too seriously.

5 Discussion

In this section, I will outline the major differences between the two categories of im-
possibility theorems. The first one concerns the set of individuals N. As I mentioned
at the beginning of the preceding section, for Arrovian impossibility theorems we
assume that N is finite. From a historical point of view, after the publication of
Arrow’s papers and book, a question was whether this assumption was only there
to make the proof of the theorem easier (and, after all, N finite is a rather easily
justifiable property) or whether this was a necessity. Fishburn (1970) was the first
to show that it was a necessary assumption. With N infinite, Fishburn provided a
counter-example. Incidentally, Fishburn’s short paper was the starting point of an
active research with possibly metaphysical implications.

As clearly stated in the Table 1, independence (of irrelevant alternatives–different
from the Chernoff variety) is a very important feature of Arrovian theorems. This
property is not used at all in Sen-type theorems. The interplay between the various
conditions of social rationality, the different Pareto principles and the properties of
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decisiveness and semi-decisiveness in the light of Sen’s Paretian epidemic deserves
to be scrutinized in a future work.6

Both categories of impossibility theorems are stated with condition U. It is, how-
ever, possible to define smaller domains so that we could obtain impossibilities (see
Kalai and Muller (1977) for Arrovian social welfare functions). For Sen-type the-
orems, one only need a domain rich enough to include the profiles leading to the
impossibilities.

Sen’s theorem is often considered with social choice functions rather than
A-valued functions (social decision functions). A social choice function is a func-
tion f � : 2X − /0×Π ′ → 2X − /0 such that for all S ∈ 2X − /0 and all π ∈ Π ′,
f �(S,π)⊆ S. This function selects social states in each non-empty subset of the set
of social states. To define liberalism, one can say that for all i ∈ N, there exist two
social states {ai,bi} such that for all non-empty S ⊆ X and all π ∈ Π ′, if ai ∈ S
and ai �i bi, then bi /∈ f �(S,π) and if bi ∈ S and bi �i ai, then ai /∈ f �(S,π). A
similar definition can be given for minimal liberalism by restricting the definition
to only two individuals in a way similar to what was done previously. Using this
framework, the proof of the corresponding theorem consists in emptying f �(S,π)
for specific S and π . This proof is as easy as the proof for A-valued functions,
and it is not surprising given the strong relations between �-cycles and the ab-
sence of maximal elements (or between acyclicity and the existence of maximal
elements, as previously mentioned). Things are less simple with weak liberalism.
With liberalism, if ai �i bi, then bi is rejected from all choice sets f �(S,π) such
that ai ∈ S. This means that f �({ai,bi},π) = {ai}. This corresponds intuitively
well to ai �S bi. Weak liberalism only tells us that ai �S bi. Intuitively but also in
the standard choice literature, this corresponds to ai ∈ f �({ai,bi},π). This means
that ai must be selected but it does not say that bi is rejected, and, furthermore, we
cannot say anything about the selection from the other sets to which ai belongs. Of
course this difficulty can be probably taken care of by imposing to f � properties
borrowed from the revealed preference and rationalizability literature (this will be
the subject of another paper).

Finally and this is the main difference, difference which is at the origin of recent
major developments on non-welfaristic issues in normative economics, Sen-type
theorems are non-welfaristic.7 The word welfarism is associated with the idea that
the goodness of social states are evaluated only on the basis of individual utilities
attached to these social states. This leads to the following observation. If we have
four social states w, x, y and z and if each individual i attributes the same utility to
w and to x, and the same utility to y and to z, then, the social ranking of w and y
must be the same as the social ranking of x and z. This can lead to various proper-
ties of neutrality for functions defined on profiles of utility functions and this can
be extended to profiles of individual preferences in which case one obtains intra or
inter profiles neutrality (for an introduction to the non-welfaristic literature, I rec-

6 Paretian epidemic was first described and analyzed in Sen (1976, 1982). This remark was
prompted by a comment from the referee, a comment that is very gratefully acknowledged.
7 The following remarks owe much to Kotaro Suzumura. I am very grateful to him for calling my
attention to this crucial aspect.
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ommend the remarkable article by Pattanaik published in a too confidential book,
see Pattanaik (1994)). Intuitively, neutrality means that names of social states do not
matter. The liberalism conditions obviously violate neutrality since specific social
states are attached to specific individuals.

6 Conclusion

In this chapter, Sen’s liberalism conditions have been weakened. Partial dictator-
ship has been replaced by partial veto. This weakening could be justified to some
extent by a wish to consider rights as the ability to prevent something to happen
rather than the obligation to prevent something to happen. Unfortunately, this weak-
ening does not take us very far since impossibilities will occur if we replace social
decision functions by social welfare functions or other aggregation functions ‘be-
tween’ social welfare functions and social decision functions. Considering a kind
of hierarchy of aggregation functions on the basis of the collective rationality of
the associated social preference, it was natural to compare Sen-type impossibility
theorems with Arrovian impossibility theorems. Although this comparison shows
that there is some interesting relations from a mathematical point of view, the dis-
crepancies are probably more important from an interpretative point of view. In par-
ticular, the discrepancy between welfaristic aspects of the Arrovian theorems and
the non-welfaristic aspects of Sen-type theorems is a very important one that has
been outlined. Sen’s theorem has been justly considered as the foundational result
of non-welfaristic normative economics. In, forthcoming papers, I will consider the
extension of the results of the present paper to a choice-theoretic framework. I will
also come back to the debate between ability (possibility) and obligation by using
modal logic.

Appendix 1

Blau (1979) and to some extent Blair and Pollack (1979) (and probably others)
define interval orders and semiorders differently from Definitions 11 and 12. Given
that �S is complete, the following propositions show the equivalence between the
definitions of the present chapter which are borrowed from Fishburn (1985) and
Suppes, Krantz, Luce, and Tversky (1989) and the definitions used by Blau (these
results are probably already known, but I have been unable to find where it could be).

Proposition 1. Let � be complete. Then the following two statements are
equivalent.

(i) For all w, x, y, and z ∈ X, w� y and x� z⇒ w� z or x� y.
(ii) For all w, x, y, and z ∈ X, w� x and x∼ y and y� z⇒ w� z.
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Proof. (i)⇒ (ii). Suppose (i) and w� x and x∼ y and y� z. Since w� x and y� z,
then by (i), w� z or y� x. But ¬y� x since x∼ y, and then w� z.
(ii)⇒ (i). Suppose (ii) but not (i). Then there exist a, b, c and d ∈ X such that a� c
and b� d and ¬(a� d or b� c). But ¬(a� d or b� c) is equivalent to (d � a and
c� b) since � is complete. c� b is either c� b or c∼ b. If c� b, a� c and c� b
and b � d imply a � d since � is transitive by (ii) (take x = y and note that ∼ is
reflexive). This contradicts d � a. If c∼ b, a � c and c∼ b and b� d imply a� d
by (ii), contradicting d � a again. ��

The next result concerns Definition 12.

Proposition 2. Let � be complete. Then the following two statements are
equivalent.

(i) For all w, x, y, and z ∈ X , w� x and x� y⇒ w� z or z� y.
(ii) For all w, x, y, and z ∈ X , w� x and x� y and y∼ z⇒ w� z.

Proof. (i)⇒ (ii). Suppose we have (i) and that w� x and x� y and y∼ z. But w� x
and x� y imply by (i) (w� z or z� y). Since y∼ z, then ¬z� y, and w� z.
(ii)⇒ (i). Suppose we have (ii) and not (i). Then there exist a, b, c and d ∈ X such
that a� b and b� c and ¬(a� d or d � c), i.e., (d � a and c� d) by completeness
of �. If c � d, a � b and b � c and c � d imply a � d since � is transitive by (ii)
(take y = z and note that ∼ is reflexive). But this contradicts d � a. If c ∼ d, a � b
and b� c and c∼ d imply a� d by (ii), which contradicts d � a. ��
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Harmless Homotopic Dictators

Nicholas Baigent

1 Introduction

This paper constructs continuous Paretian social welfare functions for which one
agent is a homotopic dictator but another is, in a precise sense, almost all power-
ful. The significance of this arises from the widely differing views1 that have been
expressed about a theorem in Chichilnisky (1982) showing that, for all continu-
ous Paretian social welfare functions there must be a homotopic dictator. What the
analysis in this paper therefore shows is that Chichilnisky’s theorem is not a gen-
uine Arrow-type impossibility theorem in the sense that desirable properties are not
shown to entail some undesirable concentration of power.

While this does not necessarily mean that Chichilnisky’s theorem is not signif-
icant, at least it calls for a reappraisal. One possible argument for the significance
of this theorem starts from the fact that a homotopic dictator is also a strategic
manipulator. However, as argued below, this argument does not establish the inde-
pendent significance of Chichilnisky’s theorem. At best, its significance seems to be
derivative.

Section 2 introduces the main concepts and definitions. Section 3 provides an
informal overview drawing heavily on diagrams. Section 4 presents results and a
final Section 5 concludes with a summary and a few remarks towards a reappraisal
of Chichilnisky’s theorem.

N. Baigent
Institute of Public Economics, Graz University A-8010, Graz, Austria
e-mail: nickbaigent@waitrose.com

1 See Chichilnisky (1982), Heal (1997), Sen (1986) on the one hand and Baigent (2003), Lauwers
(2000), MacIntyre (1998), Saari (1997) on the other hand.
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2 Concepts and Definitions

Consider parallel linear indifference curves on a two dimensional space of alterna-
tives, and call the underlying preferences linear preferences. Figure 1 shows two
indifference curves for each of two linear preferences. For a given linear preference,
draw a vector of length 1 perpendicular to an indifference curve at an arbitrary al-
ternative. Such vectors are called unit normals. Since they are independent of the
arbitrary alternative, a linear preference may be represented by such a unit normal.
Also, since each unit normal takes a point in the Euclidean plane to another point on
a circle of radius 1, the set of all preferences may be taken as the set of points on a
unit circle. For convenience, re-centre this circle at the origin as in Fig. 2. Thus, the

set of all linear preferences will be taken as: S1 = {(x1,x2) ∈ R
2 :
√

x2
1 + x2

2 = 1}.
For all vectors, x = (x1,x2) ∈ S1, its polar coordinates are (1,ρx) where ρx is the

distance around the circle S1 from the vector (1,0) to x in the positive (anticlock-
wise) direction as shown by a bold arc in Fig. 2.

Fig. 1

Fig. 2

x

x1

x2

1

y=S (x,d)
d=ry− rx

rx
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Let [0,2π] denote the closed interval of real numbers from 0 to 2π , and let
(0,2π) denote the open interval from 0 to 2π .2 For all x ∈ S1 and all δ ∈ [0,2π],
let s(x,δ )∈ S1 denote the point in S1 that is a distance of δ around S1 from x in an
anticlockwise direction. Thus, for all x,y∈ S1, s(x,δ ) = y if and only if ρy−ρx = δ ,
see Fig. 2. That is, s(x,δ ) determines an anticlockwise rotation from x ∈ S1. Since
the circumference of the unit circle is equal to 2π , it follows immediately that:

s(x,0) = s(x,2π) = x (1)

For simplicity, consider the case of only two agents. A social welfare function is
then a function f : S1× S1 → S1 that assigns a group linear preference f (x,y)∈S1

to all pairs of individual linear preferences (x,y)∈S1× S1. Since the domain and
range of a social welfare function are subsets of Euclidean spaces, when continuity
is required it is taken in the usual sense for functions between subsets of Euclidean
spaces.3

3 Overview

Continuous Paretian social welfare functions on a two-dimensional space of alterna-
tives may be illustrated in a simple diagram. This diagram is used in this section to
offer an informal presentation of the main point of the paper that is presented more
precisely in Section 4.

The Weak Pareto property of social welfare functions requires that the group
preference rank one alternative strictly above another whenever every individual
does. In Fig. 3, an indifference curve for each agent is given in bold for which a is
ranked above b. This is also the case for the indifference curve of the group pref-
erence, shown by the dotted line. Indeed, for the social preferences illustrated, any

Fig. 3

a

b

2 Though the same sort of parenthesis is used for both intervals of real numbers and vectors in R
2,

confusion is avoided by explicitly designating vectors, for example by writing, “the vector (0,1)”.
3 That is, with respect to the relative topologies given the Euclidean topologies on R

4 which con-
tains the domain and R

2 which contains the range.
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Fig. 4

a*

b*

alternative ranked by both individual agents above another is also ranked above it by
the group preference. In fact, this must be the case for all group preferences whose
unit normal is contained in the cone spanned by the agents’ unit normals. This is
shown by the arrows in Fig. 3. Now, consider the case shown in Fig. 4. Both agents
rank a∗ above b∗, but the group ranks these alternatives in the opposite way. In this
case, the unit normal for the group is not in the cone spanned by the agents’ unit
normals.

Alternatively but equivalently, for agents’ preferences x,y ∈ S1, the group pref-
erence must be on the shortest arc in S1 from x to y. For example, in the case shown
in Fig. 2, the group preference must be on the bold arc going anti-clockwise from x
to y, and its distance δ ′ from x along this arc must satisfy 0≤ δ ′ ≤ δ .

To illustrate a continuous weakly Paretian social welfare function, consider an
arbitrary x ∈ S1, and f (x,s(x,δ )) as δ varies from 0 to 2π . This is shown in Fig. 5 in
which values of δ are shown on the horizontal axis and the anticlockwise distance,
ρ f (x,s(x,δ ))−ρx, of the social preference from x is shown on the vertical axis.

The relevant details are all shown in the square with sides of length 2π , which is
sub-divided into four sub-squares each with sides of length π . As δ goes from 0 to
2π on the horizontal axis, the height of the S-shaped curve, shown by a continuous
line from the point (0,0) to the point (2π,2π), shows the anticlockwise distance of
the social preference around S1 from x. At the point (0,0) agents 1 and 2 both have
preferences given by x ∈ S1, and this is also the case at the point (2π,2π). At δ = π ,
agent 2’s preference is exactly opposite 1’s preference in S1 and exactly the same as
the social preference since the S-curve goes through the point (π,π).

Now consider values of δ between 0 and π . In this case, the height of the S-curve
is less than the height of the diagonal. This implies that in S1, the anticlockwise
distance from x to the social preference is less that that to 2’s preference, thus sat-
isfying the requirement of the cone restriction. This is also true for values of δ
between π and 2π . In this case, the height of the S-curve is greater than the height
of the diagonal. This implies that in S1, the anticlockwise distance from x to the
social preference is greater than that to 2’s preference, and again the requirement of
the cone restriction is satisfied.
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Fig. 5

Another crucial feature of the social welfare function illustrated by the S-curve
is that the social preference is never the exact opposite of 2’s preference. That is,
the point in S1 that gives the social preference is never exactly opposite the point
that gives agent 2’s preference. If it were, it would intersect the diagonals of the
northwest or southeast sub-squares in Fig. 5, shown by dotted lines.

Now consider the case of a social welfare function that is illustrated by the di-
agonal of the square. In this case, as the preference of agent 2 rotates anticlockwise
from x, the social preference also goes through exactly the same rotation. That is,
the preferences of society and agent 2 are always identical. If this is the case for all
possible preferences x∈ S1 that agent 1 could have, then this social welfare function
is dictatorial and agent 2 is the dictator.

Finally, a crucial role is played by two continuous deformations of the S-curve.
In one of these, the continuous S-curve is continuously deformed into the diagonal.
Just continuously raise the S-curve for all δ ∈ (0,π) and lower it for all δ ∈ (π,2π).
Such pairs of functions that can be continuously deformed into each other are called
homotopic functions. Thus, the social welfare function illustrated by the S-curve in
Fig. 5 and the social welfare function illustrated by the diagonal are homotopic.
Furthermore, agent 2 is then called a homotopic dictator for the social welfare
function illustrated by the S-curve. Indeed, there must be a homotopic dictator by
Chichilnisky’s theorem.

The other important observation is that the social welfare function illustrated by
the S-curve may also be continuously deformed as shown by the broken lines in
Fig. 5. For this continuous deformation, for all δ ∈ (0,π), the heights of the curves
shown by the broken lines decrease towards 0 and for all δ ∈ (π,2π), the heights
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of the curves shown by the broken lines increase towards 2π . For this class of
deformations of the S-curve, apart from its end points, only the point (π,π) remains
constant. In other words, it may be concluded that, if agents do not have opposite
preferences, the group preference may be made arbitrarily close to the preference of
agent 1, even though agent 2 remains a homotopic dictator. It is only if agents have
opposite preferences that agent 2 is necessarily asymmetrically powerful.

4 Results

This section makes precise concepts that are used informally in Sect. 3 and the re-
sults given in this section justify the conclusion of the Sect. 3.

Projection functions on S1×S1 are continuous social welfare functions that have
a special role. They are functions pi : S1×S1→ S1, i = 1,2, such that, for all x,y∈ S1,
p1(x,y) = x and p2(x,y) = y. For the social welfare function pi, i = 1,2, i is called
the dictator. Note that if agent 2 is a dictator then, for all x ∈ S1 and all δ ∈ [0,2π],
f (x,s(x,δ )) = s(x,δ ).4

The concept of homotopic dictatorship first requires the concept of homotopic
functions. For arbitrary continuous functions F,G from A to B, F and G are ho-
motopic if and only if there is a continuous function h : A× [0,1]→ B such that,
for all a ∈ A, h(a,0) = F(a) and h(a,1) = G(a). Thus, homotopic functions F and
G may be continuously deformed into each other. For a social welfare function
f : S1×S1→ S1, agent i, i = 1,2, is a homotopic dictator if and only if f and pi are
homotopic. A dictator is a homotopic dictator but not necessarily vice versa.

Next, the cone restriction is made precise. For two agents the satisfaction of the
cone restriction is equivalent to the Weak Pareto property, though for more than two
agents it is strictly weaker though still sufficient for Chichilnisky’s theorem.

For all x ∈ S1 and δ ∈ [0,2π], the closed circular cone spanned by x and s(x,δ )
is defined as follows:

C(x,s(x,δ )) =
{{y ∈ S1 : y = s(x,δ ′),0≤ δ ′ ≤ δ} if 0≤ δ < π,

{y ∈ S1 : y = s(x,δ ′),δ ≤ δ ′ ≤ 2π} if π < δ ≤ 2π.
(2)

A social welfare function f : S1×S1→ S1 satisfies the cone restriction if and only
if, for all x∈ S1 and δ ∈ [0,2π]\{π}, f (x,s(x,δ ))∈C(x,s(x,δ )). That is, as long as
the agents do not have opposite preferences, the social preference is on the shortest
arc between them. Note that if agents have opposite preferences so that δ = π , the
cone restriction does not restrict the social preference. Finally, as noted already, a
social welfare function has the Weak Pareto property if and only if it satisfies the
cone restriction.

The class of social welfare functions that are illustrated in Fig. 5 may now be
defined as follows. For all real numbers t, t ≥ 1:

4 Dictatorship of agent 1 would require f (x,s(x,δ )) = x.
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ft(x,s(x,δ )) =
{

s(x,π1−tδ t) if δ ∈ [0,π],
s(x,2π−π1−t(2π−δ )t) if δ ∈ [π,2π],

(3)

ft : S1×S1→ S1 are easily shown to be continuous, and their properties are estab-
lished by the following results.

Proposition 1. For all t ≥ 1 and all x∈ S1: (i) ft(x,s(x,0))= x; (ii) ft(x,s(x,2π))=x
and (iii) ft(x,s(x,π)) = s(x,π).

Proof. (i) Substituting δ = 0 into the first part of (3) and then using (1) gives
ft(x,s(x,0)) = s(x,0) = x. A similar argument substituting δ = 2π into (3) and
again using (1) proves (ii). For (iii), substitute δ = π into both parts of (3) gives
what is required. For example, substituting into the first part gives ft(x,s(x,π)) =
s(x,π1−tπ t) = s(x,π). ��

Proposition 2. For all t ≥ 1, ft : S1×S1→ S1 satisfies the cone restriction.

Proof. There are four cases to consider.
(i) δ = 0: Substituting δ = 0 into (2) gives C(x,s(x,0)) = {x}. Using (1) and (3)

now gives ft(x,s(x,0)) = x, so that ft(x,s(x,0)) ∈C(x,s(x,0)).
(ii) δ = 2π: A similar argument as used in (i) but beginning by substituting

δ =2π into (2) leads to ft(x,s(x,2π)) ∈C(x,s(x,2π)).
(iii) δ ∈ (0,π): (3) implies that ft(x,s(x,δ )) = s(x,π1−tδ t). Therefore satisfying

the cone restriction in this case requires that 0≤ π1−tδ t ≤ δ from (2). Since π and
δ are both positive, 0 < π1−tδ t . Since δ < π , it follows that π1−tδ t < δ 1−tδ t = δ .

(iv) δ ∈ (π,2π): (3) implies that ft(x,s(x,δ )) = s(x,2π − π1−t(2π − δ )t).
Therefore satisfying the cone restriction in this case requires that δ≤2π−π1−t

(2−δ )t≤2π from (2). Since δ∈(π,2π), it follows that 0 < 2π − δ < π . Using the
argument in (iii) with δ ′ = 2π − δ instead of δ , it follows that π1−t(2π − δ )t <
2π−δ or, rearranging, δ < 2π−π1−t(2−δ )t which is part of what is required. For
the other part, note that π1−t(2π − δ )t > 0 since both π and 2π − δ are positive.
Therefore, 2π−π1−t(2π−δ )t < 2π and this completes the proof. ��

Corollary of Propositions 1 and 2: For all δ ∈ [0,2π], ft(x,s(x,δ )) �=−s(x,δ +π).

That is, the social preference is never the exact opposite of 2’s preference.

Proposition 3. For all δ ∈ (0,π)∪ (π,2π), limt→∞ ft(x,s(x,δ )) = x.

Proof. There are two cases to consider.
(i) δ ∈ (0,π). In this case (3) implies ft(x,s(x,δ )) = s(x,π1−tδ t), so that

limt→∞ ft(x,s(x,δ )) = limt→∞ s(x,π1−tδ t). From continuity, limt→∞ s(x,π1−tδ t) =
s(x, limt→∞π1−tδ t). Since π1−tδ t = π(δ/π)t , limt→∞π1−tδ t = 0 since
limt→∞π(δ/π)t =π limt→∞(δ/π)t and |(δ/π)| < 1. Therefore, using (1),
limt→∞ ft(x,s(x,δ ))= limt→∞ s(x,π1−tδ t)=s(x, limt→∞π1−tδ t)=s(x,0)=x.

(ii) δ ∈ (π,2π). In this case, (3) implies ft(x,s(x,δ )) = s(x,2π−π1−t(2π−δ )t).
limt→∞ s(x,2π−π1−t(2π−δ )t) = s(x, limt→∞(2π−π1−t(2π−δ )t)) from continu-
ity, and furthermore, limt→∞(2π−π1−t(2π− δ )t) = 2π− limt→∞(π1−t(2π− δ )t).
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Also π1−t(2π − δ )t = π
(

2π−δ
π

)t
and limt→∞π

(
2π−δ
π

)t
= π limt→∞

(
2π−δ
π

)t
.

Therefore, since |( 2π−δ
π )t | < 1, it follows that limt→∞

(
2π−δ
π

)t
= 0, and this im-

plies that s(x, limt→∞(2π − π1−t(2π − δ )t)) = s(x,2π). Therefore, ft(x,s(x,δ )) =
s(x,2π) = x which completes the proof. ��

Since, for all t, t ≥ 1, ft : S1×S1→ S1 is continuous and satisfies the cone restric-
tion, it follows from Chichilnisky’s theorem that either agent 1 or agent 2 must be a
homotopic dictator. The final result shows that the homotopic dictator is agent 2.

Proposition 4. For all t, t ≥ 1, ft and pt are homotopic.

Proof. First, it will be shown that ft(x,s(x,δ )) �= s(x,δ ). If δ = π then this follows
from part (iii) of Proposition 1. If δ �= π and ft(x,s(x,δ )) =−s(x,δ ) then the cone
restriction would not be satisfied, contrary to Proposition 3. Therefore, for all x ∈ S1

and all δ ∈ [0,2π], ft(x,s(x,δ )) �=−s(x,δ ). Since s(x,δ ) = p2(x,s(x,δ )), it follows
that ft(x,s(x,δ )) �=−p2(x,s(x,δ )). Given this, the following homotopy between ft
and p2 is well defined. For all x ∈ S1, all δ ∈ [0,2π] and all λ ∈ [0,1]:

ht(x,s(x,δ ),λ ) =
λ ft(x,s(x,δ ))+(1−λ )p2(x,s(x,δ ))
||λ ft(x,s(x,δ ))+(1−λ )p2(x,s(x,δ ))||

.

Recall from the definitions of ft and p2 that all values of these functions lie in
the unit circle, S1, and thus unit norms. It is then straightforward to check that,
for all x ∈ S1 and δ ∈ [0,2π], ht(x,s(x,δ ),1) = ft(x,s(x,δ )) and ht(x,s(x,δ ),0) =
p2(x,s(x,δ )), and also that ht is continuous as required. ��

Propositions 3 and 4 justify and make precise the claim that concludes Sect. 2.
Namely, if agents do not have opposite preferences, the group preference may be
made arbitrarily close to the preference of agent 1, even though agent 2 is a homo-
topic dictator.

5 Conclusion

One possible reservation about the analysis in this paper is that it is limited to two
agents. However, given the nature of the issue, it is only necessary to establish the
conclusion for a simple case, and this has been accomplished. Indeed, Chichilnisky’s
theorem is not an Arrow-type impossibility result in the sense that it shows that
desirable properties entail an undesirable concentration of power.

It may be argued that a homotopic dictator is also a strategic manipulator in the
sense of being able to get any particular social preference, for all preferences of
other agents. This is indeed the case. It can be seen from Fig. 5 and easily checked
from (3), that, for all t, t ≥ 1, and all x ∈ S1, ft(x,s(x, [0,2π])) = S1. Thus, for any
possible preference, agent 2 can choose a possibly different preference so that the
former is the social preference. This does concentrate a certain sort of power in
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agent 2. However, if strategic manipulation is of concern, then conditions for its
existence can be given directly, and there seems to be no purpose served by tying it
to an analysis of homotopic dictatorship.
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Remarks on Population Ethics

Tomoichi Shinotsuka

1 Introduction

Population ethics is about principles for social evaluation of alternatives with differ-
ent population sizes. Different environmental policies lead to different population
sizes as well as different quality of lives involved. Therefore, as a necessary step
towards laying foundations for such policy recommendations, discussing relevant
issues on population principles is of critical importance.

One of the most important issues in population ethics has been the repugnant
conclusion introduced by Derek Parfit (1976, 1982, 1984). He criticized classical
utilitarianism as it implies the following conclusion:

The Repugnant Conclusion: For any possible population of at least ten billion people, all
with a very high quality of life, there must be some much larger imaginable population
whose existence, if other things are being equal, would be better, even though its members
have lives that are barely worth living (see Parfit (1984, p. 388)).

Since then, avoiding the repugnant conclusion has been one of the most important
axioms in population ethics. And, this is well-documented by two facts. First, Black-
orby, Bossert and Donaldson, leading figures in population ethics, survey the liter-
ature concerning the repugnant conclusion in a handbook chapter on social choice
and welfare (Blackorby, Bossert, and Donaldson, 2002). Second, there is a book that
is entirely devoted to the issues of the repugnant conclusion (Ryberg and Tännsjö,
2004). Despite these, a number of theorists have argued that the repugnant conclu-
sion may not be so repugnant and thus avoiding the conclusion is not that compelling
(see Arrhenius (2003, p. 168)). This motivates Arrhenius (2003) to modify the con-
cept of the repugnant conclusion in such a way that even those theorists critical of
the original version would find the modified version very hard to accept:

T. Shinotsuka
Graduate School of Humanities and Social Sciences, University of Tsukuba, Japan
e-mail: shino@social.tsukuba.ac.jp

P.K. Pattanaik et al. (eds.) Rational Choice and Social Welfare: Theory and Applications, 35
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The Very Repugnant Conclusion: For any perfectly equal population A with very high posi-
tive welfare, and for any number of lives with very negative welfare, there is a population B
consisting of the lives with negative welfare and lives with very low positive welfare which
is better than population A, other things being equal (Arrhenius (2003, p. 167)).

Arrhenius (2003), then, proceeds to formalize this idea and shows that a version
of the mere addition paradox (Parfit, 1984) still holds even if one replaces avoid-
ance of the repugnant conclusion with avoidance of the very repugnant conclusion.
In this paper, we investigate what happens to the results on generalized utilitarian-
ism in population ethics established by Blackorby, Bossert, and Donaldson (2004,
2006) when we replace avoidance of the repugnant conclusion with avoidance of
the very repugnant conclusion. Arrhenius’ own version of the very repugnant con-
clusion is stated in a model that has considerably different structures than ours.
Therefore, we reformulate the very repugnant conclusion in our framework. Con-
sequently, Arrhenius’ own version of the very repugnant conclusion and ours are
non-comparable.

Arrhenius (2000) introduces two versions of the sadistic conclusion and argues
that it should be avoided, too. If a population principle implies that adding people
with negative utilities can make a society better off, the conclusion is sadistic.
Blackorby, Bossert, and Donaldson (2004) explore logical relations between avoid-
ance of sadistic conclusion and critical-level generalized utilitarian principles. In
this paper, we reexamine one of their results.

In Section 2, we introduce the model and state avoidance of the repugnant con-
clusion and avoidance of the very repugnant conclusion. We show that the incom-
patibility between Pareto plus and avoidance of the repugnant conclusion is rather
robust in the sense that replacing the latter with avoidance of the very repugnant
conclusion does not upset the result. In Section 3, we state avoidance of sadistic
conclusion. The last section concludes with some remarks.

2 The Model

We work with the model set up by Blackorby, Bossert, Donaldson, and Fleurbaey
(1998).

Let N be the set of natural numbers and let R(R++, R−−) be the set of all (pos-
itive, negative) real numbers. R

N be the set of all maps from N into R. Let N be
the set of all non-empty and finite subsets of N. Typical elements of N are de-
noted by L,M,N and so on. For each N ∈N , R

N(RN
+) is the set of all maps from N

into R(R+). Typical elements of R
N(RN

+) are denoted by u = (ui)i∈N , v = (vi)i∈N ,
w = (wi)i∈N and so on. For each N ∈N , 1N is the element in R

N defined by (1N)i = 1
for each i ∈ N. For all disjoint sets N,M ∈N , for all u = (ui)i∈N , v = (vi)i∈N , (u,v)
is the element of R

N∪M defined by (u,v)i = ui for i ∈ N and (u,v) j = v j for j ∈M.
We take a welfarist approach to population ethics: To discuss evaluations of

social states, all we need to know is information about population and utility
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allocations.1 We employ a comprehensive notion of utilities as indicators of life-
time well-being to avoid counter-intuitive results on the termination of lives.2 Let
D = {(N;u)|N ∈ N and u ∈ R

N}. A typical element (N;u) ∈ D consists of popu-
lation N and utility allocation u for N. A social-evaluation ordering is a complete
and transitive binary relation R on D.3 For (N;u), (M;v) ∈ D, (N;u)R(M;v) means
(N;u) is socially at least as good as (M;v). The asymmetric part of R is denoted by
P and the symmetric part by I.

An individual considers her or his life neutral if it is as good as the one without
any experiences. We employ the convention in population ethics that utilities are
normalized so that the zero level of utility represents neutrality.4

Repugnant conclusion: For all N ∈ N , for all ξ ∈ R++, for all ε ∈ (0,ξ ), there
exists M ∈N such that M ⊃ N and (M;ε1M)P(N;ξ1N).

Avoidance of the repugnant conclusion is the negation of repugnant conclusion.

Avoidance of the repugnant conclusion: There exist N ∈N , ξ ∈R++, ε ∈ (0,ξ )
such that (N;ξ1N)R(M;ε1M) for all M ∈N such that M ⊃ N.

We formalize the idea of the very repugnant conclusion introduced by Arrhenius
(2003) in our framework as follows.

Very repugnant conclusion: For all N ∈ N , for all ξ ∈ R++, for all M ∈ N ,
for all η ∈ R−−, for all ε ∈ (0,ξ ), there exists L ∈ N such that L∩M = /0, and
(L∪M;ε1L,η1M)P(N;ξ1N).

Avoidance of the very repugnant conclusion is the negation of very repugnant
conclusion.

Avoidance of the very repugnant conclusion: There exist N,M ∈ N , ξ ∈ R++,
η ∈ R−− and ε ∈ (0,ξ ) such that (N;ξ1N)R(L∪M;ε1L,η1M) for all L ∈ N with
L∩M = /0.

Let us recall the standard axiom of strong Pareto.

Strong Pareto: For all N ∈ N and u,v ∈ R
N , if ui ≥ vi for every i ∈ N and ui > vi

for some i ∈ N, then (N;u)P(N;v).

Avoidance of the repugnant conclusion together with strong Pareto implies avoid-
ance of the very repugnant conclusion.

Lemma 1. If a population principle satisfies strong Pareto and the very repugnant
conclusion, then it satisfies the repugnant conclusion.

1 For and against welfarism, see Blackorby, Bossert, and Donaldson (2002).
2 See, for example, Blackorby et al. (2002) for an account of lifetime well-being.
3 R is complete if for all (N;u),(M;v) ∈D, (N;u)R(M;v) or (M;v)R(N;u). R is transitive if for all
(N;u),(M;v),(L;w) ∈D, (N;u)R(M;v) and (M;v)R(L;w) imply (N;u)R(L;w).
4 See Broome (1993, 2004) for a discussion of neutrality and its normalization to zero.
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Proof. Let N ∈ N , ξ ∈ R++, M ∈ N , η ∈ R−− and let ε ∈ (0,ξ ). By the
very repugnant conclusion, there exists L ∈ N such that L∩M = /0, L∩N = /0,
and (L∪M;ε1L,η1M)P(N;ξ1N). By strong Pareto, (L ∪ M;ε1L,ε1M)P(L ∪
M;ε1L,η1M). By transitivity, (L∪M;ε1L,ε1M)P(N;ξ1N). ��

Lemma 1 says that avoidance of the repugnant conclusion along with strong
Pareto imply avoidance of the very repugnant conclusion.

A population principle R satisfies generalized utilitarianism if there exists a con-
tinuous and increasing transformation g : R→R of utilities with g(0) = 0 such that
for all NM ∈N , for all u = (ui)i∈N ∈R

N , for all v = (vi)i∈M ∈R
M , (N;u)R(M;v) if

and only if
∑
i∈N

g(ui)≥ ∑
i∈NM

g(vi).

Sikora (1978) introduces an axiom consisting of strong Pareto and the require-
ment that adding an individual with a utility level above neutrality should be a social
improvement. He calls this axiom Pareto plus. Following Blackorby, Bossert, and
Donaldson (2006), we retain strong Pareto as a separate axiom and state Pareto plus
as follows.

Pareto plus: For all N ∈ N , for all u = (ui)i∈N ∈ R
N , for all j ∈ N \N, for all

a ∈ R++,(N∪{ j};u,a)P(N,u).

The following impossibility result provides a yet another criticism against Pareto
plus.

Theorem 1. There exists no population principle that satisfies generalized utilitari-
anism, Pareto plus and the avoidance of the very repugnant conclusion.

Proof. Suppose that there exists a generalized-utilitarian population principle sat-
isfying Pareto plus. Let M,N ∈ N be sets of cardinalities m and n, respectively,
and let ε ∈ (0,ξ ). Since g(ε) > 0, one can pick l ∈ N large enough to have
lg(ε) + mg(η) > (n + m)g(ξ ) . Let L ∈ N be a finite set with cardinality l satis-
fying L∩M = /0.

Thus, by generalized utilitarianism, (L∪M;ε1L,η1M)P(N∪M;ξ1N ,ξ1M). By
repeated application of Pareto plus and transitivity, (N ∪M;ξ1N ,ξ1M)P(N;ξ1N).
By transitivity, (L∪M;ε1L,η1M)P(N;ξ1N). Thus, the very repugnant conclusion
holds. This completes the proof. ��

3 Critical-Level Generalized Utilitarianism

A population principle R satisfies critical-level generalized utilitarianism if there
exist a critical-level of utility α ∈R and a continuous and increasing transformation
g : R→R of utilities with g(0) = 0 such that for all N,M ∈N , for all u = (ui)i∈N ∈
R

N for all v = (vi)i∈M ∈ R
M , (N;u)R(M;v) if and only if
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∑
i∈N

[g(ui)−g(α)]≥ ∑
i∈M

[g(vi)−g(α)].

The following theorem is essentially a strengthening of Theorem 3 (i) in
Blackorby, Bossert, and Donaldson (2004).

Theorem 2. A critical-level generalized utilitarian principle satisfies avoidance of
the very repugnant conclusion if and only if the critical level α is positive.

Proof. Let R be a critical-level generalized utilitarian population principle with a
continuous and increasing transformation g of utilities and a critical level α . Then, R
satisfies avoidance of very repugnant conclusion if and only if there exist n,m ∈ N,
ξ ∈ R++, η ∈ R−− and ε ∈ (0,ξ ) such that l[g(ε)− g(α)] + m[g(η)− g(α)] ≤
n[g(ξ )−g(α)] for all l ∈ N.

Suppose α > 0. Let n = 1, ξ = 2α , ε = α/2. Pick any η ∈R−−. Clearly, g(ε)−
g(α) = g(α/2)−g(α) < 0, g(η)−g(α) < 0 and 0 < g(2α)−g(α) = g(ξ )−g(α).

Hence, l[g(ε)−g(α)]+ m[g(η)−g(α)] < n[g(ξ )−g(α)] for all l ∈ N. Thus R
satisfies avoidance of very repugnant conclusion.

Suppose α ≤ 0. Let n,m ∈ N, ξ ∈ R++, η ∈ R−− and ε ∈ (0,ξ ). Take l∈N

such that l > [ng(ξ )− mg(η) + (m− n)g(α)]/[g(ε)− g(α)]. Clearly, l[g(ε)−
g(α)]+m[g(η)−g(α)] > n[g(ξ )−g(α)].

Let L,M,N ∈ N be finite sets with cardinality l,m and n, respectively. Clearly,
(L∪M;ε1L,η1M)P(N;ξ1N). Thus, the very repugnant conclusion holds. This com-
pletes the proof. ��

A social evaluation ordering implies the sadistic conclusion if adding people with
negative utilities can be better than adding people with positive utilities. The idea is
expressed formally as follows.

Sadistic conclusion: There exist N ∈ N , M ∈ N , L ∈ N , u ∈ R
N , v ∈ R

M
−− and

w ∈ R
L
++ such that (N∪M;u,v)P(N∪L;u,w).

The following statement is due to Theorem 3 (ii) in Blackorby, Bossert, and
Donaldson (2004). Their argument is designed for critical-level utilitarianism but
it does not work for its generalized counterpart. So, we shall provide a proof which
invokes continuity of utility transformations.

Theorem 3. A critical-level generalized utilitarian principle satisfies the sadistic
conclusion if and only if the critical level a is non-zero.

Proof. Suppose α > 0. Since g(0) = 0 and g is increasing, g(α) > 0. Since g is
continuous at 0, there exist v1 ∈ R−− and w1 ∈ R++ such that g(α) > 2g(w1)−
g(v1).

This inequality is equivalent to the following.

[g(v1)−g(α)] > [g(w1)−g(α)]+ [g(w1)−g(α)].

Let i, j,k, l be distinct natural numbers and let N = {i}, M = { j}, L={k, l},
ui=α,v j = v1 and let wk = wl = w1.
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Then, v ∈ R
M
−−, w ∈ R

L
++ and (N∪M;u,v)P(N∪L;u,w).

Suppose α < 0. Since g(0) = 0 and g is increasing, g(α) < 0. Since g is contin-
uous at 0, there exist v1 ∈ R−− and w1 ∈ R++ such that −g(α) > g(w1)−2g(v1).

This inequality is equivalent to the following.

[g(v1)−g(α)]+ [g(v1)−g(α)] > [g(w1)−g(α)].

Let i, j,k, l be distinct natural numbers and let N = {i}, M = { j,k}, L = {l},
ui =α,v j =vk =v1 and let wl =w1. Then, v ∈ R

M
−− and w ∈ R

L
++ but (N∪M;u,v)

P(N∪L;u,w).
For the case α = 0, the proof is identical to that of Theorem 3 (ii) in Blackorby,

Bossert, and Donaldson (2004). ��

4 Concluding Remarks

Though we have established a few results on generalized utilitarianism in this paper,
the issues of investigating the robustness of impossibility theorems involving avoid-
ance of repugnant conclusions are still wide open. For instance, Blackorby, Bossert,
and Donaldson (2006) establish that there exists no anonymous population princi-
ple that satisfies minimal increasingness, weak inequality aversion, Pareto plus and
avoidance of the repugnant conclusion. What happens to this impossibility result
when we replace avoidance of the repugnant conclusion with avoidance of the very
repugnant conclusion? Similar questions can be asked for the impossibility results
in Blackorby, Bossert, Donaldson, and Fleurbaey (1998).

Acknowledgments The author is grateful to Walter Bossert and Marc Fleurbaey for helpful sug-
gestions on an earlier version of the paper. The current version benefitted considerably from the
detailed comments by a referee.
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On Non-Welfarist Social Ordering Functions

Naoki Yoshihara

1 Introduction

Welfarism is defined as a methodology that evaluates social welfare according to
the level of satisfaction with regard to individuals’ subjective preferences. For this
methodology, the criticisms by Dworkin (1981a, 2000), Sen (1979, 1980), and oth-
ers are well known. They criticized the limited scope of information used to evaluate
social welfare in the aforementioned methodology. Moreover, they criticize the wel-
farist neutral attitude vis-à-vis the problem of what types of preferences are satisfied.
There are types of preferences, such as the utility of individual offensive tastes, that
of expensive tastes, that of formation of the adaptive preference, or that of cheaper
tastes such as in the case of the ‘termed housewife,’ all of which should be carefully
and distinctively treated in the evaluation of social welfare from an ethical point of
view. The point of these critiques is that the welfarist evaluation has no concern for
such preferential differences.

The problems with welfarist methodology can emerge in a more acute form
within the arguments of welfare economics such as the hypothetical compensation
principle. For instance, let us take the Kaldor principle, which declares an alterna-
tive x to be superior to an alternative y if and only if there is another alternative z
which is reached through redistribution from x such that z is better than y according
to the Pareto principle. This principle is welfarist in nature, since it evaluates poli-
cies based only on satisfaction of individuals’ preferences of goods and services,
and it is also an extension of the Pareto principle as is clear from its definition. It
makes clear judgments on policy changes, based on whether or not there is a possi-
bility of potential Pareto improvement of said changes. It is also well known that the
validity of executing a policy according to the hypothetical compensation principle
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is possibly confirmed by means of such monetary measures as the gross national
income test, whenever the change in resource allocation caused by the policy is not
radical.

According to the above argument, the notion of social welfare that the hypo-
thetical compensation principle considers as its premise is no less than the sum of
subjective satisfaction levels obtained from the consumption of ‘marketable’ goods
and services, which can be evaluated by monetary measures. However, the notion
of social welfare in general is broad enough to encompass a wide range of ethical
viewpoints. The social welfare that welfarist’s welfare economics refers to is not as
broad, but it is limited to (market) economic welfare.

Against such an argument, the following objection may arise from the welfarist
position:

It is true that the social welfare analysis utilized in conventional applied economics
concerns only the social welfare as the total sum of satisfaction of individuals’ pref-
erences over goods and services, which is convertible to monetary value. However,
the concept of social welfare can be extended so as to consider the ‘utility’ from an
outcome other than the private consumption of goods and services, extending the
domain of the individual utility function if necessary.

Such an approach is one of the ways to expand the limited informational basis of
conventional welfarist’s welfare economics. However, even using this approach, we
would not be able to avoid the above-mentioned criticisms of Sen and Dworkin, be-
cause it treats and evaluates everything, including the private consumption of goods
and services as well as intrinsic goods such as friendship, through the prism of the
same subjective utility functions. The concept of social welfare in this approach
is still corresponding solely to the satisfaction of individual subjective preferences.
In contrast, this paper argues that the social welfare should be evaluated, not only
from the perspective of subjective preferences or tastes, but also from the perspec-
tive of welfare and well-being that cannot be grasped by utilizing such preferences.
For instance, the viewpoint of “respect for liberal rights” presented in Sen’s Liberal
Paradox (1970a,b), and his theory of “functioning and capability” (Sen, 1985) offer
such concepts of welfare and well-being.

The criticism of welfarism mentioned above becomes relevant not only in the dis-
cussion of the criteria of policy evaluation based on the hypothetical compensation
principle, but also in the general discussion of welfarist social welfare functions.
A social welfare function associates an ordering over social alternatives with each
social choice environment. According to the ordering derived from such a function,
the society can identify what the most desired policies are, which would realize the
most desired social alternatives.

The basic problem in this context is what type of social welfare function should
be constructed, and it is in the course of such discussions that the conventional
Bergson–Samuelson (B–S) social welfare functions are perceived as problematic.
The very reason for this is that in the B–S social welfare functions, the level of indi-
vidual satisfaction with their subjective preferences is the sole basis of information.
However, the orderings over social alternatives given by social welfare functions
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should reflect an adequate indicator of individuals’ well-being. The criticism of wel-
farism mentioned so far indicates that individual satisfaction with their subjective
preferences is no more than one aspect of welfare and therefore a more pluralistic
viewpoint is necessary.

To treat such a pluralistic viewpoint appropriately, a more comprehensive frame-
work is necessary. As such, we propose the extended framework within which not
only welfarist notions of individual well-being, but also non-welfarist notions of
consequential values, as well as non-consequential values, can be taken into consid-
eration. The extended framework in this paper takes a pair of feasible allocation and
allocation rule as an informational basis for the social evaluation of economic poli-
cies, and it also proposes to make use of extended social ordering functions, each
of which associates a social ordering over the set of pairs of feasible allocations and
allocation rules with each economic environment. Within such an extended frame-
work, we propose three basic criteria, each of which, respectively, represents: (1) a
value of individual autonomy, (2) a value of non-welfaristic consequentialism, and
(3) a value of welfarist consequentialism. Moreover, we examine the possibility of
extended social ordering functions which satisfy these three pluralistic values.

Recently, there has been some literature such as Blackorby, Bossert, and
Donaldson (2005) and Kaplow and Shavell (2001) which also discuss some sorts
of ‘extended’ social ordering functions satisfying some pluralistic values. In their
frameworks of social ordering functions, not only the profile of utility information,
but also the profile of non-welfaristic information are taken into account. Then,
both papers show that even in such frameworks with non-welfaristic information,
the feasible class of social ordering functions is reduced to that of the welfarist
types only, whenever the Pareto principle is required. Despite the conclusions of
Blackorby, Bossert, and Donaldson (2005) and Kaplow and Shavell (2001), we
show in this paper that it is possible to construct a desirable social ordering function
that has the properties of the welfarist Pareto principle and the non-welfarist criteria.
There is no contradiction between the results of these papers and ours, as discussed
in Section 5 of this chapter.

Section 2 introduces the basic framework and the basic three axioms. Section 3
discusses a fundamental incompatibility of these three axioms, and Section 4
explores the possibility of second best extended social ordering functions. Section 5
gives some remarks on the related literature such as Blackorby, Bossert, and
Donaldson (2005) and Kaplow and Shavell (2001).

2 Beyond the Welfarist Limitation

The need for the pluralistic approach was argued by Parijs (1992, 1993, 1995),
Rawls (1971), and Sen (1980, 1985). Based on the normative theories of these three
non-welfarists, we propose three basic criteria.

The first criterion is that individual autonomy in contemporary society should
be guaranteed. It is a liberal value that contemporary civil societies respect as
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an important aspect for evaluating individual well-being. In fact, as opposed to
the feudal society and the centralized socialist society where individual autonomy
is suppressed, the modern civil society might be characterized as having a certain
level of political liberalism in legal systems, a certain level of freedom of choice
both in political and economic decision-makings, and a certain level of decentralized
decision-making mechanisms such as markets, all of which constitute a necessary
condition for the guarantee of individual autonomy. Such a viewpoint would sug-
gest a certain constraint over the class of ‘desired’ social ordering functions. That is
to say, if the social economic system cannot guarantee the decentralization and the
freedom of choice in decision-making, the welfare that individuals receive under
such social situations will not be highly valued by ‘desired’ social ordering func-
tions, even if the system may support a sufficient level of individual consumption.
Thus, this criterion represents a non-consequential value in nature.

The second criterion is that each and every individual should have as much op-
portunity to do whatever he might want to do as is feasibly possible. This criterion
represents a non-welfaristic consequential value in the sense of the following two
points: First, although this criterion pertains to social outcomes in terms of individ-
ual well-being, it hinges on an objective notion of individual well-being as opposed
to welfarist criteria. Second, this criterion does not concern the realization of indi-
vidual well-being itself, but rather it pertains to the opportunity to pursue or realize
individual well-being. Given these points, theories of distributive justice are rele-
vant in the discussion of what concept of individual well-being is appropriate, and
of what types of equity notions should be applied to the assignment problem of
individual opportunity sets.

The third criterion represents a well-known welfarist consequential value such as
the Pareto principle. It is worth noting that the standpoint of non-welfarism does not
exclude welfarist notions of well-being. I believe that satisfaction of individual sub-
jective preferences is still an important component of the informational basis used
to constitute an overall notion of individual well-being. Thus, the Pareto principle
is also taken into consideration as a condition imposed on ‘desired’ social ordering
functions.

With this discussion in mind, the question that arises here is whether it is possible
to construct a social ordering function consistent with the different pluralistic criteria
mentioned above.

2.1 A Framework of Extended Social Ordering Functions

On the basis of the problems propounded in the previous section, in the following
section, the notion of extended social ordering function is introduced, which is based
on the proposal of Gotoh, Suzumura, and Yoshihara (2005). There are two goods,
one of which is an input (labor time) x ∈ R+ to be used to produce the other good
y ∈ R+.1 There is a set N = {1, . . . ,n} of agents, where 2≤ n < +∞. Each agent i′s

1 The symbol R+ denotes the set of non-negative real numbers.
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consumption is denoted by zi = (xi,yi), where xi denotes his labor time, and yi the
amount of his output. All agents face a common upper bound of labor time x̄, where
0 < x̄ < +∞, and so have the same consumption set Z ≡ [0, x̄]×R+.

Each agent i′s preference is defined on Z and represented by a utility function
ui : Z → R, which is continuous and quasi-concave on Z, strictly monotonic (de-

creasing in labor time and increasing in the share of output) on
◦
Z≡ [0, x̄)×R++,2

and ui (x,0) = 0 for any x ∈ [0, x̄]. We use U to denote the class of such utility
functions.

Each agent i has a labor skill, si ∈ R+. The universal set of skills for all agents
is denoted by S = R+. The skill si ∈ S is i′s effective labor supply per hour mea-
sured in efficiency units. It can also be interpreted as i′s labor intensity exercised in
production. Thus, if the agent’s labor time is xi ∈ [0, x̄] and his skill is si ∈ S, then
sixi ∈R+ denotes the agent’s effective labor contribution to production measured in
efficiency units. The production technology is a function f : R+→ R+, that is con-
tinuous, strictly increasing, concave, and f (0) = 0. For simplicity, we fix f . Thus, an
economy is a pair of profiles e≡ (u,s) with u = (ui)i∈N ∈ Un and s = (si)i∈N ∈ Sn.
Denote the class of such economies by E ≡ Un×Sn.

Given s = (si)i∈N ∈Sn, an allocation z = (xi,yi)i∈N ∈ Zn is feasible for s if ∑yi ≤
f (∑sixi). We denote by Z (s) the set of feasible allocations for s∈ Sn. An allocation
z = (zi)i∈N ∈ Zn is Pareto efficient for e = (u,s) ∈ E if z ∈ Z (s) and there does not
exist z′ = (z′i)i∈N ∈ Z (s) such that for all i ∈ N, ui (z′i)≥ ui (zi), and for some i ∈ N,
ui (z′i) > ui (zi). We use P(e) to denote the set of Pareto efficient allocations for e∈E .

To complete the description of how our economy functions, what remains is to
specify an allocation rule which assigns, to each i ∈ N, how many hours he/she
works, and how much share of output he/she receives in return. In this chapter, an
allocation rule is a game form which is a pair γ = (M,g), where M = M1×·· ·×Mn is
the set of admissible profiles of individual strategies, and g is the outcome function
which maps each strategy profile m∈M into a unique outcome g(m)∈ Zn. For each
m ∈M, g(m) = (gi (m))i∈N , where gi (m) = (gi1 (m) ,gi2 (m)) and gi1 (m) ∈

[
0,x
]

and gi2 (m) ∈ R+ for each i ∈ N.3 Let Γ be the set of all possible such allocation
rules. Given γ = (M,g) ∈ Γ and e ∈ E , a non-cooperative game (γ,e) ∈ Γ ×E is
obtained.

Throughout this chapter, we will focus on the Nash equilibrium concept in our
analysis of the performance of game forms as allocation rules. Given γ = (M,g), let
m−i = (m1, . . . ,mi−1,mi+1, . . . ,mn) ∈M−i ≡× j∈N\{i}Mj for each m ∈M and i ∈ N.
Given an m−i ∈ M−i and an m′i ∈ Mi, (m′i;m−i) is an admissible strategy profile
obtained from m by replacing mi with m′i. Given a game (γ,e) ∈ Γ ×E , m∗ ∈M is
a (pure strategy) Nash equilibrium if ui(gi(m∗)) ≥ ui(gi(mi,m∗−i)) for each i ∈ N
and each mi ∈ Mi. The set of all Nash equilibria of (γ,e) is denoted by NE(γ,e).
A feasible allocation z∗ ∈ Z (s) is a (pure strategy) Nash equilibrium allocation
of (γ,e) if z∗ = g(m∗) for some m∗ ∈ NE(γ,u). The set of all Nash equilibrium
allocations of (γ,e) is denoted by τ(γ,e).

2 The symbol R++ denotes the set of positive real numbers.
3 Note that gi1 (mi,m−i) = xi is describing the work-hour supply of an individual i ∈ N that the
outcome function designates corresponding to the strategy (mi,m−i) ∈M.
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The domain of social preference relations in this paper is given by pairs of al-
locations and allocation rules as game forms, which we call extended social alter-
natives. The intended interpretation of an extended social alternative, viz., a pair
(z,γ) ∈ Zn ×Γ , is that an allocation z is attained through an allocation rule γ .4
Moreover, given e ∈ E , an extended social alternative (z,γ) ∈ Zn×Γ is realizable if
z ∈ Z (s)∩ τ(γ,e). LetR(e) denote the set of realizable extended social alternatives
under e ∈ E .

What we call an extended social ordering function (ESOF) is a mapping Q : E�
(Zn×Γ )2 such that Q(e) is an ordering on R(e) for every e ∈ E .5 The intended
interpretation of Q(e) is that, for any (z1,γ1), (z2,γ2) ∈ R(e), ((z1,γ1),(z2,γ2)) ∈
Q(e) holds if and only if realizing a feasible allocation z1 through an allocation rule
γ1 is at least as good as realizing a feasible allocation z2 through an allocation rule
γ2 according to the social judgments embodied in Q(e). The asymmetric part and
the symmetric part of Q(e) will be denoted by P(Q(e)) and I(Q(e)), respectively.
The set of all ESOFs will be denoted by Q.

The notion of extended social ordering functions enables us to treat the criteria
of individual autonomy, equitable assignment of opportunities in terms of objec-
tive well-being, and the Pareto principle in a unified framework. Within the domain
Zn×Γ of social preference orderings derived from ESOFs, the component of game
forms constitutes necessary data for formulating orderings based on the criterion
of individual autonomy, whereas the data of feasible allocations is relevant to the
remaining two criteria.

In the following part, the above-mentioned three criteria are formalized as axioms
applicable to ESOFs.

2.1.1 Individual Autonomy in Terms of Choice of Labor Hours

According to the theory of individual liberty that John Stuart Mill proposed (Mill,
1859), there ought to exist in human life a certain minimal sphere of personal liberty
that should not be interfered with by anybody other than the person in question. Such
a sphere should be socially respected and protected as part of individual rights in a
liberal society. The question where exactly to draw the boundary between the sphere
of personal liberty and that of social authority is a matter of great dispute, and,
indeed, how large of a sphere each individual should be entitled to is a controversial
issue. Nevertheless, the notion of the inviolability of a minimal sphere of individual
liberal rights seems to be deeply ingrained in our social and political fabric.

Thus, a resource allocation policy would rarely be accepted, if its goal or its
implementation were incompatible with this minimal guarantee of individual liberty.
Such a viewpoint is relevant to our first axiom of extended social ordering functions.

4 The concept of an extended social alternative was introduced by Pattanaik and Suzumura (1996),
capitalizing on the suggestion by Arrow (1963, pp. 89–91).
5 A binary relation R on a universal set X is a quasi-ordering if it satisfies reflexivity and transitivity.
An ordering is a quasi-ordering satisfying completeness as well.
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We will discuss what constitutes the minimal guarantee of individual rights in the
context of resource allocations that this paper considers.

In the cases of resource allocation problems, the components of political freedom
and the non-economic aspects of individual rights might be assumed to be already
established. However, there still remains non-established economic parts of individ-
ual rights, which might be either treated as parameters or as variables for relevant
resource allocation problems. For instance, we may view self-ownership as such
a right guaranteeing individual autonomy. The notion of self-ownership originates
from the argument of the Lockean proviso of John Locke and was used by Nozick
(1974) as the principle to justify private ownership in capitalist societies. Neverthe-
less, the notion of self-ownership can be connected with two versions of entitlement
principles, that is, the entitlement principles in the weak sense and in the strong
sense, as Parijs (1995) discussed.

The entitlement principle in the weaker sense regards self-ownership as a variable
for society. Thus, according to this weaker sense of the principle, self-ownership can
be seen as freedom or respect for the decision-making of individuals and identified
with political freedom and freedom of choice of occupations, etc.6 In this version,
the notion of self-ownership is entirely consistent with redistribution policies which
may induce the reconstruction of a given rights structure to achieve a given distribu-
tional goal. This is actually the position that Parijs (1995) takes. On the other hand,
the entitlement principle in the stronger sense no longer views self-ownership as a
control variable, but as a parameter which society respects. This stronger sense of
the principle can be identified with the arguments made by John Locke. This prin-
ciple also made a solid basis for the original appropriation of unowned external
resources, which was proposed by Libertarians including Locke and Nozick.

We also take the same position as Parijs (1995) regarding the notion of self-
ownership, and identify the contents of individual liberal rights within the context of
resource allocation problems. First, individual liberal rights guarantee freedom of
choice in terms of personal consumption. That is, other than the individual in
question, no one else has the right to decide the way to dispose of private goods
and leisure time available to him/her. W. l.o.g., we should assume that the right of
freedom of choice in consumption, in the context of passive freedom, is presumed
to be guaranteed in standard economic models of resource allocation problems.

Second, individual liberal rights contain the right to freedom from forced la-
bor. This right consists of the freedom to choose a profession, the freedom to en-
ter into an employment contract, etc. However, in simple economic models like
this paper, this right may be reduced to the right to choose labor hours, because
there is no difference in profession, and all individuals engage in homogeneous
labor.

6 In fact, Parijs (1995) insists, “Though not strictly equivalent to ‘basic liberties’ or ‘human rights’
as expressed, for example, in Rawls’s first principle of justice or in the constitutions of liberal
democracies, self-ownership is closely associated with most of them.” (Parijs (1995, p. 235, Notes
Chaps. 1 and 8)).
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The right to choose labor hours is defined as follows:

Definition 1. (Kranich, 1994). An allocation rule γ = (M,g) ∈ Γ is labor-sovereign
if, for all i ∈ N and all xi ∈ [0,x], there exists mi ∈Mi such that, for all m−i ∈M−i,
gi1(mi,m−i) = xi.

Let ΓL denote the subclass of Γ which consists solely of allocation rules satisfying
labor sovereignty. Then:

Labor Sovereignty (LS) For any e ∈ E and any (z,γ),(z′,γ ′) ∈ R(e), if γ ∈ ΓL
and γ ′ ∈ Γ \ΓL, then ((z,γ),(z′,γ ′)) ∈ P(Q(e)).

The axiom LS manifests that the extended social alternative with labor sovereign
rule should be given a higher priority than any alternative without it. This mani-
festation should be implemented regardless of what resource allocations the labor
sovereign rule or the non-labor sovereign rule realizes as Nash equilibrium out-
comes. This expresses an extremely non-consequential value.

Note that if a society executes a non-labor sovereign rule, then such a society
might allow the policy-maker to execute some sort of forced labor. The axiom LS
rejects such a society and an economic institution. According to this axiom, even an
egalitarian redistribution policy would not be accepted unless it were implemented
without using forced labor. I believe that the principle of self-ownership based on
the weak sense of entitlement principle, and also, even Rawls’s first principle of
justice (Rawls, 1971) should have the form of LS within this economic model.

2.1.2 Evaluation Based on a Criterion of Distributive Justice

Our next criterion is meant to capture an aspect of non-welfaristic egalitarianism. It
hinges on what theories of distributive justice we take, which requires an instrument
that incorporates the various criteria of distributive justice.

Such an instrument is given by a mapping J : E � Zn×Zn which associates a
binary relation J (e) ⊆ Z (s)×Z (s) with each economy e ∈ E . Denote the class of
binary relation mappings by J . Such a binary relation J (e) represents a criterion
based on a certain theory of distributive justice and alternative feasible allocations
are ranked according to this criterion. For instance, if the mapping J represents
Sen’s theory of equality of capability, then J (e) provides a ranking over alternative
capability assignments available to each economy e ∈ E , and the rational choice set,
derived from this J (e), is regarded as consisting of the most ‘equitable’ capability
assignments under e ∈ E .7 In this case, the ranking made by J should be invariant
with respect to the change in the profile of utility functions: that is, J (e) = J (e′)
holds whenever s = s′ holds. In contrast, if J represents Dworkinian theory of
“equality of resources” (Dworkin, 1981b, 2000), J might not have such an invari-
ance property: that is, J (e) �= J (e′) may hold even if s = s′. Moreover, if J represents
the theory of “equality of welfare,” then J (e) = J (e′) should hold for any e,e′ ∈ E
with u = u′. In such a way, this mapping can be universally applicable. Moreover,
if J represents the criterion of leximin assignment of opportunity sets suggested by

7 Gotoh, Suzumura, and Yoshihara (2005) argues this case.
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Parijs (1995), then J should rationalize feasible allocations satisfying undominated
diversity (Parijs, 1995).8 In any case, if J represents a criterion of distributive justice,
it should satisfy at least the following requirement.

Minimal Egalitarianism (ME). For each e = (u,s)∈ E and each z,z′ ∈ Z (s) such
that for any i, j ∈ N, si = s j and xi = x j = x′i = x′j , if there exist i, j ∈ N such that
y′i > yi ≥ y j > y′j and yk = y′k for any k �= i, j, then (z,z′) ∈ P(J (e)).

Denote the class of binary relation mappings satisfying ME by JME. This axiom
says that, any transfer from a poorer person to a richer person, given that these two
persons provide the same labor hours and other things remain the same, should be
undesirable, which shares the same spirit as the Pigou–Dalton principle. Note that
various types of distributive justice satisfy ME if each of those theories is formulated
as a particular J ∈ J . In fact, Sen’s theory of equality of capability, Dworkin’s
theory of equality of resources, van Parijs’s undominated diversity, and even the
equity as no-envy (Foley, 1967), respectively, could have their own representations
within JME.

If J ∈ JME represents a non-welfarist egalitarianism with objective well-being
indices, then J might satisfy the following requirement:

Objective Egalitarianism (OE). For each e = (u,s) ,e′ = (u′,s′) ∈ E , if s = s′,
then J (e) = J (e′).

Denote the class of mappings which satisfy ME and OE by JMOE. Note that any
J ∈JMOE is invariant with respect to change in the profile of individual utility func-
tions. Thus, for instance, Sen’s theory of equality of capability has its representation
within JMOE, as formulated in Gotoh, Suzumura, and Yoshihara (2005). In contrast,
the representation of van Parijs’s undominated diversity does not belong to JMOE,
since undominated diversity needs information about individual utility functions.

Now, our second axiom on ESOFs is given by means of the binary relation map-
ping J ∈ J , as follows:

Respect for J-based fairness (J-RF). For any e∈ E and any (z,γ),(z′,γ ′)∈R(e),
if z = (x,y), z′ = (x′,y′) and x = x′, then:

(
(z,γ) ,

(
z′,γ ′

))
∈ Q(e)⇔

(
z,z′
)
∈ J (e) ;(

(z,γ) ,
(
z′,γ ′

))
∈ P(Q(e))⇔

(
z,z′
)
∈ P(J (e)) .

In evaluating the relative wellness of any two extended alternatives, the axiom J-RF
focuses only on the corresponding feasible allocations, and under a certain con-
straint, it claims that the evaluation by the ESOF over extended alternatives should
be consistent with the evaluation by J over the corresponding feasible allocations.
Here, the “certain constraint” is given by “z = (x,y), z′ = (x′,y′) and x = x′.”

8 Given any economy e = (u,s) ∈ E , a feasible allocation z ∈ Z (s) meets undominated diversity if
for any i, j ∈ N, there exists at least one individual k ∈ N such that uk (zi)≥ uk (z j).
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It may well be asked why J-RF imposes the premise x = x′. The reasons are
twofold. First, the choice of individual labor hours is a matter to be left to indi-
vidual responsibility, and social value judgements should respect individual choices
accordingly. Second, if the requirement of J-RF is applied to ESOFs without the
premise x = x′, this instantly causes the incompatibility with the Paretian axiom,
which will be discussed later.

As such, J-RF evaluates the desirability of extended social alternatives only
from the viewpoint of J-fairness on resource allocations. Unlike the axiom LS,
J-RF represents a consequentialist value. This is because this axiom evaluates the
extended alternatives based solely on the evaluation of their corresponding resource
allocations.

2.1.3 Evaluation Based on the Welfarist Value

Finally, let us introduce the axiom of ESOFs based on the welfarist value. It is
defined as an extension of the standard Pareto principle:

Pareto in Allocations (PA). For any e∈E and any (z,γ),(z′,γ ′)∈R(e), if ui(zi)>
ui(z′i) for all i∈N, then ((z,γ),(z′,γ ′))∈P(Q(e)), and if ui(zi) = ui(z′i) for all i∈N,
then ((z,γ),(z′,γ ′)) ∈ I(Q(e)).

The axiom PA also focuses only on the feasible allocation in evaluating the rel-
ative wellness of any two extended alternatives, and it claims that the evaluation by
the ESOF over extended alternatives should be consistent with the Pareto superior-
ity relation or the Pareto indifference relation over feasible allocations. Thus, by the
almost same reason as the case of J-RF, PA also represents a position of consequen-
tialism.

3 Impossibility of ESOFs Satisfying LS, J-RF, and PA

Now, we are ready to discuss the existence of ESOFs which simultaneously satisfy
the axioms LS, J-RF, and PA. According to the technique introduced in Appendix 1
of this paper, we can see this problem by examining the properties of binary rela-
tion functions, each of which, respectively, represents one of the above-mentioned
axioms.

Let QL : E � (Zn×Γ )2 be a binary relation function such that for any e ∈ E and
any (z,γ),(z′,γ ′) ∈R(e), the following holds:

((z,γ),(z′,γ ′)) ∈ P(QL(e))⇔
[
γ ∈ ΓL & γ ′ /∈ ΓL

]
;

((z,γ),(z′,γ ′)) ∈ I(QL(e))⇔ (z,γ) = (z′,γ ′).

Let QJF : E � (Zn×Γ )2 be a binary relation function such that for any e ∈ E and
any (z,γ),(z′,γ ′) ∈R(e) with z =(x,y) and z′ = (x′,y′), the following holds:
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((z,γ),(z′,γ ′)) ∈ I
(
QJF(e)

)
⇔ x = x′ and

(
z,z′
)
∈ I (J (e)) ;

((z,γ),(z′,γ ′)) ∈ P
(
QJF(e)

)
⇔ x = x′ and

(
z,z′
)
∈ P(J (e)) .

Let QPA : E � (Zn×Γ )2 be a binary relation function such that for any e ∈ E and
any (z,γ),(z′,γ ′) ∈R(e), the following holds:

(
(z,γ) ,

(
z′,γ ′

))
∈ P

(
QPA (e)

)
⇔ ui (zi) > ui

(
z′i
)

(∀i ∈ N) ;(
(z,γ) ,

(
z′,γ ′

))
∈ I
(
QPA (e)

)
⇔ ui (zi) = ui

(
z′i
)

(∀i ∈ N) .

Let a binary relation function Q be called the minimal relation function w.r.t. an
axiom a if Q satisfies the axiom a, and for any binary relation function Q′ satisfying
the axiom a, Q′(e)⊇Q(e) holds. Note that each of QL, QJF, and QPA is the minimal
relation function w.r.t. each of the axioms LS, J-RF, and PA.

Thus, if there exists an ESOF Q which satisfies these three axioms, Q(e) ⊇
QL(e)∪QJF(e)∪QPA (e) holds for each e ∈ E . Define QLJP by QLJP(e) ≡ QL(e)∪
QJF(e)∪QPA (e) for each e ∈ E . According to Proposition 3 in Appendix 1, there
exists an ESOF which satisfies the axioms LS, J-RF, and PA if and only if QLJP(e) is
consistent for each e ∈ E .9 Unfortunately, QLJP(e) is not consistent for some e ∈ E .
This is due to the following property:

Proposition 1. The union of any two of the relations QL(e), QJF(e), and QPA (e) is
inconsistent for some e ∈ E and for any J ∈ JME.

To begin with, the inconsistency of QL(e)∪QJF(e) is easily confirmed by the fact
that QL(e) is interested solely in the wellness of allocation rules, whereas QJF(e)
represents the criterion which judges the wellness of extended alternatives, com-
pletely ignoring the wellness of allocation rules. A similar argument can be applied
to the case of QL(e)∪QPA(e).

How about the binary relation QJF (e) ∪QPA (e)? This is related to the issue
known as the problem of compatibility between fairness and efficiency in resource
allocations, and its answer seems to depend on the criteria of distributive justice J.
However, as the following example shows, if J ∈ JME, then QJF (e) and QPA (e) are
incompatible, regardless of what type of distributive justice this J represents.10

Example 1. Let N = {1,2} and x = 3. The production function is given by
f (x)=x for all x ∈ R+. Define an economic environment e = (u,s) ∈ E as
follows: Let si = 1 for any i ∈ N. Consider the following four feasible alloca-
tions: z∗ = ((1,1) ,(1,1)), z∗∗ = ((2,2) ,(2,2)), z∗ (θ) = ((1,1+θ) ,(1,1−θ)),
and z∗∗ (θ) = ((2,2−θ) ,(2,2+θ)), where θ ∈ (0,1). The utility function of
the individual 1 is assumed to have the following property: for z = (x,y) ∈ Z, if
z = z∗1 (θ) or z = z∗∗1 , then

u1 (z) = (1−θ + ε) · (x− x)+ y, where ε > 0 is small enough;

9 The definition of consistent binary relations is given by Definition 4 in Appendix 1 below.
10 A similar incompatibility result is also obtained by Fleurbaey and Trannoy (2003).
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and if z = z∗∗1 (θ) or z = z∗1, then

u1 (z) = (1−θ − ε) · (x− x)+ y.

Also, the utility function of the individual 2 is assumed to have the following prop-
erty: for z = (x,y) ∈ Z with x ∈ [0,1),

u2 (z) = (1−θ) · (x− x)+ y;

for z = (x,y) ∈ Z with x ∈ [1,x], if z = z∗∗2 (θ) or z = z∗2, then

u2 (z) = (1+θ − ε) · (x− x)+ y;

and if z = z∗2 (θ) or z = z∗∗2 , then

u2 (z) = (1+θ + ε) · (x− x)+ y.

Figure 1 illustrates such a situation.
Let γ ∗, γ ∗∗, γ ∗ (θ), and γ ∗∗ (θ) be the allocation rules respectively, in which

z∗, z∗∗, z∗ (θ), and z∗∗ (θ) become, respectively, Nash equilibrium outcomes under
e ∈ E . Then, if J ∈ JME, its corresponding QJF (e) should have:

((z∗,γ ∗) ,(z∗ (θ) ,γ ∗ (θ))) ∈ P
(
QJF (e)

)
,

((z∗∗,γ ∗∗) ,(z∗∗ (θ) ,γ ∗∗ (θ))) ∈ P
(
QJF (e)

)
.

Fig. 1 Example 1 in the consumption space
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On the other hand, by the definition of QPA (e), we have:

((z∗ (θ) ,γ∗ (θ)) ,(z∗∗,γ∗∗)) ∈ P
(
QPA (e)

)
,

((z∗∗ (θ) ,γ ∗∗ (θ)) ,(z∗,γ ∗)) ∈ P
(
QPA (e)

)
.

Thus, the binary relation QJF (e)∪QPA (e) is not consistent. ��

Thus, this incompatibility can be applied for any J representing any meaningful
equity criterion, such as the “equity as no-envy”11 and Sen’s theory of “equality of
capability.12” This is because any meaningful equity criterion should meet ME.

Note as the above example shows, the incompatibility between QJF (e) and
QPA (e) is obtained by using the weak Pareto principle only and without any help of
the Pareto indifference condition. The Pareto indifference condition is not a crucial
factor for this incompatibility.

4 On Possibility of Second-Best Extended Social Ordering
Functions

So far, Sect. 3 showed that there is no ESOF which satisfies the three basic axioms,
LS, J-RF, PA, simultaneously. Then, the next step is to examine the possibility of
the second-best ESOFs which satisfy some weaker requirements of the three basic
axioms. There are at least two types of methods used to solve this problem. The
first method is based on the pluralistic application of axioms proposed by Sen and
Williams (1982). The second method is based on the lexicographic application of
axioms. The formal definitions of these approaches are given in Appendix 2.

Here, we focus on the lexicographic application, which sometimes appeared in
the literature of normative theories such as Parijs (1995) and Rawls (1971). The
lexicographic application takes one priority order among axioms, and then makes a
ranking between any two alternatives in accordance with the first prior axiom. Then,
if the pair of alternatives is non-comparable with respect to the first prior axiom, then
the second prior axiom is applied for ranking them. In the following discussion, we
will show that even according to this lexicographic application, we cannot yet gen-
erally construct a consistent ESOFs. Then, we will consider a further concession to
construct the second-best ESOFs. It is a weaker variant of lexicographic application
in the sense that the second prior axiom is applied only to a subset, not to the whole
set, of non-comparable pairs of the first prior axiom. Based on this method, we will
show the existence of four types of the second-best ESOFs.

For any e ∈ E and any binary relation Q(e) ⊆ (Zn×Γ )2, let N (Q(e)) ⊆
(Zn×Γ )2 be defined by: for any (z,γ),(z′,γ ′) ∈R(e),

11 The example of the latest successful research is Tadenuma (2002). Also, see Yoshihara (2005).
12 In fact, Gotoh, Suzumura, and Yoshihara (2005) show that if J represents Sen’s theory of “equal-
ity of capability,” then J-RF is incompatible with PA.
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(
(z,γ),(z′,γ ′)

)
∈ N (Q(e))⇔

(
(z,γ),(z′,γ ′)

)
/∈ Q(e) and(

(z′,γ ′),(z,γ)
)

/∈ Q(e) .

Note that this relation is the non-comparable part of Q(e). To see the possibility of
the second-best ESOFs based on the lexicographic application, let us first examine
J-RF first-PA second priority rule, which is to consider a binary relation function
QJ�P

lex : E � (Zn×Γ )2, defined as follows: for any e ∈ E ,

QJ�P
lex (e) ≡ QJF (e)∪

[
N
(
QJF (e)

)
∩QPA (e)

]
; and

P
(

QJ�P
lex (e)

)
≡ P

(
QJF (e)

)
∪
[
N
(
QJF (e)

)
∩P
(
QPA (e)

)]
.

The relation QJ�P
lex (e) ranks any two extended alternatives by applying the axiom

J-RF in the first place, and if this pair belongs to the non-comparable part of QJF (e),
then PA is applied to rank them. In a similar way, we can also consider PA first-J-RF
second priority rule, and define the binary relation function QP�J

lex : E � (Zn×Γ )2.
Unfortunately, we still obtain the following impossibilities:

Proposition 2. Both QJ�P
lex (e) and QP�J

lex (e) are inconsistent for some e ∈ E , if
J ∈ JME.

This is checked by using the same four feasible allocations and the same economic
environment as in Example 1. In fact, we can see in Example 1 that

((z∗,γ ∗) ,(z∗ (θ) ,γ ∗ (θ))) ∈ N
(
QPA (e)

)
and

((z∗∗,γ ∗∗) ,(z∗∗ (θ) ,γ ∗∗ (θ))) ∈ N
(
QPA (e)

)
,

which implies that the discussion of inconsistency in Example 1 can be applied to
QP�J

lex (e). The same discussion is applied to the binary relation QJ�P
lex (e).

As Proposition 2 indicates, we cannot construct any second-best ESWF based
on the lexicographic application. To secure the existence of a compatible lexico-
graphic combination of our basic axioms, a further concession seems to be required.
As such one, let us consider, for each e ∈ E , to choose appropriately a subset
N∗
(
QJF (e)

)
from the whole set of non-comparable parts, N

(
QJF (e)

)
, to make

QJF (e)∪
[
N∗
(
QJF (e)

)
∩QPA (e)

]
consistent. Given J ∈ J and x ∈ [0,x]n, let

B(J (e) ;x) ≡ {(x,y) ∈ Z (s) | ∀
(
x,y′

)
∈ Z (s) :((

x,y′
)
,(x,y)

)
/∈ P(J (e))}.

For any e ∈ E and any (z,γ),(z′,γ ′) ∈ R(e), let N∗
(
QJF (e)

)
� N

(
QJF (e)

)
be

given as follows:
(
(z,γ) ,

(
z′,γ ′

))
∈ N∗

(
QJF (e)

)
⇔ x �= x′ & z ∈ B(J (e) ;x)

& z′ ∈ B
(
J (e) ;x′

)
.
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That is, ((z,γ) ,(z′,γ ′)) is a non-comparable pair in the sense of N∗
(
QJF (e)

)
if and

only if z and z′ of this pair have mutually different labor supplies, x �= x′, and each
of them is a J (e)-maximal allocation within the same profile of labor supplies. Note
that the condition x �= x′ implies that N∗

(
QJF (e)

)
is a subset of N

(
QJF (e)

)
. Then,

for any e ∈ E , let:

Q∗J�P
lex (e) ≡ QJF (e)∪

[
N∗
(
QJF (e)

)
∩QPA (e)

]
;

P
(

Q∗J�P
lex (e)

)
≡ P

(
QJF (e)

)
∪
[
N∗
(
QJF (e)

)
∩P
(
QPA (e)

)]
.

The relation Q∗J�P
lex (e) ranks any two extended alternatives by applying the axiom

J-RF in the first place, and if this pair belongs to the specific non-comparable part,
N∗
(
QJF (e)

)
, then PA is applied to rank them.

Next, let us define a subset N∗
(
QPA (e)

)
of N

(
QPA (e)

)
to make QPA (e) ∪[

N∗
(
QPA (e)

)
∩QJF (e)

]
consistent. For any e∈E , let ∂S (e)≡{u ∈ R

n | ∃z ∈ P(e) :
ui (zi) = ui (∀i ∈ N)}. Then, for each u ∈ ∂S (e), let us select only one allocation
zu ∈ P(e) such that for each i ∈ N, ui

(
zu

i
)

= ui. Now, let Ps (e) ≡
{

zu}
u∈∂S(e). By

definition, Ps (e) ⊆ P(e). Note that for any zu,zu′ ∈ Ps (e), u �= u′. Then, for any
e ∈ E , let N∗

(
QPA (e)

)
⊆ N

(
QPA (e)

)
be such that

(
(z,γ) ,

(
z′,γ ′

))
∈ N∗

(
QPA (e)

)
⇔ z,z′ ∈ Ps (e) and z �= z′.

That is, ((z,γ) ,(z′,γ ′)) is a non-comparable pair in the sense of N∗
(
QPA (e)

)
if and

only if z and z′ of this pair are different Pareto efficient allocations, and moreover,
their corresponding utility allocations are also different. Note that the latter property
follows from z,z′ ∈ Ps (e). By this property, z and z′ are Pareto non-comparable, so
that N∗

(
QPA (e)

)
is actually a subset of N

(
QPA (e)

)
. Then, for any e ∈ E , let:

Q∗P�J
lex (e) ≡ QPA (e)∪

[
N∗
(
QPA (e)

)
∩QJF (e)

]
;

P
(

Q∗P�J
lex (e)

)
≡ P

(
QPA (e)

)
∪
[
N∗
(
QPA (e)

)
∩P
(
QJF (e)

)]
.

The relation Q∗P�J
lex (e) ranks over any two extended alternatives by applying the

axiom PA in the first place, and if this pair belongs to the specific non-comparable
part, N∗

(
QPA (e)

)
, then J-RF is applied to rank them.

Using these concessive lexicographic binary relation functions, we obtain:

Theorem 1. Let J ∈ JME, and for each e ∈ E , J (e) be a continuous quasi-ordering
on Z (s)13 such that for each x ∈ [0,x]n, B(J (e) ;x) is a singleton. Then, there exist
at least four ESOFs such that each of which contains either of the following binary
relation functions as subrelation mappings:

(i) QL�(∗P�J)
lex ; (ii) Q(∗P�J)�L

lex ; (iii) QL�(∗J�P)
lex ; and (iv) Q(∗J�P)�L

lex .

13 A quasi-ordering R is continuous on X if for any x ∈ X , its upper and lower contour sets at R is
open.
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Let QL�(∗P�J) (respectively, QL�(∗J�P)) be an ESOF which is obtained as an order-
ing extension of QL�(∗P�J)

lex (resp. QL�(∗J�P)
lex ). Note that both QL�(∗P�J) and QL�(∗J�P)

are interesting from the viewpoint of non-welfaristic normative theories. Both of
them are given by the weaker sense of lexicographic application as discussed earlier,
and give the first priority to a non-consequential axiom LS rather than the other two
consequentialist axioms. Both the Rawlsian two principles of justice combined with
the Pareto principle and the Real Libertarianism (Parijs, 1995) combined with the
Pareto principle would be formalized as the QL�(∗P�J)-type or the QL�(∗J�P)-type.

4.1 Rationally Chosen Allocation Rules via ESOFs

In this Section, we characterize allocation rules rationally chosen via QL�(∗P�J)

and/or QL�(∗J�P). Given any Q ∈Q, the rational choice set C (Q) of allocation rules
associated with Q is defined by:

γ ∈C (Q)⇔ ∀e ∈ E , ∃z ∈ τ(γ,e) s.t. ∀
(
z′,γ ′

)
∈R(e),(

(z,γ) ,
(
z′,γ ′

))
∈ Q(e) .

What kinds of allocation rules can be rationally chosen via ESOFs QL�(∗P�J)

and/or QL�(∗J�P)? If γ ∈C
(

QL�(∗P�J)
)
∪C
(

QL�(∗J�P)
)

, then what kinds of feasible
allocations can this γ implement in Nash equilibria? To examine such questions, let
a rationally chosen allocation rule γ ∈C

(
QL�(∗P�J)

)
∪C
(

QL�(∗J�P)
)

be called the
first best allocation rule if for any e ∈ E and any z ∈ τ(γ,e), z is Pareto efficient
and z ∈ B(J (e) ;x). Our particular interest is the existence issue of the first best
allocation rule rationalized by QL�(∗P�J) and/or QL�(∗J�P).

Let us call γ = (M,g) ∈ Γ an efficient allocation rule if, for any e ∈ E , z ∈
τ(γ,e) implies z ∈ P(e). Denote the subclass of Γ which consists solely of efficient
allocation rules by ΓPE. Let us call γ = (M,g) ∈Γ a J-fair allocation rule if, for any
e ∈ E , z ∈ τ(γ,e) implies z ∈ B(J (e) ;x). Denote the subclass of Γ which consists
solely of J-fair allocation rules by ΓJF. Then:

Theorem 2. Let J ∈ JMOE, and for each e ∈ E , J (e) be a continuous order-
ing on Z (s) such that for each x ∈ [0,x]n, B(J (e) ;x) is a singleton. Then,
there exists an ESOF QL�(∗J�P)(respectively,QL�(∗P�J)) such that for each e ∈ E ,

QL�(∗J�P) (e)⊇QL�(∗J�P)
lex (e)

(
respectively, QL�(∗P�J) (e)⊇QL�(∗P�J)

lex (e)
)
, and ∅ �=

C
(

QL�(∗J�P)
)

= ΓL∩ΓPE∩ΓJF (respectively, ∅ �= C
(

QL�(∗P�J)
)
⊇ ΓL∩ΓPE∩ΓJF).

Theorem 2 shows that if J ∈ J MOE, then the rationally chosen allocation rule via
QL�(∗J�P) has the following desired properties: it is labor sovereign, and implements
Pareto efficient and J-fair allocations in Nash equilibria. The same property holds
for the case of QL�(∗P�J).
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This characterization in Theorem 2 is due to the objective egalitarianism of J. If
J ∈ JMOE, then B(J (e) ;x) = B(J (e′) ;x) for any x ∈ [0,x]n and any e,e′ ∈ E with
s = s′. This invariance property of B(J (·) ;x) plays an important role in the existence
issue of the first best allocation rules rationalized by QL�(∗J�P) and/or QL�(∗P�J). In
contrast, if J ∈JME\JMOE, then the existence of the first best allocation rules ratio-
nalized by QL�(∗J�P) and/or QL�(∗P�J) is not necessarily guaranteed. For instance, let
JUD ∈JME\JMOE represent undominated diversity. Then, there is no first best allo-
cation rule in terms of Pareto efficiency and JUD-fairness, so that the corresponding
rationally chosen allocation rule does not have such desired properties.14

5 Discussion

In this section, we provide some remarks on the relevant literature of ESOFs.
As mentioned in the introduction, Blackorby, Bossert, and Donaldson (2005) and
Kaplow and Shavell (2001) also discuss different types of ‘extended’ social order-
ing functions.

For instance, Kaplow and Shavell (2001) define any “non-welfarist” axiom as
being incompatible with the Pareto Indifference principle. Then, they show that if a
social welfare function satisfies continuity and such a “non-welfarist” axiom, then
it violates the weak Pareto principle. This is derived from the fact that the continu-
ity of the social welfare function and the weak Pareto principle immediately imply
the Pareto Indifference principle.15 Blackorby, Bossert, and Donaldson (2005) show
that if a social welfare function defined over the domain of multi-profiles satisfies
Universal Domain, Pareto Indifference, and Binary Independence of Irrelevant Al-
ternatives, then it implies Strong Neutrality. Note that Strong Neutrality is regarded
as the axiom of Welfarism.

It is well known that, even in the case of B–S social welfare functions with the
domains of the utility profiles only, Roberts (1980) and Sen (1977) show that the
conventional Arrovian axioms of universal domain, Pareto indifference, and binary
independence of irrelevant alternatives together imply strong neutrality. The cru-
cial difference of Blackorby, Bossert, and Donaldson (2005) from Sen (1977) and
Roberts (1980) is that the former defines Binary Independence of Irrelevant Alter-
natives as requiring the social ranking of any two alternatives to depend on not only
the utility information but also the non-welfaristic information associated with those
two alternatives only. Hence, the independence axiom of Blackorby, Bossert, and
Donaldson (2005) is non-welfarist in nature, and it is weaker than the Sen–Roberts
independence axiom. Nevertheless, Blackorby, Bossert, and Donaldson (2005) con-
clude that even in such a framework, the possible social ordering function is only
welfarist in nature, if it is required to satisfy the other Arrovian axioms such as

14 This point is discussed in Yoshihara (2006a).
15 Kaplow and Shavell (2001) consider the Pareto indifference principle as the definition of wel-
farism for social welfare functions.
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Universal Domain and Pareto Indifference. This seems to provides us with a strong
justification of welfarism.

We review the relationship between our approach and the above-mentioned
works briefly. First, the welfarist theorem of Blackorby, Bossert, and Donaldson
(2005) relies strongly on the axiom of Universal Domain. Such a domain condition
cannot directly be applied to the resource allocation problems this paper considers
here. For instance, in this paper, all available utility functions are restricted so as to
be strongly monotonic and quasi-concave. In fact, as shown in Yoshihara (2006b),
if a reasonable domain restriction is imposed, then an ESOF of QL�(∗P�J)-type ex-
ists and it satisfies the independence axiom of Blackorby, Bossert, and Donaldson
(2005). The domain of this ESOF is restricted, because (1) the domain of welfarist
information Un is restricted to the class of profiles of continuous, strictly monotonic,
and quasi-concave utility functions, and (2) the domain of non-welfarist information
is also restricted.

Thus, our result on the possibility of the non-welfarist ESOFs is compatible with
the result of Blackorby, Bossert, and Donaldson (2005). Moreover, I believe that
the universal domain assumption of the non-welfaristic information is not sound
from an ethical point of view. This is because a well-being indicator expressing
non-welfaristic information should be defined as a binary relation function charac-
terized by a system of axioms,16 so it needs different formal treatment from the
welfarist indicator (individual utility functions) representing capricious subjective
preferences.

Second, the conclusion of Kaplow and Shavell (2001) gives us basically the same
message as that of Example 1 in this paper. However, Example 1 does not suppose
the continuity of social ordering, contrary to the assumption of Kaplow and Shavell
(2001). It is also worth noting that this resulting impossibility does not imply a jus-
tification of welfarism at all. This is because, as Fleurbaey, Tungodden, and Chang
(2003) point out, the Pareto indifference principle and the welfarist axiom are not
equivalent. In fact, our ESOF Q(∗P�J)�L in Theorem 1 satisfies the weak Pareto prin-
ciple as well as the Pareto indifference principle, and it also has the properties of
the two types of non-welfarism (J-RF and LS). However, this type of function does
not meet the continuity axiom. This implies that the real factor inducing the im-
possibility is not the trade-off between welfarism and non-welfarism, but rather the
requirement of continuity.

To summarize this, despite the conclusions of Blackorby, Bossert, and Donaldson
(2005) and Kaplow and Shavell (2001), it is eminently possible to construct a desir-
able social ordering function that has the properties of the welfarist Pareto principle
and the non-welfarist criteria.

16 An example of this is a series of works by Pattanaik and Xu (1990), where the ranking over
opportunity sets is characterized by the system of axioms which reflect the viewpoint of “freedom
of choice.”
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6 Conclusion

In the earlier sections, we discussed that the welfarist’s framework developed in
traditional welfare economics provided us with a rather limited perspective for so-
cial evaluation, so a more comprehensive framework would be necessary. As such,
we proposed the extended framework within which not only welfarist consequential
values, but also non-welfarist consequential values and non-consequential values
can be taken into consideration. Moreover, we introduced extended social ordering
functions and, as axioms of which, Labor Sovereignty, Respect for J-based Fair-
ness based on non-welfaristic well-being notions, and the Pareto principle. Then,
we showed a method of applying these axioms based on a weaker lexicographic
approach, by which some consistent extended social ordering functions can be con-
structed in order to be compatible with the above three values.

Appendix 1

In this Appendix 1, the elementary properties of binary relations are provided, which
constitute an analytical technique useful to consider the existence issue of ESOFs.
Let X be the universal set of any alternatives and R be a binary relation defined over
this set. If R satisfies completeness and transitivity in particular, we shall call it an
ordering. Also:

Definition 2. An axiom a is represented by a binary relation Ra ⊆ X ×X if the fol-
lowing condition holds: for any x,x′ ∈ X ,

(
x,x′

)
∈ Ra ⇔ according to the axiom a, x is at least

as desired as x′;(
x,x′

)
∈ P(Ra)⇔ according to the axiom a, x is strictly

more desirable than x′.

In general, the binary relation representing an axiom is not necessarily a complete
ordering. In the following discussion, let us denote the representation of the axiom
a by Ra. Then, let us see how an ordering R⊆ X×X satisfies an axiom in general.

Definition 3. A binary relation R satisfies a class of axioms
{

aλ
}
λ∈Λ if the follow-

ing condition holds:

R⊇
[
∪λ∈ΛRaλ

]
and P(R)⊇

[
∪λ∈ΛP

(
Raλ
)]

.

As Definition 3 suggests, a binary relation R satisfies axioms a1, . . . ,am if and only
if it contains all of the axiom-representing relations Ra1

, . . . ,Ram
as its subrelations.
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Given a class of axioms on ordering relations, one interesting problem is to ex-
amine whether there exists an ordering relation that satisfies all of these axioms. To
discuss this question, the following notion is crucial.

Definition 4. (Suzumura, 1976). A binary relation R ⊆ X ×X is consistent if, for
any finite subset

{
x1,x2, . . . ,xt

}
of X, the following condition does not hold:

[
(
x1,x2) ∈ P(R) ,

(
xk,xk+1

)
∈ R (∀k = 2, . . . , t−1)]⇒

(
xt ,x1) ∈ R.

Proposition 3. There exists an ordering relation R ⊆ X ×X which satisfies a class
of axioms

{
aλ
}
λ∈Λ if and only if

[
∪λ∈ΛRaλ

]
is consistent.

According to Proposition 3, it is sufficient to confirm whether or not the union of
the axiom-representing relations

{
Raλ
}
λ∈Λ

meets the consistency. This condition
can be useful when we discuss the existence of ESOFs satisfying some classes of
axioms.

Appendix 2

1. The pluralistic application of axioms (Sen and Williams, 1982)
Given any two axioms a and b which are mutually incompatible, the pluralistic

application of axioms is to construct a binary relation Ra∩b ⊆ X ×X which is de-
fined as: Ra∩b ≡ Ra∩Rb and P

(
Ra∩b

)
≡
[
P(Ra)∩Rb

]
∪
[
Ra∩P

(
Rb
)]

. Then, Ra∩b

becomes consistent whenever Ra and Rb are respectively, consistent. Thus, this kind
of second best resolution is to consider an ordering extension of Ra∩b.

2. The lexicographic application of axioms
Given any binary relation R, let N (R) ⊆ X ×X be defined as follows: for any

x,x′∈X , (x,x′) ∈ N (R)⇔ (x,x′) /∈ R and (x′,x) /∈ R.17 Given any two axioms a and
b which are mutually incompatible, the lexicographic application of axioms is to
construct a binary relation Ra�b

lex ⊆ X×X which is defined by: for any x,x′ ∈ X ,

(
x,x′
)
∈ Ra�b

lex ⇔
(
x,x′
)
∈ Ra∪

[
N (Ra)∩Rb

]
; and

(
x,x′
)
∈ P

(
Ra�b

lex

)
⇔
(
x,x′
)
∈ P(Ra)∪

[
N (Ra)∩P

(
Rb
)]

.

That is, suppose that the society gives a priority to axiom a rather than to axiom b.
Then, for any two alternatives, a is applied by Ra�b

lex in the first place to make a
comparison between them, and b is applied only if these two alternatives are incom-
parable by a. This is called axiom a first-axiom b second priority rule.

17 The definition of this binary relation is based on Suzumura (2004).
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According to Proposition 3, an ordering extension of Ra�b
lex is possible whenever

Ra�b
lex is consistent. Unfortunately, however, the consistency of Ra�b

lex is not guaranteed
in general. Thus, we need an algorithm to see what properties of the axioms a and/or
b can make Ra�b

lex consistent.
Suppose that Ra�b

lex is not consistent. Our strategy is to choose an appropriate
subset N∗ (Ra) from N (Ra) such that

R∗a�b
lex ≡ Ra∪

[
N∗ (Ra)∩Rb

]

becomes consistent. Then, the problem is to identify what conditions this N∗ (Ra)
should satisfy so as to make R∗a�b

lex consistent. A general solution to this problem is
given by Yoshihara (2005), and here we introduce a corollary of this solution given
in Yoshihara (2005).

Definition 5. (Yoshihara, 2005). Given a binary relation R ⊆ X × X, a subset
N∗ (R) ⊆ N (R) is said to be connected if for any (x,x′) ,(y,y′) ∈ N∗ (R), there ex-
ists

{
z1, . . . ,zt

}
⊆ X such that z1 = x′, zt = y, and

(
zk,zk+1

)
∈ N∗ (R) holds for any

k = 1, . . . , t−1.

Proposition 4. (Yoshihara, 2005). Let Ra be a quasi-ordering over X. Then, if the
relation N∗ (Ra) ⊆ N (Ra) is transitive and connected, then the relation R∗a�b

lex ⊆
X×X is consistent for any quasi-ordering Rb ⊆ X×X.

Appendix 3: Proofs of Theorems 1 and 2

Proof of Theorem 1. We can see that for any e ∈ E , both N∗
(
QJF (e)

)
and

N∗
(
QPA (e)

)
are connected and transitive, where the definition of connectedness is

given in Definition 5 of Appendix 2. Hence, by Proposition 4 of Appendix 2, both
Q∗J�P

lex and Q∗P�J
lex are consistent binary relation functions. ��

Lemma 1. For each e ∈ E , ∪x∈[0,x]nB(J (e) ;x) has a closed graph in Z (s).

Proof. It can be shown in a similar way to Lemma 4 in Gotoh et al. (2005). ��

Lemma 2. (Yoshihara, 2000). For each s ∈ Sn, let h : [0,x]n→ R
n
+ be a continuous

function such that, for each x ∈ [0,x]n, h(x) = y and f (∑sixi) = ∑yi. Then, for
any e = (u,s) ∈ E , there exists x∗ ∈ [0,x]n such that (x∗,h(x∗)) is a Pareto efficient
allocation for e.

Proof. See Proposition 3 in Gotoh, Suzumura, and Yoshihara (2005). ��

Lemma 3. For each e = (u,s) ∈ E , there exists a Pareto efficient allocation z∗ ∈
Z (s) such that z∗ ∈ ∪x∈[0,x]nB(J (e) ;x).

Proof. See Lemma 5 in Gotoh, Suzumura, and Yoshihara (2005). ��
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Lemma 4. (Yoshihara, 2000). Given J ∈JMOE, for each e∈ E , let PBJ(e)≡ P(e)∩[
∪x∈[0,x]nB(J (e) ;x)

]
. Let h : [0,x]n → R

n
+ be a continuous function such that, for

each x∈ [0,x]n, h(x) = y and f (∑sixi) =∑yi. Then, there exists a game form γ ∈ΓL
such that, for any e∈ E , z ∈ τ(γ,e) holds if and only if z = (x,h(x)), and it is Pareto
efficient.

Proof. See Proposition 4 in Gotoh, Suzumura, and Yoshihara (2005). ��

Lemma 5. There exists γ ∗ ∈ ΓL such that τ(γ ∗,e) = PBJ(e) for all e ∈ E .

Proof. See the proof of Theorem 1 in Gotoh, Suzumura, and Yoshihara (2005).18 ��

Proof of Theorem 2. Given e∈E , let S(e) be the utility possibility set of feasible allo-
cations, and ∂S(e) be its boundary. Since every utility function is strictly increasing,
∂S(e) is the set of Pareto efficient utility allocations.

(1) Consider the case of QL�(∗J�P). Define an ordering V (e) over S(e) as follows:

(1) If u,u′ ∈ ∂S(e), then (u,u′) ∈ I (V (e)).
(2) For any u,u′ ∈ S(e), there exist μ ,μ ′ ∈ [1,+∞) such that μ ·u,μ ′ ·u′ ∈ ∂S(e)

and (u,u′) ∈V (e) if and only if μ ≤ μ ′. This ordering V (e) is continuous over
S(e).

Define a complete ordering Re,J over ∪x∈[0,x]nB(J (e) ;x) as follows: for any
z,z′ ∈ ∪x∈[0,x]nB(J (e) ;x), (z,z′) ∈ Re,J ⇔ (u(z),u(z′)) ∈ V (u). This ordering Re,J
is continuous on ∪x∈[0,x]nB(J (e) ;x), and its maximal elements constitute PBJ (e).
Given J ∈ JMOE, let J (e;x) be the restriction of J (e) into the set of feasible alloca-
tions with x.

Consider a binary relation Re,J ∪
[
∪x∈[0,x]nJ (e;x)

]
over Z(s). It is easy to see that

this binary relation is consistent, so that there exists an ordering extension R∗e,J of
Re,J ∪

[
∪x∈[0,x]nJ (e;x)

]
by Suzumura’s (1976) extension theorem. Based upon this

R∗e,J , let us consider an ordering function QL�(∗P�J) as follows: for each e ∈ E and
any (z,γ),(z′,γ ′) ∈R(e),

(1) If γ ∈ ΓL and γ ′ ∈ Γ \ΓL, then ((z,γ),(z′,γ ′)) ∈ P(QL�(∗J�P)(e)).
(2) If either γ,γ ′ ∈ ΓL or γ,γ ′ ∈ Γ \ΓL, then

((z,γ),(z′,γ ′)) ∈ QL�(∗J�P)(e)⇔ (z,z′) ∈ R∗e,J ,
((z,γ),(z′,γ ′)) ∈ P(QL�(∗J�P)(e))⇔ (z,z′) ∈ P(R∗e,J).

Note that QL�(∗J�P)(e) is complete and transitive, and QL�(∗J�P)(e) ⊇ QL�(∗J�P)
lex (e)

for each e∈ E , by the definition. Finally, we can see that C
(

QL�(∗J�P)
)

=ΓL∩ΓPE ∩
ΓJF � γ ∗.
(2) Consider the case of QL�(∗P�J). For each u ∈ ∂S (e), let us select only one al-
location zu ∈ P(e) such that for each i ∈ N, ui

(
zu

i
)

= ui, and if for this u ∈ ∂S (e),

18 Also, see Yamada and Yoshihara (2007).
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there exists z ∈ PBJ (e) such that for each i ∈ N, ui (zi) = ui, then choose such an
allocation as zu. Now, let Ps (e) ≡

{
zu}

u∈∂S(e). By definition, Ps (e) ⊆ P(e) and

Ps (e)∩PBJ (e) �= ∅. Note that for any zu,zu′ ∈ Ps (e), u �= u′.
Define an ordering R0

e,J over Z(s) as follows: for any z,z′ ∈ Z(s),

(i) (z,z′) ∈ I
(

R0
e,J

)
if z,z′ ∈ Ps (e)∩PBJ (e)

(ii) (z,z′) ∈ P
(

R0
e,J

)
if z ∈ Ps (e)∩PBJ (e) and z′ ∈ Ps (e)\PBJ (e)

(iii) (z,z′) ∈ R0
e,J ⇔ (z,z′) ∈ J (e) for z,z′ ∈ Ps (e)\PBJ (e)

(iv) (z,z′) ∈ P
(

R0
e,J

)
if there exist μ ,μ ′ ∈ [1,+∞) such that μ ·u(z) ,μ ′ ·u(z′) ∈

∂S(u) and μ < μ ′ and
(v) (z,z′) ∈ R0

e,J if there exist μ ,μ ′ ∈ [1,+∞) such that μ ·u(z) ,μ ′ ·u(z′) ∈ ∂S(u)

and μ = μ ′, and
(

zμ·u(z),zμ
′·u(z′)

)
∈ Re,J for zμ·u(z),zμ

′·u(z′) ∈ Ps (e)

Denote the set of maximal elements over Z(s) in terms of R0
e,J by B

(
R0

e,J

)
⊆ Z(s).

By definition, PBJ (e)⊆ B
(

R0
e,J

)
.

Based upon this R0
e,J , let us consider an ordering function QL�(∗P�J) as follows:

for each e ∈ E and any (z,γ),(z′,γ ′) ∈R(e),

(1) If γ ∈ ΓL and γ ′ ∈ Γ \ΓL, then ((z,γ),(z′,γ ′)) ∈ P(QL�(∗P�J)(e))
(2) If either γ,γ ′ ∈ ΓL or γ,γ ′ ∈ Γ \ΓL, then

((z,γ),(z′,γ ′)) ∈ QL�(∗P�J)(e)⇔ (z,z′) ∈ R0
e,J ,

((z,γ),(z′,γ ′)) ∈ P(QL�(∗P�J)(e))⇔ (z,z′) ∈ P(R0
e,J).

Note that QL�(∗P�J)(e) is complete and transitive, and QL�(∗P�J)(e) ⊇ QL�(∗P�J)
lex (e)

for each e∈ E , by the definition. Finally, we can see that C
(

QL�(∗P�J)
)
⊇ΓL∩ΓPE ∩

ΓJF � γ ∗. ��
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Part II
Social Choice and Fair Allocations



Monotonicity and Solidarity Axioms
in Economics and Game Theory

Yves Sprumont

1 Introduction

An important aspect of the complex notion of fairness in collective choices is that
agents should bear responsibility only for their own actions. As a corollary, they
should be treated “similarly” when a change occurs for which no one is responsible.
A minimal condition of “similar” treatment is certainly that nobody benefits from
such a change if someone else suffers from it.

The least controversial formulations of this very general solidarity principle fo-
cus on changes that are unambiguously profitable to society as a whole (in the sense
that they always permit a Pareto improvement), or on changes that are clearly detri-
mental. We refer to the corresponding restricted forms of solidarity as monotonicity
principles. Thus, in the famous “fair division” problem (discussed in Section 2), a
bigger pie for the same group of agents is always better while more agents sharing
the same pie is worse: resource monotonicity asks that nobody suffer when the pie
grows, population monotonicity requires that no one benefit from the arrival of new
agents.

After the seminal studies of those and related monotonicity properties in the
context of bargaining by Kalai (1977), Kalai and Smorodinsky (1975), Thomson
(1983a, 1983b), and Thomson and Myerson (1980), among others, the range of
models where the properties have been analyzed has expanded tremendously. It now
includes transferable and nontransferable utility cooperative games, fair division and
exchange economies, problems involving production, public goods, indivisibilities,
cost sharing, and more. Thomson (1995, 1999) offers two very complete surveys on
population monotonicity and resource monotonicity, respectively.

This essay is meant to be an introduction to these axioms and related solidarity
properties; it is not a comprehensive survey. We focus on two particular frameworks,
the so-called fair division model and transferable utility cooperative games, but try
to provide a relatively detailed treatment of each.

Y. Sprumont
Département de Sciences Économiques and CIREQ, Université de Montréal
e-mail: yves.sprumont@umontreal.ca

P.K. Pattanaik et al. (eds.) Rational Choice and Social Welfare: Theory and Applications, 71
Studies in Choice and Welfare. c© Springer-Verlag Berlin Heidelberg 2008
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2 Fair Division

The framework in which the fair division problem is usually formulated is a version
of the classical general equilibrium model of exchange economies: the only differ-
ence is that property rights are not specified. In contrast with the cooperative games
to be studied in the next section, the fair division model is a full-fledged explicit eco-
nomic model where the information about agents’ preferences is carefully separated
from the information about physical resources.

There is a finite set L containing l ≥ 2 goods; a nonempty set N of nonempty
subsets of the positive integers; a nonempty subset R of the set of all complete;
transitive, continuous, monotonic, and convex preference relations on R

l
+; and a

subset Ω of R
l
++. Monotonicity is understood in the strict sense, and we assume

that at least one element of N contains more than one integer. We refer to N as
the population domain and toR as the preference domain. A (division) problem (or
economy) is any list e = (N,R,ω), where N ∈N is the set of agents, R∈RN is their
preference profile, and ω ∈Ω is the collective endowment to be split among them.
Agent i’s preference R(i) is often written Ri. The indifference and strict preference
relations associated with Ri are denoted Ii and Pi, respectively. The set of problems is
denoted E ; it is fully determined byN ,R, and Ω . An allocation (for the problem e)
is a vector x ∈ R

lN
+ satisfying the feasibility constraint ∑i∈N xi ≤ ω , where xi =

(x1
i , . . . ,x

l
i) denotes the bundle allocated to agent i.

An (allocation) rule F assigns to each problem e ∈ E a nonempty set of alloca-
tions for e. This set need not be a singleton. Many interesting rules are not single-
valued. The Walrasian rule from equal split, for instance, which recommends for
each problem e the competitive allocations of the exchange economy obtained from
e by splitting the collective endowment equally among the agents, is typically not –
unless severe restrictions are imposed on the preference domain R. If we want to
be able to discuss such rules, imposing single-valuedness would force us to perform
selections from them. This may not be wise because a multivalued rule satisfying a
property of interest need not admit any single-valued selection with that property.1

2.1 Resource Monotonicity in the Strong Sense

Because we allow for multivalued rules, the general idea of resource monotonicity
can be formulated in many different ways. This subsection is devoted to the strongest
commonly used requirement.2

Resource Monotonicity. If e = (N,R,ω) and e′ = (N,R,ω ′) are two problems such
that ω ′ ≥ ω , then x′iRixi for all x ∈ F(e), all x′ ∈ F(e′), and all i ∈ N.

1 Think, for example, of the upper-hemicontinuity of the Walrasian correspondence on exchange
economies with linear preferences.
2 An even (slightly) stronger property can be defined by insisting that all agents be strictly better
off when the collective endowment increases.
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Resource monotonicity implies the strong restriction that F must be welfare-wise
single-valued: for all e, all x,x′ ∈ F(e), and all i ∈ N, xiIix′i. This is not true for the
weaker condition requiring that if e = (N,R,ω) and e′ = (N,R,ω ′) are such that
ω ′ ≥ ω , then for all x ∈ F(e) there exists x′ ∈ F(e′) such that x′iRixi for all i ∈ N.
This weaker version and the related conditions studied in the next subsection do
allow for genuinely multivalued allocation rules.

A simple rule satisfying resource monotonicity consists in splitting the collective
endowment equally among all agents: for each e = (N,R,ω), F(e) = {(ωn , ..., ωn )}.
Of course, this may be inefficient. From now on, we insist on (Pareto) efficiency.

Efficiency. For every problem e, every x ∈ F(e) is efficient.

Resource monotonicity and efficiency are obviously compatible: always allocat-
ing the entire collective endowment to, say, agent 1 satisfies both. This dictatorial
rule, however, is very unappealing from the distributive viewpoint. Certainly, we
would like our rule to meet the standard property of Anonymity. Under welfare-
wise single-valuedness, this property reads as follows:3

Anonymity. If N ⊂ N , π is a permutation on the agent set N, and e =
(N,R,ω),e′ = (N,R′,ω) are two problems such that R′i = Rπ(i) for all i ∈ N,
then x′iI

′
i xπ(i) for all x ∈ F(e), x′ ∈ F(e′), and i ∈ N.

This property implies the familiar condition of equivalent treatment of equals:
in a given problem, two agents with identical preferences must receive bundles that
they judge equally good.

Combining resource monotonicity, efficiency, and anonymity are not much of a
challenge if the domain of preferences is small. In the trivial case whereR contains
just one preference, for example, equal split of the collective endowment is fully
satisfactory. In the same vein, it is important to recall that resource monotonicity is
vacuous if no two bundles in Ω are comparable. Throughout the rest of this section,
we fix Ω = R

l
+.

Let us now describe a class of rules satisfying the three axioms introduced above
on any preference domain satisfying our basic assumptions. They are based on
Pazner and Schmeidler’s (1978) concept of egalitarian equivalence. Fix a numeraire
bundle α ∈R

l
++. An allocation x for the problem e = (N,R,ω) is called egalitarian-

equivalent with respect to α if all agents find their share equivalent to the same
multiple of α: there exists a number λ such that xiIiλα for all i ∈ N. We call λα
the “reference bundle.” Pazner and Schmeidler have shown that each problem pos-
sesses at least one efficient egalitarian-equivalent allocation with respect to α. The
rule Fα that selects all such allocations is welfare-wise single-valued and satisfies
the three axioms discussed so far. Resource monotonicity must hold since, when the
collective endowment increases, the reference bundle shifts upwards along the ray
through α, making everyone better off.

3 The proper formulation of the axiom for an allocation rule that need not be welfare-wise single-
valued is as follows. If N ⊂ N , π is a permutation on the agent set N, and e = (N,R,ω),e′ =
(N,R′,ω) are two problems such that R′i = Rπ(i) for all i ∈ N, then, for all x ∈ F(e) there exists
x′ ∈ F(e′) such that x′iI

′
i xπ(i) for all i ∈ N.
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An important weakness of this rule is that it relies on an arbitrary numeraire
bundle. Choosing α equal to the collective endowment ω is very tempting but
contravenes resource monotonicity unless ad-hoc restrictions are imposed on
the preference domain. To secure resource monotonicity, it is crucial that α be
independent of ω.

A common interpretation of the rule Fα is that it equalizes (at the highest pos-
sible level) the numerical representations of the agents’ preferences obtained by
calibration along the ray through the origin and α. Specifically, defining uαi by the
condition that uαi (xi)αIixi, the rule Fα selects the efficient allocations x at which
uα1 (x1) = · · · = uαn (xn). In fact, any rule defined by first choosing a numerical rep-
resentation of each agent’s preferences and then selecting the efficient allocations
equalizing these representations does satisfy resource monotonicity (provided that
it is well defined: we must make sure that the numerical representations can be
equalized for every problem).

Examples include Thomson’s (1994) equal opportunity equivalent rules, under
which the numerical representations of preferences are calibrated along nested se-
quences of subsets of R

l
+.

We briefly describe two further examples. Both work (at least) when all indiffer-
ence sets of every preference Ri in the domain R cut the axes: for every xi ∈ R

l
+

and every h ∈ L, there is some (necessarily unique) number ah(xi,Ri) such that
xiIi(0, . . . ,0, ah(xi,Ri),0, . . . ,0). Our first example uses the numerical representa-
tion ua

i of Ri given by
ua

i (xi) =Πh∈Lah(xi,Ri).

It is not difficult to check that every problem admits at least one efficient allocation
x at which ua

1(x1) = · · ·= ua
n(xn). Selecting such allocations defines an anonymous,

efficient, resource-monotonic rule. Our second example is based on a numerical
representation of preferences due to Neuefeind (1972). Given any preference Ri ∈R
and xi ∈ R

l
+, simply define uL

i (xi) to be the Lebesgue measure of the lower contour
set of xi. Again, selecting in each problem the efficient allocations equalizing these
representations yields a rule satisfying the three axioms defined so far.

More work is needed to better understand the class of rules meeting these axioms.
Notice that under all the rules described so far, any change in the collective endow-
ment affects all agents in a common direction: nobody loses or nobody benefits.

Resource Solidarity. If e = (N,R,ω) and e′ = (N,R,ω ′) are two arbitrary prob-
lems, then (i) x′iRixi for all x ∈ F(e), all x′ ∈ F(e′), and all i ∈ N, or (ii) xiRix′i for all
x ∈ F(e), all x′ ∈ F(e′), and all i ∈ N.

This powerful property is fairly well understood. We know from the work of
Keiding and Moulin (1991) and Sprumont (1996) that it is essentially equivalent
to equalize some numerical representation of the agents’ preferences. Resource
solidarity, however, is by no means an implication of resource monotonicity, ef-
ficiency, and anonymity. To see this, note that the Walrasian rule from equal
split satisfies resource monotonicity, but not resource solidarity, on the domain of
Cobb–Douglas preferences. For instance, if the two-good collective endowment
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ω = (ω1,ω2) is to be divided between two agents whose preferences admit the
numerical representations

u1(x1,x2) =
2
3

logx1 +
1
3

logx2,

u2(x1,x2) =
1
3

logx1 +
2
3

logx2,

the Walrasian rule from equal split gives ( 2
3ω

1, 1
3ω

2) to agent 1 and the rest to
agent 2. Both agents gain when ω increases but if ω = (3,6) changes to ω ′ = (6,3),
agent 1 benefits while 2 suffers. For any domain that includes the Cobb–Douglas
preferences, applying the Walrasian rule from equal split on the Cobb–Douglas
subdomain and, say, the egalitarian-equivalent rule Fα otherwise defines a hybrid
rule that satisfies resource monotonicity but violates resource solidarity. Of course,
this rule is discontinuous in the preferences under any reasonable definition of
continuity.

Splitting the collective endowment equally is an example of a trivially contin-
uous, anonymous, resource-monotonic procedure that fails solidarity, but it is not
efficient. It is not clear whether resource monotonicity, efficiency, anonymity, and a
reasonable preference continuity condition together imply resource solidarity when
the domain E is large enough.

We now investigate to what extent resource monotonicity is compatible with
other important equity criteria. Consider the following three conditions.

Conditional Equal Split. For every problem e = (N,R,ω) for which (ωn , . . . , ωn ) is
efficient, (ωn , . . . , ωn ) ∈ F(e).

No Exploitation. For every problem e = (N,R,ω), every x∈F(e), and every agent
i ∈ N, there exists a good h ∈ L such that xh

i ≥ ωh

n .

No Domination. For every problem e = (N,R,ω), every x ∈ F(e), and all i, j ∈ N,
there exists a good h ∈ L such that xh

i ≥ xh
j .

Conditional equal split requires that equal division of the collective endowment
be among the recommended allocations whenever it is efficient. If the crux of the
fair division problem is really to reconcile equality with efficiency, this axiom seems
rather natural.

The other two conditions are weak forms of general principles that admit other,
more demanding, formulations. No exploitation offers to each agent a guarantee
that is independent of the other agents’ preferences: in no circumstances will he get
strictly less than the mean endowment of every good. This axiom, introduced by
Gaspart (1996) in a context with production, is weaker than the more standard equal
split lower bound to be discussed later.

No Domination, finally, is an attempt at rooting fairness in bilateral comparisons
of bundles. The general idea is that no one should be treated worse than any one else.
The very weak requirement expressed here is that no agent receive strictly less of
every commodity than any other agent. This minimal condition, due to Moulin and
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Thomson (1988), is weaker than the celebrated no envy condition discussed later.
No Domination and no exploitation are equivalent in the two-agent case (provided
that no part of the collective endowment is destroyed) but are independent as soon
as there are at least three agents.

Easy examples show that all the efficient resource-monotonic rules described so
far violate conditional equal split, no exploitation, and no domination unless the
preference domain is extremely small. As it turns out, this is unavoidable.

Theorem 1. (Maniquet & Sprumont, 2000; Moulin & Thomson, 1988) If the prefer-
ence domainR contains the homothetic preferences, resource monotonicity and ef-
ficiency together are incompatible with any of the following principles: conditional
equal split, no exploitation, no domination.

Proof. Suppose L = N = {1,2}, that is, there are two goods and two agents. Assume
that agent 1’s preference relation R1 is strictly convex, homothetic, differentiable,
and its marginal rate of substitution is −8 along the ray x2 = 3x1, −1 along the ray
x2 = 2x1, and − 1

8 along the ray x2 = 1
3 x1. Furthermore, (2,4)P1(9,3). It is easy to

see that the latter requirement is compatible with the data on the marginal rates of
substitution. Agent 2’s preference relation is symmetric to 1’s with respect to the
diagonal: (x1,x2)R2(y1,y2) if and only if (x2,x1)R1(y2,y1).

In the problem e in which ω = (6,6), giving (2,4) to agent 1 and (4,2) to agent
2 is efficient. Choose an arbitrary allocation x ∈ F(e). By efficiency, x1R1(2,4) or
x2R2(4,2). If the former statement is true, consider the economy e′ obtained by
increasing the collective endowment to ω ′ = (18,6) and let x′ ∈ F(e′). Resource
monotonicity demands that x′1R1x1, hence x′1P1(9,3) = ω ′

2 . But the efficient alloca-
tions in e′ coincide with the diagonal of its edgeworth box. Therefore, x′1� ω ′

2 and,
consequently, x′2� ω ′

2 . This contradicts conditional equal split, no exploitation, and
no domination. A similar contradiction obtains in the case where x2R2(4,2). ��

The incompatibility of resource monotonicity and efficiency with no domination
was shown by Moulin and Thomson (1988). Their proof, just like the one given
above, consists of a two-agent example and therefore establishes the conflict with
no exploitation as well. The incompatibility with conditional equal split is noted in
Maniquet and Sprumont (2000). An easy corollary to Theorem 1 is that the Wal-
rasian rule from equal split is not resource-monotonic under the domain restriction
we have considered.

2.2 Weakening Resource Monotonicity

In view of the incompatibilities stated in Theorem 1, it is of interest to try and
weaken the resource monotonicity axiom. Rather than ask that no one suffer when
the collective endowment grows from ω to ω ′, we could merely demand that no-
body’s consumption bundle shrink. The strongest requirement in that vein imposes
that relation between all allocations chosen at ω and ω ′.
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More Is Not Less (1). If e = (N,R,ω) and e′ = (N,R,ω ′) are two problems such
that ω ′ ≥ ω, then, for all i ∈ N, all x ∈ F(e), and all x′ ∈ F(e′), there exists h ∈ L
such that x′hi ≥ xh

i .

The original version of this axiom is by Geanakoplos and Nalebuff (1988). The
name “More Is Not Less” is borrowed from Moulin (1991). The precise conditions
used by Geanakoplos and Nalebuff (1988) and Moulin (1991), however, are both
weak forms of the condition just stated: we will come to them later.

More Is Not Less (1) does not imply welfare-wise single-valuedness. An inter-
esting rule meeting More Is Not Less (1), efficiency, and anonymity is the canonical
budget-constrained efficient rule FB adapted from the work of Balasko (1979) by
Moulin (1991). In a problem e = (N,R,ω),FB(e) contains all the efficient alloca-
tions x such that

∑
h∈L

xh
i
ωh =

l
n

for all i ∈ N.

Thus, the value of all individual bundles is the same at the “canonical” prices p =
( 1
ω1 , . . . , 1

ω l ). The set FB(e) is always nonempty (as shown in Balasko), but may be
quite large.

Unfortunately, the rule FB violates the following two classic axioms.

Equal Split Lower Bound. For every problem e = (N,R,ω), every x ∈ F(e), and
every i ∈ N, xiRi

ω
n .

No Envy. For every problem e = (N,R,ω), every x ∈ F(e), and all i, j ∈ N,xiRix j.

The equal split lower bound strengthens the no exploitation test. It appears to be
the oldest axiom of the fair division literature. Introduced by Steinhaus (1948) and
discussed by Dubins and Spanier (1961), it was originally viewed as guaranteeing a
fair share of the collective endowment to each agent. More recently, Moulin (1991)
showed that it provides the highest symmetric feasible welfare lower bound under
the convexity assumption on preferences. This need not be true for nonconvex pref-
erences; indeed, equal split may then be inefficient among identical agents. Moulin
and Thomson (1988) defined a weak version of the axiom, the ε-Lower Bound, re-
quiring that xiRiεω for all i ∈ N,x ∈ F(e),e ∈ E , where 0 < ε ≤ 1/n.

The well known no envy property strengthens no domination by demanding that
no one prefer anyone else’s bundle to his own. The condition is due to Foley (1967).
Varian (1976) and Champsaur and Laroque (1981) showed that, in conjunction with
efficiency, it characterizes the Walrasian allocations from equal split in smooth con-
nected continuum economies.

Just like conditional equal split, no exploitation, and no domination, the equal
split lower bound and its ε-variants, as well as no envy, are restrictions on alloca-
tions in any given problem. They do not involve comparisons across problems.

The fact that the rule FB violates the equal split lower bound and no envy is only
an illustration of more fundamental incompatibilities. It turns out that these two
axioms, in conjunction with efficiency, conflict with the More Is Not Less principle.
To express these conflicts as sharply as possible, we state two weak versions of
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the latter principle. Both conditions have been used in the literature. They are due,
respectively, to Moulin (1991) and Geanakoplos and Nalebuff (1988).

More Is Not Less (2). If e = (N,R,ω) and e′ = (N,R,ω ′) are two problems such
that ω ′ ≥ ω , then, for each agent i ∈ N and every allocation x ∈ F(e), there exists
an allocation x′ ∈ F(e′) and a good h ∈ L such that x′hi ≥ xh

i .

More Is Not Less (3). If e = (N,R,ω) and e′ = (N,R,ω ′) are two problems such
that ω ′ � ω , then, for each agent i ∈ N, there exist an allocation x ∈ F(e), an allo-
cation x′ ∈ F(e′), and a good h ∈ L such that x′hi ≥ xh

i .

More Is Not Less (3), called “Bigger is Better” in Geanakoplos and Nalebuff
(1988), is the weakest possible formulation of the monotonicity principle.

Theorem 2. (Moulin, 1991; Moulin & Thomson, 1988) If the preference domainR
contains the homothetic preferences, More Is Not Less (2), Efficiency, and the Equal
Split Lower Bound are incompatible.

The original version of Theorem 2 proved in Moulin and Thomson (1988) used
resource monotonicity rather than the weaker condition More Is Not Less (2). The
version stated here is by Moulin (1991) who actually replaces the equal split lower
bound with any ε-lower bound. Moulin’s theorem is stated for rules satisfying
anonymity, scale covariance, and neutrality, but these conditions play no role in
his proof, as he himself notes. Observe, on the other hand, that More Is Not Less
(3) cannot replace More Is Not Less (2) in the statement of Theorem 2, as the rule
choosing all efficient allocations satisfying the equal split lower bound shows.

Again, a straightforward corollary to Theorem 2 is that the Walrasian rule from
equal split violates More Is Not Less (2) under our domain assumption.

We conclude this section by stating one last important incompatibility result.

Theorem 3. (Geanakoplos & Nalebuff, 1988) If the preference domain R contains
the homothetic preferences and the number of agents, n, is sufficiently large, More
Is Not Less (3), Efficiency, and No Envy are incompatible.

Geanakoplos and Nalebuff (1988) actually allow weakly monotonic preferences
(which we rule out), but their argument can be adapted. As they point out, the three
axioms in Theorem 3 are compatible in the two-agent case: again, selecting all effi-
cient allocations satisfying the equal split lower bound will do. This is because the
latter axiom happens to imply no envy in that case (under our convexity assump-
tion on preferences), much like no exploitation implies no domination. The proof
of Theorem 3 is markedly different from those of Theorems 1 and 2. It works by
first establishing the incompatibility for continuum economies (for which no envy
and efficiency essentially characterize Walrasian allocations from equal split) and
then using an approximation argument. How large the number of agents must be to
derive the result is not known.

A final remark is in order before closing this subsection. The incompatibilities
recorded in Theorems 1, 2, and 3 all require preferences with a high degree of com-
plementariness between goods. If all goods are gross substitutes and normal for
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all agents, the Walrasian rule satisfies Resource Monotonicity. This follows from
Polterovich and Spivak (1983), as noted by Moulin and Thomson (1988). Maximal
domains over which efficiency and resource monotonicity are compatible with the
other fairness conditions discussed above have not been identified.

2.3 Population Monotonicity and Related Properties

Population monotonicity is a dual relative of resource monotonicity. It requires that
when the set of agents sharing the same collective endowment expands, none of the
agents initially present benefit. The strong form of the axiom is as follows.

Population Monotonicity. If e = (N,R,ω) and e′ = (N′,R′,ω) are two problems
such that N ⊂N′ and Ri = R′i for all i∈N, then xiRix′i for all x ∈ F(e), all x′ ∈ F(e′),
and all i ∈ N.

In much the same way as resource monotonicity, population monotonicity forces
welfare-wise single-valuedness. As with resource monotonicity, some care must be
taken in specifying the set of problems E . Population monotonicity has little bite on
a small population domain N .

The two monotonicity axioms are related. In particular, it is easy to see that every
Pareto-indifferent, consistent, resource-monotonic rule is population-monotonic.
A rule F is said to be Pareto-indifferent if it does not distinguish among welfare-
wise equivalent allocations: for every problem e and all allocations x,x′ such that
xiIix′i for all i ∈ N, we have x ∈ F(e) if and only if x′ ∈ F(e). The rule is consistent
if the individual bundles assigned to any subset of agents form a fair allocation of
the sum of their bundles: for every problem (N,R,ω), x ∈ F(N,R,ω), and S ⊂ N,
we have xS ∈ F(N,RS, ∑

i∈S
xi), where xS and RS denote the restrictions of x and R to

the subgroup S.
Returning to a procedure suggested in Sect. 2.1, observe that choosing (any

nonempty subset of) efficient allocations that are egalitarian-equivalent with re-
spect to the collective endowment defines a rule meeting population monotonicity
and efficiency. Such a procedure was already suggested in Pazner and Schmeidler
(1978). Formally, we say that F is a Pazner–Schmeidler rule if for each problem
e = (N,R,ω), every allocation x ∈ F(e) is both efficient and egalitarian-equivalent
with respect to the collective endowment ω : there exists λ such that xiIiλω for all
i ∈ N. There is only one such rule on any domain of strictly convex preferences but
there may be several if strict convexity is not assumed. The largest one simply se-
lects all efficient ω-egalitarian-equivalent allocations. All Pazner–Schmeidler rules
are welfare-wise single-valued and equivalent.

These rules equalize (at the highest possible level) the numerical representa-
tions of the preferences calibrated along the ray through the collective endowment.
Because these representations are independent not only of the population N but
also of the preference profile R, the Pazner–Schmeidler rules satisfy the following
condition.
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Extended Population Solidarity. If e = (N,R,ω) and e′ = (N′,R′,ω) are two
problems such that Ri = R′i for all i ∈ N ∩N′, then (i) xiRix′i for all i ∈ N ∩N′ or
(ii) x′iRixi for all i ∈ N∩N′.

To understand this property, write M = N ∩N′. Imagine that the agents in N\M
leave N while those in N′\M join in. Since the members of M bear no responsi-
bility for these changes (which are initiated by outsiders of their group), it would
not be justified to discriminate among them by making some better off and others
worse off.

On top of the extended population solidarity condition, the Pazner–Schmeidler
rules clearly satisfy the Equal Split Lower Bound. This is of interest, especially in
contrast with the negative result recorded in Theorem 2. It turns out that under a
rather mild auxiliary condition dubbed replication invariance, extended population
solidarity and the equal split lower bound characterize the Pazner–Schmeidler rules.
If k is a positive integer, a k-replica of the problem e = (N,R,ω) is any problem e′

such that (i) ω ′ = kω and (ii) | R′−1(R0) |= k | R−1(R0) | for every R0 ∈ R. Recall
that R maps the agent set N into the preference domain R: R−1(R0) is thus the set
of agents in N having preference R0. Condition (ii) merely says that N′ contains
exactly k times as many agents having any given preference as N; in particular,
there are kn agents in N′. A replica of e is any problem e′ that is a k-replica of e
for some k. Replication invariance requires that the allocations recommended for e′

replicate those chosen for e. For welfare-wise single-valued rules, it may be stated
as follows.4

Replication Invariance. For every problem e, every replica e′ of e, every x ∈ F(e)
and x′ ∈ F(e′), and every R0 ∈R, xiI0x′j for all i ∈ R−1(R0) and j ∈ R′−1(R0).

Theorem 4. (Sprumont & Zhou, 1999) If the population domain N contains
all finite agent sets, a rule satisfies efficiency, extended population solidarity, the
equal split lower bound, and replication invariance if and only if it is a Pazner–
Schmeidler rule.

Proof. The “if” part being straightforward, we prove only its converse. Let F satisfy
the three axioms in Theorem 4. As noted earlier, F must be welfare-wise single-
valued. Observe that replication invariance implies the following strong version of
the anonymity principle: if e = (N,R,ω),e′ = (N′,R′,ω) are two problems and π
is a bijection from N to N′ such that R′π(i) = Ri for each i ∈ N, then x′π(i)Iixi for all
x ∈ F(e),x′ ∈ F(e′), and i ∈ N. This is merely because e′ is a 1-replica of e.

Suppose now, contrary to the claim, that F is not a Pazner–Schmeidler rule. By
efficiency, there must exist a problem e = (N,R,ω), two preferences R1,R2 ∈ R,
and nonnegative numbers λ 1,λ 2 such that

xiI1λ 1ω � λ 2ωI2x j (1)

4 One possible formulation of the axiom for an allocation rule that need not be welfare-wise single-
valued is as follows. For any economies e,e′ such that e′ is a replica of e or e is a replica of e′,
for all x ∈ F(e), there exists x′ ∈ F(e′) such that, for every R0 ∈R, xiI0x′j for all i ∈ R−1(R0) and
j ∈ R′−1(R0).
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for all x∈ F(e), i∈ R−1(R1), j ∈ R−1(R2). Let a,b be two positive integers such that

λ 1 >
a
b

> λ 2. (2)

For any positive integer t large enough, construct a problem et = (Nt ,Rt ,ωt) such
that ωt = taω, |Nt |= tb, and | R−1

t (R0) |=| R−1(R0) | for every R0 �= R1. As t grows,
the number of agents with preference R1 increases while the numbers of agents with
other preferences remain the same as in e. By the feasibility constraint, the average
bundle received by the R1 agents in et cannot exceed taω/ | R−1

t (R1) | . Since this
upper bound goes to aω/b as t tends to infinity and since equal sharing is efficient
among the R1 agents because of the preference convexity assumption, we know that
for every λ > a/b and all t large enough, λωR1xti for all xt ∈F(et) and i∈R−1

t (R1).
Using (2.1) and (2.2), we conclude that if t is large enough,

xiP1xt j (3)

for all x ∈ F(e),xt ∈ F(et), i ∈ R−1(R1), j ∈ R−1
t (R1).

Now, consider a ta-replica e′ of e. By replication invariance and (2.3), x′iP
1xt j

for all x′ ∈ F(e′),xt ∈ F(et), i ∈ R′−1(R1), and j ∈ R−1
t (R1). But since the collective

endowment in e′ is the same as in et , namely taω, we may apply extended popula-
tion solidarity. After one more “reverse” application of replication invariance, this
yields that xiP2xt j for all x ∈ F(e), xt ∈ F(et), i ∈ R−1(R2), and j ∈ R−1

t (R2). Re-
calling (2.1) and (2.2), we conclude that aω

b P2xt j for all xt ∈ F(et) and j ∈ R−1
t (R2),

violating the equal split lower bound. ��

Theorem 4 is a variation on a result of Sprumont and Zhou (1999). Their main
result dispenses with replication invariance at the cost of restricting attention to
anonymous continuum economies. The authors mention that adding replication in-
variance yields a characterization in the large anonymous finite case; Theorem 4
shows that anonymity need not be imposed.5

Although the Pazner–Schmeidler rules are well defined without convexity as-
sumption on preferences, Theorem 4 collapses in the nonconvex case. This is be-
cause the equal split lower bound loses much of its bite in that case, as already
noted in Sect. 2.3. While the assumption that all preferences inR are convex is cru-
cial, we stress that no richness condition is needed: indeed, Theorem 4 is true even
ifR contains only one preference.

2.4 Incompatibilities with Population Monotonicity

Returning to the fairness axioms defined earlier, we note that the Pazner–Schmeidler
rules satisfy conditional equal split. Since the equal split lower bound implies no
envy in the two-agent case, these rules are also envy-free in that case. With more

5 Another minor improvement is that we do not require strict convexity.
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agents, unfortunately, simple examples show that the Pazner–Schmeidler rules not
only generate envy but also violate no domination. It turns out that this is a general
difficulty.

Theorem 5. (Kim, 2004) Let the preference domainR contain the homothetic pref-
erences.

1. If the population domain N contains all agent sets of cardinalities n ≤ 8,
population monotonicity, efficiency, and no envy are incompatible.

2. If the population domain contains all agent sets of cardinalities n≤ 52, popu-
lation monotonicity, efficiency, and no domination are incompatible.

Proof. We only prove the incompatibility of population monotonicity, efficiency,
and no envy. We use a slightly simpler argument than Kim’s, which, however, re-
quires agent sets of larger cardinalities (e.g., a population domain containing all sets
of cardinalities n≤ 27 will do).

There are two goods, whose consumption levels are denoted x and y, and four
types of preferences represented by the utility functions

u1(x,y) = ax+ y,

u2(x,y) = x+ay,

u2′(x,y) = x+a′y,

u3(x,y) = min{bx+ y,x+by} ,

where 1 < a′ < a < b. The collective endowment is ω = (1,1).
Consider a society N composed of one agent of type 1 (indexed 1), p agents of

type 2 (indexed 2i, i = 1, . . . , p), one agent of type 2′ (indexed 2′), and q agents of
type 3 (indexed 3i, i = 1, . . . ,q), where q < p and

a′ < p < 2a′. (4)

Let z be an efficient envy-free allocation for N. Clearly, z3i = αω for all i =
1, . . . ,q and some positive number α . We claim that

z2i = (0,y2/p), i = 1, . . . , p,

where y2 is some positive number. To see this, suppose x2i > 0 for some i. By ef-
ficiency, y1 = y2′ = 0, so ∑y2i = 1− qα . To make sure that 2′ does not envy 2i,
x2′ ≥ a′maxy2i ≥ a′(1− qα)/p, whereas preventing 1 from envying 2′ requires
x1 ≥ x2′ . Combining these two inequalities, x1 +x2′ ≥ 2a′(1−qα)/p > 1−qα, con-
tradicting the feasibility constraint z1 + z2′ +∑z2i ≤ (1−qα)ω. Therefore, x2i = 0
for all i and no envy among the type 2 agents forces an equal consumption of the
other good; it must be positive to prevent them from envying type 3 agents.

Next we claim that

z1 = (x1,0), where x1 > (p−q)/2p.
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Suppose first that y1 > 0. Efficiency requires x2′ = x2i = 0 for all i, hence x1 =
1− qα . By no envy and feasibility, y2′ = y2i < (1− qα)/(p + 1) for all i, whereas
preventing 2′ from envying 1 requires a′y2′ > 1− qα since y1 > 0. Therefore, p <
a′ −1, contradicting (4). This shows that z1 = (x1,0). To make sure that 1 does not
envy 2′, we must have x1 ≥ x2′ , while guaranteeing that 2i does not envy 3 j requires
y2/p≥ α = (1− x1− x2′)/q. Since y2 < 1, the stated lower bound on x1 follows.

To finish the proof, let now agent 2′ and agents 2i, i = 1, . . . , p leave society N.
The new society, N′, thus contains agents 1 and 3i, i = 1, . . . ,q. The only efficient
envy-free allocation for N′ is equal split. But u1(ω/(q+1)) < u1(z1), contradicting
population monotonicity, if

2(a+1)p < a(q+1)(p−q).

This inequality is compatible with (4): choose for instance a′ = 9, a = q = 10, and
p = 15. ��

A forerunner of Theorem 5 is in Moulin (1990b), who suggests the incompatibil-
ity of population monotonicity, efficiency, and no envy for large enough economies.
Kim (2004) provides a precise bound on the number of agents and a detailed
proof; he also extends the impossibility result to the no domination principle and
establishes incompatibilities involving ε-variants of no domination requiring that
no agent receive less than an ε-fraction of anybody else’s bundle.

In view of these negative results, it seems natural to weaken the population mono-
tonicity axiom. Instead of requiring that no one benefit from the arrival of new
agents, one could ask that nobody’s bundle expand in all coordinates. This would be
the analogue of the More Is Not Less weakening of resource monotonicity; several
versions are possible. This type of requirement has not been systematically stud-
ied yet, except to note that the Walrasian rule from equal split violates it: see, for
example, Moulin (1995), building on Chichilnisky and Thomson (1987).

The other alternative is again to restrict the preference domain. Fleurbaey (1996)
points out that the Walrasian rule from equal split satisfies Population Monotonic-
ity under the gross substitutability and normality restrictions. Maximal domains on
which the incompatibilities of Theorem 5 can be avoided are not known.

3 Cooperative Games

We now turn to the model of cooperative games. The data in a cooperative game
specify the utility possibility sets of the various subsets of agents. If the underly-
ing preferences are quasi-linear, these sets are just half-spaces of R

N . This is the
so-called transferable utility case; we will not consider the more general model of
nontransferable utility. Comparing this framework with the fair division problem,
we note two key differences. On the one hand, the information about agents’ prefer-
ences is no longer separated from the information about physical resources; thereby
making the environment “poorer.” On the other hand, a “fallback” position is now
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specified for each group of agents, which was absent in the fair division problem
(because private endowments were not specified). This complicates the problem and
changes its nature; indeed, a key issue is to reward the agents in a way that takes
into account what each coalition can guarantee to itself.

The formal model is as follows. Given are a nonempty set N of nonempty fi-
nite subsets of the positive integers and a mapping V assigning to each N ∈ N a
nonempty subset V(N) of R

P(N), where P(N) denotes the set of all nonempty sub-
sets of N. We refer to N as the population domain and to V as the domain of worth
functions. A game is a pair (N,v), where N ∈N and v ∈ V(N). Let G denote the set
of games. The finite set N contains the agents and the worth function v assigns to
each nonempty subset S of N, called a coalition, a real number v(S) called its worth.
To alleviate notation, we often write i instead of {i} , i j instead of {i, j} , and so on.

A payoff vector for the game (N,v) is a vector x = (x1, . . . ,xn) ∈ R
N such that

∑i∈N xi = v(N):xi is agent i’s share of the worth of N. An (allocation) rule F assigns
to each game (N,v) a nonempty set F(N,v) of payoff vectors for that game. When
F is single-valued, we denote by f (N,v) = ( f1(N,v), ..., fn(N,v)) the unique payoff
vector belonging to F(N,v).

3.1 Resource Monotonicity

We start with the resource monotonicity principle. We fix N and drop it from our
notation: thus, V stands for V(N), the set of worth functions on our fixed set of
coalitions, and we call any v ∈ V a game. A variety of different interesting resource
monotonicity conditions can be defined. The closest counterpart to the condition
studied in the fair division problem is probably the following axiom: if v and v′ are
two games such that v≤ v′, then xi ≤ x′i for all x∈ F(v), x′ ∈ F(v′), and i∈N. Split-
ting v(N) equally meets this axiom; contrary to the fair division problem, efficiency
and equality do not conflict. But this egalitarian rule is not compelling here, pre-
cisely because it does not take account of the worths of the various coalitions. To a
lesser extent, the monotonicity axiom itself lacks appeal for the same reason. From
v to v′, the relative strength of some agents may deteriorate so much that it becomes
unreasonable to require that they be better off.

The central condition in the literature requires that when the worth of a coalition
increases, ceteris paribus, none of its members get a smaller payoff.

Coalitional Resource Monotonicity (1). If v,v′ are two games and S is a coalition
such that v(S) ≤ v′(S) and v(T ) = v′(T ) for every coalition T �= S, then xi ≤ x′i for
all x ∈ F(v), all x′ ∈ F(v′), and all i ∈ S.

An interesting equivalent expression of it is as follows.

Individual Resource Monotonicity. If i ∈ N and v,v′ are two games such that
v(S) ≤ v′(S) for all coalitions S containing i and v(T ) = v′(T ) for all other coali-
tions T , then xi ≤ x′i for all x ∈ F(v) and all x′ ∈ F(v′).
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It is obvious that the latter axiom implies coalitional resource monotonicity (1);
to see that the converse is also true, simply apply the coalitional version repeatedly.
While the coalitional formulation emphasizes the solidarity content of the axiom,
the equivalent individual formulation is readily interpreted in incentive terms: see
Shubik (1962).

The axiom is clearly satisfied by the Shapley value (Shapley, 1953), which se-
lects in every game v the unique payoff vector given by

xi = ∑
S:i∈S⊂N

(s−1)!(n− s)!
n!

(v(S)− v(S\i)),

for all i ∈ N: under the premises of individual resource monotonicity, none of the
terms in that sum decreases when v is replaced with v′.

Just like resource monotonicity in the fair division problem, coalitional resource
monotonicity (1) implies single-valuedness (by choosing v = v′). Since this is per-
haps not desirable, the following weaker requirement is of interest.

Coalitional Resource Monotonicity (2). If v,v′ are two games, S is a coalition
such that v(S) ≤ v′(S) and v(T ) = v′(T ) for every coalition T �= S, and i ∈ S, then
there exist x ∈ F(v) and x′ ∈ F(v′) such that xi ≤ x′i.

As in Sect. 2, we now ask to what extent the conditions are compatible with other
properties of allocation rules. One of the most fundamental stability requirements on
a payoff vector x are the well known core constraints, requiring that no coalition be
able to improve on x on its own: ∑i∈S xi ≥ v(S) for all coalitions S. The set of payoff
vectors satisfying these inequalities is the core of the game v. While the core may
be empty, it makes sense to ask that a rule chooses core payoffs whenever possible.

Core Principle. If the core of v is nonempty, then F(v) is a subset of it.

As is well known, the Shapley value violates this principle. Unfortunately, this is
again an expression of a general difficulty.

Theorem 6. (Aumann, 1985; Young, 1980)
1. If N contains at least four agents and V includes the games with a nonempty

core, coalitional resource monotonicity (1) and the core principle are incompatible.
2. If N contains at least five agents and V includes the games with a nonempty

core, coalitional resource monotonicity (2) and the core principle are incompatible.

Proof. We will only prove statement (1). To do so, we use the “glove game” popular-
ized by Aumann (1985). There are four agents and two completely complementary
goods, left and right gloves. Suppose 1 and 2 are endowed with one left glove each
while 3 and 4 own one right glove each. If a pair of gloves has value 1, this generates
the game v,

v(i) = v(12) = v(34) = 0,v(13) = v(14) = v(23) = v(24) = v(i jk) = 1,v(N) = 2,
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where i, j,k are any three distinct agents. A payoff vector x is in the core of this game
if and only if x = (λ ,λ ,1−λ ,1−λ ) for some λ ∈ [0,1]. By the core principle, f
selects such a payoff.

If λ > 0, give one more left glove to agent 1. This generates the game v′,

v′(134) = 2,v′(S) = v(S) for any S �= {1,3,4}.

The core of this game consists of the unique payoff vector (0,0,1,1), contradicting
resource monotonicity.

If λ < 1, give one more right glove to agent 3, thereby generating the game v′′,

v′′(123) = 2,v′′(S) = v(S) for any S �= {1,2,3},

whose unique core payoff vector is (1,1,0,0), contradicting resource monotonicity
again. ��

Theorem 6 is in the same spirit as Theorem 2 on fair division. The original ver-
sion of Theorem 6 proved by Young (1980) was formulated for single-valued rules
and required five agents. Young’s proof uses only two five-agent games whose cores
are singletons and does not, in effect, rely on single-valuedness: it is a proof of
statement (2) above. The proof of statement (1) given here was provided to me by
Aumann; it builds on the discussion of the glove game in Aumann (1985). Observe
that it does not use the full force of coalitional resource monotonicity (1) but only
the requirement that, under the same premises and for all x ∈ S and x ∈ F(v), there
exists x′ ∈ F(v′) such that xi ≤ x′i.

In view of the negative results in Theorem 6, it is natural to investigate weaker
resource monotonicity conditions. One weak form, due to Meggido (1974), requires
that no agent suffer from an increase in the worth of the “grand” coalition.

Aggregate Resource Monotonicity. If v,v′ are two games such that v(N) ≤ v′(N)
and v(T ) = v′(T ) for every coalition T �= N, then xi ≤ x′i for all x ∈ F(v), all x′ ∈
F(v′), and all i ∈ N.

This is a fairly weak axiom. It is compatible with the core principle: Young
(1980) showed that the per capita nucleolus satisfies both conditions.

Another possible approach consists in restricting the domain of games under
consideration. Coalitional resource monotonicity is compatible with the core prin-
ciple on suitably restricted classes of games. The most interesting example is that of
convex games (Shapley, 1971). Roughly speaking, a game v is convex if it exhibits
increasing marginal worths: v(S)−v(S\i)≤ v(T )−v(T\i) whenever i ∈ S⊂ T. It is
well known that the Shapley value is in the core of such games.6 Another rule sat-
isfying coalitional resource monotonicity and the core principle on convex games is

6 Shapley (1971) shows that it is, in fact, the barycenter of the core. The Shapley value is known to
belong to the core on classes that strictly include the convex games: the quasi-convex games defined
in Sprumont (1990) are just an example. See Marin-Solano and Rafels (1996), for a systematic
analysis of this issue.
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the egalitarian rule of Dutta and Ray (1989), which selects the unique payoff vector
that is Lorenz-undominated in the core.7 See also Hougaard, Peleg, and Osterdal
(2003).

Finally, returning to (a variant of) the strong monotonicity property described in
the opening paragraph of this section, we note that the core principle is compatible
on the domain of convex games with the following condition: if v and v′ are two
games such that v ≤ v′, then, for every x′ ∈ F(v′), there exists x ∈ F(v) such that
xi ≤ x′i for all i ∈ N. In fact, the core correspondence itself has this property, as
shown by Ichiishi (1990).

The Dutta-Ray egalitarian rule triggered recent interest in a particular subclass of
allocation rules: those maximizing a fixed social welfare ordering – or perhaps just a
partial ordering – subject to the core constraints. Recent contributions include Arin
and Inarra (2001), Hougaard, Peleg, and Thorlund-Petersen (2001), Koster (2002),
among others.

Requiring that collective choices be based on a fixed social ordering turns out
to have far-reaching consequences. Suppose that W : R

N → R is a differentiable,
strictly increasing, and strictly concave social welfare function, let V∗ be the set of
games with a nonempty core, and define the single-valued allocation rule f on V∗ by
the condition that W ( f (v))≥W (x) for all x in the core of v and all v∈V∗. Hougaard
and Osterdal (2005) show that f violates aggregate resource monotonicity.

3.2 Population Monotonicity

The literature on population monotonicity in cooperative games has mainly focused
on environments where the arrival of new agents is beneficial to those originally
present. The strong form of this “positive” version of the population monotonicity
principle is as follows.

Population Monotonicity. If (N,v),(N′,v′) are two games such that N ⊂ N′ and
v(S) = v′(S) for every coalition S ⊂ N, then xi ≤ x′i for all x ∈ F(N,v), all x′ ∈
F(N′,v′), and all i ∈ N.

As in the fair division problem, population monotonicity implies single-
valuedness: just choose (N′,v′) = (N,v) in the definition.

The strength of the axiom depends on the richness of the domain of games under
consideration. From now on, we will maintain the assumption that

if (N,v) ∈ G and S ∈ P(N), then (S,vS) ∈ G, (5)

where vS is the restriction of v to P(S): every subgame of a game in the domain is
also in the domain. A population-monotonic rule exists on such a domain only if ev-
ery game has a nonempty core. Indeed, if (N,v)∈ G and f is population-monotonic,

7 Uniqueness is proved by Dutta and Ray. If the game is not convex, the core may contain several
Lorenz-undominated payoff vectors.
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fi(S,vS) ≤ fi(N,v) whenever i ∈ S ∈ P(N). Summing up these inequalities yields
that v(S) ≤ ∑i∈S fi(N,v) for every S ∈ P(N), meaning that (N,v) has a nonempty
core. Of course, the richness assumption (5) implies at once that (N,v) is in fact
“totally balanced”: all of its subgames have a nonempty core.

The bulk of the research has considered the smallest domains satisfying the
richness condition (5), namely, those formed by a single game (N,v) and all of
its subgames. A population-monotonic rule on such a minimal domain is known
as a population-monotonic allocation scheme of the game (N,v) (Moulin, 1990a;
Sprumont, 1990). It specifies how the worth of each coalition S should be split
among its members, should coalition S form: writing this f (S) instead of f (S,vS)
will cause no confusion because v is fixed. Such minimal domains are naturally gen-
erated by economic environments in which resources are fixed and agents are drawn
from a fixed set N of potential agents having fixed preferences.

Before discussing the existence of population-monotonic allocation schemes, we
stress that population monotonicity is extremely demanding if G is not a minimal do-
main. Even if all games (N,v) in G have a population-monotonic allocation scheme,
the population monotonicity axiom may be impossible to meet on G. Consider for
instance the games ({1,2,3},v) and ({1,2,3},w) given by v(i) = v(23) = 0 for
all i, v(S) = 1 otherwise, and w(i) = w(13) = 0 for all i, w(S) = 1 otherwise. The
first game has a unique population-monotonic allocation scheme: agent 1 receives
the entire worth of every coalition to which he belongs. In the second game, it is
agent 2 who receives the full worth of every coalition to which he belongs. Since
the restrictions of v and w to P({1,2}) are identical, population monotonicity is
impossible on the domain consisting of the two games and their subgames.

While every game having a population-monotonic allocation scheme is totally
balanced, the converse statement is false. A simple example is again provided by
the four-agent “glove game” described earlier, in which 1 and 2 own a left glove and
3 and 4 a right glove. The core of each three-agent subgame consists of a unique
payoff vector giving 0 to the two agents owning the same type of glove and 1 to
the agent owning the rare type. Population monotonicity therefore implies that ev-
eryone should get at least 1 in the four-agent game, which is impossible.

The entire class of games having a population-monotonic allocation scheme is
not hard to describe. To alleviate notations and terminology, let us fix the set of
agents N and call a worth function v on P(N) a game. A game v is normalized if
v(i) = 0 for all i ∈ N, and monotonic if v(S) ≤ v(T ) for any two nested coalitions
S⊂ T. It is simple if v(S) is either 0 or 1 for every coalition S and v(N) = 1; coalition
S is said to be winning if v(S) = 1. A vetoer is an agent who belongs to all winning
coalitions and a veto game is a normalized simple monotonic game v whose set of
vetoers A(v) is nonempty.

The fundamental observation is that every veto game v has a population-
monotonic allocation scheme: for each winning coalition S, merely define

fi(S) =
{ 1
|A(v)| if i ∈ A(v),
0 otherwise.

}
. (6)
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Monotonicity is obvious and budget balance holds because A(v) ⊂ S for every
winning S.

Going one step further, we note that every normalized game v that is a non-
negative linear combination of veto games also has a population-monotonic alloca-
tion scheme: just construct the corresponding linear combination of the allocation
schemes of the veto games spanning v. As it turns out, the converse is also true.

Theorem 7. (Sprumont, 1990) A normalized game has a population-monotonic al-
location scheme if and only if it is a nonnegative linear combination of veto games.

Proof. We need only prove the “only if” statement. Let v be a normalized game
having a population-monotonic allocation scheme f . The case where v(N) = 0 is
trivial: the game must then be identically zero and it can obviously be written as a
nonnegative linear combination of the veto games by choosing all weights equal to
zero. From now on, we assume that v(N) �= 0. Obviously, v(N) > 0 and there is at
least one i ∈ N such that fi(N) > 0.

For each i ∈ N such that fi(N) > 0, define the game vi on P(N) by vi(S) = fi(S)
if S � i and vi(S) = 0 otherwise. This game is monotonic and v = ∑i∈N: fi(N)>0 vi.

To prove our claim, it remains to express each vi as a nonnegative linear combi-
nation of veto games. Fix i and proceed recursively. Let

v1
i (S) = 1 if vi(S) > 0, and 0 otherwise,

and
λ 1 = min

S:vi(S)>0
vi(S).

Because vi is monotonic, v1
i is a veto game. Next, construct the game vi−λ 1v1

i .
If this game is identically zero, we are done. Otherwise, let

v1
i (S) = 1 if (vi−λ 1v1

i )(S) > 0, and 0 otherwise,

and
λ 2 = min

S:(vi−λ 1v1
i )(S)>0

(vi−λ 1v1
i )(S).

Continue in that way until vK
i = 0. By construction, vi = ∑K−1

k=1 λ
kvk

i . Each λ k is
positive, and each vk

i , k = 2, . . . ,K− 1, is a veto game provided that vk−1
i is one.

Since v1
i is a veto game, we are done. ��

The normalization restriction in Theorem 7 is not important. In general, a game
has a population-monotonic allocation scheme if and only if it is the sum of a
nonnegative linear combination of veto games and an additive game va given by
va(S) = a | S | for all S ∈ P(N), where a is an arbitrary real number.

In the spirit of the classic Bondareva-Shapley theorem on the nonemptiness of
the core, Norde and Reijnierse (2002) provide an interesting dual description of the
class of games having a population-monotonic allocation scheme.

Keeping the set of agents N fixed, define a vector of sub-balanced weights to be
a list of real numbers ((δS)S∈Δ ,(λT )T∈Λ ) with the following properties:
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(i) Δ and Λ are disjoint subsets of P(N),
(ii) δS > 0 and λT > 0 for all S ∈ Δ and T ∈Λ ,

(iii) it is possible to assign to each triple (i,S,T ) ∈ N×Δ ×Λ such that i ∈ T ⊆ S a
nonnegative number μ i

S,T in such a way that

∑
T∈Λ :i∈T⊆S

μ i
S,T = δS for each S ∈ Δ and i ∈ S, and

∑
S∈Δ :i∈T⊆S

μ i
S,T = λT for each T ∈Λ and i ∈ T.

For instance, suppose N = {1,2,3,4} . Let Δ = {{1,2,3} ,{2,3,4}} , Λ =
{{1,2} , {2,3} , {3,4}}, and set δS = λT = 1 for all S ∈ Δ and T ∈ Λ . Then
((δS)S∈Δ ,(λT )T∈Λ ) is a vector of sub-balanced weights: take μ1

123,12 = μ2
123,12 =

μ2
234,23 = μ3

123,23 = μ3
234,34 = μ4

234,34 = 1 and μ2
123,23 = μ3

234,23 = 0.

The main result of Norde and Reijnierse is the following theorem.

Theorem 8. (Norde and Reijnierse, 2002) The game (N,v) has a population-
monotonic allocation scheme if and only if

∑
S∈Δ
δSv(S)≥ ∑

T∈Λ
λT v(T )

for every vector of sub-balanced weights ((δS)S∈Δ ,(λT )T∈Λ ).

For instance, the inequality corresponding to the particular vector given just be-
fore the theorem is

v(123)+ v(234)≥ v(12)+ v(23)+ v(34). (7)

To check that this inequality is necessary, note that if f is a population-monotonic
allocation scheme, then

v(123)+ v(234) = f1(123)+ f2(123)+ f3(123)+ f2(234)+ f3(234)+ f4(234)
≥ f1(12)+ f2(12)+ f3(23)+ f2(23)+ f3(34)+ f4(34)
= v(12)+ v(23)+ v(34).

For 4-agent games, Norde and Reijnierse identify explicitly the extreme points
of the set of sub-balanced weights. These extreme points generate 60 independent
linear inequalities of nine different types – one of them being (7) – which are to-
gether necessary and sufficient for the existence of a population-monotonic alloca-
tion scheme.

Theorems 7 and 8 do not offer any guidelines for recommending a particular
population-monotonic allocation scheme in any game that has one. A few remarks
on this issue may be useful. Let us call a population-monotonic allocation scheme
f of a game v symmetric if

fi(S∪ i) = f j(S∪ j)
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for every coalition S∈P(N\{i, j}) and for all agents i, j which are symmetric (in the
usual sense that v(T ∪ i) = v(T ∪ j) for every T ∈ P(N\{i, j})). Interestingly, every
veto game v possesses a unique symmetric population-monotonic allocation scheme
f : it is given by formula (6) above. The reason is as follows. For every winning
coalition S, ∑i∈S fi(S) = 1. Since v(N) = 1, the monotonicity condition requires
that ∑i∈S fi(N) = 1. It follows that every agent who is not a vetoer receives a zero
share of v(N): for if f j(N) > 0 for some j ∈N\A(v), there exists a winning coalition
S (not containing j) such that ∑i∈S fi(N) < 1, a contradiction. The monotonicity
requirement now implies that every agent who is not a vetoer receives zero in every
coalition to which he belongs. Any positive worth is thus split among the vetoers.
Since they are symmetric, formula (6) follows. To the extent that non-vetoers receive
nothing in spite of making possibly significant contributions to some coalitions, this
is a rather extreme and perhaps unappealing scheme. Population monotonicity is
extremely constraining.

The observation made in the previous paragraph has further consequences. Let
us denote by V∗(N) the class of normalized games having a population-monotonic
allocation scheme. Let us define a population-monotonic operator to be a map-
ping which assigns to each game v in V∗(N) a population-monotonic allocation
scheme f (·,v) of (N,v). Call it symmetric if it always selects symmetric allo-
cation schemes. We claim that no symmetric population-monotonic operator can
be additive if N contains at least three agents: there exist v,w ∈ V∗(N) such that
f (·,v + w) �= f (·,v) + f (·,w). To see this, let N = {1,2,3} and let u12,u23,u123
be the three-agent simple “unanimity games” in which a coalition is winning if and
only if it includes {1,2},{2,3}, or {1,2,3}, respectively. Define also the three-agent
game w by w(i) = w(13) = 0 for all i and w(S) = 1 otherwise. This is a veto game
which is not a unanimity game; agent 2 is the only vetoer. Using the fact just noted,
these four games each have a unique symmetric population-monotonic allocation
scheme, yielding

f (N,u12) =
(

1
2
,

1
2
,0
)

, f (N,u23) =
(

1
2
,0,

1
2

)
,

f (N,u123) =
(

1
3
,

1
3
,

1
3

)
, f (N,w) = (0,1,0).

Observe that f (N,u12)+ f (N,u23) �= f (N,u123)+ f (N,w) even though u12 +u23 =
u123 +w : f is not additive.8

Not surprisingly, the difficulty disappears on the class of convex games. Com-
puting the Shapley value of each subgame of a convex game v defines a population-
monotonic allocation scheme of this game, as noted among others by Ichiishi
(1988), Rosenthal (1990), and Sprumont (1990). Assigning this allocation scheme
to every convex game defines a linear symmetric population-monotonic operator

8 This impossibility is no surprise. Every population monotonic allocation scheme must obey the
Dummy principle. With symmetry and additivity, this forces the operator to select the Shapley
value in each game and subgame. But this does not yield a population monotonic allocation scheme
in a game such as w.
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over that class and, in fact, the Shapley value satisfies the very demanding Popu-
lation Monotonicity axiom defined in the opening paragraph of this section. The
Shapley value is not the only population-monotonic rule. Other examples include
again the Dutta–Ray solutions, as noted by Dutta (1990), and the families of “se-
quential Dutta–Ray solutions” and “monotone-path Dutta–Ray solutions” defined
in Hokari (2000, 2002).

The discussion in this subsection shows that population monotonicity is a very
demanding requirement in the context of cooperative games. An alternative condi-
tion would impose that all agents be affected in the same direction by the arrival of
newcomers.

Population Solidarity. If (N,v),(N′,v′) are two games such that N ⊂ N′ and
v(S) = v′(S) for every coalition S ⊂ N, then (i) xi ≤ x′i for all x ∈ F(N,v), all
x′ ∈ F(N′,v′), and all i ∈ N or (ii) xi ≥ x′i for all x ∈ F(N,v), all x′ ∈ F(N′,v′),
and all i ∈ N.

This condition is weaker than population monotonicity and deserves to be
studied.
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To Envy or To Be Envied? Refinements
of the Envy Test for the Compensation Problem

Marc Fleurbaey

1 Introduction

The envy test concept is an all-or-nothing notion, and this is problematic when there
is no achievable envy-free option. The idea of ranking the “unfair” social states on
the basis of how much envy they contain goes back at least to Feldman and Kirman
(1974) and Varian (1976), but it is in Suzumura (1981a, b, 1983) that one finds a
first systematic study of this issue. More recent contributions to this line of research
include Chauduri (1986), Diamantaras and Thomson (1990), Tadenuma (2002), and
Tadenuma and Thomson (1995).

One of the contexts where typically envy-free allocations are hard to achieve
is when, as noticed in Pazner and Schmeidler (1974) for the production case and
Fleurbaey (1994) for the distribution case, individuals have nontransferable personal
characteristics to which the no-envy test nonetheless applies. This is sometimes
called the “compensation problem,” where one tries to compensate inequalities in
personal characteristics by counteracting inequalities in transferable resources. This
problem is rather different from standard problems of resource allocation because
of the presence of nontransferable characteristics, which act as a constraint on re-
distribution. One typical example is when individuals have unequal levels of skills
which give them unequal earning possibilities. Certain other characteristics, such as
physical handicaps, may directly affect personal satisfaction and generate inequali-
ties which call for redressing transfers. When inequalities in personal characteristics
are huge, or when individuals disagree about the value of their respective character-
istics, it may be very hard, or even impossible, to find transfers that eliminate envy
between individuals. In Fleurbaey (1994) and Iturbe-Ormaetxe and Nieto (1996)
one finds several suggestions about how to weaken the no-envy requirement in or-
der to obtain nonempty solutions to the compensation problem. But most of these
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solutions fail to be nonempty on the whole domain, and a systematic use of rankings
seems not to have been attempted yet in this branch of the literature. This chapter
makes an attempt at filling this gap and examines several rankings, which may be of
some interest.

Section 2 makes a brief survey of the compensation literature, proposing a few
basic criteria for the evaluation of solutions. Section 3 examines rankings based on
the number of envy relations, Section 4 deals with rankings that make use of addi-
tional information about the population’s preferences, and Section 5 is devoted to
rankings that involve the degree of envy as measured by the quantity of transfers
that would be needed to suppress envy relations. It argues that such rankings are
preferable to the others, and also establishes a correspondence between one such
ranking and another based on the idea of rationalizing egalitarian competitive equi-
libria. Section 6 concludes the chapter.

2 A Brief Survey

The compensation problem can be described by the following simple model. The
population is N = {1, ...,n} and every individual i ∈ N is endowed with two kinds
of characteristics: yi, for which she is not responsible (circumstances), and zi, for
which she is. A profile of characteristics is (yN ,zN) = ((y1, . . . ,yn) ,(z1, . . . ,zn)) .
The sets from which yi and zi are drawn, denoted Y and Z, respectively, are assumed
to have at least two elements.

Individual i’s well-being is denoted ui and is determined by a function u, which
is the same for all individuals:

ui = u(xi,yi,zi) ,

where xi ∈ R is the quantity of money transfer to which the individual is submitted.
When xi < 0, the transfer is a tax. The real-valued function u, defined either on
R×Y×Z or R+×Y×Z depending on the cases (on which more below), is assumed
to be continuous and increasing in xi.

An allocation is denoted xN = (x1, . . . ,xn) . The set of feasible allocations is de-
noted X . The precise definition of X differs in different cases, but typically involves
a condition ∑i∈N xi ≤Ω for some aggregate endowment Ω ∈ R. Given the fact that
u is increasing in xi, this means that allocations such that ∑i∈N xi =Ω are all Pareto
efficient. This considerably simplifies the analysis.

This is the simplest model in which the compensation problem can be studied, but
other models have been studied. In particular, Fleurbaey and Maniquet (1996) and
Pazner and Schmeidler (1974) have examined a production model in which agents
differ in their productivity. For a general survey on the compensation problem, see
Fleurbaey and Maniquet (2002).

Two general concepts of solutions will be useful here. Let D be the domain of
economies e = (yN ,zN) under consideration. An allocation rule is a correspondence
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S :D→→ X , such that for all e ∈ D, S (e)⊂ X is the subset of allocations selected
by S. A social ordering function is a mapping R : D→RX , where RX is the set of
complete orderings over X . The expression xN R(e) x′N will mean that xN is weakly
preferred to x′N , and P(e) and I (e) will denote the corresponding strict preference
and indifference relations, respectively. An allocation rule derived from a social
ordering function is defined by selecting, for each economy, the maximal elements
in X for the social ordering defined by the social ordering function for this economy.

Two special cases will be of particular interest. The “distribution” case
(Fleurbaey, 1994) is when xi has to be nonnegative, and there is a fixed amount
Ω > 0 to be distributed, that is, when (assuming no waste)

X =

{
xN ∈ R

N
+ | ∑

i∈N
xi =Ω

}
.

An interesting domain for this case is the domain D1 of economies satisfying, for
all i, j ∈ N,

u
(

Ω
|N|−1

,yi,zi

)
≥ u(0,y j,zi).

This domain is such that no individual considers his own yi to be a huge handicap
compared to other values of y j in the population.1

The “TU” (transferable utility) case (Bossert, 1995) is when the well-being func-
tion is quasi-linear in x,

ui = xi + v(yi,zi) ,

xi is not bounded below,2 and there is no external amount of money to be distributed,
that is, when

X =

{
xN ∈ R

N | ∑
i∈N

xi = 0

}
.

The distribution case is relevant to situations in which the government has a fixed
budget that can be used in order to provide targeted help to particular categories
of people, such as disabled individuals, victims of a natural disaster, families with
different needs. The TU case is not limited, but is especially relevant, to situations
in which individual well-being is itself monetary. The most realistic applications of
the TU case are offered by the federalism problem of organizing budget transfers
between administrative units (local governments, sectorial administrations, social
security agencies, etc.), which are partly responsible for their budget situation.

For the most part we focus here on the TU case, and only briefly mention the
differences in results for the distribution case, when relevant.

1 Conditions of this kind are helpful in order to obtain the existence of envy-free allocations in the
model where y is an indivisible good that is transferable across agents. See, for example, Maskin
(1987).
2 More realistically, one could impose that xi + v(yi,zi) is bounded below (for instance by zero).
We will not study this variant.



98 M. Fleurbaey

The compensation problem consists in neutralizing the impact of circumstances
y on well-being while not interfering with inequalities due to differences in respon-
sibility characteristics z. The no-envy condition, due to Foley (1967) and Kolm
(1972), is well suited to this purpose if it is applied as follows.

No-Envy: ∀e ∈ D, ∀xN ∈ S(e), ∀i, j ∈ N, u(xi,yi,zi)≥ u(x j,y j,zi) .

Its main drawback, however, is that it is too demanding and is satisfied only on a
very small domain. This is connected to the conflictual duality between two princi-
ples that it jointly encapsulates, namely, the compensation principle (“neutralize y”)
and the natural reward principle (“not interfere with z”) (Fleurbaey, 1995). Here we
focus on a small list of axioms embodying these principles. For the compensation
principle:

Equal Well-Being for Equal Responsibility: ∀e ∈ D, ∀xN ∈ S(e), ∀i, j ∈ N such
that zi = z j,

u(xi,yi,zi) = u(x j,y j,z j) .

Equal Well-Being for Uniform Responsibility: ∀e ∈ D, ∀xN ∈ S(e), if ∀i, j ∈ N,
zi = z j, then

∀i, j ∈ N, u(xi,yi,zi) = u(x j,y j,z j) .

In the distribution case one can reformulate these axioms in terms of application
of the leximin criterion, inequality being allowed when the better-off agent has a
zero x. In the above formulation, however, they are nonempty on D1 (see Lemma 1
in Fleurbaey (1994)).

The dual “natural reward” axioms are the following:

Equal Treatment for Equal Circumstances: ∀e ∈ D, ∀xN ∈ S(e), ∀i, j ∈ N such
that yi = y j,

xi = x j.

Equal Treatment for Uniform Circumstances: ∀e ∈ D, ∀xN ∈ S(e), if ∀i, j ∈ N,
yi = y j, then

∀i, j ∈ N, xi = x j.

These four axioms appear to be very basic conditions, and a reasonable require-
ment for an allocation rule is that it should satisfy at least the two weak axioms
(“uniform” case) and one of the strong axioms (“equal” case), knowing that the two
strong axioms are incompatible (Fleurbaey, 1994).

Three allocation rules, conceived in terms of weakening the no-envy requirement,
have been proposed in Fleurbaey (1994). One, inspired from Daniel (1975) and
Feldman and Kirman (1974), selects the allocations with the smallest number of
envy occurrences among the “balanced” allocations. A balanced allocation is such
that for all i ∈ N, the number of agents he envies equals the number who envy him:
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∣∣{ j ∈ N | u(xi,yi,zi) < u(x j,y j,zi)
}∣∣= ∣∣{ j ∈ N | u(xi,yi,z j) > u(x j,y j,z j)

}∣∣ .
Let B(e) ⊆ X denote the subset of balanced allocations, and E(xN ,e) denote the
number of envy occurrences in xN :

E(xN ,e) =
∣∣{(i, j) ∈ N | u(xi,yi,zi) < u(x j,y j,zi)

}∣∣ .
Balanced and Minimal Envy (SBME): ∀e ∈ D, ∀xN ∈ X ,

xN ∈ SBME(e)⇔ xN ∈ B(e) and
∀x′N ∈ B(e), E(x′N ,e)≥ E(xN ,e).

A second allocation rule, inspired by Chauduri (1986) and Diamantaras and
Thomson (1990), tries to minimize the intensity of envy, this intensity being mea-
sured for every agent by the resource needed to make this agent non-envious:

Ii(xN ,e) = min{δ ∈ R | ∀ j ∈ N \{i} , u(xi +δ ,yi,zi)≥ u(x j,y j,zi)}.

The allocation rule is then defined as follows.

Minimax Envy Intensity (SMEI): ∀e ∈ D, ∀xN ∈ X ,

xN ∈ SMEI(e)⇔∀x′N ∈ F(e), max
i∈N

Ii(x′N ,e)≥max
i∈N

Ii(xN ,e).

The third allocation rule makes use of all agents’ opinions about the relative well-
being of two agents. It tries to minimize the size of subsets of agents thinking that
one agent is worse-off than another agent. It takes inspiration from “undominated
diversity” (Parijs, 1990, 1995), which seeks to avoid situations in which one agent
is deemed unanimously worse-off than another one, and is related to the family of
solutions put forth by Iturbe-Ormaetxe and Nieto (1996), which generalizes van
Parijs’ idea and seeks to avoid such a unanimity among a subgroup of a given size
and containing the worse-off agent. Let

Nm
i = {G⊂ N | |G|= m, i ∈ G}.

Minimal Unanimous Domination (SMUD): ∀e ∈ D, ∀xN ∈ X ,

xN ∈ SMUD(e)⇔∃m ∈ {1, ...,n},⎧
⎪⎨
⎪⎩

(i) ∀i, j ∈ N, ∀G ∈ Nm
i , ∃k ∈ G, u(xi,yi,zk)≥ u(x j,y j,zk),

(ii) ∀p < m, ∀x′N ∈ F(e), ∃i, j ∈ N, ∃G ∈ N p
i ,

∀k ∈ G, u(x′i,yi,zk) < u(x′j,y j,zk).
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3 Ranking Envy Graphs

A difficulty with SBME is that there do not always exist balanced allocations, so
that the domain on which it is defined is restricted. Moreover, the various sufficient
conditions of existence specified by Daniel (1975) and Fleurbaey (1994) are not
very easy to interpret and apply. Necessary conditions have not been studied to the
best of my knowledge.

A more substantial criticism is that one does not see why a lexicographic priority
should be given to balancedness of allocations over the number of envy occurrences.
If the only balanced allocation has everybody envying everybody, it might be better
to prefer an unbalanced allocation with a much smaller number of envy relations.

In fact, the general idea underlying this allocation rule is to examine the graph
of envy relations, with a double concern for symmetry and for minimizing the num-
ber of relations. A general approach to the problem of ranking envy graphs would
probably be more suitable than a narrow focus on balanced allocations.

In Fig. 1, five graphs are represented for a population of four individuals. In case
(a), individual 1 is envied by all the others; in case (b), individual 1 envies all the
others; in case (c), a cycle of envy occurs; in case (d), an envy relation has been
reversed in comparison to case (c); in case (e), this envy relation has been deleted.
Although the number of envy relations is smaller in (a) and (b) than in (c), and the
same in (d) as in (c), one should probably prefer (c), out of a concern for symmetry.
Although (e) is not symmetric, it may not be worse than (c), because it has a strictly
smaller graph of envy relations.

This is a difficult case since balancedness in (c) makes it look more equal than (e),
but one must be careful to avoid the intuitive illusion that arrows from a transitive
“better-off than” relation. In (e), there is no-envy between agents 1 and 2, and this is
the relevant test of equality. The arrows from 2 to 1 via 3 and 4 do not mean that 2 is
worse-off than 1. It is true that between two agents, reciprocal envy appears better
than a one-way envy relation. But this does not necessarily extend to cycles of envy
among more agents. Therefore, it is not unreasonable to consider that removing a
nonreciprocal envy relation between two agents is always a good thing (given that
the only information is the envy graph, a limitation that will be discussed below).

Defining a more precise preference order on envy graphs is a complex matter.
Suzumura (1983) proposes a very natural ranking, which applies the reverse leximin
criterion to the vector of individual envy indices, where an individual envy index is
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simply the number of other agents this individual envies (i.e., the number of outgo-
ing arrows in the graph). The reverse leximin criterion prefers a vector to another if
its greatest component is smaller, or if the greatest components are equal in the two
vectors but the second greatest component is smaller, and so on. It corresponds to
the application of the standard leximin criterion to the opposite vectors.

The symbol ≥lex appearing in the definition below denotes the standard leximin
criterion applied to vectors of real numbers. Namely, x ≥lex x′ if the smallest com-
ponent of x is greater than the smallest component of x′, or they are equal and the
second smallest component of x is greater than the second smallest component of
x′, and so on.

Envious Count criterion (REsC): Let

ni(xN) =
∣∣{ j ∈ N | u(xi,yi,zi) < u(x j,y j,zi)

}∣∣ .
For all xN ,x′N ∈ X , xN REsC(e)x′N if and only if

−(ni(xN))i∈N ≥lex −
(
ni(x′N)

)
i∈N .

One can define a dual criterion to this one, that relies on the number of agents by
whom a given agent is envied.

Envied Count criterion (REdC): Let

n′i(xN) =
∣∣{ j ∈ N | u(xi,yi,z j) > u(x j,y j,z j)

}∣∣ .
For all xN ,x′N ∈ X , xN REdC(e)x′N if and only if

−
(
n′i(xN)

)
i∈N ≥lex −

(
n′i(x

′
N)
)

i∈N .

The envious count and envied count criteria appear to be dual with respect to
compensation and natural reward. One can indeed make the following observation.
When two agents have the same responsibility characteristics, the worse-off will
envy at least all the agents envied by the other plus the other agent himself, which
means that his ni index is greater and the reverse leximin will give absolute priority
to him. Similarly, when two agents have the same circumstances, those who envy
one of them will systematically envy the agent with the greater x, and the one with
the lower x will envy him as well, so that his n′i will be greater and absolute priority
will be put on him (i.e., absolute priority against him in this case, in order to reduce
the number of agents envying him). This provides the intuition for the following
result, which bears on the allocation rules derived from REsC and REdC.

Proposition 1. In the TU case, the allocation rule derived from the envious count
criterion satisfies equal well-Being for equal responsibility and the allocation rule
derived from the envied count criterion satisfies equal treatment for equal circum-
stances. This result does not extend to the distribution case.

Proof. (1) Consider two agents i, j ∈ N such that zi = z j and an allocation xN
such that ui > u j. Let x′N be such that x′i = xi − (ui−u j) and x′k = xk for all
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k �= i. Then ni(x′N) = n j(x′N) = n j(xN)− 1, while nk(x′N) ≤ nk(xN) for all k �= i, j.
Since n j(xN) > ni(xN), the vector (ni(x′N),n j(x′N)) is better for the reverse leximin
than (ni(xN),n j(xN)) , and since nk(x′N) ≤ nk(xN) for all k �= i, j, the whole vector
(nk(x′N))k∈N is better than (nk(xN))k∈N . The allocation x′N does not belong to X , but
the allocation

x′′N = x′N −
1
|N| ∑i∈N

x′i

does and is such that nk(x′′N) = nk(x′N) for all k ∈ N.
(2) The proof for the envied count criterion and equal treatment for uniform

circumstances is similar. Let yi = y j and xi > x j in allocation xN . Allocation x′N
is defined by x′j = xi and x′k = xk for all k �= j. The rest is very similar as above.

(3) Impossibility to extend to the distribution case is a corollary of the next
proposition. ��

However, these two criteria display no concern for balancedness. For instance, in
the examples of Fig. 1, the vectors of indices ni(xN) are, respectively, the following:
(a) (0,1,1,1)
(b) (3,0,0,0)
(c) (1,1,1,1)
(d) (0,2,1,1)
(e) (0,1,1,1)
As a consequence, the envious count criterion ranks the five graphs in the following
decreasing order:

a e
c
d
b

Indifference between (a) and (e) is due to the fact that this ranking is not sensitive
to the balancedness feature of graphs. It only counts the number of outgoing arrows
and is indifferent to the direction of these arrows. A similar difficulty is obtained
with the envied count criterion, which puts (a) at the bottom, but is indifferent be-
tween (b) and (e).3

A concern for balancedness can be incorporated by measuring individual situa-
tions with respect to envy in terms of an index that depends on ni and on n′i. Let

di(xN) = D(ni(xN),n′i(xN))

for a function D, the properties of which are discussed below. One can apply the
reverse leximin criterion to such indices. The properties of the criterion will then
depend on how D ranks various (ni,n′i) vectors. Figure 2 shows iso-curves for the D
function in the (ni,n′i) space.

Panels (1) and (2) illustrate the two extreme cases of the envious count and envied
count criteria:
3 The vectors of indices n′i(xN) are, respectively, (a) (3,0,0,0); (b) (0,1,1,1); (c) (1,1,1,1); (d)
(2,0,1,1); and (e) (1,0,1,1).
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Fig. 2 Iso-curves of D

(1) D(ni,n′i) = ni;
(2) D(ni,n′i) = n′i.

Panel (3) and (4) correspond to cases in which a concern for balancedness is intro-
duced:

(3) D(ni,n′i) = 2max{ni,n′i}+min{ni,n′i} .
(4) D(ni,n′i) = 2max{ni,n′i}−min{ni,n′i}= max{ni,n′i}+ |ni−n′i| .
As far as the examples of Fig. 1 are concerned, formula (3) puts (e) above (c)
whereas formula (4), displaying a greater concern for balancedness, puts (c) above
(e). Panel (5) depicts the extreme case in which only balancedness matters:
(5) D(ni,n′i) = |ni−n′i| .

It turns out that none of these criteria satisfies equal well-being for equal respon-
sibility or equal treatment for equal circumstances in the distribution case. The next
proposition shows that there is no hope to find better criteria along these lines. To
keep things simple, attention is restricted to “reasonable” criteria that prefer an allo-
cation with only one envy occurrence to any unbalanced allocation with more than
n envy occurrences, for n great enough. This restriction seems unquestionable when
dealing with criteria that rely only on envy graphs.

Proposition 2. In the distribution case, no reasonable criterion based on envy
graphs satisfies either equal well-being for equal responsibility or equal treatment
for equal circumstances.

Proof. In the distribution case, two agents i, j can be in a situation in which no one
envies the other when they have certain x∗i ,x

∗
j , whereas at all other allocations at

least one envies the other. In such a case, let us say that i and j are “locked” at(
x∗i ,x

∗
j

)
. Let us illustrate how this can happen. Let u(x,yi,zi) = u(x,y j,zi) for all x,

and u(x,y j,z j) < u(x,yi,z j) for all x �= x∗, while u(x∗,y j,z j) = u(x∗,yi,z j). Then i
and j are locked at (x∗,x∗) , since there is no envy at (x∗,x∗) , whereas for (xi,x j)
(with at least one different from x∗), i envies j if xi < x j and j envies i if xi ≥ x j.

Consider an n-agent population {1, . . . ,n} where z1 = z2 and such that for all
pairs of agents i, j > 1, i and j are locked at (1,1). Assume that Ω = n, that agents
3, . . . ,n never envy agent 1 (whatever the allocation), that u1 > u2 at allocation
(1, . . . ,1) and that 1 is envied by 2 at this allocation. Necessarily this is the only
envy occurence in this allocation. At any other allocation in X , there will be at least
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n−2 envy occurrences, because at least one of the agents i > 1 will have a different
x and this will create at least one envy occurrence between him and each one of the
others.

Moreover, no allocation in which 1 and 2 do not envy each other is balanced.
First note that in such an allocation u(x1,y1,z1) = u(x2,y2,z2), since z1 = z2. If 2
envies another agent, then 1 envies this other agent as well, but 1 is not envied by 2
in such an allocation, and is never envied by 3, . . . ,n in all allocations. In this case
1’s situation is unbalanced. If 2 does not envy any other agent, he must be envied by
at least one agent 3, . . . ,n and his situation is unbalanced.

Therefore, for n great enough, a reasonable criterion will prefer (1, . . . ,1) to any
allocation in which 1 and 2 do not envy each other, and thereby violate equal well-
being for equal responsibility.

For equal treatment for equal circumstances, assume y1 = y2, and all pairs of
agents i, j > 1 are similarly locked together. Then, for certain preferences, the allo-
cation (0,1, . . . ,1) has only one envy occurrence, namely 1 envying 2. The rest of
the argument is as above. ��

This last result clearly suggests that the information contained in an envy graph is
insufficient, and that can be interpreted as being due to the fact that this information
is typically insufficient to pinpoint agents with identical y or identical z.

4 Undominated Diversity and Beyond

In this section we turn to a setting with richer information. Recall the SMUD alloca-
tion rule, which seeks to minimize the size of the set of agents who unanimously
consider that i is worse-off than j (and i is among them), for all pairs (i, j). This
allocation rule refines van Parijs’ undominated diversity, which is too large in some
cases (in particular, it accepts allocations with envy when envy-free allocations ex-
ist). It shares with it the drawback that it may happen to be empty in the distribution
case. It is, however, nonempty in a rather wide class of situations.

Lemma 1. The SMUD is nonempty in the TU case. It is also nonempty in the distri-
bution case on D1.

Proof. Distribution case: Fleurbaey (1994, Prop. 10) proves that, if for all i, j ∈ N,
there is k ∈ N such that

u
( Ω
|N|−1

,yi,zk

)
≥ u(0,y j,zk),

then SMUD is nonempty. This assumption is satisfied on D1.
TU case: Consider first a modified version of the TU case in which the feasible

set is X∗ =
{

xN ∈ R
N
+ | ∑i∈N xi =Ω

}
. Let

Ω = (|N|−1) max
i, j,k∈N

(v(yi,zk)− v(y j,zk)) .
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With this value of Ω , the above assumption is satisfied, so that there exists an allo-
cation xN ∈ X∗ such that for all i, j ∈ N, there is k ∈ N such that

ui(xi,yi,zk)≥ u(x j,y j,zk).

Let μ = 1
|N| ∑i∈N xi, and define x′i = xi− μ for all i ∈ N. The allocation x′N is such

that ∑i∈N x′i = 0 and, by the quasi-linearity of u in the TU case, it still holds that for
all i, j ∈ N, there is k ∈ N such that

ui(xi,yi,zk)≥ u(x j,y j,zk).

��

In fact, the underlying idea of SMUD is again to rank graphs of envy relations.
But, interestingly, instead of simply counting the arrows between individuals, the
idea is to assign a number to every envy relation, which is equal to the number of
individuals who share the envious’ preferences. For instance, suppose i envies j, and
there are three other individuals who, with their own responsibility characteristics,
would be better-off with j’s bundle of external resources and circumstances than
with i’s. Then the envy arrow from i to j is assigned a value of four. When i does
not envy j, no arrow is drawn even if there are some other individuals who would
be better-off with j’s bundle than with i’s. The absence of an arrow is equivalent to
a value of zero.

In summary, for every ordered pair (i, j) , this procedure gives us a number, equal
to zero if i does not envy j, and equal to a positive integer between one and the pop-
ulation size otherwise. “Undominated diversity” is simply the rather special require-
ment that no pair has a number with the maximal value (|N|). The SMUD allocation
rule applies the minimax criterion to the list of these numbers (i.e., it minimizes the
greatest number), retaining in addition the requirement that no pair has number |N|.

A drawback of the minimax criterion is that it neglects the situation of envy
relations with a less than maximal number and may therefore accept too much of
envy. It appears much more reasonable to apply the reverse leximin criterion to the
list of these numbers. Let us call this the “diversity” criterion, since it both extends
and refines van Parijs’ criterion, and takes account of the diversity of preferences in
the population.

Diversity criterion (RD): For any xN ∈ X , (i, j) ∈ N2, let

ni j(xN) =
{

0 if i does not envy j,∣∣{k ∈ N | u(x j,y j,zk) > u(xi,yi,zk)
}∣∣ otherwise.

For all xN ,x′N ∈ X , xN RD(e)x′N if and only if

−(ni j(xN))i, j∈N ≥lex −
(
ni j(x′N)

)
i, j∈N .

An envy-free allocation corresponds to a list containing only zeros, and will
be selected whenever it exists. Similarly, if there exist allocations satisfying the
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undominated diversity criterion, the selected allocations will be drawn from this
subset. An interesting feature of the diversity criterion (already present in undomi-
nated diversity) is that it satisfies equal treatment for equal circumstances.

Proposition 3. The allocation rule derived from the diversity criterion exactly se-
lects the set of envy-free allocations whenever it is nonempty. The allocation rule
derived from it satisfies equal well-being for uniform responsibility (on D1 for the
distribution case) and equal treatment for equal circumstances (on D1 for the dis-
tribution case).

Proof. (1) An envy-free allocation is such that (ni j(xN))i, j∈N = 0, and this domi-
nates any −(ni j(x′N))i, j∈N < 0 for the leximin criterion. Therefore, the set of envy-
free allocations is selected whenever it is nonempty.

(2) When zi = z j for all i, j ∈N, the allocation that equalizes well-being across all
agents is the only envy-free efficient allocation and is therefore selected whenever it
is feasible, which is always true in the TU case, and on D1 in the distribution case.
This proves the satisfaction of equal well-being for uniform responsibility.

(3) That it satisfies equal treatment for equal circumstances is a consequence of
the fact that ni j(xN) = |N| if xi < x j while yi = y j and that, in the TU case as well
as in the distribution case on D1, by Lemma 1 there always exist (undominated
diversity) allocations with max(ni j(xN))i, j∈N < |N| . In the distribution case, out of
D1, an allocation satisfying equal treatment for equal circumstances is not always
selected. Consider a situation with uniform z and y1 = y2 in which the leximin-utility
allocation is xN = (3,3,0, . . . ,0), while u(4,y2,z) = u(0,yi,z) for all i �= 1. Then the
allocation x′N = (2,4,0, . . . ,0) is preferred when |N|> 3, because it has

(
ni j(x′N)

)
i, j∈N =

⎛
⎜⎜⎜⎜⎜⎝

0 |N| |N| · · · |N|
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

compared to

(ni j(xN))i, j∈N =

⎛
⎜⎜⎜⎜⎜⎝

0 0 |N| · · · |N|
0 0 |N| · · · |N|
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

.

��

The allocation rule associated with RD is more satisfactory than those of the
previous section, and this can be linked to the richer information used by RD.

The diversity criterion is clearly on the side of the natural reward principle, and
one may wonder if a dual criterion can be defined that would embrace the compen-
sation principle instead. The dual criterion does exist, and refers to all the values of
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yk instead of the values of zk. For a given yk, it evaluates the situation of an individ-
ual i by computing the value of x that would give him, with circumstances yk, the
same utility as in the contemplated allocation. Now consider two individuals i and
j. This computation amounts to imagining a situation that is equivalent in terms of
well-being but with equal circumstances (yk) for both individuals. The ideal alloca-
tion should then be egalitarian between them, and any inequality observed in x for
this imaginary situation does reflect a problem. Now, different computations made
with different yk may yield different answers and this criterion takes account of this
possible diversity.

Formally, for any xN ∈ X , i,k ∈ N, let xik(xN) be defined by

u(xi,yi,zi) = u(xik(xN),yk,zi).

In the distribution case, it may happen that u(xi,yi,zi) > u(x,yk,zi) for all x ≥ 0, or
that u(xi,yi,zi) < u(x,yk,zi) for all x≥ 0. We focus here, for this case, on the domain
D2 such that for all i, j ∈ N, one has u(0,yi,zi) = u(0,y j,zi) and there exists x ≥ 0
such that u(Ω ,yi,zi) < u(x,y j,zi). On this domain, xik(xN) is always well defined.

Compensation Diversity criterion (RCD): For any xN ∈ X , (i, j) ∈ N, let

mi j(xN) =
{

0 if i does not envy j,∣∣{k ∈ N | x jk(xN) > xik(xN)
}∣∣ otherwise.

For all xN ,x′N ∈ X , xN RCD(e)x′N if and only if

−(mi j(xN))i, j∈N ≥lex −
(
mi j(x′N)

)
i, j∈N .

The following statement establishes the connection between this criterion and the
compensation principle.

Proposition 4. The allocation rule derived from the compensation diversity crite-
rion exactly selects the set of envy-free allocations whenever it is nonempty (on D2
for the distribution case). The allocation rule derived from it satisfies equal well-
being for equal responsibility (on D2 for the distribution case) and equal treatment
for uniform circumstances.

Proof. (1) Notice that xii(xN)≡ xi. When i envies j, one has

u(xi,yi,zi) < u(x j,y j,zi),

implying that if
ui = u(xi j(xN),y j,zi),

as is always obtained in the TU case and on D2 in the distribution case, then
xi j(xN) < x j = x j j(xN) and therefore mi j(xN) > 0. An envy-free allocation is such
that (mi j(xN))i, j∈N = 0, and this dominates any −(mi j(x′N))i, j∈N < 0 for the lex-
imin criterion. Therefore, the set of envy-free allocations is selected whenever it is
nonempty.
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(2) When yi = y j for all i, j ∈ N, the allocation xN = 0 is the only envy-free
efficient allocation and is therefore selected. This proves the satisfaction of equal
treatment for uniform circumstances.

(3) That it satisfies equal well-being for equal responsibility is a consequence of
the fact that mi j(xN) = |N| if ui < u j while zi = z j and that, in the TU case as well as
in the distribution case on D2, by a dual to Lemma 1, there always exist allocations
with max(mi j(xN))i, j∈N < |N| . ��

An interesting difference between diversity and compensation diversity is worth
noting. When i envies j, this is recorded by the diversity criterion on the basis of zi,
that is, the preferences of the envious agent:

u(xi,yi,zk) < u(x j,y j,zk) for k = i,

whereas with compensation diversity, this is recorded with y j, that is, the circum-
stances of the envied agent:

u(xi,yi,zi) = u(xik(xN),yk,zi) < u(x j,y j,zi) = u(x jk(xN),yk,zi) for k = j.

As in the previous section with the envious count and envied count criteria, whether
one focuses on the envious or on the envied may contribute to determining whether
the criterion falls on the compensation side or on the natural reward side. A similar
configuration will again be obtained in the next section.

5 From Envy Intensity to Walras

Although the diversity criteria improve on the envy count criteria of Section 3, they
may still be criticized for the restricted information they rely upon. They rank alloca-
tions on the basis of a rather poor information, namely, the graphs of envy relations
(and of similar preference relations for the diversity criteria). Allocations are made
of distributions of resources, which provide a much finer scale for the measurement
of envy situations. It is quite unjustifiable to ignore this information and simply
focus on zero-one markers of presence or absence of envy relations. In particular,
the envy count and diversity criteria are indifferent between any pair of allocations
with the same graph, even if one allocation may have much less inequality, that is,
a smaller degree of envy, than the other. They may also prefer an allocation with
fewer relations of envy but with a very high degree of envy in these relations to
another allocation with more envy occurrences but which is in fact much closer to
an envy-free situation. In conclusion, looking at the graphs of envy relations, even
augmented by ni j numbers, is probably not a very good idea.

The SMEI allocation is based on a finer information and indeed suggests an alter-
native approach. For every allocation and for every pair of individuals (i, j) , com-
pute the number ti j as the smallest amount of external resources such that giving
this to i in addition to what he receives in this allocation would prevent him from
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envying j. If i already does not envy j, this number is typically negative, meaning
that one can diminish i’s resources without making him envy j. And one always has
tii = 0. Let ti j be called the degree of i’s envy toward j. The SMEI allocation rule as
defined above amounts to retaining the greatest ti j for every i (ignoring tii) as a mea-
sure of his greatest degree of envy (or smallest degree of non-envy if it is negative),
and to apply the minimax criterion to the vector of these numbers.4 This is a rather
natural solution, but Fleurbaey (1994, Prop. 9) notices that it satisfies neither equal
well-being for equal responsibility nor equal treatment for equal circumstances. This
suggests looking for another way to rank distributions (ti j)i, j∈N .

We examine two other, a priori less intuitive, options which may ultimately be
more satisfactory. The first is similar to the above but incorporates tii in the com-
putation of the greatest degree of envy, so that this number is always nonnegative,
and applies the summation operation rather than the minimax. The second solution
computes, for every individual, the greatest degree of envy among those who might
envy him, and then applies the summation operator. In both cases, the social objec-
tive is to minimize the value of these sums. The first is focused on the degree of
envy from the standpoint of the envious (the transmitters), while the second takes
the viewpoint of those who are envied (the receivers).

For any allocation xN ∈ X , any pair of agents i, j ∈ N, let ti j(xN) be the smallest
value of t such that

u(xi + t,yi,zi)≥ u(x j,y j,zi)

and di j(xN) be the smallest value of d such that

u(xi,yi,zi)≥ u(x j−d,y j,zi).

Tadenuma and Thomson (1995), in the context of transferable indivisibles, have
considered the two notions of ti j and di j. The definition of di j(xN) should be slightly
modified in the distribution case when

u(xi,yi,zi) < u(0,y j,zi),

in which case one can propose to compute di j(xN) as the smallest value of x j +d for
d such that

u(xi +d,yi,zi)≥ u(0,y j,zi).

In the TU case, one simply has

ti j(xN) = di j(xN) = x j + v(y j,zi)− xi− v(yi,zi).

In the distribution case, one may have ti j(xN) or di j(xN) undefined if

lim
x→+∞

u(x,yi,zi) < u(x j,y j,zi) or u(xi,yi,zi) > lim
x→+∞

u(x,y j,zi).

4 In fact, the presentation of SMEI in Sect. 2 was a little simplistic since Fleurbaey (1994) already
introduces the ti j and applies the reverse leximin criterion to the vector (max j �=i ti j)i∈N , instead of
the minimax.
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To avoid this problem, we may restrict our attention to the domain D0 such that for
all i, j ∈ N, there exists x≥ 0 such that

u(x,yi,zi)≥ u(Ω ,y j,zi) and u(x,y j,zi)≥ u(Ω ,yi,zi).

In all cases, the following three statements are equivalent: (1) ti j(xN) > 0; (2)
di j(xN) > 0; and (3) i envies j. One always has tii(xN)≡ dii(xN)≡ 0.

The two social ordering functions are formally defined as follows.

Envious Intensity (REsI): For all xN ,x′N ∈ X , xN REsI(e)x′N if and only if

∑
i∈N

max
j∈N

ti j(xN)≤ ∑
i∈N

max
j∈N

ti j(x′N).

Envied Intensity (REdI): For all xN ,x′N ∈ X , xN REdI(e)x′N if and only if

∑
j∈N

max
i∈N

di j(xN)≤ ∑
j∈N

max
i∈N

di j(x′N).

The quantity max j∈N ti j(xN) measures how much must be added to xi for envious
i to get rid of envy, while maxi∈N di j(xN) measures how much must be deducted
from x j for envied j not to be envied any more.

The allocation rules derived from these rankings appear to have more interesting
properties than SMEI.

Proposition 5. The allocation rules derived from the envious and envied intensity
criteria both exactly select the set of envy-free allocations whenever it is nonempty
(on D0 for the distribution case). The allocation rule derived from envious intensity
satisfies equal well-being for uniform responsibility (onD1 for the distribution case)
and equal treatment for equal circumstances (on D0 for the distribution case). The
allocation rule derived from envied intensity satisfies equal well-being for equal
responsibility (on D2 for the distribution case) and equal treatment for uniform
circumstances.

Proof. (1) For all xN ∈ X , all i ∈ N,

max
j∈N

ti j(xN)≥ tii(xN)≡ 0,

and max j∈N ti j(xN) > 0 if and only if i is envious, so that one has

∑
i∈N

max
j∈N

ti j(xN) = 0

if and only if xN is envy-free. The same can be said about ∑ j∈N maxi∈N di j(xN).
Therefore, the set of envy-free allocations is selected by either allocation rule when-
ever it is nonempty.

(2) By the same argument as in Proposition 3, step 2 (respectively, Proposition 4,
step 2), this implies that the allocation rule derived from envious intensity
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(respectively, envied intensity) satisfies equal well-being for uniform responsibility
(respectively, equal treatment for uniform circumstances).

(3) Now let us turn to envious intensity and equal treatment for equal circum-
stances. Consider two agents i, j such that yi = y j, and suppose, by way of contra-
diction, that there is an allocation xN minimizing ∑k∈N maxl∈N tkl(xN), with xi > x j.
The fact that xi > x j implies that t ji(xN) > 0 and that, for all k �= j,

max
l∈N

tkl(xN)≥ tki(xN) > tk j(xN).

Take δ such that

0 < δ <
1
|N|min

k∈N

(
max
l∈N

tkl(xN)− tk j(xN)
)

and δ < (xi− x j)/ |N| . Construct a new allocation such that x′k = xk−δ for all k �= j,
and x′j = x j +(|N|−1)δ . Notice that one still has x′i > x′j and therefore, for all k �= j,

max
l∈N

tkl(x′N) > tk j(x′N).

Consider k, l �= j. One has

u(xk + tkl(xN),yk,zk)≥ u(xl ,yl ,zk).

One also has either

u(xk−δ + tkl(x′N),yk,zk) = u(xl−δ ,yl ,zk) < u(xl ,yl ,zk),

implying tkl(xN) >−δ + tkl(x′N), or tkl(x′N) =−(xk−δ ), implying tkl(xN)≥−δ +
tkl(x′N) since one always has tkl(xN)≥−xk. One therefore has

max
l∈N

tkl(x′N)≤max
l∈N

tkl(xN)+δ

for all k �= j.
Now consider j and k �= j envied by j in x′N (at least i is envied by j). One has

u(x j +(|N|−1)δ + t jk(x′N),y j,z j) = u(xk−δ ,yk,z j) < u(xk,yk,z j)

and
u(xk,yk,z j)≤ u(x j + t jk(xN),y j,z j),

implying
(|N|−1)δ + t jk(x′N) < t jk(xN).

For any k �= j that is not envied by j in x′N , one has

t jk(x′N)≤ 0 < xi− x j−|N|δ ≤max
l∈N

t jl(xN)−|N|δ .
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Therefore,
max
l∈N

t jl(x′N) < max
l∈N

t jl(xN)− (|N|−1)δ .

Summing up over all agents, one obtains

∑
k∈N

max
l∈N

tkl(x′N) < ∑
k∈N

max
l∈N

tkl(xN)+(|N|−1)δ − (|N|−1)δ ,

contradicting the assumption that xN minimizes ∑i∈N max j∈N ti j(xN).
(4) Finally, envied intensity and equal well-being for equal responsibility. Con-

sider two agents i, j such that zi = z j, and suppose, by way of contradiction, that
there is an allocation xN minimizing ∑k∈N maxl∈N dlk(xN), with ui > u j. The fact
that ui > u j implies that d ji(xN) > 0 and that, for all k ∈ N,

max
l∈N

dlk(xN)≥ d jk(xN) > dik(xN).

Take δ > 0 such that

u(xi− (|N|−1)δ ,yi,zi) > u(x j +δ ,y j,z j).

Construct a new allocation such that x′i = xi− (|N|−1)δ and for all k �= i, x′k =
xk +δ . One still has u′i > u′j and therefore, for all k ∈ N,

max
l∈N

dlk(x′N) > dik(x′N).

Consider k, l �= i. One has (in the TU case as well as in the distribution case for
the domain D2)

u(xl ,yl ,zl) = u(xk−dlk(xN),yk,zl),

and
u(xl +δ ,yl ,zl) = u(xk +δ −dlk(x′N),yk,zl) > u(xl ,yl ,zl),

implying δ −dlk(x′N) >−dlk(xN), that is, dlk(x′N) < dlk(xN)+δ . One therefore has

max
l∈N

dlk(x′N)≤max
l∈N

dlk(xN)+δ

for all k �= i.
Now consider i and k �= i. One has

u(xk +δ ,yk,zk) = u(xi− (|N|−1)δ −dki(x′N),yi,zk) > u(xk,yk,zk)

and
u(xk,yk,zk) = u(xi−dki(xN),yi,zk),

implying
dki(x′N) < dki(xN)− (|N|−1)δ .
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Therefore,
max
l∈N

dli(x′N) < max
l∈N

dli(xN)− (|N|−1)δ .

Summing up over all agents, one obtains

∑
k∈N

max
l∈N

dlk(x′N) < ∑
k∈N

max
l∈N

dlk(xN)+(|N|−1)δ − (|N|−1)δ ,

contradicting the assumption that xN minimizes ∑k∈N maxl∈N dlk(xN). ��
The envied intensity criterion is a little mysterious because it is not written in

terms of indices of personal situations (being envied is not a characteristic of one’s
situation but rather a token of the others’ situations), contrary to the envious intensity
that transparently measures how envious every agent is and constructs a synthetic
measure of this. The envied intensity criterion, however, can be related to a more
orthodox social ordering function. Let (qi)i∈N ∈ R

N be a vector of prices for yN , in
a virtual market in which agents could buy bundles (x,y). The budget constraint for
i ∈ N on this market is such that a bundle (x,y j) is affordable if

x+q j = Ii,

where Ii denotes i’s personal wealth. Let ei denote i’s expenditure function:

ei(ui,qN) = min
{

x+q j | (x, j) ∈ R×N and u(x,y j,zi)≥ ui
}

.

We now define the Egalitarian Walras social ordering function. Let Q be the
subset of qN such that ∑i∈N qi = 0.

Egalitarian Walras (REW): For all xN ,x′N ∈ X , xN REW(e)x′N if and only if

max
qN∈Q

min
i∈N

ei(u(xi,yi,zi),qN)≥ max
qN∈Q

min
i∈N

ei(u(x′i,yi,zi),qN).

This social ordering function is an adaptation to this model of a function intro-
duced in Fleurbaey and Maniquet (2008) for the fair division context in order to
rationalize the egalitarian competitive equilibrium. Notice that this social ordering
function can be used to rank all allocations, not just the feasible ones.

Consider the virtual market in which circumstances y are tradable. This is just
the model of allocation of large indivisibles as studied, for example, in Svensson
(1983), with a number of indivisible goods equal to the number of agents. One can
easily extend the definition of the above social ordering function in order to consider
possibilities of permutations in yN : (xN ,yN) REW(e) (x′N ,y′N) if and only if

max
qN∈Q

min
i∈N

ei(u(xi,yi,zi),qN)≥ max
qN∈Q

min
i∈N

ei(u(x′i,y
′
i,zi),qN).

In this market a competitive equilibrium is an allocation (xN ,yN) associated to a
price vector q such that for all i ∈ N, (xi,yi) maximizes u(x,y j,zi) over the set of
bundles (x,y j) satisfying the budget constraint x +q j = Ii. It is egalitarian if Ii = I j
for all i, j ∈ N.
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Let Π(yN) denote the set of permutations of yN and let (xN ,yN ,qN) ∈ X ×
Π(yN)×Q be any allocation and price vector. If for all i ∈ N,

xi +qi = ei(u(xi,yi,zi),qN),

then this is a competitive equilibrium. More generally, one always has

ei(u(xi,yi,zi),qN)≤ xi +qi

for all i∈N, with at least one strict inequality if this is not a competitive equilibrium.
By construction one has

∑
i∈N

(xi +qi) =Ω ,

implying that one always has

max
qN∈Q

min
i∈N

ei(u(xi,yi,zi),qN)≤ Ω
|N| ,

with equality if and only if (xN ,yN ,qN) is an egalitarian competitive equilibrium.
This shows that the Egalitarian Walras social ordering function rationalizes the
egalitarian competitive equilibrium (in the sense that it exactly selects the set of
egalitarian equilibria whenever it is non-empty), which, in the particular context of
indivisibles, coincides with the set of envy-free and efficient allocations (Svensson,
1983).

Let us now focus on the distribution case for the domain D2 and on the TU case.
In these two cases one can simply define di j(xN) by the equation

u(x j−di j(xN),y j,zi) = ui.

One then computes

ei(u(xi,yi,zi),qN) = min
j∈N

(x j−di j(xN)+q j) .

One therefore has

min
i∈N

ei(u(xi,yi,zi),qN) = min
i, j∈N

(x j−di j(xN)+q j)

= min
j∈N

(
x j +q j−max

i∈N
di j(xN)

)
,

implying that for all xN ∈ X , qN ∈ Q,

min
i∈N

ei(u(xi,yi,zi),qN)≤ 1
|N| ∑j∈N

(
x j +q j−max

i∈N
di j(xN)

)
.

Since ∑ j∈N (x j +q j) =Ω , this can be simplified into
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min
i∈N

ei(u(xi,yi,zi),qN)≤ Ω
|N| −

1
|N| ∑j∈N

max
i∈N

di j(xN).

Now let, for all j ∈ N,

q j =−
(

x j−max
i∈N

di j(xN)
)

+
Ω
|N| −

1
|N| ∑k∈N

max
i∈N

dik(xN).

By construction qN ∈ Q. Moreover, for all j ∈ N,

x j +q j−max
i∈N

di j(xN) =
Ω
|N| −

1
|N| ∑k∈N

max
i∈N

dik(xN),

implying that

min
i∈N

ei(u(xi,yi,zi),qN) = min
j∈N

(
x j +q j−max

i∈N
di j(xN)

)

=
Ω
|N| −

1
|N| ∑k∈N

max
i∈N

dik(xN).

Since we have seen above that this is an upper bound for mini∈N ei(u(xi,yi,zi),qN)
when qN varies, one actually has

max
qN∈Q

min
i∈N

ei(u(xi,yi,zi),qN) =
Ω
|N| −

1
|N| ∑j∈N

max
i∈N

di j(xN),

which establishes an exact equivalence (for a fixed value of Ω ) between the egali-
tarian Walras and the envied intensity criteria in the TU case and on the domain D2
for the distribution case. It is somewhat surprising that a maximin social ordering
function can be equivalent to a purely additive criterion. But one observes in the
above computations that the maximin criterion of the egalitarian Walras function
is what triggers the focus on the maximal intensity retained in the computation of
maxi∈N di j(xN) for the envied intensity criterion.

Proposition 6. The egalitarian Walras and the envied intensity criteria are equiv-
alent in the TU case. In the distribution case, they are equivalent on the domain
D2.

Regarding envious intensity, one can similarly establish an equivalence with the
social ordering function that evaluates an allocation xN by computing

max
q∈Q

min
i∈N

(xi +qi−max
j∈N

ti j(xN)).

This amounts to measuring the agents’ wealth xi + qi and deducting from it their
maximal degree of envy. One notices here that the duality between compensation
and natural reward appears to be related to the duality of consumer theory. Applied
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to the market for (transferable) indivisibles, this social ordering function also ratio-
nalizes the equal competitive equilibrium. Contrary to egalitarian Walras, it does not
satisfy the Pareto principle in that context and therefore appears less interesting.

6 Conclusion

Six main no-envy rankings have been examined in this chapter, in the context of the
compensation problem. Apart from the intrinsic interest of these solutions, which
still deserves further assessment, the main conceptual insight obtained here may be
that the well-know duality in the compensation problem between the compensation
principle and the natural reward principle is related to a duality between focussing
on the envied and focussing on the envious. But this connection is not simple since,
for instance, the compensation principle is satisfied by the envious count criterion
and the envied intensity criterion, that is, two criteria focussing on a different side
of the envy relation. The key observation underlying these two facts is that when
zi = z j and ui > u j, agent j envies all the agents envied by i with greater intensity
than i, implying that, for all k �= i, i is never such that dik = maxl∈N dlk, and that,
since j also envies i in top of the others envied by i, one has n j > ni.

A gap that this chapter may highlight is that there is a lack of axiomatic frame-
work for the study of social ordering functions in the compensation problem. The
evaluation of rankings that has been performed here was concerned with satisfy-
ing axioms of allocation rules and therefore focused on the subsets selected by the
contemplated rankings. It is not very difficult to formulate axioms for rankings that
bear a close relation to the axioms presented here. For instance, one can think of the
following variants of the above axioms, applying to a social ordering function R:

Transfer for Equal Responsibility: ∀e ∈ D, ∀xN ,x′N ∈ X , ∀i, j ∈ N such that zi =
z j, if x′i− xi = x j− x′j and

u
(
x′i,yi,zi

)
> u(xi,yi,zi)≥ u(x j,y j,z j) > u

(
x′j,y j,z j

)

while x′k = xk for all k �= i, j, then xN P(e)x′N .
Transfer for Equal Circumstances: ∀e ∈ D, ∀xN ,x′N ∈ X , ∀i, j ∈ N such that yi =

y j, if x′i− xi = x j− x′j and
x′i > xi ≥ x j > x′j

while x′k = xk for all k �= i, j, then xN P(e)x′N .

Of all the social ordering functions studied in this chapter, only envious inten-
sity and envied intensity come close to satisfying such axioms – and this illustrates
again the usefulness of a fine measure of the degree of envy – but they satisfy only
weak versions of the axioms, involving a weak preference xN R(e)x′N . Some lex-
imin version of these two rankings should be invented in order to cope with this
problem. This is rather easy for the envied intensity criterion, for which a maximin
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interpretation (egalitarian Walras) has already been provided. For envious intensity,
the solution is less obvious, and in particular the maximin ranking underlying SMEI
appears to be of no help in this matter. A more systematic study of these issues is
left for another occasion.
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Choice-Consistent Resolutions
of the Efficiency-Equity Trade-Off

Koichi Tadenuma

1 Introduction

It is not rare that multiple criteria are applied to make individual or social deci-
sions. In the context of resource allocation problems, most prominent criteria are
efficiency and equity of allocations. Pareto efficiency is probably the most widely
accepted criterion among economists, but it is silent about the distributional equity
of allocations. On the other hand, several concepts of equity have been proposed
and extensively studied in welfare economics. Two of them are central: no-envy
(Foley, 1967 and Kolm, 1972) and egalitarian-equivalence (Pazner and Schmeidler,
1978). We say that an allocation is envy-free if no agent prefers the consumption
bundle of any other agent to his own and that an allocation is egalitarian-equivalent
if there is a consumption bundle, called the reference bundle, such that every agent
is indifferent between the bundle and his own.

However, as Kolm (1972) pointed out, there is a fundamental conflict between
the Pareto efficiency criterion and the no-envy criterion. There often exist two allo-
cations x and y such that x is Pareto superior to y, whereas x is not envy-free but y is.
If these two allocations {x,y} are the only policy options available at the time, we
cannot attain an allocation that is both Pareto efficient in {x,y} and envy-free, but we
have to choose either the efficient allocation or the envy-free allocation. The same
kind of conflict also arises between Pareto efficiency and egalitarian-equivalence, as
shown by Tadenuma (2005).

If two criteria of decision-making are incompatible simultaneously, we have to
give priority to one criterion. That is, we take one criterion as the first and the other
as the second, and apply them in the lexicographic order. This chapter formalizes
the idea in a standard framework of social choice correspondences in economic
environments. Given the first and the second criterion, we require that choice should
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always be made from the allocations satisfying the first criterion whenever there are
any. The second criterion should then be applied when the first criterion is not at all
effective as a guide for selection, namely, either when all the available allocations
satisfy the first criterion or when there is no such allocation at all. A stronger version
of this condition may be obtained by requiring that all the allocations satisfying the
second criterion should be selected in the latter case.

Besides the socially desirable properties of selected allocations, another impor-
tant requirement for social choice correspondences is choice-consistency. Espe-
cially, path independence is crucial. It implies “the independence of the final choice
from the path to it” (Arrow, 1963, p. 120). Path independence is an indispensable
property of social choice rules. Were it violated, some arbitrary agenda controls
could affect the final choice, which is clearly undesirable.

Another natural choice-consistency condition, which is weaker than path inde-
pendence, is contraction consistency. This says that if an allocation is chosen from
a set S of available allocations, then it should also be chosen from any subset T of S
as long as it is still available.

The purpose of this chapter is to examine possibility of consistent choices under
the efficiency-first and equity-second principle or the equity-first and efficiency-
second principle. We show several impossibility theorems on the existence of
social choice correspondences satisfying the efficiency-first and equity-second
principle with the concepts of no-envy and egalitarian-equivalence, and con-
traction consistency. However, if we restrict the range of reference bundles for
egalitarian-equivalence to a fixed ray from the origin, then there exists a so-
cial choice correspondence satisfying the efficiency-first and equity-second-as-
egalitarian-equivalence principle and path independence. But even for this case, the
stronger versions of properties representing the principle is incompatible with path
independence.

Turning to the equity-first and efficiency-second principle, we also obtain im-
possibility and possibility results on the existence of social choice correspondences
satisfying the principle and choice-consistency properties. It turns out that the bor-
derline between possibility and impossibility is quite subtle. If our equity criterion
selects only allocations with no-envy at all, then there exists a social choice corre-
spondence satisfying the equity-first principle and path independence. Moreover, we
obtain a characterization of the social choice correspondence by using the stronger
versions of properties representing the principle and path independence. However,
if we select allocations with “minimal-envy” according to the measure of envy-
instances introduced by Suzumura (1996), which is based on the set-inclusions of
envy relations, then no social choice correspondence satisfies the equity-first prin-
ciple and contraction consistency together. In contrast, if the equity criterion selects
allocations with “least-envy” in the sense that the number of envy-instances is the
smallest (Feldman and Kirman, 1974), then compatibility with path independence
is retained.

The rest of this chapter is organized as follows. Section 2 defines basic concepts
and notation, and Section 3 introduces various properties of social choice corre-
spondences that represent the efficiency-first principle or the equity-first principle,
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and choice-consistency. In Section 4, we review the fundamental conflict between
efficiency and equity. Section 5 examines choice-consistency of the social choice
correspondences satisfying the efficiency-first principle, and Section 6 turns to the
equity-first principle. In Section 7, we study the equity-first principle with the notion
of minimal-envy. Section 8 contains concluding remarks.

2 Basic Definitions and Notation

There are n agents and m infinitely divisible goods, where n and m are some integers
with n,m ≥ 2. Let N = {1, . . . ,n} be the set of agents. Denoting by R the set of
real numbers, the set R

m
+ is the consumption set of each agent. Let R be the class

of preference relations on R
m
+ that are reflexive, transitive, complete, continuous,

and monotonic. Each agent i ∈ N is endowed with a preference relation Ri ∈ R.
The strict preference relation and the indifference relation of agent i are denoted
by Pi and Ii, respectively. A list of preference relations, (Ri)i∈N ∈ Rn, is called a
preference profile, and denoted by RN .

An allocation is a vector x = (x1, . . . ,xn) ∈ R
mn
+ where each xi = (xi1, . . . ,xim) ∈

R
m
+ is a consumption bundle of agent i ∈ N. The set of all allocations is denoted

by X . We set X = R
mn
+ for simplicity of presentation. However, we might impose

a resource constraint on X . For example, given a total amount of resources Ω ∈
R

m
+, define the set of all feasible allocations with no free disposal as X := {x ∈

R
mn
+ | ∑n

i=1 xi =Ω}. All the results in this chapter hold on this more restricted set of
allocations. Let S be the set of all non-empty finite subsets of X .

Let a preference profile RN ∈Rn be given. An allocation x ∈ X is weakly Pareto
superior to an allocation y∈ X for RN if xi Ri yi for all i∈N. We write x �P(RN) y if x
is weakly Pareto superior to y. Let�P(RN) be the strict part of �P(RN).1 An allocation
x ∈ X is Pareto superior to an allocation y ∈ X for RN if x�P(RN) y. For each S ∈ S,
an allocation x ∈ S is Pareto efficient in S for RN if there is no allocation y ∈ S such
that y�P(RN) x. Let P(RN ,S) be the set of Pareto efficient allocations in S for RN .

An allocation x ∈ X is envy-free for RN if xi Ri x j for all i, j ∈ N. For each S ∈ S,
let F(RN ,S) be the set of envy-free allocations in S for RN .2 An allocation x ∈ X
is egalitarian-equivalent for RN if there is a consumption bundle x0 ∈ R

m
+ such that

for all i ∈ N, xi Ii x0. Then, the bundle x0 is called a reference bundle for x. For
each S ∈ S, let E(RN ,S) be the set of egalitarian-equivalent allocations in S for
RN . Particular subclasses of egalitarian-equivalent allocations are often studied in
the literature. Let r̄ ∈ R

m
++ be a given vector. An allocation x ∈ X is egalitarian-

equivalent for a fixed reference ray with r̄ for RN or simply r̄-egalitarian-equivalent
for RN if there is a real number t ∈ R such that for all i ∈ N, xi Ii tr̄. For each S ∈ S,
let Er̄(RN ,S) be the set of r̄-egalitarian-equivalent allocations in S for RN .

1 Given a binary relation �, its strict part � is defined as x� y⇔ x � y and y �� x.
2 The capital letter F stands for Freedom from envy.
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A social choice correspondence is a set-valued function ϕ : Rn×S → S such
that ϕ(RN ,S) ⊆ S for all (RN ,S) ∈ Rn×S. A social choice correspondence is in-
terpreted as follows. Each S ∈ S is the set of available allocations, which may be
termed an environment following (Arrow, 1963, p. 15). Then ϕ(RN ,S) is the set of
socially desirable allocations in the given environment S when the preferences of
the agents are RN . A fundamental example of a social choice correspondence is the
Pareto correspondence, denoted by P, which associates with each (RN ,S) ∈Rn×S
the set of all Pareto efficient allocations in S for RN . The no-envy correspondence,
the egalitarian-equivalence correspondence, and the r̄-egalitarian-equivalence cor-
respondence, denoted by F,E, and Er̄, respectively, can be defined analogously.

A remark should be in order on the domain of social choice correspondences. The
domain consists of the preferences domain R and the alternatives domain S. As in
many contributions in the literature of social choice theory, we assume that S is the
class of all finite subsets of X . Our major interest here is not in investigating what
are “optimal” allocations in the set of all technologically feasible allocations. There
are many situations in which only a finite number of policy options are at issue at
any one time. In such situations, we are rather interested in examining “consistency”
of social choices at different times, or under expansions, contractions, or partitions
of alternatives available at hand. To that end, our choice of S would be appropriate.

3 The Axioms

This section introduces a variety of desirable properties of social choice correspon-
dences, which we call “axioms.” In the rest of the chapter, we denote by ϕ a social
choice correspondence.

The first axiom is familiar. It means that we should always select from Pareto
efficient allocations whenever they exist.3

Pareto Efficiency. For all (RN ,S) ∈ Rn × S, if P(RN ,S) �= /0, then ϕ(RN ,S) ⊆
P(RN ,S).

The next three axioms require that only equitable allocations be chosen whenever
there are any.

No-Envy. For all (RN ,S) ∈Rn×S, if F(RN ,S) �= /0, then ϕ(RN ,S)⊆ F(RN ,S).

Egalitarian-Equivalence. For all (RN ,S) ∈ Rn × S, if E(RN ,S) �= /0, then
ϕ(RN ,S)⊆ E(RN ,S).

r̄-Egalitarian-Equivalence. For all (RN ,S) ∈ Rn × S, if Er̄(RN ,S) �= /0, then
ϕ(RN ,S)⊆ Er̄(RN ,S).

3 Note that, in our present model, there always exists a Pareto efficient allocation in S ∈ S since
S is finite. To keep symmetry in the definitions of axioms concerning efficiency and equity, and to
present a definition which may be applicable to other contexts where there may not exist Pareto
efficient allocations, we include the condition that P(RN ,S) �= /0 in the definition of this axiom.
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Even if the efficiency criterion is taken as the first principle for social choice,
equity criteria should be used when the efficiency criterion is not at all effective as
a guide for selection: either when all the available allocations are efficient or when
no available allocation is so.

P-Conditional No-Envy. 4 For all (RN ,S) ∈ Rn × S, if (i) P(RN ,S) = S or
P(RN ,S) = /0 and (ii) F(RN ,S) �= /0, then ϕ(RN ,S)⊆ F(RN ,S).5

The next axiom strengthens P-Conditional No-Envy. It means that if either all
the available allocations are efficient or no available allocation is efficient, then all
the envy-free allocations should be recommended. In other words, it claims that
we should not discriminate between allocations that equally satisfy the efficiency
and equity criteria defined explicitly as axioms.6

P-Conditional No-Envy Inclusion. For all (RN ,S) ∈Rn×S, if (i) P(RN ,S) = S or
P(RN ,S) = /0 and (ii) F(RN ,S) �= /0, then ϕ(RN ,S) = F(RN ,S).

By simply replacing the correspondence F with each of the correspondences E
and Er̄ in the above definitions, we define P-Conditional Egalitarian-Equivalence
and P-Conditional r̄-Egalitarian-Equivalence, respectively, and their corresponding
stronger versions.

Turning now to the equity-first and efficiency-second principle, we define the
counterparts of the above axioms. Let a social choice correspondenceΨ ∈{F,E,Er̄}
be given. (The correspondence Ψ is one of the three “equity correspondences.”)
If the equity criterion described by Ψ is accepted as the first selection principle,
we may still apply the efficiency criterion when all the available allocations are
equitable or when there is no equitable allocation at all.

Ψ -Conditional Pareto Efficiency. For all (RN ,S) ∈ Rn×S, if (i)Ψ(RN ,S) = S or
Ψ(RN ,S) = /0 and (ii) P(RN ,S) �= /0, then ϕ(RN ,S)⊆ P(RN ,S).

As an example, settingΨ = F , we obtain the axiom, F-Conditional Pareto Effi-
ciency. A strengthening ofΨ -Conditional Pareto Efficiency is the following.

Ψ -Conditional Pareto Inclusion. For all (RN ,S) ∈ Rn×S, if (i)Ψ(RN ,S) = S or
Ψ(RN ,S) = /0 and (ii) P(RN ,S) �= /0, then ϕ(RN ,S) = P(RN ,S).

4 The capital letter P stands for the Pareto correspondence.
5 In fact, since every S ∈ S is finite, P(RN ,S) is never empty. Hence, in the hypothesis, the case
where P(RN ,S) = /0 is vacuous. Despite this fact, we chose to write the axiom in this way because
we would like to present axioms representing the efficiency-first principle and the equity-first prin-
ciple in a symmetrical way. See the following axiom calledΨ -Conditional Pareto Efficiency.
6 The issue of whether we should take the stronger version of conditional equity or efficiency
may be related with the issue of full vs. partial implementation of social choice correspondences.
Thomson (1996) made an argument in support of full implementation as follows: “one should make
sure that the complete list of desired properties of correspondences have been identified, and then
identify the class of correspondences satisfying them. If all the properties are satisfied only by F
(that is, if F is characterized by these properties), then full implementation of F is indeed what we
should be after” (p. 135).
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Next, we introduce several choice-consistency axioms. The first one is called
Path Independence, which is due to Arrow (1963) and Plott (1973), and may be
described as follows. Let S be the set of available allocations, and {S1,S2} be a
partition of S. Suppose that we first choose desirable allocations ϕ(Si) from each
Si(i = 1,2), and next make the final choice from ϕ(S1)∪ϕ(S2), that is, from the
“winners” of the first round. Then, Path Independence requires that for all partitions
of S, the final choice should be the same, and hence the choice be independent of the
way how to partition S. Therefore, path independent social choice rules are immune
to any manipulation through an agenda control.

Path Independence. For all RN ∈ Rn and all S1,S2 ∈ S, ϕ(RN ,S1 ∪ S2) =
ϕ(RN ,ϕ(RN ,S1)∪ϕ(RN ,S2)).

Path Independence implies the following choice-consistency condition, which
was introduced by Chernoff (1954). Its intuitive meaning is also clear: Suppose that
an allocation x is chosen from a set S1, and then the set of available alternatives
is contracted to S2 ⊂ S1, but the allocation x is still available. Then, this allocation
should be selected from the set S2 as well.

Contraction Consistency. For all RN ∈ Rn and all S1,S2 ∈ S with S2 ⊆ S1, S2 ∩
ϕ(RN ,S1)⊆ ϕ(RN ,S2).

Ever since Arrow (1951), it has been a central issue in social choice the-
ory whether social choice correspondences are rationalizable, that is, the choice
described by the social choice correspondence from each set of available alterna-
tives could be obtained by maximization of some “well-behaved” social prefer-
ence relation. The question itself is of much theoretical interest, and moreover it
is worth examining because various rationalizability conditions are logically related
to choice-consistency conditions.

Let � be an irreflexive and asymmetric binary relation on X , the interpretation
of which is a strict social preference relation.7 For each S ∈ S, denote by M�(S) the
set of maximal elements of � in S:

M�(S) := {x ∈ S | There exists no y ∈ S such that y� x}.

Quasi-Transitive Rationalizability.8 For every RN ∈ Rn, there exists an irreflex-
ive, asymmetric, and transitive binary relation �(RN) on X such that for all S ∈ S,
ϕ(RN ,S) = M�(RN ) (S).

We say that a binary relation � has a cycle if there exist a positive integer K and
K allocations x1, . . . ,xK such that xk � xk+1 for all k, with 1≤ k≤K−1 and xK � x1.
The binary relation � is acyclic if it has no cycle.9

7 It will be convenient for us to present the results by strict social preference relations�. However,
we could alternatively use the reflexive and complete social preference relations � induced from
� as follows: For all x,y ∈ X , x � y if and only if y� x does not hold.
8 The term “quasi-transitivity” is due to Sen (1970), which means transitivity of strict social pref-
erence relations.
9 Note that if � is acyclic, then by definition, it is irreflexive and asymmetric.
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Quasi-Transitive Rationalizability =⇒ Acyclic Rationalizability
⇓ ⇓

Path Independence =⇒ Contraction Consistency

Fig. 1 Logical relations of choice-consistency and rationalizability conditions

Acyclic Rationalizability. For every RN ∈ Rn, there exists an acyclic binary rela-
tion �(RN) on X such that for all S ∈ S, ϕ(RN ,S) = M�(RN ) (S).

The conditions introduced above have the following logical relations.10 Quasi-
Transitive Rationalizability implies both Acyclic Rationalizability and Path
Independence, and each of the two conditions, Acyclic Rationalizability and Path
Independence, implies Contraction Consistency. The converse of each statement
does not hold true. Hence, Contraction Consistency may be considered as the mini-
mal requirement of choice-consistency of social choice correspondences. It is also
a necessary condition for any kind of rationalizability by a single binary relation,
but it is not a sufficient condition even for Acyclic Rationalizability.11

Figure 1 summarizes the logical relations between the axioms. Each arrow indi-
cates the direction of logical implication.

Our final axiom is an obvious requirement: Social choice rules should be able to
select some allocations for any environment.

Non-Emptiness. For all (RN ,S) ∈Rn×S, ϕ(RN ,S) �= /0.

4 Conflicts Between Efficiency and Equity

This section reviews the fundamental conflict between the Pareto efficiency criterion
and the equity criteria. First, we observe the conflict between efficiency and no-envy,
which was first pointed out by Kolm (1972).

Example 1. There are two agents N = {1,2} and two goods {1,2}. The preferences
of the agents are represented by the utility functions

u1(x11,x12) = x11x12,

u2(x21,x22) = 2x21 + x22.

10 See Suzumura (1983, Chap. 3).
11 As a counter-example for the last claim, consider the social choice correspondence defined as
follows: Choose x0 ∈ X . Define the correspondence C by

C(RN ,S) = {x0} if x0 ∈ S and |S| ≥ 3,

C(RN ,S) = S otherwise.

It can be checked that the correspondence C satisfies Contraction Consistency, but cannot be ratio-
nalized by any social preference relation.
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Let x = (x1,x2) = ((1, 46
5 ),(9, 4

5 )) and y = (y1,y2) = (( 11
5 , 22

5 ),( 39
5 , 28

5 )). Then, since
u1(y1) > u1(x1) and u2(y2) > u2(x2), the allocation y is Pareto superior to the allo-
cation x. However, x is envy-free because u1(x1) > u1(x2) and u2(x2) > u2(x1),
whereas y is not since u1(y2) > u1(y1). Now let S = {x,y}. Then, both the sets
P(RN ,S) and F(RN ,S) are nonempty, but the intersection of the two sets is empty.

This example can be extended to the case of any finite numbers of agents and
goods. Hence, we have the following impossibility.

Theorem 1. (Kolm, 1972; Suzumura, 1981a). There exists no social choice corre-
spondence that satisfies Non-Emptiness, Pareto Efficiency, and No-Envy.

Next we show that the same kind of conflict may also arise between the Pareto
efficiency criterion and the equity-as-egalitarian-equivalence criterion.

Example 2. There are two agents N = {1,2} and two goods 1,2. The preferences of
the agents are represented by the utility functions12

u1(x11,x12) = min{x11,x12},
u2(x21,x22) = x21 +3x22.

Let x = (x1,x2) = ((3,11),(9,1)) and y = (y1,y2) = ((8,8),(4,4)). Let r̄ = (1,1).
Then, the allocation y is Pareto superior to the allocation x. On the other hand, since
u1(x1) = 3 = u1(3r̄) and u2(x2) = 12 = u2(3r̄), the allocation x is r̄-egalitarian-
equivalent, with 3r̄ being the reference bundle. However, y is not egalitarian-
equivalent because for any bundle z0 such that u1(z0) = u1(y1), z0≥ (8,8) and hence
u2(z0) ≥ u2(8,8) > u2(4,4) = u2(y2). Let S = {x,y}. Then, both the sets P(RN ,S)
and E(RN ,S) = Er̄(RN ,S) are nonempty, but the intersection of the two sets is empty.

Theorem 2. (Tadenuma, 2005). (i) There exists no social choice correspondence
that satisfies Non-Emptiness, Pareto Efficiency, and Egalitarian-Equivalence. (ii)
There exists no social choice correspondence that satisfies Non-Emptiness, Pareto
Efficiency, and r̄-Egalitarian-Equivalence.

5 The Efficiency-First Principle

The results in the previous section show that we cannot always select an allocation
that is both Pareto efficient and equitable. Therefore, in cases where the two crite-
ria are conflicting with each other, we have to give priority to one of them. In this
section, we adopt the efficiency criterion as the first principle, keeping the require-
ment of Pareto Efficiency on social choice correspondences. As for equity criteria,
however, we only require their conditional versions.

12 We use Leontief preferences only for easy calculations. An example can be constructed with
smooth and strictly monotonic preferences.
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By the definitions of axioms, Pareto Efficiency and P-Conditional No-Envy (or
P-Conditional Egalitarian-Equivalence, P-Conditional r̄-Egalitarian-Equivalence)
together are compatible with Non-Emptiness. We examine with which choice-
consistency conditions these axioms are compatible. To present the results, we in-
troduce several social preference relations.

5.1 No-Envy as the Second Criterion

Let RN ∈ Rn be given. We define the equity-as-no-envy superior relation, denoted
�F(RN), as follows: For all x,y ∈ X , x�F(RN) y if and only if x is envy-free and y is
not. Recall that �P(RN) denotes the Pareto superior relation.

Given RN ∈ Rn, define the binary relation �PF(RN) on X as follows: For all
x,y ∈ X , x �PF(RN) y if and only if (i) x �P(RN) y or (ii) x ��P(RN) y, y ��P(RN) x,
and x�F(RN) y.

Under the social preference relation �PF(RN), we first apply the Pareto criterion
when we rank any two allocations. Then, only when the Pareto criterion does not
give a strict ranking between the two, we apply the equity-as-no-envy criterion.

The next lemma clarifies the relation between the social choice correspondences
satisfying Pareto Efficiency, P-Conditional No-Envy, and Contraction Consistency,
and the social preference relation �PF(RN).

Lemma 1. If a social choice correspondence ϕ satisfies Pareto Efficiency, P-
Conditional No-Envy, and Contraction Consistency, then ϕ(RN ,S) ⊆ M�PF(RN ) (S)
for all (RN ,S) ∈Rn×S.

Proof. Suppose that a social choice correspondence ϕ satisfies Pareto Efficiency,
P-Conditional No-Envy, and Contraction Consistency. Let (RN ,S) ∈ Rn ×S be
given. Suppose, on the contrary, that there exists x ∈ S such that x ∈ ϕ(RN ,S)
but x /∈ M�PF(RN ) (S). Then, there exists y ∈ S such that y �PF(RN) x. Because
x ∈ ϕ(RN ,S)⊆ P(RN ,S) by Pareto Efficiency, y ��P(RN) x. Hence, y�PF(RN) x holds
only if x ��P(RN) y and y �F(RN) x. Let S′ = {x,y}. Then, S′ ⊆ S and P(RN ,S′) = S′.
By P-Conditional No-Envy, ϕ(RN ,S′)⊆F(RN ,S′). Thus, x /∈ϕ(RN ,S′). This means,
however, that ϕ violates Contraction Consistency, which is a contradiction. ��

It is well-known that for any binary relation �, the set M�(S) is nonempty for
all S ∈ S if and only if � is acyclic (Sen, 1970). Hence, it follows from the above
lemma that there exist social choice correspondences satisfying the three axioms
and non-emptiness only if �PF(RN) is acyclic. Unfortunately, the social preference
relation �PF(RN) may have a cycle.

Proposition 1. (Tadenuma, 2002). There exists a preference profile RN ∈ Rn such
that �PF(RN) has a cycle.

Proof. For simplicity of presentation, we consider a two-agent and two-good econ-
omy. Similar examples can be constructed for the case of any numbers of agents
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and goods. Let N = {1,2} be the set of agents. Assume that agent i ∈ N has the
preference relation Ri on R

2
+ that is represented by the following utility function:

u1(x11,x12) = x11x12,

u2(x21,x22) = 2x21 + x22.

Define four allocations x,y,z, and w by x = ((1,9),(9,1)), y = ((3,6),(7,4)),
z = ((2,8),(8,2)), and w = ((2,7),(8,3)). Then, x �PF(RN) y since x ��P(RN) y,
y ��P(RN) x, and x�F(RN) y. Since y�P(RN) z, we have y�PF(RN) z. Because z ��P(RN)
w, w ��P(RN) z, and z �F(RN) w, we have z �PF(RN) w. Finally, w �PF(RN) x follows
from the fact that w�P(RN) x. Thus, the relation �PF(RN) has a cycle. ��

From Lemma 1 and Proposition 1, the next impossibility theorem follows.

Theorem 3. There exists no social choice correspondence that satisfies Non-
Emptiness, Pareto Efficiency, P-Conditional No-Envy, and Contraction Consistency.

We have argued that Path Independence is an indispensable property of social
choice correspondences. However, since Path Independence implies Contraction
Consistency, we have the following impossibility as a corollary of Theorem 3.

Corollary 1. There exists no social choice correspondence that satisfies Non-
Emptiness, Pareto Efficiency, P-Conditional No-Envy, and Path Independence.

5.2 Egalitarian-Equivalence as the Second Criterion

Next, we adopt egalitarian-equivalence as the concept of equity instead of no-envy.
The analyses will go parallel to those in the previous subsection. We define the
equity-as-egalitarian-equivalence superior relation�E(RN) as x�E(RN) y if and only
if x is egalitarian-equivalent and y is not. Then, define the binary relation �PE(RN)
on X as x �PE(RN) y if and only if (i) x �P(RN) y or (ii) x ��P(RN) y, y ��P(RN) x, and
x�E(RN) y.

Just like Lemma 1, we can show that if a social choice correspondence ϕ satisfies
Pareto Efficiency, P-Conditional Egalitarian-Equivalence, and Contraction Consis-
tency, then ϕ(RN ,S) ⊆ M�PE(RN ) (S) for all (RN ,S) ∈ Rn×S. Hence, whether the
social preference relation �PE(RN) is acyclic or not is a crucial question for the
existence of social choice correspondence satisfying the three axioms and Non-
Emptiness. However, �PE(RN) may have a cycle.

Proposition 2. (Tadenuma, 2005). There exists a preference profile RN ∈ Rn such
that �PE(RN) has a cycle.

Proof. For simplicity of presentation, we consider a two-agent and two-good econ-
omy. Let N = {1,2} be the set of agents. Assume that agent 1’s preference relation
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R1 on R
2
+ is represented by a Leontief utility function:

u1(x11,x12) = min{x11,x12}.

Agent 2’s preference relation R2 is represented by the following piece-wise linear
utility function:

u2(x21,x22) = x21 +20, if x22 ≥ x21 and x22 ≥ 20,

u2(x21,x22) = x21 + x22, if x22 ≥ x21 and x22 ≤ 20,

u2(x21,x22) = 2x22, if x22 ≤ x21.

Definefourallocationsx,y,z, andwbyx = ((18,9),(10,19)), y = ((12,10),(16,18)),
z = ((23,11),(5,17)), and w = ((17,15),(11,13)). Then, observe the following
facts: (1) y�P(RN) x; (2) w�P(RN) z; (3) y ��P(RN) z and z ��P(RN) y; (4) x ��P(RN) w
and w ��P(RN) x; (5) x is egalitarian-equivalent with a reference bundle (9,20)
since u1(x1) = 9 = u1(9,20) and u2(x2) = 29 = u2(9,20); (6) z is egalitarian-
equivalent with a reference bundle (11,11); (7) y is not egalitarian-equivalent
because for all a0 ∈ R

2
+ such that u2(a0) = u2(y2) = 34, a0 ≥ (13,13), and hence

u1(a0) ≥ u1(13,13) = 13 > 10 = u1(y1); (8) w is not egalitarian-equivalent since
for all b0 ∈ R

2
+ such that u1(b0) = u1(w1) = 15, b0 ≥ (15,15), and thus u2(b0)≥

u2(15,15) = 30 > 24 = u2(w2).
By (1), we have y �PE(RN) x. It follows from (3), (6), and (7) that z �PE(RN) y.

By (2), w �PE(RN) z. Finally, from (4), (5), and (8) together, we have x �PE(RN) w.
Thus, the relation �PE(RN) has a cycle. ��

By Proposition 2, we have the following impossibility results.

Theorem 4. There exists no social choice correspondence that satisfies Non-
Emptiness, Pareto Efficiency, P-Conditional Egalitarian-Equivalence, and Con-
traction Consistency.

Corollary 2. There exists no social choice correspondence that satisfies Non-
Emptiness, Pareto Efficiency, P-Conditional Egalitarian-Equivalence, and Path
Independence.

5.3 r̄-Egalitarian-Equivalence as the Second Criterion

We have reached an impossibility again with egalitarian-equivalence as the sec-
ond criterion. In this subsection, we adopt a more restricted concept of equity than
egalitarian-equivalence, namely r̄-egalitarian-equivalence. Let us recall that the ref-
erence bundles of r̄-egalitarian-equivalent allocations must lie in the given ray from
the origin, while there is no such restriction in the definition of (general) egalitarian-
equivalent allocations. With r̄-egalitarian-equivalence as the second criterion, we
have a positive result as shown next.



130 K. Tadenuma

Theorem 5. There exists a social choice correspondence that satisfies Non-
Emptiness, Pareto Efficiency, P-Conditional r̄-Egalitarian-Equivalence, and Path
Independence.

Proof. The proof relies on the social preference relation introduced by Pazner and
Schmeidler (1978). For each RN ∈ Rn, define a binary relation �PS(RN) on R

mn
+ as

follows. For all x,y ∈ X , x �PS(RN) y if and only if

min
i∈N

min{λi ∈ R | λir̄ Ri xi} ≥min
i∈N

min{λi ∈ R | λir̄ Ri yi}.

Let �PS(RN) be the strict part of �PS(RN). Define the social choice function ϕPS
by ϕPS(RN ,S) = M�PS(RN ) (S) for all (RN ,S) ∈ Rn ×S. It is easy to check that
ϕPS satisfies Non-Emptiness, Pareto Efficiency, and P-Conditional r̄-Egalitarian-
Equivalence. Since �PS(RN) is transitive and complete, and transitive rationalizabil-
ity implies Path Independence, it follows that ϕPS satisfies Path Independence. ��

We argued that if explicitly defined criteria of efficiency and equity should be
the only selection principles, then the stronger version of conditional efficiency and
equity should be accepted. That is, if the first principle selects all or none, then the
allocations satisfying the second principle should be all taken, and no discrimina-
tion between them should be introduced. Next we examine the compatibility of this
stronger version with choice-consistency.

We define the equity-as-r̄-egalitarian-equivalence superior relation �Er̄(RN) as
x�Er̄(RN) y if and only if x is r̄-egalitarian-equivalent and y is not.

Theorem 6. There exists a social choice correspondence that satisfies Non-
Emptiness, Pareto Efficiency, P-Conditional r̄-Egalitarian-Equivalence inclusion,
Er̄-Conditional Pareto Inclusion, and Contraction Consistency.

Proof. For each RN ∈ Rn, define the binary relation �PEr̄(RN) as follows. For all
x,y ∈ X , x �PEr̄(RN) y if and only if (i) x �P(RN) y or (ii) x ��P(RN) y, y ��P(RN) x,
and x �Er̄(RN) y. Define the social choice correspondence ϕPEr̄ by ϕPEr̄(RN ,S) =
M�PEr̄(RN ) (S) for all (RN ,S) ∈ Rn×S. By Tadenuma (2005, Prop. 5), �PEr̄(RN) is
acyclic, and hence ϕPEr̄ satisfies non-emptiness. It is clear that ϕPEr̄ satisfies Pareto
Efficiency. To check that it satisfies P-Conditional r̄-Egalitarian-Equivalence Inclu-
sion, let (RN ,S) ∈ Rn×S be such that P(RN ,S) = S and Er̄(RN ,S) is non-empty.
Clearly, ϕPEr̄(RN ,S) ⊆ Er̄(RN ,S). Suppose that there exists x ∈ Er̄(RN ,S) such that
x /∈ ϕPEr̄(RN ,S). Then, there is y ∈ S with y �PEr̄(RN) x. Since x,y ∈ P(RN ,S),
y cannot be Pareto superior to x. Because x ∈ Er̄(RN ,S), y cannot be equity-
as-r̄-egalitarian-equivalence superior to x, either. This is a contradiction. Hence,
Er̄(RN ,S)⊆ ϕPEr̄(RN ,S). Similarly, we can show that ϕPEr̄ satisfies Er̄-Conditional
Pareto Inclusion. Finally, since ϕPEr̄(RN , ·) is rationalizable by the binary relation
�PEr̄(RN), it satisfies Contraction Consistency. ��

However, if we strengthen the requirement of choice-consistency, we have an-
other impossibility.
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Theorem 7. There exists no social choice correspondence that satisfies Non-
Emptiness, Pareto Efficiency, P-Conditional r̄-Egalitarian-Equivalence, Er̄-
Conditional Pareto Inclusion, and Path Independence.

Proof. Consider the economy defined in the proof of Proposition 2. Let r̄ = (9,20).
Define three allocations x,y, and w by x = ((18,9),(10,19)),y = ((12,10),(16,18)),
and w = ((17,15),(11,13)). Then, the allocation x is r̄-egalitarian-equivalent, but
the other two allocations are not. On the other hand, y�P(RN) x, but y ��P(RN) w and
w ��P(RN) y. Similarly, x ��P(RN) w and w ��P(RN) x.

Suppose that there exists a social choice correspondence ϕ that satisfies Pareto
Efficiency, P-Conditional r̄-Egalitarian-Equivalence, Er̄-Conditional Pareto Inclu-
sion, Path Independence, and Non-Emptiness. It follows from Pareto Efficiency,
P-Conditional r̄-Egalitarian-Equivalence, and Path Independence (which implies
Contraction Consistency) that ϕ(RN ,S)⊆M�PEr̄(RN ) (S) for all (RN ,S) ∈Rn×S.

Let S1 = {x,y,w}, S2 = {x,y}, and S3 = {w}. Then, M�PEr̄(RN ) (S1) = {y} and
M�PEr̄(RN ) (S2) = {y}. By the above relation and Non-Emptiness of ϕ , we have

ϕ(RN ,S1) = {y} and ϕ(RN ,S2) = {y}. (1)

By Non-Emptiness, ϕ(RN ,S3) = {w}. Hence,

ϕ(RN ,ϕ(RN ,S2)∪ϕ(RN ,S3)) = ϕ(RN ,{y,w}). (2)

Observe that Er̄(RN ,{y,w}) = /0 and P(RN ,{y,w}) = {y,w}. Since ϕ satisfies Er̄-
Conditional Pareto Inclusion, we have

ϕ(RN ,{y,w}) = {y,w}. (3)

It follows from (1), (2), and (3) that ϕ(RN ,ϕ(RN ,S2)∪ϕ(RN ,S3)) �=ϕ(RN ,S1). This
means that ϕ violates Path Independence, which is a contradiction. ��

6 The Equity-First Principle

In this section, we reverse the order of application of the efficiency and equity cri-
teria. That is, we first select from equitable allocations, and if the equity criterion
is not effective as a guide for selection either because all the available allocations
are equitable or because no allocation is equitable, then we choose from efficient
allocations. In the following, we consider the equity-as-no-envy criterion. However,
essentially the same results hold true with egalitarian-equivalence or r̄-egalitarian-
equivalence.

To identify the social choice correspondences satisfying No-Envy, F-Conditional
Pareto Efficiency, and Contraction Consistency, it is useful to introduce a social
preference relation. Given RN ∈Rn, define the binary relation �FP(RN) on X as fol-
lows: For all x,y ∈ X , x �FP(RN) y if and only if (i) x �F(RN) y or (ii) x ��F(RN) y,
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y ��F(RN) x, and x �P(RN) y. Under this social preference relation, we first apply the
equity-as-no-envy criterion to rank any two allocations, and when the two alloca-
tions are not strictly ranked by the criterion because both are envy-free or neither is,
we invoke the efficiency criterion.

The next lemma is the counterpart of Lemma 1.

Lemma 2. If a social choice correspondence ϕ satisfies No-Envy, F-Conditional
Pareto Efficiency, and Contraction Consistency, then ϕ(RN ,S) ⊆ M�FP(RN ) (S) for
all (RN ,S) ∈Rn×S.

Proof. Suppose that a social choice correspondence ϕ satisfies No-Envy, F-
Conditional Pareto Efficiency, and Contraction Consistency. Let (RN ,S) ∈ Rn×S
be given. Suppose, on the contrary, that there exists x ∈ S such that x ∈ ϕ(RN ,S) but
x /∈M�FP(RN ) (S). Then, there exists y ∈ S such that y�FP(RN) x. We distinguish two
cases.
Case 1: F(RN ,S) �= /0.
Because x ∈ ϕ(RN ,S)⊆ F(RN ,S) by No-Envy, y�FP(RN) x holds only if both x and
y are envy-free, and y is Pareto superior to x. Let S′ = {x,y}. Then, S′ ⊆ S, and
F(RN ,S′) = S′. By F-Conditional Pareto Efficiency, ϕ(RN ,S′) ⊆ P(RN ,S′) = {y}.
Thus, x /∈ ϕ(RN ,S′). This means that ϕ violates Contraction Consistency, which is
a contradiction.
Case 2: F(RN ,S) = /0.
Then, y�FP(RN) x holds only if y is Pareto superior to x. Let S′ = {x,y}. Then, S′ ⊆ S
and F(RN ,S′) = /0. By F-Conditional Pareto Efficiency, ϕ(RN ,S′) ⊆ P(RN ,S′) =
{y}. The rest of the argument is the same as Case 1. ��

The next result should be contrasted with Proposition 1.

Proposition 3. For all RN ∈Rn, �FP(RN) is transitive.

Proof. Let RN ∈Rn be given. To lighten notation, we simply write �FP, �P, and F
for �FP(RN), �P(RN), and F(RN ,X), respectively. Assume that x�FP y and y�FP z.
By x�FP y, (1) x ∈ F and y /∈ F or (2) [[x ∈ F and y ∈ F ] or [x /∈ F and y /∈ F ]] and
x�P y. By y�FP z, (3) y∈F and z /∈F or (4) [[y∈F and z∈F ] or [y /∈F and z /∈F ]]
and y�P z. (1) and (3) are incompatible. If (1) and (4) hold, then we must have x∈F
and z /∈F . Hence, x�FP z. Similarly, if (2) and (3) hold, then x∈F but z /∈F , and we
have x�FP z. If (2) and (4) hold, then either x,y,z ∈ F and x�P y�P z or x,y,z /∈ F
and x�P y�P z. Since the relation �P is transitive, we have x�FP z. ��

Define the social choice correspondence ϕFP by

ϕFP(RN ,S) = M�FP(RN ) (S) for all (RN ,S) ∈Rn×S.

This correspondence takes the following values:

ϕFP(RN ,S) = P(RN ,F(RN ,S)) if F(RN ,S) �= /0,

ϕFP(RN ,S) = P(RN ,S) if F(RN ,S) = /0.
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Note that for all (RN ,S)∈Rn×S, P(RN ,F(RN ,S))⊇ P(RN ,S)∩F(RN ,S) and there
exists (RN ,S) ∈Rn×S such that P(RN ,F(RN ,S)) �= P(RN ,S)∩F(RN ,S).

We next show that the social choice correspondence ϕFP is characterized by No-
Envy, the stronger versions of Conditional Pareto Efficiency and No-Envy, and Path
Independence.

Theorem 8. A social choice correspondence ϕ satisfies Non-Emptiness, No-Envy,
P-Conditional No-Envy Inclusion, F-Conditional Pareto Inclusion, and Path Inde-
pendence if and only if ϕ = ϕFP.

Proof. First, we show that ϕFP satisfies the five axioms. It is easy to check that
ϕFP satisfies No-Envy, F-Conditional Pareto Inclusion, and P-Conditional No-Envy
Inclusion. By Proposition 3, ϕFP satisfies Quasi-Transitive Rationalizability, which
implies Path Independence. Since any quasi-transitive binary relation has maximal
elements in any finite set, Non-Emptiness follows.

Next we show that ϕFP is the unique social choice correspondence that satisfies
the five axioms. Suppose, on the contrary, that there is a social choice correspon-
dence ϕ with ϕ �= ϕFP that satisfies the five axioms. Then, there is (RN ,S)∈Rn×S
such that

ϕ(RN ,S) �= ϕFP(RN ,S). (1)

If F(RN ,S) = /0, then by F-Conditional Pareto Inclusion, ϕ(RN ,S) = P(RN ,S).
On the other hand, it can be checked that ϕFP(RN ,S) = M�FP(RN ) (S) = P(RN ,S).
Hence, we have ϕ(RN ,S) = ϕFP(RN ,S), a contradiction. Thus, F(RN ,S) �= /0. Since
F-Conditional Pareto Inclusion implies F-Conditional Pareto Efficiency, and Path
Independence implies Contraction Consistency, it follows from Lemma 2 that

ϕ(RN ,S)⊆M�FP(RN ) (S) = ϕFP(RN ,S). (2)

Because F(RN ,S) �= /0, we have

M�FP(RN ) (S) = P(RN ,F(RN ,S)). (3)

It follows from (1), (2), and (3) that there exists x∗ ∈ S such that x∗ ∈
P(RN ,F(RN ,S)) but x∗ /∈ ϕ(RN ,S). Define S′ := {x∗} ∪ {y ∈ S | y ∈ F(RN ,S) and
x∗ �P(RN) y} ∪ [S\F(RN ,S)]. By Lemma 2, ϕ(RN ,S′) ⊆ M�FP(RN ) (S

′) = {x∗}.
By Non-Emptiness, we have ϕ(RN ,S′) = {x∗}. Define S′′ := S\S′. Again from
Lemma 2, it follows that

ϕ(RN ,S′′)⊆M�FP(RN ) (S
′′) = P(RN ,F(RN ,S′′)). (4)

Claim: P(RN ,F(RN ,S′′))⊂ P(RN ,F(RN ,S)).
Let z ∈ P(RN ,F(RN ,S′′)). Then, z ∈ F(RN ,S′′) ⊂ F(RN ,S). Suppose that z /∈
P(RN ,F(RN ,S)). Then, there exists w ∈ P(RN ,F(RN ,S)) such that w �P(RN) z.
If w = x∗, then z ∈ S′ and hence z /∈ S′′, which is a contradiction. Thus, w �= x∗.
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But then, w∈S′′ and so z/∈P(RN ,F(RN ,S′′)), which contradicts z∈P(RN ,F(RN ,S′′)).
Therefore, we must have z ∈ P(RN ,F(RN ,S)). Thus, the claim has been proved.

It follows from (4) and the above claim that ϕ(RN ,S′′) ⊆ P(RN ,F(RN ,S)).
Hence, ϕ(RN ,S′) ∪ ϕ(RN ,S′′) = {x∗} ∪ ϕ(RN ,S′′) ⊆ P(RN ,F(RN ,S)). Therefore,
P(RN ,ϕ(RN ,S′)∪ϕ(RN ,S′′)) = ϕ(RN ,S′)∪ϕ(RN ,S′′). Then, by P-Conditional No-
Envy Inclusion, we conclude that ϕ(RN ,ϕ(RN ,S′)∪ϕ(RN ,S′′))= F(RN ,ϕ(RN ,S′)∪
ϕ(RN ,S′′)) = ϕ(RN ,S′)∪ϕ(RN ,S′′) = {x∗}∪ϕ(RN ,S′′). But since x∗ /∈ ϕ(RN ,S) =
ϕ(RN ,S′ ∪S′′) and ϕ satisfies Path Independence, we must have x∗ /∈ϕ(RN ,ϕ(RN ,S′)
∪ϕ(RN ,S′′)). This is a contradiction.

Therefore, there is no social choice correspondence ϕ with ϕ �= ϕFP that satisfies
the five axioms together in the statement of the theorem. ��

7 Minimal-Envy and Choice-Consistency

In the previous sections, our equity-as-no-envy criterion made only “all-or-nothing”
selection: an allocation is selected if there is no envy at all, whereas it is not selected
if there is at least one instance of envy. However, among allocations with envy, the
instances of envy may differ greatly. In such cases, it should be desirable to select
allocations with “minimal” instances of envy.

In this section, we introduce a measure of envy at allocations, which is due to
Suzumura (1996). Based on the measure, we define the notion of minimal-envy.
Then, as in the foregoing section, we examine the choice-consistency properties
of social choice correspondences satisfying the efficiency first or the equity first
principle with minimal-envy as the concept of equity.

For each RN ∈Rn, and each x ∈ X , define the set H(RN ,x)⊂ N×N by

H(RN ,x) = {(i, j) ∈ N×N | x j Pi xi}.

The set H(RN ,x) is the set of all instances of envy at x. Following Suzumura (1996),
we define the binary relation �Fmin(RN) as follows: for all x,y ∈ X , x �Fmin(RN) y if
and only if H(RN ,x) � H(RN ,y).

In a similar way to defining Pareto efficiency, we can define the notion of
minimal-envy. Given (RN ,S) ∈Rn×S, an allocation x ∈ S is envy-minimal in S for
RN if there is no allocation y ∈ S such that H(RN ,y) � H(RN ,x). Let Fmin(RN ,S) be
the set of envy-minimal allocations in S for RN . By simply replacing F(RN ,S) with
Fmin(RN ,S) in the definitions of axioms in Sect. 3, we can define axioms, Minimal-
Envy, P-Conditional Minimal-Envy, and Fmin-Conditional Pareto Efficiency.

Reexamining the proofs of Lemma 1, Proposition 1, and Theorem 3, we find that
there is no social choice correspondence that satisfies Non-Emptiness, Pareto Effi-
ciency, P-Conditional Minimal-Envy and Contraction Consistency. Moreover, with
this concept of equity, even the equity-first principle may contradict the minimum
requirement of choice-consistency, which we now turn to.
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For each RN ∈Rn, define the binary relation �FminP(RN) as follows: For all x,y ∈
X , x�FminP(RN) y if and only if (i) x�Fmin(RN) y, or (ii) x ��Fmin(RN) y, y ��Fmin(RN) x, and
x�P(RN) y. Then, as in Lemma 2, we can show that if a social choice correspondence
ϕ satisfies Non-Emptiness, Minimal-Envy, Fmin-Conditional Pareto Efficiency, and
Contraction Consistency, then ϕ(RN ,S)⊆M�FminP(RN ) (S) for all (RN ,S) ∈Rn×S.

Proposition 4. There exist a preference profile RN ∈ Rn such that �FminP(RN) has a
cycle.

Proof. Consider an economy with four agents and two goods. Let N = {1,2,3,4}
be the set of agents. Assume that the agents’ preference relations are represented by
the following utility functions:

u1(x11,x12) = x11x12,

u3(x31,x32) = x31 + x32,

and
u2 = u1 and u4 = u3.

Consider the following three allocations, x,y, and z:

(x1,x2,x3,x4) = ((6,0),(0,6),(3,3),(3,3)),
(y1,y2,y3,y4) = ((0.5,1),(0.5,6),(8.5,0),(2.5,5)),
(z1,z2,z3,z4) = ((1,1),(2,2),(5,4),(4,5)).

Observe that
z�P(RN) y�P(RN) x

and

H(RN ,x) = {(1,3),(1,4),(2,3),(2,4)},
H(RN ,y) = {(1,4),(2,4),(1,2),(4,3)},
H(RN ,z) = {(1,3),(1,4),(2,3),(2,4),(1,2)}.

Since H(RN ,x) �⊆ H(RN ,y), H(RN ,y) �⊆ H(RN ,x), and y �P(RN) x, we have
y �FminP(RN) x. Similarly, z �FminP(RN) y holds true. However, it follows from
H(RN ,x) � H(RN ,z) that x�FminP(RN) z. Thus, there is a cycle for �FminP(RN) . ��

In a framework of abstract social choice, Suzumura (2004) defines the bi-
nary relation �FSP(RN) as follows: For all x,y ∈ X , x �FSP(RN) y if and only if (i)
H(RN ,x)⊆H(RN ,y) or (ii) H(RN ,x) �⊆H(RN ,y), H(RN ,y) �⊆H(RN ,x), and x �P y.
Let �FSP(RN) be the strict part of �FSP(RN). Suzumura (2004) presented an exam-
ple such that �FSP(RN) is acyclic but is not consistent. Let us recollect that a bi-
nary relation � on X is consistent if for any integer k ≥ 3, there exists no finite set
{x1,x2, . . . ,xk} ⊆ X such that x1 � x2, x2 � x3, . . . ,xk−1 � xk, and xk � x1.

Notice a difference between the definitions of �FminP(RN) and �FSP(RN). Just as
all other lexicographic compositions of two criteria studied in this chapter and
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Tadenuma (2002, 2005), the relation �FminP(RN) invokes the second criterion (the
Pareto superior relation in this case) when the first criterion judges the two alter-
natives to be indifferent or noncomparable, and if there is a strict ranking between
the two by the second criterion, it is adopted. In contrast, the relation �FSP(RN) does
not make any strict ranking when the two alternatives are indifferent for the first
criterion. For example, if H(RN ,x) = H(RN ,y) and x �P(RN) y, then x �FminP(RN) y
but x ��FSP(RN) y.

A motivation for our lexicographic composition of two binary relations is that we
should apply the second criterion to evaluate desirability of two allocations when-
ever they are noncomparable or equally good by the first criterion, so that we could
have a more fine-grained social ranking of allocations. If the set of pairs of envious
and envied agents is exactly the same for the two allocations, and one of them is
Pareto superior to the other, why do not we choose the former? Similarly, if the two
allocations give the same utility for every agent, and one of them is more equitable
than the other, then we should select the more equitable.

In spite of this difference in the definitions, the proof of Proposition 4 actually
shows that the relation �FSP(RN) also has a cycle for the preference profile because
the proof does not depend on the case where the set of instances of envy is exactly
the same for the two allocations. Thus, Proposition 4 strengthens Suzumura’s result
in two respects. First, we show that the relation �FSP(RN) is not even acyclic. Note
that acyclicity is a weaker condition than consistency. Second, we establish the result
on the domain of classical exchange economies with no free disposal of goods and
continuous, convex and strictly monotonic preferences. Even on this much restricted
domain, we cannot avoid a cycle of the strict part of �FSP(RN).

From Proposition 4, we obtain another impossibility theorem. The proof is anal-
ogous to those for the previous results, and it is omitted.

Theorem 9. There exists no social choice correspondence that satisfies Non-
Emptiness, Minimal-Envy, Fmin-Conditional Pareto Efficiency, and Contraction
Consistency.

Feldman and Kirman (1974) introduced a different measure of envy at alloca-
tions, which simply counts the number of instances of envy. Based on the measure,
we may define the notion of the least envy.

For each (RN ,S) ∈ Rn×S, we say that an allocation x ∈ S has the least envy
in S for RN if there is no allocation y ∈ S such that #H(RN ,y) < #H(RN ,x).13 Let
Fleast(RN ,S) be the set of allocations that have the least envy in S. Then, we can sim-
ilarly define axioms, Least-Envy, P-Conditional Least-Envy, and Fleast -Conditional
Pareto Efficiency.

As in Theorems 3 and 8, we can show that (i) there exists no social choice
correspondence that satisfies Non-Emptiness, Pareto Efficiency, P-Conditional
Least-Envy, and Contraction Consistency; and (ii) there exists a social choice cor-
respondence that satisfies Non-Emptiness, Least-Envy, Fleast-Conditional Pareto
Efficiency, and Path Independence. The proofs are similar, and we omit them.

13 For any set A, #A denotes the cardinality of A.
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8 Concluding Remarks

In his two seminal works, Suzumura (1981a, b) considered a class of abstract social
choice problems and examined possibility of constructing social choice correspon-
dences satisfying the following conditions on efficiency and equity.

Fairness Extension. For all (RN ,S) ∈ Rn×S, ϕ(RN ,S) = P(RN ,S)∩F(RN ,S) if
P(RN ,S)∩F(RN ,S) �= /0.

This axiom requires that if there are Pareto efficient and equitable allocations,
then they should all be selected.

Fairness Inclusion. For all (RN ,S) ∈ Rn × S, if P(RN ,S) ∩ F(RN ,S) = /0, y ∈
ϕ(RN ,S), and x ∈ S is Pareto superior to y or equity-as-no-envy superior to y for
RN , then x ∈ ϕ(RN ,S).

This means that if some allocation is selected, and there are allocations that are
superior to the former either in the Pareto principle or in the equity criterion, then
the latter allocations should also be selected.

A basic difference of these axioms from ours is that they treat the efficiency crite-
rion and the equity criterion with equal weight, whereas our axioms give priority to
one of the two criteria. Indeed, there is no logical relation between Fairness Exten-
sion or Fairness Inclusion and any one or any combination of our axioms concerning
efficiency and equity. Moreover, combined with the requirement of Non-Emptiness,
Fairness Inclusion is incompatible with either of our axioms Pareto Efficiency and
No-Envy. To see this, let us reconsider the case of fundamental conflict between the
Pareto criterion and the equity-as-no-envy criterion as in Sect. 4. In Example 1, the
allocation y is Pareto superior to the allocation x, whereas x is equity-as-no-envy-
superior to y. Then, if a social choice correspondence ϕ satisfies Non-Emptiness
and Fairness Inclusion, then ϕ({x,y}) = {x,y}. That is, any correspondence satisfy-
ing this axiom avoids selection in face of the fundamental conflict. To the contrary,
the correspondences satisfying our efficiency-first or equity-first axioms do make a
selection in the case of the fundamental conflict, depending upon which criterion
should be placed first.

Another difference between Suzumura (1981a, b) and this chapter lies in the do-
main of social choice problems. While he considers a class of abstract social choice
problems with no restrictions on individual preferences except rationality, we study
the class of canonical economic problems of distributing infinitely divisible goods
among n agents with preferences that satisfy all standard assumptions in economics.
For the kind of axioms studied in this chapter, with more restrictions on the domain
of problems, the more cases for compatibility among required conditions may arise.
To put it in other words, impossibility results obtained in this chapter straightfor-
wardly extend to the unrestricted domain.

This work started with the simple question: Which criterion should we take first
to select socially desirable allocations, the efficiency criterion or the equity crite-
rion? We have represented two alternative principles in the form of axioms, and



138 K. Tadenuma

examined choice-consistency of the social choice correspondences satisfying these
axioms. Our results show that the existence of path independent or contraction con-
sistent social choice correspondences depends not only on which philosophical po-
sition we take but also on what is the precise notion of equity.

There are many cases in the real life in which we must consider multiple criteria
in individual or social decision-making problems. To explore general conditions for
lexicographic compositions of multiple criteria to satisfy various degrees of choice-
consistency may be an interesting topic in future research.
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Characterization of the Maximin Choice
Function in a Simple Dynamic Economy

Koichi Suga and Daisuke Udagawa

1 Introduction

In the literature of intergenerational equity, Rawlsian maximin principle is one of
the most well-known criteria for distributive justice among generations.1 Since this
principle has an intuitive appeal to egalitarian writers, several attempts to charac-
terize the principle have been made in welfare economics. Arrow (1973), Dasgupta
(1974a, b), and Riley (1976) scrutinized the performance thereof in the context of
optimal growth. Arrow shows that the utility path as well as the consumption path
generated by the maximin principle has a saw-tooth shape. Dasgupta shows that it
gives rise to a logical deficit such as time-inconsistency. The other line of researches
has been stimulated by the axiomatic approaches of Hammond (1976, 1979) and
Sen (1970, 1977). In this line, researchers extended axiomatizations of the max-
imin principle and applied them to intergenerational equity. The maximin path is
characterized by a constant path, which emphasizes its egalitarian perspective.2

In a previous discussion on this topic, Suga and Udagawa (2004) addressed the
question of how to characterize the maximin principle axiomatically in a simple
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1 See Rawls (1971) for the description of the maximin principle. Rawls himself denies a direct
application of the principle, and emphasizes that each generation has a paternalistic concern to
the payoff of his immediate descendant. Since the number of generations are infinite so that the
minimum utility may not exist, we usually evaluate consumption plans not by the minimum but by
the infimum.
2 See, for example, Asheim, Buchholz, and Tungodden (2001), Epstein (1986a,b) and Lauwers
(1997).
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dynamic economy, called Arrow–Dasgupta economy, where each generation has a
paternalistic concern to the descendants. In Suga and Udagawa (2004), the axioms
are imposed on intergenerational preference relations over the set of consumption
paths. They supposed that there exists a hypothetical social planner who judges the
consumption paths, and characterized the maximin principle by some axioms on the
planner’s intergenerational preference relation.

In this chapter, on the other hand, we examine the same question of axiomatic
characterization of the maximin principle by applying axioms in a choice function
framework. That is, we consider a choice-theoretic model of infinite horizon econ-
omy in which a choice function selects a consumption path from the set of feasible
paths from the viewpoint of a social planner. We suppose that the social planner
adopts the maximin principle as a criterion to construct an intertemporal choice
function. We focus our attention to a simple dynamic economy with linear technol-
ogy à la Arrow (1973) and Dasgupta (1974a,b) to characterize the maximin choice
function on the set of consumption paths. We employ this choice-theoretic approach
to give another look at characteristics of consumption paths derived by the maximin
principle under the feasibility conditions.

With a similar motivation, Asheim, Bossert, Sprumont, and Suzumura (2006)
propose a choice-theoretic model for intergenerational equity. They provide char-
acterizations of all infinite-horizon choice functions satisfying either efficiency or
time-consistency, and identify all choice functions with both properties. Their
results show that the choice-theoretic approach to intergenerational resource
allocation provides an interesting and viable alternative to the models based on
establishing intergenerational preference relations of utility paths.

Our purpose in this chapter is to characterize the maximin principle in an infinite
horizon economy. Axioms are imposed not on intergenerational preference relations
but on choice functions themselves. Some of the axioms are similar to those in
characterization of the maximin principle in intra-generational equity, that is, Pareto
principle and extended Hammond equity. Others are conditions α and β , which are
often used in choice theory to describe consistent choices.

The chapter is organized as follows. Section 2 is the description of the economy,
which provides a canvas for our analysis. Axioms are stated in Sect. 3. The main
theorem, the lemmas, and their proofs are contained in Sect. 4. Section 5 provides
related examples. We conclude the chapter with some final remarks in Sect. 6.

2 Simple Dynamic Economy

Let Z+ be the set of all nonnegative integers, each element of which is used to
represent a generation or time period. For simplicity, we assume that each time
period consists of one generation, and each generation consists of one representative
individual. There is a private good, which can either be consumed or invested to be
capital that bears a return. kt denotes the accumulated capital at the beginning of time
period t ∈ Z+. In that period a fraction xt is consumed and the remainder kt − xt is



Maximin Choice Function in a Simple Dynamic Economy 141

used in production. The production technology is assumed to be linear. Then each
unit used in production brings γ units of the good at the end of the period, and are
transferred to the next period t +1. Hence

kt+1 = γ(kt − xt). (1)

We assume that the economy is productive, so that

γ > 1. (2)

The following feasibility condition for production is assumed. For all t ∈ Z+

kt ≥ 0. (3)

A feasibility condition for consumption is also assumed. That is, any individual
cannot survive without consumption. Hence, for all t ∈ Z+

xt ≥ 0.3 (4)

Now we describe our problem to find a consumption path that is selected by
Rawlsian maximin principle for intergenerational justice. For the convenience of
description, we adopt the following notation: let L∞+ = {(x0,x1, . . . ,xt , . . .)| ∀t ∈
Z+ : xt ≥ 0}. Denote a consumption path by the capital letter, for example, X =
(x0,x1, . . .). rep(x1, . . . ,xn) represents the path (x1, . . . ,xn, x1, . . . ,xn, . . .), which con-
sists of (x1, . . . ,xn) repeated infinitely many times. By the feasibility condition, con-
sumption paths ought to be chosen from the set X = {X ∈L∞+| ∀t ∈Z+ : 0≤ kt+1 =
γ(kt − xt)} given k0 > 0.4 It is convenient, however, to use the following equivalent
form: for any given k0 and γ , the set of feasible consumption paths are given by

X =

{
X = (x0,x1, . . .) ∈ L∞+

∣∣∣∣∣
∞

∑
t=0
γ−t xt ≤ k0

}
.

We denote the utility function of generation t ∈ Z+, or often called individual t,
by Wt(X) when the consumption path X is attained. We assume that generation t
derives utility from her own consumption xt and also from her immediate n− 1
descendants’ satisfaction, where n ≥ 2, so that her utility function depends on the
consumption stream of n generations beginning with her own. We also assume that
the utility function Wt is the same for all generations t ∈Z+, that is, Wt =W for all t.
Following Arrow (1973) and Dasgupta (1974a, b), we assume that W is additively
separable as to generations for simplicity, that the felicity ascribed by individual t
to individual t + i is the same as that ascribed by individual t + i to herself, that the

3 Any path on which at least one generation survives is meaningful for the discussion of intergen-
erational equity. It is possible for a generation to exhaust the whole amount of the good inherited
from the past. Here we impose a mild requirement on the feasibility of the consumption.
4 X depends on the initial capital stock k0. But in the following discussion, k0 is given from the
outside at the outset so that we employ the notation X instead of X (k0).
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felicity function is the same for all t, and that the felicity of the future generations is
discounted in the utility of the present generation. That is,

Wt(X) = W (xt ,xt+1, . . . ,xt+n−1) =
n−1

∑
i=0
ρiU(xt+i), (5)

where ρ0 = 1 and ρi (1 ≤ i ≤ n− 1) are a parameters reflecting the weight each
generation attach to the future generations. We assume that the weight of a farther
future generation is smaller, that is, ρi≥ ρi+1 (0≤ i≤ n−1). The felicity function U
is assumed to satisfy the following conditions: (a) U :ℜ+→ℜ is twice continuously
differentiable; (b) U ′(x) > 0 and U ′′(x) < 0.

We focus our concern on the case in which the optimal consumption path for the
maximin principle has a saw-tooth shape.5 Therefore, we assume

γ iρi < γ jρ j (0≤ i < j ≤ n). (6)

This assumption requires that each generation obtains more utility if she bequeaths
capital to the next generation than that if she consumes it by herself. Although the
utility of the next generation is discounted by ρ , the total utility will go up if the
increase in production is included.

Then, the maximin principle of justice gives a solution to the problem

max
X∈S

min
t

Wt(X)⇐⇒ max
X∈S

min
t

W (xt ,xt+1, · · · ,xt+n−1),

⇐⇒ max
X∈S

min
t

n−1

∑
i=0
ρiU(xt+i), (7)

where S is any subset of X .
Now we present Arrow’s theorem on the maximin path. Let x̂ be the consumption

level that allows to bequeath the same amount of capital as the initial level to the
next generation, that is,

x̂ =
γ−1
γ

k0. (8)

Clearly, the consumption path rep(x̂) satisfies the feasibility condition. In other
words, the constant consumption x̂ will cause kt to remain constant at the initial
level k0.

Let (xR
0 ,xR

1 , . . . ,xR
n ) be the solution to the problem

max
x0,x1,...,xn−1

n−1

∑
i=0
ρiU(xi), (9)

s.t.
n−1

∑
i=0
γ−ixi = x̂

n−1

∑
i=0
γ−i. (10)

5 The inequality (6) is a necessary condition for the case. See Arrow (1973).
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Equation (10) is equivalent to the condition kn = k0. Therefore, this problem can
be interpreted as the maximization problem of generation 0’s utility, subject to the
restriction that generation 0 must bequeath k0 to generation n.

Then we have the following theorem by Arrow (1973), which is the most funda-
mental proposition in this field.

Theorem 1. [Arrow (1973); Theorem 3] Suppose that the utility of any generation
t is given by

Wt(X) =
n−1

∑
i=0
ρiU(xt+i),

γ iρi increases with i for i ≤ n− 1, and ρi is nonincreasing in i. Then the feasible
consumption path that maximizes mint Wt can be characterized as follows. Choose
x∗i (i = 0, . . . ,n−1) to maximize W (x0, . . . ,xn−1) subject to the constraint

n−1

∑
i=0
γ−ixi = x̂

n−1

∑
i=0
γ−i,

where x̂ is given in (8). Then at the optimum (i) xnl+i = x∗i (0 ≤ i ≤ n− 1) for any
l ∈Z+. For this path the following properties hold: (ii) x∗i < x∗i+1; (iii) Wt = mint Wt ,
if t is divisible by n; (iv) for all other t, Wt ≥ mint Wt , and (v) the inequality is strict
if ρi > ρi+1 for some i < n−1.

We define a choice function C that maps any nonempty set S ⊆ X of feasible
consumption paths to its subset, given a utility function W . Because W is given and
fixed throughout this chapter, a choice function is denoted by C(S). We define the
Rawlsian choice function CR, which maps any feasible set S of consumption paths
to the set of all maximin consumption paths XR in S, given a utility function W . It
is not generally true that CR(S) �= ∅ for all S⊆X and W , but Arrow (1973) showed
CR(X ) �= ∅ under the above utility function W .

3 Axioms

In this section, we define several axioms for a characterization of the maximin prin-
ciple in this simple dynamic economy.6 First, we define two binary relations on X .
One is the strict Paretian relation, �P, which is given by: for any X1,X2 ∈ X ,

X1 �P X2 ⇐⇒ ∀t : Wt(X1) > Wt(X2).

Another is the Hammond equity relation, �H, which is defined as, for any
X1,X2 ∈ X
6 See Hammond (1976, 1979), Sen (1970), and Suzumura (1983) to understand the meanings of
the axioms in the classical environment. In the following definitions, we employ those in Suzumura
(1983).



144 K. Suga, D. Udagawa

X1 �H X2 ⇐⇒ ∃t1, t2 ∈ Z+ : (i) Wt1(X1)≤Wt2(X1),

(ii) Wt1(X1)≥Wt1(X2),

(iii) Wt2(X1)≤Wt2(X2),and

(iv) Wt(X1) = Wt(X2) ∀t �= t1, t2.

By extending the Hammond equity principle, we introduce a new concept of
equity among groups of generations. It is called the extended Hammond equity
principle, which implies a fairness requirement that we should treat two groups
of generations equally if they are regarded equal in utility profiles. As an auxiliary
step, we follow Suzumura (1983) to introduce the lexicographic ordering RL on the
Euclidean n-space En. For every v∈ En, let i(v) denote the ith smallest element, ties
being broken arbitrarily, so that we have

v1(v) ≤ v2(v) ≤ ·· · ≤ vn(v).

We may then define three binary relations PL, IL, and RL on En by

v1PLv2 ⇐⇒ ∃r ≤ n :

⎧
⎪⎨
⎪⎩

∀i ∈ {1,2, . . . ,r−1} : v1
i(v1) = v2

i(v2)

&
v1

r(v1) > v2
r(v2),

v1ILv2 ⇐⇒ ∀i ∈ {1,2, . . . ,r−1} : v1
i(v1) = v2

i(v2),

and
v1RLv2⇐⇒ v1PLv2 or v1ILv2 for all v1,v2 ∈ En.

We are now in the position of defining an axiom for extended Hammond equity.
Take any two groups of generations G1, G2, which consist of finite number n of suc-
cessive generations. For any consumption path X1, X2, we have two n-dimensional
vectors (Wt(X1))t∈G1 and (Wt(X2))t∈G2 . With this notation we define an extension
of Hammond equity relations in the case of sympathy to n− 1 future generations.
The strict extended Hammond relation, �EH, is defined by: for any X1,X2 ∈ X ,
X1 �EH X2 if and only if there exist tr and t p such that

(i) Wt(X2)≥Wt(X1) (t = tr− (n−1), . . . , tr),
(ii) Wt(X1)≥Wt(X2) (t = t p− (n−1), . . . , t p),

(iii) Wt(X1) = Wt(X2) (otherwise), and
(iv) (Wt(X1))t=tr−(n−1),...,tr PL(Wt(X2))t=t p−(n−1),...,t p ,

where Wt(Xi) = W0(Xi) for t < 0, i = 1,2. The extended Hammond indiffer-
ence relation, ∼EH, is defined by: for any X1,X2 ∈ X , X1 ∼EH X2 if and only if
(Wt(X1))t∈G1IL(Wt(X2))t∈G2 holds. The extended Hammond equity relation, �EH,
is defined by: for any X1,X2 ∈ X

X1 �EH X2 ⇐⇒ X1 �EH X2 or X1 ∼EH X2.
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This relation represents a concept of equity between two groups of successive
generations, which is applied to the case where a change in the consumption of a
generation causes a change in the utilities of the whole group. The reason why we
need this type of requirement is that a change in the consumption of some generation
under the feasibility of the economy brings increase in utility to a group of succes-
sive generations and decrease to another group that does not satisfy the conditions
presupposed in the definition of the Hammond equity relation.

Now we provide five axioms. The first axiom simply requires non-emptiness of
the choice set from the set of all feasible paths.

Definition 1. A choice function C satisfies nonempty choice from X (NE) iff
C(X ) �= ∅.

The second axiom is a requirement that if a consumption path in a feasible set
S is extended Hammond superior to a path in the choice set C(S), then it is also
included in C(S).

Definition 2. A choice function C satisfies inclusion of extended Hammond superior
paths (IEH) iff ∀X1,X2 ∈ X ∀S⊆X :

[X1 �EH X2 & X1 ∈ S & X2 ∈C(S)]⇒ X1 ∈C(S).

The third axiom is a requirement that a path which is Pareto inferior to another
path in a feasible set S is excluded from the choice set C(S).

Definition 3. A choice function C satisfies exclusion of Pareto inferior paths (EP)
iff ∀X1,X2 ∈ X ∀S⊆X :

[X1 �P X2 & X1 ∈ S]⇒ X2 �∈C(S).

The next two axioms are conditions of consistency for the choice sets. The fourth
axiom is a requirement that any path in the choice set for a larger feasible set is also
included in the choice set for a smaller feasible set if the path belongs to that set.

Definition 4. A choice function C satisfies condition α iff ∀S1,S2 ⊆ X ,S1 ⊆ S2 :
∀X1 ∈ S1:

X1 ∈C(S2)⇒ X1 ∈C(S1).

The fifth axiom is a requirement that if a path in the choice set for a smaller
feasible set is included in the choice set for a larger feasible set, then any other path
in the choice set for the smaller feasible set is also included in the choice set for the
larger feasible set.

Definition 5. A choice function C satisfies condition β iff ∀S1,S2 ⊆ X ,S1 ⊆ S2 :
∀X1 ∈ S1,X2 ∈ S2 :

[X1 ∈C(S1)∩C(S2) & X2 ∈C(S1)]⇒ X2 ∈C(S2).
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4 Main Theorem

We are in the position to provide our main theorem about the characterization of the
Rawlsian choice function.

Lemma 1. Suppose that the utility of any generation t is given by

Wt(X) =
n−1

∑
i=0
ρiU(xt+i),

γ iρi increases with i for i≤ n−1, and ρi is non increasing in i. If a choice function
C satisfies NE, EP, IEH, conditions α and β , then,

C(X ) = CR(X ).

To prove this lemma we need Lemmas 2.–4..

Lemma 2. Suppose that the utility of any generation t is given by

Wt(X) =
n−1

∑
i=0
ρiU(xt+i),

γ iρi increases with i for i≤ n−1, and ρi is nonincreasing in i. If a choice function
C satisfies NE, EP, IEH, α , and β , then W0(X) = mint Wt(X) for all X ∈C(X ).

Proof. By NE, C(X ) �= ∅. Suppose that X∗ ∈C(X ) and that W0(X∗) �= mint Wt(X∗).
There are two cases to be considered: (i) there exists mint Wt(X∗) and mint Wt(X∗) <
W0(X∗); or (ii) there does not exist mint Wt(X∗). In both cases, we can find some
generation enjoying less welfare than generation 0. Let tm be such generation. For
any q ∈ (0,1), we can construct a feasible consumption path X1 defined as follows:

⎧⎨
⎩

x1
0 = x∗0− ε

x1
tm+n−1 = x∗tm+n−1 +qεγ tm+n−1

x1
t = x∗t (t �= 0, tm +n−1).

For sufficiently small ε > 0, we have the following:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

W0(X1) < W0(X∗),
Wt(X1) > Wt(X∗), (tm ≤ t ≤ tm +n−1),
W0(X1) > Wtm(X1),
Wt(X1) = Wt(X∗), (0 < t < tm or tm +n−1 < t).

Then, by the definition of the extended Hammond relation,

X1 �EH X∗. (11)

In making the path X1 from X∗ there remains an amount of the consumption good
(1−q)ε . If we increase the consumption by δ > 0 for each generation by dividing
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the amount (1−q)ε , the equality

δ (1+ γ−1 + γ−2 + · · ·) = δ
∞

∑
t=0
γ−t = (1−q)ε

must hold. Hence, we can construct a feasible consumption path X2 defined as
follows:

x2
t = x1

t +(1−q)
ε

∞

∑
t=0
γ−t

for all t ≥ 0. Then
X2 �P X1. (12)

By (12) and condition EP,

X1 �∈C({X∗,X1,X2}). (13)

Now we show X∗ �∈ C({X∗,X1,X2}). Suppose on the contrary that X∗ ∈
C({X∗,X1,X2}). Then we obtain X1 ∈ C({X∗,X1,X2}) by (11) and condition
IEH. Applying condition α to this relation,

X1 ∈C({X∗,X1}). (14)

Since X∗ ∈C(X ), we have
X∗ ∈C({X∗,X1}), (15)

with the help of {X∗,X1} ⊆ X and condition α . Equations (14) and (15) together
imply

{X∗,X1}= C({X∗,X1}). (16)

Under the assumption X∗ ∈C({X∗,X1,X2}), (16) with condition β implies

X1 ∈C({X∗,X1,X2}),

which contradicts (13). Therefore

X∗ �∈C({X∗,X1,X2}) (17)

must hold.
On the other hand, X∗ ∈ C(X ) implies that X∗ ∈ C({X∗,X1,X2}) with the

help of condition α . This contradicts (17). Hence W0(X) = mint Wt(X) for any
X∈C(X ). ��

Lemma 3. Suppose that the utility of any generation t is given by

Wt(X) =
n−1

∑
i=0
ρiU(xt+i),
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γ iρi increases with i for i≤ n−1, and ρi is nonincreasing in i. If a choice function
C satisfies NE, EP, IEH, conditions α , and β , then generation 0 in X∗ ∈ C(X ) has
the largest welfare among all feasible consumption paths where generation 0 has
the least welfare among all the generations. That is,

W0(X∗) = max
X∈D0

W0(X)

for any X∗ ∈C(X ), where D0 = {X ∈ X |W0(X) = mint Wt(X)}.

Proof. By NE, C(X ) �= ∅. Suppose, on the contrary, that X∗ ∈ C(X ) and that
there is X∗∗ ∈ D0 such that W0(X∗) < W0(X∗∗). Let X∗∗∗ = arg maxX∈D0 W0(X).
Then W0(X∗) < W0(X∗∗)≤W0(X∗∗∗). Hence, without loss of generality, we assume
X∗∗∗ = X∗∗. By the feasibility condition and assumptions of U , (x∗∗0 , . . . ,x∗∗n−1) is the
unique solution of the problem:

max
x0,...,xn−1

n−1

∑
t=0
ρtU(xt)

s.t.
n−1

∑
t=0
γ−t xt = x̂

n−1

∑
t=0
γ−t .

Therefore, (x∗∗0 , . . . ,x∗∗n−1) is characterized by

MRS(x∗∗i ,x∗∗j ) =
ρiU ′(x∗∗i )
ρ jU ′(x∗∗j )

= γ j−i,

for any 0≤ i < j ≤ n−1.
Two cases should be distinguished.

Case 1: x∗i < x∗∗i .
The assumptions of U assure that

MRS(x∗i ,x
∗
j) =

ρiU ′(x∗i )
ρ jU ′(x∗j)

> γ j−i.

Consider X1 and X2 defined as follows:
⎧⎨
⎩

x1
i = x∗i +qε,

x1
j = x∗j − γ j−iε,

x1
t = x∗t (t �= i, j),

and for all t ≥ 0

x2
t = x1

t +(1−q)
ε

∞

∑
t=0
γ−t

,
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where 0 < q < 1, ε > 0. Then
X2 �P X1. (18)

By (18) and condition EP,

X1 �∈C({X∗,X1,X2}). (19)

For sufficiently small ε ,
⎧⎪⎨
⎪⎩

Wt(X1) > Wt(X∗), (t = i− (n−1), . . . , i),
Wt(X1) < Wt(X∗), (t = j− (n−1), . . . , j),
Wt(X1) = Wt(X∗), (otherwise)

hold so that (Wt(X1))t= j−(n−1),..., jPL(Wt(X1))t=i−(n−1),...,i by the continuity of W .
Hence we have X1 �EH X∗ by the extended Hammond equity.

Now we show X∗ �∈ C({X∗,X1,X2}). Suppose on the contrary that X∗ ∈
C({X∗,X1,X2}). Then we obtain X1 ∈ C({X∗,X1,X2}) by (11) and condition
IEH. Applying condition α to this relation,

X1 ∈C({X∗,X1}). (20)

Since X∗ ∈C(X ), we have
X∗ ∈C({X∗,X1}) (21)

with the help of {X∗,X1} ⊆ X and condition α . Equations (20) and (21) together
imply

{X∗,X1}= C({X∗,X1}). (22)

Under the assumption X∗ ∈C({X∗,X1,X2}), (16) with condition β implies

X1 ∈C({X∗,X1,X2}),

which contradicts (19). Therefore

X∗ �∈C({X∗,X1,X2}) (23)

must hold.
On the other hand, X∗ ∈C(X ) implies that X∗ ∈C({X∗,X1,X2}) with the help

of condition α . This contradicts (23). Hence this case cannot be true.

Case 2: x∗i > x∗∗i .
The assumptions of U assure that

MRS(x∗i ,x
∗
j) =

ρiU ′(x∗i )
ρ jU ′(x∗j)

< γ j−i.
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Define X1 and X2 as follows:
⎧⎨
⎩

x1
i = x∗i − ε,

x1
j = x∗j +qγ j−iε,

x1
t = x∗t (t �= i, j),

and for all t ≥ 0

x2
t = x1

t +(1−q)
ε

∞

∑
t=0
γ−t

,

where 0 < q < 1, ε > 0. Then, by the same reasoning as Case 1, we come to the
contradiction that X∗ ∈C({X∗,X1,X2}) and X∗ �∈C({X∗,X1,X2}). Hence this case
cannot be true either.

By Cases 1 and 2, we have a contradiction for any 0 ≤ i < j ≤ n− 1 if
MRS(x∗i ,x

∗
j) �= γ j−i. Therefore, generation 0 in X∗ ∈ C(X ) has the largest wel-

fare among all feasible consumption paths where generation 0 has the least welfare
among all the generations. ��

The next lemma shows a sufficient condition for a consumption path to be infea-
sible. The idea of the proof is due to Lemma 1 in Arrow (1973).

Lemma 4. Suppose that the utility of any generation t is given by

Wt(X) =
n−1

∑
i=0
ρiU(xt+i),

γ iρi increases with i for i≤ n−1, and ρi is nonincreasing in i. If a consumption path

X satisfies that
n−1

∑
s=0
γ−sxs+ln ≥

n−1

∑
s=0
γ−sxR

s for all l ∈ Z+ and
n−1

∑
s=0
γ−sxs+ln >

n−1

∑
s=0
γ−sxR

s

for some l′ ∈ Z+, then X is infeasible.

Proof. By the feasibility condition, the relation between kln and k(l+1)n can be writ-
ten as

k(l+1)n = γn

(
kln−

n−1

∑
s=0
γ−sxs+ln

)
. (24)

On the other hand, a Rawlsian maximal consumption path satisfies the condition
that kn = k0. Hence

k0 = γn

(
k0−

n−1

∑
s=0
γ−sxR

s+ln

)
. (25)

By (24) and (25),

k(l+1)n− k0 = γn

[
(kln− k0)−

(
n−1

∑
s=0
γ−sxs+ln−

n−1

∑
s=0
γ−sxR

s+ln

)]
.
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For simplicity of description, define hl and al as follows:

hl =
n−1

∑
s=0
γ−sxs+ln−

n−1

∑
s=0
γ−sxR

s+ln,

al = γ−ln(kln− k0).

Then, γ(l+1)nal+1 = γn(γ lnal−hl) iff al+1 = al−γ−lnhl . Since a0 = 0 by definition,
al = ∑l−1

u=0 γ
−nuhu is true. Now, by the assumptions of lemma and definitions of hl

and al , the following inequality holds:

limsup
l→∞

l−1

∑
u=0
γ−nuhu > 0.

Then, for some ε > 0, there is sufficiently large l̄ such that al < −ε for l ≥ l̄.
Since γ−lnk0 < ε for any sufficiently large l, there exists some l′ ∈ Z+ such that
al′ <−γ l′nk0 . Hence kl′n < 0, and X is infeasible. ��

Now we provide the proof of lemma 1. with these lemmas.

Proof of lemma 1.:
By NE, C(X ) �= ∅. Let X∗ be any consumption path in C(X ). By Lemma

3. and Theorem 1, W0(X∗) ≥ W0(XR). Suppose that W0(X∗) > W0(XR). Then
Wln(X∗)>W0(XR) for all l ∈ Z+ by Lemma 2.. Since (xR

0 , . . . ,xR
n−1) is the unique

solution of the maximization problem (9) and (10) and the consumption path XR is
an infinite repetition of (xR

0 , . . . ,xR
n−1) by Theorem 1,

n−1

∑
s=0
γ−sx∗s+ln >

n−1

∑
s=0
γ−sxR

s

holds for all l ∈ Z+. Hence, X∗ is infeasible by Lemma 4., which is a contradiction.
Therefore, we have W0(X∗) = W0(XR).

Since, for all l ∈ Z+,

Wln(X∗)≥minWt(X∗) = W0(X∗) = W0(XR)

holds,
n−1

∑
s=0
γ−sx∗s+ln ≥

n−1

∑
s=0
γ−sxR

s , (26)

for all l ∈ Z+. By Theorem, 1 (xR
0 , . . . ,xR

n−1) is the unique maximum of the
problem (9) and (10). Hence equality (26) holds only when (x∗ln, . . . ,x

∗
(l+1)n−1) =

(xR
0 , . . . ,xR

n−1). Therefore, X∗ = rep(xR
0 , . . . ,xR

n−1) = XR. �
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We provide the converse of Lemma 1..

Lemma 5. Suppose that the utility of any generation t is given by

Wt(X) =
n−1

∑
i=0
ρiU(xt+i),

γ iρi increases with i for i≤ n−1, and ρi is nonincreasing in i. The Rawlsian choice
function CR satisfies NE, IEH, EP, α , and β .

Proof. NE: As noted in Sect. 2, Arrow (1973) showed CR(X ) �= ∅.
IEH: Suppose that (i) S⊆X , (ii) X1 ∈ S, (iii) X2 ∈CR(S), and (iv) X1 �EH X2.

By (iv), mint Wt(X1) ≥ mint Wt(X2). Then X1 ∈CR(S), so that IEH holds.
EP: Suppose that (i) S ⊆ X , (ii) X1 ∈ S, and (iii) X1 �P X2. Then, by (iii),

mint Wt(X1) > mint Wt(X2). So X2 �∈CR(S) and EP holds.
Condition α: Suppose that (i) S1 ⊆ S2 ⊆ X , (ii) X1 ∈CR(S2), and (iii) X1∈S1.

By (i) and (ii), mint Wt(X1) ≥ mint Wt(X) for all X ∈ S1. Hence, we obtain
X1∈CR(S1), and condition α holds.

Condition β : Suppose that (i) S1⊆S2⊆X , (ii) X1,X2 ∈ CR(S1). By (ii),
mint Wt(X1)= mint Wt(X2). Therefore, we have X1∈CR(S2) ⇐⇒ X2∈CR(S2). ��

With Lemmas 1. and 5., we finally come to the following characterization theo-
rem.

Theorem 1. Suppose that the utility of any generation t is given by

Wt =
n−1

∑
i=0
ρiU(xt+i),

that γ iρi increases with i for i≤ n−1, and that ρi is nonincreasing in i. Then, (i) the
Rawlsian choice function CR satisfies NE, EP, IEH, α , and β ; and (ii) if a choice
function C satisfies NE, EP, IEH, α , and β , then C(X ) = CR(X ).

5 Related Examples

As for independence of the axioms we must examine in five cases whether there
exists a choice function that satisfies all but one axiom. In the following, we show
only three examples. Examination of other cases is an important task in our future
research. The next three examples are related to NE, IEH, and EP, respectively. The
first example is trivial.

Example 1. The empty choice function, C0(S) = ∅, satisfies EP, IEH, α , and β , but
it violates NE.

We show that a myopic choice function satisfies the other axioms than IEH.
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Example 2. A myopic choice function, CM(S) = argmaxX∈S W0(X), satisfies NE,
EP, α , and β , but it violates IEH.

First, we show that CM satisfies EP. Suppose that for any X1, X2, and any S,
[X1 �P X2 and X1 ∈ S] hold. Then W0(X1) > W0(X2). By the definition of CM, if X1

is feasible, CM(S) does not contain X2. Therefore, CM satisfies EP.
Second, suppose that CM satisfies the hypothesis of condition α . Then, by the

definition of CM, generation 0 has the maximal welfare on X1 in S2. Hence, clearly
it does so in S1 (⊆ S2).

Third, suppose that CM satisfies the hypothesis of β . Then by the definition of
CM, generation 0 has the same welfare on both X1 and X2 and therefore the conclu-
sion of β holds.

Now, consider two consumption paths, X1 and X2, such that W (X1) =
(2,0,0,0,0, ...) and W (X2) = (1,1,0,0,0, ...). IEH requires X2 ∈ C({X1,X2}),
but {X1} = C({X1,X2}) by definition. Therefore, IEH does not hold.

A trivial choice function satisfies the other axioms than EP.

Example 3. A trivial choice function, CT(S) = S, satisfies NE, IEH, α , and β , but it
violates EP.

CT always contains all feasible consumption paths. So the conclusions of IEH,
α , and β hold for any feasible set and any utility function, respectively. Therefore,
CT satisfies IEH, α , and β .

On the other hand, CT violates EP.

6 Concluding Remarks

This chapter has provided an axiomatic characterization of the Rawlsian choice
function in the Arrow–Dasgupta economy. Properties of the maximin consumption
path have been examined by Arrow (1973) and Dasgupta (1974a, b), and it was
shown that the maximin principle generates a saw-tooth shaped path. We make use
of the axioms of non-emptiness, the Pareto principle, extended Hammond equity,
conditions α and β to characterize the Rawlsian choice function. Pareto principle
and Hammond equity are familiar to the characterization of the maximin princi-
ple in an intragenerational economy. Extended Hammond equity is an extension
thereof in a dynamic economy with sympathetic preferences to future generations.
Our versions of these conditions are exclusion of Pareto inferior paths and inclusion
of extended Hammond superior paths. Conditions α and β are also familiar to the
characterization of consistent choice functions.

Our characterization of the Rawlsian choice function is partial, in that Theorem 2
does not provide a complete axiomatization. We have shown that the Rawlsian
choice function satisfies the above five axioms, and that the choice function sat-
isfying these axioms generates the same choice set as that by the Rawlsian choice
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function when the opportunity set is the whole set of feasible paths. A full charac-
terization of the Rawlsian choice function is a good research agenda in the field of
intergenerational equity, which is left for future study.

The other remaining problems to be solved along this line of research are as
follows. First, we must classify the family of choice functions that satisfies NE, IEH,
α , β , and a weaker axiom of Pareto principle than EP. Since this family contains
the Rawlsian choice function, we should explore whether there exists any other
eligible one than the trivial choice function. Second, we must verify whether any
other choice function than the myopic one that satisfies NE, EP, α , and β . Third, we
should scrutinize the possibility whether other consistency axioms characterize the
Rawlsian choice function.
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Suzumura Consistency

Walter Bossert

1 Introduction

Binary relations are at the heart of much of economic theory, both in the context of
individual choice and in multi-agent decision problems. A fundamental coherence
requirement imposed on a relation is the well-known transitivity axiom. If a rela-
tion is interpreted as a goodness relation, transitivity postulates that whenever one
alternative is at least as good as a second and the second alternative is, in turn, at
least as good as a third, then the first alternative is at least as good as the third. How-
ever, from an empirical as well as a conceptual perspective, transitivity is frequently
considered too demanding and weaker notions of coherence have been proposed in
the literature. Two alternatives that have received a considerable amount of attention
are quasi-transitivity and acyclicity. Quasi-transitivity demands that the asymmetric
factor of a relation (the betterness relation) is transitive, whereas acyclicity rules out
the presence of betterness cycles. Quasi-transitivity is implied by transitivity and
implies acyclicity. The reverse implications are not valid.

Suzumura (1976b) introduced an interesting alternative weakening of transi-
tivity and showed that it can be considered a more intuitive property than quasi-
transitivity. This notion of coherence, which Suzumura introduced under the name
consistency, rules out the presence of cycles with at least one instance of betterness.
Thus, the axiom is stronger than acyclicity and weaker than transitivity. It is equiv-
alent to transitivity in the presence of reflexivity and completeness but independent
of quasi-transitivity. Because the term consistency is used in various other contexts
in economic theory (see, for instance, Thomson (1990)), I propose to refer to the
axiom as Suzumura consistency.

Suzumura consistency is exactly what is needed to avoid the phenomenon of a
money pump. If Suzumura consistency is violated by an agent’s goodness relation,

W. Bossert
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there exists a cycle with at least one instance of betterness. In this case, the agent
under consideration is willing to trade an alternative for another alternative (where
‘willing to trade’ is interpreted as being at least as well-off after the trade as before),
the second alternative for a third and so on, until an alternative is reached such that
getting back the original alternative is better than retaining possession of the last
alternative in the chain. Thus, at the end of such a chain of exchanges, the agent is
willing to give up the last alternative and, in addition, to pay a positive amount to
get back the original alternative.

An important property of Suzumura consistency is that it is necessary and suf-
ficient for the existence of an ordering extension of a relation. Szpilrajn (1930)
showed that, for any asymmetric and transitive relation, there exists an asymmet-
ric, transitive and complete relation that contains the original relation. An analo-
gous result applies if asymmetry is replaced with reflexivity. Suzumura (1976b) has
shown that the transitivity assumption can be weakened to Suzumura consistency
without changing the conclusion regarding the existence of an ordering extension.
Moreover, Suzumura consistency is the weakest possible property that guarantees
this existence result. Because extension theorems are of considerable importance
in many applications of set theory, this is a fundamental result and illustrates the
significance of the property.

The purpose of this paper is to review the uses of Suzumura consistency in a var-
iety of applications and to provide some new observations, with the objective of
further underlining the importance of this axiom. The first step is a statement of
Suzumura’s (1976b) extension theorem in the following section, followed by an ap-
plication in the theory of rational choice due to Bossert, Sprumont, and Suzumura
(2005a) in Sect. 3. The last two sections provide new observations. In Sect. 4, a
variant of the welfarism theorem that assumes Suzumura consistency instead of
transitivity is provided, and Sect. 5 illustrates how an impossibility result in pop-
ulation ethics can be turned into a possibility by weakening transitivity to Suzumura
consistency.

2 Relations and Extensions

Suppose X is a non-empty set of alternatives and R ⊆ X ×X is a (binary) relation
on X which is interpreted as a goodness relation, that is, (x,y) ∈ R means that x is
considered at least as good as y by the agent (or society) under consideration. The
diagonal relation Δ on X is defined by

Δ = {(x,x) | x ∈ X}.

The asymmetric factor of a relation R is defined by

P(R) = {(x,y) | (x,y) ∈ R and (y,x) �∈ R}
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and the symmetric factor of R is

I(R) = {(x,y) | (x,y) ∈ R and (y,x) ∈ R}.

Given the interpretation of R as a goodness relation, P(R) is the better-than relation
corresponding to R and I(R) is the equally-good relation associated with R.

The transitive closure tc(R) of a relation R is defined by

tc(R) = {(x,y) | there exist M ∈ N and x0, . . . ,xM ∈ X such that
x = x0,(xm−1,xm) ∈ R for all m ∈ {1, . . . ,M} and xM = y}.

As is straightforward to verify,

R⊆ Q ⇒ tc(R)⊆ tc(Q) (1)

for any two relations R and Q.
To illustrate the transitive closure, consider the following examples. First, let X =

{x,y,z} and R = {(x,x),(x,y),(y,y),(y,z),(z,x),(z,z)}. We obtain tc(R) = X×X . In
addition to the pairs in R, the pair (x,z) must be in the transitive closure of R because
we have (x,y) ∈ R and (y,z) ∈ R. Analogously, (y,x) must be an element of tc(R)
because (y,z) ∈ R and (z,x) ∈ R, and (z,y) must be in tc(R) because (z,x) ∈ R and
(x,y) ∈ R. Now let X = {x,y,z} and R = {(x,y),(y,z)}. As it is straightforward to
verify, we have tc(R) = {(x,y),(y,z),(x,z)}.

A relation R is reflexive if, for all x ∈ X ,

(x,x) ∈ R

and R is asymmetric if
R = P(R).

Furthermore, R is complete if, for all x,y ∈ X ,

x �= y ⇒ (x,y) ∈ R or (y,x) ∈ R

and R is transitive if, for all x,y,z ∈ X ,

(x,y) ∈ R and (y,z) ∈ R ⇒ (x,z) ∈ R.

R is Suzumura consistent if, for all x,y ∈ X ,

(x,y) ∈ tc(R)⇒ (y,x) �∈ P(R).

A quasi-ordering is a reflexive and transitive relation and an ordering is a complete
quasi-ordering.

The notion of Suzumura consistency is due to Suzumura (1976b) and it is equiv-
alent to the requirement that any cycle must be such that all relations involved in
this cycle are instances of equal goodness – betterness cannot occur. Clearly, this
requirement implies (but is not implied by) the well-known acyclicity axiom which
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Transitivity

↓ ↓
Suzumura consistency Quasi-transitivity

↓ ↓
Acyclicity

Fig. 1 Logical relationships

rules out the existence of betterness cycles (cycles where all relations involve the
asymmetric factor of the relation). Suzumura consistency and quasi-transitivity,
which requires that P(R) is transitive, are independent. Transitivity implies Suzu-
mura consistency but the reverse implication is not true in general. However, if R is
reflexive and complete, Suzumura consistency and transitivity are equivalent. Fig-
ure 1 illustrates the relationships among transitivity and the above-mentioned weak-
enings of this property. Each arrow represents a direct implication, and these impli-
cations together with those resulting from chains of arrows are the only ones that
are valid in the absence of further properties imposed on R.

A relation R′ is an extension of a relation R if

R⊆ R′ and P(R)⊆ P(R′).

If an extension R′ of R is an ordering, we refer to R′ as an ordering extension of R.
One of the most fundamental results on extensions of binary relations is due to
Szpilrajn (1930) who showed that any transitive and asymmetric relation has a tran-
sitive, asymmetric and complete extension. The result remains true if asymmetry
is replaced with reflexivity, that is, any quasi-ordering has an ordering extension.
Arrow (1963, p. 64) stated this generalization of Szpilrajn’s theorem without a proof
and Hansson (1968) provided a proof on the basis of Szpilrajn’s original theorem.

While the property of being a quasi-ordering is sufficient for the existence of
an ordering extension of a relation, this is not necessary. As shown by Suzumura
(1976b), Suzumura consistency is necessary and sufficient for the existence of an
ordering extension. This observation is stated formally in the following theorem, see
Suzumura (1976b, pp. 389–390) for a proof.

Theorem 1. A relation R has an ordering extension if and only if R is Suzumura
consistent.

Theorem 1 is an important result. It establishes that Suzumura consistency is
the weakest possible property of a relation that still guarantees the existence of an
ordering extension. Note that quasi-transitivity (which, as mentioned earlier, is log-
ically independent of Suzumura consistency) has nothing to do with the possibility
of extending a binary relation to an ordering.
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3 Rational Choice

Suzumura consistency has recently been examined in the context of rational choice.
Observed (or observable) choices are rationalizable if there exists a relation such
that, for any feasible set, the set of chosen alternatives coincides with the set of
greatest or maximal elements according to this relation.

Following the contributions of Hansson (1968), Richter (1966, 1971), Suzumura
(1976a, 1977, Chap. 2 in 1983) and others, the approach to rational choice analyzed
in this paper is capable of accommodating a wide variety of choice situations be-
cause no restrictions (other than non-emptiness) are imposed on the domain of a
choice function. Letting X denote the power set of X excluding the empty set, a
choice function is a mapping C : Σ → X such that C(S) ⊆ S for all S ∈ Σ , where
Σ ⊆X with Σ �= /0 is the domain of C.

The direct revealed preference relation RC ⊆ X ×X of a choice function C with
an arbitrary domain Σ is defined as

RC = {(x,y) | there exists S ∈ Σ such that x ∈C(S) and y ∈ S}.

The (indirect) revealed preference relation of C is the transitive closure tc(RC) of
the direct revealed preference relation RC.

A choice function C is greatest-element rationalizable if there exists a relation R
on X such that

C(S) = {x ∈ S | (x,y) ∈ R for all y ∈ S}
for all S ∈ Σ . If such a relation R exists, it is called a rationalization of C. The
most common alternative to greatest-element rationalizability is maximal-element
rationalizability which requires the existence of a relation R such that, for all feasible
sets S, C(S) is equal to the set of maximal elements in S according to R, that is, no
element in S is better than any element in C(S). Bossert, Sprumont, and Suzumura
(2005b) provide a detailed analysis of maximal-element rationalizability. Logical
relationships between, and characterizations of, various notions of rationalizability,
both on arbitrary domains and under more specific domain assumptions, can be
found in Bossert, Sprumont, and Suzumura (2006).

To interpret a rationalization as a goodness relation, it is usually required that
it satisfy additional properties such as the richness axioms reflexivity and com-
pleteness, or one of the coherence properties acyclicity, quasi-transitivity, Suzu-
mura consistency and transitivity. The full set of rationalizability notions that can
be obtained by combining one or both (or none) of the richness properties with one
(or none) of the coherence properties is analyzed in Bossert and Suzumura (2008).
They show that, if all these combinations are available, it is sufficient to restrict
attention to greatest-element rationalizability: for each notion of maximal-element
rationalizability, there exists a notion of the greatest-element rationalizability (pos-
sibly involving different richness and coherence properties) that is equivalent. Thus,
restricting attention to greatest-element rationalizability does not involve any loss
of generality.
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Bossert, Sprumont, and Suzumura (2005a) have characterized all notions of ra-
tionalizability when the coherence property required is Suzumura consistency. As
mentioned earlier, Suzumura consistency and transitivity are equivalent in the pres-
ence of reflexivity and completeness. Thus, greatest-element rationalizability by
a reflexive, complete and Suzumura-consistent relation is equivalent to greatest-
element rationalizability by an ordering and Richter’s (1966, 1971) results ap-
ply; see Theorem 2. Moreover, greatest-element rationalizability by a complete
and Suzumura-consistent relation implies greatest-element rationalizability by a
reflexive, complete and Suzumura-consistent relation, and greatest-element ratio-
nalizability by a Suzumura-consistent relation implies greatest-element rational-
izability by a reflexive and Suzumura-consistent relation. Analogous observations
apply in the case of maximal-element rationalizability; see Bossert, Sprumont,
and Suzumura (2005a, Theorem 1). As pointed out in Bossert, Sprumont, and
Suzumura (2006), as soon as the coherence properties quasi-transitivity or acyclicity
are imposed, reflexivity no longer is guaranteed as an additional property of a ra-
tionalization. Thus, Suzumura consistency stands out from these alternative weak-
enings of transitivity in this regard: as is the case for transitive greatest-element
(or maximal-element) rationalizability, any notion of Suzumura-consistent greatest-
element (or maximal-element) rationalizability is equivalent to the definition that is
obtained if reflexivity is added as a property of a rationalization.

Richter (1971) showed that the following axiom is necessary and sufficient for
greatest-element rationalizability by a transitive relation and by an ordering. Thus,
the existence of a rationalizing relation that is not merely a quasi-ordering but an
ordering follows from greatest-element rationalizability by a transitive relation. This
observation sets transitive greatest-element rationalizability apart from other notions
of greatest-element rationalizability involving weaker coherence requirements.

Transitive-closure coherence. For all S ∈ Σ and for all x ∈ S,

(x,y) ∈ tc(RC) for all y ∈ S ⇒ x ∈C(S).

We now obtain the following result; see Bossert, Sprumont, and Suzumura (2005a).

Theorem 2. C is greatest-element rationalizable by a (reflexive.) complete and
Suzumura-consistent relation if and only if C satisfies transitive-closure coherence.

Proof. To prove the ‘only-if’ part, suppose C is greatest-element rationalizable by a
complete and Suzumura-consistent relation R. We prove that C is greatest-element
rationalizable by a reflexive, complete and Suzumura-consistent relation. Together
with the observation that Suzumura consistency and transitivity are equivalent in the
presence of reflexivity and completeness and Richter’s (1971) result, this establishes
that transitive-closure coherence is satisfied.

Let

R′ = [R∪Δ ∪{(y,x) | x �∈C(Σ) and y ∈C(Σ)}]
\ {(x,y) | x �∈C(Σ) and y ∈C(Σ)}.

Clearly, R′ is reflexive by definition.
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To show that R′ is complete, let x,y ∈ X be such that x �= y and (x,y) �∈ R′. By
definition of R′, this implies

(x,y) �∈ R and [x �∈C(Σ) or y ∈C(Σ)]

or
x �∈C(Σ) and y ∈C(Σ).

If the former applies, the completeness of R implies (y,x) ∈ R and, by definition of
R′, we obtain (y,x) ∈ R′. If the latter is true, (y,x) ∈ R′ follows immediately from
the definition of R′.

Next, we show that R′ is Suzumura consistent. Let (x,y) ∈ tc(R′). By definition,
there exist M ∈ N and x0, . . . ,xM ∈ X be such that x = x0, (xm−1,xm) ∈ R′ for all
m ∈ {1, . . . ,M} and xM = y. Clearly, we can, without loss of generality, assume that
xm−1 �= xm for all m ∈ {1, . . . ,M}. We distinguish two cases.

(i) x0 �∈ C(Σ). In this case, it follows that x1 �∈ C(Σ); otherwise we would have
(x1,x0) ∈ P(R′) by definition of R′, contradicting our hypothesis. Successively ap-
plying this argument to all m ∈ {1, . . . ,M}, we obtain xm �∈ C(Σ) for all m ∈
{1, . . . ,M}. By definition of R′, this implies (xm−1,xm) ∈ R for all m ∈ {1, . . . ,M}.
By the Suzumura consistency of R, we must have (xM,x0) �∈ P(R). Because xM �∈
C(Σ), this implies, according to the definition of R′, (xM,x0) �∈ P(R′).

(ii) x0 ∈ C(Σ). If xM �∈ C(Σ), (xM,x0) �∈ P(R′) follows immediately from the def-
inition of R′. If xM ∈ C(Σ), it follows that xM−1 ∈ C(Σ); otherwise we would
have (xM−1,xM) �∈ R′ by definition of R′, contradicting our hypothesis. Succes-
sively applying this argument to all m ∈ {1, . . . ,M}, we obtain xm ∈ C(Σ) for
all m ∈ {1, . . . ,M}. By definition of R′, this implies (xm−1,xm) ∈ R for all m ∈
{1, . . . ,M}. By the Suzumura consistency of R, we must have (xM,x0) �∈ P(R). Be-
cause x0 ∈C(Σ), this implies, according to the definition of R′, (xM,x0) �∈ P(R′).

Finally, we show that R′ is a rationalization of C. Let S ∈ Σ and x ∈ S.
Suppose first that (x,y)∈R′ for all y∈ S. If |S|= 1, x∈C(S) follows immediately

because C(S) is non-empty. If |S| ≥ 2, we obtain x ∈C(Σ) by definition of R′. Be-
cause R is a rationalization of C, this implies (x,x)∈R. By definition of R′, (x,z)∈R
for all z ∈ C(S). Therefore, (x,z) ∈ R for all z ∈ C(S)∪{x}. Suppose, by way of
contradiction, that x �∈ C(S). Because R is a rationalization of C, it follows that
there exists y ∈ S\ (C(S)∪{x}) such that (x,y) �∈ R. The completeness of R implies
(y,x) ∈ P(R). Let z ∈C(S). It follows that (z,y) ∈ R because R is a rationalization of
C and, as established earlier, (x,z) ∈ R. This contradicts the Suzumura consistency
of R.

To prove the converse implication, suppose x ∈C(S). Because R is a rationaliza-
tion of C, we have (x,y) ∈ R for all y ∈ S. In particular, this implies (x,x) ∈ R and,
according to the definition of R′, we obtain (x,y) ∈ R′ for all y ∈ S.

The ‘if’ part of the theorem follows immediately from the equivalence of
transitive-closure coherence and greatest-element rationalizability by a reflex-
ive, complete and transitive rationalization established by Richter (1971) and the
observation that Suzumura consistency and transitivity coincide in the presence of
reflexivity and completeness. ��
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If completeness is dropped as a requirement imposed on a rationalization,
a weaker notion of greatest-element rationalizability is obtained. In contrast to
greatest-element rationalizability by a quasi-transitive or an acyclical relation which
leads to much more complex necessary and sufficient conditions (see Bossert and
Suzumura (2008)), requiring a rationalization to be Suzumura consistent preserves
the intuitive and transparent nature of the characterization stated in Theorem 2.
There is a unique minimal Suzumura-consistent relation that has to be respected by
any Suzumura-consistent rationalization, namely, the Suzumura-consistent closure
of RC. The Suzumura-consistent closure sc(R) of a relation R is defined by

sc(R) = R∪{(x,y) | (x,y) ∈ tc(R) and (y,x) ∈ R}.

Clearly, R⊆ sc(R)⊆ tc(R). Just as tc(R) is the unique smallest transitive relation
containing R, sc(R) is the unique smallest Suzumura-consistent relation containing
R; see Bossert, Sprumont, and Suzumura (2005a).

To see that this is the case, we first establish that sc(R) is Suzumura consistent.
Suppose M ∈ N and x0, . . . ,xM ∈ X are such that (xm−1,xm) ∈ sc(R) for all m ∈
{1, . . . ,M}. We show that (xM,x0) �∈ P(sc(R)). Because sc(R)⊆ tc(R), (xm−1,xm) ∈
tc(R) for all m ∈ {1, . . . ,M}, and the transitivity of tc(R) implies

(x0,xM) ∈ tc(R). (2)

If (xM,x0) �∈ sc(R), we immediately obtain (xM,x0) �∈ P(sc(R)) and we are done.
Now suppose that (xM,x0) ∈ sc(R). By definition of sc(R), we must have

(xM,x0) ∈ R or [(xM,x0) ∈ tc(R) and (x0,xM) ∈ R].

If (xM,x0) ∈ R, (2) and the definition of sc(R) together imply (x0,xM) ∈ sc(R) and,
thus, (xM,x0) �∈ P(sc(R)). If (xM,x0) ∈ tc(R) and (x0,xM) ∈ R, (x0,xM) ∈ sc(R) fol-
lows because R⊆ sc(R). Again, this implies (xM,x0) �∈ P(sc(R)) and the proof that
sc(R) is Suzumura consistent is complete.

To show that sc(R) is the smallest Suzumura-consistent relation containing R,
suppose that Q is an arbitrary Suzumura-consistent relation containing R. To com-
plete the proof, we establish that sc(R)⊆ Q. Suppose that (x,y) ∈ sc(R). By defini-
tion of sc(R),

(x,y) ∈ R or [(x,y) ∈ tc(R) and (y,x) ∈ R].

If (x,y)∈R, (x,y)∈Q follows because R is contained in Q by assumption. If (x,y)∈
tc(R) and (y,x)∈ R, (1) and the assumption R⊆Q together imply that (x,y)∈ tc(Q)
and (y,x) ∈ Q. If (x,y) �∈ Q, we obtain (y,x) ∈ P(Q) in view of (y,x) ∈ Q. Since
(x,y) ∈ tc(Q), this contradicts the Suzumura consistency of Q. Therefore, we must
have (x,y) ∈ Q.

Thepropertyof sc(R) just established iscrucial inobtainingaclear-cut and intuitive
rationalizability result evenwithout imposingcompleteness (inwhichcaseSuzumura-
consistent greatest-element rationalizability is not equivalent to transitive greatest-
element rationalizability). In contrast, there is no such thing as a quasi-transitive
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closure or an acyclical closure of a relation, which explains why rationalizability
results involving these coherence properties are much more complex.

The following examples illustrate the Suzumura-consistent closure and its rela-
tion to the transitive closure. First, let X = {x,y,z} and R = {(x,x),(x,y),(y,y),(y,z)
(z,x),(z,z)}. We obtain sc(R) = tc(R) = X × X . Now let X = {x,y,z} and R =
{(x,y),(y,z)}. We have sc(R) = R and tc(R) = {(x,y),(y,z),(x,z)}. In the first exam-
ple, the Suzumura-consistent closure coincides with the transitive closure, whereas
in the second, the Suzumura-consistent closure is a strict subset of the transitive
closure.

Greatest-element rationalizability by means of a Suzumura-consistent (and
reflexive but not necessarily complete) relation can now be characterized by em-
ploying a natural weakening of transitive-closure coherence: all that needs to be
done is replacing the transitive closure of the direct revealed preference relation by
its Suzumura-consistent closure.

Suzumura-consistent-closure coherence. For all S ∈ Σ and for all x ∈ S,

(x,y) ∈ sc(RC) for all y ∈ S ⇒ x ∈C(S).

The following characterization is also due to Bossert, Sprumont, and Suzumura
(2005a).

Theorem 3. C is greatest-element rationalizable by a (reflexive and) Suzumura-
consistent relation if and only if C satisfies Suzumura-consistent-closure coherence.

Proof. To prove the ‘only-if’ part of the theorem, suppose R is a Suzumura-
consistent rationalization of C and let S ∈ Σ and x ∈ S be such that (x,y) ∈ sc(RC)
for all y ∈ S. Consider any y ∈ S. By definition,

(x,y) ∈ RC or [(x,y) ∈ tc(RC) and (y,x) ∈ RC].

If (x,y) ∈ RC, there exists T ∈ Σ such that x ∈C(T ) and y ∈ T . Because R greatest-
element rationalizes C, this implies (x,y) ∈ R. If (x,y) ∈ tc(RC) and (y,x) ∈ RC,
there exist M ∈ N and x0, . . . ,xM ∈ X such that x = x0, (xm−1,xm) ∈ RC for all
m ∈ {1, . . . ,M} and xM = y. As in the argument just used, the assumption that R
greatest-element rationalizes C implies (xm−1,xm) ∈ R for all m ∈ {1, . . . ,M} and,
thus, (x,y) ∈ tc(R). Furthermore, (y,x) ∈ RC implies (y,x) ∈ R because R is a ra-
tionalization of R. If (x,y) �∈ R, it follows that (y,x) ∈ P(R) in view of (y,x) ∈ R.
Because (x,y) ∈ tc(R), this contradicts the Suzumura consistency of R. Therefore,
(x,y) ∈ R. Because y ∈ S has been chosen arbitrarily, this is true for all y ∈ S and, as
a consequence of the assumption that R greatest-element rationalizes C, we obtain
x ∈C(S).

To prove the ‘if’ part, suppose C satisfies Suzumura-consistent-closure coher-
ence. We first show that sc(RC) is a Suzumura-consistent rationalization of C. That
sc(RC) is Suzumura consistent has already been established. To prove that sc(RC)
is a rationalization of C, suppose first that S ∈ Σ and x ∈ S. Suppose (x,y) ∈ sc(RC)
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for all y ∈ S. Suzumura-consistent-closure coherence implies x ∈C(S). Conversely,
suppose x ∈C(S). By definition, this implies (x,y) ∈ RC for all y ∈ S and, because
RC ⊆ sc(RC), we obtain (x,y) ∈ sc(RC) for all y ∈ S. The proof is completed by
showing that

R′ = (sc(RC)∪Δ)\{(x,y) | x �∈C(Σ) and x �= y}

is a reflexive and Suzumura-consistent rationalization of C.
That R′ is reflexive is obvious. To prove that R′ is Suzumura consistent, sup-

pose (x,y) ∈ tc(R′). Thus, there exist M ∈ N and x0, . . . ,xM ∈ X such that x = x0,
(xm−1,xm) ∈ R′ for all m ∈ {1, . . . ,M} and xM = y. Clearly, we can without loss
of generality assume that xm−1 �= xm for all m ∈ {1, . . . ,M}. By definition of R′,
x0 ∈ C(Σ). If xM �∈ C(Σ), (xM,x0) �∈ P(R′) follows immediately from the def-
inition of R′. If xM ∈ C(Σ), it follows that xM−1 ∈ C(Σ); otherwise we would
have (xM−1,xM) �∈ R′ by definition of R′, contradicting our hypothesis. Succes-
sively applying this argument to all m ∈ {0, . . . ,M − 1}, we obtain xm ∈ C(Σ)
for all m ∈ {0, . . . ,M− 1}. By definition of R′, this implies (xm−1,xm) ∈ sc(RC)
for all m ∈ {1, . . . ,M}. By the Suzumura consistency of sc(RC), we must have
(xM,x0) �∈ P(sc(RC)). Because x0 ∈C(Σ), this implies, according to the definition
of R′, (xM,x0) �∈ P(R′).

It remains to be shown that R′ is a rationalization of C. Let S ∈ Σ and x ∈ S.
First, suppose (x,y) ∈ R′ for all y ∈ S. By definition of R′,

(x,y) ∈ sc(RC) (3)

for all y∈ S\{x} and x∈C(Σ). Because sc(RC) is a rationalization of C, this implies
(x,x) ∈ sc(RC). Suppose, by way of contradiction, that x �∈C(S). Because sc(R) is a
rationalization of C, it follows that there exists y ∈ S\{x} such that (x,y) �∈ sc(RC),
contradicting (3).

Finally, suppose x ∈ C(S). This implies (x,y) ∈ sc(RC) for all y ∈ S because
sc(RC) is a rationalization of C. Furthermore, because C(S) ⊆ C(Σ), we have x ∈
C(Σ). By definition of R′, this implies (x,y) ∈ R′ for all y ∈ S. ��

4 Welfarism

Following Arrow’s (1951, 2nd ed. 1963) impossibility theorem, one route of escape
from its negative consequences that has been chosen in the subsequent literature is
to assume that a social ranking is established on the basis of a richer informational
framework. In Arrow’s setup, the individual goodness relations form the informa-
tional basis of collective choice. This approach rules out, in particular, interpersonal
comparisons of well-being. An informationally richer environment is obtained if a
social ranking is allowed to depend on utility profiles instead of profiles of goodness
relations, and these utilities can be assumed to carry more than just ordinally mea-
surable and interpersonally non-comparable information regarding the well-being
of the agents. Under an implicit regularity assumption that guarantees the existence
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of representations of the individual goodness relations, the Arrow framework is
included as a special case: it corresponds to the informational assumption of ordinal
measurability and interpersonal non-comparability.

The universal set of alternatives X is assumed to contain at least three elements.
There are a finite number n≥ 2 of agents indexed by the first n positive integers, so
that the set of agents is N = {1, . . . ,n}. The set of all utility functions U : X → R is
denoted by U and its n-fold Cartesian product is Un. A utility profile is an n-tuple
U = (U1, . . . ,Un) ∈ Un.

A collective choice functional is a mapping F : D → B where D ⊆ Un is the
domain of this functional, assumed to be non-empty, and B is the set of all binary
relations on X . For each utility profile U ∈ D, F(U) is the social preference corre-
sponding to U. A reflexive and Suzumura-consistent collective choice functional is
a collective choice functional F such that F(U) is reflexive and Suzumura consis-
tent for all U ∈ D, and a social-evaluation functional is a collective choice func-
tional F such that F(U) is an ordering for all U ∈ D. Informational assumptions
regarding the measurability and interpersonal comparability of individual utilities
can be expressed by requiring the collective choice functional to be constant on
sets of utility profiles that contain the same information. For example, if utilities
are cardinally measurable and fully comparable, any utility profile U′ that is ob-
tained from a profile U by applying the same increasing affine transformation to
all individual utility functions carries the same information as U itself. Thus, the
collective choice functional must assign the same social ranking to both profiles.
See Blackorby, Donaldson, and Weymark (1984) or Bossert and Weymark (2004)
for discussions of information assumptions in social-choice theory.

A fundamental result in this setting is the welfarism theorem; see, for instance,
d’Aspremont and Gevers (1977) and Hammond (1979). A social-evaluation
functional F is welfarist if, for any utility profile U and for any two alternatives
x and y, the social ranking of x and y according to the social ordering assigned to
the profile U by F depends on the two utility vectors U(x) = (U1(x), . . . ,Un(x))
and U(y) = (U1(y), . . . ,Un(y)) only. Thus, a single ordering of utility vectors is
sufficient to rank the alternatives for any profile. The welfarism theorem states that,
provided that the domain of the social-evaluation functional consists of all possible
utility profiles, welfarism is equivalent to the conjunction of Pareto indifference and
independence of irrelevant alternatives.

In this section, it is illustrated that the welfarism theorem has an analogous for-
mulation for reflexive and Suzumura-consistent collective choice functionals: even
if every social ranking is merely required to be reflexive and Suzumura consistent
rather than an ordering, the conjunction of the two axioms is (under the unlimited-
domain assumption) equivalent to the existence of a single reflexive and Suzumura-
consistent relation R defined on utility vectors that is sufficient to obtain the social
ranking for any utility profile. This relation R ⊆ R

n×R
n is referred to as a social-

evaluation relation. The requisite axioms are the following.

Unlimited domain. D = Un.

Pareto indifference. For all x,y ∈ X and for all U ∈ D,
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Ui(x) = Ui(y) for all i ∈ N ⇒ (x,y) ∈ I (F(U)) .

Independence of irrelevant alternatives. For all x,y ∈ X and for all U,U′ ∈ D such
that Ui(x) = U ′i (x) and Ui(y) = U ′i (y) for all i ∈ N,

[
(x,y) ∈ F(U)⇔ (x,y) ∈ F(U′)

]
and

[
(y,x) ∈ F(U)⇔ (y,x) ∈ F(U′)

]
.

The following theorem generalizes the standard welfarism theorem by allow-
ing social relations to be intransitive and incomplete but imposing the Suzumura-
consistency requirement.

Theorem 4. Suppose that a reflexive and Suzumura-consistent collective choice
functional F satisfies unlimited domain. F satisfies Pareto indifference and indepen-
dence of irrelevant alternatives if and only if there exists a reflexive and Suzumura-
consistent social-evaluation relation R⊆ R

n×R
n such that, for all x,y ∈ X and for

all U ∈ Un,
(x,y) ∈ F(U)⇔ (U(x),U(y)) ∈ R. (4)

Proof. The ‘if’ part of the theorem is straightforward to verify. To prove the con-
verse implication, suppose that F is a reflexive and Suzumura-consistent collective
choice functional satisfying unlimited domain, Pareto indifference and indepen-
dence of irrelevant alternatives. Define the relation R⊆ R

n×R
n as follows. For all

u,v∈R
n, (u,v)∈ R if and only if there exist x,y∈ X and U∈Un such that U(x) = u,

U(y) = v and (x,y) ∈ F(U). That R is well-defined follows as in the standard wel-
farism theorem; see, for instance, Blackorby, Donaldson, and Weymark (1984) or
Bossert and Weymark (2004). Once R is well defined, (4) is immediate and, fur-
thermore, R is reflexive because F(U) is reflexive for all U ∈ Un. The proof is
completed by showing that R is Suzumura consistent. Let u,v ∈ R

n be such that
(u,v) ∈ tc(R). By definition of the transitive closure of a relation, there exist M ∈N

and u0, . . . ,uM ∈ R
n such that u = u0, (um−1,um) ∈ R for all m ∈ {1, . . . ,M} and

uM = v. By definition of R, there exist x0, . . . ,xM ∈ X and U1, . . . ,UM ∈ Un such
that Um−1(xm−1) = um−1, Um−1(xm) = um and (xm−1,xm) ∈ F(Um−1) for all m ∈
{1, . . . ,M}. By unlimited domain, there exists V ∈ Un such that V(xm) = um for all
m ∈ {0, . . . ,M}. Using (4), it follows that (xm−1,xm) ∈ F(V) for all m ∈ {1, . . . ,M}.
Because F(V) is Suzumura consistent, it follows that (xM,x0) �∈ P(F(V)). Thus, by
(4), (v,u) =

(
V(xM),V(x0)

)
�∈ P(R) and R is Suzumura consistent. ��

5 Population Ethics

The traditional social-choice framework with a fixed population is unable to capture
important aspects of many public-policy choices. For example, decisions on funds
devoted to prenatal care, the intergenerational allocation of resources and the design
of aid packages to developing countries involve endogenous populations: depend-
ing on the selected alternative, some individuals may or may not be brought into
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existence. To address this issue, a social ranking must be capable of comparing al-
ternatives with different population sizes.

The possibility of extending the welfarist approach to a variable-population en-
vironment has been examined in a variety of contributions, most notably in applied
ethics; see, for instance, Parfit (1976, 1982, 1984). Impossibility results arise fre-
quently in this area, and it is therefore of interest to examine the possibilities of
escaping these negative conclusions. The purpose of this section is to illustrate that
weakening transitivity to Suzumura consistency turns some of these impossibilities
into possibilities. Of course, to ensure that Suzumura consistency is indeed weaker
than transitivity, we cannot impose reflexivity, completeness and Suzumura consis-
tency – as mentioned earlier, Suzumura consistency and transitivity coincide in the
presence of the two richness conditions. Therefore, the question arises whether re-
flexivity and completeness rather than transitivity are, to a large extent, responsible
for the impossibilities. This is not the case: although most of the impossibility re-
sults in this area have been established for orderings, they remain true if reflexivity
and completeness are dropped.

A variable-population version of a social-evaluation relation is defined on the set
of utility vectors of any dimension, that is, it is a relation R ⊆ Ω ×Ω , where Ω =
∪n∈NR

n. The components of a utility vector u ∈ Ω are interpreted as the lifetime
utilities of those alive in the requisite alternative. For an individual who is alive,
a neutral life is one which is as good as one without experiences. A life above
neutrality is worth living, a life below neutrality is not. Following standard practice
in population ethics, a lifetime-utility level of zero is assigned to neutrality.

In Blackorby, Bossert, and Donaldson (2006), it is shown that there exists no
variable-population social-evaluation ordering satisfying four axioms that are com-
mon in the literature. This result can be generalized by noting that it does not make
use of reflexivity or completeness – all that is needed is the transitivity of R.

The first axiom is minimal increasingness. It requires that, for any fixed popula-
tion size, if all individuals have the same utility in two utility vectors, then the vector
where everyone’s utility is higher is better according to R. We use 1n to denote the
vector of n ∈ N ones.

Minimal increasingness. For all n ∈ N and for all β ,γ ∈ R,

β > γ ⇒ (β1n,γ1n) ∈ P(R).

Minimal increasingness is a weak unanimity property: it only applies if everyone
has the same utility in both alternatives to be compared.

Another fixed-population axiom is weak inequality aversion. This axiom de-
mands that, for any fixed population size, perfect equality is at least as good as
any distribution of the same total utility.

Weak inequality aversion. For all n ∈ N and for all u ∈ R
n,

((
1
n

n

∑
i=1

ui

)
1n,u

)
∈ R.
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Sikora (1978) suggests a variable-population version of the Pareto principle. The
axiom usually is defined as the conjunction of the strong Pareto principle and the
requirement that the addition of an individual above neutrality to a utility-unaffected
population is a social improvement. Because strong Pareto will be introduced as a
separate axiom later on and is not needed for the impossibility result, we use the
second part of the property only.

Pareto plus. For all n ∈ N, for all u ∈ R
n and for all a ∈ R++,

((u,a),u) ∈ P(R).

In the axiom statement, the population common to u and (u,a) is unaffected and,
thus, to defend the axiom on individual-goodness grounds, it must be argued that
a level of well-being above neutrality is better than non-existence. Thus, the axiom
applies the Pareto condition to situations where a person is not alive in all alter-
natives to be compared. While it is possible to compare alternatives with different
populations from a social point of view (which is the issue addressed in population
ethics), it is not clear that such a comparison can be made from the viewpoint of an
individual if the person is not alive in one of the alternatives. It is therefore difficult
to interpret this axiom as a Pareto condition because it appears to be based on the
idea that people who do not exist have interests that should be respected. There is,
therefore, an important asymmetry in the assessment of alternatives with different
populations. It is perfectly reasonable to say that an individual considers life worth
living if the person is alive with a positive level of lifetime well-being, but that does
not justify the claim that a person who does not exist gains from being brought into
existence with a lifetime utility above neutrality.

As is the case for Pareto plus, the final axiom used in our impossibility re-
sult applies to comparisons across population sizes. A variable-population social-
evaluation relation leads to the repugnant conclusion if population size can always
be substituted for well-being, no matter how close to neutrality the utilities of a
large population are. That is, mass poverty may be considered superior to some al-
ternatives in which fewer people lead very good lives. This property has been used
by Parfit (1976, 1982, 1984) to argue against classical utilitarianism, the variable-
population social-evaluation ordering that ranks utility vectors on the basis of their
total utilities. If Parfit’s view is accepted, R should be required to avoid the repug-
nant conclusion.

Avoidance of the repugnant conclusion. There exist n∈N, ξ ∈R++ and ε ∈ (0,ξ )
such that, for all m > n,

(ε1m,ξ1n) �∈ P(R).

Blackorby, Bossert, and Donaldson (2006, Theorem 2) show that there exists no
variable-population social-evaluation ordering satisfying the above four axioms; see
Blackorby, Bossert, and Donaldson (2005), Blackorby, Bossert, Donaldson, and
Fleurbaey (1998), Blackorby and Donaldson (1991), Carlson (1998), McMahan
(1981), Parfit (1976, 1982, 1984) and Shinotsuka (2008) for similar observations.
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The following theorem shows that reflexivity and completeness are not required –
transitivity of R is sufficient to generate the impossibility.

Theorem 5. There exists no transitive variable-population social-evaluation rela-
tion satisfying minimal increasingness, weak inequality aversion, Pareto plus and
avoidance of the repugnant conclusion.

Proof. Suppose R satisfies minimal increasingness, weak inequality aversion and
Pareto plus. The proof is completed by showing that R leads to the repugnant con-
clusion. For any population size n∈N, let ξ ,ε,δ ∈R++ be such that 0 < δ < ε < ξ .
Choose any integer r such that

r > n
(ξ − ε)
(ε−δ ) . (5)

Because both the numerator and denominator on the right-hand side of the inequality
are positive, r is positive. By Pareto plus,

((ξ1n,δ1r),ξ1n) ∈ P(R). (6)

Average utility in (ξ1n,δ1r) is (nξ+rδ )/(n+r) so, by minimal inequality aversion,
((

nξ + rδ
n+ r

)
1n+r,(ξ1n,δ1r)

)
∈ R. (7)

By (5),
ε >

nξ + rδ
n+ r

and, by minimal increasingness,
(
ε1n+r,

(
nξ + rδ

n+ r

)
1n+r

)
∈ P(R). (8)

Combining (6)–(8) and using transitivity, it follows that (ε1n+r,ξ1n) ∈ P(R) and
avoidance of the repugnant conclusion is violated. ��

If transitivity is weakened to Suzumura consistency, the axioms in the theorem
statement are compatible. Moreover, three of them can be strengthened and other
properties that are commonly imposed in population ethics can be added without
obtaining an impossibility.

Expressed in the current setting, the strong Pareto principle is another fixed-
population axiom. If everyone alive in two fixed-population alternatives with utility
vectors u and v has a utility in u that is at least as high as the utility of this person
in v with at least one strict inequality, u is better than v. Clearly, this axiom is a
strengthening of minimal increasingness.

Strong Pareto. For all n ∈ N and for all u,v ∈ R
n,

ui ≥ vi for all i ∈ {1, . . . ,n} and u �= y ⇒ (u,v) ∈ P(R).
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Continuity is a condition that prevents the social-evaluation relation R from ex-
hibiting ‘large’ changes in response to ‘small’ changes in a utility vector. Again, the
axiom imposes restrictions on fixed-population comparisons only.

Continuity. For all n ∈ N and for all u ∈ R
n, the sets {v ∈ R

n | (v,u) ∈ R} and
{v ∈ R

n | (u,v) ∈ R} are closed in R
n.

Weak inequality aversion can be strengthened by requiring the restriction of R to
R

n×R
n to be strictly S-concave for any population size n ∈ N; see, for instance,

Marshall and Olkin (1979). Strict S-concavity is equivalent to the conjunction of
the strict transfer principle familiar from the theory of inequality measurement and
anonymity. The strict transfer principle requires that a progressive transfer increases
goodness, provided the relative rank of the individuals involved in the transfer is un-
changed; see Dalton (1920) and Pigou (1912). A social-evaluation relation is anony-
mous if the individuals in a fixed population are treated impartially, without paying
attention to their identities; see Sen (1973) for a detailed discussion. A bistochastic
n× n matrix is a matrix whose entries are in the closed interval [0,1] and all row
sums and column sums are equal to one.

Strict S-concavity. For all n ∈ N, for all u ∈ R
n and for all bistochastic n× n

matrices B,

(i) (Bu,u) ∈ R.
(ii) Bu is not a permutation of u ⇒ (Bu,u) ∈ P(R).

Independence of the utilities of unconcerned individuals is a fixed-population
separability property introduced by d’Aspremont and Gevers (1977). It requires that
only the utilities of those who can possibly be affected by a choice between two
fixed-population alternatives should determine their ranking.

Independence of the utilities of unconcerned individuals. For all n,m ∈N, for all
u,v ∈ R

n and for all w,s ∈ R
m,

((u,w),(v,w)) ∈ R ⇔ ((u,s),(v,s)) ∈ R.

We now turn to further variable-population axioms. The negative expansion prin-
ciple is dual to Pareto plus. It requires any utility distribution to be ranked as better
than one with the ceteris-paribus addition of an individual whose life is not worth
living – that is, with a lifetime utility below neutrality.

Negative expansion principle. For all n ∈ N, for all u ∈ R
n and for all a ∈ R−−,

(u,(u,a)) ∈ P(R).

Expansion continuity applies the notion of continuity to pairs of utility vectors of
different dimension, particularly pairs of vectors whose dimensions differ by one.
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Expansion continuity. For all n ∈N and for all u ∈R
n, the sets {t ∈R | ((u, t),u) ∈

R} and {t ∈ R | (u,(u, t)) ∈ R} are closed in R.

Note that, in the presence of Pareto plus and the negative expansion principle,
expansion continuity implies existence of critical levels, requiring that non-trivial
trade-offs between population size and well-being are possible in the sense that, for
any utility vector u ∈ Ω , there exists a utility level c ∈ R (which may depend on
u) such that the ceteris-paribus addition of an individual with utility level c to an
existing population with utilities u is a matter of indifference according to R.

Finally, a strengthening of avoidance of the repugnant conclusion is defined. It is
obtained by replacing the existential quantifiers in the original axiom with universal
quantifiers and replacing the negation of betterness in the conclusion with the nega-
tion of the at-least-as-good-as relation. This is a strong property and one might not
want to endorse it; the reason why it is used to replace the weaker condition is that
it makes the possibility result logically stronger.

Strong avoidance of the repugnant conclusion. For all n ∈ N, for all ξ ∈ R++, for
all ε ∈ (0,ξ ) and for all m > n,

(ε1m,ξ1n) �∈ R.

We do not impose avoidance of the sadistic conclusion or any of its variants (see
Arrhenius (2000)) because it is implied by some of the properties already defined.

Theorem 6. There exists a reflexive and Suzumura-consistent variable-population
social-evaluation relation satisfying strong Pareto, continuity, strict S-concavity,
independence of the utilities of unconcerned individuals, Pareto plus, the negative
expansion principle, expansion continuity and strong avoidance of the repugnant
conclusion.

Proof. An example is sufficient to establish the theorem. Let g : R→ R be a con-
tinuous, increasing and strictly concave function such that g(0) = 0 and define the
relation R∗ by letting, for all n,m ∈ N, for all u ∈ R

n and for all v ∈ R
m,

(u,v) ∈ R∗ ⇔
[
n = m and

n

∑
i=1

g(ui)≥
m

∑
i=1

g(vi)
]

or
[
m = n+1 and ∃α ∈ R− such that v = (u,α)

]

or
[
n = m+1 and ∃β ∈ R+ such that u = (v,β )

]
.

Strong Pareto is satisfied because g is increasing, continuity is satisfied because g
is continuous, strict S-concavity follows from the strict concavity of g and indepen-
dence of the utilities of unconcerned individuals is satisfied because of the addi-
tively separable structure of the criterion for fixed-population comparisons. Pareto
plus and the negative expansion principle follow immediately from the definition
of R∗. Expansion continuity is satisfied because the comparisons involving vectors
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of dimensions n and n + 1 for any n ∈ N clearly are performed in accordance with
this requirement. Strong avoidance of the repugnant conclusion is satisfied because
(ε1m,ξ1n) �∈ R∗ for all n ∈ N, for all ξ ∈ R++, for all ε ∈ (0,ξ ) and for all m > n.
That R∗ is reflexive is immediate.

It remains to show that R∗ is Suzumura consistent. The first step is to prove that,
for all n,m ∈ N, for all u ∈ R

n and for all v ∈ R
m,

(u,v) ∈ R∗ ⇒
n

∑
i=1

g(ui)≥
m

∑
i=1

g(vi) (9)

and

(u,v) ∈ P(R∗) ⇒
n

∑
i=1

g(ui) >
m

∑
i=1

g(vi). (10)

To prove (9), suppose that n,m ∈ N, u ∈ R
n, v ∈ R

m and (u,v) ∈ R∗. According to
the definition of R∗, there are three possible cases.

Case 1. n = m and ∑n
i=1 g(ui) ≥ ∑m

i=1 g(vi). The conclusion is immediate in this
case.

Case 2. m = n+1 and ∃α ∈ R− such that v = (u,α). Thus,

m

∑
i=1

g(vi) =
n

∑
i=1

g(ui)+g(α)≤
n

∑
i=1

g(ui),

where the inequality follows because α ≤ 0 and, by the increasingness of g and the
property g(0) = 0, g(α)≤ 0.

Case 3. n = m+1 and ∃β ∈ R+ such that u = (v,β ). This implies

n

∑
i=1

g(ui) =
m

∑
i=1

g(vi)+g(β )≥
m

∑
i=1

g(vi),

where the inequality follows because β ≥ 0 and thus g(β )≥ 0.
To prove (10), suppose n,m ∈N, u ∈R

n and v ∈R
m are such that (u,v) ∈ P(R∗).

Again, there are three cases.
Case 1. n = m and ∑n

i=1 g(ui)≥ ∑m
i=1 g(vi). If ∑m

i=1 g(vi)≥ ∑n
i=1 g(ui), we obtain

(v,u) ∈ R∗ and thus a contradiction to our hypothesis (u,v) ∈ P(R∗). Therefore,
∑n

i=1 g(ui) > ∑m
i=1 g(vi).

Case 2. m = n+1 and ∃α ∈ R− such that v = (u,α). Thus,

m

∑
i=1

g(vi) =
n

∑
i=1

g(ui)+g(α)≤
n

∑
i=1

g(ui) (11)

as established in the proof of (9). If α = 0, it follows that v = (u,0) which leads to
(v,u) ∈ R∗, contradicting our hypothesis (u,v) ∈ P(R∗). Thus, α < 0 and g(α) < 0
because g(0) = 0 and g is increasing. Therefore, the inequality in (11) is strict.
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Case 3. n = m+1 and ∃β ∈ R+ such that u = (v,β ). This implies

n

∑
i=1

g(ui) =
m

∑
i=1

g(vi)+g(β )≥
m

∑
i=1

g(vi) (12)

as established in the proof of (9). If β = 0, it follows that u = (v,0) which leads to
(v,u) ∈ R∗, again contradicting the hypothesis (u,v) ∈ P(R∗). Thus, β > 0 and the
inequality in (12) is strict.

To complete the proof, suppose n,m ∈ N, u ∈ R
n and v ∈ R

m are such that
(u,v) ∈ tc(R∗). By repeated application of (9) and the transitivity of ≥, it follows
that ∑n

i=1 g(ui)≥ ∑m
i=1 g(vi). If (v,u) ∈ P(R∗), (10) implies ∑m

i=1 g(vi) > ∑n
i=1 g(ui),

a contradiction. Thus, (v,u) �∈ P(R∗) and R∗ is Suzumura consistent. ��

Another impossibility result in population ethics is due to Broome (2004,
Chap. 10). Broome suggests that existence is in itself neutral and, thus, the ceteris-
paribus addition of an individual to a utility-unaffected population should lead
to an equally-good alternative, at least as long as the utility of the added person
(if brought into being) is within a non-degenerate interval. This intuition, which
Broome calls the principle of equal existence, is incompatible with strong Pareto,
provided that the social-evaluation relation R is transitive. The impossibility persists
if transitivity is weakened to Suzumura consistency. The following axiom is a weak
form of the principle of equal existence.

Principle of equal existence. There exist u ∈Ω and distinct α,β ∈ R such that

((u,α),u) ∈ I(R) and ((u,β ),u) ∈ I(R). (13)

We obtain the following impossibility result.

Theorem 7. There exists no Suzumura-consistent variable-population social-
evaluation relation satisfying strong Pareto and the principle of equal existence.

Proof. Suppose R satisfies strong Pareto and the principle of equal existence. The
proof is completed by showing that R cannot be Suzumura consistent. By the prin-
ciple of equal existence, there exist u ∈ Ω and distinct utility levels α and β such
that (13) is satisfied. Without loss of generality, suppose α > β . By strong Pareto,
((u,α),(u,β )) ∈ P(R) which, together with (13), leads to a violation of Suzumura
consistency. ��
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On the Microtheoretic Foundations of Cagan’s
Demand for Money Function

Rajat Deb, Kaushal Kishore, and Tae Kun Seo

1 Introduction

An extensive literature, both theoretical (see for instance, Bruno and Fischer
(1990), Calvo and Leiderman (1992), Friedman (1971), Goldman (1974), Sargent
and Wallace (1973)) and empirical, (see for instance, Aghevli and Khan (1977),
Anderson, Bomberger, and Makinen (1988), Babcock and Makinen (1975), Cagan
(1956), Christiano (1987), Easterly, Mauro, and Schmidt-Hebbel (1995), Engsted
(1993), Metin and Maslu (1999), Michael, Nobay, and Peel (1994), Pickersgill
(1968), Salemi and Sargent (1979), Taylor (1991)) has arisen around the special
semi-logarithmic demand for money function introduced by Cagan (1956). Cagan’s
motivation behind the demand for money function was mainly in terms of transac-
tions costs and its relationship to the consumer’s ability to affect the real value of
cash balances. Cagan argued that the real cost of holding cash balances fluctuates
widely enough to account for the dramatic changes in the holding of cash balances
observed during hyperinflation. He hypothesized that during periods of hyperin-
flation the demand for money is almost entirely explained by the variation in the
expected rate of change in prices and that changes in expected inflation have the
same effect on real balances in percentage terms regardless of the absolute amount
of initial cash balances. In other words, during hyperinflations, the demand for
money takes the special form: m = ke−λπ

e
, where m is the real demand for money,

π(e) is the expected rate of inflation and k, λ are positive constants.
The theoretical papers using Cagan’s functional form have been written largely

in the monetarist tradition, analyzing hyperinflation and the associated problem of
“inflation tax.” (See, for instance, Calvo and Leiderman (1992), Friedman (1971),
Sargent and Wallace (1973).) The use of Cagan’s demand for money function has,
however, been “ad- hoc” and no attempt has been made to rationalize the function
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in terms of “utility maximizing” behavior. This chapter examines the possibility of
providing such a rationalization, without introducing money directly into the con-
sumer’s utility function. We assume that individuals are rational and that money is
both a medium of exchange and a store of value, and that the demand for money is
a result of intertemporal consumption smoothing. In this framework we try to solve
the so-called “integrability problem” by asking the question as to whether Cagan’s
special semi-logarithmic form of the demand for money can be generated from some
underlying process of utility maximization.

We provide the answer to this question in the context of two different models.
The first is a simple two-period utility maximizing model of the type used exten-
sively in “overlapping generations” literature in macroeconomics (Diamond (1965),
Samuelson (1958)). The second is a transactions cost/inventory theoretic model of
the “Baumol–Tobin” type (Baumol (1952), Tobin (1956)). For the first type of model
we discuss and analyze the type of utility function that gives rise to Cagan’s demand
for money function. We show that while the function has the “usual” properties as-
sumed in utility theory, no time separable utility function of the type usually used
in overlapping generations models can generate Cagan’s form for the demand for
money. For the second type of model, we show that in a “Baumol–Tobin” type of
inventory theoretic framework, the demand for money takes Cagan’s form if and
only if the transactions cost function in the model takes a specific form. Our results
are shown to be valid both in static and fully dynamic versions of this model.

2 Demand for Money: Cagan’s Functional Form

Let m be the real quantity of money, M the nominal quantity of money and P the
price level. The usual demand for money function used in macroeconomics posits
a positive relation between the real demand for money, mt ≡ Mt

Pt
, and real income,

yt , and a negative relationship between the real demand for money and the nominal
interest rate, it . A special semi-logarithmic form of this relationship may be written
as, lnmt = k̃ + γ lnyt −λ it or equivalently as:

Mt

Pt
= ke−λ it yγt , (1)

where k, γ and λ are positive constants.
Using Fisher’s equation, it = rt +πe

t , relating the nominal interest rate to the real
interest rate, rt , and the expected inflation rate, πe

t , one can think of two types of
regimes. First, we can have macroeconomic regimes with stable prices where the
real interest rate is constant and is primarily determined by the marginal product
of capital. Since prices are stable, nominal interest rate is constant too. In such a
regime, Mt

Pt
= k̂yγt , where k̂≡ ke−λ it > 0 is a positive constant. If γ = 1, one gets the

classical “quantity theory” of money. A second type of scenario is that of an infla-
tionary environment such as those studied by Cagan (1956) in which hyperinflation
prevailed and real income stagnated. In this case, maintaining the assumption that
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the real rate of interest does not change and is approximately zero, since real income
does not change as well, the demand for money takes Cagan’s special form and is
given by:

Mt

Pt
= ke−λπ

e
t , (2)

where k = kyγt . While this particular functional form for the demand for money has
been extremely useful in empirical analyses of money demand during inflationary
periods, the following open question remains: Can this form arise from the utility
maximizing behavior of a representative agent? We will address this question in the
context of two types of standard models used in macroeconomics, the Samuelson–
Diamond two-period overlapping generations model and the Baumol–Tobin trans-
actions cost/inventory theoretic model.

3 Model A: The Overlapping Generations Model

Consider a simple model with one good, where a representative agent lives for two
periods. The agent’s utility function is given by u(c1,c2) where c1 and c2 represent
the agent’s consumption in periods 1 and 2, respectively. Money does not enter the
utility function and thus has no intrinsic value. The agent receives (real) income,
y in the first period. No income is earned in the second period. Consumption in
the second period is paid from savings held in the form of money, and the demand
for money is thus “derived demand” motivated by consumption smoothing. Let p1,
p2 > 0 be the price of the good in the first and the second periods, respectively, and
M the nominal quantity of money. Then, the agent’s utility maximization problem
can be written as:

maxc1,c2u(c1,c2) (3)

such that

M + p1c1 = p1y≡ Y, (4)
p2c2 = M, (5)

c1,c2 ≥ 0.

The model that is usually used in macroeconomics is in fact a special case of the
above model. In the “standard” overlapping generations model it is generally as-
sumed that the utility function u is additively time separable and that it can be writ-
ten as sum of utility from consumption in period one and the discounted value of
the utility from consumption in period two. Letting the discount factor be (1+θ)−1

with θ > 0, the agent’s maximization problem can, in this case, be rewritten as:

maxc1,c2 [u(c1)+(1+θ)−1 u(c2)] (6)

such that
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p2c2 + p1c1 = p1y≡ Y,

p2c2 = M,

c1,c2 ≥ 0.

Under the standard assumption that the agent’s expectation is “rational” (Lucas,
1972) and that the expected price in period 2 is the same as that predicted by the
agent, the inflation and expected inflation rates, π and πe are identical and πe = π ≡
p2
p1
−1. Using the general form of Cagan’s demand for money function (1), assuming

that the real interest rate is zero, and letting k0 = kyγ−1we have:1, 2

M = k0e−λπ
e
Y , k0 > 0, (9)

Solving for c1and c2 from (4) and (5) we get,

c1 =
Y
p1

[
1− k0e−λπ

e
]

(10)

c2 =
Y
p2

(
k0e−λπ

e
)

(11)

We will resolve two issues of rationalizability. First, we will demonstrate that
there exists a “well-behaved” utility function that generate c1 and c2 as described
in (10) and (11) as interior solutions for the utility maximization problem described
in (3)–(5). Second, we will prove that the utility function that rationalizes Cagan’s
demand for money function has no (differentiable) monotonic transformation that
is additively separable. This will establish that Cagan’s form cannot be generated as
the solution to the utility maximization problem of the “standard” model described
in (4)–(6).

To describe a utility function which can rationalize Cagan’s form we will intro-
duce two additional functions: g and its inverse h.

Define a function g : (max{0,1+λ−1 lnk0},∞)→ (0,∞) as:

g(ξ ) = ξ
[
k−1

0 eλ (ξ−1)−1
]

(12)

1 Notice that k0 is a constant because in this model y, k and γ are all constants.
2 Since Mt

Pt
= ke−λ it yγt we can write

Mt = ke−λ it Pt yt y
γ−1
t (7)

= k0e−λ (rt+πe
t )Yt (8)

where k0 = kyγ−1
t = kyγ−1.
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It is easy to check3 that both g and its derivative g′ are positive and hence h≡ g−1,
the inverse of g, is a well-defined continuous function from (0,∞) to (0,∞) .

Now, let consumption be given by (10) and (11). Then, we have

c1

c2
= g

(
p2

p1

)
=

p2

p1

[
k−1

0 eλ
(

p2
p1
−1
)
−1
]
,

Normalizing the price of the first period consumption to be 1, we can write, y = Y
p1

and p = p2
p1

. Using the budget constraint, we get:

c2 = k0
y
p

e−λ (p−1).

Invoking the integrability condition, we have:

dμ
dp

= k0
μ
p

e−λ (p−1) (13)

where for the indirect utility function ν , μ is the expenditure function, μ =
μ(p;ν(q,Y )). Thus, μ gives us the minimum expenditure needed when the price
vector is p to obtain the maximum utility when the income is y and the price vector
is q. Therefore, from (13):

lnμ =
∫ p

q

k0

t
e−λ (t−1)dt + A

Note that μ = y if p = q and that the constant of integration A = lny. Hence,

μ = yexp
{∫ p

q

k0

t
e−λ (t−1)dt

}

where p = p2/p1 and y = Y/p1. Now, fixing p = p2/p1 = β > 1 and normalizing
income to be 1, qi = qi

Y for i = 1,2 gives us

μ =
1
q1

exp
{∫ β

q2/q1

k0

t
e−λ (t−1)dt

}
,

Noting that ∑qici = 1, we have 1
q1

= c1 + q1
q2

c2. Now, substituting h
(

c1
c2

)
for q1

q2
we

get:

ũ(c1,c2) =
[

c1 + c2h
(

c1

c2

)]
exp
{∫ β

h(c1/c2)
k0

(
1
s

)
e−λ (s−1)ds

}
(14)

3 Note that g′(ξ ) = k−1
0 eλ (ξ−1) +ξλk−1

0 eλ (ξ−1)−1. Since ξ ,λ and k0 are all strictly positive, we
see that k−1

0 eλ (ξ−1)−1 > 0 implies that g > 0 and g′(ξ ) > 0.

Thus, ξ > 1+λ−1 ln k0 is sufficient to ensure that g > 0 and g′ > 0. That ξ > 1+λ−1 ln k0 is
implied by the domain of g.
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= c2

[
c1

c2
+h
(

c1

c2

)]
exp
{∫ β

h(c1/c2)
k0

(
1
s

)
e−λ (s−1)ds

}

= c2

[
c1

c2
+h
(

c1

c2

)]
exp
{
σ
(

c1

c2

)}
, (15)

where

σ
(

c1

c2

)
≡
∫ β

h(c1/c2)
k0

(
1
s

)
e−λ (s−1)ds

for some constant β > max{0,1+λ−1 lnk0}.
Proposition 1. The utility function ũ in (14) is homogeneous of degree 1 in (c1, c2)
and is strictly quasi-concave with marginal utilities being positive for both c1 and
c2. If for this utility function an interior solution to the utility maximization problem
(3) exists, then the demand for c1 and c2 are given by (10) and (11) and hence the
demand for money is given by Cagan’s demand for money function (9).

Proof. Let

φ
(

c1

c2

)
≡
[

c1

c2
+h
(

c1

c2

)]
exp
{∫ β

h(c1/c2)
k0

(
1
s

)
e−λ (s−1)ds

}

and note that our utility function (14) can be written as:

ũ(c1,c2) = c2φ
(

c1

c2

)
. (16)

From (16) it is obvious that ũ is homogeneous of degree 1 in (c1, c2). Denoting
c1/c2 by x and using (14), the marginal utilities of c1and c2 are given by:

ũ1 = φ ′(x) and ũ2 = φ(x)− xφ ′(x). (17)

By our definitions of g and h, ξ = h(x) if and only if x = g(ξ )= ξ
[
k−1

0 eλ (ξ−1)−1
]
.

Hence, x = h(x)
[
k−1

0 eλ (h(x)−1)−1
]
. This gives us:

x+h(x) = k−1
0 h(x)eλ (h(x)−1). (18)

Using (18), observe4 that φ(x)−φ ′(x)x = φ ′(x)h(x). Hence, (17) gives us:

4

φ ′(x) = [1+h′(x)]
φ(x)

x+h(x)
−φ(x)

k0e−λ (h(x)−1)h′(x)
h(x)

= φ(x)
[

1+h′(x)
x+h(x)

− h′(x)
x+h(x)

]
by (18)

=
φ(x)

x+h(x)
.
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ũ2 = ũ1h
(

c1

c2

)
(19)

Assume to the contrary that ũ1 ≤ 0. Now, by (17), if ũ1 ≤ 0, ũ2 > 0. Since, h > 0,
this contradicts (19). Thus, ũ1 > 0 and (using (19)) ũ2 > 0.

Furthermore, by (19) along any indifference curve, dc1
dc2

=−h
(

c1
c2

)
. Hence, we get

d2c1

dc2
2

=−h′
(

c1

c2

)[c2
dc1
dc2
− c1

c2
2

]
=−h′

(
c1

c2

)⎡
⎣−h

(
c1
c2

)
c2− c1

c2
2

⎤
⎦> 0.

This establishes that the utility function is strictly quasi-concave.
Finally, using (19) and writing down the first-order condition for an interior

solution, we have: h
(

c1
c2

)
= p2

p1
. In other words,

c1

c2
= g

(
p2

p1

)
≡ p2

p1

[
k−1

0 eλ
(

p2
p1
−1
)
−1
]

p2

p1
.

It is easy to verify, that (10) and (11) satisfy this condition. Hence, using strict quasi-
concavity, the unique interior solution to the utility maximizing problem will yield
a demand for money function having Cagan’s form. ��

To understand when an interior solution to our utility maximizing problem
will exist note that as c1

c2
−→ 0, ũ2

ũ1
−→ max

[
0,1+λ−1 lnk0

]
and as c1

c2
−→ ∞,

ũ2
ũ1
−→∞. This implies that two types of indifference curves are possible. Case (a)

1+λ−1 lnk0 ≤ 0: In this case, ũ2
ũ1
−→ 0 as c1

c2
−→ 0, and the indifference curves do

not intersect either axis. Case (b) 1+λ−1 lnk0 > 0: In this case, ũ2
ũ1
−→ 1+λ−1 lnk0

as c1
c2
−→ 0, thus, while indifference curves do not cut the c1-axis, they do intersect

the c2-axis. In particular, this implies that an interior solution exists in this case if
and only if p2

p1
> 1+λ−1 lnk0. The two cases are illustrated in the figure below:

C1 C1

C2

C2

a b
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In Case (a) an interior solution will exist for all positive values of p1 and p2. Case
(b) on the other hand implies that an interior solution exists (and hence, Cagan’s
form of the money demand function is appropriate) if and only if p2

p1
−1 > λ−1 lnk0

(i.e., if and only if the rate of inflation is high enough). Which of these cases prevails
depends on empirical values of the parameters λ and k0. It is interesting to note that
estimates in empirical studies suggest that 1 + λ−1 lnk0 > 0 and that Case (b) is
the more plausible of the two cases. (see for instance, Aghevli and Khan (1977),
Anderson et al. (1988), Babcock and Makinen (1975), Cagan (1956), Christiano
(1987), Easterly et al. (1995), Engsted (1993), Metin and Maslu (1999), Michael
et al. (1994), Pickersgill (1968), Salemi and Sargent (1979), Taylor (1991).)

We have provided an example of an utility function, ũ, that rationalizes Cagan’s
form of the demand for money function. Clearly, a necessary and sufficient condition
for any utility function to generate this demand function is that it should be a strictly
monotonic transformation of ũ. Now, using this property, we turn to the question of
rationalizing Cagan’s demand function in the “standard” version of the overlapping
generations model with a time separable utility function.

Proposition 2. There does not exist a function u : R+ → R and a differentiable
strictly monotonic transformation v of ũ defined by (14) such that (i) v(c1,c2) =
u(c1) + (1+θ)−1 u(c2) and (ii) v gives rise to Cagan’s form of the demand for
money function.

Proof. Assume to the contrary that v is such a monotonic transformation. Then,

ln
v1

v2
= ln

u1

(1+θ)−1 u2
= lnu1(c1)− ln(1+θ)−1 u2(c2).

This implies that ∂
∂c1

[ ∂∂c2
ln v1

v2
] ≡ 0.5 Since v is a monotone transformation, we

would have ∂
∂c1

[ ∂∂c2
ln ũ1

ũ2
]≡ 0.

But, from (19), ln ũ1
ũ2

= 1
h =− lnh. Hence, we have:

∂
∂c2

ln
ũ1

ũ2
=

h′

h
c1

c2
2
.

Thus, for ∂
∂c1

[ ∂∂c2
ln ũ1

ũ2
]≡ 0, it must be the case that h′

h c1 is a function of c2 alone,

say, h′
h c1 ≡ ψ(c2)c2

2. The left-hand side of this equation is homogeneous of degree
1 in (c1, c2). This implies that the right-hand side is homogenous of degree 1 in c2.
That is ψ(c2)c2

2 ≡ ac2 for some positive constant a.6 Thus, we can write:

h′(x)
h(x)

=
a
x
.

5 See Sono’s (1961) classic analysis of separability.
6 Note that a is not equal to zero since this will imply that h is a constant.
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Integrating both sides, we have h(x) ≡ bxa, where b is a constant of integration.
Thus, g≡ h−1(x) = (1/b)aξ 1/a. But, comparing this with ξ

[
k−1

0 eλ (ξ−1)−1
]

from

(12), and letting ξ → ∞, we see that ( 1
b )aξ 1/a ≡ ξ

[
k−1

0 eλ (ξ−1)−1
]

is impossible.
��

4 Model B: The Transactions Cost Model

In this model, a representative agent faces two costs: a “transactions cost” and an
“opportunity cost of holding money”, (see Tobin (1956)). If money is held for trans-
action purposes, then it cannot be invested and the interest, i, that could have been
earned is foregone. Thus, the opportunity cost of holding the stock of money m is im.
The transactions cost is some function of the amount of money being held and the
level of transactions. The cost of transactions decreases with the amount of money
held, but decreases at a decreasing rate. The real income y is a proxy for the volume
of transactions and the transactions cost increases with y. Thus, we will assume,
α = α (m,y) is the transactions cost and in the neighborhood of the equilibrium
holding of money αm < 0, αmm > 0 and αy > 0, where the real quantity of money is
m≡ M

P .
To hold an optimal inventory of money the agent minimizes the sum of the “trans-

actions cost” and the “opportunity cost of holding money”.

minm [im+α (m,y)] .

The first-order condition for an interior minimum is given by:

−αm (m,y) = i. (20)

Since αmm > 0, in the neighborhood of the equilibrium, the first-order conditions
is sufficient for a minimum, and using the implicit function theorem, we can solve
(locally) for the optimal level of money demand

∧
m as a function of i and y. Thus, we

have: ∧
m=

∧
m (i,y) with

∧
mi< 0; moreover, αmy < 0 iff

∧
my> 0.

Thus, in equilibrium, the amount of money held will be a decreasing function of real
interest rate, and if αmy < 0, it will be an increasing function of total income of the
agent.

Now, consider the following special transactions cost function (where γ is a pos-
itive constant)

α (m,y)≡ λ−1 [m lnm−m− γm lny−m lnk]+ kλ−1yγ + τ(y), (21)

where τ is an arbitrary real valued function of y such that τ ′(y)≥ 0.
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Replacing α (m,y) with this specific form in (20), the optimum amount of money
holding can be calculated. This gives us a generalized version of Cagan’s demand
for money function as follows:7

−αm ≡ −λ−1 [lnm− γ lny− lnk] = i. (22)

Or,
∧
m = ke−λ iyγ .

It is easy to check that at the equilibrium described by (22), αm < 0, αmm > 0
and αy > 0.

Conversely, assume that we have (22). Then, in the neighborhood of the equilib-
rium, we can define a function ρ(y) such that:

α (m,y)≡ λ−1 [m lnm−m− γm lny−m lnk]+ρ(y).

Since at the equilibrium, αy > 0, we have ρ ′(y) > γm(λy)−1. Using (22), we get
ρ ′(y) > γkλ−1e−λ ·iyγ−1. Since the last inequality holds for all i > 0, we must have
ρ ′(y) ≥ γkλ−1yγ−1. Thus, defining ρ(y) ≡ kλ−1yγ + τ(y), we see that τ ′(y) ≥ 0.
This gives us the specific transactions cost function (21) above. Thus, we have the
generalized form

∧
m= ke−λ ·iyγ of Cagan’s money demand function if and only if the

transactions cost has the form (21) in the neighborhood of the equilibrium m.
Note, however, that from (21) we get:

αy =−γm(λy)−1 + kλ−1yγ + τ ′(y)

and
αm = λ−1 [lnm− γ lny− lnk]

and that αy > 0 and αm < 0 only if m is “small enough”. Thus, for our specific trans-
actions cost function, money holdings in equilibrium need to be small enough in this
sense. This is particularly interesting because during periods when the inflation rate
is high, households typically minimize their holdings of real balances by moving
into non-money assets.

To see that a similar conclusion can be derived from a fully dynamic infinite
horizon representative agent model, consider a model where the agent is maximiz-
ing his or her lifetime utility given a budget constraint. The quantity of labor is
fixed as is the wage rate, and only consumption enters into the instantaneous utility
function, ut(·). A higher consumption level in any period is associated with higher
utility. Here, once again, money does not (directly) enter the utility function. How-
ever, money does affect the consumption level indirectly. Total wealth of an agent at
any particular time period is given by the wage earned along with accumulated sav-
ings from previous time periods. Savings in any period can be held either as money
(which earns no interest) or in the form of a financial asset f earning a real interest, r.
Increasing or decreasing money holdings is costly entailing the cost of switching

7 It is worth noting, that if one used α(m,y) = α0y
2m with α0 > 0 then (20) would give us Baumol’s

well-known “square root” formula with
∧
m=

( α0y
2i

)1/2
.
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between financial assets and money. We assume that this cost has a quadratic struc-
ture and is given by η

2 [ṁ]2, for some η > 0. As in our static model, α (m(t) ,y)
represents the transactions cost at time t. If θ is the subjective discount rate, then
the agent’s intertemporal utility maximization problem can then be written as:

max
∫ ∞

0
ut (c(t))e−θ tdt

subject to

r f (t)+wl = ḟ + c(t)+α (m(t) ,y)+
η
2

[ṁ]2 +
Ṁ
P

.

The left-hand of the budget constraint represents the agents income: interest earned
(r f (t)) and wage income (wl). This income can be used either for current consump-
tion (c(t)), paying for transactions costs (α (m(t) ,y)), for accumulating (decumu-
lating) interest earning assets ( ḟ ) or for increasing (decreasing) real balances ( Ṁ

P )
and paying the costs associated with changing real balances.

Since d
dt

(M
P

)
= ṁ = Ṁ

P −
M
P

(
Ṗ
P

)
, we can write Ṁ

P = ṁ+mπ. Thus, under perfect
foresight, with π = πe, the budget constraint becomes

r f (t)+wl = ḟ + c(t)+α (m(t) ,y)+
η
2

[ṁ]2 +m(t)πe + ṁ.

Substituting for c(t) in the utility function and using this budget constraint,
we get:

max
∫ ∞

0
ut

(
r f (t)+wl− ḟ −α (m(t) ,y)− η

2
[ṁ]2−m(t)πe− ṁ

)
e−θ tdt.

The Euler equations for this problem are given by

∂ut

∂m
=

d
dt

(
∂ut

∂ ṁ

)
, (23)

∂ut

∂ f
=

d
dt

(
∂ut

∂ ḟ

)
. (24)

Substituting (24) into (23) we get:

ηm̈− rηṁ− (αm + r +πe) = 0. (25)

The characteristic equation of the system is given by

x2− rx−η−1αmm = 0.

Under our assumption αmm > 0, one of the eigenvalues of the system will be
positive and the other negative indicating the existence of a saddle point trajectory
converging to the equilibrium given by:

(αm + r +πe) = 0,

which is the same as (20).
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Proposition 3. The demand for money in equilibrium has a generalized version of
Cagan’s functional form if and only if in the neighborhood of the equilibrium the
transactions cost function α (m,y)is given by

α (m,y)≡ λ−1 [m lnm−m− γm lny−m lnk]+ kλ−1yγ + τ(y),

where τ ′(y)≥ 0.

5 Conclusion

We have examined the possibility of rationalizing Cagan’s functional form for the
demand for money. We have shown that in a two period overlapping generations
model this demand for money can be derived from an utility function satisfying the
usual properties of differentiability, strict quasi-concavity and positivity of marginal
utilities. Empirical estimates of the parameters of the model suggest that the func-
tional form arises if and only if the inflation rate is high enough. However, un-
der the usual assumptions that the utility function is time separable, Cagan’s form
would not arise in this type of model. An alternative way for rationalizing Cagan’s
money demand function is by using a dynamic inventory cost theoretic model of
the Baumol–Tobin type. We have identified the specific transactions cost structure
which would give rise to a generalized form of Cagan’s demand for money function
as a saddle point trajectory of such a model. Once again, we find that the model
would be valid only in periods of significant inflation when households prefer other
assets and reduce their holdings of money balances.
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Hicksian Surplus Measures of Individual
Welfare Change When There is Price
and Income Uncertainty

Charles Blackorby, David Donaldson, and John A. Weymark

1 Introduction

When there is no uncertainty, it is well known that the Hicksian compensating and
equivalent variations are exact measures of individual welfare change. That is, the
sign of either of these measures of Hicksian consumer’s surplus correctly identifies
whether a change in prices and income makes an individual consumer better or
worse off.1 It is also well known that Marshallian consumer’s surplus is not an exact
measure of individual welfare change except under restrictive assumptions.2

The use of the expected value of a Hicksian or Marshallian measure of con-
sumer’s surplus to evaluate the welfare consequences of price changes in uncertain
environments can be traced back to the seminal analysis of Waugh (1944), who
showed that under standard assumptions about individual demand, expected
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Marshallian consumer’s surplus and expected compensating variation are both
negative if a stochastic price is stabilized at its arithmetic mean. For an individual
whose preferences satisfy the expected utility hypothesis, the use of an expected
surplus measure, whether it be Hicksian or Marshallian, is a valid measure of indi-
vidual welfare change under uncertainty if and only if its sign correctly determines
whether his expected utility increases or decreases as a result of a change in the
distribution of prices and incomes across states. Anderson and Riley (1976) have
argued that these expected surplus measures do not correctly track individual pref-
erences when a stochastic price is stabilized unless the marginal utility of income
(in the utility representation of preferences used to compute expected utilities) is
independent of both the level of income and the value of this price.

Rogerson (1980) and Turnovsky, Shalit, and Schmitz (1980) have identified re-
strictions on preferences for which expected Marshallian surplus is a valid indicator
of individual welfare change when prices and, in the case of Rogerson, incomes are
stochastic. For the case in which only one price is uncertain, Helms (1984, 1985)
has characterized the restrictions on preferences for which expected compensating
variation is a valid measure of individual welfare change, both when the amount
of price variability after the change in the distribution of this price is unrestricted
and when the stochastic price is stabilized at its mean value. In each case, these
restrictions are quite stringent.

In the models considered by Helms, the consumer allocates a certain income
over one or more commodities whose prices are certain and one commodity whose
price is uncertain. However, whether uncertainty is generated by, for example, trade
shocks (Anderson and Riley, 1976) or by factors that affect the volatility of com-
modity prices (Newbery and Stiglitz, 1981), it is often the case that the incomes
of consumers are also uncertain and one or more prices are state dependent. Fur-
thermore, incomes may be directly affected by random events such as health and
the timing of a worker’s entry into the labor market, in which case the design
of social insurance programmes needs to be evaluated. See, for example, Varian
(1980).

In this chapter, we extend Helms’s analyses by identifying the circumstances
under which a consumer’s surplus criterion based on a Hicksian surplus measure in
each state is a valid measure of individual welfare change when income and some or
all of the prices vary across states. For concreteness, we use compensating variations
in our analysis, but our theorems are also valid for equivalent variations. Although
the mechanism that generates a change in the state distribution of prices and incomes
can take many forms, for concreteness, we suppose that it is a government project.
To evaluate the welfare consequences of a project for an individual consumer whose
preferences satisfy the expected utility hypothesis, we employ a surplus evaluation
function that aggregates the ex post compensating variations in each state into an
overall surplus measure. Such a surplus evaluation function is a consistent measure
of individual welfare change if it is positive valued if and only if the project makes
the consumer better off ex ante.

For the kinds of state-dependent prices and incomes that we consider, we
show that a consistent measure of individual welfare change based on the ex post
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compensating variations must regard a project as being welfare improving if and
only if its expected compensating variation is positive. Furthermore, the indirect
utility function that the consumer uses to evaluate prices and income in each state
and that is used to compute expected utilities must be affine in income, with the
origin term a constant and the weight on income independent of those prices that
are uncertain. These restrictions imply that preferences are homothetic. If all prices
are uncertain, these conditions are inconsistent with the homogeneity properties of
an indirect utility function and, hence, we obtain an impossibility result.

In Section 2, we describe our state-contingent alternatives model of uncertainty
and formally define the compensating variations obtained in each state. We intro-
duce our consistency criterion and the domains that we consider in Section 3. In
Section 4, we adapt a result due to Blackorby and Donaldson (1985) in order to pro-
vide a partial characterization of the restrictions implied by consistency. A complete
characterization of the restrictions implied by consistency on our domains is estab-
lished in Section 5. In Section 6, we discuss our theorems and relate them to results
on consistent measures of welfare change that have been obtained in a variety of
different contexts. We provide some concluding remarks in Section 7.

2 Compensating Variations for the State-Contingent
Alternatives Model of Uncertainty

We employ the state-contingent alternatives model of uncertainty with a finite num-
ber of states due to Arrow (1953, 1964). For discussions of the expected utility
theorem for this model, see Arrow (1965), Blackorby, Davidson, and Donaldson
(1977), and Diewert (1993).

We assume that there are M states (M≥ 2) and letM= {1, . . . ,M} denote the set
of states. In each state, there are N commodities (N ≥ 2). The set of commodities is
N = {1, . . . ,N}. In state m, the prices of the commodities are pm = (pm

1 , . . . , pm
N) ∈

R
N
++ and the consumer has income ym ∈R+.3 Ex ante, the consumer faces the state-

contingent price–income vector (p,y) ∈ R
MN
++ ×R

M
+ , where p = (p1, . . . , pM) and

y = (y1, . . . ,yM).
Ex post consumption in state m is cm = (cm

1 , . . . ,cm
N) ∈ R

N
+. The consumer’s ex

ante state-contingent consumption vector is c = (c1, . . . ,cM)∈R
MN
+ . The probability

that state m occurs is πm > 0, where ∑mπm = 1. These probabilities can be either
subjective or objective, but are fixed throughout our analysis.

We assume that the consumer’s preferences over state-contingent commodity
vectors in R

MN
+ are continuous, strictly monotonic, convex, and satisfy the expected

utility hypothesis. Hence, these preferences can be represented by a utility function
U : R

MN
+ → R for which

U(c) =∑
m
πmu(cm) (1)

3
R+ and R++ denote the set of nonnegative and positive numbers, respectively.
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for all c ∈R
MN
+ , where the function u : R

N
+→R is continuous, increasing in each of

its arguments, concave, and state independent. Following Arrow (1965), u is called
a Bernoulli utility function.4 Note that u represents preferences over ex post con-
sumption bundles. Any increasing transform of u also represents these preferences.
However, only increasing affine transforms of u are Bernoulli utility functions; that
is, only increasing affine transforms of u can be used to represent the ex ante pref-
erences in the expected utility form given in (1).

The Bernoulli indirect utility function v : R
N
++×R+→ R is defined by setting

v(pm,ym) = max
cm∈R

N
+

{u(cm) | pmcm ≤ ym} (2)

for all (pm,ym) ∈ R
N
++×R+. Hence, the consumer preferences for state-contingent

price–income vectors can be represented by the indirect expected utility function
V : R

MN
++×R

M
+ → R defined by setting

V (p,y) =∑
m
πmv(pm,ym) (3)

for all (p,y) ∈ R
MN
++×R

M
+ . It follows from our assumptions on u that the function v

is continuous, decreasing, and convex in prices, increasing in income, and homoge-
neous of degree zero in prices and income.5

When there is no price or income uncertainty, with p = (p0, . . . , p0) and y =
(y0, . . . ,y0) say, then

V (p,y) = v(p0,y0). (4)

Thus, v represents preferences over certain price–income vectors. As is the case with
u, any increasing transform of v represents these preferences over certain outcomes,
but only increasing affine transforms of v can be used to compute expected utilities
as in (3).

Suppose that the price–income pair in state m is initially (p̄m, ȳm) and, therefore,
the consumer has utility ūm = v(p̄m, ȳm) in state m. Now consider changing this
price–income pair to (p̂m, ŷm). The consumer then has utility ûm = v(p̂m, ŷm) in this
state. The compensating variation associated with this change,

sm = Sm(p̄m, ȳm, p̂m, ŷm), (5)

is the maximum amount the consumer would pay for the change. It is defined im-
plicitly by

v(p̂m, ŷm− sm) = v(p̄m, ȳm) = ūm. (6)

Note that

4 A Bernoulli utility function in the state-contingent alternatives model of uncertainty is the
analogue of a von Neumann and Morgenstern (1944) utility function in the lottery model of
uncertainty.
5 The function v is decreasing in prices if the value of v decreases when the price of every good is
increased.
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um = v(pm,ym)↔ ym = e(pm,um), (7)

where e is the expenditure function dual to u. Thus, the compensating variation in
state m can be written as

sm = e(p̂m, ûm)− e(p̂m, ūm)
= ŷm− e(p̂m, ūm)
= [ŷm− ȳm]+ [e(p̄m, ūm)− e(p̂m, ūm)].

(8)

Because the expenditure function is increasing in its last argument,

sm ≥ 0↔ ûm ≥ ūm for all m ∈M. (9)

Therefore, this state-specific measure of willingness-to-pay is nonnegative if and
only if the consumer is no worse off in state m as a result of the change from
(p̄m, ȳm) to (p̂m, ŷm). Hence, the compensating variation correctly identifies whether
a change in prices and income in a given state makes the consumer better off or
not. This observation is simply a reflection of the well-known fact that the compen-
sating variation is a valid indicator of individual welfare change when there is no
uncertainty.

3 Consistency

A project affects the consumer by changing the vector of state-contingent prices and
incomes. Let (p̄, ȳ) (respectively, (p̂, ŷ)) denote the pre-project (respectively, post-
project) prices and incomes. This project changes the consumer’s indirect expected
utility from V (p̄, ȳ) to V (p̂, ŷ). We assume that the same set D of vectors of state-
contingent prices and incomes are possible both before and after the implementation
of a project.

The question is whether the vector of state-contingent compensating variations
s = (s1, . . . ,sM) defined in (8) can be used to measure the change in the well-being
of the consumer for a project that changes (p̄, ȳ) to (p̂, ŷ). More precisely, for the
domain D, we ask if there exists some real-valued function of the state-contingent
compensating variations that is positive valued for projects that improve the well-
being of the consumer and that is nonpositive for those that do not. This surplus
evaluation function is a function Γ : S(D)→ R, where S(D) ⊆ R

M is the set of
vectors of state-contingent compensating variations that are achievable when the
domain is D. We assume that Γ is continuous and increasing.

Consistency of the surplus evaluation function with consumer well-being on the
domain D is defined as follows.

Consistency. (Γ ,V ) is consistent on D⊆ R
MN
++×R

M
+ if and only if

Γ (s1, . . . ,sM)≥ 0↔V (p̂, ŷ)≥V (p̄, ȳ) (10)
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for all (p̄, ȳ),(p̂, ŷ) ∈ D.

Let
Dy = R

M
+ (11)

and, for all K ⊆N , let

DK
p = {p ∈ R

MN
++ | ∀ j ∈ K,∀m,m′ ∈M, pm

j = pm′
j } (12)

and
DK = DK

p ×Dy. (13)

The sets DK , K ⊆N , are the domains that we consider for our project evaluations.
For the domain DK , the pair (Γ ,V ) has to be consistent for all nonnegative in-

comes and for all positive prices for which the prices of the goods with indices in
the set K are the same in each state. In this domain, the prices with indices inN \K
are permitted to differ across states. Clearly, the more prices that are permitted to
differ across states, the more restrictions that Γ and V must satisfy.

4 A Useful Lemma

By interpretingM as a set of individuals, instead of a set of states, Blackorby and
Donaldson (1985) have defined an indirect Bergson–Samuelson social welfare func-
tion V BS : R

MN
++×R

M
+ → R by setting

V BS(p,y) = W (v1(p1,y1), . . . ,vM(pM,yM)) (14)

for all (p,y)∈R
MN
++×R

M
+ , where W : R

M→R is a continuous, increasing Bergson–
Samuelson social welfare function and, for all m ∈ M, pm are the prices person
m faces, ym is his income, and vm : R

N
++×R+→ R is his indirect utility function.

Note that individuals may face different prices in (14). As above, we can compute
a compensating variation for each individual m ∈M (using the function vm instead
of v) and define consistency (using V BS instead of V ) as in (10).

Blackorby and Donaldson (1985) have shown that for the domains D∅ (all prices
can be person specific) and DN (no price can be person specific), consistency im-
plies that the vector of individual incomes must be separable from the prices in the
indirect Bergson–Samuelson social welfare function and that for every vector of
compensating variations in the domain of Γ , the sign of the surplus evaluation func-
tion Γ must be the same as the sign of a linear function of the individual surplus
measures.6 Their proofs apply equally well to any domain DK with K ⊆N .

Because our indirect expected utility function is formally a special case of
Blackorby and Donaldson’s indirect Bergson–Samuelson social welfare function

6 The separability result for the domain DN was first established by Roberts (1980, Proposition 1).
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(with vm = πmv and V BS = V ), their results also hold for our model. Hence,
consistency implies that the state-contingent incomes must be separable from the
state-contingent prices in the indirect expected utility function of the consumer and
that for every vector of state-contingent compensating variations in S(D), the sur-
plus evaluation function Γ must have the same sign as a linear function of these
compensating variations.

Lemma 1. For all K ⊆N , if (Γ ,V ) is consistent on DK, then (i) for every (p,y) ∈
DK, V can be written as

V (p,y) = V̄ (p,φ(y)), (15)

where V̄ is continuous, increasing in φ(y), and homogeneous of degree zero in (p,y)
and (ii) there exist am > 0 for all m ∈M such that φ can be written as

φ(y) =∑
m

amym (16)

for all y ∈ R
N
+. Furthermore,

Γ (s1, . . . ,sM)≥ 0↔∑
m

amsm ≥ 0 (17)

for all (s1, . . . ,sM) ∈ S(DK).

For a formal proof of Lemma 1, see Blackorby and Donaldson (1985, Lemma 1,
Theorem 1, and Corollary 1.2). The proof strategy is as follows. By considering
a project in which only the state-contingent incomes change, (8) implies that the
compensating variation in any state is simply the difference between the new and
the old income. Because the left side of (10) is independent of prices for such a
project, so is the right side, from which the separability result in (15) follows. The
homogeneity of degree zero of V implies that φ can be chosen to be homogeneous
of degree one. Using this homogeneity property, it can be shown that φ satisfies an
additive Cauchy equation, whose solution is given by (16).7 Because prices have not
been changed, the sign of the change in indirect expected utility is the same as the
sign of the change in the value of φ , from which (17) follows.

As we have seen, when a project changes only incomes but not prices, the
compensating variation in a state is equal to the difference between the pre- and
post-project incomes in that state. Thus, the surplus evaluation function must ignore
information about income levels. What Lemma 1 demonstrates is that in order for
this function to be sensitive only to income differences and at the same time re-
spect the homogeneity properties of the indirect expected utility function, it must
assign each state a weight and then use these weights to compute a weighted sum of
compensating variations.

7 See Aczél (1969, Chap. 2) or Eichhorn (1978, Chap. 1) for an introduction to Cauchy equations.
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5 The Theorems

Lemma 1 has identified some restrictions that must be satisfied by the indirect ex-
pected utility function V and by the surplus evaluation function Γ if they are to be
consistent with each other. However, we have yet to identify the restrictions im-
plied by consistency on the Bernoulli indirect utility function v or on the choice of
the weights that are used to aggregate the state-contingent compensating variations,
other than that these weights are positive. In this section, we characterize these re-
strictions.

The proof of Lemma 1 does not exploit the assumption that V (p,y) is the ex-
pected value of the Bernoulli utilities v(pm,ym) obtained in each state. The conclu-
sions in this lemma are also valid if the ex ante utility V (p,y) is any continuous,
increasing function of the ex post utilities v(pm,ym). We now show that Lemma 1
and the assumption that the consumer’s preferences satisfy the expected utility hy-
pothesis imply (i) that the Bernoulli utility function v must be affine in income,
with the origin term a constant and the weight on income possibly price dependent,
and (ii) for all vectors of state-contingent compensating variations in S(D), the sign
of the surplus evaluation function must be the same as the sign of the expected
value of these compensating variations. The first of these conditions implies that the
Bernoulli direct utility function u is homothetic.

Theorem 1. For all K ∈N , if (Γ ,V ) is consistent on DK, then there exists a function
α : R

N
++→ R++ and a scalar β for which

v(p0,y0) = α(p0)y0 +β (18)

for all (p0,y0) ∈R
N
++×R+, where α is continuous, decreasing, convex, and homo-

geneous of degree minus one. Furthermore,

Γ (s1, . . . ,sM)≥ 0↔∑
m
πmsm ≥ 0 (19)

for all (s1, . . . ,sM) ∈ S(DK).

Proof. From (3), (15), and (16), we obtain

V̄
(

p,∑
m

amym
)

=∑
m
πmv(pm,ym). (20)

Consider any p0 ∈ R
N
++ and let p∗ = (p0, . . . , p0). That is, there is no price uncer-

tainty. Define
zm := amym for all m ∈M, (21)

v̂m(zm) := πmv(p0,ym), (22)

and

V̂
(
∑
m

zm
)

:= V̄
(

p∗,∑
m

zm
)

. (23)
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Substituting (21)–(23) into (20) yields

V̂
(
∑
m

zm
)

=∑
m

v̂m(zm). (24)

Equation (24) is a Pexider equation whose solution is

v̂m(zm) = ᾱ(p0)zm + β̄m(p0) for all m ∈M, (25)

where ᾱ(p0) > 0 because v̂m is increasing in zm.8

Note that

β̄m(p0) = v̂m(0) = πmv(p0,0) for all m ∈M. (26)

Define
β (p0) := v(p0,0). (27)

From (26) and (27), we obtain

β̄m(p0) = πmβ (p0). (28)

Substituting (25) and (28) into (22) and using (21) yields

πmv(p0,ym) = ᾱ(p0)amym +πmβ (p0) (29)

or, equivalently,

v(p0,ym) = ᾱ(p0)
[

am

πm

]
ym +β (p0). (30)

Because v is state independent and Dy = R
M
+ , (30) implies that

am = κπm for all m ∈M, (31)

where κ > 0 because v is increasing in ym. Defining

α(p0) := κᾱ(p0) (32)

yields
v(p0,y0) = α(p0)ym +β (p0). (33)

For v to be homogenous of degree zero in prices and income, α must be homogenous
of degree minus one and β must be homogenous of degree zero.

Preferences that are representable by an indirect utility function with the func-
tional form given in (33) are called quasi-homothetic. That is, they exhibit the
Gorman (1961) polar form. For the demands generated by these preferences to
be nonnegative for all prices and incomes, β must be independent of prices. See

8 See Aczél (1969, Chap. 3) or Eichhorn (1978, Sect. 3.1).
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Blackorby, Boyce, and Russell (1978).9 Thus, v must satisfy (18). The other prop-
erties of α follow straightforwardly from the corresponding properties of v.

Using (31), (17) yields (19). ��

As indicated in the proof of Theorem 1, if v satisfies (30), then it cannot be
an indirect utility function unless the function α satisfies the restrictions stated
in Theorem 1 and β is a constant. However, if we choose a utility level ū for ex
post utility such that the consumption of any good is positive if this utility level is
achieved, then it is not necessary for β to be a constant if (Γ ,V ) is only required to
be consistent on the subset of DK for which ex post utilities are at least ū. Instead, β
only needs to be continuous, nonincreasing, convex, and homogeneous of degree
zero in prices.

Some intuition for Theorem 1 can be obtained by considering the special case
in which the Bernoulli indirect utility function v is differentiable. Suppose that
there is no price uncertainty and that a project only changes the state-contingent
incomes marginally. Let p0 be the price vector in each state both before and af-
ter the project is implemented, y be the initial state-contingent income vector, and
dy = (dy1, . . . ,dyM) be the vector of income changes that result from this project.
Note that dy is also the vector of compensating variations associated with this
project. By Lemma 1, consistency requires that

∑
m

am dym ≥ 0↔∑
m
πmvy(p0,ym)dym ≥ 0. (34)

Because the left side of (34) does not depend on the level of y, in order for this
equivalence to hold for all y ∈ R

M
+ and all dy in a neighborhood of the origin for

which y+dy ∈ R
M
+ , the marginal utility of income function vy must be positive and

cannot depend on income. Hence, v is an increasing affine function of income. That
is, v satisfies (33). Using (33), (34) simplifies to

∑
m

am dym ≥ 0↔ α(p0)∑
m
πm dym ≥ 0, (35)

which can only hold for all dy in a neighborhood of the origin if the weights a =
(a1, . . . ,aM) are proportional to the probabilities π = (π1, . . . ,πM).

A striking feature of Theorem 1 is that consistency requires that projects be eval-
uated in terms of expected compensating variation. That is, a project is welfare
improving for an individual if and only if the expected compensating variation of
the project is positive. As we have noted, previous studies of cost-benefit analysis
under uncertainty for a single individual simply assume that the surplus evaluation
function is the expected value of some measure of consumer’s surplus. For the do-
mains we are considering, we have shown that this must be the case, at least when

9 This result can be shown quite easily for the case in which v is differentiable. By Euler’s Theorem,
∑n

i=1 p0
i ∂β (p0)/∂ p0

i = 0. Hence, if β is not independent of prices, there must exist some price
vector p̄0 and good j for which ∂β ( p̄0)/∂ p0

j > 0. Using Roy’s Identity, the demand for good j at
(p̄0,ym) is c j(p̄0,ym) = −[ym∂α( p̄0)/∂ p0

j + ∂β ( p̄0)/∂ p0
j ]/α( p̄0), which is negative when ym is

sufficiently close to 0.
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surplus is measured using the compensating variation. In particular, it is not possi-
ble to require the surplus evaluation function to exhibit inequality aversion in the
distribution of compensating variations across states.

In Theorem 1, K is the set of goods for which prices are certain across states. If
K =N , then there is no price uncertainty, whereas if K = ∅, then all prices can vary
across states. Note that any p ∈ DK

p can be written as

p =
(

p0
K , p1

−K , . . . , p0
K , pM

−K
)
, (36)

where p0
K are the prices of the goods that are certain across states.

Theorem 2 shows that the weight on income in the Bernoulli indirect utility func-
tion (18) can only depend on the prices of the goods that are certain. Furthermore,
requiring the Bernoulli indirect utility function v to satisfy this restriction and requir-
ing the surplus evaluation function to identify a project as being welfare improving
if and only if the expected compensating variation is positive are jointly necessary
and sufficient for (Γ ,V ) to be consistent on any of the domains we are considering,
except for the domain in which all prices are uncertain.

Theorem 2. For all K ∈ N\∅, (Γ ,V ) is consistent on DK if and only if (18) and
(19) hold and there exists a function αK : R

|K|
++→ R++ for which

α(p0
K , p0

−K) = αK(p0
K) (37)

for all (p0
K , p0

−K) ∈R
N
++, where αK is continuous, decreasing, convex, and homoge-

neous of degree minus one.

Proof. Suppose that (Γ ,V ) is consistent on DK . From (20) and Theorem 1, we have

V̄
(

p,∑
m
πmym

)
=∑

m
πm [α(pm)ym +β ] (38)

for all (p,y) ∈ DK .
Consider any j �∈K and, contrary to the theorem, suppose that there exist distinct

pm′ , pm′′ ∈ R
N
++ for which pm′

i = pm′′
i for all i �= j and α(pm′) �= α(pm′′). Consider

any p̄∈DK
p for which p̄m′ = pm′ and p̄m′′ = pm′′ . Next, consider any distinct ȳ, ŷ∈Dy

for which ȳm = ŷm for all m �= m′,m′′ and

πm′ ȳ
m′ +πm′′ ȳ

m′′ = πm′ ŷ
m′ +πm′′ ŷ

m′′ . (39)

By construction, the value of the left side of (38) is the same when evaluated at (p̄, ȳ)
and (p̄, ŷ). Thus, (38) implies that

πm′α(pm′)ȳm′ +πm′′α(pm′′)ȳm′′

= πm′α(pm′)ŷm′ +πm′′α(pm′′)ŷm′′ . (40)
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Because (40) must hold for any nonnegative ȳm′ , ȳm′′ , ŷm′ , and ŷm′′ that satisfy (39),
it follows that α(pm′) = α(pm′′), a contradiction. Thus, (37) is satisfied.

The necessity part of the argument is completed by noting that the properties
of αK in the theorem statement follow immediately from the properties of α in
Theorem 1.

Now, suppose that (18), (19), and (37) are satisfied. Consider any (p̄, ȳ),
(p̂, ŷ) ∈ DK , where (p̄, ȳ) =

(
p̄0

K , p̄1
−K , . . . , p̄0

K , p̄M
−K , ȳ1, . . . , ȳM

)
and (p̂, ŷ) =(

p̂0
K , p̂1

−K , . . . , p̂0
K , p̂M

−K , ŷ1, . . . , ŷM
)
. Then,

V̄ (p̂, ŷ)−V̄ (p̄, ȳ) =∑
m
πmv(p̂0

K , p̂m
−K , ŷm)−∑

m
πmv(p̄0

K , p̄m
−K , ȳm)

=∑
m
πm
[
αK(p̂0

K)ŷm−αK(p̄0
K)ȳm] . (41)

Hence,

V̄ (p̂, ŷ)−V̄ (p̄, ȳ)≥ 0↔∑
m
πm
[
αK(p̂0

K)ŷm−αK(p̄0
K)ȳm]≥ 0. (42)

From (6), the compensating variation sm in state m is defined implicitly by

αK(p̂0
K) [ŷm− sm]+β = αK(p̄0

K)ȳm +β . (43)

Thus,

sm =
1

αK(p̂0
K)

[
αK(p̂0

K)ŷm−αK(p̄0
K)ȳm] . (44)

It follows from (42) and (44) that

V (p̂, ŷ)−V (p̄, ȳ)≥ 0↔∑
m
πmsm ≥ 0, (45)

which completes the sufficiency argument. ��

In Theorem 2, we have assumed that there is at least one price that is certain. If
all prices and incomes can be stochastic, then there is no surplus evaluation function
Γ that can provide a consistent cost-benefit test on D∅ for an individual whose
preferences satisfy the expected utility hypothesis.

Theorem 3. There is no function Γ : S(D∅) → R such that (Γ ,V ) is consistent
on D∅.

Proof. The necessity part of the proof of Theorem 2 applies equally well when
K = ∅. As a consequence, α must be independent of all prices. That is, for all
(p0,y0) ∈ R

N
++×R+,

v(p0,y0) = ξy0 +β for some ξ > 0. (46)
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However, if v has this functional form, then it cannot be homogeneous of degree
zero and, hence, consistency is impossible. ��

It is also possible to use Theorem 1 to prove Theorem 3 without relying on
Theorem 2. Suppose that (Γ ,V ) is consistent on D∅. Project 1 changes the prices
and incomes from (p̄, ȳ) to (p̂, ŷ). These prices and incomes can be chosen so that
the expected compensating variation ∑mπmsm of this project is negative and the
compensating variation sM in state M is positive for the individual under consider-
ation. Because (Γ ,V ) is consistent, Theorem 1 implies that the change in expected
utility is negative and, hence, this individual is worse off as a result of Project 1.
Now, let (p̃, ỹ) be the vector of prices and incomes for which (p̃m, ỹm) = (p̂m, ŷm)
for all m �= M and (p̃M, ỹM) = λ (p̂M, ŷM), where 0 < λ �= 1. In Project 2, prices
and incomes are changed from (p̄, ȳ) to (p̃, ỹ). Because the Bernoulli indirect utility
function v is homogenous of degree zero in prices and income, the indirect expected
utility is the same with (p̃, ỹ) as it is with (p̂, ŷ). Therefore, Project 2 makes the in-
dividual worse off. Let s̃M be the compensating variation in state M for this project.
Because the expenditure function is homogeneous of degree one in prices, it fol-
lows from (8) that s̃M = λ sM . The compensating variations for the other states are
the same with both projects. Because πM > 0, by choosing λ to be sufficiently large,
the expected compensating variation for Project 2 is positive, violating consistency.

Because the Bernoulli indirect utility function v is homogeneous of degree zero
in prices and income, expected utility is unaffected if the prices and income in each
state are divided by the price of good one. With this price normalization, the price
of good one is certain and always equal to one. It might seem then that Theorem 3
contradicts the special case of Theorem 2 in which K = {1}. However, this is not the
case. While such a price normalization does not change the expected utility either
before or after a project is implemented, it does change the value of the compensat-
ing variation in any state for which the post-project price of good one is not initially
equal to one. In other words, normalizing by setting the price of good one so that
it is always equal to one is innocuous from the perspective of calculating expected
utility, but it is not innocuous from the perspective of calculating expected compen-
sated variation. As we have seen, it is for precisely this reason that an impossibility
result is obtained when all prices and income can vary across states because we can
scale the prices and income in any state without changing the prices and income in
any other state. This independent scaling is not possible if any price must have the
same value in every state.10

10 Also note that the domain obtained from D∅ by normalizing the price of good one is not the
same as D{1}. For the domain D{1}, the price of good one is certain in any price vector p ∈ D{1}p ,
but it need not be the same as the price of good one in some other price vector q ∈ D{1}p . However,
with the price normalization, not only is the price of good one constant across states in a given
state-contingent price vector, it has the same value in every state-contingent price vector.
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6 Discussion

When the Bernoulli indirect utility function v is differentiable, we can measure the
consumer’s risk aversion with respect to income with the Arrow (1965)–Pratt (1964)
coefficient of relative risk aversion:

ρy(p0,y0) =−vyy(p0,y0)
vy(p0,y0)

y0 (47)

for all (p0,y0)∈R
N
++×R+. By Theorem 1, this coefficient must be identically zero.

In other words, the consumer must be risk neutral towards income uncertainty.
Analogous to the Arrow–Pratt coefficient of relative risk aversion ρy for income,

Turnovsky et al. (1980) have defined a coefficient of relative risk aversion ρpi for
the price of good i by taking derivatives with respect to pi instead of with respect
to y in (47) and then multiplying the resulting fraction by p0

i instead of by y0. If
it is assumed that the consumer’s indirect utility function has the expected utility
form given in (3), then the consumer’s attitudes towards income and price uncer-
tainty can be measured using the coefficients ρy and ρpi , i ∈ N . These measures
are only invariant to increasing affine transforms of the Bernoulli indirect utility
function v, which are also the transforms that do not affect the consumer’s ex ante
preferences over state-contingent prices and incomes. However, when computing
the compensating variation in each state, only the ordinal properties of v are used.
As a consequence, if v′ is any increasing transform of v, then the compensating vari-
ation associated with a project in any state is the same with v′ as it is with v, even if
the risk attitudes associated with v′ differ from those associated with v. Therefore,
when the surplus evaluation function in (19) is used to determine whether a project
is worthwhile or not, it makes the same recommendations for a consumer whose
preferences are characterized by the function v as it does for a consumer whose
preferences are characterized by v′. For this reason, as we have seen, restrictions
must be placed on v in order for this cost-benefit test to be consistent.11

The restrictions on the Bernoulli indirect utility function v that we have identified
for consistency imply that the consumer is risk neutral towards income and that
the marginal utility of income does not depend on any price that can vary across
states. If there is no price uncertainty and a project only changes incomes, then
our cost-benefit test declares a project to be worthwhile if it increases the expected
value of income. For a consumer who is risk neutral towards income, this is all that
he cares about. However, if the consumer is not risk neutral, then he cares about the
distribution of incomes, not just its expected value, and consistency would be lost.
If a project also changes prices, by using the compensating variation to measure
the surplus in each state, price changes are converted into an equivalent income
change using the post-project prices. In order for expected compensating variation
to provide a consistent cost-benefit test when some of the prices are stochastic, the
marginal utility of income must be constant across states.12 Because any distribution

11 See Helms (1985, p. 609) for similar observations about the use of expected compensating vari-
ation as a test for whether stabilizing a single stochastic price is beneficial for an individual.
12 In (44), αK(p̂0

K) is the marginal utility of income at the post-project prices. If this value depends
on any price that is not certain, then it could not be factored out in going from (44) to (45).
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of incomes across states is possible, this requires that the marginal utility of income
be independent of any price that can be state dependent.

In a model with a continuum of states, Helms (1984) has investigated when ex-
pected compensating variation is a consistent measure of individual welfare change
when the only source of uncertainty is in the price of one good and there are no re-
strictions on the stochastic variability that this price might exhibit. Helms has shown
that risk neutrality towards income and independence of the marginal utility of in-
come with respect to this price are necessary and sufficient for consistency provided
that the demand for this good is positive. That is, the Bernoulli indirect utility func-
tion must satisfy (33) with α independent of the price that is stochastic.13

Our theorems are closely related to results about the consistency of cost-benefit
tests based on compensating or equivalent variations established by Blackorby and
Donaldson (1985, 1986) and Blackorby, Donaldson, and Moloney (1984) in a vari-
ety of contexts.

Blackorby and Donaldson (1985) have shown (i) that no continuous, increasing
surplus evaluation function defined on individual compensating or equivalent varia-
tions can be consistent with an indirect Bergson–Samuelson social welfare function
when all prices and incomes can be person specific and (ii) that when everyone faces
the same prices, consistency requires individual preferences to be quasi-homothetic
with everyone having the same price-dependent weight on income in their indirect
utility functions.14 The latter condition is the necessary and sufficient condition
identified by Gorman (1953) for the existence of community indifference curves.15

In Blackorby et al. (1984), a single consumer, whose utility is a continuous, in-
creasing function of the instantaneous utilities obtained from his consumption in
each of a finite number of periods, chooses these consumptions to maximize life-
time utility, given the prices of the goods and his wealth in a perfect capital market.
They have shown (i) that no discounted sum of the compensating or equivalent vari-
ations in each period can serve as a consistent measure of welfare change for such
a consumer if prices are free to vary across periods and (ii) that the instantaneous
preferences must be quasi-homothetic with a common price-dependent weight on
income in the corresponding indirect utility functions if all prices are constant across
periods.16

13 Neither Helms (1984) nor the other articles considered in the rest of this section take account
of the restrictions required to ensure that demands are nonnegative for all admissible prices and
incomes. For this reason, they only show that preferences must be quasi-homothetic, rather than
being fully homothetic.
14 Related results may be found in Hammond (1977, 1980) and Roberts (1980).
15 Blackorby and Donaldson (1999) have established similar results about the consistency of
the sum of individual Marshallian consumers’ surpluses with an indirect Bergson–Samuelson
indirect social welfare function. For discussions of the use of expected Marshallian consumer’s
surplus as a measure of individual welfare change, see Rogerson (1980), Stennek (1999), and
Turnovsky et al. (1980).
16 The analogue of a perfect capital market in our model is a perfect insurance market that permits
an individual to transfer wealth across states.
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In Blackorby and Donaldson (1986), there is a single period and each individ-
ual consumes an amount of a single commodity should he live, which occurs with
positive probability. For the case in which each person’s preferences satisfy the
expected utility hypothesis and everyone has some level of consumption that makes
life just worth living, they have shown (i) that the sum of the individual compensat-
ing or equivalent variations is not consistent with the ranking of alternative distri-
butions of survival probabilities and of consumptions obtained with any continuous,
increasing Bergson–Samuelson social welfare function if both the probabilities of
survival and the consumptions can be person specific and (ii) that when everyone
has the same survival probability, then consistency requires each individual’s pref-
erences to be representable by a utility function that is affine in consumption with
a common weight on consumption that depends only on the survival probability.
As Blackorby and Donaldson (1986, Sect. III) have noted, the probabilities in this
model correspond to prices in the riskless multi-good model.

There is clearly a close family resemblance between these results and those
obtained here. This is not surprising. Although our model and those described
above differ in some important respects, the overall measure of individual or social
welfare in each case is a continuous, increasing function of the utility functions
that are used to compute the individual or state-contingent or period-contingent
compensating or equivalent varitions. Furthermore, the surplus evaluation function
is, in each case, a continuous, increasing function of these surpluses. It is these
common structural features of these models that accounts for the similarity of the
results about the consistency of welfare evaluations based on Hicksian measures of
consumer’s surplus that are obtained with them.

7 Concluding Remarks

The restrictions on preferences that Helms (1984, 1985) has shown are required for
expected compensated variation to be a consistent measure of individual welfare
change are much less restrictive when a single stochastic price is stabilized at its
mean value compared with the case in which all distributions can be stochastic.
However, they are still quite stringent and are unlikely to be satisfied in practice.
For the prices that are allowed to vary across states and for income, we have placed
no restrictions on the pre- and post-project distributions. We could instead restrict
our domains by, for example, considering projects that stabilize income or some
of the prices. On such domains, the conditions required for consistency would be
weaker than those obtained here. However, Helms’s theorems suggest that they will
nevertheless be quite restrictive, so considering more specialized domains does not
appear to be a promising direction in which to seek more positive results.

In view of the rather stringent conditions required for a surplus evaluation function
based on the ex post compensating variations to be a consistent measure of individual
welfare change, it is natural to ask if there is any measure of consumer’s surplus that
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applies more generally when prices or incomes are uncertain. An affirmative answer
is provided by the ex ante compensating and equivalent variations introduced by
Schmalensee (1972).17

The ex ante compensating variation sc for a project that changes the state-
contingent prices and income from (p̄, ȳ) to (p̂, ŷ) is defined implicitly by

∑
m
πmv(p̂m, ŷm− sc) = V (p̄, ȳ). (48)

That is, sc is the amount by which an individual’s income can be reduced in each
state in order for the post-project situation to give him the same ex ante expected
utility as is achieved before the project is implemented. Because v is increasing in
income, sc is positive if and only if the project makes the consumer better off ex ante.
Thus, sc can serve as an exact measure of welfare change for any individual whose
preferences satisfy the expected utility hypothesis. Similarly, the ex ante equivalent
variation se is the amount of income that needs to be provided to an individual in
each state in the pre-project situation in order to give him the same ex ante expected
utility as is achieved after the project is implemented. It too is an exact measure of
individual welfare change.

Schmalensee (1972) did not advocate the use of these ex ante measures because
he thought that they are non-operational. However, assuming that the appropriate
coefficients of risk aversion can be determined from analyzing behavior under un-
certainty, Anderson (1979) has argued that these measures are operational, and so
has endorsed their use, as has Helms (1985).18 Given that information about risk
attitudes is needed in order to determine if expected compensating (or equivalent)
variation is a consistent measure of individual welfare change, it therefore seems
that there is little reason to use the expected value of some consumer’s surplus mea-
sure to evaluate projects that involve price and income uncertainty instead of the ex
ante compensating or equivalent variation.
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and Stennek (1999).
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Beyond Normal Form Invariance:
First Mover Advantage in Two-Stage Games
with or without Predictable Cheap Talk

Peter J. Hammond

1 Motivation and Introduction

1.1 Von Neumann’s Standard Paradigm

Following Zermelo’s (1912) pioneering analysis of chess and similar games, von
Neumann (1928) devised a standard paradigm, according to which multiperson de-
cision problems in modern economic analysis and other social science are nearly
always modeled as noncooperative games in strategic form. This paradigm relies on
two key assumptions, of which the first can be stated as follows:

Assumption 1. A multiperson decision problem is fully described by a game in
extensive form, whose structure is commonly known to all players in the game.

Von Neumann’s (1928) own extensive form description was later incorporated
in The Theory of Games and Economic Behavior. Kuhn (1953) pointed out the im-
plicit assumption that the order of different players’ information sets was commonly
known to all players at all stages of the game, and extended the von Neumann de-
scription to relax this assumption. Much more generally, we can now envisage an
extensive form of game as a stochastic process subject to the control of different
players, with each player’s information at each time described by a filtration. One
key assumption, however, is that this stochastic process fits within Kolmogorov’s
(1933) framework of one overall probability space that includes everything random.
As argued in Hammond (2007), this fails to allow for the possibility of having events
that no player can foresee, and which may indeed even be impossible for any ideal
observer to foresee.
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1.2 Normal Form Invariance

The second assumption, which seems to have originated in von Neumann (1928),
can be stated as follows:

Assumption 2. It loses no generality to reduce the game in extensive form to the
corresponding game in strategic or normal form, where each player makes a single
strategic plan that covers all eventualities in the extensive form.

It is perhaps worth going back all the way to von Neumann’s original article,
as adapted in von Neumann and Morgenstern (1943, 1953), to see how he justified
normalizing the extensive form. First, normal form strategies are described on p. 79:

Imagine now that each player . . . , instead of making each decision as the necessity for it
arises, makes up his mind in advance for all possible contingencies; i.e., that the player
. . . begins to play with a complete plan: a plan which specifies what choices he will make in
every possible situation, for every possible actual information which he may possess at that
moment in conformity with the pattern of information which the rules of the game provide
for him for that case. We call such a plan a strategy.

Then pages 79–84 proceed to simplify the description of an extensive form game
to arrive at the normal form of the game in which each player makes just one move,
and all moves are chosen simultaneously. In fact (p. 84):

Each player must make his choice [of strategy] in absolute ignorance of the choices of the
others. After all choices have been made, they are submitted to an umpire who determines
. . . the outcome of the play for [each] player.

Observe that in this scheme no space is left for any kind of further ‘strategy.’ Each player
has one move, and one move only; and he must make it in absolute ignorance of everything
else.

Normalizing an extensive form game in this way is an extremely powerful de-
vice. And if the players of a game really do simultaneously submit their choices
of a strategy to an umpire, who then sees that the players never deviate from their
announced choices, then von Neumann and Morgenstern’s claim on p. 85 seems
entirely justified:

. . . we obtained an all-inclusive formal characterization of the general game of n persons . . . .
We followed up by developing an exact concept of strategy which permitted us to replace the
rather complicated general scheme of a game by a much more simple special one, which
was nevertheless shown to be fully equivalent to the former . . . . In the discussion which
follows it will sometimes be more convenient to use one form, sometimes the other. It is
therefore desirable to give them specific technical names. We will accordingly call them the
extensive and the normalized form of the game, respectively.

Since these two forms are strictly equivalent, it is entirely within our province to use in
each particular case whichever is technically more convenient at that moment. We propose,
indeed, to make full use of this possibility, and must therefore re-emphasize that this does
not in the least affect the absolute general validity of all our considerations.

It is this simplification that gives such power to familiar “normal form” concepts
like Nash equilibrium, as well as to less familiar ones like trembling-hand perfect
equilibrium (Selten, 1975), proper equilibrium (Myerson, 1978), correlated equilib-
rium (Aumann, 1987), rationalizable strategies (Berhmeim, 1984 and Pearce, 1984).
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Also, Mailath, Samuelson, and Swinkels (1993) show how even ostensibly exten-
sive form ideas such as Selten’s (1965) concept of subgame perfect equilibrium, or
Kreps and Wilson’s (1982) concept of sequential equilibrium, have their (reduced)
normal form counterparts.

Game theorists do relax normal form invariance somewhat by using exten-
sive form solution concepts. For example, requiring players to respond credibly
when other players deviate from expected behavior was the original motivation
for subgame perfection. See also Amershi, Sadanand, and Sadanand (1985, 1989a,
1989b, 1992); Hammond (1993); Sadanand and Sadanand (1995); Battigalli (1997);
Battigalli and Siniscalchi (1999, 2002); and Asheim and Dufwenberg (2003), among
other works that cast doubt on the normal form invariance hypothesis.

1.3 Outline of Chapter

The purpose of this chapter is to present a theoretical argument supporting the view
that normal form invariance may be unduly restrictive. To do so, Section 2 considers
a simple “Battle of the Sexes” game, where experimental evidence suggests that the
first move does confer an advantage. It sets out the claim that this may be due to
what would happen in the unique credible equilibrium of an associated game where
cheap talk is possible after the first move, but before the second.

Section 3 begins to analyze a general two-stage game where one player moves
first, and the only other player moves second, but without knowing the first player’s
move. It then allows simultaneous cheap talk by both players at an intermediate
stage, between their two moves.

Because we are looking for an equilibrium that the players can infer, we require
player 1’s cheap talk to be “predictable” in the sense that it results from a pure strat-
egy, which is independent of her (hidden) action. Hence, we consider a game where
player 1 combines a mixed act with a pure message strategy. Afterwards, player 2
first sends a message without knowing what 1 has done, then forms his conditional
beliefs, given 1’s message and chooses an optimal mixed act accordingly.

Not surprisingly, any perfect Bayesian equilibrium (PBE) in the game with pre-
dictable cheap talk must induce a Nash equilibrium in the corresponding game with-
out cheap talk. On the other hand, any Nash equilibrium without cheap talk can be
extended into a PBE by making the second player “inattentive” to all cheap talk
when forming his beliefs and choosing his strategy. Thus, cheap talk alone fails to
refine the set of PBEs.

To facilitate such a refinement, Section 4 invokes a particular version of the rev-
elation principle in the form due to Myerson (1982), as amended by Kumar (1985).
First, this will allow player 2’s message to be ignored, since anything he says could
affect only his own actions. Second, the revelation principle will allow general pre-
dictable cheap talk by player 1 to be replaced by “direct” cheap talk in the form of
two suggestions for player 2, at his only information set: (i) the conditional proba-
bilities that should be attached to player 1’s earlier moves; (ii) player 2’s choice of
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mixed act. Moreover, as argued in Section 4, we can limit attention to “straightfor-
ward” PBEs, where player 2 accepts both player 1’s suggestions.

Section 5 finally introduces a credibility refinement. This requires a straightfor-
ward PBE to survive even when player 2 is “Nash attentive,” that is, when he accepts
any suggestion by player 1 for choosing a Nash equilibrium of the game without
cheap talk. The resulting “credible” equilibrium with cheap talk leads to an opti-
mal Nash equilibrium for player 1 in the original game without cheap talk. When
this optimal Nash equilibrium is unique, “sophistication” allows this cheap talk to
remain implicit, and so unnecessary. While these results may be hardly surprising,
they do show how tacit communication can explain first-mover advantage in games
like Battle of the Sexes.

Section 6 considers “virtual observability.” This occurs when, as in Battle of the
Sexes, sophistication effectively converts the game into one of the perfect infor-
mation, with the second player knowing the first move. Three examples show that
virtual observability is rather special.

The concluding Section 7 discusses possible extensions and suggestions for fu-
ture work that relaxes normal form invariance in other ways.

Except where it is standard, most notation will be explained wherever it is first
used. Given any finite set F , however, let Δ(F) denote the set of probability distri-
butions over F . Also, if F ′ is a proper subset of F , let Δ(F ′) ⊂ Δ(F) denote those
distributions that attach probability one to F ′. Finally, if X and Y are arbitrary sets,
let XY :=∏y∈Y Xy denote the set of all mappings y �→ xy from Y to X .

2 Battle of the Sexes

2.1 Two Different Extensive Forms

The two games in Figs. 1 and 2 are different extensive form versions of the famil-
iar “Battle of the Sexes” game, whose normal form is given in Fig. 3. As is well
known, there are two Nash equilibria in pure strategies, namely (B,b) and (S,s).
There is also one mixed strategy Nash equilibrium where player 1 chooses B with
probability 2

3 , and player 2 chooses b with probability 1
3 .

Nevertheless, experiments strongly suggest that the player who moves first en-
joys an advantage, in so far as (B,b) is played more often than (S,s) in Fig. 1, but
less often in Fig. 2.1 These results have usually been ascribed to “positional order”

1 A “preliminary” experiment along these lines is described by Amershi, Sadanand, and
Sadanand (1989a). Kreps (1990, p. 100) writes about “casual experiences playing this game with
students.” Later formal experiments yielding similar results were reported in Cooper, Dejong,
Forsythe, and Ross (1989, 1993). See also Schotter, Weigelt, and Wilson (1994); Rapoport (1997);
Güth, Huck, and Rapoport (1998); Muller and Sadanand (2003); and Weber, Camerer, and Knez
(2004). The work by Güth, Huck, and Rapoport (1998) even includes an experiment in which a
form of cheap talk is explicitly allowed. The experimental design, however, includes the wording
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Fig. 1 Battle of the sexes
where player 1 moves first
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Fig. 2 Battle of the sexes
where player 2 moves first
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Fig. 3 Battle of the sexes in
normal form
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or “presentation” effects that are seen as psychological or behavioral rather than
fully rational responses to a change in the extensive form of the game.

2.2 Direct Cheap Talk in Battle of the Sexes

Consider the extensive form of Fig. 1, where player 1 moves first, and this is com-
mon knowledge. Suppose that, during an intermediate stage that succeeds player
1’s move but precedes player 2’s, the two players are allowed to communicate and
indulge in unrestricted and mutually comprehensible “cheap talk.”

As argued in Sect. 4, however, an extended version of the revelation principle
implies that, in perfect Bayesian equilibrium (PBE), only player 1’s cheap talk is
relevant; it is already too late for player 2 to influence any action choice except his
own. Moreover, we need only consider direct cheap talk where player 1’s message m
is a pair suggesting conditional probabilities ρ(·) ∈ Δ({B,S}) and a mixed strategy
σ(·) ∈ Δ({b,s}) for player 2 at his only information set. Finally, the same principle
allows us to limit attention to a “straightforward” PBE, where player 2 accepts 1’s
suggestions.

“B learns about A’s decision” in the instructions. This may bias the results by offering the subjects
too little encouragement to recognize the possibility of sending or receiving a deceptive message.
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Now, any straightforward PBE would seem to involve just one of three possible
direct messages that player 1 might send, corresponding to the three different Nash
equilibria of the normal form:

1. Corresponding to the equilibrium (B,b), a message with ρ(B) = σ(b) = 1 that
yields the two players’ expected payoffs of (2,1)

2. Corresponding to the equilibrium (S,s), a message with ρ(S) = σ(s) = 1 that
yields the two players’ expected payoffs of (1,2)

3. Corresponding to the mixed strategy equilibrium, a message with

ρ(B) = σ(s) = 2
3 and ρ(S) = σ(b) = 1

3 ,

which yields the two players’ expected payoffs of ( 2
3 , 2

3 ).

2.3 One Credible Equilibrium with Cheap Talk

In this Battle of the Sexes game with cheap talk, suppose all three “straightforward”
messages could be regarded as credible. Then player 1 would expect player 2 to re-
spond appropriately to whichever straightforward message she sends. So she would
definitely choose the first of the three. But then, if player 2 hears any direct message
except “I have played B and recommend that you play b”, he should wonder whether
player 1 has really not played B, or whether player 1 has somehow misspoken after
playing B. Thus, player 2’s best response to any other direct message actually be-
comes unclear. In the case of Battle of the Sexes, however, all that matters is that
player 2 does choose b when player 1 suggests he should. This leaves us with just
one possible outcome of any credible perfect Bayesian equilibrium (PBE).

Finally, if predictable direct cheap talk would produce a unique credible equilib-
rium message, we assume that both players are sufficiently “sophisticated” to reason
what it will be. But this removes any need for cheap talk. Player 2 can work out the
unique equilibrium message that he would receive in any credible PBE of the game
with predictable direct cheap talk, and player 1 should know this also. By tacitly
inferring what would happen if cheap talk were actually permitted, they reach the
same unique outcome as in any credible PBE with predictable cheap talk.

3 General Two-Stage Games

3.1 The Basic Extensive Game

Instead of the specific Battle of the Sexes game discussed in Sect. 2, consider a
general two-stage gameΓ0 with two players 1 and 2, for whom all the following facts
are common knowledge. Player 1 begins the game by choosing an action a1 from the
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finite set A1. Then player 2 at his only information set, without seeing a1, finishes
the game by choosing an action a2 from the finite set A2. Each player i’s payoff is
denoted by ui(a1,a2) (for i = 1,2). Allowing for mixed strategies αi ∈ Δ(Ai), the
normal form of Γ0 can be written as

G0 = 〈{1,2},Δ(A1),Δ(A2),v1,v2〉, (1)

with (expected) payoffs vi : Δ(A1)×Δ(A2)→ R for i = 1,2 given by

vi(α1,α2) := ∑
a1∈A1

∑
a2∈A2

α1(a1)α2(a2)ui(a1,a2). (2)

Next, given their respective beliefs π1 ∈ Δ(A2) and π2 ∈ Δ(A1), define the two play-
ers’ mixed strategy best response sets

B1(π1) := argmax
α1∈Δ(A1)

v1(α1,π1) (3)

and B2(π2) := argmax
α2∈Δ(A2)

v2(π2,α2). (4)

Finally, we denote the set of mixed strategy Nash equilibra of G0 by

E0 := {(α1,α2) ∈ Δ(A1)×Δ(A2) | α1 ∈ B1(α2), α2 ∈ B2(α1)}. (5)

These are also the Nash (and perfect Bayesian) equilibra of Γ0.

3.2 Predictable Cheap Talk

Cheap talk is introduced by allowing the two players to choose simultaneous mes-
sage strategies mi ∈Mi (for i = 1,2) after player 1 has chosen a1, but before player 2
chooses a2. Often it will be convenient to let m ∈M := M1×M2 denote the typical
message pair (m1,m2). Of course, the main claim of this chapter is precisely that
it really is restrictive to reduce complex interactions to single strategy choices by
each player.2 Nevertheless, such restrictions seem not to detract from the force of
the main argument.

Also, we look eventually for a predictable unique equilibrium of the game with
cheap talk. Note, however, that no mixed message strategies could work this way;
player 2 could not predict what messages result from such randomization. Nor can
player 1 make her message depend on the action that results from a mixed action

2 Moreover, this rules out the kind of “long” cheap talk considered by Aumann and Hart (2003).
Their model, however, involves messages that are sent by choosing one among only a finite set of
“keystrokes.” Also, the only example they provide of an equilibrium involving long cheap talk is
presented in their Section 2.8. In a particular signaling game, it amounts to finding a mixed message
strategy with infinite support. The formulation used here would allow any such message to be sent
in only one stage.
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strategy. So we consider only “predictable” cheap talk that results in one fixed mes-
sage strategy for each player, independent of player 1’s earlier action.

3.3 An Extensive Form Game

An obvious two-person extensive game of perfect recall with predictable cheap talk
proceeds in three successive stages as follows:

First action stage: Player 1 has one initial information set where she chooses a mixed
action strategy α1 ∈ Δ(A1).

Intermediate message stage: Both players simultaneously choose predictable mes-
sages m1 ∈M1 and m2 ∈M2. Though player 1 knows α1 and even a1, predictabil-
ity rules out using this information. Hence, both players communicate as though
they have a single information set at this stage.

Second action stage: Player 2 has an information set H2(m) for each possible mes-
sage pair m ∈M. This enables him to choose a function α2(·|·) ∈ [Δ(A2)]M map-
ping each m ∈M to a mixed action strategy α2(·|m) ∈ Δ(A2).

Let Γ denote this extensive game. Its normal form can be written as

G = 〈{1,2},S1,S2,w1,w2〉, (6)

where the two players’ permitted (mixed) strategy sets have typical members de-
noted by

(α1,m1) ∈ S1 := Δ(A1)×M1 (7)
and (m2,α2(·|·)) ∈ S2 := M2× [Δ(A2)]M. (8)

Also, definition (2) allows the two players’ expected final payoffs wi : S1×S2→ R

to be written as

wi(α1,m1,m2,α2(·|·, ·)) := vi(α1,α2(·|m1,m2)). (9)

3.4 Characterizing Perfect Bayesian Equilibrium

In a general extensive form game, a perfect Bayesian equilibria (PBE) is a strategy–
belief profile which, for each player i and for each information set H where i has the
move, combines: (i) a behavioral strategy specifying what (mixed) move i makes at
H; (ii) a belief system specifying what subjective probabilities player i attaches to
the different nodes of H. Moreover, this combination must satisfy the following two
requirements:
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Consistent beliefs: Player i’s beliefs at H are derived by Bayesian updating, pro-
vided the conditional probabilities are well defined, given equilibrium moves at
previous information sets;

Sequential rationality: Player i’s move at H should maximize i’s conditional ex-
pected payoff, given the players’ behavior strategies at all other information sets,
and given player i’s beliefs at H.

For the game Γ , accordingly, any strategy–belief profile involves player 2’s con-
ditional beliefs at each information set H2(m), after observing the message pair
m = (m1,m2) ∈ M. We regard any such belief system as a mapping m �→ π(·|m)
from M to Δ(A1), denoted by

π(·|·) ∈ [Δ(A1)]M. (10)

We now give conditions for a particular strategy–belief profile

(α∗1 ,m∗,α∗2 (·|·),π∗(·|·)) ∈ Δ(A1)×M× [Δ(A2)]M× [Δ(A1)]M (11)

in Γ to be a PBE.
At each last information set H2(m) of Γ , following the observed message pair

m ∈M, player 2’s equilibrium belief system π∗(·|·) determines his best response set
B2(π∗(·|m)). Sequential rationality therefore requires player 2’s behavior strategy at
H2(m) to satisfy

α∗2 (·|m) ∈ B2(π∗(·|m)) for each m ∈M. (12)

Earlier, anticipating player 2’s equilibrium message m∗2 and sequentially rational
response to each pair (m1,m∗2), player 1 chooses the pair

(α∗1 ,m∗1) ∈ argmax
(α1,m1)∈Δ(A1)×M1

v1(α1,α∗2 (·|m1,m∗2)). (13)

This implies in particular that in the first action stage 1, anticipating both the equi-
librium message pair m∗ ∈ M and player 2’s induced response α∗2 (·|m∗), player 1
chooses a mixed action strategy satisfying

α∗1 ∈ B1(α∗2 (·|m∗)). (14)

During the intermediate message stage, player 2 anticipates player 1’s choice
of (α∗1 ,m∗1) and his own sequentially rational response to each pair m ∈M. Hence
player 2’s equilibrium message m∗2 satisfies

m∗2 ∈ argmax
m2∈M2

v2(α∗1 ,α∗2 (·|m∗1,m2)). (15)

Finally, consistency of beliefs on the equilibrium path implies that

π∗(·|m∗) = α∗1 . (16)
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Then (12) implies that player 2 chooses a mixed strategy satisfying

α∗2 (·|m∗) ∈ B2(α∗1 ). (17)

3.5 Perfect Bayesian and Nash Equilibria

The following simple result establishes that, because any PBE of Γ induces Nash
equilibrium strategies along an equilibrium path, it induces Nash equilibrium action
strategies in the game G0 without cheap talk.

Lemma 1. Suppose the strategy–belief profile (α∗1 ,m∗,α∗2 (·|·),π∗(·|·)) is a PBE in
the game Γ with predictable cheap talk. Then the mixed action strategy profile
(α∗1 ,α∗2 (·|m∗)) in Δ(A1)× Δ(A2) induced along the equilibrium path must be a
Nash equilibrium in the game Γ0 without cheap talk.

Proof. Given the equilibrium message pair m∗, conditions (14) and (17) imply that
the induced mixed strategies α∗1 and α∗2 (·|m∗) are mutual best responses. So the
strategy pair belongs to the set E0 of Nash equilibria of the game Γ0 without cheap
talk, as defined in (5). ��

The next result shows that cheap talk alone excludes none of the Nash equilibria
in the game Γ0. In particular, all three Nash equilibria in the Battle of the Sexes
example of Sect. 2 can be extended to PBEs with appropriate cheap talk.

Definition 1. In the game Γ with predictable cheap talk, player 2’s strategy–
belief system (α2(·|·),π(·|·)) ∈ [Δ(A2)× Δ(A1)]M is inattentive if both α2(·|m)
and π(·|m) are constant, independent of m, for all message pairs m ∈ M. A PBE
(α∗1 ,m∗,α∗2 (·|·),π∗(·|·)) in Γ is inattentive if player 2’s equilibrium strategy–belief
system is inattentive.

Lemma 2. Let (ᾱ1, ᾱ2) ∈ E0 be any Nash equilibrium in the game Γ0 without cheap
talk. Let M be any message space for player 1. Then the corresponding game Γ with
predictable cheap talk in M has an inattentive PBE, which induces (ᾱ1, ᾱ2) along
the equilibrium path.

Proof. Consider the strategy–belief profile in Γ where

1. player 1 combines α∗1 = ᾱ1 with an arbitrary message m∗1 ∈M1
2. player 2 sends an arbitrary message m∗2 ∈M2
3. player 2’s strategy–belief system is inattentive, with

α∗2 (·|m) = ᾱ2 and π∗(·|m) = ᾱ1 for all m ∈M. (18)

It is easy to see that (α∗1 ,m∗,α∗2 (·|·),π∗(·|·)) must be a PBE. ��
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4 An Extended Revelation Principle

4.1 Direct Cheap Talk

The revelation principle will involve a new game Γ̂ , which is like Γ , except the
following:

1. Player 2’s message space M2 becomes a singleton {m̄2}, so he can only send a
constant message m̄2. This makes 2’s message irrelevant, of course, so we ignore
it from now on.

2. Player 1’s general messages m1 ∈M1 are replaced by direct messages

m̂ = (ρ,σ) ∈ M̂ := Δ(A1)×Δ(A2). (19)

Here, following Kumar’s (1985) extension of the revelation principle, the first com-
ponent ρ ∈Δ(A1) of each direct message that player 1 might send can be interpreted
as beliefs about player 1’s strategy that 1 suggests to 2. Following Myerson (1982),
the second component σ ∈ Δ(A2) can be interpreted as the mixed strategy that 1
suggests to 2.3

The typical strategy–belief profile in the game Γ̂ with direct cheap talk will be
denoted by

(α̂1, m̂, α̂2(·|·), π̂(·|·)) ∈ Δ(A1)× M̂× [Δ(A2)]M̂× [Δ(A1)]M̂. (20)

4.2 Equivalent Straightforward Equilibria

Definition 2. In the game Γ̂ with direct cheap talk, the strategy–belief profile
(α̂1, m̂, α̂2(·|·), π̂(·|·)) with m̂ = (ρ,σ) is straightforward if

π̂(·|m̂) = ρ = α̂1 and α̂2(·|m̂) = σ . (21)

A strategy–belief profile that is straightforward and also a PBE is a straightforward
PBE.

That is, a strategy–belief profile is straightforward if player 1 suggests beliefs
that match her mixed action and if player 2 accepts both suggestions that make up
player 1’s direct message.

The following result extends to our setting the versions of the revelation principle
due to Myerson (1982) and Kumar (1985).

Theorem 1. Let (α∗1 ,m∗,α∗2 (·|·),π∗(·|·)) be any PBE strategy–belief profile in the
game Γ with general predictable cheap talk. Then in the associated game Γ̂ with
direct cheap talk there is an equivalent PBE

3 Following Forges (1986), many later writers describe direct messages as “canonical.”
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(α̂∗1 , m̂∗, α̂∗2 (·|·), π̂∗(·|·)) (22)

that is inattentive, straightforward, and generates the same equilibrium action strat-
egy pair

(α̂∗1 , α̂∗2 (·|m̂∗)) = (α∗1 ,α∗2 (·|m∗)). (23)

Proof. By Lemma 1, the mixed action strategy pair (α∗1 ,α∗2 (·|m∗)) generated by the
PBE of Γ must be a Nash equilibrium of the game Γ0 without cheap talk. To con-
struct the equivalent PBE strategy–belief profile (22), first choose α̂∗1 = α∗1 . Next,
define the equivalent direct message m̂∗ ∈ M̂ in the game Γ̂ as the Nash equilib-
rium pair (α∗1 ,α∗2 (·|m∗)) itself. Finally, define an inattentive strategy–belief system
for player 2 by choosing π̂∗(·|m̂) := α∗1 and α̂∗2 (·|m̂) := α∗2 (·|m∗) for each direct
message m̂ ∈ M̂ = Δ(A1)×Δ(A2).

Evidently the constructed strategy–belief profile (22) is both inattentive and
straightforward. As in Lemma 2, it is also a PBE of Γ̂ . ��

The extended revelation principle is especially useful in allowing any PBE in the
game Γ with predictable cheap talk to be converted to an inattentive straightforward
PBE in the associated game Γ̂ with direct cheap talk. Nevertheless, Lemma 2 applies
even in Γ̂ . For this reason, an extra consideration is needed to refine the set of Nash
equilibria.

5 Credible Equilibria with Direct Cheap Talk

5.1 Nash Attentiveness

The following definition requires player 2 to accept player 1’s direct message in Γ̂
whenever it suggests a specific Nash equilibrium of the game Γ0 without cheap talk.

Definition 3. In the game Γ̂ with direct cheap talk, player 2’s strategy–belief
system (α̂2(·|·), π̂(·|·)) ∈ [Δ(A2) × Δ(A1)]M̂ is Nash attentive if it satisfies
(α̂2(·|m̂), π̂(·|m̂)) = m̂ whenever the direct message m̂ = (ρ,σ) ∈ M̂ = Δ(A1)×
Δ(A2), viewed as a pair of mixed strategies, constitutes a Nash equilibrium of the
game Γ0 without cheap talk. A PBE strategy–belief profile is Nash attentive if player
2’s strategy–belief system is Nash attentive.

5.2 First-Mover Advantage with Cheap Talk

We now show that the PBEs of Γ̂ with Nash attentive beliefs generate Nash equilib-
ria in Γ0 that are optimal for the first mover.

Definition 4. In the game Γ0 without cheap talk, the Nash equilibrium mixed strat-
egy pair (α∗1 ,α∗2 )∈Δ(A1)×Δ(A2) is optimal for player 1 if v1(α∗1 ,α∗2 )≥ v1(α1,α2)
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for all (α1,α2) in the set E0 of mixed strategy Nash equilibria in Γ0. The same pair
is uniquely optimal for player 1 if v1(α∗1 ,α∗2 ) > v1(α1,α2) for all alternative Nash
equilibria (α1,α2) ∈ E0 \{(α∗1 ,α∗2 )}.

Theorem 2. Let (α̂∗1 , m̂∗, α̂∗2 (·|·), π̂∗(·|·)) be any straightforward Nash attentive
PBE strategy–belief profile in the game Γ̂ with predictable direct cheap talk. Then
the action profile (α∗1 ,α∗2 ) := (α̂∗1 , α̂∗2 (·|m̂∗)) induced on the equilibrium path is an
optimal Nash equilibrium for player 1 in the game Γ0 without cheap talk.

Proof. Applying equilibrium condition (13) to Γ̂ instead of Γ gives

(α̂∗1 , m̂∗) ∈ argmax
(α1,m̂)∈Δ(A1)×M̂

v1(α1, α̂∗2 (·|m̂). (24)

Let (ᾱ1, ᾱ2)∈E0 be any Nash equilibrium inΓ0. Because player 2’s strategy α̂∗2 (·|m̂)
is Nash attentive in the game Γ̂ , player 1’s expected payoff from choosing (α1, m̂)
with α1 = ᾱ1 and m̂ = (ᾱ1, ᾱ2) will be

v1(ᾱ1, α̂∗2 (·|m̂)) = v1(ᾱ1, ᾱ2). (25)

Now (24) implies that v1(α̂∗1 , α̂∗2 (·|m̂∗)) ≥ v1(ᾱ1, α̂∗2 (·|m̂)), and so v1(α∗1 ,α∗2 ) ≥
v1(ᾱ1, ᾱ2) by (25). This holds for every (ᾱ1, ᾱ2) ∈ E0. But Lemma 1 implies that
(α∗1 ,α∗2 ) ∈ E0, so it must be an optimal Nash equilibrium for player 1. ��

The next definition considers what happens when player 2 may not be fully Nash
attentive, but is nevertheless attentive at least to messages that suggest following a
Nash attentive straightforward PBE.

Definition 5. A straightforward PBE strategy–belief profile in the game Ĝ with di-
rect cheap talk is credible if it is identical to a Nash attentive straightforward PBE
along the equilibrium path.

Obviously, by Theorem 2, any such credible PBE must also induce an optimal
Nash equilibrium outcome for player 1.

5.3 First-Mover Advantage without Cheap Talk

Suppose the game Γ̂ with predictable direct cheap talk has a unique credible PBE.
Then the two players can reasonably expect each other to infer what this direct cheap
talk would be, even in the game Γ0 without cheap talk. The following definition
singles out the corresponding Nash equilibrium of this game.

Definition 6. A Nash equilibrium of the game Γ0 without cheap talk is sophisticated
if it is induced by a credible straightforward PBE of the corresponding game Γ̂ with
predictable direct cheap talk, and moreover this credible PBE is unique.
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Fig. 4 A game with no
sophisticated equilibrium

l r
L 1, 1 0, 0
R 0, 0 1, 1

Theorem 3. Suppose (α∗1 ,α∗2 ) is a uniquely optimal Nash equilibrium for player 1
in Γ0. Then (α∗1 ,α∗2 ) is the unique sophisticated equilibrium.

Proof. Theorem 2 implies that there is a unique credible PBE of Γ̂ , and that this
equilibrium induces (α∗1 ,α∗2 ). ��

Figure 4 specifies an example of a normal form game G0 in which, if player 1
moves first in the associated extensive formΓ0, there is no sophisticated equilibrium.
Not surprisingly, cheap talk plays a key role here in enabling coordination on one
of the two Nash equilibria that are equally good for player 1. But if the two players’
payoffs after (L, �) were (1+ ε,δ ) instead, for any ε > 0 and any δ > 0, then (L, �)
would be the unique sophisticated equilibrium.

6 The Special Case of Virtual Observability

6.1 Definition

Corresponding to our basic game Γ0 without cheap talk, there is an associated ex-
tensive form game

Γ1 := 〈{1,2},Δ(A1), [Δ(A2)]A1 ,v1,v2〉 (26)

of perfect information, where player 2 is informed of 1’s move and so can make
his mixed strategy α2 ∈ Δ(A2) a function of player 1’s action a1. Now the Battle of
Sexes example of Fig. 1 has a unique sophisticated equilibrium where both players
effectively act as though player 1’s move could indeed be observed. It is a case
where the same pure strategy profile (a1,a2) ∈ A1×A2 in the game G0 happens to
be both the unique outcome of any credible PBE in Γ̂ and of any subgame perfect
equilibrium in Γ1. Weber et al. (2004) call this “virtual observability.” The next three
examples remind us that it is really a very special property.

6.2 Duopoly: Cournot vs. Stackelberg

Consider a duopoly where firm 1 is able to choose its quantity before firm 2. Also,
suppose both firms know this and that firm 2 can observe 1’s output. Then it is fairly
obvious that any sophisticated equilibrium must be a subgame perfect equilibrium
where firm 1 acts as a Stackelberg leader and firm 2 as a follower. If firm 1’s output
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remains hidden, however, the normal form of the game corresponds to one in which
the duopolists choose their quantities simultaneously. Then a sophisticated equilib-
rium is Cournot.

For example, suppose each firm i ∈ {1,2} has the profit function

Πi(qi,q j) = βiqi− γqiq j− 1
2 q2

i ,

which is quadratic in its own quantity qi and also depends on the other’s quantity
q j. Suppose too that each firm is risk neutral and so maximizes expected profit.
Finally, suppose that the three parameters β1, β2, and γ are positive and satisfy the
restrictions β1 > γβ2, β2 > γβ1, and γ < 1/

√
2. Even if the first firm pursues a mixed

strategy, the second firm’s optimal choice satisfies q2 = β2−γEq1, where E denotes
the mathematical expectation. Thus, the first firm’s expected profit is

EΠ1 = (β1− γq2)Eq1 + γ2(Eq1)2− 1
2Eq2

1.

This is maximized by choosing the Stackelberg leader’s pure strategy qS
1 := (β1−

γβ2)/(1− 2γ2), which exceeds the unique Cournot equilibrium quantity qC
1 :=

(β1 − γβ2)/(1− γ2). It follows that virtual observability fails, even though there
is a unique Nash equilibrium and it uses pure strategies.

6.3 Mixed Strategies

Consider the simple and familiar example of matching pennies, whose normal
form is shown in Fig. 5. There is a unique Nash equilibrium, associated with a
unique straightforward PBE strategy–belief profile in the corresponding game of
predictable direct cheap talk. The only direct message m̂ = (ρ,σ) ∈ Δ({H,T})×
Δ({h, t}) that is sent in this unique equilibrium has ρ(H) = ρ(T ) = σ(h)=σ(t)= 1

2 .
Obviously, the need for mixed action strategies in Nash equilibrium implies that
virtual observability cannot hold.

6.4 Multiple Nash Equilibria

The game in Fig. 6 is matching pennies played for a stake of $4 supplied by a third
party. The game is also extended by allowing each (steady handed) player to choose
“edge” as well as heads or tails. If just one player chooses edge, the stake is with-
drawn, and neither wins anything. But if both choose edge the third party pays each
$1 for being imaginative.

Fig. 5 Matching pennies

h t
H 1, −1 −1, 1
T −1, 1 1, −1
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Fig. 6 Extended matching
pennies

h t e
H 4, 0 0, 4 0, 0
T 0, 4 4, 0 0, 0
E 0, 0 0, 0 1, 1

In the corresponding extensive form game Γ1 with perfect information where
player 1 moves first, player 2 would choose t in response to H; h in response to T ;
and e in response to E. So Γ1 has (E,e) as a unique subgame perfect equilibrium.
This is not induced by a credible straightforward PBE of Ĝ; however, because a
better Nash equilibrium of G0 for player 1 is the familiar mixed strategy equilibrium
with α1(H) = α1(T ) = α2(h) = α2(t) = 1

2 , since player 1’s expected payoff is 2
rather than 1. Once again, virtual observability fails, and in this case it does so
even though the unique subgame perfect equilibrium is a Nash equilibrium in pure
strategies.

6.5 Implications of Virtual Unobservability

When virtual observability fails, the extensive game Γ0 is fundamentally different
from Γ1 where player 2 is informed of player 1’s earlier move. Sometimes, as in
Figs. 5 and 6, this is because player 1 gains by keeping her initial move concealed.
Sometimes, however, as in Sect. 6.2, player 1 could gain from having her initial
move revealed. In that example, the first duopolist would earn more profit from
being a Stackelberg leader. It would also like to report having chosen the Stackelberg
leader’s optimal quantity qS

1, expecting the second firm to choose its best response
qS

2 := β2− γ qS
1. However, that report is not credible because, if it were believed,

the first firm does even better by choosing its best response q1 = β1− γ qS
2 �= qS

1. So
requiring the follower to be attentive only to the Nash equilibrium message qC

1 in
any Nash attentive straightforward PBE imposes a binding constraint on the leader’s
strategy choice.

7 Concluding Remarks

7.1 Beyond Experimental Anomalies

Experimental economists have recognized that there is a first-mover advantage
in Battle of the Sexes and similar games. They typically ascribe this advantage,
however, to “positional” or “presentational” effects, suggesting the need to look
beyond orthodox rationality concepts in order to explain their experimental results.

This chapter, by contrast, introduces a “sophisticated” refinement of Nash equi-
librium that can explain first-mover advantage using only a minor variation of
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standard rationality and equilibrium concepts. This refinement, like the “manip-
ulated Nash equilibrium” concept explored in Amershi, Sadanand, and Sadanand
(1985, 1989b, 1989a, 1992) and in Sadanand and Sadanand (1995), depends on the
extensive form of the game. So it violates von Neumann’s hypothesis of normal
form invariance. Unlike manipulated Nash equilibrium, however, the tacit commu-
nication that underlies forward induction arguments is explicitly modeled through
a corresponding game with cheap talk. This cheap talk is required to be predictable
so that it can remain tacit.4

Nevertheless, the precise relationship between sophisticated and manipulated
Nash equilibrium deserves further exploration. The ideas presented here should also
be applied to a much broader class of games, starting with the “recursive games”
considered in Hammond (1982).

7.2 Beyond Orthodox Game Theory

Much of orthodox game theory is built on two assumptions of what one may call the
“ZNK paradigm” – due to Zermelo (1912), von Neumann (1928), and Kolmogorov
(1933). This chapter has criticized normal form invariance, the second of these.
But the first, claiming that games can be modeled with a single extensive form, is
also questionable, as discussed in Hammond (2007). So, of course, is a third key
assumption, namely that all players are fully rational, and so will always find the
optimal action at each information set.

Indeed, following Zermelo (1912), orthodox game theory predicts that any two-
person zero-sum game of perfect information such as Go should be played perfectly,
and so perfectly predictably. Yet we find the following in a prominent novel by an
author who won the Nobel Prize for Literature in 1968.

‘This is what war must be like,’ said Iwamoto gravely.

He meant of course that in actual battle the unforeseeable occurs and fates are sealed in an
instant. Such were the implications of White 130. All the plans and studies of the players,
all the predictions of us amateurs and of the professionals as well had been sent flying.

As an amateur, I did not immediately see that White 130 assured the defeat of the ‘invincible
Master.’

Yasunari Kawabata (1954) The Master of Go, translated from the author’s own shortened
version by Edward G. Seidensticker (New York: Alfred A. Knopf, 1972); end of Chapter 37.

Such considerations remind us how far the three standard assumptions take us
from reality. To conclude, it seems that the systematic study of games and eco-
nomic behavior has barely progressed beyond a promising but possibly misleading
beginning.

4 A conjecture is that relaxing predictability in the game with cheap talk would allow player 1 to
achieve her optimal correlated equilibrium. Where this is better than her optimal Nash equilibrium,
cheap talk is essential as a correlation device. Without it, player 2 cannot infer what correlated
equilibrium strategy to choose.
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Unemployment and Vulnerability:
A Class of Distribution Sensitive Measures,
its Axiomatic Properties, and Applications

Kaushik Basu and Patrick Nolen

1 Introduction

Traditional measures of unemployment were only concerned with the total number
of people unemployed. In recent years such measures have come under criticism for
ignoring those who may not currently be unemployed but are vulnerable, that is, they
live under the risk of becoming unemployed (see Cunningham and Maloney (2000),
Glewwe and Hall (1998), Thorbecke (2003)). Alongside this criticism a small but
rapidly growing literature is emerging that looks at various aspects of vulnerability
and tries to measure it (Amin, Rai, and Topa (2003), Ligon and Schechter (2003),
Pritchett, Suryahadi, and Sumarto (2000)).1

There is a presumption in much of this literature and the policy statements of in-
ternational organizations and governments that since vulnerability is bad, we should
craft policy to rescue people from being vulnerable. We argue in this paper that
such a prescription is wrong, or, at best, misleading. Under a variety of “normal”
situations, having some people vulnerable to unemployment makes the aggregate
problem of unemployment less severe (and more bearable).

The aim of this paper is to explain this normative stance of ours, to develop a
class of unemployment measures that take account of this stance, and then to apply
it to US and South African data.

The explanation of our normative position is not complicated and the general
point can be made simply enough. Suppose there is a society in which, currently,
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1 An important precursor of this literature is a body of writing that occurred around the theme of
income mobility: see, for instance Fields (1996), Grootaert and Kanbur (1995), Shorrocks (1978).
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some people are unemployed and some people are vulnerable to unemployment (that
is, there is a probability that they will become unemployed in the next period). The
presumption in much of the literature and in many World Bank policy discussions
(see, for instance World Bank (2002)) is that the standard measure of unemploy-
ment, which ignores the vulnerable, effectively underestimates the aggregate pain of
unemployment (which would, presumably, include the pain of its anticipation) in so-
ciety. We, on the other hand, will argue that the standard measure of unemployment
underestimates, not the pain, but the inequity of the pain of unemployment. Our ar-
gument is this – if unemployment holds constant over time and there are, currently,
some people vulnerable to unemployment, then there must be some currently un-
employed people who have a positive probability of becoming employed in the next
period. If this is so, then an aggregate (that is, an economy-wide) measure of effec-
tive unemployment, while taking account of the pain of those who live under the risk
of unemployment, must also take account of the hope of the currently unemployed
who expect to find jobs soon. We argue that in an overall measure of unemployment
there is reason to treat the latter as more than offsetting the former. We should clar-
ify that, contrary to the impression that the above sentences might create, we do not
take a welfarist approach in this paper but use the above argument concerning the
pain of living under the risk of unemployment as motivation for creating a class of
distribution-sensitive measures of unemployment.

Consider the point some would make that we are not right to assume that just
because there are some people who are vulnerable to unemployment, there must be
people currently unemployed but who have a positive probability of finding jobs
in the next period. Our response to this is that if there were no such people, then
having people who are vulnerable to unemployment is equivalent to saying that un-
employment will rise tomorrow. If we then treat the situation as worse than what
the standard measure captures, this does not show our valuation of vulnerability but
the fact that the absolute amount of unemployment is about to rise. To isolate our
attitude towards vulnerability, we must consider a case where the vulnerable popu-
lation rises, but the total number unemployed remains unchanged. But this compels
us to assume that a vulnerable population will be matched by a population expecting
a converse shift – out of unemployment.

To close the argument consider two societies, x and y, in which unemployment
is the same, say 10%, and this remains constant over time. However, in society
x no one is vulnerable to unemployment, while in y, 10% are vulnerable, that is,
they are currently employed but face a risk of unemployment. In other words, the
total amount of the burden of unemployment to be shared in both societies is the
same (10% of the people will have to be unemployed) but in y this burden is shared
by 20% of the population, while in x this is borne entirely by only 10% of the
population. The same way that, ceteris paribus (to use a term rapidly going into
extinction), greater equality in the distribution of income and wealth (“good things,”
that is) is valued positively in most societies, we feel that there is reason to prefer
a society where the “bads,” such as unemployment, are more equally distributed.
It follows that, starting with society x, if vulnerability is increased and we reach
society y, then we must consider this a change for the better. Therefore, the effective
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unemployment must be considered to be less in society y than in x.2 The next section
formalizes the above idea by suggesting a new measure of effective unemployment.

The example just given is the idea that will be tracked in this paper. A full-blown
analysis of individual vulnerability (as in Calvo and Dercon (2005), Dercon (2005),
Ligon and Schechter (2003)) entails “dynamics” – how a person who may be em-
ployed today fares tomorrow. But in this paper we stay away from a full-blown
dynamic account of vulnerability. What we are, instead, interested in is the common
ground that lies between questions of vulnerability and questions of distribution that
arise when we are attempting to create an aggregate measure of effective unemploy-
ment. Hence, the critical question that we are concerned with is the normative issue
of how the “distribution of some fixed amount of unemployment time may be cap-
tured,” with an inclination to favor “any trend towards a more equal distribution of
unemployment” (Shorrocks, 1994, p. 5).

These concerns are shared in a parallel and large literature on unemployment
durations (see, for instance Akerlof and Main (1980), Clark and Summers (1979),
Shorrocks (1992)). However, the effort to bring these concerns under one aggre-
gate measure of effective unemployment is quite rare (Borooah (2002), Paul (1992),
Shorrocks (1994), are the only ones that these authors can think of); and that is what
is attempted in this paper.

2 Effective Unemployment

Consider a society with n persons. Let ri be the fraction of a year during which
person i is unemployed. Hence, by the measure of the “standard unemployment
rate” this society’s unemployment is

U ≡ r1 + r2 + · · · + rn

n
. (1)

The standard unemployment measure that one encounters in newspapers is usually
the above measure (often multiplied by 100, since the measure is generally stated in
percentage terms).

From the discussion in the previous section it should be evident that we are look-
ing for a measure of unemployment that is distribution sensitive. That is, if the same
aggregate unemployment is unevenly shared in one society, we shall consider the
effective unemployment to be greater in the more unequal society. We codify this
later, in Axiom E, as the “equity axiom.”

Let us define an unemployment profile of a society to be a vector (r1,r2, . . . ,rn)
such that, for all i, ri ∈ [0,1]. Let Δ be the collection of all unemployment profiles.

2 Another case for better sharing of “unemployment” can be made by arguing that, within each
household, the unemployed are helped by the employed. In such a situation there arises the case
for a better distribution of employment across households, as was argued in Basu and Foster (1998)
in the context of literacy.
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Hence, Δ = {(r1,r2, . . . ,rn) |n ∈ Z++ and ri ∈ [0,1] ,∀i}, where Z++ is the set of
strictly positive integers.

Formally, a measure of unemployment (hereafter referred to as MOU) is a
mapping

M : Δ → R+,

where R+ is the set of nonnegative real numbers.
The MOU that we propose in this paper takes the following form:

Mβ (r1, . . . ,rn)≡
1
β
−

n

∏
i=1

(
1
β
− ri)

1
n , (2)

where β ∈ (0,1) .

Since for every β ∈ (0,1) we have a distinct measure Mβ , what we have just pro-
posed is a class of new measures of unemployment. We show that these measures
have appealing properties, demonstrate, with some actual empirical examples, how
using these new measures make a difference to the description of unemployment and
then fully characterize these measures. Let us from now on call an MOU defined by
(2), above, an effective unemployment rate.

One property of every member of the family of effective unemployment rates
worth observing at the outset is that if R = (r1,r2, . . . ,rn) is such that ri = r ∀i,
then Mβ (R) = r. In other words, if the burden of unemployment is perfectly equi-
tably shared by everybody, then the effective unemployment rate is independent of
β ∈ (0,1) and equal to the standard unemployment rate defined in (1).

It is worth checking what the limits or boundaries of our class of measures look
like. First consider the case where β = 1. This measure (which is not a part of
the class we are recommending) is then represented by: M1(r1,r2, . . . ,rn) = 1−

n
∏
i=1

(1− ri)
1
n . Note that if, for some i, ri = 1 (one person is fully unemployed) then

M1 = 1. Hence, this measure makes no distinction between the cases where 1 person
is fully unemployed and where 10 persons are fully unemployed. It amounts to an
extreme evaluation where a tragedy for one is a tragedy for all. This is the standard
“multiplicative” form of an evaluation function.

Now, what about the other limit, that is as β goes to 0? It can be shown that as
β → 0, Mβ → U . That is, as β goes to 0, our measure converges to the standard
unemployment rate as defined by (1). The first lemma establishes this result. Since
the standard measure is one in which individuals’ unemployment are aggregated
by simply adding up, this could be thought of as a kind of utilitarian or additive
representation of unemployment. Hence the class of measures that we are proposing
is bounded at one end by a multiplicative representation and at the other end by an
additive one.

Lemma 1. For all R = (r1,r2, . . . ,rn) ∈ Δ , and for all β ∈ (0,1),
lim
β→0

Mβ (R) = ∑n
i=1 ri
n .
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Proof.

lim
β→0

Mβ (R) = lim
β→0

[
1
β
−

n

∏
i=1

(
1
β
− ri

) 1
n
]

,

= lim
β→0

1
β

[
1−

n

∏
i=1
β

1
n

(
1
β
− ri

) 1
n
]

,

= lim
β→0

1
β

[
1−

n

∏
i=1

(1−β ri)
1
n

]
,

= lim
β→0

1−∏n
i=1(1−β ri)

1
n

β
=

0
0
.

So we may now use L’Hôpital’s rule. Note that

∂
∂β
β = 1

and

∂
∂β

[
1−

n

∏
i=1

(1−β ri)
1
n

]
=−

n

∑
k=1

1
n

(1−β rk)
1−n

n (−rk)∏
i�=k

(1−β ri)
1
n .

Taking the limit of this numerator we get

lim
β→0

[
−

n

∑
k=1

1
n

(1−β rk)
1−n

n (−rk)∏
i�=k

(1−β ri)
1
n

]
= −

n

∑
k=1

1
n

(−rk) ,

=
1
n

n

∑
k=1

rk.

Thus by L’Hôpital’s rule,

lim
β→0

1−∏n
i=1(1−β ri)

1
n

β
=

1
n

n

∑
k=1

rk,

which implies that

lim
β→0

Mβ (R) =
1
n

n

∑
k=1

rk.

��

We shall now demonstrate how the effective unemployment rate, as characterized
by (2), satisfies some attractive axioms. First of all consider two routine axioms.
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Axiom O (Monotonicity Axiom). An MOU, M, is said to satisfy the monotonicity
axiom if for any R = (r1,r2, . . . ,rn) ∈ Δ and R′ = (r′1,r

′
2, . . . ,r

′
n) ∈ Δ such that, ∀i,

ri ≥ r′i and ∃ j, where r j > r′j, then M(R) > M(R′).

Axiom P (Population Replication Axiom). An MOU, M, is said to satisfy the
population replication axiom if for any R = (r1,r2, . . . ,rn) ∈ Δ and Rk =
(r′1,r

′
2, . . . ,r

′
kn) ∈ Δ , where Rk is a k-replica of R for some positive integer k (that is

r′j = ri, ∀ j ∈ {1+(i−1)k, . . . , ik}, ∀i ∈ {1, . . . ,n}), then M (R) = M
(
Rk
)
.

These two axioms are standard and we would expect a good measure to satisfy
them. Fortunately – as is easy to see – the effective unemployment rate that we have
proposed satisfies both these axioms. Observe that, given the monotonicity axiom,
coupled with the fact that Mβ (1,1, . . . ,1) = 1, we now know that our measure ranges
from 0 to 1. That is, Mβ (Δ)⊂ [0,1].

Our measure, and the need to break away from the standard unemployment con-
cept, was motivated by using an equity argument, namely, that it is superior to have
a society where the burden of a certain amount of aggregate unemployment is more
widely shared. So it is important to check that the effective unemployment rate sat-
isfies equity. The simplest idea of equity may be formalized as follows.

Axiom E (Equity Axiom). An MOU, M, is said to satisfy the equity axiom if for
R = (r1,r2, . . . ,rn) ∈ Δ and R∗ = (r∗,r∗, . . . ,r∗) ∈ Δ such that ∑n

i=1 ri = nr∗ and
R �= R∗, then M (R) > M (R∗).

It can be shown that Mβ satisfies the equity axiom for every β ∈ (0,1). But
instead of showing this directly, we show that Mβ satisfies another axiom and then
show that the latter implies the equity axiom. This other axiom is the “transfer ax-
iom” widely used in the literature on poverty and inequality measurement (see Sen
(1976) for instance). This, in the context of unemployment, says the following. Sup-
pose there are two people, one who is unemployed more than the other. Now if the
more unemployed person becomes even more unemployed – say by ε amount of
time – and the less unemployed person finds more work – again by ε amount of
time – then the effective unemployment is higher. Formally,

Axiom T (Transfer Axiom). An MOU, M, is said to satisfy the transfer axiom if for
any R = (r1,r2, . . . ,rn) ∈ Δ and R′ = (r′1,r

′
2, . . . ,r

′
n) ∈ Δ such that rk = r′k ∀k �= i, j,

ri ≥ r j and r′i = ri +ε ≤ 1 and r′j = r j−ε ≥ 0 (for some ε > 0), then M(R′) > M(R).

Lemma 2. For all R = (r1,r2, . . . ,rn) ∈ Δ , and for all β ∈ (0,1) every effective
unemployment rate, Mβ , satisfies the transfer axiom.

Proof. Mβ (R′) = 1
β −

n
∏

k=1

(
1
β − r′k

) 1
n

= 1
β −

(
1
β − r′i

) 1
n
(

1
β − r′j

) 1
n n
∏

k �=i, j

(
1
β − r′k

) 1
n
,

= 1
β −

[(
1
β − ri− ε

)(
1
β − r j + ε

)] 1
n n
∏

k �=i, j

(
1
β − rk

) 1
n
,
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= 1
β −

[(
1
β − ri

)(
1
β − r j

)
− (ri− r j)ε− ε2

] 1
n n
∏

k �=i, j

(
1
β − rk

) 1
n
,

> 1
β −

[(
1
β − ri

)(
1
β − r j

)] n
∏

k �=i, j

(
1
β − rk

) 1
n

(since ri ≥ r j, ε > 0, and β ∈ (0,1)),

= 1
β −

n
∏
i=1

(
1
β − ri

) 1
n = Mβ (R) . ��

The fact that Mβ satisfies the equity axiom follows from Lemma 2 and the fol-
lowing lemma.

Lemma 3. If an MOU satisfies the transfer axiom, it must satisfy the equity axiom.

Proof. Suppose M is an MOU that satisfies the transfer axiom. Consider R̃ =
(r1,r2, . . . ,rn) and R∗ = (r∗,r∗, . . . ,r∗), which satisfy the hypotheses of the equity
axiom. That is, R̃,R∗ ∈ Δ , R̃ �= R∗, and ∑n

i=1 ri = nr∗.
Define S⊂ Δ such that

S≡
{

R = (r1,r2, . . . ,rn) ∈ Δ |
n

∑
i=1

ri = nr∗
}

.

Note that for any R �= R∗, R = (r1,r2, . . . ,rn) ∈ S\{R∗}. So we can define r(R) ≡
maxi ri and r (R)≡mini ri. Let ε = min{r(R)−r∗,r∗−r(R)}. Now define a mapping
Ψ : S→ S as follows:

Ψ (R∗) = R∗ or, if R = (r1,r2, . . . ,rn) �= R∗, thenΨ(R) = R′,
where R′ = (r′1,r

′
2, . . . ,r

′
n) such that r′k = rk, ∀rk �= r(R),r (R) ,

and r′i = r (R)+ ε for ri = r (R),
and r′j = r(R)− ε for r j = r(R).

By the transfer axiom we know that M(R) > M(Ψ(R)).
Now look at the infinite sequence {R1,R2, . . .} such that R1 = R̃ and Rt+1 =

Ψ(Rt) ∀t > 1. There must exist some t such that ∀t ≥ t, Rt = R∗. Thus M
(
R1
)

>

M (Rt) ∀t > 1, and therefore M(̃R) > M (R∗) . ��

In the light of this result, the next lemma is obvious and stated only for
completeness.

Lemma 4. Every effective unemployment rate, Mβ , satisfies the Equity Axiom.

While the measure being suggested here has attractive axiomatic properties,
which particular β should one use when applying this measure? One possibility is to
study the sensitivity of ranking societies with respect to changes in β . The other is
to pick some salient values of β from the interval (0,1) and use those specific mea-
sures. This is the strategy that is often used vis-a-vis the Foster–Greer–Thorbecke
family of poverty measures (see Foster, Greer, and Thorbecke (1984)).

For such salient β ’s an obvious one is the half-way mark, that is, β = 1
2 . There

is another one, β = 8
9 , which appears unnatural at first sight, but has a natural

explanation.
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Consider a society of size n and suppose that x is the fraction of society that has
to be unemployed. In other words, the total amount of jobs available is (1− x)n. For
matters of illustration we are ignoring the fact that (1− x)n may not be an integer.
Let us fix x and consider different distributions of the total amount of unemployment
nx, and their corresponding measures of effective unemployment. By using the eq-
uity axiom it is clear that effective unemployment is minimized if nx is distributed
equitably, that is, if each person is unemployed a fraction x of her time.

Let m(x) be the minimum effective unemployment rate for a society with a to-
tal burden of unemployment nx. It is easy to see this is independent of β ∈ (0,1).
Hence, writing this as m(x), with no mention of β , is fine. It is obvious that m(x) will
be the 45◦ line as shown in Fig. 1. Thus if half the society has to be half unemployed
(i.e., x = 1

2 ), the lowest value Mβ takes is when every person is half-time unem-
ployed. In that case, for all β ∈ (0,1), Mβ (x, . . . ,x) = 1

2 .
Here is an interesting question. Let us pick any x ∈ [0,1] and think of the worst

distribution of this total burden of x unemployment (in the sense of the distribution
that makes effective unemployment the maximum). By the transfer axiom, we know
that this happens when some people are fully unemployed and the rest are fully
employed. Hence, fix β ∈ (0,1), consider this worst-distribution for every x and
define Mβ (x) as the value of Mβ for a given unemployment profile, (r1,r2, . . . ,rn),
which is the worst way to share the burden of nx. Clearly Mβ (x) ∈ (x,1), ∀x. It is
not hard to see that for a given β , Mβ (x) will look something like the curve shown
in Fig. 1. The higher the values of β , the higher the curve will be. And as β goes to
0, the line will converge to the m(x) curve.

There are two ways of choosing β . One is to elicit this from individual choice.
This involves asking individuals questions like: If you face a choice of two lotteries,

effective
unemployment
rate

1

.5

.5 10

 _ β 
M(x)

m(x)

usual unemployment
rate, x

Fig. 1 This shows the relation between the usual and effective unemployment rate for a given value
of β
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one in which you will be unemployed all year with the probability 1
4 or employed

for the full year with probability 3
4 ; and the other in which you will be employed for

a fraction t of the year with certainty and unemployed for the remainder of the year,
what value of t would you choose? This would be in the spirit of what is done by
Ligon and Schechter (2003).

The other way to approach β is as a moral judgement of the policy maker. In the
absence of data on individual risk-aversion, let us explore that moral approach here.
Just to fix our thinking consider the case of x = 1

2 . We know that if every person is
unemployed 1

2 of the year then Mβ ( 1
2 ) = 1

2 , ∀β . Now consider the worst distribution
of this total burden. Clearly this is one where n

2 persons are fully employed and n
2

persons are fully unemployed. Let R = (r1,r2, . . . ,rn) signify such a distribution. We
know that Mβ (R) ∈ ( 1

2 ,1) as β varies from 0 to 1. We need to ask ourselves: what
score we would like to give to Mβ (R)? One simple strategy is to set this half-way in
this interval. That is Mβ (R) = 3

4 . In other words, we are making the judgement that
a society where half the people are fully employed and half are fully unemployed is
equivalent to one where everybody is employed with certainty for one quarter of the
time. What would β have to be to yield this mid-way result?

The answer turns out to be, interestingly, 8
9 . To see this note:

Mβ (R) =
1
β
−
(

1
β
−1
) 1

n ·
n
2
(

1
β
−0
) 1

n ·
n
2
,

=
1
β
−
(

1
β
−1
) 1

2
(

1
β

) 1
2
,

=
1
β
− (1−β )

1
2

β
.

If Mβ (R) = 3
4 , it follows that β = 8

9 . Hence, the 8
9 rule. We shall use this in the

empirical section as one of the salient values. Before moving on we should point out
that in practice β could well vary from one country to another. Depending on the
policies that nations follow to support the unemployed, the trauma of unemployment
can vary from one nation to another. We shall, however, ignore this complication
here.

3 Simple Data Exercise

To provide an illustrative example of how our measure works, we require certain
information. First, a history of how much someone was unemployed over a certain
period of time. For this exercise, we use the weeks or months one was unemployed
over a year. Second, we require a value for the parameter β . As explained earlier,
for the purpose of illustration, we use the values β = 1

2 and β = 8
9 .
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The March Current Population Surveys (hereafter referred to as the CPS) for the
United States have the amount of weeks any member of the workforce was em-
ployed during the previous year. The Labour Force Surveys (hereafter referred to as
LFS) for South Africa have the amount of months that one has been unemployed, if
she was unemployed at the time of the survey, and when one started a job, if she is
currently working at the time of the survey. These data allow us to illustrate the dif-
ferences of the effective and the standard measures of unemployment. In the South
African case one will have to make some assumptions to go from the available data
to the measures we wish to calculate.

3.1 United States

We begin with the case of the United States. The CPS contains how many weeks a
survey participant had been employed during the previous year. Therefore, since we
have the data for the March CPS from 1976 through 2003, we are able to calculate
the usual yearly unemployment rate and the effective yearly unemployment rate for
the years of 1975 through 2002 (excluding 1993).

To get measures of unemployment as accurate as possible, we tried to exclude
students and retired individuals by calculating the unemployment rates only for peo-
ple between the ages of 25 and 54. Any persons who listed themselves as being un-
employed for any of the following reasons were dropped from our data even if they
were between the ages of 25 and 54: to take care of house or family; ill or disabled;
to attend school; retired. Anyone who claimed to have not worked for the year, but
had spent less than four weeks searching for a job was also not included in our data
set. Thus, we were left only with people who were able to participate in the labor
market during the full year and had been actively seeking work.

Table 1 shows the usual unemployment rate and the effective unemployment rates
for β = 1

2 and β = 8
9 over the years for which we have data. Figure 2 puts this in-

formation into graphical form. To begin our discussion it is useful to focus attention
on three sets of years: 1987–1989, 1991–1992, and 1999–2000. These three periods
illustrate how even though the usual unemployment rate stayed roughly constant our
effective unemployment measures tell a different story in these periods. The period
from 1987 to 1989 has a continuous decrease in the effective unemployment rate
at β = 8

9 . During this period the usual unemployment rate, though, rose slightly
from 1987 to 1988 and then back to slightly below the 1987 level in 1989. Thus,
while the usual unemployment measure would rank 1987, 1988, and 1989 as be-
ing roughly equivalent, if one takes vulnerability into account – as we have defined
it – then 1989 would be ranked as having an unambiguously better employment
situation than either of the other two years, and 1988 would be ranked higher than
1987. The effective measure at β = 1

2 shows the same trend but there is almost no
difference between 1987 and 1988. Therefore, during the years of 1987–1989, under
President Reagan’s administration, the burden of unemployment became more eq-
uitably shared according to the effective unemployment measure with β = 8

9 .
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Table 1 Usual and efficient unemployment rates for individuals who were in the labor force, aged
25–54 and available for employment that entire year

Year Usual Effective Effective
unemployment unemployment unemployment
rate rate at β = 1

2 rate at β = 8
9

2002 0.0529 0.0624 0.0803
2001 0.0457 0.0533 0.0669
2000 0.0382 0.0442 0.0544
1999 0.0382 0.0443 0.0547
1998 0.0490 0.0572 0.0721
1997 0.0431 0.0502 0.0630
1996 0.0530 0.0619 0.0782
1995 0.0585 0.0686 0.0874
1994 0.0612 0.0719 0.0922
1993 – – –
1992 0.0707 0.0834 0.1079
1991 0.0705 0.0822 0.1039
1990 0.0602 0.0697 0.0864
1989 0.0529 0.0613 0.0761
1988 0.0543 0.0633 0.0797
1987 0.0537 0.0632 0.0819
1986 0.0621 0.0734 0.0958
1985 0.0639 0.0756 0.0987
1984 0.0677 0.0807 0.1071
1983 0.0829 0.0994 0.1341
1982 0.0916 0.1092 0.1455
1981 0.0680 0.0800 0.1037
1980 0.0635 0.0744 0.0953
1979 0.0500 0.0579 0.0726
1978 0.0501 0.0583 0.0735
1977 0.0565 0.0663 0.0850
1976 0.0646 0.0763 0.0996
1975 0.0708 0.0836 0.1089

The symbol “ – ” implies the unemployment rate could not be calculated for that period
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Fig. 2 The usual and effective yearly unemployment rates in the United States over 1975–2002
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The period of 1991–1992, under President George Herbert Walker Bush’s ad-
ministration, our effective unemployment measures again deviate from the rankings
provided by the usual measure of unemployment. Again during this period we have
the usual unemployment rate staying roughly constant, but by both the effective un-
employment measure with β = 8

9 and with β = 1
2 effective unemployment measures

the burden of unemployment was being shared less equitably in 1992 than in 1991.
In contrast to these two examples, the period of 1999–2000, during Bill Clinton’s
administration, shows that both the usual unemployment measure and the effective
unemployment measures rank the years as being roughly equivalent. This shows
that there was no significant change in the equity of how the unemployment burden
was being shared.

These examples illustrate how our measure can be used to distinguish between
years that might seem to be roughly equivalent in regards to unemployment, and
shows how the role of vulnerability can cause a re-ranking of how one judges a
country’s unemployment situation over the years. This illustration uses only infor-
mation from within one country. The effective unemployment measures could also
be used to compare the unemployment situation between countries. Indeed, this will
be done below.

3.2 South Africa

The South African LFS are twice yearly surveys that are representative of the
Republic of South Africa. The survey collects data on people who are currently
unemployed and those currently employed, but figuring out the yearly history of
individuals is not as easy as with the CPS. Any person who is currently employed
is asked when she began working at that job. Therefore we have a measure of her
duration of current employment. Likewise, anyone unemployed is asked how long
it has been since she last worked, if she had worked at all, giving us the duration of
the current unemployment spell.

In South Africa, the labor unions are rather powerful and, because of the his-
torical situation, firing an individual is rather difficult. Therefore, job turnover is a
rarer phenomenon than in the United States. Thus, the duration periods are proba-
bly an accurate measures of a labor force participant’s job status over the past year.
With this in mind the usual and effective unemployment rates were calculated in
this “moderate” case. The durations are by no means guaranteed to be accurate rep-
resentatives of the employment history, though, so we have also constructed bounds
to the measures of unemployment.

To understand how these bounds were calculated let us look at a worker who was
employed for 6 months at the time of the survey. We know that she has worked at
least 6 months over the past year, and the employment pattern for the other 6 months
is lost. In the worst case scenario, she spent the previous 6 months searching for the
one job she had at the time of the survey and was unemployed the rest of the time.
This means that her duration of current employment is the worst history she could
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have. On the other hand, since we know she was only working at her current job for 6
months she could have found that job after only 1 month or less of unemployment –
we count her as having had 1 month of unemployment even if it was less than that,
though. Thus her best unemployment profile would be eleven months working and
one month unemployed.

Likewise a currently unemployed person has a best and worse case scenario. If
a person was unemployed for 6 months, then, in the best case, she was working for
the 6 months before that and in the worst case she was working for only 1 month
before her unemployment began. The usual and effective unemployment rates were
therefore also calculated for both the “worst” and “best” case scenarios.

When comparing the usual unemployment rate under these three scenarios to that
listed as the official unemployment rate in the LFS, the moderate rate was almost
identical in all five periods.3 Therefore, in our discussion below we use the results
from the calculations done on the moderate data, though, using either of the other
scenarios does not change our analysis.

The usual and effective unemployment rates for the moderate case are depicted
graphically in Fig. 3. The effective unemployment seems to be simply a horizontal
increase of the usual unemployment. This may be because of the coarseness of the
LFS data with respect to the CPS data or it may be because of a lack of change in the
equity of unemployment. Comparing this graph to that of the United States, though,
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Fig. 3 The usual and effective unemployment rates in South Africa under the moderate scenario
for the months of February 2000–2002 and September 2000 and 2001

3 The official unemployment rates according to the LFS are 26.2%, 25.4%, 26%, 29.2%, and 29%,
while the usual unemployment rate calculated using the “moderate” estimates of ri are 23, 23, 23.2,
28.5, and 31.7 for February 2000, September 2000, February 2001, September 2001, and February
2002, respectively.
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one can see that the jump from the usual measure of unemployment to the effective
measures is much higher in both the β = 1

2 and β = 8
9 case for South Africa than

for the United States. The effective unemployment rate at β = 1
2 was, on average,

1.17 times the usual unemployment rate in the US and never above 1.199 times
the usual rate. In South Africa, though, the effective unemployment rate at β = 1

2
is on average 1.25 times the usual unemployment rate and never below 1.22 times
the usual rate. Likewise at β = 8

9 , the effective unemployment rate is on average
1.50 times and 1.83 times the usual unemployment rate in the US and South Africa,
respectively.

One may ask: What does this proportional difference show? Since our effective
unemployment measure adjusts for the inequity of unemployment in a society, then
the higher jump from the usual to effective rate in the case of South Africa suggests
that the burden of unemployment is shared less equitably in South Africa than in the
United States. Given South Africa’s history, this is not a hard story to believe. To
make this claim in a more rigorous manner, and not just to provide an illustration,
one would have to test the confidence intervals of the proportions mentioned above.
Given the size of the samples in both the LFS and the CPS, the discussion above will
probably still be valid. Furthermore, one could ask what is causing the difference in
these proportions of unemployment. For example, it may be that we are picking up
only frictional unemployment in the United States, but structural unemployment in
South Africa.

4 Full Characterization of the Effective Measure

After seeing the usefulness of this measure and its applicability it is worth return-
ing to the theoretical discussion and addressing a natural question. We have seen
that our measure of unemployment satisfies several attractive axioms, but is there a
set of axioms that exactly characterize our measure or, more precisely, the class of
measures we proposed and is stated in (2)? This is what we set out to answer in this
section.

A property that we have already discussed but needs to be stated formally is
codified in the next axiom.

Axiom C (Coincidence). A MOU, M, satisfies coincidence if ∀R = (r1,r2, . . . ,rn)∈
Δ , such that r1 = r2 = · · · = rn ≡ r, M (R) = r.

This axiom says that if in some society everybody is unemployed to the same
extent as everybody else, then the society’s unemployment rate should be equal
to the individual’s unemployment rate. This is a normalization axiom, which says
that if the distribution of unemployment is perfectly egalitarian, then our measure
coincides with the standard unemployment rate.
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Another axiom that we use and seems eminently reasonable is the following.

Axiom A (Anonymity). The MOU, M, satisfies anonymity if for all R= (r1 ,
r2, . . . ,rn) ∈ Δ , and for all permutations σ : {1, . . . ,n} → {1, . . . ,n}, M (R) =M(
rσ(1),rσ(2), . . . ,rσ(n)

)
.

And finally, a much stronger axiom.

Axiom R (Representation). For every individual i, there exists a utility function
ui : [0,1] → R++, and for every n ∈ Z++, there exists an aggregation mapping
F : Rn

++→ R, such that for all R = (r1,r2, . . . ,rn) where ri ∈ [0,1],
M(R) = F (u1 (r1) ,u2 (r2) , . . . ,un (rn)) and
(i) For every i, ui is affine and decreasing.
(ii) F satisfies anonymity. That is, for all u = (u1,u2, . . . ,un) ∈ Rn

++ and for all per-
mutations σ : {1, . . . ,n}→ {1, . . . ,n}, F (u1,u2, . . . ,un) = F(uσ(1),uσ(2), . . . ,uσ(n)).
(iii) F satisfies scale independence. That is, F(u1,u2, . . . ,un)≥ F(u′1,u

′
2, . . . ,u

′
n) and

(b1,b2, . . . ,bn)∈Rn
++ implies that F(b1u1,b2u2, . . . ,bnun)≥F(b1u′1,b2u′2, . . . ,bnu′n).

If an MOU satisfies axiom R, we shall call each ui function and the F function
referred to in the axiom as person i’s utility function and the society’s aggregation
function, respectively.

What Axiom R (iii) says is that a change in the unit for measuring one person’s
utility must be of no consequence in our social evaluation of the economy. This is
not a normative axiom but an informational one, in the spirit of standard “invari-
ance axioms” (Sen, 1974) used in social choice and bargaining theory and meant to
capture the degree of measurability of an individual’s utility.

Theorem 1. An MOU, M, satisfies axioms A, C, O, and R if and only if it belongs to
the class described in (2). That is, ∀R ∈ (r1,r2, . . . ,rn) ∈ Δ ,

M (r)=
1
β
−
[

n

∏
i=1

(
1
β
− ri

)] 1
n

, where β ∈ (0,1).

Proof. (⇒) We have already seen that the MOU described in (2) satisfies axioms C
and O. Axiom A is obvious. To see that it satisfies axiom R, consider ui = 1

β − ri,
for all i, and define the welfare mapping F as follows:

F =
1
β
−
[

n

∏
i=1

ui

] 1
n

. (3)

It is easy to see that (3) satisfies axiom R.
(⇐) Next assume that M is an MOU that satisfies axioms A, C, O, and R. By

axiom R we know that ∃ is a welfare mapping F such that, ∀R = (r1,r2, . . . ,rn) ∈ Δ ,
M(R) = F (u1 (r1) ,u2 (r2) , . . . ,un (rn)). Now the proof will continue in a series of
steps.
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• Step 1: It will first be shown that F is a transformation of the product of the

arguments. In other words, ∀u = (u1,u2, . . . ,un) ∈ Rn
++, F(u) = φ

(
n
∏
i=1

ui

)
.

Consider a utility vector u = (u1,u2, . . . ,un) ∈ Rn
++. Then we know that(

u
1
n
1 ,u

1
n
2 , . . . ,u

1
n
n

)
∈ Rn

++.

Note F
(

u
1
n
1 ,u

1
n
2 , . . . ,u

1
n
n

)
= F

(
u

1
n
2 ,u

1
n
3 , . . . ,u

1
n
n ,u

1
n
1

)
by axiom R (ii).

F
(

u
1
n
1 u

1
n
1 ,u

1
n
2 u

1
n
2 , . . . ,u

1
n
n u

1
n
n

)
= F

(
u

1
n
1 u

1
n
2 ,u

1
n
2 u

1
n
3 , . . . ,u

1
n
n−1u

1
n
n ,u

1
n
n u

1
n
1

)
,

by axiom R (iii).

F
(

u
2
n
1 ,u

2
n
2 , . . . ,u

2
n
n

)
= F

(
(u1u2)

1
n ,(u2u3)

1
n , . . . ,(un−1un)

1
n ,(unu1)

1
n

)
,

F
(

u
2
n
1 ,u

2
n
2 , . . . ,u

2
n
n

)
= F

(
(u2u3)

1
n ,(u3u4)

1
n , . . . ,(unu1)

1
n ,(u1u2)

1
n

)
,

by axiom R (ii).

F
(

u
3
n
1 ,u

3
n
2 , . . . ,u

3
n
n

)
= F

(
(u1u2u3)

1
n ,(u2u3u4)

1
n , . . . ,(unu1u2)

1
n

)
,

by axiom R (iii).

Continuing in this manner we get
F
(

u
n
n
1 ,u

n
n
2 , . . . ,u

n
n
n

)
= F

(
(∏n

i=1 ui)
1
n ,(∏n

i=1 ui)
1
n , . . . ,(∏n

i=1 ui)
1
n

)
.

It follows that if u,v ∈ Rn
++ such that ∏n

i=1 ui = ∏n
i=1 vi, then F (u) = F (v).

Hence, ∃ a function φ , such that ∀u ∈ Rn
++, F(u) = φ (∏n

i=1 ui).
• Step 2: Now it will be shown that F is a negative monotone transformation of

the product of the arguments. That is ∃φ : R→ [0,1] such that x,y ∈ R, x > y
implies φ(x) < φ(y). Let R, R′ ∈ Δ be such that R = (r1,r2, . . . ,rn) and R′ =
(r′1,r

′
2, . . . ,r

′
n), r′1 > r1 and r′i = ri, ∀i ∈ {2,3, . . . ,n}. Then by axiom O, M(R′) >

M (R). Now, by axiom R, in particular, that ui is a decreasing function for all i, we
know that u1 (r1)∏n

i=2 ui (ri) > u1 (r′1)∏
n
i=2 ui (ri). Furthermore, again by axiom

R, we know

M (R) = F (u1 (r1) ,u2 (r2) , . . . ,un (rn)) = φ

(
u1 (r1)

n

∏
i=2

ui (ri)

)
,

M
(
R′
)

= φ

(
u1
(
r′1
) n

∏
i=2

ui (ri)

)
.

Since M(R′) > M (R), it follows that φ is a decreasing function.
• Thus with these two steps we know that there exists a decreasing function φ such

that ∀R = (r1,r2, . . . ,rn)

M(R) = φ

(
n

∏
i=1

ui (ri)

)
. (4)
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• Step 3: Now it will be shown that there is no loss of generality by requiring that
every person’s utility function is identical. Consider R = (r∗,r2, . . . ,rn) ∈ Δ . By
axiom A, M (r∗,r2, . . . ,rn) = M (r2,r∗, . . . ,rn). Hence (4) implies that

M (r∗,r2, . . . ,rn) = M (r2,r∗, . . . ,rn) ,

φ

(
u1 (r∗)u2 (r2)

n

∏
i=3

ui (ri)

)
= φ

(
u1 (r2)u2 (r∗)

n

∏
i=3

ui (ri)

)

and, since φ has been shown to be a decreasing function, we have

u1 (r∗)u2 (r2)
n

∏
i=3

ui (ri) = u1 (r2)u2 (r∗)
n

∏
i=3

ui (ri) ,

which implies u1 (r∗)u2 (r2) = u1 (r2)u2 (r∗) ,

u2 (r2) =
u1 (r2)u2 (r∗)

u1 (r∗)
.

Likewise, using the same argument as above we have that u j (r j) = u1(r j)
u j(r∗)
u1(r∗) ,

∀ j = 1, . . . ,n. Therefore, ∀(r1,r2, . . . ,rn) ∈ Δ , ∏n
i=1 ui (ri) = θ ∏n

i=1 ui (r∗),
where θ ≡ ∏n

i=1 ui(r∗)
u1(r∗)n > 0. It follows that if there is a decreasing func-

tion φ satisfying (4), there must exist a decreasing function Ψ , such that
∀R = (r1,r2, . . . ,rn) ∈ Δ , M(R) =Ψ (∏n

i=1 u1 (ri)) .
For simplicity, we write u(ri) for u1(ri) so we have

M(R) =Ψ

(
n

∏
i=1

u(ri)

)
. (5)

• Step 4: We now complete the proof. By axiom C, we know that ∀r ∈ [0,1], r =
Ψ (u(ri)

n). If we write x ≡ u(ri)
n, thenΨ (x) = u−1

(
x

1
n

)
. By axiom R (i), we

can write u(r) = A−Br, where B > 0. Hence, Ψ (x) = A
B −

x
1
n

B . Therefore, by
using (5) we have

M(r1,r2, . . . ,rn) =
A
B
− 1

B

[
n

∏
i=1

(A−Bri)

] 1
n

,

=
A
B
−
[

n

∏
i=1

(
A
B
− ri

)] 1
n

.

By writing β for B
A , we have

M(r1,r2, . . . ,rn) =
1
β
−
[

n

∏
i=1

(
1
β
− ri

)] 1
n

.
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Since u : [0,1]→ R++, then u(1) = [A−B ·1] > 0, which implies A > B. There-
fore 1 > β . Since, in addition B > 0 (by axiom R(i)), then β > 0. What we have
left therefore is precisely the class of MOUs described in (2). ��

One advantage of a full axiomatization of the kind just undertaken is that it helps
us evaluate the measure by factorizing it to its constituents. In this case the strong
assumption is clearly axiom R. This requires individual utility to be cardinal but
does not impose interpersonal comparability. This kind of an axiom is used to de-
rive the Nash bargaining solution and is also widely used by Sen in social choice
theory (see Sen (1974, 1977) for instance). What may appear more contentious is
the requirement that ui be affine.

Some may treat this as reason to look for a different measure of unemployment,
but there are two points worth keeping in mind. First, there are alternate ways of
axiomatizing the same measure. So there may be other ways of visualizing our mea-
sure that do not require one to use an affine utility function as an input.

Second, we must not think of the utility function of each person, ui, as the per-
son’s own evaluation of her utility. Instead, it should be viewed as society’s evalua-
tion of a person’s employment status, which may well be different from the person’s
own utility evaluation (this is elaborated upon further in the next section). Once we
take this approach and note that there are two steps to get to a final measure – (i) the
assessment of each person’s utility, ui, and (ii) aggregation of these using a function,
F – it becomes evident that the concavity of F acts as a substitute for diminishing
marginal utility of the individual and that is the route we are taking here.

Moreover, our approach has some natural interpretational advantages. Consider
person i’s utility function: ui = A−Bri. Let Δui be the change in this person’s utility
if her status changed from fully unemployed (ri = 1) to fully employed (ri = 0).
Clearly Δui = B. Now let ũi be this person’s reservation utility, meaning the utility
this person gets if she is without any work (ri = 1). Clearly ũi = A− B, that is,
a person without work has a utility of A−B. Hence, the ratio of the utility from
other things (i.e., other than work) to utility from being able to work is given by

ũi
Δui

= A
B −1.

Hence, an increase in A denotes how the other things in life are more impor-
tant than work. An increase in A is thus associated with moving to a society where
there is reasonable social welfare and other sources of income (for instance, through
equity ownership) or where work is not as much a source of a person’s social recog-
nition.4 Now note that since β = B

A , an increase in A is equivalent to β going towards
zero. This, as we have already seen, pushes us towards the additive, or utilitar-
ian, case where egalitarianism in unemployment matters less in our MOU given
by (2). Likewise, as A becomes smaller, β becomes larger. In the limit, employment
achieves enormous importance and our MOU converges towards a multiplicative
evaluation.

4 The “social” cost of unemployment does not always get its due. But it is arguable that once our
basic economic needs are satisfied, loss of face becomes a dominant cost of unemployment (see
Sen (1997) for instance).
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5 Discussion

Given the full characterization of the effective measure of unemployment, it is now
useful to draw out some of the distinctions between the existing literature and our
paper. First note that the bulk of the existing writing – the theoretical Banerjee
(2000), Ligon and Schechter (2003) and the empirical Kamanou and Morduch
(2002) – mainly focuses on isolating individual vulnerability. It asks questions like
“Who is vulnerable to becoming unemployed?” and “How do we estimate the num-
ber of vulnerable individuals?”

Our interest, on the other hand, is to assume that we know how many vulner-
able or potentially unemployed persons there are in society and then to develop
an aggregate measure of effective unemployment, that is, to find a single number
that captures the total unemployment – actual and potential. Among the few pa-
pers that share our concern with the aggregate are Borooah (2002); Paul (1992);
Shorrocks (1992, 1994).5 Borooah (2002) develops a measure, drawing on the work
of Atkinson (1970, 2005) in which aggregate, effective unemployment is derived
from an aggregation of separable individual utilities.

Our measure charts out a different course based on a rejection of this separabil-

ity. Take a look at our proposed MOU again. Recall, Mβ (R) = 1
β −

n
∏
i=1

(
1
β − ri

) 1
n

and let us examine society’s view of one person’s unemployment load, or pain –

as referred to by Borooah. Using r1 as an example, we can see that ∂Mβ (R)
∂ r1

=
1

n
(

1
β −r1

)
[

1
β −Mβ (R)

]
depends on the total effective unemployment as measured

by Mβ (R). Hence, if total unemployment is higher, then ∂Mβ (R)
∂ r1

is lower. Therefore
“the level of pain” that society associates with person i’s unemployment depends on
the level of effective unemployment in society. This essential relativity is not there
in Borooah’s measure.

Further, this paper takes the view that concepts like unemployment and even in-
equality cannot be reduced to pure welfarism. These are concepts that cannot be
located entirely in the welfares of individuals and their aggregation. The same dis-
tinction that Sen (as in Sen (1976)) drew between ethical and descriptive features of
inequality arise here in the context of unemployment.

We take the view that a greater amount of aggregate unemployment must not
be equated with diminished aggregate social welfare.6 This leads to an important
difference between our approach and that of much of the literature on vulnerability

5 Interestingly, Shorrocks (1994) is among the few papers that, like ours, uses an axiomatic ap-
proach, though the measure that he develops is different from ours.
6 Some economists would go even further and argue that a small amount of unemployment may
reflect flexibility in the labor market and so be good for the economy overall. This is not to deny
that there may be a mathematical isomorphism between the welfarist approach and our approach.
This is evident from Theorem 1 if we interpret ui’s as each person’s own evaluation of her utility
and think of F as a welfare function. But such interpretations are not necessary and indeed we
would resist them here.
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that uses the concept of “certainty-equivalence” to evaluate vulnerability (see, for
example, Ligon and Schechter (2003)). To see the difference consider two states of
employment: employed in a good job and employed in a bad job. We describe these
as, respectively, “well employed” and “barely employed.” Now consider a person
facing the following job prospect: she will be unemployed on average 6 months in
a year (because in each month the probability of being unemployed is 1

2 ), and in the
other 6 months she will be well employed. Viewed over the full year, should she be
counted as employed or not? According to the certainty-equivalence approach, we
simply have to ask this person if she would prefer to change her position with that
of another person who will be barely employed with certainty for the entire year. If
she says no, then this vulnerable person is presumably effectively employed.

This sounds like a reasonable exercise if our interest is in welfare. But it is
clear that the enormous literature on unemployment measurement rejects such wel-
farism.7 This is evident in, for instance, the work of Calvo and Dercon (please refer
to Calvo and Dercon (2005)), since, as their “risk-sensitivity axioms” makes evi-
dent, in their approach it is only (and rightly so in our view) the downside risk that
matters.

To understand this consider a society, x, with 12 persons, of whom six are un-
employed and six are each well employed. Now transport all these 12 persons to
a society, y, where they are all barely employed. Give each of them the choice of
being born into society x without saying which position she will have. Let us say
the probability that she will be unemployed is 1

2 and the probability that she will be
well employed is also 1

2 .
It is entirely possible that all 12 persons prefer society x to society y. Hence, in

an ex ante sense x Pareto dominates y. Since there is no unemployment in y and
everybody prefers x to y, if we were equating unemployment totally with welfare,
we would be forced to say there is no unemployment in x. But that would be absurd
and indeed with six unemployed people in this society at all times, no one would
say that x has no unemployment.

Hence, in developing an aggregate measure of unemployment (treating this as
description of society), we may be justified in rejecting the welfarism inherent in
the certainty-equivalence approach.

6 Conclusion

We have offered an alternative way to look at vulnerability to what is currently being
discussed in the literature and by policy makers. That is, vulnerability, when viewed
as a part of an aggregate measure, need not always be treated as a “bad.” Given this

7 For one, how one comes to be unemployed may matter, which would immediately take us in
the direction of the procedural approach discussed lucidly by Suzumura in Suzumura (1999). But
we would go even further and argue that the measure of aggregate unemployment is distinct from
welfarism and procedures. Moreover, the relation between aggregate unemployment and aggregate
welfare need not invariably be positive monotonic.
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perspective, we have provided a way of measuring “effective” unemployment. This
measure is bounded on one side by the additive or utilitarian measure and on the
other side by a multiplicative measure. Furthermore, our measure satisfies axioms
that most people would agree are what one would want from a measure motivated by
equity concerns. We have fully characterized our measure and shown how the mea-
sure can be applied to data in both the US and South Africa and what insights can
be gained by comparing the usual and effective measures of unemployment. This
paper then serves two purposes. First, it suggests that the current debate on vul-
nerability needs to examine not only the effect of vulnerability on people currently
employed, but also the hope that vulnerability provides to people who are currently
unemployed. Second, this paper provides a way of taking account of these concerns
in a single measure of unemployment and shows how the measure can actually be
put to use.
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Ordinal Distance, Dominance,
and the Measurement of Diversity

Prasanta K. Pattanaik and Yongsheng Xu

1 Introduction

The purpose of this chapter is to consider a class of rules for comparing sets of
objects1 in terms of the degrees of diversity that they offer. Such comparisons of
sets are important for many purposes. For example, in discussing biodiversity of
different ecosystems, one is interested in knowing whether or not one ecosystem is
more diverse than another. Similarly, when discussing issues relating to cultural di-
versities of various communities, one may be interested in knowing how these com-
munities compare with each other in terms of cultural diversity. In the economics
literature, there have been several contributions to the measurement of diversity.
Weitzman (1992, 1993, 1998) develops a measure of diversity based on cardinal
distances between objects. Among other things, Nehring and Puppe (2002) provide
a conceptual foundation for cardinal distances in Weitzman’s framework. Weikard
(2002) discusses an alternative measure of diversity; Weikard’s measure is based on
the sum of cardinal distances between all objects contained in a set.

Underlying much of our everyday discussion of diversity, we have some intuition
regarding the extent to which objects are dissimilar,2 though, in its coarsest form,
this intuition may distinguish between only two degrees of similarity by declaring
that two objects are either similar or dissimilar. It is difficult to see how one can
compare the diversity of one group of objects with that of another without some
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1 We use the term “objects” rather broadly so that people and animals can also be objects.
2 The basis for assessing dissimilarity or similarity of two objects will, of course, vary depending
on the specific notion of diversity in which one is interested.
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notion, however coarse, of the distances or the degrees of dissimilarity between dif-
ferent objects in these sets. The requirement that distances be cardinally measurable
does, however, seem rather restrictive in many contexts. Thus, in considering lin-
guistic diversity, we may not be able to compare the extent to which the (linguistic)
dissimilarity between an English person and a Chinese person exceeds the differ-
ence between a Chinese person and a Hindi-speaking person, on the one hand, and
the extent to which the difference between an Italian person and a Hindi-speaking
person exceeds the dissimilarity between a Spanish-speaking person and a Hindi-
speaking person, on the other. This is not to claim that cardinal distance functions
never have sound intuitive foundations. In general, however, the requirement of a
cardinal distance function for the measurement of diversity seems quite strong. It
is, therefore, of considerable interest to see how far one can proceed in measuring
diversity on the basis of an ordinal distance function.

The existing literature has some contributions on the measurement of diversity
based on ordinal distance. Pattanaik and Xu (2000) introduce a coarse ordinal dis-
tance function to measure the diversity of different sets: under their distance func-
tion, any two objects are either similar or dissimilar. Bossert, Pattanaik, and Xu
(2003) elaborate further on ordinal distances between objects. Bervoets and Gravel
(2007) also use ordinal distances to provide some rules for ranking sets of objects
in terms of diversity; these rules focus on the objects that are most dissimilar in a
set. In this chapter, we use an ordinal distance function to develop a notion of dom-
ination between sets, to characterize the class of all rules for ranking sets in terms
of diversity that satisfy the property of dominance, and to characterize a specific
ranking rule belonging to this class.

The chapter is organized as follows. In Section 2, we present the basic notation
and definitions of our analysis. Section 3 introduces our central concepts of weak
domination and domination between sets. In Section 4, we provide a characteriza-
tion of the class of all rankings of sets of objects, which satisfy the property of
dominance. In this section, we also present a characterization of a distinguished
member of this class. Section 5 considers some related analytical frameworks. Sec-
tion 6 contains some brief concluding remarks.

2 Notation and Definitions

Let X be the universal set of objects; X is assumed to contain a finite number of
elements. It is clear that the interpretation of the objects in X will depend on the
specific context in which one is interested in the notion of diversity. Thus, if one
is interested in changes in biodiversity over time in a given region of China, then X
can be the set of all animals that have been known to exist in that region of China at
different points of time over that period (note that, for the purpose of this interpre-
tation, we would consider, say, two different Chinese tigers as two distinct animals
in the universal set). If one is interested in comparing the degrees of linguistic di-
versity in different countries, then X may be the set of all people living in all these
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countries (again, two different persons speaking exactly the same language will be
considered to be two distinct elements of the universal set). The formal structure
of the problem of measuring diversity as we consider it in this chapter does not,
however, depend on the specific type of diversity in which we may be interested or
on any specific interpretation of the universal set.

Let K be the class of all nonempty subsets of X and let K2 be the class of all
sets A in K such that #A ≤ 2. Our problem is one of ranking the different subsets,
A,B, . . .of K in terms of the degrees of diversity that they offer. For example, does a
forest with 24 tigers, 22 bears, 2003 deer, and 5000 rabbits offer more biodiversity
than a forest with 14 tigers, 40 bears, 4500 deer, and no rabbits? To analyze this type
of questions, let � be a binary relation over K; for all A,B ∈ K, A � B means that
the set A is at least as diverse as the set B. The symmetric and asymmetric parts of
� are denoted, respectively, by ∼ and �. � is assumed to be a quasi-ordering, that
is, it is assumed to be reflexive and transitive, but not necessarily connected. Much
of this chapter will be concerned with the structure of the binary relation � .

3 Ordinal Distance Function, Indistinguishable Objects,
and Dominance

In analyzing the structure of �, our starting point will be that of an ordinal distance
function. Suppose we are interested in biodiversity so that our universal set is a set
of animals, and suppose, on the basis of some criteria, we believe that an elephant
and a panther are more dissimilar than a panther and a leopard. The notion of an
ordinal distance function is intended to capture the comparison of the dissimilarity
or distance between any two such elements in the set under consideration with the
dis-similarity or distance between two other elements in the set. More formally, an
ordinal distance function is a function d : X×X → [0,∞) such that

(a,a) = 0 for all a ∈ X (1)

and
d(a,b) = d(b,a) for all a,b ∈ X . (2)

The function d has the following interpretation: for all x,y,z,w ∈ X , d(x,y) >
d(z,w) denotes that the degree of dissimilarity between x and y is greater than the
degree of dissimilarity between z and w, and d(x,y) = d(z,w) denotes that the de-
gree of dissimilarity between x and y is the same as the degree of dissimilarity be-
tween z and w. As the name “ordinal distance function” suggests, we do not attach
any meaning to the comparison of d(x,y)− d(z,w) and d(x′,y′)− d(z′,w′) for any
x,y,z,w,x′,y′,z′,w′ ∈ X . Equation (1) says that the degree of dissimilarity between
an object and itself is 0; this is simply a convention. Equation (2) requires that the
degree of dissimilarity between an object x and an object y is the same as the degree
of dissimilarity between y and x (so that the distance function is symmetric).
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Several points may be noted about our ordinal distance function d. First, while,
for the sake of convenience of exposition, we start with the distance function d, the
intuitively primitive notion is really that of an ordering of dissimilarties between
different alternatives, which underlies the distance function d. d can be thought of
as a convenient real-valued representation of this ordering of dissimilarities (this,
of course, involves the assumption that the ordering of dissimilarities between dif-
ferent alternatives is representable by a real-valued function). Second, we do not
enquire into the criteria that constitute the basis of d, but it is clear that the criteria
underlying d will be very different depending on the type of diversity (e.g., biodiver-
sity, cultural diversity, linguistic diversity, and so on) under consideration. Third, the
definition of the ordinal distance function d implies an implicit assumption, namely,
that the dissimilarity or distance between any two objects can be compared with the
dissimilarity or distance between any two other objects. This may be a strong as-
sumption. It is possible that, sometimes in practice, we may not have such universal
comparability of the dissimilarities involved. In Section 5 below, we indicate how
one can relax the assumption of universal comparability of distances. Finally, our
definition of d permits d(x,y) to be 0 for distinct objects x and y in X .

For illustrating several subsequent concepts, we use the following example of a
distance function over a set {x,y,z,w}.
Example 1. We represent a specific distance function d over the set {x,y,z,w} in the
form of a table, where d(y,z) is the number (0) that figures in the row corresponding
to y and the column corresponding to z, d(w,z) is the number (0.8) that figures in
the row corresponding to w and the column corresponding to z, and so on.

x y z w
x 0 0 0 0
y 0 0 0 0.8
z 0 0 0 0.8
w 0 0.8 0.8 0

(Note that the specification of the numbers for different ordered pairs of alternatives
in the above table satisfies (1) and (2).)

Let I be a binary relation (“indistinguishable, in relation to other alternatives,
from”) defined over X as follows: for all x, y ∈ X , xIy iff for all z ∈ X , d(x,z) =
d(y,z). I is clearly an equivalence relation. We say that x and y are distinguishable
in relation to other alternatives iff not (xIy). In Example 1, y is indistinguishable,
in relation to other alternatives, from z, while z and w are distinguishable, in relation
to other alternatives. Note that, if xIy, then d(y,x) = d(x,x) = 0. In the absence
of further restrictions on d, d(x,y) = 0 does not necessarily imply xIy. Consider,
however, the following rather mild restriction on d:

For all x,y ∈ X , if d(x,y) = 0, then d(x,z) = d(y,z) for all z ∈ X . (3)

It is easy to check that, if d satisfies (3), then, for all x,y ∈ X , [d(x,y) = 0] is
equivalent to xIy. Though we believe that (3) is a relatively mild and “natural” prop-
erty of an ordinal distance function, we do not need it for our results and we do not
impose it on d.
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An object x0 ∈ X will be said to be a null object iff d(x0,x) = 0 for all x ∈ X .
In Example 1, x is a null object. For all A ∈ K, the set of all null objects in A will
be denoted by A0. We say that a set A is heterogeneous iff [A does not contain any
null object, and, for all distinct x,y ∈ A,d(x,y) �= 0]. In Example 1, {y,w} is het-
ererogeneous, but {x} is not heterogeneous. For all A ∈ K with #A ≥ 2, if A = A0,
then let e(A) ≡ {a} for some a ∈ A; otherwise, partition A−A0 into I-equivalence
classes, A1,A2, . . . ,Am(A), and let e(A) denote {a1,a2, . . . ,am(A)}, where for all
i ∈ {1,2, . . . ,m(A)}, ai is some object (arbitrarily) chosen from Ai. In Example 1,
X0 = {x} and X−X0 = {y,z,w} can be partitioned into the following I-equivalence
classes: X1 = {y,z} and X2 = {w}. One can then take e(X) to be either {y,w} or
{z,w}.

Our task is to use the information contained in the ordinal distance function d to
rank various subsets of X in terms of diversity. This is a rather complex exercise, to
say the least. To make the maximum possible use of our initial intuition, we shall
start with the notion of “weak domination.”

Definition 1. For all A,B ∈ K, we say that A weakly dominates B iff #e(A)≥ #e(B)
and there exist a subset e′(A) of e(A) and a one-to-one correspondence f between
e′(A) and e(B) such that [for all x,y ∈ e′(A),d(x,y)≥ d( f (x), f (y))].

Definition 2. For all A,B∈K, we say that A dominates B iff A weakly dominates B,
but B does not weakly dominate A.

It can be easily checked that, in our Example 1, {z,w} dominates {x,y,z}.
Several features of our notions of weak domination and domination may be

noted. First, when d(x,y) = 0, but x and y are distinguishable, {x,y} dominates {z}
for all z ∈ X : a set of two objects that have 0 distance from each other but are distin-
guishable dominates every singleton set. Second, if [d(x,y) = d(y,z) = d(x,z) = 0
but x,y,z are pairwise distinguishable] and [d(a,b) > 0], there does not exist any
weak domination relation either way between {x,y,z} and {a,b}. Third, for all
x,y,z,w∈X , {x,y}weakly dominates {z,w} or {z,w}weakly dominates {x,y} (note
that this is true irrespective of whether x = y or z = w).

4 Ranking Rules Satisfying the Property of Dominance

Definition 3. We say that � satisfies dominance (D) iff, for all A,B ∈ K, [if A
weakly dominates B, then A� B] and [if A dominates B, then A� B].

Note that D, by itself, does not identify a unique quasi-ordering over K; instead,
we have a class of quasi-orderings over K, each of which satisfies D. It is easy to
check that every quasi-ordering � over K, which satisfies D, satisfies the following
intuitively appealing properties:

(P.1) For all x,y ∈ X ,{x} ∼ {y};
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(P.2) For all x,y,x′,y′ ∈ X , if x and y are distinguishable and x′ and y′ are distin-
guishable, then d(x,y) > d(x′,y′)⇒{x,y} � {x′,y′};
(P.3) For all A ∈ K and all x ∈ X , if [x is indistinguishable from some a ∈ A or
x is a null object, then A∪{x} ∼ A,] and [if for every a ∈ A,x is distinguishable
from a and x is not a null object, then A∪{x} � A];
(P.4) for all A,B ∈ K with #A = #B, for all x ∈ X \A and all y ∈ X \B such that
both A∪{x} and B∪{y} are heterogeneous, if there exists a one-to-one mapping
f from A to B such that d(x,a)≥ d(y, f (a)) for all a∈A, then [A�B⇒A∪{x}�
B∪{y}] and [A� B⇒ A∪{x} � B∪{y}].
(P.1) states that every singleton set {x} is as diverse as every other singleton set

{y}. This property has been used by many writers implicitly or explicitly in measur-
ing diversity. (P.2) requires that the diversity of every doubleton set containing two
distinguishable objects depends exclusively on the ordinal distance between the two
objects. (P.3) stipulates that the addition of an object x to a set A will not change the
degree of diversity already offered by A when x is indistinguishable from some ex-
isting object in A or x is a null object, while the addition of x to A will increase
the degree of diversity offered by A when x is distinguishable from every object in
A and x is not a null object. This property needs careful interpretation. In real life,
people sometimes make the remark that an increase in the population of, say, giant
pandas will increase biodiversity. Such remarks seem to go counter to the intuition
of (P.3). The remark, however, seems to be based on the belief that there is a critical
level of present population below which giant pandas have no reasonable chance of
surviving in the future, that the current population level of giant pandas is below
this critical level, and that, as a consequence, an increase in the population of giant
pandas now will increase biodiversity by ensuring the survival of giant pandas. (P.3)
seems to be a reasonable property when such intertemporal issues are considered in
a framework analogous to the standard analytical framework in economics where
we consider the same physically identifiable commodity available at two different
points of time as two different commodities. Suppose, we have only one species,
giant pandas, and two periods, “the present” (0) and “the future” (1). The number of
giant pandas in the present is denoted by g0, and the number of giant pandas in the
future is denoted by g1. Let the minimum number of giant pandas required in the
present for its survival in the future be 100. Suppose g0 is 60. This cannot ensure the
survival of giant pandas in the future. Hence, we have a set of animals consisting of
60 giant pandas in the present and 0 giant pandas in the future. On the one hand, if
g0 increases to 80, then we shall have a set of animals consisting of 80 giant pandas
in the present and none in the future. On the other hand, if g0 increases to 100, then
that will ensure the survival of giant pandas in the future and we would have a set
of animals consisting of 100 giant pandas in the present and, say, 40 giant pandas in
the future. If a giant panda in the future is considered to be “different” from a giant
panda in the present, while two giant pandas in the present are considered “exactly
similar,” then it is not unintuitive to say that biodiversity will not increase in the first
case but will increase in the second case. This is consistent with (P.3). Finally, (P.4)
is a type of independence property.
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Theorem 1. � satisfies D if and only if it satisfies (P.1), (P.2), (P.3), and (P.4).

Proof. The proof is given in the appendix. ��

As we noted earlier, property D does not determine a unique rule for ranking
sets in terms of diversity. Instead, it identifies a (non-singleton) class rules. The
following definition introduces a rule, denoted by �∗, which belongs to this class
and is of some interest.

Definition 4. For all A,B ∈ K, A�∗ B if and only if A weakly dominates B.

It is clear that �∗ satisfies D. The feature of �∗ that distinguishes it from other
rules satisfying D is that, for every pairs of sets inK, if neither of the two sets weakly
dominates the other, then they are declared noncomparable by �∗.

Now, consider the following properties of a ranking � over K.

(P.5) For all A,B ∈K with #A > 1 and #B > 1, if A� B, then A\{a∗} � B\{b∗}
for some a∗ ∈ A and some b∗ ∈ B.
(P.6) For all A,B ∈ K , if both A and B are heterogeneous, #A = #B ≥ 2, A � B,
and A\{a′} � B\{b′} for some a′ ∈ A and some b′ ∈ B, then there exist a∗ ∈ A
and b∗ ∈B such that A\{a∗}�B\{b∗} and for some one-to-one correspondence
f from A\{a∗} to B\{b∗}, d(a∗,a)≥ d(b∗, f (a)) for all a ∈ A\{a∗}.
(P.7) For all A,B ∈ K, if both A and B are heterogeneous, A � B, and #A > #B,
then there exists a proper subset A′ of A such that A′ � B.

Theorem 2. �=�∗ if and only if � satisfies (P.1) through (P.7).

Proof. The proof is given in the appendix. ��

5 Revealed Ordinal Distance Functions and the Comparability
of Distances Between Objects

In this section, we indicate some alternatives to the approach that we have adopted
in the earlier sections.

So far, we have treated the ordinal diastance function d as a primitive concept
in our framework and based our ranking of the sets in K on this exogenously given
d. One can, however, follow an approach where the quasi-ordering � over K is the
primitive concept and the ordinal distance function is defined in terms of �. Let
� (“at least as diverse as”) be a given quasi-ordering over K. Let �2 be a binary
relation over K2 such that for all A,B ∈ K, A�2 B iff A� B. Assume that

∀x,y ∈ X ,{x,y} � {x} ∼ {y} (4)

and
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∀x,y,z,w ∈ X ,{x,y} � {z,w} or {z,w} � {x,y}]. (5)

Since� is assumed to be a quasi-ordering overK (i.e.,� is reflexive and trasitive
over K), (5) implies that �2 is an ordering over K2 (i.e., �2 satisfies reflexivity,
connectedness, and transitivity over K2). Define a function d′ : X2⇒ R+ such that

∀(x,y),(z,w) ∈ X2,d′(x,y)≥ d′(z,w)⇔{x,y} � {z,w} (6)

and
∀x,y ∈ X ,d′(x,y) = d′(y,x) and d′(x,x) = 0. (7)

It can be easily checked that, given the finiteness of X and given (4), such a real-
valued function d′ can be found. One can then treat this function d′ as an ordinal
distance function which is “revealed” by �. Our concepts of weak domination and
domination of sets and the property of dominance can now be developed in terms
of this revealed ordinal distance function, d′, and the property of dominance for
�, in its turn, can be defined in terms of these newly defined relations of weak
domination and domination between sets. One can then prove the counterparts of
Theorems 1 and 2 in this framework, the proofs being exactly analogous to the
proofs of Theorems 1 and 2, respectively.

It may be worth noting some possible extensions of Theorems 1 and 2. The
ordinal distance function introduced in Section 3 implicitly assumes that, for all
x,y,z,w ∈ X , the extent of dissimilarity between x and y can be compared with the
extent of dissimilarity between z and w. This intuitive assumption regarding the
comparability of dissimilarities between objects is also inherent in all approaches
based on cardinal distance functions. The assumption of universal comparability of
dissimilarities may, however, be considered rather strong in some contexts. It is,
therefore, of interest to note that results analogous to our Theorems 1 and 2 can
be proved without this intuitive assumption. To do this, we can start with a given
reflexive and transitive, but not necessarily connected, binary relation � defined over
X2 such that, for all x,y∈X ,(x,y)� (y,x) � (x,x). For all x,y,z,w∈X , (x,y)� (z,w)
means that the distance between x and y is at least as great as the distance between
z and w. It is possible to develop the counterparts of Theorems 1 and 2 using the
binary relation � instead of the real-valued ordinal distance function d, but we do
not undertake the exercise here since the reasoning involved is very similar to the
reasoning in Section 4.

6 Concluding Remarks

In this chapter, we have used an ordinal concept of distance between objects to pro-
vide a characterization of all diversity-based rankings of sets of objects that satisfy
a plausible property of dominance; we have also characterized a specific member
of this class, which declares two sets of objects to be noncomparable if they are
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not comparable in terms of the relation of weak domination. We have discussed a
parallel approach where we rely on the “revealed ordinal distances” rather on an
exogenously given ordinal distance function. Our results constitute only the first
step in the exploration of diversity-based rankings of sets of objects, using ordinal
distance functions. The class of diversity-based rankings that satisfy dominance is
a very wide class. Can we narrow down this class by imposing other reasonable
properties in addition to dominance, but requiring only information about ordinal
distances? This “natural” extension of our analysis requires a separate study.
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Appendix

Proof of Theorem 1

Suppose that� satisfies (P.1), (P.2), (P.3), and (P.4). We show that� is a dominance-
based rule.

Let � satisfy (P.1), (P.2), (P.3), and (P.4). By the repeated use of (P.3) and transi-
tivity of �, it is straightforward to show that A∼ e(A) for every A ∈ K.

We first show that, for all A,B ∈ K, if #e(A) = #e(B) and there is a one-to-one
correspondence f between e(A) and e(B) such that [for all x,y ∈ e(A),d(x,y) =
d( f (x), f (y))], then A ∼ B. Let A,B ∈ K be such that #e(A) = #e(B) and, for
some one-to-one correspondence f between e(A) and e(B), we have [for all x,y ∈
e(A),d(x,y) = d( f (x), f (y))]. Let e(A) = {a1, . . . ,am} and e(B) = {b1, . . . ,bm} be
such that f (ai) = bi for i = 1, . . . ,m. Then, d(ai,a j) = d(bi,b j) for all i, j = 1, . . . ,m.
By (P.1), {a1} ∼ {b1}. By (P.4) and noting that d(a1,a2) = d(b1,b2), it fol-
lows that {a1,a2} ∼ {b1,b2}. By (P.4) and noting that d(a3,a2) = d(b3,b2) and
d(a3,a1) = d(b3,b1), we obtain {a1,a2,a3} ∼ {b1,b2,b3}. By the repeated use of
(P.4) if necessary, and noting that d(ai,a j) = d(bi,b j) for all i, j = 1, . . . ,m, we have
{a1, . . . ,am} ∼ {b1, . . . ,bm}. That is, e(A)∼ e(B). Noting [A∼ e(A) and B∼ e(B)],
the transitivity of � then gives us A∼ B.

Next, we show that, for all A,B ∈ K, if #e(A) = #e(B) and there is a one-to-one
correspondence f between e(A) and e(B) such that [for all x,y ∈ e(A),d(x,y) ≥
d( f (x), f (y))] and [for some x,y ∈ e(A),d(x,y) > d( f (x), f (y))], then A � B. Let
A,B ∈ K be such that #e(A) = #e(B) and, for some one-to-one correspondence f
between e(A) and e(B), we have [for all x,y ∈ e(A),d(x,y) ≥ d( f (x), f (y))] and
[for some x,y ∈ e(A),d(x,y) > d( f (x), f (y))]. Again, let e(A) = {a1, . . . ,am} and
e(B) = {b1, . . . ,bm} be such that f (ai) = bi for i = 1, . . . ,m. Then, d(ai,a j) ≥
d(bi,b j) for all i, j = 1, . . . ,m, and for some h,k = 1, . . . ,m, d(ah,ak) > d(bh,bk).
Without loss of generality, let h = 1 and k = 2. Then, d(a1,a2) > d(b1,b2). By
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(P.2), noting that d(a1,a2) > d(b1,b2), {a1,a2} � {b1,b2} follows immediately.
By (P.4) and noting that d(a3,a1)≥ d(b3,b1), d(a3,a2)≥ d(b3,b2), it follows that
{a1,a2,a3} � {b1,b2,b3}. By the repeated use of (P.4) if necessary, and noting that
d(ai,a j) ≥ d(bi,b j) for all i, j = 1, . . . ,m, we obtain {a1, . . . ,am} � {b1, . . . ,bm}.
That is, e(A) � e(B). By the transitivity of �, A � B follows from e(A) ∼ A and
e(B)∼ B.

Finally, let A,B ∈ K, let #e(A) > #e(B), and let there be a subset e′(A) of
e(A) and a one-to-one correspondence f between e′(A) and e(B) such that [for all
x,y ∈ e′(A),d(x,y)≥ d( f (x), f (y))]. We show that A� B. Let e′(A) = {a1, . . . ,am},
e(A) = {a1, . . . ,am,am+1, . . . ,am+n}, and e(B) = {b1, . . . ,bm} be such that f (ai) = bi
for i = 1, . . . ,m and n≥ 1. From the above analysis, we have e′(A)� e(B). By (P.3),
it follows that e′(A)∪{am+1} � e′(A), e′(A)∪{am+1}∪{am+2} � e′(A)∪{am+1},
. . . , e(A) = e′(A) ∪ {am+1} ∪ · · · ∪ {am+n−1} ∪ {am+n} � e′(A) ∪ {am+1} ∪ · · · ∪
{am+n−1}. By the transitivity of�, it follows that e(A)� e′(A). Another application
of transitivity of � yields e(A)� e(B). Now, A� B follows from the transitivity of
� by noting that A∼ e(A) and B∼ e(B).

To complete the proof of Theorem 1, we note that it is straightforward to check
that every � that satisfies D must satisfy (P.1), (P.2), (P.3), and (P.4). ��

Proof of Theorem 2

It can be verified that�∗ satisfies (P.1) through (P.7). In what follows, we show that,
if � satisfies (P.1) through (P.7), then �=�∗.

Let � satisfy (P.1) through (P.7). We first note that, by Theorem 1, A∼ e(A) for
all A ∈ K.

Consider any A,B ∈ K. If either of the two sets, A and B, weakly dominates
the other, then, by Theorem 1 and the definition of �∗, it is clear that A � B iff
A �∗ B and B � A iff B �∗ A. To complete the proof, therefore, we need only to
show that, if neither of the two sets, A and B, weakly dominates the other, then A
and B are noncomparable. Assume that neither A weakly dominates B nor B weakly
dominates A. Given this, it can be checked that #e(A)≥ 2 and #e(B)≥ 2.

There are several cases that need to be considered. First, we note that, if #e(A) <
#e(B), then we must have not[e(A) � e(B)]. This is because, if e(A) � e(B), by
(P.5), we obtain e(A)\ {a1} � B \ {b1} for some a1 ∈ e(A) and some b1 ∈ e(B). If
e(A)\{a1} contains one object, then there is an immediate contradiction with e(B)\
{b1}� e(A)\{a1}, given Theorem 1. If e(A)\{a1} contains more than one element,
by repeated application of (P.5), we obtain a similar contradiction. Therefore, when
#e(A) < #e(B), it must be true that not[e(A)� e(B)]. By transitivity of �, it follows
that, if #e(A) < #e(B), then not[A� B] holds.

Next, we consider A and B such that (i) #e(A) = #e(B); and (ii) for every
one-to-one correspondence f from e(A) to e(B), there exist x,y,z,w ∈ e(A) such
that d(x,y) > d( f (x), f (y)) and d(z,w) < d( f (z), f (w)). We need to show that
e(A) and e(B) are not comparable. Suppose to the contrary that they are com-
parable. If e(A) � e(B), by (P.5), there exist a1 ∈ e(A) and b1 ∈ e(B) such that
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e(A) \ {a1} � e(B) \ {b1}. Then, by (P.6), there exist a∗ ∈ e(A) and b∗ ∈ e(B)
such that e(A) \ {a∗} � e(B) \ {b∗} and, for some one-to-one correspondence g
from e(A) \ {a∗} to e(B) \ {b∗}, d(a∗,a) ≥ d(b∗,g(a)) for all a ∈ e(A) \ {a∗}. If
e(A) \ {a∗} contains two objects, say a and a′, then, by Theorem 1, it must be
true that d(a,a′)≥ d(g(a),g(a′)). Consider the one-to-one correspondence g′ from
e(A) = {a∗,a,a′} to e(B) = {b∗,g(a),g(a′)} defined as g′(a∗) = b∗, g′(a) = g(a),
and g′(a′) = g(a′). Then, for the correspondence g′ from e(A) to e(B), we have
d(u,v)≥ d(g′(u),g′(v)) for all u,v ∈ e(A), which contradicts the fact that there ex-
ist x,y,z,w ∈ e(A) such that d(x,y) > d( f (x), f (y)) and d(z,w) < d( f (z), f (w)).
Therefore, in this case, it cannot be true that e(A) � e(B). If e(A) \ {a∗} contains
more than two objects, then by the repeated use of (P.5) and (P.6), a similar contra-
diction can be derived. Therefore, e(A) � e(B) does not hold. Similarly, it can be
shown that e(B)� e(A) cannot hold. Consequently, we must have that e(A) and e(B)
are noncomparable. By transitivity of�, it follows that A and B are not comparable.

Finally, we consider A and B such that (i) #e(A) > #e(B); and (ii) for every
subset e′(A) of e(A) with #e′(A) = #e(B), and every one-to-one correspondence
f from e′(A) to e(B), there exist x,y,z,w ∈ e′(A) such that d(x,y) > d( f (x), f (y))
and d(z,w) < d( f (z), f (w)). Suppose e(A) � e(B). Then, by (P.7), there exists a
proper subset C of e′(A) such that C � e(B). We can assume that #C = #e(B) since
(i) #C≥ #e(B) and (ii) if #C > #e(B), then, by possibly several applications of (P.7),
we can reduce the cardinality of C to #e(B). Note that, C is a subset of e(A) and that
#C = #e(B). Then, for every one-to-one correspondence f from C to e(B), there exist
x,y,z,w∈ e′(A) such that d(x,y) > d( f (x), f (y)) and d(z,w) < d( f (z), f (w)). It then
follows that C and e(B) are noncomparable, a contradiction. Therefore, e(A)� e(B)
cannot be true. Since #e(B) < #e(A), it must be true that not[e(B) � e(A)]. There-
fore, e(A) and e(B) are not comparable. The transitivity of� now implies that A and
B are not comparable. This completes the proof of Theorem 2. ��
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